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Dedication: In Memoriam

To the memory of my very dear colleague Saul Irving Gass, an OR
pioneer, practitioner, and statesman, and a true scholar and friend.
Saul passed away on March 17, 2013, as this edition of the
Encyclopedia was going to press.





Preface

The goal of the Encyclopedia of Operations Research and Management Science is to

provide decision makers and problem solvers in business, industry, government, and

academia a comprehensive overview of the wide range of ideas, methodologies, and

synergistic forces that combine to form the preeminent decision-aiding fields of

operations research and management science (OR/MS). The impact of OR/MS on

people’s quality of life and economic well-being is a story that deserves to be told in

its full detail and glory. The Encyclopedia of Operations Research and Management

Science is the prologue to that story.

The editors, working with the Encyclopedia’s Editorial Advisory Board,

surveyed and divided OR/MS into specific topics that collectively encompass the

foundations, applications, and emerging elements of this ever-changing field. We

also wanted to establish the close associations that OR/MS has maintained with

other scientific endeavors, with special emphasis on its symbiotic relationships

with computer science, information systems, and mathematics. Based on our

broad view of OR/MS, we enlisted a distinguished international group of

academics and practitioners to contribute entries on subjects for which they are

renowned. We commissioned over 200 major expository entries and complemented

them by numerous descriptions, discussions, definitions, and abbreviations. The

connections between topics are highlighted by an entry’s final “See” statement,

as appropriate. Each entry provides a background or history of the topic, describes

relevant applications, overviews present and future trends, and lists seminal

and current references. To allow for variety in exposition, the authors were

instructed to present their material from their research and applied perspectives.

In particular, the authors, each of whom is a leading authority on the particular

subject, were allowed to use whatever mathematical notation they felt was standard

for their topics.

The Encyclopedia’s intended audience is technically diverse and wide; it includes

anyone concerned with the science, techniques, and ideas of how one makes

decisions. As this audience encompasses many professions, educational

background, and skills, we were attentive to the form, format, and scope of the

entries. Thus, the entries are designed to serve as initial sources of information for

all such readers, with special emphasis on the needs of students.

What are Operations Research and Management Science?

Operations research and management science are often equated to one another. If one

defines them by the methodologies they employ, the equation would probably stand
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inspection. If, however, one defines them by their historical developments and the

classes of problems they encompass, the equation becomes fuzzy. OR grew out of the

operational problems of the British and U.S. military efforts in World War II. It was

augmented methodologically and computationally by the postwar developments of

linear programming, game theory, dynamic programming, discrete-event simulation

(among others), and the digital computer. A number of additional ideas and problem

types from the pre-war years were incorporated into the field as well, including

inventory and queueing theories, Markov modeling, and the basic methods of

optimization. Early (1950s) practitioners of OR applied its philosophy and

techniques to the solution of industrial and business operational problems with

great success. It was soon recognized that whatever OR was as a scientific field, it

could be used to study and solve the broader planning and strategic issues of

organizational management, financial planning, and public policy. From this

observation, MS began and flourished in a similar and somewhat overlapping

manner to OR.

More formal definitions of OR andMS are readily available. OR can be defined as:

(1) the application of the methods of science to complex problems arising in the

direction and management of large systems of men, machine, materials, and money in

industry, business, government, and defense; (2) the science of deciding how to best

design and operate man-machine systems; (3) a scientific method for providing

executive departments with a quantitative basis for decision making. MS can

be defined as: (1) the application of scientific methodology or principles to

management decisions; (2) the use of quantitative methods for solving management

and organizational decision problems. Together, OR andMSmay be thought of as the

science of operational processes, decision making, and management. However, to our

minds, the definition of OR/MS is really given by the coverage of the material in this

Encyclopedia.

Second Edition

The second edition aimed to capture the advances since the 1996 first edition,

especially the relationships between OR/MS and information technology, and to

update, expand, and correct the original material. With respect to OR/MS advances,

newmaterial ranged from the Analytic Network Process to Data Mining to Electronic

Commerce to the Theory of Constraints, among the 28 new entries added at that

time. First edition entries were updated or rewritten by the original and/or new

authors. Based on suggestions from the readers of the first edition, more material on

the history of OR/MS was added, including emphasis of its origins by an article on

early British OR.

Third Edition

This third edition of the Encyclopedia of Operations Research and Management

Science moves us closer to our goal of providing a comprehensive overview of the

theoretical and applied subject matter that forms the ever-expanding field of OR/MS.

Again, many of the second edition entries have been updated by the original authors,
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with a few being totally rewritten by new authors. In addition, the following

completely new entries have been added, each of which either describes a new

topic or replaces a previous short entry:

Agent-Based Simulation

Air Traffic Management

Approximate Dynamic Programming

Business Intelligence

Closed-loop Supply Chains

Combinatorial Auction Theory

Community OR

Complementarity Applications

Computational Biology

Conditional Value at Risk

Convex Optimization

Critical Systems Thinking

Data Warehousing

Decision Analysis Practice

Deep Uncertainty

Differential Games

Digital Music

Disaster Management

Disease Prevention, Detection, and

Treatment

Financial Engineering

Flexible Manufacturing Systems

Fuzzy Sets, Systems, and

Applications

Global Optimization

Health Care Management

Health Care Strategic Decision

Making

Heuristics

Hit and Run Methods

Influence Diagrams

Knowledge Management

Lagrangian Relaxation

Markov Chain Monte Carlo

Metaheuristics

Open Source Software (and COIN-

OR)

Operational Research Society

Petroleum Refining

Quadratic Assignment Problem

Rare Event Simulation

Regenerative Simulation

Response Surface Methodology

Revenue Management

Sample Average Approximation

Sensitivity Analysis

Service Science

Simulated Annealing

Societal Complexity

Statistical Ranking and Selection

Stochastic Approximation

Stochastic Input Model Selection

We want to emphasize that the Encyclopedia of Operations Research and

Management Science is the responsibility of the editors. We made the final

determination of the scope, topics, and material. Any shortcoming (editorial,

inclusion, omission, emphasis, factual) that the reader may perceive rests with us.

Hence, we sincerely welcome comments and feedback on all aspects of the

Encyclopedia.
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A

A* Algorithm

A heuristic search procedure that selects a node in

its search tree for expansion such that the selected

node has minimum value of the sum of the cost to

reach the node plus a heuristic cost value for that

node, where the heuristic cost underestimates the true

minimum cost of completion.

See

▶Artificial Intelligence
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Acceptance Sampling

▶Quality Control

Acceptance-Rejection Method

In stochastic or Monte Carlo simulation, a method for

sampling from a given difficult target probability

distribution by sampling from a distribution that is

close to the target distribution and relatively easy to

sample but possibly rejecting the generated output.

Sometimes just called the rejection method.

See

▶Monte Carlo Methods

▶Monte Carlo Simulation

▶ Simulation of Stochastic Discrete-Event Systems

Accounting Prices

▶ Shadow Prices
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▶Model Accreditation
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Active Constraint

A constraint in an optimization problem that is

satisfied exactly by a solution.

See

▶ Inactive Constraint

▶ Slack Variable

▶ Surplus Variable

Active Set Methods

▶Quadratic Programming

Activity

(1) A structural variable whose value (level) is to be

computed in a linear programming problem.

(2) Project work items having specific beginning and

completion points and durations.

See

▶Network Planning

▶ Project Management

▶ Structural Variables

Activity Level

The value taken by a structural variable in an

intermediate or final solution to a linear programming

problem.

See

▶ Structural Variables

Activity-Analysis Problem

A linear-programming problem of the form

Maximize cx, subject to Ax � b, x � 0. The variables
xj of the vector x are quantities of products to be

produced. The bi coefficients of the resource vector b

represent the amount of resource i that is available for

production, the cj coefficients represent the value

(profit) of one unit of output xj, and the coefficients

aij of the technological matrix A represent the amount

of resource i required to produce one unit of product j.

The aij are termed technological or input-output

coefficients. The objective function cx represents

some measure of value of the total production.

See

▶ Input–Output Analysis

▶ Input–Output Coefficients

▶Linear Programming

Acyclic Network

A network that contains no cycles.

See

▶Graph Theory

▶Network Optimization

Adjacent

Nodes of a graph or network are adjacent if they are

joined by an edge; edges are adjacent if they share

a common node.

See

▶Graph Theory

▶Network Optimization
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Adjacent (Neighboring) Extreme Points

Two extreme points of a polyhedron that are connected

by an edge of the polyhedron.
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Introduction

Advertising research has focused on three substantive

areas: sales response to advertising, optimal

advertising policy (constant spending or pulsing),

competitive reactions and over-time effects. The

research has employed econometric, time-serioes,

optimization and game theoretic analytical techniques

to address the issues. The advent of enormous amounts

of scanner panel and internet data has led to some

fruitful modeling at the individual household level.

Contributions in each one of the three areas are

discussed. A thorough review of optimal control

advertising models is given in Feichtinger, Hartl, and

Sethi (1994). Mathematical programming also has

been a useful technology. Since some early successful

applications of this technology for media planning, the

progress has been limited because of measurement

problems relating to advertising response function

(Little and Lodish 1969). Advances in research,

however, provide reasons for optimism in identifying

the response function (Little 1979; Eastlack and Rao

1986). Heuristic approaches have been developed to

estimate the media characteristics of reach and

frequency (Rust and Eechambadi 1989).

Sales-Advertising Relationship

The first generally recognized model of importance

was proposed by Vidale and Wolfe (1957). Building

on a diffusion modeling framework, the Vidale-Wolfe

model proposed that advertising directly persuades

potential customers not currently buying from the

firm, while those who are buying tend to forget (buy

less) over time. Formally, the model is represented

as follows:

x0 ¼ ru 1� xð Þ � kx; xð0Þ ¼ x0

where x is the market share, u is the level of advertising

expenditure at time t, and k is the decay constant. The

model suggests an exponential reach and decay

phenomena with r and k rate parameters. Bass and

Parsons (1969), following Bass (1969), developed

a dynamic simultaneous equation model of sales and

advertising and estimated this model on data for

a frequently purchased consumer product. The

empirical results from this analysis suggest that the

advertising elasticity for the brand is small and

the advertising expenditures are responsive to sales

increases of other brands. A very interesting feature

of this model is that it has good forecasting properties.

As far as estimation technology is concerned, there

are three works that have provided insightful results.

Bass and Clarke (1972) showed that statistical models

of sales-advertising relationship need not be limited to

the Koyck (1954) model. For example, nonmonotonic

lag distributions are more appropriate for monthly

data. Bass and Leone (1986) further examined

the data interval issue. Rao (1986) has suggested that

one should recognize the role of unobservable

advertising expenditures in estimating the parameters

of sales-advertising relationship associated with

different data intervals.

With the evolution of a better appreciation of the

advertising effects, the focus has shifted to models at

the individual level. Blattberg and Jeuland (1981)

postulated a micromodel that incorporated two well

established advertising mechanisms, reach and decay.

They assumed that the exposure of an individual to an

advertisement can be characterized as a Bernoulli

process, and the decay (forgetting) as an exponential

process. These assumptions lead to a saw-tooth

description of advertising effectiveness. The

micromodel is aggregated to derive a model of

advertising effects on the firm’s sales. The model,

while fairly flexible and general, provides insightful

interpretations. The advent and explosion of scanner

panel data over the last decade has accelerated efforts

Advertising 3 A
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to model at the individual level. The work by Pedrick

and Zufryden (1991) was representative of this effort.

They proposed a nonstationary, integrative, stochastic

model approach that melds brand choice, purchase

incidence and exposure behavior components. The

integrated model, calibrated on scanner panel data,

provided good fit and fairly accurate forecasts. Jedidi,

Mela, and Gupta (1999) also used the scanner panel

data and study the tradeoff between advertising and

sales promotion for long-run profitability employing

a heteroscedastic, varying parameter joint probit

choice model. They show that advertising has

a positive effect on brand equity, while sales

promotions have a negative effect.

Optimal Advertising Policy

Researchers have been engaged in the examining what

might be the optimal advertising policy given a budget

constraint. Some have argued that constant advertising

or chattering (vacillate between two levels of spending

with infinite frequency) is probably the optimal policy

(Sasieni 1971; Sethi 1973). However, others have

found pulsing (Hahn and Hyun 1990; Feinberg 1992)

to be optimal or better. Sasieni (1971) formulated the

problem as follows:

max

Z1

0

pxðtÞ � uðtÞ�e�rtdt;½ with

x0 ¼ g x; uð Þ; xð0Þ ¼ x0

where x(t) and u(t) refer to sales and advertising at time

t and r is the discount rate. Now, let gu and gx be the

first partial derivatives and guu the second partial

derivative. Then, employing Bellman’s approach

to dynamic programming and the classical

Poincare-Bendixson theorem for phase space of

differential equations, Sasieni showed that the

optimal advertising policy is constant spending when

it is assumed that for a given sales and advertising

(1) the sales response would be the same or more

positive if advertising level were higher (gu � 0),

(2) the sales response would be same or more

positive if sales were at a lower level (gx � 0), and

(3) the sales response exhibits diminishing returns to

increases in advertising level that so that the response

curve is concave (guu � 0). The optimal policy,

however, becomes chattering when the assumption of

concavity of the response function is violated. Clearly,

therefore, the shape of the response curve has become

a matter of debate. There are many who find evidence

for an S-shaped response curve (Little 1979; Eastlack

and Rao 1986). A more definitive conclusion on the

shape of the response curve would enhance the ability

to model advertising better. This is, of course,

a question for empirical examination.

Hahn and Hyun (1990) showed that when

transaction costs above the ordinary media costs are

included in Mahajan and Muller’s model (1986),

pulsing is the optimal policy. Feinberg (1992)

introduced the concept of a filter and modifies the

Sasieni model as follows:

x0 ¼ g x; zð Þ; z0 ¼ G u� zð Þ;

where z characterizes the filter. The only way to

produce something constant in the Sasieni

formulation is to fluctuate very rapidly, that is, to

chatter. Since chattering is impossible in principle

and constant spending is impossible in practice, they

are two unrealizable ends of a frequency spectrum and

are, in a sense, perceptually equivalent. The

introduction of a filter allows Feinberg to

mathematically equate the two. The filter

exponentially smooths out the input. If the input is

constant or chattering advertising, the filter yields

a constant output. The filter output, however, is

a pulsing policy for any nonconstant periodic input.

Feinberg (1992) showed numerically that pulsing is

a better policy than constant spending.

Research continues to demonstrate that pulsing is

an optimal strategy. Bronnenberg (1998) has shown

that under the assumptions of a discrete and

interpretable Markov process and a constrained

budget, a pulsing strategy is optimal, and the

advertising effects on switching or repeat purchase

affect both the length of the pulse and the optimal

level of advertising. Adapting the Nerlove and Arrow

(1962) model of advertising, where advertising is

formulated as a function of awareness, Naik,

Mantrala and Sawyer (1998) showed that pulsing

strategies can generate greater total awareness than

continuous advertising when the effectiveness of

advertising varies over time.
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Competition

This issue has received considerable attention. Three

kinds of competitive models — differential game

models, hazard rate models and competitive reaction

models — have emerged.

The differential gamemodels have been built on the

Vidale-Wolfe or Nerlove and Arrow models, and

employ either open-loop (Rao 1984) or closed-loop

(Erickson 1991) deterministic games to solve them.

Rao (1984) casts the model in the standard format.

The value to a firm is the discounted profit which is

defined as sales minus the advertising cost. Sales and

advertising response functions are assumed to be

strictly concave and convex, respectively. Further,

sales at any time period are expressed as a geometric

decay of last period’s sales and this guarantees

an upper bound for the value to the firm. The context

is oligopolistic competition. In this setting, Rao

demonstrates an industry open-loop Nash

equilibrium. Most of the open-loop differential games

confirm Rao’s analysis. There have been efforts to

compare the open-loop and closed-loop solutions to

differential games. It has been found that closed-loop

equilibrium strategies provide a better fit of the

data, that is, actual spending levels in the market

(Erickson 1991).

The work by Bourguignon and Sethi (1981) is

a good representation of the hazard rate models

applied to the study of competition in the context of

advertising. These models are useful in situations

where a firm must advertise to deal with the threat of

entry by another firm. Bourguignon and Sethi

characterize a special class of hazard rates given by

h(p, u)¼ (1� F) n�1where p and u represent price and

advertising, F(t) is the probability that the entry of the

firm has occurred in the time interval [0, t), and n is

a parameter depicting the nature of potential entrants.

Employing Pontryagin’s maximum principle, the

researchers show that, for certain conditions, the

optimal policy for a firm is to forbid the entry of any

competitor by setting p and u aggressively.

Competitive reaction to advertising may be

assessed by multivariate time-series models.

Steenkamp, Nijs, Dekimpe & Hanssens (2005)

examined competitive reactions to advertising and

promotion in over 400 consumer product categories,

using vector-autoregressive models. They found that

the predominant competitive reaction to advertising is

no reaction at all, and that, when reaction does occur,

it is often ineffective. Thus the ultimate impact of

most promotion and advertising campaigns depends

primarily on the nature of consumer response, not the

vigilance of competitors.

Over-Time Effects

Many authors have argued that the effect of advertising

extends beyond the period in which the expense is

incurred. This raises questions about the duration

length, i.e., how long does advertising have an

impact, and the combined effect across the various

periods during which advertising has an impact.

Leone (1995) reports the empirical generalization

that the average advertising duration interval on sales

is short, typically between 6 and 9 months. As

a consequence, managers should not expect the

tangible impact of an individual advertising

campaign to last for years. In this respect, one should

be aware of the well-documented data aggregation

bias, in that the coarser the level of temporal

aggregation in the data, the longer the duration

interval one tends to obtain; see Russell (1988) for

diagnosing and correcting such data aggregation bias.

Dekimpe and Hanssens (1995a) introduced

persistence modeling, and demonstrated empirically

that it is possible that advertising has a permanent

effect on sales. Central in their conceptualisation is

that one should take into account various channels

through which advertising may impact (subsequent)

sales. They identified six such channels:

instantaneous effects, delayed response, purchase

reinforcement, performance feedback, decision rules,

and competitive reactions; see Hanssens (2011) for

several business illustrations of the impact of these

channels. As shown in Dekimpe and Hanssens

(1995a), persistent marketing (advertising) effects

can only occur in evolving environments, i.e., where

the performance fluctuations are not just temporary

deviations from a pre-determined (i.e., deterministic)

level. Subsequent research (Nijs et al. 2001;

Steenkamp et al. 2005) across many product

categories and brands in the CPG (Consumer

Packaged Goods) sector has established that such

evolution is rare in both primary and secondary

demand, and even more so when looking at market

shares (Dekimpe and Hanssens 1995b). Evolution in
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sales is most common in the early stages of the product

life cycle. In such cases, advertising may (but need not)

have persistent effects on the brand’s future

performance evolution. Pauwels and Hanssens (2007)

find that, even in overall stable markets, there are

selective and usually brief time windows that offer an

opportunity for brands to benefit from long-term

advertising effects. Still, most evidence to date

supports the notion of business-as-usual scenarios,

where the actions of brands only lead to temporary

performance changes that eventually return to the mean.

In the absence of evolution and, hence, the absence

of permanent effects, the question centers on the

combined, or cumulative, effect of advertising.

Lodish et al. (1995) report in this respect that if

increased TV advertising has a significant impact on

sales during the year of its expenditure, the sales

impact is approximately doubled in the following

2 years. They also report, however, that if there is no

significant effect in the short run, there will not be any

significant long-term effect either. This finding is

echoed in Hanssens (2011), who concludes that

“consistently, it has been found that a short-run

impact on consumer purchasing (sales) is

a prerequisite for a long-term effect” (p. 3). Given

that many advertising campaigns have no significant

immediate effect, this is quite worrisome. On the other

hand, when short-term effects are positive, they can be

amplified up to five-fold by brand actions that involve

other aspects of marketing, such as product-line

extensions and sales promotions, as shown by

Pauwels (2004). Similar results are reported in

Srinivasan, Vanhuele and Pauwels (2010).

In sum, even when accounting for the fact that

advertising’s impact may extend beyond the week

(month) in which it is spent, fairly small elasticities

are typically found. These do not imply that

advertising is wasteful, but instead that a tight

relationship exists between sales revenue, advertising

spending and profitabilty. Firms are well advised to

study the effectiveness of their advertising as they

make resource allocation decisions.

Concluding Remarks

The models reviewed suggest several conclusions

relating to advertising. First, there are two

mechanisms – growth and decay – in the advertising

process. Second, the sales-advertising response curve is

either concave or S-shaped. Third, pulsing is better (and

may even be optimal) advertising policy. Fourth,

competition matters and can be modeled in several

ways. Fifth, the over-time effects of advertising are

important; advertising’s long-term effect is typically

a multiple of its short-term impact; see Tellis and

Ambler (2007) for an in-depth discussion of these issues.

See

▶Game Theory

▶Marketing
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Affiliated Values Bidding Model

A bidding model in which a bidder, upon learning that

a competitor’s valuation for what is being sold is

higher than previously thought, will raise (or at least

not lower) the bidder’s own valuation. Affiliated

values models include common value models and

independent private value models as limiting cases.

See

▶Bidding Models

Affine Transformation

A shifted linear transformation. An affine

transformation on an n-dimensional vector space

assigns to any point x the point Ax + c, where A is an

n � n matrix and c is an n-dimensional vector.

Affine-Scaling Algorithm

An interior point method for linear programming based

on affine transformations. In the primal affine-scaling

algorithm, a problem in standard form is transformed

so that the current solution estimate is mapped to

the point (1, 1,. . ., 1). A movement is then made in

the transformed space in the direction of the negative
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projected gradient. The inverse affine transformation is

applied to the resulting point, to obtain a new solution

estimate in the original space. In the dual affine-scaling

algorithm, similar ideas are used to solve the dual

problem, with the affine transformations applied to

the dual slack variables.

See

▶ Interior-Point Methods for Conic-Linear

Optimization

▶Nonlinear Programming

Agency Theory

▶Organization

Agent

An agent is an autonomous decision-making entity that

receives sensor information from an environment and

acts based on that information. Agents may be humans

or computer software, and may include hardware

elements (e.g., robots). In agent-based simulation,

agents interact within the environment to generate

system behavior; and in artificial intelligence, the

behavior of an agent is generally directed towards

achieving certain goals.

See

▶Agent-Based Simulation

▶Artificial Intelligence
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Introduction

Agent-based simulation (ABS) is a computational

framework for simulating dynamic processes that

involve autonomous agents. An autonomous agent

acts on its own without external direction in response

to situations the agent encounters during the

simulation. Modeling a population of autonomous

and heterogeneous agents that extensively interact is

a defining feature of an ABS. ABS is a simulation

approach made possible by advances in

computational modeling and software. The agent

perspective is unique among simulation approaches,

unlike the process or activity perspectives of

discrete-event simulation (DES), or the dynamical

systems approach of system dynamics (SD).

Agent-based simulation is most commonly used to

model individual decision making and social and

organizational behavior (Bonabeau 2001). Samuelson

(2000) provides a brief overview of the early history of

agent-based modeling, especially as applied to

studying how organizations work, while Samuelson

and Macal (2006) trace subsequent developments.

An agent is a general concept having broad

applicability. Agents often represent people, or groups

of people. Agent relationships represent processes of

social interaction (Gilbert and Troitzsch 1999). For

example, an individual’s daily activities are explicitly

modeled in an ABS of infectious disease transmission

to understand infection patterns arising from contact

patterns of individuals. In a supply chain ABS, agents

are firms with decision-making behaviors about

material sourcing and ordering, stocking, and

shipping. In an ABS composed of artificial agents,

collaborating robots search the landscape and

communicate their findings to collectively accomplish

a task. ABS models have also been developed that

extend the notion of agents. Various types of animals,

bacterial cells, cells composing the human immune

system, and even molecules have been modeled as

A 8 Agency Theory

http://dx.doi.org/10.1007/978-1-4419-1153-7_475
http://dx.doi.org/10.1007/978-1-4419-1153-7_475
http://dx.doi.org/10.1007/978-1-4419-1153-7_682
http://dx.doi.org/10.1007/978-1-4419-1153-7_712
http://dx.doi.org/10.1007/978-1-4419-1153-7_1229
http://dx.doi.org/10.1007/978-1-4419-1153-7_42


individual, interacting agents. By modeling individual

agents and their interactions, emergent system

behaviors are often observed that were not explicitly

programmed into the models.

The notions of behavior, decision making, and

interaction apply to modeling many kinds of system.

A common reason for modeling a system as an ABS is

to consider agent learning and adaptation. At the

individual level, learning and adaptation can be modeled

as agent behaviors. At the population level, adaptation can

be modeled by allowing agents to enter and leave the

population, with the more successful agents increasing

their relative numbers in the population over time.

The development of agent-based modeling tools, the

availability of micro-data on agent transactions and

interactions, and advances in computation have made

possible a growing number of ABS applications across

a variety of domains and disciplines.

Agent-based simulation has historical ties to

complexity theory and the field of complex adaptive

systems (CAS). CAS concerns itself with questions

about how complex systems observed in nature,

which are composed of autonomous agents with

limited cognitive and perceptual abilities, can

self-organize themselves to be better suited to their

environment (Holland 1975). The first agent-based

modeling software tool, Swarm, was developed to

model complex adaptive systems, specifically to

investigate aspects of Artificial Life (ALife) (Langton

1989). Holland and Miller (1991) appear to be the first

to use the term agent in models of this type.

Agent-based simulation is also closely related to the

field of multi-agent systems (MAS), but MAS has

a somewhat different focus and legacy; MAS is

a subfield of distributed artificial intelligence.

Individual-Based Modeling (IBM) is another field

related to ABS. IBM has a history associated with

ecological modeling, where it was important to

model heterogeneous populations of agents, but agent

interaction was less important of a consideration.

Agent-based modeling (ABM) is often used

synonymously for ABS; sometimes the term ABMS

is used (Agent-based Modeling and Simulation) to

refer to the entire field.

Many models now thought of as agent-based

simulations were originally developed in the form of

cellular automata (CA). CA were originated by John

von Neumann to investigate the theory of machine

self-replication. Cellular automata use a grid divided

into cells as the environment. The cells immediately

surrounding an agent are its neighborhood for cell

interaction. For example, a cell’s von Neumann

neighborhood consists of the four cells immediately

above, below, and on either side of the cell; the Moore

neighborhood consists of the eight cells completely

surrounding the cell. Sakoda’s checkerboard model

was essentially a cellular automaton that simulated the

dynamic process of social interaction in one of the first

recognizable examples of an ABS (Sakoda 1971).

Schelling used a checkerboard framework to study

housing segregation patterns (Schelling 1971).

Schelling’s model was not computerized, and agents

were represented as coins moving on a checkerboard.

A key finding by Schelling was that patterns emerge

from agents interacting that are not necessarily implied

or even consistent with the objectives of the individual

agents. Analytical results are seldom available for such

simple, yet complex systems. Computer simulation is

necessary to determine system behaviors that result

from the micro-level agent interactions. Axelrod and

Hamilton (1981) studied the emergence of cooperation

and reciprocation strategies among agents in an

evolutionary game set on a cellular automaton grid

(Axelrod and Hamilton 1981). Epstein and Axtell

introduced artificial societies in their SugarScape

model that represents an entire society “from the

ground up” by modeling its individuals and their

interactions (Epstein and Axtell 1996). These initial

ABS models have been blueprints for agent-based

models for many years, and their influence in form and

approach can be seen in ongoing ABS developments.

Elements of Agent-Based Simulation

Agent-based simulation does not have an accepted

formalism, such as the Discrete Event System

Specification (DEVS) formalism for discrete-event

simulation (Ziegler et al. 2000). An informal notation

for agent-based simulation covers the essential elements

of anABS. Figure 1 shows the elements of a typical ABS.

An agent-based simulation is represented by four

elements:

ABS ¼ A; I; E; Tf g (1)

where A ¼ a set of agents, I ¼ agent interaction space,

E ¼ an environment independent of the agents, and
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T ¼ a time advance mechanism. An agent interaction

space, I, is the social space where agents interact with

other agents. The environment, E, is a backdrop

against which the agents receive location-specific

information, for example, a landscape that agents

move over. Agents communicate with the

environment, and mobile agents move through it.

E encompasses the methods for updating the state of

the environment as well as the environment’s

attributes. The time advance mechanism, T, is the

procedure for advancing time in the simulation.

A distinction can be made between ABM and ABS

based on (1). The term simulation, as used in the

OR/MS community, refers to modeling a dynamic

process that unfolds over time (Pritsker 1979). Some

optimization algorithms, however, most notably

particle swarm optimization (PSO), satisfy all of the

requirements of an ABS noted above. Since PSO is

a static algorithm without time, the time advance

mechanism in (1) is replaced with a more general

agent interaction mechanism.

An agent is represented by five elements. Figure 2

shows the elements of a typical agent:

a ¼ B; S; D; N; Mf g a 2 A (2)

where B ¼ a set of agent behaviors, S ¼ a set of static

attributes for the agent, D ¼ a set of dynamic

attributes for the agent, N ¼ the agent’s

neighborhood, and M ¼ a set of mechanisms for

updating the agent’s state.

Agent behaviors include rules by which agents

transform sensory input information coming from an

agent’s neighbors and the environment into decisions

and actions. Behaviors include deciding,

communicating, moving, learning, etc. Each agent

has a set of static attributes, S, consisting of, for

example, demographic variables such a name, birth

date, gender, etc. Dynamic attributes, D, are

attributes that are updated during the simulation.

Environment

Agent interacting with neighbors 
in Moore neighborhood

Information about the 
Environment

Agent Space
(Grid Topology)

Agent interacting with the 
Environment

Agent-Based Simulation,

Fig. 1 Elements of an Agent-
based Simulation

Agent

Attributes:
Static: identifier, name,...
Dynamic: memory, resources
Neighbors in neighborhood,...

Behaviors
Behaviors
Behaviors that modify behaviors
Other Methods:

Update rules for dynamic attributes,... 

Agent Interactions with 
the Environment

Agent Interactions with 
Other Agents

Agent-Based Simulation, Fig. 2 Elements of an Agent
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Dynamic attributes include an agent’s memory that

records relevant agent experiences and interactions.

Agents interact with a small subset of agents in

a local area termed the agent’s neighborhood, N. An

agent’s neighborhood may be static and fixed in space

throughout the entire simulation, or may be dynamic

and constantly updated as the agent moves or develops

new relationships. The mechanisms for updating the

agent’s state, M, operate on the agent.

Agents

Based on a study of ABS applications, there does not

appear to be general agreement on what constitutes an

agent (Macal and North 2010). Some authors consider

any model in which a population is represented as a set

of individuals to be an ABS. Others require agents to

have behaviors that dynamically respond to conditions

in the model and to interact extensively with other

agents. Still others require an agent to exhibit

adaptive behavior to be properly classified as an

agent. There are, however, several characteristics that

an agent should have to be distinguished from a

software object or conventional entity in a simulation

model. These are described below.

First, an agent is autonomous and self-directed, able

to function independently in its environment and in its

interactions with other agents over the limited range of

situations it encounters in the model. Thus, agents do

not necessarily have any degree of intelligence, but can

respond independently to events.

Second, an agent has a well-defined state that varies

over time. Just as a system has a state consisting of the

collection of its state variables, an agent also has a state

that represents the essential attributes associated with

its current situation. The state of an agent-based model

is the collective states of all the agents in the model,

along with the state of the environment. It follows that

to implement an agent’s behavior requires that the

information upon which the agent’s behavior is based

be included in the set of agent attributes.

Third, an agent is a social entity, having dynamic

interactions with other agents that influence its

behavior. Agents have protocols for interaction with

other agents, such as for communication, movement

and contention for space, the capability to respond to

the environment, etc.

Agents often have other important characteristics,

such as adaptability and purposefulness. An agent may

adapt its behaviors, by selecting the most successful

behaviors over repeated interactions, and learning new

behaviors. An agent may simply execute its behaviors

with no apparent purpose or an agent may have goals to

achieve, but not necessarily objectives to maximize.

Agents in an ABS are often heterogeneous, having

diverse characteristics and behaviors across the entire

population of agents.

Agents and Behavior

Modeling agent behavior is an important part of

developing an ABS. Common approaches are to

apply behavioral theories from social and cognitive

sciences, develop behavioral representations based on

surveys and empirical observations, and hypothesize

agent behaviors based on reasonable assumptions

amenable to testing in the model.

Rational choice theory provides the most common

model of decision-making used in the management and

social sciences. Rational choice models are based on

the assumption that agents have the ability to compute

optimal solutions to arbitrarily complex decision

problems based on utility maximization.

Bounded rationality is an alternative to rational

choice theory. Bounded rationality assumes that

actors are not able to optimize their behaviors

because they possess limited computational resources

and information on which to base decisions (Simon

1997). Actors instead satisfice: they make suboptimal,

yet adequate decisions using simple heuristics or rules

of thumb. Learning from experience is important to

exploring satisficing behaviors and creating heuristics

in which agents have limited information. Agent-based

modeling can represent bounded rational agents in

which agents learn from repeated experiences and

make decisions based on affective factors, i.e.,

emotion, in addition to rational factors.

Although it is common to describe agent

behavior by if-then rules, agent behavior can be

modeled in many ways, from simple rules to abstract

models. Abstract representations, such as neural

networks and genetic programs, relate agent inputs

to outputs through adaptive mechanisms and filters.

For example, Manson (2006) uses evolutionary

programming in agent-based modeling to implement

the theory of bounded rationality in a land use ABS.

ABS and Space

In addition to time, most ABS models have a notion of

physical space. Some agent-based models are
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non-spatial, meaning there is no need for agents to have

a locational attribute. In a typical non-spatial ABS, pairs

of agents are randomly selected from the pool of agents,

the pairs interact, possibly changing the agents’ states,

and the agents then return to the agent pool for the next

iteration. This is equivalent to the assumption of perfect

mixing, for example, in an epidemiological model in

which agents have random contact and possibly

transmit infection. Other examples include molecules

randomly reacting as part of a chemical transduction

network and economic agents randomly selected to

engage in bilateral trades in a market.

Cellular automata grids are an efficient way of

representing and updating agent interactions in

a dynamic simulation model. By convention, each

grid cell in a CA is either unoccupied or occupied by

no more than one agent. Many early agent-based

models used a CA grid as their environment. But,

generally, CA models do not represent how agents

interact in the real world. Networks and other

structures are now commonly used to represent agent

interaction in agent-based simulations.

Networks are general and flexible representations of

agent interaction; an agent interacts with the set or

a subset of the agents that it is linked to its network.

For example, a contact network in an infectious disease

ABS indicates the agents contacted by an agent in its

daily activities. Networks are static, predefined by the

modeler, or dynamic, changing according to the results

of agent interactions that occur endogenously in the

simulation. For example, an ABS of a social

networking site has models that specify why people

join and leave the social network. An agent may

participate in multiple networks in the same model.

For example, an agent in an infectious disease ABS

might be connected to an information network of

trusted sources of public health information in

addition to its contact network.

An agent interaction network can be implemented

either implicitly by including a list of an agent’s

current neighbors as a dynamic agent attribute, or

explicitly by creating a network entity which links all

agents to their neighbors. This is a model

implementation consideration, as the computational

performance of the model is sensitive to the approach

taken, especially for larger networks.

Other agent interaction topologies are also used

in ABS models. These include continuous space in

1-, 2- or 3-dimensions, and geographical information

systems (GIS). Keeping track of agent neighbors

in continuous space can be computationally

challenging, and, often, a spatial bucketing approach

is used that leads to some degree of approximation. An

example of the use of a GIS topology consists of agents

that move over geographically defined patches; for

example, neighborhoods or zip-code areas, and is

often accomplished by directly linking an ABS with

a GIS (Brown et al. 2005).

ABS and Time

Agent-based simulation is sometimes described as a

form of discrete-event simulation because of the

similarity of the event scheduling mechanisms

commonly employed in DES and ABS. An event

scheduling mechanism is the logic of how the

simulation advances time and how events are

generated internally within a model. A scheduling

mechanism in a DES moves the simulation forward

through time to the next point at which an event is

scheduled to occur. In an ABS, events consist of the

times at which agent interactions occur. A scheduling

mechanism in a continuous simulation moves the

simulation forward continuously through time; a

continuous simulation is described by a set of

differential equations that indicate how the system

state changes over time as a function of the current

and past states. Virtually all ABS are discrete-event

simulations, although the ABS framework does not

preclude the development of continuous or combined

continuous/discrete simulations.

A special case of discrete-event simulation is

time-stepped simulation in which time advances at

fixed time increments. Virtually all of the early

agent-based simulations were time-stepped

simulations in which each agent interacted with its

neighbors at each time step. This time advance

mechanism is the one used by cellular automata.

A general representation for a time-stepped,

discrete-event, agent-based simulation is an iterated

map from dynamical systems theory in which

a transform function is applied to the system state at

each time point to update the state for the next time:

xtþ1 ¼ F xtð Þ

where xt is the system state at time t and the transform

F is a general mapping applied to the system state each

time period. The system state, xt, is composed of the
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states of all the agents in the simulation, as well as the

state of the environment at t. The transform F is not

a function per se, but represents the entirety of the

complex logic encoded in the simulation model and

can be a deterministic or a stochastic mapping. For

example, some ABS models are in the form of

a Markov chain model. Agent state transitions are

represented by a matrix of probabilities. Slightly

more complex ABS models condition agent state

transitions on events that have happened to an agent

in its past, information stored in an agent’s memory,

akin to a semi-Markov model.

Conflicts may arise in time-stepped ABS when all

agents interact simultaneously at a time step due to

agents contending for the same space or resources.

A common approach to resolving such conflicts is to

randomly reorder the sequence of agent interactions at

each time step. This removes any bias in the simulation

results due to an arbitrary ordering of agent

interactions. The disadvantage is that many

replications of the simulation have to be run to

generate statistically significant results and understand

the full range of model outcomes due to the order of

agent updates. If agent interactions are scheduled at

discrete real-valued times, as in DES, the problem is

avoided because ties at specific times are unlikely.

As the need for realistic, large-scale agent-based

simulations has advanced, event-scheduling

mechanisms have been generalized in ABS

development software tools. The most advanced ABS

toolkits provide users the tools to implement

time-stepped or discrete-event scheduling. Events can

be exogenously specified to occur at particular times, or

generated and scheduled endogenously based on the

outcomes of agent interactions and agent monitors

that detect changes in agent states.

Event calendars offer a major improvement in

computational efficiency in DES. At the completion

of the computation arising from an event, the system

can simply skip to the next time at which an event is

scheduled to occur. While calendaring is possible for

ABS as well, it is infrequently used. The much higher

number of interactions among events in an ABS

requires correspondingly more re-computation as the

new events affect schedules of other events. In turn,

these interactions and re-computations greatly

complicate debugging. Finding a computational

improvement for ABS along the lines of DES

calendaring is a promising area of research.

ABS and Emergence

One of the most oft cited reasons for developing an ABS

is the ability to capture emergent processes, i.e., processes

whose outcome cannot be understood or anticipated

solely from examination of the individual parts of the

system (Bedau and Humphreys 2007). Emergence, in the

most general sense, refers to the emergence of order,

which is a well-defined notion and can be expressed

using various entropy measures. It can easily be shown

that simple ABSmodels, which are completely described

by deterministic rules, can produce self-organizing,

emergent and sustainable patterns that have not been

explicitly programmed into the models.

Swarm intelligence is a concept related to

emergence (Bonabeau, et al. 1999). Natural systems

seemingly exhibit collective intelligence without the

existence of, or the direction provided by, a central

authority. Typical examples are the workings of ant

colonies and beehives, the schooling behavior of fish,

and search behavior of collaborating predators. Swarm

intelligence has inspired practical optimization

techniques such as ant colony optimization and

particle swarm optimization that have been used to

solve practical scheduling and routing problems.

Swarm intelligence algorithms can be implemented

in an agent-based simulation framework, as described

by (1)-(2) above.

Agent-Based Simulation Applications

Agent-based simulation has been applied in many

scientific disciplines—physical, life, medical, social,

and management. ABS applications in economics

(Tesfatsion and Judd 2006), sociology (Macy and

Willer 2002), anthropology (Kohler et al. 2005),

cognitive science (Sun 2006), business, marketing

(Rand and Rust 2011) and many other areas suggest

that ABS is a general technique with wide application.

Macal and North (2011) discuss many published

applications as diverse as agriculture, air traffic

control, anthropology, biomedical research, crime

analysis, ecology, energy analysis, epidemiology,

evacuation, market analysis, organizational decision

making, and social networks.

Agent-based simulation applications range from

elegant conceptual models having minimalist detail,

to large-scale models having much detail that

correspond closely to the real-world system modeled.
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Minimalist models are based on a set of idealized

assumptions, designed to capture only the most

salient features of a real-world system. These models

are often used as electronic laboratories to implement

and test the implications of qualitative theories for

a range of many scenarios.

Large-scale ABS models have been developed that

answer real-world policy questions, include real data,

and have been shown to pass appropriate validation

tests to establish their credibility. Such models

have been developed for the operation of physical

infrastructures and associated economic markets,

including electric power, epidemics, economies, traffic

and transportation, pedestrian movement, and

evacuation modeling. Agent-based models are useful

for modeling very high volumes of entities for cases in

which simple sets of agent behaviors are adequate. For

example, prior to 2006, discrete-event models of crowd

movement could handle no more than a few thousand

people in real time. Samuelson et al. (2007, 2010) used

custom agent-based software to depict real-time

evacuation from a stadium for up to 70,000 people.

Large-scale ABS models have been used to inform

policy-making for epidemiological studies (Germann

et al. 2006). Here, individual agents are modeled as

they go through their daily activities, make contact

with other agents, and possibly pass on infection

(Carley et al. 2006). The models can incorporate

realistic agent behaviors, such as how agents respond

to their disease state, public health information, and

health care interventions (Epstein 2009). ABS models

are used as in silico (computer-based) experimental

laboratories to understand how these behaviors might

affect the outcome of an epidemic and to understand

their possible severity under various assumptions.

Developers of ABS models contend that

agent-based modeling offers unique benefits for the

problems studied in their disciplines that are beyond

conventional modeling approaches. For example,

many economic models assume that the real-world

system will be driven toward a long-run stable,

equilibrium state. The conditions for the equilibrium

state are represented by a set of non-linear equations

that are to be solved in order to solve the model. An

agent-based simulation model, in contrast, makes no

assumptions about a long-run equilibrium state, but

rather computes the outcome of the process of

repeated agent behaviors and interactions (Axtell

2000). Agent-based models are particularly useful for

assessing when equilibria are likely to cease to exist,

what transient behavior can then be expected, what

trigger events are likely to promote stability or

instability, and how robust the system is likely to be.

Agent-Based Simulation Development

ABS Design

Methods for developing ABS largely follow

established methods for developing any kind of

simulation model. Additional tasks include defining

agents, modeling agent behaviors and interactions,

and validating agent models and results (North and

Macal 2007). There is also a close connection

between agent-based simulation design and

object-oriented modeling through the use of

object-oriented design methods, such as design

patterns (Grimm et al. 2006).

The complexity of agent interactions can make both

model debugging and validation difficult. Because of

this, validation and verification of agent-based models

is a vital and interesting area of research.

A comprehensive review by the National Research

Council (2008) proposed a number of principles,

primarily a clear definition of the model’s intended

purpose and a strict adherence to assessing whether

the model was useful for that purpose. The effect of

stringent adherence to this discipline on the discovery

and evaluation of unexpected phenomena appears to be

a subject that needs further exploration. An additional,

open question is: how complex can a model become

without overwhelming the modeler’s ability to

interpret the output, in particular to distinguish

genuine rare emergent phenomena from deficiencies

in the programming? One promising approach is to use

agents to assist in validation, (Niazi et al. 2009). The

rapid development of computational capabilities and

new logical approaches in software promise to keep the

discussion on ABS validation ongoing and lively.

ABS Toolkits

A number of computing alternatives are available for

developing agent-based simulations. These range from

laptop computers to computer clusters, and,

potentially, to cloud computing.

Desktop computing environments for ABS

development include spreadsheets, such as Excel

augmented by a macro programming language for
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programming agent behaviors and time-advance

mechanisms, and general computational mathematics

systems such as MATLAB and Mathematica. Desktop

computing environments can be used to develop agent

models, although the agent-specific functionalitymust to

be written by the developer from scratch, because no

agent-based packages exist for these systems. Desktop

agent-based models may not scale well for larger

applications. Whatever software is chosen, agent-based

simulations are often developed in phases using multiple

approaches. Projects often begin small, using one of the

desktop tools to prototype agent behaviors and to

perform limited analyses. They are then scaled up

using agent-based toolkits in a later phase of

development to capture larger numbers of agents and

more complex agent behaviors.

Agent-based models are also developed directly in

programming languages such as C++, Java, and Python,

especially for large-scale applications. The object-

oriented modeling paradigm these languages embody is

the basis for most agent-based modeling; an agent can be

considered a self-directed object with the capability to

autonomously choose actions in response to an agent’s

situation. The use of object classes as agent templates and

object methods to represent agent behaviors is a natural

extension to ABS. Most large-scale agent-based

modeling toolkits are also object-oriented.

Since the original Swarm toolkit, there has been

a steady progression of ABS software toolkits,

development environments, and modeling

approaches. Open source and/or freely available ABS

development environments include NetLogo, Repast

Simphony, and MASON (Macal and North 2010).

These environments provide special facilities for

modeling agents and are designed for new users to

get started as quickly as possible in developing ABS.

Commercial agent-based modeling software includes

AnyLogic, among others.

Concluding Remarks

Agent-based simulation can offer distinct advantages

over conventional simulation approaches, depending

on the type of problem being modeled. Agent-based

simulation is often used when:

• The system being modeled has a natural

representation as being composed of interacting

agents,

• The past is no predictor of the future, and the

behavior of the system must be built from the

ground up based on the behaviors and incentives

of the individual agents,

• Process structural change needs to be an

endogenous result of the simulation, rather than an

input to the simulation, and

• Scaling-up to arbitrary levels is important, in terms

of the number of agents, agent interactions, and

agent states.

Agent-based simulation offers benefits compared to

other modeling approaches when agents in the model:

• Have behaviors and make decisions central to the

questions to be addressed by the simulation,

• Adapt and change their behaviors in response to

actions and events in the model,

• Engage in repeated strategic interactions and can

learn from their experiences,

• Have dynamic, changing, or evolving relationships

with other agents,

• Self-organize into cohesive groups or organizations

and the mechanisms by which this happens are

known or hypothesized, and

• Have a spatial component to their behaviors,

movements, and interactions.

Agent-based simulation has grown rapidly since the

mid-1990s and many new applications continue to be

published. Disciplines where simulation has not

previously been the modeling technique of choice are

experimenting with ABS, and research on the

theoretical and methodological foundations of ABS is

very active.

See

▶Agent

▶ Simulation of Stochastic Discrete-Event Systems

▶ Swarm Intelligence

▶ System Dynamics
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It is often difficult to determine where the agricultural

sector of an economy ends and the nonagricultural

sector begins. For the purpose of this article, the

agricultural sector of the economy is defined as

production and supply of agricultural inputs, the
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production of agricultural goods on farms and ranches,

the processing and transportation of those goods, as

well as the wholesaling and retailing of finished

products. Defined in this way, the agricultural sector

of the economy in the United States represents

approximately 24% of the gross national product.

As with the nonagricultural sector of the economy,

operations research was first used to solve agricultural

problems in the 1940s and 1950s. A Survey of

Agricultural Economics Literature, Vol. 2:

Quantitative Methods in Agricultural Economics,

1940s to 1970s traces the development of operations

research in addressing problems of importance to

agriculture (Judge et al. 1977). This work ranged

from quantifying production functions to the

development of models, simulation structures and the

use of linear programming and nonlinear optimization

models to quantify or predict economic consequences,

or alternatively, the use of these tools to solve specific

problems for specific firms.

Different components of the agricultural economy

have embraced the tools of operations research with

different levels of enthusiasm. Those sectors of

agriculture that can exercise considerable control of

inputs and environmental factors (e.g., feeder cattle,

broilers, eggs, pork and dairy production) began

adopting the tools of operations research during the

late 1950s. By 1965, essentially all of the feed

formulated for poultry in the United Sates was done

using least-cost linear-programming feed

formulations. Simultaneously, during the 1960s, the

beef industry began to adopt linear programming on

a limited basis for least-cost feed formulation and for

the development of optimal production and marketing

strategies. The use of linear programming for least-

cost dairy rations became standard practice during the

late 1970s. Forestry, which is a branch of agriculture,

uses multi-period linear programming models to

determine optimal planting and harvesting schedules.

A number of interesting examples have been

reported in the literature which describe how linear

programming was used to solve a variety of

agriculture problems. Upcraft et al. (1989) reported

that the soil water deficit is the main decision

variable that British farmers monitor to decide when

to irrigate a particular field and howmuch water to use.

The decision is generally based on the soil water deficit

in the first strip to be irrigated within each field.

A mixed-integer linear program was constructed to

model the short-term irrigation scheduling problem

for a hose-reel/rain-gun irrigation system. Optimal

schedules were produced by quantifying the costs and

benefits of irrigation, subject to the constraints of

equipment, labor, and availability of water. The

model is unique in producing whole farm-irrigation

schedules, rather than individual field schedules for

hose-reel/rain-gun irrigation systems.

The efficient operation of a beef cattle feedlot is

controlled by the price of the animals, purchase and

selling weights, and the feeding system. The optimal

feeding system involves feeding least-cost rations to

animals at each stage in the production process. Glen

(1980) reported the development of an optimal method

for determining optimal feeding systems that meet the

nutrient standards recommended by the US National

Research Council. The approach involved using linear

programming to determine the least-cost rations to

produce specified live weight gains in animals of

known live weight. Dynamic programming was used

to determine the optimal sequence of rations to feed to

produce animals of specified live weight from known

live weight at minimum cost, using least-cost rations

from the linear programming model. Results from the

dynamic programming model can be used to determine

the optimal combination of purchase weight, selling

weight, and feeding system. The linear programming

model must be solved a large number of times to use

the dynamic programming model.

In assessing feeding policy in livestock production,

it is generally assumed that an optimal feeding policy

will involve using least-cost rations throughout the

production process. Glen (1980) showed that this

assumption may not always be valid, particularly

when the supply of some of the feedstuffs used for

feeding the livestock is limited. A technique for

testing the validity of this assumption was presented

using a linear programming model of an integrated

crop and intensive beef production enterprise in

which some of the crops are used for livestock

feeding. An interactive solution procedure was

proposed for cases where this assumption was not

valid. While the computational burden associated

with the procedure for finding an improved solution

is large, experience with realistic data suggests that the

results from the linear programming model are likely

to be optimal.

Intra-year milk supply patterns depend largely on the

distribution of cow calving dates which are in turn
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influenced by climatic conditions. The most important

and least-costly input to milk production is the fresh

growth and high digestibility of grass in spring and

early summer that often gives rise to a highly seasonal

distribution of calving resulting in a seasonal milk supply

pattern. However, milk for liquid consumption and

production of perishable milk products must be geared

to meet a constant consumer demand throughout the

year, which necessitates a considerable amount of

production outside the least-cost period. Killen and

Keane (1978) re-ported on the development of a linear

programmingmodel that gives the distribution of calving

dates, minimizes production costs, and meets consumer

demand for milk and related products. In addition, the

dual solution gives a set of seasonal prices which should

be paid to producers, equitably compensating them for

the costs they incur.

The agricultural sector deals with a biological

system. By its very nature, agriculture has elements

that foster the use of operations research techniques

and other elements that greatly impede the application

of these tools. Because many agricultural production

units are relatively small in size, they are unable to

adopt operations research techniques in a cost effective

manner. On the other hand, because agricultural firms

are dispersed, those firms that either supply inputs to

farms or harvest and process agricultural products can

make effective use of truck routing and other spatial

optimization techniques.

Because of the savings in costs that can be achieved,

as well as the increasing availability of computers and

software, it is reasonable to expect increasing use of

the tools of operations research in agriculture. In fact,

as early as 1973, Beneke and Winterboer published

Linear Programming Applications to Agriculture,

a book devoted exclusively to the use of linear

programming in agriculture.

In the food industry, linear programming is

becoming increasingly common. Publications have

re-ported the use of linear programming in

formulating preblended meats (Rust 1976); luncheon

or sandwich meat (IBM 1966; Wieske 1981);

a protein-enriched luncheon sausage (Nicklin 1979);

bologna (IBM 1966); frankfurters (IBM 1966); and

a variety of sausage products (MacKenzie 1964; IBM

1966; Skinner et al. 1969). Ice cream is another food

product which has been successfully formulated

using linear programming (IBM 1964; Dano 1974;

Singh et al. 1979).

Cereal-based food blends have been formulated

using linear programming to insure adequate levels of

good-quality protein. Since these blends are sometimes

shipped to developing countries, linear programming

has helped to ensure that the prominent grain of the

country is present in the blend as a major ingredient. It

is desirable to blend cereal grains, since plant proteins

are usually deficient in one or more of the essential

amino acids. Inglett et al. (1969) used linear

programming to bring the essential-amino-acid pattern

of a cereal-based food as close as possible to the pattern

found in a hen’s egg. Cavins et al. (1972) used linear

programming to formulate a least-cost cereal-based

food. The protein quality was controlled by setting

both lower and upper limits on each essential amino

acid in terms of its percent of total essential amino acid

content. Hsu et al. (1977a, b) studied the blending of

a wide range of plant and animal protein sources in

formulations for bread, pasta, cookies, and extruded

cornmeal snack and sausage. Constraints were used to

restrict both the nutritional and functional properties.

Roush et al. (1994) reported on using chance

constrained programming to formulate commercial

feeds for animals. Nutritional consistency of finished

feeds increased by 40%while costs dropped compared

to feeds formulated by linear programming with

a margin of safety. With the exception of the

probabilistic constraints, the objective function and

most other constraints were linear in this model.

A detailed description of the formulation of a

low-cholesterol, low-fat beef stew using linear

programming was given by Bender et al. (1976).

The objective was to minimize cost, while enforcing

nutritional and other constraints based on the

recommendations for fat-modified and low-cholesterol

diets. These constraints were for a 100-g portion of stew

and set an upper limit on cholesterol content; a lower

limit on protein, vitamin A, thiamin, riboflavin, niacin,

vitamin C, and iron; and both an upper and a lower limit

on carbohydrate, fat, and calories.

Dano (1974) provided an full description of the

application of linear programming to a beer-blending

problem, andWieske (1981) described the formulation

of an optimal margarine product. Another

application has been the formulation of mayonnaise

(Bender et al. 1982).

An interesting problem in the production of

champagne was reported by Hruby and Panton

(1993). In one of two methods used to produce
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champagne in Australia, a base wine called tirage is

allowed to ferment and mature in a bottle for as long as

6 months. The tirage is then transferred to a tank for

2 weeks where it is further processed. Finally, fresh

bottles are filled with finished product and stored for

6 weeks. Uncertainties in consumer demand and

constraints on production stretched a 9 month process

into 12 months. In addition, inventories of maturing

and finished product were far too high. The problem

was solved when a time-staged linear-programming

model was used to smooth production and reduce

stock levels.

The feasibility of planning menus by computer was

generally established in the early 1960s (Balintfy and

Blackburn 1964), as was the feasibility of

computerized menu analysis (Brisbane 1964). In

these models, nutritional requirements were provided

at lowest cost. Developing models which meets

sensory objectives as well as nutritional requirements

has proved to be a much more difficult problem.

Renaud and Yacout (1996) reported on a company

that processes lobster primarily for foreign markets.

With increasing international competition, stricter

standards and decreasing annual volume of lobster

catches, the company wanted to know the optimal

product mix to maximize profit. Linear programming

was used to generate five scenarios that encompassed

different possibilities available to management.

See
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▶Natural Resources
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Introduction

Air Force Operations Analysis (OA), as military

operations research (OR) was often termed in the Air

Force, began in the Army Air Forces in World War II

(WWII). After the war, the Air Force became a separate

service in 1947, and the service leaders decided to

continue operations analysis sections in the

headquarters and major commands. The OA office in

Air Force Headquarters led procedures for steady state

systems of analyst recruitment, training, rotation, etc.,

through its Air Force Regulation AFR 20-7. This office

regulated the OA program until 1971, when it was

merged into the Air Force Studies and Analyses office

(which has had several titles and organizational settings

since its creation in the mid-1960s). In 1993, the Air

Force created a Directorate of Modeling, Simulation,

and Analysis with the Air Force Studies and Analyses

Agency (AFSAA) serving as its field operating agency.

The directorate was expanded in 1997 to the Directorate

of Command and Control that included an Associate

Director for Modeling, Simulation, and Analysis with

AFSAA continuing as a Field Operating Agency. In

2001, AFSAA became a direct reporting unit to the

Vice Chief of Staff of the Air Force (VCSAF). This

agency was converted into an Air Staff function of

AF/A9, Studies and Analyses, Assessments, and

Lessons Learned, in 2006, reporting as a directorate

organization to the Chief of Staff of the Air Force

(CSAF). Each of the major commands also established

an A9 office overseeing their studies and analyses,

assessments, and lessons learned and as a focal point

for OR. The Air Force has effectively returned to

organizing analysis similar to the way it was during

and after WWII.

World War II in the 1940s

Brothers (1951) states, in WWII, 245 analysts

(professional personnel, not including clerical and

administrative staffs) had been in the OA program at

one time or another with the peak strength having been

175. These analysts were distributed over 26 OA

sections, one with every combat Numbered Air Force

plus several with other overseas Air Force

headquarters and several with Air Force training

establishments in the continental U.S. Brothers

(1951) reports there were many types of studies:

. . . offensive ones dealing with bombing accuracy,
weapons effectiveness, and target damage. . .defensive
ones dealing with defensive formations of bombers,
battle damage and losses of our aircraft, and air defense
of our bases . . . studies of cruise control procedures,
maintenance facilities and procedures, accidents,
in-flight feeding and comfort of crews, possibility of
growing vegetables on South Pacific islands, and a host
of others. The first and largest of the OA sections was that
at the Eighth Air Force.

McArthur (1990) gives a detailed account of its

work and much information about the analysts, with

emphasis on the mathematicians. In its foreword, Hugh

Miser notes:

During the two and a half years of existence of the Eighth
Air Force section, forty-eight persons with scientific and
technical training were involved, representing more than

A 20 AHP

http://dx.doi.org/10.1007/978-1-4419-1153-7_31
http://dx.doi.org/10.1007/978-1-4419-1153-7_42
http://dx.doi.org/10.1007/978-1-4419-1153-7_1192


a dozen specialties; mathematicians were the largest
subgroup, with fifteen persons, thirteen of whom stayed
with the section for six months or more. . . . It should be
noted that the mathematicians were functioning, not just
in a mathematical role, but as scientists, developing
theories about actual phenomena and applying them to
problems of operations, policy, and plans.

Brothers (1954) gives an account of the

well-known improvement in bombing accuracy to

which these analysts contributed. The commanding

general had asked, “How can I put twice as many

bombs on my targets?” In 1942, less than 15% of the

bombs dropped fell within 1,000 ft of the aiming

point. The rate improved gradually and within two

years had reached 60%. Some of the analytical

recommendations that played a part in this were the

nearly simultaneous release of their bombs by all the

bombardiers (instead of the practice of each

bombardier aiming and releasing his own bombs),

the salvoing of bombs instead of presetting them to

release in a string, and the decrease in the number of

aircraft per formation from a range of 18–36 to

a range of 12–14. The successful work of this first

section made other Army Air Forces commands

aware of the OA concept and led to the

establishment of the other OA sections. Those

sections also had their successes, all of which led to

the postwar continuation of OA in the Air Force. In

the forward of Operations Analysis in WWII (United

States Army Air Forces 1948), General Carl Spaatz,

the Commanding General and later first Chief of Staff

of the Air Force, takes credit for requesting and

establishing the first OR section while he

commanded the Eighth Air Force. With the war’s

end, most of the analysts returned to universities,

laboratories, or other civilian pursuits. Brothers

(1951) reports that by January 1946 there were only

a dozen left, about half of whom were finishing

final reports.

Post-World War II and the Korean War
in the 1950s

Brothers (1951) recalls that the United States Air Force

(USAF), having decided to establish a peacetime OA

program, also decided on the basis of wartime

experience that it needed an analysis unit in the

headquarters. This unit had two functions: to furnish

scientific assistance to the Air Staff, and to serve

as a focal point in the Air Force-wide OA

organization. AFR 20-7 established the OA Division

in Headquarters, USAF, and authorized Air Force

commanders to establish OA offices in their

commands, getting needed help from the

Headquarters OA office.

From the OA low point of January 1946, it had

grown by mid-1951 to ten offices in field commands

plus the headquarters office. As a stable postwar

program was established, the number of analysts

grew. By 1951 there were 70 assigned, with 95

authorized. The 95 authorized professional positions

were mostly civilian (under Civil Service), as at that

time there were few uniformed analysts available. In

addition, the RAND Corporation’s work emphasized

problems of the far future, freeing the OA offices to

work primarily on current and near-future problems.

However, when analysts were needed in the

Korean War, some came from RAND (and a smaller

think-tank also), as well as from OA.

Any history of OR, particularly an Air Force one,

must highlight Dr. George B. Dantzig’s role as “the

father of linear programming (LP) and the inventor of

the simplex method” and “arguably one of the most

influential mathematicians of the twentieth century”

(Cottle et al. 2007). WWII interrupted Dantzig’s

doctoral program studies at the University of

California (Berkeley) when he went to support the

Army Air Forces’ Combat Analysis Branch of

Statistical Control, Pentagon. He developed

a reporting system with which combat units were

able to record the number of sorties flown, aircraft

lost and damaged, bombs dropped, and targets

attacked; he also became familiar with the Air Force

concepts of program planning of interrelated activities,

ideas that would later help him structure the basic

form of the LP model. The War Department

awarded him the Exceptional Civilian Service Medal

for his accomplishments. In 1946, Dantzig returned to

Berkeley to complete his Ph.D. in mathematics.

He then accepted the position as mathematical

advisor to the comptroller of the newly established

Department of the Air Force. Here he worked on

formulating mathematical models of the Air Force’s

program planning process that led to the first LP

models (and the use of the word programming in LP).

And, most important, while working for the Air Force,

Dantzig developed the simplex algorithm for solving
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LP problems. Dongarra and Sullivan (2000) include

the simplex algorithm as one of the top ten algorithms

developed in the twentieth century.

In June of 1947, the Air Force established a major

task force to work on the high-speed computation of its

planning process, later named Project SCOOP

(Scientific Computation of Optimal Programs), under

the direction of the economist Marshall K. Wood, with

Dantzig as chief mathematician. Project SCOOP was

the setting in which the LP structure and the simplex

method were proved and introduced to the world.

The SCOOP civil service staff of mathematicians,

statisticians, and computational experts was

responsible for formulating and solving a wide range

of Air Force planning and programming problems, as

well as installing, in June 1952, the first computer in

the Pentagon, a UNIVAC-I for solving Air Force

problems. SCOOP also funded the construction and

use of the 1950 National Bureau of Standards Eastern

Automatic Computer (SEAC), as well as supporting

academic researchers who helped to bring the

application of LP to industry and business (Gass 2002).

In 1952, Dantzig transitioned from the Air Force to

RAND. He joined the Berkeley faculty in 1960 and

then Stanford in 1966. President Ford awarded him the

1975 President’s National Medal of Science. Dantzig

was a founder of OR and made further significant

contributions to the field during his career.

By the mid-1950s, the headquarters OA office had

25 professional positions divided among five teams.

Two of the teams were primarily concerned with

implications of new types of weapons: one with

atomic and nuclear weapons, and one with ballistic

and cruise missiles. A third team dealt primarily with

deriving information about combat operations from

tests, exercises, etc. A fourth team integrated inputs

from the previous three teams to use in assisting

Air Staff planners. The fifth team maintained liaison

with the existing field OA offices and helped

commanders who wished to establish new field

offices where they did not yet exist.

The field OA offices were organized according to

the same general principles. There should be analysts

available to study combat operations and related

problems, as well as others with understanding of

new technology and its implications for new

weapons. Most of the growth in the OA program at

that time came through the establishment of new

offices, rather than the enlargement of existing offices.

Force Structure Analysis and Vietnam in the
1960s

In the 1960s, the situation began to change markedly,

through the combination of two developments.

One came fairly abruptly when the Secretary of

Defense McNamara of the Kennedy administration

institutionalized systems analysis (used to denote OR

on broad systems problems) in the Office of the

Secretary of Defense. Many of the RAND analysts

became McNamara’s whiz kids. Their efforts greatly

increased the demand for cost-effectiveness studies

from the military services. The other development

came throughout the decade as the increase in

computer hardware and software capabilities led to

great increases in the development, size, and use of

computer simulation models.

The headquarters OA office was caught up in both

of the above trends, which made it more difficult to

devote as much effort as desired to the analysis of

operations in Vietnam. A small group of OR

professionals worked at the Seventh Air Force

Headquarters in Vietnam. This group was involved in

both the day-to-day operations of the command and in

longer term analyses. Analysts presented daily

briefings containing trend analysis, principally truck

kill projections, to the Director of Operations and the

Commander. They supplemented these with weekly

trend analyses to assist decision making for the next

week. These analyses investigated truck kill claims

and battle damage assessment. In 1970, the air sortie

debrief reports were incorporated into Southeast Asia

Database (SEADAB) to support better analysis.

The principal OR tool used was regression analysis to

project future results. This analysis cell also conducted

special-purpose studies and explored subjects like

subsystem effectiveness, such as the Black Crow,

which was a highly sensitive passive sensor deployed

on AC-130s that could detect North Vietnamese trucks

hidden under the dense jungle canopy along the

Ho Chi Minh trail. Finally, the office compiled

a comprehensive history of the Southeast Asia war in

an annual report termed Commando Hunt.

In the mid-1960s, a new and larger organization of

Studies and Analyses was formed in the Pentagon

incorporating an office that had been set up in the

late 1950s to operate a large (for that time period)

computer simulation model. It had been difficult to

acquire the data and manpower to make effective use
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of that model, and the resources of that office became

available to staff the new office created to meet the

growing need for cost-effectiveness studies. The newer

office of Studies and Analyses and the smaller

headquarters OA office (about 35 professionals at

that time) both reported at high levels, required the

same kind of competent analysts, and used OR

techniques. These similarities suggested the merger

of the smaller OA headquarters office into the

larger office. It was finally accomplished in the first

6 months of 1971. The Studies and Analyses office

chose not to continue implementation of AFR 20-7.

The immediate consequences were not striking. The

field OA offices continued, though a few made slight

changes in name. Most of the other trends noted

above continued, or even accelerated. There was a

proliferation of computer simulation models and of

their use in large studies.

The Air Force Studies and Analyses Agency

(AFSAA) served informally as an OR research focal

point. Technical exchanges across the Air Force

continued in the course of business and at meetings

of professional societies. Initially, the Air Force

analysts held a semi-annual OA technical symposia,

however they discontinued these as they made

increasing use of the multiservice classified symposia

of the Military Operations Research Society (MORS).

The Air Force was one of the founding organizational

sponsors when MORS was incoporated in 1966. While

continuing to participate in MORS, in 1994, the Air

Force reinstituted conducting internal technical

exchanges with their annual Air Force Operations

Research Sympoisium (AFORS); in 2009, this name

changed to the Air Force Analyses, Assessment, and

Lessons Learned (A2L2) Symposium.

The Cold War in the 1970s and 1980s

Through the 1970s and 1980s, concern related to the

ColdWar dominated in spite of the hot war in Vietnam.

The Air Force Analysis community responded. Three

main organizations focused extensive resources on

nuclear warfare analyses; Headquarters Strategic Air

Command (SAC), AFSAA, and the Joint Staff J8.

After WWII, General LeMay had recruited to SAC

preeminent operations researchers. The Headquarters

at Offutt Air Force Base maintained a centralized

civilian analysis organization along with military

analysis shops in each of the functional areas.

AFSAA dedicated a third of its analysts to evaluating

nuclear war. These three analysis offices annually

conducted and compared detailed plans of potential

Soviet massive nuclear attacks on the U.S. and

planned response options. The predominant

approaches were LP and discrete-event simulations.

These studies provided the foundation for force

structure decisions including requirements and

acquisitions.

At the Air Staff, the bulk of the studies dealt with

future weapon systems and future force posture. The

occurrance of many very highly classified studies of

black systems began and continues today. Many

studies evaluate weapon systems exploiting the latest

technology. The difference in emphasis between

RAND and the in-house Air Force analytical offices

that had prevailed in the 1950s diminished, to a large

extent because of the impact of the institutionalization

of systems analysis in the Department of

Defense (DoD). Lt Gen Glenn Kent (2008), who led

AFSAA and later worked at RAND, summarizes

several of the analytical approaches in his analytical

memoir. The primary war in this period remained the

Cold War, until, suddenly, it was won.

During this period, the Air Force began educating

personnel in military OR. The United States Air Force

Academy offered OR as an undergraduate major

beginning in 1978 and has conferred 1,031 degrees

to OR majors through 2010. The Air Force Institute

of Technology started conferring this specialty

for master’s degrees in 1973 and doctorates in

1992. Through 2010, they have conferred

1,107 master’s in OR and closely related programs

and 43 doctorates in OR.

The total number of Air Force analysts generally

continued to increase, at a somewhat slower rate,

through the mid-1980s. In 1988, an Air Force

personnel database showed 476 civilian analysts in

the OR analyst career series. With the end of the

Cold War in the late 1980s, there began a general

decrease in the size of the DoD, including military

OR. By the end of 1993 Air Force civilian levels

in career series relevant to analysis were about 20%

lower than 1988 levels through the 1990s. For

military analysts, in 1986, the Air Force had 1,626

military scientists with approximately 60% OR

analysts. After the turn of the century, the number of

analysts began to increase. The Air Force had
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increased to 566 civilian OR analysts in 2010.

The Air Force completed 2010 with 499 military

OR analysts.

The Middle East Wars in the 1990s
through 2010

The end of the Cold War resulted in a significant

drawdown in the Air Force, as the federal

government reallocated resources to other concerns.

This reduction in defense spending was commonly

referred to as the peace dividend. The end of the Cold

War resulted in an Air Force shift from a primary

emphasis on strategic bombing to fighter operations.

In 1992, SAC was disestablished and a joint US

Strategic Command was established at Offutt Air

Force Base. This Combatant Command continues to

have a stronger presence and reliance on OR analysts

than the other combatant commands. With the Air

Force as Executive Agent, these analysts are Air

Force civilians and predominately Air Force among

the military members. While the major commands

were realigned, the Air Staff was also reorganized. In

1991, the OR organization known as the Air Force

Center for Studies and Analyses was renamed the Air

Force Studies and Analyses Agency (AFSAA), which

reported to the Air Staff. This alignment remained

through the 1990s. The First Gulf War in 1991

extensively employed members from Air Force

Studies and Analyses in build up deliberations and

support for the Black Hole team.

The terror attacks on September 11, 2001

accelerated the DoD expansion that had began two

years prior. OR experienced more than a decade of

growing influence in the Air Force. In 2001, AFSAA

became a direct reporting unit to the Air Force Vice

Chief of Staff (VCSAF). In 2006, the OR organization

became an Air Staff directorate, designated AF/A9,

reporting to the Chief of Staff of the Air Force

(CSAF). The other services and joint organizations

aligned their analysis center under their planning,

programming, and budgeting organizations. The

equal status within the Air Staff enabled supporting

a wide range of decisions across manpower,

operations, planning, and resources. The major

commands also each established A9 organizations to

lead their analysts. Furthermore, combat analysts were

deployed into the staffs fighting the wars in Iraq and

Afghanistan. These developments have resulted in

widespread recognition among the leadership of the

role and contributions of OR in supporting their

decisions.

In 1993, under Defense Secretary Les Aspin, the

DoD completed the Bottom Up Review to adjust

the National Defense Strategy following the end of

the Cold War. Congress decided to mandate these

episodic reports, which became the Quadrennial

Defense Reviews (QDRs). The Air Force contributed

significant force structure analyses in support of

the QDRs of 1993, 1996, 2000, 2006, and 2010. The

differences between the Services, Joint Staff, and OSD

led to the formulation of standard scenario and

campaign model inputs in the Analytical Agenda,

which began in 2006. In 2010, the name was changed

to Support for Strategic Analysis. The Air Force

developed Synthetic Theater Operations Research

Model (STORM), a discrete-event simulation of

about 2 million lines of C code, has become the

standard campaign model for the Air Force, Navy,

and Marines by 2010.

Concluding Remarks

The end of the Cold War also precipitated a significant

shift in force planning and, consequently, the analysis

needed to support force development. Force planning

guidance based on a single, peer threat gave way to

a new paradigm comprised of multiple, often

concurrent commitments. These engagements might

occur anywhere on the globe at any time and range in

intensity from limited humanitarian operations to

full-scale theater warfare. Inherent uncertainty

concerning time, place, and adversary led to

production and regular revision of many planning

scenarios. This evolution of force planning to reflect

the new geo-political environment placed new

demands on force development analysis. Years of

analyzing a single, peer threat produced a large,

complex hierarchy of analysis tools. While these

tools provided comprehensive, high-fidelity analysis

of individual campaigns, they are extremely data- and

labor-intensive. The development, or even

modification, of a scenario in these tools is a costly

and time-consuming process extending far beyond

department planning, programming, and budgetary

cycle timelines. The analysis community is thus
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faced with a difficult analytic challenge. They need to

examine many, disparate planning scenarios to hedge

against future uncertainty; their primary tools are

inflexible on the timescale required by decision

processes.

A resolution to this dilemma may be found in the

development of new analytic tools guided by

a conceptual model for addressing future uncertainty.

With a less concrete vision of future conflict, optimal

force design for a single scenario is less meaningful.

Forces must instead be designed for robustness against

unexpected contingencies and with enough inherent

flexibility to allow for adaptation to impending shifts

in the geo-political environment. Potential force

constructs must be tested in a wide variety of

scenarios informed by a multi-perspective approach

to force development, recognizing no single approach

provides a complete solution. Multi-scale tools must

be developed to provide variable scope and fidelity

necessary to address different problems. The tools

must be agile enough to enable testing within

decision-relevant time spans. This approach harkens

back to the roots of OR: teams of scientists and

operators cooperating to examine a variety of

problems from the perspective, and at the levels of

detail and complexity required, by the situation

at hand.

See

▶Battle Modeling

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Military Operations Research

▶RAND Corporation

▶ Systems Analysis
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Air Traffic Management
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Introduction

The world-wide air transportation system represents an

essential component in the operation of the various

national economies. Many businesses would degrade

to the point of insolvency without air transportation.

Because of this high dependency, any deficiency in the

performance of the air transportation system imposes

a very large cost on the economies of virtually all

countries. A recent study commissioned by the U.S.

Federal Aviation Administration (Ball et al. 2010)

estimated that the cost of air transportation delays to

the US economy in 2007 to be $32.9 billion.

Air Traffic Management (ATM) is the process by

which an air transportation system is managed. While

individual flight operators and operators of large fleets,

e.g., airlines, play a large role in ATM, large developed

countries typically establish a national air navigation

service provider, ANSP, that has responsibility for

ATM. ANSP’s traditionally are government agencies;

however, recently several have adopted a privatized or

semi-privatized business model. In either case, the

primary systems and procedures for ATM are under

the control of ANSP’s. At the same time, increasingly,

ATM is being viewed as a joint undertaking between

the ANSP’s and flight operators. Of course, there still

remains a broad set of airline planning and control

problems that would not be classified as ATM,

e.g., fleet and crew planning problems and airline

operational control problems that largely are
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independent of ANSP decisions and processes. Ball

et al. (2006) and Hoffman, Mukherjee and Vossen

(2011) provide detailed reviews of ATM.

While the application of operations research to

airline planning problems is perhaps the better known

part of aviation operations research, the research

community has devoted substantial attention in recent

years to ATM problems. ATM problems possess

particular characteristics that make them particularly

challenging but also very interesting from the research

perspective. Specifically,

• They are large, e.g., on there are over 50,000 daily

scheduled, controlled flights in the U.S. airspace;

• Models and decision support tools should represent

dynamic and stochastic elements as weather and

other uncertain events greatly impact the capacity

of airspace elements and decisions can be updated

almost continuously;

• Distributed decision making and control strategies

are used as both the ANSP’s and flight operators

distribute responsibilities among multiple entities;

• On the flight operator side, the decision makers

represent competing economic entities so both

economic and technical controls must be

considered;

• The system requires an extremely high level of

safety so that safety concerns can dominate the

design of many solution strategies.

• Perhaps less directly related to modeling, but no less

important from an implementation perspective, is

the broader environment in which aviation is

contained, which includes features such as a large

unionized controller workforce, a high level of

government control with related political

influences and the need to achieve international

harmonization among national ATM strategies

and systems.

Air Traffic Flow Management Background

It is convenient to break down the domain of ATM into

a tactical component and a strategic component. The

tactical component, Air Traffic Control (ATC), is

concerned with controlling individual aircraft on

a time horizon ranging from seconds to 30 min for

the purpose of ensuring safe separation from other

aircraft and from terrain. The strategic component,

Air Traffic Flow Management (ATFM) works at

a more aggregate level and on a time horizon of up to

about 12 h in the United States and 48 h in Europe. Its

objective is to insure the efficient flow of aircraft

through the airspace. It seeks to avoid congestion and

delays and, when delays are unavoidable, to reduce as

much as possible their overall impact. ATC problems

are largely driven by safety concerns and the operating

characteristics of aircraft. Thus, they largely fall

within the disciplines of Control and Aeronautical

Engineering. ATFM, on the other hand, is a large

systems problem involving many stochastic elements

and large decision spaces and thus falls within the

domain of Operations Research. This chapter focuses

on ATFM problems. Odoni (1987) provided an early

description of operations research models for ATFM

problems.

Air traffic is diverse consisting of individual flights

by general aviation pilots, a variety of commercial

on-demand and business jet services and the

operations of large scheduled air carriers; military air

traffic is another category: some military traffic is

restricted to separate airspace and some is mixed with

other air traffic. The large air carriers dominate the

major airports and airspace. ATFM systems tend to

be focussed on their needs. Specifically, air carrier

schedules represent airspace demand and also serve

as the basis for measuring the performance of ATFM

systems. The fundamental premise of ATFM is that,

roughly speaking, if all operations occurred at their

scheduled times and if all airspace elements were in

their normal operating states, then there would be little

need for any flow management. Under such ideal

conditions demand on all airspace elements would be

less than capacity and operations would generally

proceed as if there were no constraints. ATFM

recognizes that the complexity of the airspace system

and its susceptibility to weather conditions imply that

it is extremely rare that nominal operating conditions

exist over extended periods of time and/or large

portions of the airspace.

ATFM performance is measured primarily with

reference to deviations from schedules.

Consequently, ATFM systems generally seek to

minimize deviation between the timing of actual

operations and scheduled operations. Thus, the key

performance indicators usually involve measures

of delay.

Before discussing ATFM decisions and controls, it

is important to consider the roles and responsibilities of
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the various stakeholders. The primary mission of

ANSP’s is to insure safety. As such they have a very

strong role in the tactical (ATC) domain; further, even

within ATFM their main responsibilities involve

insuring airspace does not become overloaded

causing unsafe situations. Over time, they have taken

on a greater role in seeking to insure the overall

efficient operation of the system, however, one

should keep in mind that the air carriers and other

flight operators will have strong (perhaps stronger)

role in this area. In fact, in the past 15 years a new

philosophical approach to ATFM has emerged. This

new approach was originally called Collaborative

Decision Making (CDM) and more recently is known

as Collaborative Air Traffic Management (CATM). Its

philosophical tenets include:

• Generating a better knowledge base by merging

information provided by flight operators with the

data that are routinely collected by an ANSP;

• Creating common situational awareness by

distributing the same information to both the

ANSP and the flight operators;

• Creating tools and procedures that allow flight

operators to respond directly to capacity/demand

imbalances and to collaborate with ANSP

specialists in the formulation of flow management

actions.

There are three basic types of controls used to

manage air traffic:

Ground Holding: the simplest way to insure

a portion of airspace does not become overloaded

is to prevent certain flights from departing at the

origin airports; in both the U.S. and Europe ground

holding can be issued by way of multiple types of

larger initiatives; the ANSP generally explicitly

must give a flight operator permission before a

flight can depart; a somewhat extreme version of

ground holding is a ground stop, where all flights

that have not yet departed and are destined for

a particular airport are held on the ground until

further notice.

Rerouting: a second approach to avoiding

congested airspace is to fly around it; rerouting is

a fundamental method used to manage congestion;

the decision to change a route can occur before

departure or after a flight is airborne; generally the

flight operator requests a route or route change and

this must be approved by the ANSP; however, it is

also the case that the ANSP might indicate that only

certain route options are available effectively forcing

flight operator routing decisions; an extreme

version of rerouting is a diversion, where a flight is

redirected to an airport other than its scheduled

destination.

Airborne Speed Control: once airborne, a certain
amount of speed control can be exercised on flights;

small changes can be implemented by simply adjusting

the actual velocity of the aircraft; greater adjustments

can be implemented by various types of maneuvering,

e.g., vectoring, which involves flying in an indirect

zig-zag pattern, and airborne holding, which involve

flying in circular or oval patterns so as to remain in

a designated area until progress toward the destination

is allowed. Typically a flight operator chooses the

speed of its flights to optimize business objectives;

speed controls might subsequently be put in place by

the ANSP.

These three classes of controls broadly represent the

decision space of the ANSP (although as indicated

each type of action requires some type of

collaborative decision on the part of the flight

operator). Another very important control is the

decision to cancel a scheduled flight. Canceling

certain flights clearly can greatly help relieve

congestion but at the expense of a high degree of

inconvenience imposed on certain passengers. While

ANSP actions might greatly influence which flights are

canceled, the final decision on a flight cancelation rests

with the flight operator.

Basic Decision Problems and Optimization
Models

It is useful to start with a description of three basic

ATM problems and models. These problems represent

basic functions that underlie higher level ATM

processes. Further, at least in their simplest form the

underlying models are classic operations research

models.

The (Single) Flight Planning Problem

At the heart of a large, complex air traffic plan are the

flight plans that individual flights follow from their

origin airports to their destination airports. The key

elements of a flight plan include the (1) the route the

flight will follow, which indicates the points on

a two-dimensional map it will fly over, (2) the flight
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profile, which indicates the altitude the flight uses over

the course of the route, (3) the speed to use over the

course of the route, and (4) the trip fuel required for the

flight. A controlled flight is one for which an approved

flight plan has been filed with the air traffic

management (ATM) system. Airline and general

aviation operators prepare and file flight plans usually

based on criteria that consider each flight in isolation.

Air carriers typically employ sophisticated software,

including advanced route optimization programs, for

this purpose. By accepting a flight plan, an ANSP

agrees to take responsibility for the safe separation of

that aircraft from all other controlled aircraft in the

airspace and to provide many other types of

assistance toward the goal of completing the flight

safely and expeditiously. Practically all airline flights

and a large number of general aviation flights are

controlled.

Considering the flight planning problem in

unconstrained, three-dimensional space, control-

based methods can be brought to bear. These employ

aircraft performance characteristics and the

relationship among weight, fuel remaining and

aircraft performance. This basic approach can have

limited applicability because much of today’s

airspace is highly organized so that many flight plan

options are limited to a relatively small number of

discrete choices. Thus, dynamic programming and

shortest path methods become appropriate. A variety

of factors add to the problem’s complexity, including

the need to take into account weather conditions,

restrictions on various portions of airspace,

differences in overflight charges among countries to

name a few. A common decomposition approach first

determines a route and then optimizes the speed and

profile in a second step. Solution robustness can also be

of interest to account for possible changes in weather

or other conditions. While this basic problem is quite

challenging and spans multiple domains there is

surprisingly little literature on it. Sorensen and Goka

(1985) provided an early reference on the topic and

Altus (2007) a more recent survey.

Arrival Sequencing Problem

In order to maintain a high level of arrival throughput

into an airport one would seek to space successive

aircraft as close as safely possible. There are two

physical effects that determine this safe separation:

one is the long-standing safety requirement that two

arriving aircraft cannot occupy the same runway

simultaneously and the second is based on the

separation requirements related to the wake vortex

hazard. A wake vortex is a disturbance of the air

caused by one aircraft. This disturbance can cause

a second trailing aircraft to become unstable and

even crash. Thus, there needs to be a certain

separation distance or time to allow the wake to

dissipate. The required distance depends on the

characteristics of the (ordered) aircraft pair, e.g.,

a very heavy aircraft followed by a very light

aircraft is the least stable situation requiring the

larger separation distance. The net result of these

characteristics is that the arrival throughput in terms

of rate of arriving aircraft depends on the types of

aircraft and their sequence. For example, a light

aircraft followed by two heavies would require less

total time to land than a heavy followed by a light

followed by a heavy.

Thus, a fundamental problem in air traffic

management is determining and arrival sequence for

a group of aircraft (Balakrishnan and Chandran 2010;

Beasley et al. 2000). The simplest version could be

stated as: given n airborne aircraft, all approaching

a single runway, determine a sequence of landings so

as to minimize the time when the last aircraft lands.

Here in the most general form there would be

a required separation or distance, tij, between every

possible ordered aircraft pair, (i, j). This is an

instance of the well-known Hamiltonian path

problem, which is very closely related to the even

more celebrated traveling salesman problem.

However, the classic Hamiltonian path problem is

a static problem. On the other hand, the problem of

sequencing aircraft on a runway is dynamic: over time,

the pool of aircraft available to land changes, as some

aircraft reach the runway while new aircraft join the

arrivals queue. Moreover, minimizing the “latest

landing time” (or maximizing “throughput”) should

not necessarily be the objective of optimal

sequencing. Many alternative objective functions,

such as minimizing the average waiting time per

passenger, are just as reasonable. A further

complication is that the very idea of “sequencing”

runs counter to the traditional adherence of ATM

systems to a first-come, first-served (FCFS)

discipline, which is perceived by most as fair.

These observations have motivated a variety of

research on the arrival sequencing problem with the
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objective of increasing operating efficiency while

ensuring that all airport users are treated equitably. It

is common to assume that aircraft start in an initial

sequence and so both the dynamic aspect and fairness

considerations can be modeled by limiting the

deviations from this sequence. Other constraints

might include adherence to a landing time window

for each flight and also precedence constraints. The

simplest versions of this problem can be solved in

polynomial time, however, more complex versions

become more difficult. Nonetheless, because the

amount of sequence shifting that can take place can

be quite limited, the problem can be effectively solved

in practice.

The Slot Assignment Problem

In the U.S. ground holding is most often implemented

via a ground delay program (GDP). Here the arrival

capacity at a destination airport is reduced due to

poor weather and so the rate of flow into the airport

is reduced by delaying flights on the ground at their

origin airports. The problem can be modeled by

defining a set of slots (time intervals) at the

destination airport with a capacity in terms of

number of arrivals for each such slot. Each flight is

assigned to an arrival slot, which can be no earlier

than the flight’s earliest arrival time. This effectively

determines an arrival delay for each flight, which is

in turn converted into a departure delay (ground

hold). This basic model of assigning flights to slots

arises in other contexts as well, for example in the

planning of airspace flow programs, which are used in

the U.S. to ration the flow through a portion of the

airspace.

Model inputs include: set of slot (time intervals)

t(t¼ 1,2, . . ., T) and set of flights f ( f¼ 1,2, . . ., F). Let

bt ¼ the ðreducedÞ arrival capacity of slot t;

eðf Þ ¼ the earliest time slot at which flight f can arrive;

cft ¼ the cost of assigning flight f to arrive at

time interval t;

and the variables:

xft ¼ 1 if flight f is assigned to time interval t;

0 otherwise:

Then, the slot assignment problem can be

formulated as:

Slot_Assign

Min :
X

f ; t
cftxft

s:t:
X

f
xft � bt for all t;

X
t�eðf Þ xft ¼ 1 for all f ;

xft � 0 and integer for all f and t:

As can be seen, this is a simple transportation model

that can be solved very efficiently. This model was first

described in Terrab and Odoni (1993). It has been

noted that the definition cft ¼ rf t� eðf Þð Þ1þE is

attractive since flight delay costs tend to grow with

time at a greater than linear rate. In addition,

solutions produced using this objective function are

attractive from the standpoint of equity or fairness

(Vossen and Ball 2006a).

CDM and Resource Allocation and Exchange

The CDM effort grew out of a desire on the part of both

the airlines and the FAA for improvements in the

manner in which GDPs were planned and controlled

(Wambsganss 1996; Vossen and Ball 2006a). The

FAA and, more specifically, the air traffic control

system command center (ATCSCC) had realized the

need for more up-to-date information on the status of

flights currently delayed due to mechanical or other

problems or even canceled unbeknownst to the

ATCSCC. Equally important, the success of GDPs

also depends vitally on timely information regarding

airline intentions with respect to flight cancelations

and delays over the next few hours. At the same time,

the airlines did not feel the allocation procedures used

by the ATCSCC were always fair and efficient. In

addition, each airline wished to gain more control

over how delays were allocated among its own

flights. Thus, both the airlines and the FAA had

specific (although different) objectives that motivated

their participation in CDM. These issues bring another

dimension to research in this area involving the

relationship between resource allocation methods and

stakeholder incentives. These topics are more typically

considered in the economics literature, e.g., under the

domain of mechanism design.
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CDM Resource Allocation

It is instructive to consider CDM slot assignment

within a more general framework. Figure 1 illustrates

the overall resource allocation process. The basic

(initial) slot assignment performed by the ANSP

(FAA in this case) employs the ration-by-schedule,

RBS algorithm. Each airline, using the cancelations

and substitution process, may then cancel flights and

modify slot-to-flight assignments for its own flights

(intra-airline exchange). Thus, although RBS, in

concept, allocates slots to flights, the cancelation and

substitution process effectively converts the

slot-to-flight assignment into a slot-to-airline

assignment. The final step, compression, which is

carried out by the ANSP/FAA, maximizes slot

utilization by performing an inter-airline slot

exchange in order to ensure that no slot goes unused.

RBS defined below is a simple priority rule for

findisng a (feasible) solution to SLOT_ASSIGN. In

this description, slots are defined so that each has

capacity 1, i.e., bt ¼ 1 for all t. The algorithm

employs a scheduled arrival time for each flight f,

êðf Þ, which may be different from the earliest arrival

time e(f):

RBS:
Step 1: Order slots by increasing value of slot time (t).

Step 2: For each slot t, choose the unassigned flight f

with the earliest scheduled arrival time (value of

êðf Þ) and assign f to t, i.e., set xft ¼ 1.

The fact that priority is based on scheduled arrival

time êðf Þ as opposed to say earliest arrival time e(f) is

important. In general e(f) can be larger than êðf Þ as
mechanical problems or upstream delays to

inbound flights can delay aircraft availability. Earlier

(pre-CDM) procedures, which were based on e(f),

encouraged airlines to withhold or alter flight status

information, as higher values of e(f) led to less

desirable slot allocations. By basing the allocation on

êðf Þ, the resources obtained are independent of the

flight status information provided. On the other hand,

by using êðf Þ, it is quite possible that certain

flight-to-slot allocations (instances where xft ¼ 1) are

not feasible leading to the need for the intra-airline slot

exchange process; it is even possible that airlines will

receive slots that are infeasible for all of their flights,

which leads to the need for the inter-airline slot

exchange.

Airlines can view the intra-airline slot exchange

(cancelation and substitution) step as an internal

resource allocation process. Specifically, the

collection of slots allocated to a given airline’s flights

can be viewed as a set of slots owned by that airline.

The airline could then view the internal problem of

assigning its flights to the slots it owns as an

optimization problem; again this is a transportation or

assignment problem. In this case, each airline could

employ its own internal cost function where the cost of

the delay assigned to each flight might depend on

a variety of internal (possible proprietary) factors

unique to that airline. The decision variables in this

problem would, in general, include the possibility of

canceling certain flights.

Slot Trading Models

As indicated above, the third step of the CDM

allocation process, the compression algorithm, can be

viewed as a form of inter-airline trading or bartering.

Compression is necessary when one or more airlines

are assigned slots that they cannot use. Specifically,

when a slot time t is earlier than the earliest arrival time

e(f) of all of an airlines’ unassigned flights, then that

airline cannot use the slot t. In such a case, the owner of

the slot would be willing to give up the (early) slot for

a later one that it can use. As illustrated in Fig. 2, the

underlying exchange is not a simple one-for-one trade.

Rather, there is a daisy chain of slot reassignments,

which results in freeing up the earliest slot usable by

the airline that has given up its slot. The compression

algorithm is a batch process that identifies all unusable

slots and finds for each an appropriate sequence of slot

reassignments/exchanges. Research has shown that the

problem of finding a set of such exchange sequences is

equivalent to finding a set of arc-disjoint cycles in

a directed graph (Vossen and Ball 2006a). Viewing

the problem in this way leads to the consideration of

alternate objective functions and the possibility of

Ration-by-Schedule Cancelations & Substitutions Compression

⇔

Fair slot allocation Intra-airline slot exchange Inter-airline slot exchange

Air Traffic Management, Fig. 1 CDM resource allocation
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including trading mechanism in more complex

optimization models.

While the original CDM-based decision support

system for GDP’s included the batch compression

process, later implementations included near-real-

time trading mechanisms. The slot credit substitution

mechanism is initiated by an airline that wishes to trade

an earlier slot for a later one. This mechanism allows

an airline to insure it will receive a slot at a particular

time before freeing up an earlier slot by canceling

a flight. The adaptive compression procedure is

initiated by a background process run by the ANSP.

The process continuously searches for slots that are in

danger of going unused and executes slot exchanges in

order to insure that arrival capacity does not go unused.

More recent research (Vossen and Ball 2006b) has

focused on implementing more complex slot

exchanges, e.g., where an airline gives up two or

more slots in exchange for a similar number of other

slots. While compression (and its real-time versions)

are always motivated by the existence of a slot an

airline cannot use, under the more complex trading

models, an airline can trade multiple “usable” slots

for another set of usable, but higher value, slots.

Research has demonstrated that more complex

trading schemes can yield an increase in the overall

welfare of participating airlines. Additionally, integer

programming models have been developed for

identifying the best set of trades to execute.

Of course, a very logical further step in the

progression of trading mechanisms would be to

consider the use of monetary-based exchanges. In

fact, it is quite easy to envision the inclusion of side

payments with any of the trading mechanisms

described above. Research has shown that adding the

possibility of side payments can lead to increases in

overall welfare over models that do not employ

monetary payments. Recent work has developed and

analyzed specific mechanisms of this type. However,

implementation in practice has yet to take place.

Modeling Equity and Equity Efficiency
Tradeoffs

RBS evolved out of a set of human-in-the-loop

(war-gaming-like) and consensus-building exercises.

It is now accepted as a de facto allocation standard

within the U.S. With this background, subsequent

research examined its inherent properties as a fair

allocation rule. It was also then used as an equity

standard in the development of models that

considered equity efficiency tradeoffs.

RBS assigns to each flight f a controlled time of

arrival CTA( f ). (CTA(f ) is the time of the slot to which

f is assigned, i.e., the t with xft¼ 1.) The assignment of

CTA( f ) is equivalent to assigning a delay d( f ) to flight

f given by d(f )¼ CTA(f ) — êð f Þ. Assuming that flight

delays, i.e., the d(f ) values, are all integer and defining

D to be the maximum delay assigned to any flight and

ai ¼ f : dð f Þ ¼ if gj j for i ¼ 0,1, 2,. . ., D, then the

important properties of unconstrained RBS can be

defined by,

Property 1: RBS minimizes total delay ¼
P

f fdð f Þ.
Property 2:RBS lexicographically minimizes (aD,. . .,

a1, a0). That is, aD is minimized; subject to aD being

fixed at its minimum value, aD�1 is minimized;

subject to (aD, aD�1) being fixed at its

lexicographic minimum value, aD�2 is minimized;

and so on.

Property 3: For any flight f, the only way to decrease

a delay value, d( f ), set by RBS is to increase the

delay value of another flight g to a value greater

than d( f ).

Property 3, which follows directly from Property 2,

expresses a very fundamental notion of equity that has

been applied in a number of contexts. It is interesting to

note that RBS, which was developed as a practical

alternative by means consensus-building exercises,

has such elegant and desirable properties. On the

AA???

DA102

UA233

NW411

4:00

4:10

4:20

4:30

slot AA cannot use

slot AA can use

Air Traffic Management, Fig. 2 Compression exchange: AA
gives up the 4:00 slot and receives in return the 4:30 slot
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other hand, this may not be surprising in that these

properties may represent a large part of the basis for

reaching consensus.

These properties show that unconstrained RBS

produces a fair allocation. However, RBS is not used

in its pure form. Rather, certain flights are exempted

from RBS (and given no delay); the flights exempted

are “long haul” flights greater than a certain distance

away from the GDP (destination) airport. The

motivation for these exemptions will be described

later when stochastic models are discussed. One then

naturally considers whether the exemption policies, in

fact, introduce bias (in the sense that certain airlines

consistently receive more delay on the average than

others). Vossen et al. (2003) showed that exemptions

do introduce a bias. In additions, optimization

procedures have been developed for mitigating these

biases. The approach taken initially computes the

unconstrained RBS solution and defines it as the ideal

allocation. Optimization procedures are then described

that minimize the deviation of the actual allocation

from the ideal. The resulting approaches maintain the

exemption policies, but take into account the

advantages provided to an airline by its exempted

flights when allocating delays to its other flights. The

principle underlying this work is that equity or fairness

can be measured as the deviation from RBS. This basic

concept can be applied more generally by considering

equity as one objective and another performance

criterion, e.g., throughput, as a second objective. One

can then consider designing decision support systems

that take a multi-objective approach trading off these

two objectives.

Resource Allocation Based on User Supplied

Priorities

The preceding set of processes can be viewed under

a general paradigm in which (1) the ANSP allocates

resources to flight operators, (2) each flight operator

optimizes the use of the resources it owns, (3) a limited

amount of inter-operator trading is supported. An

alternative approach to allowing flight operator costs

and priorities to be taken into account involves

processes in which each flight operator provides

priority or tradeoff information to the ANSP and the

ANSP takes this information into account in

determining resource allocation. This approach

underlies the new Collaborative Trajectory Options

Program (CTOP), which is now being tested by the

FAA for deployment in assigning reroute options to

flights competing for common resources. CTOP uses

flight operator priority information in determining

exactly which resource to give to each flight on a list,

but determines priorities among flights based on

a variant of RBS. A fundamentally different system

could use flight operator inputs to determine the

priority order of flights.

One such approach assigns a certain number

of credits to each flight operator (Sheth and

Gutierrez-Nolasco 2010). These credits constitute

a type of artificial currency. Specifically, a flight

operator would assign a certain number of credits to

each of its flights. These credits would be used in

a bidding/negotiation process when competing for

access to airspace resources. Simulations and

human-in-the-loop experiments have been conducted

that show promise for this concept. In concept, it could

address some of the tradeoffs that various types of slot

trading systems would address, e.g., allowing a flight

operator to gain access to an early slot for a highly

valued flight by giving up priority for a lesser valued

flight. In the end such systems are types of

marketplaces, which implies that, in a highly

competitive environment, mechanisms must be in

place to determine the equivalent of a market

clearing price. Research is needed to address such

challenges. Another important issue is the design of

a fair method for allocating credits to the various flight

operators.

Large-Scale Deterministic Optimization
Models

There are two broad classes of global air traffic flow

models (Bertsimas and Stock Paterson 1998; Helme

1992; Lindsay et al. 1994; Sherali et al. 2002). The first

assumes that the trajectory (route) of each flight is

fixed and optimizes the timing of the flight’s

operations. The second allows the route of each flight

to vary, as well. While conceptually models of the

second type have a much larger decision space,

recent research has produced models of the second

type with computation times close to those of the

first type.

The modeling approach for both cases chooses

a time horizon of interest and decomposes it into

a discrete set of time intervals. A geographic scope is
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also selected. This determines the set of capacitated

elements under consideration. Two capacitated

elements might include the arrival and departure

processes for an airport (or a combined arrival and

departure process). Another could be a sector:

a volume of airspace with a limit on the number of

aircraft that can simultaneously have access. Another

could be a waypoint: a point in 3-dimensional space

that multiple flights seek to pass through over time.

The combination of the model’s temporal and

geographic scope determines the set of flights to be

considered.

For models of the first type, the basic decision

variables specify the airspace element occupied by

a flight at each time interval, i.e.,

xfte ¼ 1 if flight f occupies airspace element

e during time interval t; 0 otherwise:

The capacity constraint associated with an element

e and time interval t is of the form:

X

f

xfte � capðt; eÞ for all t and e;

where cap(t, e) is the capacity of element e during time

interval t. For airport arrival and departure capacities

and for waypoints, cap(t, e) is equal to the maximum

number of flights that could flow through that element

during time interval t. For a sector, it is equal to the

maximum number of flights that can occupy the sector

simultaneously.

The remaining constraints define temporal

restrictions on the manner in which each flight can

progress through the airspace. For example, they

might specify that, once a flight enters a sector, it

must remain in the sector for 3, 4 or 5 time intervals.

In this case, 3 time intervals would correspond to

traversing the sector on a direct path at maximum

speed and 5 time intervals might correspond to

a longer traversal time based on application of some

type of speed control. Since the flight’s route is an

input, the progression from departure airport through

a specific sequence of sectors to a destination airport is

a fixed model input, as well.

Models of this type can be solved very efficiently.

Of particular note is their use of an alternative set of

decision variables. Specifically, the xfte variables are

replaced with a set, wfte, defined by:

wfte ¼ 1 if flight f arrives at airspace element e

by time interval t; 0 otherwise:

While the w variables can be obtained from the x

variables through a simple linear transformation

(wfte ¼
Pt

s¼1 xse), the w variables are much easier to

work with because they produce very simple and

natural temporal progression constraints. Further, the

associated linear programming relaxations are very

strong in the sense that they lead to the fast solution

of the associated integer programs (Bertsimas and

Stock Paterson 1998). A variety of additional features

can be included in models of this type, including the

propagation of delays that occurs when a delay in the

arrival of a flight causes a delay of an outbound flight

that uses the same aircraft. Models can also capture the

dependence between an airport’s arrival and departure

capacities and choose the appropriate combination of

the two for each time interval.

A second type of model also allows for flight routes

to vary. The most direct way to develop such models

would employ variables of the form:

xfrte ¼ 1 if flight f uses route r and occupies airspace

element e during time interval t; 0 otherwise:

Since these variables involve the incorporation of

an additional dimension, running times can increase

dramatically. While the large-scale models of the

previous type, e.g., involving thousands of flights,

could be solved to optimality very quickly using

commercial integer programming solvers, much

smaller instances of problems of the second type

could only be addressed uses approximate

techniques. Bertsimas, Lulli and Odoni (2011)

describe new models with route choice using

variables of the first type. This was accomplished by

embedding constraints within the formulations that

implicitly represent the route choice options.

Stochastic Models

Uncertainty on multiple levels has led to the failure of

many attempts at practical implementation of various
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air traffic flow management models. To be effective,

models must include stochastic components explicitly

or they must address problems restricted to limited

geographic and time domains for which available

information is less subject to uncertainty. The term

demand uncertainty describes the possibility that, due

to random or unforeseen events, flights may deviate

from their planned departure or arrival times or from

their planned trajectories. Similarly, capacity

uncertainty refers to the possibility that random or

unforeseen events will cause changes to the

maximum achievable flow rates into and out of

airports or through airspace waypoints or to the

maximum number of flights that can occupy

simultaneously a portion of the airspace. Examples of

factors contributing to demand uncertainty include

problems in loading passengers onto an aircraft,

mechanical problems, queues on the departure

airport’s surface or in the air and en route weather

problems. Examples of factors contributing to

capacity uncertainty include weather conditions at an

airport or in the en route airspace, failures or

degradation of air traffic control equipment,

unavailability of air traffic control personnel, and

random changes in flight sequences and aircraft mix

that require alterations of anticipated flight departure

or arrival spacing.

The largest body of work in this area has focused on

ground holding models that explicitly take into

account uncertainty in airport arrival capacity (Ball

et al. 2003; Mukherjee and Hansen 2007; Richetta

and Odoni 1993). As discussed in the previous

section, optimization models for the ground holding

problem subdivide time into an arbitrary number of

discrete intervals. Typical time intervals might be 10 or

15 min or even as much as 1 h for the most aggregate

models. The rate of arrivals into an airport is called the

airport acceptance rate (AAR). A GDP is motivated by

a reduction in the AAR over a period of time, e.g., four

hours, usually due to poor weather. A weather forecast

might be characterized by an AAR vector, which

specifies the predicted AAR value for a sequence of

time intervals into the future. As discussed earlier

GDP’s must be planned well in advance based on

a weather forecast. In a typical GDP caused by

a weather disturbance that moves through a region,

the AAR would start at its normal level, e.g., 60

arrivals per hour, decrease to one or more degraded

levels, e.g., 30 arrivals per hours, for several time

intervals, e.g., 4 h, and then return to its original

level. If it were known that such a scenario would

occur with certainty, then a deterministic ground

holding model, such as those discussed earlier, could

obviously be used with this scenario providing the

capacity constraints input. Of course, in general,

there may be significant uncertainty associated with

any single AAR vector so that ideally the AAR should

be treated as a random variable. The typical stochastic

programming modeling approach used takes as input

several such scenarios together with associated

probabilities. For example, an optimistic scenario

indicating no capacity degradation would consist of

a vector of hourly AARs of 60 throughout the period

of interest, whereas, a more pessimistic scenario might

assume that the AAR will be 30 during every hour in

the period. Such an input can be characterized as:

Dtq ¼ AAR for time interval t under scenario q;

for t ¼ 1; . . . ; T and q ¼ 1; . . . ; Q:

pq ¼ probability of the occurrence of scenario q;

for q ¼ 1; . . . ; Q:

The xft variables are then defined as in the

deterministic ground holding model, but the

capacity constraints are replaced with a new set of

scenario-based constraints and associated variables.

The new variable set is defined by:

ytq ¼ number of flights held air from period t

to tþ 1; under scenario q; for q ¼ 1; . . . ; Q:

The new set of capacity constraints then is:

XF

f¼1
xft þ yt�1q � ytq � Dtq for t ¼ 1; . . . ; T and q

¼ 1; . . . ; Q:

Thus, under these constraints, there is a separate

capacity for each scenario. However, the y variables

allow for flow between time intervals, so the number of

flights assigned to land in an interval under a particular

scenario can exceed the AAR by allowing excess
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flights to flow to a future time interval. Note that this

set of capacity constraints defines a small network flow

problem for each q, with flights flowing from earlier

time intervals to later ones. To be feasible, for each

given q, the total arrival capacity for the entire period

of interest,
P

t Dtq, must be at least as large as the total

number of flights (F).

The objective function for the model minimizes the

sum of the cost of ground delay plus the expected cost

of airborne delay. It requires a parameter, ca, defined as

the cost of holding one flight in the air for one time

period:

Min :
XF

f¼1

XT

t¼1
cftxft þ

XQ

q¼1
pq
XT

t¼1
cayt�1q:

This class of models has been generalized to

address both airport and airspace problems. That is,

weather may also cause portions of the airspace to

experience capacity reductions or to be blocked

entirely. A similar approach to modeling capacity

uncertainty can be used.

The models just discussed can be classified as

static stochastic models. Specifically, they are

two-stage models in which a stage one plan (the x

variables – ground delay assignment) is developed

but the cost of that plan is measured based on

a random stage two process (the realization of the

arrival capacity and the ensuing airborne delays). In

reality, the stage one decisions can be adjusted in

reaction to the random events. For example, if the

weather clears early, then most, or even all, flights

serving ground delay can be released early. More

recent research has modeled the possible adjustment

of decisions on ground delays. In general such models

can lead to very large scenario trees. However, some

research has taken advantage of the fairly simple

scenario/capacity structure associated with many

GDP plans. Specifically, in many cases there is an

onset of bad weather which reduces the AAR from its

nominal value, say DN, to a reduced value, say DR.

Further, it is assumed that the decision to release

flights from their assigned ground delay cannot be

made until the time at which the AAR switches from

DR toDN, e.g., this decision will not be made based on

a change in the weather forecast, only a change in the

actual weather. While this latter assumption might

seem like a strong one, it is, in fact, how the system

in the U.S. operates today. With this model of the

stochastics of the AAR and this dynamic decision

regime, a relative simple scenario tree and compact

integer program result. Effectively, this dynamic,

stochastic model of GDP planning can be cast as

a two stage stochastic integer program where the

second stage decision variable is the time the

weather clears.

Models of this type have been able to formalize the

rationale behind giving priority to long-haul flights. As

discussed earlier, during GDP’s, certain flights are

exempt and given no ground delay. The principal set

of exempt flights are flights greater than a certain

distance from the GDP airport. The heuristic

rationale is that such flights would have to be given

ground delay well in advance of their arrival at the

airport and, therefore, this decision would have to be

based on a forecast of weather conditions several hours

into the future. Since there is uncertainty there is

a (possibly large) likelihood that the ground delay

would be applied unnecessarily. Instead these flights

are exempt and flights closer to the airport are allowed

to absorb the required ground delay if necessary. The

formalization of priority based on distance leads to the

ration-by-distance (RBD) algorithm. RBD is

conceptually similar to RBS; the only difference is

that Step 2 is replaced by:

Step 2: For each slot t, choose the unassigned flight
f the furthest from the GDP airport (with the largest

value of Lf) and assign f to t, i.e., set xft ¼ 1.

Here Lf is length of flight f, i.e., the difference

between its scheduled arrival time and scheduled

departure time. Using a stochastic model of the type

just described, i.e., where there is a distribution of

possible weather clearance times and a decision to

release a flight (or reduce its ground delay) is made

as soon as the weather clears, it can be shown that RBD

minimizes the total expected delay assigned to all

flights in the GDP (Ball, Hoffman and Mukherjee

2010). RBD is not viewed as a practical algorithm

since it can assign extreme delays to some short

flights; a practical alternative, Equity-Based RBD

(ERBD), uses the RBD priority principle but ensures

the delay assigned to each flight does not deviate

beyond a specified limit from the delay RBS would

assign.
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Stochastic integer programs based on models of this

type have also been developed to analyze enroute

problems. Since these models have the complexity of

2-stage stochastic programs they are reasonably

tractable, while representing what is, from a practical

perspective, a multi-stage, dynamic problem.

Concluding Remarks

Air traffic management is of vital importance to the

smooth operation of the world-wide economy. The

underlying essential problems have a strong systems

nature, are large and subject to uncertainty. Moreover,

decision-making must dynamically adjust to changing

conditions and be distributed throughout multiple

diverse organizations. Operations research has much

to offer this area.

See

▶Airline Industry Operations Research
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Introduction

The dramatic growth of the airline industry over the

past thirty years into a highly competitive world-wide

transport network has been accompanied by the

extensive use of operations research and management

science methodology in all areas of airline operations.

All airlines make major investments in sophisticated

aircraft and employ highly trained and skilled staff.

Efficient utilization of such valuable resources is

clearly an important objective in the management of

a profitable airline.

In 1960, the airline industry recognized the

potential benefits of OR/MS by setting up the Airline

Group of the International Federation of Operations

Research Societies (AGIFORS) as a special interest

group. Since that time, annual AGIFORS symposia

have been held and the proceedings of these meetings

provide excellent documentation of the many

applications and problems which have been

addressed by the use of OR/MS techniques (Richter

1989). A comprehensive discussion of the direction of

OR/MS applications in the airline industry by the late

1980s was given by Teodorovic (1988), and a special

issue of Interfaces edited by Cook (1989) presented six

specific OR/MS airline-industry case studies.

Over the years since then, an extensive range of

practical problems involving long-term planning,

short-term planning and “day of operation” decision

making have been considered and the full range of

methods and techniques including forecasting,

simulation, heuristics and optimization have been

used to provide practical solutions and decision

support systems. In particular, such methods as set

partitioning and set covering optimization have been

widely applied in many airline scheduling problems.

In recent years, linear optimization models generated

from airline applications have stimulated much

research into the development of interior point and

improved simplex methods for solving such

problems. The following broad application areas of

OR/MS in the airline industry can be clearly

identified and will be discussed in further detail:

• Flight Scheduling Planning

• Fleet Assignment

• Yield Management

• Crew Scheduling

• Aircraft Maintenance Routing

• Schedule Recovery

Flight Scheduling Planning

The design of a flight schedule is probably the most

important and fundamental task for any airline. The

schedule which determines the frequency and

departure times of flights between airports served by

the airline is usually prepared and published many

months before it is due to be operated. The preparation

of the schedule must take into account forecast

passenger demand, the operational limitations of both

aircraft and crews, and the access limitations imposed by

airports either due to meteorological conditions, airport

congestion, operational restricted hours or differential

landing tariffs. Besides many constraints on the form of

feasible flight schedules, there is also considerable

variation in the choice of objective ranging from

maximizing profit, maximizing passenger-kilometers,

maximizing load factors, minimizing the number of

aircraft and minimizing direct and indirect operating

costs. A discussion of this problem was given by

Soumis and Nagurney (1993).

Two particular forms of schedule also reflect the

airlines’ mode of operation as either a network

or a hub-and-spoke operation. Airlines operating

hub-and-spoke systems design schedules that bring

many aircraft into a hub airport within a short space of

time, thus enabling passengers to transfer to another

aircraft before all of the aircraft then depart (on the

spokes) from the hub over a short period of time. In

both forms of operation, the airline schedule can be

represented as a network problem in which one

must determine conserved flows of aircraft between

ports at times chosen to satisfy operational constraints

and optimize a specified objective. Because of the

enormous combinatorial complexity of the network

model, many heuristic methods have been developed

to assist airline schedule planners. The problem

continues to motivate the development of improved

optimization methods.
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Fleet Assignment

Given a predetermined flight schedule, the fleet

assignment problem is to determine which aircraft

type is assigned to a given flight segment in the

carrier’s network. The goal of the fleet assignment

problem is to assign as many candidate

flight-segments as possible in a schedule pattern to

specific aircraft types, based on such factors as

operating costs, revenues, and operational constraints

and capabilities. The problem is formulated and solved

as an integer-programming model that permits the

assignment of multiple fleet types to a flight schedule

simultaneously. The fleet assignment model can be

classified as a large multicommodity flow problem

with side constraints defined on a time-space

network. One of the earliest published articles on the

topic of fleet assignment was presented by Abara

(1989), who discussed the application of integer

linear programming to the fleet assignment problem,

and explained how this technique was already being

used extensively throughout American Airlines.

Subramanian et al. (1994) presented a solution

procedure referred to as Coldstart, which is a fleet

assignment methodology developed by Delta

Airlines. Coldstart minimizes a combination of

operating and passenger spill costs, subject to

operational constraints. Hane et al. (1995) outlined

a model for the fleet assignment problem and discuss

solution problems that often exist with such large

problems including degeneracy, that leads to poor

performance of standard LP solution techniques. The

solution methodology presented incorporates an

interior point algorithm, cost perturbation, model

aggregation, branching on set-partitioning

constraints, and prioritizing the order of branching, in

an effort to develop more efficient solution procedures

for the problem. Clarke et al. (1996) discussed

maintenance and crew considerations in the basic

daily fleet assignment problem of Hane et al. (1995),

and implementation issues related to its solvability.

The solution methodology presented involves the use

of the dual steepest edge simplex method and solving

the mixed integer problem by branch and bound.

The most recent advances in the fleet assignment

problem have included the development of

origin-destination based models that incorporate

passenger flow issues more accurately into the

decision model. These are able to control passenger

mix and reflect the upstream and downstream effects of

the fleet assignment decision. Jacobs (1999) and

Kniker (1998) independently discussed the

origin-destination fleet assignment problem.

Yield Management

The yield management process maximizes revenue by

selectively accepting and rejecting reservation

requests based on its relative value. Excellent reviews

with good bibliographies are provided in Weatherford

and Bodily (1992) and McGill and van Ryzin (1999).

The procedure is designed to manage perishable seat

inventory effectively, since an empty seat at flight

departure cannot be resold. The control of reservation

inventory to maximize revenues is normally

accomplished through a series of sequential processes

including overbooking, fare mix or discount allocation

control, group control and traffic flow control.

Overbooking is the process by which additional

reservations beyond physical capacity (seats) are sold

to compensate for the effects of cancellations,

noshows, duplicate bookings and misconnects. The

primary objective of discount allocation control is to

limit the number of seats sold to lower valued

passengers by protecting seats for late booking higher

valued passengers. The optimal discount allocation

controls result in the optimal onboard mix of full

fare, discount, leisure and deep discount passengers

to maximize the total onboard revenue. The process

of yield management effectively manages the risk

associate with this uncertainty and maximizes

expected revenues.

Group control is done using a group evaluator that

assists in deciding whether to accept or reject the group

booking. The group evaluator determines the

minimum acceptable fare based on the expected

displacement cost of individual passengers, projected

group attrition forecast, the size of the group, the

peripheral profit, and the number of complementary

seats requested by the group.

The process of traffic flow control is very important

in an airline network with high levels of connecting

traffic. The control of reservation inventory by

origin-destination (itinerary) is accomplished using

the value of the individual passenger to determine

reservation availability. The passenger value is based

on several factors including itinerary, departure
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date, fare class, actual paid fare, and point of sale. The

concept of virtual nesting was developed

to approximately control reservation requests by

origin-destination. It relies on the aggregation of

various origin-destination fare classes that flow over

a flight leg into amanageable number of virtual buckets

based on reservation value. The value of an

origin-destination class is the fare net of up-line and

down-line displacement costs. The buckets are serially

nested to ensure that as sales build up for a flight, the

lower valued classes are automatically closed.

First generation yield management techniques were

developed to maximize revenues on a leg-based

inventory control scheme. Second generation systems

clustered similar origin-destination/fare classes into

“buckets” (see Smith et al. 1992, for a comprehensive

description of this type of system, with attendant

forecasting and performance measurement, at

American Airlines), and the current state-of-the-art

controls directly at the origin-destination level of

detail. In a full origin-destination inventory control

environment, reservation inventory is controlled by

the actual origin and destination based on reservation

value. This is accomplished using a network

optimization model that takes the flight schedule,

network capacity and the origin-destination demand

forecasts and variance by class, to determine the

probabilistic bid prices by leg and base compartment

(Smith 1998). The bid price can be interpreted as the

minimum acceptable fare for a reservation request on

a flight leg to be accepted. The bid price for a multiple

leg itinerary is the summation of the bid prices on

each flight leg. Fares greater than the minimum

acceptable fare or the total bid price are open for sale,

subject to satisfying the associated fare rules. The

fundamental difference between nested controls and

origin-destination control is that availability is not

prestored, but is dynamically calculated for each

reservation request.

Belobaba (1989) discussed the development and

application of a probabilistic decision model to

airline seat inventory control. The concept referred to

as Expected Marginal Seat Revenue (EMSR) takes

into account the uncertainty associated with estimates

of future passenger demand, as well as the nested

structure of booking limits in airline reservation

systems. Curry (1990) discussed an optimal airline

seat allocation method that handles fare classes

nested by origin and destinations. The solution

procedure combines concepts from marginal seat

revenue methods and mathematical programming to

develop equations that find optimal allocation of seats

when fare classes are nested on an origin-destination

itinerary and the inventory is not shared among

origin-destinations.

Williamson (1992) provided a comprehensive

review of the application of mathematical

programming and network flow models to the

origin-destination seat inventory control problem.

Belobaba (1998) reviewed the evolution of

airline yield management from fare class to

origin-destination seat inventory control. The author

highlights the major milestones in the airline yield

management arena, discusses the origin-destination

seat inventory control problem, and outlines a new

solution approach that uses the minimum acceptable

bid prices derived from leg-based optimization models

to control seat availability. Talluri and van Ryzin

(1999a) discussed theoretical issues relating to bid

prices, including an example of how they can be

non-optimal, while also showing that bid prices are

asymptotically optimal. A randomized version of

the deterministic linear-programming method for

computing network bid prices was given in Talluri

and van Ryzin (1999b).

Crew Scheduling

The topic of crew scheduling can be subdivided into

several categories including crew pairing generation,

crew rostering, preferential bidding, and crew

recovery. The crew pairing problem consists of

constructing a set of pairings that cover at minimum

cost a given set of flight segments. Typically all flight

legs pertain to the same aircraft fleet and individual

crew members are not considered in the problem.

Each pairing has to be constructed in accordance

with the prevailing collective agreement and airline

regulations. The crew rostering problem entails the

construction of monthly work schedules that assign

pairings and rest periods to each employee, while

considering pre-assigned activities such as recurrent

training and personal holidays. The preferential

bidding problem is a slight variation of the crew

rostering problem wherein employee preferences are

incorporated into the crew scheduling process.

Although a large amount of research has been done
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on crew scheduling, the problem of crew recovery in

the aftermath of irregular airline operations has only

recent surfaced in the research community.

Gershkoff (1989) outlined an optimization model

that uses a set-partitioning framework, wherein the

rows represent flights to be covered and the columns

represent candidate crew trips. The primary objective

of the model is to minimize the cost of flying the

published airline schedule, subject to operational

crew constraints. The crew scheduling problem is

formulated as an integer-programming problem and

can be solved using a commercial optimization

software package. In these early efforts, it was found

that a global optimization to the problem was difficult

to achieve, and much research focused on the

development of efficient heuristic procedures to

address the problem. Concepts such as dynamic

column generation and LP relaxation play a major

role in the ability of researchers to tackle and

successfully solve such largescale mathematical

programs of crew pairing optimization. Crew pairing

optimization has evolved substantially in the last ten

years, as advances in computer technology, CPU run

time, and the availability of efficient optimization

software packages, have given practitioners the

ability to solve large problems (Barutt and Hull 1990;

Anbil et al. 1991). Innovative methods such as

constraint branching (Ryan and Foster 1981), branch

and cut (Hoffman and Padberg 1993), and column

generation (Lavoie et al. 1988; Desrosiers et al. 1993)

have successfully solved problems with very large

numbers of feasible pairings.

The rostering problem involves the allocation of

pairings to crew members to build a legal and feasible

roster for each crew member in a crew rank. Often,

such allocations are based on the so-called seniority

preferential bidding (SPB) system in which pairings

are allocated to crew members in decreasing order

of seniority satisfying, whenever possible, each

individual crew member’s bids for certain types of

work or rest periods. Heuristic algorithms of a greedy

sequential type are most commonly used to solve this

allocation problem, but they usually result in an

inequitable distribution of work and often some

pairings (referred to as “open flying”) remain

unallocated. An alternative form of the rostering

problem involves the equitable allocation of pairings

to all crew members of a crew rank. Measures of

equitability are usually based on the notion that all

members of a crew rank should do approximately the

same amount of work. Equitability rostering

problems can again be formulated as specially

structured and generalized set partitioning models

(Ryan 1992). Many alternative legal and feasible

roster lines are generated for each crew member and

the optimal solution of the model selects one line for

each crew member to cover all pairings with the

required number of crews and at a minimal total

cost. The cost in this context can reflect an

individual’s preference for certain types of work.

Column generation methods can again be used to

reduce the need to generate many roster lines

a priori for each crew member.

Aircraft Maintenance Routing

The aircraft routing problem is traditionally solved

after the successful completion of the fleet

assignment problem. It involves the allocation of

candidate flight segments to a specific aircraft tail

number within a given sub-fleet of the airline. The

process of aircraft routing has traditionally been

a manual activity at many carriers, but in recent

years, researchers have developed efficient solution

procedures that can be applied to the problem. During

the normal operations of a carrier, situations often

develop wherein modifications have to be made to

the existing schedule plan. In addition, due to the

inherent variation in passenger demand over the

course of the week, airlines find it necessary to

adjust their daily flight schedules to adequately meet

demand. This will result in the need to make minor

modification to aircraft routings and possibly fleet

assignments.

Bard and Cunningham (1987) explored aircraft

routing, while taking into consideration the benefits

of through-flight schedules and the potential for

increased revenues. Talluri (1996) describes an

algorithm for making aircraft swaps that will not

affect the equipment type composition overnighting

at various stations throughout the airline’s network.

He also outlines the application of the swapping

procedure in the airline schedule development

process. Soumis et al. (1980) presented a model for

largescale aircraft routing and scheduling problems

which incorporates passenger flow issues. The

authors discuss the technique used to transfer
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information from the passenger flow problem to the

aircraft routing problem. Daskin et al. (1989) discussed

a Lagrangian relaxation approach to an integer-linear

program model which is used to assign aircraft to

routes in a hub and spoke network. Zhu et al. (1995)

presented a mathematical formulation for the aircraft

rotation problem and discuss its similarity with the

asymmetric traveling salesman problem. Kabbani

and Patty (1992) discussed aircraft maintenance

routing at American Airlines, and the application of

mathematical programming techniques to solve the

problem. Desaulniers et al. (1994) outlined the daily

aircraft routing and scheduling problem and presented

two different formulations of the problem. The first is

a set partitioning type formulation and the second

a time constrained multicommodity network flow

formulation.

Schedule Recovery

Schedule recovery in the aftermath of irregularities

address how airlines reassign operational aircraft to

scheduled flights. The main aspect of recovery for an

airline is centered around flight rescheduling. Today,

flight rescheduling is typically done manually at

airlines, since research on the topic is relatively

a recent phenomenon. Teodorovic and Stojkovic

(1990) discussed a greedy heuristic algorithm for

solving a lexicographic optimization problem which

considers aircraft scheduling and routing in a daily

schedule while minimizing the total number of

canceled flights in the network. Jarrah et al. (1993)

presented an overview of a decision support

framework for airline flight cancellations and delays.

Two separate network flow models provide solutions

in the form of a set of flights delays (the delay model)

or a set of flight cancellations (the cancellation model),

while allowing for aircraft swapping among flights and

the utilization of spare aircraft.

Yan and Yang (1996) developed a decision support

framework for handling schedule perturbations. The

framework is based on a basic schedule perturbation

model constructed as a time-space network fromwhich

several perturbed network models are established for

scheduling following irregularities. Cao and Kanafani

(1997a, b) discussed a real-time decision support tool

for the integration of airline flight cancellations and

delays. They presented a quadratic 0-1 programming

model for the integrated decision problem that

maximizes operating profit, while taking into

consideration both delay costs and penalties for flight

cancellations. Arguello et al. (1997) presented

a time-band optimization model for reconstructing

aircraft routings in response to groundings and delays

experienced in daily operations. Clarke (1997)

discussed the airline schedule recovery problem that

provides a comprehensive framework for reassigning

operational aircraft to scheduled flights in the

aftermath of irregularities. It is formulated as

a mixed-integer linear-programming problem and

solved using an optimization-based solution

procedure. Lettovský (1997) outlined the airline

integrated recovery problem that addresses crew

assignment, aircraft routing, and passenger flow. The

problem is formulated as a mixed-integer

linear-programming problem and solved using

Benders’ decomposition. The master problem

generates a cancellation and delay plan that satisfies

imposed landing restrictions and assigns equipment

types. The decoupled aircraft and crew subproblems

are first solved and then the passenger flow subproblem

is solved to determine new itineraries for disrupted

passengers.

Concluding Remarks

Over the last forty years, operations research has

played an integral role in many of the technological

advancements credited to the airline industry. For

instance, revenue management was developed using

concepts from statistics, forecasting, and linear

optimization. The various stages of the airline

scheduling process have been modeled and

implemented using ideas from network flow theory

and mathematical programming. As researchers

continue to make advances in these underlying fields

of operation research, practitioners will be given

added tools to tackle unanswered problems that

exist in the industry. The continued improvement in

commercial optimization software packages has

encouraged and fostered the development of many of

the state-of-the-art decision support tools now in use or

currently under development. Such improvements,

coupled with advances in computer hardware, will

continue to push the horizon for OR practitioners in

the airline industry.
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See

▶Air Traffic Management

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Network Optimization

▶Yield Management

▶Revenue Management
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Algebraic Modeling Languages for
Optimization

Robert Fourer

Northwestern University, Evanston, IL, USA

Introduction

Algebraic modeling languages are sophisticated

software packages that provide a key link between

an analyst’s mathematical conception of an

optimization model and the complex algorithmic

routines that seek out optimal solutions. By allowing

models to be described in the high-level, symbolic

way that people think of them, while automating the

translation to and from the quite different low-level

forms required by algorithms, algebraic modeling

languages greatly reduce the effort and increase the

reliability of formulation and analysis. They have

thus played an essential role in the spread of

optimization to all aspects to OR/MS and to many

allied disciplines.

Background and Motivation

Practical software packages for solving optimization

problems emerged in the 1950s, as soon as there were

computers to run them. Initially based on linear

programming, these solvers were soon generalized to

allow for nonlinearities and to accommodate integer

variables and other discrete decisions. Despite

continuing progress in algorithms and in computing,

however, by the beginning of its second decade

large-scale optimization had come to be seen as

failing to live up to its potential. The key weakness in

early optimization systems was not in their algorithms,

however, but in their interaction with modelers.

The human time and cost of preparing a solver’s
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input and examining its output often greatly dominated

the computer costs of solving. The cause of this

difficulty, and its ultimate cure, can best be

understood by considering the steps of the

optimization modeling process and their interaction

with the technical requirements of large-scale

optimization.

The process of building practical optimization

models involves several interrelated steps. The first

and most important is extensive communication with

the owner of a decision problem to identify the

problem ingredients and to ascertain the extent to

which optimization is feasible within the managerial

structure of the client organization and the

cognitive limitations of the model user. Next is the

formulation of a mathematical abstraction of the

problem — a model — that offers a sufficiently

accurate characterization of the real situation in terms

of reasonably available data. Further steps build

datasets, generate the corresponding optimization

problem instances, feed the problem instances to

solvers, run the solvers to produce results that are

optimal or near — optimal by the model’s criteria,

and process the results into descriptions of decisions

in forms that clients can understand and analyze. These

tasks are carried out repeatedly in a kind of feedback

loop, as further communication results in model

modifications and data refinements due to invalid

assumptions, bad data, programming errors, and

(most interestingly) the identification of previously

unelucidated policies, constraints and preferences.

The success of an optimization application depends

critically on how fast one can implement the central

feedback loop — formulation, solution, analysis,

revision. The faster these steps, the greater the

likelihood that the modeling effort will receive

sufficient attention from the client in the

communication phase to ensure that the model will

eventually be adopted and supported. Thus, as the

number — crunching solution phase became

progressively more efficient with advances in

algorithms and computers, the steps involving human

analysts became the bottlenecks in this process.

In fact, the optimization development cycle was

found to take much more analyst time than expected.

The culprit was the awkward and error-prone work of

converting an optimization problem between the

modeler’s conception and the algorithm’s

representation. Indeed, the natural way for a modeler

to think about and express models is in direct conflict

with the input requirements of solution algorithms. As

detailed in Fourer (1983), whereas the modeler’s form

is symbolic, general, concise, and understandable to

other modelers, the solver’s form is contrary in every

respect: explicit, specific, extensive, and convenient

for computation. For all but the smallest and simplest

instances, the only practical way to make the

conversion from the modeler’s to the algorithm’s

form is by writing a computer program for the

purpose, and it was the continued maintenance and

debugging of this program in successive cycles of the

development process that unexpectedly soaked up so

much analyst time. Whether a program of this kind is

working correctly is particularly hard to confirm, as the

only detailed evidence of its performance consists of

voluminous coefficient lists and other details that are

specifically intended for algorithmic efficiency rather

than human comprehension.

Optimization modeling languages were conceived

as a way of alleviating this bottleneck of conversion.

They allow people to convey their formulations to

computer systems in much the same way that they

would write them out or describe them to colleagues.

Computer systems that implement modeling languages

also facilitate analysis and reporting using the

terminology of the model, thus further speeding the

development cycle.

Any convenient form of representation for some

class of optimization applications can in principle

give rise to a modeling language. Many

general-purpose modeling languages, however, are

based on the familiar mathematical representation of

an optimization problem as the minimization or

maximization of a function of decision variables,

subject to equations and inequalities in functions of

the variables. The most popular languages are founded

in particular on familiar expressions — like
Pn

j¼1
aij xj;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s2S
ðgrs � hsÞ2;

r
or Gkm cosðdk � dmÞ

— that use the operators and functions of elementary

algebra, though written in a form that requires only

a computer character set. Most such languages have

been generalized through the use of notations from

logic, computer programming, and other disciplines,

but in recognition of their origins they are widely

known as algebraic modeling languages (Bisschop

and Meeraus 1982).
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The initial popularity of algebraic modeling

languages derived in part from their users’ familiarity

with mathematical optimization theory. They quickly

became recognized as offering a valuable tradeoff

between the convenience of highly application-

specific representations and the power of informal

natural-language problem descriptions. Their

combination of precision and generality enabled them

to support optimization as a paradigm for modeling

and decision making in diverse applications of

operations research and throughout engineering,

science, economics, and management. At the same

time, their flexibility enabled them to accommodate

the unique features that distinguish individual

applications in realistic situations.

Example. To give a further view of the issues

involved in designing, selecting, and using an

algebraic modeling language, a modest example of

a model of optimal multiperiod transportation of

a single commodity is presented. The presentation

describes the model first in words and mathematical

formulas, and then equivalently in one of the widely

used modeling languages, concluding by describing

three major aspects of working with the model: the

specification of data, the invocation of solvers, and

the examination of results.

Mathematical formulation. To begin describing

an algebraic model for transportation, it may be said

that there is a set I of cities where supply of a product

originates, and a set J of cities where demand must be

met. A set of links L � I � J specifies those

origin-destination pairs ði; jÞ for which shipments

from i to j are possible. The goal to plan for the next

T weekly time periods.

The objective of this model is to decide how much

to ship from each origin to each destination in each

week, so as to minimize the total cost of all shipments.

Decision variables xijt � 0 and parameters cijt � 0 for

each ði; jÞ 2 L and t ¼ 1; . . . ; T are introduced,

representing respectively the amounts to be shipped

(which will be determined by optimization) and the

costs per unit of shipment (which are supplied as data).

In terms of these quantities, the objective may be

written algebraically as

Minimize
X

ði;jÞ2L

XT

t¼1
cijt xijt

The essential constraints on the decision variables

are next described in terms of parameters ait for each

i 2 I and t ¼ 1; . . . ; T, representing the amount that

becomes available for shipment at origin i in week t,

and bjt for each j 2 J and t ¼ 1; . . . ; T, representing
the amount required to meet expected demands

at destination j in week t. The possibility of

week-to-week fluctuations in shipping costs suggests

that not all supply should be shipped out in the week

that it becomes available. Decision variables yit for

each i 2 I and t ¼ 1; . . . ; T are also introduced, to

represent the amount of product in inventory at origin

i at the end of week t. The following algebraic

constraints then serve to express the limitations on

shipping out of each origin and the requirements of

meeting demand at each destination:

X

j2J:ði; jÞ2L
xijt þ yit � ait þ yi;t�1; for each i 2 I; t ¼ 1; . . . ;T

X

i2I:ði; j2LÞ
xijt ¼ bjt; for each j 2 J; t ¼ 1; . . . ;T

For the sake of this simple model the possibility of

initial inventories is disregarded, thus implicitly setting

to zero all terms yi0 in the origin constraints for t ¼ 1.

The shipment plan is also commonly subject to

certain operational considerations. As just one

example, the amount shipped over link ði; jÞ in all

weeks may be required to sum to at least a certain

amount, given by a parameter di;j; if that link is used

in any period at all. A quite general way of

implementing this restriction through algebraic

constraints is by defining a corresponding collection

of decision variables zij that can only take the values

0 or 1. Then it may be written:

dijZij �
XT

t¼1
xijt � min

XT

t¼1
ait;
XT

t¼1
bjt

 !

zij; for each ði; jÞ 2 L

which forces shipments to be zero when zij is zero, or to

be at least di;j (and at most some implied upper bound)

when zij is one.

Modeling language formulation. The

representation of this model in an algebraic modeling

language is fundamentally the same as this

mathematical formulation, with the differences

deriving mainly from the need to communicate the

model unambiguously and to use a standard character
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set. Thus for instance in the AMPL modeling language

(Fourer et al. 1990) the sets and parameters that

describe the data might be specified as follows:

set ORIG; # origins

set DEST; # destinations

set LINKS within {ORIG,DEST};

param T integer > 0;

param supply {ORIG,1..T} >¼ 0;

param demand {DEST,1..T} >¼ 0;

param cost {LINKS,1..T} > 0;

param minShip {LINKS} >¼ 0;

AMPL defines a standard indexing expression such

as {ORIG,1..T} to correspond to a statement like “for

each i 2 I; t ¼ 1; . . . ; T” in the mathematical

formulation (though the i and t need be included only

where actually used). The use of more meaningful

names like ORIG for I and supply for a, while not

required, often proves useful for keeping models

understandable as they grow in complexity. Models

can also be more thoroughly documented through

a variety of comments, which are seen here for the

first two sets but will be otherwise omitted in this

description for the sake of brevity.

Decision variables are next defined in much the

same way as parameters:

var Ship {LINKS,1..T} >¼ 0;

var Inv {ORIG,1..T} >¼ 0;

var Use {LINKS} integer >¼ 0, <¼ 1;

Indeed the only difference between parameters and

variables is that the former are specified as part of the

data while the latter are given their values by the solver

so as to optimize the objective. Given the definitions in

this example, AMPL’s statement for the objective of

the model is as follows:

minimize TotalCost:

sum {(i,j) in LINKS, t in 1..T} cost

[i,j,t] * Ship[i,j,t];

This is the same algebraic expression as in the

mathematical formulation, adapted for input to

a computer system; sum {. . .} corresponds to the

sigma expressions, while cost[i,j,t] and Ship[i,j,t] are

the AMPL representations for cijt and xijt. An explicit

operator * is introduced to represent the multiplication

that is customarily implicit in mathematical

expressions.

Constraints are similarly converted to algebraic

expressions in the modeling language. They are

somewhat more complex than the objective because

they come in indexed collections and use relational

operators for equalities and inequalities:

subject to Supply {i in ORIG, t in

1..T}:

sum {(i,j) in LINKS} Ship[i,j,t] +

Inv[i,t]

<¼ supply[i,t] + (if t> 1 then Inv

[i,t-1] else 0);

subject to Demand {j in DEST, t in

1..T}:

sum {(i,j) in LINKS} Ship

[i,j,t] ¼ demand[j,t];

subject to ZeroMin1 {(i,j) in LINKS}:

minShip[i,j] * Use[i,j] <¼ sum

{t in 1..T} Ship[i,j,t];

subject to ZeroMin2 {(i,j) in LINKS}:

sum {t in 1..T} Ship[i,j,t] <¼
min (sum {t in 1..T} supply[i,t],

sum {t in 1..T} demand[j,t]) *

Use[i,j];

The emphasis is on keeping the original forms of the

constraints as much as possible, while letting the

AMPL translator automate the work of evaluating

coefficient expressions, collecting terms on the left,

and other regularizations that may be required by

solvers. Each modeling language does introduce some

changes; here AMPL requires the double-inequality

constraint to be split in two, but streamlines the

specifications of the supply and demand constraints by

interpreting {(i,j) in LINKS} so that it specifies indexing

over only whichever index has not already been fixed.

Also the assumption of zero initial inventories must be

made explicit, in this example by using an if-then-else

construct to handle inventories at the end of “week 0”

specially.

Specification of data. Each modeling language

offers its own format for associating actual data

values with the sets and parameters in the symbolic

model. A small collection of data for our example

could be specified by an AMPL text file that begins

as follows:

set ORIG :¼ YYZ LAF CVG PIT CLE;

set DEST :¼ ABE ORF;

set LINKS :¼ (YYZ,ABE) (YYZ,ORF)

(LAF,ABE) (CVG,ORF)

(PIT,ABE) (PIT,ORF) (CLE,ABE)

(CLE,ORF);

param T :¼ 5;
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param demand: 1 2 3 4 5 :¼
ABE 1000 1200 1900 2500 2000

ORF 2100 3000 4900 7700 5000;

param supply: 1 2 3 4 5 :¼
YYZ 2100 2250 3190 3120 3500

LAF 1400 1250 1320 1220 1100

CVG 1650 1250 2290 2120 2300

.......

Model and data together specify a particular

instance of an optimization problem for which

a solution can be sought.

Modeling language systems typically also offer

facilities for exchange of data with popular databases,

spreadsheets, and other repositories of data for

decision support. Indeed there is a close

correspondence between the way that data values are

described in algebraic models and the way they are

organized in relational databases (Fourer 1997). Close

interaction with data management software is often

important to the integration of optimization into

business operations.

Invocation of solvers.Modeling language software

automatically reads and interprets a model and data,

generates an instance, and conveys the instance to

a solver in the required form. In AMPL it suffices to

give only a few commands for these purposes:

ampl: model multiEORMS.mod;

ampl: data multiEORMS.dat;

ampl: option solver cplexamp;

ampl: solve;

73 variables:

8 binary variables

65 linear variables

51 constraints, all linear;

221 nonzeros

1 linear objective; 40 nonzeros.

CPLEX 12.2.0.2: optimal integer

solution; objective 288503.5

65 MIP simplex iterations

2 branch-and-bound nodes

The solver software is a separate product for which

there may be many alternatives. For this model,

a different mixed-integer programming solver might

have been used instead:

ampl: model multiEORMS.mod;

ampl: data multiEORMS.dat;

ampl: option solver gurobi;

ampl: solve;

Gurobi 4.0.1: optimal solution;

objective 288503.5

71 simplex iterations

plus 52 simplex iterations for

intbasis

Also a full variety of options, specific to each

solver, are accessible as needed to set algorithmic

options and report progress of long runs.

Examination of results. Once the solver has

returned a solution, the same expression forms that

are so convenient in describing the model to the

computer system can also be used to describe the

results to be viewed. For example to show for each

link the ratio of total shipments to minimum shipment

over all periods, one can simply ask AMPL to display

the appropriate sum, adapting the same summation

syntax that was used in the model:

ampl: display {(i,j) in LINKS}

ampl? sum {t in 1..T} Ship[i,j,t] /

minShip[i,j];

: ABE ORF :¼
CLE 0 1.69032

CVG . 1.48992

LAF 1.38636 .

PIT 0 0

YYZ 1 2.99143

Simple displays of this kind do much to support the

cycle of development, by speeding the modeler’s

aggregation, transformation, and analysis of

solutions. For later deployment of the model,

facilities are also available for writing more precisely

formatted text and for sending results off to other

software for analysis.

Advantages

The fundamental concept of algebraic modeling

languages — that the entire optimization modeling

cycle is best carried out at the level of the model

formulation — makes possible the creation of

modeling systems that have a number of desirable

characteristics. This article has already described how

such systems promote optimization modeling by

making the entire process more efficient and reliable.

The modeling language concept has proven to have

other benefits as well. Principally these relate to

independent treatment of distinct aspects of

Algebraic Modeling Languages for Optimization 47 A

A



optimization, and to extensions well beyond linear

optimization.

Independence. In contrast to the highly integrated

design common of software for mathematical and

statistical modeling and for simulation, modeling

language systems for optimization have promoted an

independence of model, data, and solvers. This

property has proved to be of benefit of users in

several ways.

Because the sets and parameters of a model are

described symbolically along with the variables,

objectives, and constraints, the same model readily

describes any number of problem instances of

different sizes and purposes. This model-data

independence allows prototypes to be scaled up

quickly to larger and more realistic scenarios through

changes to the data files alone. Equally it provides

flexibility to experiment with different formulations

on the same data, as is often essential for finding

tractable approaches to difficult mixed-integer

modeling applications. Following the initial

development stages, model-data independence is also

beneficial, allowing the model to be frozen while

deployment focuses on periodically generating data

for new runs. The full symbolic model description

remains accessible, however, whenever modifications

are necessary to accommodate new circumstances or

analyses.

Because modeling languages are designed to

describe models and their data in an abstract way,

they are not tied to particular software for

optimization or even to particular methods. This

model-solver independence allows instances to be

benchmarked over a range of solvers. The choice of

a solver for deployment can then be based on

a tradeoff between price and performance, and can

be revisited as optimization technology evolves. The

very substantial changes in linear optimization

packages that have occurred over recent decades

have thus not required corresponding changes in

modeling language design.

Another virtue of model-solver independence is to

relieve the analyst of much tedious work of converting

between the modeler’s form and the various

algorithms’ forms. Originally this work consisted

mainly of generating coefficient lists and bound

vectors. But as languages have become more

sophisticated it has come to include conversions to

linear representations from other forms that may be

closer to the original model conception, such as

piecewise-linear formulations and network node-arc

descriptions.

Extensions. Algebraic languages can express

nonlinear optimization problems as easily as linear

ones, simply by permitting expressions that are

nonlinear in the variables. Thus for instance in our

transportation example if it is desired to encourage

shipments of moderate size, neither too small nor too

large, the objective could be changed to

Minimize
X

ðijÞ2L

XT

t¼1
cijt

xaijt

1� xijt=lij

where 0 < a < 1 and lij is some positive link capacity.

To specify this in a modeling language it suffices to

write the corresponding nonlinear expression:

minimize TotalCost:

sum {(i,j) in LINKS, t in 1..T}

cost[i,j,t] * Ship[i,j,t]^alpha / (1 - Ship[i,j,t]/

lim[i,j]);

After the model and data have been processed,

a representation of each nonlinear objective and

constraint expression is included as part of the

instance representation passed to the solver interface.

The interface then uses this representation to compute

function values at successive points generated by the

solver as it iterates toward the optimum; the interface

also provides analytical (not approximate) first and

second derivatives automatically by methods that

avoid the overhead of symbolically differentiating

each nonlinear expression (Rall and Corliss 1996;

Griewank and Walther 2008). This approach is

considerably more efficient and less error-prone than

working directly with the nonlinear solver, which would

require writing, debugging, and maintaining a program

for each nonlinear expression and its derivatives.

The technology for recognizing and processing

conventional nonlinear expressions extends moreover

to virtually any kind of expression that can be written

in terms of functions and operators. Thus, it is possible

to substantially extend the range of models that can be

expressed naturally through algebraic modeling

languages. Current implementations allow for

example the specification of complementarity

conditions, and the description of logical restrictions
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using operators like “or” and “not” rather than through

the introduction of zero-one variables. Also special

cases like quadratic objectives and constraints can be

detected and transformed automatically.

The algebraic expressions that are useful in

describing individual objectives and constraints are

also useful in describing manipulations of models and

transformations of data. Thus almost as soon as

modeling languages became available, users started

finding ways to adapt model notations to implement

sophisticated solution strategies and iterative schemes.

These efforts stimulated the evolution within algebraic

modeling languages of scripting features, which

include statements for looping, testing, and

assignment. Thus, for instance, to test the sensitivity

of our multiperiod transportation model to the

minimal-shipment thresholds, the modeler could

write a simple loop:

for {k in 1..10} {

let {(i,j) in LINKS} minShip[i,j] :¼ minShip[i,j]

+ 250;

solve;

if solve_result ¼ “infeasible” then break;

}

Industrial and research applications now commonly

employ scripts involving many hundreds of lines. The

efficiency and convenience of algebraic modeling is

thus extended to situations much more complex than

the solving of individual optimization problems.

Alternatives

The ideas and benefits of algebraic modeling

languages are available to various extents in several

kinds of software.

General-purpose algebraic modeling languages

embody model-data-solver independence to the

greatest degree, supporting links to numerous

independently-developed solvers and data-management

systems. The most widely used commercial systems in

this category are AIMMS (Paragon Decision

Technology 2011), AMPL (AMPL Optimization

2011), GAMS (GAMS Development 2011), and MPL

(Maximal Software 2011); for noncommercial uses,

GNU MathProg (Free Software Foundation 2011) and

Zimpl (Zuse Institute 2011) are open-source alternatives

licensed under the GNU GPL. All base their language

designs on the same fundamental ideas, though with

varying specifics in some key respects. They differ

more substantially in aspects of their user, solver, and

data management interfaces.

Solver-specific algebraic modeling languages offer

similar designs but have been implemented to be used

mainly or exclusively with one solver developer’s

products. By forgoing solver independence, they can

offer more complete and integrated support for one

suite of solvers, often including ones that go beyond

the traditional algorithmic approaches for linear and

smooth nonlinear problems. Among the best-known

are LINGO (LINDO Systems 2011a), Mosel (Fair

Isaac 2011), and OPL (IBM Corporation 2011b).

An algebraic modeling framework for optimization

can also be implemented within a general

object-oriented modeling language. Specialized

object types are defined to represent common model

entities such as parameters, variables, and constraints;

then all of the standard operators and functions are

overloaded to act specially when applied to these

types. Thus for example using the CPLEX

Optimization Studio’s Concert C++ library (IBM

Corporation 2011a) one can make definitions such as

IloEnv env;

IloNumArray supply(env);

IloNumVarArray Use (env, nOrig, 0, 1, ILOINT);

IloExpr totalShipFrom(env);

and then express, for example, some supply-limit

constraints by writing

for (i ¼ 0; i < nOrig; i++) {

for (j ¼ 0; j < nDest; j++) {

totalShipFrom +¼ Ship[i][j];

}

mod.add(totalShipFrom <¼ supply[i] * Use[i]);

}

What appear to be arithmetic and comparison

operations are in fact interpreted as instructions to

build up a constraint data structure for an affiliated

solver. A similar Concert interface is available

for Java and .NET, and the same idea with more

general-purpose solver support has been carried

through by, among others, FLOPC++ (COIN-OR

2011), OptimJ (Ateji 2011) for Java, and Pyomo

(Sandia 2011) for Python. Compared to languages

specially designed for algebraic modeling, these

object-oriented tools have less natural

representations — particularly in the use of indexing
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sets— and require more user involvement in the lower-

level aspects of programming. They can, however, offer

the advantages of a much richer programming

environment than is afforded by the scripting facilities

of specialized modeling languages; also they hold out

the possibility of simplifying the integration of

optimization models into broader applications.

Several kinds of modeling language integration

with general-purpose analytical tools have also

proved popular. Some general-purpose modeling

languages have connections to solvers running under

MATLAB (Mathworks 2011), and there is

a MATLAB-based connection from AMPL to many

independent solvers through the TOMLAB

environment (Tomlab Optimization 2011). The

AMPL-like OPTMODEL language (SAS Institute

2011) supports SAS/OR solvers as an integrated part

of the SAS business analytics system. By far the most

popular are modeling languages implemented as

Microsoft Excel add-ins, notably the Frontline

Premium Solver (Frontline Systems 2011) and

What’sBest (LINDO Systems 2011b), with a variety

of solver options. Because these languages are closely

tied to Excel spreadsheet data forms, they are very

limited in power and expressiveness. They offer,

however, the very substantial benefit of being able to

integrate optimization into the most widely used

environment for all kinds of business analyses.

Extensions

Enhancements to algebraic modeling languages are

basically of two kinds: extensions to the languages

themselves, and improvements to the ways in which

the languages interact with other systems.

Modeling language extensions tend to be driven by

solver developments. Whenever algorithms are

developed to effectively solve new forms of

optimization problems, modeling language

developers are challenged to provide more

convenient support. Operators and syntaxes may be

added to let modelers describe new forms in the most

natural ways, as happened, for example, with the

advent of more effective solution strategies to handle

complementarity conditions (Ferris et al. 1999).

Alternatively, additional logic may be introduced to

detect special cases that are significant to new

algorithms, as occurred with the discovery of

efficient methods for second-order cone problems

that were equivalent to several common kinds of

nonlinear constraints (Lobo et al. 1998); here the

recognition technology is still in the process of being

developed. Ferris et al. (2009) survey a variety of such

problems including also bi-level and generalized

nonlinear optimization. Constraint programming

solvers have motivated a variety of extended forms

for logical and discrete optimization (Lustig and

Puget 2001) which have also proved to be valuable

for describing discrete optimization more naturally to

other kinds of solvers.

Enhancements to the interfaces and interoperability

of modeling language systems tend to be driven by

more general developments in computing. This has

been seen in the creation of more sophisticated

user interfaces for model building, more powerful

object-oriented programming interfaces for embedding

models within larger applications, and closer links to

data management systems. Popularity of Python-based

optimization modeling tools is an example of such

a trend. Another is the growing attractiveness of

optimization “software as a service” — as pioneered

by the NEOS Server (Czyzyk et al. 1998; Dolan et al.

2002) — which seems likely to motivate widespread

access to algebraicmodeling languages “in the cloud” in

ways that will foster even more efficient and convenient

development cycles for optimization.

See

▶Model Management

▶ Spreadsheets

▶ Structured Modeling
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Algorithm

A computational procedure whose application yields

a solution to an associated class of problems.

See

▶Computational Complexity

Algorithmic Complexity

▶Computational Complexity

Alternate Optima

Distinct solutions to the same optimization problem.

See

▶Unique Solution

Alternate Paths

In queueing networks, more than one arc connecting

the same two nodes.

See

▶Queueing Theory
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AMPL

A Mathematical Programming Language. An algebraic

modeling language for mathematical programming

that supports numerous commercial and open source

software solvers, including CBC, CPLEX, FortMP,

Gurobi, MINOS, IPOPT, SNOPT and KNITRO.
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Analytic Combat Model

A self-contained military model that directly computes

its results from initial conditions, with no intermediate

human interaction.

See
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Analytic Hierarchy Process
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Introduction

It is safe to say that people in general think that to

measure something is to apply a scale with an arbitrary

unit to it designed to measure things with respect to

some property. One would then read the numbers on

the scale to get the measurement. Such scales are hard

physical scales or soft ones like the ones that are used

to measure IQ and creativity. What is clear is that

whatever is measured must sustain the property being

measured long enough to get a reading. Human

behavior varies with the circumstance and thus eludes

measurement. That is not all. Some things can happen

only if other things happen and how strongly they

happen depends not only on the strength of those

other things but also on their number and variety.

How can one capture and measure something whose

measurement constantly changes because it depends on

amyriad other things that may also need to bemeasured?

What kind of special scale is used to take such

measurements? Money, weight, or speed? Hardly.

It is possible to measure in another fundamentally

different way. Before showing how, we need to answer

the one question: What use do we intend to make of the

measurements? Clearly no number speaks to us

directly. We must interpret what it means out of our

experience or that of an expert who can interpret it for

us according to the need or purpose for which it is

taken. In other words, to use measurement we need

experience and judgment. It appears that our own and

other people’s subjective perceptions are the bottom

line for the meaning and the use of measurements even

in spite of how people speak of the objectivity of

science. Presumably, objectivity means we will arrive

at the same conclusions when we start with the same

assumptions if we reason logically, or we will obtain

the same measurement if we all follow the same rules.

But logic itself is a linear process that goes from

assumption to conclusion and cannot be used to

synthesize the outcome of many interdependent

causes that produce effects that may themselves be

part of the causes, so a new way is needed to think

about and draw conclusions in such complexity.

In the end, we must depend on our collective

understanding to deal with the world. Since it is

expert and subjective judgment that interprets what

measurements mean and how important they are, can

we turn this around and instead associate numbers

directly with judgments in such a way that we can

derive scales whose readings tell us about the priority

or relative importance of what we think we want to

measure in some cases without the need for making

measurements? If we can do that then we can also ask

the expert to use judgment to prioritize intangibles:

things or ideas for which we have no measurements.

Perhaps we can deal with the meaning of all properties

tangible or intangible using priorities so long as we use

experienced and informed judgment. The physical

sciences are based on formulas that deal with
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variables and their measurements from observations

that are made and on the interpretation by experts of

what the numbers after they are combined in a formula

mean. Can we extend the use of expert judgment in

a mathematically credible way to thinking in the

nonphysical sciences? Let us begin by illustrating

how a process that involves expert judgments works

with a simple example.

Consider a person who would like to estimate the

relative area of the five geometric shapes given in

Fig. 1. For the purpose of this illustration, the relative

area inside each shape obtained from actual

measurement by using a ruler and dividing each

measurement by the sum of all five measurements is

also provided. Of course, in real-life situations the

relative areas would not be known to the person. He

must estimate the relative sizes of the figures by

comparing them in pairs. A pairwise comparison

consists of identifying the figure with the smaller area

of the two, and estimating numerically how many times

larger the area of the larger one is than the area of the

smaller one using the scale in Table 1. The smaller figure

is then assigned the reciprocal value when compared

with the larger one. These comparisons are arranged

in a 5 � 5 matrix as given in Table 2. By convention,

the item on the left side of the matrix is compared

with that on top. If it is larger, the whole number

corresponding to the judgment is put in that cell. If it is

smaller, the reciprocal value is put in the cell.

Finally, one derives priorities of the relative sizes of

the areas from all the judgments. Table 2 also gives the

estimated and actual relative areas resulting from this

exercise in the last two columns. They are very close.

The Fundamental Scale

Paired comparison judgments are applied to pairs of

homogeneous elements. The fundamental scale of

values to represent the intensities of judgments is

shown in Table 1. This scale has been validated for

effectiveness, not only in many applications by

a number of people, but also through theoretical

comparisons with a large number of other scales.

There are many situations where elements are close

or tied in measurement and the comparison must be

made not to determine how many times one is larger

than the other but by what fraction it is larger than the

other. In other words, there are comparisons to bemade

between 1 and 2, and what is desired is to estimate

verbally the values such as 1.1, 1.2,. . ., 1.9. There is no

problem in making the comparisons by directly

estimating the numbers. What is proposed here is to

continue the verbal scale to make these distinctions so

that 1.1 is a “tad,” 1.3 indicates moderately more, 1.5

strongly more, 1.7 very strongly more, and 1.9

extremely more. This type of refinement can be used

in any of the intervals from 1 to 9 and for further

refinements if one needs them, for example, between

1.1 and 1.2 and so on.

An area represented on the left side of the matrix is

compared with each area at the top as to how many

times it is larger or more dominant. If it is not, the

reciprocal value is entered in that position. The

judgments are made based on feeling and converted

by using the Fundamental Scale. Because the areas are

visible to the eyes it is sometimes possible to express

the judgments with fractional values. It is known that

a small change in the numbers leads to a small change

in the final priorities. The next to last priority column

can be obtained as an approximation to the priorities

given here by adding the numbers in each column

(there are five columns) of the judgment matrix,

dividing each number in the column by the total

obtained, then averaging the first entries in the five

columns (adding them and dividing their sum by 5),

and then doing the same for the second entries in the
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five columns and so on to the fifth entries in the five

columns. This only illustrates the use of judgments in a

problem where the answer is known to give

a little credibility to the idea that it may also work

with things that are not visible, but one can think

about them and so on.

It has been observed that in general comparisons

with respect to the dominance of one object over

another with respect to a certain attribute or criterion

take three forms: importance or significance that includes

all kinds of influence, physical measurements in science,

engineering, and economics fall under this category;

preference as in making decisions; and likelihood as in

probabilities. If there is adequate knowledge, one can

compare anything with anything else that shares

a common attribute or criterion. Thus, comparisons go

beyond ordinary measurement to include intangibles for

which there are no scales of measurement.

The Analytic Hierarchy Process (AHP) is a general

theory of measurement. It is used to derive relative

Analytic Hierarchy Process, Table 1 The fundamental scale

Intensity of
importance Definition Explanation

1 Equal Importance Two activities contribute equally to the objective

2 Weak or slight

3 Moderate importance Experience and judgment slightly favor one activity
over another

4 Moderate plus

5 Strong importance Experience and judgment strongly favor one activity
over another

6 Strong plus

7 Very strong or demonstrated importance An activity is favored very strongly over another; its
dominance demonstrated in practice

8 Very, very strong

9 Extreme importance The evidence favoring one activity over another is of
the highest possible order of affirmation

1.1–1.9 When activities are very close a decimal is added
to 1 to show their difference as appropriate

A better alternative way to assigning the small
decimals is to compare two close activities with
other widely contrasting ones, favoring the larger
one a little over the smaller one when using the
1–9 values

Reciprocals of
above

If activity i has one of the above nonzero numbers
assigned to it when compared with activity j, then j

has the reciprocal value when compared with i

A logical assumption

Real numbers
between the
above integers

When appropriate according to the person making
the comparisons because of special knowledge that
person has

Ratios of
measurements on
a ratio scale

When measurements are available and one
interprets their ratios to be equivalent to judgments
(not usually recommended)

Analytic Hierarchy Process, Table 2 Pairwise comparison judgments of the different areas

Figure Circle Triangle Square Diamond Rectangle Priorities (eigenvectors) Actual relative size

Circle 1 9 2 3 5 0.462 0.471

Triangle 1/9 1 1/5 1/3 1/2 0.049 0.050

Square 1/2 5 1 3/2 3 0.245 0.234

Diamond 1/3 3 2/3 1 3/2 0.151 0.149

Rectangle 1/5 2 1/3 2/3 1 0.093 0.096
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scales of absolute numbers from both discrete and

continuous paired comparisons in multilevel

hierarchic structures. These comparisons may be

taken from actual measurements or from

a fundamental scale that reflects the relative strength

of preferences and feelings. The AHP has a special

concern with departure from consistency and the

measurement of this departure, and with dependence

within and between the groups of elements of its

structure. It has found its widest applications in

multicriteria decision making, in planning and

resource allocation, and in conflict resolution (Saaty

and Alexander 1989). In its general form, the AHP is

a nonlinear framework for carrying out both

deductive and inductive thinking without use of the

syllogism by taking several factors into consideration

simultaneously and allowing for dependence and for

feedback, and making numerical trade-offs to arrive

at a synthesis or conclusion (Figs. 2 and 3).

For a long time, people have been concerned with

the measurement of both physical and psychological

events. By physical it is meant the realm of what is

fashionably known as the tangibles insofar as they

constitute some kind of objective reality outside the

individual conducting the measurement. By contrast,

psychological means the realm of the intangibles,

comprising the subjective ideas, feelings, and beliefs

of the individual and of society as a whole. The

question is whether there is a coherent theory that can

deal with both these worlds of reality without

compromising either. The AHP is a method that can

be used to establish measures in both the physical and

social domains.

From the neurological sciences, it is known that

sense data are mixed with temperature and other

information by the thalamus, before they are recorded

in memory. In the end, what we sense is what we are

and not fully what is out there. Performance tests

indicate that an individual not experienced in ranking

objects according to size may well say that one apple

which is three times larger than another apple is the

same as the smaller one. Only by being exposed to

many apples and asked to make careful distinctions in

size will the individual begin to show an improved

ability to sort and rank apples according to size. What

the person does is to adjust sensation and impression

with what he or she observes. It is not the real apples

that one compares, but the impressions one forms

about them. One needs such real experiences to

institute early in one’s mind the possibility of

comparing things in pairs. This applies equally to

more abstract ideas and their relative importance to

a higher-order property or goal. He or she would then

be able to say that one idea is more important than

another in terms of the satisfaction of the goal and

whether, according to his or her understanding and

experience, it is much more important or slightly

more important. The lesser of the two is always used

as the unit in terms of which the more important one is

compared as to how much more important it is, and

also how many times more, because the feeling of

importance is converted to magnitudes on numerous

sense experiences. Thus, there is transfer from the

concrete to the abstract, so that the two can be

combined to make trade-offs when needed, which

happens frequently in daily experience. It is not

possible to compare the lesser element with the

greater one, because it must first be used as a unit to

determine the magnitude of the greater one. Therefore,

there is bias in human thinking in using the smaller of

two elements as the unit. It is impossible a priori to ask

how much less the smaller element is than the larger

without first involving it as the unit of measurement.

Thus, priorities of many objects can only be derived

on the basis of dominance, and their reciprocal

is automatically calculated to determine, in a

meaningful way, the relative priorities of being

“dominated.”

In using the AHP to model a problem, one needs

a hierarchic or network structure to represent that

problem, as well as pairwise comparisons to establish

relations within the structure. In the discrete case, these

comparisons lead to dominance matrices and in the

continuous case to kernels of Fredholm operators

(Saaty and Vargas 1993), from which ratio scales are

derived in the form of principal eigenvectors or

Criteria
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Analytic Hierarchy Process, Fig. 2 A three-level hierarchy
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eigenfunctions, as the case may be. These matrices, or

kernels, are positive and reciprocal, for example,

aij ¼ 1/aji. In particular, special effort has been made

to characterize these matrices (1993). Because of the

need for a variety of judgments, there has also been

considerable work done to deal with the process of

synthesizing group judgments (Saaty 1994). The

axiomatic foundations of the AHP may be found in

Saaty (1986).

Absolute and Relative Measurement
and Structural Information

Cognitive psychologists have recognized for some

time that there are two kinds of comparisons:

absolute and relative. In absolute comparisons,

alternatives are compared with a standard in one’s

memory that has been developed through experience;

in relative comparisons, alternatives are compared in

pairs according to a common attribute. The AHP has

been used with both types of comparisons to derive

ratio scales of measurement. Such scales are called

absolute and relative measurement scales. Relative

measurement wi, i ¼ 1,. . ., n, of each of n elements is

a ratio scale of values assigned to that element and

derived by comparing it in pairs with the others. In

paired comparisons, two elements i and j are compared

with respect to a property they have in common. The

smaller i is used as the unit and the larger j is estimated

as a multiple of that unit in the form (wi/wj)/1 where

the ratio wi/wj is taken from a fundamental scale

of absolute values.

Absolute measurement (sometimes called scoring) is

applied to rank the alternatives in terms of the criteria or

else in terms of ratings (or intensities) of the criteria, for

example, excellent, very good, good, average, below

average, poor, and very poor, or A, B, C, D, E, F, and

G. After setting priorities for the criteria (or subcriteria,

if there are any), pairwise comparisons are also made

between the ratings themselves to set priorities for them

under each criterion and dividing their priorities each by

the largest rated intensity (the ideal intensity). Finally,

alternatives are scored by checking off their respective

ratings under each criterion and summing these ratings

for all the criteria. This produces a ratio scale score for

the alternative. The scores thus obtained of the

alternatives can in the end be normalized by dividing

each one by their sum.

Absolute measurement has been used to rank cities in

the United States according to nine criteria as judged by

six different people (Saaty 1986). Another appropriate

use for absolutemeasurement is that of schools admitting

students (Saaty et al. 1991). Most schools set their

criteria for admission independently of the performance

of the current crop of students seeking admission. Their

priorities are then used to determine whether a given

student meets the standard set for qualification. In that

case absolute measurement should be used to determine

which students qualify for admission.

A Linear Hierarchy

element

component

A Nonlinear Network

means that A dominates B or that B depends on A.BA

Analytic Hierarchy Process,

Fig. 3 Structural difference
between a linear and
a nonlinear network
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Comments on Cost-Benefit Analysis

Often, the alternatives from which a choice must be

made in a choice-making situation have both costs and

benefits associated with them. In this case, it is useful

to construct separate costs and benefits hierarchies,

with the same alternatives on the bottom level of

each. Thus one obtains both a cost-priority vector and

a benefit-priority vector. The cost-benefit vector is

obtained by taking the ratio of the benefit priority to

the costs priority for each alternative, with the highest

such ratio indicating the preferred alternative. In the

case where resources are allocated to several projects,

such cost-to-benefit ratios or the corresponding

marginal ratios prove to be very valuable.

Wrong decisions may be made in some cases where

only one structure is used for the purpose of generating

priorities for the alternatives. In general, one needs two

or more of four separate structures: one for benefits, one

for costs, one for opportunities, and a fourth for risks.

Because onemust askwhat dominateswhat in the paired

comparisons and by howmuch (homogeneous elements

with clusters and pivots are used for widely spread

alternatives), in the end one multiplies the benefits of

each alternative by the opportunities it creates and

divides by the costs times the risks.

For example, in evaluating three types of copying

machines, one represents in the benefits hierarchy the

good attributes one is looking for and one represents in

the costs hierarchy the pain and economic costs that

one would incur in buying or maintaining the three

types of machines. Note that the criteria for benefits

and the criteria for costs need not be simply opposites

of each other but may be totally different. Also note

that each criterion may be regarded at a different

threshold of intensity and that such thresholds may

themselves be prioritized according to desirability,

with each alternative evaluated only in terms of

its highest priority threshold level. Similarly,

three hierarchies can be used to assess a benefit/

(cost � risk) outcome.

The Eigenvector Solution for Weights
and Consistency

There is an infinite number of ways to derive the vector

of priorities from the matrix A¼ (aij), but emphasis on

consistency leads to an eigenvalue formulation.

If aij represents the importance of alternative i over

alternative j and ajk represents the importance of

alternative i over alternative j and aik, the importance

of alternative i over alternative k must equal aijajk for

the judgments to be consistent. Without a scale at all, or

not available conveniently, as in the case of some

measuring devices, one cannot give the precise values

of aij ¼ wi/wj but only an estimate. The problem

becomes A0w0 ¼ lmaxw
0 where lmax is the largest or

principal eigenvalue of A
0 ¼ a

0
ji

� �
, the perturbed value

of A ¼ (aij), with a
0
ji ¼ 1=aij forced. To simplify the

notation, write Aw ¼ lmaxw where A is the matrix of

pairwise comparisons.

The solution is obtained by raising the matrix to

a sufficiently large power, then summing over the rows

and normalizing to obtain the priority vector

w ¼ (w1,. . ., wn). The process is stopped when the

difference between components of the priority vector

obtained at the kth power and at the (k + 1)st power is

less than some predetermined small value.

An easy way to get an approximation to the

priorities is to normalize the geometric means of the

rows. This result coincides with the eigenvector for

n � 3. A second way to obtain an approximation is

by normalizing the elements in each column of the

judgment matrix and then averaging over each row.

For important applications one should use only

the eigenvector derivation procedure because

approximations can lead to rank reversal in spite of

the closeness of the result to the eigenvector. It is easy

to prove that for an arbitrary estimate x of the priority

vector

lim
k!1

1

lkmax

Akx ¼ cw

where c is a positive constant and w is the principle

eigenvector of A. This may be interpreted roughly to

say that if we begin with an estimate and operate on it

successively by A/lmax to get new estimates, the result

converges to a constant multiple of the principal

eigenvector.

A simple way to obtain the exact value (or an

estimate) of lmax when the exact value (or an

estimate) of w is available in normalized form is to

add the columns of A and multiply the resulting vector

by the vector w. The resulting number is lmax (or an

estimate). This follows from
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Xn

j¼1
aijwj ¼ lmaxwi and

Xn

i¼1

Xn

j¼1
aijwj

¼
Xn

j¼1

Xn

i¼1
aij

 !

wj ¼
Xn

i¼1
lmaxwi ¼ lmax

The problem now is how good is the principal

eigenvector estimate w. Note that if one obtains

w ¼ (w1,. . ., wn)
T, by solving this problem, the matrix

whose entries are wi/wj is a consistent matrix which is

our consistent estimate of the matrix A. The original

matrixA itself need not be consistent. In fact, the entries

of A need not even be transitive; that is, A1 may be

preferred to A2 and A2 to A3 but A3 may be preferred to

A1. What is desired is a measure of the error due to

inconsistency. It turns out thatA is consistent if and only

if lmax ¼ n, and that the quantity lmax � n is always

available. This suggests using lmax � n as an index of

departure from consistency. But

lmax � n ¼ �
Xn

i¼2
li; lmax ¼ l1

where li, i ¼ 1,. . ., n are the eigenvalues of A.

Thus, the index adopted is the average value

(lmax � n)/(n � 1), which is the (negative) average of

li, i ¼ 2,. . ., n (some of which may be complex

conjugates).

It is interesting to note that (lmax� n)/(n� 1) is the

variance of the error incurred in estimating aij . This

can be shown by writing

aij ¼ ðwi=wjÞeij; eij > 0 and eij ¼ 1þ dij; dij > �1

and substituting in the expression for lmax. It is dij that is

of interest, as the error component and its value |dij |< 1

for an unbiased estimator. Themeasure of inconsistency

can be used to successively improve the consistency of

judgments.

The consistency index of a matrix of comparisons is

given by CI ¼ (lmax � n)/(n � 1). The consistency

ratio (CR) is obtained by comparing the CI with the

appropriate one of the following set of numbers each of

which is an average random consistency index (RI)

derived from a sample of size 500 of randomly

generated reciprocal matrices using the scale 1/9,

1/8, . . .,1, . . ., 8,9 (Table 3). A CR ¼ CI/RI less than

or equal to 0.10 is considered acceptable. If CR is

larger than 0.10, the problem should be reanalyzed

and the judgments revised.

The consistency index for an entire hierarchy is

defined by

CH ¼
Xj

j¼1

Xnijþ1

i¼1
wijmijþ1

where wij ¼ 1 for j ¼ 1, and n i j�1 is the number of

elements of the (j + 1)st level with respect to the ith

criterion of the jth level.

Let |Ck| be the number of elements ofCk and letwhk be

the priority of the impact of the hth component on the kth

component, that is, whk � wk(Ch) or wk: Ch! whk.

Labeling the components of a system along lines

similar to those followed for a hierarchy and denoting

by wjk the limiting priority of the jth element in the kth

component,

Cs ¼
Xs

k¼1

Xnk

j¼1
wjk

XCkj j

h¼1
whkmkðj; hÞ

where mk (j, h) is the consistency index of the pairwise

comparison matrix of the elements in the kth

component with respect to the jth element in the hth

component.

How to Structure a Hierarchy

Perhaps the most creative part of decision making that

has a significant effect on the outcome is the

structuring of the decision as a hierarchy. The basic

principle to follow in creating this structure is always

to see if one can answer the following question: “Can

Analytic Hierarchy Process, Table 3 Random consistency index

n 1 2 3 4 5 6 7 8 9 10

Random Consistency Index (R.I.) 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49
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I compare the elements on a lower level in terms of

some or all of the elements on the next higher level?”

A useful way to proceed is to come down from the

goal as far as one can and then go up from the

alternatives until the levels of the two processes are

linked in such a way as to make comparison possible.

Here are some suggestions for an elaborate design.

1. Identify overall goal. What are you trying to

accomplish? What is the main question?

2. Identify subgoals of overall goal. If relevant,

identify time horizons that affect the decision.

3. Identify criteria that must be satisfied to fulfill

subgoals of the overall goal.

4. Identify subcriteria under each criterion. Note that

criteria or subcriteria may be specified in terms of

ranges of values of parameters or in terms of

verbal intensities such as high, medium, low.

5. Identify actors involved.

6. Identify actor goals.

7. Identify actor policies.

8. Identify options or outcomes.

9. For yes-no decisions take the most preferred

outcome and compare benefits and costs of

making the decision with those of not making it.

10. Do cost-benefit analysis using marginal values.

Because we are dealing with dominance

hierarchies, ask which alternative yields the

greatest benefit, and for costs, which alternative

costs the most.

Software programs such as superdecisions and

Expert Choice incorporate the AHP methodology

and enable the analyst to structure the hierarchy and

resolve the problem using relative or absolute

measurements, as appropriate.

Hierarchic Synthesis and Rank

Hierarchic synthesis is obtained by a process of

weighting and adding down the hierarchy leading to

a multilinear form. The hierarchic composition

principle is a theorem in the AHP that is a particular

case of network composition which deals with the

cycles and loops of a network.

What happens to the synthesized ranks of

alternatives when new ones are added or old ones

deleted? The ranks cannot change under any single

criterion, but they can under several criteria

depending on whether one wants the ranks to remain

the same or allows them to change. Many examples are

given in the literature showing that allowing rank to

change is natural. In 1990, Tversky et al. concluded

that the primary cause of preference reversal is the

“failure of procedure invariance.” In the AHP

there is no such methodological constraint (Tversky

et al. 1990).

In the distributive mode of the AHP, the principal

eigenvector is normalized to yield a unique estimate of

a ratio scale underlying the judgments. This mode

allows rank to change and is useful when there is

dependence on the number of alternatives present or

on dominant new alternatives which may affect

preference among old alternatives thus causing rank

reversals (see phantom alternatives—Saaty 1993). In

the ideal mode of the AHP, the normalized values of

the alternatives for each criterion are divided by the

value of the highest rated alternative. In this manner,

a newly added alternative that is dominated

everywhere cannot cause reversal in the ranks of the

existing alternatives (Saaty 1994).

Examples

Relative Measurement: Choosing the Best House

When a family of average income is being advised

on buying a house, the family identifies eight factors

that they think they have to look for in the house.

These factors fall into three categories: economic,

geographic, and physical. Although one might begin

by examining the relative importance of these

clusters, the family feels they want to prioritize the

relative importance of all the factors without working

with clusters. The problem is to decide which of

three candidate houses to choose. In applying the

AHP, the first step is decomposition, or the

structuring of the problem into a hierarchy (Fig. 4).

On the first (or top) level is the overall goal of

Satisfaction with House. On the second level are the

eight factors or criteria that contribute to the goal,

and on the third (or bottom) level are the three

candidate houses that are to be evaluated in terms of

the criteria on the second level. The definitions of the

factor and the pictorial representation of the hierarchy

follow.

The factors important to the individual family are:

1. Size of house: Storage space, size of rooms, number

of rooms, total area of house
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2. Transportation: Convenience and proximity of bus

service

3. Neighborhood: Degree of traffic, security view,

taxes, physical condition of surrounding buildings

4. Age of house: Self-explanatory

5. Yard space: Includes front, back, and side space,

and space shared with neighbors

6. Modern facilities: Dishwashers, garbage disposals,

air-conditioning, alarm system, and other such

items

7. General condition: Extent to which repairs are

needed; condition of walls, carpet, drapes, wiring;

cleanliness

8. Financing: Availability of assumable mortgage,

seller financing, or bank financing

The next step is comparative judgment. Arrange the

elements on the second level into a matrix and elicit

from the people buying the house judgments about the

relative importance of the elements with respect to the

overall goal, Satisfaction with House.

The questions to ask when comparing two criteria

are of the following kind: Of the two alternatives being

compared, which is considered more important by the

family buying the house and how much more

important is it with respect to family satisfaction with

the house, which is the overall goal?

The matrix of pairwise comparisons of the factors

given by the home buyers in this case is shown in

Table 4, along with the resulting vector of priorities.

The judgments are entered using the Fundamental

Scale, first verbally as indicated in the scale and then

associating the corresponding number. The vector of

priorities is the principal eigenvector of the matrix.

This vector gives the relative priority of the factors

measured on a ratio scale. That is, these priorities are

unique to within-a-positive-similarity transformation.

However, if one insures that they add up to unity, they

are always unique. In this case financing has the

highest priority, with 33% of the influence.

In Table 4, instead of naming the criteria, use the

number previously associated with each.

Now consider the pairwise comparisons of the

houses on the bottom level, comparing them pairwise

with respect to howmuch better one is than the other in

satisfying each criterion on the second level. Thus

there are eight 3 � 3 matrices of judgments since

there are eight elements on level two, and three

houses to be pairwise compared for each element.

The matrices (Table 5) contain the judgments of the

family involved. In order to facilitate understanding of

the judgments, a brief description of the houses is

given below.

House A: This house is the largest of them all. It is

located in a good neighborhood with little traffic and

low taxes. Its yard space is comparably larger than that

of houses B and C. However, its general condition

is not very good and it needs cleaning and painting.

House A House B

SATISFACTION WITH HOUSE
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Analytic Hierarchy Process, Fig. 4 Decomposition of the
problem into a hierarchy

Analytic Hierarchy Process,
Table 4 Pairwise
comparison matrix for level 1

1 2 3 4 5 6 7 8 Priority vector

1 1 5 3 7 6 6 1/3 1/4 0.173

2 1/5 1 1/3 5 3 3 1/5 1/7 0.054

3 1/3 3 1 6 3 4 6 1/5 0.188

4 1/7 1/5 1/6 1 1/3 1/4 1/7 1/8 0.018

5 1/6 1/3 1/3 3 1 1/2 1/5 1/6 0.031

6 1/6 1/3 1/4 4 2 1 1/5 1/6 0.036

7 3 5 1/6 7 5 5 1 1/2 0.167

8 4 7 5 8 6 6 2 1 0.333

lmax ¼ 9.669 C.I. ¼ 0.238 C.R. ¼ 0.169
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Also, the financing is unsatisfactory because it would

have to be financed through a bank at a high rate of

interest.

House B: This house is a little smaller than House

A and is not close to a bus route. The neighborhood

gives one the feeling of insecurity because of traffic

conditions. The yard space is fairly small and the house

lacks the basic modern facilities. On the other hand, its

general condition is very good. Also an assumable

mortgage is obtainable, which means the financing is

good with a rather low interest rate. There are several

copies of B in the neighborhood.

House C: House C is very small and has fewmodern

facilities. The neighborhood has high taxes, but is in

good condition and seems secure. The yard space is

bigger than that of House B, but is not comparable to

House A’s spacious surroundings. The general

condition of the house is good, and it has a pretty

carpet and drapes. The financing is better than for

A but not better than for B.

Table 5 gives the matrices of the houses and their

local priorities with respect to the elements on level two.

The next step is to synthesize the priorities. In

order to establish the composite or global priorities

of the houses, lay out in a matrix (Table 6) the

local priorities of the houses with respect to each

criterion and multiply each column of vectors by

the priority of the corresponding criterion and add

across each row, which results in the composite or

global priority vector of the houses. Under the

distributive mode, House A is preferred if, for

example, copies of B matter. Under the ideal mode,

House B is the preferred house if the family wanted

the best house regardless of other houses and how

many copies of it there are in the neighborhood.

In a large number of situations with ten criteria and

three alternatives, the two modes gave the same best

choice 92% of the time (Saaty 1994).

Absolute Measurement: Evaluating Employees

for Raises

Employees are evaluated for raises. The criteria for

Dependability, Education, Experience, and Quality.

Each criterion is subdivided into intensities,

standards, or subcriteria as shown in Fig. 5. Priorities

are set for the criteria by comparing them in pairs, and

these priorities are then given in a matrix. The

intensities are then pairwise compared according to

priority with respect to their parent criterion (as in

Table 7) and their priorities are divided by the largest

intensity for each criterion (second column of priorities

in Fig. 5). Finally, each individual is rated in Table 8 by

assigning the intensity rating that applies to him or her

under each criterion. The scores of these subcriteria are

weighted by the priority of that criterion and summed

to derive a total ratio scale score for the individual.

This approach can be used whenever it is possible to

set priorities for intensities of criteria, which is usually

possible when sufficient experience with a given

operation has been accumulated.

Concluding Remarks

The Analytic Hierarchy Process is widely applied in

business and government on a global scale.

Applications include strategic planning, R&D and

innovation, capital planning, IT and product portfolio

management, trade studies, vendor selection, and site

selection, to name a few. Notable government

organizations applying AHP include the US Joint

Chiefs of Staff; US Navy, Air Force, and Army;

Analytic Hierarchy Process, Table 6 Synthesis

Distributive Mode

1 (0.173) 2 (0.054) 3 (0.188) 4 (0.018) 5 (0.031) 6 (0.036) 7 (0.167) 8 (0.333)

A 0.754 0.233 0.754 0.333 0.674 0.747 0.200 0.072 0.396

B 0.181 0.055 0.065 0.333 0.101 0.060 0.400 0.650 ¼ 0.341

C 0.065 0.713 0.181 0.333 0.226 0.193 0.400 0.278 0.263

Ideal Mode

A 1.00 0.327 1.00 1.00 1.00 1.00 0.500 0.111 0.584

B 0.240 0.007 0.086 1.00 0.150 0.080 1.00 1.00 ¼ 0.782

C 0.086 1.00 0.240 1.00 0.335 0.258 1.00 0.428 0.461
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every major intelligence agency; and US Department

of Agriculture, among other civilian agencies. In the

commercial arena it is used by Johnson & Johnson

across a number of their operating businesses,

Siemens, Pfizer, Boeing, and the NFL (player

selection), among others.

See

▶Analytic Network Process

▶Decision Analysis

▶Multi-attribute Utility Theory

▶Utility Theory

Outstanding
(0.182) 1.000

Above Average
(0.114) 0.626

Below Average
(0.042) 0.231

Unsatisfactory
(0.027) 0.148

Average
(0.070) 0.385

Doctorate
(0.144) 1.000

Dependability
.4347

Education
.2774

Experience
.1755

GOAL

Quality
.1123

Masters
(0.071) 0.493

H.S.
(0.014) 0.097

Uneducated
(0.007) 0.049

Bachelor
(0.041) 0.285

Exceptional
(0.086) 1.000

A Lot
(0.050) 0.580

A Little
(0.010) 0.116

None
(0.006) 0.070

Average
(0.023) 0.267

Outstanding
(0.056) 1.000

Above Average
(0.029) 0.518

Below Average
(0.006) 0.107

Unsatisfactory
(0.003) 0.054

Average
(0.018) 0.321

Analytic Hierarchy Process,

Fig. 5 Employee evaluation
hierarchy

Analytic Hierarchy Process, Table 8 Ranking alternatives

Dependability
0.4347

Education
0.2774

Experience
0.1775

Quality
0.1123 Total

1. Adams, V Outstanding Bachelor A little Outstanding 0.646

2. Becker, L Average Bachelor A little Outstanding 0.379

3. Hayat, F Average Masters A lot Below average 0.418

4. Kesselman, S Above average H.S. None Above average 0.369

5. O’Shea, K Average Doctorate A lot Above average 0.605

6. Peters, T Average Doctorate A lot Average 0.583

7. Tobias, K Above average Bachelor Average Above average 0.456

Analytic Hierarchy Process, Table 7 Ranking intensities

Outstanding Above average Average Below average Unsatisfactory Priorities

Outstanding 1.0 2.0 3.0 4.0 5.0 0.419

Above average 1/2 1.0 2.0 3.0 4.0 0.263

Average 1/3 1/2 1.0 2.0 3.0 0.630

Below average 1/4 1/3 1/2 1.0 2.0 0.097

Unsatisfactory 1/5 1/4 1/3 1/2 1.0 0.062

Inconsistency Ratio ¼ 0.015
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Introduction

There are at least five important criteria that a reliable

decision theory should satisfy. They are: (1) having the

potential to cope with full fledged complexity,

including scenarios, stakeholders, criteria, subcriteria

and the like; (2) validation in practice through

prediction of decision outcomes in complex

situations; (3) measuring intangible factors along

similar lines as the theory does with tangibles;

(4) including the possibility to deal with dependence

and feedback among the elements of the decision; and

(5) allowing for group decision making within the

assumptions and mathematical workings of the theory

by including the power of each member of a group in

a scientifically justified way and not simply through

consensus or other arbitrarily chosen criteria.

The Analytic Network Process (ANP) is a new

theory that extends the Analytic Hierarchy Process

(AHP) to cases of dependence and feedback and

generalizes on the supermatrix approach introduced

by Saaty for the AHP. It allows interaction and

feedback within clusters (inner dependence) and

between clusters (outer dependence). Feedback can

better capture the complex effects of interplay in

human society. The ANP provides a thorough

framework to include clusters of elements connected

in any desired way to investigate the process of

deriving ratio scale priorities from the distribution of

influence among elements and among clusters. The

AHP becomes a special case of the ANP. Although

many decision problems are best studied through the
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ANP, it is not true that forcing an ANP model always

yields better results than using the hierarchies of the

AHP. There are examples to justify the use of both. It is

not yet known when the shortcut of the hierarchy is

justified, not simply on grounds of expediency and

efficiency, but also for reasons of validity of the

outcome.

The ANP is a coupling of two parts. The first

consists of a control hierarchy or network of criteria

and subcriteria that control the interactions in the

system under study. The second is a network of

influences among the elements and clusters. The

network varies from criterion to criterion and

a supermatrix of limiting influence is computed for

each control criterion. Finally, each of these

supermatrices is weighted by the priority of its

control criterion and the results are synthesized

through addition for all the control criteria.

In addition, a problem is often studied through

a control hierarchy or system of benefits, a second for

costs, a third for opportunities, and a fourth for risks.

The synthesized results of the four control systems are

combined by taking the quotient of the benefits times

the opportunities to the costs times the risks to

determine the best outcome.

Feedback Networks

Many decision problems cannot be structured

hierarchically because they involve the interaction and

dependence of higher-level elements on lower-level

elements. Not only does the importance of the criteria

determine the importance of the alternatives as in

a hierarchy, but also the importance of the alternatives

themselves determines the importance of the criteria.

The feedback structure does not have the linear

top-to-bottom form of a hierarchy but looks more

like a network, with cycles connecting its clusters of

elements, which can no longer be called levels,

and with loops that connect a cluster to itself.

A decision problem involving feedback arises often

in practice. It typically has many interactions, which

in the limit converge toward the goal. Our minds need

a tool to manage this complexity. The ANP provides

that tool.

At present, in their effort to simplify and deal with

complexity, people who work in decision making use

mostly very simple hierarchic structures consisting of

a goal, criteria, and alternatives. Yet, not only are

decisions obtained from a simple hierarchy of three

levels different from those obtained from a multilevel

hierarchy, but also decisions obtained from a network

may be different from those obtained from a more

complex hierarchy. The question is: How much

would one like to trade off the effort in creating and

following through an elaborate structure against the

desired degree of accuracy of the outcome? We one

cannot collapse complexity artificially into

a simplistic structure of two levels, criteria and

alternatives, and hope to capture the outcome of

interactions in the form of highly condensed

judgments that correctly reflect all that goes on in

the world. We one must learn to decompose these

judgments through more elaborate structures and

organize our reasoning and calculations in

sophisticated but simple ways to serve our

understanding of the complexity around us.

Experience indicates that it is not very difficult to do

this, although it takes more time and effort. Indeed,

one must use feedback networks to arrive at the kind

of decisions needed to cope with the future.

We will lay out the theoretical foundations for the

kinds of structures and matrices of derived ratio

scales associated with feedback networks from

which we obtain the priorities for a decision. Let us

summarize what we will do in anticipation of what

will be coming later on. Each ratio scale, derived from

a paired comparison matrix, is appropriately

introduced as part of a column in a matrix to

represent the impact of elements in a component on

an element in another component (outer dependence)

or on elements of the component itself (inner

dependence). Not every element of a component

need impact an element in another component. In

that case those elements that make no impact are

given a zero value for their contribution. The

resulting matrix of components with their elements

displayed vertically on the left side of the matrix and

horizontally at the top of the matrix must be stochastic

(each column sums to one) to obtain meaningful

limiting results. To ensure that this matrix, called

the supermatrix, is stochastic, we need to compare

the components themselves (rather than their

elements) that are on the left with respect to their

impact on each component at the top according to an

attribute represented in a separate control hierarchy

for that system. The resulting priorities of the
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components are then used to weight the column

vectors. Each block of column vectors defines an

entry of the supermatrix. All the column vectors in

the block are multiplied by the single priority of the

corresponding component on the left. The process is

repeated by deriving a vector of impact of all

components on the left on each component at the

top. The columns of the supermatrix corresponding

to the impacts on the elements of the component at the

top now sum to one. The resulting supermatrix is

column stochastic. What is desired, is the long-run

or limiting priority of impact of each element on

every other element.

Contributions to this impact are obtained in many

ways. They are be obtained directly from the matrix or

indirectly for any two elements by taking the impact of

the first on some third element and then multiplying it

by the impact of that element on the second. One must

consider every such possibility of a third element. All

such possibilities are obtained from the square of the

matrix. Again the impact can be obtained by

considering a third element that impacts a fourth

element, which in turn impacts the second element.

All such impacts are obtained from the cubic power

of the matrix, and so on. Thus we have an infinite

number of impact matrices: the matrix itself, its

square, its cube, etc. If we sum all these matrices,

does the result converge? Does the limit exist, and

how do we compute it to obtain the desired

priorities? The supermatrix may not be positive and

may have zeros in certain positions where there is no

direct impact of an element on another. Alternatively,

the matrix may be positive or may become positive

after raising it to powers. What theory do we have to

deal with this problem?

Note that if the matrix is positive or if, after raising

it to some power, it becomes positive, it turns out that

one can obtain a unique answer. But when no power

of the matrix is strictly positive, we need to examine

what happens closely because even in those situations

where every element can be reached from every other

element, we may not have a unique limit. For

example, powers of the matrix may oscillate, and

different limits are obtained. Also, if it is not

possible to reach every element from every other,

then the graph representing the connections of the

components and even the elements them-selves may

be divided into subgraphs, in some of which every

element can be reached from every other, but not in

others. How then does one obtain the desired results?

The graph of a decision system must always be

connected. It cannot be divided into two or more

disjoint parts.

When the criteria do not depend on the alternatives,

the latter may be kept out of the supermatrix and

evaluated according to the ideal or distributive modes

of the AHP, after the limiting priorities of the criteria

are obtained from the limiting supermatrix. Otherwise,

if some criterion depends on the alternatives or if there

is inner dependence among the alternatives, they must

be included in the supermatrix.

To test for the mutual independence of the criteria,

one proceeds as follows: construct a zero-one matrix of

criteria against criteria using the number one to signify

dependence of one criterion on another, and zero

otherwise. A criterion need not depend on itself, just

as an industry, for example, need not use its own

output. For each column (criterion) of this matrix,

construct a pairwise comparison matrix only for the

dependent criteria, derive an eigenvector, and augment

it with zeros for the excluded criteria. If a column

consists of only zeros, then as-sign a zero vector. The

question in the comparison would be: For a given

criterion, which of two criteria depends more on that

criterion with respect to the goal or with respect to

a higher-order control criterion?

The Supermatrix of a Feedback System

This section introduces different examples of graphs

and their matrices. Assume that there is a system of N

clusters or components whereby the elements in each

component interact or have an impact on or are

influenced by some or all of the elements of another

component with respect to a property governing

the interactions of the entire system, such as energy

or capital or political influence. Assume that

component h, denoted by Ch, h ¼ 1, . . ., N, has nh
elements, denoted by eh1, eh2,. . ., ehn k. The impact of

a given set of elements in a component on another

element in the system is one represented by a ratio

scale priority vector derived from paired comparisons

in the usual way.

In Fig. 1, no arrow feeds into a source component,

no arrow leaves a sink component, and arrows both

leave and feed into a transient component. Each such

priority vector is now introduced in the appropriate
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position as a column vector in a supermatrix of impacts

displayed as follows:

W¼

C1 C2 � � � CN
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each of whose columns is a principal eigenvector that

represents the impact of all the elements in the i th

component on each of the elements in the j th

component.

The discussion of this section will focus on deriving

limiting priorities for the supermatrix. It must first be

reduced to a matrix, each of whose columns sums to

unity. As already mentioned, such a matrix is known as

a column stochastic or simply a stochastic matrix. If

the matrix is stochastic, the limiting priorities depend

on the reducibility, primitivity, and cyclicity of that

matrix. Interaction in the supermatrix may be

measured according to several different criteria. To

display and relate the criteria, there is a need for

a separate control hierarchy that includes these

criteria with their priorities. For each criterion,

a different supermatrix of impacts is developed, and

in terms of that criterion the components are compared

according to their relative impact (or absence of

impact) on each other component at the top of the

supermatrix, thus developing priorities to weight the

block matrices of eigenvector columns under that

component in the supermatrix. The resulting

supermatrix would then be a stochastic matrix.

Hereafter, W is usually a stochastic matrix.

In general, the supermatrix is rarely stochastic

because, in each column, it consists of several

eigenvectors that each sum to one, and, hence, the

entire column of the matrix sums to an integer greater

Source
Component

Source
Component

(Feedback loop)

Outerdependence

Innerdependence loop

Sink
Component

(Absorbing State)

Intermediate
Component

(Translent State)

Intermediate
Component

(Recurrent State)

C2
C1

C3

C4

C5

Analytic Network Process,

Fig. 1 Feedback network
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than one. The natural thing to do is to determine the

influence of the clusters on each cluster with respect to

the control criterion. This yields an eigenvector of

influence of all the clusters on each cluster. The

priority of a component of such an eigenvector is

used to weight all the elements in the block of the

supermatrix that corresponds to the elements of both

the influencing and the influenced cluster. The result is

a stochastic supermatrix. This is not a forced way to

make the matrix stochastic. It is natural. Why?

Because the elements are compared among

themselves and one needs information about the

importance of the clusters to which they belong, to

determine their relative overall weight among all the

elements in the other clusters. Normalization would be

meaningless, and such weighting does not call for

normalization. Here is an example of why it is

necessary to weight the priorities of the elements by

those of their clusters: If one shouts into a room,

“Ladies and Gentlemen, the President,” everyone is

alerted and somewhat awed to expect to see the

president of the United States because he is in the

news so often. But if the announcement is then

followed by, “of the Garbage Collection

Association,” the priority immediately drops

according to the importance of the group to which

that president belongs. There is a need for such

consideration.

The Control Hierarchy

Analysis of priorities in a system can be thought of in

terms of a control hierarchy with dependence among

its bottom-level subsystem arranged as a network

(Fig. 2). Dependence can occur within the clusters

and between them. A control hierarchy at the top may

be replaced by a control network with dependence

among its clusters. More generally, one can have

a cascading set of control networks, the outcome of

one used to synthesize the outcomes of what it

controls. For obvious reasons relating to the

complexity of exposition, apart from a control

hierarchy, we will not discuss such complex control

structures here. A control hierarchy can also be

involved in the network itself with feedback involved

from the criteria to the elements of the network and

back to the criteria to modify their influence. This kind

of closed-circuit interaction between the operating

parts and the criteria that drive the parts is likely to

be prevalent in the brain.

A component or cluster in the AHP is a collection

of elements whose function derives from the synergy

of their interaction and, hence, has a higher-order

function not found in any single element.

A component is like the audio or visual component of

a television set or like an arm or a leg, consisting of

muscle and bone, in the human body. A mechanical

cluster has no synergy value but is simply an aggregate

of elements and is not what is meant by a component or

cluster. The clusters of the system should generally be

synergistically different from the elements themselves.

Otherwise, they would be a mechanical collection with

no intrinsic meaning.

The criteria in the control hierarchy that are used for

comparing the components are usually the major

parent criteria whose subcriteria are used to compare

the elements in the component. Thus the criteria for

comparison of the components need to be more general

than those of the elements because of the greater

functional complexity of the components. Sometimes

for convenience, interactions of both components and

elements are examined in terms of the same criteria in

the control hierarchy. Although one does that to

economize on the effort spent, it is more meaningful

to compare the clusters with respect to control criteria

and to compare the elements with respect to subcriteria

of the control criteria. Otherwise the process can lead

to asking difficult questions in making the paired

comparisons.

The control hierarchy, critical for ANP analysis,

provides overriding criteria for comparing each type

of interaction that is intended by the network

representation. There are two types of control criteria

(subcriteria). A control criterion may be directly

connected to the structure as the goal of a hierarchy if

the structure is in fact a hierarchy. In this case the

control criterion is called a comparison-linking

criterion. Otherwise a control criterion does not

connect directly to the structure but induces

comparisons in a network. In that case the control

criterion is called a comparison-inducing criterion.

An example of dependence between components is

the input-output of materials among industries. The

electric industry supplies electricity to other

industries including itself. But it depends more on the

coal industry than on its own electricity for operation

and also more on the steel industry for its turbines.
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To summarize, a control hierarchy is a hierarchy of

criteria and subcriteria for which priorities are derived

in the usual way with respect to the goal of the system

being considered. The criteria are used to compare the

components of a system, and the subcriteria are used to

compare the elements. The generic question is: Given

an element (in the same component or in another

component) of the system or given a component of

that system, how much more does a given element

(component) of a pair influence that element

(component) with respect to a control subcriterion

(criterion)? The weights of the components are used to

weight the blocks of the supermatrix corresponding to

the component being influenced. The limiting priorities

in each supermatrix are weighted by the priority of the

corresponding subcriterion and the results are

synthesized for all the subcriteria. If it should happen

that an element or a component has no input, a zero is

entered in the corresponding priority vector.

In each block of the supermatrix, a column is either

a normalized eigenvector with possibly some zero

entries, or all of its elements are equal to zero. In

either case it is weighted by the priority of the

corresponding cluster on the left. If it is zero, that

column of the supermatrix must be normalized after

weighting by the cluster’s weights. This operation is

equivalent to assigning a zero value to the cluster on

the left when weighting a column of a block with zero

entries and then renormalizing the weights of the

remaining clusters.

Figures 3 and 4 and their accompanying

supermatrices represent a hierarchy and a holarchy

whose bottom level is connected to its top level of

criteria and has no single element goal as in

a hierarchy. Note the difference between the two.

Note from Fig. 3 that the entry in the last row and

column of the supermatrix of a hierarchy is the identity

matrix I. The limiting results obtained by raising W to

powers and by following the theoretical route

described here turn out to be the same.

For Fig. 4 a system may be generated from

a hierarchy by increasing its connections gradually so

that pairs of components are connected as desired and

some components have an inner dependence loop.

What follows is an illustration of how feedback and

the supermatrix work in a pharmaceutical marketing

decision problem.

Drug-Marketing Decision

The problem faced by a large pharmaceutical company

was how should the company market a new drug, given

the pending patent expiration of an already existing drug

it had beenmarketing? The ANPmodel used tomake the

decision illustrates two important ideas. First, it uses

a very simple control hierarchy involving the aggregate

criteria of benefits, costs, and risks (Fig. 5). For each of

these controlling considerations, a separate network

model of interactions was created. Thus there were

three submodels, one for each control criterion. Second,

the outcomes of the three sub-models were computed.

This ANPmodel was a real case in that the company

was actually in the process of making the decision

Control Hierarchy
Goal

Criteria

Subcriteria

A possibly different network under each subcriterion of the control hierarchy

Analytic Network Process,

Fig. 2 A control hierarchy
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when the study was conducted. With the pending

expiration of the current market offering, their

objective was clearly to launch the new drug

successfully before the patent for the old drug expired.

However, the company had to decide whether to

market the new drug over the old. The questions were:

Should the old drug be phased out slowly or entirely

replaced by the new drug? Howmuch of the marketing

budget should be devoted to each strategy? Other

important questions were also considered. Although

the old drug would be facing stiffer competition, its

brand recognition would continue to bring in revenue.

The new drug was chemically improved over the old

but needed greater promotion to be successful. There

was also the risk that the new drug would be rejected

by the HMOs and by customers. Moreover, with the

added costs of promotion and the existing competition,

the company could be facing slimmer profit margins,

making these marketing decisions more critical.

The first step in building the model was to identify

the stakeholders: HMO administrators, physicians,

pharmacists, and nurses. Interviews with these

stakeholders facilitated identifying the relevant

clusters and the elements in each cluster and their
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0
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0 0

0

0
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Fig. 4 The structure and
supermatrix of a holarchy
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Fig. 3 The structure and
supermatrix of a hierarchy
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interdependencies. The interviews also yielded

invaluable information and knowledgeable judgments

for the model.

The second step was to partition the decision by

using the control model approach. This allowed the

participants to focus on each aspect of the larger

problem. When considering benefits alone, for

example, factors such as market share and profit

margin were identified. Their importance may vary

for the different stakeholders, and these are precisely

the dependencies and priorities the model seeks and

measures. For the costs side, the factors identified

included marketing expenses, production costs, and

market share loss. Factors for the risks model

included product acceptance, production backlog,

patient expiration, and sales incentives. Figure 6

illustrates the submodel corresponding to the benefits

control criterion (note there that an oval represents

a cluster and a rectangle represents an element

belonging to a cluster).

The last step was to synthesize the ANP submodels.

The best outcome derived from the ANP was the

decision to proceed to market the new drug but also

continue to market the old one. The new drug would

incur higher marketing expenses compared with the

old, but the brand recognition of the old drug would

continue to provide a healthy return even with a lower

marketing effort.

The actual decision of the company was to proceed

to market the new drug and continue to market the old

drug (Table 1). However, the company decided to

eliminate the sales incentives and marketing

expenses for the old drug and to increase the sales

incentives and marketing expenses for the new drug.

These decisions were consistent with the ANP model

of Fig. 5.

The final outcome is given in Table 1. It suggests

marketing the new product in the ratio of 2.6692 to

1.8180, or 1.47 to 1, obtained by dividing the ratio

scale numbers for the two drugs.

See

▶Analytic Hierarchy Process

▶Decision Analysis

▶Multi-attribute Utility Theory

▶Utility Theory

Market Share Profit Margin Pharmacists Physicians

Customers

Nurses

Advantages

Administration

Old Drug

New Drug

Products

Analytic Network Process,

Fig. 6 The benefits submodel

Analytic Network Process, Table 1 The ratio of benefits/
(costs � risks)

Market share 0.4845

Physicians 0.5901

Profit margin 0.3416

Administration 0.1739

Pharmacists 0.2905

Nurses 0.1193

Old drug 1.8180

New drug 2.6692
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Analytics

Term used to describe data-driven modeling and

analysis for decision making; uses tools and

methodologies from operations research.

Animation

▶Visualization

ANP

▶Analytic Network Process

Ant Colony Optimization

A population-based metaheuristic search approach

predominantly for combinatorial optimization based

on ideas from ant foraging (randomized search) and

pheromone communication (information exchange) in

forming favored paths.

See

▶Metaheuristics

▶ Particle Swarm Optimization

▶ Swarm Intelligence
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Anticycling Rules

Rules that prevent simplex-type algorithms from cycling.

See

▶Bland’s Anticycling Rules

▶Cycling

▶Degeneracy

Antithetic Random Variates

▶Variance Reduction Techniques in Monte Carlo

Methods
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Applied Probability

The application of probability theory to the biological,

physical, social, and engineering sciences.

See

▶ Stochastic Model

Approximate Dynamic Programming

Michael C. Fu

University of Maryland, College Park, MD, USA

Introduction

Stochastic dynamic programming models provide

a rich framework for modeling sequential decision

making under uncertainty. However, for many

problems of practical interest, finding a tractable

solution of the resulting models faces many potential

challenges, including

• large state space;

• large action space;

• unknown state transition function/probabilities;

• costs or rewards that must be estimated.

The so-called curse of dimensionality refers to

the computational intractability resulting from a large

state space or a large action space (or both). Traditional

methods for solving dynamic programming assume

that the model is completely specified and that the

corresponding expectations can be computed exactly.

Even in cases where the state transition function/

probabilities and probability distributions on

costs/rewards are fully specified, analytical

calculations may be computationally prohibitive if

the state or action space is large.

Approximate dynamic programming (ADP) is the

name given to approaches for providing practically

implementable computational solutions to dynamic

programming problems facing one or more of the

challenges just described (Powell 2011; Si et al.

2004). In the artificial intelligence (AI) community,

ADP methods are usually referred to as

reinforcement learning (Sutton and Barto 1998), and

in the stochastic control community, ADP is often

called neuro-dynamic programming (Bertsekas and

Tsitsiklis 1996). Simulation-based ADP approaches

are described in Chang et al. (2007) and Gosavi

(2003). ADP generally does not refer to the process

of trying to estimate the transition probabilities

directly. For expositional purposes, a discounted

reward Markov decision process (MDP) model will

be used throughout this entry. However, the state and

action spaces will not be restricted to be finite or even

countable, as the most general ADP approaches handle

uncountable settings.

Problem Setting

The MDP is defined by the respective state and action

spaces S and A, along with the one-stage rewards

r(s, a), s ∈ S, a ∈ A, which will be assumed to be

stationary, and a probabilistic mechanism (which

could be a simulation model) for transitioning from

a state given an action taken. For the usual MDP with

a finite or countable state space, this is specified in the

form of state transition probabilities {pij(a), i, j ∈ S,

a ∈ A} that give the probability of going from state

i to state jwhen action a is taken. Given an initial state

(or more generally a probability distribution over

the initial state), the optimization or control problem

is to sequentially choose actions in each stage to

maximize the expectation of the total discounted

reward given by

XT

t¼0
btrðst; atÞ; (1)

where 0< b< 1 is the discount factor, T is the number

of stages (horizon length, so taking T ! 1
corresponds to the infinite-horizon problem), at is the

action taken in stage t, and st is the state reached in

stage t. To simplify notation, it is assumed that all

actions are feasible in all states; otherwise, one would

write A(s), s∈ S for the feasible action space in state s.

The action at taken in each stage is assumed to be

specified by a Markov policy p ¼ {p0 p1. . .pT} that

specifies for each possible state the action to be taken,

i.e., a policy is a sequence of decision rules pt: S! A,

where t is the stage. A stationary policy does not
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depend on the stage, in which case p will be used to

indicate both the policy and decision rule, which is the

same for any stage. In the infinite-horizon setting, the

usual objective is to find an optimal stationary policy

(if one exists), for which there are three main

approaches: value iteration, policy iteration, and

linear programming.

Value Function and the Optimality Equation

Critical to ADP is the concept of a value function,

which is defined for a given policy p from any stage

n and state sn to the end of the horizon:

Vp
n ðsnÞ ¼ E

XT

t¼n
bt�nrðst; ptðstÞÞ

�����sn

" #

: (2)

The optimal value function achieves the maximum:

V	n ¼ sup
p

Vp
n ;

and the problem of maximizing the expectation of (1)

becomes that of finding V	0ðs0Þ for a given starting state
s0, with an optimal policy given by

arg sup
p

Vp
0 ðs0Þ:

According to the principle of optimality in dynamic

programming, the optimal value function satisfies the

Bellman optimality equation:

V	nðsÞ ¼ sup
a2A

E½rðs; aÞ� þ bE½V	nþ1ðs0Þ�
� �

; s 2 S; (3)

where s0 represents the state (a random variable)

reached in stage n + 1 when taking action a from

current state s in stage n, and the reward r(s, a) is

also allowed to be random. The form of the optimality

equation given by (3) is convenient for the ADP

setting, generalizing the usual form for the

countable state space MDP with nonrandom rewards

given by

V	nðsÞ ¼ sup
a2A

rðs; aÞ þ b
X

j2S
psjðaÞV	nþ1ðjÞ

( )

; s 2 S:

Two Approaches

The computational challenges that may arise in

(stochastic) dynamic programming are evident from

inspection of the optimality equation in the form

given by (3). First, the equation has to be solved for

every state in the state space S over the action space A.

Thus, for a given state, the optimization problem over

a huge action space could be intractable, and/or the

number of optimization problems that have to be

solved could be impractical. Furthermore, the

expectations in (3) may be analytically intractable

and must be estimated from sampled simulation

output or from actual (e.g., online) data. This may

arise even in the finite state space nonrandom reward

setting, e.g., if the transition probabilities are not

readily available, so that state transitions can only be

sampled using a simulation model or observing a real

system.

This entry briefly describes the two most frequently

employed ADP approaches:

• Value (or cost-to-go) function approximation;

• Q-learning.

The former addresses the state space curse of

dimensionality, whereas the latter addresses the

setting where the expectations in (3) must be

estimated. Other approximations not described here

include purely greedy (myopic) algorithms, one-step

look-ahead algorithms, rollout algorithms, linear

programming methods, policy parameterization, and

numerous aggregation (state and/or action) methods.

For further expositional simplicity, the infinite-

horizon case will be considered, so that the value

function (for a given policy p) and optimal value

function are defined by

VpðsÞ ¼ E
X1

t¼0
btrðst; pðstÞÞ

�����s

" #

; (4)

V	ðsÞ ¼ sup
p

VpðsÞ; (5)

where a stationary policy p is assumed. The optimal

value function V* in (5) then satisfies the following

Bellman optimality equation:

V	ðsÞ ¼ sup
a2A

n
E½rðs; aÞ� þ bE½V	ðs0Þ�

o
; s 2 S; (6)
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which is a fixed point equation over the state space S

(again s0 represents the random state reached when

taking action a from current state s). Value function

approximation uses a compact representation for the

value function (4), which should satisfy (6) if optimal.

Applying value function approximation thus involves

two steps if used to find optimal policies:

approximating the optimal value function and then

finding an approximately optimal policy.

A common value function approximation is a linear

combination of a set of basis functions:

bV
p ðs; rÞ ¼

X

i

rifiðsÞ ¼ rf;

where r ¼ [r1 r2 . . .] is a (row) vector (set) of

parameters and f ¼ [f1 f2 . . .]
T is a (column) vector

(set) of basis functions. The basis functions and

parameterization are usually chosen based on some

domain knowledge of the problem setting, which can be

expressed in terms of features of the problem. However,

in many settings this may be more art than science.

Instead of working with the value function directly,

Q-learning works with the so-called Q-factors, which

are the functions being optimized in the Bellman

equation (6), i.e.,

Qðs; aÞ ¼ E½rðs; aÞ� þ bE½V	ðs0Þ�; (7)

which depends on both the state and action. If all the

Q-factors are known, then the value function can be

found simply by taking

V	ðsÞ ¼ sup
a2A

Qðs; aÞ;

so that (7) becomes

Qðs; aÞ ¼ E½rðs; aÞ� þ bE½sup
a02A

Qðs0; a0Þ�: (8)

Note that in (8) the optimization operator

(supremum) is inside the expectation, whereas it

appears outside the expectation in (6). However, now

the curse of dimensionality in both the state and

action spaces comes directly into play, since

a two-dimensional lookup table is required to keep

track of the Q-factors that will be estimated using

Q-learning. Similar to value function approximation,

one could also seek a compact (approximate)

parametric representation of the Q-factors to reduce

the dimensionality.

The basic idea of Q-learning is to use outputs from

the model (real or simulated) to iteratively update the

estimate of the Q-factors as follows:

Qnþ1ðs;aÞ¼Qnðs;aÞ

þan ðrðs;aÞþb sup
a02A

Qnðs0;a0ÞÞ�Qnðs;aÞ
� 	

¼ð1�anÞQnðs;aÞþan rðs;aÞþb sup
a02A

Qnðs0;a0Þ
� 	

;

where n denotes the iterate number and an is called the

learning rate. Q-learning is a form of the AI machine

learning approach called temporal-difference (TD)

learning, because the Q-factor update in the first

expression uses the difference between the predicted

Q-factor value based on a sampled version of (8) for

a single next state s0 (simulated or from real online

data) and the current Q-factor value. In the second

form of the update iteration, the Q-factors are

expressed as a convex combination of these two

values. The desire is that with increasing n, the

estimated Q-factors approach the true Q-factors,

i.e., Qn(s, a)! Q(s, a) for all states s ∈ S and actions

a∈ A. Since the first form of the iterative updating also

puts Q-learning in the class of stochastic

approximation algorithms, for which there is a large

body of research, convergence analysis can use

machinery developed for those methods, and the

choice of the learning rate parameter sequence {an},

which greatly affects the practical performance of the

algorithm, can also find guidance there.

Successful Applications

The earliest success stories for ADP are applications in

computer programs for playing games, from checkers

(Samuel 1959) to backgammon (Tesauro 1995). The

program TD-Gammon, which reached the level of the

best human backgammon players at the time, used an

artificial neural network to approximate the value

function, where the state space is estimated to have

over 1020 states (close to the estimated number of

grains of sand in the world’s beaches). ADP ideas

were also implemented in the computer system

Approximate Dynamic Programming 75 A

A



“Watson” that was designed to play the television quiz

show Jeopardy! and in 2011 beat the two best human

players; Tesauro was a member of the IBM team that

developed “Watson.”

Other successful applications of ADP have been

found in financial engineering, although the term

ADP is not generally used or recognized there.

For example, the pricing of financial derivatives for

American-style options is an optimal stopping

problem, where at each decision stage there are two

possible actions: “Hold” or “Exercise” (and stop).

Generally the exercise value can be calculated easily,

so calculating the price of the derivative reduces to

calculating the value of holding (taking the “Hold”

action), which is also called the continuation value

and can be represented by Q(s, Hold) using the

Q-factor notation introduced previously, with

V	ðsÞ ¼ max
n
Qðs;HoldÞ;Value of Exercising at s

o
:

Now either of the two ADP approaches described in

the previous section could be used to estimate the

continuation values Q(s, Hold): Q-learning or

function approximation. Regression based on a large

number of simulated paths is a popular way of carrying

out the function approximation. See (Glasserman

2004, Chapter 8) for more details on this approach.

A real-world large-scale application of ADP

received the 2010 Daniel H. Wagner Prize for

Excellence in Operations Research Practice, which

“emphasizes the quality and coherence of the analysis

used in practice” (as stated on the INFORMSWeb site,

accessed October 2010). The application addressed

logistics and transportation planning for a large

trucking company, reported in Simão et al. (2010):

“Schneider National needed a simulation model that

would capture the dynamics of its fleet of over 6,000

long-haul drivers to determine where the company

should hire new drivers, estimate the impact of

changes in work rules, find the best way to manage

Canadian drivers, and experiment with new ways to

get drivers home. It needed a model that could perform

as well as its experienced team of dispatchers and fleet

managers. In developing our model, we had to simulate

drivers and loads at a high level of detail, capturing

both complex dynamics and multiple forms of

uncertainty. We used approximate dynamic

programming to produce realistic, high-quality

decisions that capture the ability of dispatchers to

anticipate the future impact of decisions. The

resulting model closely calibrated against Schneider’s

historical performance, giving the company the

confidence to base major policy decisions on studies

performed using the model. These policy decisions

helped Schneider to avoid costs of $30 million by

identifying problems with a new driver-management

policy, achieve annual savings of $5 million by

identifying the best driver domiciles, reduce

the number of late deliveries by more than 50 percent

by analyzing service commitment policies, and save

$3.8 million annually by reducing training expenses

for new border-crossing regulations.”

Concluding Remarks

Historically, ADP can be traced all the way back to the

very roots of dynamic programming itself, from

function approximations in Bellman and Dreyfus

(1959) to the machine learning-based checkers-playing

program of Samuel (1959). Q-learning was introduced

by Watkins in his 1989 Ph.D. dissertation, with

a convergence proof published in Watkins and Dayan

(1992). An online and continually updated version of

the research-oriented Chap. 6 on ADP in Volume II of

the two-volume book by Bertsekas (2007) is made

freely available for download by the author at his MIT

Web site.

Although the setting considered here is stochastic,

the idea of approximating the value function in

dynamic programming can also be applied to

completely deterministic settings, which might be

appropriate when the state and/or action space is huge.

See

▶Dynamic Programming

▶Markov Decision Processes

▶ Stochastic Approximation
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Arc

An edge (link, path) connecting two nodes in a graph or

network. The term arc usually means that it is directed.

See

▶Digraph

▶Graph Theory

▶Network Optimization

Archimedean Axiom

The property of real numbers that for any positive

numbers a and b, there is a positive integer n such

that a < nb.

ARIMA

Autoregressive Integrated Moving Averages.

See

▶Time Series Analysis

Army Operations Research

▶Military Operations Research

Arrival Process

A random point process or marked point process with

marks denoting some aspects of the stream of

customers arriving to a queue or some aspects of

the queue itself at the times of arrival, with points

representing the precise instants of arrivals. For

example, in the marked point process (Xa, Ta), the

Xa process may represent the sequence of customer

priority classes arriving to a queue, while the

Ta process would be the sequence of actual

arrival times.

See

▶Queueing Theory

Arrival-Point Distribution

▶Customer Distribution

▶Queueing Theory

Arrow Diagram

A graphic use of arrows to represent component jobs

of a project and the manner in which they are
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interconnected. An arrow diagram is sometimes also

called a network diagram.

See

▶Network Planning
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Introduction

Both artificial intelligence (AI) and operations research

(OR) have roots in the early years of computer science,

both matured during the 1950s and 1960s, and both have

undergonemajorchangesin thelast fewdecadesasaresult

of the explosive power and affordability of computers.

Operations research is an interdisciplinary approach to

problem solving, generally using mathematical models

to represent a system. Artificial intelligence involves

making computers perform functions that are generally

believed to require intelligence. Although themeaning of

intelligence is subject to debate, one ingredient, which

relates to OR, is being able to solve complex problems.

Recent years have seen considerable overlap

between OR and AI with a number of conferences and

journals devoted specifically to areas of overlap such as

heuristic search and data mining. Indeed some similar

techniques have followed parallel paths, for example,

A* search within AI and branch and bound within OR.

Problem areas involving big data that arise particularly

through the development of the Internet give rise to new

opportunities and problems for both AI and OR, with

datamining andmachine learning techniques, which are

generally regarded as AI approaches, becoming

increasingly prominent within the OR community.

In developing computer systems capable of

complex problem solving, the AI community has

adopted a wide variety of approaches that range from

very strong cognitive models of human problem

solving to very strong computational models that

have little internal resemblance to human problem

solving. The more cognitively oriented models focus

on knowledge representation and reasoning, while the

more computationally oriented methods focus on

efficient techniques for representing and searching

large, complex spaces.

The AI techniques that are likely to be most useful to

the OR researcher and practitioner are those of weak AI,

which consists of those AI techniques which are targeted

at solving specific problems, and form the primary focus

of this article. Strong AI research aims to find a more

general-purpose computer intelligence at a similar level

to that of human or at least animal intelligence. This

appears to be an extremely difficult goal and problems

requiring this general-purpose intelligence are often

referred to as AI-hard. To illustrate this, consider the

Deep Blue chess computer, which built upon decades

of research on computer hardware, software and chess AI

to beat the human world champion, Garry Kasparov, in

1997. While Deep Blue was arguably the strongest chess

playing entity on the planet at that time, Deep Blue was

incapable of doing almost all of the everyday activities of

a human, such as talking about the weather or filling in

a tax return. One of the ongoing problems of AI research

is the so-called AI effect that once a precise algorithm is

known for performing a task that appeared to require

intelligence, then it can be argued that it does not

require intelligence. Some AI methods, however, such

as neural networks, can be encoded on a computer but the

precise mechanism by which solutions are generated is

not readily understood.

In the past there has been overoptimistic extrapolation

of the triumphs of weak AI research to the possibility of

general intelligence. Recent success in AI approaches to

steering a road or air vehicle in real time point to

a substantial increase in the generality of problems

which AI can solve, but still leave the goals of strong

AI someway off. One exciting possibility for strongAI is

the computational neuroscience approach to directly

modeling the processing methods of the human brain

(Feng 2003). While this approach is still in its infancy,

it provides a method which might lead to very flexible

and powerful problem-solving approaches in the future.

AI as Search

It would seem at first glance that the obvious way to

build intelligent systems is to use as a starting point

A 78 Artificial Intelligence

http://dx.doi.org/10.1007/978-1-4419-1153-7_665


properties of human problem solving. Articulating and

implementing human capabilities, however, has

proven to be an exceedingly difficult task. This is

perhaps best illustrated by the efforts to build game

playing programs for chess (Hsu 2004) and Go (Lucas

2011), where approaches that aim to emulate the

thought processes of a human expert are much

weaker than those that are able to search through

millions of alternative move sequences before

selecting a move.

Unlike OR, AI has the dual mission of producing

a solution and providing a laboratory tool to test

explanatory theories of intelligent behavior. This dual

role creates a difference in how AI approaches search.

An OR design always seeks an optimal solution with

a minimum of computational effort and, for complex

problems, must trade-off solution quality with

computational effort. An AI design is additionally

concerned with the meaning of the heuristic in

relation to human reasoning, and the trade-off

between solution quality and computational effort

can be different. For example, humans generally

construct satisfactory solutions to problems such as

“what route will I take home tonight,” and do not

spend much time thinking about optimality.

Historically, OR has focused on computational

efficiency by exploiting mathematical structures in

a relatively narrow class of problems, while AI has

focused on heuristics for broader class of problems. In

recent years, however, OR and AI approaches have

become more intermingled.

Modern AI approaches (Russell and Norvig 2010)

generally objectify a computational problem-solving

approach as an agent. Often the computational

decision making approach is closely integrated into

a physical system, or robot. The agent receives

sensory information about the current state, and

chooses between the set of possible actions at that

state to move to a new state, and to continue selecting

actions until a goal state is reached. Such a problem is

known as a planning problem in the AI literature.

A planning problem may be represented as a directed

graph with states as nodes, actions as arcs and goal

states as optimal solutions (or at least solutions of

acceptable quality). This mapping allows search

approaches from AI and OR to be used

interchangeably for a wide range of problems.

The difficulty with modeling complex problems as

spaces to be searched is that most such spaces are

known to present NP-hard search problems, that is,

there are no known polynomial-time algorithms for

finding the answer. As a consequence considerable

effort has gone into the development of efficient

heuristic search procedures capable of finding

solutions in acceptable amounts of search time.

A heuristic is simply a rule of thumb that expresses

some problem-specific knowledge that can be used to

improve search efficiency.

A heuristic search strategy consists of a problem

representation, a database of points in the search space,

a set of heuristic rules and a control strategy. At any

point during the search, the database contains subsets

of candidate solutions. Using this database the control

strategy selects a heuristic that generates a new

candidate to be tested. Examples of control strategies

are depth-first and breadth-first search. Testing

a candidate, such as a partial solution to a traveling

salesman problem, can be as simple as evaluating the

length of the sub tour. A heuristic can be as simple as

choosing the next link to be a nearest neighbor of an

endpoint of the partial solution, or it can be

more computationally intensive, such as solving

a linear-programming relaxation problem that

provides a bound on the completion of the partial

solution.

An important AI paradigm for node selection in

a search tree is the A∗ algorithm. This is a family of

algorithms designed to find an optimal or high-quality

solution guided by a heuristic function. For each node,

n, in the search tree, such as at a partial solution to

a traveling salesman problem, the cost to reach that

node is denoted by g(n), and the estimated minimum

cost to complete the solution is the heuristic function,

denoted h(n). The control strategy selects the node

having the minimum value of g + h.

In this family of algorithms, if the heuristic function

is admissible: i.e., h(n) � h∗(n), where h∗(n) is the

actual minimum cost to complete the solution from

node n, then the resulting solution is guaranteed to be

optimal. In words, if the heuristic function h(n) is

optimistic, then the resulting A* search finds an

optimal solution. If h is admissible, the search tree

can be pruned below node n when g(n) + h(n) � g(n´)

for some complete solution n´ already found (in OR,

this is called fathoming a node).

A special case is breadth-first search, where h
 0 and

g(n) is defined to be the depth of node n. Another special

case is OR’s branch-and-bound for general integer
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programming, where g + h is the objective value of the

linear relaxation at a node.

When using a non-admissible heuristic estimate h,

optimality is no longer guaranteed, although the time

taken to find a solution of sufficient quality may be

very greatly reduced. For example, this approach may

be taken in applications such as finding paths for a very

large number of units in a computer simulation or

game, and is used in a variety of search local

approaches which do not have optimality guarantees.

Models for AI problems are often less well-defined

than in OR, in areas such as machine vision or vehicle

guidance, and it is difficult to define a priori a heuristic

search approach for such a problem. As a consequence,

an important subarea of AI focuses on algorithms that

construct models from sampled data provided a priori

or dynamically acquired during the problem solving

process. These techniques are generally labeled as

machine learning algorithms (Mitchell 1997;

Alpaydin 2004) and have been successfully applied

to a variety of difficult problems including

classification (e.g., support vector machines for

image processing) and sequential decision problems

(e.g., reinforcement learning techniques for robot

control).

Machine learning approaches have proven their

worth in conjunction with OR heuristics and

algorithms, for example in finding good parameters

for another search approach or in choosing which

heuristic approach to use at each step of search. The

use of machine learning approaches to choose between

other heuristics was christened a hyperheuristic in

(Cowling et al. 2001), and this approach has gained

in popularity as an approach for solving difficult

optimization problems (Chakhlevitch and Cowling

2008). Hyperheuristics are examples of a more

general approach to machine learning where an

ensemble of learning methods are combined using

some kind of voting method to yield an approach

which is greater than the sum of its parts (Polikar

2006). Recent years have seen considerable success

for ensemble approaches, particularly for

classification problems arising in data mining (Nisbet

et al. 2009).

Another theme in AI is the design and application of

biologically-inspired techniques. A well-developed

subarea focuses on artificial neural networks (ANNs)

(Bishop 1995). ANNs are very loosely based on

a connectionist model of the mammalian brain and

have proven extremely useful when dealing with

problems where it is necessary to provide

a mechanism for approximating a complex function.

An ANN is a weighted digraph with identified sets of

input, hidden, and output nodes. Values are applied to

the input nodes which are then propagated though the

ANN to generate values at the output nodes which

approximate the given function. The values at each

hidden node and the output nodes are obtained by

applying a nonlinear squashing function to the sum of

the inputs at each node, weighted using the arc

weights. These values are then propagated forward to

subsequent hidden nodes and ultimately to output

nodes. The function to be approximated may be

highly complex, for example to estimate the

probability that a luggage contains an explosive

device by using an ANN to analyze the pixels of an

X-ray photograph of the luggage. Appropriate weights

are determined by supervised or unsupervised

learning. In supervised learning a large number of

examples where the function value is known are

considered and the variance between ANN outputs

and true outputs is minimized by treating the problem

of changing weights as a nonlinear optimization

problem. Back propagation is often used to improve

the weights, proceeding backwards from output nodes

to input nodes, iteratively adjusting weights so as to

reduce the error arising for each example.

Unsupervised learning is also used, where the arc

weights are often adjusted using an Evolutionary

Algorithm (EA) and the ANN is evaluated by

considering its performance directly in an application

(e.g., the time taken to drive around a track for an ANN

which controls vehicle steering).

Evolutionary Algorithms (EAs) (Michalewicz and

Fogel 2004; De Jong 2006) are another well-developed

area of biologically-inspired techniques. EAs use

analogies with natural evolutionary processes. They

maintain a population of candidate solutions, and

local search operators which modify single solutions

(mutation) and pairs of solutions (crossover). EAs

attempt to find a solution with a high objective

function value (generally known as fitness within an

EA) by using selection processes modeled on Darwin’s

“survival of the fittest” principal. EAs have proven

effective in a number of problems where it is difficult

or impossible to use a large amount of problem

knowledge, so that they may be regarded as relatively

general-purpose approaches.
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In game theoretic problems involving more than

one participant, machine learning and evolutionary

algorithm approaches have proven effective. In

particular, Monte Carlo Tree Search (MCTS) (Lucas

2011) has recently provided much stronger players for

the game of Go, a game that has for a long time been

considered as one of the more intractable problems of

AI research. Since 2009, MCTS approaches using

highly parallel algorithms on many computer cores

have started to compete at, or near human world

champion level for small-board Go. MCTS

algorithms selectively build a search tree, starting

from the current state, by trading off exploration of

unseen areas of the tree, and exploitation of known

good areas, by considering the decision as to where to

progress at each node/state as a multi-armed bandit

problem. It seems likely that MCTS approaches will

become increasingly important in a wide variety of

decision applications.

There are many other approaches to heuristic search

which have been explored by researchers and

practitioners in OR and AI, known as metaheuristics

(Michalewicz and Fogel 2004; Gendreau and Potvin

2010). Generally these approaches guide a local search

operator to avoid poor local optima. Metaheuristics are

often inspired by natural metaphors. They include:

simulated annealing, inspired by the second law of

thermodynamics; tabu search, inspired by

connections between intelligence and memory; and

swarm intelligence algorithms, inspired by the

foraging behavior of insects.

AI as Logic

At the other end of the AI spectrum are techniques for

solving problems by capturing the knowledge of

human experts and using a reasoning approach

analogous to that of a human problem-solver.

Generally, this involves expressing a problem as

a theorem to be proved using a particular system of

logic and providing a computational procedure for

proving such theorems. This is generally referred to

as logic programming.

The most elementary form uses propositional

logic. A set of propositions and logical expressions is

given. The satisfiability problem is to find an

assignment of truth values for the propositions such

that the logical expressions are true. In logical

inference, the given expressions are facts about how

propositions relate to each other. Consider, for

example, a project selection problem, where

proposition Pj ¼ TRUE means project j is selected,

and Pj ¼ FALSE means project j is not selected.

Projects might be related by a simple precedence

constraint, Pi ! Pj, which says that if project i is

selected, project j must also be selected (or the

selection of project i must precede the selection of

project j).

A feasible truth assignment exists when the facts,

which comprise one form of a knowledge base, are

consistent. Redundant facts occur when some logical

expression is implied by the others. For example, if the

knowledge base contains Pi! Pj and Pj! Pk, then Pi

! Pk is a redundant fact (from transitivity of

implication). The knowledge base contains circular

reasoning if it contains the implication Pi ! Pi

through a chain of implications. For example, the

expressions, Pi ! Pj, Pj ! Pk and Pk ! Pi, are

circular. This means that projects i, j and k form an

equivalence class: all are selected, or all are rejected. In

managing a knowledge base, one wishes to know if it is

consistent, non-redundant, and non-circular,

particularly when new facts are entered into it. In

some cases, violations can mean an error in the rule

entry. If, for example, precedence constraints are

supposed to form a partial ordering, as in job

scheduling, a circular chain implies that there is no

feasible schedule. Similarly, a redundancy can be due

to a subtle implication that the users of the rule base

should know to avoid a false perception of what an

inference means.

The satisfiability problem can be represented by

a system of linear inequalities with binary-valued

variables. Let xj be 1 or 0, according to whether Pj is

true or false, respectively. A simple implication, Pi!
Pj, is true if, and only if, x j� x i. More complex logical

expressions can also be represented by linear

inequalities, but the effort to derive the inequalities

is, itself, a difficult problem unless special forms are

assumed.

The difficulty with propositional logic is that it not

sufficient to express many important pieces of

knowledge such as “all men are mortal.” To do so

requires logics with more expressive power such as

the first-order predicate calculus. Unfortunately, this

increase in expressibility comes at a high price: the

inability to implement efficient computational theorem
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provers. One of the important developments in this

area was the development of PROLOG, a logic

programming system based on a restricted form of

the predicate calculus that maintained considerable

expressive power while providing an efficient

theorem prover (inference engine). This was achieved

by restricting the semantics of negation and restricting

propositions to one special form, a Horn clause. This is

where the antecedent is a conjunction of propositions

and the consequent is only one proposition:P1 ^ P2 ^
. . . ^ Pn ^ P0. This can be represented by x 0 � x 1 +

x 2 + . . . + x n � n + 1.

To see if a particular proposition can be inferred

from a set of facts, the logic programming problem

becomes one of combinatorial optimization. Suppose

the truth value of Pi for i in I is given, where I is some

index reference set over the propositions, in order to

determine if Pj can be inferred from the knowledge

base (where j is not in I). xi is set to 1 or 0, according to

whether Pi is true or false, respectively, for i 2 I and

minimum and maximum values of xj are determined

subject to the logical constraints. The maximum of xj is

1 if, and only if,Pj can be true, and theminimum of xj is

positive if, and only if, Pj must be true. Then, the facts

imply Pj if Pj can be true (i.e., max x j ¼ 1) and Pj

cannot be false (i.e., min xj > 0). The facts are

inconsistent if Pj cannot be true (i.e., max x j < 1)

and Pj cannot be false.

Logic programming has been successfully used to

build many AI systems, particularly expert systems

designed to give advice about a particular problem, in

areas such as medical diagnosis. A substantial effort

has been made to encode common sense in the

database of a very large, multi-contextual knowledge

base and inference engine developed by Cycorp using

the rules of logical inference to provide a general way

to make everyday decisions. Evidence so far suggests

that such an expert system is effective for specific

tasks, but not likely to work as a method for attacking

the strong AI problems of general intelligence.

Knowledge representation in an expert system can

include forms other than logical expressions and

uncertainties can be represented by a variety of

calculi. Alternative logics arise naturally in both

human reasoning and in AI. For example, it may be

accepted that birds fly and deal with special cases, like

penguins, without disturbing the main value of logical

reasoning (key terms to investigate are non-monotonic

and default logics).

One area that bring together search and logic-based

approaches to problem solving is constraint

programming (Van Hentenryck and Michel 2009).

Constraint programming software allows a user to

express a rich variety of constraints, which link

decision variables. These include constraints such as

“all these variables take distinct values from a given

set” which are often difficult to model using other

techniques. Powerful solution approaches are then

often able to find solutions which satisfy all

constraints (and which may also be required to

maximize an objective function). Constraint

programming techniques have been used with

considerable success in a variety of planning and

scheduling applications. Their drawback is that they

often cannot guarantee to find a solution at all, so that

metaheuristics are often used instead of, or in

conjunction with, constraint programming

approaches for very difficult problems.

Further Reading

A broad selection of AI textbooks are available. One

widely used AI text is Russell and Norvig (2010).

Michalewicz and Fogel (2004) introduces

evolutionary algorithms and metaheuristic methods

alongside OR techniques in a problem-solving style,

based on the classic Polya book. Traditional heuristic

search is well covered by Pearl (1984). A number of

journals are specifically devoted to the links between

Computer Science and OR, where AI is the aspect of

Computer Science most strongly represented,

including the INFORMS Journal on Computing and

Computers and Operations Research. The Conference

on Integration of AI and OR (CPAIOR) brings together

AI and OR researchers with a common interest in

constraint programming. More generally a great

number of AI and OR journals and conferences

specifically ask for contributions which bridge the

gaps between these disciplines.

See

▶A* Algorithm

▶Agent

▶Computational Complexity

▶Computational Intelligence
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▶Computer Science and Operations Research

Interfaces

▶Constraint Programming

▶Data Mining

▶Evolutionary Algorithms

▶Expert Systems

▶Game Theory

▶Genetic Algorithms

▶Graph Theory

▶Heuristics

▶Horn Clause

▶ Inference Engine

▶ Integer and Combinatorial Optimization

▶Logic Programming

▶Machine Learning

▶Metaheuristics

▶Monte Carlo Methods

▶Monte Carlo Simulation

▶Neural Networks

▶ Simulated Annealing

▶ Swarm Intelligence

▶Tabu Search
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Artificial Variables

A set of nonnegative variables added temporarily to

a linear program to obtain an initial basic

(artificial) feasible solution. If the original constraints

are Ax ¼ b, x � 0, than adding an artificial variable yi
to each equation yields the systemAx + Iy¼ b, x� 0, y
� 0, where y is a column vector of artificial variables.

Assuming the vector b� 0, this system has an obvious

basic (artificial) feasible solution, with yi¼ bi being the

basic variables and the xi the nonbasic variables.

To obtain a basic solution to the original constraints,

the artificial variables must be driven to zero. One way

to do this is to solve an auxiliary linear program

(known as Phase I) where the objective is to

minimize the sum of the artificial variables. If the

new system has no solution with all artificial

variables equal to zero, then the original constraints

are infeasible.

See

▶Big M Method

▶ Phase I Procedure

▶ Phase II Procedure

▶ Simplex Method (Algorithm)

Assignment Problem

The problem of optimally assigning m individuals to

m jobs, so that each individual is assigned to one job,

and each job is filled by one individual. The problem

can be formulated as a linear-programming problem
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with the objective function measuring the (linear)

utility of the assignment as follows:

Maximize
X

i

X

j

cijxij

subject to
X

i

xij ¼ 1 j ¼ 1; . . . ;m

X

j

xij ¼ 1 i ¼ 1; . . . ;m

xij ¼ 1 if person i is assigned to job j

xij ¼ 0 if person i is not assigned to job j

cij ¼ utility of person i assigned to job j

The problem is a special form of the transportation

problem and, as such, has an optimal solution in

which each variable is either zero or one. The

problem can be solved by the simplex method, but

special assignment problem algorithms tend to be

computationally more efficient.

See

▶Hungarian Method

▶Transportation Problem

▶Transportation Simplex (Primal-Dual) Method
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Auction and Bidding Models
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Introduction

Models to assess and guide bidding and auction design

have proliferated, broadened, and become more

game-theoretic. Usage of auctions for major sales by

governments, most notably of rights to the

electromagnetic spectrum for digital transmission,

have been a major impetus for these developments;

Internet auctions and combinatorial procurement

auctions have also stimulated and supported

modeling advances. In 1997, William Vickrey shared

the Nobel Prize in Economic Science for his

pioneering development of auction theory; the Prize

in 2007 was awarded to Leo Hurwicz, Eric Maskin,

and Roger Myerson for closely related work in

Mechanism Design.

Why hold an auction? The literature has focused on

two reasons: because a bid-taker lacks the information

needed to fix an apt price, and because a method is

needed to harness competition. Research has also

pointed to a need to organize the allocation of

interrelated, heterogeneous assets or contracts so as

to accommodate bidder synergies across packages of

assets or contracts (Harstad and Pekec 2008). Auctions

are also employed to reduce the flexibility of an agent

assigned to attain a sale or procurement, or when

legitimacy of a transaction and its pricing needs to be

secured or to be made transparent (Rothkopf and

Harstad 1994). All these reasons, and indeed,

virtually all of the analyses of auctions and bidding,

straightforwardly apply and adapt whether bidders are

seeking to buy or to sell; for more concrete exposition,

the bid-taker is here treated as a seller of an asset or

assets (with but few and narrow exceptions, the

literature models a seller and ignores any

noncongruence of interests between an auctioneer

and a consignor).

Given these reasons for auctioning, auctions and

bidding have become the most extensive and most

noted application of the theory of games of

asymmetric information: it is because potential buyers

have information about asset values that a less informed

seller cannot simply fix a price and thus conducts an

auction; it is because a winning bidder both uses and

protects the bidder’s private information against rivals

who have differing information that winning an auction

is on average profitable when bidding rationally, despite

best efforts of rivals to compete and best efforts of

a seller to extract some of this profit in the form of

higher revenue.

In the face of myriad practical problems,

however, models of bidding and auctions far too

frequently make assumptions in service of elegant,
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general results at far too high a cost in

relevance; key limits to applicability are noted in the

following.

Environments Modeled

Vickrey (1961) introduced auction theory under the

assumptions that each bidder privately knew the

auctioned asset’s value, and that rivals’ values were

independent of each other. While appropriate for such

a pioneering study, it is hard to justify the frequent

tendency to continue to base theoretical analysis on

this independent private-values model. Any durable

asset presumably has a value to a bidder related to

how useful it would be to rival bidders now or to

potential purchasers in the future, and thus is not

private. Even for a perishable commodity, a fancy

dessert at a charity auction, a bidder rationally

expects more serious competitive bids for a more

mouth-watering cake—defeating the independence

assumption. Independent-private-values models

exhibit the simple characterization that a bidder

facing more rivals bids more aggressively, and

a far-from-robust revenue equivalence result that

any auction in which the efficient acquirer always

wins and any bidder with a zero chance of winning

is indifferent over participating attains expected

revenue equal to the expected opportunity cost (the

second-highest value).

More useful is the polar opposite: a common-value

model (Rothkopf 1969;Wilson 1977). In it, asset value

is the same for all bidders, unknown to any at the time

of the sale, and each bidder has privately acquired an

estimate of the common value. A generalization to

affiliated-values auctions allows asset values to

incorporate a common resale value, as well as

a private possession value. Where the common-value

component is significant, facing more rivals raises the

important “winner’s curse” (Capen et al. 1971): if

a bidder did not anticipate before bidding that

winning likely implies rivals observed lower

estimates, then the appropriate reassessment of asset

value may well cause the winning bidder to feel

miserable for winning. In particular, this leads to the

conclusion that each extra rival past the first should

lead the bidder to bid less aggressively for any given

asset value estimate. (Even with participating in

hundreds of auctions, sharp experimental subjects in

economics laboratories cannot systematically learn to

survive the winner’s curse, the toughest problem

economics experimenters have posed, see Kagel,

Levin, and Harstad (1995).

Auction Forms

Many auction models consider any method of reaching

an allocation—via communications from bidders to

a seller who has an a priori commitment to functions

specifying bidders’ payments and probabilities of

winning that depend on the profile of

communications sent—to be an auction. In practice,

auctions follow simpler rules and can be considered

minor variants on a few basic forms.

Standard sealed bidding, commonly called

a first-price auction, features a single round of

simultaneous bids, with the highest bid winning and

setting the price. It continues to be somewhat common,

used for many procurement auctions, government sales

of mineral rights, and in circumstances where

congregating bidders in time and space is unjustifiably

expensive. The bidder’s problem is a complicated one,

exhibiting a tradeoff between the probability of winning

(enhanced by bidding more aggressively) and the

expected profit in the event of winning (diminished by

aggressiveness). Published solutions presume the set of

assumptions {A}: a single, isolated auction; symmetric

aggressiveness of a known, fixed number of rational

rivals; all bidders risk-neutral; and that each bidder’s

information about asset value can be completely

summarized by a single real number.

Vickrey auctions, that is, sealed bidding under

second-price rules, in which the seller is committed

to selling to the highest bidder at a price set by the

highest losing bid (no matter how much higher the

winner bid), are rare, but are an important benchmark

to understanding auctions and bidders’ incentives.

Since a bid may only determine whether the bidder

wins, but not how much the payment will be if the

bidder wins, the feature that a bidder should submit the

bid that separates prices at which the bidder would

prefer to win from prices at which the bidder would

rather lose is quite general. Outside private-values

models, this pivotal bid depends on the information

about asset value that can be inferred from having to

pay a particular price (because the highest-bidding

rival bid that price).
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Most auctions feature dynamic pricing, starting at

a level with more bidders than assets and becoming

less attractive, with bidders repeatedly deciding

whether to continue competing or cease (exit). The

last remaining bidder wins, paying a price equal to,

or some modest fixed increment above the last price

where the bidder faced competition. Such auctions

allow bidders to reevaluate as they observe

diminishing competition; upon such reevaluation, the

last two bidders effectively engage in a second-price

auction. The literature commonly calls these English

auctions; the game-theoretic model of English auctions

usually considered the standard, assumes a continuous

rise in prices with all exits public and irrevocable

(Milgrom and Weber 1982). Under irrevocable,

public exits, and assumptions {A}, expected revenue

in the Bayesian Nash equilibrium of the English

auction exceeds that of other auction forms. Relative

to second-price auctions, this stems from the greater

problem the winner has in protecting the winner’s

information, as revelation of exit prices, and thus

inferences about losing bidders’ information, makes

the last rival’s evaluation a better substitute for the

winner’s.

Auctions with dynamic pricing seldom cleanly

provide the final bidders this much information. In

part, this is because bidders are reluctant to let

winning bids in auctions reveal their private

information, let alone losing bids. In part, it is

because an auctioneer does not need to learn how

many bidders are still competing to raise the price;

excess demand is sufficient. So it is common for an

auctioneer to recognize two willing bidders, raising the

price as they alternately affirm continuing excess

demand. When one bidder ceases doing so, the

auctioneer must find another bidder willing at that

price to pair up, reestablishing the excess demand

that raises the price. This aspect may slow the auction

enough to reveal an exit price, but Harstad and

Rothkopf (2000) find that a second-price auction

model may more closely estimate revenue when

some bidders’ exits are silent and unobserved.

The Dutch auction starts with a high price

unacceptable to any bidder and adjusts it down until

a bidder ends the auction by accepting the current price

(the term Dutch auction tends to be used in financial

markets in a very different way). As this faces a bidder

with the same probability of winning-expected profit if

winning tradeoff, auction theorists who have never

witnessed a Dutch auction assume it can be analyzed

via the same model as the first-price auction.

(As witnessed by the author, the auction’s

video-game speed explains its usage in flower and

fish markets in the Netherlands; for flowers, each of

13 auctioneers sell a lot of flowers every 4.25 seconds).

Revenue Maximization

If n bidders will compete no matter what auction is

used, a seller maximizes expected revenue via

monopolistic inefficiencies that take the form of

refusing to sell in some circumstances where a bidder

offers more than keeping the asset is worth to seller.

The reserve price that mainstream models focus on is

a binding commitment never to part with the asset if no

bid exceeds the reserve. Such a blunt instrument is

used only in auctions of perishables; to auctioneers,

a reserve price is the lowest price at which the asset

will be sold today, but with later negotiations or

auctions with a lower reserve possible.

A more realistic model treats the number of

competitors as an endogenous variable, responding to

the expected profitability of bidding. For this expected

profitability to be predictable, potential bidders’

private information, and their bidding aggressiveness,

must be symmetric. In such a model, forcing

inefficiencies is costly for a seller; the main

conclusion is that aspects of different auction

situations that are not modeled—e.g., costliness of

congregating bidders, or bidders’ preference for

dynamic pricing—can be accommodated without

necessarily sacrificing revenue.

Concluding Remarks

Sets of assumptions such as {A} seriously limit

practical relevance by treating bidding for an asset

as an isolated occurrence; this is more the exception

than the rule. Firms in an industry may repeatedly bid

to sell contracts or acquire key inputs, with repetition

adding issues of reputation or collusion, not yet

well treated by modelers. Also, the outcome of an

auction may affect later negotiations or industrial

competition; rational bidders anticipate such
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follow-up impacts and adjust their bidding for the

conjoint expected profitability of the auction and the

aftereffects.

It is also common for collections of assets to

be sold simultaneously or in rapid succession.

When identical, as financial asset shares, attempting

to have sales priced at opportunity costs (as indicated

by rival bids) becomes much more complicated if

an individual bidder is allowed to win multiple

shares; most auction models prohibit multiple

purchases, but few auctioneers do. If K identical

assets are sold sequentially, expected profitability of

competing in the last auction reduces bidding for

the (K-1) asset, dollar-for-dollar, if winning at that

stage would lead the bidder not to compete for the

last asset.

Simultaneous auction of heterogeneous but related

assets, rare until the mid-1990’s, has arisen widely and

attracted much attention, primarily in governmental

sales of rights to use electromagnetic spectrum for

digital transmissions, in privatization of factories and

contractual responsibilities, and in firms’

procurements of services, primarily logistics. Early

attention focused on spectrum auctions by the U.S.

Federal Communications Commission, but the key

feature of potential synergies from winning particular

collections of assets fits all these areas. If bidders can

only compete asset-by-asset, synergies may go unbid

and unattained; if bidders can make single bids on

arbitrary packages of assets, the auction may be

computationally unmanageable (in that both the

problem of determining the revenue-maximizing

collection of bids, and the bidder’s problem of

finding the minimal bid on a desired package to place

it into the tentative winning set, become unboundedly

complex). Opportunities to structure the set of

permitted package bids so as to keep the auction

computationally manageable have been illustrated.

Package auctions have been implemented in all three

situations.

Although the Internet has altered the patterns of

auction usage, of general interest is the descriptive

book on auctions and auctioneering by Cassady

(1967), and the sociological interpretation of auctions

by Smith (1990). Surveys include Wilson (1992) and

Klemperer (2000); critical perspectives are given in

Rothkopf and Harstad (1994); Klemperer (2002,

2003); and Harstad and Pekec (2008).

See

▶Combinatorial Auctions

▶Decision Analysis

▶Game Theory

▶Winner’s Curse
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Introduction

Automation has affected both manufacturing and

services. Automation’s roots are in mechanization,

which can be defined as the transfer of skills and

manual activities to machine operation. Automation

differs from mechanization in that it includes

feedback for controlling the system (Odrey 1992).

Automation is a dynamic technology that has been

evolving for decades.

Automated reasoning is rarely included explicitly in

the definition of automation, although machine

learning, heuristics, and knowledge-based systems

are increasing the scope of automation activities.

But the industrialized world is moving towards

building highly automated systems that are intelligent

and operate in real time, with self-defined capabilities

for carrying out pre-defined objectives over long

periods of time in an uncertain environment (Kim

and Chung 1991). Automation is defined here as the

use of technological-based systems that replace routine

physical labor and human reasoning by machines that

perform operations with minimal or no human

intervention. These machines should be as

self-activated, self-acting, self-determining,

self-regulating, and self-reliant as is practical.

Automated systems can provide a heretofore

unmatched level of performance along the four

strategic dimensions of cost, quality, delivery, and

flexibility (Singhal 1987). Parts of this presentation

are based on Singhal et al. (1987) and Singhal (2011).

Automated Manufacturing

A typical automated manufacturing system can

perform such operations as machining, welding,

inspection, and assembly in industries as diverse as

heavy machinery and light electronics. Its elements

include computer-interfaced machine tools, robots,

and automated material-handling and storage devices.

The processing instructions stored in the computer

memory of a machine tool enable it to perform

customized operations automatically on each

workpiece. Sensory devices in the machines and

robots perform automatic inspection. The machines

are linked by an automated material handling system

and a central computer. The central computer

provides the overall control of the system. This

control includes routing and sequencing jobs,

tracking their status, down-loading instructions to

machine tools, and taking corrective actions. Other

components of the system include a tool delivery

system, and a common central buffer or local buffers

at individual work stations. Applications of automation

in manufacturing include a variety of technologies:

• Automatic machine tools: They include

computer-numerical-controlled (CNC) tools that are

controlled by software that is fairly easy to reprogram.

• Automatic materials-handling and storage systems:

They include automatic storage and retrieval

systems (AS/RS) and automatic guided vehicle

(AGV) systems.

• Industrial robots: These are reprogrammable

multi-function manipulators, often arm like in

appearance, perform a variety of tasks.

• Flexible manufacturing systems (FMSs): These are

manufacturing cells designed for mid-volume and

mid-variety ranges of production (Stecke 1985,

1992). Typical FMSs consist of 5–25 machines

that are linked together by common computer

controllers and by automated material handling
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devices. Because of the versatility of machine tools,

for example, and the quick (seconds) cutting tool

interchange capability, these systems are quite

flexible with respect to the number of part types

that can be produced simultaneously and in low

(sometimes unit) batch sizes.

• Fixed automation: This is used when the sequence

of operations is fixed, for example, high-volume

assembly.

• Computer-aided design (CAD): CAD relies on

computer graphics for designing products, and

a full system includes databases of documentation

and stored images of parts and assemblies. The

designer can create new designs or modify

existing designs on a CRT by using a light pen,

a keyboard, or a joystick.

• Computer aided manufacturing (CAM): CAM

includes various forms of manufacturing

automation such as those listed above (Considine

and Considine 1989; Odrey 1992).

• Computer-aided process planning (CAPP): CAPP

uses computers to develop detailed process plans

for producing parts or assemblies, and, as such,

links CAD and CAM.

The use of CAD in contemporary engineering

projects is especially important. CAD has been used

to design products as simple as potato chips, kitchen

cabinets, and customized swimsuits, and such complex

products as the Boeing 777. Boeing’s CAD

system employed nine IBM mainframes, a Cray

supercomputer, and 2,200 workstations and stored

3,500 billion bits of information. Boeing reduced its

engineering design errors by more than 50% and

designing and building a 777 plane took 10 months as

compared to 18 months for Boeing’s earlier planes, the

747 and the 767 (Laudon and Laudon 1998,

pp. 618–621). CAD eliminates such activities as

drawing blue prints and building prototypes, reducing

costs, which was all quite critical in the Boeing efforts.

More generally, CAD permits designers to make

changes quickly and at very low cost. The designer

can rotate the design to examine it from various angles,

can split it apart to get a view of the inside, or zoom in

on portions of the computer screen for close-ups.

An engineering perspective of automation in

manufacturing is given in Chryssolouris et al. (2009).

Radio frequency identification (RFID) has enormous

potential for automated traceability in manufacturing

systems. According to Ngai et al. (2007), its

advantages include improved lead time; ability to

offer customers timely information about an item’s

status and job completion time, improved

maintenance operations; reduction in human errors,

improved inventory management, automatic capture

of data and resulting lower costs, and improved

customer relationships.

Many automated manufacturing systems integrate

several production stages resulting in interactions

among many hardware and software components.

Many of the benefits of automated systems accrue

from this integration. For a number of reasons, this

integration can dramatically increase the complexity

of managing a manufacturing system. First, many

automated manufacturing systems have several

hierarchical levels, a large number of candidate

decisions, and large data requirements. Second,

management of these systems requires balancing

multiple objectives with quantifiable and

nonquantifiable trade-offs. Finally, the high degree of

integration makes the management of automated

manufacturing systems especially vulnerable to the

stochastic variability of machine failures, operator

absences, material shortages, and production

requirements.

Since mathematical models can offer insights into

the nature of the interactions among components in

complex systems, OR/MS professionals can play

a major role in the design, operation, and control of

complex automated systems. Although these systems

are complex, the central role played by computers

enables low cost data collection for a wide range of

events that occur within the system. The resulting

availability of information greatly facilitates the use

of OR/MS models in these computer-controlled

systems. The contribution of models and other

decision-making aids can be substantial because the

large investments these systems require make the

opportunity cost of suboptimal design and operation

high. Time, talented professionals, and good data are

also crucial to success.

Traded off against the costs of the capital

investment and the human resources are a wide range

of benefits attributed to automated manufacturing

systems. These benefits include lower direct

manufacturing costs resulting from reductions in

setup time, processing time, labor requirements, lead

time, inventory, and factory space; improved product

conformance (quality); a greater variety of products at
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little additional cost (economies of scope); the ability

to respond rapidly to changes in design and demand,

and flexibility in scheduling around equipment

breakdowns.

Managers can sometimes obtain many of the

benefits in improved quality and lead time that are

attributed to automated systems by paying

attention to problems in these areas, irrespective of

the technology in place. Adopting total

quality management, just-in-time practices, and

design-for-manufacturability, for example, may

achieve many of those benefits at a fraction of the

capital cost. If this is the case, one must ask whether

the additional benefits that can actually be attributed

to automation can justify the cost. In the 1980s, an

IBM printer manufacturing facility in Kentucky

dramatically redesigned and simplified its product

and process to pave the way for 100% automated

assembly. IBM discovered that the redesigned printer

was so simple that it could achieve high quality manual

assembly at a lower cost than automated assembly.

It is useful to partition the issues related to

analyzing and modeling automated manufacturing

systems according to the following phases: choice of

technology; design of the physical system; design of

the production planning, scheduling, and control

system; installation and start-up; and steady-state

operation and improvements (Singhal et al. 1987):

The Choice of Technology — Conceptually, the

decision rule for investing in an automated

manufacturing system is like that for any other

investment decision; the net benefits, tangible and

intangible, should result in positive net present value

to the firm. Because many of the benefits of automated

manufacturing systems are difficult to quantify, the

firms should first calculate the net present value on

the basis of quantifiable benefits. If this value is

negative, firms should use managerial judgment to

decide whether the intangible benefits are greater

than the shortfall. Analysts also use multicriteria

approaches, such as the analytic hierarchy process or

multiattribute utility theory, to compare different

automation options. Canada and Sullivan (1989) and

Liberatore (1990) reviewed models for investment in

automated manufacturing systems and related issues.

It is crucial that a firm’s technology acquisition

decisions be consistent with its manufacturing

strategy. Once the firm has established that the

acquisition is congruent with its manufacturing

strategy, it must consider several other issues. First,

in addition to hardware costs, the investment cost

includes the cost of software and training. Second, in

a changeover from conventional manufacturing, the

firm should include in its analysis the cost of

changeover and the reduction in work-in-process and

finished-goods inventory. Third, it cannot extrapolate

the tangible benefits from the performance of

a conventional manufacturing system; it must

evaluate an initial design of the system to measure

these benefits.

During the technology evaluation process, the firm

should identify sources of risk and uncertainty

related to the automated manufacturing system

project. The stochastic variability of market demand,

component supply, and competitive interaction will all

affect the contribution of an automated manufacturing

system to a firm. An additional source of uncertainty is

organizational learning. In automated systems, as in

most manufacturing systems, learning continues

beyond the start-up phase into the steady-state

operation phase. Learning increases equipment

utilization, reduces the number of workers, increases

flexibility in meeting changes in product demands and

designs, improves quality, and increases variety.

Benefits that are difficult to quantify economically

should be identified. These benefits include better and

more consistent quality, economies of scope, shorter

lead times, and flexibility in responding to changes in

product designs and product demands. Some of these

benefits derive from the firm’s ability to do things not

previously possible and to build new strategies to

exploit the new capabilities.

The firm should not assume a static environment

when comparing the option of investing in automated

technologies with the option of retaining its old

technologies. Whether or not a firm chooses to invest

in automated technologies, its competitors may do so.

Another issue is whether the firm should acquire

islands of automation in stages and then link them or

whether it should go for complete automation in one

step. With the former approach the firm can evaluate

what it has implemented before proceeding with

the next step. This approach also provides more

scope for learning and mastering technology in

stages. However, it will realize many of the benefits

related to flexibility and product variety only when it

links these islands. This may make the latter approach

more desirable.
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The Design of the Physical System — For most

automated manufacturing systems, the output

and flexibility requirements determine the basic

design: the types and number of machines, robots,

material handling devices, information processing

capabilities, and human resources. Important

decisions in the design of automated manufacturing

systems concern the specifications of the structure of

the control system and the sizes and locations of

inventory and capacity buffers. Although most

automated manufacturing systems are large and

complex, they tend to be organized in hierarchical

structures, allowing the designer to break up the

computational and data requirements up so that

modeling the system is possible. The higher levels

of the hierarchical models have long horizons and use

aggregated data. The lower levels have shorter

horizons and use more detailed data. Queueing

models (Buzacott and Yao 1986a, 1986b) can be

used for the basic design. They are robust and

computationally efficient, and they can predict the

main output measures within 10% accuracy. Thus,

the designer can explore a wide range of alternatives

before selecting a small subset of designs for detailed

evaluation.

Viswanadham and Narahari (1992, p.163) point out

that “Markov chains constitute the basic model of

discrete event systems and therefore of automated

manufacturing systems.” They further note (p. 7) that

the “underlying stochastic process of most high-level

models such as queues, queueing networks, and

stochastic Petri nets turns out to be a Markov chain.”

The detailed design of the system determines the

layout, the number of pallets, the type and number of

fixtures, the required accuracy of machines, the types

of tool-changing systems, and the methods of feeding

and locating parts at machines. The designer should

integrate the planning, scheduling, and control of

operations with the detailed design. Simulation,

because of its versatility, is the tool most frequently

used for detailed design. The designer plans the details

of a common data base at this stage. In an ideal system,

all decision makers in the organization have access to

the same data so that engineering changes in products

and processes can be entered as soon as they are

finalized. The development of such a database for an

automated manufacturing system is a major task

requiring considerable effort and resources. For an

application of analytical approaches to the design of

an automated production line, see Burman, Gershwin,

and Suyematsu (1998).

Design of the Production Planning, Scheduling, and

Control System — Production planning consists of

deciding when to produce which products; allocating

machines, pallets, fixtures, operators, and tools; and

determining policies for preventive maintenance and

inspection. Scheduling problems include establishing

work-releasing, sequencing, and priority rules. Control

problems include determining policies for defect

detection, equipment breakdown, repair, and real-

time allocation of resources. The operations of an

automated manufacturing system are under the

control of a computer system that makes decisions,

such as which parts to load into the system next

and what workstations a particular batch is to visit

next. Human intervention becomes necessary only

when unusual or unanticipated events take place,

such as machine failures, non-availability of

materials, human errors, unscheduled maintenance,

and changes in the operating environment. Some of

the resulting resource/reallocation decisions require a

combinatorial number of complex computations that

need to be done quickly. In most cases, these

computations cannot be done optimally in real time

with the present speed of computers and current

OR/MS models and artificial intelligence (AI).

Combining OR/MS models and AI approaches seems

promising. Crama, Oerlemans, and Spieksma (1996)

review models for planning and scheduling.

The objectives for the models at each level of the

control system hierarchy depend on the operating

characteristics of the system and, thus, cannot always

be specified without evaluating the alternatives at

lower levels. Hence, system designers use detailed

simulations to determine the appropriate planning,

scheduling, and control system before its

implementation.

Installation and Start-up – Many shortcomings in

design and planning are exposed during installation

and start-up. The systems may be incompatible with

product design, the database may be inadequate, and

the operators, managers, and support staff may not

have the required skills. The models developed for

steady-state operation of an automated manufacturing

system are usually not applicable to its transient

behavior during start up and shutdown. Equipment

breakdowns may also cause transient behavior that

interrupts steady-state operation. During start up,
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however, one can expect frequent shutdowns and one

can expect devote a good deal of effort to debugging

and tuning the system.

Steady-State Operation and Improvements – There

is considerable scope for learning during steady-state

operation, and learning is facilitated if those who

design and install the system also operate it. The

learning objectives will be to increase equipment

utilization, to reduce labor costs, to increase

flexibility in meeting changes in product design and

demand, to improve quality, to discover opportunities

for improving product design, and to increase product

variety. The firm can achieve these objectives by

improving production planning, scheduling, and

control; by developing preventive maintenance and

repair policies; by devising strategies to cope with the

consequences of equipment breakdowns; and by

integrating the various functions in the firm,

especially manufacturing and engineering. Two

major determinants of learning are planned efforts

and the existing skills of the operators, managers, and

support staff. The firm can use total quality

management and business process redesign to make

some of these improvements.

Automated technologies are becoming capable of

learning from experience and making decisions with

little or no human intervention to optimize operations

and minimize costs. For example, in manufacturing

automation, artificial intelligence (AI) will

become increasingly important in the move toward

a true computer-integrated-manufacturing (CIM)

environment, in which all of the organization’s

activities are linked through computers: order entry

and customer billing, product design, manufacturing

planning, and manufacturing control.

Services

The impact of automation on service is visible in

everyday life: TV remote control, automated

telephone answering systems, automated teller

machines (ATMs), the World Wide Web, electronic

commerce, and so forth. Such technologies as

electronic imaging, electronic data interchange

(EDI), and expert systems are having a major effect

on work-flow automation. Electronic imaging involves

scanning and digitizing documents (e.g., routine

reports, expense-account reimbursements, and

purchase orders) so that they can be stored in

a database and retrieved. EDI allows information to

be transmitted and shared electronically. Expert

systems are programs that incorporate knowledge of

experts concerning a particular set of decisions. Some

examples of automation in services are noted below.

Food Service — In Arby’s, Inc., an automated

ordering machine asks the customers whether they

intend to dine or take out and what they want,

keeps a running tally of the cost, and if the customer

does not order a drink, it suggests one. The machine

has reduced order times by about 50% and improved

accuracy. In McDonald’s restaurants, an automated

fry-maker drops fries into the basket, lowers the

basket into the cooking oil, shakes them

intermittently, and dumps the finished fries into a tray.

Retail Sales – Bar codes save time at the cash

register and automatically update the store’s

inventory records as items are sold. Electronic

commerce on the internet saves customers’ time and

reduces administrative and other retailing costs.

Financial Services – ATMs improve customer

service and reduce the costs of transactions;

electronic fund transfer systems have made possible

direct payroll deposit and debit cards; and optical

scanning in credit card and check processing

operations reduces processing time and improves

accuracy. Other applications include expert systems

for loan applications, insurance underwriting, and

security analysis.

Interorganizational Coordination – EDI speeds the

exchange of information between locations by

eliminating the time taken by regular mail and for

data entry. Buyers in a retail chain, for example,

decide which items are to be purchased and the

automated system can them sort them and place

orders with suppliers. Srinivasan, Kekre, and

Mukhopadhyay (1994) reported that EDI technology

facilitates the accurate, frequent, and timely exchange

of information to coordinate the movement of

materials between trading parties. Organizations

implementing EDI must cooperate closely and

establish coordination between the organizations

(Cohen and Apte 1997).

Office automation – Automation includes word

processing, spreadsheets, optical scanning, electronic

mail, teleconferencing, and voice mail.
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United States Postal Service – Optical character

systems can read and sort 5,000 pieces of mail per

hour as compared to 800 per hour for a human sorter

and 1,650 per hour for a mechanical sorter.

Healthcare – CAT scanners, laboratory diagnosis

machines, pacemakers, and expert systems help

physicians to make diagnosis and prescribe treatments.

Education – Automation includes distance learning,

bibliographic databases in libraries, and computer

assisted instructions.

Hospitality Industry – Automation includes revenue

management, electronic reservation systems, and

message and wake-up call systems.

Most parts of the framework described earlier for

automated manufacturing are also applicable to

automated services, as are the OR approaches used

for automated manufacturing. As in manufacturing, it

is crucial that a firm’s decisions about process design

and technology acquisition are consistent with its

strategy. The firm must make sure that its systems

and procedures are properly designed or redesigned

before introducing automation. A redesigned process

is not always simpler than its predecessor (Davenport

1993). For example, a new underwriting process

developed by Phoenix Home Life Mutual Insurance

(Hartford, Connecticut) substantially reduced under

writing time by making activities parallel rather than

serial. But the new system turned out to be much more

complex than the one it replaced.

In making decisions about automating service, one

must consider both tangible and intangible benefits

and risks and uncertainties associated with them.

To justify investment in electronic imaging, the firm

must assess its potential impact on work flow and the

performance of the overall system. Firms use a number

of multicriteria approaches to evaluate costs and

benefits. The United States Postal Service used

simulation to evaluate facilities and equipment for

automating postal operations (Cebry et al. 1992) and

a decision tree to choose between two alternatives for

one of its automation plans (Ulvila 1987). A number of

OR approaches, including queueing theory and

mathematical programming, are used for designing the

physical systems and operations planning, scheduling,

and control systems in automated services. Kolesar

(1984) described a queueing analysis of ATMs. Other

examples of OR studies on automation in the service

sector include studies to measure the effect of ATMs on

branch labor productivity, to manage investment

portfolios, to trade fixed-income securities, and to

process loan applications. The continuing importance

of improving productivity in the service sector will lead

to further automation and to OR studies to improve

automated systems.

Implementation: Human and Organizational
Dimensions

To implement automation, firms must change their

technology, their operations, the design of their

organization, and the tasks people perform. An

organization adopting and implementing automation

must often retrain workers, invest in computer hardware

and software, and deal with start-up problems until it

stabilizes themanufacturing process and the organization.

Workers operating automated systemsmust be highly

skilled. The organization must be designed to facilitate

interaction among many departments – manufacturing,

engineering, purchasing, marketing, and accounting. In

a changeover from conventional system, the firm must

plan for the redeployment of its workforce and the

restructuring of the organization. For such pervasive

organizational changes, the firm must bring all parties,

including topmanagement, all departments, professional

staff, union leaders, and workers, into the discussion.

Upton and McAfee (1998) suggested that

automation should be designed and implemented to

broaden the roles of workers instead of constraining

them. The implementation of automated technologies

in manufacturing inflicts stress on workers and this can

hinder the process. Karuppan and Schniederjans

(1995) suggested a number of steps for three different

categories of workers in automated design and

automated manufacturing. For CAD/CAM workers,

they suggest increased participation in project teams

and early and thorough training, preferably

cross-training in designing different products or

different tools and in programming a variety of

numerically controlled (NC) machines. This can

improve workers’ flexibility, enhance their ability to

handle fluctuating workloads, and break the

monotony in most work situations. For

manufacturing-control-system employees, they

suggest broadening the scope of workers’

responsibilities (articulating critical success factors
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for software enhancements and hardware upgrades and

redesigning the layout of the manufacturing floor

according to work flow), making their workstations

more private and personal, teaching them proper

posture in front of the screen, and investing in

equipment with ergonomic features. For NC machine

and robot operators, they suggest educating workers

about safety, ensuring proper ventilation, providing

adequate rest areas, cross training for different

NC machines or robots, and broadening their

responsibilities (machine programming, maintenance,

quality control, keeping and analyzing breakdown

records, evaluating the present equipment, and

formulating criteria for improvements). Many of the

steps suggested for implementation of automation in

manufacturing are also useful in facilitating

implementation of automation in services.

Concluding Remarks

Analysts routinely combine OR with the methods of AI

approaches to take advantage of their synergy. AI helps

automate the selection, development, and use of OR

tools and models through intelligent modeling and

decision support systems. For example, AI can be used

to determine whether a mathematical programming

model has a special structure that can be exploited by

a more efficient algorithm. In addition, AI can be used to

develop new models when knowledge about operations

is complex and qualitative, e.g., by combining expert

systems (intelligent computer programs that can solve

difficult problems using knowledge and inference) with

OR approaches in such areas as process planning and

scheduling.

See

▶Analytic Hierarchy Process

▶Artificial Intelligence

▶Decision Analysis

▶Health Care Strategic Decision Making

▶Multi-attribute Utility Theory

▶Networks of Queues

▶Operations Management

▶Retailing

▶ Scheduling and Sequencing

▶ Simulation of Stochastic Discrete-Event Systems
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Availability

Igor Ushakov

Qualcomm Inc., San Diego, CA, USA

Availability is a property of a system requiring it to

be ready for performing its required operation or task

at time t. (It is often also referred to as readiness.)

This is clearly related to the main system property,

reliability. The main measure of availability is the

availability coefficient, A(t), which is equal to the

probability of finding the system in the operational

state at the needed moment of time t.

If the process of the system’s functioning is

described in terms of an alternating sequence of

lifetimes (i.e., times to failure) {Xi} and repair times

{Yi}, then at any moment t, the availability coefficient

can be determined as

AðtÞ ¼ Pr t 2 Xi; i ¼ 1; 2; . . .f g:

For stationary processes, i.e., where t goes to1, the

stationary availability coefficient is defined as

A ¼ lim
t!1

AðtÞ ¼ E X½ �
E X½ � þ E Y½ � :

See

▶Reliability of Stochastic Systems
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B

Backward Chaining

An approach to reasoning in which an inference engine

endeavors to find a value for an overall goal by

recursively finding values for subgoals. At any point

in the recursion, the effort of finding a value for the

immediate goal involves examining rule conclusions

to identify those rules that could possibly establish

a value for that goal. An unknown variable in the

premise of one of these candidate rules becomes

a new subgoal for recursion purposes.

See

▶Expert Systems

Backward Kolmogorov Equations

In a continuous-time Markov chain with state X(t) at

time t, define pij(t) as the probability that X(t + s) ¼ j,

given that X(s)¼ i, s, t� 0, and rij as the transition rate

out of state i to state j. Then Kolmogorov’s backward

equations say that, for all states i, j and times t� 0, the

derivatives dpij(t)/dt ¼
P

k 6¼i rik pkj (t) � vi pij(t),

where vi is the transition rate out of state i, vi¼
P

j rij.

See

▶Markov Chains

▶Markov Processes

Backward-Recurrence Time

Suppose events occur at times T1, T2, . . . such that the

interevent times Tk � Tk�1 are mutually independent,

positive random variables with a common cumulative

distribution function. Choose an arbitrary time t.

The backward recurrence time at t is the elapsed

time since the most recent occurrence of an event

prior to t.

Balance Equations

(1) In probability modeling, steady-state systems of

equations for the state probabilities of a stochastic

process found by equating transition rates. For

Markov chains, such equations can be derived from

the Kolmogorov differential equations or from the fact

that the flow rate into a system state or level must equal

the rate out of that state or level for steady state to be

achieved. (2) In linear programming (usually referring

to a production process model), constraints that

express the equality of inflows and outflows of

material.

See

▶Markov Chains
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Balking

When customers arriving at a queueing system decide

not to join the line and instead go away because they

anticipate too long a wait.

See

▶Queueing Theory

Bandit Model

▶Multi-armed Bandit Problem

Banking
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Introduction

OR/MS techniques find applications in numerous and

diverse areas of operation in a banking institution.

Applications include the use of data-driven models to

measure the operating efficiency of bank branches

through data envelopment analysis, the use of image

recognition techniques for check processing, the use of

artificial neural networks for evaluating loan

applications, and the use of facility location theory

for opening new branches and placing automatic

teller machines (e.g., Harker and Zenios 1999).

A primary area of application is that of financial

risk control in developing broad asset/liability

management strategies. Papers that summarize these

areas are Zenios (1993), Jarrow et al. (1994), and

Ziemba and Mulvey (1998). This work can be

classified into three categories: (1) pricing contingent

cashflows, (2) portfolio immunization, and (3) portfolio

diversification.

Pricing Contingent Cashflows

The fundamental pricing equation computes the price of

a contingent cashflow as the expected net present value

of the cashflows, discounted by an appropriate discount

rate. In discrete time the pricing equation takes the form

PT ¼ ES

XT

t¼0

CS
tþ1

1þ rSt

( )

(1)

where E denotes expectation over the set of scenarios

indicated by index s, Cs
t denotes the cashflow received

at period t under scenario s, rSt is the spot rate for the

same period under the scenario s, and T denotes the

maturity date. The vector (rt) is known as the term

structure of interest rates. For risk-free cashflows, the

appropriate discount rate is the rate implied by the

Treasury yield curve. At any given point in time,

vector (rS0t) can be obtained using market data; this is

the current term structure scenario. However, the

temporal variation of the term structure is

stochastic. This stochastic interest rate behavior,

together with potential uncertainties in the level of

the cashflows (i.e., the scenarios CS
t ) are the primary

challenging issues behind the evaluation of (1).

One major strand of research is devoted to the

development of stochastic models for the term

structure of interest rates. Cox, Ingersoll and Ross

(1985) first described the interest rate dynamics via

the (continuous) diffusion process

dr ¼ kðm� rÞdtþ s
ffiffi
r

p
do (2)

Here, m is the mean and s the variance of the

stochastic interest rate process, and do is the

differential of a standard Wiener process. This model

exhibits mean reversion with a drift factor k(m � r),

and guarantees that interest rates remain positive. It is,

however, a single factor model: the term structure of

interest rates is represented by a single state variable,

namely the spot rate, r.

A two-factor model for bond prices was developed

by Brennan and Schwartz (1979). They considered two

state variables, the spot rate r and a long-term (consol)

rate L. The dynamics of these two variables are

described by

dr ¼ b1ðr; L; tÞdtþ a1ðr; L; tÞdo1

d L ¼ b2ðr; L; tÞdtþ a2ðr; L; tÞdo2

�

(3)
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Here, the drift factors are denoted by the functions

b1(r, L, t) and b2(r, L, t), and the variance terms are

expressed by a1(r, L, t) and a2(r, L, t). The elements

do1 and do2 are differentials of standard Wiener

processes.

Despite the elegance of continuous-time models,

since most practical applications deal with discrete

time cashflows, there is interest in the development

of discrete models. A popular choice of discrete

models is based on binomial lattices. Such models

typically assume that interest rates can move to

one of two possible states, up or down, from

period t to t + 1. The probability and magnitude of

each step are calibrated using the Treasury yield

curve and the volatility implied by the prices of

traded option instruments. Ho and Lee (1986) and

Black, Derman and Toy (1990) proposed some

fundamental models. For example, the Black,

Derman and Toy model described the spot rates by

the process

rst ¼ r0t ðktÞ
s:

Here rt denotes the spot rate that takes values rst
with possible states s ¼ 0,1, . . . , t; r0t is the

ground state; and kt is the volatility of the spot rate in

period t.

Models such as those described above generate the

discount rates used in the pricing of riskless cashflows.

For risky contingent cashflows (e.g., cashflows with

credit, default, lapse, prepayment, and other such

risks), the discount rates must be adjusted with

a suitable riskpremium. Such premiums can be

computed from the observed market prices of

actively traded securities with comparable risks

through the use of option adjusted analysis (Babbel

and Zenios 1992).

Another important modeling issue in evaluating

(1) is the forecasting of the cashflow stream (Ct).

Statistical analysis and econometric modeling

can be used in this context, especially when dealing

with the various complex securities that have emerged

in the 1980s and 1990s, like callable corporate bonds,

mortgage and other assetbacked securities, and a range

of insurance products. This kind of modeling was

represented for insurance products by Asay, Bouyoucos

and Marciano (1993), and for mortgage-backed

securities by Kang and Zenios (1992).

Portfolio Immunization

This is a portfolio management strategy for locking

in a fixed rate of return during a prespecified horizon.

It assumes that all risk in the returns of the securities

is systematic, that is, all risks are due to some common

underlying factor(s). Portfolio immunization aims

at eliminating this systematic risk. In the case of

fixed-income securities, systematic risk is primarily

due to changes in the term structure. Portfolio

immunization traditionally deals with this type of risk.

The actuary F.M. Reddington (1952) was the first

to introduce the notion of immunization, and

also specified conditions for immunization. Portfolio

immunization became a popular strategy in the

1970s at the aftermath of interest rate deregulation in

the U.S. and the volatility of the fixed-income markets

that followed. Fisher and Weil (1971) defined

immunization as follows:

A portfolio of investments is immunized for a holding
period if its value at the end of the holding period,
regardless of the course of rates during the holding
period, is at least as large as it would have been had the
interest rate function remained constant throughout the
holding period.

A portfolio of assets used to fund a stream of

liabilities can be immunized if the following

conditions are met: (1) The present value of the

assets is equal to the present value of the liabilities,

and (2) the duration of the assets is equal to the

duration of the liabilities. The first condition

guarantees that the target liabilities are funded if the

interest rates remain constant throughout the target

period. The second condition guarantees that assets

and liabilities have identical sensitivities to parallel

shifts of the interest rates. Hence, the target liabilities

will be funded even if the term structure experiences

parallel shifts. A general overview of portfolio

immunization was given in Fabozzi (1991). Linear

programming formulations are often used to structure

immunized portfolios, as in Zenios (1993).

Briefly, let ri be the yield of the ith security, and C it

be the cashflow of security i at time t. From the

fundamental pricing (1), obtain the price of the ith

security by

Pi ¼
XT

t¼1
Citð1þ riÞ�t:
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The sensitivity of the price—or dollar duration—of

security i is obtained by differentiating with respect to

cashflow yield, (∂P i /∂r i ), to get

ki ¼ �
XT

t¼1

tCitð1þ riÞ�ðtþ1Þ:

Given the present value PL and dollar duration kL of

its liabilities, an immunized portfolio can be structured

by solving the linear program

Maximize
X

i

kirixi

s:t:
X

i

Pixi ¼ PL

X

i

kixi ¼ kL

xi � 0

The objective function above maximizes an

approximation to the portfolio yield, obtained as the

dollar duration-weighted average yield of the

individual securities in the portfolio. Several

variations exist on the theme of portfolio

immunization. One extension is to structure

a portfolio that matches not only present value and

duration of assets with those of the liabilities, but that

also matches convexity, i.e., second partial derivatives

(∂2Pi /@r
2
i ) as well. Another approach is to compute the

sensitivity of the prices to more than one factor, than

just to parallel shifts of interest rates. The precise form

of these factors (i.e., parallel shifts, steepening of the

term structure, or term structure inversions) can be

obtained using factor analysis of market data. Factor

analysis of the term structure was first proposed for the

U.S. market by Litterman and Scheinkman (1988). The

use of linear programming for factor immunization

was proposed by Dahl (1993) and D‘Ecclesia and

Zenios (1994).

Portfolio Diversification

The principle of diversification — based on the adage

“do not put all your eggs in one basket” — remains

a universal strategy for portfolio management. It

provides a systematic way for dealing with residual

risk, assuming that residual risk is accurately

represented by a function of the mean and variance in

the return of the securities. It also assumes that

investors have an (implied) utility function over the

mean and variance of portfolio returns, favoring

portfolios with higher means and lower variances.

The efficient portfolios for an investor are those that

achieve the highest expected return for a given level of

variance or the smallest possible variance for

a given level of return. Such portfolios are called

mean-variance efficient portfolios. Mean-variance

optimization models were proposed by Markowitz in

the 1950s; Ingersoll (1987) gives an advanced

textbook treatment.

Minimum variance portfolios, i.e., portfolios with

the lowest level of variance for a given target expected

return, can be structured using nonlinear quadratic

programming. Define

Q as the covariance matrix {qij} between securities

i and j,

mi as the expected return of security i,

mp as the target expected return of the portfolio, and

Xi as the fraction of the portfolio in security i.

Assuming that no short sales are allowed (x i � 0

for all i), formulate the problem as

Minimize xTQx

s:t:
X

i

mixi ¼ mp

X

i

xi ¼ 1

xi � 0

Other constraints, like limits on portfolio turnover,

on minimum holdings, or limits of investments in

different market segments, etc., can be captured with

more complex formulations. These issues have been

addressed by Perold (1984). See also the articles

in Zenios (1993) and Ziemba and Mulvey (1998).

The major area of investigation in implementing

minimum variance models in practice is in the

estimation of the covariance matrix. Factor models

that relate the returns and variances of individual

securities to a set of common factors are widely used

in practice (Elton and Gruber 1984).

Mean-variance models have traditionally been used

in managing portfolios of equities and for strategic

asset allocation. By contrast, fixed-income portfolio

management has traditionally been based on the

principles of portfolio immunization. In the 1980s,
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however, there was a convergence of portfolio

management tools towards the ideas of portfolio

diversification. More complex fixed income securities

(e.g., corporate callable bonds, high-yield bonds,

mortgages and other asset-backed securities)

have very volatile returns. The notion of duration, as

a measure of sensitivity, is extremely restrictive

for such instruments. Mulvey and Zenios (1993)

advocated the use of diversification models for

fixed-income portfolios, indicating how pricing

models can be developed to generate scenarios of

holding period returns in order to calibrate the

models, and illustrating that such models produce

better results than traditional portfolio immunization

strategies.

Another development deals with the asymmetric

returns of fixed-income securities, especially those

with embedded options. Mean-variance models

are valid assuming a symmetric distribution of return.

Furthermore, they penalize both upside and downside

deviations from a target return. Development of more

practical models for dealing with asymmetric returns

and penalizing differentially upside from downside

risk include the mean-absolute deviation model of

Konno and Yamazaki (1991), the expected utility

optimization models of Grauer and Hakkanson

(1985), and the dynamic, multiperiod models of

Kallberg, White and Ziemba (1982), Mulvey and

Vladimirou (1992), and Golub et al. (1995).

See

▶Data Envelopment Analysis

▶ Facility Location

▶ Financial Engineering

▶ Financial Markets

▶Linear Programming

▶Neural Networks

▶ Portfolio Theory: Mean-Variance Model

▶Quadratic Programming

▶Utility Theory

References

Asay, M. R., Bouyoucos, P. J., & Marciano, A. M. (1993). An
economic approach to valuation of single premium deferred
annuities. In S. A. Zenios (Ed.), Financial optimization

(pp. 100–135). Cambridge: Cambridge University Press.

Babbel, D. F., & Zenios, S. A. (1992). Pitfalls in the analysis of
option-adjusted spreads.Financial Analysts Journal, 48, 65–69.

Birge, J., & Linetsky, V. (Eds.). (2007). Handbooks in

operations research and management science: Financial

engineering. Maryland Heights, MO: Elsevier Science.
Black, F., Derman, E., and Toy, W. (1990). A one-factor model

of interest rates and its application to treasury bond options.
Financial Analysts Journal, 33–39.

Brennan, M. J., & Schwartz, E. S. (1979). A continuous time
approach to the pricing of bonds. Banking and Finance

Journal, 3, 133–155.
Cornuejols, G., & Tutuncu, R. (2007). Optimization methods in

finance. Cambridge: Cambridge University Press.
Cox, J. C., Jr., Ingersoll, J. E., & Ross, S. A. (1985). A theory of

the term structure of interest rates. Econometrica, 53,
385–407.

Dahl, H. (1993). A flexible approach to interest-rate risk
management. In S. A. Zenios (Ed.), Financial optimization
(pp. 189–209). Cambridge: Cambridge University Press.

D’Ecclesia, R., & Zenios, S. A. (1994). Factor analysis and
immunization in the Italian bond market. Journal of Fixed
Income, 4, 51–58.

Elton, E., & Gruber, M. (1984). Modern Portfolio theory and

investment analysis. New York: Wiley.
Fabozzi, F. J. (Ed.). (1991). The handbook of fixed-income

securities. Homewood, IL: Business One Erwin.
Fisher, L., & Weil, R. (1971). Coping with the risk of

interest-rate fluctuations: Returns to bondholders from
naive and optimal strategies. Journal of Business, 44,
408–431.

Golub, B., Holmer, M., McKendall, R., Pohlman, L., &
Zenios, S. A. (1995). Stochastic programming models for
money management. European Journal of Operational

Research, 85, 282–296.
Grauer, R. R., & Hakansson, N. H. (1985). Returns on levered

actively managed long-run portfolios of stocks, bonds and
bills. Financial Analysts Journal, 41, 24–43.

Harker, P. T., & Zenios, S. A. (1999). Performance of financial
institutions: Efficiency, innovation, regulation. Cambridge:
Cambridge University Press.

Ho, T. S. Y., & Lee, S.-B. (1986). Term structure movements
and pricing interest rate contingent claims. Journal of

Finance, 41, 1011–1029.
Ingersoll, J. E., Jr. (1987). Theory of financial decision making.

Studies in financial economics. Lanham, MA: Row-man and
Littlefield.

Jarrow, R., Maksimovic, M., & Ziemba, W. (Eds.). (1994).
Handbooks in operations research and management

science: finance. Amsterdam: North Holland.
Kallberg, J. G., White, R. W., & Ziemba, W. T. (1982). Short

term financial planning under uncertainty. Management

Science, 28, 670–682.
Kang, P., & Zenios, S. A. (1992). Complete pre-payment models

for mortgage backed securities. Management Science, 38,
1665–1685.

Konno, H., & Yamazaki, H. (1991). A mean-absolute deviation
portfolio optimization model and its applications to the
Tokyo stock market. Management Science, 37, 519–531.

Litterman, R., & Scheinkman, J. (1988). Common factors

affecting bond returns. Technical report, Goldman, Sachs &
Co., Financial Strategies Group, September.

Banking 101 B

B

http://dx.doi.org/10.1007/978-1-4419-1153-7_212
http://dx.doi.org/10.1007/978-1-4419-1153-7_327
http://dx.doi.org/10.1007/978-1-4419-1153-7_1144
http://dx.doi.org/10.1007/978-1-4419-1153-7_341
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_668
http://dx.doi.org/10.1007/978-1-4419-1153-7_775
http://dx.doi.org/10.1007/978-1-4419-1153-7_838
http://dx.doi.org/10.1007/978-1-4419-1153-7_1096


Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7,
77–91.

Mulvey, J. M., & Vladimirou, H. (1992). Stochastic network
programming for financial planning problems. Management

Science, 38, 1643–1664.
Mulvey, J. M., & Zenios, S. A. (1994). Capturing the

correlations of fixed-income instruments. Management

Science, 40, 1329–1342.
Perold, A. F. (1984). Large-scale portfolio optimization.

Management Science, 30, 1143–1160.
Reddington, F. M. (1952). Review of the principles of life-office

valuations. Journal of Institute Actuaries, 78, 286–340.
Scott, F.R., Roll, R. (1989). Prepayments on fixed-rate

mortgage-backed securities. Journal of Portfolio

Management, Spring, 73–82.
Zenios, S. A. (Ed.). (1993). Financial optimization. Cambridge:

Cambridge University Press.
Ziemba, W. T., & Mulvey, J. M. (1998). Worldwide asset and

liability modeling. Cambridge: Cambridge University Press.

Bar Chart

▶Gantt Charts

▶Quality Control

Barrier Functions and their Modifications

Roman A. Polyak

George Mason University, Fairfax, VA, USA

Introduction

In the mid-1950s and the early 1960s, Frisch (1955)

and Carroll (1961) proposed the use of Barrier

Functions (BFs) for constrained optimization. Since

then, the BFs have been extensively studied, with

particularly major work in the area due to Fiacco and

McCormick (1968) who developed the Sequential

Unconstrained Minimization Technique (SUMT).

Currently, methods based on barrier functions make

up a considerable part of modern optimization theory.

Barrier Functions

Consider the constrained optimization problem

x� 2 X� ¼ arg minf f ðxÞjx ¼ 2 Og (1)

where O ¼ {x: gi(x) � 0, i ¼ 1, . . ., m}, f: ℜn ! ℜ

is convex, all gi:ℜ
n ! ℜ are concave,m> n, and X∗

is the set of values minimizing f(x) on O. Frisch’s

logarithmic barrier function F: int O � ℜ++ ! ℜ is

defined by formula

Fðx; mÞ ¼ f ðxÞ � mS ln giðxÞ (2)

and Carroll‘s hyperbolic barrier function C: int

O � ℜ++ ! ℜ is defined as

Cðx; mÞ ¼ f ðxÞ þ mS 1n g�1
i ðxÞ:

Assume that X∗ is bounded and ln t¼�1 for t� 0;

then for any m > 0, there exists a minimum of F(x, m)

in ℜ
n, denoted by

ðx; mÞ ¼ argminfFðx; mÞjx 2 <ng: (3)

Therefore

HxFðx; mÞ; mÞ ¼ Hf ðxðmÞÞ � Smg�1
i ðxðmÞÞHgiðxðmÞÞ

¼ Hf ðxðmÞÞ �P liðmÞHgiðxðmÞÞ
¼ HxLðxðmÞ; lðmÞÞ ¼ 0

(4)

where Lðx; lÞ ¼ f ðxÞ �
P

ligiðxÞ is the Lagrangian

for the problem (1). Also gi(x(m))> 0, i,¼ 1, . . .,m and

liðmÞ ¼ mg�1
i ðxðmÞÞ > 0; i ¼ 1; . . . ;m: (5)

Hence x(m) 2 int O, l(m) ¼ (li(m), i, ¼ 1, . . ., m)

2 ℜ
m

++ and due to (4)

LðxðmÞ; lðmÞÞ ¼ minfLðx; lðmÞjx 2 <ng:

Consider the dual problem to (Eq. 1)

l� 2 L� ¼ ArgmaxfdðlÞjl 2 <m
þg (6)

where d(l) ¼ min{L(x, l) | x 2 ℜ
n} and L∗ is the set

of maxima of d(l) on ℜ
m. The vector x(m) is interior

primal, the vector l(m) is interior dual, and due to

(Eq. 5) the primal-dual gap is

DðmÞ ¼ f ðxðmÞÞ � dðlðmÞÞ ¼ f ðxðmÞÞ � LðxðmÞ; lðmÞÞ
¼ SliðmÞgiðxðmÞÞ ¼ mm:
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Therefore

m! 0) DðmÞ ! 0) f ðxðmÞÞ
! f ðx�Þ and dðlðmÞÞ ! dðl�Þ:

The primal barrier trajectory {x(m)} and the

primal-dual trajectory {x(m), l(m)} are critical

elements in both SUMT (Fiacco and McCormick

1968) and recent developments in Interior Point

Methods (IPMs).

Interest in barrier and distance functions was

revived after N. Karmarkar (1984) published his

polynomial projective scaling method for linear

programming (LP) calculations. The connection

between Karmarkar’s method and the Newton log

barrier method for LP calculations was discovered by

Gill, Murray, Saunders, Tomlin and Wright (1986).

Since then the interest to BFs grew dramatically and

IPMs became the main stream in modern optimization.

Hundreds of papers and several books have been

published recently on the matter (see Nesterov and

Nemirovsky 1994; Roos et al. 1997; Wright 1997; Ye

1997).

The main idea of the path-following IPMs (see

Gonzaga 1992; Renegar 1988) is to replace in a sense

the unconstrained minimization problem (Eq. 3) by

one Newton step for solving the system Dx

F(x, m) ¼ 0. The basic path-following IPM consists

of performing a Newton step toward the solution x(m)

of the system

HxFðx; mÞ ¼ 0 (7)

followed by the barrier parameter update.

For a given m > 0 one finds an approxmation x for

x(m), the so-called “warm” start. The warm start

belongs to the area where Newton method for the

system (Eq. 7) is well-defined (Smale 1986), that is,

from x as a starting point the method

x̂ ¼ x� ðH2
xxFðx; mÞÞ

�1
HxFðx; mÞ (8)

converges to x(m) quadratically. The step of the

path-following method consists in replacing x by x̂

and m by m̂ ¼ mð1� a=
ffiffiffiffi
m

p Þ where a > 0 is

independent on m > n.

In the late 1980s Nesterov and Nemirovsky (1994)

discovered the self-concordant property of the function

F(x, m) for important classes of constrained

optimization problems including LP, QP, and QP

with quadratic constraints. A function f: int O ! ℜ

is self-concordant if it is convex, three times

differentiable, and for any x 2 int O any h 2 ℜ
n on

the interval I ¼ {t/x + th 2 int O}, the function

f: I ! R defined by f(t) ¼ fx, h (t) ¼ f (x + th)

satisfies the following inequality

’000ð0Þ � 2ð’00ð0ÞÞ3 2=
:

The self-concordant property guarantees that if x is

well defined for the systemDx F(x, m)¼ 0 then x̂will be

well defined for the system HxFðx; m̂Þ ¼ 0. The

polynomial complexity of the path-following method

for LP follows immediately from the fact that each

Newton step shrinks the primal-dual gap by

ð1� a=
ffiffiffiffi
m

p Þ, where a > 0 is independent on m.

The primal-dual algorithms have emerged as the

most important and useful class of IPMs (see Wright

1997). On the computational side, the most successful

implementation (see Lustig et al. 1992) is based on the

Mehrotra predictor-corrector algorithm (Mehrotra

1992). The BFs became the basic tool in the IPM, but

the BFs still have their inherent drawbacks: these

function, as well as their derivatives, do not exist at

the solution; and they grow infinitely large together

with the condition number of their Hessians when the

approximation approaches the solution and the area

where the Newton method is well-defined shrinks to

a point.

To eliminate the drawbacks, while still retaining the

nice properties of the barrier functions, modified

barrier functions (MBFs) were introduced in the early

1980s for both LP and NLP calculations (Polyak 1986,

1992, 1996). The MBFs are particular cases of the

Nonlinear Rescaling Principle, which consists of

transforming the objective function and/or the

constraints into an equivalent problem and using the

classical Lagrangian for the equivalent problem in

both theoretical analysis and numerical methods

(Polyak 1986).

Modified Barrier Functions

Consider the constrained optimization problem

giðxÞ � 0; i ¼ 1; . . . ;m (9)

Barrier Functions and their Modifications 103 B

B



is equivalent to m ln (m�1gi(x) + 1) � 0, i ¼ 1, . . ., m.

Therefore problem (1) is equivalent to

x� 2 X� ¼ Argminff ðxÞ=m lnðm�1giðxÞ þ 1Þ � 0;

i ¼ 1; . . . ;mg
(10)

where the constraints are transformed by

c(t) ¼ ln(t + 1), and rescaled by m ¼ 0. The classical

Lagrangian for the equivalent problem (10)

Fðx; l; mÞ ¼ f0ðxÞ � mSli1nðm�1giðxÞ þ 1Þ;

is the logarithmic MBF which corresponds to Frisch’s

log-barrier function (2). For any m > 0, the system (9)

is equivalent to

m½ðm�1giðxÞ þ 1Þ�1 � 1� � 0; i ¼ 1; . . . ;m

where the constraints transformation is given by

n(t) ¼ (t + 1)�1 � 1. The classical Lagrangian for the

equivalent problem is the hyperbolic MBF

Cðx; l; mÞ ¼ f0ðxÞ þ mSli½ðm�1giðxÞ þ 1Þ�1 � 1�;

which corresponds to Carroll’s hyperbolic barrier

function (3).

The MBF’s properties make them fundamentally

different from the BFs. The MBFs, as well as

their derivatives, exist at the solution, and for any

Karush-Kuhn-Tucker pair (x∗, l∗) and any m > 0,

the following critical properties hold:

P1: Fðx�; l�; mÞ ¼ Cðx�; l�; kÞ ¼ f0ðx�Þ;
P2: HxFðx�; l�; mÞ ¼ HxCðx�; l�; mÞ ¼ HxLðx�; l�Þ ¼ 0;

P3: Hxx Fðx�; l�; mÞ ¼ HxxLðx�; l�Þ
þ m�1HgTðx�ÞL�Hgðx�Þ;

HxxCðx�; l�; mÞ ¼ HxxLðx�; l�Þ
þ 2m�1HgTðx�ÞL�Hgðx�Þ:

where ^ ¼ diag(li ) and Dg(x) ¼ J[g(x)] is

the Jacobian of the vector-function g(x)T ¼ (gi (x),

i ¼ 1, . . ., m).

The MBF’s properties resemble that of augmented

Lagrangians (Bertsekas 1982; Golshtein and

Tretyakov 1974; Hestenes 1969; Mangasarian 1975;

Polyak and Tretyakov 1973; Powell 1969; Rockafellar

1973). One can consider the MBFs as interior

augmented Lagrangians. At the same time, MBFs

have some distinctive features, which make them

different from both quadratic augmented Lagrangian

(Rockafellar 1973) and nonquadratic augmented

Lagrangian (Bertsekas 1982). The MBFs’ properties

lead to the following multipliers method.

Let m > 0, l0 ¼ e ¼ (1, . . .,1) 2 ℜ
m and x0

2 Om ¼ {x|gi(x) � � m, i ¼ 1, . . ., m}. The

logarithmic MBF method consists of generating two

sequences {x s } and {ls }:

xsþ1 2 argminfFðx; ls; mÞjx 2 <ng (11)

and

lsþ1 ¼ diag½m�1giðssþ1Þ þ 1��1
ls: (12)

There is a fundamental difference between the

logarithmic MBF method and SUMT or other IPM

that is based on BFs. The MBF method converges to

the primal-dual solution with any fixed m > 0 for any

convex programming which has bounded optimal

primal and dual solutions (Jensen and Polyak 1994).

Moreover, for LP calculations, M. Powell proved that

for any fixed barrier parameter, the MBF method

produces such primal sequences that the objective

function tends to its optimal value and constraints

violations tend to zero with R-linear rate (Powell 1995).

If the second order optimality conditions hold then

the primal-dual sequence converges with Q-linear rate:

maxfk xsþ1 � x� k; k usþ1 � u� kg � cm k us � u� k
(13)

where c> 0 is the condition number of the constrained

optimization problem, which depends on the input data

and the size of the problem, but it is independent on

m > 0 (Polyak 1992).

The numerical realization of the MBF method leads

to the Newton MBF. The Newton method is used to

find an approximation for x s, followed by the Lagrange

multiplier update. Due to the convergence of the MBF

method under the fixed barrier parameter m > 0, both

the condition number of the MBF Hessian and the

area where the Newton method is well defined

remain stable. These properties contribute to both

numerical stability and complexity, and they lead to

the discovery of the “hot” start phenomenon in

constrained optimization. It means that from some
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point on for large classes of nondegenerate-

constrained optimization problems including LP, QP

and QP with quadratic constraints, the approximation

for the primal minimizer will remain in the Newton

area after each Lagrange multipliers update (Polyak

1992; Melman and Polyak 1996).

Due to (13) from the “hot” start on it takes only (ln

ln e�1) Newton steps to improve the primal-dual

approximation by a given factor 0 < q < 1 as soon as

m � qc �1. The neighborhood of (x∗, l∗) where the

“hot” start occurs can be characterized by the condition

number c > 0. Using the IPM with the Shifted Barrier

Function (SBF) S(x, m)¼ f (x)� m
P

ln(m�1 g i (x) + 1),

which is self-concordant for the same classes of

problem as F(x, m), it takes 0ð ffiffiffiffi
m

p
1n cÞ to reach the

“hot” start.

Combining the IPM based on SBF with the Newton

MBF method, it is possible to improve substantially

the complexity bounds for nondegenerate LP, QP and

QP with quadratic constraints. In particular, for

nondegenerate QP the total number of Newton step

sufficient to obtain an approximation for (x∗, l∗)

with accuracy e ¼ 2�L is

N ¼ 0ð
ffiffiffiffi
m

p
1n cÞ þ 0ððL� 1n cÞ 1n mÞ;

where L is the input length, c > 0 is the condition

number of QP and n < m (Melman and Polyak 1996).

The MBF method has an interesting dual

interpretation. Assuming that the dual function d (l)

is differentiable,

DdðlÞ ¼ �gðxðlÞÞ

where x(l) ¼ arg min{L(x, l)|x 2 ℜ
n} and

g(x(l)) ¼ (gi(x(l)), i ¼ 1, . . . , m), that is,

Hdðlsþ1Þ ¼ �gðxsþ1Þ: (14)

From the formula (12) for the Lagrange multipliers

update

giðxsþ1Þ ¼ mc0�1ðlsþ1
i =2lsi Þ

¼ mc�0ðlsþ1
i =2lsi Þ; i ¼ 1; . . . ;m

(15)

where c∗(s) ¼ inf{st � c(t)} ¼ 1 � s + ln s is the

Legendre transformation of c(t) ¼ ln(t + 1). Using

(15), rewrite (14) as

Hdðlsþ1Þ þ mSc�0ðlsþ1
i =lsi Þei ¼ 0

where ei ¼ (0, . . ., 1, . . .,0). Hence,

lsþ1 ¼ argmaxfdðlÞ þ mSlsic
�ðli=lsi Þ=l 2 <m

þg
¼ argmaxfdðlÞ � mDðl; lsÞ=l 2 <m

þg
(16)

where Dðl; lsÞ ¼
P

lsi’ðli=lsi Þ � a f -divergence

entropy-like distance with the kernel f ¼ �c∗. Note

that (16) is an IPM for the dual problem (see Teboulle

1993; Polyak and Teboulle 1997).

The formula (12) is in fact a method for solving the

dual problem (6). It can be rewritten as

lsþ1
i ð1� m�1Hlidðlsþ1

i ÞÞ ¼ lsi ; i ¼ 1; . . . ;m: (17)

Such a method is a well-known multiplicative

image reconstruction algorithm for positron emission

tomography (Eggermont 1990). On the other hand, it is

nothing but the implicit Euler method for numerical

solution of the following system of ordinary

differential equations

d li

dt
¼ m�1li

@ dðlÞ
d li

; lð0Þ ¼ l0; i ¼ 1; . . . ;m

and lim
t!1

lðtÞ ¼ l�, which is the solution of following

nonlinear complementarity problem

HdðlÞ � 0; l � 0

lTHdðlÞ ¼ 0:

See

▶Classical Optimization

▶Computational Complexity

▶ Interior-Point Methods for Conic-Linear

Optimization

▶Nonlinear Programming
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Basic Feasible Solution

A nonnegative basic solution to a set of (m � n)

linear equations Ax ¼ b, where m � n. The major

importance of basic feasible solutions is that, for

a linear-programming problem, they correspond to

extreme points of the convex set of solutions.

The simplex algorithm moves through a sequence of

adjacent extreme points (basic feasible solutions).

See

▶Adjacent (Neighboring) Extreme Points

▶Basic Solution

▶Linear Programming

Basic Solution

For a set of (m � n) linear equations Ax ¼ b (m � n),

with rank m, a basic solution is a solution obtained by

setting (n � m) variables equal to zero and solving

for the remaining m variables, provided that the

column vectors associated with the m variables form

a linearly independent set of vectors. The m variables

are called basic variables, and the remaining n � m
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variables that were set equal to zero are called nonbasic

variables. The vectors associated with the basic

variables form an (m � m) basis matrix B.

See

▶Linear Programming

Basic Variables

The set of variables corresponding to the columns of

a basis matrix in a linear system Ax ¼ b.

See

▶Basic Solution

▶Basis

▶Linear Programming

Basis

A nonsingular square matrix B obtained by selecting

linearly independent columns of a full row rank

matrix A. The matrix B is then a basis matrix for the

system Ax ¼ b. The components of x associated with B

are called the basic variables, and the remaining

components are called the nonbasic variables. The term

basis also refers to the set of indices of the basic variables.

See

▶Basic Variables

▶Linear Programming

Basis Inverse

The inverse of a basis matrix.

See

▶Basis

▶Linear Programming

Basis Vector

A column of a basis matrix.

See

▶Basis

▶Linear Programming

Batch Shops

▶ Production Management

Battle Modeling

Dean S. Hartley III

Oak Ridge National Laboratory, Oak Ridge, TN, USA

Introduction

The ideal battle model completely, accurately, quickly,

and easily predicts the results of any postulated battle

from the initial conditions. Several factors prevent the

existence of an ideal battle model.

One factor is computational complexity. For

example, medical planners could use such a battle

model to determine the size of treatment facilities, the

breakdown of physician skills needed, and the medical

supply inventory requirements. It is reasonable to

suppose a battle model would track individuals and

their separate wounds for engagements of a dozen

participants on a side; however, maintaining that

level of detail for engagements of tens of thousands

of people would be prohibitively expensive in time and

hardware requirements. Thus the requirement for

complete predictions competes with the requirements

for generality and speed of computation.

The second factor preventing the existence of an

ideal battle model is the fact that not enough is known

about battle dynamics to model it accurately. Where

components can be modeled accurately (e.g., firing

disciplines for weapons and probabilities of kills

given hits), it is not known how the components fit

together (e.g., when do soldiers fire their weapons and
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how do conditions modify their ideal performance).

Further, it is not known when, where, and why battles

are joined or when and how they stop. The ignorance is

not absolute, but is relative to the desired accuracy for

the battle models.

A third factor also proceeds from ignorance. It is not

known which initial conditions are significant for

determining battle results. In general, those battle

models that deliver massive details about the model

results require extremely large quantities of input data.

Thus, perceived accuracy of results is a competitor of

ease and rapidity of use.

Battle Model Classification

Although the ideal battle model cannot be built, many

individual battle models can be built, each conceived

to fulfill a particular set of objectives. These models of

combat may be classified by their position along

several dimensions; however, they all have one

feature in common, and that is the object that is

modeled is some aspect of combat. These dimensions

are listed below with illustrative examples of positions

along the dimension.

DOMAIN Land; air; naval; space;
combinations.

SPAN (size of conflict) Platoon battle; division combat;
theater-level combat; global combat.

SCOPE (type of
conflict)

Politico-military; special operations;
low intensity conflict; urban warfare;
conventional warfare; theater-level
nuclear, chemical, and biological
conflict; strategic nuclear conflict.

SCORING (adjudication
topics and methodology)

Measures of merit: attrition,
movement, tons of bombs dropped,
supplies delivered, victory;
methodologies: weapon weights
(simple or complex, as in anti-
potential potential, which uses
eigenvalues to value weapon by the
value of the weapons it can kill),
process simulations.

RANDOMNESS Deterministic or stochastic
calculations.

COMBAT
ACTIVITIES AND
FORCE
COMPOSITION
(military assets and
mission areas)

Small-arms; armor; aircraft; artillery;
engineer; logistics; signal; command
and control; intelligence; surface
navy; submarine; electronic warfare;
space assets; missiles.

(continued)

LEVEL OF
RESOLUTION OR
DETAIL (smallest item
modeled as a separate
entity)

Bullet; soldier; tank; platoon;
company; battalion; brigade;
division; corps.

ENVIRONMENT One-dimensional terrain
(pistonmodel); two-dimensional
terrain (including ocean or air),
latitude-longitude or hexagonal grid-
based; three-dimensional terrain;
weather; day-night; smoke.

PURPOSE (design
purpose or users’
purpose)

Training; weapon system
employment; force composition
decisions; operations plans testing.

LEVEL OF TRAINING
(training audience)

Individual skills; platoon leaders’
skills; division staff skills;
commanders’ skills; combinations.

MODEL TREATMENT
OF TIME

Linear code with no time
representation or algorithmically
computed time (generally analytic
combat models); time-stepped
simulations; event-driven
simulations; expected value models;
stochastic simulations.

HUMAN
INTERACTION

Data preparation and output
interpretation; interruptible with
modification and restart; computer-
assisted human participation on one
or more sides; continuous human
participation on all sides.

SIDEDNESS One-sided (e.g., strategic nuclear
strike damage effects); two-sided;
multi-sided; hard-coded identical
properties for each side, hard-coded
different properties for each side
(e.g., U.S. vs Soviet-style tactics), or
data-driven properties for each side.

COMPUTER
INVOLVEMENT

None; moderate; complete.

SIZE COMPUTER
REQUIRED

PC; mini-computer; mainframe;
supercomputer; peripheral equipment
required; large run-times, small run-
times.

EXTERNAL
INTERACTIONS
(interfaces with parts of
the real world)

None; distributed processing;
interfaces with weapon simulators;
interfaces with real equipment; sand
tables, scripting.

Battle modeling started the first time someone

scratched a battle plan in the dirt and tried to

conceive of the consequences. Sand tables, with

miniature troops and landscaping, added discipline

to the modeling process; however, the modeling

remained essentially qualitative. Sand table models

were used as war games, in which opposing players

took turns moving the pieces and used rules to
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adjudicate the results of the moves. Modern war

games include sand table games and computer

adjudicated games.

Attrition Laws

Lanchester (1916) introduced the concept of

a quantitative model of attrition. (Osipov in Russia

and Fiske in the U.S. introduced similar concepts at

virtually the same time; however, most Western works

refer to Lanchester’s Laws and Lanchestrian attrition.)

Lanchester showed that one could express the value of

concentration of forces precisely, using mathematics,

and thus evaluate what forces would be needed for

victory before a battle. Engel (1954) provided what

many took to be proof that Lanchester’s square law

was correct.

Lanchester’s simple concepts have been elaborated

to the extent that Taylor (1983) required two volumes to

discuss the many uses and implications of Lanchester

theory. The computational power of computers has

permitted this elaboration. First, heterogeneous

Lanchester equations could be solved without undue

manual labor. Once, heterogeneous equations were

admitted, the coefficients could be represented as

functions of other factors, such as weather, firing

discipline, and distance to the target. Bonder and

Farrel (in Taylor 1983) introduced rigorous thinking

into this area by observing direct fire activities and

creating a mathematical model of those activities.

Dupuy (1985) argued that there are many important

factors in combat that were not being included in the

physics-based combat models. Morale, training, and

leadership are at least as important as force sizes

according to Dupuy. He proposed a model based on

quantified judgments of these and other “soft” factors.

His Quantified Judgment Model (QJM) stirred

considerable controversy. Regardless of the merits of

the QJM itself, the quantified judgments of soft factors

is currently receiving more favorable reviews. The

difference in public opinion at home during the

Vietnam and Gulf wars and the impact on troop

morale and the outcomes of the wars provides some

justification for increased emphasis on soft factors.

Computers also made the computation of stochastic

processes possible. The differential equations of

Lanchester attrition were viewed as approximations

to a random process model of the actual killing

process that should be correct for large numbers.

Stochastic duels addressed the results for small

numbers. Ancker and Gafarian have made significant

contributions in this area (Ancker 1994).

Helmbold has made contributions to both the

theoretical and the practical aspects of battle

modeling. His empirical studies of attrition (1961,

1964), breakpoints (1971), and movement (1990)

injected the element of reality into the sometimes

rarefied atmosphere of theoretical battle modeling.

Hartley (1991) continued in this vein with results

indicating that the best description of attrition (using

a homogeneous approximation) is not the Lanchester

square or linear law, but an intermediate form between

the linear law and a logarithmic law. Speight (1995,

1997) and Speight and Rowland (1999) have continued

the process, introducing duels (mini-battles) and

simulations of combat exercises (trials) and showing

the impact of firing on dead targets on the formulation

of attrition equations.

With computer battle models also came

a proliferation of structural types of models. Battle

models involving anti-submarine warfare have

a peculiar requirement of finding the enemy before

the battle can be prosecuted. Search theory must be

implemented in such models, just as it is used in actual

battles or exercises (Shudde 1971). In some types of

war, the proper allocation of resources or mix of

strategies provides an easily defined variable (e.g.,

strategic nuclear targeting or allocation of combat air

forces to mission types). Because game theory deals

with optimal strategies considering both sides’ options,

it provided an obvious technique for addressing the

problem and providing prescriptive models (Bracken

et al. 1974; HQ USAF/SAMA 1974).

Dimension, Data, and Output

In earlier times, land warfare models were one-

dimensional: the forward edge of the battle area

(FEBA) advanced or retreated. More sophisticated

versions allowed one-dimensional structures for each

sector (piston-models). More powerful computers now

permit two-dimensional representations of the

battlefield, using either x, y (or latitude, longitude)

coordinates or (rectangular or hexagonal) grid

structures. Some models are now three-dimensional,

having terrain elevation and playing the effects of
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flying aircraft at different altitudes. [See, for example,

the Research Evaluation and Systems Analysis

(RESA) model (Naval Ocean Systems 1992), which

plays aircraft at different altitudes and submarines at

different depths].

Most large models have extremely large input and

output data sets and require sophisticated database

management systems to keep track of the data. These

large output data sets also stress the human ability to

understand the results. Sophisticated graphics are

necessary adjuncts to most large models today. The

graphics are required to define realistic scenarios and

to understand the process and results of the model.

Advances in computer power have resulted in the

capability for human interfaces that are qualitatively

different from past capabilities. Such interfaces include

real-time depictions of a battlefield from a human

perspective and auditory and tactile interfaces. The

first full-scale example of this kind of interface, called

virtual reality, in a battle model was SIMNET (HQ US

Army Armor School 1987). SIMNET is a network of

tank and other vehicle simulators, each participating in

a shared virtual battlefield. Work is proceeding to tie

virtual reality battle models to other, more conventional

battle models. The success of connecting simulators has

motivated recent work in connecting interactive training

models. The connection of these battle models permits

distributed processing and cost sharing among users.

The history of battle modeling has not been a smooth

process of constant improvements. It has been beset

with controversies in many areas. Some of the

controversies have involved the standard resource

allocation question: where do you spend the money?

One of the first of these concerned documentation.

Early (1960–1970s) computer models were usually

undocumented and, because of frequent modifications,

had virtually indecipherable code. The need for proper

documentation was obvious but the need for better (or at

least more complex)models appeared overriding.While

the readability of the documentation of today’s models

may be variable, most models are documented.

Verification, Validation, and Accreditation

One controversy probably began with the first model

that produced a result someone did not like: is themodel

right? During the 1960s and early 1970s, it was said

there were two kinds of generals: those for whom

computer printout was the gospel and those who would

believe nothing produced by a computer. The problem

in dealing with the first type was in conveying that there

were caveats. All results had to be retyped manually to

disguise their origin for the second type of general.

Today’s generals (and politicians) grew up with

computers. They want to understand to what extent the

results are believable. They require verification,

validation, and accreditation. Although progress is

being made, no one knows how to completely verify,

validate, or accredit the general battle model.

Other Controversies

There have also been technical controversies in battle

modeling. Notable controversies have included the

proper interpretation (and thus use) of the differences

between the Lanchester linear and square laws, the

connection between attrition and advance rates (if any),

the value of force ratios, the connection between

deterministic Lanchester formulations and stochastic

attrition formulations and which should be used.

There is a precept that states that a force ratio of 3-1,

attacker-defender is required for a successful attack.

Numerous studies have criticized this precept, yet it is

still heard.

There are disagreements about the proper level of

detail in deterministic models, despite agreement on

the principle that what is appropriate depends on the

uses to be made of a model. High resolution models of

large span require tremendous quantities of data and

run slowly. One camp advocates small, fast “roughly

right” models as better than high resolution models.

Another camp protests that such models will miss the

critical points that differentiate the issues in question.

The stochastic process camp protests that both the

large, high resolution and the small, low resolution

models are not grounded in the reality of stochastic

battles, and cannot thus be even roughly right.

There have also been disagreements about the

proper uses of models. At one time prescriptive battle

models were popular (finding optimal strategies, where

the definition of optimal varied with the model). Lately

they have been out of favor. Complaints about the

misuse of models have ranged from the use of models

designed for other purposes and failing to understand

the resulting mismatch of assumptions to charges of

advocacy modeling. Advocacy modeling, in the
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pejorative sense, entails fiddling with input parameters

until a combination is found that gives the desired

result. Most large models have sufficient numbers of

parameters with sufficiently tenuous connections to

physical factors that plausible values can be found

that generate almost any result.

One controversy involves the discovery that very

simple deterministic battle models can exhibit chaos

(Dewar et al. 1991). The question of the impact of

chaos on the more complex models that are actually

used is obvious. Most issues are settled by point

estimates. For example, suppose the impact of

weapon X is being investigated. Model runs with

25% X, 50% X, 75% X, and 100% X are executed.

The runs with 75% X and 100% X are found to have

superior results. It is assumed that such results are valid

for values between 75% and 100%. If the results are

chaos driven, such an assumption is unwarranted.

The question has not been finally answered; however,

investigations with one of the currently used complex

models indicates that any uncertainty due to

chaotic behavior in that model is no larger than

a few percent. Because this is within the uncertainty

that was already present in the model, the impact of

possible chaotic behavior was claimed to be minimal

(Herndon 1993).

Concluding Remarks

Despite all controversy, battle modeling remains the

only method of answering some questions and is widely

used. Battle models are used to inform decisions on

weapons’ procurement issues (balancing costs against

effectiveness), to test strategies and tactics, and to train

personnel. Battle training models provide inexpensive

tools for training commanders because the large

numbers of combat personnel maneuver in the

computer rather than on the ground. As military

funding is reduced, this supplement to traditional

training methods has become indispensable. New

models continue to be created as the requirements for

greater scope arise. The insertion of information

technology into combat has necessitated new models

that can discriminate among the effects of different

Command, Control, Communications and Intelligence

(C3 I) systems, such as the Joint Warfare System

(JWARS) for analysis and the Joint Simulation System

(JSIMS) for training.

See

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Documentation

▶Game Theory

▶Gaming

▶Lanchester’s Equations

▶Military Operations Research

▶Model Accreditation

▶Operations Research Office and Research Analysis

Corporation

▶RAND Corporation

▶ Search Theory

▶Validation

▶Verification
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Bayes Rule

When a decision maker receives data bearing on an

uncertain event, the probability of the event can be

updated by computing the conditional probability of

the uncertain hypothesis given the new evidence. The

derivation of the revised or a posteriori probability can

be easily derived from fundamental principles and its

discovery has been attributed to the Reverend Thomas

Bayes (1763). The result is therefore known as Bayes

rule or theorem:

PrfH1 Ej g ¼
PrfE H1j g PrfH1gP
i

PrfE Hij g PrfHig

In this equation, H1 refers to the specific, uncertain

hypothesis entertained by the decision maker, the {Hi}

are the complete set of possible hypotheses, and E

refers to the new evidence or information received.

See

▶Bayesian Decision Theory, Subjective Probability,

and Utility

Bayesian Decision Theory, Subjective
Probability, and Utility

Kathryn Blackmond Laskey

George Mason University, Fairfax, VA, USA

Introduction

In every field of human endeavor, individuals and

organizations make decisions under conditions of

uncertainty and ignorance. The consequences of a

decision and their value to the decision maker often

depend on events or quantities which are unknown to

the decision maker at the time the choice must be

made. Such problems of decision under uncertainty

form the subject matter of Bayesian decision theory.

Bayesian decision theory has been applied to problems

in a broad variety of fields, including engineering,

economics, business, public policy, and artificial

intelligence.

A decision-theoretic model for a problem of

decision under uncertainty contains the following

basic elements:

• A set of options fromwhich the decision maker may

choose;

• A set of consequences that may occur as a result of

the decision;

• A probability distribution that quantifies the

decision maker’s beliefs about the consequences

that may occur if each of the options is chosen; and

• A utility function that quantifies the decision

maker’s preferences among different consequences.

Subjective Probability

Decision theory applies the probability calculus to

quantify a decision maker’s beliefs about uncertain

events or quantities, and to update beliefs upon receipt

of additional information. De Finetti (1974) showed that

any decision maker who acts on degrees of beliefs not
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conforming to the probability calculus can be exploited

by a series of gambles guaranteed to result in a net loss.

Such a bet is called a dutch book. The Dutch Book

Theorem and other related derivations of probability

from axioms of rationality have been used to justify

probability as a calculus of rational degrees of belief

(De Groot 1970; Pratt et al. 1965).

Bayes Rule

When a decision maker receives information bearing

on an uncertain hypothesis, degrees of belief are

updated by computing the conditional probability of

the uncertain hypothesis given the new evidence.

The equation expressing how beliefs change with

new evidence has been attributed to the Reverend

Thomas Bayes (1763) and is known as Bayes Rule.

The odds-likelihood form of Bayes Rule is:

PrfH1 Ej g
PrfH2 Ej g

¼ PrfE H1j g PrfH1g
PrfE H2j g PrfH2g

In this equation, H1 and H2 refer to two uncertain

hypotheses entertained by the decision maker and E

refers to the new evidence or information received by

the decision maker. Bayes rule quantifies how

evidence is used to obtain the relative posterior

probabilities Pr{Hi|E} of the hypotheses given the

evidence. The ratio of posterior probabilities is

determined by two factors. One is the ratio of prior

probabilities Pr{Hi}: all other things being equal,

the stronger the prior belief in H1 relative to H2,

the stronger the posterior belief in H1 relative to H2.

The other is the likelihood ratio, or ratio of

the probabilities Pr{E|Hi} of the evidence given each

of the hypotheses. Again, all other things being

equal, the better H1 accounts for the evidence relative

to H2, the stronger the posterior belief in H1 relative

to H2.

Other Interpretations of The Probability
Calculus

There has been considerable debate about how to

interpret the concept of probability. The term

Bayesian, after Bayes Rule, is used to refer to the

subjective interpretation. A subjective probability

distribution represents an individual’s degrees of

belief about the likelihood of uncertain outcomes.

Alternative interpretations of probability include the

classical, the logical, and the frequentist approaches

(Fine 1973). Much of standard statistical theory is

based on the frequentist approach. Frequentists argue

that probability models are appropriate only for

repeatable phenomena exhibiting inherent

randomness. For such phenomena, it is argued, there

exist objectively correct probabilities intrinsic to the

process producing the uncertain outcomes.

Subjectivists apply probability theory to any

outcomes about which a decision maker is uncertain.

For subjectivists, no objectively correct probabilities

need exist. Different decision makers are free to have

different opinions about the probability of an outcome.

The only constraint subjective theory places on

a probability distribution is that it be coherent, that is,

that degrees of belief conform to the probability

calculus. Within this constraint, decision makers are

free to choose any probability distribution to model

their uncertainty about a problem. Its inherent

subjectivity has been a persistent criticism of the

subjectivist approach. This is often of little practical

consequence for problems that can be said to exhibit

inherent randomness. The subjectivist draws inferences

about the posterior distribution of the unknown

parameter, while the frequentist draws inferences

about the distribution of the data given different values

of the unknown parameter. Nevertheless, it can be

shown that when there are sufficient data to draw

accurate inferences, the subjectivist and the frequentist

will usually agree on the implications of the results.

Thus, the major difference of practical import between

the subjectivist and the frequentist is their attitudes

toward problems for which there are too little data to

estimate parameters accurately or for which the

assumption of intrinsic objective frequencies is

problematic. The frequentist maintains that probability

models are in-appropriate for such problems; the

subjectivist argues that probabilities are appropriate

and that it is legitimate for rational people to disagree

until there are sufficient data to bring them to agreement.

Utility Theory

Decision theory quantifies preferences by a utility

function. It is assumed that the decision maker can
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assign a numerical utility to each possible consequence

of each option being entertained. Consequences with

higher utilities are preferred to consequences with

lower utilities. When there is uncertainty, the

decision maker selects the option for which the

expected value of the utility function is the largest.

For some problems it is customary to deal with

losses, or negative utilities. Smaller losses are

preferred to larger losses.

The concept of utility appears to have been first

introduced by Daniel Bernoulli (1738) in his solution

to a puzzle known as the St. Petersburg Paradox.

Bernoulli considered the problem of what price to

pay for the opportunity to play the following gamble.

A fair coin (probability 0.5 of landing heads) is tossed

repeatedly until the first head appears. If the first head

appears on the nth toss, the decision maker receives

a prize of 2n units of currency. The decision maker’s

expected monetary prize is

2ð0:5Þ þ 22ð0:5Þ2 þ 23ð0:5Þ3 þ . . . ;

which is infinite. A decision maker who maximized

expected monetary value should be prepared to pay an

arbitrarily large sum of money for the opportunity to

play this gamble. As Bernoulli noted, most people

would be willing to pay only a modest amount.

Bernoulli suggested that the resolution to this

apparent paradox was that a prize’s worth to

a decision maker was a nonlinear function of the

monetary value of the prize. For example, replacing

2n with log 2n in the above equation yields a finite

expected monetary prize.

Von Neumann and Morgenstern (1944) were the

first to present a formal axiomatic development of

utility theory. They defined the utility of

a consequence in terms of a comparison between two

options, one sure and one uncertain. The sure option is

the consequence itself; the uncertain option is a lottery

between two standard reference prizes, one worth

more and one worth less than the consequence in

question. If the reference prizes are assigned utility

one and zero, then the utility of the consequence in

question is defined as the probability at which the

decision maker is indifferent between the two

lotteries. Several similar axiom systems can be

shown to lead to the maximization of expected utility

as a principle of rational decision making (De Groot

1970; Pratt et al. 1965).

Concluding Remarks

It has been observed that people systematically violate

the axioms of expected utility theory in their everyday

behavior. Some of these violations can be reversed by

informing people of the implications of their stated

preferences. In other cases, many people resist changes

to their original judgments. Even when the decision

maker regards expected utility theory as a norm of

rational behavior, it cannot be assumed that unaided

judgments will be consistent with the theory. The field

of decision analysis applies theories and methods from

decision theory and the psychology of human

information processing to construct decision theoretic

models for practical decision problems (Clemen 1996).

Interest has been growing in decision theoretic

formulations of statistical problems. For example, to

formulate an hypothesis testing problem, one defines

a prior probability for the null and alternative

hypotheses. One also defines losses associated with

accepting a false alternative hypothesis and rejecting

a true null hypothesis. The optimal decision rule is to

accept or reject the hypothesis according to which

decision yields the lower posterior expected loss

given the observed sample. Similarly, decisions of

whether to gather information and how large

a sample to draw can be formulated as decision

problems that consider both the cost of gathering

information and the benefit of obtaining the

information. Some problems that are quite complex

when viewed from a frequentist perspective become

straightforward when viewed from a Bayesian

perspective. Examples include hierarchical models

and problems of missing data (Gelman et al. 1995).

An area of application is the field of intelligent

systems (Haddawy 1999). Utility theory is being

applied to planning and control of reasoning in expert

systems. Diagnostic expert systems based on

probability theory have achieved performance

comparable to human decision makers (e.g., the

Pathfinder system for diagnosing lymph node

pathology, Heckerman 1991). Perhaps the most

important and challenging aspect of decision analysis

is the creative process of model formulation. Decision

theory takes options, consequences, and their

interrelationships as given. Automated decision

model generation is an open research area of great

importance to application of decision theory to the

field of intelligent systems (Haddawy 1994).
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See

▶Decision Analysis

▶Decision Problem

▶Decision Trees

▶Expert Systems

▶Utility Theory
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Beale Tableau

A modification of the simplex tableau arranged in

an equation form such that the basic variables and

the objective function value are expressed explicitly

as functions of the nonbasic variables. This tableau

is often used when solving integer-programming

problems.

See

▶Linear Programming

▶Tucker Tableau

Bellman Equation

▶Bellman Optimality Equation

Bellman Optimality Equation

Dynamic programming equation that the optimal value

(or cost-to-go) function must satisfy, according to the

principle of optimality. One simple form is the

following finite-action, finite-state, finite-horizon

version for a minimization problem:

fnðiÞ ¼ mina cnði; aÞ þ SjpijðaÞfnþ1ðjÞ
� �

;

where fn(i) represents the optimal cost-to-go function

in state i for stage (period) n, cn(i,a) is the one-period

cost in stage n for state i and action a, and pij(a) is the

probability of transitioning from state i to state j when

action a is taken.

See

▶Approximate Dynamic Programming

▶Dynamic Programming

▶Markov Decision Processes

Benders Decomposition Method

A procedure for solving integer-programming

problems that have a few integer variables. These

so-called complicating variables, when given specific

values, enables the resulting problem to be readily

solved as a linear-programming problem.

See

▶ Integer and Combinatorial Optimization

▶Linear Programming
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Best-Fit Decreasing Algorithm

▶Bin-Packing

Bidding Models

▶Auction and Bidding Models

Big M Method

Amethod to drive artificial variables out of the basis in

the simplex algorithm, by imposing a sufficiently

large, finite penalty M for using these variables.

See

▶Artificial Variables

▶Linear Programming

▶ Phase I Procedure

▶ Phase II Procedure

▶ Simplex Method (Algorithm)

Bilevel Linear Programming

Bilevel linear programming (BLP) is a hierarchical,

decentralized, multilevel mathematical programming

problem in which the objective functions and

constraints are linear. It can be stated in terms of

upper and lower problems as follows:

Maximize
x

f1ðx; yÞ ¼ c1xþ d1y

where y solves:

Maximize
y

f2ðx; yÞ ¼ c2xþ d2y

subject to

Axþ By � b

x; y � 0

where c1, c2, d1, d2, and b are constant vectors, A and B

are constant matrices; x and y are vectors of the

decision variables of the upper and lower problems,

respectively; f1 and f2 are the objective functions of the

upper and lower problems, respectively.

See

▶Linear Programming
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Binary Variable

A variable that is restricted to be equal to 0 or 1. Binary

variables are often used to handle logical, nonlinear

conditions associated with a problem whose

constraining conditions are linear.

See

▶ Integer and Combinatorial Optimization

▶ Integer-Programming Problem

Bin-Packing

Nastaran Coleman1 and Pearl Wang2

1Federal Aviation Administration, Washington,

DC, USA
2George Mason University, Fairfax, VA, USA

Introduction

The bin-packing problem is concerned with the

determination of the minimum number of bins that are
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needed to pack a given set of input data items. The

problem has numerous applications in operations

research, computer science, and engineering, where the

items and bins to be packed can be of varying shapes or

multi-dimensional in size. These applications include

industrial manufacturing, container loading, stock

cutting, vehicle routing, television commercial

scheduling, job scheduling on multiple processors, file

backup creation in removable media, integrated circuit

manufacturing and fault detection, and location testing

in linear circuits. Since the bin-packing problem is

known to be NP-hard (Garey and Johnson 1979), it is

of interest to find efficient heuristics that obtain near-

optimal solutions to the problem.

Problem Definition

The classical one-dimensional bin-packing problem

(1DBPP) is defined as follows: Given a positive bin

capacity C and a list of items L ¼ (p1, p2, . . ., pn),

where pi has size s(pi) satisfying 0 � s(pi) < C,

determine the smallest integer m such that there is

a partition of L ¼ B1 [ B2 [ . . . [ Bm where the sum

of the sizes of the items pi 2 Bj do not exceed the

capacity C. Each set Bj is usually viewed as the

contents of a bin of capacity C. In much of the

literature, C is taken to be 1.

Several versions of two-dimensional bin-packing

problems have also been studied. For example, if L is

a set of rectangles pi having heights hi and widths wi,

one type of bin packing problem requires that the

rectangles of L be packed into a single

two-dimensional bin of width C and infinite height.

The goal is to determine a minimum height packing

of the pieces into this bin. These problems are referred

to as strip-packing problems.

For an alternative form of the two-dimensional

packing problem, the rectangles of L are to be packed

into a minimum number of rectangular bins.

A common version of the problem concerns packing

a list of squares into m unit squares with the objective

being to minimizem. When the rectangles to be packed

are not square, restrictions might be made on the types

of allowable placements of the rectangles within the

bins. Depending on the application, rotations of the

items may not be permitted; packings may also

require that the items are placed parallel to the sides

of the bins.

The items being packed in two-dimensional

problems do not need to be rectangular in shape.

Circular and polygonal shapes may also be packed

into circular or rectangular bins.

Three-dimensional bin-packing problems have

goals that are similar to their lower dimensional

counterparts. For example, given the set L of

rectangular prisms having widths wi, height hi, and

depth dj, a common problem is to pack the items into

a minimum number of bins of width W, height H, and

depth D. In the case of container packing, the pieces

are not rotated and must be placed parallel to the sides

of the bins.

Cutting stock problems are variants of bin packing

problems because the amount of wasted space within

stock sheets is to be minimized while the pieces are

being cut from stock sheets. Similarly, if just a single

bin of fixed size is to be packed and each item is

characterized by both a volume and a value, the

problem of maximizing the total value of a subset of

items that can fit into the bin by volume is known as the

knapsack problem.

Approximation algorithms for bin-packing

problems were among the earliest algorithms studied

in the literature. In the 1970s, it was shown that

near-optimal solutions could be guaranteed for some

frequently used one-dimensional packing techniques.

Since then, many heuristics have been proposed for

obtaining approximate solutions to both the one and

two-dimensional problems for sequential and parallel

models of computation. Three-dimensional problems

were initially studied to a lesser degree, but recent

work now appears regularly in the literature. The

performance of a given heuristic (i.e., the

computational time and resources needed to find

a packing), as well as the quality of the packing that

is constructed by the heuristic are important

considerations that have been analyzed by many

researchers.

Surveys of many classical bin-packing algorithms

can be found in Coffman et al. (1996). A bibliography

of cutting and packing research was presented by

Sweeney and Paternoster (1992), while a more recent

typology that characterizes cutting and packing

problems is described in W€ascher et al. (2007).

Recent probabilistic analyses of approaches for

solving one-dimensional bin-packing problems are

discussed in Coffman et al. (2000). Two-dimensional

packing problems are surveyed by Lodi et al. (2002)
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and meta-heuristic algorithms for strip packing

problems are reviewed in (Hopper and Turton 2001).

Recent work that addresses three-dimensional packing

problems includes (Martello et al. 2000), (Faroe et al.

2003), and (Parreño et al. 2008). Heuristic approaches

for solving irregular and polygonal packing problems

are presented by Jakobs (1996) and Burke et al. (2010).

Algorithms for solving the problem on various

parallel models of computation can be found in

Anderson et al. (1989), Fenrich et al. (1989), Berkey

(1990), and Coleman and Wang (1992). The EURO

Special Interest Group on Cutting and Packing

maintains a website for research activities related to

cutting and packing.

Characterizations of Bin-Packing Algorithms

Many types of bin-packing algorithms have been

proposed and analyzed for both sequential and parallel

systems. Sequential heuristics can be classified as either

on-line or off-line algorithms. On-line algorithms assign

data items to bins in the same order as originally input,

without utilizing any global knowledge of the data list.

For example, the Next-Fit packing and Sum of Squares

heuristics are on-line algorithms that perform

one-dimensional packing. Off-line algorithms

preprocess the data, usually by sorting. Well-known

examples are the First-Fit Decreasing and Best-Fit

Decreasing algorithms. Alternatively, other methods

may preprocess the input data by partitioning the items

by size into subintervals, and then pack the data using

those sub-intervals. These techniques are described in

more detail below.

Approximation algorithms for solving the

one-dimensional bin-packing problem on various

models of parallel computation have been reported. It

has been shown that several frequently used sequential

bin packing strategies such as First-Fit Decreasing are

P-Complete. Thus, it is unlikely that these heuristics

can be parallelized into efficient algorithms for the

theoretical Parallel Random Access Machine

(PRAM) model of computation. However, other

well-known sequential strategies such as Harmonic

packing can be parallelized efficiently. In the

previous decade, experimental studies of similar

heuristics were performed on Single-Instruction,

Multiple-Data (SIMD) and Multiple-Instruction,

Multiple-Data (MIMD) parallel computers.

Theoretical Studies

Performance metrics have been formulated as a means

to compare these different packing algorithms when

executed on random data. Theoretical analyses

typically include worst-case and average-case

packing performance of the heuristics. The

asymptotic worst-case performance can be defined as

the limiting ratio of an algorithm’s worst instant

packing to its optimal packing. For example, if A(L)

and OPT(L) are the number of bins packed by an

algorithm A and the optimal number of bins needed

for a list L, respectively, then the asymptotic

performance ratio can be defined as

R1A ¼ inf r � 1 : for someN > 0; AðLÞ=OPTðLÞ� rf
for all L with OPTðLÞ � Ng

Two measures of average-case packing

performance that have been studied are the expected

values E(RN) and E(U) where RN is the ratio of the

average number of bins packed by the algorithm to the

average size of all data items and U is the difference

between these quantities. Further, an algorithm is often

said to exhibit perfect packing if E(R)¼ 1, where E(R)

is the limiting distribution of E(RN), or when

EðUÞ ¼ O
ffiffiffiffi
N

p� �

:

These metrics are studied analytically as well as by

simulation. The input data are usually assumed to

come from a uniform distribution U[a, b]. Coffman

et al. (2000) introduced the perfect packing theorem

and show that the optimal expected wasted space for

a random list is either o(n), o(n0.5) or o(1). These

researchers have also shown that the average case can

differ substantially between discrete and continuous

uniform distributions.

An alternative measure of packing performance is

to determine the expected waste of the packing. If

Ln(F) denotes a list of n items drawn according to

a probability distribution F and PA
n ðFÞ denotes

a packing resulting from the application of algorithm

A, then the expected waste is defined as

EWA
n ðFÞ ¼ E W PA

n ðFÞ
� �� 	

where expectation is taken

over the random variable Ln(F).

Theoretical studies of bin packing problems are

often aimed at determining whether asymptotic

approximation schemes can be constructed. In this
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case, researchers seek to determine if for every e > 0,

there is a polynomial time algorithm Ae having an

asymptotic approximation ratio of 1þ e.

Some One-Dimensional Packing Heuristics

The Next-Fit algorithm packs one-dimensional items

into one-dimensional bins in the simplest fashion. The

data items are processed one at a time, beginning with

p1, which is put into binB1. If item pi is to be packed and

Bj is the highest indexed nonempty bin, then pi is placed

into bin Bj if it fits into Bj; that is, pi + size(Bj) � C.

Otherwise, a new bin Bj+1 is started and pi is placed into

it. In this manner, each successive piece is packed into

the most recently used bin, and previously packed bins

are not considered. Next-Fit is a fast on-line algorithm

whose time complexity is O(n). Its worst-case

performance ratio is bounded by 2, and its average

performance by 3/2. Variants of Next-Fit have been

proposed and include Next-Fit-Decreasing, Next-1-Fit,

and Next-K-fit. The basic approach is also used

to obtain level-oriented heuristics for solving

two-dimensional bin packing problems.

The Harmonic packing algorithm begins by

partitioning the unit interval into the set of intervals

Ik ¼ (1/(k + 1), 1/k], 1 � k < m and Im ¼ (0, 1/m].

The bins are divided into m categories and an Ik-bin

packs at most kIk data. The packing of each Ik piece

into an Ik-bin is done using the Next-Fit Algorithm. At

any given time, an active list of all unfilled Ik-bins is

kept. The Harmonic algorithm has a worst-case

performance bound of 1.69; some modified versions

of the approach have been shown to have lower

performance bounds.

The Sum-of-Squares (SS) algorithm is an online

method for packing items with integral sizes into bins

of capacity C. It has time complexity O(nC). If the

amount of unpacked space in a bin is called its gap, g,

and N(g) is the number of bins in a current packing

with gap g, then this algorithm puts an item pi into a bin

such that after placing the item, the value of
PC�1

g¼1 NðgÞ
2
is minimized.

Theoretical analysis of this algorithm demonstrates

that for any perfectly packable distribution F, that

EWSS
n ðFÞ ¼ O

ffiffiffiffi
N

p� �

and if F is a discrete uniform

distribution U(j, C) where j < C � 1, then

EWSS
n ðFÞ ¼ Oð1Þ. For all lists L, it is further

demonstrated that SS(L) < 3OPT(L). Csirik et al.

(2006) survey other online algorithms including

randomized variants of sum-of-squares. Bender et al.

(2007) propose two variants of the sum-of-squares

algorithm and Seiden (2002) presents a survey as well

as an online algorithm based on the Harmonic approach.

The First-Fit (FF) heuristic packs each successive

data item pi into the lowest indexed bin Bj into which it

fits. When this is not possible, a new bin is created.

Thus, it is necessary to maintain a list of all partially

filled bins. For the worst-case, average case, and lower

bound performance of First-Fit, it has been shown that

the numberof bins used by this algorithm is 17/10

OPT(L) � 2, where OPT is the number of bins used

by the optimal solution. Xia and Tan (2010) decreased

the upper bound for the asymptotic performance ratio

to 17/10 OPT + 7/10 for First-Fit and for the absolute

performance ratio– to 12/7 OPT. The time complexity

of First-Fit is O(n log n).

If the items are initially sorted in non-increasing

order before packing proceeds, the heuristic is

referred to as First-Fit Decreasing, and the

performance bound decreases to 11/9 OPT + 6/9.

Other algorithms that are based on this approach

include Best-Fit (where the “best” bin is chosen if

there is more than one possibility), Best-Fit

Decreasing, Worst-Fit, Almost Worst-Fit, Revised

First-Fit, and Modified First-Fit Decreasing bounded

by 71/60OPT + 1.When the data items are drawn from

a uniform distribution, then E(A(L)) � n/2 ¼ O(n) for

the First-Fit Decreasing and Best-Fit Decreasing

algorithms. Asymptotic polynomial-time

approximation schemes show that it is possible to

find a solution for any 0 < e � 1=2 in polynomial

time using at most ð1þ 2eÞOPT þ 1 bins.

Some Multi-Dimensional Packing Heuristics

Two-Dimensional Packing

The Two-Dimensional Bin-Packing Problem requires

packing a finite set of small rectangles into the

minimum number of rectangular bins without

overlapping. The problem is strongly NP-hard, and

has several industrial applications. Other variants

of two-dimensional bin-packing problems occur

in real-world applications, especially in the

manufacturing industries. Additional constraints may

include orientation where items can be rotated by 90	
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or have to stay fixed. For example, rotation is not

allowed when the items are articles to be paged in

newspapers.

Researchers have applied one and two-phase

algorithms that make use of upper and lower bounds

on the number of bins needed to pack the input

rectangles. These approaches are often integrated into

greedy heuristics and tabu searches. One-phase

algorithms directly pack the items into the finite bins.

Two-phase algorithms start by packing the items into

a single strip, i.e., a bin having width W and infinite

height. In the second phase, the strip solution is used to

construct a packing into finite bins. Lodi et al. (2002)

survey advances obtained for the two-dimensional bin

and strip packing packing problems, with emphasis on

exact algorithms whose goal is to find an optimal

solution, as well as effective heuristic and

metaheuristic approaches.

Level-oriented packing heuristics pack rectangles

into a single two-dimensional bin (or strip) that has

infinite height. In these approaches, the rectangles to

be packed are first ordered by non-increasing height.

The packing is constructed as a sequence of levels,

whose heights are defined by the heights of the first

rectangles placed in the respective levels. The Next-Fit

or First-Fit approaches can be used to define and fill

these levels of the bin. The asymptotic performance

bounds of the Next-Fit Decreasing Height (NFDH) and

First-Fit Decreasing Height (FFDH) heuristics are

2 and 1.7, respectively. Figure 1 illustrates these

packing heuristics.

Similar approaches in which the heights of the

levels are preset by a parameter yield a variety of

shelf heuristics, where these levels can be packed in

a similar fashion. Next-Fit Shelf and First-Fit Shelf are

examples of these heuristics. Their corresponding

execution times are O(n) and O(n2). If the parameter

that dictates the shelf heights is defined by r, then these

methods have asymptotic performance bounds of

2/r and 1.7/r, respectively.

Bottom-Left (BL) packing approaches pack

rectangles into an infinite height bin by successively

placing each item into the bottom-most, left-most

position in which it fits without overlapping any

rectangles that have already been packed. If the items

are preordered by non-increasing width, then the worst

case bound of this heuristic indicates that the height of

the packing does not exceed twice the height of an

optimal packing. The algorithm can be implemented

in O(n2) time and a sample packing is shown in Fig. 2.

Alternative methods may divide the set of items

being packed into sublists that are used to obtain

a split packing. In this case, the infinite height bin is

also divided into subregions where one-dimensional

heuristics are used to pack the rectangles. Classical

techniques include Split-Fit, Mixed Fit, and

Up-Down (see Fig. 3) which require O(n log n) time.

Performance ratios of 2, 1.33, and 1.25, respectively,

have been proven for these approaches. Other similar

methods appear in the literature. Coffman and Shor

(1993) discuss asymptotic average-case analysis for

two-dimensional bin-packing.

One particular heuristic that uses a split packing

approach addresses the problem of packing squares

into a two-dimensional strip of unit width. The

squares whose widths are greater than 1/2 are first
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stacked along the left edge of the strip in order of

decreasing width. Starting at the height,

H1=2 ¼
P

wi>1=2 hi, where the sum of the sizes of

packed squares exceeds 1/2, the remaining squares

are stacked along the right edge of the strip in order

of decreasing width. This stack slides downward until

it either rests on the bottom of the strip, or a square in

the right stack comes in contact with a square in the left

stack, whichever occurs first. Finally, all the squares

lying entirely above H1/2 are repacked into two stacks,

one against the left edge of the strip and the other

against the right edge. This is done in decreasing

order of size, placing each successive square on the

shorter of the two stacks already created. A sample

packing is shown in Fig. 4. It can be shown for this

algorithm, that E(A(L)) ¼ E(OPT(L)) + O(1).

Whenmulti-dimensional objects are to be packed into

a minimum number of multidimensional bins, the vector

packing approach can be used. This technique is a direct

generalization of the one-dimensional problem. For

example, if rectangles are to be packed into square bins,

then the only types of packing that are permitted are

those where the rectangles are diagonally placed

corner-to-corner across the bins. In general, if a vector

packing algorithm is such that no two nonempty bins can

be combined into a single bin, then the ratio of the

number of bins packed to the optimal solution does not

exceed d + 1, where d is the number of dimensions.

Extensions of the First-Fit and First-Fit Decreasing
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heuristics to this multi-dimensional case have yielded

approaches whose asymptotic worst case ratio is

d + 7/10 and d + 1/3, respectively.

Metaheuristic algorithms have been used

extensively in recent years to solve two-dimensional

bin-packing problems. In short, metaheuristic methods

are general frameworks that try to improve the

direction of the search for the best solution, thus

finding a better solution at every iteration. There are

no guarantees of finding an optimal solution, but many

metaheuristics implement some form of stochastic or

linear optimization. Genetic algorithms, simulated

annealing, and tabu search are examples of

metaheuristic algorithms.

Hopper and Turton (2001) review several

approaches developed to solve two-dimensional

packing problems with metaheuristic algorithms.

Genetic algorithms (GAs) were first used in the

mid-1980s to solve strip and bin-packing problems.

Many employ a two-step approach referred to as

a hybrid genetic algorithm. Encoded solutions

corresponding to physical layouts are manipulated by

GAs that evaluate the solutions using decoding

algorithms. In some cases, these decoded layouts

correspond to non-overlapping packings that are

obtained using a bottom-left packing heuristic. Other

researchers have used a sliding principle that gives

priority to the downward shifting of the rectangle

being packed for the decoding routine.

Other genetic algorithms incorporate layouts

directly into the encoding technique. For example,

postfix strings corresponding to packing layouts can

be manipulated by GAs. In the example shown in

Fig. 5, the A B + and CD* substrings correspond to

placements of two rectangles that are horizontally or

vertically adjacent, respectively.

It is also possible for genetic algorithms to operate

without encodings. An initial layout can be modified

by rotating, translating, and/or relocating an item

(or subset of items) in the layout. These operators

correspond to hill-climbing and the mutation and

recombination features of GAs. Hopper and Turton

(2001) compare some meta-heuristic algorithms to

two-dimensional random search and heuristic

packing routines. The comparison is made in terms of

the solution quality and the computation time for

a number of packing instances of different sizes.

Simulated annealing, tabu search and exact

algorithms have also been used to compute solutions

to two-dimensional bin and strip packing problems.

See (Lodi et al. 2002) for a survey of some of these

approaches. A simulated annealing approach

was first applied to a pallet loading problem

(i.e., a three-dimensional packing problem that has

been reduced to its two-dimensional footprint).

Simulated annealing is a hill-climbing approach

where solutions that are worse may be accepted as

dictated by a cooling schedule which is determined

by a given probability function. For the pallet loading

problem, the number of feasible solutions for a box is

equated with multiples of the item length.

Neighborhoods are defined by moving each item in

a solution to another position (with some

restrictions). As a result, the simulated annealing

heuristic would allow both legal and illegal packings

as it attempted to improve the solution quality. The

objective function must then minimize any overlaps

that occur in the packing layout.
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The tabu search strategy utilises a search scheme

and a candidate neighborhood that is consturcted from

a feasible solution: a heuristic recombines a subset of

items currently packed into k different bins along with

one item packed into a bin that is likely to be emptied.

The value of k is also updated during the search to

escape from local optima. A mechanism (i.e., the use

of memory) must be built into the tabu search to

prevent the heuristic from returning to recently

examined packings.

Lower bounds are used to guide search strategies in

exact algorithms whose goal is to find optimal

solutions. For example, in one branching scheme,

each node in the search tree represents a subset of

packed rectangles which define a set of corner points

for the bottom-left placement of unpacked items (see

Fig. 6). The use of bounds to traverse a search tree

corresponds to the selection of branches to investigate

or ignore.

The average performance of exact algorithms and

metaheuristics are typically evaluated through

extensive computational experiments using

benchmark data sets as described in (Parreño et al.

2008). Other more recent two-dimensional and

three-dimensional examples include Bekrar and

Kacem (2009) and Puchinger et al. (2010).

Three-Dimensional Packing

Algorithms for obtaining heuristic solutions to

three-dimensional packing problems in which boxes

are to be packed into a minimum number of identical

three-dimensional bins have been characterized

as either local-search or construction heuristics

(Faroe et al. 2003). Analgous to the two-dimensional

case, local-search methods iteratively seek better

packings of the boxes by examining neighborhoods

of solutions, while constructive heuristics add boxes

to a packing using strategies such as First-Fit or

Best-Fit. Examples of recent heuristics that have

employed these methods include guided local search

(GLS), a two-level tabu search (TS2PACK), and

a greedy randomized adaptive search procedure

(GRASP) that is combined with a variable

neighborhood descent (VND) structure.

The GLS strategy has roots in constraint-

satisfaction applications and uses memory (typical of

tabu search methods) to guide the search of the

solution space by augmenting the objective function

with penalties for previously visited solutions. It

begins with an upper bound calculated from an initial

greedy solution and then iteratively removes one bin

from the feasible solution. Translation of boxes within

one bin or between bins defines the neighborhood

of the local search algorithm. To speed up the search

process, some boxes are temporarily fixed in position.

As before, the objective function additionally reflects

the total volume of an overlap between boxes.

The TS2PACK heuristic uses a first-level tabu

search that addresses the optimality of the packing

problem and a second-level tabu search that finds

feasible solutions for the items assigned to the bins.

An initial solution is computed using a Next-Fit

Decreasing packing based on box volumes and the

extreme points that are identified for a given

box – these indicate positions where an additional

item can be accommodated with respect to the given

box. Then the TS2PACK heuristic iteratively discards

the bin with the worst fitness function value (defined

as the weighted sum of the volume used by the items in

the bin and the number of items). Each discarded item

is packed into one of the remaining bins which yields

the maximum fitness function value (i.e., minimizes

the height of the new packing with bin size constraints

relaxed). If this packing is not feasible due to bin size

violations, a second heuristic is employed to optimize

the packing with respect to the bin size constraints.

This heuristic is a tabu search that uses interval graphs

to represent the layout. By manipulating the graphs,

alternate layouts can be generated that correspond to

moving boxes by locating them in different positions.

The packing performance of these and other

heuristics is compared against the GRASP/VND

Bin-Packing, Fig. 6 Defining corner points
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approach summarized in (Parreño et al. 2008). Large

sets of test cases are studied that include both two and

three-dimensional problem instances. The results

indicate that this method obtains comparable or better

solutions to the other algorithms.

The GRASP/VND heuristic is an iterative method

that combines a randomized constructive phase and an

improvement phase. The constructive phase iteratively

fills one bin with boxes by considering the maximal

spaces created by placing boxes near corners of the bin.

Boxes to be packed are selected based on best-volume

or best-fit criteria. This is repeated until all boxes are

packed into bins.

Attempts may be made to improve the packing by

moving boxes in the bins that have first been sorted by

volume. Four improvementmoves were proposed: move

the last k percent of boxes, move a percentage of boxes in

every bin that has below average occupancy, move

different parts of the bins to be emptied, or combine

subsets of boxes in complementary bins and refill both

with the remaining boxes.

The application of improvements (i.e., the

movements of the chosen boxes) was dictated by

several strategies. One of these applied the VND

strategy to explore the solution neighborhood defined

by the four possible moves. If the GRASP/VND

heuristic appeared to be stuck at a local solution,

diversification iterations are applied in the

constructive process which require packing the most

frequently remaining boxes first.

Recent Theoretical Studies of Multi-Dimensional

Packing

Several theoretical analyses have been performed for

multi-dimensional bin-packing heuristics that provide

performance guarantees for packing quality as well

as for algorithm execution time. One example is the

recent work related to polynomial time approximation

schemes (APTAS) for the three-dimensional

strip packing problem. It has been shown that

APTAS’s exist for one-dimensional bin-packing and

two-dimensional strip packing problems, but an

APTAS will only exist for two-dimensional

bin-packing problems if P ¼ NP. These results are

reviewed by Bansal et al. (2007) who also develop

two approximation schemes: one for packing

three-dimensional strips with arbitrarily sized boxes

and a second for packing boxes with square bases.

Their first algorithm initially applies a Harmonic

transformation (i.e., using intervals similar to those

defined in the 1DBPP Harmonic heuristic) to the box

widths, then it creates slabs of items to form

two-dimensional strip packing instances. The

two-dimensional strip is then cut into slices to

produce new items that are placed on top of each

other in the height dimension of a three-dimensional

strip. The authors prove that this algorithm has an

asymptotic approximation ratio that is arbitrarily

close to the Harmonic number T1 
 1.69.

The second algorithm A packs of set I of

three-dimensional boxes with square bases so that the

height of the packing does not exceed

ð1þ 12eÞOPTðIÞ þ OðKÞ where K ¼ e�Oð21=eÞ.
An APTAS for packing d-dimensional cubes into

a minimum number of unit cubes has been developed

by Correa and Kenyon (2004) who also present

a scheme for packing rectangles into at most OPT

square bins whose sides have length 1þ e and OPT

denotes the minimum number of unit bins required to

pack the rectangles.

Parallel Algorithms

Many parallel algorithms have been proposed and

studied for solving the cutting stock and knapsack

variants of the bin-packing problem. Heuristics have

also been proposed that obtain approximate solutions

to the one-dimensional bin-packing problem on

various models of parallel computation.

For the shared-memory Exclusive-Read

Exclusive-Write PRAM model of computation,

a heuristic based on First-Fit Decreasing has been

proposed which runs in O(log n) time on n log n

processors (Anderson et al. 1989). This approach

divides the data items into two groups. Items in the

first group are partitioned into sublists that are packed

into “runs” of bins. The bins are then filled using items

in the second group. The algorithm relies on parallel

prefix, merging, and parenthesis matching operations,

and has a worst-case performance bound of 11/9.

Practical one-dimensional bin-packing algorithms

(including parallelizations of the Harmonic

algorithm) have also been proposed and implemented

on parallel architectures such as systolic arrays, SIMD

arrays, and MIMD hypercubes. Quantitative studies
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and theoretical analyses have been performed on some

of these approaches. The Systolic packing algorithm,

for example, has a worst-case performance bound of

1.5 and executes in O(n) time. Similar results were

reported in Berkey (1990).

Coleman and Wang (1992) formulated an online

heuristic for massively parallel systems that used

interval partitioning. The average case behavior

of the heuristic could be predicted when the input

have a symmetric distribution. The method is

asymptotically optimal, yields perfect packings, and

achieves the best possible average case behavior with

high probability.

See

▶Combinatorics

▶Computational Complexity

▶Cutting Stock Problems

▶Heuristics

▶Knapsack Problem

▶Metaheuristics

▶ Parallel Computing
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Bipartite Graph

A graph or network whose nodes can be partitioned

into two subsets such that its edges connect a node in

each partition.

See

▶Assignment Problem

▶Graph Theory

▶Network Optimization

▶Transportation Problem

Birth-Death Process

A stochastic counting process that satisfies the following

is called a birth-death process: (1) changes from state

n (sometimes written more generally as state En) may

only be to states n + 1 or n� 1 (i.e., changes can only be

�1 unit); (2) the probability of a birth (death) occurring

in the “small” interval of time, (t, t + dt), given that the

process was in state n at the start of the interval, is

lndtþ o dtð Þ½mndtþ o dtð Þ�, where o(dt) is a function

going to 0 faster than dt. Such processes are in fact

Markov chains in continuous time. The system size

of an M/M/1 queueing system is an example of

a birth-death process where ln ¼ lðn ¼ 0; 1;

2; . . .Þ and mn ¼ mðn ¼ 1; 2; . . .Þ. Markov chains;

Markov processes.

Bland’s Anticycling Rules

A set of pivot rules, the application of which to

linear-programming (degenerate) problems, prevents

cycling in the simplex algorithm. Their basic

principle is that whenever there is more than one

eligible candidate in selection of the variable entering

the basis, or the variable leaving the basis, the

candidate with the smallest index is chosen.

See

▶Anticycling Rules

▶Cycling

▶Degeneracy
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Blending Problem

The linear-programming problem of blending raw

materials, for example, crude oils, meats, to produce

one or more final products, for example, fuels,

sausages, so that the total cost of production is

minimized. The problem is subject to restrictions on

material availability, blending requirements, quality

restrictions, etc.

See

▶Activity-Analysis Problem

▶ Stigler’s Diet Problem

Block Pivoting

The process of entering several nonbasic variables

simultaneously into the basis in the simplex algorithm.

See

▶ Simplex Method (Algorithm)
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Block-Angular System

A linear system of equations for which its matrix

of coefficients A can be decomposed into k separate

blocks of coefficients Ai, where each Ai represents

the coefficients of a different set of equations.

This structure typically represents a system consisting

of k subsystems whose activities are almost

autonomous, except for a few top-level system

constraints whose variables couple the k blocks of

the subsystems. Such systems can also have a few

variables external to the blocks that couple the blocks.

See

▶Dantzig-Wolfe Decomposition Algorithm

▶Large-Scale Systems

▶Weakly-Coupled Systems

Block-Triangular Matrix

A matrix which is lower (upper) triangular except for

a number of blocks along the diagonal.

See

▶Triangular Matrix

Bonferroni Inequality

Result in basic probability that provides a general

lower bound on the intersection of events E1,. . ., En:

Pð
\n

i¼1
EiÞ � 1�

Xn

i¼1

PðEc
i Þ:

Note that the events need not be independent (nor

mutually exclusive).

Applied in stochastic simulation output analysis

to make statements about the overall confidence level

of multiple performance measures (simultaneous

confidence intervals). For example, for three output

performance measures each with 99% confidence

levels, the overall confidence level would be at

least 97%.

Bootstrapping

In forecasting, the term bootstrapping refers to models

that have been developed by regressing an individual’s

(or group’s) forecasts against the inputs that the

individual used to make the forecasts.

See

▶ Forecasting

▶Regression Analysis

Bootstrapping: Resampling Methodology

Linda Weiser Friedman1 and Hershey H. Friedman2
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Introduction

Researchers typically encounter many situations in

which parametric statistical techniques are less than

ideal. The t-statistic, for example, assumes that the data

were sampled from a normal distribution. Of course,

much real-world data follow distributions that are

far from normal, and may in fact be quite skewed.

Suppose a researcher is investigating data that is

known to follow an exponential distribution. Clearly,

it would take an extremely large sample and a great

deal of manipulation (e.g., averages of averages), for

the central limit theorem to apply. In many cases, there

is no parametric test for the measurement of interest

because the sampling distribution of that measurement

may be unknown and thus there would be no tractable

analytic formulas for estimating such measures,

for example, the difference between two medians

(Mooney and Duval 1993, p. 8).
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There are a number of nonparametric statistical

techniques that do not rely on distributional

assumptions and often may be used in place of

the more traditional parametric tests. Many

nonparametric techniques, however, work only with

the median as a measure of central tendency (e.g.,

Mann-Whitney-Wilcoxon). This may present

a problem for researchers who are more interested in

the mean as the measure of interest.

The bootstrap statistic (Efron 1981, 1982;

Mooney and Duval 1993) is a nonparametric,

computer-intensive resampling technique, which

makes no distributional assumptions and may be used

for estimation and hypothesis testing. The bootstrap,

jackknife, and other related resampling methods are

beginning to generate interest among management

scientists. Indeed, these tools can be very useful for

the type of data that is frequently encountered by

management scientists.

The Bootstrap Method

With traditional parametric inference, a sample is taken

and a statistic, often the samplemean, is computed. This

statistic is assumed to follow a known distribution

(normal, t-distribution, F-distribution, w2-distribution,

etc.), which then allows the researcher to perform

hypothesis tests and/or estimate confidence intervals.

With bootstrapping, which was developed mainly to

determine the standard error for other types of

estimates (Efron and Tibshirani 1991), the sample

itself is used to construct a sampling distribution by

selecting from it many resamples, or pseudo-samples.

Resampling from the sample is done with

replacement. Thus, it is like sampling from an infinite

population with a composition that exactly matches that

of the sample that was originally drawn. After

resampling a great number of times one may construct

a sampling distribution for a statistic of interest, such as

the mean, median, or any percentile. This distribution,

which is entirely based on the original sample and not on

any theoretical distribution, may then be used to test

hypotheses about measures of interest and to construct

confidence intervals.

To illustrate the method, two illustrative examples

are presented. The first is a hypothesis test for a sample

from a single population; the second, for samples from

two presumably different populations.

Example I A company claims that the average life of

a part that it manufactures is at least 10 hours.

A sample of 16 parts is taken in order to test this

claim. The sampled data is summarized in Table 1.

A parametric analysis using the t-statistic would

have to assume that the underlying population is

normally distributed since the sample is too small to

rely on the central limit theorem. Moreover, this type

of data is usually not normally distributed, or even

symmetrical.

Using the bootstrap method, 10,000 resamples,

each of size n ¼ 16, were taken from the original

data. Figure 1 is a histogram of the 10,000 resampled

means. One can see that the means seem to be hovering

about the values 9.3 to 9.7 hours, and very few are

actually above 10.0. Table 2 confirms that only a small

fraction of the means were above 10.0. As a matter of

fact, the 95 percent one-sided confidence interval is

bounded by the value of 9.8125 hours. This means that

only 5 per cent of the resamples hadmean values above

9.8125. Clearly, the claim that the average life of these

parts is at least 10 hours should be rejected.

Bootstrapping: Resampling Methodology, Table 1 Sample
data and statistics, Example I

Life Frequency

8.0 3

9.0 5

10.0 6

11.0 2

�x ¼ 9.438, s ¼ 0.964, n ¼ 16

4000

3000

2000

1000

8 8.4 8.8 9.2 9.6

Value

10 10.4 10.8 11.2 11.6 12

F
re

q
u
e
n
cy

Bootstrapping: Resampling Methodology, Fig. 1 Histogram
of mean lifetimes, 10,000 resamples, Example I
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Example II A similar type of analysis can be done for

a two-sample test. Consider the data in Table 3,

representing the life (in weeks) of similar parts from

two different manufacturers or two different

production processes. As in Example I, a parametric

test would require an assumption of normally

distributed lifetimes, which again may be unrealistic.

With the bootstrapping approach, first combine the

two groups of data into one (i.e., under the assumption

that H0 is true). Then, this combined group is

resampled to produce two groups of data items, and

the mean difference of the two groups �x1 � �x2 is

recorded. This resampling is done many times, and

the resulting mean differences are compared with the

observed mean difference in the original set of data.

In the above example, the observed mean difference

is 0.65weeks (13.83–13.18). The question is, what is the

likelihood that this difference occurred by chance?

Since this is a two-tailed test, consider resamples for

mean differences greater than 0.65 or less than � 0.65.

Figure 2 contains the histogram of the mean differences

of 10,000 re-samples, in which each resample produced

two groups of size n ¼ 10 each. Examination of this

histogram and of Table 4 shows that almost all of the

mean differences fall between–0.5 to 0.5. Actually, only

1.85% of the resampled mean differences were either

greater than 0.65 or below–0.65. At a significance level

of 0.05, reject the hypothesis that the two population

means are the same.

Bootstrapping: ResamplingMethodology, Table 2 Frequency
distribution of mean lifetimes, Example I (note that each category
covers all values within 0.1 of its center)

Center value Frequency Percent Cum percent

8.6 7 0.1 0.1

8.8 92 0.9 1.0

9.0 583 5.8 6.8

9.2 1798 18.0 24.8

9.4 3057 30.6 55.4

9.6 3342 33.4 88.8

9.8 920 9.2 98.0

10.0 184 1.8 99.8

10.2 16 0.2 100.0

10.4 1 0.0 100.0

Bootstrapping: Resampling Methodology, Table 3 Sample
data and statistics, Example II

Group 1 Group 2

13.8 12.6

13.3 12.4

13.7 12.9

13.6 13.3

15.2 14.2

14.4 13.0

13.6 13.4

13.3 12.9

13.6 13.5

13.8 13.6

�x1 ¼ 13.83 �x2 ¼ 13.18

s1 ¼ 0.57 s2 ¼ 0.53

nn1 ¼ 10 n2 ¼ 10

4000

3000

2000

1000

–2 –1.6 –1.2 –0.8 –0.4

Value

0 0.4 0.8 1.2 1.6 2

F
re

q
u

e
n

cy

Bootstrapping: Resampling Methodology, Fig. 2 Histogram
of mean lifetimes, 10,000 resamples, Example II

Bootstrapping: ResamplingMethodology, Table 4 Frequency
distribution of mean lifetimes, Example II (note that each category
covers all values within 0.1 of its center)

Center value Frequency Percent Cum percent

21.2 1 0.0 0.0

21.0 4 0.0 0.1

20.8 42 0.4 0.5

20.6 273 2.7 3.2

20.4 1065 10.6 13.9

20.2 2164 21.6 35.5

0.0 2876 28.8 64.3

0.2 2189 21.9 86.1

0.4 1026 10.3 96.4

0.6 305 3.0 99.4

0.8 50 0.5 99.9

1.0 5 0.1 100.0
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Concluding Remarks

Bootstrapping is clearly a technique that is very useful

to researchers. It should, however, be pointed out that

this technique is totally dependent on the integrity of

the original sample of data. If the sampled data is

indeed a good representation of the underlying

distribution, inferences based on resampling this data

will be valid. On the other hand, if the original sample,

say, over represents high values of the output

distribution, then the resamples and inferences based

on them cannot be trusted. If the sample is biased, the

resampling technique may reflect and possibly

magnify these biases.

Some areas in operations research and management

science that have made use of bootstrapping and other

resampling techniques include: quality control (Jeske

1997; Seppala 1995), analysis of simulation output

(Friedman and Friedman 1995; Kim et al. 1993),

neural networks (LeBaron 1998; Shimshoni 1998),

performance evaluation (Cho 1997), and production

(Jochen 1997).

Mooney and Duval (1993) describe how the

bootstrap procedure may be used with SAS and

RATS. Resampling Stats (Simon 1995), a simple

computer package for bootstrapping, is user-friendly,

relatively inexpensive, and comes with numerous

examples. Fan and Jacoby (1995) describe a SAS/

IML program for performing the bootstrap

resampling technique in regression analysis.

Bootstrapping can also be done with spreadsheets

(Willemain 1994).

See

▶Regression Analysis
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Bounded Rationality

The concept that a decision maker lacks both the

knowledge and computational skill required to make

choices in a manner compatible with economic notions

of rational behavior.

See

▶Choice Theory

▶Decision Analysis

▶Multiple Criteria Decision Making

▶ Satisficing
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Bounded Variable

A variable xj in a linear-programming problem that is

required to satisfy a constraint of the form 0 � xj � b,

�b � xj � 0, or b1 � xj � b2, where b is some

positive constant and b1 � b2.

See

▶Linear Programming

Branch

To move and analyze a new computational path (i.e.,

branch)basedontheresultsobtainedfromapreviouspath.

See

▶Branch and Bound

Branch and Bound

A method for solving an optimization problem, by

successively partitioning (branching) the set of

feasible points to smaller subsets, and solving the

problem over each subset. The resulting problems are

called subproblems or nodes in the enumeration tree.

The idea in branch and bound is that the optimal

solution to the problem is the best among the optimal

solutions to the subproblems. To reduce the number of

subproblems solved, best-case bounds are computed

by solving relaxed problems defined at the nodes. If the

best-case bound on a solution to a subproblem is worse

than the best available solution, the subproblem is

eliminated from consideration (fathomed). Branch

and bound techniques are frequently used to solve

integer-programming problems, as well as in global

optimization.

See

▶Global Optimization

▶ Integer and Combinatorial Optimization

▶ Integer-Programming Problem

Brownian Motion

A one-dimensional Brownian motion {B(t), 0 � t}

is a continuous-time, Markovian, real-valued

stochastic process having continuous sample

paths; its distribution is Gaussian with mean

function E[B(t)] ¼ mt and covariance function

Cov[B(s), B(t)] ¼ s2 min (s, t). An n-dimensional

Brownian motion is a stochastic process on 
n whose

n components are independent one-dimensional

Brownian motions. Named after Scottish botanist

Robert Brown. Also known as the Wiener process,

named after mathematician Norbert Wiener.

See

▶Markov Processes

BTRAN

The procedure for computing the dual variables in

a simplex iteration, when the LU factors of the basis

matrix are given in product form. The name BTRAN

(backward transformation) derives from the fact that

the eta file is scanned backwards in the solution

process.

See

▶Eta File

Buffer

The queue or the waiting room in a queueing system.

Most often used for networks, especially tandem

networks or series queues.

See

▶Queueing Theory
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Bulk Queues

Arrivals to a queueing systemmay consist of more than

one customer at a time, and/or service might process

more than one customer simultaneously.

See

▶Queueing Theory

Bullwhip Effect

▶ Supply Chain Management

Burke’s Theorem

The steady-state departure process of a stable M/M/c

queueing system is a Poisson process with the same

rate as the arrival process, irrespective of the

service rate.

See

▶Queueing Theory

Business Intelligence

Paul Gray

Claremont Graduate University, Claremont, CA, USA

Introduction

Business Intelligence (BI) systems are sophisticated

analytical tools that present complex organizational

and competitive information in a way that allows

decision makers to decide quickly and appropriately.

While the term Business Intelligence is relatively new

(it was introduced in 1989, popularized in the 1990s),

computer-based BI systems existed, in one guise or

another, decades prior to that. BI-type functionality

was available previously to varying degrees in

Financial Planning Systems (4GLs), Executive

Information Systems (EIS), Decision Support

Systems (DSS), Data Mining, and On Line Analytic

Programming (OLAP). With each new iteration,

capabilities increased as enterprises grew ever-more

sophisticated in their computational and analytical

needs and as computer hardware and software

matured. This article explores the capabilities of

state-of-the-art BI, their benefits to adopters, and the

role of Analytics in BI.

BI describes data-driven decision support systems

(Power 2005) for managers. In its initial form, it

involved business analysts who refined (mostly

internal) business data to create input for management.

Such systems have been marketed commercially since

the 1960’s, if not earlier. BI is now closely linked to

Analytics, the use of quantitative methods for solving

organizational problems. BI is broader than Analytics

because it involves soft methodologies and information

systems, as well as Operations Research (OR).

Objective and definition of BI: The objective of BI
is to improve the timeliness and quality of the input to

the decision process.

To achieve this objective, BI systems combine:

Data gathering

Data storage with Analysis

Knowledge management

to evaluate complex organizational and competitive

information and present the results to planners and

decision makers.

The first three operations are inputs, typically

performed by people with information systems and

data analysis skills. The skills of Analytics are

brought to the table by people trained in OR,

statistics, and other quantitative disciplines.

Implicit in its definition is the idea that BI systems

provide actionable information and knowledge at the

right time, at the right place, and in the right form.

Problems to which BI is Applied: BI aims to

convert data available to the organization into
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information and, through analysis, into knowledge.

Among the many tasks that BI performs are:

• Examine the opportunities for

– proposed products,

– mergers and acquisitions,

– acquiring new customers, and

– locating sites for new branches.

• Create forecasts based on historical data, current

performance, and estimated future performance.

Futures methodologies such as Delphi and

cross-impact analysis are discussed in Glenn and

Gordon (2008).

• Monitor key performance indicators (KPI) both for

the organization and its competitors.

• Do “what if” analysis to examine the impacts of

changes and of alternative scenarios.

• Ad hoc access to data to answer specific,

non-routine questions.

These examples cover both regular, repetitive

scheduled reporting (e.g., monthly reports on sales by

region, department, or strategic business unit), and

special investigations aimed to solve specific problems.

Forecasting and many of the specific problem studies

involve OR modeling that uses the organization’s data

warehousing capabilities for the underlying information.

For example, specific studies undertaken in response to

a crisis or an opportunity such as a contract proposal.

BI vs. Competitive Intelligence: Business

Intelligence uses technologies, processes, and

applications to analyze mostly internal, structured

data, and business processes, while Competitive

Intelligence (discussed below) gathers, analyzes, and

disseminates information from both external and

internal sources to provide a framework for assessing

the organization’s position relative to its industry and

non-industry competitors and its vulnerability to

disruptive technologies.

Previous Systems: Present-day BI systems reflect

a series of iterations to obtain their present

functionality. These included (1) 3rd Generation

financial planning languages that allowed writing

relations in words rather than symbols. (For example,

rather than saying S¼M*MS, one could write Sales¼
market*market share.) (2) Executive information

systems that can create PowerPoint charts to brief

management on the current state of the business.

(3) On-Line Analytic Processing in which data

warehouses that store data in the form of 2-dimensional

relational data bases are used to create multidimensional

data cubes (see below). Although each of these elements

is more sophisticated than the one before, they were

individual systems, while the hallmark of current BIs is

the integration of such systems.

BI Input Software

BI is deeply tied to the ability to store data bases and to

compute at the organizational or departmental level. Key

elements include data warehouses and data marts. As

shown in Fig. 1,many software capabilities are involved.

The software components used in BI include:

• A Data Warehouse is a collection of data bases that

contain both current and historical information

about the organization. The warehouse is separate

from operational systems that support on-line

transaction systems. It contains “a single version

of the truth” and is intended to support

understanding of the organizational data over

time. It is particularly important for BI.

To create the single version of the truth, data goes

through a process known as ETL (extract, transform,

load). The ETL applies procedures that extract data

from selected sources, transforms it into the format of

the data warehouse that is consonant with the

warehouse’s rules, and then stores the data into the

warehouse or mart. ETL is important for BI because

it standardize the data and eliminates redundancies and

inaccuracies.

Data warehouses come in two sizes:

– A data warehouse, which support an entire

organization or one of its major portions.

– A data mart that is a smaller version of a data

warehouse but has all features of a warehouse. It can

OLAP

ANALYTICS

DATA MINING KNOWLEDGE
MANAGEMENT

BUSINESS
INTELLIGENCE

DATA 
WAREHOUSE

VISUALIZATION

GIS

MARKETING

Business Intelligence, Fig. 1 Software Components of Inputs
to Business Intelligence
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be dependent or independent. If dependent, it contains

a subset of the data warehouse needed by specific

groups, such as Analytics. But, multiple independent

data marts cannot substitute for a data warehouse

because data integrity is not maintained among them.

Over time, a number of specialized data warehouses

have evolved. They include operational data stores,

real time warehouses, prototype warehouses, and

exploration warehouses discussed below.

The characteristics of the data warehouse are listed

in Table 1. These characteristics assume that the data

warehouse is physically separated from operational

systems and that its databases are not used for on-line

transaction processing (Inmon 1992).

• OLAP (on-line analytic processing) is used to

analyze multidimensional data for a BI. It is used

for such tasks as sales analysis, budgeting,

forecasting, and financial reporting where it is

necessary to manipulate and consolidate data from

multiple sources. Data are specially configured for

OLAP into data cubes to allow complex questions

to be answered more quickly than for relational data

bases. OLAP has subdivided into relational,

multidimensional, hybrid, and other forms, which

are typically referred to as ROLAP, MOLAP, and

HOLAP.

• Analytics refers to the use of quantitative and

statistical methods together with extensive

computing and modeling to make sense of the

data. It is the area of BI that attracts operations

researchers. Mathematics is the base for Analytics.

The objective is to obtain realistic and, if

possible, optimal alternatives for decision making

about the future. Analytics is discussed in more

detail below.

• Data Mining [also referred to as knowledge data

discovery (KDD)] is a form of predictive analytics

discussed below. It is a set of analytical techniques

to obtain new insights from the data in the data

warehouse that an analyst or a manager had not

thought to ask. It is used to find answers that

reports and queries do not reveal effectively. KDD

seeks to find patterns in data and to infer rules. Data

mining differs from conventional hypothesis testing

in that it looks at data for the relationships it

contains to form hypotheses that can be tested.

KDD techniques include neural networks, expert

systems, fuzzy logic, intelligent agents,

multidimensional analysis, data visualization, and

decision trees. Data mining is used in wide range of

topics, e.g., to identify where people are likely to

take vacations, detect fraud, analyze loan quality,

and the reported (but apocryphal) association that

men who buy diapers on Friday night also buy beer.

• Knowledge Management. Knowledge can be tacit

and explicit. Tacit knowledge is what is in one’s

head but cannot usually be expressed, although

there are techniques for obtaining some tacit

knowledge. Explicit knowledge is about what can

be written down, stored, and retrieved. Knowledge

management is about knowing what the

organization knows and finding new knowledge

that is needed when the organization does not

know. It focuses on creating, sharing, and

applying knowledge. In BI, the explicit

information in the data warehouse and in reports is

merged with the tacit knowledge in the heads of

analysts and professionals.

• Geographic Information Systems. These systems

link data bases to geographic maps of physical

locations. They are used to analyze spatial

phenomena. For example, they allow overlaying

of customer, distribution center, retailer, and other

information about a firm’s and its competitor’s

products.

Business Intelligence, Table 1 Characteristics of the Data
Warehouse

Characteristics Description

Subject oriented Data are organized by how users refer to it.

Integrated Inconsistencies are removed in both
nomenclature and conflicting information, i.e,
combining of all related data around
a common identifier/key

Non-volatile Read-only data are not updated by users

Time Series Data are time series, not current value.
A typical data warehouse has 5 to 10 years of
data.

Summarized Operational data are aggregated into decision
usable form where appropriate

Larger Much more data is retained than in transaction
systems because it offers time series.

Non-normalized Data can be redundant for ease of retrieval and
use.

Metadata Data about the data are available to users and
to warehouse personnel.

Input Include both operational data and external
data

Source: Gray and Watson (1998)
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• Marketing. Analytics are used to understand the

implications of existing and proposed policies

in the marketplace. For example, data from

aggregators and from the firm are used to create

forecasts of market size and market size.

• Visualization. Visualization refers to methods to

present information on-screen in a form

comprehensible to non-technical managers. It does

not replace Analytics; it focuses the analytic results.

By exploiting visuals, it provides an overview of

complex data sets and allows for identifying

relationships and trends in data and in analytical

results.

BI Outputs: Dashboards and Reports

Dashboards. In BI, a dashboard is way of

communicating results in a form that is easily

understood by managers. A dashboard is a visual

screen that shows the key performance indicators.

The data, drawn from internal information systems

and analyses, not only summarize the current status,

but also provide historical data, warning levels,

next steps, and notices. It includes financial and

non-financial measures.

The idea of a dashboard has been in use since the

1960’s. At that time, summarized data for managers

was displayed on color slides at regular management

meetings. For example, the experience at AT&T from

color slides was that if the dashboard slides presented

the current data in the same format at each meeting,

managers would rapidly find and be sensitive to

changes that required action.

Introducing the computer provided an instant

display device, improved visualization, and provided

data on the desktop tailored to each user. For example,

the VP for manufacturing and the VP for human

resources can see results specifically oriented to their

issues. Furthermore, the displays allow drill down; that

is they start with a broad view and then let the user see

greater and greater detail..

The three main applications are:

• monitoring information at a glance. Usually

involves key performance indicators (KPI) in

graphical, symbol, or symbolic form.

• analysis of exceptions to find root causes of

problems. Summarized multi-dimensional data

and drill down in “slice and dice” fashion are used.

• Identify actions to solve problems based on access

to detailed operational data, queries, and reports.

Reports include:

• regular, repetitively scheduled documents (e.g.,

monthly sales by region, department, or strategic

business unit),

• exception reports which are produced whenever

parameters are outside pre-specified bounds,

• documents presenting the results of special

investigations (often in response to requests from

BI users), and

• custom data cubes based on specific requests from

analysts.

Forecasting and many of the specific studies

involve OR modeling that uses the organization’s

data warehousing capabilities for the underlying

information. For example, specific studies are

undertaken in response to a crisis or an opportunity

such as a contract proposal.

BI Architecture

Figure 2 (based on Skriletz 2002) is typical of the

architecture for a large installation that centers on the

use of Web technology for distribution. As shown, the

input data come from a variety of systems into the data

warehouse. The specific data needed for BI is

downloaded to a data mart used by planners and

executives.

As shown, the specific applications used for BI

include the organizational focus and the audience

(Skriletz 2002).

The left side of Table 2 shows the business focus of

the technologies, while the right side shows the levels

of people in the organization who are the consumers of

the intelligence. At the bottom of the hierarchy is

transaction processing based on application-specific

data in the warehouse or in ERP or in sales systems.

The next level involves processing the data so that it is

useful to first level managers. Here, Analytics and

pattern analysis are performed and data are presented

in visual form. At the top level, predictions,

compilations of competitive analyses, and summary

presentations for executives are created.

Tools. Many of the tools for BI are used for other

applications as well. They include:

• simple querying and reporting,

• on-line analytic processing (OLAP),
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• statistical analyses and data mining,

• forecasting, and

• geographic information systems and visualization.

In addition, the extraction, translation, and loading

(ETL) tools of data warehousing are important for BI

because they help standardize the data so it can be

analyzed with accuracy and provide a single truth.

When operational data is used, as from an

Operational Data Store (ODS), the objective is to get

dynamic data that reflects the current situation.

The key dissemination method for business

technology is internet technology, whether it be an

intranet within the firm or an extranet connected to

suppliers and/or clients. The idea is to reach everyone

who needs specific data, rather than a few at corporate

headquarters.

Business Analytics

In the 20th century, most information systems were

used to standardize routine business processes to

minimize cost and time. Fairly sophisticated decision

support systems and data warehouses were in use, but

these systems rarely directly affected the ways

decisions were made (Drucker 1999). BI was mostly

the province of the information systems groups in

organizations. It centered on providing inputs for

data-based decision making. It was only after the turn

of the century that it was generally realized that

applying Analytics would improve to data-based

decision making. This realization was reinforced by

leading vendors, such as IBM, Microsoft, Oracle, and

SAP, acquiring major BI software firms and investing

in expanding BI software capabilities. It became clear

that the analytic skills and the methods of OR analysts

are needed to exploit information technology

capabilities.

The definition of business Analytics is still in flux.

Davenport and Harris (2007) defined it as “the

extensive use of data, statistical and quantitative

analysis, explanatory and predictive models, and

fact-based management to drive decisions and

actions.” In this definition, Analytics is a subset of

BI, that is, technologies and processes that use data to

understand and analyze performance. A broader
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SCM = Supply Chain Management
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Business Intelligence, Table 2 Business Intelligence Aplications

Organizational focus Audience

Strategy Predictive and
Prescriptive Analytics

Competitive Intelligence Intelligence Presentation
and Visualization

Top executives

Operations Analysis Data Analytics Operations Directors

Operations Monitoring Heuristic Pattern Analysis Operations Supervisors

Transaction Processing Platform for BI - Manage Through Metadata Operations staff
Application-Specific BI (e.g., SAS, IBM, Oracle, SAP)
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definition comes from IBM who uses it to refer to both

software applications and analytic solutions (Lustig

et al. 2010). In their view, software includes BI,

performance management, prediction, optimization,

enterprise information management, content, and

collaboration. Analytic solutions involve finance,

risk, fraud, customer relations, human capital, and

supply chain. Underlying Analytics is the idea that

data and information are strategic assets.

Analytics can be divided into three categories

(Lustig et al. 2010):

• Descriptive analytics

• Predictive analytics

• Prescriptive analytics

All three categories start with the underlying idea

that data and information are strategic assets.

Descriptive analytics is the classic form of BI. It

starts by examining, consolidating, and classifying

data. Data sources include information from

departments (marketing, sales, operations,

accounting), enterprise systems (ERP, CRM, and

Supply Chain Management SCM), as well as

spreadsheets, other databases, and external data from

3rd parties. The outputs are ad hoc and exception

reports, dashboards, KPI, statistical analyses, drill

down, and answers to ad hoc queries about business

performance. These outputs allow for the managing

and monitoring of business processes. Descriptive

analytics are often inputs to predictive and

prescriptive analytics.

Predictive analytics combines the data within

a wide variety of mathematical procedures to create

models that explain and/or predict performance. It is

based on inherent relations between the data inputs and

outcomes. Predictive analytics uses data on what

happened in the past to detect patterns and relations

to make forecasts. Its methods include, among others

(Lustig, et al. 2010):

Data mining Correlations among data

Forecasting Extrapolations of trends into the future

Monte Carlo simulation What may happen if changes occur

Root-cause analysis Evaluation of why things happened

Pattern recognition Alerts when unusual situations occur

Predictive modeling Forecasts by Delphi or other methods

Prescriptive analytics refers to mathematical

techniques that provide understanding of alternative

courses of actions when there are competing

objectives, requirements, and constraints. It involves

both static and stochastic optimization. The former

leads to determining the best outcome, while the

latter considers the effects of data uncertainty to

improve decisions. Given the increase in computer

speed and memory, improved algorithm performance,

and in data quality, prescriptive analytics can be run in

near-real-time so they can affect operational as well as

strategic decisions.

Integrating Analytics and BI

Where traditional BI depends principally on

aggregating, evaluating and manipulating the

information in the data warehouse, Analytics adds

modeling and optimization. Irrespective of which

type of Analytics (descriptive, predictive or

prescriptive) is used, the results need to be

communicated to the user community.

This communication capability involves a series of

steps (Shapiro 2010):

• Develop models to optimize decisions for key

performance indicators.

• Select the right modeling system. It may be

customized or off the shelf.

• Define the database needed for the optimization

model. It may be customized or off-the-shelf

• Create the decision database. This may require new

ETL routines and descriptive models

• Link the database and the outputs from the

optimization model to the organization’s reporting

tools to be able to communicate results to users.

• For strategic and tactical decisions, reuse criteria

for alerts and redo modeling studies at regular

intervals. For operational decisions, exercise the

operational models in real-time with current data.

Competitive Intelligence

The notion of competitive intelligence (CI) as spy vs.

spy, fed by such examples as Japan and China

allegedly stealing U.S. industrial secrets, is far from

the real situation. That does not mean that companies

do not try to find out as much as possible about their

current and potential competitors. The people

involved, however, claim that they do so in a legal

and ethical manner. CI is defined by the Society for
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Competitive Intelligence Professionals (SCIP) as the

process of monitoring the competitive environment.

To do so, analysts systematically gather, analyze, and

manage information that can affect a company’s plans,

decisions, and operations.

The competitive intelligence cycle includes:

– Determine the intelligence needs of decision

makers

– Collect information to meet these needs

– Analyze the data and recommend actions

– Present results to the decision makers

– Use the response to the findings to refine collection.

The focus is on determining both the current

activities and the likely intentions of other firms and

of governments. It also includes looking for the

possible appearance of disruptive technologies and

finding out about how competitors are responding to

your actions.

The collected raw data (facts, statistics) are

organized and then analyzed to find patterns, trends,

and relationships. The tools used include:

• Simulations of alternative scenarios to test what if

conditions

• Data mining of information about both competitors

and the firm

• Assessing competitor technologies by tracking (and

extrapolating from) patent filings.

• Attending trade shows and conferences

• Scanning publicly available data: public records,

the Internet, press releases, and mass media.

• Talking with customers, suppliers, partners,

industry experts

Much of the data gathering work is terribly dull and

routine. To be effective, it has to be someone’s (or

some group’s) responsibility.

For many organizations, the only basis for evaluating

their competitors is by applying the SWOT technique:

Strengths, Weaknesses, Opportunities and Threats.
SWOT, as taught in business schools, is often done

qualitatively based on individuals intuitively assessing

a particular competitor. The technique can and should

be done using Analytics.

True competitive analysis goes far beyond SWOT.

Table 3 shows the results of a survey of the use and

effectiveness of CI analysis techniques.

Since this table was compiled, an important new

source of competitive data has come to the forefront.

That is the analysis of social media data. People do

put things on social media (e.g., Facebook, Twitter)

that they would not put in writing in e-mail or other

forms.

Some companies that practice competitive analysis

realize that just as they gather data about competitors,

competitors are likely to gather data about them. They

therefore try to protect their own information by

becoming secretive about their plans. They control

their press releases, approve speeches by their

executives, provide security training for their

employees, and more to avoid leaks about their

intentions.
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Busy Period

A time interval that starts when all the servers of

a queueing system become busy and ends when at least

one server becomes free.May also refer to a time interval

that starts when a previously completely idle system

begins serving any customer and ends when the system

becomes idle again. The two definitions (sometimes

distinguished as full and partial busy periods,

respectively) coincide for a single-server queue.

See

▶Queueing Theory
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Calculus of Variations
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Introduction

The calculus of variations is the grandparent of

mathematical programming. From it came such

concepts as duality and Lagrange multipliers. Many

central ideas in optimization were first developed for

the calculus of variations, then specialized to nonlinear

programming, all of this happening years before linear

programming came along.

The calculus of variations solves optimization

problems whose parameters are not simple variables,

but rather functions. For example, how should the

shape of an automobile hood be chosen so as to

minimize air resistance? Or, what path does a ray of

light follow in an irregular medium? The calculus of

variations is closely related to optimal control theory,

where a set of controls are used to achieve a certain

goal in an optimal way. For example, the pilot of an

aircraft might wish to use the throttle and flaps to

achieve a particular cruising altitude and velocity in

a minimum amount of time or using a minimum

amount of fuel. The modern world is full of devices

designed using optimal control — in cars, elevators,

heating systems, stereos, etc.

Brachistochrone Problem

The calculus of variations was inspired by problems in

mechanics, especially the study of three-dimensional

motion. It was used in the 18th and 19th centuries to

derive many important laws of physics. This was done

using the Principle of Least Action. Action is defined

to be the integral of the product of mass, velocity, and

distance. The Principle of Least Action asserts that

nature acts so as to minimize this integral. To apply

the principle, the formula for the action integral would

be specialized to the setting under study, and then the

calculus of variations would be used to optimize the

integral. This general approach was used to derive

important equations in mechanics, fluid dynamics,

and other fields.

The most famous problem in the calculus of

variations was posed in 1696 by John Bernoulli. It is

called the Brachistochrone (“least time”) problem,

and asks what path a pellet should follow to drop

between two points in the shortest amount of time,

with gravity the only force acting on the pellet. The

solution to the Brachistochrone problem can be found

by solving

minimize
yðtÞ

1ffiffiffiffiffi
2g
p

Z t2

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0ðtÞ2

yðtÞ

s

dt

where g is the gravitational constant. If this were

a finite-dimensional problem then it could be solved

by setting the derivative of the objective function equal

to zero, but seventeenth-century mathematics did not

know how to take a derivative with respect to

a function.

The Brachistochrone problem was solved at

the time by Newton and others, but the general

techniques that inspired the name calculus of

variations were not developed until several decades

S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research and Management Science,
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later. The first major results were obtained by Euler in

the 1740s. He considered various problems of the

general form

minimize
yðtÞ

Z t2

t1

f t; yðtÞ; y0ðtÞð Þdt:

The Brachistochrone problem is of this form.

Euler solved these problems by discretizing the solution

y(t)— approximating the solution by its values at finitely

many points. This gave a finite-dimensional problem

that could be solved using the techniques of calculus.

Euler then took the limit of the approximate solutions

as the number of discretization points tended to infinity.

This approach was difficult and restrictive, because

it had to be adapted to the specifics of the problem

being solved, and because there were restrictions on

the types of problems for which it was successful.

Far more influential was the approach of Lagrange.

He suggested that the solution be perturbed or varied

from y(t) to y(t) + e z(t), where e is a small

number and z(t) is some arbitrary function that

satisfies z(t1) ¼ z(t2) ¼ 0. For the Brachistochrone

problem this latter condition ensures that the perturbed

function still represents a path between the two points.

If y(t) is a solution to the problem

minimize
yðtÞ

Z t2

t1

f t; yðtÞ; y0ðtÞð Þdt;

then e ¼ 0 will be a solution to

minimize
e

Z t2

t1

f t; yðtÞ þ ezðtÞ; y0ðtÞ þ ez0ðtÞð Þdt

This observation allowed Lagrange to convert

the original infinite-dimensional problem to

a one-dimensional problem that could be analyzed

using ordinary calculus. Setting the derivative of the

integral with respect to ∈ equal to zero at the point

e ¼ 0 leads to the equation

d

dt

@f

@y0
� @f

@y
¼ 0:

This final condition is a first-order optimality

condition for an unconstrained calculus-of-variations

problem. It was first discovered by Euler, but the

derivation here is due to Lagrange.

The name “calculus of variations was chosen by Euler

and was inspired by Lagrange’s approach in varying the

function y(t). The optimality condition is stated as the first

variation must equal zero by analogy with the condition

f 0(x)¼ 0 for a one-variable optimization problem. Euler

was so impressedwith Lagrange’s work that he held back

his own papers on the topic so that Lagrange could

publish first, a magnanimous gesture by the renowned

Euler to the then young and unknown Lagrange.

There are additional first-order optimality

conditions for calculus of variations problems. The

theory is more complicated than for finite-

dimensional optimization, and the necessary and

sufficient conditions for an optimal solution were not

fully understood until the 1870s, when Weierstrass

studied this topic. A discussion of this theory can be

found in Gregory and Lin (1992).

Multipliers

Constraints can be added to problems in the calculus of

variations just as in other optimization problems.

A constraint might represent the principle of

conservation of energy, or perhaps that the motion

was restricted in some way, for example that a planet

was traveling in a particular orbit around the sun.

Both Euler and Lagrange considered problems of

this type, and both were led to the concept of a

multiplier. In the calculus of variations the multiplier

might be a scalar (as it is in finite-dimensional

problems) or, depending on the particular form of the

constraint, it might be a function of the independent

variable t. They have come to be called Lagrange

multipliers; but, as with the optimality condition,

Euler discovered them first.

In his book Mécanique Analytique, Lagrange

includes an interpretation of the multiplier terms. He

writes that they can be considered as representing the

moments of forces acting on the moving particle, and

serving to keep the constraints satisfied. This point of

view is the basis for duality theory, although Lagrange

does not seem to have followed up on this idea.

Duality

Duality theory did not become fully developed until

early in this century, with many of the important steps
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coming from the calculus of variations. At first there

were only isolated examples of duality. That is,

someone would notice that a pair of problems — one

a maximization problem, one a minimization

problem — would have optimal solutions that were

related to each other. An early example of this type was

published in 1755, and is described in Kuhn (1991). In

the nineteenth century various other examples were

noticed, such as the relationship between currents and

voltages in an electrical circuit. Gradually it was

understood that duality was not an accidental

phenomenon peculiar to these examples but rather

a general principle that applied to wide classes of

optimization problems. By the 1920s techniques had

been developed for obtaining upper and lower bounds

on the solutions to optimization problems by finding

approximate solutions to the primal and dual problems.

Duality as a general idea is described in the book by

Courant and Hilbert (1953).

Euler and Lagrange only considered problems with

equality constraints, but later authors allowed

inequality constraints as well. When specialized to

finite-dimensional problems, the optimality condition

is referred to as the Karush-Kuhn-Tucker condition.

Kuhn and Tucker derived this result in a 1951 paper. It

was later discovered that Karush had proven the same

result in his master’s thesis (1939) at the University of

Chicago under the supervision of Bliss. There are two

aspects to the result: its treatment of inequality

constraints, and the assumption or constraint

qualification that was used to prove it. The first idea

can be traced to Weierstrass and the second to Mayer

(1886), and both are outgrowths of the calculus of

variations.

In the 1870s Weierstrass studied the calculus of

variations and presented the results of his investigations

in lectures. Weierstrass did not publish his work and it

only became widely known years later through the

writings of those in attendance. According to Bolza

(1904), Weierstrass converted the inequality constraint

gðyÞ � 0

to an equivalent equality constraint

gðyÞ þ s2 ¼ 0

using a squared slack variable s. This technique is

described in many sources from 1900 onward. Bolza

later became a professor at the University of Chicago,

establishing a connection from Weierstrass to Bliss to

Karush. Karush used this technique in his thesis.

The constraint qualification used by Karush, Kuhn

and Tucker relates feasible arcs (paths of feasible points

leading to the solution) and the gradients of the

constraints at the solution. This same condition was

used by Mayer (1886), although applied to a calculus

of variations problemwith equality constraints, and then

in a chain of papers by various authors (including Bliss)

leading to Karush’s thesis. In these papers it is called

a normality condition, and it is equivalent to requiring

that the matrix of constraint gradients at the solution be

of full rank. The implicit function theorem can be used

to relate this to the condition on feasible arcs, an

observation that is explicit in Mayer’s work.

Concluding Remarks

The calculus of variations has influencedmany areas of

applied mathematics. It is a technical tool for solving

optimization problems whose parameters are

functions, and in this way it continues to be used in

optimal control. It was the setting for the development

of the most important concepts in optimization, such as

duality and the treatment of constraints. And, when

coupled with the Principle of Least Action, it was the

vehicle for deriving the fundamental laws of physics.

See

▶Control Theory

▶Lagrange Multipliers

▶Linear Programming

▶Nonlinear Programming
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Introduction

All companies have direct and indirect means of

contacting customers, potential customers, or other

clients. The basic ways include postal mail, email,

and, of course, the telephone. Of special importance

and interest is the ability of a company’s

representatives (agents) to talk with call-in clients or

called parties on a large scale, that is, via call centers.

Call centers are an important channel for businesses to

interact with customers and stakeholders. Such centers

generate large transaction volumes and can have

a significant impact on client attitudes towards

a company and its products. Examples include

commercial software support, outbound sales

prospecting, customer service, internal company help

desk services, municipal information dissemination,

emergency services dispatch, and financial

transaction processing.

Many call centers have expanded to become contact

centers that communicate with clients and called

parties through a variety of means such as voice calls,

planned callbacks (sometimes through virtual

queueing), voice mail, cellular text messaging, and

email. Like call centers, these types of contact centers

are used by organizations to provide a wide variety of

services.

Historically, A. K. Erlang, by his paper, “On the

rational determination of the number of circuits,”

written in 1924 and first published in Brockmeyer

et al. (1948), is considered the founder of call center

analysis. Call and contact centers (hereafter

collectively referred to as centers) are a large

global industry. In 2008, the U.S. had an estimated

47,000 centers and 2.7 million agents; Europe, the

Middle East, and Africa had 45,000 centers and

2.1 million agents; and Canada and Latin America

had 35,000 centers and 730,000 agents. Since then,

the industry continued to grow rapidly worldwide.

Centers can be inbound, outbound, or blended.

Inbound centers receive calls and other contacts from

clients. Outbound centers, which normally rely on

voice, generate calls that are usually for

telemarketing or collections. Blended centers do both

and typically deploy agents who perform outbound

work when inbound arrival rates are low. Inbound

centers provide staff based on advance predictions of

call rates and duration; poor predictions can cause

serious degradation in performance. Thus, inbound

centers need high-quality forecasts of arrival rates

and service times that are random and non-stationary.

Outbound center managers have the luxury of

choosing when to initiate contact and closely map

their actions to the number of agents on duty.

Computers are used to generate outbound calls and

are programmed to pace calls such that a called party

picks up the phone just as an agent ends a call. Hence,

outbound centers need predictions of the expected

length of contact, and the time interval between

a computer-placed call and when the called party

answers the phone. Otherwise, the system generates

a nuisance call by abandoning the call when the called

party answers, or the called party hangs up because

there is no one on the line. U.S. law prescribes

penalties for generating large numbers of calls

abandoned by the system.

Ongoing improvements in information technology

and reductions in telecommunications costs allow

multiple physical locations to be managed as a single

very large virtual center, thus enhancing pooling

effects. Contacts can be given complex routings

depending on the client’s identity, product, need, or

service history. Information can be obtained from

clients via interactive voice response. Centers maybe

off-shored to locations with lower labor costs; they can

be run in-house or outsourced to a contractor.
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Contact center business and operations issues are

discussed in the following surveys and related studies:

Aksin et al. (2007a), reviews opportunities for OR to

improve practice; Gans et al. (2003) cites 164 papers

associated with call centers; an expanded Web-based

bibliography by Mandelbaum includes over

450 papers, as well as case studies; and Koole and

Mandelbaum (2002) survey queuing models, while

L’Ecuyer (2006) surveys optimization models;

multi-skill centers are reviewed by Koole and Pot

(2006) and Aksin et al. (2007a, b). OR/MS models

applied within this domain tend to not consider

human resources issues, although these issues are

reviewed by Holman (2005) and Aksin et al. (2007b).

Much of the OR/MS knowledge and research

related to centers is proprietary and unpublished.

Trade magazines and patent filings can be important

sources of information.

Inbound Systems

Inbound centers serve clients who initiate contact with

an organization to receive service. Such centers need to

react to calls that arrive randomly. Typically, after

initiating contact, the client is connected to an agent

or placed into a queue for later connection. Upon

connection, the client receives service for some

random amount of time. There can be other

outcomes, such as when all incoming phone lines are

in use and the call is blocked (the client is given a busy

signal) or the client may decide to abandon the call. In

some centers, a client may be connected to another

agent with different skills, or wait in that agent’s

queue. The client might call back or otherwise

reinitiate contact if the issue was not satisfactorily

resolved. See Cleveland (2006) for further details on

how inbound call centers operate.

Managers of inbound call centers seek to provide

high-quality client service while keeping costs under

control. Cost is straightforward, with the largest

expense being labor. Cost performance is generally

measured using labor cost, for which agent utilization

(percent of time an agent is engaged with clients)

serving as a proxy. Labor costs typically constitute

60% to 80% of a call center’s operating expense.

Telephone (or for contact centers, the Internet) costs

have been a concern when queues or service times

were high. These pressures are diminishing in most

developed countries due to rapidly declining

telephone and Internet rates. An issue of labor costs

is that centers with excessive agent utilization or low

pay may experience high employee turnover with

concomitant expenses for recruitment and training.

In contrast to labor cost, service quality is a more

complex measure. Service quality can include issues

such as agent training and professionalism, and the

ability to resolve client problems on the first call.

Operationally, service quality is often measured by

some function of the amount of time a client waits

prior to talking to an agent. As the waiting time

experienced by an individual client is a random

variable, performance measures are typically some

function of the waiting time distribution. The two

most common measures are the average client

waiting time (ASA) and percentage of calls answered

within a designated time, the service level (SL).

When clients hang up before talking to an agent,

they are said to abandon the queue, an example of

queueing’s concept of reneging. An important

measure of interest is the client abandonment rate

(CAR). A client who abandons the queue is

presumably dissatisfied, an undesirable event, but this

reduces the waiting time for subsequent clients in the

queue, which enhances the center’s waiting time

measures (Mandelbaum and Zeltyn 2007).

Many call centers are able to track whether an issue

is successfully resolved by the first phone call or

requires one or more follow-up calls. The metric

associated with this data is known as the first call

resolution (FCR) rate.

Creating Agent Schedules

Managers schedule agents into time blocks that are

typically 15 minutes to one hour in length. A 24-hour

center with 15-minute time blocks has 96 time blocks

each day. They try to keep staff costs low while having

enough agents on duty to meet quality targets. The first

OR/MS application of this tradeoff was for toll booth

staffing, Edie (1954).

The process for scheduling agents is typically

performed in five steps, as follows:

Step 1: Forecast call arrivals. Centers use standard

statistical and forecasting techniques such as

regression, exponential smoothing and its variants,

and the time series models of ARIMA. Difficulties

in making accurate forecasts are caused by noisy

data due to small time blocks. In centers that have

Call and Contact Centers 145 C

C



complex routings with multiple queues, each queue

requires a forecast. Further, call patterns can be

complex in that those that are blocked or

abandoned can affect future arrivals, as can call

backs caused by inadequate problem resolution.

Gans et al. (2003) discusses opportunities to

improve center forecasts.

Step 2: Develop an estimate of operational

performance measures. To plan effectively,

managers must be able to estimate the impact of

their decisions on operational performance

measures to trade-off cost and client experience.

Cost measures typically include total labor cost

and average agent utilization. Client experience

measures typically include ASA, SL and CAR.

These measures can be estimated using analytic

models or discrete-event simulation. The most

common method is to apply the Erlang C formula

(for determining the waiting probability in a queue)

to produce estimates for ASA and SL. Arrival rates

are assumed to be homogeneous and come from the

Step 1 forecast.

Advanced call centers are characterized by complex

routing arrangements that shunt clients among

multiple queues. Skill-based routing sends calls

initially to a queue that processes the most basic

client inquiries and routes more challenging calls to

better trained and more highly paid agents in

a different queue. The task of estimating operational

performance measures is thus complicated because

arrivals in later queues depend upon performance,

including other agent pools. Discrete-event

simulation is the tool of choice in these

circumstances; see Mehrotra and Fama (2003).

Step 3: Determine the number the number of agents to

assign. The manager must set (or staff) the number

of agents to be on duty in each time block. This is an

aggregate decision, and does not consider the

identities or work schedules of individual agents,

which are addressed in Steps 4 and 5. Typically, the

manager assigns agents to a time block to minimize

total agents, while meeting a target performance

measure, usually ASA or SL.

Step 4: Develop multi-time block shifts. The manager

must take the number of agents assigned to each

time block in Step 3 and back out a set of individual,

multi-time block shifts that, in aggregate, sum up to

the number of assigned agents in each time block,

while honoring work rules, contract requirements,

and labor laws. This can produce an infeasible or

a difficult-to-apply solution, and approximations

with high cost are often required.

Step 5: Assign individual agents to each shift. The

manager makes final shift schedules, that is,

rosters of named agents. This creates challenges of

managing total hours worked per day and week to

conform to labor laws, as well as managing personal

preferences for work schedules and days off.

Integration of the Five Steps. The agent

scheduling process is often executed step-by-step.

There are obvious interactions across steps with

opportunities to integrate the steps (Aksin et al.,

2007a, b). Avramidis et al. (2009) show that

integrating the staffing and scheduling steps in

a center with skill-based routing can lead to better

results. Cezik and L’Ecuyer (2008) used linear

programming combined with simulation for a center

with skills-based routing.

Outbound Systems

In outbound systems, a computer automatically calls

designated parties from a given list. The computer

recognizes and processes busy signals, no-answers,

and telephone company messages. Answered calls

are routed to call center agents. Typically, the

computer predicts when agents will become free and

dials in anticipation of agent availability, thereby

reducing the time agents wait between connections.

A key analytical challenge is to determine the

pacing, that is, when to dial the next call. If the

pacing is too slow, agent time is wasted. If the pacing

is too fast, a called party answers when no agent is

available, creating a nuisance for the called party (who

usually hangs up), a wasted expense for the system.

Research in this area is mostly proprietary; there is

scant research literature. The solution resulted in the

first U.S. patent based on queueing theory (Samuelson

1989). This method estimates service durations, times

from dialing to answer, and proportions of dial

attempts that result in answers, and uses these

statistics, updated frequently, to synchronize dialing

attempts to finish shortly after predicted agent service

completions (Samuelson 1999). Other patents, such as

David (1997), expand and extend this method.
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Other proprietary procedures establish call centers

based on cloud computing. This approach drastically

reduces facility costs, as agents can work from home. It

also presents a new version of the predictive dialing

problem: the situation is more complex and more

subject to quick changes, but the huge computational

resources readily available can be employed to do

massive parallel simulations in real time to compute

the required predictive parameters (Kaiser-Nyman

et al. 2011).

Blended Systems

Blended call centers allow agents to be switched in real

time between inbound and outbound calls. Bhulai and

Koole (2003) discuss a queueing model which yields

a threshold policy for assigning agents to outbound

calls. Deslauriers et al. (2007) provide a set of

Markov chain models for a call center where

outbound agents can be diverted to serve inbound

calls. Call center managers believe that frequent

switching between inbound and outbound calls

degrades agent performance for both types of calls,

and common practice is to make reassignments for

blocks of time rather than call by call. This added

constraint makes the performance modeling and

scheduling problem substantially more difficult.

Operational Trends and Research
Opportunities

Forecasting and Workload Requirements

Some traditional call center assumptions have been

questioned by OR/MS researchers, e.g. (Aksin et al.

2007a). One area concerns replacing the standard

point-forecast of arrival rates for a short-time block

with a stochastic forecast. It is possible to relax the

assumption of independent time block call arrivals

and model correlation of arrivals across time blocks.

More general assumptions on arrival rates can

affect the scheduling and rostering problems, see

Steckley et al. (2009), Robbins and Harrison (2010),

and Gans et al. (2009). Bassamboo et al. (2009)

proposed a methodology for capacity planning and

dynamic system control in the presence of random

arrival rates and multiple inbound call types.

Also, significant research attention has been paid to

developing and applying advanced statistical

techniques to call center arrival forecasts, with many

of these approaches being used to generate not only

a point estimate, but also distributional forecasts.

Channouf et al. (2007) tested different forecasting

models for an emergency medical system. Weinberg

et al. (2007) provides a model for forecasting for the

short-time blocks commonly found in practice.

Avramidis et al. (2004) examined how call volumes

correlate across time blocks within a day, and

suggested that call arrival data from early in the day

can be used to update forecasts for later in the day.

Shen and Huang (2008) developed a singular value

decomposition model for updating same-day

forecasts based on early data, and show it to be

superior to benchmarks commonly used in practice.

Soyer and Tarimcilar (2008) applied a Bayesian

approach for modeling and analyzing call center

arrival data.. Aldor-Noiman et al. (2009) developed

a Gaussian mixed-model framework that allows for

exogenous variables to model the contribution of

specific events to forecasted call volumes.

Scheduling

Call center workforce scheduling is more complex

than shift scheduling for many other service delivery

organizations, such as hospitals (nurses) or

transportation (bus drivers), because of the possible

need to shift workload quickly to match skills

required by the incoming customer to skills of the

available agents. That is, call center workforce

scheduling decisions are dynamic. As updates on call

arrivals and agent availability become available,

short-term forecasts and agent schedules can be

adjusted. Mehrotra et al. (2010) developed

a methodology for intra-day forecast and schedule

updating, while Gans et al. (2009) suggest

a stochastic-programming model with recourse to

account for both random arrival rates and intra-day

schedule updates.

Resource Acquisition

Call center resource acquisition is an important and

continuing area of interest. Additional research is

needed on long-term forecasting, personnel planning

for general multi-skill call centers in the presence of

both learning and attrition (Ryder et al. 2008), and for

complex networks of service providers (Aksin et al.

2007a, Section 2.2). Companies routinely outsource
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call center operations to third party service providers.

Ren and Zhou (2008), and Milner and Olson (2008)

explore issues associated with establishing and

managing these relationships.

Use of Real-Time Data

Call center models generally have had to assume that

agents’ service times are identically distributed for

a given class of client. This was due to limited

computational resources that necessitated updating

parameters at intervals (ten minutes is common)

much longer than the typical call duration. Outbound

models have similar limitations with respect to the

proportion of called parties who answer. Actual call

center data, however, indicate persistent differences

among agent service times, even for probabilistically

identical clients, and runs of high or low proportions

of good contacts and of live answers. Therefore,

using real-time data to adjust call center operations

could produce improvement in performance,

although call center managers are quick to point out

that efficiency must be balanced against robustness.

Kaiser-Nyman et al. (2011) report significant

performance improvement from methods that do

use the real-time capabilities of cloud computing.

Performance of Outbound Systems

Despite the amount of time that has passed since the

solution of the basic predictive dialing problem, many

interesting unsolved problems remain, as research has

largely concentrated on inbound systems. For systems

running multiple simultaneous outbound campaigns

and applying multiple predictive dialing systems in

parallel, a common tactic is to switch agents from

one campaign to another as answer rates change This

impairs productivity if agents are switched too

abruptly or too often, hence pacing that takes human

factors into account would be valuable.

Balancing the utilization of agents in blended

systems, where agents could serve both inbound and

outbound parties, is generally done with heuristics that

tend to under-optimize productivity to ensure that

high-priority, high-value inbound calls always get

handled quickly. Again, the available heuristics

under-optimize and overlook significant human

factors.

In some outbound systems, the protocol is to have

the first conversation introduce playing a recorded

message to a called party who agrees to listen to it,

then to have an agent (not necessarily the same one

who had the first conversation) conduct a second live

conversation. If agents can be switched between first

and second conversations quickly, there is an

opportunity for greater productivity with a predictive

dialing method, but the synchronization problem is

quite complex. Also, again, human factors

considerations may add additional constraints.

Research Data

Available operational data tend to be aggregated into

time-based averages, which is problematic from

a queueing science perspective. Fortunately, the

Web-based DataMOCCA Project provides a clean

source of high-granularity, call-based client call data

from several sources that can be used to test proposed

center advances in a research environment.

Call Routing

Skill-based routing, in which different agents are

capable of handling different subsets of calls in an

environment with multiple call types, is a major trend

in the call center industry (L’Ecuyer 2006). These

systems route clients to different agents depending

on their needs and support the creation of a hierarchy

of agents with highly skilled personnel handling only

the most challenging calls. There is an opportunity

for research regarding design and appropriate

performance measures in such systems, and in

the dependency and interaction among staffing,

scheduling, and routing. When there are multiple types

of calls and multiple types of agents, performance

modeling, staffing, scheduling, and rostering problems

all become significantly more complex, which leads to

many interesting and important research problems,

see Fukunaga et al. (2002) and Avramidis et al.

(2009, 2010).

Concluding Remarks

Call and contact center managers do not view models

and algorithms as intrinsically appealing. Successful

OR solutions need to integrate tightly with a center’s

existing software systems for data collection, analysis,

decision support, and schedule creation. The OR value

proposition can extend beyond just cost savings.

Managers value OR professionals who can reduce

future call volumes using process management
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techniques, such as call content analysis, that collects

structured data on caller issues and performs Pareto

analysis to direct the organization to improve product

quality, user manuals, and agent training (Mehrotra

and Grossman 2009). Managers also value reduced

service time, reduced labor headaches from improved

scheduling, and, in some centers, sales made or clients

retained. In addition to the technical aspects of the

subject, there is room for more study of how to assess

and address the business needs.

See

▶Communications Networks

▶ Forecasting

▶Manpower Planning

▶Networks of Queues

▶Queueing Theory

▶ Simulation of Stochastic Discrete-Event Systems
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Call Priorities

A strategy for handling calls with varying degrees of

urgency. Many emergency services have instituted

formal procedures for responding differently

(e.g., with and without flashing lights and sirens) to

calls depending upon priority level.

See

▶Emergency Services

Candidate Rules

A group of rules that the inference engine has

determined to be of immediate relevance at the

present juncture in a reasoning process. These rules

will be considered according to a particular selection

order and subject to a prescribed degree of rigor.

See

▶Artificial Intelligence

Capacitated Transportation Problem

A version of the transportation problem in which upper

bounds are imposed on some or all of the flows

between origins and destinations.

See

▶Transportation Problem

Capital Budgeting

Reuven R. Levary

Saint Louis University, St. Louis, MO, USA

Introduction

The desired end result of the capital budgeting process

is the selection of an optimal portfolio of investments
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from a set of alternative investment proposals. An

optimal portfolio of investments is defined as the set

of investments that makes the greatest possible

contribution to the achievement of the organization’s

goals, given the organization’s constraints. The

constraints faced by a corporation in the capital

budgeting process can include limited supplies of

capital or other resources as well as dependencies

between investment proposals. A dependency occurs

if two projects are mutually exclusive, acceptance of

one requires rejection of the other, or if one project can

be accepted only if another is accepted. Assuming that

the organizational goals and constraints can be

formulated as linear functions, the optimal set of

capital investments can be found using linear

programming (LP).

Capital Budgeting Under Capital Rationing

Capital rationing is a constrained capital budgeting

problem in which the amount of capital available for

investment is limited.

Pure Capital Rationing, with No Lending or

Borrowing Allowed — Consider a firm that has an

opportunity to invest in several independent projects.

It is assumed that both the future cash flows associated

with each project and the firm’s future cost of capital

can be forecast. These forecasts enable calculation of

the net present value for each project, assuming that the

firm expects to be affiliated with the projects for

a period of N years. It is also assumed that the firm

has a given fixed budget for funding the projects for

each of the N years, with both the budget and the cost

of capital in future periods being unaffected by

investments made in previous periods. Finally, it is

assumed that any portion of the budget not used in

one year cannot be carried over to future years.

The basic model for capital budgeting under pure

capital rationing is as follows:

maximize
XM

i¼l
Pixi (1)

subject to�
XM

i¼l
fitxi � bi for t ¼ 1; 2; . . . ; N (2)

0 � xi � 1 for i ¼ 1; 2; . . . ; M (3)

where Pi is the net present value for the ith project

(calculated based on forecasts of future cash flows),

fit is the expected cash flow for project i during year t

(cash flow is defined to be positive if it is inflow and

negative if it is outflow), bt is the available budget for

year t,M is the number of alternative projects and xi is

the fraction of project i to be funded.

The objective function (1) represents the total

expected net present value of the investment

proposals that should be funded. Constraints (2)

represent restrictions on the available yearly budget.

Constraints (3) ensure that no more than one project

of a given type will be included in the optimal

portfolio. By adding the constraint that xi be integer

for i ¼ 1, 2, . . ., M, the problem becomes an integer

program. In this case, no fractional projects will be

allowed; a project is either accepted or rejected.

Constraints on scarce resources, mutually exclusive

projects, and contingent projects can easily be added

to the above model when necessary.

Capital Budgeting Where Borrowing and Lending

are Allowed— In this model, the amount available for

lending in a given year is the “left-over” money for that

year. This amount can be carried over to the next year

at a given rate of interest r. Consider the case when the

interest rate for borrowing, or cost of funds, depends

on the amounts borrowed. The cost of borrowing is

assumed to have the shape of a step function; that is,

the larger the amount borrowed, with limits, the higher

the interest rate. Let rj be the interest rate that applies

to borrowing an amount greater than Cj�1 and less than
or equal to Cj . A firm will borrow at interest rate rj if it

exhausts the limits placed on its borrowing at lower

interest rates.

If the firm expects to be affiliated with the proposed

projects for N years, then the objective is to maximize

the total related cash flows at the end of the Nth year,

that is, the horizon. Let at and bt be, respectively,

the amount lent and the amount borrowed (at interest

rate rj ) in year t. Also, let fit be the cash flow in year t

resulting from approval of project i. All flows in this

model are current values, that is, not present values.

Revenues and expenditures are defined, respectively,

to be positive and negative cash flows. A given project

can generate cash flows after the Nth year as well. Let

f̂ i be the present value of total cash flows at the horizon

(i.e., year N) that are expected to be generated by

project i at years following year N. These flows are
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discounted to year N, assuming an interest rate

equivalent to the firm’s weighted average cost of

capital. The model is formulated as follows:

maximize
XM

i¼l
f̂ ixi þ aN�

Xm

j¼l
bj N (4)

subject to �P
M

i¼l
filxi þ al�P

m

j¼l
bjl � bl (5)

�
XM

i¼1
filxi� 1þ rð Þal�1 þ al þ

Xm

j¼1
1þ rj
� �

bjl�1

�
Xm

j¼1
bjl � bl 8 t ¼ 2; 3; . . . ; N

(6)

bjt � Cjt 8 t ¼ 1; 2; . . . ; N; j ¼ 1; 2; . . . ; m

(7)

0 � xi � 1 8 i ¼ 1; 2; . . . ; M (8)

at; bjt � 0 8 t ¼ 1; 2; . . . ; N; j ¼ 1; 2; . . . ; m

(9)

where m represents the number of different interest

rates in the supply of funds schedule. The limit on

borrowing during year t, at interest rate rj, is denoted

by Cjt . Objective function (4) represents the total flows

resulting from the proposed projects at the end of

the Nth year. The first component
PM

i¼1 f̂ixi of

the objective function represents the present value at

the horizon of the cash flows expected to be generated

by the projects in years following the horizon year N.

The second component
PM

j¼1 bjN is the amount lent

minus the amount borrowed during the horizon year N.

Inequality (5) and inequalities (6) represent the

constraints on the available budget for a given year.

The limits on borrowing are represented by constraints

(7). This model can be extended by adding constraints

on scarce resources and by incorporating mutually

exclusive and contingent projects when applicable.

Fractional Projects

All LP models can result in an optimal portfolio of

projects composed of fractional projects. Weingartner

(1967) showed that the number of fractional projects in

the optimal solution set of the basic LP model

[described by relations (1)–(3)] cannot exceed the

number of time periods for which constraints are

imposed. Additional constraints such as mutual

exclusion, contingency, and scarce resources can

increase the maximum number of fractional projects.

Each additional constraint increases the maximum

number of fractional projects by one. Weingartner

(1967) also showed that the number of fractional

projects in the optimal solution of the model where

borrowing and lending are allowed is no larger than the

number of time periods during which the firm does not

lend or borrow money.

Because solutions to LP models can include

fractional projects, these models are only an

approximation of the exact solution. The exact

solution can be obtained by applying integer

programming solution procedures. The fractions of

mutually exclusive projects, which can be the

solution of an LP model, may have a useful

interpretation. Fractional projects may suggest the

possibility of a partnership. For example, one might

interpret the decision to fund the expenses of building

a fraction of a shopping center to mean that it would be

beneficial for the company to engage in a partnership

arrangement.

Dual Linear Programming and Capital
Budgeting

Consider the basic model for capital budgeting under

pure capital rationing formulated by relations (1)–(3).

To evaluate the profitability of various projects,

a discount factor must be incorporated into the capital

budgeting analysis. Define d t as the discount factor for

period t: d t ¼ (1 + r t )
�1where r t is the interest rate at

period t. The net present value for project i is

Pi ¼
XN

t¼l
fit dt: (10)

Substitution of Equation (10) into (1) results in the

following formulation, called Problem P:

maximize Z ¼
XM

i¼l

XN

t¼l
fit dt Xi

subject to ð2Þ and ð3Þ: ðPÞ
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Let yt be the dual variable associated with the

budget constraint for year t. The value of yt at

the optimal solution, y�t , represents the increase in the

total combined net present value of the projects that

results from an addition of $1 to the budget for year t.

Assume that V dollars are added to the budget in

period t. This results in an increase of the net present

value (the objective function) by v � y�t . The net

present value of v is v � dt . This implies that

the discount factor dt should be equal to the dual

variable y�t at the optimal solution (Baumol and

Quandt 1965). Problem P is called consistent if its

optimal solution has the property dt ¼ y�t 8t.
A solution to a capital budgeting problem under pure

capital rationing where dual variables do not equal the

discount factor is not optimal. Therefore, such

a problem is inconsistent.

Ananalysis of consistent solutions helps clarify the

relationship between Capital budgeting discount

factors in discount factors and dual variables, as well

as the choice of an objective function. Several

properties of consistent solutions were summarized

by Freeland and Rosenblatt (1978) and are:

1. The value of the objective function of Problem P equals zero
if there are no upper bounds on the decision variables (i.e., in
the case when the Xi are not restricted to be less than one).

2. When the value of the objective function is zero, the only
way to obtain a consistent solution is by having all discount
factors equal zero. This is a meaningless situation.

3. To ensure a meaningful consistent solution, the decision
variables must have upper bounds. Furthermore, some
projects must be fully accepted.

4. For a consistent solution to be meaningful, the optimal value
of the objective function must be positive and the budget
vector must include both positive and negative components.

5. If unused funds cannot be carried forward, the discount factor
in period t may exceed the discount factor in period t + 1.

Finding the “Right” Discount Factors

Because different optimal solutions to Problem P are

obtained for various values of the discount factor, it is

necessary to find the right discount factor for the pure

capital rationing case before Problem P is solved.

Freeland and Rosenblatt (1978) reported that most of

the proposed iterative procedures for finding the right

discount factors described in the literature do not work

properly. Problems involved in finding the right

discount factors are avoided by using horizon models,

such as (4)–(9). Center for Naval Analyses (CNA)

origin of The horizon value of the model where

borrowing and lending are allowed is aN �
PM

j¼1 bjN
[see relation (4)] when there are no cash flows beyond

the horizon. In this case, no discount rate is used in

maximizing the horizon value and therefore the

problem of finding the right discount factor is

irrelevant. In the case where there are cash flows

beyond the horizon, management must estimate the

respective discount rates using financial and

economic forecasting. The calculation of these

estimates is external to the LP models used in capital

budgeting decisions, and therefore is not linked to the

solution procedure of the LP model.

Alternative Capital Budgeting Models

Some capital budgeting problems have multiple

objectives. Such problems can be formulated as goal

programming problems. In many cases, the values of

variables affecting the cash flows of the projects are

not known with certainty. Such variables include

future interest rates, length of useful economic lives,

and salvage values. Computer simulation can be used

to handle the uncertainty surrounding capital

budgeting decisions (Levary and Seitz 1990).

Simulation can also be used to analyze the risk

consequences of various capital budgeting

alternatives. Decision tree analysis is a widely used

method for analyzing risk associated with a single

investment alternative (Levary and Seitz 1990).

Expected return on investments can be adjusted for

risk using the capital asset pricing model (CAPM).

CAPM was generalized by Richard (1979) to include

environmental uncertainty.

Applications of chance-constrained programming

to capital budgeting problems have been reported

in the literature. Byrne et al. (1967, 1969)

incorporated payback and liquidity constraints into

chance-constrained programming models for capital

budgeting. The payback is represented in these

models in the form of chance-constraints that filter

acceptable from unacceptable risks. The liquidity

constraints handle risks related to situations such

as unplanned demand for cash and unplanned

technological breakthroughs. Hillier (1969) formulated

the net cash flows in each time period of a

capital budgeting model as probabilistic constraints.
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The objective function in the model is to maximize the

expected utility of the shareholders at the horizon

period. N€aslund (1966) extended the horizon model

[relations (4)–(9)], by including risks. N€aslund

assumed that the yearly cash flows were independent,

normally distributed random variables having known

means and standard deviations. He also assumed that

no other random variables existed in his model. The

adjusted model is a chance-constrained programming

model. N€aslund developed a deterministic equivalent to

his chance-constrained programming model.

Relationships among investments contribute to

portfolio risk and can be measured by covariances.

Quadratic programming models for capital budgeting

can be used in situations where the covariances

between returns of various projects can be estimated.

Various characteristics of a specific capital budgeting

problem, like tax consequences, can be modeled using

mathematical programming.

See

▶Chance-Constrained Programming

▶Goal Programming

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶ Portfolio Theory: Mean-Variance Model

▶Quadratic Programming
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CASE

Computer-aided software-systems engineering.

See

▶ Systems Analysis

CDF

Cumulative distribution function.

Center for Naval Analyses

Carl M. Harris

George Mason University, Fairfax, VA, USA

Introduction

In the pre-World War II year of 1940, many scientists

believed that organizing the nation’s scientific research

would strengthen national defense. As a result, the

National Defense Research Committee (NDRC) was

established by Presidential Executive Order.

The NDRC was placed under the direction of the

newly created Office of Scientific Research and

Development (OSRD), which reported directly to the

president. NDRC’s contact with British researchers

indicated that studying actual operations was an

essential part of any assessment process. Because the

need for operations research was particularly pressing
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in the area of antisubmarine warfare (ASW), the Navy

created the Antisubmarine Warfare Operations

Research Group (ASWORG). In 1942, comprising at

first fewer than a dozen scientists, it was the first

civilian group engaged in military operations

research in the United States. The Center for Naval

Analyses (CNA) traces its origins to ASWORG.

Today, CNA analysts provide the Navy and Marine

Corps with objective studies of a wide variety of

operations, systems and programs. Such studies range

from the support of training and testing activities to the

evaluation of new technologies and alternative

force structures for top-level decision-makers.

The following short history of CNA recounts the

high-lights of its evolution and contribution to

national security.

World War II

During the 1940s, the United States was preoccupied

first with the war in Europe and then with the war in the

Pacific. As soon as the United States entered the war,

German submarines began to patrol the U.S. East

Coast and Atlantic shipping lanes in earnest. The

Navy’s immediate focus was on the U-boat threat and

the Battle of the Atlantic.

In Britain, Professor P.M.S. Blackett had

demonstrated the value of operations research in

solving military problems. Captain Wilder Baker,

leader of the newly formed U.S. Navy Antisubmarine

Warfare Unit in Boston, was inspired by Blackett’s

paper, “Scientists at the Operation Level” (see

Blackett’s later work, 1962). Baker believed

that a cadre of civilian scientists could also help the

U.S. Navy. He asked Professor Philip M. Morse of

MIT to head such a group. ASWORG was formed in

April 1942 with a mission to help defeat the German

U-boats. The contract for ASWORG was administered

by Columbia University, which already had an

existing contract with the NDRC that focused on

anti-submarine warfare.

ASWORG set a major precedent when it required

its analysts to gather field data firsthand. Sending

civilian experts to military commands was

a delicate matter. In June 1942, the field program

began when an ASWORG analyst assisted the Gulf

Sea Frontier Headquarters in Miami. Shortly

afterward, several analysts were assigned to the

Eastern Sea Frontier in New York. The field analysts

quickly became accepted; most of ASWORG’s

noteworthy work was achieved in the field.

In June 1942, ASWORG was assigned to the

Head-quarters of Commander in Chief, U.S. Fleet

(CominCh). Admiral Ernest J. King was both

CominCh and the Chief of Naval Operations (CNO).

The Tenth Fleet was formed in 1943 to consolidate

U.S. ASW operations. In July 1943, ASWORG

became part of the Tenth Fleet.

In October 1944, because of the decrease in enemy

submarine activity and the increase in operations

research requirements on subjects other than ASW,

ASWORG was transferred from the Tenth Fleet

to the Readiness Division of the Headquarters of

CominCh. It was also renamed the Operations

Research Group (ORG) as its analysis efforts had

become more diversified.

By the end of the war, ORG had about 80 scientists

whose scope of study was all forms of naval warfare.

During most of World War II, about 40% of the group

was assigned to various operating commands.

These field analysts developed immediate, practical

answers to tactical and force allocation questions

important to their commands. Concurrently, they fed

back practical experiences and understanding to the

central Washington group, a practice still continued

a half century later.

Among its many World War II contributions, ORG

devised more effective escort screening plans;

determined the optimum size of convoys; developed

ASW tactics, such as optimum patterns and altitudes

for flying AWS patrol aircraft; developed counter

measures to German acoustic torpedoes and

snorkeling U-boats; and contributed to the use of

airborne radar.

Post-War Period

In August 1945, Admiral King, in a letter to Secretary

of the Navy James V. Forrestal, recommended and

requested that ORG be allowed to continue into

peacetime at about 25% of its wartime size. Secretary

Forrestal gave his approval shortly thereafter.

Both Admiral King and Secretary Forrestal

concluded that much of ORG’s unique value was due

to its ability to provide an independent, scientific

viewpoint to a broad range of Navy problems.
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Consequently, in extending the service of ORG into

peacetime, it was decided that its character could best

be preserved by perpetuating the wartime arrangement

through a contract with an academic institution.

Such a contract was entered into with MIT in

November 1945. At that time, ORG was renamed the

Operations Evaluation Group (OEG), with Dr. Jacinto

Steinhardt as its first director. OEG was to assist the

Navy and its research laboratories in analyzing

and evaluating new equipment, tactical doctrine and

strategic warfare. OEG established a policy that all of

its (male) analysts must spend time assigned to fleet

operations, a practice that is partially maintained to

this day by CNA.

After the war, OEG published several

comprehensive reports on important naval operations,

which included many new methodologies. Although

some were originally classified secret, they later

appeared in Morse and Kimball’s Methods of

Operations Research, Bernard Koopman’s Search

and Screening, and Charles Sternhell and Alan

Thorndike’s Anti-submarine Warfare in World War

II. Taken together, these reports provided a record of

vital lessons learned in World War II, as well as

important operations research methods. With the

Korean War and the intensification of the Cold War,

the role of analysis in defense planning expanded in

the 1950s. Once the Soviets had detonated their

first thermonuclear device, the United States had to

revise its thinking on many critical defense issues.

As the consequences of nuclear war loomed and

the cost of military preparedness escalated, the

government, more than ever, needed reliable

scientific information on which to base its strategic

decision-making.

Before the Korean War, OEG began a slow but

steady buildup. By 1950, the research staff had grown

to about 40. As the war began, OEG received

requests for analysts from combat commands. These

analysts collected data, solved tactical problems

and recommended improvements in procedures,

improvements that were sometimes used immediately.

OEG expended its major efforts on such specific tactical

problems as: selection of weapons for naval air attack

on tactical targets; scheduling of close air support;

analysis of air-to-air combat; naval gunfire in

shore bombardment; blockade tactics; and interdiction

of land transportation. By the end of the war, OEG

had 60 research staff members.

After the war, OEG continued to grow, albeit

slowly. Analysts participated with naval forces in

all post-Korean crises. The most important changes

in the nature of the group’s post-Korean activity were

the results of major technological advances,

particularly in the field of atomic energy and guided

missiles. Issues were broadened to include the

possible enemy use of nuclear weapons and the effect

of U.S. policies and weapon system choices on the

nature of wars the United States would have to be

prepared to fight. During this period, the Navy

also established the Long-Range Studies Project of

MIT; it was later renamed the Institute for Naval

Studies (INS).

Defense Management

By the 1960s, advances in weapons technology were

causing defense costs to rise dramatically, and

the increasing tempo of the Vietnam War later in the

decade would cause the defense budget to balloon still

further. The swearing in of Secretary of Defense

Robert S. McNamara in 1961 marked the beginning

of a new philosophy of defense management.

Emphasis began to be placed on cost as well as

effectiveness. McNamara believed that integrated

systems analysis throughout the defense

establishment was required to achieve a balanced,

affordable military structure.

In 1961, MIT established an Economics Division

within OEG because the cost of weapon systems

was becoming a dominant factor in military

decision-making. Until 1961, the Marine Corps

had only one OEG analyst. By the early 1960s,

however, Marine Corps requirements for operations

research had increased substantially. The Marine

Corps Section of OEG was established in December

1961.

By 1962, the Secretary of the Navy wanted to

consolidate the study efforts of OEG and INS and

began to look for a contractor. MIT, which had

managed OEG since 1945, declined an invitation to

manage this proposed new enterprise. The Navy then

selected the Franklin Institute to administer the

contract for the new organization. In August 1962,

OEG and INS were brought under the common

management of a new entity, the Center for Naval

Analyses (CNA).
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Center for Naval Analyses

Shortly after CNA was formed, OEG (now as

a division) again became involved in an actual naval

operation. In October 1962, it helped the Office of the

Chief of Naval Operations (OPNAV) develop plans for

the naval quarantine of Cuba and assessed the

effectiveness of surveillance operations.

As combat escalated in Southeast Asia, so did the

number of CNA field representatives providing direct

support to the naval operating forces. CNA

participated in the study of many operations, such as

interdiction campaigns in North Vietnam and

infiltration rates in South Vietnam. Also, a large data

base on war-related activities was being developed

and maintained in CNA’s Washington office.

In August 1967, management of the CNA contract

transferred from the Franklin Institute to the

University of Rochester.

Because the war in Vietnam was escalating,

the Navy needed more combat analysis. As a result,

the Southeast Asia Combat Analysis Group

(SEACAG) was established within OPNAV. Shortly

thereafter, the Southeast Asia Combat Analysis

Division (SEA-CAD) was established within OEG.

SEACAD’s role was to support SEACAG and to

increase the amount of war-related analysis that CNA

was performing. CNA analyzed various operations of

the Southeast Asian conflict, including combat aircraft

losses, interdiction, strike warfare and carrier defense,

surveillance and naval gunfire support.

In the 1970s, as the war in Vietnam wound down,

military budgets, forces and equipment began to

deteriorate. To maintain effectiveness in the face of

reduced budgets, the Navy increased its emphasis

on analysis. As new systems became available,

the Navy needed to determine how best to exploit

their capabilities. With old systems that were

already deployed, the Navy needed to develop tactics

that overcame technical shortcoming.

Military Buildup

The 1980s witnessed a major buildup of U.S. forces in

response to the growth of Soviet military power during

the 1970s. For the Navy, this meant not only more

ships and aircraft but also more emphasis on

a maritime strategy and on specific concepts of

operations for employing the Fleet in a global war.

These efforts matured by 1987, just as Gorbachev

unleashed the forces that would lead to the razing of

the Berlin Wall and, ultimately, the demise of the

Soviet Union.

In 1982, CNA began a major study of concepts of

operations for employing the Atlantic Fleet in

a global war. This work involved issues ranging

from Soviet objectives and intentions in a war to

actions the Navy could take to counter Soviet

strategy, as well as theater-level tactics that would

be executable in the face of a concerted Soviet threat.

The results of this work were put into practice in 1984

by Commander, Second Fleet, who also added

important tactical innovations. The resulting

interaction and cooperation of Washington and the

Fleet (and of CNA-Washington and the field

analysts) set the tone for similar efforts at other fleet

commands.

By December 1982, differences concerning the

management of CNA had arisen between the

Department of the Navy and the University of

Rochester. The Secretary of the Navy decided to

open the CNA contract to competition, and several

universities and nonprofit research organizations

responded. In August 1983, the Navy announced

that the Hudson Institute had been awarded the

contract for the management of CNA, effective

October 1983.

New World Order

The 1990s ushered in an entirely new security

environment. In light of the collapse of the Soviet

Union and the new emphasis on Third World threats,

the Navy and Marine Corps are reevaluating their

structure. Unlike the threat of the Cold War era,

these new threats are smaller and more diffuse.

They require smaller units that can operate jointly

in distant areas where the United States often has

a limited number of forces and restricted access to

bases. Developing these types of forces and

operations is a continuing theme for defense

planning in the 1990s.

During the 1980s, some significant events had

solidified CNA’s stature in the analytical field.

Demands for CNA’s analytical assistance had grown,

particularly from senior Navy and Marine Corps
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leaders. CNA had become more involved in critical

issues and issues of concern to top-level

decision-makers, and CNA’s staff had increased in

size and quality to meet those growing demands.

Organizationally, CNA had changed often over

the years to meet the demands of a changing world

and a changing military environment. In the spring

of 1990, CNA’s management, the Board of

Overseers, the Navy, and the Hudson Institute all

agreed that CNA could function as an independent

organization. On October 1, 1990, CNA became

independent and began operating under a direct

contract with the Department of the Navy, ready to

help the Navy and Marine Corps cope with the

impending changes in national security policy,

defense strategy, defense budgets and defense

management practices.

After Iraq annexed Kuwait in August 1990, the

CNO asked CNA to track and document the events in

the Middle East, to analyze activities, and to develop

a lessons-learned data base. CNA had up to 20 field

representatives providing support to various naval

commands in the Middle East, including

Commander, U.S. Naval Central Command.

After the Persian Gulf War, CNA was designated

the Navy’s lead agency for Desert Shield/Storm data

collection and analysis. The Navy believed that future

force composition, systems design and budget

decisions would be shaped by events of the war and

the subsequent analysis. CNA led the reconstruction of

Desert Shield/Storm and provided the Navy with

a 14-volume report. In addition, CNA is continuing

its analysis of the war and is archiving all the fleet data

for the National Archives.

During Desert Storm, the value of concepts

that CNA had analyzed for the Navy and

Marine Corps — the Tomahawk cruise missile, the

air-cushioned landing craft (LCAC), the maritime

prepositioning — became evident. The Tomahawk

land-attack missile was one of the high-tech “stars”

of the war; the LCAC played an important role in

creating fear of an amphibious assault; and maritime

prepositioning allowed two brigades of Marines to

deploy to the Gulf in record time.

In the 1990s, CNA’s most important task was to

help the Navy and Marine Corps make the transition to

a post-Cold War security environment. To do this,

CNA’s research program plan emphasized areas of

immediate importance to this transition: the new

security environment, littoral operations,

communications, warfare area adjustments, training

and education, investment alternatives, force

structure, and economies and efficiencies.

See

▶ Field Analysis

▶Military Operations Research

▶Operations Research Office and Research Analysis

Corporation

▶RAND Corporation
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The certainty equivalent of a gamble or lottery is the

sum of money for which, in a choice between the

money and the gamble, the decision maker is

indifferent between the two. Certainty equivalents are

used to determine decision makers’ attitudes toward

risk, which can then be reflected in the shape of their

utility functions. Certainty equivalents can also be

used to order a set of alternatives. Classic examples

of operationalizations of certainty equivalents used in

the literature are minimum selling price, maximum

buying price, and cash equivalent. Buying and selling

prices may be theoretically different though, due to

income effects.
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By definition, the utility of the certainty equivalent

must be equal to the expected utility of the gamble.

With this in mind, the relationship between the

certainty equivalent (CE) and the expected value

(EV) of a gamble can reveal the decision maker’s

attitude toward risk. If CE < EV, then the individual

is said to exhibit a risk-averse attitude. In this case, the

difference between the expected value and the

certainty equivalent (EV � CE) is known as the “risk

premium” that the decision maker is willing to pay in

order to avoid the risk associated with the gamble. If

CE > EV, a risk-prone (or risk-seeking) attitude is

displayed. Finally, if the two values are equal

(CE ¼ EV), then the decision maker is risk-neutral.

By assessing CEs, decision analysts can calibrate the

utility function of the decision maker to reflect risk

attitude in the decision process. For a formal

discussion, see Keeney and Raiffa (1976).

Certainty equivalents are also used to elicit

a preference order on a set of alternatives. It is

assumed that the order induced by assigning certainty

equivalents reveals the true preference order of the

individual. If one alternative has a higher certainty

equivalent than a second alternative, one would

expect the individual to choose the former over the

latter when asked to make a choice between the two.

The method by which the certainty equivalents are

elicited has been an area of ongoing research. It was

once believed that subjects could simply state their

certainty equivalent to a gamble, in which case their

response is known as a judged certainty equivalent.

Recent empirical studies have provided evidence

that the judged certainty equivalent may not

necessarily equal the true certainty equivalent elicited

through a choice mechanism. Such a violation of

procedure invariance is examined in the stream of

research on preference reversals. Subjects provide

both judged certainty equivalents and then make

choices between pairs of gambles. By carefully

selecting the gambles, researchers have been able to

elicit judged certainty equivalents that produce an

ordering on the set, while the same subject’s choices

results in the reverse ordering (Grether and Plott

1979; Lichtenstein and Slovic 1971, 1973; Lindman

1971; Slovic and Lichtenstein 1983). Such a pair of

gambles is:

0.99 Win $4.00
0.01 Win $0

0.25 Win $16.00
0.75 Win $0

A: B:

The expected values of the two gambles are

$3.96 and $4 respectively. A large proportion

of people will indicate a preference for gamble

A when asked to choose between the two, yet place

a higher dollar value on B (Grether and Plott 1979,

p. 623).

Work by Tversky, Slovic, and Kahneman (1990) as

well as Bostic, Herrnstein, and Luce (1990) has shown

that these preference reversals virtually disappear

when the certainty equivalents are elicited through

a choice mechanism, such as the Parameter

Estimation by Sequential Testing (PEST) procedure.

For a review of preference reversals, see Tversky and

Thaler (1990).

See

▶Decision Analysis

▶Lottery

▶Risk

▶Utility Theory
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Certainty Factor

A numeric measure of the degree of certainty about the

goodness, correctness, or likelihood of a variable value,

an expression (e.g., premise) value, or conclusion.

See

▶Expert Systems

Chain

A chain in a network is a sequence of arcs connecting

a designated initial node to a designated terminal node

such that the direction (orientation) of flow in the arcs

is from the initial node to the terminal node.

See

▶Cycle

▶Markov Chains

▶ Path

Chance Constraint

A constraint that restricts the probability of a certain

event to a prespecified range of values. Under certain

conditions, chance constraints can be incorporated into

mathematical-programming problems.

See

▶Chance-Constrained Programming

▶Linear Programming

▶ Stochastic Programming

Chance-Constrained Programming

A mathematical-programming problem in which

the parameters of the problem are random variables

and for which a solution must satisfy the constraints of

the problem in a probabilistic sense. Here the usual

linear-programming constraints are given as probability

statements of the form Pr{
Pn

j¼1 aij xj � bi} � ai
for i ¼ 1, . . ., m, where the {ai} are given constants

between zero and one. Some forms of the

chance-constrained programming problem can be

transformed to an equivalent linear-programming

problem.

See

▶Linear Programming

▶ Stochastic Programming
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Chaos

A mathematical term describing a situation in which

arbitrarily small variations in independent variable

values can produce large variations in the dependent

variable. The term is most typically used to

characterize the behavior of deterministic, nonlinear,

differentiable dynamic systems. The term is

sometimes used to describe situations in which true

mathematical chaos is not present, but where the

results are similarly disturbing. The disturbing effect

in battle modeling, for example, is the apparent loss of

deterministic behavior.

Chapman-Kolmogorov Equations

In a parameter-homogeneous Markov chain {X(t)}

with state space S, define pij (t) as the probability that

X(t + s)¼ j, given that X(s)¼ i for s, t� 0. Then, for all

states i, j and index parameters s, t � 0,

pij tþ sð Þ ¼
X

k2S
pikðtÞpkjðsÞ
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are the Chapman-Kolmogorov equations. There is a

comparable definition when the state space is instead

continuous.

See

▶Markov Chains

▶Markov Processes

Characteristic Function

For a random variable X, the characteristic function

is given by fXðtÞ ¼ E½eitX�, where i denotes the

imaginary number √�1.

Chinese Postman Problem

William R. Stewart Jr.

College of William and Mary, Williamsburg, VA, USA

The Chinese Postman Problem acquired its name from

the context in which it was first popularly presented.

The Chinese mathematician Mei-Ko Kwan (1962)

addressed the question of how, given a postal zone

with a number of streets that must be served by

a postal carrier (postman), does one develop a tour or

route that covers every street in the zone and brings the

postman back to his point of origin having traveled the

minimum possible distance. Researchers who have

followed on Kwan‘s initial work have since referred

to this problem as the Chinese Postman Problem or

CPP. In general, any problem that requires that all of

the edges of a graph (streets, etc.) be traversed (served)

at least once while traveling the shortest total distance

overall is a CPP. Like its cousin, the traveling salesman

problem, that seeks a route of minimum cost that visits

every vertex of a graph exactly once before returning

to the vertex of origin, the CPP has many real world

manifestations, not the least of which is the scheduling

of letter carriers. Such problems as street sweeping,

snow plowing, garbage collection, meter reading and

the inspection of pipes or cables can and have all been

treated as CPPs.

In the following discussion, the terms tour and cycle

will be used interchangeably to refer to a route on

a graph that begins and ends at the same vertex and

that traverses all of the edges of that graph at least

once. Unless otherwise noted, the edges are assumed

to be undirected (i.e., they may be traversed in either

direction).

The CPP and its many variants have their roots in the

origins of mathematical graph theory. The problem of

finding a cycle (tour/route) on a graph which traverses

all of the edges of that graph and returns to its starting

point dates back to the mathematician Leonid Euler and

his analysis in 1736 of a popular puzzle of that time, the

Königsberg Bridge problem. Euler’s problem of

traversing all of the bridges of Königsberg and

returning to his starting point without retracing his

steps is equivalent to asking if there is a tour of the

graph shown in Fig. 1 that traverses all of the edges

exactly once. Euler showed that such a cycle exists in

a graph if and only if each vertex in the graph has an

even number of edges connecting to it or, in

mathematical terms, each vertex is of even cardinality.

This follows logically from the observation that, in

a tour that traverses all of the edges exactly once, each

vertex must be exited the same number of times it is

entered. Tours that traverse each edge of a graph exactly

a

b

c

d

Chinese Postman Problem, Fig. 1 A graph of Euler’s
Konigsberg bridge problem
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once are termed Euler cycles or tours, and graphs that

contain an Euler cycle are appropriately called Eulerian.

When costs are assigned to each of the edges, the

problem of finding a minimum cost tour is a CPP.

When a graph is Eulerian, the cost of a tour is just

the sum of the costs of all of the edges in the graph, and

the solution to the CPP is any Eulerian tour, of which

there are usually many. In general, an Eulerian tour can

easily be found when one exists. When a graph has

more than one odd cardinality vertex (exactly one such

vertex is impossible), the CPP is the problem of finding

which of the edges must be traversed more than once in

order to produce a minimum cost tour. The graph

shown in Fig. 1 has four vertices with odd

cardinality, and a tour of this graph requires that one

or more of the edges be crossed more than once.

Figure 2 shows hypothetical costs on each edge, and

the dashed lines indicate the edges that must be

traversed twice in order to achieve a minimal cost

tour. This tour will have a total cost of 23, the cost of

crossing each edge once plus the cost of crossing edges

(a, b) and (c, d) a second time each.

In mathematical terms, the CPP can be stated as

follows: given a graphG¼ {V, E}, where V is a set of n

vertices, E is a set of edges connecting these vertices,

and each edge (i, j) connecting vertices i and j has

a nonnegative cost, cij, find xij, the number of times

that edge (i, j) is to be traversed from i to j so that the

total cost of traversing all of the edges in E at least once

is a minimum. The sum of xij and xji is the total times

that the edge between vertices i and jmust be traversed

in an optimal tour.

Minimize
X

i

X

j

cijxij (1)

Subject to
X

i

xik �
X

j

xkj ¼ 0; for k ¼ 1; . . . ; n;

(2)

xij þ xji � 1; for all ði; jÞ and ðj; iÞ 2 E; (3)

xij � 0; and integer; for all ði; jÞ 2 E: (4)

For ease of exposition, this formulation assumes

that there is a maximum of one edge between any

two vertices. As can be seen in the illustration in

Figs. 1 and 2, this may not always be the case.

However, cases where there are multiple edges

between the same pair of vertices do not complicate

the treatment, since those cases can easily be

transformed into the form shown in (1)–(4).

As pointed out by Edmonds and Johnson (1973) and

Christofides (1973), when there are odd cardinality

vertices in the graph, the CPP reduces to the problem

of finding a minimum cost matching among the odd

cardinality vertices. A minimum cost matching on

a graph is a pairing of the vertices on that graph such

that each vertex is paired with exactly one other vertex

and the total cost of the edges connecting the pairs is

a minimum. When no edge exists between a pair of

vertices, the cost of pairing them is the cost of the

shortest path running between the pair. Replicating

the edges that connect each pair of odd cardinality

vertices in the minimum matching produces an

Eulerian graph (i.e., all vertices now have even

cardinality) where the total cost of all the edges, the

edges in the original graph plus the edges that have

been replicated as a result of the matching, is the cost

of the optimal tour of the original graph.

To illustrate the general solution process, Figure 3

presents a graph with four odd cardinality vertices

(c, e, f, h). None of the four vertices is directly

connected to another of the four. To find the required

minimum cost matching requires the construction of

the graph G0, shown in Fig. 4, which consists of the

a

1

2

3

3

4

4

2
b

c

d

Chinese Postman Problem, Fig. 2 The Konigsberg bridge
problem with edge costs
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four odd cardinality vertices connected by edges

whose costs are the cost of the shortest path between

each pair on the original graph. The problem is then to

find a minimum cost matching on the graph G0. This
matching will determine which edges must be

traversed twice to achieve a minimum cost tour on G.

A quick inspection ofG0 shows that the edges (c, h) and
(e, f) constitute a minimal matching on G0. The paths

(c-g-h) and (e-i-f) on graph G in Fig. 3 correspond to

this matching, and the edges along these paths will be

traversed twice each in an optimal tour and are shown

as dashed lines in Fig. 3.

Solving the CPP requires two operations, both of

which can be performed in polynomial time.

A matching of the odd cardinality vertices must be

found and the corresponding edges replicated that

results in an Eulerian graph. An Eulerian tour of this

expanded graph must then be found. The complexity of

the CPP is dominated by the complexity of solving the

minimum cost matching problem, which can be solved

in at most O(n3) time. Variations of the basic CPP,

briefly described below, are generally not as tractable.

Variations of The Chinese Postman Problem

The CPP has many variations that can and do occur on

a regular basis. In the CPP, the edges are undirected

and they may be traversed in either direction. The most

obvious variation of the CPP is the directed postman

problem where each of the edges has a direction

associated with it. This is often encountered when an

edge represents a one way street in a routing problem,

or an edge must be traversed twice, once in each

direction, as might occur in routing a street sweeper.

In this latter case, each street would be represented in

the graph by two edges, one in each direction. Like the

CPP, the directed postman problem can be solved in

polynomial time. In a sense, it is even easier than the

CPP since it requires a network flow algorithm rather

than a matching algorithm.

When the graph contains a mixture of both directed

and undirected edges, the problem of finding aminimum

cost tour is called the mixed postman problem. The

mixed postman problem has been shown to be

NP-hard. The rural postman problem is a variation of

the CPPwhere a subset of the edges in the graph must be

traversed. The rural postman problem has been shown to

be equivalent to a traveling salesman problem and, as

such, it is also an NP-hard problem (see Lawler et al.

1985). Finally, the capacitated Chinese Postman

Problem recognizes that each edge may have a nonzero

demand for service and that the server (postman) may

have a finite capacity for supplying service. In the

general case, multiple servers must be assigned to

routes such that the demands on all of the edges are

met and no server is assigned a route that exceeds his

capacity. This then is the problem of partitioning the

edges of the graph into subsets and assigning a server

(postman) to each subset in such a way that all capacity

constraints are met and the total distance covered by all

of the servers is a minimum. As with the directed and

rural postman problems, the capacitated postman

problem has been shown to be NP-hard.
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Chinese Postman Problem, Fig. 3 The Graph G
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Chinese Postman Problem, Fig. 4 The Graph G0
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See

▶Combinatorics

▶Computational Complexity

▶Graph Theory

▶ Integer and Combinatorial Optimization

▶Matching

▶Network

▶Traveling Salesman Problem

▶Vehicle Routing
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Choice Strategies

The different approaches people use to combine

deterministic information in their mind; sometimes

referred to as combination rules.

See

▶Choice Theory

▶Decision Analysis

▶Decision Making and Decision Analysis

Choice Theory

Leonard Adelman

George Mason University, Fairfax, VA, USA

Introduction

There is no one descriptive theory of human choice.

Instead, there are different theoretically and

empirically-based approaches for describing choice

behavior. This article briefly overviews five

approaches: bounded rationality, prospect theory,

choice strategies, recognition-primed decision

making, and image theory. These approaches are

descriptive in the sense that they describe certain

aspects of how people actually make choices. They

contrast with prescriptive approaches, such as

decision analysis or other economic-based theories

(or models) of choice behavior, which prescribe how

one should make decisions, but do not necessarily

describe choice behavior.

Bounded Rationality

The concept of bounded rationality is attributed to

Nobel laureate Herbert Simon (Simon 1955, 1979;

Hogarth 1987), who argued that humans lack both the

knowledge and computational skill required to make

choices in a manner compatible with economic notions

of rational behavior. The rational model’s

requirements are illustrated by the concept of

a payoff matrix, an example of which is presented in

Table 1.

The rows of the matrix represent all the different

alternatives available to the decision maker for solving

a choice problem. The columns represent all of the

different states of the world, as defined by future

events, that could affect the attractiveness of the

alternatives. The p1,. . ., pk values represent the

probabilities for each state of the world. The cell

entries in the matrix indicate the value or utility of

the outcome or payoff for each combination of

alternatives and states of the world. Each outcome

represents a cumulative payoff comprised of

perceived advantages and disadvantages on multiple

criteria of varying importance to the decision maker.

Finally, the rational decision maker is required to

select the alternative that maximizes expected utility,

which is calculated for each alternative by multiplying

the values for the outcomes by the probabilities for the

future states, and then summing the products.

Numerous studies have shown that, unaided, people

do not employ the above decision matrix due to the

complex, dynamic nature of the environment and to

basic human information acquisition and processing

limitations. Therefore, how does unaided human

choice remain purposeful and reasonable? Simon
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suggested that people employ three simplification

strategies, which result in a bounded rationality. First,

people simplify the problem by only considering

a small number of alternatives and states of the world

at a time. Second, people simplify the problem by

setting aspiration (or acceptability) levels on the

outcomes. And, third, people choose the first

alternative that satisfies the aspiration levels. In other

words, people do not optimize (i.e., choose the best of

all possible alternatives), but satisfice (i.e., choose the

first satisfactory alternative). In this way, people can

reduce information acquisition and processing

demands and act in a purposeful, reasonable manner.

Prospect Theory

Like Simon’s bounded rationality, prospect theory is

juxtaposed against expected utility theory. For

example, this prospect (or choice) is taken from

Kahneman and Tversky (1979):

ChoiceA : $4000with p ¼ :8; $0with p ¼ :2ð Þ; or
ChoiceB : $3000 for sure; that is; p ¼ 1:0ð Þ

The majority of participants will select Choice B.

Yet, Choice A has the greater expected value; that

is, $4000 � .8 ¼ 3200. Now, consider the following

prospect:

ChoiceC : �$4000 with p ¼ :8; $0with p ¼ :2ð Þ; or
ChoiceD : �$3000 for sure; that is; p ¼ 1:0ð Þ:

The only change in the second prospect is that the

sign has been reversed so that one is now considering

losses, not gains. In this case, however, the majority of

the subjects picked Choice C. That is, they would now

be willing to take a gamble of losing $4000 with

a probability of.8, which has an expected value of

losing $3200, instead of taking a sure loss of $3000.

Again, they selected the choice with the lower

expected value. In addition, they switched from the

sure thing to preferring the gamble.

What Kahneman and Tversky (Tversky and

Kahneman 1981) have shown is that the way the

choice problem is presented (or framed) significantly

affects how people evaluate it, such that information

that should result in the same choice from the

perspective of expected utility theory actually results

in different choices. In particular, people perceive

outcomes as gains or losses from a reference point

rather than from final states (e.g., of wealth),

as assumed by economic-based models of choice.

The current position is usually considered as the

reference point. However, the location of the

reference point and, in turn, the coding of outcomes

as either gains or losses, can be affected by how the

choices are framed.

This framing is particularly important for choice

because, as the example presented above indicates,

people tend to be risk adverse when considering

gains and risk seeking when considering losses,

particularly if one of the prospects is certain.

Moreover, the value function is steeper for losses

than for gains, consistent with the observation that

losses loom much larger than gains. For these

reasons, many people are willing to gamble to avoid

a sure loss, but unwilling to gamble when they have

a sure gain, even when both choices have a lower

expected value than another choice.

Choice Strategies

Substantial research has focused on describing the

different strategies people use to combine

information when facing a choice. In contrast to

bounded rationality and prospect theory, these

strategies are used when people (a) have information

on a number of different dimensions (or attributes)

describing the alternatives, and (b) do not consider

probabilities, either in terms of different states of

nature or the reliability (or accuracy) of the

information. A representative type of problem is

making a purchase decision, such as choosing a car.

The literature (Beach 1990; Hogarth 1987) makes a

distinction between two classes of choice strategies:

compensatory and noncompensatory. Compensatory

Choice Theory, Table 1 The rational economic model’s
decision making requirements as represented in a payoff matrix

States of the world

Alternatives S1 (p1) S2 (p2) . . . Sk (pk)

A a1 a2 . . . ak

B b1 b2 . . . bk

. . . . . . .

N n1 n2 . . . nk
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strategies are used when one trades-off (e.g., via relative

importance weights) a low value on one attribute for

a high value on another. For example, when choosing

among cars, one may trade-off gas mileage for comfort.

Non-compensatory strategies do not employ trade-offs

but, rather, employ thresholds (or cut-offs) that need

to be achieved for choice of an alternative. For

example, one eliminates all cars that do not get at least

25 miles per gallon, regardless of comfort. Some of the

strategies identified in the literature are defined below.

The literature cites three different types of

compensatory models:

1. Linear, additive strategy — the value of an

alternative is equal to the sum of the products,

over all the dimensions, of the relative weight

times the scale value for the dimension.

2. Additive difference strategy — the decision maker

evaluates the differences between the alternatives

on a dimension by dimension basis, and then sums

the weighted differences in order to identify the

alternative with the highest value overall.

3. Ideal point strategy — is similar to the additive

difference model, except the decision maker

compares the alternatives against an ideal

alternative instead of each other.

The literature cites four different types of

noncompensatory strategies:

4. Dominance strategy— select the alternative that is

at least as attractive as the other alternatives on all

the dimensions, but is better than them on at least

one dimension. Although the dominance strategy is

easier for an unaided decision maker to use, all three

compensatory strategies will also identify the

dominant alternative. Moreover, the compensatory

strategies can be used if there is no dominant

alternative; the dominance strategy cannot.

5. Conjunctive strategy — select the alternative that

best passes some critical threshold on all dimensions.

This is the satisficing strategy when one selects the

first option that passes a threshold on all dimensions.

The conjunctive strategy is often used to reduce the

set of alternatives by eliminating all alternatives that

fail to pass a threshold on all dimensions.

6. Lexicographic strategy—select the alternative that

is best on the most important dimension. If two or

more alternatives are tied, select among them by

choosing the alternative that is best on the second

most important dimension, and so on.

7. Elimination by aspects —sequentially identify

different dimensions, either according to their

importance or some more probabilistic scheme.

Eliminate all alternatives that fail to pass the

threshold or aspect for each dimension until only

one alternative is left.

Research (Payne et al. 1993) has shown that people

often use multiple strategies when considering choice

alternatives. Typically, they use noncompensatory

strategies to reduce the number of alternatives and

dimensions under consideration. To use a job

selection example, a person might first eliminate all

alternatives that fail to pass a specific threshold on

security, which may no longer be as important when

considering the reduced set of alternatives. Then, after

the set of alternatives and dimensions have been

reduced to a smaller, more manageable set, people

often employ a compensatory strategy where they

weigh the strengths and weaknesses of the remaining

alternatives in order to select the one which best

satisfies their values.

Recognition-Primed Decision Making (RPD)
and Image Theory

Some descriptive theories have been developed to

explain the choice behavior of experts working in

naturalistic settings (Zsambok and Klein 1997).

These descriptive theories of choice behavior are

farther removed from the basic rational economic

man model than the three presented thus far. Two are

presented here, RPD and image theory, for illustrative

purposes.

The RPD model (Klein 1993) emphasizes four

critical cognitive processes:

• Situation recognition — experienced decision

makers know what cues (or indicators) to focus on

and, often, simply recognize (or perceive) the

situation they are facing through an automatic,

feature (or pattern)-matching process, much like

perceptual objects in our environment are

recognized. People also are quite capable of using

explanation-based reasoning to understand

a situation when there uncertainties and anomalies

in it. In fact, these stories are often, but not always,

the causal explanations for the feature-matching

process that appears to operate so automatically.
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• Decision option generation — Once a situation is

recognized, decisionmakers typically generate only

one option for consideration, not multiple options.

• Evaluation through mental simulation — The

initial option tends to be quite good for dealing

with the (recognized) situation. Decision makers,

however, may evaluate it by mentally simulating

the consequences of implementing the option.

Although the mental simulation will use intuitive

and analytical thought processes, depending on the

consequences being evaluated during the

simulation, the option will seldom, if ever, be

evaluated by a formal analysis on a set of

attributes (e.g., by a decision matrix).

• Use of a decision rule (emphasizing acceptability,

not optimality)—Themental simulationmay result

in modifications to the proposed option to address

problems uncovered during the mental simulation,

or even a new option, but the option will be

accepted once it is deemed satisfactory; it does not

have to be optimal. Thus, RPD explicitly

incorporates Simon’s (1955) satisficing concept.

Beach (1990, 1993) developed the concept of

images to convey the notion that decision makers

bring certain knowledge structures to bear on

a problem that constrain (or frame) how they evaluate

it. In particular, Beach discussed three images: value,

trajectory, and strategic, as follows:

• Value Image — this is composed of the overriding

principles that guide one’s behavior or that of one’s

organization. They “serve as rigid criteria for the

rightness or wrongness of any particular decision

about a goal or plan” (Beach 1993, p. 151).

• Trajectory Image — this consists of previously

adopted goals, the timetable for achieving them,

and the ideal future once they are achieved.

• Strategic Image— this is composed of the plans for

achieving the goals in the trajectory image. The

plans consist of specific tactics (or actions) for

implementing the more abstract plan, and

forecasts of what will happen if specific tactics are

implemented. These forecasts change in light of

new information. “By monitoring these forecasts

(or expectations) in relation to the goals on the

trajectory image, the decision maker can evaluate

his or her progress toward realization of the

ideal agendum on the trajectory image” (Beach

1993, p. 152).

In many ways, Beach’s image theory is another way

for describing the cognitive processes emphasized in

Klein’s RPD model. Image theory also emphasizes:

(a) monitoring behavior; (b) expectations and goals;

(c) situation recognition through feature matching and

explanation-based reasoning; (d) automatic generation

of a decision option to deal with the recognized

situation; (e) mental simulation to evaluate it; (f)

satisficing; and (g) processes for monitoring and

managing the decision process. It is different,

however, in its emphasis of three things.

The first difference in emphasis is that the images

strongly frame the interpretation of how well the

situation is going or even what the problem is, as

emphasized in Prospect Theory. (Keeney (1992) also

emphasized framing in his approach, called

value-focused thinking, but from more of

a prescriptive than descriptive perspective.) Second,

routine progress decisions are made to compare the

current situation and future forecasts with the ideal

future. And, third, adoption decisions are routinely

made to modify plans, tactics, and expectancies (i.e.,

the elements of Strategic Image) — and, less

frequently, goals, timetables, and ideal future (i.e.,

the elements of Trajectory Image) — in response to

progress decisions. Depending on the situation and

person, these adoption decisions are made using

one or more of the choice strategies described

above. Although frames, progress decisions, and

adoption decisions may be concepts that are inherent

in Klein’s RPD model, they are strongly and explicitly

emphasized in Beach’s image theory. In addition,

Beach’s image theory explicitly incorporates

the many descriptive choice strategies found in the

literature. Thus, image theory integrates many of the

concepts in the choice theory literature to describe how

people choose to react to changing situations.

Concluding Remarks

In closing, there is a need to emphasize again that there

is no one descriptive theory of human choice. Instead,

there are different theoretically and empirically-based

approaches for describing choice behavior. This article

provided brief overviews of five of them: bounded

rationality, prospect theory, choice strategies,

recognition-primed decision making, and image
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theory. These approaches were contrasted with

prescriptive approaches, such as decision analysis or

other economic-based theories of choice, which

prescribe how one should make decisions, but do not

necessarily describe choice behavior.

See

▶Decision Analysis

▶Decision Making and Decision Analysis

▶ Preference Theory

▶Utility Theory

References

Beach, L. R. (1990). Image theory: Decision making in personal
and organizational contexts. New York: Wiley.

Beach, L. R. (1993). Image theory: Personal and organizational
decisions. In G. Klein, J. Arisen, R. Calderwood, & C. E.
Zsambok (Eds.), Decision making in action: Models and

methods. Norwood, NJ: Ablex.
Hogarth, R. M. (1987). Judgment and choice. New York: Wiley.
Kahneman, D., & Tversky, A. (1979). Prospect theory: An

analysis of decision making under risk. Econometrica, 47,
263–289.

Keeney, R. L. (1992). Value-focused thinking. Cambridge, MA:
Harvard University Press.

Klein, G. (1993). A recognition-primed decision (RPD) model of
rapid decision making. In G. Klein, J. Arisen, R. Calderwood,
& C. E. Zsambok (Eds.), Decision making in action: Models

and methods. Norwood, NJ: Ablex.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The

adaptive decision maker. New York: Cambridge University
Press.

Rubinstein, A. (1998). Modeling bounded rationality.
Cambridge, MA: MIT Press.

Simon, H. A. (1955). A behavioral model of rational choice.
Quarterly Journal of Economics, 69, 99–118.

Simon, H. A. (1979). Rational decision making in business
organizations. American Economic Review, 69, 493–513.

Tversky, A., & Kahneman, D. (1981). The framing of decisions
and the psychology of choice. Science, 211, 453–458.

Wakker, P. P. (2010). Prospect theory: For risk and ambiguity.
Cambridge, UK: Cambridge University Press.

Zsambok, C. E., & Klein, G. (1997). Naturalistic decision

making. Hillsdale, NJ: Erlbaum.

Chromatic Number

In a graph, the minimum of colors needed to ensure

that adjacent nodes receive different colors.

See

▶Graph Theory

Chromosome

In genetic algorithms, a chromosome represents

a potential solution to the problem at hand.

See

▶Evolutionary Algorithms

CIM

Computer integrated manufacturing.

See

▶Automation in Manufacturing and Services

Circling

▶Cycling

Classical Optimization

▶Unconstrained Optimization

Closed Network

A queueing network in which there is neither entrance

nor exit but only a fixed number of customers endlessly

circulating.

See

▶Networks of Queues
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Introduction

In a (regular) supply chain, there are physical flows of

products, components or subassemblies from suppliers

to subassembly manufacturers, from subassembly

manufacturers to Original Equipment Manufacturers

(OEMs), and from OEMs to customers through

a distribution system. The distribution system could

be comprised of a combination of distribution centers,

central, and regional warehouses, and resellers. In the

traditional supply chain literature, these physical flows

are assumed to be unidirectional, from suppliers to

customers. There are, however, bi-directional

financial and information flows, for example, orders

and payments placed from one tier in the supply chain

(e.g., distributors) to its immediate upper tier (OEMs).

Closed-Loop Supply Chains (CLSC)

In a closed-loop supply chain (CLSC), there are, in

addition to the forward physical flows described above,

reverse physical flows of (used) products or

components from customers to manufacturers (and

possibly suppliers). As an example of closed-loop

supply chain, consider the supply chain for diesel

engines and parts for a major North American OEM

(Fig. 1). Figure 1 depicts the main physical flows in this

supply chain in a simplified manner; the flows are

differentiated between forward and reverse flows.

Forward flows consist of new parts and/or engines,

and reverse flows consist of used parts and/or

engines, and remanufactured parts or engines.

Remanufacturing is the process of restoring a used

product (post consumer use) to a common operating

and aesthetic standard, sometimes with upgrades to the

original product’s functionality. For a diesel engine or

module, remanufacturing consists of six different steps:

(i) full disassembly to the part level, (ii) thorough

cleaning of each part (often through multiple

sequential techniques), (iii) making a disposition

decision for each part (keep for remanufacturing

or dispose the part for materials recycling),

(iv) salvaging if necessary (value added

work that restores functionality to that of a new part),

(v) re-assembly, and (vi) testing. Other terms commonly

used for remanufacturing include refurbishing,

rebuilding, and overhauling, depending on the industry

(no such distinctions are made in this article).

New engines are produced and assembled from new

parts, some of which are manufactured and shipped by

the OEM’s many suppliers. Those suppliers also

supply the firm’s distribution center with spare parts.

New engines are shipped to a (central) distribution

center; they are then shipped from this (central)

distribution center to several regional distribution

centers (not depicted in Fig. 1), and from there to

over 3,000 dealers in North America. Customers, say

a trucking company, buy new (or remanufactured)

diesel engines or engine modules, say a water pump

or a turbocharger, from dealers due to replacement

needs. They receive a dollar credit from returning

the old engine or module upon purchasing a new

(or remanufactured) engine or module; the dollar

credit can be as high as 30% off the purchase price.

Remanufactured engines or modules sell at a 35%

discount relative to the corresponding new engine or

module. Used modules or engines are shipped from

dealers to one of 30 or so different consolidation points

in North America (not depicted in Fig. 1), and from

there to the OEM’s main used products depot. At the

depot, shipments are unpacked, customers are given

the proper credit for returning the used module or

engine; engines and modules are then shipped to one

of two plants (or put into inventory for later shipment

when needed): engine remanufacturing (plant 1), or

part (or module) remanufacturing (plant 2).

Remanufactured engines are shipped from plant 1 to

the main distribution center, joining new engines or

parts for distribution to the dealers. Remanufactured

parts or modules are shipped from plant 2 to either the

distribution center, or to the engine remanufacturing

plant 1, depending on forecasts and current needs.

Used parts not suited for remanufacturing are sold to

recyclers. The flows depicted in Fig. 1 are simplified,

but they convey the major flows in this CLSC. Used

products are typically referred to as returns or cores.

The supply chain in Fig. 1 illustrates two major

disposition decisions for cores: remanufacturing and

recycling. Recycling means materials recovery, i.e., the
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geometry of the used part or product is not preserved.

Recycling occurs when remanufacturing is not possible

or not economical, for example, the core is highly

damaged (e.g., an engine block with a hole on it), there

is significant wear and tear of the part (piston rings), or

the part is technologically obsolete (this is common in

consumer electronics and computers). In addition to

these two disposition options, the firm can also

disassemble a core, and use some of the resulting parts

as spare parts for, say, fulfilling warranty claims or

servicing products under service contracts; in these

cases there may be no cleaning or salvage needed.

Dismantling for spare parts is common in electronic

goods industries, such as computers, and IT networking

equipment (servers, routers, switches). Dismantling for

spare parts can be an attractive alternative when it

produces significant savings compared to procuring

a new part from a supplier, when demand for

remanufactured products is weak, or when the part

supplier is no longer active. Other disposition decisions

include incineration (which can recover energy, but there

can be pollution concerns), and dumping in landfills

(which is illegal for some materials known to

contaminate water and soil). This article focuses on

remanufacturing, as it presents significant operational

challenges due to the natural mismatch between supply

of cores, which for most firms is not certain, and demand

for remanufactured products, which is also uncertain; as

a result remanufacturing is a natural candidate for

application of OR models.

In addition, Fig. 1 illustrates a CLSC where the

main source of cores are end-of-use returns, where

the product has undergone a full cycle of use with

a customer, but the product still has significant value

left for recovery. In addition to end-of-use returns,

there are end-of-life returns, which are products that

have reached the end of their useful life, mostly due to

obsolescence, and whose main disposition decision is

recycling; examples include very old computers,

monitors, VCRs, and very old cars. Finally, there are

consumer returns, which are products that have

undergone little or no use by consumers—they are

returned by consumers to retailers as a result of liberal

returns policies by powerful retailers primarily in North

America; most consumer returns are not defective. For

example, about 80% of deskjet printers returned to

retailers by consumers in the U.S. are not defective;

reasons for return include remorse, and lack of product

fit with consumer needs (Ferguson et al. 2006).

For the design and operation of a CLSC, the

decision making is classified into three buckets, as is

the case for regular supply chains: strategic, tactical,

and operational. Examples of these three types of

decisions are shown in Table 1. As Table 1 suggests,

there are many different decisions in CLSC

management that are amenable to the use of OR tools

and techniques, including mathematical programming,

Markov decision processes, and simulation.

Next, a brief description is given on how OR

techniques are applied to two decisions: the decision

to remanufacture or not by an OEM, and network

design. A more complete review of the basic models

and extensions for the other decisions is given in Souza

(2008) and Ferguson and Souza (2010).

Dealer 1

Dealer n

Distribution 
Center

Used products
depot

Assembly Plant 
(new engines)

Supplier 1

Remanufacturing 
plant 1 (engines)

Remanufacturing 
plant 2 (engine 

modules)

Supplier 2

Supplier N

Customers

Forward flows (engines / parts)

Reverse flows (engines / parts)To materials
recycling

scrap

Closed-Loop Supply

Chains, Fig. 1 CLSC for
diesel engines and parts
(simplified)
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Should an OEM Remanufacture?

On the surface, the decision to remanufacture or not by

an OEM appears to be simple: if the price the firm can

sell a remanufactured product far exceeds the variable

cost to remanufacture a core, which includes collection

and transportation of the core, disassembly, cleaning,

salvaging, re-assembly, testing, and remarketing, then

the firm should remanufacture, after properly

accounting for any upfront fixed remanufacturing

costs (e.g., building a facility and acquiring

equipment). This simple revenue vs. cost accounting

may not capture all of the facets of the problem,

however. There are other factors that favor

remanufacturing, such as: (i) extending the OEM’s

product line and offering a product, priced most

likely lower than the corresponding new product, and

therefore reaching a customer segment that would not

otherwise be reached; (ii) allowing brand protection,

given that many third party firms offer remanufactured

products—if the OEM offers a certified

remanufactured product, then it communicates to

consumers that only its version of remanufactured

product has the appropriate quality level; (iii) using

as a deterrent to market entry of third-party

remanufacturers; and (iv) value recovery for used

products returned after leases, trade-in programs, or

consumer returns. On the other hand, there are factors

that do not favor remanufacturing; chiefly among them

are: (a) the fear of cannibalization of sales of

a (typically more expensive and more profitable) new

product by a (typically less expensive and less

profitable) remanufactured product; and (b) the ability

to reliably collect an appropriate pipeline of cores to

sustain a remanufacturing operation. Discussions with

manufacturing managers indicate that factor (a) is of

significant concern to firms in the IT equipment

industry, while factor (b) is of significant concern to

firms in automotive parts remanufacturing.

The following simple analytic model provides some

insights into the answer to the critical strategic

question, “Should an OEM remanufacture?” Consider

an OEM selling a new product (say, a diesel engine

model X), and considering the decision to offer its

remanufactured counterpart (a remanufactured diesel

engine model X). The firm has to decide whether to

offer the remanufactured product, and if so, how to set

the prices of remanufactured and new products,

denoted by pr and pn respectively. First, consider

a monopolist under a single period model (extensions

are discussed below.) The model is based on some

assumptions about consumer behavior. Specifically,

assume that the consumer base is heterogeneous, so

that consumers differ in their intrinsic valuation for

the new product. A consumer such as a third-party

logistics company, for example, with an extensive

fleet of large trucks, has a high valuation for the

new diesel engine; whereas an operator of small

gasoline-powered delivery trucks has a low intrinsic

valuation for a new diesel engine. This intrinsic

valuation for the new product, which differs

across the heterogeneous consumer base, is referred

to as willingness-to-pay (the maximum amount

a consumer is willing to pay), or w.t.p., for a new

Closed-Loop Supply Chains, Table 1 Strategic, Tactical and Operational Decisions in CLSCs

Decision Type Examples

Strategic • Remanufacturing or not: Should an OEM remanufacture?
• Network design: What is the location of remanufacturing plants, recycling plants, collection points, and

consolidation points? Should used products be collected through retailers, or directly from consumers? Should
forward and reverse flows be combined, or should the forward and reverse supply chain be separate?

• Leasing: Should the firm lease or sell to customers?
• Strategic alliances: Should the firm enter into partnerships with third-parties for remanufacturing or collection

of its products?
• Design for recovery: How should a firm design a product if there is remanufacturing at the end of use?

Tactical • Product acquisition: How many used cores should the firm acquire, when, in which quality, and at what price?
• Remanufacturing planning and disposition: Given a supply of cores, demand forecasts, relevant costs and

revenues, what should a firm do with a core (remanufacture, recycle, dismantle for parts), and when?

Operational • Disassembly planning: What is the sequence and depth of disassembly for a core?
• Shop floor scheduling and control: What is the routing and scheduling priority for remanufacturing orders in

the job shop?
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product. Each consumer has an intrinsic w.t.p.,

a random variable that is denoted by y. Thus,

a consumer has a unique association with its w.t.p. y

and can be referred to simply as consumer y. Further, it

is assumed y is uniformly distributed between a lower

and an upper bound, where the bounds are normalized

to be zero dollars and one dollar, respectively.

Mathematically, y � U½0; 1�. Thus, all consumers

(potential customers) are distributed uniformly in the

real line between $0 and $1. This assumption is

common in the marketing and operations literature,

because it results in linear demand curves, as shown

below (it also allows analytical tractability).

A consumer y’s w.t.p. for a remanufactured product

is, however, dy, where 0 � d � 1. If d ¼ 0, then

consumers do not consider the remanufactured

product as a potential substitute for the new; this is

a limiting case. An example that approaches this limit

is retreaded passenger car tires in the U.S., where many

consumers perceive them as unsafe, and there are many

cheap imports that are priced quite low but are new. If

d ¼ 1, then consumers perceive remanufactured and

new products as perfect substitutes. One example of

this is retreaded truck tires used in commercial fleets in

the U.S., where fleet owners have service contracts

with certain dealers and pay them by each mile of

service a tire provides to the fleet owner. These firms

are insensitive as to whether the dealers use retreaded

or new tires to keep the truck running. Most products

fall in between, i.e., 0 < d < 1; [see Hauser and Lund

(2003), and Souza (2008) for a complete discussion].

For diesel engines, for example, d ffi 0:65; for power

tools d ffi 0:85.
Suppose the firm only offers the new product at

a price pn � 1 (the firm would never offer a new

product priced higher than $1 because the maximum

w.t.p. in the consumer base is $1). Then, only those

consumers with w.t.p y higher than pn buy the product,

because they are the only ones with a non-negative net

utility (y� pn) for the product. Because consumers’

w.t.p. are distributed uniformly between 0 and 1, then

the number of consumers that buy the new product (qn)

is qn ¼ M 
 Prfy� pn � 0g ¼ M 
 Prfy � png, where
M is the overall size of the consumer base

(number of potential customers). Normalizing

M ¼ 1, and because y � U½0; 1�, then

Prfy � png ¼ ð1� pnÞ=1 ¼ 1� pn; as a result the

firm sells qn ¼ 1� pn new products. Now, suppose

the firm offers both new and remanufactured products

at prices pn and pr, respectively. A consumer y’s net

utility for a new product is y� pn, and for

a remanufactured product is dy� pr. Consumers

whose net utilities are higher for a new than for

a remanufactured product, i.e., y� pn > dy� pr, buy

a new product; solving for y yields

y > ðpn � prÞ=ð1� dÞ. If y < ðpn � prÞ=ð1� dÞ,
then consumers have a higher net utility for

a remanufactured than a new product; they will buy

remanufactured if their net utility is positive, that is,

dy� pr > 0, or y > pr=d. Consumers with w.t.p. y

lower than pr=d will not buy anything. Given

the uniform distribution for y, the quantities of

new and remanufactured products sold, given

their prices, are qn ¼ 1� ðpn � prÞ=ð1� dÞ, and

qr ¼ ðpn � prÞ=ð1� dÞ � pr=d, respectively. These

two expressions constitute the demand curves for

new and remanufactured products given respective

prices; the demand curves are linear, assuming

a uniform w.t.p. distribution (a different distribution

results in a different demand curve shape). For a period

with R cores available for remanufacturing, denote the

remanufacturing yield—the percentage of cores that

are found fit for remanufacturing—by m. Further,

assume that the remanufacturing cost per unit is

constant at cr, and the manufacturing cost per unit

(new) is cn. Then, the OEM’s decision problem can

be formulated as:

max
pn;pr

P ¼ qnðpn � cnÞ þ qrðpr � crÞ; (1)

s:t: qr � mR; (2)

qn; qr � 0; (3)

Equation (1) is the OEM’s per period profit;

equation (2) is a constraint that limits the availability

of cores for remanufacturing, and equation (3) is

a logical constraint. Note that the decision variables

are the prices pn and pr, thus, one needs to

substitute the corresponding expressions for

the quantities qn ¼ 1� ðpn � prÞ=ð1� dÞ, and

qr ¼ ðpn � prÞ=ð1� dÞ � pr=d in (1–3). This is a

non-linear optimization problem, which can be

solved analytically. The solution comprises several

regions, depending on which constraints are binding

or not. It can be shown that if cr < cd (and R> 0), then
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the firm remanufactures, i.e., qr > 0. Thus, the

decision to remanufacture in this simple model is

dependent upon the unit remanufacturing cost

relative to new, the consumer’s perception of

remanufactured products relative to new (d), and the

availability of cores.

The model described above is very stylized, and

does not include the following factors that are

(typically) present in real life:

1. Competition: This transforms the decision problem

into a game. There is a second decision maker with

an objective function similar to the second term in

(1). The demand functions now become

significantly more complicated. See Atasu et al.

(2008) for a way to incorporate competition.

2. Non-linear recovery costs: the model above

assumes a constant marginal remanufacturing cost

cr. In practice, there is a cost of collection that is

convex increasing in the quantity of cores collected,

because it is increasingly more difficult to

improve collection rates. Remanufacturing cost

per se (i.e., disassembly, cleaning, salvage, testing)

may also be convex increasing in the quantity

remanufactured, because as remanufacturing

quantity increases, the firm needs to dig deeper

into the pile of cores, and remanufacture cores in

worse quality condition, which demands more labor

and materials. The combination of convex

collection and remanufacturing costs implies that

cr in (1) is substituted with aq2r , where a is

a positive constant. See Ferguson and Toktay

(2006) for an analysis of this problem.

3. Availability of cores is dependent on sales in

previous periods: simply put, the number of cores

available for recovery are a function of sales in

previous periods. To capture this dimension, one

needs a multi-period model, so that all decision

variables are defined for each period t: pn;t, pr;t,

qn;t, and qr;t. If a product can only be

remanufactured once (for example, if the product

becomes technologically obsolete after the third

generation is introduced), and L is the lag, in

periods, between the sale of a new product, and its

collection as a core post-consumer use, then (2)

should be rewritten as qr;t � mqn;t�L, for each

t > L. (See Ferrer and Swaminathan (2006), and

Debo et al. (2005) for examples of models

incorporating this dynamic aspect).

CLSC Network Design

As Table 1 indicates, designing a CLSC network

requires deciding upon the locations of manufacturing

and remanufacturing plants, warehouses (or distribution

centers), points of sale, and consolidation centers for

shipping cores from points of sale to remanufacturing

plants, among other facilities. To help design such a

network, a mixed-integer linear program (MILP) is

described next based on the modeling framework by

Fleischmann et al. (2001). For a review of CLSC

network design, see Ammons et al. (2001) and

Pochampally et al. (2008).

Assume an OEM that manufactures and

remanufactures products, similar to the diesel engine

CLSC shown in Fig. 1. The supply chain comprises

four levels: (i) manufacturing and remanufacturing

plants (a facility can do one or both), (ii) warehouses

for distribution of manufactured and remanufactured

products, (iii) consolidation centers for consolidating

shipments of used products originating from

resellers for shipment to plants, and (iv) resellers,

who are independent entities that sell manufactured

and/or remanufactured products to customers,

in addition to collecting used products from customers.

Indexes

i Potential plant locations, i 2 I; I0 ¼ I [ f0g; where
i ¼ 0 is the disposal option.

j Potential warehouse locations, j 2 J

k Fixed reseller locations, k 2 K

l Potential consolidation center locations, l 2 L

Variables

X
f
ijk Fraction of reseller k’s demand served from plant i

through warehouse j

Xr
kli Fraction of reseller k’s returns returned to plant i

through consolidation center l

Uk Unsatisfied fraction of reseller k’s demand

Wk Uncollected fraction of reseller k’s returns

Y
p
i Indicator variable for opening plant i (¼ 1 if plant is

open; 0 otherwise); Yw
j and Yr

l are similarly defined

Costs

c
f
ijk Unit cost (transportation, production, handling) of

serving k from i via j
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crkli Unit cost of returns (transportation, handling)

from k to i via l

crkl0 Unit disposal cost (including collection,

transportation, handling) for k via l

cuk Unit penalty cost for not serving reseller k’s

demand

cwk Unit penalty cost for not collecting reseller k’s

returns

f
p
i Fixed cost for opening plant i (f wj and f rl similarly

defined)

Parameters

Dk Demand for reseller k

Rk Returns from reseller k

g Minimal disposal fraction

Note that in this formulation, the continuous

decision variables (e.g., X
f
ijk and Xr

kli) are defined in

terms of fractions of demand and returns at each

reseller, and as a result they are all bounded below by

zero and above by one. An alternative formulation

would have the continuous decision variables defined

simply as quantities shipped. The firm’s network

design problem can be formulated mathematically as

a MILP as follows:

TC¼min
X

i2I
f
p
i Y

p
i þ
X

j2J
f wj Y

w
j þ
X

l2L
f rl Y

r
l þ
X

i2I

X

j2J

X

k2K
c
f
ijkDkX

f
ijk

þ
X

k2K

X

l2L

X

i2I0
crkliRkX

r
kliþ

X

k2K
cukDkUkþcwk RkWk

� �

(4)

s:t:
X

i2I

X

j2J
X
f
ijk þ Uk ¼ 1; 8k (5)

X

l2L

X

i2I0
Xr
kli þWk ¼ 1; 8k (6)

X

k2K

X

l2L
RkX

r
kli �

X

j2J

X

k2K
DkX

f
ijk; 8i (7)

g
X

i2I0
Xr
kli � Xr

kl0; 8k; 8l (8)

X

j2J
X
f
ijk � Y

p
i ; 8i; 8k (9)

X

i2I
X
f
ijk � Yw

j ; 8j; 8k (10)

X

i2I0
Xr
kli � Yr

l ; 8k; 8l (11)

Y
p
i ; Y

w
j ; Y

r
l 2 f0; 1g 8i; 8j; 8l (12)

0 � X
f
ijk;X

r
kli;Uk;Wk � 1; 8i; 8j; 8k: (13)

The objective function (4) minimizes total cost,

comprised of fixed costs of opening and operating the

facilities, and variable distribution costs. Constraints

(5–6) represent basic flow constraints, which indicate

that, for each reseller k, shipments plus unsatisfied

demand are equal to total demand; similarly for

reseller k’s returns. Constraint (7) represents flow

balancing at each plant, where the difference between

incoming returns and outgoing shipments represent

manufacturing of new products. Constraint (8)

indicates that the number of disposed products should

be larger than a given fraction of all returned products;

in this model disposal is meant to represent material

recycling or dismantling for spare parts. Thus,

constraint (8) indicates the extent remanufacturing

should take place (for example if g ¼ 1, then there is

no remanufacturing, and all cores are recycled, or

dismantled for spare parts). Constraints (9–11) are

logical constraints—there is no shipment to/from

a facility if that facility is not open. Constraint (12)

states the binary decision variables for the problem,

and constraint (13) represents the non-negativity

constraints, and the fact that the continuous variables

in this problem are defined as fractions of total demand

or total returns at each reseller.

As described in Fleischmann et al. (2001), this

formulation is very general and can accommodate

many different scenarios. For example, if the firm has

two separate networks for forward and reverse flows,

then it can set Rk and Dk equal to zero, respectively.

The values of c
f
ijk relative to crkli and cuk can model

different production scenarios for each plant, such as

whether a plant only produces new products or it only

produces remanufactured products, or both. In this

model, demand can be met through remanufactured

or new products. If there are separate demand streams

for these products, then one can add another index, say

t, to the decision variables and parameters of the

problem to indicate the product type. For example,

Dkt would be demand at customer k for product type

t, where t 2 {remanufactured, new}. Finally, this
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problem has been aggregated in that there is only one

“aggregate” product being sold at the resellers. In the

case of the CLSC for diesel engines, modules and parts

remanufacturing are treated differently than engine

remanufacturing; to accommodate this scenario one

can again simply add another index to indicate

product type (say, entire engines, or modules).

The discussion above was centered on

remanufacturing as the key recovery activity taking

place in the network. The same formulation can be

used to design a network for recycling; an example is

paper recycling, studied by Bloemhof-Ruwaard

et al. (1996).

CLSC OR Applications

Closed-loop supply chain management provides

numerous opportunities for application of OR

methodology. The two applications discussed above

are at the strategic level: an OEM’s decision to

engage in remanufacturing, and the design of

a network of remanufacturing and manufacturing

plants, distribution centers, and consolidation centers.

The first model analyzes an OEM’s decision to

remanufacture—it is based on a model of consumer

behavior that, in essence, implies linear demand curves

for remanufactured and new products, and where they

are partial substitutes for each other, so that each

customer values a remanufactured product less than

a corresponding new product. Based on these demand

curves, and relevant costs, the firm chooses prices for

remanufactured and new products that maximize its

profit by solving a non-linear program. The

second model is more of a decision support-type

model—given relevant fixed costs of opening new

facilities, relevant distribution costs, and demand and

return points, the firm designs its CLSC network to

minimize its fulfillment costs.

One significant area of application of OR models

not covered in this article concerns the match between

supply of cores and demand for remanufactured

products and parts. The problem of product

acquisition—acquiring the right amount of cores at

the right price at the right quality at the right time,

and its corresponding disposition decision—deciding

what to do with a core: disassemble, remanufacture,

recycle, or put it in inventory for future use, given

relevant demand forecasts, and underlying costs is of

significant importance to firms, at the tactical level.

See Souza (2008) and Ferguson and Souza (2010) for

more information on these models.

For the range of CLSC applications, especially

from a policy maker’s perspective, the design

of environmental legislation is of significant concern.

Specifically, the decision maker (say, the government)

is interested in designing environmental legislation

that sets appropriate collection and recycling levels

to maximize society’s welfare. This is comprised of

total profits across all manufacturers impacted by

legislation, consumer surplus, and environmental

benefits of the legislation (e.g., lower pollution

levels); notice that environmental benefits must be

measured in dollar terms. Again, OR models can be

used to help design such legislation (Ferguson and

Souza 2010).

See

▶ Industrial Applications

▶ Integer and Combinatorial Optimization

▶ Supply Chain Management
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Introduction

Cluster analysis is a generic term for various

procedures that are used objectively to group entities

based on their similarities and differences. In applying

these procedures, the objective is to group the

entities (elements, items, objects, etc.) into mutually

exclusive clusters so that elements within each cluster

are relatively homogeneous in nature while the clusters

themselves are distinct. The key purposes of cluster

analysis are reduction of data, data exploration,

determination of natural groups, prediction based on

groups, classification, model fitting, generation

and testing of hypotheses (Everitt 1993; Aldenderfer

and Blashfield 1984; Lorr 1983).

Due to the importance of clustering in different

disciplines such as psychology, zoology, botany,

sociology, artificial intelligence and information

retrieval, a variety of other names have been used to

refer to such techniques: Q-analysis, typology,

grouping, clumping, classification, numerical

taxonomy, and unsupervised pattern recognition

(Everitt 1993). In fact, as Jain and Dubes (1988)

noted: “I.J. Good (1977) has suggested the new name

botryology for the discipline of cluster analysis, from

the Greek word for a cluster of grapes.”

Though clustering techniques have existed for

many years, profuse work in this area has been

accomplished only in the past two decades.

The primary stimuli for this were the founding of

the Classification Society in 1970 and the publication

of the Principles of Numerical Taxonomy by Sneath

and Sokal (1973; also see, Lorr 1983). Other reasons

for the rapid growth in cluster analysis literature are the

basic importance of classification as a scientific

procedure, prolific developments in high-speed

computers, and the need to solve large, real-world

problems efficiently. The complexity of clustering

methods are known to increase tremendously with

increase in problem sizes. With the availability of

sophisticated computing power, the handling of large

practical problems is of less concern now.

Applications of Cluster Analysis

Clustering methods are applied in a variety of fields

including psychology, biology, medicine, economics,

marketing research, pattern recognition, weather

prediction, environmental science, linguistics,

information systems design, electronic brainstorming

and flexible manufacturing systems. Some interesting

cluster analyses include analyzing large engineering

records collections (Homayoun 1984), measuring

welfare and quality of life across countries

(Hirschberg et al. 1991), management of cutting tools

in flexible manufacturing systems (DeSouza and

Bell 1991), clustering as a quality management tool

(Spisak 1992), identifying the structure and content of

human decision making (Allison et al. 1992), mapping

consumers’ cognitive structures (Hodgkinson et al.

1991), information systems design (Aronson and

Klein 1989; Karimi 1986; Klein and Aronson 1991),

vehicle routing, production scheduling and sampling

(Romesburg 1984), income tax bracket determination

(Mulvey and Crowder 1979), management team

construction, and idea grouping to handle information

overload in electronic brainstorming. The maximum

diversity problem forms clusters based on maximizing

the differences (distances) among the items rather than

the similarities. Applications include forming a single,

diverse group from a larger set in which the objective

function is imposed only on those items in the group

(Kuo et al. 1993), and multiple diverse groups

consisting of all items (Weitz and Lakshminarayanan

1997, 1998). Punj and Stewart (1983) provide a good

description of the applications of cluster analysis,
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including some details on the various clustering

packages and programs that are available.

Clustering Techniques

Authors such as Everitt (1993), Cormack (1971),

Aldenderfer and Blashfield (1984), Hartigan (1975),

and Anderberg (1973) have provided good reviews on

existing clustering methods. Nevertheless, there has

been no unique classification of the various clustering

methods. In fact, this is one of the pitfalls of cluster

analysis. Due to work by Cormack (1971), Punj and

Stewart (1983), and Everitt (1993), the following five

categories have been accepted as a basis:

1. Hierarchical methods,

2. Optimization techniques,

3. Density search techniques,

4. Clumping methods, and

5. Other techniques.

Hierarchical methods: Hierarchical procedures are

tree-like structures in which elements are first separated

into broad classes. These classes are further subdivided

into smaller classes and so on until the terminal classes

are not further subdivisible. These methods are

most frequently used in the biological sciences.

The hierarchical methods are basically of two

types — agglomerative and divisive.

The agglomerative methods begin by making each

item its own cluster. In subsequent iterations two or

more closest clusters are combined to form a new,

aggregate cluster. Eventually, all items are grouped

into one large cluster. Hence, these methods are

some times referred to as build-up methods

(Hair et al. 1987).

In contrast to agglomerative methods are the

divisive methods that begin with one large cluster.

Groups of items that are most dissimilar are removed

and placed into smaller clusters. The process continues

until each item becomes a one-element cluster.

Cormack (1971), Everitt (1993), Aldenderfer and

Blashfield (1984) and Hair et al. (1987) have

provided comprehensive descriptions of the various

agglomerative and divisive procedures.

Optimization techniques: These methods allow

relocation of items during the clustering process,

improving from an initial solution to optimality.

The number of clusters must be decided a priori,

although some methods allow for changes (manually

or automatically) while solving. There are differences

in optimization techniques due to the different

methods used for obtaining an initial solution and

different objective criteria (Everitt 1993).

Since most of the objective criteria of the

optimization techniques are based on those of the

well-established statistical concepts, very few

mathematical programming approaches have been

developed to solve these problems. The statistical

methods have proved adequate for many situations,

because (1) the solutions found are believed to

be reasonably close to the optimum; (2) the solutions

typically involve human analyst intervention to

determine when an appropriate number of clusters

have been identified; and (3) the combinatorial nature

of clustering makes it difficult to solve a large problem

to a guaranteed optimum. Mulvey and Crowder (1979)

developed a subgradient method coupled with a simple

search procedure for solving the clustering problem.

However, their method did not yield an exact

optimum. Though heuristics generally seem efficient,

the need to obtain optima to problems such as effective

information systems design (Klein et al. 1988) make

heuristics less attractive. Klein and Aronson (1991)

developed a mixed-integer programming model

and method to obtain an optimal solution to

clustering problems, where the objective function is

the sum of pairwise interactions among all items in

each cluster. No metric space nor median are used.

Their method is based on the implicit enumeration

method of Balas (1965). Extensions including

precedence and group size limits are discussed by

Aronson and Klein (1989). Earlier, Gower and Ross

(1969) and Rohlf (1974) showed that there is a direct

relationship between some common cluster

formulations and certain types of well-known graph

theoretic problems, primarily that of the minimum

spanning tree. A further expansion on the use of

graph theoretic techniques in cluster analysis may be

found in Matula (1977).

Density search techniques: This concept, proposed by

Gengerelli (1963), depicts the items as points in a metric

space. Parts of the space where the distribution of points

is very dense but separated by parts of low density

suggest natural clusters. Everitt (1993) describes

the different types of density search techniques.

Clumping techniques: These techniques are most

popular in language studies where words that tend to

have several meanings, when classified based on their
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meaning, belong to several groups. Thus, in general,

clumping techniques allows for overlapping clusters.

This terminology was introduced by Jones, Needham,

and co-workers at the Cambridge Language Research

Unit (Everitt 1993). This method attempts to partition

entities into two groups based on the similarity matrix

from the original data. The Needham (1967) criterion

is to minimize the cohesion function between the two

groups. Other clumping procedures are also discussed

in Rohlf (1974) and Everitt (1993).

Other techniques: This comprises all clustering

techniques that do not fall in to the above four

categories. For example, there is inverse “Q” factor

analysis that is commonly used in behavioral

sciences (Cattell 1952). The “R” factor analysis is

a type of “Q” factor analysis that utilizes the

correlations between variables. Gower (1966)

provided a good review of the properties of various

“Q” and “R” factor analysis techniques. Everitt (1993)

and Aldenderfer and Blashfield (1984) included a good

summary of various other clustering methods.

Issues of Concern

Though initially the concepts of cluster analysis seem to

be intuitive, one can encounter a host of problems while

performing an actual analysis. Some of the problems

include selection of data units and variables, knowing

exactly what to cluster, distance or similarity measures,

transformation of measures, clustering criterion, the

clustering method to use, the number of clusters and

interpretation of the results (Anderberg 1973). Authors

such as Aldenderfer and Blashfield (1984), Everitt

(1993), Hair et al. (1987) and Anderberg (1973) have

addressed some of the issues in great detail. A few of the

more critical issues are discused next.

Measurement of distance or similarity matrix:

The relationship between elements are represented by

using either a similarity or distance measure.

While similarity measures (indicating cohesion) take

values between 0 and 1, distance measures can be any

positive value. The output of any clustering method

depends on the type of input measure used. One of the

most commonly used measures is the Euclidean

distance. This concept can be easily generalized for

additional variables (Hair et al. 1987).

Another measure which allows for correlations

between variables was originally proposed by

Mahalanobis in 1936 (Everitt 1993). This is similar to

Euclidean distance measure using standardized

variables when the correlations are zero. The

Mahalanobis distance measure has been used by

McRae (1971). Everitt (1993), Hair Jr et al. (1987)

and Hartigan (1975) have provided some discussions

on other types of distance measurements. The

clustering model for computer-assisted organization

presented by Klein and Aronson (1991) accounts for

total pairwise interactions independent of a metric. The

need to consider all interactions among items in

each cluster led to the formulation of a mixed-integer

model for optimal clustering based on scaled, pairwise

distance (Klein and Aronson 1991).

Which clustering method to use: The problem of

choosing an appropriate clustering method generally

arises after one has determined the variables, distance

measure and criterion for clustering. A number of

software packages and programs are available for

clustering. Punj and Stewart (1983) and Anderberg

(1973) identified some early programs for clustering;

now, all major statistical packages contain one or more

routines to do such analyses effectively. For selecting

the best clustering method one should be aware of the

performance characteristics of the various methods

(Hair et al. 1987).

Appropriate number of clusters: One of the

practical issues of concern in clustering is choosing

the number of clusters. Some algorithms find the best

fitting structure for a given number of clusters while

others, like the hierarchical methods, provide

configurations from the number of entities to one

large cluster, that is, the entire data set as one cluster.

However, if the number of clusters cannot be

predetermined, a range of clusters can be selected,

solving the problem for each of those cluster

sizes, and then selecting the best alternative

(Hair et al. 1987).

See
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Cobb-Douglas Production Function

▶Economics and Operations Research

COEA

Cost and operational effectiveness analysis.

See

▶Cost Analysis
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Coefficient of Variation

The ratio of the standard deviation to the mean of

a random variable.

Cognitive Mapping

A graphical notation for capturing concepts in use

by decision makers for understanding a problematic

situation. Concepts are fixed by reference to polar

opposites, and directed arcs indicate perceived causal

relationships.

See

▶ Problem Structuring Methods

Coherent System

▶ System Reliability

COIN-OR Computational Infrastructure
for Operations Research

▶Open-Source Software and the Computational

Infrastructure for Operations Research (COIN-OR)

Column Generation

A technique that permits solution of very large

linear-programming problems by generating the

columns of the constraint matrix only when they are

needed. It is typically employed when the constraint

matrix is too large to be stored, or when it is only

known implicitly. Column generation, as imbedded

in the revised simplex method, has been used to

solve the trim problem and other such problems in

which the columns are formed from combinatorial

considerations.

See

▶ Integer and Combinatorial Optimization

▶Lagrangian Relaxation

▶Trim Problem

Column Vector

One column of a matrix or a matrix consisting of

a single column.

See

▶Matrices and Matrix Algebra

Combat Model

A model whose object is military combat or some

aspect of some combat. Three associated terms are

often used as synonyms, but are frequently used to

differentiate three common aspects of combat

modeling: combat model, combat simulation, and

war game. When combat model is used as a

discriminator it often is used to mean that the model

in question is an analytic combat model.

See

▶Analytic Combat Model

▶Battle Modeling

Combat Simulation

A type of model whose object is military combat or

some aspect of combat. Combat simulation is used as

a discriminator to emphasize the time or process aspect

of the model in question.

See

▶Battle Modeling
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Introduction

The advent of the Internet has led to the creation of

global marketplaces in which sales of everything from

low-cost used merchandise to billion dollar

government procurements are conducted through

auctions. This article concentrates on designs where

many items are auctioned simultaneously and where

bidders have the flexibility to combine the goods into

packages. The discussion (1) highlights alternative

combinatorial auction designs and provides the

reader with multiple references to resources that

describe more fully the underlying theory of these

designs., and (2) describes the mechanisms used to

evaluate the efficacy of such approaches in terms of

their efficiency, equity, and cognitive complexity, and

presents some examples of the use of combinatorial

auctions for high-value government lease rights, as

well as the use of such auctions for supply-chain

procurement. These auctions require knowledge of

both game theory and combinatorial optimization.

General Concepts

Governments throughout the world use auctions to

lease the right to explore and extract minerals, fuel,

and lumber on government properties, to use the

airwaves for mobile or broadcast communications, or

to control emissions through cap and trade regulations.

In addition, the use of business-to-business auctions

(often called supply chain auctions) has become

a billion-dollar industry. In each of these cases, the

need to be able to bundle buys and sells has resulted

in new auction theory and designs that enable the

simultaneous selling or buying of items using

mechanisms that allow participants to indicate their

value for the entire package which may have

a greater value than the sum of the items within that

package. In addition, such auction designs allow users

to specify quantity discounts, to indicate budget

constraints on the total procurement, and to define

other goals of the auction, e.g. social welfare goals in

a government auction. These auction designs are

computationally more complex for all participants

and require languages that allow bidders to express

their willingness to participate at a given price for

a collection of objects. Such auctions have been

termed combinatorial auctions. There are many books

that describe the history of auctions, auction theory and

its relationship to game theory, and others that are

focused exclusively on combinatorial auction

designs. For further reading on the subject, see:

McMillan (2002) on the history of markets, Krishna

(2002) on auction theory, Steiglitz (2007) on the

success and pitfalls of EBAY auctions, Klemperer

(2004) on auction theory and practice, and Milgrom

(2004) and Cramton et al. (2005) on combinatorial

auctions. In this review, only the major topics of the

field are described, but multiple references are

provided for further reading.

In what follows, one-sided auctions are considered

and are restricted to the case where there is a single

seller and multiple buyers (two-sided auctions are

often referred to as exchanges, see Milgrom (2007),

Parkes et al. (2001), and Hoffman and Menon (2010)

on exchange designs). Since the multiple-sellers/single-

buyer case and themultiple-buyers/single-seller case are

symmetric, the discussion emphasizes the latter, but all

results follow for either case. The concentration is on

auction designs where that there are multiple items

being sold. For at least some of the buyers, a collection

of itemsmust be procured to have a viable business plan;

consideration is given only to auction designs that allow

the packaging of collections of items. Such designs can

provide greater efficiency, as well as greater revenue to

the seller than the sequential selling of items

individually. These designs are sufficiently general to

allow bidders to express a value on a package where the

collection of items may have a value greater than the

individual items (i.e. the goods are complements),

as well as on a package where a buyer can express

a quantity discount for buying more of the good

(i.e. the goods are substitutes).

Why are auctions such a popular mechanism for

buying and selling valuable objects? With the advent

of the Internet, auctions are capable of reaching many

more possible participants. Here, the potential buyers

wish to determine the minimum price that they must

pay given that they must compete with others for the

ownership of a good or collection of goods. From the
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seller’s perspective, submitting goods to an auction

may increase the number of buyers, thereby

increasing the potential for competitive bidding and

higher selling prices. Thus, an auction is a mechanism

to determine the market-based price, since the bidders

set the price through the competition among the bids.

This mechanism is dynamic and reacts to changes in

market conditions. The determination of selling prices

by an auction is perceived as fairer than if the price

were set by bilateral negotiations because all buyers

must adhere to the same set of rules. Most importantly,

if the rules are well designed, the result will have the

goods allocated to the entity that values them the most.

The two basic classes of auctions are described

next: (1) sealed bid auctions whereby there is only

a single opportunity to provide bids to the auction,

and (2) multi-round auctions where bids are taken

over a period of time and any high bid can be

overtaken whenever a new bid is received that

increases the overall revenue to the seller.

Sealed Bid Auctions

One common auction mechanism is the first-price

(sealed bid) auction. In this design, all bidders submit

their bids by a specified date. The bids are examined

simultaneously and the auctioneer determines the set

of bidders that maximizes the revenue to the seller. The

optimization problem that determines a collection of

package bids that do not often overlap and produce the

maximum revenue is known as the Winner

Determination Problem (WDP). Mathematically, the

problem can be stated as follows:

WDPOR : Max
X#Bids

b¼1
BidAmountbxb

subject to :

Ax � 1

(1)

x 2 f0; 1g (2)

where xb is a zero–one variable which indicates

whether bid b loses or wins, respectively. A is an n

x m matrix with m rows, one for each item being

auctioned. Each of the n columns represents a bid

where there is a one in a given row if the item is

included in the bid and zero otherwise. Constraint set

(1) specifies that each item can be assigned at most

once. Set (1) constraints are equations when the seller

chooses to put a minimum price on each item and is

unwilling to sell any item below that price. In this case,

there is a set of m bids each with only a single item in

the package and a bid price at a price slightly below the

minimum opening bid price. In this way, the seller will

keep the item rather than allow it to be won by a bidder

at less than the opening bid price.

In this formulation of the WDP, the bidder can win

any combination of bids, as long as each item is

awarded only once; this is referred to as the “OR”

language. The problem with this language is that it

creates a type of exposure problem, that of winning

more than the bidder can afford. When multiple bids of

a single bidder can be winning, it is incumbent on the

software to highlight the maximum exposure to the

bidder. This calculation requires that a combinatorial

optimization problem be solved for each bidder that

calculates the dollar exposure, creating new

computational issues for the auctioneer and may

result in packages that are not best for the bidder.

The most natural alternative to this “OR” language

is the “XOR” language. In this case, the user supplies

every possible combination of bids of interest along

with a maximum bid price that she is willing to pay for

that package. This language removes the dollar

exposure problem, since the maximum number of

bids that a bidder can possibly pay is the highest bid

amount of any of its bids. The problem with the XOR

language is that it places a new burden on the bidder:

the bidder is forced to enumerate all possible

combinations of packages of interest and their

associated values. Clearly, as the number of items in

an auction increase, the number of possible bids goes

up exponentially. When the XOR bidding language is

used the Winner Determination Problem (WDPXOR)

becomes:

WDPxor : Max
X#Bids

b¼1
BidAmountbxb

subject to :

x ¼ 1

(3)

X

b2SB
xb � 1 for each bidder B (4)

xb 2 f0; 1g (5)
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Where SB is the set of bids of bidder B, and

constraint set (4) specifies that at most one of these

bids can be in the winning set.

Fujishima et al. (1999) proposed a generalization of

the OR language that does not require the enumeration

of all possible combinations. They label this language

OR*. Here, each bidder is supplied dummy items

(these items have no intrinsic value to any of the

participants). When a bidder places the same dummy

item into multiple packages, it tells the auctioneer that

the bidder wishes to win at most one of these

collections of packages. This language is fully

expressive, as long as bidders are supplied sufficient

dummy items. This language is also relatively simple

for bidders to understand and use, as was shown in

a Sears Corporation supply-chain transportation

auction. In that auction, all bids were treated as “OR”

bids by the system. Some bidders cleverly chose

a relatively cheap item to place in multiple bids

thereby making these bids mutually exclusive,

Ledyard et al. (2002). There have been a number of

alternative bidding languages that have been proposed;

see Fujishima et al. (1999), Nisan (2000), Boutilier

and Hoos (2001), and Boutilier et al. (2001) for

descriptions of alternative languages.

One serious flaw in a first-price sealed-bid design is

that the bidder can experience what is referred to as the

winner’s curse, i.e., the winning bidder may pay more

than was necessary to win since the second highest bid

price was far less than the winning bid amount. For this

reason, sealed-bid first price auctions encourage

bidders to shave some amount off of the bid price.

From a game-theoretic perspective, one wants an

auction design that encourages straight-forward

honest bidding.

An alternative that overcomes this problem is the

second price (sealed bid) auction whereby the bidder

that has submitted the highest bid is awarded the object

(package), but the bidder pays only slightly more (or

the same amount) as that bid by the second-highest

bidder. In second price auctions with statistically

independent private valuations, each bidder has

a dominant strategy to bid exactly his valuation. The

second price auction also is often called a Vickrey

auction (1961).

In a second-price auction, one solves the same

winner determination problem as one does for the

first-price sealed-bid case, but the winners do not

necessarily pay what they bid. Instead, one

determines the marginal value to the seller of having

this bidder participate in the auction. To do this, for

each winning bidder, one calculates the revenue that

the seller would receive when that bidder participates

in the auction and when that bidder does not, i.e.

when none of the bids of this bidder are in the

winner determination problem. The difference in

the two objective function values is known as the

Vickrey-Clarke-Groves discount, named after the

three authors, Vickrey (1961), Clarke (1971), and

Groves (1973). Each of these authors wrote separate

papers producing certain attributes that this auction

design has as it relates to incentivizing bidders to

reveal their truth value of the goods demanded, and

the bidder pays the bid price minus the discount. When

winners pay this amount, the auction is known as the

Vickrey-Clarke-Groves (VCG) Mechanism.

Although it can be shown that the VCG mechanism

encourages truthful bidding, it is almost never used in

practice. For a complete list of reasons for it being

impractical, see Ausubel and Milgrom (2006) and

Rothkopf (2007). In essence, the prices provided by

this mechanism may be very low. Worse yet, when

items have complementary values, i.e. the package is

worth more to the bidder than the sum of the values of

the individual items, the outcome may price the items

so low that there is a coalition of bidders that would

prefer to renege on the auction and negotiate privately

with the seller, and the seller may respond by reneging

on the sale since both the seller and the coalition of

buyers will be better off. Ausubel and Milgrom (2002)

argue that prices should be set high enough so that no

such coalitions exist. In game theoretic terms, the

prices are set such that the outcome is in the core of

a coalitional game. These authors introduced an

auction design known as the ascending proxy auction

in which the bidders provide all bids as if in

a sealed-bid auction. Each bidder is provided with

a proxy that bids for the bidder in a straightforward

manner during an ascending auction. The proxy

only announces bids to the auctioneer that maximize

the bidder’s profit, (i.e. bid price minus announced

price) in any given round. The auction continues as

an ascending package-bidding auction until, in

some round, there are no new bids. Thus, the auction

simulates, through proxy bidders, an ascending auction

where the increment in each round is infinitesimally

small and each bidder, through the use of its

proxy, bids in a straight-forward manner.
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This auction design is very similar to the iBundle

design of Parkes and Ungar (2000).

Hoffman et al. (2005) provide a computational

approach toward speeding up the calculations

associated with this proxy auction design, and Day

and Raghavan (2007) provide an elegant mechanism

to obtain minimal core prices directly. The direct

mechanism of Day and Raghavan sequentially solves

winner determination problems to determine losing

coalitions that could supply more revenue to the

seller at the current prices. When the solution to this

optimization problem yields revenue greater than what

the VCG mechanism would provide, the prices of the

winning bid set are raised so that the total price paid by

winning bidders is equal to this new revenue. To

determine these new prices, one must be sure that any

winning bidder that forms part of this blocking

coalition does not have its price raised from its prior

price since it would not be willing to join a coalition if

it were to lose revenue relative to its prior offer by the

seller. The algorithm is an iterative cutting plane

algorithm that forces the prices higher at each

iteration until one can find no coalition that can

increase revenue to the seller. Therefore, the

algorithm finds prices for each winning bidder that

are in the core. Since there may be many such

minimum core prices, Day and Milgrom (2008)

suggest that, in order to encourage sincere bidding,

one choose the minimum core prices that are closest

in Euclidean distance from the VCG prices.

Alternatively, Erdil et al. (2009) argue for a different

set of minimum core prices that are based “on a class of

‘reference rules’ in which bidders’ payments are,

roughly speaking, determined independently of their

own bids as far as possible.”

These core-selecting second-price sealed-bid

mechanisms have the following properties: They are

in the core, they eliminate the exposure problem, and

they encourage bidders to bid sincerely. As with all

sealed-bid auctions, they make collusion and

punishment for not adhering to tacit agreements

extremely difficult.

There are, however, negatives associated with this

auction, as well as for all sealed-bid auction designs, in

that it puts a significant burden on the bidders. Each

bidder needs to assess, for every possible combination of

items, whether it is a package of interest and then, for all

such packages, determine the maximum it is willing to

pay. In addition, such mechanisms do not provide any

information about how the packages submitted might fit

with packages submitted by other bidders. To overcome

these problems, a number of authors have suggested

simultaneous ascending combinatorial auction designs

that allow users price information during the auction.

Multi-round Auctions

Often the value of the good or package of goods being

auctioned is not completely known and/or private.

Instead, there is a common component to the bid value,

that is, the value of the item is not independent of the

other bidders, but rather there is a common underlying

value as well. In such situations, each agent has partial

information about the value. Many high-stakes auctions,

such as government auctions for spectrum, oil

exploration, and land use, fall into this class. In the case

of package-bidding auctions, when there is a common

component and bidders want to assess how much others

are willing to pay for that item or package of items, the

auction is usually an ascending auction with multiple

rounds. A round consists of a given time period where

bidders have the opportunity to submit new bids. When

the round ends, all bids are collected and the winner

determination problem is solved. This optimization

problem determines the packages that provide the seller

with the maximum revenue. The bids that are in the

winning set are labeled “provisionally winning,” i.e.

they would be winning if the auction ended in this

round. Thus, in an ascending combinatorial auction, all

items are sold simultaneously and a bidder can bid on

any collection of items in a given round. To overcome

the current set of provisionally winning bids, a bidder

must submit a bid that increases the total revenue to

the seller.

There are a number of design question that must be

answered to have a complete combinatorial auction

design:

1. How does the auction end?

2. Must bidders participate in every round?

3. Are bids from previous rounds part of the bids

considered by the winner determination problem?

4. How are the prices set in each round?

5. What do bidders know about the bids of other

bidders?

6. What other rules might be necessary to ensure that

collusion is avoided, to make reneging costly, and

to encourage bidders to act truthfully?
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Of importance is how to assure that the auction ends

in a reasonable period of time and that price discovery

(the main reason for a multi-round auction) is

accomplished. Most package-bidding auctions have

discrete time periods, called rounds, and in each round,

the auctioneer provides a price to the user that is the

minimum price that the bidder must supply in order to

place a new bid. One can choose either a fixed stopping

rule or a stopping rule that is determined dynamically.

A fixed time stopping rule specifies that the auction will

end at a given time. With a fixed stopping time, bidders

are encouraged to not provide any bids until the very last

seconds of the auction, called sniping. The purpose of

sniping is to give other bidders no chance of responding

to an offer. In this way, a bidder can acquire price

information from other bidders but does not

reciprocate, since throughout most of the auction, the

bidder is silent. If all bidders chose to snipe and provide

no bids until the end of the auction, the auction

essentially becomes a first-price sealed-bid auction.

To overcome the problem of sniping and to encourage

price discovery, most package bidding auctions use an

alternative stopping criteria whereby the auction ends

when no new bids are presented within a round.

Often, for high-stakesmulti-round auctions, there are

also activity rules that require a bidder to bid in

a consistent way throughout the auction. Activity rules

force bidders to maintain a minimum level of bidding

activity to preserve their eligibility to bid in the future.

Thus, a bidder desiring a large quantity at the end of the

auction (when prices are high) must bid for a large

quantity early in the auction (when prices are low). If

the bidder cannot afford to bid on a sufficient number of

items to maintain current eligibility, then eligibility will

be reduced so that it is consistent with current bidding.

Once eligibility is decreased, it can never be increased.

As the auction progresses, the activity requirement

increases, reducing a bidder’s flexibility. The lower

activity requirement early in the auction gives the

bidder greater flexibility in shifting among packages

early on when there is the most uncertainty about what

will be obtainable. Precisely how the activity and

eligibility rules are set matters and must be depend

upon the type of auction – the value of the items being

auctioned, the projected length of the auction, the

number of participants, etc. In many high-stakes

auctions, such as spectrum or electricity, these activity

rules have proven highly successful, Klemperer (2002),

McMillan (2002), and Milgrom (2004).

In an ascending multi-round auction design, the

auctioneer must provide information about the

current value of each package. This information is

used for two related purposes: (1) to specify the

minimum bid for each item or package in the next

round and (2) to provide valuation information to

bidders so that they can determine what might be

required for a bid to be winning in a subsequent

round. While pricing information is easy to ascertain

in single item auctions or in simultaneous multi-round

auctions without package bidding, (i.e. where bids can

be placed on only single items), pricing information for

combinatorial auctions is not well defined. Bidders

provide only aggregate package prices without

providing the information about how each of the

individual components that made up the bundle

contributes to the overall price. Attempting to

disaggregate these bundles into single item prices

unambiguously is not possible. Also, since there are

many ways that some bundle might partner with other

packages to create a winning set, determining the

minimal cost partnering for a given package by

a given bidder is a complex problem.

To further complicate the pricing issue, bidders may

view certain items as substitutes and other items as

complements. In the case where items are substitutes,

bidders are likely to express sub-additive values for

their packages. That is, the value of a package of items

is less than or equal to the sum of the values of the

items that make up the package. In the complementary

case, bidders are likely to express super-additive

values for packages. In this case, the value of

a package of items is greater than or equal to the sum

of the values of the items that make up the package.

When items can be both substitutes and complements

for bidders, providing unambiguous, complete and

accurate price information is an unsolved problem.

The non-convex nature of the problem means that the

linear prices (i.e. the sum of a package is equal to the

sum of the individual items that make up the package)

that can be obtained from dual prices from the linear

relaxation of the WDP problem will overestimate the

true values of the items. In most auctions, one adjusts

the dual prices so that the prices are modified so that

when one sums the items in each of the winning

packages, the prices on those packages exactly equal

the prices bid by the provisionally winning bidders (i.e.

the winners at the end of the current round). Rassenti

et al. (1982) terms these prices pseudo-dual prices.
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(For theoretical issues with duals associated with non-

convex problems see Wolsey(1981), and for

non-anonymous non-linear prices see deVries and

Vohra (2003) and Bikhchandani and Ostroy (2002).

Although linear pricing cannot accommodate all

aspects of the pricing associated with the non-linear,

non-convex, winner determination problem, there are

still good reasons for considering its use for

determining future bid requirements. First, even

perfect pricing is only correct when all other aspects

of the problem remain fixed, i.e. when bid amounts

remain the same on all other bids and when no new

bids are submitted. Second, a dual price associated

with a given constraint is only correct when one

changes this single restriction (the right-hand-side of

the associated constraint) by a very small amount. In

the case of combinatorial auctions, the item is either

won or it is not. Changes to a constraint would either

remove the item entirely from consideration or create

a second identical item. Thus, even non-linear,

non-anonymous pricing has serious limitations in the

context of the winner determination problem since

the removal of a single item from the auction (e.g.

the removal of the New York City market from

consideration in a nationwide spectrum auction) may

change the willingness of bidders to participate.

Finally, in an ascending bid auction, bidders need

pricing information that is easy to use and understand,

and is perceived to be fair. In this situation, easy to use

means that bidders can quickly compute the price of

any package, whether or not it had been previously bid.

Often, bidders want to know what it would take for

such a bid to be competitive, i.e. have some possibility

of winning in the next round. Bidders may also

perceive such prices to be fair since all bidders must

act on the same information. Linear prices are likely to

move the auction along and deter such gaming

strategies as parking (parking is an approach whereby

the bidder bids on packages that currently have very

low prices knowing that these packages have

a very low probability of winning). Bidding on such

low-priced packages allows a bidder to maintain

eligibility (by maintaining activity), while hiding

interest in the packages that are really desired until

later in the auction). Thus, virtually all ascending

combinatorial auctions use pseudo-dual pricing. For

more on alternative pricing within this general

framework and the testing thereof, see (Dunford et al.

(2003), Bichler et al. (2009) and Brunner et al. (2011).

In 1999, DeMartini et al. proposed an auction design

labeled The Resource Allocation Design or RADwhere

theWDP is solved each round and all losing bidders can

only bid on packageswhere the package price is the sum

of the pseudo-dual prices plus some increment

(as announced by the auctioneer). There is no activity

rule for this auction design. In 2002, the Federal

Communications Commission (FCC) announced

a similar package bidding design but proposed

refinements to the pseudo-price calculations that

attempts to limit fluctuations (both positive and

negative) in prices. A related design was proposed by

Bichler et al. (2009) and is called the Approximate

Linear Pricing Scheme (ALPS). It also uses similar

rules but chooses the ask price to better balance prices

across items. Note that all of these pricing procedures

allow prices to both increase and decrease depending

upon the packages that are in the winning set. In

virtually all of these designs, any bid submitted in any

round is considered active throughout the auction. This

rule works well with the XOR language since only one

bid of a bidder can be in an optimal set and bidders

should be willing to win bids placed in early rounds of

the auction, when prices were low. This rule forces

bidders to provide sincere bids throughout the auction.

A very different ascending package bidding design

was proposed by Porter et al. (2003). It is called the

combinatorial clock auction. In this design, the

auctioneer provides prices for each unique good

(if there are multiple identical items, then the bidder

indicates that number of units of that item they desire)

based solely on whether there is more demand for the

item than for supply; noWDP problem is solved. There

is no concept of a provisionally winning bidder.

Instead, prices increase whenever demand for a given

item is greater than supply. Bidders indicate the single

package bid that is best given the per-unit prices

announced by the auctioneer. All bidders must rebid

on any item that they wish to procure in each round.

The only information provided to bidders at the end of

each round is the quantity demanded for each item and

the price for the next round. As long as demand

exceeds supply for at least one item, the price is

increased for those items with excess demand. If

there are no new bids in a round and supply equals

demand, then the auction ends. However, it may

happen that when there are no new bids, demand has

been reduced to below supply. If this occurs, a WDP is

solved using all bids from all rounds. If the computed
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prices do not displace any bids from the last round,

then the auction ends. Otherwise, the auction resumes

with the prices determined by using the pseudo-prices

calculated from the WDP. Thus, for most rounds, the

computation has been drastically reduced to merely

increasing prices by a given increment. Only, when

demand has dropped below supply is the WDP solved.

Other approaches are the auction designs that

simplify the problem by only allowing a few

pre-defined packages (Harstad et al. 1998) for which

the WDP is polynomially solvable. This idea of only

allowing a certain pre-determined set of packages

(called hierarchical packages, Goeree and Holt 2010)

was used in the 2009 FCC auction for broadband

spectrum that brought over $19B into the U.S.

Treasury. In that design, all bids were additive

(the OR language applied) and the WDP was solved

in linear time. When it is possible, in advance, to

understand the needs of the bidders and when the

packages most desired can be represented in

a hierarchical fashion, then one obtains an auction

design that is both simpler and quite efficient.

However, if the demand for packages does not take

on this hierarchical structure, then imposing such

structure on the problem for the sake of

computability will likely lead to less efficient

outcomes.

Hybrid Designs

Ausubel et al. (2005) have argued for a hybrid design

that reduces the computational burden on both the

bidder and the auctioneer. Here, one first uses

a combinatorial clock design followed by a last round

second-price sealed-bid approach. The combinatorial

clock is similar to that proposed by Porter et al. (2003)

with the further enhancement that bidders who find the

increment too high are able to place a bid at a price

between the old price and the new price that indicates

the maximum amount the bidder is willing to pay for

that combination of items. In this way, the efficiency

loss due to increment size is lessened. This phase

of the auction ends when demand is less than or equal

to supply or when demand on most items has trailed

off. When demand does not exactly equal supply on

all items, a sealed-bid phase is initiated. Here,

the ascending proxy auction of Ausubel and Milgrom

(2002) is imposed. When these two auction designs are

merged, one must be careful that the activity rules

work well for both phases of the auction. One wants

tight activity rules in the ascending phase of the

auction to ensure that the bidders are forced to bid

sincerely. However, these rules may need to be

relaxed or altered during the final sealed-bid phase or

a straightforward bidder may be precluded from

providing all of the packages that bidder values

during the sealed-bid round. Also, theory dictates that

in order to guaranteed an efficient outcome, losing

bidders (i.e. bidders who dropped out prior to the

final phase) must also provide all of the bids that they

value in the final phase. Thus, although this hybrid

auction is promising in that it is likely to speed up

combinatorial auctions, research is still necessary to

better understand how the rules of these two disparate

auctions should be set so that they mesh well. For more

on testing of this design, see Bichler et al. (2011).

Complexity of Combinatorial Auctions

As the previous discussion illustrates, most

combinatorial auction designs requires considerable

computation and most of the computational burden

falls to the auctioneer. This seems appropriate since

the auctioneer wants an auction that allows much

participation; bidders should not be required to

understand combinatorial optimization in order to

participate. In terms of these computations,

commercial software, such as CPLEX, GUROBI, or

XPRESS have shown their ability to solve such

problems in reasonable times (less than 30 minutes).

Thus, although there is much in the literature

that argues against combinatorial auctions because of

the computational burden, the optimization software

has proven up to be capable of handling the problems

that are currently being considered applicable for this

type of auction. For more on the computational issues

in computing winner determination problems, see

Leyton-Brown et al. (2005) and Bichler et al. (2009).

Since multi-item auctions are complex and require

bidders to consider multiple alternative bid options, it

is important that the computer software used for

communication between the bidder and the

auctioneer be easy to use and understand. Good

graphical user interfaces help bidders to feel

comfortable that they understand the current state of

the auction (they have been able to find the current
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price information, the items they are winning, the

amount of bidding necessary to remain eligible, their

dollar exposure based on what they have bid, etc.). The

system must also provide easy ways for bidders to

input their next moves and confirm that they have

provided the system with the correct information. As

the use of auctions is spreading, computer interfaces

for such processes continue to improve and to provide

better ways of displaying information to the users

through charts, graphs and pictures. There is likely to

be continued improvement in this area.

These tools do not, however, help the bidder

determine the optimal combination of items to

bundle as a package and the optimal number of

packages to supply to the system. Since bidders face

the serious problem of determining which bids are

most likely to win at prices that are within the their

budgets, tools that assist bidders in understanding the

state of the auction is important. In both supply-chain

auctions and in high-stakes government auctions

(such as spectrum auctions), bidder-aided tools are

often developed to assist the bidder in determining

the package or packages to submit in any given

round. In the case of supply-chain auctions, the

auctioneer often suggests packages to the suppliers

that will fit well with other bidder’s bids (e.g. by

either adding or removing a single item from the

package, or by considering a quantity discount for

supplying more of an item). Such tools have been

found to be very useful and also computationally

tractable; see An et al. (2005), Dunford et al.

(2003), and Boutilier et al. (2004). Day and

Raghavan (2005) and Parkes (2005) provide

alternative ways for bidders to express preferences

that do not require that the bidder specify particular

packages to the auctioneer.

Applications of Combinatorial Auctions

There are many examples of governments’ using

auctions for the allocation of valuable assets. In most

of these auctions, the government is allocating a good

and uses auctions to determine both the price and the

allocation. Since 1994, governments throughout the

world have been using simultaneous multi-round

auctions for the allocation of spectrum. For spectrum,

a government has the goal of allocating the good to the

entities that value it the most with the hope that the bid

cost will encourage the build-out of the services. To

assure that there is sufficient competition in the

telecommunications industry, the U.S. government

has, in the past, set spectrum caps for each region.

These auctions have been copied globally and are

now the standard way that spectrum is allocated.

Recently, a number of different package-bidding

designs are being tried including the hierarchical

ascending auction, the combinatorial clock auction,

or the clock-proxy design. As of 2005, these auctions

have resulted in revenues in excess of $200 billion

dollars worldwide (Cramton 2005).

Within the power industry, there has also been

an evolutionary movement toward auctions for the

determination of who can supply power to the

electricity grid and at what price. Most of

the allocation is determined one day ahead of the

demand. The auction reflects the unique

characteristics (both physical and structural) of the

industry. The allocation is determined by

a complicated optimization that evaluates the

demands at various nodes of the networks and prices

power generation at each such node. The spot market

corrects this allocation for any last minute changes due

to weather, plant outages, etc. Long term contracts

make this process work.

Similarly, auctions have been used to bring

market-based forces to control air pollution. Here,

a government entity (either nationally run or

regionally administered) establishes a fixed number

of tradable allowances each of which represents the

legal right for its owners to emit a fixed quantity of

pollution. A firm holding an allowance can emit the

fixed quantity and surrender the allowance to the

government, or if the firm can abate its emissions, it

can profit by selling the allowance to another polluter

than cannot so inexpensively abate emissions. The

establishment of the fixed quantity is the cap. The

exchange of allowances (credits) between polluters is

the trade. See Ellerman et al. (2003) and Tietenberg

(2006) for a general overview of cap and trade ideas.

The use of combinatorial auctions for the

procurement of goods in services has also been

growing. Some of these auctions are sealed-bid

auctions, while most are moving toward multi-round

auction designs. In such auctions, the providers of the

goods and services are pre-screened and are then

allowed to provide bids for collections of good and/or

services as all or nothing packages. For a general
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survey of supply-chain auctions, see Bichler et al.

(2006). The three applications described next

highlight a few examples to show how such auctions

differ from government auctions.

1. The first use of a combinatorial auction within the

transportation industry was an auction conducted by

Sears. Here, suppliers of freight delivery were

allowed to bundle multiple lanes together into

a single bid thereby allowing carriers to coordinate

multiple businesses and reduce empty or low value

backhaul movements. It also provided a means to

incorporate surge demand contingencies into the

longer (3-year) contracts, thereby lessening the

need to renegotiate contracts whenever demands

changed; Ledyard et al. (2002).

2. Mars Incorporated used a combinatorial auction

mechanism to procure the necessary goods from

multiple suppliers allowing bidders to specify

complex bid structures that indicated quantity

discounts, minimum supply, and multiple goods

collected within a single bid. No bidder was

allowed to supply more than a certain percentage

of the overall quantity needed and newer suppliers

were limited more severely than their suppliers they

had used over a number of years. The algorithm also

assured that there were multiple suppliers in the

solution for each critical entity. These auctions are

not simple, but work to match the needs of

the procurer, Mars, with the capabilities of the

suppliers (often farmers). The allocation considers

geographic, volume and quality factors. The

suppliers liked the auction mechanism because of

its transparency, shorter negotiation time and

fairness; Honer et al. (2003).

3. Motorola Corporation used auctions for the

procurement of the multitude of parts needed for

cellular devices. Motorola needed to reduce both

the time and the effort required to prepare for and

conduct negotiations with its suppliers, simplify

their coordination, and optimize contract awards

across sectors, in order to save costs; Metty et al.

(2005).

Governments are moving toward procuring their

goods and services in a similar fashion. One such

example is the use of auctions to determine the

suppliers of lunches in a large school system. Chile

spends aroundUS$180million a year to feed 1,300,000

students from low income families. To improve the

quality of the goods and services being provided to

the school system and to save money, the government

chose to assign catering contracts in a single-round

sealed-bid combinational auction. This auction

resulted in a transparent and objective allocation

approach, thereby generating competition among

firms. It also allowed the companies to build flexible

territorial bids to include their scale of economies,

leading to more efficient resource allocation.

This new methodology improved the price-quality

ratio of the meals with yearly savings of around

US$40 million, equivalent to the cost of feeding

300,000 children during one year; Epstein et al. (2002).

In supply-chain auctions, rules are designed to

assure a certain diversification in suppliers and to

assure the reliability of the supply chain. In each

case, are goals other than revenue maximization or

efficiency that drove the auction design. In addition,

the auction design must consider the nature of the

investment. For spectrum, where there was both

uncertainty in the long-term use of the technologies

and where the cost of build-out are high, long-term

leases were chosen. For energy, auctions are used for

a much shorter decision problem. The U. S. Treasury

uses multiple auctions for short, medium and

long-term debt allocation. Oil and gas exploration

must have a relatively long-term horizon where

payments for wildcatting are based on the bid price

and a yearly rent, whereas payments for extraction are

based on bid price and royalties.

Thus, one must consider carefully the application

when designing the allocation mechanism and the

payment scheme. Auction theory and its use is

growing because of its proven value. It provides price

discovery and signals where more capacity is needed.

It is often a fairer and more transparent process for the

allocation of goods and services.

Concluding Remarks

Combinatorial auctions are appropriate for problems

where the bidders need to procure a collection of items

that contribute to their having a viable business plan.

When evaluating alternative designs, one is likely to

want to satisfy the following goals:

1. The property rights are well-defined.

2. Bidders are able to, through their bids, announce

the entire collection of objects that they need for

a given business plan.
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3. The auction results in maximum revenue to the

seller.

4. The auction results in an efficient outcome i.e. all

items are collectively allocated to the bidders that

value these items the most.

5. The auction is perceived as fair to all bidders.

6. The auction ends in a reasonable amount of time.

7. The auction has limited transaction costs, i.e. the

rules are not so difficult or the bidding so

complicated that a straightforward bidder finds it

difficult to participate.

8. The auction cannot be gamed, i.e. truthful bidding

is an optimal strategy for all bidders.

9. The auction allows price discovery.

10. The auction is computationally feasible and scalable.

It is not possible to have all such attributes obtain

simultaneously. For each applications, some of these

goals will be more important than others. One should,

however, keep all of these goals in mind when

evaluating a mechanism.

In addition, the auction mechanism should consider

any application-specific issues that might arise. For

example, in government auctions one might want to

consider how market power impacts the outcome,

whether there will be sufficient participation, and

whether the outcome will limit future competition in

the industry. In certain situations, there may need to be

a transition period that allows the market to adjust to

a change in the way rights are allocated; One may have

to consider the associated rights that a bidder would

need to be able to use the right being sold or leased in

the auction; The seller needs to determine if the rights

are paid for over time or at the end of the auction; The

money obtained may need to be designated for

a specific use in order for the government to obtain

the approval of all constituents. The auction design

may also need to satisfy other social goals specific to

the application (e.g. reducing emissions, increasing

competition, incentivizing innovation, improving

multi-modal transportation). Similarly, in supply

chain auctions, a variety of goals need to be

considered– quality of the goods, price, historical

dependability of the supplier, among others.

See

▶Auction and Bidding Models

▶ Integer and Combinatorial Optimization
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Combinatorial Explosion

The phenomenon associated with optimization

problems whose computational difficulty increases

exponentially with the size of the problem. One

common paradigm is the traveling salesman problem.
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▶ Integer and Combinatorial Optimization

Combinatorics

Eugene L. Lawler

Combinatorics is the branch of mathematics that deals

with arrangements of objects, usually finite in number.

The term arrangement encompasses, among other

possibilities, selection, grouping, combination,

ordering or placement, subject to various constraints.

Elementary combinatorial theory concerns

permutations and combinations. For example, the

number of permutations or orderings of n objects is

n! ¼ n(n � 1) . . . (2)(1), and the number of

combinations of n objects taken k at a time is given

by the binomial coefficient (nk) ¼ n!/[k!(n � k)!].

In order to compute the probability of throwing a

seven with two dice, or of drawing an inside straight

at poker, one must be able to count permutations and

combinations, as well as other types of arrangements.

Indeed, combinatorics is said to have originated with

investigations of games of chance. Combinatorial

counting theory is the foundation of discrete

probability theory as is exists today.

Experimental design provides the motivation

for another classic area of combinatorial theory.

Suppose five products are to be tested by five

experimental subjects over a period of 5 days, with

each subject testing one product per day. Labeling the

subjects A, B, C, D, E, the products 1,2,3,4,5, and the

days M, Tu, W, Th, F, one way to schedule the tests is

as follows:

M Tu W Th F

1 A B C D E

2 B C D E A

3 C D E A B

4 D E A B C

5 E A B C D

A square array of symbols, with each symbol

occurring in each row exactly once and in each

column exactly once, is called a Latin square.

Now suppose each of the tests is to be performed by

a subject in the presence of an observer. In order to

reduce the effects of bias due to subject-observer

interactions, the Latin square should represent the
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schedule for the subjects to be combinatorially

orthogonal to the Latin square for the observers. This

means that when the two Latin squares are

superimposed, each of the 25 possible subject-

observer pairs appears exactly once in the resulting

array, called a Graeco-Latin square. Labeling the

observers a, b, c, d, e, a 5 � 5 Graeco-Latin for our

experiment is as follows:

Aa Bb Cc Dd Ee

Bc Cd De Ea Ab

Ce Da Eb Ac Bd

Db Ec Ad Be Ca

Ed Ae Ba Cb Dc

Leonhard Euler observed that no 2 � 2

Graeco-Latin square exists and found he was able to

construct examples of n� nGraeco-Latin squares for n

up to five, but had trouble with six. In 1782 Euler

conjectured the nonexistence of such an arrangement

for any n ¼ 4k + 2, where k is an integer. About 1900,

Euler’s conjecture was confirmed, by systematic

examination of cases, for n ¼ 6. However, his more

general conjecture remained unsettled until 1959 when

Bose, Shirkhande and Parker exhibited a 22 � 22

Graeco-Latin square. Shortly after, these same

investigators (Euler’s Spoilers) demolished what

remained of Euler’s conjecture by establishing that

Graeco-Latin squares do exist for all n other than two

and six. Their work made use of results of number

theory, a branch of mathematics with which

combinatorics exists in happy symbiosis.

Another investigation of Euler turned out to have

considerable importance for combinatorial

mathematics. In the old city of Königsberg in Eastern

Prussia the River Pregel divided into two branches

surrounding an island. The river was spanned by

seven bridges. It is said that the people of Königsberg

entertained themselves by trying to find a route around

the city that would cross each of the bridges exactly

once. In 1736, Euler provided a definitive answer to

the Königsberg bridge problem, and any related

instances: “If there are no more than two areas to

which an odd number of bridges lead, then such

a journey is not possible. If, however, the number of

bridges is odd for exactly two areas, then the journey is

possible if it starts in either of these areas. If, finally,

there are no areas to which an odd number of bridges

leads, then the required journey can be accomplished

from any area.” This result has been viewed as

the oldest theorem of what is now known as graph

theory.

With the advent of digital computers and operations

research, the emphasis of combinatorics shifted from

problems of counting and existence of arrangements to

problems of optimization. Modern combinatorics may

be said to have come of age with the development of

network flow theory by Lester Ford and Ray Fulkerson

in the 1950s. This remarkable theory enables a great

variety of practical optimization problems to be solved

by efficient algorithms. A number of elegant duality

results follow directly from Ford and Fulkerson’s

Max-Flow Min-Cut Theorem. For example, consider

the König-Egervary Theorem, which can be stated as

follows: Let us call a subset of elements of a matrix

independent if no two of the elements lie in the same

row or the same column. Let all elements be 0 or 1.

Then the maximum size of an independent set of 1 s is

equal to the minimum number or rows and columns

containing all the 1 s in the matrix.

In the 1960s Jack Edmonds generalized many of the

results of Ford and Fulkerson by exploiting the concept

of a matroid, a combinatorial structure abstracting the

notion of linear independence. Edmonds also

developed a general theory of matching in graphs,

where a matching is a subset of edges, no two of

which are incident to the same vertex. He also proved

a generalization of the König-Egervary Theorem,

which may be viewed as a duality theorem for

matchings in the special case of bipartite graphs.

Edmonds (1965) further observed that the running

time of his general matching algorithm was bounded

by a polynomial in the size of the graph it is applied to,

and made an eloquent argument for the goodness

of polynomial-time bounded algorithms. The

significance of polynomial time bounds came to be

more fully appreciated with the development of

NP-completeness theory by Stephen Cook, Richard

Karp and Leonid Levin in 1973. The theory of

NP-completeness has been an essential tool for

researchers in combinatorial optimization ever since.

Algorithms arising from network flow theory,

matroid optimization theory, matching theory, or

similar theories, may all be viewed as special-purpose

linear programming algorithms. Combinatorial duality

results, including the Max-Flow Min-Cut Theorem and

the König-Egervary Theorem, are most often special

cases of linear programming duality. The term applied
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to the general paradigm of formulating and solving

combinatorial problems by linear programming

techniques is polyhedral combinatorics.

More often than not, combinatorial optimization

problems that arise in the real world are too

idiosyncratic and complicated to be fully tamed by

polyhedral techniques alone. For these problems, it is

usually necessary to engage in some form of

enumeration of cases if one seeks to find a provably

optimal solution. The Traveling Salesman Problem

(TSP) is prototypical of a difficult (NP-complete)

problem with a real-world flavor. In this problem, one

is asked to find a shortest closed tour of n cities (visiting

each city exactly once, and ending at the starting point),

given an n� nmatrix of intercity distances. The number

of possible tours is, of course, finite: (n� 1)!. But for any

interesting value of n, say 100 or 1,000, the number of

tours is so astronomically large as to be effectively

infinite. An exhaustive enumeration of even a tiny

fraction of the tours is out of the question. Hence if the

TSP is to be solved by enumeration, the enumeration

must be very artfully limited.

The TSP has served as a testbed for algorithmic

research. Indeed, the approaches that have been

applied to the TSP are representative of the full range

of techniques of combinatorial optimization. These

include polyhedral and integer linear programming,

Lagrangian relaxation, nondifferentiable

optimization, heuristic and approximation algorithms,

branch-and-bound, dynamic programming,

neighborhood search, and simulated annealing.

With much effort by many investigators, it is today

possible to find optimal, or provably near-optimal,

solutions to instances of the TSP with hundreds, even

thousands of cities.

Combinatorial optimization has assumed great

practical importance, in such diverse problem areas

as machine scheduling and production planning,

vehicle routing, plant location, network design, VLSI

design, among many others. The practical and

theoretical importance of this field can only be

expected to grow in the future.

See

▶Chinese Postman Problem

▶Computational Complexity

▶Graph Theory

▶ Integer and Combinatorial Optimization

▶Traveling Salesman Problem
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Common Random Numbers

▶ Simulation of Stochastic Discrete-Event Systems

▶Variance Reduction Techniques in Monte Carlo

Methods

Common Value Bidding Model

A bidding model in which the value of what is being

auctioned, while unknown at the time of the auction, is

known to be the same for all bidders. In such a model,

bidders must correct for the selection bias, often called
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the winner’s curse, caused by the fact that winning

bidder is likely to have been the one who most

overestimated the value.

See

▶Bidding Models

Communications Networks

Edward A. Sykes

Make Systems, Inc., Carey, NC, USA

Introduction

Communications networks are systems of electronic

and optical devices that support information exchange

among their subscribers. Examples of communications

networks are abundant in everyday life: telephone

networks, broadcast and cable television networks,

and computer communications networks such as the

Internet. The impacts of communications networking

on the individual, society and the planet are

staggering, rivaling that of the tall ship and the

automobile. In just under two centuries, humanity

has been transformed from myriad villages and

towns isolated in obscure corners of the continents

to one global information village. This transformation

is no more evident than in the fact that the very

boundaries between information transfer and

information processing are increasingly hard to

define. The integration of communications networks,

computing technology, and end-user devices (e.g., the

telephone, television, personal computer) is

increasingly being referred to simply as the

information infrastructure. This global transformation

of the world community is no more evident than in the

Internet, which some analysts predict will be the

predominate mechanism for conducting business (both

consumer and business-to-business) within 5 years.

OR and MS have been major players in the

development, deployment and management of

information technologies and infrastructure.

Applications of OR/MS in modeling, analysis and

design of communications networks are among the

oldest of the fields, dating from the late nineteenth

and early twentieth century. Among the most notable

of all work in OR/MS history is queueing modeling of

telephony by A.K. Erlang. Modeling, analysis and

design of communications networks, moreover, is an

area rich in applications of more generic OR/MS work.

Communications networks are, fundamentally,

networks and thus, almost all generic discussion of

networks applies. Analogous remarks are appropriate:

in communications network modeling and analysis for

topics such as queueing and queueing networks,

simulation, and network reliability; and in

communications network design for topics such as

facility location, topological design and optimization,

capacity optimization and allocation. Finally,

communications networking problems have a great

deal of commonality with problems arising in other

domains, for example, modeling, analysis and design

of transportation systems, water resource distribution

systems, etc.

A discussion of the wealth of communications

networking issues arising in the application of

OR/MS techniques would be quite extensive. Here

the focus is on several classes of modeling, analysis,

and design problems arising in a variety of modern

communications technologies.

Basic Structure and Concepts

A typical communications network comprises a set

of subscribers that offer subscriber-to-subscriber

traffic requirements to be supported on the given

network architecture. For example, a typical

household (subscriber) makes telephone calls

(traffic requirements) to be supported on a voice

network switching fabric (architecture). In most

communications architectures, a hierarchy of

communications devices exist to support traffic, but

the most basic of these are customer premises

equipment, local access equipment, and switching

equipment. Customer premises equipment is

associated directly or indirectly with the generation of

traffic requirements. Local access equipment provides

a means of connecting the subscriber to the network,

that is, the interface between the subscriber and the

network necessary for traffic to enter the network and

be routed over it. Switching equipment routes the traffic

from its source subscriber to its destination subscriber.
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All three types of equipment are determined by the

nature of the traffic requirements and their associated

technology and architecture. In a voice (i.e., telephone)

network, the customer premises equipment is generally

just a telephone – in this case, the subscriber is the

household whose aggregate traffic (telephone calls)

enters and leaves the network at the telephone. The

local access equipment in this case is owned and

provided by the local telephone company. Although

there typically is switching in the local access in this

case (for local calls), for purposes of the discussion

here, the long haul switching equipment is owned and

provided by a common carrier such as AT&T.

Analogous examples can be provided for data

communications networks, video teleconferencing

networks, etc.

Communications networks differ on the manner in

which they carry traffic requirements. Considerable

attention has been paid to quality-of-service (QoS)

issues in communications networks, with major

trends in standards and implementations increasingly

focused on assuring that different applications receive

the QoS they require across the technologies they

traverse. Most voice networks set-up calls from

source to destination in a circuit switched manner,

that is, dedicating capacity along the entire path of

the call. Most data networks segment information

into streams of packets or cells which are routed

independent from one another from source to

destination and reassembled into the original

information at the destination. Data networks can

operate with or without functions that route traffic

according to QoS needs and with or without

reservation or dedication of capacity along the path.

Many variations and hybrids of these basic approaches

exist and the evolution of technology is becoming

increasingly toward supporting traffic sources with

differing traffic characteristics and differing service

requirements differently. For example, voice traffic is

error tolerant (one can tolerate a little static on the line)

but delay sensitive (one cannot tolerate long delays

between the time a word is spoken and the time it is

received at the destination). Some data traffic (e.g, file

transfer) is typically error intolerant but delay

insensitive. Consideration of these kinds of issues is

addressed in network modeling and simulation.

A common thread among most network modeling,

analysis and design conceptualizations is the view of

a network as a graph comprising nodes and links.

A node is used to abstractly represent a device

location (e.g., a subscriber location or a switching

location). A link is used to represent connections

between subscribers and switches and between

switches. A link typically has a capacity for

supporting traffic. One can view a link as analogous

to a pipe and the capacity of the link as analogous to the

diameter of the pipe, but with one caveat.

A communications link of a given capacity typically

supports traffic at that capacity in both directions, that

is, it is more properly viewed as two pipes of equal

capacity in parallel, each flowing in a direction

opposite the other. In addition, a single link can

support many “logical” entities as well – for

example, it can have its bandwidth dedicated in some

proportions to support different service classes or

priorities for purposes of providing differential QoS

to traffic applications. Design of communications

networks typically addresses selecting the number of

and the placement of backbone (central) nodes,

selecting and sizing the links between subscribers and

backbone nodes, selecting and sizing the links between

pairs of backbone nodes, and configuring logical

constructs (virtual links sharing physical links,

bandwidth allocations among service classes, etc.).

Modeling

Communications networks are large scale systems with

enormous complexity. As with most such systems,

modeling relies heavily on computer-based techniques

and the nature of the models developed depends

strongly on the questions the model is intended to

answer. For example, a simulation may be used to

answer detailed questions regarding the interaction of

communications devices or protocols. Often these

studies address questions as to the feasibility of a given

device or protocol to support certain types of traffic

requirements with acceptable performance. Such

models can be used to design the devices or protocols

as well. Simulation of communications systems

typically models the generation, transfer, and

disposition of each unit of information (e.g., call,

packet, cell), the protocol decisions as the system

operates and the physical behavior of the devices that

make up the network. As with any simulation, various
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aspects of the system may be ignored or aggregated to

improve the computational speed of the simulation.

An alternative to simulation approaches is

analytical modeling (a classic reference is Kleinrock

1976), which typically implicitly aggregates traffic

units into flows whose characteristics are captured

using statistical or probabilistic models. The

advantage of analytical modeling is that the behavior

of a network can be predicted by a system of equations

more quickly computed than the operation of the

network can be simulated. The disadvantage is in the

aggregation and averaging of detail, effectively

capturing the behavior of the network on average

rather than accurately depicting a realization of

performance over time. Most analytical models of

communications systems employ individual and

network queueing models. Information units (calls,

packets, cells) are the customers in these queueing

systems and communications devices (switches,

links, etc.) are the servers.

Hybrid simulation/analytical modeling is

a third and increasingly popular approach to

communications network modeling (Sage and Sykes

1994). The tenets of this approach are to use simulation

techniques in capturing key protocol decisions in

traffic admission, routing, congestion control, and

resource allocation, but to use analytical techniques

for modeling the behavior of the traffic itself,

thus avoiding the computational complexity

incurred if each packet or cell were to be simulated

individually. Hybrid simulation/analytical models of

communications networks also have been described as

“flow-based simulations,” in which the paths that

traffic flows take are simulated while the flows

themselves are modeled analytically.

Selection of modeling approach depends strongly

on the purpose to which the model is applied. For

purposes of protocol or device design, where many

replications of realizations of performance are

required to observe the entity under a wide variety of

operational conditions and circumstances, simulation

approaches dominate. For analysis and design

purposes, where often the intent is to assess

the quality of the design or to compare alternative

designs, models which provide average behavior

over many potential realizations of performance

are useful. Performance can be computed over

multiple simulation replications, but analytical

tools or simulation analytical hybrids which compute

those aver-ages directly and more efficiently are

dominant.

Analysis

Network analysis is the application of one or

more network models to characterize a communications

network. In many communications network design

contexts, the central step of the design process is to

characterize a design on a number of categories of

measures: cost, topological properties, performance,

behavior under failures (survivability) being the major

ones. For each of these categories of measures, models

which compute specific measures of interest can be

applied, with the aggregate network analysis being

produced in summary from the results of the individual

models. Costmeasures can include one-time (e.g., device

purchase) and recurring costs (e.g., link leasing), often

commensurate to the same units. Topological measures

are generally technology independent characterizations

of the network structure along gross lines (e.g., measures

summarizing path availability and diversity, path lengths

in number of links or hops from source to destination,

etc.). Performance measures are generally technology

dependent characterizations of the ability of the

network to support the offered traffic and the quality of

that support. Survivability measures are indications of

what traffic can be supported under various failure

scenarios and what the performance of the network will

be in those scenarios.

Design

A common paradigm for design of communications

networks is one in which the design process is broken

down into two phases: access area design and

backbone design (Boorstyn and Frank 1977). Access

area design determines the number and location of

backbone nodes and homes (i.e., provides a link

from) each subscriber to a backbone node. Backbone

design determines the interconnections among (links

between) backbone nodes. The process is depicted in

Fig. 1. Figure 1(a) represents the starting point, where

the subscriber locations (black circles) and candidate

backbone node locations (squares) are given.
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Figure 1(b) represents the completion of the access

area design phase, where the black squares are the

selected backbone nodes and the lines from the

subscribers to the backbone nodes are the homings

(implicit in the homings is the assumption that the

communications links from each subscriber to its

switch is of type and capacity to support the

subscriber’s offered traffic requirements). The output

of the access area design phase is the input to the

backbone design phase: the number and location of

backbone nodes and the aggregate traffic

requirements among the backbone nodes. The

aggregate traffic is computed based on the homings.

In the backbone phase, the interconnections among

backbone nodes are designed to support the backbone

traffic with adequate performance, to meet other

constraints and typically to minimize cost.

Figure 1(c) depicts a backbone design and Fig. 1(d)

depicts the final overall solution.

It is notable that solution of the global design

problem (including all access and backbone

components) is precluded by the computational

complexity of the design problem for all but a few

special cases which will be ignored here. It also is

notable that the structure of the decomposition of

the global problem into access area and backbone

design phases can lead to gross suboptimalities in

the overall solution. To illustrate this assertion,

consider a global design problem in which the total

cost of the network includes three components:

• homing link costs, the sum of the costs of links

homing subscribers to nodes, which can vary for

each subscriber-node pair;

• backbone node costs, typically the cost associated

with purchasing each node selected as part of the

backbone, which typically is uniform over all

candidate nodes; and

• backbone link costs, the sum of the costs of links

between backbone nodes, which can vary for each

subscriber-node pair.

Under fairly general assumptions, the following

relationships hold as the number of nodes selected for

the backbone increases:

• the access area homing costs tend to decrease

(because the access links tend to decrease in

length and hence cost);

Communications Networks, Fig. 1 (a) Network design – starting point. (b) Network design – access area design. (c) Network
design – backbone design. (d) Network design – integrated solution
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• the node activation costs increase linearly (directly

with the number of nodes selected); and

• the backbone link costs tend to increase (as the

number of backbone nodes increases, more

backbone links are required).

Thus, if the access area design phase optimizes solely

on the basis of homing and node activation costs, it tends

to select too many nodes. Two remedies to this

pathology are commonly employed: (i) using some

estimate of the backbone cost in the access area design

problem; or (ii) iterating on the number of backbone

nodes selected (i.e., fixing the number of activated nodes

to given number, solving the access area and backbone

problems in sequence for that number, and computing

the total solution cost, but doing so over a wide range of

numbers of nodes and selecting the best total cost

solution obtained). Neither remedy guarantees global

optimality, but both approaches can improve solution

costs substantially.

Access area design problems often are formulated as

0-1 integer-programming problems (Fischer et al. 1993)

that are strongly related to discrete location problems

and/or facility location problems generally (Mirchandani

andFrancis 1990). Inmany cases, these integer programs

are too large to be solved directly, so a variety of solution

approaches are used; for example, linear-programming

relaxation methods, Lagrangian relaxation methods,

cutting plane and column generation methods,

etc. (Ahuja et al. 1993). Alternatively, heuristic

algorithms can be used to solve the access problem,

and perhaps, more generally, clustering techniques can

be used as a solution approach. The basic access area

design problem can be stated as follows:

Given: Subscriber-to-subscriber traffic requirements;
Candidate node locations.

Minimize: Sum of costs of homing each subscriber to
a backbone node + Sum of node activation costs.

Over: Node activations; Subscriber homings.

Subject

to:
Node port constraints (limit on the number of
subscribers than can be homed to a node); Node
traffic constraints (limit on the total amount of
subscriber traffic that can be homed to a node); Each
subscriber must be homed to a node (occasionally
subscribers must be homed to more than one node);
(Optionally, a constraint fixing the number of node
activations).

Backbone design problems can be formulated as

0-1 or general integer-programming problems (Gavish

1986), however, it is difficult if not impossible to

accurately capture or predict network performance in

that context. Moreover, many of the critical aspects

of the backbone problem that can be captured in the

integer-programming formulation (e.g., topological

constraints) can also cause a combinatorial explosion

in its solution time. Nonetheless, OR/ MS literature is

replete with many IP backbone design formulations. In

these cases, the solution techniques again typically rely

on LP relaxation or Lagrangian relaxation approaches.

An alternative to the mathematical-programming

approach to backbone design is commonly employed

in interactive software based tools for solving design

problems (Stiffler and Sykes 1990; Monma and

Shallcross 1989). This iterative approach:

• starts the design process with an initial design;

• analyzes the design using a series of models

assessing measures of various aspects of cost,

topological properties, performance, and physical

constraints on feasibility;

• makes an assessment as to whether the design is

satisfactory, stopping if so; and if not

• improves one or more design deficiencies and

returns to the analysis step.

This iterative paradigm for backbone design has been

used extensively and successfully for design of

communications networks with a wide range of

architectures (e.g., voice, packet data, multiplexer,

asynchronous transfer mode). It also can capture

directly a broader set of design objectives and

constraints than mathematical-programming methods,

as well as be implemented in ways which more

accurately predict network performance. All of this is

possible through the embedding of the comprehensive

network analysis at the core of the process, along

with the decomposition of the optimization process into

smaller steps aimed at initial design generation and

design improvement. Unlike mathematical-

programming approaches, which often can be solved to

optimality or at least provide bounds from optimality for

the solutions they produce, iterative approaches typically

cannot guarantee nor bound optimality.

A typical backbone design problem can be stated as

follows:

Given: Backbone node-to-node traffic requirements; Node
locations; Link availability and costing.

Minimize: Sum of link costs.

Over: Link Placement.

(continued)
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Subject

to:
Topological Constraints, such as – Node connectivity
(lower bound on the number of node-disjoint paths
available between each node pair); Diameter (upper
bound on the minimum number of links a node pair
must traverse in order to communicate); and Node
port degree (upper bound/physical limit on the
number of links that can be incident to each node).
Performance Constraints, such as – Constraints
on throughput, utilization, delay, blocking, etc., as
appropriate for a given network architecture;
and Constraints on achieving the QoS requirements
of individual traffic demands or, on the achievement
of service level agreements computed as
a function of QoS of individual traffic demands.

Concluding Remarks

For an overview of telecommunications systems and

their operations, see Bertsekas and Gallager (1987);

Schwartz (1987); Tanenbaum (2010). For an

introduction to network design problems and

optimization approaches, see Cahn (1998) or

Kershenbaum (1993). For a classical introduction to

data communications networking, see Kleinrock (1976),

that contains extensive basic modeling and optimization

discussions. Also see Pattavina (1998); Ross (1995) or

Woodward (1994) for modeling work, and Schmidt and

Minoli (1998) or Partridge (1994) for technologies of

communications networking. Of a general interest are

the books by Ball et al. (1995); León-Garcia and

Widjaja (2004), Koster and Muñoz (2010).

See

▶ Integer and Combinatorial Optimization

▶Network Optimization

▶Networks of Queues

▶Queueing Theory
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Community OR
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Introduction

Community OR is perhaps best understood as

a subdiscipline of OR that focuses on communities
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as alternative clients for (and users of) OR and

related activity.

One defining characteristic of this has been the

explicit consideration of two key questions:

1. How can communities benefit fromOR approaches,

i.e., what can OR offer?

2. Who are the clients/beneficiaries?

These questions have also prompted the subsidiary

methodological question: “How should OR practice

and theory change in light of this?” These are

non-trivial questions which can radically change the

view that OR (or management science) as a discipline,

only serves traditional managerial interests.

Community OR analysts, or facilitators, as they

more frequently refer to themselves, aim to develop

engagements within community groups, not-for-profit

organizations and/or local multi-agency partnerships

so as to provide them analytical support that build

capacity and resilience within these communities.

Such engagements are frequently related to

improving awareness of options and choices available

to individuals and groups, and the likely outcomes

of various courses of action, e.g. planning and

decision-making. They also often involve exploring

issues that directly affect people’s lives and the

strengthening of discourse, dialogue, and local/global

agency in relation to these (dialogue, critical

awareness, and encouraging self-organization).

The idea of a wider client group for OR and an

interdisciplinary approach is not a new idea or

pursuit – indeed it has its origins deep in OR’s early

history – nor is it a concept that has developed

identically with different Community OR

contributors since. Despite these important

differences, common themes have emerged between

researchers and practitioners alike that unite the

endeavor under the term Community OR.

The practice of Community OR has been organized

in many different ways. Much work has been carried

out by individuals acting in a voluntary capacity within

their own communities, often as a natural extension/

application of their personal OR background. Other

work has been generated through formalized units

and research centers. Both provide contrasting

experiences and insights, with different roles and

practical and ethical considerations for the

Operational Researcher concerned.

Much debate has taken place within the Community

OR community about what approaches and methods

are appropriate. Given the broad nature of community

issues, problems, and choices to be considered,

it should not be surprising to find a wide variety of

OR/Management Science tools being put to use.

While some authors have reported the importance of

developing the capacity for quantitative analysis

within community groups, a large proportion of the

Community OR work has involved softer OR

methods that help structure issues: Problem

Structuring Methods, understanding inter-related

issues and exploring choices; Strategic Choice

Approach and decision making/planning, and helping

communities reflect on current and future situations

and to organize themselves in light of these

reflections; and workshops, organizational learning,

or creative methods.

Links to systems research are a particularly strong

feature of many Community OR studies, but this is not

a universal precondition for Community OR. In

particular, ideas of socio-technical systems, viable

systems modeling (cybernetics), soft systems

methodology, boundary critique, and critical systems

have played key roles in the development of

Community OR.

There is a strong U.K. tradition of Community OR,

encouraged by the U.K. OR Society, but global

perspectives have been just as important in shaping

the development of the subject, including work in

Venezuela, Columbia, Ghana, Kenya, New Zealand

and Mexico. Many links can also be found in the

writings of Community OR researchers and

practitioners with Social Justice, Community

Development, and Participatory Methods in research

and evaluation.

The emphasis of Community OR is often on trying to

build meaningful engagements with groups of people in

the community and creating increased capacity within

the groups. Community OR, therefore, pays great

attention to issues of engagement, facilitation, group

work, ethical interactions, and sustainability. These are

not issues unique to Community OR, but they are in

sharp focus in this field.

Another consideration is the question of

motivating factors for involvement in Community

OR. One factor has already been introduced – a

volunteer applying OR skills within his/her own

personal communities. Others, however, are

motivated to work within new communities, usually

ones where there is felt to be some kind of social
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inequality or collective issue to address. Community

OR researchers tend not to see themselves as

the expert in these situations; rather, authors write

about bringing another viewpoint/set of skills to

a community who are already expert in their own

situations. As such, there are some very interesting

issues about knowledge and power to unpick in

Community OR, and political, religious or ethical

beliefs to reflect upon. These have often shaped the

way Community OR has been developed by

individuals or groups of researchers; seen

particularly in the theoretical foundations of the

approaches developed and, indeed, in the choices of

community issues that are addressed in practice.

History

The desire that OR should be put to use for societal

aims is not a new one. As early as the 1930s, Patrick

Blackett (often referred to as “the father of OR”), John

Bernal and others were calling for science to be put to

use for wider social benefit (Blackett 1935; Bernal

1939). In the post-war years in the U.K., OR

departments were set up across governmental and

nationalized industries.

By the 1970s, some of the initial social objectives of

OR seemed to have been somewhat forgotten. There

were, however, several key figures who campaigned

for redressing this balance and restoring the

interdisciplinary, action-focused aspects of the OR

enterprise.

In the U.S., Russell Ackoff and colleagues at the

University of Philadelphia pioneered work with local

residents. In the title of his 1970 paper, “A black

ghetto’s research on a university,” Ackoff made an

important distinction that was picked up later by

Community OR researchers (Ackoff 1970). It was not

the University’s research on the ghetto, but the

research participants’ research on a University.

Ackoff continued developing his program and calling

for a systems approach to societal problems (Ackoff

1974). Other researchers of the same era famously also

called for new perspectives (Churchman 1979) and the

recognition and appropriate handling of wicked, i.e.

messy & complex, social problems (Rittel and Webber

1973).

In the U.K. there were also calls within the OR

community to turn attention again to the social

application of OR. The Institute of OR had been

established in 1963, later to become attached to the

Tavistock Institute of Human Relations, both with an

interest in understanding social and public affairs and

to work to improve planning processes; Friend and

Hickling (2005) discuss some of the long term

legacies from this work. Other researchers continued

to argue strongly that OR should be used to benefit

society and lead to improved well-being (Cook 1973;

Thunhurst 1973).

By the 1980s, the movement pressing for OR to

move beyond its now well-established scope and

client-base to encompass community beneficiaries

had gathered considerable momentum. In 1985, under

the presidency of Jonathon Rosenhead, the U.K. OR

Society wanted to challenge perceived views about

who the clients of OR were and to find a significant

social role for OR:

The idea behind the Unit is that is should give extensive
experience of how formal problem-structuring
approaches can assist non-hierarchical organizations,
disposing of few resources, but attempting to represent
the interests of their members . . . we see the unit as
extending the range of OR’s potential clients . . . we
shall be expanding the domain of rational argument,
tackling a new and exciting range of unstructured
problems, and contributing to making our society
a better one to live in. (Rosenhead 1987, quoted in Parry
and Mingers 1991).

The OR Society set up the original Community

Operational Research Unit at Barnsley College,

Yorkshire (Ritchie et al. 1994, discuss case studies

from this period). A new Community OR Network

was created the following year by the Society, and

a Centre for Community OR was also set up at Hull

University, building on the work of Jackson and

Keys (Jackson 1987, gives an overview of these

3 initiatives).

Other work in this era also fed into the discussion of

the newly emerging concept of Community OR. This

included the work of Jones and Eden (1981) and

parallel, but related systemic researches such as

Ulrich’s Critical Heuristics (Ulrich 1983).

By the 1990s, sufficient examples of Community

OR were appearing in the literature (Thunhurst

1987; Mar Molinero 1993; Taket and White 1994;

Ritchie et al. 1994, and others) to enable the

community to reflect on Community OR as an

entity and approach in its own right (Jackson 1987;
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Mar Molinero 1992; Midgley and Ochoa-Arias

1999; Ochoa-Arias 1994; Parry and Mingers 1991;

White and Taket 1993; Wong and Mingers 1994).

These papers demonstrate a breadth of OR activity

drawn from a range of OR techniques (hard and soft

OR methods), drawing on different intellectual

traditions (e.g. different forms of systems modeling

or political theory), but sharing common aims and

interests, such as participation, social justice, and

community empowerment.

The following decade saw a period of consolidation

for Community OR with the publication of three core

OR texts that in different ways document and shape the

record of Community OR theory and practice.

Planning under Pressure (Friend and Hickling 2005)

shares the authors’ and 21 other contributors’

experiences of using the Strategic Choice Approach.

Rational Analysis for a Problematic World Revisited

(Rosenhead and Mingers 2001) brings together the

work of several authors associated with the

development of Community OR and illustrates their

approaches to Problem Structuring in a range of

decision contexts. Community Operational Research,

OR and Systems Thinking for Community Development

(Midgley and Ochoa-Arias 2004) focuses specifically

on Community OR and brings together several key

papers as well as setting the scene for some future

development, e.g. in environmental OR (Midgley and

Reynolds 2004).

At the end of the 1990’s the Community

Operational Research Unit (CORU) moved to the

University of Lincolnshire and Humberside (soon to

become the University of Lincoln). During the

subsequent decade researchers from CORU

developed citizen learning networks and participatory

evaluations - exploring issues for social justice,

well-being, community self-organization and social

action research (Herron (2006) and Herron &

Mendiwelso Bendek (2007) introduce examples in

two Special Editions of OR Insight, vol. 19 issue 2

and vol. 20 issue 2).

The expansion possibilities of the scope of

Community OR, in terms of geographical spread of

activity and the issues under consideration, are

extensive. There are important global issues that call

for the continued and renewed attention: poverty

alleviation, social justice, community well-being,

environmental responsibility, fair trade, community

organization and resilience, as well as local, national,

and international calls for greater community

participation in local decision making and planning.

Emerging Themes for Community OR

There has been much interesting debate about the

variety within Community OR that reflects the range

of different professional contexts of researchers and

practitioners and different contributing areas of

expertise within OR/Systems/Action Research.

Accounts of different engagements provide a rich

source of case studies of using different OR methods

and approaches with different communities (Ritchie

et al. 1994; Midgley and Ochoa-Arias 2004).

The nature of the community situations encountered

has also clearly had a large impact in what has been done

under the banner of Community OR, and creating

engagements that are meaningful and have value for

those taking part may mean the selection, and

modification, customization of different OR methods. It

does not seem very practicable to attempt to define

Community OR by the choice of methods or tools

used, although a familiarity with Soft OR/Problem

Structuring Methods is useful for understanding much

of the existing literature or to develop skills likely to be of

use within a number of community contexts (Rosenhead

and Mingers 2001; Friend and Hickling 2005).

Community OR could also be defined as the

resulting body of work of a community of practice

(the socially constructed definition). But, to define the

subject this way provides little insight for the initial

enquirer, as it requires a familiarity and further

knowledge of the outputs of the community of

practice concerned.

Importantly, all this does not mean that it is not

possible to identify Community OR themes that have

emerged over the past decades. Rather than discussing

a single unified methodology for Community OR, it

seems productive to describe similarities of approach

that transcend discussion of which methods have

been developed or applied, and focuses instead on

some of the general characteristics and values

emergent in Community OR. An introduction would

not be complete without at least starting to draw

out a few of these themes that recur in many, if

not necessarily all, Community OR activities.

Alongside the other elements presented above, these

will help to provide a fuller introduction to the subject.

Community OR 203 C

C



Engaging with Communities

Interventions and Interactions with Local Groups

Community OR is generally understood as a form of

action research. In this sense, it returns to some of the

original intentions and conceptions of OR where

interdisciplinary teams work together to support

solutions to problematic situations and/or work with

problem-owners to explore improvements in how they

operate (Jackson 1987). In Community OR this usually

always involves some form of engagement with

community groups, not-for-profit organizations, or

multi-agency partnerships working toward a social/

community aim.

To work in meaningful ways with community

groups, regardless of the type of method used,

requires the establishment of good working relations

with the relevant parties and the identification of

key stakeholders, particularly those made vulnerable

or marginalized by the current situation. Many

Community OR approaches start with some form of

stakeholder analysis and the scoping of different

perspectives and points of view, along with other

forms of collective sense-making or mess-structuring

activity (Rittel and Webber 1973; Rosenhead and

Mingers 2001).

Encouraging the full participation of all the

stakeholders identified can be very challenging and

requires the building of trust and the careful

consideration of issues of access and appropriate

delivery. Flexibility and creativity of approach is likely

to be valuable – andmanyCommunityORengagements

include the need to adaptmethods and delivery styles for

the particular group concerned. Thus, in addition to

content discussions, much Community OR literature

also explores these softer issues of group facilitation,

interacting with communities and sense-making

activities that handle multiple perspectives and conflict

of opinion and objective.

Analytical Process Support

A common motivation for undertaking Community

OR work is the desire to support a community or

communities. Often this support is in terms of

providing some structured intervention such as

workshop, training, or participant research that helps

strengthen the groups’ ability to think through and

analyze a situation, identify or create new resources,

build robust arguments and narratives (sometimes

even models), or create improved dialogue and

awareness of a situation amongst stakeholders.

Much of the work done in this respect has links

to, and has implications for, planning and

decision making, awareness of options, and choice of

action. Community OR interventions are very

often workshop-based or use other forms of

community-based learning. Community OR

facilitators usually provide process-facilitation and

spaces for reflection and dialogue: the aim being to

support increased capacity within communities to

understand and be more resilient to changes in their

external environment.

Emphasizing once again that Community OR is not

defined by the application of any particular method,

approaches applied in community contexts have

included:

• Cognitive Mapping

• Community Visioning

• Critical Systems Heuristics (CSH)

• Drama Theory

• Strategic Choice Approach (SCA)

• Strategic Options Development and Analysis

(SODA)

• Soft Systems Methodology (SSM)

• Viable Systems Modeling (VSM)

The exact form of analytical support provided by

each Community OR researcher/practitioner will, of

course, be context dependent—specific to the exact

needs of a particular group and the issue concerned at

a certain time—and it will also be bounded by the

choice of method or approach chosen. Certain

themes, however, emerge in terms of what

Community OR may be said to support, including:

• Processes and structures (exploring, building, and

rethinking)

• Dialogue and supporting groups to build stronger

arguments (logical argumentation)

• Information and enabling groups to make more

informed choices (handling information)

• Reasoning about local issues, including exploring

links to global issues

• Negotiation and creating rules of engagement

• Engaging relevant others; exploring and extending

stakeholders

• Sweeping-in new elements to the model such as

individuals, issues, values, ethics
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• Critical awareness of learning processes, political

impact on decision making, changing

environments, and the possible impacts and side

effects of choices and actions

Reasons for doing this include:

• Organizational learning – facilitating

community-learning processes

• Knowledge transfer – co-creating knowledge and

analysis

• Addressing inequalities – providing access to

analytical resources

• Increasing choice and resilience for

communities - managing uncertainty

• Increasing community knowledge and confidence

to act in changing environments

Emancipation and Social Justice

The U.K. OR Society has described OR as “The

Science of Better.” For Community OR, this

highlights the key issues of improvement, i.e.,

improvement for whom, and how?

Community OR, as much as any subdiscipline of

OR, has highlighted the complexity of working for

improvement in contexts where there are multiple

goals and perspectives. It has provided many

examples and ways of proceeding in situations

where there are multiple world-views, value

systems, and objectives interacting to build up

a complex collective logic. In this, Community OR

has often been seen as working in the way suggested

by Rittel and Webber (1973): continually solving and

resolving tricky, messy, and complex situations and

providing ongoing support for situations that continue

to evolve.

Community OR practice seems to generate several

key themes related to making the notion of a Science of

Better meaningful for work with communities:

• Ethical dimensions: considering the likely impact

on multiple stakeholders

• Locus of control: who has ownership of the goals?

processes? outcomes?

• Surfacing issues: creating models participants find

authentic and provide insight

• Increasing understanding and fairer dialogue

• Collective improvement: critical reflection from

different perspectives

• Consideration of likely side-effects and issues of

robustness and sustainability

• Increasing individual and collective control and

agency

• Supporting vulnerable people, readdressing

inequalities, and rethinking the client

• Exit strategies: building community capacity for

learning, analysis, and reflection

Different Community OR facilitators have

approached many of these issues in different styles

and by using different methodologies, especially

SSM, VSM, CSH, SCA, the choice of which depends

very much on their experiences, cultural and

intellectual traditions, and personal beliefs. However

some common emergent themes are worth noting:

• Inclusion of vulnerable groups in decision making

and new forms of participation

• Empowerment of communities, emancipation, and

addressing social inequality

• Democratic decision making: dialogue, interaction,

and community learning

• Handling plurality: multiple realities and objectives

• Self-organization and local control: strengthening

civil society

• Feedback, communication, and the interlinking of

issues

• Linking local issues to global concerns

Community OR also continues a long tradition in

OR of valuing the co-creation of knowledge. The

Community OR facilitator will usually have certain

process knowledge to contribute (e.g., problem

structuring, mess-handling, restructuring, drama

theory, game theory), but other participants in the

group will have been involved because of their local

context knowledge and experience, or other specific

knowledge bases. Community OR practice usually

explicitly values these other knowledge forms and

encourages groups to take ownership of the process

of exploration, and idea and solution generation. This

is also consistent with the emancipatory interests of

many researchers and practitioners, often underpinned

by distinct philosophical positions including those

shaped by the works of Habermas and Foucault.

Core to any discussion about any Science of Better

must also be a critical reflection of who has the power

to determine decisions – and the directions chosen for

improvement. More critically still, those who do not

have any say in these decisions are excluded from the

dialogue for any number of reasons, or only able to

have a very small voice in the decision-making
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processes that affect their lives? Thus, while much of

OR strives to remain firmly outside political discourse,

Community OR practitioners work in situations where

strengthening collective critical awareness of the rules

of engagement, and the fairness of these, is seen as an

important aspect of the work of the analyst.

See

▶Cognitive Mapping

▶Critical Systems Thinking

▶Deep Uncertainty

▶Delphi Method

▶Developing Countries

▶Group Decision Making

▶ Soft Systems Methodology

▶ Strategic Assumption Surfacing and Testing (SAST)

▶ Strategic Choice Approach (SCA)

▶ Strategic Options Development and Analysis

(SODA)

▶ System Dynamics

▶ Systems Analysis
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Introduction

This article emphasizes complementarity applications

found in the infrastructure industries. A number of
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such industries in the U.S. and overseas have been

restructured with the goals of making them more

competitive and transparent. Examples of these

industries in the U.S. include: energy (production,

transmission, and distribution), air transportation,

and telecommunications. The business model for

these industries dramatically changed with a greater

emphasis on the microeconomic, game theory effects

of individual market players seeking to maximize

their own profits or utilities rather than just having

a central facility optimizing a stream of regulated

profits. Along with these changes came the rise of

data-gathering culminating in the present-day

Internet which in some cases is nearly real-time.

These two sources of change (no doubt with other

contributing factors) have led to the rise of

complementarity models in the operations research

community.

This broad class of mathematical programs

includes many optimization problems (via their

Karush-Kuhn-Tucker conditions), n-person Nash

games, solving nonlinear equations, and many

other interesting problems in a variety of

engineering and economic settings (Cottle et al.

1992; Facchinei and Pang 2003). A related class of

problems, variational inequalities, also benefitted

from these contributing factors (see Facchinei and

Pang (2003) for a discussion of the relationship

between these two problem classes). Collectively,

complementarity or variational inequality problems

are sometimes called equilibrium problems in that

they both seek to arrive at a solution so that the

system under study is balanced or has no incentive

to change.

One advantage of complementarity problems

over traditional optimization is the ability to

simultaneously manipulate both primal variables as

well as shadow prices for resources, usually

expressed as Lagrange multipliers for constraints.

This ability, coupled with the complicated picture

of restructured industries which often are composed

of both regulated and deregulated portions, can

usually be approached from the complementarity

perspective resulting in richer, more realistic

models.

As complementarity models have become more

mainstream like linear programs that preceded them,

other more complicated and potentially more realistic

problem classes have been studied. These extensions

of complementarity problems include: mathematical

programs with equilibrium constraints (MPECs) which

are optimization problems having two or more levels

with the bottom ones potentially complementarity

problems (Luo et al. 1996), quasi-variational

inqualities corresponding to Generalized Nash games

(Harker 1991), (Facchinei and Pang 2003), and

equilibrium problems with equilibrium constraints

(EPECs), problems with two or more levels with

an equilibrium at multiple levels, which are some

of the hardest problems to solve (Facchinei and

Pang 2003).

There are several forms for the complementarity

problem, the most common of which is the mixed

one abbreviated as MCP (mixed complementarity

problem). Note that the term mixed refers to the

presence of both equations and inequalities. Having a

function F : Rn ! Rn, MCP(F) is to find vectors

x 2 Rn1 ; y 2 Rn2 such that the following conditions

hold:

Fx x; yð Þ � 0; x � 0; xTFx x; yð Þ ¼ 0 (1a)

Fy x; yð Þ ¼ 0; y free (1b)

where the notation Fx x; yð Þ;Fy x; yð Þ refers,

respectively, to those components of F that match

up with the vectors x and y. Equivalently, the first

set of conditions (1a) can be stated as

Fi x; yð Þ � 0; xi � 0; xi 
 Fi x; yð Þ ¼ 0; for i ¼ 1; . . . ; n

with the last set referred to as “complementary

conditions” (either xi or Fi x; yð Þ or both must

equal zero). A more compact representation of

this first set of conditions is often stated as

0 � Fx x; yð Þ?x � 0 with the perpendicular operator

? denoting the inner product of two vectors equal to

zero. The statement of MCP(F) is deceptively

simple– just a set of inequalities and

complementarity conditions, as well as equations

that must simultaneously be satisfied. This very

general form, however, includes many problems in

optimization, game theory, as well as a host of other

areas some of which are described below; additional

examples and/or related theory can be found in

Cottle et al. (1992), Harker and Pang (1990),

Harker (1993), Ferris and Pang (1997), Ferris et al.

(2001), Facchinei and Pang (2003), Gabriel et al.

(2013).
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Discussion

To demonstrate the generality and flexibility of (1),

a few representative examples are next shown.

A Simple Complementarity Example

Let n1 ¼ 2, n2 ¼ 1 and F : R3 ! R3 be defined as:

F x1; x2; y1ð Þ ¼
F1 x1; x2; y1ð Þ
F2 x1; x2; y1ð Þ
F3 x1; x2; y1ð Þ

0

@

1

A

¼
x1 � x2
x1 þ y1

x1 � y1 þ 1

0

@

1

A: (2)

The corresponding MCP is to find x1; x2; y1 that

simultaneously solve the following conditions:

F1ðx1; x2; y1Þ ¼ x1 � x2 � 0;

x1 � 0; x1 � x2ð Þ 
 x1 ¼ 0;

F2ðx1; x2; y1Þ ¼ x1 þ y1 � 0;

x2 � 0; x1 þ y1ð Þ 
 x2 ¼ 0;

F3ðx1; x2; y1Þ ¼ x1 � y1 þ 1 ¼ 0;

y1 free:

(3)

The first question with any mathematical

programming problem is to try to find the solution

set. For small problems like (3), the set of solutions

can often be determined by enumeration of several

cases and then by some algebra. Doing so

additionally provides some insight into the structure

of complementarity problems.

The first step is to eliminate the free variable y1 by

using the equation x1 � y1 þ 1 ¼ 0, y1 ¼ x1 þ 1

and then making the substitution in the remaining

two sets of conditions to obtain an equivalent set of

conditions:

x1 � x2 � 0; x1 � 0; x1 � x2ð Þ 
 x1 ¼ 0;
2x1 þ 1 � 0; x2 � 0; 2x1 þ 1ð Þ 
 x2 ¼ 0:

(4)

Next, the following four cases can be analyzed to

determine the solution set:

1: x1 > 0; x2 > 0

2: x1 ¼ 0; x2 > 0

3: x1 > 0; x2 ¼ 0

4: x1 ¼ 0; x2 ¼ 0

Using the complementary conditions, the first case

implies that

x1 � x2ð Þ ¼ 0; 2x1 þ 1ð Þ ¼ 0;

or that x1 ¼ x2 ¼ �1
2
; which is not possible since

both these variables must be positive. Case 2 also is

not possible since by complementarity it would

imply that x1 ¼ �1
2
6� 0: Analyzing Case 3 shows

that by complementarity, x1 � x2 ¼ 0 or that both

values must be the same. This is not possible under

this case as x1 > 0; x2 ¼ 0: Lastly, if both values are

equal to zero, then all the inequalities as well as

complementarity conditions hold. Thus,

x1; x2; y1ð Þ ¼ 0; 0; 1ð Þ is the unique solution to this

linear MCP. This simple, three-variable linear MCP

can also be viewed from a geometric point of view

in x1 � x2 space as shown in Fig. 1. The conditions:

x1 � x2 � 0; x1 � 0; x2 � 0 represent a polyhedron

a sample of which is shown by the shaded region.

The condition 2x1 þ 1 � 0, x1 � �1
2
is superfluous

given that x1 must be nonnegative. The first

complementarity condition x1 � x2ð Þ 
 x1 ¼ 0 can be

interpreted as: if x1 > 0 then the potential solution

must be on the line x1 ¼ x2 which in turn would

make x2 > 0. The second complementarity

condition would then force x1 ¼ �1
2
which is not

in the shaded region. Thus, the only other choice it

to have x1 ¼ 0 (satisfying the first complementarity

condition) but forcing x2 ¼ 0 by the second one

in (4). Hence, the only point in the shaded region

that satisfies all the six conditions of (4) is the

origin.

While this simple example had a unique solution,

in general this will not be the case for MCPs. Indeed,

there can be no solutions, one solution, any

finite number of solutions or an infinite number

since MCPs generalize solving nonlinear (or linear)

equations, optimization problems (one or more),

or combinations thereof. To see that (1) includes

solving equations, consider the case when there

are no inequalities, i.e., just Fy x; yð Þ ¼ 0; y free. In

the next sections, the connection with optimization

problems and extensions is explored.
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Connection between Optimization
and Complementarity Problems

Consider the following standard (primal) linear

program and its corresponding dual problem:

min
x

cTx (5a)

s:t: Ax � b (5b)

x � 0 (5c)

max
y

bTy (6a)

s:t: ATy � c (6b)

y � 0 (6c)

where A is a real-valuedm� nmatrix, c 2 Rn; b 2 Rm:

The m primal constraints Ax � b are associated with

the dual vector y 2 Rm and likewise the n dual

constraints match up with the primal variables

x 2 Rn. The Complementarity Slackness Theorem

(Luenberger 1984) states that if:

1. x is feasible to the primal problem (5)

2. y is feasible to the dual problem (6)

then a necessary and sufficient condition for x; yð Þ
to be optimal solutions to their respective problems

is that complementary slackness is satisfied, namely:

Ax� bð Þj 
yj ¼ 0; j ¼ 1; . . . ;m and c� ATy
� �

i



xi ¼ 0; i ¼ 1; . . . ; n.

However, the feasibility and complementary

conditions amount to:

1. Ax� b � 0; x � 0

2. c� ATy � 0; y � 0

3. Ax� bð Þj 
yj ¼ 0; j ¼ 1; . . . ;m and c� ATy
� �

i



xi ¼ 0; i ¼ 1; . . . ; n.
After realizing that complementarity slackness

can be re-expressed as Ax� bð ÞT y ¼ 0 and

c� ATy
� �T

x ¼ 0 given the nonnegativity of the

quantities involved, these three sets of optimality

conditions can be expressed succinctly as the

linear complementarity problem with only

inequalities (i.e., “pure complementarity problem”)

with F : Rnþm ! Rnþm given as follows:

F x;yð Þ ¼ c�ATy

Ax� b

 !

¼ 0 �AT

A 0

 !
x

y

� �
þ c

�b

� �

Moreover, if the original primal LP had equalities,

via a similar line of reasoning, the result would be

a mixed (as opposed to pure) complementarity

problem. This shows that every linear program is an

instance of an MCP. A key distinction to be made here

between optimization and complementarity problems

is that the latter’s formulation involves both primal and

dual variables whereas the former’s formulation is

only in terms of primal (or just dual) variables. As

will be shown in some of the examples below, the

complementarity approach can lead to richer models

that manipulate the dual variables (i.e., prices) while

–1

–1

1

1

2

3

4

5

2

x1

x2

3 4 5

Complementarity

Applications,
Fig. 1 Geometric Depiction
of Simple Example
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also considering the primal (usually physical)

variables in many infrastructure applications. First,

the next section shows that any nonlinear program

via its Karush-Kuhn-Tucker (KKT) conditions is also

an instance of an MCP generalizing the results for

linear programs.

Consider a standard nonlinear program as follows:

min
x

f ðxÞ (7a)

s:t: giðxÞ � 0; i ¼ 1; . . . ;m (7b)

hjðxÞ ¼ 0; j ¼ 1; . . . ; p (7c)

where f ; giðxÞ; hjðxÞ : Rn ! R are respectively, the

objective function and the constraint functions.

The KKT conditions (Bazaraa et al. 1993) are to find

x 2 Rn; Lagrange multipliers l 2 Rm (for the

inequality constraints) and g 2 Rp (for the equality

constraints) such that the following conditions hold:

Hf ðxÞ þ
Xm

i¼1
li 
 HgiðxÞ þ

Xp

j¼1
gj 
 HhjðxÞ ¼ 0; x free

(8a)

� giðxÞ � 0; li � 0; giðxÞ 
 li ¼ 0; i ¼ 1; . . . ;m (8b)

hjðxÞ ¼ 0; gj free; j ¼ 1; . . . ; p: (8c)

Clearly the KKT conditions are just a set of

equations with corresponding free variables and

inequalities with associated nonnegative variables

and complementarity conditions. As such, the

KKT conditions are also an instance of an MCP

(Gabriel 2008; Gabriel et al. (2013)) with

F : Rnþmþp ! Rnþmþp given as:

F

x

l

g

0

B@

1

CA¼
Hf ðxÞþP

m

i¼1
li 
HgiðxÞþ

Pp

j¼1
gj 
HhjðxÞ

�giðxÞ; i¼ 1; . . . ;m

hjðxÞ; j¼ 1; . . . ;p

0

BBB@

1

CCCA

with the first and third sets of constraints being

equations and the second set inequalities ( � 0).

Optimization problems that do not have valid KKT

conditions are not directly special cases of MCPs.

Since KKT conditions for integer programs (IPs)

are not generally valid, there is not a direct connection

between MCPs and IPs. However, there is an indirect

association between these two classes of problems.

In particular, consider the following mixed,

linear complementarity problem as an example. This

problem in general form, is to find vectors x; y

such that:

0 � q1 þ M11xþM12yð Þ?x � 0 (9a)

0 ¼ q2 þ M21xþM22yð Þ; y free (9b)

where the matrices M11;M12;M21;M22 are of

order r1 � n1; r1 � n2; r2 � n1; r2 � n2; respectively,

coinciding with x 2 Rn1 ; y 2 Rn2 : Also, the constant

vectors q1; q2 are of size r1 and r2, respectively. This

system can be re-expressed as the following set of

polyhedral constraints with additional binary

variables b 2 0; 1f gr1 :

0 � q1 þ M11xþM12yð Þ � Kb (10a)

0 � x � Kð1� bÞ (10b)

0 ¼ q2 þ M21xþM22yð Þ; y free (10c)

with K a suitably chosen positive constant (could vary

for each of the r1 constraints). To see why this works it

suffices to realize that complementarity conditions are

either-or type restrictions. Either one term equals zero

or the other does (or both). This disjunction is

equivalently expressed in (10) via the binary

variables b and the constant K (Fortuny-Amat and

McCarl 1981). In principle then, one could replace

a linear complementarity problem’s conditions by

a set of linear conditions with binary variables as

shown above. The problem arises in determining an

appropriate constant K. Too small a value will

unnecessarily restrict the problem and result in (3)

being infeasible. Too large a value may result in

numerical ill-conditioning that could make the

problem hard to solve. See Gabriel and Leuthold

(2010) for an example of disjunctive constraints and

some guidance on computing the constant K relative to

energy modeling in the context of a two-level

optimization problem of which the bottom level is

an MCP.
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Nash-Cournot Production Game

The next example concerns a classical Nash-Cournot

production game (Shy 1995) with two producers. Such

a model is applicable in a variety of areas such as

energy, manufacturing, as well as many others. Also,

the model can easily be extended to more than two

producers with additional producer-level constraints

included or marketing-clearing conditions as depicted

in the network example shown below. The particular

instance of this duopoly is from Gabriel (2008);

Gabriel et al. (2013).

Unlike a perfectly competitive production

environment, in the current setting each producer can

affect market prices by adjusting its own production

level. This market power feature is encoded in the

objective function of each of the players i ¼ 1; 2:

More specifically, each player must decide on their

own production level qi; i ¼ 1; 2 given that they have

knowledge of the (inverse) market demand function

p q1 þ q2ð Þ ¼ a� b q1 þ q2ð Þ where a; b > 0: This

function gives the price of the produced good but

takes into account both producers’ production levels.

If only one player decided to increase production, the

total price for the market would go down (since b > 0)

but that producer’s profit might go up due to

a more favorable market share. If both producers are

considering production levels under these

circumstances, it is not immediately clear what might

be an equilibrium solution (i.e., one in which neither

player has an incentive to deviate). The Nash concept

is to have each player optimally solve for their

production level which maximizes net profit (or other

suitable function), given that the other player’s level is

fixed at its own optimal level.

Assuming for ease of presentation that both players

have a linear production cost function given by

ci qið Þ ¼ diqi for di > 0; i ¼ 1; 2, then the resulting

profit-maximization problem that player i solves is:

max
qi

p q1 þ q2ð Þ 
 qi � ci qið Þ (11a)

s:t: qi � 0 (11b)

or

max
qi

a� b q1 þ q2ð Þð Þ 
 qi � diqi (12a)

s:t: qi � 0 (12b)

The KKT conditions are both necessary and

sufficient for this problem. Necessity follows by the

linearity of the constraints and sufficiency is because

the objective function is a (strictly) concave function

of qi (in addition to the linear constraints). To see the

concavity result, note that the second derivative of the

objective function relative to qi is just � 2b < 0

(Bazaraa et al. 1993). The resulting KKT conditions

for each player taken together form a Nash-Cournot

equilibrium and are given as:

0 � 2bq1 þ bq2 � aþ d1; q1 � 0;

2bq1 þ bq2 � aþ d1ð Þ 
 q1 ¼ 0 ðproducer 1Þ (13a)

0 � bq1 þ 2bq2 � aþ d2; q2 � 0;

bq1 þ 2bq2 � aþ d2ð Þ 
 q2 ¼ 0 ðproducer 2Þ (13b)

These conditions taken together constitute the

following pure linear complementarity problem with

function F:

F
q1
q2

� �
¼ 2bq1 þ bq2 � aþ d1

bq1 þ 2bq2 � aþ d2

� �

¼ 2b b

b 2b

� �
q1
q2

� �
þ �aþ d1
�aþ d2

� �
:

If one can assume that both quantities qi > 0 in an

equilibrium solution, then the above conditions

become a set of two unknowns (production) in two

equations, namely:

0 ¼ 2bq1 þ bq2 � aþ d1; ðproducer 1Þ (14a)

0 ¼ bq1 þ 2bq2 � aþ d2; ðproducer 2Þ (14b)

Solving for the positive production levels in these

two equations amounts to using a best reaction or best

response function (Osborne and Rubinstein 1994),

essentially closed-form expressions for qi as a function

of the other production quantity. Due to limitations on

assuming positive production for all producers, or for

example, the need for considering more challenging

constraints (apart from nonnegativity), it is much more

efficient to use the complementarity approach. Indeed,

for more realistic models, it is not always possible to use

this best response approach. Some MCP examples with
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realism that have been presented (in energy markets)

include Hobbs (2001), Gabriel et al. (2005a), Gabriel

et al. (2005b), Hobbs et al. (2008).

PIES Energy Equilibrium

While the above models have considered either one or

more optimization problems or nonlinear equations as

instances of MCPs, the PIES (Project Independence

Evaluation System) energy planning model is an

important example that combines both these two

approaches into a complementarity problem (Hogan

1975; Josephy 1979; Ahn 1979; Ahn and Hogan 1982).

A stylized version of a much later and more complicated

generation of PIES is the National Energy Modeling

Systems (NEMS). NEMS has also been shown to be

an instance of an MCP (Gabriel et al. 2001) and is

currently used by the U.S. Department of Energy

for a variety of energy market studies and reports.

The PIES model considers the supply and demand

sides of the energy market separately with x denoting

the vector of decision variables in energy production.

The supply side is modeled as a production cost

minimization given as follows with c a vector of

costs conformal with x:

min
x

cTx (15a)

s:t: Ax � q pð Þ (15b)

Bx � b gð Þ (15c)

x � 0 (15d)

In this linear-programming problem, besides the

nonnegativity restrictions, there are two sets of

constraints: meeting demand q by a combination

of energy production types Ax (15b) and other,

non-demand related conditions to be met (15c). The

dual prices are p and g in (15b) and (15c), respectively.

As opposed to a straightforward linear program, these

two prices will enter directly into another part of the

MCP formulation for this problem. In particular, the

demand side of the energy market is given by

econometric equations of the following form where p

is price:

qiðpÞ ¼ q0i

Y pi

p0i

� �eij

(16)

Here q0i , p
0
i are, respectively, reference demands

and prices for energy product i, and eij is an elasticity

between energy products i and j. The supply and

demand sides of the energy market are combined by

the equilibration condition:

p ¼ p (17)

In a nutshell, this condition states that the price used

in the demand equation (16) should reflect the value of

the resources involved, i.e., be the dual price to the

demand equation from (15b).

One way to join these two parts of the energy

market is to substitute p ¼ p into (16) and then

restrict p to be the dual vector to (15b). This can be

done by considering the (necessary and sufficient)

optimality conditions to (15) taking q as a fixed

quantity. Then, the formula for q from (16) is used.

The resulting MCP function for PIES (Cottle et al.

1992) is thus the following:

F

x

p

g

0

@

1

A ¼
c� ATp� BTg

Ax� q pð Þ
Bx� b

0

@

1

A

To try to directly incorporate both sides of the

market as described above with just an optimization

problem is not possible. In particular, to compute the

vector of dual prices p, the LP (15) must first be solved.

But to solve it, the optimal demand quantity q ¼ q pð Þ
is required which in turn depends on the optimal p via

(16) and (17). The MCP formulation gets around this

computational issue by simultaneously determining

both primal and dual variables. This feature is

a strength of complementarity problems and thus

easily allows combining both equations and

optimization problems in one formulation.

Market Equilibrium with Underlying
Network

The Nash-Cournot model described above as well as

it’s n-player counterpart assumes that each player has

some ability to manipulate market prices by adjusting

their own production levels. In fact, it is only in the

objective functions of the players’ problems that their

separate decision variables interact. Two interesting

variations on this paradigm are: Generalized Nash
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equilibrium problems (Facchinei and Pang 2003) and

network equilibria. Generalized Nash problems allow

for other players’ variables to enter into the constraint

set of a player. Using the two-player example shown

above, in a Generalized Nash version, there might be

a common constraint for each player of the form:

q1 þ q2 þ Inv � Dem (18)

where Inv is the amount of inventory (for a region) and

Dem its demand level. This common constraint would

then say that the total supply (production + inventory)

must at least meet the demand level. These sorts of

problems belong to a class of mathematical programs

that are generally harder to solve than MCPs but under

certain conditions on these common constraints are

expressable as complementarity problems or the

related variational inequality problem. See Harker

(1991) for a discussion of this result, as well as

Facchinei and Pang (2003) for a theoretical treatment

of variational inequalities and extensions that relate to

Generalized Nash problems.

Another variation on the previous Nash equilibrium

is to have multiple players each optimizing their

objectives but without the ability to directly influence

prices, i.e., they are price-takers. Rather, there is

a market-clearing equation (or equations) whose dual

variables are the associated market prices. Since the

decision variables for each player contribute to the

market-clearing conditions, these players have some

indirect influence on the prices. As compared to the

Generalized Nash model, these conditions do not

appear in the constraint set of the players though.

Often such problems have an underlying

infrastructure network related perhaps to distribution

of energy, water, or other products to transport.

Consider the following sample network equilibrium

problem from Gabriel et al. (2013). There are two

nodes in the network as depicted in Fig. 2. These

nodes can represent cities, countries, regions, or just

a market for a particular product. Production can occur

at either node but only node 2 can receive additional

product from the other node as indicated by the

uni-directional arc. The product in question could be

energy (e.g., electricity), fuels (natural gas, oil, coal),

treated water, manufactured goods (e.g., televisions) or

raw materials to name a few choices. There are

a number of key questions that such an equilibrium

model should answer.

For example, in meeting the demand at node 2, how

much should be locally produced at node 2 and how

much should be imported from the other node? What

will be the equilibrium prices at each node if all players

are acting in their own interests to maximize profits?

The production aspects can be modeled by the

following optimization problem (shown here for

producer A) in which net profit is to be maximized

subject to production, balance, and nonnegativity

constraints:

max
sA
1
;qA

1
;f A
12

p1s
A
1 þ p2f

A
12 � cA1 qA1

� �
� t

Reg
12 þ t12

� �
f A12

(19a)

s:t: q
1
A � qA1 lA1

� �
(19b)

sA1 ¼ q
1
A � f A12 dA1

� �
(19c)

sA1 ; q1
A; f A12 � 0 (19d)

where

• p 2 A;B;C;Df g is the index for the producers

• i 2 1; 2f g is the index for the nodes

• qpn is the production quantity for producer p at node n

• qpn is the maximum production capacity for

producer p at node n

• spn is the amount sold by producer p at node n

• f A12; f
B
12 are respectively, the amount of exports from

node 1 to 2 by producers A and B (the other two

producers do not have that option)

• pn is the price at node n determined by

market-clearing conditions

• t
Reg
12 ; t12 are respectively, the exogenous, regulated

export tariff when sending product from node 1 to 2

and the endogenously-determined congestion tariff

between the two nodes (but exogenous from the

perspective of the producer’s optimization problem)

1

Producers A, B Producers C, D

2

Complementarity

Applications, Fig. 2 Sample
Two-Node Network
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• cpn qpn
� �

is the (marginal) production cost function for

producer p at node n. For simplicity, this function is

assumed linear and of the form cpn qpn
� �

¼ gpnq
p
n with

gpn > 0

• lpn; d
p
n are Lagrange multipliers (e.g., dual variables)

for the associated constraints

Producer B’s problem is similar to the one for A but

the other two producers do not have any export-related

terms. Since each producer is solving a linear program,

the KKT conditions are both necessary and sufficient

(Bazaraa et al. 1993). These KKT conditions for each

of the four producers are as follows.

Producer A; node 1

0 � �p1 þ dA1?sA1 � 0 (20a)

0 � gA1 þ lA1 � dA1?qA1 � 0 (20b)

0 � �p2 þ t
Reg
12 þ t12

� �
þ dA1?f A12 � 0 (20c)

0 � qA1 �qA1?lA1 � 0 (20d)

0 ¼ sA1 � qA1 þ f A12; d
A
1 free (20e)

Producer B; node 1

0 � �p1 þ dB1?sB1 � 0 (21a)

0 � gB1 þ lB1 � dB1?qB1 � 0 (21b)

0 � �p2 þ t
Reg
12 þ t12

� �
þ dB1?f B12 � 0 (21c)

0 � qB1 �qB1?lB1 � 0 (21d)

0 ¼ sB1 � qB1 þ f B12; d
B
1 free (21e)

Producer C; node 2

0 � �p2 þ dC2?sC2 � 0 (22a)

0 � gC2 þ lC2 � dC2?qC2 � 0 (22b)

0 � qC2 �qC2?lC2 � 0 (22c)

0 ¼ sC2 � qC2 ; d
C
2 free (22d)

Producer D; node 2

0 � �p2 þ dD2?sD2 � 0 (23a)

0 � gD2 þ lD2 � dD2?qD2 � 0 (23b)

0 � qD2 �qD2?lD2 � 0 (23c)

0 ¼ sD2 � qD2 ; d
D
2 free (23d)

The market-clearing conditions forcing supply to

equal demand are:

0 ¼ sA1 þ sB1
	 


� D1 p1ð Þ; p1 free (24a)

0 ¼ sC2 þ sD2 þ f A12 þ f B12
	 


� D2 p2ð Þ; p2 free (24b)

where sA1 þ sB1
	 


, sC2 þ sD2 þ f A12 þ f B12
	 


are the supply

amounts for nodes 1 and 2, respectively and

Dn pnð Þ; n ¼ 1; 2 are the demands at each node taking

into account the nodal price pn.

Besides production and market-clearing, in some

applications (e.g., energy, water) there is a player that

makes sure the network is running smoothly. This

network system operator (NSO) also solves an

optimization problem which can take on a variety of

forms maximizing for example, social welfare or net

profit to name two. Using net profit, a stylized network

operator problem is as follows:

max
g12

t
Reg
12 þ t12

� �
g12 � cNSO g12ð Þ (25a)

s:t: g12 � g12 e12ð Þ (25b)

g12 � 0 (25c)

where g12 represents the flow from node 1 to node 2

that the NSO manages, cNSO g12ð Þ is a network

operations cost function (assume linear for simplicity,

i.e., cNSO g12ð Þ ¼ gNSOg12 where gNSO > 0Þ and e12 is

the dual variable associated with the capacity

constraint involving the flow upper bound g12 . Like

the producers’ problems, this is a linear program so

that the KKT conditions are both necessary and

sufficient and are the following:

0 � �tReg12 � t12 þ gNSO þ e12?g12 � 0 (26a)

0 � g12�g12? e12 � 0 (26b)

C 214 Complementarity Applications



To determine the congestion tariff t12, the

following market-clearing conditions can be used:

0 ¼ g12 � f A12 þ f B12
	 


; t12 free (27)

The overall market equilibrium on this network

can be expressed as an MCP by collecting the

KKT conditions of the producers: (20)–(23) the

supply–demand market-clearing conditions (24),

the KKT conditions of the NSO (26) and the

market-clearing conditions of the network flows (27).

As discussed in Gabriel et al. (2013), suppose the

following input data are used.

t
Reg
12 ¼ 0:5

gA1 ¼ 10; gB1 ¼ 12; gC2 ¼ 15; gD2 ¼ 18

a1 ¼ 20; b1 ¼ 1; a2 ¼ 40; b2 ¼ 2

qA1 ¼ 10; qB1 ¼ 10; qC2 ¼ 5; qD2 ¼ 5

g12 ¼ 5

gNSO ¼ 1

D1 pið Þ ¼ ai � bipi

Then, an MCP solution in terms of production

quantities, flows, prices, and tariffs is as follows:

qA1 ¼ 10;qB1 ¼ 3;qC2 ¼ 5;qD2 ¼ 0

f A12¼ 2:561; f B12¼ 2:439

ðthe sum is 5¼ the capacity of the linkÞ
p1 ¼ 12;p2¼ 15

t12 ¼ 2:5

ðtReg12 þ t12¼ 3; the difference in the nodal pricesÞ

Traffic Equilibrium

One of the classical problems in complementarity

modeling is that of predicting steady state flows of

cars (or other vehicles) along a congested road.

Consider as a simple example, an origin (node 1) and

two destinations (nodes 4 and 5) as well as

intermediate nodes 2 and 3 as shown in Fig. 3

Wardrop 1952; Aashtiani and Magnanti 1981;

Magnanti 1984; Florian 1986, 1989). These nodes

can relate to intersection points, cities, regions,

etc. The idea is to try to predict how many drivers will

be using the individual paths in the network if for

example, the price (e.g., time, disutility) of a particular

path is taken into account in the decision-making

process. That is, if the flow is price-based.

In this simple example, there are two

origin–destination (OD) pairs: (1, 4) and (1, 5) which

represent where drivers begin and end their trip. In

going from node 1 to node 4, drivers can choose

either to travel along path 1-2-4 or 1-3-4; for the OD

pair (1, 5) there is only one path: 1-2-5. Wardrop

(1952) stated an equilibrium where no driver had an

incentive to deviate from a particular chosen path

resulting in:

• Paths with positive flow serving the same OD pair

all having equal costs (otherwise drivers would

deviate to the less costly ones)

• Paths with costs higher than the minimum having

no flow

Essentially, such an equilibrium needs to take

into account that all drivers are doing what is in their

own best interests but that there should be no incentive

for any one driver to deviate from a path they pick on

their own. As compared to the previous examples of

MCPs, in this case there is no explicit optimization

problem(s), just an indirect acknowledgement that

drivers want to minimize the time or cost of the

path chosen.

To present the associated complementarity

problem, it is necessary to define some related terms.

First, path flows on a path p will be denoted by hp, e.g.,

the flow on path 1-2-4 is h1�2�4. The vector of all path
flows is given by h which for this example is

lexicographically given as:

h ¼
h1�2�4
h1�2�5
h1�3�4

0

@

1

A:

Flows on an arc a are given by fa with the vector of

all such flows denoted as f . For the sample network

shown above:

f ¼

f1;2
f1;3
f2;4
f2;5
f3;4

0

BBBB@

1

CCCCA
:
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Both h and f are related by the equation:

f ¼ Dh (28)

where D ¼ dap
	 


is the arc-path incidence matrix with

dap ¼ 1 if arc a is on path p and is equal to zero

otherwise. Thus, for the network shown above:

D ¼

1 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0

BBBB@

1

CCCCA
:

Parallel to the flow vectors h and f are the cost

vectors for paths and arcs, given respectively as CðhÞ
and cðf Þ which for the sample network are as follows:

CðhÞ ¼
C1�2�4ðhÞ
C1�2�5ðhÞ
C1�3�4ðhÞ

0

@

1

A; cðf Þ ¼

c1;2ðf Þ
c1;3ðf Þ
c2;4ðf Þ
c2;5ðf Þ
c3;4ðf Þ

0

BBBB@

1

CCCCA
:

The relationship between these two vectors is:

CðhÞ ¼ DTcðf Þ (29)

indicating that the paths costs are the sum of the arc

costs for those arcs on the path. This is the standard

additive model which is well-studied but not always

realistic when one considers for example tolls. In that

case, nonadditive approaches such as those given

in Gabriel and Bernstein (1997) and Bernstein

and Gabriel (1997) may be more appropriate.

An important point to note is that the path costs for

a particular path are a function of all the path flows in

the network. Likewise, the arc costs for a given arc are

a function of all the arc flows. This is a very realistic

representation of the network indicating the interaction

effects. A more restrictive version is to assume that

path p (arc a ) only affects the costs for that path (arc)

in essence a separability argument. This was an initial

assumption used early on in part because it led

to solving an equivalent optimization problem

(Magnanti 1984; Florian 1989) which was easier to

solve before the large growth in complementarity

problem algorithms in the 1990s.

Besides the flow, the complementarity problem

associated with a traffic equilibrium also needs to

account for meeting the OD demand. For each OD pair

i, such demand is denoted byDi which itself is a function

of the shortest time ui (or least disutility) between the

origin and destination i. In the network from Fig. 3, the

vector versions of these quantities are thus:

DðuÞ ¼ D 1;4ð ÞðuÞ
D 1;5ð ÞðuÞ

� �
; with u ¼ u 1;4ð Þ

u 1;5ð Þ

� �
:

There is one last notational element to define: the

path-OD pair incidence matrix G ¼ gpi
	 


where

gpi ¼ 1 if path p serves OD pair i and is equal to zero

otherwise. For the example above,

G ¼
1 0

0 1

1 0

0

@

1

A

for paths 1-2-4, 1-2-5, 1-3-4, and OD pairs, (1,4) and

(1,5), respectively.

1

2

3

5

4

Complementarity

Applications, Fig. 3 Sample
Network for Traffic
Equilibrium Problem
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The formal statement of the (additive) traffic

equilibrium problem is thus to find path flows h and

shortest times u such that:

0 � CpðhÞ � ui for all p 2 Pi; i 2 I; h � 0 (30a)

0 ¼ CpðhÞ � ui
� �


 hp for all p 2 Pi; i 2 I (30b)

0 ¼
X

p2Pi

hp � DiðuÞ for all i 2 I; u � 0 (30c)

where Pi is the set of paths that serve OD pair i and I is

the set of OD pairs. Equation (30a) simply states that

the path cost CpðhÞ must be by definition greater than

or equal to the shortest time ui for all paths serving that

OD pair i; also only nonnegative path flows are

allowed. Equation (30b) is a translation of the

Wardrop statement that appeared above. Namely, if

the path p has any positive flow then the path cost

must be equal to the shortest time and this must be

true for all paths serving that OD pair. Also, if the path

cost is strictly greater than the shortest time, there

should be no flow along that path. Lastly, (30c)

indicates that the total path flow across all paths that

serve OD pair i must equal the demand; also, only

nonnegative shortest times ui are allowed. As stated,

(30) is not an MCP since the equations in (3) do not

match up with free variables u: As shown in Aashtiani

and Magnanti (1981), (30c) can be relaxed to

0 �Pp2Pi
hp � DiðuÞ for all i 2 I; u � 0 as long as

some mild conditions on the path cost and demand

functions hold and the corresponding MCP will have

a solution that matches up with (30). Another

important result is that if the demand function is

invertible (or just fixed demand), an arc formulation

instead of the more cumbersome path version can be

used (Magnanti 1984; Florian 1989). In that case,

taking into account (28) and (29), the resulting MCP

is as follows:

0 � DTc Dhð Þ � Gu
� �

?h � 0 (31a)

0 � GTh� DðuÞ?u � 0 (31b)

assuming the mild restrictions on C and D are also in

effect.

To make this formulation (31) concrete, consider

the following specific choice for costs and demand

functions for the sample network shown above:

caðf Þ ¼ fa (32a)

DiðuÞ ¼ 1� 1ui (32b)

The resulting solution is shown in Fig. 4. Note that

both paths 1-2-4 and 1-3-4 serve OD pair (1,4) and

since they both have positive flow (h1�2�4 ¼ 1
7
;

h1�3�4 ¼ 2
7
), by Wardrop’s principle they should both

1

2

3 4

5

Path Flows:

Path Costs:

P1: 1->2->4, 2h1+h2 = 4/7

P1: 1->2->4, h1 = 0.142857 = 1/7

P2: 1->2->5, h2 = 0.285714 = 2/7

P3: 1->3->4, h3 = 0.285714 = 2/7

P2: 1->2->5, 1h1+2h2 = 5/7

P3: 1->3->4, 2h3 = 4/7

(1,4): d14(u14) = 1–4/7 = 4/7(1,4): u14 = 0.571429 = 4/7

(1,5): u15 = 0.714286 = 5/7 (1,5): d15(u15) = 1–5/7 = 2/7

OD Demands: 1–1∗uShortest OD Times:

2/7

3/7

1/7

2/7

2/7

Complementarity
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Fig. 4 Solution to Sample
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have the same costs and equal to the lowest cost

(shortest time) u 1;4ð Þ as is shown below. But from (28):

f ¼

f1;2

f1;3

f2;4

f2;5

f3;4

0

BBBBBBBB@

1

CCCCCCCCA

¼Dh¼

1 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0

BBBBBBBB@

1

CCCCCCCCA

1=7

2=7

2=7

0

BB@

1

CCA¼

3=7

2=7

1=7

2=7

2=7

0

BBBBBBBB@

1

CCCCCCCCA

C1�2�4ðhÞ ¼
3

7
þ 1

7
¼ 4

7

C1�3�4ðhÞ ¼
2

7
þ 2

7
¼ 4

7

u 1;4ð Þ ¼
4

7

C1�2�5 ¼
3

7
þ 2

7
¼ 5

7

u 1;4ð Þ ¼
5

7

Concluding Remarks

In this article, complementary problems have been

defined and their relevance to certain infrastructure

models has been emphasized. Complementarity

problems generalize optimization, game theory, and

a host of other interesting problems in engineering

and economics. As such, this flexible class of

mathematical programs has great relevance to many

important operations research problems.

See

▶Bilevel Linear Programming

▶Complementarity Problems

▶Complementary Slackness Theorem

▶Constrained Optimization Problem

▶Constraint Qualification

▶Convex Optimization

▶Dual Linear-Programming Problem

▶Duality Theorem

▶Game Theory

▶ Integer and Combinatorial Optimization

▶Karush-Kuhn-Tucker (KKT) Conditions

▶Lagrange Multipliers

▶Linear Programming

▶Network Optimization

▶Nonlinear Programming
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Complementarity Condition

A relation between two nonnegative vectors in which,

whenever a given component of one of the vectors is

positive, the corresponding component of the other

vector must be zero. For example, two nonnegative

n-dimensional vectors x and y satisfy

a complementarity condition if their ith components

are such that xi yi ¼ 0, i ¼ 1, . . ., n.

See

▶Complementarity Applications

▶Complementarity Problems

▶Complementary Slackness Theorem

Complementarity Problems

Richard W. Cottle

Stanford University, Stanford, CA, USA

Introduction

In its most elementary form, a complementarity

problem CP(f) is an inequality system stated in terms

of a mapping f : Rn ! Rn. Given f, one seeks a vector

x 2 Rn such that

xi � 0; fiðxÞ � 0; and xifiðxÞ ¼ 0 i ¼ 1; . . . ; n:

(1)

When the mapping f is affine, say of the form

f ðxÞ ¼ qþMx, problem (1) is called a linear

complementarity problem, denoted LCPðq;MÞ or

sometimes just ðq;MÞ. Otherwise, it is called a

nonlinear complementarity problem and is denoted

NCP fð Þ.
If �x is a solution to (1) satisfying the additional

nondegeneracy condition �xiþfið�xÞ > 0; i ¼ 1; . . . ; n,
the indices i for which �xi > 0 or fið�xÞ > 0 form

complementary subsets of f1; . . . ; ng. This is

believed to be the origin of the term complementary

slackness as used in linear and nonlinear

programming. It was this terminology that inspired

the name complementarity problem.

Sources of Complementarity Problems

The complementarity problem is intimately linked to

the Karush-Kuhn-Tucker necessary conditions of local

optimality found in mathematical programming
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theory. This connection was brought out in Cottle

(1964, 1966) and again in Cottle and Dantzig (1968).

Finding solutions to such systems was one of the

original motivations for studying the subject. Another

was the finding of equilibrium points in bimatrix and

polymatrix games. This kind of application was

emphasized by Howson (1963) and Lemke and

Howson (1964). These early contributions also

included essentially the first algorithms for these

types of problems. There are numerous applications

of the linear and nonlinear complementarity problems

in computer science, economics, various engineering

disciplines, finance, game theory, statistics,

and mathematics. Descriptions of—and references

to—these applications can be found in the books by

Murty (1988), Cottle et al. (1992, 2009), Isac (1992),

Isac et al. (2002), and Facchinei and Pang (2003). The

survey article by Ferris and Pang (1997) is the richest

compendium yet published on engineering and

economic applications of complementarity problems.

Equivalent Formulations

The problem CP(f) can be formulated in several

equivalent ways. An obvious one calls for a solution

ðx; yÞ to the system

y� f ðxÞ ¼ 0; x � 0; y � 0; xTy ¼ 0: (2)

Another is to find a zero x of the mapping

gðxÞ ¼ minfx; f ðxÞg (3)

where the symbol minfa; bg denotes the

componentwise minimum of the two n-vectors a and b.

Yet another equivalent formulation asks for a fixed point

of the mapping

hðxÞ ¼ x� gðxÞ;

i.e., a vector x 2 Rn such that x ¼ hðxÞ:
The formulation of CP(f) given in (3) is related to

the (often nonconvex) optimization problem:

minimize xTf ðxÞ
subject to f ðxÞ � 0

x � 0

(4)

In such a problem, the objective is bounded below

by zero, thus any feasible solution of (4) for which the

objective function xTf ðxÞ ¼ 0 must be a global

minimum as well as a solution of CP(f). As it

happens, there are circumstances (for instance, the

monotonicity of the mapping f) under which all the

local minima for the mathematical programming

problem (4) must in fact be solutions of (3).

Also noteworthy is a result of Eaves and Lemke

(1981) showing that the LCP is equivalent to solving

a system of equations y ¼ ’ðxÞ where the

mapping ’ : Rn ! Rn is piecewise linear. In

particular, LCP(q, M) is equivalent to finding a vector

u such that

qþMuþ � u� ¼ 0

where (for i ¼ 1; . . . ; nÞ uþi ¼ maxf0; uig and

u�i ¼ �minf0; uig:

The Linear Complementarity Problem

The LCP has quite an extensive literature, far more

so than the NCP. This is most likely attributable to

the LCP’s relatively greater accessibility. Within this

field of study, there are several main directions:

the existence and uniqueness (or number of)

solutions, mathematical properties of the problem,

generalizations of the problem, algorithms,

applications, and implementations.

Much of the theory of the linear complementarity

problem is strongly linked in various ways to matrix

classes. For instance, one of the earliest theorems on the

existence of solutions is due to Samelson et al. (1958).

Motivated by a problem in structural mechanics, they

showed that the LCP(q, M) has a unique solution for

every q 2 Rn if and only if the matrix M has positive

principal minors. (That is, the determinant of every

principal submatrix ofM is positive.) The class of such

matrices has come to be known as P, and its members

are called P-matrices. (It is significant that the

Samelson-Thrall-Wesler theorem characterizes a class

ofmatrices in terms of the LCP.) The classP includes all

positive definite (PD) matrices, i.e., those square

matrices M for which xTMx > 0 for all x 6¼ 0. In the

context of the LCP, the term “positive definite” does not
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require symmetry. An analogous definition (and usage)

holds for positive semi-definite (PSD)matrices, namely,

M is PSD if xTMx > 0 for all x. Some authors refer to

such matrices as monotone because of their connection

with monotone mappings. PSD-matrices have the

property that the associated LCPs (q, M) are solvable

whenever they are feasible, whereas LCPs (q, M) in

which M 2 PD are always feasible and (since

PD � PSD) are always solvable. Murty (1968, 1972)

gave this distinction a more general matrix form. He

defined Q as the class of all square matrices for which

LCP(q,M) has a solution for all q andQ0 as the class of

all square matrices for which LCP(q, M) has a solution

whenever it is feasible. Although the goal of usefully

characterizing the classes Q and Q0 has not yet been

realized, much is known about some of their special

subclasses. Indeed, there are now literally dozens of

matrix classes for which LCP existence theorems have

been established. See Murty (1988), Cottle et al. (1992,

2009), Cottle (2010) and Isac (1992) for an abundance

of information on this subject.

Algorithms for Solving LCPs

The algorithms for solving linear complementarity

problems are of two major types: pivoting (or, direct)

and iterative (or, indirect). Algorithms of the former

type are finite procedures that attempt to transform the

problem (q, M) to an equivalent system of the form

q0;M0ð Þ in which q0 � 0. Doing this is not always

possible; it depends on the problem data, usually on

the matrix class (such as P, PSD, etc.) to which M

belongs. When this approach works, it amounts to

carrying out a principal pivotal transformation on the

system of equations

y ¼ qþMx:

To such a transformation there corresponds an

index set a (with complementary index set

�a ¼ f1; . . . ; ngna) such that the principal submatrix

Maa is nonsingular. When this (block pivot) operation

is carried out, the system

ya ¼ qa þMaaxa þMa�ax�a

y�a ¼ q�a þM�aaxa þM�a�ax�a

becomes

xa ¼ q0a þM0aaya þM0a�ax�a
y�a ¼ q0�a þM0�aaya þM0�a�ax�a

where

q0a ¼�M�1aa qa

M0a�a ¼�M�1aa

M0a�a ¼�M�1aa Ma�a

q0�a ¼ q�a �M�aaM
�1
aa qa

M0�aa ¼ M�aaM
�1
aa

M0�a�a ¼ M�a�a �M�aaM
�1
aa Ma�a:

There are two main pivoting algorithms used in

processing LCPs. The more robust of the two is due

to Lemke (1965). Lemke’s method embeds the

LCP(q, M) in a problem having an extra “artificial”

nonbasic (independent) variable x0 with coefficients

specially chosen so that when x0 is sufficiently large,

all the basic variables become nonnegative. At the least

positive value of x0 for which this is so, there will (in

the nondegenerate case) be (exactly) one basic variable

whose value is zero. That variable is exchanged

with x0. Thereafter the method executes a sequence

of (almost complementary) simple pivots. In each case,

the variable becoming basic is the complement of the

variable that became nonbasic in the previous

exchange. The method terminates if either x0
decreases to zero—in which case the problem is

solved—or else there is no basic variable whose

value decreases as the incoming nonbasic variable is

increased. The latter outcome is called termination on

a secondary ray. For certain matrix classes, termination

on a secondary ray is an indication that the given LCP

has no solution. Eaves (1971) was among the first to

study Lemke’s method from this point of view.

The other pivoting algorithm for the LCP is called

the Principal Pivoting Method (see Cottle and Dantzig

(1968)). The algorithm has two versions: symmetric

and asymmetric. The former executes a sequence of

principal (block) pivots or order 1 or 2, whereas the

latter does sequences of almost complementary pivots,

each of which results in a block principal pivot or order

potentially larger than 2. The class of problems to
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which the Principal Pivoting Method applies is more

restrictive. (See Cottle et al. (1992, 2009) for

a treatment of this algorithm.)

Iterative methods are often favored for the solution of

very large linear complementarity problems. In such

problems, the matrix M tends to be sparse (i.e., to have

a small percentage of nonzero elements) and frequently

structured. Since iterative methods do not modify the

problem data, these features of large-scale problems

can be used to advantage. Ordinarily, however, an

iterative method does not terminate finitely; instead, it

generates a convergent sequence of trial solutions. As is

to be expected, the applicability of algorithms in

this family depends on the matrix class to which M

belongs. Details on several algorithms of this type are

presented in the books by Kojima et al. (1991) as well as

the one by Cottle et al. (1992, 2009).

Some Generalizations

The linear and nonlinear complementarity problems

have been generalized in numerous ways. One of the

earliest generalizations was given by Habetler and

Price (1971) and Karamardian (1971) who defined

the problem CP ðK; f Þ as that of finding a vector x in

the closed convex cone K such that f ðxÞ 2 K� (the dual
cone) and xTf xð Þ ¼ 0. Through this formulation,

a connection can be made between complementarity

problems and variational inequality problems, that is,

problems VIðX; f Þ wherein one seeks a vector x� 2 X

(a nonempty subset of Rn) such that

f ðx�ÞTðy� x�Þ � 0 for all y 2 X:

Karamardian (1971) established that when X is

a closed convex cone, say K, with dual cone K�, then
CPðK; f Þ and VIðX; f Þ have exactly the same solutions

(if any).

Robinson (1979) has considered the generalized

complementarity problem CP ðK; f Þ defined above as

an instance of a generalized equation, namely to find

a vector x 2 Rn such that

0 2 f ðxÞ þ @cKðxÞ

where cK is the indicator function of the closed convex

cone K and @ denotes the subdifferential operator as

used in convex analysis.

Among the diverse generalizations of the linear

complementarity problem, the earliest appears in

Samelson et al. (1958). There—for given n� n

matrices A and B and n-vector c—the authors

considered the problem of the finding n-vectors x and

y such that

Axþ By ¼ c; x � 0; y � 0 and xTy ¼ 0:

A different generalization was introduced by Cottle

and Dantzig (1970). In this sort of problem, one has an

affine mapping f ðxÞ ¼ qþ Nx where N is of order
Pk

j¼1 pj � n partitioned into k blocks; the vectors q

and y ¼ f ðxÞ are partitioned conformably. Thus,

yj ¼ qj þ Nj x for j ¼ 1; . . . ; k:

The problem is to find a solution of the system

y ¼ qþ Nx; x � 0; y � 0; and xj
Ypj

i¼1
y
j
i ¼ 0

ðj ¼ 1; . . . ; kÞ:

Several authors have further investigated this

vertical generalization while others have studied

some analogous horizontal generalizations. For

representative papers on the vertical LCP, see

Ebiefung (1995) and Mohan and Neogy (1997). For

the horizontal generalization, T€ut€unc€u and Todd

(1995) and Zhang (1994). A further generalization

called extended linear complementarity problem

(ELCP) was introduced by Mangasarian and Pang

(1995) and subsequently developed in Gowda (1995,

1996) and Sznajder and Gowda (1995). Also called the

extended linear complementarity problem is another

variant expounded by De Schutter and DeMoor (1996)

that captures the previously mentioned HLCP, VLCP

and ELCP.

The Nonlinear Complementarity Problem

The NCP(f) as an identified problem first appeared in

Cottle (1964, 1966). There—under very strong

assumptions on f—an existence theorem and an
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analogue of the principal pivoting method for the LCP

were presented. As described in Pang (1995),

contemporary iterative NCP algorithms tend to fall

into three categories: (i) the basic Newton method,

(ii) nonsmooth-equations approaches, and (iii)

interior-point methods. Some algorithms are inspired

by the equivalence between the NCP(f) and the

variational inequality problem VIðX; f Þ in the case

where X ¼ Rn
þ. Some seek zeros of a function such as

g defined in (3) whereas others attack the nonlinear

program (4) or a variant thereof. Despite the existence

of several fine collections of research articles on

nonlinear complementarity problems, the

authoritative surveys of Harker and Pang (1990) and

Pang (1995) came as close as anything then available

to a monograph on this topic. The field now benefits

from the publication of the masterful two-volume work

on variational inequalities and complementarity

problems by Facchinei and Pang (2003).

Software for Complementarity Problems

Information about available software for (mixed)

complementarity problems can be found by searching

the World Wide Web.

See

▶Complementarity Applications

▶Complementary Slackness Theorem

▶Game Theory

▶Matrices and Matrix Algebra

▶Nonlinear Programming

▶Quadratic Programming
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Complementary Pivot Algorithm

▶Quadratic Programming

Complementary Slackness Theorem

For the symmetric form of the primal and dual

problems the following theorem holds: For optimal

feasible solutions of the primal and dual (symmetric)

systems, whenever inequality occurs in the kth relation

of either system (the corresponding slack variable is

positive), then the kth variable of its dual is zero; if the

kth variable is positive in either system, the kth relation

of its dual is equality (the corresponding slack variable

is zero). Feasible solutions to the primal and dual

problems that satisfy the complementary slackness

conditions are also optimal solutions. A similar

theorem holds for the unsymmetric primal-dual

problems: For optimal feasible solutions of the primal

and dual (unsymmetric) systems, whenever the

kth relation of the dual is an inequality, then the kth

variable of the primal is zero; if the kth variable of the

primal is positive, then the kth relation of the dual is

equality. This theorem just states the optimality

conditions of the simplex method.

See

▶Complementarity Applications

▶Complementarity Condition

▶Complementarity Problems

▶ Symmetric Primal-Dual Problems

▶Unsymmetric Primal-Dual Problems

Complex Problem Analyzing Method
(Compram)

Dorien J. DeTombe

International Research Society on Methodology of

Societal Complexity, Amsterdam, The Netherlands

Complex societal problems are worldwide natural

problems caused by viruses such as the flu pandemic,

fowl plague, and HIV/AIDS; local natural disasters

especially earthquakes, hurricanes, avalanches and

floods; technical dangers caused by industry

including pollution (CO2), traffic, and nuclear power

plants; climate change and agricultural activities;

man-made threats such as wars, terrorism, internet

vulnerability, stock exchange manipulation, credit

crises, and identity theft. The concept of societal

complexity and an approach to their resolution, the

Complex Problem Analyzing Method (Compram),
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are discussed by DeTombe (2001). Compram is based

on the idea that societal problems must be handled in

a multi-disciplinary and cooperative manner by

experts, stakeholders, and policy makers. Compram

combines aspects of different methods into

a structured interactive approach for policy making to

find possible transitions of the situation that can be

mutually accepted and implemented (DeTombe 1994).

The related difficult and complicated group

processes are guided and structured by a facilitator.

Those involved discuss the content and possible

solutions based on a cooperative (simulation) model

of the problem. The methodology emphasizes

facilitating the exchange of knowledge, and

understanding and communication between the

participants. Compram has been used on a theoretical

basis for handling over sixty real-life cases in the field

of societal policymaking. The Organisation for

Economic Cooperation and Development (OECD)

suggests that the analysis of a complex societal

problem be supported by the application of Compram

(OECD 2006). (Further information on Compram and

Societal Complexity can be found on Web sites

maintained by the author).

See

▶Community OR

▶ Soft Systems Methodology

▶Wicked Problems
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Computational Biology

Harvey J. Greenberg1 and Allen G. Holder2

1University of Colorado-Denver, Denver, CO, USA
2Rose-Hulman Institute of Technology, Terre Haute,
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Computational biology is an interdisciplinary field that

applies the techniques of computer science, applied

mathematics, and statistics to address biological

questions. OR is also interdisciplinary and applies the

same mathematical and computational sciences, but to

decision-making problems. Both focus on developing

mathematical models and designing algorithms to

solve them. Models in computational biology vary in

their biological domain and can range from the

interactions of genes and proteins to the relationships

among organisms and species.

Genes are stretches of deoxyribonucleic acid

(DNA), which is sometimes called the user manual

for life and is a double-stranded helix of nucleic acids

bonded by base-pairs of complements (a-t, c-g).

The central dogma of molecular biology asserts that

information in a cell flows from DNA to ribonucleic

acid (RNA) to protein (note, Francis Crick used dogma

when he introduced this in 1958 to mean without

foundation because there was no experimental

evidence at that time). Proteins are the workers of the

cell, and there is much focus on recognizing,

predicting, and comparing their properties (Fig. 1).

Proteins interact either directly by modifying each

other’s properties through direct contact or indirectly

by participating in the production and modification of

cellular metabolites. Collectively, the biochemical

reactions and the possible intermediates that produce

a metabolite comprise a metabolic pathway, and

a metabolic network is a collection of these

pathways. The study of complex networks like that of

the metabolism is called systems biology.

Linear Programming: A linear program (LP) is an

optimization problem in which the variables are inN ,

and the constraints and the objective are linear.

FluxBalanceAnalysis (FBA)–Abiochemical process

is defined by n reactions that convert m compounds:

a1jx1 þ 
 
 
 þ amjxmÐ
k
j
þ

k
j
�
b1jx1 þ 
 
 
 þ bmjxm;
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where xi is the concentration of the ith compound, and

k
j
� is the jth reaction rate (for a 2-way reaction the

reverse rate need not equal the forward rate). The

corresponding ODE is:

dxiðtÞ
dt
¼
Xn

j¼1
ðbij � aijÞ k

j
þx

a1j
1 
 
 
 xamjm � kj�x

a1j
1 
 
 
 xamjm

� �

¼
Xn

j¼1
SijvjðxÞ;

where v is the flux (production or consumption

of mass per unit area per unit time), and Sij
is defined as a stoichiometric (pronounced

stoy-kee-uh-me’-trik) coefficient. These

coefficients are interpreted as:

Sij > 0) rate of compound i produced in reaction j;

Sij < 0) rate of compound i consumed in reaction j:

The following holds asymptotically provided that

the system approaches a steady state toward

equilibrium concentrations �x:

lim
t!1

dxðtÞ
dt
¼ Svð�xÞ ¼ 0: (1)

Dropping the dependence of the flux on �x, the flux

cone is defined by this homogeneous system plus

non-negativity for one-way reactions, indexed by J:

F ¼ fv : Sv ¼ 0; vJ � 0g: (2)

In a metabolic network, reactions are distinguished

between external and internal. The flux associated with

an external reaction is an exchange between the

network of interest and the cell’s environment (Fig. 2).

The stoichiometric matrix for the internal reactions

is extended to include external reactions, each being

a singleton column with �1:

R1 R2 R3 R4 j E1 E2 E3

S ¼

�1 0 0 0

1 1 �2 0

2 �1 0 �2
0 �2 1 3

���������

1 0 0

0 �1 0

0 0 0

0 0 �1

3

7775

2

6664

A

B

C

D
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All reactions are one-way reactions, except R4 and

E2, so J¼ {1, 2, 3, 5, 7}, leaving v4 and v6without sign

restriction in the flux cone.

Strictly speaking, a metabolic network is usually

not a network in the OR sense because some internal

reactions have multiple inputs or outputs (sometimes

called a process network in chemical engineering).

Hence, LP is used, rather than specialized network

algorithms, to find fluxes. The FBA LP model has

the form:

max cTv : v 2 F \ B; (3)

where B is a bounding set so that the linear program has

an optimal solution if it is feasible. A common objective

is to maximize the rate of growth defined in terms of

metabolites, where the objective coefficients (c) depend

on the organism. Other objectives include maximizing

some metabolite production, minimizing by-product

production, minimizing substrate requirements, and

minimizing mass nutrient uptake (Palsson 2006).

An optimal basis depends on the definition of B.
Three possibilities, which may be combined, are:

simple bound : LK � vK � UK

fixing inputs and=or outputs : vK ¼ �vK

normalization :
X

j2K vj ¼ b;

where K is a subset of reactions. Inputs and outputs are

generally a subset of the exchanges. Normalization

applies to one-way reactions – i.e., K  J. Each

extreme ray of the flux cone corresponds to an

extreme point of the polytope. The converse is

generally not true – viz., fixing the flux of a reaction

that transports metabolites in or out of the cell can

introduce extreme points with no extreme ray of the

flux cone passing through them.

Pathways are subnetworks with a single biological

effect. In an ordinary network, where each internal

reaction has a single input and output, this is a path.

A cut set is defined as a set of reactions whose

removal renders the stoichiometric (1) infeasible for

a specified output. For an ordinary network, the OR

terminology is a disconnecting set. A minimal cut set

for a specified output is, in OR terminology, simply

a cut set. For the example, a cut set that separates D

from the rest of the network is {R1, R3, R4, E1}. Finding

a (minimal) cut set in the general case becomes an IP,

using binary variables to block pathways to some

specified output.

Nonlinear Programming: A nonlinear program

(NLP) is defined by having the objective or some

constraint function be nonlinear in the decision variables.

Protein Folding – Most proteins go through

a process that twists and turns the molecules from

their primary state of a linear progression of amino

acids to a native three-dimensional state in which it

remains. That process is called folding, and it is

theoretically possible to predict a protein’s native

state, or structure, by knowing its primary state. This

determines a protein’s function, and some diseases

(e.g., Alzheimer’s, Huntington’s, and cystic fibrosis)

are associated with protein misfolding.

Predictive models became possible following the

work of Christian B. Anfinsen, who in 1961

published experimental results supporting the

Thermodynamic Hypothesis: A protein’s native state

is uniquely determined by its primary sequence; it

transitions to a state of minimum free energy. This

leads to a nonlinear program with the decision space

defined as the spatial coordinates of atoms, constrained

by the biochemistry of a protein’s defining amino acid

sequence. The objective function is a free energy

determined by potential energies from atomic bonds

and non-bond interactions.

System boundary

R1
R2

E1

E2

E3

R3

A

C

D

B

R4

R1 : A ⇀ B + 2C   (multiple output)

R2 : C + 2D ⇀ B  (multiple input)

R3 : 2B ⇀ D         (simple)

R4 : 2C     3D       (simple, 2-way)

E1 : ⇀ A                (supply)

E2 : B                   (2-way exchange)

E3 : D ⇀               (demand)

Computational Biology,

Fig. 2 Example metabolic
network with four internal and
three external reactions
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The bonds for the sequence of amino acids shown

in Fig. 3 are covalent, meaning that they share

electrons, and these strong bonds hold the backbone

together. Objective terms for the ith covalent bond

include the energies required to stretch, bend, and

twist the bond.

Action Energy

Stretching Estretch ¼ P
i

KL
i Li � L0i
� �2

Bending Ebend
¼ P

i

Ky
i yi � y0i
� �2

Twisting Etwist ¼ P
i

K
f
i ð1� cosðoiÞÞ

The variables are the bond length (L) and the bond

angles, o and y ¼ (C, F), which are determined by

atomic coordinates. Parameters include target values

(L0, y0). Weight parameters (K) are scale factors that

put the energy terms in the same unit; those values

can be measured or derived. For example, if it requires

100 kcal/mole to break a bond, and two positive

charges within 3.3 Å (Angstrom) have at least

100 kcal/mole, then the total energy is reduced by

breaking a bond to keep positive charges distant.

Estimating these values to determine weight

parameters is not an exact science, so even these

basic energy functions are inexact, and there are

other energy functions for non-covalent bonds and

among non-bonding atoms.

Two common energy functions estimate the

electrostatic and Van der Waals interactions:

Action Energy

Electrostatic Eelec ¼P
i<j

Kelec
ij

qiqj
dij

Van der Waals Evdw

¼P
i<j

Kvdw
ij

d�
ij

dij

� �12
� aij

d�
ij

dij

� �6� �

The variables are the pairwise distances (d), which

are determined by the atomic coordinates. Parameters

are the atomic charges (q) and equilibrium distances

(d*) (Figs. 4–7).

The NLP approach (Floudas and Pardalos 2000)

uses energy principles that underlie molecular

backbone

R R

O

C

ψψ ΦΦ ω

H

H
O

CCa CaN

H

H

N

OH

side chains

Computational Biology, Fig. 3 Covalent bonds along the
backbone result in a residue for each of the amino acids. The
torsion angles are denoted by C and F; o is the dihedral angle

target

Computational Biology, Fig. 4 The squared deviation of
Estretch and Ebend is convex

−60° 60°−π π f

Computational Biology, Fig. 5 Etwist with o ¼ 3/2(f � p)

0 dij

0

qiqj < 0

qiqj > 0

Computational Biology, Fig. 6 Eelec depends on the sign of
qiqj. Oppositely signed atoms attract, so the energy is negative
and favors them being close
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dynamics, and these methods attempt to find the native

state and a pathway to it. In practice, not all parameters

are grounded in some physical law. An energy function

could include contributions from non-bonded and

uncharged pairs, based on their distance and radii.

Alternatively, known structures can be used to

predict an unknown structure, based on their

evolutionary similarity. This is called homology, and

it is focused on determining the native state and not on

discerning the dynamic pathways to reach it.

The multi-modal shape of the energy landscape

leads to the Levinthal Paradox: Many proteins reach

their native state within milliseconds, yet the number

of stable conformations grows exponentially in the

number of amino acids. One explanation is that

proteins fold into a nearby local minimum of the free

energy instead of the global minimum. Global

optimization methods based on this principle are

called funneling methods. Another explanation is that

the dimension of the problem is not the length of the

amino acid sequence but is instead the number of

chains that obey patterns not fully understood.

Combinatorial optimization methods based on this

principle are called chain growth and zipping and

assembly algorithms.

Comparing Protein Function – A protein’s function

is determined by its 3D native state, of which many

confirmations are known. Comparing protein

structures relates protein function and collects

proteins into functionally similar families that help

identify a protein’s functions.

Proteins typically have multiple functional

domains, each of which would act as an independent

protein if its amino acid subsequence had folded

independently. Two proteins are considered to be

functionally similar if they share a (nearly) common

domain. Each domain is composed of secondary

structures, notably a-helices and b-sheets, illustrated

in Fig. 8. In structure alignment the goal is to best align

the secondary structures between two proteins’

domains. The input to the alignment problem is a set

of coordinates for the Ca atoms for each domain – i.e.,

the spatial coordinates for the carbon atoms linked to

the side chains (c.f., Fig. 3).

To remove a dependency on rigid body motion,

structures are often aligned with respect to pairwise

distances, dij, which is a measure between the ith and

jth Ca atoms. Let d0ij and d00kr be the intra-distance

measures for the two domains, and consider the

binary variable:

xik ¼
1 if the ith Ca atom of the first domain is paired with

the kth Ca atom of the second domain;

0 otherwise:

8
>><

>>:

An optimal pairing between the two domains can be

calculated by solving a quadratic integer program:

max
X

i;k;j;r

xikxjrd
0
ijd
0
kr :
X

k

xik � 1;

X

i

xik � 1; xik ¼ 0; ði; kÞ 2 S;

where (i, k) ∈ S if the ith and kth Ca atoms are in

different types of secondary structures.

Besides the choice of metric, a variation is to allow

pairings betweenCa atoms whose secondary structures

are different. This is accommodated by removing the

restriction that xik¼ 0 for (i, k)∈ S and adding penalty
terms in the objective: �Pði;kÞ2S pikxik. The problem
as stated includes the possibility of a non-sequential

alignment, i.e., one in which the Ca atoms can be

paired independent of the amino acid sequence.

A combinatorial optimization model of alignments

that requires the same ordering of the amino acid

residues is called contact map optimization

(Burkowski 2009; Glodzik and Skolnick 1994;

Goldman et al. 1999).

Integer Programming: An integer program (IP) is

an optimization problem in which some or all of the

variables are restricted to be integer valued. For

combinatorial optimization, the integer values are

simply {0, 1}.

(d∗/d)12

dominates

−2(d∗/d)6

dominates

d∗

0

Computational Biology, Fig. 7 Lennard-Jones approximation
of Evdw for a ¼ 2
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Pathway Analysis –Consider the FBAmodel (3)with

added binary variables associatedwith each processwith

finite bounds (given or derived), Lj � vj � Uj:

yj ¼ 1 if vj 6¼ 0;

0 otherwise:

�

Replacing the bound constraints with Ljyj� vj�Ujyj
forces vj ¼ 0 if yj ¼ 0. This corresponds to excluding

reaction j, which is called a knock-out. Drug side effects

are caused by unintended knock-outs, which, if cannot

be avoided, can at least be identified and minimized.

In drug design, one may want to block all pathways to

some final output. If P is a pathway leading to the

targeted output, then adding the constraint
X

j2P
yj � jPj � 1

removes the pathway, where j ∈ P if pathway P

contains reaction j.

A cut set can be computed with successive

pathway-generation for a specified output and adding

its pathway-elimination constraint. For the example in

Fig. 2, pathways to produce D can be generated by

fixing v7 ¼ 1 (and not have y7). The first basic optimal

solution uses reactions R1, R3, R4, E1, E3. This leads to

the addition of the constraint:

y1 þ y3 þ y4 þ y5 � 3:

The next pathway generated is R3, E1, and y3 ¼ 0

satisfies both pathway constraints. After eliminating

R3, the solution is R1, R4, E1, E3.

Other logical constraints include process conflict,

yj + yj0 � 1 (i.e., inclusion of j requires exclusion of j0),
and process dependence, yj � yj0 (i.e., exclusion of j

requires exclusion of j0), for j 6¼ j0.
Rotamer Assignment – Part of the protein

folding problem is knowing the side-chain

conformations – i.e., knowing the torsion angles of

the bonds (c.f., Fig. 3). The rotation about a bond is

called a rotamer, and there are libraries that give

configuration likelihoods, for each amino acid (from

which energy values can be derived). The rotamer

C
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a

H

Cα
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R
N

H
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O
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C

C

N N

NN H

H
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Computational Biology,

Fig. 8 Secondary structures
formed along the backbone
define a protein’s shape.
Dotted lines represent
hydrogen bonds; ® represents
a side chain. (a) a-Helix, most
closely packed arrangement of
residues, defined by three
parameters: pitch, rise, and
turn. (b) b-Sheets form if the
backbone is loosely packed,
almost fully extended; they
can be parallel (left),
antiparallel (right), or
a mixture
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assignment (RoA) problem is to find an assignment of

rotamers to sites that minimizes the total energy of the

molecule. For the protein folding problem, the

amino acid at each site is known. There are about

10–50 rotamers per amino acid, depending on what

else is known (such as knowing that the amino acid is

located in a helix), so there are about 10n to 50n rotamer

assignments for a protein of length n.

Let r be in the set of rotamers that can be assigned to

site i, denoted by Ri, and let

xir ¼
1 if rotamer r is assigned to site i;

0 otherwise:

(

An optimal assignment is a solution to the quadratic

semi-assignment problem:

min
X

i

X

r2Ri

Eirxir þ
X

j>i

X

t2Rj

Eirjtxirxjt

0

@

1

A:

X
r2Rj

xir ¼ 1 8i; x 2 f0; 1g:

The objective function includes two types of energy:

(1) within a site, Eir, and (2) between rotamers of two

different sites, Eirjt for i 6¼ j. The summation condition

j > i avoids double counting, where Eirjt ¼ Ejtir.

Besides its role in determining a protein’s structure,

the RoA problem is useful in drug design. Specifically,

the RoA problem can be used to determine a

minimum-energy docking site for a ligand, which is a

small molecule such as a hormone or neurotransmitter

that binds to a protein and modifies its function. The

ligand-protein docking problem is characterized by only

a few sites, and if the protein is known, the dimensions

are small enough that the RoA problem can be solved

exactly. However, if the protein is to be engineered, then

there can be about 500 rotamers per site (20 acids

@ 25 rotamers each), in which case solutions are

computed with metaheuristics or approximation

algorithms. There are other bioengineering problems

associated with the RoA problem, such as determining

protein-protein interactions. While the mathematical

structure is the same, the applications have different

energy data, which can affect algorithm performance

(Forrester and Greenberg 2008).

Also see Clote and Backofen (2000), Jones and

Pevzner (2004), and Lancia (2006).

Dynamic Programming: This is a computational

approach to sequential decision making. Two

fundamental biological sequences are taken from the

alphabet of nucleic acids, {a, c, g, t}, and from the

alphabet of amino acids, {A, R, N, D, C, Q, E, G, H, I, L,

K, M, F, P, S, T, W, Y, V}. The former is a segment of

DNA (or RNA if u replaces t – i.e., uracil instead of

thymine); the latter is a protein segment.

Sequence Alignment – Two sequences can be

optimally aligned by dynamic programming, where

optimal is one that maximizes an objective that has

two parts:

1. A scoring function, given in the form of an m � m

matrix S, where m is the size of the alphabet. The

value of Sij measures a propensity for the ith

alphabet-character in one sequence to align with

the jth alphabet-character in some position of the

other sequence.

Example: Let s ¼ agt and t ¼ gtac. If the first

character of s is aligned with the first character of t,

then the score is Sag, which is the propensity for a to

be aligned with g.

2. A gap penalty function, expressed in two parts:

a fixed cost of beginning a gap, denoted Gopen, and

a cost to extend the gap, denoted Gext.

Example: Let s ¼ agt and t ¼ gtac. One

alignment is
agt�
gtac

, which puts a gap at the end

of the first sequence.

A gap is called an indel because it can be either an

insertion into one sequence or a deletion from the other

sequence:
insert

#
�
a

delete

" If one sequence

evolved directly from the other, the evolutionary

operation is determined by their time-order. If they

have a common ancestor, they evolved along

different paths, resulting in the indel when comparing

them. The evolutionary biology explains why

sequences can be more similar than a simple

alignment (without gaps) may suggest.

Figure 9 shows three different alignments for the

two nucleic acid sequences, agt and gtac. Scores are

shown for the following scoring matrix and do not

account for gapping:

a c g t

S ¼

6 1 2 1

1 6 1 2

2 1 6 1

1 2 1 6

2

6664

3

7775

a

c

_g

t
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If the objective is a linear affine function of gap

lengths, the total objective function for the 2-sequence

alignment problem is:
X

i;j

Ssitj � GopenðNs þ NtÞ � GextðMs þMtÞ;

where the sum is over aligned characters, si from

sequence s with tj from sequence t. The number of

gaps opened is Ns in sequence s and Nt in sequence t;

the number of gap characters (–) is Ms in sequence s

and Mt in sequence t. In the examples of Fig. 9,

if Gopen ¼ 2 and Gext ¼ 1, the gap penalties are 7, 9,

and 3, respectively.

The alphabet is extended to include the gap

character, with S extended to include gap extension,

as Sa� ¼ S�a ¼ Gext for all a in the alphabet. (So, Gext

includes the penalty for the first alignment with -.) Let

si denote the subsequence (s1,. . ., si), with s0 ¼ ∅.

Here is the DP recursion for Gopen ¼ 0:

Fðsi; tjÞ ¼ max

Fðsi�1; t j�1Þ þ Ssitj match;

Fðsi�1; t jÞ þ Ssi� insert� into t;

Fðsi; t j�1Þ þ S�tj insert� into s:

8
>><

>>:

(4)

The initial conditions are:

Fð;; ;Þ ¼ 0;

Fðsi; ;Þ ¼ Fðsi�1; ;Þ þ Ssi� ; i ¼ 1; 
 
 
 jsj;
Fð;; t jÞ ¼ Fð;; t j�1Þ þ S�tj ; j ¼ 1; 
 
 
 jtj:

The DP recursion (4) is for global alignment, and it

has been extended to allow Gopen > 0 and to not

penalize leading or trailing gaps (allowing a short

sequence to be aligned with a large one

meaningfully). Local alignment is finding maximal

substrings (contiguous subsequences) with an optimal

global alignment having maximum score (Gusfield

1997; Waterman 1995).

Sequences from many species can be compared

simultaneously in a Multiple Sequence Alignment

(MSA). One way to evaluate an MSA is by summing

pairwise scores. Figure 10 shows an example. The

sum-of-pairs score, based on the scoring matrix S, is

shown for each column. For example, column 1 has

3Saa + 3Sac ¼ 3. The sum-of-pairwise scores for

column 2 is zero because gap scores are not shown

by columns; they are penalized for each sequence

(rows of alignment) with Gopen ¼ 2 and Gext ¼ 1.

The total objective value is 152 � 37 ¼ 115.

MSA is a computational challenge to exact DP

due to the combinatorial explosion of the state space,

but one could use approximate DP or formulate MSA

as an IP.

Phylogenetic Tree Construction – Phylogeny is

the evolutionary history of some biological entity.

A phylogenetic tree (PT) is a graphical presentation

of a phylogeny. A leaf represents an Operational

Taxonomic Unit (OTU), which can be various

levels – e.g., species, genes, pathways, and enzymes.

Each edge, or branch, is a relation between a pair

of OTUs. Each internal node is constructed so that

the resulting PT is consistent with the OTU data,

and the root represents a common ancestor of

the OTUs.

Example. Consider five OTUs and an MSA of DNA

sites with six base-pairs (Fig. 11):

site

1OTU 2 3 4 5 6

cA a g a c a

cB a g g t a

cC g g g t a

tD g c g t a

tE g c a c t

If the number of mutations is the distance between

two sequences, then the distance between OTUs is the

length of the unique path between them in the PT. The

example has the distance matrix:

A B C D E

D ¼

0

2 0

3 1 0

5 3 2 0

8 6 5 3 0

2

6666664

3

7777775

A

B

C

D

E

agt

gtac

Score = 12 Score = 2

a gt

gtac

Score = 4

agt

gtac

Computational Biology, Fig. 9 Three alignments for two
sequences
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This is not the same as the MSA distance. For

example, D(A, E) ¼ 8 in the PT but is only 4 in

the MSA.

Regardless of how the distance matrix is derived

(MSA or not), there may not exist a PT that satisfies

specified distances. For that to be true, it is necessary

and sufficient that the metric be additive – i.e., for any

four leaves, there exist labels i, j, k, ‘ such that

Dði; jÞ þ Dðk; ‘Þ ¼ Dði; ‘Þ þ Dðj; kÞ
� Dði; kÞ þ Dðj; ‘Þ:

The reason for this is that there must be some

splitting i, k from j, ‘ with an internal branch:

j

l

i

k

yx

Additivity does not usually hold, so the problem is

to construct a PT whose associated leaf-distance

matrix, D, minimizes some function of nearness to

the given D0, such as kD � D0k. This problem is

NP-hard. Heuristics include sequential clustering:

Un-weighted/Weighted Pair Group Method

with Arithmetic Mean (UPGMA/WPGMA) and

neighbor-joining algorithms.

There may be multiple PTs, which generally come

from different data – e.g., one from an MSA of a DNA

segment, another from the maximum likelihood of

some property. If a series of edge-contractions is

applied to a PT, the resulting PT is called

a refinement and the original is called a refiner. Two

trees are compatible if they have a common refiner.

One problem is to determine whether two PTs are

compatible, and if so, what is their common refiner?

If incompatible, how is a PT constructed that has some

agreement with the given PTs?

A Matrix Representation with Parsimony (MRP)

of a PT with k internal nodes is a binary matrix

defined as:

Mij ¼
1 if internal node j is in the ðuniqueÞ path

from the root to OTU i;

0 otherwise:

8
<

:

Conversely, given a binary matrix, if it has an

associated PT, it is called a perfect phylogeny.

Given two PTs for the same OTUs with MRPs,M1,

M2, their column-union is [M1 M2].
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Total = 152

18 0 0 6

11

9
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7
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Gap penaltyComputational Biology,

Fig. 10 A multiple alignment
of four sequences
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g a c

c

c

C D E

Computational Biology,
Fig. 11 The example
maximum-parsimony PT has
eight mutations, shown on the
branches. (All other PTs have
more than 8.)
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Theorem. Two PTs are compatible if, and only if, their

MRP column-union represents a perfect phylogeny.

The trees in Fig. 12 have the MRP column-union:

M1M2

M ¼

1

1

0

0

2

6664

0

0

1

0

3

7775

���������

A

B

C

D

This is the MRP of the common refiner in Fig. 12

and represents a perfect phylogeny.

The MRP column-union of the PTs in Fig. 13 is:

M ¼
0 0

1 0

1 1

1 1

0 0

1 1

1 0

1 1

��������

2

664

3

775

M1 M2

A

B

C

D

M does not correspond to any PT. (After drawing

A, C, D with four internal nodes as the path to D,

OTU B cannot be drawn with the path 0-1-3-4

without introducing the cycle, 1-2-3-1.)

Suppose the trees are incompatible. A Maximum

Agreement Subtree (MAST) is a refined subtree with

the greatest number of leaves (Fig. 14).

The DP recursion for two subtrees (Steel and

Warnow 1993) is nontrivial. The state is a pair of

subtrees with specified roots, Tr
1; T

s
2

� �
. Each tree has

an inclusion-ordered sequence of such subtrees, which

is computed during the recursion. The decision space

to compute MAST Tr
1; T

s
2

� �
, given MAST Tr0

1 ; T
s0
2

� �

for Tr0
1 ; T

s0
2

� �
� Tr

1; T
s
2

� �
, requires the computation of

a maximum weighted-matching on the complete r-s

bipartite graph, weighted with {MAST(r0, s0)}.
Whereas MAST uses an intersection of PT

information, a supertree uses their union.

Construction methods vary, and some of the criteria

address common order preservation. An agreement

supertree, T, is a minimal tree such that each Ti is

a refined subtree of T (Fig. 15).

Markov Chains and Processes: A stochastic process

has the Markov property if the transition from one state

to the next depends on only the current state. Classical

models include the evolution of some biological

states over time (Allen 2003; Wilkinson 2006).

Molecular applications of Markov models also

B

B C D

Common refiner

A

A C,D

T1

CA,B D

T2

Computational Biology, Fig. 12 PTs T1, T2 are compatible

A AB B

T1 T2

C CD D

Computational Biology, Fig. 13 PTs T1, T2 are incompatible

A B

T1 T2 T

B BC C CD

⇒

Computational Biology, Fig. 14 A maximum agreement
subtree with 2 of the 4 OTUs

A B C D

Computational Biology, Fig. 15 An agreement supertree of
the trees in Fig. 14
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consider ordered sequences of nucleotides (viz., DNA

and RNA) and amino acids (viz., proteins).

CpG Island Recognition – In the human genome the

appearance of the dinucleotide CG is rare because it

causes the cytosine (C) to be chemically modified by

methylation, which causes it to mutate into thymine

(T). Methylation is suppressed around the promoters,

or start regions, of many genes, and there are more CG

dinucleotides than elsewhere. Such regions are called

CpG islands, and they are typically a few hundred

bases long. (CpG is used instead of CG to avoid

confusion with a C–G base pair; the p is silent.) The

recognition problem is: Given a short segment of

a genomic sequence, decide if it is part of a CpG island.

Two Markov chains are defined: P+ is the

state-transition matrix within a CpG island; P� is the

state-transition matrix outside a CpG island. Each is

applied to the given sequence and the log-odds ratio

determines which is more likely.

Example. Consider a first-order Markov chain model

with transition matrices determined by the frequencies

in a database having more than 60,000 human DNA

sequences:

A C G T

Pþ ¼

0:18 0:27 0:43 0:12

0:17 0:37 0:27 0:19

0:16 0:34 0:38 0:12

0:08 0:36 0:38 0:18

2

6664

3

7775

A C G T

P� ¼

0:30 0:20 0:29 0:21

0:32 0:30 0:08 0:30

0:25 0:25 0:30 0:20

0:18 0:24 0:29 0:29

2

6664

3

7775

Given the sequence AACTTCG, its total log-odds

ratio is

X6

i¼1
log2

�
Pþsisiþ1=P

�
sisiþ1

�
¼�0:737þ0:433�0:659�0:688

þ0:585þ1:755¼ 0:6888:

The conclusion is that the DNA segment is in a CpG

island.

There is enough data to support the use of the more

accurate 5th-order Markov chain, whose six-tuples

correspond to two coding regions. At least

45 six-tuples are required in the database to estimate

the conditional probabilities, Pr(x6jx1x2x3x4x5), which
directly yield the state-transition probabilities:

Prðy1y2y3y4y5jx1x2x3x4x5Þ

¼
Prðx6jx1x2x3x4x5Þ if y ¼ ðx2x3x4x5x6Þ;
0 otherwise:

(

For the particular example, there are only two state

transitions, and the same database gives the transition

probabilities:

PþðCjAACTTÞ ¼ 0:4 P�ðCjAACTTÞ ¼ 0:2

PþðGjACTTCÞ ¼ 0:1 P�ðGjACTTCÞ ¼ 0:3

In this case, the more accurate 5th-order chain

yields the log-odds ratio log2 0.4/0.2 + log2
0.1/0.3 ¼ �0.585, and the conclusion is that the

DNA segment is not in a CpG island.

A host of related problems use the same Markov

model. For example, transcription splices the DNA

into coding regions, called exons, removing the

remainder, called introns (misnamed junk DNA).

A structure recognition problem is to identify exons

versus introns.

Many of the structure recognition, comparison, and

prediction problems have hidden states, but emissions

are observed according to a known probability. These

are Hidden Markov Models (HMMs) and are central in

modern biology (Durbin et al. 1998).

Queueing Theory: A queue in a system is any set of

objects awaiting service, and service is some process

(es) involving the object.

T-Cell Signaling – A T-cell is a type of white blood

cell distinguished by having a receptor – i.e., an ability

to bind to other molecules. The receptor interacts with

intracellular pathway components, starting a cascade

of protein interactions called signal transduction.

A way to view this process is that a T-cell receptor

(TCR) enters a queue upon activation and goes through

a series of processes, such as phosphorylation

(Wedagedera and Burroughs 2006). Service

completion is defined by the deactivation of the TCR,

returning it to the inactive pool; however, it is possible

that the T-cell’s service is aborted before it

completes service. Of interest is the probability of

activation – i.e., in service for some threshold of
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time. If it completes service and detects infection, the

T-cell signals cell death (called apoptosis; the second

p is silent).

Other queueing models apply to genetic networks,

allowing signals that affect the population to enter and

leave the system (Arazi et al. 2004; Jamalyaria et al.

2005). This applies queueing to a broad range of

self-assembly systems – i.e., form an arrangement

without external guidance.

Simulation: Dynamical state evolution is

fundamental in both classical mathematical biology

and modern systems biology. Evolution and

biochemical pathways are prime examples; the

underlying state-transition structure and the sheer

size are sufficient to need simulation.

The kinetic laws of a biosystem depend upon the

objects, particularly their scale (viz., molecules vs.

cells). The deterministic rate equations have the form:

dxi

dt
¼ fiðx; kÞ for i ¼ 1; . . . ;m;

where x is the system state (e.g., concentrations of m

metabolites) and k is a vector of parameters, called rate

constants.

Sources of randomness can be intrinsic – e.g., errors

in parameter estimation, or extrinsic – e.g., protein

production in random pulses (Meng et al. 2004). To

deal with reaction uncertainty, Gillespie (2008, 1977)

introduced the probability equation:

Prðx; tþ dtÞ ¼
X

r
Prðx� vr; tÞarðx� vrÞ dtþ Prðx; tÞ

� 1�
X

r
arðxÞdt

� �
;

where ar(x) dt is the probability that reaction r occurs

in the time interval (t, t + dt), changing the state from x

to x + vr. The first summation represents being one

reaction removed from the state x; the last term

represents having no reaction during the interval.

Auto-regulatory Network – Puchalka and Kierzek

(2004) consider a metabolic network with regulatory

processes and random fluctuations in gene expression.

Using Gillespie’s equation, given the state x at time t,

the probability that the next reaction, r, occurs during

(t + t, t + t + dt) is given by:

Prðt; rjx; tÞ ¼ arðxÞ e�
P

j
ajðxÞt:

The simulation is run by generating (t, r) using this

joint density function. The simulation also allows for

pulse production – a receptor site may be on or off to

regulate gene expression (restricting the choice of r).

Other models use rare-event simulation, such as for

tumor development (Abbott 2002). Simulation is used

in systems biology to understand how non-dominant

pathways affect assembly kinetics (Zhang and

Schwartz 2006).

Game Theory: The central idea of game theory is that

each player has its own objective to optimize.

Historically, evolutionary biologists used game theory

to model natural selection (Maynard Smith 1982;

Perc and Szolnoki 2010). In OR, game theory is used

to model competition for economic resources, and this

extends to modeling species-invasion into an existing

ecosystem. The same game model applies to the

propagation of tumor cells that can mutate to create

a cancer population that overwhelms normal cells

(Tomlinson 1997). New applications are at the

molecular scale, such as the following example.

Protein Binding – There are two sets of players:

protein classes (including drugs) and DNA binding

sites. Their joint strategies result in allocation of

proteins to sites. Sites seek to maximize their

occupancy; proteins seek to minimize excess binding.

Sites compete for nearby proteins; proteins choose

target sites to which they transport. (Mechanisms to

achieve these choices are not well understood.) The

affinity for protein i to bind to site j is denoted by the

constant Kij, but this applies only if the protein is in

the proximity of the site.

Let i ¼ 1,. . ., Np index proteins and j ¼ 1,. . ., Ns

index sites, and consider the parameters:

ni ¼ nuclear concentration;

Eij ¼ transport affinity;

Kij ¼ binding affinity:

A protein’s decision variable is its fractional

transported amounts, pi ¼ pi0; . . . ; p
i
Ns

� �
, where

pi0 ¼ 1�PNs

j¼1 p
i
j is the portion of protein i not

allocated to a site. A site’s decision variable is its

choice of binding frequency, sj ¼ s
j
0; . . . ; s

j
Np

� �
,

where s
j
0 ¼ 1�PNp

i¼1 s
i
j is the portion of time that site

j is unoccupied. There are resource constraints on joint

strategies, notably s
j
i � pijni for i > 0 – i.e., binding

cannot exceed allocated concentration.
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A solution is a joint strategy ð�p; �sÞ that satisfies the
optimality criteria:

�pi 2 argmax
pi2Pð�sÞ


f ipðpi; �sÞ

�
�sj 2 argmin

sj2Sð�pÞ
f js ð�p; s jÞ
 �

;

where fp, fs denote objective functions for each protein

and site, and P  
Nsþ1
þ , S  

Npþ1
þ denote feasible

regions, each dependent on the other decisions. An

example of objective functions are maximizing total

binding affinity and minimizing the amount of protein

not assigned:

f ipðpi; sÞ ¼
XNs

j¼1
Eijp

i
j 1� s

j
0

� �

f js ðsj; pÞ ¼sj0
XNp

i¼1
Kij pijni � s

j
i

� �
:

With mild modifications, a solution exists and there

is a simple algorithm to find it (Pérez-Breva et al. 2006).

This game model is a simplification of a broader

biology, where sites can coordinate, not just compete,

and proteins can form complexes to bind to the same

site. There are also promoters that bind to a protein in

order to send it to another site. Although current

thinking is that proteins roam randomly until they

bump into an unoccupied site for which they have

affinity, the game model attributes a purposeful

behavior to proteins, suggesting that they choose to

transport to some site. While this rational behavior is

not due to intelligence, it could be due to an

environmental context that is not yet understood and

whose net effect makes proteins behave as if they are

rational players.

See

▶Dynamic Programming

▶Game Theory

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Markov Chains

▶Markov Processes

▶Network Optimization

▶Nonlinear Programming

▶Queueing Theory

▶ Simulation of Stochastic Discrete-Event Systems
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Introduction

The term computational complexity has two usages

which must be distinguished. On the one hand, it

refers to an algorithm for solving instances of

a problem: broadly stated, the computational

complexity of an algorithm is a measure of how

many steps the algorithm will require in the worst

case for an instance or input of a given size. The

number of steps is measured as a function of that size.

The term’s second, more important use is in

reference to a problem itself. The theory of

computational complexity involves classifying

problems according to their inherent tractability or

intractability — that is, whether they are easy or

hard to solve. This classification scheme includes the

well-known classes P and NP; the terms NP-complete

and NP-hard are related to the class NP.

Algorithms and Complexity

To understand what is meant by the complexity of an

algorithm, algorithms, problems, and problem

instances must be defined. Moreover, one must

understand how one measures the size of a problem

instance and what constitutes a step in an algorithm.

A problem is an abstract description coupled with

a question requiring an answer; for example, the

Traveling Salesman Problem (TSP) is: “Given

a graph with nodes and edges and costs associated

with the edges, what is a least-cost closed walk

(or tour) containing each of the nodes exactly once?”

An instance of a problem, on the other hand, includes

an exact specification of the data: for example,

“The graph contains nodes 1, 2, 3, 4, 5, and 6, and

edges (1, 2) with cost 10, (1, 3) with cost 14, . . .” and so

on. Stated more mathematically, a problem can be

thought of as a function p that maps an instance x to

an output p(x) (an answer).

An algorithm for a problem is a set of instructions

guaranteed to find the correct solution to any instance in

a finite number of steps. In other words, for a problem p,

an algorithm is a finite procedure for computing p(x)

for any given input x. Computer scientists model

algorithms by a mathematical construct called a

Turing machine, but a more concrete model will be

considered here. In a simple model of a computing

device, a “step” consists of one of the following

operations: addition, subtraction, multiplication,

finite-precision division, and comparison of two

numbers. Thus if an algorithm requires one hundred

additions and 220 comparisons for some instance,

then the algorithm requires 320 steps on that instance.

In order to make this number meaningful, it should be

expressed as a function of the size of the corresponding

instance, but determining the exact function would be

impractical. Instead, since themain concern is how long

the algorithm takes (in theworst case) asymptotically as

the size of an instance gets large, one formulates

a simple function of the input size that is a reasonably

tight upper bound on the actual number of steps. Such

a function is called the complexity or running time of

the algorithm.

C 238 Computational Complexity



Technically, the size of an instance is the number of

bits required to encode it. It is measured in terms of

the inherent dimensions of the instance (such as the

number of nodes and edges in a graph), plus the

number of bits required to encode the numerical

information in the instance (such as the edge costs).

Since numerical data are encoded in binary, an integer

C requires about log2 jCj bits to encode and so

contributes logarithmically to the size of the instance.

The running time of the algorithm is then expressed as

a function of these parameters, rather than the precise

input size. For example, for the TSP, an algorithm’s

running time might be expressed as a function of the

number of nodes, the number of edges, and the

maximum number of bits required to encode any

edge cost. As was seen, the complexity of an

algorithm is only a rough estimate of the number

of steps that will be required on an instance.

In general — and particularly in analyzing the

inherent tractability of a problem — an asymptotic

analysis is the main interest: how does the running

time grow as the size of the instance gets very large?

For these reasons, it is useful to introduce Big-O

notation. For two functions f(t) and g(t) of

a nonnegative parameter t, f(t) ¼ O(g(t)) if there is

a constant c > 0 such that, for all sufficiently large t,

f(t) � cg(t). The function cg(t) is thus an asymptotic

upper bound on f. For example, 100(t2 + t) ¼ O(t2),

since by taking c ¼ 101 the relation follows for

t � 100; however, 0.0001 t3 is not O(t2). Notice that

it is possible for f(t) ¼ O(g(t)) and g(t) ¼ O(f(t))

simultaneously.

An algorithm is said to run in polynomial time

(is a polynomial-time algorithm) if the running time

f(t) ¼ O(P(t)), where P(t) is a polynomial function of

the input size. Polynomial-time algorithms are

generally (and formally) considered efficient, and

problems for which polynomial time algorithms exist

are considered easy. For the remainder of this article,

the term polynomial will mean as a function of the

input size.

The Classes P and NP

In order to establish a formal setting for discussing the

relative tractability of problems, computer scientists

first define a large class of problems called

recognition (or decision) problems. This class

comprises precisely those problems whose associated

question requires the answer yes or no. For example,

consider the problem of determining whether an

undirected graph is connected (that is, whether there

a path between every pair of nodes in the graph). This

problem’s input is a graph G consisting of nodes and

edges, and its question is, “Is G connected?” Notice

that most optimization problems are not recognition

problems, but most have recognition counterparts.

For example, a recognition version of the TSP has as

input both a graph G, with costs on the edges, and

a number K. The associated question is, “Does G

contain a traveling salesman tour of length less than

or equal to K?” In general, an optimization problem is

not much harder to solve than its recognition

counterpart. One can usually embed the recognition

algorithm in a binary search over the possible

objective function values to solve the optimization

problem with a polynomial number of calls to the

embedded algorithm.

The class P is defined as the set of recognition

problems for which there exists a polynomial-time

algorithm, where P stands for polynomial time. Thus,

P comprises those problems that are formally

considered easy. The larger problem class NP

contains the class P. The term NP stands for

nondeterministic polynomial and refers to a different,

hypothetical model of computation, which can solve

the problems in NP in polynomial time (for further

explanation, see references).

The class NP consists of all recognition problems

with the following property: for any yes-instance of

the problem there exists a polynomial-length certificate

or proof of this fact that can be verified in polynomial

time. The easiest way to understand this idea is by

considering the position of an omniscient being

(say, the wizard Merlin) who is trying to convince

a mere mortal that some instance is a yes-instance.

Suppose the problem is the recognition version of the

TSP, and the instance is a graph G and the number

K ¼ 100. Merlin knows that the instance does contain

a tour with length atmost 100. To convince themortal of

this fact, he simply hands her a list of the edges of this

tour. This list is the certificate: it is polynomial in length,

and themortal can easily verify, in polynomial time, that

the edges do in fact form a tour with length at most 100.

There is an inherent asymmetry between yes and no

in the definition of NP. For example, there is no

obvious, succinct way for Merlin to convince
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a mortal that a particular instance does NOT contain

a tour with length at most 100. In fact, by reversing the

roles played by yes and no leads to a problem class

known as Co-NP. In particular, for every recognition

problem in NP there is an associated recognition

problem in Co-NP obtained by framing the NP

question in the negative (e.g., “Do all traveling

salesman tours in G have length greater than K?”).

Many recognition problems are believed to lie

outside both of the classes NP and Co-NP, because

they seem to possess no appropriate certificate.

An example would be the problem consisting of

a graph G and two numbers K and L, with the

question, “Is the number of distinct traveling

salesman tours in G with length at most K exactly

equal to L?”

NP-Complete Problems

To date, no one has found a polynomial-time algorithm

for the TSP. On the other hand, no one has been able to

prove that no polynomial-time algorithm exists for the

TSP. How, then, can one argue persuasively that the

TSP and many problems in NP are intractable? Instead,

an argument is presented that is slightly weaker but also

compelling. It is shown that the recognition version of

the TSP, and scores of other NP problems, are the

hardest problems in the class NP in the following

sense: if there is a polynomial-time algorithm for any

one of these problems, then there is a polynomial-time

algorithm for every problem in NP. Observe that this is

a very strong statement, since NP includes a large

number of problems (such as integer programming)

that appear to be extremely difficult to solve, both in

theory and in practice! Problems in NP with this

property are called NP-complete. Otherwise stated, it

seems highly unlikely that a polynomial algorithm will

be found for any NP-complete problem, since such an

algorithm would actually provide polynomial time

algorithms for every problem in NP!

The class NP and the notion of complete problems

for NP were first introduced by Cook (1971). In that

paper, he demonstrated that a particular recognition

problem from logic, SATISFIABILITY, was

NP-complete, by showing directly how every other

problem in NP could be encoded as an appropriate

special case of SATISFIABILITY. Once the

first NP-complete problem had been established,

however, it became easy to show that others were

NP-complete. To do so requires simply providing

a polynomial transformation from a known

NP-complete problem to the candidate problem.

Essentially, one needs to show that the known hard

problem, such as SATISFIABILITY, is a special case

of the new problem. Thus, if the new problem has a

polynomial-time algorithm, then the known hard

problem has one as well.

Related Terms

The term NP-hard refers to any problem that is at least

as hard as any problem in NP. Thus, the NP-complete

problems are precisely the intersection of the class of

NP-hard problems with the class NP. In particular,

optimization problems whose recognition versions

are NP-complete (such as the TSP) are NP-hard,

since solving the optimization version is at least as

hard as solving the recognition version.

The polynomial hierarchy refers to a vast array of

problem classes both beyond NP and Co-NP and

within. There is an analogous set of definitions which

focuses on the space required by an algorithm rather than

the time, and these time and space definitions roughly

correspond in a naturalway. There are complexity classes

for parallel processing, based on allowing a polynomial

number of processors. There are classes corresponding to

randomized algorithms, those that allow certain decisions

in the algorithm to be made based on the outcome of

a coin toss. There are also complexity classes that capture

the notions of optimization and approximability.

The most famous open question concerning the

polynomial hierarchy is whether the classes P and NP

are the same, i.e., P¼? NP. If a polynomial algorithm

were discovered for any NP-complete problem, then all

of NP would collapse to P; indeed, most of the

polynomial hierarchy would disappear.

In algorithmic complexity, two other terms are

heard frequently: strongly polynomial and pseudo-

polynomial. A strongly polynomial-time algorithm is

one whose running time is bounded polynomially by

a function only of the inherent dimensions of the

problem and independent of the sizes of the

numerical data. For example, most sorting algorithms

are strongly polynomial, since they normally require

a number of comparisons polynomial in the number of

entries and do not depend on the actual values being
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sorted; an algorithm for a network problem would be

strongly polynomial if its running time depended only

on the numbers of nodes and arcs in the network, and

not on the sizes of the costs or capacities.

A pseudo-polynomial-time algorithm is one that

runs in time polynomial in the dimension of the

problem and the magnitudes of the data involved

(provided these are given as integers), rather than the

base-two logarithms of their magnitudes. Such

algorithms are technically exponential functions of

their input size and are therefore not considered

polynomial. Indeed, some NP-complete and NP-hard

problems are pseudo-polynomially solvable

(sometimes these are called weakly NP-hard

or-complete, or NP-complete in the ordinary sense).

For example, the NP-hard knapsack problem can be

solved by a dynamic programming algorithm requiring

a number of steps polynomial in the size of the

knapsack and the number of items (assuming that all

data are scaled to be integers). This algorithm is

exponential-time since the input sizes of the objects

and knapsack are logarithmic in their magnitudes.

However, as Garey and Johnson (1979) observe,

“A pseudo-polynomial-time algorithm. . .will display

‘exponential behavior’ only when confronted with

instances containing ‘exponentially large’ numbers,

[which] might be rare for the application we are

interested in. If so, this type of algorithm might serve

our purposes almost as well as a polynomial time

algorithm.” The related term strongly NP-complete

(or unary NP-complete) refers to those problems that

remain NP-complete even if the data are encoded in

unary (that is, if the data are small relative to

the overall input size). Consequently, if a problem

is strongly NP-complete then it cannot have

a pseudo-polynomial-time algorithm unless P ¼ NP.

For textbook introductions to the subject, see

Papadimitriou (1993) and Sipser (1997). The most

important reference on the subject, Garey and Johnson

(1979), contains an outstanding, relatively compact

introduction to complexity. Further references,

including surveys and full textbooks, are given below.

See

▶Combinatorics

▶Graph Theory

▶ Integer and Combinatorial Optimization
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Introduction

Computational geometry is the discipline of exploring

algorithms and data structures for computing

geometric objects and their often extremal attributes.

The objects are predominantly finite collections
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of points, flats, hyperplanes, arrangements, or

polyhedra, all in finite dimensions. The algorithms

are typically finite, their complexity playing a central

role. Emphasis is on problems in low dimensions,

exploiting special properties of the plane and 3-space.

A relatively young field; its name coined in the early

1970s. It has since witnessed explosive growth,

stimulated in part by the largely parallel development

of computer graphics, pattern recognition, cluster

analysis, and modern industry’s reliance on

computer-aided design (CAD) and robotics (Forrest

1971; Graham and Yao 1990; Lee and Preparata

1984). It plays a key role in the emerging fields of

automated cartography and computational metrology.

The Handbook of Discrete and Computational

Geometry, edited by Goodman and O’Rourke (1997),

provides overviews of key topics. For general texts, see

Preparata and Shamos (1985), O’Rourke (1987),

Edelsbrunner (1987), and, de Berg et al. (2008).

Pertinent concepts of discrete geometry are presented

in Gr€unbaum (1967).

There are strong connections to operations research,

whose classical problems such as finding a minimum

spanning tree, a maximum-lengthmatching, or a Steiner

tree become problems in computational geometry when

posed in Euclidean or related normed linear spaces. The

Euclidean traveling salesman problem remains

NP-complete (Papadimitriou 1977). Facility location,

and shortest paths in the presence of obstacles, are

other examples. Polyhedra and their extremal

properties, typical topics of computational geometry,

also lie at the foundation of linear programming. Its

complexity, particularly in lower dimensions, attracted

early computational geometric research, heralding the

achievement of linear complexity for arbitrary fixed

dimension (Megiddo 1982, 1984; Clarkson 1986).

Problems

A fundamental problem is to determine the convex hull

conv(S) of a set S of n points in d-dimensional

Cartesian space ℜ
d. This problem has a weak and

a strong formulation. Its weak formulation requires

only the identification of the extreme points of

conv(S). In operations research terms, that problem

is well known as (the dual of) identifying redundant

constraints in a system of linear inequalities.

The strong formulation requires, in addition,

characterization of the facets of the polytope conv(S).

For dimension d > 3, the optimal complexity of the

strong convex hull problem in ℜ
d is O(ndd/2c)

(Chazelle 1991).

Early O(n log n) methods for delineating convex

hulls in the plane — vertices and edges of the

convex hull of a simple polygon can be found in

linear time — were based on divide-and-conquer

(Graham and Yao 1983) and (Preparata and Hong

1977). In this widely used recursive strategy, a

problem is divided into subproblems whose solutions,

having been obtained by further subdivision, are

then combined to yield the solution to the original

problem. Divide-and-conquer heuristics find

applications in Euclidean optimization problems such

as optimum-length matching (Reingold and Supowit

1983).

The following bridge problem is, in fact, a linear

program: given two sets S1 and S2 of planar points

separated by a line, find two points p1 e S1 and p2 e S2
such that the line segment [p1, p2] is an upper edge of

the convex hull conv(S1 [ S2), bridging the gap

between the two sets. Or, through which edge does

a given directed line leave the — not yet

delineated — convex hull of n points in the plane? As

a linear program of fixed dimension 2, the bridge

problem can be solved in linear time. Kirkpatrick

and Seidel (1986) have used it along with

a divide-and-conquer paradigm to devise an O(n log

m) algorithm for the planar convex hull of n points, m

of which are extreme.

When implementing a divide-and-conquer strategy,

one typically wishes to divide a set of points S � ℜ
d

by a straight line into two parts of essentially equal

cardinality, that is, to execute a ham-sandwich cut.

This can be achieved by finding the median of, say,

the first coordinates of the points in S. It is

a fundamental result of the theory of algorithms that

the median of a finite set of numbers can be found in

linear time. The bridge problem is equivalent to

a double ham-sandwich cut of a planar set: given

a first cut, find a second line quartering the set.

Threeway cuts in three dimensions and results about

higher dimensions were reported in Dobkin and

Edelsbrunner (1984).

The Euclidean post office problem is a prototype for

a class of proximity search problems encountered,

for instance, in the implementation of expert systems.

Sites pi of n post offices inℜ
d are given, and the task is

C 242 Computational Geometry



to provide suitable preprocessing for efficiently

identifying a post office closest to any client location.

Associated with this problem is the division of

space into postal regions, that is, sets of locations

Vi � ℜ
d closer to postal site pi than to any other site

pj. Each such region Vi around site pi is a convex

polyhedron, whose facets are determined by

perpendicular bisectors, that is, (hyper)planes or lines

of equal distance from two distinct sites. Those

polyhedra form a polyhedral complex covering ℜ
d

known as a Voronoi diagram. The Voronoi diagram

and its dual, the Delaunay triangulation, are important

related concepts in computational geometry.

Once a Delaunay triangulation of a planar set of n

sites has been established, an O(n log n) procedure,

a pair of nearest points among these sites can be found

in linear time. The use of Delaunay triangulations for

computational geometric problems was pioneered by

Shamos and Hoey (1975).

The problem of efficiently finding a Voronoi cell Vi

for an arbitrary query point p is an example of point

location in subdivisions. Practical algorithms for

locating a given point in a subdivision of the plane

generated by n line segments in timeO(log n) requiring

preprocessing of order O(n log n) and storage of size

O(n log n) or O(n), respectively, have been proposed

(Preparata 1990). For point location in planar Voronoi

diagrams, Edelsbrunner and Maurer (1985) utilized

acyclic graphs and packing. A probabilistic approach

to the post office problem is given in Clarkson (1985).

Whether a given point lies in a certain simple

polygon can be decided by an O(n) process of

examining the boundary intersections of an arbitrary

ray emanating from the point in question. For convex

polygons, an O(n) preprocessing procedure permits

subsequent point inclusion queries to be answered in

O(log n) time (Bentley and Carruthers 1980).

An important concept with operations research

implications is the medial axis of a polygon (Lee

1982), the locus of interior points with equal distance

from the boundary; more precisely, those interior

points with more than one closest boundary point.

Such medial axes may be obtained in O(n) time

(Chin et al. 1995).

Let he(x) be the truth function expressing point

inclusion in the half plane to the left of a directed line

segment e. Muhidinov and Nazirov (1978) have shown

that a polygonal set can be characterized by a Boolean

expression of n such functions, one for each edge e of

the polygonal set, where each such function occurs

only once in the expression. This Boolean expression

transforms readily to an algebraic expression for

the characteristic function of the polygon. For

3-dimensional polyhedral bodies, Dobkin, Guibas,

Hershberger, and Snoeyink (1988) investigated the

existence and determination of analogous

constructive solid geometry (CSG) representations

(they may require repeats of half space truth

functions). In general, CSG representations use

Boolean operations to combine primitive shapes, and

are at the root of some commercial CAD/CAM and

display systems. For a survey of methods for

representing solid objects see Requicha (1980).

Given a family of polygons, a natural generalization

of point inclusion is to ask how many of those

polygons include a query point. This and similar

intersection-related problems are subsumed under the

term stabbing. The classical 1-dimensional stabbing

problem involves n intervals. Here the stabbing

number can be found in O(log n) time and O(n) space

after suitable preprocessing. Similar results hold for

special classes of polygons such as rectangles

(Edelsbrunner 1983).

Sweep-techniques rival divide-and-conquer in

popularity. Plane-sweep or line-sweep, for instance,

conceptually moves a vertical line from left to right

over the plane, registering objects as it passes them.

Plane-sweep permits one to decide in O(n log n) time

(optimal complexity) whether n line segments in the

plane have at least one intersection (Shamos and Hoey

1976).

Important special cases of the above intersection

problem are testing for (self-)intersection of paths

and polygons. Polygon simplicity can be tested for in

linear time by trying to triangulate the polygon.

Polygon triangulation, more precisely,

decomposing the interior of a simple polygon into

triangles whose vertices are also vertices of the

polygon, is a celebrated problem of computational

geometry. In a seminal paper, Garey, Johnson,

Preparata, and Tarjan (1978) proposed an O(n log n)

algorithm for triangulating a simple polygon of n

vertices. They used a plane sweep approach for

decomposing the polygon into monotone polygons,

which can each be triangulated in linear time.

A related idea is to provide a trapezoidization of the

polygon, from which a triangulation can be obtained in

linear time. Chazelle (1990) introduced the concept of
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a visibility map, a tree structure which might be

considered a local trapezoidization of the polygon,

and based on it an O(n) triangulation algorithm for

simple polygons. In 3-space, an analogous

tetrahedralization (without additional Steiner points

for vertices) for nonconvex polyhedral bodies may

not exist. Moreover, the problem of deciding such

existence is NP-complete (Ruppert and Seidel 1989).

For algorithms that depend on sequential examination

of objects, bucketing or binning may improve

performance by providing advantageous sequencing

(Devroye 1986). The idea is to partition an area into

a regular pattern of simple shapes such as rectangles to

be traversed in a specified sequence. The problem at hand

is then addressed locally within buckets or bins followed

by adjustments between subsequent or neighboring

buckets. Bucketing-based algorithms have provided

practical solutions to Euclidean optimization problems,

such as shortest paths, optimum-length matching,

and a Euclidean version of the Chinese Postman

Problem: minimizing the pen movement of a plotter

(Asano et al. 1985). The techniques of quadtrees and

octrees might be considered as hierarchical approaches

to bucketing, and are often the methods of choice

for image processing and spatial data analysis including

surface representation (Samet 1990a, b).

The position of bodies and parts of bodies, relative

to each other in space, determines visibility from given

vantage points, shadows cast upon each other, and

impediments to motion. Hidden line and hidden

surface algorithms are essential in computer graphics,

as are procedures for shadow generation and shading

(Sutherland et al. 1974; Atherton et al. 1978). Franklin

(1980) used bucketing techniques for an exact hidden

surface algorithm.

Lozano-Pérez and Wesley (1979) used the concept

of a visibility graph for planning collision-free paths:

given a collection of mutually disjoint polyhedral

objects, the node set of the above graph is the set of

all vertices of those polyhedral objects, and two such

nodes are connected if the two corresponding vertices

are visible from each other.

The piano movers problem captures the essence of

motion planning (Schwartz and Sharir 1983, 1989).

Here a 2-dimensional polygonal figure, or a line

segment (ladder), is to be moved, both translating and

rotating, amidst polygonal barriers.

Geometric objects encountered in many areas such

as Computer-Aided Design (CAD) are fundamentally

nonlinear (Dobkin and Souvaine 1990). The major

thrust is generation of classes of curves and surfaces

with which to interpolate, approximate, or generally

speaking, represent data sets and object boundaries

(Barnhill 1977; Bartels et al. 1987; Farin 1988).

A classical approach, building on the concepts of

splines and finite elements, has been to use piecewise

polynomial functions over polyhedral tilings such as

triangulations. Examples are the TIN (triangulated

irregular network) approach popular in terrain

modeling, C1 functions over triangulations, and the

arduous solution of the corresponding C2 problem

(Heller 1990; Lawson 1977; Alfeld and Barnhill 1984).

Bézier curves and surfaces involve an elegant

concept: the use of control points to define elements

of curves and surfaces, permitting intuition-guided

manipulation important in CAD (Forrest 1972). In

general, polynomials are increasingly supplanted by

rational functions, which suffer fewer oscillations per

numbers of coefficients (Tiller 1983). All these

techniques culminate in NURBS (non-uniform

rational B-splines) which are recommended for curve

and surface representation in most industrial

applications.

In geometric calculations, round-off errors due to

floating-point arithmetic may cause major problems

(Fortune and Milenkovic 1991). When testing, for

instance, whether given points are collinear,

a tolerance level, eps, is often specified, below which

deviations from a collinearity criterion are ignored.

Points p1, p2, p3 and p2, p3, p4, but not p1, p2, p4 may

thus be found collinear. Such and similar

inconsistencies may cause a computation to abort.

Robust algorithms are constructed so as to avoid

breakdown due to inconsistencies caused by

round-off (Guibas et al. 1989; Beichl and Sullivan

1990). Alternatively, various forms of exact

arithmetic are increasingly employed (Fortune and

Van Wyck 1993; Yap 1993). Inconsistencies occur

typically whenever an inequality criterion is satisfied

as an equality. An example is the degeneracy behavior

of the simplex method of linear programming.

Lexicographic perturbation methods can be employed

to make consistent selections of subsequent feasible

bases and thus assure convergence. Similar consistent

tie breaking, coupled with exact arithmetic, is the aim

of the simulation of simplicity approach proposed by

Edelsbrunner and M€ucke (1988) in a more general

computational context.
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See

▶Chinese Postman Problem

▶Cluster Analysis

▶Convex Hull

▶ Facility Location

▶Minimum Spanning Tree Problem

▶ Simplex Method (Algorithm)

▶ Splines

▶Traveling Salesman Problem

▶Voronoi Constructs
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Introduction

As inexpensive and massive amounts of computing

power have rapidly become more widely available,

the operational aspects of computational-based

organizational research have become a reality.

Today, the concepts of Computational Organization

Theory (COT) can be easily implemented and

practiced by an ever-increasingly larger group of

researchers. Some foresee such computer-science

related computational thinking (Wing 2006), as the

future of all scholarly research, and COT is part of

this broader trend.

COT involves the theorizing about, describing,

understanding, and predicting the behavior of

organizations and the process of organizing, using
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quantitative-based and structured approaches

(computational, mathematical and logical models).

This involves computational abstractions that are

incorporated into organizational research and practice

through COT tools, procedures, measures and

knowledge.

The notion of an organization, as used here, spans

the wide range of human-conceived collections of

people, i.e., groups, teams, societies, corporations,

industries, and governments, see Carley and Prietula,

(1994); Prietula, Carley, and Gasser, (1998); and

Gilbert and Doran, (1994). COT practitioners use

computational models and analysis to develop

a better understanding of fundamental principles for

organizing and behaviors within an organization.

Organizational members, i.e., people, are considered

information-processing actors. They can interact with

and adapt to their environment. They can learn, and

they can communicate. While their behavior is

certainly complex, this behavior and the underlying

determinate of the behaviors can be reduced to basic

mathematical equations and algorithms. With this

formalization, researchers can develop complete

computerized models of an organization, which

enables the use of computer simulation to create

virtual worlds for non-obtrusive experimentation.

After running these simulations the collective

outcome of these virtual interactions and behaviors

can be quantified and collected for extensive analysis.

Typically, the results from these experiments are then

incorporated into a formalized and thoughtful

comparison against findings from controlled lab

experiments and real-world empirical cases studies.

The history of COT is rich with academic insight,

with its research and application proving fruitful to

organization researchers and practitioners alike.

History

The field of COT has benefitted from several decades

of research. One of the earliest works is Cyert and

March’s The Behavioral Theory of the Firm, (1963),

in which a simple information-processing model of an

organization is used to address issues of organization

design and performance. During the past decade an

explosion of interest has occurred for theory

development and testing in the organizational and

social sciences (Carley 1995). The use is expanding

for a number of reasons: (a) there is growing

recognition that social and organizational processes

are complex, dynamic, adaptive, and nonlinear, and,

thus, are hard to study in the real-world; (b) researchers

and practitioners have come to realize that

organizational and social behavior emerges from

interactions within and between ecologies of entities

(people, groups, technologies, agents, etc.), which is

hard to reproduce and control in the laboratory and

real-world; and (c) the relationships among these

entities are critical constraints on individual and

organizational action, which is hard to control with

direct human-based research. Researchers now

recognize that organizations are inherently

computational since they have a need to scan and

observe their environment, store facts and programs,

communicate among members and with their

environment, and transform information by human or

automated decision making (Burton and Obel 1996).

COT has a fundamentally interdisciplinary

intellectual history with contributions from social

network theory, distributed artificial intelligence and

the organizational information processing tradition.

Within COT, researchers draw heavily on work in

the information/resource processing tradition

(Simon 1947; March and Simon 1958; Thompson

1967; Galbraith 1973; Cyert and March 1963; Pfeffer

and Salancik 1978) and social information

processing (Salancik and Pfeffer 1978), as modified

by work in cognitive science (Carley and Newell

1994), institutionalism (Powell and DiMaggio 1991),

population ecology (Hannan and Freeman 1977,

1989), and the contemporary contingency theory

(Baligh et al. 1990). Within social network and

communication/coordination theory, there has been

important work done on measures of organizational

design and communication (Wasserman and Faust

1994; Malone 1986), cognitive social structures

(Krackhardt 1987), network effects on performance,

influence, and power (Wasserman and Galaskiewicz

1994; Kaufer and Carley 1993; Granovetter 1985;

Burt 1992), and research on inter-organizational

networks (Baum and Oliver 1991; Stuart and

Podolny 1996). Within the area of distributed

artificial intelligence, researchers draw on findings

regarding representation (Lesser and Corkill 1988);

teams (Decker 1996); coordination (Durfee and

Montgomery 1991); and strategy (Gasser and

Majchrzak 1994).
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Methodological Approaches

Models are both integral and integrating components

of theory building in COT. No matter what their

disciplinary home, researchers in this area assume that

meaningful and predictive models of organizations can

be built. Computational organizational theorists use

models to (1) describe organizational phenomena

observed in the world, including structuring real or

hypothetical experiences as described or postulated by

individuals or groups, (2) formalize and integrate

theoretical principles from science that are relevant to

organizational activities, and (3) simulate the dynamics

of temporal changes in a particular organizational

process, action, or policy.

Models are abstractions of reality, and modeling is

the process of creating these abstractions. Because

reality is near infinitely complex and all empirical

data are processed with reference to that complexity,

model building involves the simplification of

reality as data are transformed into knowledge. The

models created are, essentially, forms of codified

knowledge and used to represent the reality of

things not known from things that are known

(Waisel et al. 1998). Modeling is the sine qua non

of science. Virtually all-scientific activities require

modeling in some sense, and any scientific theory

requires this kind of representational system

(Nersessian 1992). Models are usually thought of as

being quantitative, and able to be represented

mathematically. However, qualitative models are no

less and arguably more common, particularly in the

context of COT.

Employing a variety of methodologies has made

advances in computational organization theory.

To illustrate this variety, five of the most significant

approaches to modeling will be discussed: (1) general

intellective models, (2) distributed artificial intelligence

and multi-agent models, (3) organizational engineering

models, (4) social network models, and (5)

mathematical and/or logic based models.

Organizational theorists are most familiar with the

general intellective models. These models often

represent the organization or various processes as a set

of nonlinear equations and/or a set of interacting agents.

In these models, the focus is on explaining and

theorizing about a particular aspect of organizational

behavior. Consequently, the models often abstract

many of the factors in actual organizations, laying bear

only the entities and relations essential to the theory.

Models embody theory about how the team, group, or

organization will behave. Given these models, a series

of virtual experiments are run to test the effect of

a change in a particular process, action, policy,

etc. These models are used to illustrate the theory’s

story about how the organization will behave under

various conditions. These models enable cumulative

theory building as multiple researchers rebuild,

augment, and develop variations of earlier models.

Many researchers are building organizational

models using multi-agent techniques. Multi-agent

techniques have grown out of the work in distributed

artificial intelligence. Distributed artificial intelligence

intended to perform highly specific but stylized tasks

such as soccer, navigation or surveillance (Bond and

Gasser 1988; Gasser and Huhns 1989; Cohen 1986).

Strength of this approach is the focus on representation

and knowledge. For example attention is often focused

on how to represent the task and knowledge about how

to do the task via the agent. Another strength of this

approach is a focus on decision making as search.

Models are often developed to address issues of

communication, coordination, planning, or problem

solving, often with the intent of using these models as

the brains in artificial agents. These models can explain

many organizational phenomena and test the adequacy

and efficiency of various definitions or representation

schemes. Today, much of this work goes under

the rubric of multi-agent modeling. Work in this

area is beginning to focus on the role of emotions, the

development of team mental models, and coordination

of large numbers of agents. From an organizational

theory perspective two issues stand out. First, how

scalable are these models and representation

schemes? That is, do the results from systems of two

to five agents performing a highly stylized task

generalize to larger more complex organizations?

Second, when are these cognitively simple agents

adequate or valid representations of human behavior?

Organizational engineering models are

characterized by the extensive detail with which they

represent the formal sides of organizations or tasks

(organizational chart, workflow, communication

paths, and rework routines) and the attention to the

specific features of particular organization. These

models generally focus on predicting overall
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organizational or group response rather than the

actions and behaviors of individual agents. These

models are sufficiently detailed that they can be used

to analyze potential policy changes and address what-if

questions for the particular organization for which

the model has been tuned (Levitt et al. 1994; Gasser

and Majchrzak 1994). Model adequacy is often

demonstrated by determining whether the parameters

can be adjusted so that one or more important team or

organizational behaviors is described at least at

a qualitative level. Importantly, simply having

managers work with the research team to elicit the data

on the organization needed to model it often leads the

manager to gain important insights into organizational

problems. As such, these models are a valuable decision

aid. The same is true of system models.

Social network models are characterized by

representations of teams, groups, organizations, and

markets in terms of the relationships among

individuals or organizations. These models

emphasize the structural or relational aspect of the

organization and demonstrate when and how they can

affect individual or organizational behaviors. Work in

this field has focused on developing models of network

adaptation, evolution, and change, and on developing

a better understanding of how agent knowledge affects

and is affected by an agent’s position in the network.

Network models have successfully been used to

examine issues such as power and performance,

information diffusion, innovation, and turnover. The

adequacy of these models is determined using

techniques from non-parametric statistics.

Logic models are characterized by representations

of organizations and organizational processes using

the techniques and formalisms of formal logic. Such

models enable researchers to focus on the generative

aspects of organizational form given a specific

grammar (See Salanick and Leblebici 1998) and to

test the consistency of extant verbal theories. These

models tend to be among the most limited in their

realism and the least likely to capture dynamic

aspects of organizational behavior. However, these

models are the only ones from which complete

proofs and an exhaustive understanding of behavior

can be generated. These models provide, independent

of a specific machine implementation, a way of

assessing the internal validity of extant theories and

generating proofs about organizing behavior.

This brief review of these methodological

approaches just begins to describe the vast array of

modeling techniques and tools that have been used to

examine organizations. These and other approaches

address a variety of questions about organizations

ranging from questions of design, to questions of

learning, to questions of culture. As work continues in

this field, researchers are beginning to employ models,

which contain intellective and emulative elements.

These models, for example, draw on the work in

cognitive science and contribute to the work on multi-

agent systems, use network representations and

measures, and use logic in developing formalizations.

Models and Applications

COTmodels extend from simple intellective principles

of general decision-making behavior (Cohen et al.

1972; Carley 1992) to representations of the decision

processes and information flow within specific

real-world organizations (Levitt et al. 1994; Zweben

and Fox 1994). Models may even operationally

specific management-decisions, or practices and

polices (Gasser and Majchrzak 1992, 1994; Majchrzak

and Gasser 1991, 1992). These COT models enable the

researcher to examine the potential impact of general

management strategies (Gasser and Majchrzak 1994;

Carley and Svoboda 1996), or enable the manager to

examine the organizational implications of specific

management decisions (Levitt et al. 1994).

Several multipurpose computational-models of

organization have been developed including

well-known models such as the Garbage Can Model

(Cohen et al. 1972), Plural-Soar (Carley et al. 1992),

Team-Soar (Kang et al. 1998), and ORGAHEAD (Lee

and Carley 2004). In a review of the state of

computational modeling (Ashworth and Carley 2004,

2007), 29 specific organization theory computer

simulations were found to have been introduced

between 1989 and 2003; the authors also made

a point that the richness of the models has also

increased over those years. More recently, the

CONSTRUCT model has been used extensively for

theory generation and testing, notably in realms

looking at the impact of communications occurring

through diverse mEdia. CONSTRUCT provides a

vigorous model of organization that has its
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roots in symbolic interactionism (Blumer 1969),

structural interactionism (Stryker 1980), and

structural differentiation theory (Blau 1970). These

core-theories are combined into a computational

theory called constructuralism (Carley 1991), which

is embodied in the CONSTRUCT model. The model

recognizes that people interact within a dynamic

social-based organizational network and are

characteristically information-seeking agents. They

interact to exchange information and purposefully

may seek out others who have information that they

do not yet hold. Others seeking their information, or

knowledge are also seeking them out. This interaction

dynamic is played out innumerable times in any

organization. When this dynamic is coupled with the

organization-membership changes (hiring and firing)

in an organization, this emerging micro-interaction

dynamic is manifested in complex organization-level

dynamics and outcomes.

Computational organizational theorists often address

issues of organizational design, organizational learning,

and organizational adaptation. Consider the design

question: organizations, through their design, are

expected to be able to overcome the cognitive,

physical, temporal, and institutional limitations of

individual agency. Research has shown that there is no

single organizational design that yields the optimal

performance under all conditions, yet it has shown,

that for a particular task and under particular

conditions, there is a set of optimal designs.

Organizational performance itself is dynamic, even

under the same design (Cohen 1986). Thus, the

determination of which organizational design is best

depends on a plethora of factors, which interact in

complex nonlinear ways to effect performance. Such

factors include the task(s) being performed;

intelligence, cognitive capabilities, skills, or training;

available resources; quality and quantity of

information; volatility of the environment; legal or

political constraints on organizational design; the type

of outcome desired (e.g., efficiency, effectiveness,

accuracy, or minimal costs). The organization’s design

is considered to be capable of being intentionally

changed in order to improve its performance.

Consequently, computational models focused on

design should be an invaluable decision aid to

managers who are interested in comparing and

contrasting different types of organizations.

Researchers are thus providing guidelines for when to

use which design, and developing computational tools

for enabling managers to do just-in-time design.

Organizational learning, adaptation and change are

one of the areas where COT continues to provide

invaluable knowledge and understandable promise.

In most organizations, multiple types of learning

appear to co-exist and interact in complex ways.

Organizational learning has been characterized in

terms of the search for knowledge (Levinthal and

March 1981), constraint based optimization (Carley

and Svoboda 1996), and aggregation of individual

learning (Carley 1992). In organizational learning,

one major challenge is to link multiple models of

organizational learning together and to see how they

inform each other. It is necessary to understand how

organizational networks evolve and how an evolved

organizational design can be characterized as being

statistically different from an initial design. Such

issues of measurement are subjects of continued

research within the field of COT.

Research Opportunities

The focus of COT is evolving. Past research has

focused on representations of natural or human

organizations. Increasingly, researchers are using

COT methods to study organizations that are also

composed of artificial agents, or combinations of

both human and artificial agents. Human

organizations, and artificial systems in general, often

show intelligence and a set of capabilities that are

distinct from the intelligence and capabilities of the

membership within them. These systems can exhibit

organization, intentional adaptation, and can display

non-random and repeated patterns and processes of

action, communication, knowledge, and memory

regardless of whether or not the agents are human.

By improving our understanding of the behavior of

artificial worlds in general, researchers may discover

whether there are general principles of organizing that

transcend the type of agent in the organization.

Artificial or virtual organizations are appearing and

being used to do certain tasks such as scheduling or

robotic control. One of the issues is how to structure

inter-agent coordination and communications. Should

organizations of humans and artificial agents be

designed in the same way? Do artificial agents need

to communicate the same type of information, as do
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humans to be effective? Modeling the interactivity of

humans and artificial agents should enable us to answer

these questions.

COT will move theories of organizations beyond

empirical description to predictive modeling. By

focusing on the components (such as agent, structure,

task, and resources), the networks of connections

among these components (such as the communication

structure or the resource access structure), and the

processes by which they are altered (such as routines,

learning, adaptation), a more dynamic and coherent

view of the organization as an embedded, complex,

adaptive system of human and automated agents with

greater predictive ability will emerge (Carley and

Prietula 1994). Attending to these factors will

necessarily increase the complexity and veridicality

of the models, as well as increasing the difficulty in

building and validating the models. The resulting

models, however, will be capable of addressing the

concerns of both the theoretician and the practitioner,

and yield greater predictive ability and practical

guidance. COT thus has the potential to generate

a better theoretical understanding of organizations,

better tools for designing and reengineering

organizations in real-time, and better tools for

teaching people how teams, groups, and organizations

function.

See

▶Organization
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Computational Probability

Broadly defined, computational probability is the

computer-based analysis of stochastic models with

a special focus on algorithmic development and

computational efficacy. The computer and

information revolution has made it easy for stochastic

modelers to build more realistic models even if they

are large and seemingly complex. Computational

probability is not just concerned with questions raised

by the numerical computation of existing analytic

solutions and the exploitation of standard

probabilistic properties. It is the additional concern of

the probabilist, however, to ensure that the solutions
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obtained are in the best and most natural form for

numerical computation. Before the advent of modern

computing, much effort was directed at obtaining

insight into the behavior of formal models, while

avoiding computation. On the other hand, the early

difficulty of computation has allowed the

development of a large number of formal solutions

from which limited qualitative conclusions may be

drawn, and whose appropriateness for algorithmic

implementation has not been seriously considered.

Ease of computation has now made it feasible to have

the best of all worlds: computation is now possible for

classical models heretofore not completely solved,

while complex algorithms can be developed for

providing often needed insights on stochastic behavior.

See
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Introduction

Operations research (OR) and computer science (CS)

grew up together. George Dantzig relates how his early

work on linear programming (LP), the archetypal

OR method, led to the funding of the development of

the first electronic computers during the 1940s

(Dantzig 1988, 2002). In the early years of

commercial computing, a large fraction of all

computing effort was devoted to linear programming.

Rapid development of applications for linear

programming and then for the many other OR

methods followed quickly thereafter, and such

developments still continue. From that same starting

point, CS and computer engineering developed on

parallel tracks, with the disciplines continuing to

interact while developing their own separate

traditions and foci of study. There has been

a renewed exploration of the many areas of overlap,

with the development of much improved hybrid

methods for solving difficult problems.

Evidence of ongoing interest in the OR/CS interface

is easy to find. There are a number of academic

journals devoted to the interface, including The

INFORMS Journal on Computing, Computers and

Operations Research, Computers and Industrial

Engineering, Computational Optimization and

Applications, and Mathematical Programming

Computation. The INFORMS Computing Society,

a subgroup of INFORMS, the largest OR professional

group, is devoted to the study of the interfaces between

OR and CS.

OR can be viewed as a collection of methodologies

for solving common problems related to operating

organizations and designing systems. Computers are

essential in using these techniques to solve problems of

industrial scale. Computers carry out the numerous

calculations involved in most OR methods and

provide database functions to manage the very large

volumes of data that are input and output. There are

several important interfaces between OR and the

discipline of CS; some of the main interfaces are

reviewed below.

Computer Hardware

The essential interface of OR with CS and computer

engineering is the computer itself. Computer hardware

has seen numerous changes since the 1940s:

mainframes, supercomputers, inexpensive personal

computers, with additional major changes that include

grids, clouds, and inexpensive multi-core machines.

This has affected OR in terms of the methods used and

the scale of the problems solved. ORmethods have been

adapted to solve extremely challenging problems of
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very large scale by taking advantage of inexpensive and

massively parallel computer architectures. Capabilities

such as pipelining, vectorization, and superscalar

computations have been employed in implementations

of the simplex method, as well as interior point methods

for LP. Algorithms have also been developed to exploit

multiple as well as massively parallel processors: see

the summaries by Zenios (1989) and Eckstein (1993).

Thain et al. (2005) address distributed computing,

which makes use of massively parallel computing

resources that are heterogeneous and physically

distributed, and subject to interruption by other uses

that have higher priority. The CONDOR software used

for this purpose is primarily directed toward

high-throughput computing. As described in a special

cluster of papers in the INFORMS Journal on

Computing (Volume 21, Issue 3, 2009) on

high-throughput optimization, the CONDOR software

is a major enabler of large-scale optimization because it

facilitates flexible access to a large pool of computers.

A second major theme in the special cluster is the

parallelization of tree search of various kinds.

Computers themselves, especially computer chips

composed of Very Large Scale Integrated (VLSI)

circuits, are extremely complex to design. There are

many difficult optimization problems to solve during

the design process. Some examples: What is the best

way to arrange the devices on the chip to pack the

maximum number of devices into the smallest area?

How should the connecting wires be routed to

minimize the total length of wiring? Which

technologies should be employed for each of the

devices? Here, not surprisingly, OR optimization

techniques find many applications. The OR

techniques of queueing analysis and simulation are

also widely used to investigate the behavior of

the chips prior to their production and the behavior of

the entire computer system. For example,

buffering delays related to queueing for memory or

CPU access can be estimated. The survey by

Chinneck et al. (2005) describes the many

applications of OR in Computer-Aided Design

(CAD) of VLSI chips.

Other useful developments in computer hardware

that generally contribute to speedier computations also

improve the speed of OR-related computations. These

developments include cache memory and superscalar

computation. Since the LP matrix computations

involve working with sparse matrices, use of cache

memory allows faster access and manipulation of

matrix elements. Similarly, superscalar architectures,

as well as vectorization facilities of the new computer,

allow vectored calculations. LP codes such as Gurobi

and IBM’s CPLEX are examples of codes that have

exploited the recent developments in computer

architecture quite well.

OR has benefitted greatly from advances in computer

design that originate in CS and computer engineering.

Larger and more complex problems can now be solved.

At the same time, the advances in computer hardware

would likely not have been possible without the use of

OR techniques in generating the designs. The fields are

mutually reinforcing.

Software: Algorithms

Perhaps the widest area of overlap between OR with

CS is software, particularly algorithms. While CS has

a general interest in all algorithms, OR constitutes

a particularly important subset of algorithms that

have immediate practical applications. Interestingly,

the two disciplines have often approached problems

of mutual interest in completely different ways. This is

particularly apparent in the field of combinatorial

optimization where OR has traditionally taken a more

mathematical approach while CS has taken a purely

algorithmic approach as in constraint programming.

The two approaches have begun to merge into

a stronger hybrid. For example, concepts from

constraint programming have been incorporated

into branch-and-bound-based implementations of

mixed-integer linear programming solvers. Hooker

(2007) presents an excellent exposition of this theme.

The OR repertoire has been considerably expanded

through the adoption of optimization techniques that

arise from the CS algorithmic tradition, instead of the

traditional OR mathematical tradition. Many of these

are interesting heuristics that may not provide solution

guarantees, but which can be effective in practice for

certain classes of very difficult problems. Examples

include Genetic Algorithms (Goldberg 1989), ant

colonies, particle swarms, and other evolutionary

algorithms. Partly as a consequence of exposure to

these CS-originated methods, OR now develops

CS-flavored methods, for example, scatter search and

path relinking (Glover et al. 2000). Powell (2010)

merges AI and OR to solve high-dimensional
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stochastic optimization problems. Both OR and CS are

keenly interested in artificial intelligence, knowledge

and data management, and machine learning. Here the

mixing of the two traditions is common. For example,

an AI technique for robot route planning may use the

solution of a number of standard OR problems as steps

in a larger planning algorithm.

Software: User Interfaces

Both OR and CS face issues related to user interaction

with complex objects. In OR, the objects are typically

mathematical models, which may consist of functions

representing the objective and the constraints in

an optimization application, or the relationships

representing interacting objects and their governing

probability distributions in the case of simulation.

This sort of modeling is a particular strength of OR

because it allows the power of various algorithms and

analysis techniques to be brought to bear. The problem

is making a large amount of complex information

and data comprehensible to the user. New graphical

user interfaces (drop-down menus, hierarchically

expandable-contractable structures, buttons, etc.)

have been rapidly adopted in commercial OR

implementations. Many graphical user interfaces are

being developed to aid in formulation (Chari and Sen

1997; Androulakis and Vrahatis 1996). Jones (1998)

provides an excellent overview of the use of graphics

and visualization technologies in modeling and

solutions.

In addition, spreadsheets have become a ubiquitous

paradigm for managing models and associated data, as

well as tools for delivery and presentation of results.

Many spreadsheets include linear and nonlinear

programming algorithms as a part of the standard

function set. The spreadsheets are changing the way

OR analysts prepare, manage, and deliver the models.

Lijima (1996) discusses an automatic model building

approach.

Software: Data Structures and Databases

New data structures developed in CS are routinely used

in OR algorithms. As any serious OR algorithm

developer knows very well, learning about sparse

matrix approaches such as linked lists, arrays,

orthogonal lists, etc. is key in implementing an

algorithm. As an example, Adler et al. (1989) focus

on the data structures employed in their

implementation of interior point methods.

The developments in data structures and databases

have helped OR in modeling and algorithmics. But

OR has been a key player in designing distributed

databases. OR models and their solutions are

important in designs of such databases. Information

storage and retrieval research has also been the

beneficiary of OR algorithms for query optimization.

Kraft (1985) provides a good survey of this

interface between OR and CS. OR approaches (e.g.,

mixed-integer programming) are also used in artificial

intelligence. Specific examples include the use of

mixed-integer programming (MIP) in automated

theorem proving. A similar example is a graph

theory–based approach for partitioning knowledge

bases (Srikanth 1995).

Areas of Mutual Interest

Combinatorial optimization is an area of great mutual

interest for both OR and CS. Here the many algorithmic

tools in both communities are brought to bear. For

example, the iconic traveling salesman problem

(TSP), so easy to state but so difficult to solve, has

been the subject of much research in both

communities. OR has used approaches such as

branch-and-bound and heuristics, while CS has

attempted solutions using heuristics and tree search

algorithms similar to branch-and-bound. The artificial

intelligence and neural network communities have also

focused on solving the TSP. Other heuristics

approaches, such as genetic algorithms, simulated

annealing, and tabu search, are being employed by

both OR and CS specialists to solve combinatorial

optimization problems. Computer scientists are using

logic programming to solve routing and scheduling

problems. These combinatorial problems have also

been the focus of much research in the OR

community. The TSP belongs to the larger class of

routing problems, which continue to be of great

interest to both communities. Potvin (2009) outlines

the many methods and combinations thereof that have

been applied to routing problems by both communities.

As noted above, computer design is the subject of

research in both communities. This includes hardware
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design, database design, and operating system

design. An example given by Greenberg (1988)

includes the use of random walk theory to analyze

various storage allocation approaches, an important

issue in operating systems. Telecommunications

systems are also vital to modern information

processing and the timely delivery of OR models

and solutions. Real-time data access is a key in

successful implementation of many models and

that is possible only because of advances in

telecommunications. As complex systems in their

own right, telecommunications problems are the

targets of much OR research: network design and

routing, location analysis, etc. Decisions in

telecommunications networks are based on OR

approaches using queueing theory, Markov analysis,

simulations, and MIP models.

Of course, the tremendous growth of the Internet

has resulted in a complete transformation of

OR/MS model development, solution, and delivery.

It has also profoundly impacted the OR/MS

profession in terms of education and professional

communication through conferences and journals.

Bhargava and Krishnan (1998) discuss this important

interface.

Another example of the impact of CS on OR is the

field of computational probability. Researchers

continue to work on developing improved numerical

techniques for solving large systems of equations

appearing in stochastic models (Albin and Harris

1987). Simulation research and practice has also been

a beneficiary of CS advances. One example is the use

of artificial intelligence techniques in design and

interpretation of simulations. Advances in parallel

processing have led to active research in parallel

simulation to speed up the computations (Fujimoto

1993).

Concluding Remarks

The objective was to illustrate the vibrancy of the

symbiosis between OR and CS. As a final example,

consider these areas covered in the INFORMS Journal

on Computing: Computational Probability and

Analysis, Constraint Programming and Optimization,

Design and Analysis of Algorithms, Heuristic Search

and Learning, Knowledge and Data Management,

Modeling: Methods and Analysis, Simulation,

Telecommunications, and Electronic Commerce.

These areas are also covered in CS journals. As an

article in Computer World (Betts 1993) noted,

OR/MS needs corporate data for its algorithms and

needs the algorithms used in strategic information

systems to make a real impact. On the other

hand, information systems (IS) groups need OR to

build smart applications. Betts calls the individuals

with significant OR/MS and CS/IS skills the

new Efficiency Einsteins, a term that indeed

appropriately describes the individuals trained in this

interface.

See
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Concave Function

A function that is never below its linear interpolation.

Mathematically, a function f(x) is concave over

a convex set S, if for any two points, x1 and x2 in

S and for any 0 � a � 1, f [ax1 + (1 � a)x2] � a

f (x1) + (1 � a) f (x2).

Conclusion

A portion of a rule composed of series of one or more

actions that the inference engine can carry out if

a rule’s premise can be established to be true.

See
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Introduction

Conditional Value-at-Risk (CVaR), introduced by

Rockafellar and Uryasev (2000), is a popular tool for

managing risk. CVaR approximately (or exactly, under

certain conditions) equals the average of some

percentage of the worst case loss scenarios. CVaR

risk measure is similar to the Value-at-Risk (VaR) risk

measure which is a percentile of a loss distribution. VaR

is heavily used in various engineering applications,

including financial ones. VaR risk constraints are

equivalent to the so called chance constraints on

probabilities of losses. Some risk communities prefer

VaR, others prefer chance (or probabilistic) functions.

There is a close correspondence between CVaR

and VaR: with the same confidence level, VaR is

a lower bound for CVaR. Rockafellar and Uryasev

(2000, 2002) showed that CVaR is superior to

VaR in optimization applications. The problem of

choice between VaR and CVaR, especially in financial

risk management, has been quite popular in academic

literature. Reasons affecting the choice between

VaR and CVaR are based on the differences in

mathematical properties, stability of statistical

estimation, simplicity of optimization procedures,

acceptance by regulators, etc.

Definition of VaR and CVaR

Let X be a random variable with the cumulative

distribution function FXðzÞ ¼ P X � zf g. X may have

meaning of loss or gain. In what follows, X has

meaning of loss and this impacts the sign of functions

in the definition of VaR and CVaR. Figure 1 presents

the graphical representation of VaR and CVaR.

Definition 1: Value-at-Risk. Value-at-Risk (VaR)

of X with confidence level a 2�0; 1½ is

VaR aðXÞ ¼ min zjFXðzÞ � af g: (1)

By definition, VaR aðXÞ is a lower a-percentile of the
random variable X. Value-at-Risk is commonly used in

many engineering areas involving uncertainties, such

as military, nuclear, material, air and space, finance,

etc. For instance, finance regulations like Basel I and

Basel II, use VaR-deviation measuring the width of

daily loss distribution of a portfolio.

For normally distributed random variables, VaR is

proportional to the standard deviation. If X � Nðm; s2Þ
and FXðzÞ is the cumulative distribution function

of X, then (see Rockafellar and Uryasev 2000),

VaR aðXÞ ¼ F�1X ðaÞ ¼ mþ kðaÞs; (2)

where kðaÞ¼
ffiffiffi
2
p

erf�1ð2a�1Þ and erfðzÞ¼ 2ffiffi
p
p
R z
0
e�t

2

dt:

Ease and intuitiveness of VaR is counterbalanced

by its mathematical properties. As a function of the

confidence level, for discrete distributions VaR aðXÞ is
a non-convex, discontinuous function. For discussion

of numerical difficulties of VaR optimization see, for

example, Rockafellar (2007), and Rockafellar and

Uryasev (2000).

Definition 2: Conditional Value-at-Risk. An

alternative percentile measure of risk is the

Conditional Value-at-Risk (CVaR). For random

variables with continuous distribution functions,

CVaR aðXÞ equals the conditional expectation of X

subject to X � VaR aðXÞ. This definition is the basis

for the name of Conditional Value-at-Risk. The

term Conditional Value-at-Risk has been introduced

by Rockafellar and Uryasev (2000). The general

definition of CVaR for random variables with

possibly discontinuous distribution function is as

follows (see Rockafellar and Uryasev 2002).

Conditional Value-at-Risk (CVaR) of X with

confidence level a 2�0; 1½ is the mean of the

generalized a-tail distribution:

CVaR aðXÞ ¼
Z 1

�1
zdFa

XðzÞ; (3)

where

Fa
XðzÞ ¼

0; when z<VaR aðXÞ;
FXðzÞ�a
1�a ; when z � VaR aðXÞ:

�

Contrary to popular belief, in the general case,

CVaR aðXÞ is not equal to an average of outcomes
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greater than VaR aðXÞ. For general distributions, one
may need to split a probability atom. For example,

when the distribution is modeled by scenarios, CVaR

may be obtained by averaging a fractional number

of scenarios. To explain this idea in more detail,

alternative definitions of CVaR are presented in

the following. Let CVaRþa ðXÞ, called upper CVaR, be

the conditional expectation of X subject to

X > VaR aðXÞ.

CVaRþa ðXÞ ¼ E½X jX > VaR aðXÞ�:

CVaR aðXÞ can be alternatively defined as the

weighted average of VaR aðXÞ and CVaRþa ðXÞ, as

follows. If FXðVaR aðXÞÞ<1, so there is a chance of

a loss greater than VaR aðXÞ, then

CVaR aðXÞ ¼ l aðXÞVaR aðXÞ
þ ð1� l aðXÞÞCVaRþa ðXÞ;

(4)

where l aðXÞ ¼
FXðVaR aðXÞÞ � a

1� a
; (5)

whereas if FXðVaR aðXÞÞ ¼ 1, so that VaR aðXÞ is the
highest loss that can occur, then

CVaR aðxÞ ¼ VaR aðxÞ : (6)

Definition (4) demonstrates that CVaR is not

defined as a conditional expectation. The function

CVaR�a ðXÞ ¼ E½X jX � VaR aðXÞ�, called “lower

CVaR”, coincides with CVaR aðXÞ for continuous

distributions; however, for general distributions it is

discontinuous with respect to a and not convex.

The construction of CVaR a as a weighted average of

VaR a and CVaRþa ðXÞ is a major innovation. Neither

VaR nor CVaRþa ðXÞ behaves well as a measure of risk

for general loss distributions (both are discontinuous

functions), but CVaR is a very attractive function. It

is continuous with respect to a and jointly convex

in ðX; aÞ. The unusual feature in the definition of

CVaR is that VaR atom can be split. If FXðxÞ has
a vertical discontinuity gap, then there is an

interval of confidence level a having the same VaR.

The lower and upper endpoints of that interval

are a� ¼ FXðVaR�a ðXÞÞ and aþ ¼ FXðVaR aðXÞÞ
where FXðVaR�a ðXÞÞ¼PfX<VaRaðXÞg. When

FXðVaR�a ðXÞÞ<a<FXðVaRaðXÞÞ<1 the atom

VaRaðXÞ having total probability aþ�a� is split

by the confidence level a in two pieces with

probabilities aþ�a and a�a�. Equation 4 highlights

this splitting.

CVaR definition is illustrated further with

the following examples, in which 6 equally likely

scenarios have losses f1 . . . f6. Let a ¼ 2
3
, see Fig. 2.

VaR

Probability

1 - a

Maximum

loss

CVaR

VaR Deviation

CVaR Deviation

Maximum Loss  Deviation

Loss

Mean

F
re

q
u

en
cy

Conditional Value-at-Risk

(CVaR), Fig. 1 Risk
Functions. Graphical
Representation of VaR, VaR
Deviation, CVaR, CVaR
Deviation, Max Loss, Max
Loss Deviation
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In this case a does not split any probability atom.

Then VaRaðXÞ<CVaR�a ðXÞ<CVaRaðXÞ¼CVaRþa ðXÞ,
laðXÞ¼ FXðVaRaðXÞÞ�a

1�a ¼ 0 and CVaRaðXÞ¼
CVaRþa ðXÞ¼ 1

2
f5þ 1

2
f6, where f5; f6 are losses number

five and six.

Let now a ¼ 7
12
, see Fig. 3. In this case a does

split the VaR aðXÞ atom, l aðXÞ ¼ FXðVaR aðXÞÞ�a
1�a > 0

and CVaR aðXÞ is given by:

CVaR aðXÞ ¼
1

5
VaR aðXÞ þ

4

5
CVaRþa ðXÞ

¼ 1

5
f4 þ

2

5
f5 þ

2

5
f6 :

In the last case, there are four equally

likely scenarios and a ¼ 7
8
splits the last atom; see

Fig. 4. Now VaR aðXÞ ¼ CVaR�a ðXÞ ¼ CVaR aðXÞ,
upper CVaR, CVaRþa ðXÞ is not defined,

laðXÞ¼ FXðVaRaðXÞÞ�a
1�a >0 and CVaRaðXÞ¼VaRðXÞ¼ f4.

Portfolio Safeguard package (see American Optimal

Decisions 2009), defines CVaR function for discrete

distributions equivalently to (4) through the lower

CVaR and upper CVaR. Suppose that VaRaðXÞ atom

having total probability aþ�a� is split by the

confidence level a in two pieces with probabilities

aþ�a and a�a�. Then,

CVaR aðXÞ ¼
aþ � a

aþ � a�
1� a�

1� a
CVaR�a ðXÞ

þ a� a�

aþ � a�
1� aþ

1� a
CVaRþa ðXÞ; (7)

where CVaR�a ðXÞ ¼ E½X jX � VaR aðXÞ�;
CVaRþa ðXÞ ¼ E½X jX>VaR aðXÞ� :

(8)

Pflug (2000) followed a different approach and

suggested to define CVaR via an optimization

problem which he borrowed from Rockafellar and

Uryasev (2000)

CVaR aðXÞ ¼

min
C

Cþ 1

1� a
E½X � C�þ

� �
;

where ½t�þ ¼ max 0; tf g:

(9)
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6
1

6
1

6
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One more equivalent representation of CVaR was

given by Acerbi (2002), who showed that CVaR is

equal to “expected shortfall” defined by

CVaR aðXÞ ¼
1

a

Z a

0

VaR bðXÞdb :

For normally distributed random variables, CVaR

deviation is proportional to the standard deviation.

If X � Nðm; s2Þ, then (see Rockafellar and

Uryasev 2000),

CVaR aðXÞ ¼ E½X jX � VaR aðXÞ�
¼ mþ k1ðaÞs; (10)

where

k1ðaÞ ¼
ffiffiffiffiffiffi
2p
p

exp erf�1ð2a� 1Þ
� �2 ð1� aÞ

� ��1

and erfðzÞ ¼ 2ffiffi
p
p
R z
0
e�t

2

dt:

CVaR Optimization

CVaR optimization has been researched in Rockafellar

and Uryasev (2000) and Uryasev (2000). Nowadays

VaR has achieved the high status of being written

into industry regulations (for instance, in regulations

for financial companies). It is difficult to optimize VaR

numerically when losses are not normally distributed.

Only recently VaR optimization was included in

commercial packages such as Portfolio Safeguard

(see American Optimal Decisions 2009). As a tool in

optimization modeling, CVaR has superior properties

in many respects. CVaR optimization is consistent

with VaR optimization and yield the same results

for normal or elliptical distributions (see definition of

elliptical distribution in (see definition of elliptical

distribution in Embrechts et al. (2001)); for

models with such distributions, working with VaR,

CVaR or minimum variance (Markowitz 1952) is

equivalent (see Rockafellar and Uryasev 2000).

Most importantly, CVaR can be expressed by a

minimization formula suggested by Rockafellar and

Uryasev (2000). This formula can be incorporated into

the optimization problem with respect to decision

variables x 2 X 2 <n that are designed to minimize

risk or shape it within bounds. Significant shortcuts

are thereby achieved while preserving the crucial

problem features like convexity. Let the random loss

function f ðx; yÞ depends upon the decision vector x and
a random vector y of risk factors. For instance,

f ðx; yÞ ¼ �ðy1x1 þ y2x2Þ is the negative return of

a portfolio involving two instruments. Here x1; x2 are

positions and y1; y2 are rates of returns of two

instruments in the portfolio. The main idea in

Rockafellar and Uryasev (2000) is to define a function

that can be used instead of CVaR:

Faðx; zÞ ¼ zþ 1

1� a
Ef½ f ðx; yÞ � z�þg : (11)

The authors proved that:

1. Faðx; zÞ is convex w.r.t. a,

2. VaRaðxÞ is a minimum point of function Faðx; zÞ
w.r.t. z,

3. Minimizing Faðx; zÞ w.r.t. z gives CVaR aðxÞ:

CVaR aðxÞ ¼ min
a

Faðx; zÞ : (12)

In optimization problems, CVaR can enter into

the objective or constraints or both. A big advantage

of CVaR over VaR in that context is the preservation of

convexity, i.e., if f ðx; yÞ is convex in x than CVaR aðxÞ
is convex in x. Moreover, if f ðx; yÞ is convex in x then

the function Faðx; zÞ is convex in both x and z.

This convexity is very valuable because minimizing

Faðx; zÞ over ðx; zÞ 2 X � <, results in minimizing

CVaR aðxÞ

min
x2X

CVaR aðxÞ ¼ min
ðx;zÞ2X�<

Faðx; zÞ : (13)

In addition, if ðx�; z�ÞminimizesFa overX �<, then
not only does x� minimize CVaR aðxÞ over X but also

CVaR aðx�Þ ¼ Faðx�; z�Þ :

In risk management CVaR can be utilized to

“shape” the risk in an optimization model. For that

purpose several confidence levels can be specified.

Rockafellar and Uryasev (2000) showed that for any

selection of confidence levels ai and loss tolerances

oi, i ¼ 1; . . . ; l, the problem:

min
x2X

gðxÞ

s: t: CVaRaiðxÞ � oi; i ¼ 1; . . . ; l
(14)
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is equivalent to the problem:

min
x;z1;::;zl;2X�<�...<

gðxÞ

s: t: Faiðx; ziÞ � oi; i ¼ 1; . . . ; l:
(15)

When X and g are convex and f ðx; yÞ is convex in x,
the optimization problems (13) and (14) are ones of

convex programming and thus especially favorable for

computation. When Y is a discrete probability space

with elements yk, k ¼ 1; ::;N having probabilities pk,

k ¼ 1; ::;N:

Faiðx; ziÞ ¼ zi þ
1

1� ai

�
XN

k¼1
pk½ f ðx; ykÞ � zi�þ : (16)

The constraint Faðx; zÞ � o can be replaced by

a system of inequalities by introducing additional

variables �k :

�k � 0; f ðx; ykÞ � z� �k � 0; k ¼ 1; ::;N; (17)

zþ 1

1� a

XN

k¼1
pk�k � o :

The minimization problem in (14) can be converted

into the minimization of gðxÞ with the constraints

Faiðx; ziÞ � oi being replaced as presented in (17).

When f is linear in x, constraints (17) are linear.

Risk Measures

Axiomatic investigation of risk measures was

suggested by Artzner et al. (1999). Rockafellar

(2007) defined a functional R : L2 !� �1;1� as
a coherent risk measure in the extended sense if:

R1: RðCÞ ¼ C for all constant C,

R2: Rðð1� lÞX þ lX0Þ � ð1� lÞRðXÞ þ lRðX0Þ for
l 2�0; 1½ (convexity),

R3: RðXÞ � RðX0Þ when X � X0 (monotonicity),

R4: RðXÞ � 0 when jjXk � Xjj2 ! 0 with RðXkÞ � 0

(closedness).

A functional R : L2 !� �1;1� is called a

coherent risk measure in the basic sense if it

satisfies axioms R1, R2, R3, R4 and additionally

the axiom 4

R5: RðlXÞ ¼ lRðXÞ for l > 0 (positive

homogeneity).

A functional R : L2 !� �1;1� is called an

averse risk measure in the extended sense if it

satisfies axioms R1, R2, R4 and

R6: RðXÞ > EX for all nonconstant X (aversity).

Aversity has the interpretation that the risk of loss in

a nonconstant random variable X cannot be acceptable,

i.e. RðXÞ< 0, unless EX< 0.

A functional R : L2 !� �1;1� is called an

averse risk measure in the basic sense if it satisfies

R1, R2, R4, R6 and also R5.

Examples of coherent measures of risk are

RðXÞ ¼ mX ¼ E½X� or RðXÞ ¼ supX. However,

RðXÞ ¼ mðXÞ þ lsðXÞ for some l > 0 is not

a coherent measure of risk since it does not satisfies

the monotonicity axiom R3.

RðXÞ ¼ VaR aðXÞ is not a coherent nor an averse

risk measure. The problem lies in the convexity axiom

R2, which is equivalent to the combination of positive

homogeneity and subadditivity, this last defined as

RðX þ X0Þ � RðXÞ þ RðX0Þ. Although positive

homogeneity is obeyed, the subadditivity is violated.

The lack of coherency can destroy convexity; this

can still be present if the distribution of the

random variable X belongs to the log-concave class,

but even then there are technical hurdles because the

convexity of R is missing relative to the entire

space L2. It has been proved, for example in Acerbi

and Tasche (2002), Pug (2000), Rockafellar and

Uryasev (2002), that for any probability level

a 2�0; 1½, RðXÞ ¼ CVaR aðXÞ is a coherent measure

of risk in the basic sense. CVaR aðXÞ is also an averse

measure of risk for a 2�0; 1� An averse measure of risk

might not be coherent; a coherent measure might not

be averse.

Deviation Measures

This section refers to Rockafellar (2007) and

Rockafellar et al. (2006). A functional

D : L2 ! ½0;1� is called a deviation measure in the

extended sense if it satisfies

D1: DðCÞ ¼ 0 for constant C, but DðXÞ> 0 for

nonconstant X,

D2: Dðð1� lÞX þ lX0Þ � ð1� lÞDðXÞ þ lDðX0Þ for
l 2�0; 1½ (convexity),
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D3: DðXÞ � d when jjXk � Xjj2 ! 0 with DðXkÞ � d

(closedness).

A functional is called a deviation measure in the

basic sense when it satisfies axioms D1, D2, D3, and

furthermore

D4:DðlXÞ ¼ lDðXÞ for l> 0 (positive homogeneity).

A deviation measure in extended or basic sense is

called a coherent measure in extended or basic

sense if it additionally satisfies

D5: DðXÞ � supX � E½X� for all X (upper range

boundedness).

An immediate example of a deviation measure in

the basic sense is the standard deviation:

sðXÞ ¼ ðE½X � EX�2Þ1=2;

which satisfies axioms D1, D2, D3, D4, but not D5.

I.e., standard deviation is not a coherent deviation

measure. Here are more examples of deviation

measures in the basic sense:

Standard semideviations

sþðXÞ ¼ ðE½maxfX � EX; 0g�2Þ1=2;

s�ðXÞ ¼ ðE½maxfEX � X; 0g�2Þ1=2;

Mean Absolute Deviation

MADðXÞ ¼ E½jX � EXj�:

Moreover it is possible to define the

a-Value-at-Risk deviation measure and the

a-Conditional Value-at-Risk deviation measure as:

VaRD
a ðXÞ ¼ VaR aðX � EXÞ (18)

and

CVaRD
a ðXÞ ¼ CVaR aðX � EXÞ : (19)

VaR deviation measure VaRD
a ðXÞ is not a deviation

measure in the general or basic sense because the

convexity axiom D2 is not satisfied. CVaR deviation

measure CVaRD
a ðXÞ is a coherent deviation measure in

the basic sense.

Risk Measures Versus Deviation Measures

Rockafellar et al. originally in Rockafellar et al.

(2006), and then in Rockafellar (2007) obtained the

following result:

Theorem 1. A one-to-one correspondence between

deviation measures D in the extended sense and

averse risk measures R in the extended sense is

expressed by the relations

RðXÞ ¼ DðXÞ þ EX;

DðXÞ ¼ RðX � EXÞ;

additionally,

R is coherent $ D is coherent :

Moreover the positive homogeneity is preserved:

R is positively homogeneous

$ D is positively homogeneous :

i.e., for an averse risk measures R in the basic sense

and a deviation measures D in the basic sense the

one-to-one correspondence is valid, and additionally,

coherent R $ coherent D.
With this theorem it is obtained that for the standard

deviation, sðXÞ, which is a deviation measure in the

basic sense, the counterpart is the standard risk

EX þ sðXÞ, which is a risk averse measure in the

basic sense. For CVaR deviation, CVaRD
a ðXÞ, which

is a coherent deviation measure in the basic sense, the

counterpart is CVaR risk, CVaR aðXÞ, which is a risk

averse coherent measure in the basic sense.

Another coherent deviation measure in the basic

sense is the so-called Mixed Deviation CVaR, quite

promising for risk management purposes. Mixed

Deviation CVaR is defined as:

Mixed � CVaRD
a ðXÞ ¼

XK

k¼1
l kCVaR

D
ak
ðXÞ

for l k � 0,
PK

k¼1 l k ¼ 1 and ak in �0; 1½. The

counterpart to the Mixed Deviation CVaR is the
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Mixed CVaR, which is the coherent averse risk

measure in the basic sense, defined by

Mixed � CVaR aðXÞ ¼
XK

k¼1
l kCVaR akðXÞ :

Generalized Regression Problem

In linear regression a random variable Y is

approximated in terms of random variables

X1;X2; . . . ;Xn by an expression c0þ c1X1þ . . .þ cnXn.

The coefficients are chosen by minimizing mean

square error:

min
c0;c1;::;cn

EðY � ½c0 þ c1X1 þ . . .þ cnXn�Þ2 : (20)

Mean square error minimization is equivalent to

minimizing standard deviation with the unbiasedness

constraint (see Rockafellar et al. 2002, 2008):

min sðY � ½c0 þ c1X1 þ . . .þ cnXn�Þ
s: t: E½c0 þ c1X1 þ . . .þ cnXn� ¼ EY :

(21)

Rockafellar et al. (2002, 2008) considered a general

axiomatic setting for error measures and

corresponding deviation measures. They defined an

error measure as a functional E : L2ðOÞ ! ½0;1�
satisfying the axioms

E1: Eð0Þ ¼ 0, EðXÞ> 0 for X 6¼ 0, EðCÞ<1 for

constant C

E2: EðlXÞ ¼ lEðXÞ for l> 0 (positive homogeneity)

E3: EðX þ X0Þ � EðXÞ þ EðX0Þ for all X and X0

(subadditivity)

E4: X 2 L2ðOÞjE; ðXÞ � c
 �

is closed for all c<1
(lower semicontinuity)

For an error measure E the projected deviation

measure D is defined by the equation,

DðXÞ ¼ min
C
EðX � CÞ; and the statistic, SðXÞ, is

defined by SðXÞ ¼ argmin
C
EðX � CÞ : Their main

finding is that the general regression problem:

min
c0;c1;::;cn

EðY � ½c0 þ c1X1 þ . . .þ cnXn�Þ (22)

is equivalent to:

min
c1;::;cn

DðY � ½c1X1 þ . . .þ cnXn�Þ

c0 2 SðY � ½c1X1 þ . . .þ cnXn�Þ :

The equivalence of optimization problems (20) and

(21) is a special case of this theorem This leads

to the identification of a link between statistical

work on percentile regression (see Koenker and

Bassett 1978) and CVaR deviation measure:

minimization of the Koenker and Bassett error

measure is equivalent to minimization of CVaR

deviation. Rockafellar et al. (2008) show that when

the error measure is the Koenker and Basset function:

EaKBðXÞ¼E½maxf0;Xgþða�1�1Þmaxf0;�Xg� the

projected measure of deviation is:

DðXÞ¼CVaRD
a ðXÞ¼CVaRaðX�EXÞ with the

corresponding averse measure of risk and associated

statistic given by

RðXÞ ¼ CVaR aðXÞ;

SðXÞ ¼ VaR aðXÞ :

Then:

min
C2<
ðE½X � C�þ þ ða�1 � 1ÞE½X � C��Þ

¼ CVaRD
a ðXÞ;

argmin
C2<
ðE½X � C�þ þ ða�1 � 1ÞE½X � C��Þ

¼ VaR aðXÞ :

Similar result is available for the “mixed Koenker

and Bassett error measure” and the corresponding

mixed deviation CVaR (see Rockafellar et al. 2008).

Comparative Analysis of VaR and CVaR

VaR is a relatively simple risk management notion.

Intuition behind a-percentile of a distributions is easily

understood and VaR has a clear interpretation: how

much it is possible to lose with certain confidence

level. VaR is a single number measuring risk, defined

by some specified confidence level, e.g., a ¼ 0:95.
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Two distributions can be ranked by comparing their

VaR’s for the same confidence level. Specifying VaR

for all confidence levels completely defines the

distribution. In this sense, VaR is superior to

the standard deviation. Unlike the standard deviation,

VaR focuses on a specific part of the distribution

specified by the confidence level. This is what is

often needed, which made VaR popular in risk

management, including finance, nuclear, air and

space, material science, and various military

applications. One of important properties of VaR is

stability of estimation procedures. Since VaR

disregards the tail, it is not affected by very high tail

losses, which are usually difficult to measure. VaR is

estimated with parametric models, for instance

Covariance-VaR based on the normal distribution

assumption is very well known in finance, with

simulation models such as historical or Monte Carlo

or by using approximations based on second order

Taylor expansion.

VaR does not account for properties of the

distribution beyond the confidence level. This implies

that VaR aðXÞ may increase dramatically with a small

increase in a. In order to adequately estimate risk in

the tail, one may need to calculate several VaRs with

different confidence levels. The fact that VaR disregards

the tail of the distribution may lead to unintentional

bearing of high risks. In financial setting, for instance,

the strategy of “naked” shorting deep out-of-the-money

options will result most of the time in receiving an

option premium without any loss at expiration.

However, there is a chance of a big adverse market

movement leading to an extremely high loss. VaR

cannot capture this risk. Risk control using VaR may

lead to undesirable results for skewed distributions. VaR

is a non-convex and discontinuous function for discrete

distributions. For instance, in financial setting, VaR is

a non-convex and discontinuous functionw.r.t. portfolio

positions when returns have discrete distributions. This

makes VaR optimization a challenging computational

problem. There are codes, such as Portfolio Safeguard

(PSG), that can work with VaR functions very

efficiently. Portfolio Safeguard can optimize VaR

performance function and also shape distributions with

multiple VaR constraints. For instance, in portfolio

optimization it is possible to maximize expected return

with several VaR constraints at different confidence

levels.

CVaR has a clear engineering interpretation. It

measures outcomes which hurt the most. For

example, if L is a loss then the constraint

CVaR aðLÞ � �L ensures that the average of ð1� aÞ%
highest losses does not exceed �L. Defining CVaR aðXÞ
for all confidence levels a in ð0; 1Þ completely specifies

the distribution of X. In this sense it is superior to

standard deviation. Conditional Value-at-Risk has

several attractive mathematical properties. CVaR is

a coherent risk measure. CVaR aðXÞ is continuous

with respect to a. CVaR of a convex combination of

random variables CVaR aðw1X1 þ . . .þ wnXnÞ is

a convex function with respect to ðw1; . . . ;wnÞ. In
financial settings, CVaR of a portfolio is a convex

function of portfolio positions. CVaR optimization

can be reduced to convex programming, in some

cases to linear programming (i.e. for discrete

distributions).

CVaR is more sensitive than VaR to estimation

errors. If there is no good model for the tail of the

distribution, CVaR value may be quite misleading;

accuracy of CVaR estimation is heavily affected

by accuracy of tail modelling. For instance, historical

scenarios often do not provide enough information

about tails, hence it is necessary to assume a certain

model for the tail to be calibrated on historical data.

In the absence of a good tail model, one should not

count on CVaR. In financial settings, equally weighted

portfolios may outperform CVaR-optimal portfolios

out of sample when historical data have mean

reverting characteristics. VaR and CVaR measure

different parts of the distribution. Depending on

what is needed, one may be preferred over the other.

This topic can be illustrated with financial applications

of VaR and CVaR, to examine which one of these

measures is better for portfolio optimization. A trader

may prefer VaR to CVaR, as he may like high

uncontrolled risks; VaR is not as restrictive as

CVaR with the same confidence level. Nothing

dramatic happens to a trader in case of high losses.

He will not pay losses from his pocket; if fired, he

may move to some other company. A company owner

will probably prefer CVaR; he has to cover large

losses if they occur, hence he “really” needs to

control tail events. A board of directors of a

company may prefer to provide VaR based reports

to shareholders and regulators since it is less than

CVaR with the same confidence level. However,
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CVaR may be used internally, thus creating

asymmetry of information between different parties.

In financial optimization, VaR may be better for

optimizing portfolios when good models for tails are

not available. VaR disregards the hardest to measure

events. CVaR may not perform well out of sample

when portfolio optimization is run with poorly

constructed set of scenarios. Historical data may not

give right predictions of future tail events because of

mean-reverting characteristics of assets. High returns

typically are followed by low returns, hence CVaR

based on history may be quite misleading in risk

estimation. If a good model of tail is available, then

CVaR can be accurately estimated and CVaR should

be used. CVaR has superior mathematical properties

and can be easily handled in optimization

and statistics. When comparing stability of estimation

of VaR and CVaR, appropriate confidence levels for

VaR and CVaR must be chosen, avoiding comparison

of VaR and CVaR for the same level of a, as they

refer to different parts of the distribution (Sarykalin

et al. 2008).
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Cone

A set which contains the ray generated by any of its

points. Mathematically, a set S is a cone if the point x in

S implies that ax is in S for all a � 0.

Congestion System

Often used to be synonymous with queueing system

because congestion refers to the inability of arriving

customers to get immediate service, which is the

reason behind doing queueing analyses.

See

▶Queueing Theory

Conjoint Analysis

Situations are presented to subjects, with the features

of the situations varied by experimental design. The

subjects are asked to state their preferences among the

situations, and the importance of each feature is

assessed by statistical analysis.

See

▶ Forecasting
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Conjugate Gradient Method

▶Quadratic Programming

Connected Graph

A graph (or network) in which any two distinct nodes

are connected by a path.

Conservation of Flow

(1) A set of flow-balance equations governing the flow

of a commodity in a network that state that the

difference between the amount of flow entering and

leaving a node equals the supply or demand of the

commodity at the node. (2) A set of equations that

state that the limiting rates that units enter and leave

a state or entity of a queueing system or related

random process must be equal. The entities may be

service facilities (stages), where the limiting number

of units coming in must equal the limiting departing;

balance at a state might mean, for example, that the

rate at which a queueing system goes up to n

customers equals the rate at which it goes down to n

from above.

See

▶Balance Equations

▶Markov Chains

▶Network Optimization

▶Queueing Theory

Constrained Optimization Problem

A problem in which a function f (X) is to be optimized

(minimized or maximized), where the possible

solutions X lie in a defined solution subspace S,

which is usually determined by a set of linear and/or

nonlinear constraints.

Constraint

An equation or inequality relating the variables in an

optimization problem; a restriction on the permissible

values of the decision variables of a given problem.

Constraint Programming

Irvin Lustig1 and Jean-Francois Puget2

1IBM, Somers, NY, USA
2IBM, Valbonne, France

Introduction

Arising from research in the computer science

community, constraint programming is a technique

for solving optimization problems. It often is applied

to difficult combinatorial optimization problems

arising in configuration, sequencing, and scheduling.

To apply constraint programming, users must write

software that includes both a model of an

optimization problem plus an algorithmic search

procedure that indicates how to search for a solution.

Background

Constraint programming is often called constraint logic

programming and originates in the artificial intelligence

literature in the computer science community. Here, the

word programming refers to computer programming.

Knuth (1968) defines a computer program as “an

expression of a computational method in a computer

language.” A computer program can be viewed as

a plan of action of operations of the computer, and,

hence, the common concept of a plan is shared with

the origins of linear programming. With respect to

constraint programming, it is a computer programming

technique, with a name that is in the spirit of other

programming techniques such as object-oriented

programming, functional programming, and structured

programming. Van Hentenryck (1999) wrote:

The essence of constraint programming is a two-level
architecture integrating a constraint and a programming
component. The constraint component provides the basic
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operations of the architecture and consists of a system
reasoning about fundamental properties of constraint
systems such as satisfiability and entailment. The
constraint component is often called the constraint store,
by analogy to the memory store of traditional
programming languages. Operating around the
constraint store is a programming-language component
that specifies how to combine the basic operations, often
in non-deterministic ways.

Hence, a constraint program is not a statement of

a problem as in mathematical programming, but is

rather a computer program that indicates a method

for solving a particular problem. It is important to

emphasize the two-level architecture of a constraint

programming system. Because it is first and foremost

a computer programming system, the system contains

representations of programming variables, which are

representations of memory cells in a computer that can

be manipulated within the system. The first level of the

constraint programming architecture allows users to

state constraints over these programming variables.

The second level of this architecture allows users to

write a computer program that indicates how the

variables should be modified so as to find values of

the variables that satisfy the constraints.

The roots of constraint programming can be traced

back to the work on constraint satisfaction problems in

the 1970s, with the advent of arc consistency techniques

(Mackworth 1977) on the one hand, and the language

ALICE (Lauriere 1978) that was designed for stating

and solving combinatorial problem on the other hand. In

the 1980s, work in the logic programming community

showed that the PROLOG language could be extended

by replacing the fundamental logic programming

algorithms with more powerful constraint solving

algorithms. For instance, in 1980, PROLOG II used

a constraint solver to solve equations and disequations

on terms. This idea was further generalized in

the constraint logic programming scheme and

implemented in several languages (Colmerauer 1990;

Jaffar and Lassez 1987; Van Hentenryck 1989). Van

Hentenryck (1989) used the arc-consistency techniques

developed in the constraint satisfaction problem (CSP)

framework as the algorithm for the basic constraint

solving. This was termed finite domain constraints.

In the 1990s, a rich area of research in constraint

programming was the development of special purpose

programming languages to allow people to apply the

techniques of constraint programming to different

classes of problems. Constraint logic programming

was first proposed in the context of the programming

language PROLOG, and there are many other

specialized languages that have been developed that

offer extended functionalities compared to traditional

constraint logic programming systems. Some of these

are implemented as libraries in mainstream languages,

such as ILOG Solver C++ (Puget 1994) or Lisp (Puget

1992). Some others are special purpose languages,

such as Oz (Smolka 1995) and Claire (Caseau and

Laburthe 1995).

In the design of such languages, an axiom of their

development is that they provide completeness with

respect to being languages for doing computer

programming. A recent innovative approach with

respect to languages for constraint programming is in

the design of the Optimization Programming Language

(OPL) (Van Hentenryck 1999), where the language

was designed with the purpose of making it easy to

solve optimization problems by supporting constraint

programming and mathematical programming

techniques. Here, the completeness of the language for

computer programming is not important. Instead, the

language is designed to support the representation of

optimization problems and includes the facilities to use

an underlying constraint programming engine, with the

ability to program a search strategy to find solutions to

problems. The OPL language is not a complete

programming language, but rather a language that is

designed to solve optimization problems using either

constraint programming or mathematical programming

techniques. An advantage of OPL is that the same

language is used to unify the representations of

decision variables from traditional mathematical

programming with programming variables from

traditional constraint programming.

Constraint Satisfaction Problems

To understand the constraint programming framework,

a formal definition of a constraint satisfaction

problem is given next using the terminology of

mathematical programming. Given a set of n decision

variables x1, x2, . . ., xn, the set Dj of allowable values

for each decision variable xj, j ¼ 1, . . ., n, is called the
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domain of the variable xj. The domain of a decision

variable can be any possible set, operating over any

possible set of symbols. For example, the domain of

a variable could be the even integers between 0 and

100, or the set of real numbers in the interval [1,100],

or a set of people {Tom, John, Jim, Jack}. There is no

restriction on the type of each decision variable, and,

thus, decision variables can take on integer values, real

values, set elements, or even subsets of sets.

Formally, a constraint c(x1, x2,. . ., xn) is

a mathematical relation, that is, a subset S of the set

D1�D2� . . .�Dn, such that if (x1, x2,. . .,xn) e S, then

the constraint is said to be satisfied. Alternatively,

a constraint can be defined as a mathematical

function f: D1 � D2 � . . . Dn ! {0,1} such that

f(x1, x2,. . ., xn) ¼ 1 if and only if c(x1, x2,. . ., xn) is

satisfied. Using this functional notation, a constraint

satisfaction problem (CSP) can be defined as follows:

Given n domains D1, D2,. . ., Dn and m constraints

f1, f2,. . ., fm, find x1, x2,. . ., xn such that

f k x1; x2; :::; xnð Þ ¼ 1; 1 � k � m

xj eDj; 1 � j � n

Note that this problem is only a feasibility problem,

and that no objective function is defined. It is important

to note here that the functions fk do not necessarily

have closed mathematical forms and can simply be

defined by providing the set S described above.

A solution to a CSP is simply a set of values of the

variables such that the values are in the domains of the

variables, and all of the constraints are satisfied.

Algorithms for Constraint Satisfaction

Up to now, there has been no discussion about the

algorithm that a constraint programming system uses to

determine solutions to constraint satisfaction problems.

As mentioned earlier, a constraint programming system

requires that the user programs a search strategy that

indicates how the values of the variables should change

so as to find values that satisfy the constraints. In OPL,

there is a default search strategy that is used if the user

does not program a search strategy. Most constraint

programming systems require the user to program

a search strategy. The first fundamental algorithm

underlying a constraint programming system is given

next, followed by a discussion of the methodologies

used to program search.

Constraint Propagation and Domain
Reduction

A constraint is defined as a mathematical function

f(x1, x2,. . ., xn) of the variables. Because constraint

programming has its roots in computer programming,

the variables can be viewed as programming language

variables within a computer programming environment.

Within this environment, assume there is an underlying

mechanism that allows the domains of the variables to

bemaintained and updated.When a variable’s domain is

modified, the effects of this modification are then

propagated to any constraint that interacts with that

variable. For each constraint, a domain reduction

algorithm is then programmed that modifies the

domains of all the variables in that constraint, given

the modification of one of the variables in that

constraint. The domain reduction algorithm for a

particular kind of constraint discovers inconsistencies

among the domains of the variables in that constraint by

removing values from the domains of the variables. If

a particular variable’s domain becomes empty, then it

can be determined that the constraint cannot be satisfied,

and an earlier choice can be undone.

This is best illustrated by the example in Fig. 1.

Consider two variables x and y, where the domains of

each variable are given asDx¼ {1, 2, 3, 4, . . ., 10} and

Dy ¼ {1, 2, 3, 4, . . ., 10}, and the single constraint

y¼ 2x. For the variable y and this constraint, it is clear

that ymust be even and the domain of y can be changed

to Dy ¼ {2, 4, 6, 8, 10}. Now, considering the variable

x, since y � 10, it then follows that x � 5, and the

domain of x can be changed to Dx ¼ {1, 2, 3, 4, 5}.

Suppose that now a constraint is added of the form x

(modulo 2)¼ 1. This is equivalent to the statement that x

is odd. This reduces the domain of x to beDx¼ {1, 3, 5}.

Now, reconsidering the original constraint y ¼ 2x, the

values of 4 and 8 can be removed from the domain of

y and obtain Dy ¼ {2, 6, 10}.

A typical constraint programming system allows

the programmer to take advantage of the existing
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propagators for built-in constraints that cause domain

reductions, and to build one’s own propagation

and domain reduction schemes for user-defined

constraints. Some systems, however, for example OPL

built on top of ILOG Solver (ILOG 1999), are robust

enough that large libraries of predefined constraints are

provided as part of the constraint programming system,

along with associated propagation and domain

reduction algorithms, and it is often not necessary to

create new constraints with specialized propagation and

domain reduction algorithms.

Given a set of variables with their domains and a set

of constraints on those variables, a constraint

programming system will apply the constraint

propagation and domain reduction algorithm in an

iterative fashion to make the domains of each

variable as small as possible, while making the entire

system arc consistent. Given a constraint fk as stated

above and a variable xj, a value d eDj is consistent with

fk if there is at least one assignment of the variables

such that xj ¼ d and fk ¼ 1 with respect to that

assignment. A constraint is then arc consistent if all

of the values of all the variables involved in the

constraint are consistent. A constraint system is arc

consistent if all of the corresponding constraints are

arc consistent. The term arc is used because the first

CSPs were problems with constraints stated on pairs of

variables, and this system could be viewed as a graph,

with nodes corresponding to the variables and arcs

corresponding to the constraints.

A number of algorithms have been developed to

efficiently propagate constraints and reduce domains

so as to create systems that are arc consistent. The

predominant algorithm is called AC-5, developed by

Van Hentenryck et al. (1992). This latter article unified

the directions of the constraint satisfaction community

and the logic programming community by introducing

the concept of developing different algorithms for

different constraints as implementations of the basic

constraint propagation and domain reduction principle.

Programming Search

Given a CSP, the constraint propagation/domain

reduction algorithm can be applied to reduce the

domains of the variables so as to arrive at an arc

consistent system. However, while this may

determine if the CSP is infeasible, it does not

necessarily find solutions of a CSP. To do this, one

must program a search strategy. Traditionally, the

search facilities provided by a constraint

programming system have been based on depth-first

search. The root node of the search tree contains the

initial values of the variables. At each node, the user

programs a goal, which is a strategy that breaks the

problem into two (or more) parts, and decides which

part should be evaluated first. A simple strategy might

be to pick a variable and to try to set that variable to the

different values in the variable’s domain. This strategy

creates a set of leaves in the search tree and creates

what is called a choice point, with each leaf

corresponding to a specific choice. The goal also

orders the leaves among themselves within the choice

point. In the next level of the tree, the results of the

choice made at the leaf are propagated, and the

domains are reduced locally in that part of the tree.

This will either produce a smaller arc consistent

system, or a proof that the choice made for this leaf is

not possible. In this case, the system automatically

backtracks to the parent and tries other leaves of that

parent. The search, thus, proceeds in a depth-first
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manner, until at a node low in the tree a solution is

found, or until the entire tree is explored, in which case

the CSP is found to be infeasible. The search strategy is

enumerative, and, at each node, constraint propagation

and domain reduction are used to help prune the

search space.

A recent innovation in constraint programming

systems is found in ILOG Solver 4.4 (ILOG 1999),

where the idea of allowing the programmer to use other

strategies beyond depth-first search is provided.

Depth-first search has traditionally been used because

in the context of computer programming, the issues

regarding memory management are dramatically

simplified. ILOG Solver 4.4 allows the programmer

to use best first search (Nilsson 1971), limited

discrepancy search (Harvey and Ginsberg 1995),

depth-bounded discrepancy search (Walsh 1997), and

interleaved depth-first search (Meseguer 1997). In

ILOG Solver, the basic idea is that the user programs

node evaluators, search selectors, and search limits.

Node evaluators contain code that looks at each open

node in the search tree and chooses one to explore next.

Search selectors order the different choices within

a node, and search limits allow the user to terminate

the search after some global limit is reached (e.g., time,

node count, etc.). With these basic constructs in place,

it is then possible to easily program any search strategy

that systematically searches the entire search space by

choosing nodes to explore (i.e., programming node

evaluators), dividing the search space at nodes (i.e.,

programming goals and creating choice points), and

picking the choice to evaluate next within a specific

node (i.e., programming search selectors). Constraint

programming systems provide a framework for

describing enumeration strategies for solving search

problems in combinatorial optimization.

Constraint Programming and Branch and
Bound

For those familiar with integer programming, the

concept of search strategies should seem familiar. In

fact, branch and bound, which is an enumerative search

strategy, has been used to solve integer programs since

the middle 1960s. Lawler and Wood (1966) present

a survey, while the text by Garfinkel and Nemhauser

(1972) describes branch and bound in the context of an

enumerative procedure. In systems that have been

developed for integer programming, users are often

given the option of selecting a variable selection

strategy and a node selection strategy. These are

clearly equivalent to the descriptions of search

electors and node evaluators described above.

There are two fundamental ways in which

a constraint programming framework extends the

basic branch and bound procedures. First, in a branch

and bound procedure, two branches are created at each

node after a variable x with a fractional value v has

been chosen to branch on. The search space is then

divided into two parts, by creating a choice point based

on the two choices of (x ¼ ⌊vc) and (x � dve). In the

constraint programming framework, the choices that

are created can be any set of constraints that divides the

search space. For example, given two integer variables

x1 and x2, a choice point could be created consisting of

the three choices (x1 < x2), (x1 > x2), and (x1 ¼ x2).

The second way in which a constraint programming

framework extends the basic branch and bound

procedures is with respect to the variable selection

strategy. In most branch and bound implementations,

the variable selection strategy uses no knowledge

about the problem to make the choice of variable to

branch on. The integer program is treated in its matrix

form, and different heuristics are used to choose the

variable to branch on based on the solution of the linear

programming relaxation that is solved at each node. In

a constraint programming approach, the user

specifies the branching strategy in terms of the

formulation of the problem. Because a constraint

program is a computer program, the decision

variables of the problem can be treated as computer

programming variables, and a strategy is programmed

in the context of the problem formulation. Hence, to

effectively apply constraint programming techniques,

one uses problem-specific knowledge to help guide the

search strategy so as to efficiently find a solution.

In this way, a constraint programming system, when

combined with a linear programming optimizer, can be

viewed as a framework that allows users to program

problem-specific branch and bound search strategies

for solving mixed-integer programming problems.

This capability has been available since 1996 by

combining the products ILOG Solver for constraint

programming and ILOG Planner for linear

programming. Similar concepts also appeared in

PROLOG III (Colmerauer 1990), CLP(R) (Jaffar and

Lassez 1987), and CHIP (Dincbas et al. 1988).
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Optimization in Constraint Programming

A constraint satisfaction problem was defined

as a feasibility problem. With regard to

optimization, constraint programming systems

allow an objective function to be specified.

Notationally, the objective function will be denoted

as g: D1 � D2 � . . . � Dn ! ℜ, so that at any

feasible point to the CSP, the function g(x1, x2,. . ., xn)

can be evaluated, with the objective function to be

minimized. A weakness of a constraint programming

approach is that there is not necessarily a lower bound

present when minimizing an objective function. This is

unlike integer programming, where a lower bound

exists due to the linear programming relaxation of the

problem. Constraint programming systems offer two

methods for optimizing problems, called standard and

dichotomic search.

Standard and Dichotomic Search

The standard search procedure used is to first find

a feasible solution to the CSP, while ignoring the

objective function g(x1, x2,v, xn). Let y1, y2,. . ., yn
represent such a feasible point. The search space can

then be pruned by adding the constraint g(y1, y2,. . ., yn)

> g(x1, x2,. . ., xn) to the system, and continuing the

search. The constraint that is added specifies that any

new feasible point must have a better objective value

than the current point. As the search progresses, new

points will have progressively better objective values.

The procedure concludes until no feasible point is

found. When this happens, the last feasible point can

be taken as the optimal solution.

Dichotomic search depends on having a good lower

bound L on the objective function g(x1, x2,. . ., xn).

Before optimizing the objective function, an initial

feasible point is found, that determines an upper

bound U on the objective function. A dichotomic

search procedure is essentially a binary search on the

objective function. The midpointM ¼ (U + L)/2 of the

two bounds is computed, and a CSP is solved by

taking the original constraints and adding the

constraint g(x1, x2, . . ., xn) < M. If a new feasible

point is found, then the upper bound is updated, and

the search continues in the same way with a new

midpoint M. If the system is found to be infeasible,

then the lower bound is updated, and the search again

continues with a new midpoint M. Dichotomic search

is effective when the lower bound is strong, because

the computation time to prove that a CSP is infeasible

can often be large. The use of dichotomic search in

cooperation with a linear programming solver might be

effective if the linear programming representation can

provide a good lower bound.

See

▶Artificial Intelligence

▶Branch and Bound

▶ Integer and Combinatorial Optimization

▶Linear Programming

References

Abdennadher, S., & Fr€uhwirth, T. (2003). Essentials of

constraint programming. Heidelberg: Springer.
Apt, K. (2003). Principles of constraint programming.

Cambridge, UK: University of Cambridge Press.
Caseau, Y. & Laburthe, F. (1995). The Claire documentation

(LIENS report 96–15), Ecole Normale Superieure, Paris.
Colmerauer, A. (1990). An introduction to PROLOG III.

Communications of the ACM, 33(7), 70–90.
Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A.,

Graf, T., & Berthier, F. (1988). The constraint logic
programming language CHIP. Proceedings of the

International Conference on fifth generation computer

systems, Tokyo.
Garfinkel, R. S., & Nemhauser, G. L. (1972). Integer

programming. New York: Wiley.
Harvey, W. D. & Ginsberg, M. L. (1995). Limited discrepancy

search. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), Vol. 1. pp. 607–613.

ILOG (1999). ILOG solver 4.4 users manual. Gentilly, France:
ILOG.

Jaffar, J., & Lassez, J.-L. (1987). Constraint logic programming.
In Conference Record of the Fourteenth Annual ACM

Symposium on principles of programming languages,
Munich, pp. 111–119.

Knuth, D. E. (1968). Fundamental algorithms, the art of

computer programming (2nd ed., Vol. 1). Reading, MA:
Addison-Wesley.

Lauriere, J.-L. (1978). A language and a program for stating and
solving combinatorial problems. Artificial Intelligence, 10,
29–127.

Lawler, E. L., & Wood, D. E. (1966). Branch-and-bound
methods: A survey. Operations Research, 14, 699–719.

Mackworth, A. K. (1977). Consistency in networks of relations.
Artificial Intelligence, 8, 99–118.

Meseguer, P. (1997). Interleaved depth-first search. In
Proceedings of the International Joint Conference on

artificial intelligence (IJCAI), Vol. 2. pp. 1382–1387.

C 272 Constraint Programming

http://dx.doi.org/10.1007/978-1-4419-1153-7_42
http://dx.doi.org/10.1007/978-1-4419-1153-7_200019
http://dx.doi.org/10.1007/978-1-4419-1153-7_129
http://dx.doi.org/10.1007/978-1-4419-1153-7_545


Nilsson, N. J. (1971). Problem solving methods in artificial

intelligence. New York: McGraw-Hill.
Puget, J.-F. (1992). Pecos: A high level constraint programming

language. Proceedings of the 1st Singapore International

Conference on intelligent systems.

Puget, J.-F. (1994). A C++ implementation of CLP. Proceedings
of the 2nd Singapore International Conference on intelligent

systems. See also the current web site http://www.ilog.com/
products/optimization/research/spicis94.pdf

Rossi, F., van Beek, P., &Walsh, T. (Eds.). (2006).Handbook of
constraint programming. New York: Elsevier.

Smolka, G. (1995). The Oz programming model. In J. van
Leeuwen (Ed.), Computer science today. Lecture notes in
computer science (Vol. 1000, pp. 324–343). Springer-Verlag.

Van Hentenryck, P. (1989). Constraint satisfaction in logic

programming. Cambridge, MA: MIT Press.
Van Hentenryck, P. (1999). The OPL optimization programming

language. Cambridge, MA: MIT Press.
Van Hentenryck, P., Deville, Y., & Teng, C. M. (1992).

A generic arc-consistency algorithm and its specializations.
Artificial Intelligence, 57, 291.

Walsh, T. (1997). Depth-bounded discrepancy search.
Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI), Vol. 2. pp. 1388–1395.

Constraint Qualification

A condition imposed on the constraints of an

optimization problem so that local minimum points

will satisfy the Karush-Kuhn-Tucker conditions.

See

▶Karush-Kuhn-Tucker (KKT) Conditions

▶Nonlinear Programming
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Introduction

Due to their size and complexity, most construction

projects would appear to offer a wide potential for

MS/OR applications. For example, the standard

critical path models of PERT, CPM and precedence

diagrams are particularly successful in construction.

However, apart from these models, MS/OR methods

and models are not often used in construction. Schelle

(1990, p. 111) summarizes, “In project management

the large number of publications about operations

research topics contrast to the small number of real

applications.”

This entry reviews three major areas of construction

where MS/OR applications could occur — job

estimation and tendering, project planning, and

project management and control. Factors inhibiting

the application of MS/OR in construction projects are

discussed and possible future developments are

canvassed.

Job Estimation and Tendering

Some MS/OR models have been applied to job

estimation. Job estimation requires trade-offs

between time and cost. Early MS/OR work assumed

direct costs for each activity increased linearly

with time, and therefore, used linear programming.

But construction usually does not fit this assumption.

Dynamic programming and integer linear

programming have also been used, but the large

number of variables and constraints of construction

projects made them unworkable. Models based on

heuristic and nonlinear curves have been found to be

almost as accurate and more friendly for construction

managers, and have been tried (Cusack 1985).

In addition, the Line of Balance (LOB) model,

originally developed for the U.S. Navy, is used to

make trade-offs between alternative schedules, and

a modified LOB model called Time Chainage is

used in the U.K. for estimating schedules for

construction of roads, bridges and other civil

engineering projects (Wager and Pittard 1991).

Allied to job estimation is tendering, which must

consider competitors’ likely actions along with the

bidder’s decisions. It is a relatively more open and

therefore more difficult system to model. Hence,

although ARIMA and regression, plus other statistical

and simulation models, have been developed to assist

tendering, they have rarely been applied.

If tendering is considered from the selector’s point

of view, rather than a bidder’s point of view, variables

are not so uncertain because the selector will

have certain information about all the bids.
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Nevertheless, the complexity of construction projects

again makes application of conventional MS/OR

models difficult, especially as prior knowledge about

bidders is an important choice factor. A hybrid model

using linear programming, multiattribute utility,

regression and expert systems seems appropriate here

(Russell 1992).

Project Planning

While preparing a tender, construction managers

must start to plan the project in more detail. The

critical path models, integrated with cost control and

reporting models, are widely used in construction for

this purpose (Wager and Pittard 1991). Their

application in complex construction projects has

suggested theoretical extensions, for example,

incorporating the stochastic relationship of cost with

time. One such extension for the complex construction

industry is a suite of PC programs, Construction

Project Simulator (CPS), which incorporates

productivity variability and external interferences to

the construction process on site. It then produces bar

charts, cost and resource schedules like the critical

path models (Bennett and Ormerod 1984). However,

most of these extensions have unrealistic data

requirements and are rarely applied even if they

are tried.

Modeling could be especially useful in planning

tunnel construction projects. For example, Touran

and Toshiyuki (1987) demonstrated a simulation

model for tunnel construction and design. But model

use is limited to very large projects.

Project planning usually involves more than

cost minimization with constraints, for example,

environmental considerations. Some MS/OR

multi-objective models have provided assistance

here. For example, Scott (1987) applied

multi-objective valuation to roads construction, using

a step-by-step procedure to evaluate all objectives,

without having to assume all quantified data as being

equally accurate and reliable.

Management and Control

After a project is planned, it must be managed and

controlled. Linked with the project plan are

straightforward accounting models. With increasing

use of real time reporting, they allow closer

management of costs. It is in this relatively stable

field of managing and controlling the project after it

has begun that conventional MS/ORmodels offer most

promise, that is, at a tactical and relatively

deterministic and repetitive level. For example,

standard cost-minimization models could be applied

to the management of construction equipment, to

location and stocking of spare parts ware-houses, and

to selecting material handling methods. In one of few

actual MS/OR applications, Perry and Iliffe (1983)

used a transhipment model to manage movement of

sand during an airport construction project. Two other

possible areas in where MS/OR models might be

applied are multiple projects (where several projects

are designed and built somewhat concurrently to

minimize costs), and marketing.

In summary, although potential applications of

MS/OR in construction appear at first glance to be

plentiful, progress with actual MS/OR applications is

slow. One reason for this is that risks in using unproven

MS/OR models are high in commercial operations

where claims resulting from mistakes can be taken

to court. Moreover, each construction appears to be

one-off, that is, the building is more or less different

than previous ones of the constructor: at a different

site with different subsurface conditions; involving

different organizations and individuals with different

goals; different weather; different material, labor

requirements and shortages; different errors in

estimates of time and cost; and different levels of

interference from outside. Given this lack of

standardization, MS/OR modeling has tended to

move towards more general simulation models

(which have large data requirements) or heuristic

models. Still, MS/OR applications are few and

although “computers are installed extensively

throughout . . . consultants and construction site

offices . . . their role appears to make the former

manual processes more efficient rather than exploit

the increased potential brought by the machine”

(Brandon 1990, p. 285).

What does the future hold for MS/OR applications

in the construction industry? A probable development

is their increasing use in conjunction with user-friendly

software on PCs. Research in the construction industry

suggests that the key to successful implementation

of research is a powerful intermediary like
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construction managers. Developments in PC-based

software such as simulations and expert systems,

which assist rather than replace the experience-based

knowledge of people like site managers, offer promise

of more MS/OR applications, especially in the

complex and expensive field of contractual disputes.

These possibilities will be enhanced by interactive,

three-dimensional graphical interfaces. In particular,

expert systems should be used more frequently

because they incorporate the existing knowledge of

construction managers.

See

▶Bidding Models

▶CPM

▶Engineering Applications

▶Expert Systems

▶Gantt Charts

▶Linear Programming

▶Multiobjective Programming

▶ PERT

▶ Project Management

References

Bennett, J., & Ormerod, R. N. (1984). Simulation applied to
construction projects. Construction Management and

Economics, 2, 225–263.
Brandon, P. S. (1990). The development of an expert system for

the strategic planning of construction projects. Construction
Management and Economics, 8, 285–300.

Cusack,M.M. (1985). A simplified approach to the planning and
control of cost and project duration. Construction

Management and Economics, 3, 183–198.
Gupta, V., Fisher, D., & Murtaza, M. (1996). A consortium

sponsored knowledge-based system for managerial decision
making in industrial construction. Interfaces, 26, 9–23,
November/December.

Lewis, J. (2005). Project planning, scheduling, & control:

A hands-on guide to bringing projects in on time and on

budget (4th ed.). New York: McGraw-Hill Osborne Media.
Perry, C., & Iliffe, M. (1983). Earthmoving on construction sites.

Interfaces, 13(1), 79–84.
Russell, J. S. (1992). Decision models for analysis and

evaluation of construction contractors. Construction

Management and Economics, 10, 185–202.
Schelle, H. (1990). Operations research and project management

past, present and future. In H. Schelle & H. Reschke (Eds.),
Dimensions of project management. Berlin: Springer-Verlag.

Scott, D. (1987). Multi-objective economic evaluation of minor
roading projects. Construction Management and Economics,

5, 169–181.

Slowinski, R., &Weglarz, R. (Eds.). (1989). Advances in project
scheduling (Studies in production and engineering
economics, 9). Amsterdam: Elsevier.

Touran, A., & Toshiyuki, A. (1987). Simulation of tunnelling
operations. Construction Engineering and Management,

113, 554–568.
Wager, D.M., & Pittard, S. J. (1991).Using computers in project

management. Cambridge, UK: Construction Industry
Computing Association.

Continuous-Time Markov Chain (CTMC)

A Markov process with a continuous parameter but

countable state space. The stochastic process {X(t)}

has the property that, for all s, t � 0 and nonnegative

integers i, j, and x(u), 0 � u < 1,

Pr X tþ sð Þ ¼ jjXðsÞ ¼ i; XðuÞ ¼ xðuÞ; 0 � u < sf g

¼ Pr X tþ sð Þ ¼ jjXðsÞ ¼ if g:

See

▶Markov Chains

▶Markov Processes

Control Charts

▶Quality Control

Control Theory
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Introduction

Although the use of control theory is normally

associated with applications in electrical and

mechanical engineering, it shares much of its

mathematical foundations with operations research

and management science. These foundations include
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differential and difference equations, stochastic

processes, optimization, calculus of variations, and

others.

In application, control theory is concerned with

steering dynamical systems to achieve desired results.

Both types of systems to be controlled and the goals of

control include a wide variety of cases. Control theory

is strongly related to control systems engineering,

which is fundamental to many advanced

technologies. In a broader sense, control theoretic

concepts are applicable not just to technological

systems, but also to dynamical systems encountered

in biomedical, economic and social sciences. Control

theory has also had a fundamental impact on many

areas of applied mathematics and continues to be

a rich source of research problems.

Systems to be controlled may be of various forms:

they could bemechanical, electrical, chemical, thermal

or other systems that exhibit dynamical behavior.

Control of such systems requires that the system

dynamics be well understood. This is usually

accomplished by formulating and analyzing

a mathematical model of the system. Physical

properties of the system play an important role in

establishing the mathematical model. However, once

the model is established, the control theoretic

considerations are independent of the exact physical

nature of the system. Since different physical systems

often have similar mathematical models, similar

control principles are applicable to them. For

example, a mechanical system of interconnected

masses and springs is described by the same

mathematical model as an electrical circuit of

interconnected capacitors and inductors. From the

control theoretic point of view, the two systems can

be treated in the same way.

The control of a system is usually accomplished by

providing an input signal which affects the system

behavior. Physically, the input signal often changes

the energy flow in the system, much like the pilot’s

commands change the thrust of the engines in the

aircraft. The conversion of input signals into physical

variables, such as the energy of the mass flow, is done

by devices called actuators. System response is

measured by various instruments, called sensors. The

measurements, called output signals, are fed to

a controller, which usually means a control computer.

The controller determines the successive values of the

input signals that are then passed on to the actuators.

While the control computer hardware is the physical

location where the control decisions are being made,

the essence of the control is a control algorithm

imbedded in the computer software. The

development of control algorithms is often based on

sophisticated mathematical theory of control and on

specific models of systems under control, Fig. 1.

One of the key difficulties of control is the

uncertainty about the system model and system

outputs. The uncertainty has several origins.

Mathematical models of systems under control are

based on many simplifying assumptions and thus

contain errors due to approximations. Properties or

parameters of the system may change in

unpredictable ways. Systems may be subject to

unknown external inputs, such as, gusts of winds

acting on the aircraft. Output signals provided by

sensors contain sensor noise or communication

channel noise. By its very nature, the control problem

formulation usually includes uncertain parameters and

signals. The task of control theory is to provide

solutions which guarantee, whenever possible, good

system performance in spite of the uncertainties.

actuators disturbance

dynamical
structure

sensors

control
computer

error signal

control
signal

measured
outputs

desired
outputs

comparison

+

Σ

−

Control Theory,

Fig. 1 Closed loop
multivariate system
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Historical Development

The first systematic study of feedback control of steam

engines by J. C. Maxwell appeared in 1868. In 1893,

A.M. Lyapunov published a first paper on the stability

of motion, but his work made an impact on the control

theory literature only 55 years later. When the first

electronic amplifiers appeared in the long-distance

telephone lines after World War I, high-gain

feedback coupled with high-order dynamics of

amplifiers led to stability problems. In 1932,

H. Nyquist provided a method of feedback stability

analysis based on the frequency response. In the

late 1930s, devices for controlling aircraft were

introduced. World War II gave a big boost to the

field of feedback control. Norbert Wiener’s theory of

filtering of stochastic processes, combined with

the servomechanism theory, provided a unified

framework for the design of control mechanisms in

aircraft and ships and became what is known as

classical control theory.

In the late 1950s and in the 1960s, an extensive

development of control theory took place, coinciding

with manned space flight and other aerospace

applications, and with the advent of computers.

Bellman’s principle of optimality embedded in

Dynamic Programming, Pontryagin’s Maximum

Principle of Optimal Control, and the Kalman Filter,

were invented between 1956 and 1960. State-space

methods of analysis, based on differential equations

and matrix computations, have become the main tools

of what was then named modern control theory.

Control theory played a crucial role in the success of

the Apollo moon-landing project in 1969. In the 1970s,

substantial progress was made in the control of systems

governed by partial differential equations, adaptive

control and nonlinear control. The applications of

control theory became very diverse, including

complex material processing, bio-medical problems,

and economic studies. In the 1980s, robust control

theory was formulated and reached a significant level

of maturity. Robust control theory has by now

provided a synthesis of the classical and the modern

(state-space based) control theory.

In general, research in control aims at studying the

limits of performance of feedback control systems in

some advanced applications. Computational tools of

control have been coded in MATLAB software system

and in similar software. Control hardware has been

revolutionized by microprocessors and new sensor

and actuator technologies, such as smart materials.

Some tools of the intelligent control approach have

been applied to on-board guidance and navigation

systems. Anti-lock brake systems, computerized car

engine control, and geographic positioning systems

are a few examples of systems where the principles

and tools of control theory are at work.

Mathematical Models for Control and the
Identification Issue

The most commonly used mathematical control is the

linear state-space model. This is a system of first-order,

time-invariant, linear differential equations with inputs

and outputs. Such a linear system can be written as:

d
dt
xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þ DuðtÞ

�

where x(t)¼ state vector, u(t)¼ control, y(t)¼ output,

and A, B, C, D are matrices of appropriate dimensions.

In practical applications, engineers often use scalar

or matrix transfer functions. These are rational

functions of the complex variable s arising in the

Laplace transform or the variable z from the

Z-transform, the latter being used for discrete-time

systems. There are close relationships between

state-space and transfer-function models.

In the past, many other systems have been analyzed

in the control theory literature, such as nonlinear

ordinary differential systems, differential equations

with delay, integro-differential equations, linear and

nonlinear partial differential equations, stochastic

differential equations, both ordinary and partial,

semigroup theory, discrete-event systems, queueing

systems, Markov chains, Petri nets, neural network

models, and others. In many cases, research on those

systems has resulted in precise mathematical

conditions under which the main paradigms of linear

system theory extend to those systems.

Given an existing physical system, one of the most

challenging tasks is the determination of the

mathematical model for control. This is usually done

in one of two ways: either the model equations are

derived from physical laws and the few unknown

parameters are estimated from input and output data,
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or a general model form is assumed with all the

parameters unknown, which then requires a more

extensive parameter estimation and model validation

procedure. In either case, the overall step of model

determination from experimental data is called

system identification. Well developed methods and

computer algorithms exist to assist the control

designer in this task.

The Main Ideas

Feedback is a scheme in which the control of the

system is based on a concurrent measurement of the

system’s output. Usually, the system output is being

compared to a given desired value of the output and the

control is adjusted so as to steer the system output

closer to the desired value. Feedback creates

a directed loop linking the output to the input.

Complicated systems may have many feedback

loops, either nested or intersecting one another.

Feedback results in a change of a system’s internal

dynamics and system’s input–output characteristics.

A system with a properly designed feedback is

capable of responding correctly to input commands

even in the presence of uncertainties about the model

and the external perturbations. An effective feedback

reduces the effects of uncertainties, regardless of their

origin. Feedback is also being used to improve stability

margins, eliminate or attenuate some undesirable

nonlinearities, or to shape system’s bandwidth. Some

systems cannot even function in a stable way without

feedback. An example is the fly-by-wire fighter jet in

which the feedback control loop keeps the aircraft in

a stable flight envelope. The mechanism of feedback is

well understood in case of linear systems. However,

feedback mechanisms in nonlinear systems, especially

those with many degrees of freedom, remain the

subject of continued investigations. In a broader

sense, the concept of feedback may be used to

interpret various closed-loop interactions taking place

in dynamical systems in physics, biology, economics,

etc. (e.g., see Franklin et al. 2006; SIAM 1988).

Optimal Control

In many cases, the goal of control may be

mathematically formulated as the optimization of

a certain performance measure. The tools of

optimization theory and calculus of variations have

been applied to derive certain optimal control

principles. For example, one of the fundamental

results valid for a broad class of linear systems with

a quadratic performance measure says that the optimal

control is accomplished by a linear feedback based on

the measurement of the internal state vector of the

system. Parameters of that linear feedback are

obtained by solving a quadratic equation called the

Riccati equation. Another fundamental result says

that the control of linear systems with bounded

control function and the transition time as

a performance measure is accomplished by using

only the extremum values of control (a bang-bang

control). Solution of optimal control problems often

requires iterative numerical computations to find

a control that yields the best performance.

Robust Control

Control methods have been developed to design

feedback that minimizes the effect of uncertainty.

Systems of this type are called robust. For example,

one can design a feedback which minimizes the norm

of the transfer function from unwanted disturbances to

the output. Another design of that type makes the

feedback system maximally insensitive to parameter

variations. One of the key ideas in robust control is the

use of norms in the Hardy function space H1, for both
signals and operators (transfer functions). A close

connection between the minimum H1 norm solutions

and the solutions of certain systems of matrix Riccati

equations has been discovered.

Robust control theory is well understood for linear

time invariant systems, and some results have been

obtained for nonlinear systems. A link has been

discovered between the game-theoretic approach to

control problems with uncertainty and the linear and

nonlinear robust control.

Stochastic Control

Stochastic control theory involves the study of control

and recursive estimation problems in which the

uncertainty is modeled by random processes. One of

the most significant achievements of the linear theory
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was the discovery of Kalman filtering algorithms and the

separation principle of the optimal stochastic control.

The principle states that under certain conditions the

solution of the optimal stochastic control problem

combines the optimal deterministic state feedback and

the optimal filter estimate of the state vector, which are

obtained separately from each other.

For nonlinear systems, Markov diffusions have

become the tool of analysis. Stochastic optimal

control conditions lead to certain nonlinear second

order partial differential equations which may have

no smooth solutions satisfying appropriate initial and

boundary conditions. Weak solutions and viscosity

solutions have recently been used to describe

solutions to such optimal control problems.

Adaptive Control

One possible remedy against the uncertainty about the

system and external signals is the use of adaptive

feedback mechanism. During the system operation

under a regular feedback, input and output signals

can be processed to produce increasingly accurate

estimates of system parameters which in turn can be

used to adjust the regular feedback loop. Alternatively,

the step of estimating the original system can be

bypassed in favor of a direct tuning of the feedback

controller to minimize the error. The control system

built this way contains two feedback loops, one regular

but with adjustable parameters, and one that provides

the adjustment mechanism. Adaptive systems are

inherently nonlinear.

The main theoretical issue is the question of

stability of the adaptive feedback loop; stable

adaptive feedback laws for certain classes of

nonlinear systems have been discovered. In contrast,

bursting phenomena, oscillations, and chaos have also

been found in certain simple adaptive systems.

Research efforts include the finding of robust

adaptive control laws and at solving stochastic

adaptive control problems for systems governed by

some partial differential equations.

Intelligent Control

The term intelligent control is meant to describe

control which includes decision making in uncertain

environments, learning, self-organization, evolution

of the control laws based on adaptation to new data,

and to changes in the environment. An intelligent

controller may deal with situations that require

deciding which variables should be controlled,

which models should be used, and which control

strategy should be applied at any particular stage of

operation. In some situations, no precise

mathematical model of the system may exist, with

the only information about the process being

descriptive.

Intelligent control is a blend of control theory with

artificial intelligence. In contrast to mathematical

control theory, that uses precisely formulated

models and control laws, intelligent control relies

in many cases on heuristic models and rules. It is

an area of research with few established paradigms.

Tools of intelligent control includes expert systems,

fuzzy set theory and fuzzy control algorithms,

and artificial neural networks. Examples of systems

where the intelligent control may become effective

are autonomous robots and vehicles, flexible

manufacturing systems, and traffic control systems.

Concluding Remarks

Among the main control theory challenges are:

feedback control laws for nonlinear systems with

many degrees of freedom, including systems

governed by nonlinear partial differential equations

(e.g., control of fluid flow); adaptive and robust

control of such systems; control of systems based on

incomplete models with learning and intelligent

decision making; and feedback mechanisms based on

vision and other non-traditional sensory data (SIAM

1988).

See

▶Artificial Intelligence

▶Calculus of Variations

▶Dynamic Programming

▶Mathematical Programming

▶Neural Networks

▶Nonlinear Programming

▶Unconstrained Optimization

Control Theory 279 C

C

http://dx.doi.org/10.1007/978-1-4419-1153-7_42
http://dx.doi.org/10.1007/978-1-4419-1153-7_94
http://dx.doi.org/10.1007/978-1-4419-1153-7_264
http://dx.doi.org/10.1007/978-1-4419-1153-7_200444
http://dx.doi.org/10.1007/978-1-4419-1153-7_668
http://dx.doi.org/10.1007/978-1-4419-1153-7_682
http://dx.doi.org/10.1007/978-1-4419-1153-7_1083


References

Anderson, B. D. O., & Moore, J. B. (1990). Optimal control.
Englewood Cliffs, NJ: Prentice Hall.

Astrom, K., & Wittenmark, B. (1989). Adaptive control.
Reading, MA: Addison-Wesley.

Fleming, W., & Soner, M. (1994). Controlled markov processes
and viscosity solutions. New York: Springer Verlag.

Franklin, G. F., Powell, J. D., & Emami-Naeni, A. (2006).
Feedback control of dynamic systems (5th ed.). New Jersey:
Pearson Prentice Hall.

Green, M., & Limebeer, D. J. N. (1995). Linear robust control.
Englewood Cliffs, NJ: Prentice Hall.

Lin, C. F. (1994). Advanced control systems design. Englewood
Cliffs, NJ: Prentice Hall.

SIAM. (1988). Future directions in control theory:

A mathematical perspective, SIAM reports on issues in the

mathematical. Philadelphia: Sciences.
Sontag, E. D. (1998).Mathematical control theory: Deterministic

finite dimensional systems (2nd ed.). New York: Springer
Verlag.

Stoorvogel, A. (1992). The H1 control problem. London:
Prentice Hall International.

Zabczyk, J. (1992).Mathematical control theory: An introduction.
Boston: Birkhauser.

Control Variates

In stochastic or Monte Carlo simulation, a variance

reduction technique whereby a simulated random

variable with known expectation (the control variate)

is used to construct a more precise estimator by

combining it (usually linearly) with another more

standard estimator.

See

▶Monte Carlo Methods

▶Monte Carlo Simulation

▶ Simulation of Stochastic Discrete-Event Systems

▶Variance Reduction Techniques in Monte Carlo

Methods

Controllable Variables

In a decision problem, variables whose values are

determined by the decision process and/or decision

maker. Such variables are also called decision

variables.

See

▶Decision Maker (DM)

▶Decision Problem

▶Mathematical Model

Convex Combination

A weighted average of points (vectors). A convex

combination of the points x 1,. . ., x k is a point of the

form x ¼ a1 x1 + . . . ak xk, where a1 � 0,. . ., ak � 0,

and a1 + . . .ak ¼ 1.

Convex Cone

A cone that is also a convex set.

Convex Function

A function that is never above its linear interpolation.

Mathematically, a function f (x) is a convex over

a convex set S, if or any two points x1 and x2 in

S and for any 0 � a � 1,

f ½ax1 þ ð1� aÞx2� � af ðx1Þ þ ð1� aÞf ðx2Þ:

Convex Hull

The smallest convex set containing a given set

of points S. The convex hull of a given set S is

the intersection of all convex sets containing S.

The convex hull of a given set of points S is the set of

all convex combinations of set of points from S. If the

set S is a finite set of points in a finite-dimensional

space, then the convex hull is a polyhedron.

See

▶Convex Set

▶ Polyhedron
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Introduction

Optimization problems arise naturally in

many domains of Operations Research. Usually they

come from some design or planning procedures facing

to the limits on different resources (budget, raw

materials, labor, time, etc.). The required amounts

of these resources become the decision variables.

It is convenient to represent them by a vector x 2 Rn.

Very often, the results of the planning procedure

can be characterized by certain functions fiðxÞ,
i ¼ 0; . . . ;m, called the functional components of the

problem. Choosing the most important characteristic,

say f0, as the objective function, the following is the

standard formulation of the constrained optimization

problem:

f � ¼ min
x2Q
ff0ðxÞ : ai � fiðxÞ � bi; i ¼ 1; . . . ;m g;

(1)

where Q  Rn is a basic feasible set, and ½ai; bi� � R

are the target intervals for different characteristics of

the decision variables.

Clearly, the formulation (1) is very natural and very

important for many areas of human activity. However,

it can be shown that in its general form (1) this problem

is numerically unsolvable. It is one of the most

important results of the Complexity Theory for

optimization problems, developed in Nemirovski and

Yudin (1983). This theory studies the abilities of

numerical methods in computing an approximate

solution of optimization problems. Since the

possibility of computing an exact solution is

extremely rare in Nonlinear Numerical Analysis, the

methods are treated as iterative procedures, which

generate an answer by collecting some information

on the particular problem instance.

The computational efforts of such methods are

measured by the number of calls of oracle, the special

unit which can compute the values and differential

characteristics of functional components fi at the

requested point x 2 Rn. It is assumed that the oracle

is a Black Box, meaning that no information on its

structure and intermediate computational results is

available. At the same time, no bounds are introduced

for the computational cost of iteration and for the

volume of required memory. Nevertheless, it appears

that the worst-case complexity bound for generating an

approximate global solution to problem (1) with

accuracy e>0 is of the order

O
1

en

� �
(2)

calls of oracle. In this lower bound, e represents the

accuracy in estimating the optimal value of the

objective function, and functional components of (1)

are assumed to be Lipschitz continuous. Worst-case

bound means that for each method from a reasonably

wide class of optimization procedures there exists

a very bad problem from our problem class, for which

the number of calls is at least (2). Note that this bound

destroys any hope for developing a reliable method for

approximating a global solution to the general problem

(1). Indeed, taking very moderate values for the

parameters, say e ¼ 0:01 and n ¼ 20, we get

a computational cost which is intractable for any

computer now and in a foreseen future.

Note that the main reason for the disastrous

bound (2) is the ambitious intention to approach

a global solution of the general problem (1). By

stepping back and reducing the goal to finding a

stationary point, for the unconstrained minimization

problem

f � ¼ min
x2Rn

f ðxÞ; (3)

the stationary points satisfy the Fermat condition

Hf ðxÞ ¼ 0; (4)

where Hf denotes the gradient of function f . Thus, the

goal now is to find �x 2 Rn with

k Hf ð�xÞ k � e: (5)

For function with Lipschitz continuous gradient,

k Hf ðxÞ � Hf ðyÞ k � L k x� y k; x; y 2 Rn; (6)
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apply the simplest Gradient Method,

xkþ1 ¼ xk �
1

L
Hf ðxkÞ; k � 0: (7)

Then, after k iterations of the scheme,

min
0�i�k

k Hf ðxiÞk2�
Lðf ðx0Þ � f �Þ
2ðk þ 1Þ :

Thus, the goal (5) can be reached in

O
1

e2

� �
(8)

iterations of method (7). As compared with (2), the

estimate (8) does not depend on n. Thus, even for very

large problems the goal (5) is reachable.

Sincewe are able to approach efficiently the stationary

points of problem (3), the natural question is as follows:

What is the largest class of functions, for which

the stationarity condition (4) is a suffcient

characterization of the global soution to (3)?

Denoting this class of functions by F , we could ask
also for two other natural properties:

• If fi 2 F and ai � 0, then
P
i

aifi 2 F .
• Any linear function belongs to F .

Then, it can be shown, Section 2.1.1 in Nesterov

(2004), that a differentiable function f belongs to F
if and only if

f ðyÞ � f ðxÞ þ Hf ðxÞ; y� xh i; x; y 2 Rn; (9)

where x; yh i ¼def P
n

i¼1
xðiÞyðiÞ. This is a definition of

differentiable convex function on Rn.

This notion can be extended onto nondifferentiable

functions defined onto the convex sets. A setQ � Rn is

called convex if

x; y 2 Q )

xa ¼def axþ ð1� aÞy 2 Q; a 2 ½0; 1�:
(10)

Function f is called convex if its epigraph is

a convex set. That is

f ðaxþ ð1� aÞyÞ � af ðxÞ þ ð1� aÞf ðyÞ;
x; y 2 Q; a 2 ½0; 1�: (11)

Function f is called concave if � f is convex.

Despite to the absence of usual differentiability and

continuity, convex function possesses many

interesting properties, especially at the interior points

of its domain. At these points it is locally Lipschitz

continuous and differentiable along any direction.

Moreover, at any point x of its domain dom f , there

exists a special set of differential characteristics of this

function called a subdifferential @f ðxÞ � Rn. It is

defined as follows:

f ðyÞ � f ðxÞ þ hgx; y� xi; x; y 2 dom f ; gx 2 @f ðxÞ:
(12)

Subdifferential is a closed convex set, which is

bounded for any interior point of dom f . For

differentiable functions, @f ðxÞ � fHf ðxÞg. Convexity
of functions is preserved by some natural operations

(summation, multiplication by a positive constant,

taking a maximum, etc.). All these operations are

supported by corresponding operations with

subdifferentials. Thus, in principal, the differential

characteristics of convex functions are computable.

Convex sets and convex functions are extensively

studied in a special mathematical discipline

called Convex Analysis, see Rockafellar (1970);

Hiriart-Urruty and Lemarechal (1993).

The notion of convexity plays a central role in

Operations Research and Optimization Theory. Using

convex objects, we can write down the convex

optimization problem:

f � ¼ min
x2Q
f f0ðxÞ : fiðxÞ � 0; i ¼ 1; . . . ;m g; (13)

where Q is a closed convex set and all functions fi,

i ¼ 0; . . . ;m, are convex. We will see below that this

problem is generically tractable. It can be efficiently

solved by different optimization methods.

Besides the convex optimization problems, there

are two other important problem classes with convex

structure.

Saddle point problems. In this setting, we need to

find a solution of the following problem:

min
x2Qx

max
y2Qy

f ðx; yÞ; (14)

where Qx and Qy are closed convex sets, and function

f ðx; yÞ is convex in x and concave in y. For example,
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we can write in this form a two-person zero-sum game.

Note that optimization problem (13) is a particular case

of problem (14):

f � ¼ min
x2Q

max
y2Rm

þ
f0ðxÞ þ

Xm

i¼1
yðiÞfiðxÞ

( )

:

For the saddle point problem (14), define a pair of

primal-dual problems. Denote

f ðxÞ ¼ max
y2Qy

f ðx; yÞ; fðyÞ ¼ min
x2Qx

f ðx; yÞ:

Note that f ðxÞ � fðyÞ for all x 2 Qx, y 2 Qy. At the

same time, under very mild assumptions there is zero

duality gap:

f � ¼ min
x2Qx

f ðxÞ ¼ max
y2Qy

fðyÞ:

Variational inequalities. Variational inequality

problem (VI) is posed as follows:

Find x� 2 Q : Vðx�Þ; x� x�h i � 0 8x 2 Q; (15)

where Q is a closed convex set and V : Rn ! Rn. Point

x� is called the strong solution of VI. If x� 2 Q and

VðxÞ; x� x�h i � 0 8x 2 Q; (16)

then x� is called the weak solution of VI. For

continuous operators, the sets of weak and strong

solutions coincide. Not that the numerical schemes

can approach only the set of weak solutions X�,
independently on existence of the strong ones. By

definition, X� is a closed convex set (may be empty).

The problem (15) has convex structure when the

operator V is monotone:

VðxÞ � VðyÞ; x� yh i � 0 8x; y 2 Q: (17)

Variational inequality problem with monotone

operator is the most general (and most difficult)

problem with convex structure. It includes, as

a particular case, the saddle point problem (14).

An important example of monotone VI is the

problem of finding the Nash equilibrium of a game

with m players. Let Qi  Rni , i ¼ 1; . . . ;m, be the

closed convex sets containing the feasible decision

vectors of corresponding players. Assume that each

player i has his own utility function fiðx1; . . . ; xmÞ,
which is convex in xi 2 Qi, and jointly concave in all

other variables xj 2 Qj, j 6¼ i. The Nash equilibrium

x� ¼ ðx�1; . . . ; x�mÞ is defined as follows:

x�i ¼ arg min
xi2Qi

fiðx�1; . . . ; xi; . . . ; x�mÞ; i ¼ 1; . . . ;m:

It can be shown that this point is a solution of

corresponding VI with operator

VðxÞ ¼ðHx1 f1ðxÞ; . . . ;Hxm fmðxÞÞ;

x ¼ðx1; . . . ; xmÞ 2
Ym

i¼1
Qi:

This operator is monotone if function
Pm

i¼1
fiðxÞ is

convex.

From the modelling point of view, convexity is

often a very natural property. Condition (10) implies

that with two feasible decisions x and y, all intermediate

variants xa are feasible. Clearly, this assumption

enormously facilitates the decision-making process. It

is realized for a long time already, that even if the

number of variables is relatively small, the problems

with nonconvex or discrete feasible sets can be

extremely difficult for human beings, e.g., “To be, or

not to be?” Shakespeare (1602). For numerical methods,

convexity is also a very favorable property.

Black-Box Optimization Methods

Nonsmooth Optimization

For explaining the main ideas of Black-Box

optimization schemes, consider the simplest

formulation of convex optimization problem,

min
x2Q

f ðxÞ; (18)

where Q  Rn is a closed convex set, and f is a convex

function defined on Rn. Black-box optimization

methods approach the optimal solution of this

problem by analyzing the answers of the oracle

ðf ðxiÞ; gi 2 @f ðxiÞÞ computed at the test points

fxig1i¼0. The simplest optimization strategy is
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implemented in the (primal) Subgradient Method

(Polyak 1967; Shor 1985):

xkþ1 ¼ pQ xk � hkgkð Þ; k � 0; (19)

where pQðxÞ is the Euclidean projection of x onto the

convex set Q, and the apriori chosen step sized fhkg
satisfy conditions

hk > 0; hk ! 0;
X1

k¼0
hk ¼ 1:

Assuming that the subgradients of f are bounded on

Q by constant M, and that k x0 � x� k� R, we can

derive the optimal step size strategy forN-step process:

hk ¼
R

M
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p ; k ¼ 0; . . . ;N:

Then min
0�k�N

f ðxkÞ � f � � MRffiffiffiffiffiffiffi
Nþ1
p . Thus, in order to

compute e-solution of our problem, we need M2R2

e2

of calls of oracle. In accordance with Complexity

Theory (Nemirovski and Yudin 1983), this efficiency

estimate cannot be improved by the Black Box

Methods working in a high-dimensional spaces

(number of iterations never exceeds the dimension).

Unfortunately, the practical performance of the

subgradient method coincides with its theoretical

estimate, which is quite pessimistic. Therefore it is

important to have numerical schemes which can

accelerate on the particular problem instances. Note

that by the Black Box Concept and inequality (12),

after analyzing N test points, the full knowledge about

the objective function is concentrated in the following

inequality:

f ðyÞ � fNðxÞ ¼def max
0�i�N

½ f ðxiÞ þ hgi; x� xi�; x 2 Rn:

(20)

Piece-wise linear function fN is called the full model

of our problem. It gives, for example, a computable

lower bound for the optimal value of our problem:

f � � f �N ¼
def

min
x2Q

fNðxÞ:

Note that f̂
�
N ¼

def
min
0�k�N

f ðxkÞ gives us an upper

bound for f �. The models fNðxÞ are employed in

so-called Bundle Methods, see Hiriart-Urruty and

Lemarechal (1993). The most popular variant is the

Level Method (Lemarechal et al. 1995):

Qk ¼ fx 2 Q : fkðxÞ � 1
2
ð f̂ �k þf �k Þg;

xkþ1 ¼ pQk
ðxkÞ; k � 0:

The efficiency estimate for this method is the same

as for the subragient scheme (the optimal one).

However, its practical behavior usually is much

better. Level Method can be also used for solving

saddle point problems and variational inequalities.

For problem of moderate dimension, Complexity

Theory provides us with lower complexity bound

Oðn ln1
e
Þ. Note that it has very weak dependence on e.

The methods which efficiency estimates depend

polynomially on dimension and the logarithm of

accuracy are called polynomial-time schemes.

In optimization, the methods which approach the

above lower bound are based on idea of cutting planes.

In accordance with (12), the optimal solution x�

satisfies the following condition:

gx; x� x�h i � 0:

Therefore, after N iterations we know that

x� 2 LN ¼def fx 2 Q : gk; xk � xh i � 0; k ¼ 0; . . . ;Ng:

The localization sets Lk can be used in different

ways. The most straightforward strategy is

implemented in the Method of Centers of Gravity

(Newman 1960, Levin 1965):

xkþ1 ¼ center of gravityðLkÞ; k � 0:

It can be shown that this method has the optimal

rate of convergence. However, its iteration is

extremely expensive. An implementable version of

this method is the famous Ellipsoid Method

(Nemirovski and Yudin, 1983). It updates the outer
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ellipsoidal approximations for the setsLk. For problem

(18), the scheme is very simple:

Initial settings : R�k x0� x� k; H0¼R2 
 I:

kth iteration : xkþ1¼ xk�
Hkgk

ðnþ1ÞhHkgk;gki1=2
;

Hkþ1¼
n2

n2�1
Hk�

2Hkgkg
T
kHk

ðnþ1ÞhHkgk;gki

� �
:

However, its efficiency estimate is not optimal:

Oðn2ln1
e
Þ. At this moment there exist several

optimization methods with optimal efficiency

estimate and reasonably small complexity of each

iteration, see Nesterov (2004).

Smooth Optimization

Assume now that the objective function in problem

(18) has Lipschitz-continuous gradient:

k Hf ðxÞ � Hf ðyÞ k� L k x� y k; x; y 2 Q: (21)

The simplest scheme for solving this problem is the

Primal Gradient Method:

xkþ1 ¼ pQ xk �
1

L
Hf ðxkÞ

� �
; k � 0:

Its rate of convergence is as follows:

f ðxkÞ � f � � LR2

kþ1. Thus, this scheme can compute

E-solution in OðLR2

e
Þ iteration. Another possibility is to

use Dual Gradient Method:

vkþ1 ¼ argmin
v2Q

Xk

i¼0
½f ðviÞ þ hHf ðviÞ;v� vii�

(

þL

2
k v� v0k2

)

; k � 0:

Defining xk ¼ pQ vk � 1
L
Hf ðvkÞ

� �
, we get

Pk

i¼0
ðf ðxkÞ � f �Þ � L

2
k v0 � x�k2. Finally, combining

these two ideas, leads to the Fast Gradient Method

(FGM):

vk ¼ argmin
v2Q

Xk�1

i¼0

iþ1

2
½ f ðyiÞþhHf ðyiÞ;v� yii�

(

þL
2
k v�x0k2

)

;

yk ¼
2

kþ2
vkþ

k

kþ1
xk; xkþ1¼ pQðyk�

1

L
Hf ðykÞÞ; k� 0:

(22)

It can be shown that f ðxkÞ � f � � 2Lkx0�x�k2
ðkþ1Þðkþ2Þ, see

Nesterov (2005). Thus, this method computes an

e-solution to problem (18) in OðL1=2R
e1=2
Þ iterations.

Under assumption (21), this rate of convergence is

optimal, Nemirovski and Yudin (1983). The first

FGM was proposed in Nesterov (1983).

Second-Order Methods

If the second derivative of objective function is

available, we can apply to problem (18) the second

order schemes. Unfortunately, in this situation the

classical Newton method does not allow the

worst-case global complexity analysis. In order to get

the full theoretical justification, we need to apply cubic

regularization, Nesterov and Polyak (2006). Namely,

let us assume that

k H2f ðxÞ � H2f ðyÞ k� K k x� y k;
x; y 2 Q:

(23)

For problem (18) and (23), consider the following

method:

xkþ1 ¼ argmin
x2Q

�
f ðxkÞ þ Hf ðxkÞ; x� xkh i

þ1
2
H2f ðxkÞðx� xkÞ; x� xk
� �

þ K

6
k x� xkk3

�
:

It converges as f ðxkÞ � f � � 27Kkx0�x�k2
2ðkþ3Þ2 , see

Nesterov and Polyak (2006). Using the ideas of

Fast Gradient Methods, it can be accelerated up to the

rate f ðxkÞ � f � � 14Kkx0�x�k2
kðkþ1Þðkþ2Þ, k � 1, see Nesterov

(2008).

Structural Optimization

For Convex Optimization, black-box Complexity

Theory has a hidden drawback. Indeed, in order to
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apply the corresponding schemes, we need to be sure

that our problem is convex (otherwise, the methods do

not work). However, the only reliable way for

checking convexity is the examination of its

structure. If the function is constructed from convex

elements by appropriate operations, we conclude that it

is convex. Thus, the structure is visible at the

preparatory stage. However, later it is ignored by

numerical schemes.

Several systematic ways of using the structure of

nonlinear convex optimization problems have been

developed. We give two most important examples.

Polynomial-Time Interior-Point Methods

This theory is based on the notion of self-concordant

function (Nesterov and Nemirovski, 1994).

Definition 1. Let f be a closed convex function with

open domain. It is called self-concordant (sc) if

f 2 C3ðdom f Þ and

D3f ðxÞ½h; h; h� � 2 D2f ðxÞ½h; h�
� �3=2

; x 2 dom f ; h 2 Rn;

whereDkf ðxÞ½h; . . . ; h� denotes kth differential of f at x
along direction h.

The central role in the analysis of sc-functions play

the local norms defined by Hessians:

k h kx ¼ hH2f ðxÞh; hi1=2; k s k�x¼ hs; ½H2f ðxÞ��1si1=2;
x 2 dom f ; s; h 2 Rn:

Define the Dikin ellipsoid WrðxÞ ¼
fy :k y� x kx � rg. Then WrðxÞ � dom f for any

x 2 dom f and r 2 ½0; 1Þ. Inside the Dikin ellipsoid,

all Hessians are proportional. This feature facilitates

the convergence analysis of the damped Newton

method

x0 2 dom f ; xkþ1 ¼ xk �
½H2f ðxkÞ��1Hf ðxkÞ
1þ k Hf ðxkÞ k�xk

; k � 0:

It can be proved that all iterations of this scheme are

feasible. They either decrease the value of f by an

absolute constant, or converge quadratically. The

region of quadratic convergence of this scheme is

described by inequality k Hf ðxÞ k�x <1
2
. An important

characteristic of the set dom f is the analytic center

x�f ¼ argmin
x

f ðxÞ. Its existence is equivalent to

boundedness of f from below. Its uniqueness implies

nondegeneracy of the Hessian at any feasible point.

An important class of sc-functions is formed by

self-concordant barriers (scb) defined by inequality

Hf ðxÞ; hh i2 � n H2f ðxÞh; h
� �

; x 2 dom f ; h 2 Rn:

The value n is called the parameter of scb. Using

such a barrier, we can solve the standard optimization

problem

min
x2Q
hc; xi; Q ¼ Cl ðdom f Þ: (24)

For that, we form the central trajectory

x�ðtÞ ¼ argmin
x
fthc; xi þ f ðxÞg, t � 0, and follow it

by the Newton method. This can be done

approximately by updating the points in the

Euclidean neighborhood of the central path

fx :k tcþ Hf ðxÞ k�x� 1
4
g using a predictor-corrector

scheme. It can find an e-solution of problem (24) in

Oðn1=2lnn
e
Þ iterations.

It can be proved that for any convex set in Rn there

exists a scb with the parameter proportional to n.

However, for its computation it is necessary to

evaluate n-dimensional volumes. Therefore, in

practice scb are constructed by analyzing the

structure of functional components. Important

examples of scb are as follows:

Q¼fy2Rm : ai;yh i� bi; i¼ 1; . . . ;mg;

f ðxÞ¼�
Xm

i¼1
lnðbi� ai;xh iÞ; n¼m;

Q¼fX¼XT 2Rn�n : X� 0g;
f ðXÞ¼�lndet X; n¼ n:

The most efficient interior-point methods are

constructed for optimization problems in conic form.

They allow infeasible start, long steps and eventual

local quadratic convergence. In practice, the number

of iterations of such schemes is often proportional to

lnn.

Smoothing Technique

The idea of this approach consists in approximating the

nosmooth function by a smooth one, which can be

efficiently minimized by FGM (22). It appears that
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for functions with explicit max -representation this

can be done in a systematic way (Nesterov, 2005).

Assume that

f ðxÞ ¼ max
u2Qd

f Ax; uh i � fðuÞg;

where Qd is a convex set and f is a convex function.

Let us choose a prox-function d of the set Qd (it is

strongly convex with parameter one and attains its

minimum at the center u0 with dðu0Þ ¼ 0). Define

fmðxÞ ¼ max
u2Qd

f Ax; uh i � fðuÞ � mdðuÞg; m � 0: (25)

Then f ðxÞ � fmðxÞ � f ðxÞ � mD with

D ¼ max
u2Qd

dðuÞ. On the other hand, by Danskin

Theorem, fm has Lipschitz continuous gradient with

constant Lm ¼ 1
m
k A k2, where

k A k¼ max
x;u
f Ax; uh i :k x k¼ 1; k u k¼ 1g

(norms for x and u are different). Thus, choosing

m ¼ OðeÞ, an e-solution of problem (18) can be found

by minimizing fm over Q by a fast gradient scheme. It

will need at most Oð1
e
Þ iterations instead of Oð 1

e2
Þ

iterations for a black-box method. This difference is

due to the change of the structure of the oracle.

Of course, the smoothing technique is applicable

only if the computation (25) can be done in a closed

form. One of the most important examples is as

follows:

f ðxÞ ¼ max
1�i�n

xðiÞ; Qd ¼ Dn ¼ fu � 0 :
Xn

i¼1
uðiÞ ¼ 1g;

A ¼ I; fðuÞ ¼ 0;

k u k ¼
Xn

i¼1
juðiÞj; dðuÞ ¼

Xn

i¼1
uðiÞ ln uðiÞ;

fmðxÞ ¼ m ln
1

n

Xn

i¼1
ex
ðiÞ=m

 !

:

See

▶Global Optimization

▶ Interior-Point Methods for Conic-Linear

Optimization
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Convex Polyhedron

A set of points defined by the intersection of a finite

number of linear equations and/or inequalities.

See

▶ Polyhedron
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Convex Set

A set of points that contains the line segment

connecting any two of its point. Mathematically, the

set S is convex if for all 0 � a � 1 and for all x1 and x2
in S, the point ax1 + (1�a)x2 is also in S.

Convexity Rows

The constraints in the decomposition algorithm master

problems that require solutions to be convex

combinations of the extreme points of the

subproblems.

See

▶Dantzig-Wolfe Decomposition Algorithm

Convex-Programming Problem

A programming problem with convex objective

function and convex inequality constraints. It is

typically written as

Minimize f ðxÞ
subject to giðxÞ � 0; i ¼ 1; :::;m;

where the functions f(x) and gi(x) are convex functions

defined on Euclidean n-space.

See

▶Convex Optimization

▶Mathematical-Programming Problem

▶Nonlinear Programming

CONWIP

CONstant WIP (Work in Process), corresponding to

a pull-type production control system in which the

number of parts in the system is kept fixed.

See

▶Kanban

▶ Pull System
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Copula

A probability distribution function used to describe the

dependence between random variables, which allows

the joint cumulative distribution function CDF to be

expressed in terms of the marginal CDFs and the

copula. This representation enables the estimation of

the marginals and the dependent behavior to be

decoupled and the generation of the dependent

random variables via the inverse transform method.

Specifically, if Xi � Fi, i = 1, . . ,n, where Fi are the

marginal CDFs, the copula function is a mapping

C: [0,1]n! [0,1] given by (Nelsen 2010)

C ul; . . . ; unÞ ¼ Pð F Xlð Þð � ul; . . . ;F Xnð Þ � unÞ:

Thus, if the joint uniform random numbers

(U1,. . ., Un) are generated according to C, the set of

dependent random variates (X1,. . ., Xn) can be

generated by applying the corresponding inverse

transform method to each component, i.e.,

Xi ¼ F�1i Uið Þ. The most well-known families of

copulas are the Gaussian and the Archimedean.

See

▶ Inverse Transform Method

▶Monte Carlo Methods

▶ Simulation of Stochastic Discrete-Event Systems

▶ Stochastic Input Model Selection

References

Nelsen, R. B. (2010). An introduction to copulas (2nd ed.).
New York: Springer.

C 288 Convex Set

http://dx.doi.org/10.1007/978-1-4419-1153-7_200119
http://dx.doi.org/10.1007/978-1-4419-1153-7_1171
http://dx.doi.org/10.1007/978-1-4419-1153-7_200445
http://dx.doi.org/10.1007/978-1-4419-1153-7_682
http://dx.doi.org/10.1007/978-1-4419-1153-7_200357
http://dx.doi.org/10.1007/978-1-4419-1153-7_200664
http://dx.doi.org/10.1007/978-1-4419-1153-7_200343
http://dx.doi.org/10.1007/978-1-4419-1153-7_200484
http://dx.doi.org/10.1007/978-1-4419-1153-7_959
http://dx.doi.org/10.1007/978-1-4419-1153-7_1182


Corner Point

▶Extreme Point

Corporate Strategy

Arnoldo C. Hax1 and Nicolas S. Majluf2

1Massachusetts Institute of Technology, Cambridge,

MA, USA
2Pontificia Universidad Católica de Chile,
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Introduction

A formal strategic planning process distinguishes three

perspectives: corporate, business, and functional. These

perspectives are different both in term of the nature of

the decisions they address, as well as the organizational

units and managers involved in formulating and

implementing the corresponding action programs

generated by the strategy formation process.

The corporate level deals with the tasks that cannot

be delegated downward in the organization, because

they need the broadest possible scope — involving the

whole firm — to be properly addressed. The business

level faces those decisions that are critical to establish

a sustainable competitive advantage, leading toward

superior economic returns in the industry where the

business competes. The functional level attempts to

develop and nurture the core competencies of the

firm, the capabilities that are the sources of the

competitive advantages.

This article deals exclusively with corporate

strategic tasks (Hax and Majluf 1996). There are

three different imperatives — leadership, economic,

and managerial — that are useful to characterize these

tasks, depending on whether the concern is with

shaping the vision of the firm, extracting the highest

profitability levels, or assuring proper coordination and

managerial capabilities.

The Leadership Imperative

This imperative is commonly associated with the

person of the CEO, who is expected to define a vision

for the firm, and communicate it in a way that

generates contagious enthusiasm.

The CEO’s vision provides a sense of purpose to the

organization, poses a significant but yet attainable

challenge, and draws the basic direction to the pursuit

of that challenge. Successful organizations invariable

seem to have competent leaders who are able to define

and transmit a creative vision, one that generates a spirit

of success. In other words, success breeds success.

Hamel and Prahalad (1989) argued that the vision of

the firm should carry with it an obsession that they

refer to as Strategic Intent. It implies a sizable stretch

for the organization that requires leveraging resources

to reach seemingly unattainable goals.

Much has been written and said about leadership

including the controversy on nature or nurture — whether

leaders are born or made — and on the existence

of common characteristics to describe successful

leaders (Schein 1992; Kotter 1988). This literature is

not reviewed here. Instead the concentration is on the

economic and managerial imperatives of the corporate

strategic tasks. Nonetheless, the set of corporate

tasks that deal with the economic and managerial

imperatives are the critical instruments to imprint the

vision of the firm. The leadership capabilities are

expressed and made tangible through the tasks that

are discussed herein (Pfeffer 1992).

The Economic Imperative

This imperative is concerned with creating value at the

corporate level. The acid test is whether the businesses

of the firm are benefitting from being together, or if

they would be better off as separate and autonomous

units. From this point of view, the essence of corporate

strategy is to assure that the value of the whole firm is

bigger than the sum of the contributions of its

businesses as independent units.

The economic imperative involves three central

issues: the definition of the businesses of the firm; the

identification and exploitation of interrelationships

across those businesses, and the coordination of the

business activities that allow sharing assets and skills

(Porter 1987; Pearson 1989).

There are eight corporate tasks that are associated

with the economic imperative of corporate strategy.

The first one is the Environmental Scan at the

Corporate Level, which allow us to start the reflection
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of the firm’s competitive position by a thorough

understanding of the external forces that it is facing.

One of the principal objectives of strategy is to seek

a proper alignment between the firm and its

environment. Therefore, it seems logical to start the

corporate strategic planning process with a rigorous

examination of the external environment.

The seven additional tasks imply critical strategic

decisions seeking the attainment of corporate

competitive advantages. They are mission of the firm,

business segmentation, horizontal strategy, vertical

integration, corporate philosophy, strategic posture of

the firm, and portfolio management. The essence of

these tasks are discussed next.

1. Environmental Scan at the corporate level —

Understanding the external forces impacting the

firm: The Environmental Scan provides an

assessment of the distinct business opportunities

offered by the geographical regions in which the

firm operates. It also examines the general trends of

the various industrial sectors related to the portfolio

of businesses of the corporation. Finally, it

describes the favorable and unfavorable impacts to

the firm from technological trends, supply of human

resources, as well as political, social, and legal

factors. The output of the Environmental Scan is

the identification of key opportunities and threats

resulting from the impact of external factors.

2. The mission of the firm — Choosing competitive

domains and the way to compete: The mission of

the firm defines the business scope — products,

markets, and geographical locations — as well as

the unique competencies that determine its

capabilities. The level of aggregation used to

express this mission statement is very broad,

because of the need to encompass all the critical

activities and capabilities of the corporation.

The mission of the firm defines the overall

portfolio of businesses. It selects the businesses in

which the firm will enter or exit, as well as the

discretionary allocation of tangible and intangible

resources assigned to them. The selection of

a business scope at the level of the firm is often

very hard to reverse without incurring in significant

or prohibitive costs. The development of unique

competencies shape the corporate advantage,

namely, the capabilities that will be transferred

across the portfolio of businesses.

The mission of the firm involves two of the most

essential decisions of corporate strategy: selecting

the businesses of the firm, and integrating the

business strategies to create additional economic

value. Mistakes in these two categories of

decisions could be painful, because the stakes that

are assigned to the resulting bets are very high

indeed.

3. Business segmentation — Selecting planning and

organizational focuses: The mission of the firm

defines its business scope, namely the products

and services it generates, the markets it serves, and

the geographical locations in which it operates. The

business segmentation defines the perspectives or

dimensions that will be used to group these

activities in a way that will be managed most

effectively. It adds planning and organizational

focuses which are central for both the strategic

analysis and the implementation of the business

strategies. This concept is of great importance in

the conduct of a formal strategic planning process,

since the resulting businesses are the most relevant

units of analysis in that process.

4. Horizontal strategy — Pursuing synergistic

linkages across business units: One could argue

that horizontal strategies are the primary sources

for corporate advantage of a diversified firm. It is

through the detection and realization of the existing

synergy across the various businesses that

significant additional economic value can be

created. The value chain is the basic framework

that is used to detect opportunities for sharing

resources and activities across businesses (Porter

1985). The resulting degree of linkages among

businesses determines their relative autonomy and

independence.

The mission of the firm defines the business

scope; business segmentation organizes the

businesses into planning and managerial units;

horizontal strategies determines their degree of

interdependence. Consequently, these tasks are

highly linked. Moreover, the mission of the firm

also defines the current and future corporate core

competencies, which are the basis that supports the

relationship among the various businesses, and the

role to be played by horizontal strategy.

5. Vertical integration — Defining the boundaries of

the firm: Vertical integration determines the breadth
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of the value chain, as well as the intensity of each of

the activities performed internally by the firm. It

specifies the firm’s boundaries, and establishes the

relationship of the firm with its primary outside

constituencies — suppliers. distributors, and

customers.

The major benefits of vertical integration are

realized through: cost reductions from economies

of scale and scope; creation of defensive market

power against suppliers and clients; and creation

of offensive market power to profit from new

business opportunities. The main deterrents of

vertical integration are: diseconomies of scale

from increases in overhead and capital

investments; loss of flexibility; and administrative

penalties stemming from more complex managerial

activities (Stuckey and White 1993; Harrigan 1985;

Walker 1988; Teece 1987).

6. Corporate philosophy — Defining the relationship

between the firm and its stakeholders: The

corporate philosophy provides a unifying theme

and a statement of basic principles for the

organization. First, it addresses the relationship

between the firm and its employees, customers,

suppliers, communities, and shareholders. Second,

it specifies broad objectives for the firm’s growth

and profitability. Third, it defines the basic

corporate policies; and finally, it comments on

issues of ethics, beliefs, and rules of personal and

corporate conduct.

The corporate philosophy is the task that is most

closely related to the leadership imperative, insofar

as bringing a capability to articulate key elements of

the CEO’s vision.

7. Strategic posture of the firm — identifying the

strategic thrusts, and corporate performance

objectives: The strategic posture of the firm is

a set of pragmatic requirements developed at the

corporate level to guide the formulation of

corporate, business, and functional strategies. The

strategic thrusts characterize the strategic agenda of

the firm. They identify all of the key strategic issues,

and signal the organizational units responsible to

respond to them. The corporate performance

objectives define the key indicators used to

evaluate the managerial results, and assign

numerical targets as an expression of the strategic

intent of the firm. The strategic posture captures the

outputs of all of the previous tasks and use them as

challenges to be recognized and dealt with in terms

of action-driven issues.

8. Portfolio management — Assigning priorities for

resource allocation and identifying opportunities for

diversification and divestment: Portfolio management

and resource allocation have always been recognized

as responsibilities that reside squarely at the corporate

level. As noted above, the development of core

competencies shared by the various businesses of

the firm constitute a critical source of corporate

advantage. Those competencies are borne from

resources that the firm should be able to nurture and

deploy effectively, including: physical assets, like

plant and equipment; intangible assets, like

highly-recognized brands; and capabilities, like skills

associated with product design and development.

The heart of an effective resource allocation

process is the capacity to create economic value.

Sometimes, this value emerges from internal

activities of the firm, other times it is acquired

from external sources through mergers,

acquisitions, joint ventures, and other forms of

alliances. Even, on occasions, value can be created

by divesting businesses that are not earning their

cost of capital, i.e., they are destroying instead of

adding value to the firm. Portfolio management

deals with all of these critical issues.

In the 1980s, most developed economies

faced periods of stagnation which have forced

firms to implement drastic restructuring policies.

Restructuring leads to the realignment of physical

assets (including divestment), human resources, and

organizational boundaries of the various businesses

with the intent of reshaping their structure and

performance. Restructuring decisions are also part

of portfolio management (Donaldson 1994).

The Managerial Imperative

This imperative is the major determinant for

a successful implementation of corporate strategy. It

involves two additional important corporate tasks: the

design of the firm managerial infrastructure, and the

management of its key personnel.

9. Managerial infrastructure—Designing and adjusting

the organizational structure, managerial processes,
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and systems in consonance with the culture of the

firm to facilitate the implementation of strategy:

Organizational structure and administrative

systems constitute the managerial infrastructure of

the firm. An effective managerial infrastructure

is critical for the successful implementation of

the strategies of the firm. Its ultimate objective is

the development of corporate values, managerial

capabilities, organizational responsibilities, and

managerial processes to create a self-sustaining set

of rules that allow the decentralization of the

activities of the firm.

The term organizational architecture is

commonly used to designate the design efforts that

produce an alignment between the environment, the

organizational resources, the culture of the firm, and

its strategy (Nadler et al. 1992).

10. Human resources management of key personnel—

selection, development, appraisal, rewards, and

promotion: Regardless how large a corporation is,

it will be alwaysmanaged by a few key individuals.

Percy Barnevik, the CEO of Asea Brown-Boveri

(ABB), a successful global company, stated that

one of ABB’s biggest priority and crucial

bottleneck is to create global managers. He

immediately added, however, that a global

company does not need thousands of them. At

ABB, five hundred out of a total of fifteen

thousand managers are enough to make ABB

work well (Taylor 1991).

TomMacAvoy, the former President of Corning

Glass-Works, used to talk, in a rather colorful way,

about the need for one hundred centurions to run an

organization. These are huge corporations, with

operations in over one hundred countries. When it

comes to identify the key personnel they need, the

numbers are surprisingly small; yet, the process of

identifying, developing, promoting, rewarding, and

retaining them, is one of the toughest challenges

that an organization faces.

The Fundamental Elements in the Definition
of Corporate Strategy

The corporate strategic tasks can be organized in

a strategic planning framework, “The Fundamental

Elements in the Definition of Corporate Strategy: The

Ten Tasks” (Fig. 1).

The first element of the framework — The Central

Focus of Corporate Strategy — consists in identifying

the entity that is going to be part of the corporate

strategic analysis. As opposed to the case of business

strategy, where the unit of analysis is the Strategic

Business Unit (SBU), corporate strategy can be

applied at different levels in a large diversified

organization. The amplest possible scope is the firm

as a whole. There are circumstances, however, under

which the scope of the analysis to a sector, group, or

division of a given organization should be narrowed.

These entities should encompass a number of different

business units to be the subject of a meaningful

corporate strategic analysis.

The next two elements of the framework are

Corporate Environmental Scan and Corporate

Internal Scrutiny. But, before addressing their

collective tasks, it is important to note that

throughout the corporate strategic analysis, existing

conditions are contrasted with future ones. Thus, an

underlying time frame is required to be spelled out at

the beginning of the planning process.

In the case of the Corporate Environmental Scan,

there are two different treatments of the future. When

dealing with completely uncontrollable factors, there

is a need to forecast their most likely trends to be able

to understand their potential impacts. There are

situations, however, in which the corporation would

like to influence future events, especially when it can

exercise some degree of control that will allow the

future to be shaped to an advantage. By contrast, in

all of the tasks that are part of the Internal Scrutiny, the

future represents a state being directed at through a set

of controllable decisions.

The Corporate Environmental Scan should be

conducted first in the planning process, because it

serves to frame the impacts resulting from the

external environment. It has also the important role

of transferring a common set of assumptions to the

various businesses and functional managers of the

firm, to serve as inputs in their own strategic planning

efforts. It gives a sense of uniformity to the strategic

planning thinking across all the key organizational

units of the firm. This task culminates with

the recognition of opportunities — the favorable

impacts of the external environment which the

corporation would like to seize — and threats — the

unfavorable impacts which the corporation would like

to neutralize.
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The Corporate Internal Scrutiny captures the key

actions and decisions the corporation has to address to

gain a competitive position that is in line with the

challenges generated by the external environment,

and conducive to the development of a sustainable

corporate advantage. This advantage is transferable to

the various business units of the firm, and enhances its

resources and capabilities. The tasks which are part of

the Internal Scrutiny in our framework are:

• Mission of the Firm

• Business Segmentation

• Horizontal Strategy

• Vertical Integration

• Corporate Philosophy

In all of these decisions, the current state is

contrasted with a desirable future one. The process

then proceeds to define the challenges those changes

generate for the formulation of corporate strategy. The

Internal Scrutiny concludes with an overall statement

of corporate strengths that the firm wishes to maintain

and reinforce, as well as a statement of corporate

weaknesses that the firmwishes to correct or eliminate.

The Corporate Environmental Scan and the

Corporate Internal Scrutiny provide the basic inputs

that will define the Strategic Posture of the firm. This

task serves as a synthesis of the analysis conducted so

far, and captures the strategic agenda of the firm. The

strategic thrusts are a powerful expression of all of

the issues that, from the perspective of the firm, need

to be addressed to come out with an integrative

strategy. The Corporate Performance Objectives

define the key indicators that will be used to detect

the operational and strategic effectiveness of the firm.

The Strategic Posture is the essence of the

formulation of the corporate strategy, and as such, it

is a task that should receive the utmost attention.

When properly conducted, the firm is able to frame

the activities, responsibilities, and performance

measurements that are critical for its superior

strategic position.

Central Focus of Corporate
Strategy

The Firm

Corporate Internal Scrutiny Corporate Environmental Scan

Opportunities and Threats

Strategic Posture of the Firm

Strategic Thrusts
Corporate Performance Objectives

Resource Allocation

Portfolio Management

Managerial Infrastructure

Organizational Structure and
Administrative Systems

Human Resources

Management of Key Personnel

Economic outlook
Analysis of critical geographical
locations and industrial sectors

Technological, human resources,
political,social, and legal trends

Mission of the firm
Business Segmentation

Horizontal Strategy
Vertical Intergration

Corporate Philosophy

Strengths and Weaknesses

Corporate Strategy,

Fig. 1 The fundamental
elements in the definition of
corporate strategy: the ten
tasks
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The subsequent task, Resource Allocation and

Portfolio Management, permits to backup the

strategic actions implicit in the Strategic Posture of

the firm with the necessary resources needed for their

deployment. This leads to the realm of strategy

implementation. These implementation efforts are

reinforced strongly by the remaining two corporate

tasks: Managerial Infrastructure and Human

Resources Management of Key Personnel.

See

▶Computational Organization Theory

▶Organization
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Introduction

Cost analysis is the process of estimating the individual

and comparative costs of alternative ways of

accomplishing an objective. The goal is not to

forecast precisely accurate costs, but rather to reveal

the extent to which one alternative costs more or less

than another. A cost analysis is often conducted in

conjunction with an effectiveness analysis to aid

in the selection of one alternative over others.

Evolution

Cost analysis emerged as part of a broader initiative in

the late 1940s and early 1950s to apply economic

principles to the decision making process of the

U.S. Department of Defense (DoD). A confluence of

events following World War II resulted in a dramatic

and enduring change in the way resource allocation

decisions were made in public organizations. The

development and evolution of cost-effectiveness

analysis and cost analysis occurred nearly

simultaneously and are closely related. Both types of

analysis make use of operations research methods.

Operations research was invented and applied

mainly by civilian scientists in support of the war

effort. From its inception, operations research sought

to “use scientific methods to get the most out of

available resources” (Quade 1971). Immediately

following the war, many of these scientists were

retained by the Military Departments to apply newly

developed quantitative methods to aid defense

decisions. The forerunners of the RAND Corporation,

the Institute for Defense Analyses (IDA), and the

Center for Naval Analyses (CNA) were formed

during this period.

After the war, separation of military responsibilities

between the U.S. Armed Services broke down as

a consequence of the rapid development of military

technology and the different character of the military
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threat (Smale 1967). The Services began competing for

missions and disputes were settled via approval of

budgets for new weapon systems. Competing systems

were considered on the basis of cost-effectiveness.When

equally effective weapon systems were compared, those

estimated to cost the least won funding approvals. The

analytical procedure applied to such decisions was first

named weapon systems analysis, later shortened to

systems analysis. The first documented systems

analysis was accomplished in 1949 by the RAND

Corporation and compared the B-52 to a turbo-prop

bomber. The use of dollar costs as a proxy for

real costs changed the basic systems analysis question

from “Which weapon system is best for the job?” to

“Given a fixed budget, which weapon system is most

cost effective?” (Smale 1967; Novick 1988).

The birth of cost analysis as a separate activity

occurred in the early 1950s and is attributed to

Novick (1988), a cost analyst with the RAND

Corporation. Novick pioneered weapon system cost

analysis and is referred to as the father of

cost analysis. Novick and his group at RAND are

attributed with development of the fundamental

building blocks of cost analysis. These include

separation of total costs into cost elements, separation

of one-time and recurring costs, development of cost

estimating relationships, and development of

conceptual costs or order-of-magnitude estimates

used to compare future system proposals. Novick’s

group went on to invent parametric cost estimating,

incremental costing, and “Total Force Costing”

(Novick 1988; Hough 1989).

In the early 1960s, the Department of

Defense established and implemented a centralized

resource allocation process called the Planning,

Programming and Budgeting System (PPBS). Under

this system, future defense resources were allocated

to missions in a systematic, rational manner using

cost-effectiveness as the decision criterion. In 1961,

a Systems Analysis Office was established within the

Office of the Secretary of Defense (OSD) to help

implement this new resource allocation procedure.

In 1965, a Cost Analysis Division was established

within the office of the Assistant Secretary of

Defense, Systems Analysis. With this act, cost

analysis gained a primary role in the examination of

alternative force structures at the OSD level. Also in

1965, the PPBS system was extended to all federal

agencies by President Lyndon Johnson.

The next few decades brought initiatives that

strengthened the cost analysis capabilities of the

DoD. The military departments established cost

analysis offices at headquarters and major commands

and staffed them, at least in part, with people trained

and experienced in the methods of operations research.

The DoD initiated systematic collection of cost

information from defense contractors to provide

defense cost analysts with records of cost experiences

on major weapon system acquisitions. These records

formed the bases of estimates of the costs of proposed

systems at acquisition milestone decision points,

strengthened the DoD’s position during contract

negotiations, and provided for DoD tracking of

negotiated costs. In 1971, Deputy Secretary of

Defense Packard instituted defense acquisition

reforms that included establishment of the DoD Cost

Analysis Improvement Group (Hough 1989), the

requirement for independent parametric estimates

for new systems acquisitions, formalization of cost

analysis reviews at milestone decision points, and

requirements for the military departments to

improve their cost-estimating capabilities. As part

of the Packard reform, cost was elevated to

a principal design parameter with implementation of

the “Design to Cost” initiative (Hough 1989). Ten

years later, in 1981, Deputy Secretary of Defense

Carlucci placed further demands on the DoD’s cost

analysis capabilities. He instituted the practice of

“Multi-Year Procurement” based on benefit/risk

analyses, “Budget to Most Likely or Expected

Cost,” budgeting more realistically for inflation, the

use of economic production rates, the requirement to

forecast business base at defense contractors’ plants,

increased efforts to quantify cost risk and uncertainty,

and provision of greater incentives on design-to-cost

goals by tying award fees to actual costs achieved in

production.

Throughout the 1970s and 1980s, the practice of

cost analysis continued to expand mainly in the

public sector. The US government’s cost analysis

organizations grew in size by drawing people skilled

in engineering, economics, operations research,

accounting, mathematics, statistics, business, and

related fields. Several focused educational programs

were initiated to support this budding profession at

military universities, including the Air Force Institute

of Technology, the Naval Postgraduate School, and the

Defense Systems Management College.
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The 1990s brought a surge of activity in cost

analysis with institutionalization of a Cost and

Operational Effectiveness Analysis (COEA) as an

integral part of the defense acquisition process.

COEAs are required to be conducted and presented to

the Defense Acquisition Executive at major milestone

in the acquisition of a major weapon system.

Around the turn of the century, the DoD established

a preference for the use of evolutionary acquisition

strategies (DoD D5000.01) that promise to speed

the delivery of advanced capabilities to warfighters

while also providing follow-on improvements in

capabilities as planned technological advances are

achieved. Adoption of this approach provides cost

analysts with the challenge of estimating the costs of

systems that embody ultimate capabilities that cannot

be fully defined at the beginning of the acquisition

program.

Methods

Cost analysis is a sequential process: first

identification, then measurement, and finally

evaluation of alternatives. This involves the

structuring and analysis of resource alternatives in

a full planning context. In the case of defense,

the size of the U.S. defense budget limits the dollars

available to provide for the national defense. Monies

spent on one mission/capability/weapon system are

not available to spend on another. “Therefore,

properly constructed cost estimates and cost analyses

are essential because an accurate assessment of

the cost of individual programs is the first necessary

step towards understanding the comparative benefits

of alternative programs and capabilities” (Smale

1967).

Economic costs are benefits lost and are often

referred to as alternative costs or opportunity costs

(Fisher 1970). An estimate of the economic cost of

one choice, decision or alternative, within this

context, is an estimate of the benefits that could

otherwise have been obtained by choosing the best of

the remaining alternatives. When constructed in this

way, costs have the same dimension as benefits, and

direct comparison is possible.

The following cost analysis concepts are briefly

described here: the Work Breakdown Structure

(WBS), Estimating Relationships (ER), and Cost

Progress Curves. The treatment is not comprehensive

in any sense and is provided to give those

completely unfamiliar with the methods of cost

analysis an idea of what is involved.

Work Breakdown Structure — Cost analysts break

complex systems down into pieces before attempting

to estimate their costs. A notion fundamental to

this process is the Work Breakdown Structure (WBS)

(U.S. Air Force Material Command 1993). The basic

concept of a WBS is to represent an aircraft system,

for example, as a hierarchical tree composed of

hardware, software, facilities, data, services, and

other work tasks. This tree completely defines the

product and the work to be accomplished. It relates

elements of work to each other and to the end product.

Cost analysts usually estimate total systems costs

as the sum of the costs of the individual elements of

the WBS.

Estimating Relationships — Another tool that is

fundamental to cost analysis is the estimating

relationship (ER). In a broad sense, estimating

relationships are transformation devices which permit

cost analysts to go from basic inputs (e.g. descriptive

information for some future weapon system) to

estimates of the cost of output-oriented packages of

military capability (Fisher 1970). More specifically,

ERs are analytic devices that relate various categories

of cost (e.g. dollars or physical units) to explanatory

variables referred to as cost drivers.While taking many

different forms, ERs are usually mathematical

functions derived from empirical data using statistical

analyses.

Cost Progress Curves — The basic notion

of a learning curve is that, as a work procedure

(e.g. sequence of steps/activities) is repeated,

the person performing the procedure normally

becomes better or more efficient at performing the

procedure. The reduction in time or cost to perform

the procedure is commonly attributed to learning. Cost

analysts, who are more interested in reductions in cost,

refer to this phenomenon as cost progress rather than

learning.

The theory of cost progress curves states that as the

total quantity of units (e.g. aircraft, wings, or

fuselages) produced doubles, the cost per unit

declines by some constant percentage. Wright (1936)

empirically demonstrated the principle (Asher 1956).

The standard mathematical model is a power function

that relates manufacturing labor hours required to
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produce a particular unit to the cumulative number of

units produced. The functional form is simply:

C ¼ aQb

where C is the number of hours required to produce

unit Q, a is the labor hours required to produce the first

unit, and b is a parameter that measures the amount of

cost progress reflected in the data used to estimate the

model parameters. The form is a hyperbolic function

that is linear in logarithmic space. The characteristic of

linearity in logarithmic space and the ease of

application account for the general acceptance and

popularity of the cost progress curve among cost

analysts. The cost progress curve is applied widely by

defense cost analysts when estimating the costs of

alternative force sizes and compositions.

Professional Organizations

As cost analysis evolved over the past few decades,

a number of professional organizations were formed to

further advance cost analysis and related professional

activities. The Cost-Effectiveness Technical

Section of the Operations Research Society of

America (now the Institute for Operations Research

and the Management Sciences–INFORMS) was

formed in 1956 to provide for the exchange of

experiences in conducting such analyses. This

organization has since changed its name to the

Military Application Section (MAS) of INFORMS.

The National Estimating Society (NES) was formed

in 1978. This organization’s focus was on cost

estimating from the perspective of the private sector.

The formation of the Institute of Cost Analysis (ICA)

in 1981 was referred to as the most significant event of

the decade for DoD cost analysts (Hough 1989). ICA

was dedicated to the furtherance of cost analysis in the

public and private sectors. Both ICA and NES

established programs under which the technical

competence of members were certified, leading to

a designation of Certified Cost Analyst or Certified

Cost Estimator. ICA and NES subsequently merged

to form the Society of Cost Estimating and Analysis

(SCEA). SCEA continues the certification process by

conferring the “Certified Cost Estimator/Analyst”

designation to those who pass a qualifying

examination.

See

▶Center for Naval Analyses

▶Cost-Effectiveness Analysis

▶RAND Corporation
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Cost Coefficient

In a linear programming problem, the generic name

given to the objective function coefficients.

Cost Range

▶Ranging

▶ Sensitivity Analysis

Cost Row

The row in a simplex tableau that contains the reduced

costs of the associated feasible bases.

See

▶ Simplex Method (Algorithm)
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Cost Slope

The rate of cost change per unit of time duration of

a project’s work item.

See

▶Network Planning

Cost Vector

In a linear-programming problem, a row vector c

whose components are the objective function

coefficients of the problem.

See

▶Cost Row

Cost-Effectiveness Analysis

Norman Keith Womer

University of Missouri-St Louis, St. Louis, MO, USA

Introduction

Cost effectiveness analysis is a practical way of

assessing the usefulness of public projects. The

history of the subject can be traced to Dupuit’s

classic 1844 paper, “On the Measurement of the

Utility of Public Works.” The technique has been

a mainstay of the Army Corps of Engineers since

1902. Recent variations of the technique have been

labeled cost effectiveness analysis, cost benefit

analysis, systems analysis, or merely analysis. It has

been extensively applied to projects in defense,

transportation, irrigation, waterways, and housing.

Cost effectiveness analysis is required by law and

regulation throughout the federal government to decide

among certain alternative policies and projects. It has

been recently required in federal regulations designed to

protect human health, safety, or the environment.

Despite this fact, the practice of cost effectiveness

analysis is subject to criticism. Robert Dorfman

(1996) declared, “Three prominent shortcomings of

benefit-cost analysis as currently practiced are (1) it

does not identify the population segments whom the

proposed measure benefits or harms, (2) it attempts to

reduce all comparisons to a single dimension, generally

dollars and cents, and (3) it conceals the degree of

inaccuracy or uncertainty in its estimates.”

Cost effectiveness analysis (CEA) is the process of

using theory, data, and models to examine a problem’s

relevant objectives and alternative means of achieving

them. It is used to compare the costs, benefits, and risks

of alternative solutions to a problem and to assist

decision makers in choosing among them. The

differences between cost effectiveness analysis and

the discipline of operations research itself are subtle

and, in some treatments, merely a matter of emphasis

(see the discussion in Quade 1971). The convention

adopted here is that operations research is a body of

knowledge that includes all of the tools and methods

that might be used in any study, while cost

effectiveness analysis is a particular application of

models and methods to a choice problem.

Sometimes CEA is portrayed as the combination of

the difficult problem of measuring effectiveness with

the rather mundane problem of cost estimation. In fact,

cost measurement is an important issue. Cost

effectiveness analysis provides a tool for effective

resource allocation only when all the resource

implications associated with each alternative — both

direct and indirect — are included in the analysis. The

opportunity cost of a proposed allocation of resources

is the value of those resources in their best alternative

use. The very concept of opportunity cost therefore

requires knowledge of the goals and objectives,

measures of effectiveness, the other alternatives and

constraints of the organization. That is, to employ this

basic concept of cost, a careful analysis of the problem

must be accomplished.

Therefore, CEA must focus on the process of

modeling both cost and effectiveness to develop

relevant measures that shed light on the problem

under study. Ultimately, CEA consists of methods

for evaluating vectors of measures. In the process,

CEA must grapple with issues like the scale of

operations, risk, uncertainty, timing, and actions of

other players.
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The Role of Models

Figure 1, adapted from Quade (1971), portrays the

elements of CEA. Models are used in CEA to aid in

the evaluation of alternatives. These models often take

the form of equations that relate the physical

description of alternative systems to various impacts

of their production and use. The models may concern

the acquisition of the systems, their operation, or

various circumstances associated with applying the

system in an environment.

There are many assumptions in any analysis. One

important class of assumptions that is often left

unstated in CEAs concerns the behavior of key

players in the process. Traditionally, CEAs have been

based on rather mechanical models that relate

a system’s physical characteristics (e.g., weight and

speed) to production cost. Any reference to behavior

has often been confined to vague statements about

efficiency. In fact, costs and benefits result only from

actions. Thus, the motivation to act is an important part

of modeling costs and benefits. Unfortunately, these

behavioral assumptions are often not stated explicitly.

Instead, they are frequently imbedded in detailed

computer simulations that attempt to emulate the

simultaneous operation of complex systems in

realistic environments.

Incommensurable Impacts

The output of a suite of models may be a rather long list

of measured system impacts. Some of the system

impacts are measurable in units of effectiveness

or costs, while others are external to our frame

of reference. Generally, each of the impacts will

be measurable in units that are unique to that impact,

for example, number of lives lost, replacement cost

of lost equipment, number of minutes of error

free transmission accomplished, etc. Choice requires

not only the objective consideration of the measurable

impacts, but also the consideration of the often

immeasurable externalities. As a result, it is

important that the analyst carefully report both

impact measures and their accuracy and those

impacts that remain unmeasured. Choice also

requires the explicit use of a criterion that evaluates

the impacts and their relation to the choice problem at

hand.

The Analyst and the Decision Maker

In doing analysis, the first and most important issue is

to understand the decision maker’s problem.

Answering the question “What is the problem?” often

requires understanding both the organization for which

the analysis is performed and the physical system or

structural change that is under study. The problem may

be stated in different forms at different points in time

and at different levels in the organization. Thus,

understanding the problem requires understanding the

objectives of the entire organization.

For example, consider the problem of analyzing the

cost of a mission currently assigned to an aircraft

system. What is the problem? Some candidates are:

• Should the existing system be replaced?

• What design should be chosen?

• Who should produce the system?

• How should the mission be performed?

• Is the mission affordable?

Often analysis is done with reference to one of these

problems and then later the same study is applied to

a different problem. Clearly, the alternatives, the risks,

the objectives, and the cost are not independent of the

problem being addressed.

Whose problem is this? It is the analyst who must

choose the techniques, collect the data, model the

processes, and measure the costs and outputs. It is

the analyst who must justify the choices made in the

particular context of the problem being addressed.

Thus, it is the analyst who must be able to answer the

question, “What is the Problem?”

If the role of the analyst is so large, what is left for

the decision maker? The decision maker must

also understand the problem and judge the value

of the analysis. The decision maker must examine

the completeness of the alternatives, evaluate

the assumptions, examine the measurement of the

impacts, and determine if risks are adequately

addressed. All of these tasks are important. But the

most important task of the decision maker is the task

of evaluating the relative importance of the various

positive and negative impacts. This includes not only

the impacts that are internal to the organization but also

the externalities. Evaluating the impacts also means

dealing with their risks and uncertainties. The decision

maker’s values also include his or her attitudes toward

risk. It is in this effort that the decision maker’s role

is uniquely different from that of the analyst.
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Once the impacts have been evaluated, then choice can

be merely a matter of adding them up and comparing

the weighted impacts of each of the alternatives.

Criteria

Cost-benefit ratios—Cost effectiveness analysis often

is implemented by classifying each impact of a system

as either a cost or a benefit. Common units are then

found for costs and for benefits and the discounted

present value of each is calculated. Alternatives are

compared by the ratio of these two measures.

Using a cost-benefit ratio to choose among

alternatives presents several problems. Often, this

approach leaves out relevant measures (i.e., treats

them as the externalities depicted in Fig. 1) because

those impacts cannot be evaluated in units that are

comparable to the main impacts. Choosing units for

the main impacts involves subjective decisions that

trade-off relative measures of merit. For example,

lives lost must be compared to visual pollution or

environmental impact must be valued relative to

economic loss. The person who determines common

units for such diverse measures of merit is no longer

playing the role of an analyst. That person is acting as

the decision maker.

The alternative is to leave the various measures of

merit uncombined. But a major problem occurs with

ratio analysis when the analysis must consider multiple

inputs and multiple outputs. Several ratios may

be constructed but then it is not clear how these

multiple ratios should be combined to determine the

overall value of an alternative. Cost-benefit ratios

provide the decision maker with little guidance on

how to proceed in this case.

Another problem with ratio analysis is the constant

returns to scale assumption that is implicit in

calculating a cost-benefit ratio. By displaying the

results in ratio form, the analyst implies that if

the system is expanded or contracted the costs

and the benefits both change proportionately.

Unfortunately, the world is replete with examples of

alternatives that violate such proportionality rules.

The use of the incremental cost-effectiveness ratio

recognizes this problem. Finally, ratio analysis does

not lend itself to explicit treatments of risk and

uncertainty, see Conigliani and Tancredi (2009).

Production functions — The production function

approach to CEA can deal with variable returns to

scale and with other nonlinearities in technology.

Numerous estimates of costs and benefits for various

alternatives at different scale levels are used to fit

a nonlinear production function by regression. This

technique can deal with several measures of input

and can therefore overcome some of the difficulties

of the cost-benefit ratio. Production functions can also

incorporate risk described with random variables. But,

the multiple regression production function also has

some drawbacks. First, the use of regression tends to

measure efficiency relative to average performance

instead of best performance. That is, all the

observations are pooled to fit the production function,

a measure of average efficiency, then each alternative

is compared to that average measure. Also, multiple

regression requires that a single indicator for output
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be used. Thus, multiple outputs must be combined into

a single effectiveness indicator, similar to ratio

analysis. This type of problem is especially severe in

non-profit and governmental organizations where

prices for outputs are unavailable or incomplete.

Charnes and Cooper (1985) also criticized regression’s

lack of ability, “in identifying the underlying sources

and amounts of inefficiencies.”

Data envelopment analysis — Data envelopment

analysis (DEA) provides an efficiency measure

that offers some aid for the criterion problem. This

linear-programming based measure has its origin in

linear production theory. Golany (1988) pointed out

that “DEA is quickly emerging as the leading method

for efficient evaluation, in terms of both the number

of research papers published and the number of

applications to real world problems.”

DEA is a procedure that has been designed

specifically to measure relative efficiency in

situations in which there are multiple measures of

merit and there is no obvious objective way of

aggregating measures of merit into a meaningful

index of productive efficiency. Compared to

regression, which averages the aggregate impact of

a system, DEA is an extremal method. DEA

calculates the efficiency of each alternative by

comparing (via mathematical programming models)

an alternative’s measures of merit with the measures

of merit of the other alternatives. Each alternative’s

measures of merit are weighed as favorably as

possible. If the alternative is inefficient, DEA

indicates which of its measures of merit imply its

inefficiency. Also, DEA does not require the

parametric specification of a production function; it

derives an estimate of the production function

directly from the observed data on elements of cost

and effectiveness that are model outputs. DEA has

been used to measure the productivity and efficiency

of many organizations. It has been particularly useful

for public sector organizations where market prices of

outputs are not available. DEA has the potential to be

extremely helpful in developing criteria in cost

effectiveness analyses.

Advances—Contributions to the literature on CEA

make explicit use of methods for analyzing risk and

uncertainty, Conigliani and Tancredi, (2009); of

dynamic models some using Markov models, Soares

and Castro, (2010); and others using computable

general equilibrium models, Löschel and Otto (2009).

Examples. Cost effectiveness analyses have been

conducted in support of (and in opposition to)

numerous significant national decisions. For example,

the study of alternative delivery systems that resulted

in the choice of the space shuttle, the series of studies

on the Anti-Ballistic Missile, and the studies for and

against the breakup of AT&T are classic studies that

illustrate both the power and the fragility of this

important concept.

See

▶Cost Analysis

▶Data Envelopment Analysis

▶Measure of Effectiveness (MOE)

▶Multi-Criteria Decision Making (MCDM)

▶Opportunity Cost

References

Charnes, A., & Cooper, W. W. (1985). Preface to topics in data
envelopment analysis. Annals Operations Research, 2, 59–94.

Charnes, A., Cooper, W. W., & Sueyoshi, T. (1988). A goal
programming/constrained regression review of the bell
system breakup. Management Science, 34, 1–26.

Conigliani, C., & Tancredi, A. (2009). A Bayesian model
averaging approach for cost-effectiveness analyses. Health
Economics, 18, 807–821.

Dorfman, R. (1996). Why benefit-cost analysis is widely
disregarded and what to do about it. Interfaces, 26(5), 1–6.

Dupuit, J. (1844). De la Mesure de l’utilité des travaux publics.
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COV

▶Coefficient of Variation

Covering Problem

▶ Set-Covering Problem

Coxian Distribution

A probability distribution whose Laplace-Stieltjes

transform may be written as the quotient of two

polynomials (i.e., a rational function). All Coxian

distributions have a phase-type formulation which

may include fictitious stages.

See

▶Queueing Theory

CPM

Critical path method.

See

▶Critical Path Method (CPM)

▶Network Planning

▶ PERT

▶Research and Development

CPP

▶Chinese Postman Problem

Cramer’s Rule

A formula for calculating the solution of a nonsingular

system of linear equations. Cramer’s rule states that the

solution of the (n � n) nonsingular linear system

Ax ¼ b is xi ¼ det Ai(b)/det A, i ¼ 1, . . ., n, where

det A is the determinant of A, and det Ai(b) is the

determinant of the matrix obtained by replacing the

ith column of A by the right-hand side vector b.

This rule is inefficient for numerical computation and

its main use is in theoretical analysis.

See

▶Matrices and Matrix Algebra

Crash Cost

The estimated cost for a job (project) based on its crash

time.

See

▶Network Planning

Crash Time

The minimal time in which a job may be completed by

expediting the work.

See

▶Network Planning
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Crew Scheduling

The determination of the temporal and special

succession of the activities of staff personnel, as, for

example, in an airlines, train, factory, etc. Such

problems are often modeled as mathematical

programs.

See

▶Airline Industry Operations Research

Crime and Justice

Arnold Barnett1, Jonathan P. Caulkins2 and

Michael D. Maltz3
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Introduction

Ever since the publications of President Johnson’s

Commission on Law Enforcement and

Administration of Justice (Government Printing

Office 1967a, b), OR/MS professionals have

investigated just about all facets of the U.S. national,

state, and local aspects of crime and justice. There

results have had a major influence all out of

proportion to their numbers; OR/MS scholars have

transformed the way many decision makers think

about problems of crime and punishment. Of

particular importance is the research of Blumstein

and Larson (1969) on the total criminal justice system.

The OR/MS contribution pervades quantitative

discussions about crime and justice systems. It has

generated a more precise and transparent description

of the crime problem than had hitherto been available.

It has achieved uneven but sometimes magnificent

successes in both identifying and implementing

crime-reduction strategies. And it has enhanced the

scientific rigor with which criminal justice policy

experiments are analyzed and interpreted.

It is not commonly known that some of the most

frequently used tools of OR/MS were developed

because of crime and justice problems. In the early

19th century, France began to amass statistics on the

operation of the criminal justice system (Daston 1988),

and the richness of these data led statisticians to devise

new techniques to analyze them. Stigler (1986)

describes how Simeon Denis Poisson developed the

statistical distribution that bears his name – arguably

the union label of the OR/MS profession – while

modeling conviction rates in French courtrooms.

Similarly, Hacking (1990) shows how Poisson

developed the law of large numbers by modeling the

reliability of jurors in criminal trials.

As noted, the application of OR to crime and justice

began in the mid-1960s, when operations researchers

and systems analysts on the President‘s Crime

Commission directed their talents to the science and

technology aspects of the criminal justice system

(Government Printing Office 1967b). Since then, the

application of OR/MS ideas in this area has burgeoned

(Maltz 1994). Some of the more salient roles played by

OR/MS in this field are discussed in this article,

especially how OR/MS has been used in analyzing

crime statistics, offender behavior, and criminal

justice system dynamics. Also described here are how

queueing models and optimization techniques

have been applied in criminal justice contexts, how

OR/MS has caused (some) criminologists to rethink

some of their conclusions, the growing role of

Geographic Information Systems (GIS) in criminal

justice, and how OR/MS is pioneering the extension

of quantitative analysis to model offenders who do not

fit the traditional street offender mold.

Homicide

In discussing crime, it is natural to start with the most

serious offense – murder. Led by the FBI, those

assessing homicide patterns had thought it sufficient

to consider annual murder rates, expressed in killings

per 100,000 citizens per year. The calculated rates

had a reassuring quality about them: if 50 per

100,000 citizens were murdered last year, then the

other 99,950 were not murdered. Thus, after Detroit

had precisely that murder rate in 1973, The New York

Times reported that “If you live in Detroit, the odds are

2000–1 (i.e., 99,950–50) that you will not be killed by
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one of your fellow citizens. Optimists searching for

perspective in the city’s murder statistics insist that

these odds are pretty good.”

But some OR/MS scholars raised a question: why

measure homicide risk per year as opposed to (say) per

day, per month, or per decade? Given that an urban

resident has a lifetime danger of being murdered, that

would seem the natural time frame over which to

measure the risk. And at an annual risk of 1 in 2000,

a person with a natural lifespan of 70 years would face

a lifetime murder risk of 1 in 28 (!!). Refinements of

this raw calculation leave its result virtually unchanged

(Barnett et al. 1975; 1980; Barnett and Schwartz 1989).

The idea of estimating lifetime risk of murder has

come into general use: detailed projections appeared in

the 1981 FBI Uniform Crime Reports, and such

forecasts have since been incorporated into the

actuarial projections of the (U.S.) Centers for Disease

Control. There is now widespread awareness

that homicide is not a tragic, rare phenomenon, but

instead a critical public health problem.

Parallel reasoning is likewise being applied to the

lifetime risk of imprisonment. For example, even

though the probability of being sent to prison on any

given day is small, Bonczar and Beck (1997) estimate

that 5.1% of all persons in the U.S. and 28.5% of

black males will serve time in prison at some point in

their lives.

Offender Behavior

From the standpoint of public policy, it makes a great

deal of difference whether existing crimes are

committed by relatively few individuals who all

offend frequently or by a large number who all

offend rarely. OR/MS researchers have taken part in

efforts to estimate the total number of offenders, some

of whom may never be apprehended for their crimes

(Greene and Stollmack 1981; Greene 1984). Of course,

the offender population is highly diverse in terms of

both frequency of criminal activity and types of crime

committed (Chaiken and Chaiken 1982). A major

OR/MS contribution to criminal justice has been in

creating succinct models that can characterize both

individual criminal behavior and the variation of that

behavior across offenders.

Most offenders do not commit crimes according to

some deterministic schedule. The exact nature of their

crime-generation process is by and large unknown, but

it is generally safe to say that the aggregate crime

commission by a group of offenders can be modeled

by the Poisson distribution. This distribution plays

the same role in aggregating point processes that the

normal distribution plays in aggregating continuous

processes.

In highly influential work, Shinnar and Shinnar

(1975) proposed a simple but insightful model of the

crime and punishment process. The authors assumed

that an active offender commits crimes at a Poisson

rate l per year over a career of length T years.

If not arrested, the offender would commit on

average l T career crimes. But things change if, like

Shinnar and Shinnar, it is assumed that the offender’s

probability of arrest for each crime is q, that the

probability of imprisonment given arrest is Q, and

that the average sentence length per prison term is S.

If career length T is long relative to sentence length S,

then steady-state arguments imply that, under the

revised scenario, the offender is free on average for

only 1=lqQ years between successive imprisonments

(Fig. 1). Thus, because of detention, the offender is free

and active only for fraction ð1=lqQÞ=ð1=lqQþ SÞ of
the offender’s career rather than for all of it. It follows

that incapacitation has reduced the offender’s total

number of offenses by the proportion S=ðSþ 1=lqQÞ
compared to the number in a world free of punishment.

There are some gross simplifications in this model

(for example, the career length T is assumed

independent of the punishment policy in place). But

it encapsulates in one equation the effects of all

primary elements of the criminal justice system: the

offender (via crime commission rate l), the police

(arrest probability q), the courts (chance of

imprisonment given arrest, Q), and the correctional

system (sentence length S). The model also provides

guidance to those exploring empirical data (e.g.,

offenders’ arrest, sentencing, and conviction records)

about which quantities were especially worth trying to

estimate.

OR/MS professionals like Blumstein and his

colleagues worked to flesh out the description of the

individual criminal career (Blumstein et al. 1986).

They estimated key parameters like the proportion of

citizens who participated at some time in criminal

behavior, the frequency of crime-commission during

the career, the degree to which offenders specialize by

crime-type, and the duration of the criminal career.
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A simple model of the career might summarize it with

four parameters: P, the fraction of individuals in a birth

cohort who initiate criminal careers; A, the age of onset

for the career; l, the average annual crime commission

rate while free and active, and r, the annual probability

that the career ends. A macroscopic model could

reflect diversity among offenders by assigning a

population-wide distribution to each of these

parameters, as does the model in Blumstein et al.

(1993). (Other distributions about offense type would

fill out the description; e.g., Chaiken and Chaiken

1982). Interestingly, offenders who differ greatly on

some parameters may be quite similar on others. In

a cohort of London multiple-offenders, for example,

individuals appear to differ far more in their l-values

than their r -values (Barnett et al. 1987). Thus, their

career lengths may diverge far less than do intensities

of activity during their careers.

A common problem in criminal justice policy

analysis has been estimating the effect of enhanced

sentences on both crime rates and criminal justice

spending. For example, Greenwood et al. (1994) used

these Poisson models of criminal offending to predict

the consequences of full-scale implementation of

California’s “Three-Strikes and You’re Out” law, and

Greenwood et al. (1999) use the model to help identify

ways in which actual implementation deviated from

that bench-mark.

As is shown in Fig. 1, many offenders continue to

commit offenses despite their having been in

correctional institutions. But not all do, and the extent

of recidivism (commission of additional offenses) is an

important concern in criminal justice research. OR/MS

researchers have devised, calibrated, and tested

probabilistic models that assess the likelihood that

given offenders with given past records will again

commit crimes within particular future time periods

(Stollmack and Harris 1974; Harris et al. 1981; Maltz

1984; Ellerman et al. 1992). These flexible and

mathematically-rich techniques allow frequent

updating of the prognoses for particular individuals.

The Criminal Justice System (CJS)

With mathematical models, OR/MS professionals

described the idea that the CJS – composed of police,

courts, and corrections — is, in fact, a system

(Government Printing Office 1967b), within which

policy shifts in one component generally have

consequences for the others. An increase in arrests

aimed at reducing crime, for example, can first clog

the courts and then overcrowd jails and prisons which,

in turn, may be required to reduce surging inmate

populations by instituting early release programs for

those incarcerated. One of the earliest models to

incorporate such feedback effects was the Justice

System Interactive Model (JUSSIM), (Belkin et al.

1972); subsequent efforts include Cassidy (1985) and

Morgan (1985). JUSSIM has since been updated

and software written for personal computers by the

U.S. Department of Justice to permit its widespread

use (Institute for Law and Justice 1991).

While it is hoped that the CJS provides a fair and

cost-effective way to reduce crime, there is a continuing

national debate about whether this goal can be achieved.

The aims of the CJS are to deter potential offenders from

committing crime, to incapacitate those who have been

convicted by imprisoning them, and to rehabilitate

past offenders so that they are harmless in the future.

Of course, the systemmight induce undesirable changes

in criminal behavior, such as brutalization under

S

S

1/λ 1/( λqQ)

crime, at rate  λ/year

arrest, at rate  λq/year

sentence length

arrest, conviction, and incarceration at rate  λqQ/year

1/ ( λq)

Crime and Justice, Fig. 1 A
(deterministic) criminal career
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which an offender released from prison is more

violent than ever before. Statistical investigations by

OR/MS researchers have tried to estimate various net

effects of theCJS on crime levels (Blumstein et al. 1978,

1986), as well as to assess the realism of specific

attempts to estimate such effects from aggregate data

(Barnett 1981).

Over the pastmany years, the number of people under

criminal justice supervision in the U.S. has grown

dramatically. Although crime rates have fallen, they

were rising during much of the build-up in

incarceration and, even if increased incarceration were

contributing substantially to declining crime rates, it is

clearly an expensive way to suppress crime, in both

budgetary and human terms. Hence, there has been

considerable interest in creating systems models that

embrace not only the CJS, but also broader sets of

interventions in a manner that allows different classes

of interventions to be compared. The goal is to determine

whether spending more money on violence prevention

or drug treatment programs, for example, might be

a more cost-effective way to reduce crime than would

be spending more money on prisons and jails.

These analyses show that violence prevention

programs are a promising alternative (Greenwood

et al. 1996) and that prevention interventions offer

a broad array of benefits. They also, however, find

that there is a great deal of uncertainty associated

with estimates of prevention’s cost-effectiveness,

even though many, many individual prevention

programs have been evaluated (Caulkins et al. 1999).

Importantly, the systems framework identifies the

sources of the uncertainty and highlights why past

evaluations have not been more informative. Some of

the reasons are pedestrian, such as never reporting

program costs or a focus on showing statistical

significance of effects rather than estimating their

magnitude. Others are more insightful, such as the

fact that traditional evaluations often only consider

effects on program participants, even though indirect

effects on those not actually in the program are, in

some cases, larger in aggregate.

Queueing Models

While everyone recognizes that crime rates vary from

neighborhood to neighborhood and by time of day,

OR/MS analysts have built probabilistic models that

allow exploration of the consequences of such

heterogeneity, especially with respect to practical

issues of police deployment and staffing of 911

emergency centers (Larson 1972; Kolesar et al. 1975;

Chelst 1978). From such models and OR/MS insights

into queueing theory have come an unpleasant

realization: randomness in the arrival times of calls

for service can cause surprisingly large delays in

responding to them. Getting six calls randomly

distributed over a one-hour period, for example, can

yield much slower responses than getting six calls

spaced exactly ten minutes apart.

Queueing theory has been applied and extended in

developing improved allocation methods for police

patrol resources. Such formulations as the hypercube

queueing model (Larson 1974; Larson and Odoni

1981; Larson and Rich 1987) and RAND’s Patrol Car

Allocation Model (Chaiken and Dormont 1978) have

depicted with great accuracy how particular police

response strategies affect mean response times,

workload imbalance across officers, and a host of

other performance measures. The models, which are

used by many U.S. cities to set police dispatching

strategies, allow the user to vary the number of patrol

cars and the deployment rules, and then to observe on

a computer screen the performance statistics under

each scenario. Other OR/MS developments allow the

user to set priorities in responding to calls for service

and to analyze sending multiple vehicles to incidents

(Green and Kolesar 1984). A review of this work is

provided in Swersey (1994).

Optimization

Optimization, one of the strongest OR/MS specialties,

has played a relatively small role in the profession’s

contribution to criminal justice. For example, limited

success has attended OR/MS efforts to suggest optimal

punishment policies. Under particular assumptions

about crime-commission processes and their

sensitivity to the sentencing strategy in place,

Blumstein and Nagin (1978) and Barnett and Lofaso

(1986) have worked out optimal allocations of

prison space. But the verification of such

assumptions — let alone the estimation of key model

parameters — has not gone far enough that such

models are taken very seriously. Associated attempts

to estimate how prison populations vary with changes
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in demography and sentencing policy have yielded

prison population forecasts that do not immediately

demonstrate the practicality of the models (Blumstein

et al. 1980; Barnett 1987).

Perhaps the most famous OR/MS proposal for

optimal prison sentencing was Greenwood’s selective

incapacitation scheme in which heavy sentences would

be imposed on offenders with at least four of seven

high-risk characteristics (Chaiken and Rolph 1980).

But data analyses revealed difficulties with

implementing such policies (Chaiken and Chaiken

1982; Greenwood and Turner 1987), including a high

rate of false positives (people incarcerated to prevent

projected future crimes that would never have occurred

were they free). These false positives raise

controversies about sentencing by conjecture and

yield smaller crime-reduction benefits in practice

than the strategy can achieve in theory.

A Sense of Ambiguity

Sometimes OR/MS people have contributed to

criminal justice research less by what they said than

by what they didn’t say. OR/MS scholars approach

data with a sense of ambiguity: an awareness that

a particular empirical pattern is often consistent with

a broad range of possibilities. Thus, they have usefully

called out “not so fast!” when the most obvious

interpretation of certain data was being treated as the

only viable one. Four examples of such rescue

activities are described below.

One case concerns the Kansas City Preventive

Patrol Experiment conducted in the early 1970s.

When not responding to calls to service, patrol cars

drive randomly through their districts; in theory, such

preventive patrol reduce crimes because would-be

offenders realize that, even if their victims cannot

contact the police, a patrol car might reach the crime

scene purely by chance. That theory was called into

doubt after Kansas City, in a prearranged experiment,

acted to increase preventive patrol sharply in some

beats and virtually eliminate it in others. When

neither beat-by-beat crime rates nor citizen

perceptions about police presence changed visibly

during the (unannounced) experiment, some people

saw preventive patrol as having lost any rationale.

arson (1975), however, demonstrated with detailed

calculations that actual conditions during the Kansas

City experiment were quite different from the

anticipated ones. Patrol cars from high-activity

beats were spending much of their time responding to

calls for service from low-activity ones, which had

been deprived of all local police vehicles. The upshot

was that there was a great deal of police-car

movement — often with sirens screaming — in the

districts supposedly without preventive patrol, and

surprisingly little increase in patrol in the districts

supposedly saturated with it. Perhaps, Larson argued,

the reason crime rates and citizen perceptions did not

change was that police activity itself had not

meaningfully changed.

A second example concerned the relationship,

well-known to criminologists, between arrests and

age. The graph of arrests vs. age is unimodal,

reaching a peak in the late teens and then dropping

off steadily and sharply. Given this curve, some people

argued that it was not cost-effective to give long

sentences to offenders convicted at age 30; such

offenders, it was contended, were already far less

active than at their primes and were unlikely to do

much harm even if left on the streets.

But Blumstein et al. (1982) pointed out that such an

analysis was vulnerable to a variant of the well-known

ecological fallacy: Even if arrests in the aggregate

were dropping rapidly with age, it did not follow that

individual offenders exhibited this pattern. Having

studied longitudinal data about individual offenders,

they found that the drop in arrests with age reflected

not less activity per year among active offenders, but

rather a growing fraction of offenders who had retired

from criminal activity. Statistically, an individual

convicted at age 30, presumably still active at that

age, would be expected, if allowed to go free, to

commit as many crimes over the next several years as

someone several years younger.

While citizens in the U.S. were debating in the

mid-1970s whether to restore the death penalty,

several economists came forth with historically-based

analyses that purported to weed out extraneous factors

and estimate how each execution affects the overall

homicide level. The model, whose findings were cited

by the U.S. Supreme Court, purported to show that

each execution deterred eight homicides. But

Barnett (1981) wondered whether the econometric

models being used had sufficient explanatory power to

fulfill their ambitious goals. Arguing that homicide

levels were subject to roughly Poisson-level statistical
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noise, he proposed a test of how well the

econometric models could forecast state-by-state

homicide levels in the very data sets used to calibrate

them. The test results indicated that the predictions

from all the models suffered large systematic errors

of unknown cause and that, indeed, the errors

were far larger than any reasonable estimate of the size

of the effect themodels sought tomeasure. Thus, Barnett

concluded, the analyses were not sensitive enough to

answer the question that motivated them.

A final example of ambiguity arises from a study

that concluded that juvenile detention acts to reduce

delinquency. The study found that an average Illinois

male youth sent to a reformatory, though not cured of

criminal activity by his stay there, was arrested far

fewer times per month after his release than just prior

to his detention. The decline was interpreted as the

post-release suppression effect on incarceration:

getting tough works.

Maltz and Pollock (1980), however, saw

another possibility, tied to the phenomenon called

regression-to-the-mean. Even if a youth commits

crime at a steady frequency and has an unchanging

probability of arrest per offense, varying luck in the

arrest lottery will cause his observed arrest rate to

fluctuate from month to month. But the authorities

are especially likely to send him to a reformatory

after an upsurge of arrests — that is, at a peak of the

fluctuating pattern. Thus, even if the reformatory has

no effect on his underlying pattern of criminal

behavior, his post-detention arrests would likely fall

in frequency compared to his unluckily high

predetention levels. Tierney (1983) proposed

a revision in their analysis that modified its result, but

the work still showed that the suppression effect was

quite possibly just an illusion.

These four examples show one of the primary assets

of OR/MS thinking as applied to a field so data rich as

the CJS. Although data may exhibit certain aggregate

patterns, these patterns need not illuminate what is

happening at the more detailed level that is,

quite often, the appropriate focus of policy analysis.

OR/MS analysts should never forget the importance

of studying a problem’s molecular structure.

Geographical Analyses

Location is a key attribute of crime. Crime is the result

of a convergence in time and space of criminals and

victims, in the absence of guardians. Land use types,

physical geography, the built environment, population

characteristics, and police resource allocations

and tactics are among the location-based factors

influencing crime. Until recently, there was limited

capacity for analysts to consider geographical factors

explicitly. (Even a panel data set with city-level

information is aggregated both in the sense that all

events within a city are pooled and in the sense that

information about the relative proximity of different

cities is usually ignored). The advent and development

of geographic information systems (GIS) has changed

this situation. GIS is an information technology that

geocodes information and processes it spatially in

order to facilitate analysis.

Geocoding takes three forms. GIS uses 1) rule bases

and scoring to match text of crime incident street

addresses with street addresses that already have

locations (latitude/longitude coordinates or their flat

projections) to place points on maps, 2) global

positioning system instruments to read world

coordinates of a point, and 3) spatial overlay of map

boundary layers (e.g., police precincts, patrol beats, or

uniform grid cells) on crime incident points to classify

the points’ area membership.

Spatial processing includes 1) integrating crime

incidents and other factors affecting crime through

location, 2) spatial overlay of points and

reapportionment of area-based statistics to a

consistent crime space/time series (e.g., counts of

persons aged 14 to 25 and monthly robberies of

persons by spatial grid cell), 3) proximity

determination using spatial queries (e.g., all drug

arrests within 1000 feet of schools), and 4)

connectivity of streets for routing.

The geocoded and processed information can be

used for a wide variety of decision support roles.

Crime maps for analysis or communication (Maltz

et al. 1991; Brantingham and Brantingham 1998) are

among the most familiar, but crime forecasting (Foster

and Gorr 1986; Gorr and Olligschlaeger 1994;

Olligschlaeger 1998) is growing in importance,

particularly in conjunction with computer statistics

(COMSTAT) police management systems that need

counter-factuals against which actual performance

can be compared. Likewise, GIS can provide the real

time data and detailed information about street

networks that is needed to implement effectively

some of the OR models described above. Examples
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of these applications include patrol resource allocation

and the design of administrative boundaries to

balance workloads (Koper 1995), as well as queueing

applications for routing emergency response

(Green 1984; Larson and Rich 1987; Larson and

McKnew 1982).

Consensual Crime

Originally the modern application of OR/MS efforts in

crime and justice focused on the actions and

consequences of the typical street offender who robbed,

burglarized, assaulted, or killed strangers. OR/MS

methods such as process control charts (Anderson and

Diaz 1996), data envelopment analysis (Thanassoulis

1995), and simulation (Larson et al. 1993) continue to

be applied in innovative ways to address these problems.

But other OR/MS methods have also been finding their

way into analyses of consensual crimes including

corruption and drug trafficking.

Corruption is widespread among societies and

institutions and has stimulated a small but vibrant

literature at the intersection of management science

and economics. An early standard reference on

corruption is Rose-Ackerman (1978) who studied the

economics of the supply and demand of bribes. These

ideas have been applied to analyses of tax evasion

(Chander and Wilde 1992), the distribution of bribes

within a hierarchical bureaucracy (Hillman and Katz

1987), and a range of other situations reviewed by

Andvig (1991) and Shleifer and Vishny (1993).

Understandably, researchers often approach

corruption in game-theoretic terms. Static analyses

are common (e.g., Basu et al. 1992; Mookherjee and

Png 1995;Marjit and Shi 1998), in part because of their

relative tractability, but some of the most exciting

developments have involved dynamic optimization.

For example, Dawid and Feichtinger (1996a)

dynamically extend Akerlof’s (1980) model. They

find that, unless corruption is the globally dominant

strategy, the solution is like that described by

a so-called Schelling diagram (Schelling 1973; cf.

also Andvig 1991). There are two locally stable

equilibria, one where everyone is corrupt and this

corruption is accepted, and another where the whole

population is honest and corruption is uniformly

condemned. The only intermediate equilibrium is

unstable.

Likewise, Lui (1986) considers the impact of

exogenous corruption deterrence on the (stationary)

level of corruption and views anti-corruption

campaigns as efforts to shift from an unfavorable to

a favorable equilibrium. Feichtinger and Wirl (1994)

endogenize these episodes of crusades against

corruption. Antoci and Sacco (1995) use replicator

dynamics to describe the changing behavior of

a population where each individual can decide in

each period whether the individual will act

honestly or be corrupt. Bicchieri and Rovelli (1995)

model the exchange of bribes as a system in which

there are two types of players who play a sequence of

repeated prisoner’s dilemma games with randomly

chosen opponents. Wirl et al. (1997) consider

interaction between a corrupt politician and an

investigative journalist in a differential game

and calculate the open-loop Nash equilibrium,

which generates interesting insights into the

non-cooperative dynamic interaction of crime and

enforcement. [Dawid and Feichtinger (1996b) extend

the analysis for a similar model to a feedback

Nash equilibrium]. Bicchieri and Duffy (1997)

demonstrate how corruption can become cyclical under

the assumption that politicians, in order to be reelected,

have to compensate voters through material incentives.

Whereas corruption has been a problem through the

ages, illicit drugs have risen to prominence during

the last half of the 20th century. But the OR/MS

community and OR/MS tools have already played a

prominent role in this new area. Some of the applications

have looked specifically at the relationship between drug

use and predatory crime (Powers et al. 1991), but many

focus explicitly on the production, distribution, sale, and

consumption of the drugs themselves. Interdiction

activities have received particular attention (Caulkins

et al. 1993; Washburn and Wood 1995), perhaps because

of the prominent role of the military in that sphere. But

production in source countries (Kennedy et al. 1993),

domestic distribution networks (Caulkins 1997),

managing local enforcement operations (Caulkins 1993a;

Naik et al. 1996; Baveja et al. 1997), and drug testing

(Lattimore et al. 1996; Meyer and Savory 1997; Kaushal

et al. 1998) have also been active research areas.

Just as the Poisson model of offending has been

a workhorse in the analysis of predatory offenders,

Markov models of drug demand (Everingham

et al. 1995) and models of drug markets provide the

framework for systems analyses that compare the
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effectiveness of different drug control interventions.

Typical findings include, for example, that treating

heavy users is cost-effective (Rydell et al. 1996), and

that mandatory minimum sentences are not (Caulkins

1993b; Caulkins et al. 1997).

The finding that treatment is cost-effective illustrates

the importance of choosing the right objective function.

Treating heavy users performs miserably if the

performance measure is proportion of people treated

who are abstinent two years later, but it dominates

other available interventions when the performance

measure is kilograms of cocaine consumption averted

per million dollars spent. True, most people quickly

drop out of treatment. They make relapse rates look

awful and they contribute nothing to the numerator of

a measure such as consumption averted per million

dollars. They also, however, do not contribute much to

the denominator. The system simply cannot waste that

muchmoney on someonewho only stays in the program

for a few days. Furthermore, relapse measures

completely ignore the benefits of reductions in use

while someone is in treatment. It turns out that even if

100% of heavy users relapsed, treatment would still be

a cost-effective way to reduce drug use just on the basis

of the in-treatment effect.

Dynamic models that examine how policies should

vary over the course of a drug epidemic are an area of

particular interest. Systems dynamics models (Homer

1993) take a descriptive approach to this issue, but an

optimal control framework can also yield interesting

insights. For example, Tragler et al. (2000) show that

detecting the onset of a drug epidemic quickly is

valuable because total costs are much lower if control

begins early. They also show that sharp price declines,

such as those observed in the 1980s for cocaine in

the U.S., do not necessarily imply a policy failure;

indeed it can be optimal to have such declines.

Likewise Behrens et al. (1999) show that it is rarely

optimal to advocate greater spending on demand-side

interventions generally. Both prevention and treatment

can play an important role in drug control, but probably

not at the same time. Their comparative advantages

come at different stages of an epidemic.

Concluding Remarks

It is not easy to quantify the overall OR/MS

contribution to public safety and crime control.

OR/MS research has brought about a deeper

understanding of the crime problem and how it

affects and is affected by the criminal justice system.

Crime, however, has such deep psychological,

cultural, economic, and social roots that there are

limits to what mathematical models can be expected

to accomplish on their own. But, likewise, there are

limits to what less quantitative perspectives can

accomplish on their own. Crime and justice are truly

multi-disciplinary problems that are best addressed by

multi-disciplinary collaborations, with OR/MS being

an integral part of that collaboration.

See

▶Emergency Services

▶Hypercube Queueing Model

▶ Program Evaluation

▶ Public Policy Analysis

▶Queueing Theory

References

Akerlof, G. A. (1980). A theory of social custom, of which
unemployment may be one consequence. Quarterly Journal
of Economics, 94, 749–775.

Anderson, E. A., & Diaz, J. (1996). Using process control chart
techniques to analyze crime rates in Houston, Texas. Journal
of the Operational Research Society, 47(7), 871–882.

Andvig, J. C. (1991). The economics of corruption: A survey.
Studi Economici, 43(1), 57–94.

Antoci, A., & Sacco, P. L. (1995). A public contracting
evolutionary game with corruption. Journal of Economics,
61(2), 89–122.

Barnett, A. (1981). The deterrent effect of capital punishment:
A test of some recent studies. Operations Research, 29,
346–370.

Barnett, A. (1987). Prison populations: A projection model.
Operations Research, 35, 18–34.

Barnett, A., Blumstein, A., & Farrington, D. P. (1987).
Probabilistic models of youthful criminal careers.
Criminology, 30, 83–108.

Barnett, A., Essenfeld, E., & Kleitman, D. J. (1980). Urban
homicide: Some recent developments. Journal of Criminal
Justice, 8, 379–385.

Barnett, A., Kleitman, D. J., & Larson, R. C. (1975). On urban
homicide: A statistical analysis. Journal of Criminal Justice,
3, 85–110.

Barnett, A., & Lofaso, A. J. (1986). On the optimal allocation of
prison space. In A. J. Swersey & E. Ignall (Eds.), Delivery of
urban services (TIMS series in the management sciences,
Vol. 22, pp. 249–268). Amsterdam: Elsevier-North Holland.

C 310 Crime and Justice

http://dx.doi.org/10.1007/978-1-4419-1153-7_287
http://dx.doi.org/10.1007/978-1-4419-1153-7_429
http://dx.doi.org/10.1007/978-1-4419-1153-7_815
http://dx.doi.org/10.1007/978-1-4419-1153-7_828
http://dx.doi.org/10.1007/978-1-4419-1153-7_847


Barnett, A., & Schwartz, E. (1989). Urban homicide: Still the
same. Journal of Quantitative Criminology, 5, 83–100.

Basu, K., Bhattacharya, S., & Mishra, A. (1992). Notes on
bribery and the control of corruption. Journal of Public

Economics, 48, 349–359.
Baveja, A., Caulkins, J. P., Liu, W., Batta, R., & Karwan, M. H.

(1997). When haste makes sense: Cracking down on street
markets for illicit drugs. Socio-Economic Planning Sciences,
31, 293–306.

Behrens, D. A., Caulkins, J. P., Tragler, G., & Feichtinger, G.
(1999). Optimal control of drug epidemics: Prevent and
treat – But not at the same time. Management Science, 46,
333–347.

Belkin, J., Blumstein, A., Glass, W., & Lettre, M. (1972).
JUSSIM: An interactive computer program and its uses in
criminal justice planning. In G. Cooper (Ed.), Proceedings of
international symposium on criminal justice information and

statistics systems (pp. 467–477). Sacramento, CA: Project
SEARCH.

Bicchieri, C., & Duffy, J. (1997). Corruption cycles. Political
Studies, 45, 477–495.

Bicchieri, C., & Rovelli, C. (1995). Evolution and revolution:
The dynamics of corruption. Rationality and Society, 7,
201–224.

Blumstein, A. (2002). Crime modeling. Operations Research,

50(1), 16–24.
Blumstein, A. (2007). An OR missionary’s visits to the criminal

justice system. Operations Research, 55(1), 14–23.
Blumstein, A., Canela-Cacho, J. A., & Cohen, J. (1993). Filtered

sampling from populations with heterogeneous event
frequencies. Management Science, 39, 886–899.

Blumstein, A., Cohen, J., & Hsieh, P. (1982). The durations of

adult criminal careers. Final report to national institute of

justice. Pittsburgh, PA: Carnegie-Mellon University.
Blumstein, A., Cohen, J., & Miller, H. (1980). Demographically

disaggregated projections of prison populations. Journal of
Criminal Justice, 8, 1–25.

Blumstein, A., Cohen, J., & Nagin, D. (Eds.). (1978).Deterrence
and incapacitation: Estimating the effects of criminal

sanctions on crime rates. Washington, DC: National
Academy of Sciences.

Blumstein, A., Cohen, J., Roth, J. A., & Visher, C. (1986).
Criminal careers and “career criminals.” vols. I and II.
Washington, DC: National Academy of Sciences.

Blumstein, A., & Larson, R. (1969). Models of a total criminal
justice system. Operations Research, 17(2), 199–232.

Blumstein, A., & Nagin, D. (1978). On the optimum use of
incarceration for crime control. Operations Research, 26,
383–405.

Bonczar, T. P., & Beck, A. J. (1997). Lifetime likelihood of going
to state or federal prison. Washington, DC: National Institute
of Justice.

Brantingham, P. L., & Brantingham, P. J. (1998). Mapping crime
for analytic purposes: Location quotients, counts, and rates.
In D. Weisburd & T. McEwen (Eds.), Crime mapping, crime
prevention, crime prevention studies 8. New York: Criminal
Justice Press.

Cassidy, R. G. (1985). Modelling a criminal justice system. In
D. P. Farrington & R. Tarling (Eds.), Prediction in

criminology. Albany, NY: State University of New York
Press.

Caulkins, J. (1993a). Zero-tolerance policies: Do they inhibit or
stimulate illicit drug consumption?Management Science, 39,
458–476.

Caulkins, J. (1993b). Local drug markets’ response to focused
police enforcement. Operations Research, 41, 843–863.

Caulkins, J. P. (1997).Modeling the domestic distribution network
for illicit drugs.Management Science, 43, 1364–1371.

Caulkins, J. P., Crawford, G., & Reuter, P. (1993). Simulation of
adaptive response: A model of drug interdiction.
Mathematical and Computer Modelling, 17(2), 37–52.

Caulkins, J. P., Rydell, C. P., Everingham, S. S., Chiesa, J., &
Bushway, S. (1999). An ounce of prevention, a pound of

uncertainty: The cost-effectiveness of school-based drug

prevention program (Technical report). Santa Monica, CA:
RAND Corporation.

Caulkins, J. P., Rydell, C. P., Schwabe, W. L., and Chiesa, J.
(1997). Mandatory minimum drug sentences: Throwing
away the key or the taxpayers’ money? (Report MR-827-
DPRC). Santa Monica, CA: RAND Corporation.

Chaiken, J. M., & Chaiken, M. R. (1982). Varieties of criminal
behavior (Report R-2814-NIJ). Santa Monica, CA: Rand
Corporation.

Chaiken, J. M., & Dormont, P. (1978). A patrol car allocation
model: Background, capabilities, and algorithms.
Management Science, 24, 1280–1300.

Chaiken, J. M., & Rolph, J. (1980). Selective incapacitation
strategies based on estimated crime rates. Operations

Research, 28, 1259–1274.
Chander, P., & Wilde, L. (1992). Corruption in tax

administration. Journal of Public Economics, 49, 333–349.
Chelst, K. (1978). An algorithm for deploying a crime-directed

(tactical) patrol force.Management Science, 24, 1314–1327.
Cormican, K. J., Morton, D. P., &Wood, R. K. (1998). Stochastic

network interdiction. Operations Research, 46, 184–197.
Daston, L. (1988). Classical probability in the enlightenment.

Princeton, NJ: Princeton University Press.
Dawid, H., & Feichtinger, G. (1996a). On the persistence of

corruption. Journal of Economics, 64(2), 177–193.
Dawid, H., & Feichtinger, G. (1996b). Optimal allocation of

drug control efforts: A differential game analysis. Journal
of Optimization Theory and Applications, 91, 279–297.

Ellerman, P., Sullo, P., & Tien, J. M. (1992). An alternative
approach to modeling recidivism using quantile residual
life functions. Operations Research, 40, 485–504.

Everingham, S., Rydell, C. P., & Caulkins, J. P. (1995).
Cocaine consumption in the US: Estimating past trends and
future scenarios. Socio-Economic Planning Sciences, 29,
305–314.

Feichtinger, G., & Wirl, F. (1994). On the stability and potential
cyclicity of corruption in governments subject to popularity
constraints. Mathematical Social Sciences, 28, 113–131.

Foster, S. A., & Gorr, W. L. (1986). An adaptive filter for
estimating spatially-varying parameters: Application to
modeling police hours spent in response to calls for service.
Management Science, 32, 878–889.

Gorr, W. L., & Olligschlaeger, A. M. (1994). Weighted spatial
adaptive filtering:Monte Carlo studies and application to illicit
drug market modeling. Geographical Analysis, 26(1), 67–87.

Government Printing Office. (1967a). The challenge of crime in
a free society. Washington, DC: President’s Commission on
Law Enforcement and Administration of Justice.

Crime and Justice 311 C

C



Government Printing Office. (1967b). Task force report: Science
and technology. Washington, DC: President’s Commission
on Law Enforcement and Administration of Justice.

Green, L. (1984). A multiple dispatch queueing model of
police patrol operations. Management Science, 30,
653–664.

Green, L., & Kolesar, P. (1984). A comparison of multiple
dispatch and M/M/C priority queueing models of police
patrol. Management Science, 30, 665–670.

Greene, M. A. (1984). Estimating the size of the criminal
population using an open population approach. Proceedings
American Statistical Association, Survey Methods Research

Section, pp. 8–13.
Greene,M. A., & Stollmack, S. (1981). Estimating the number of

criminals. In J. A. Fox (Ed.), Models in quantitative

criminology (pp. 1–24). New York: Academic.
Greenwood, P. W., & Abrahamse, A. F. (1981). Selective

incapacitation (Report R-2815-NIJ). Santa Monica, CA:
Rand Corporation.

Greenwood, P. W., Everingham, S. S., Chen, E., Abrahamse,
A. F., Merritt, N., & Chiesa, J. (1999). Three strikes revisited:
An early assessment of implementation and effects

(Technical report). Santa Monica, CA: RAND Corporation.
Greenwood, P. W., Model, K. E., Rydell, C. P., & Chiesa, J.

(1996). Diverting children from a life of crime: Measuring

the costs and benefits (Report MJ-699-UCB/RC/F). Santa
Monica, CA: RAND Corporation.

Greenwood, P. W., Rydell, C. P., Abrahamse, A. F., Caulkins,
J. P., Chiesa, J. R., Model, K. E., & Klein, S. P. (1994). Three
strikes and you’re out: Estimated benefits and costs of

California’s new mandatory-sentencing law (Report MR-
509-RC). Santa Monica, CA: RAND Corporation.

Greenwood, P.W., & Turner, S. (1987). Selective incapacitation
revisited: Why the high-rate offenders are hard to predict

(Report R-3397-NIJ). Santa Monica, CA: Rand Corporation.
Hacking, I. (1990). The taming of chance. England: Cambridge

University Press.
Harris, C. M., Kaylan, A. R., & Maltz, M. D. (1981). Recent

advances in the statistics of recidivism measurement. In J. A.
Fox (Ed.), Models of quantitative criminology (pp. 61–79).
New York: Academic Press.

Hillman, A. L., & Katz, E. (1987). Hierarchical structure and the
social costs of bribes and transfers. Journal of Public

Economics, 34, 129–142.
Homer, J. B. (1993). A system dynamics model of national

cocaine prevalence. System Dynamics Review, 9(1), 49–78.
Institute for Law and Justice. (1991). CJSSIM: Criminal justice

system simulation model: Software and user manual.
Alexandria, VA: Institute for Law and Justice.

Karoly, L. A., Greenwood, P. W., Everingham, S. S., Houbé, J.,
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Criterion Cone

▶Multiobjective Programming

Criterion Space

▶Multiobjective Programming

Criterion Vector

▶Multiobjective Programming

Critical Activity

A project work item on the critical path having zero

float time.

See

▶Critical Path

▶Critical Path Method (CPM)

▶Network Planning

Critical Path

The longest continuous path of activities through

a project network from beginning to end. The total

time elapsed on the critical path is the shortest

duration of the project. The critical path will have

zero float time, if a date for completion has not been

specified. Any delay of activities on the critical path

will cause a corresponding delay in the completion

of the project. It is possible to have more than one

critical path.

See

▶Critical Path Method (CPM)

▶Network Planning

Critical Path Method (CPM)

A project planning technique that is used for

developing strategy and schedules for an undertaking

using a single-time estimate for each activity of which

the project is comprised. In its basic form, i.e.,

concerned with determining the critical path, that is,

the longest sequence of activities through the project
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network from beginning to end. CPM arose from

a jointly sponsored venture of E.I. du Pont de

Nemours and Company and the Sperry-Rand

Corporation (Kelley 1961).

See

▶Network Planning

▶ Program Evaluation and Review Technique (PERT)

▶ Project Management
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Introduction

Critical systems thinking (CST) is a development of

systems thinking that aims to support good practice of

all forms of applied systems thinking and professional

intervention. In its simplest definition, CST is applied

systems thinking in the service of good practice. Three

essential ideas are as follows:

1. Professional practice in all its stages and activities,

from the formulation of problems to the

implementation of solutions and the evaluation of

outcomes, involves choices that need to be made

transparent and require systematic examination and

validation.

2. Systems thinking, although it does not protect

against the need for such choices, at least offers

a methodological basis for examining them

systematically.

3. Consequently, applied systems thinking should

make it standard practice to employ not only

a hard (quantitative, scientific) and/or a soft

(qualitative, interpretive) but always also

a systematically critical (reflective, questioning)

perspective and mode of analysis.

Taking these three elements together, CST not only

recognizes that all applied systems thinking involves

choices in need of critical reflection but also draws on

systems thinking itself as a source of systematic

critical reflection and deliberation.

CST and OR

Critical systems thinking has essential roots in

operations research and management science

(OR/MS), along with some equally important roots in

philosophy, social theory, and other disciplines. It has

applications in OR/MS as well as in many other

professional fields that it is increasingly influencing;

among them are environmental planning and

management, public policy analysis, information

systems design, social planning, evaluation research,

technology assessment and risk regulation, and others.

Unlike most of these fields, OR/MS was from the outset

conceived as applied systems thinking; its systems

perspective was to distinguish it from conventional

notions of applied science and professional

intervention. Critical systems thinking may be

understood as an expansion of that original idea.

CST’s focus is on the fundamental theoretical and

normative assumptions that inform the formulation

and analysis of problems within their contexts, rather

than on the more technical aspects of model building,

analysis, and validation, or on procedural aspects of

project management and consensus formation.

Two Main Sources of CST Within OR/MS

Critical systems thinking developed from the

confluence of two largely independent strands of

thought about OR practice. The first strand originated

in the 1970s at the University of California at Berkeley

and can be regarded as a development of, and response

to, Churchman’s (1968, 1971, 1979) philosophy of

social systems design, which itself was a development

of his earlier pioneering work on OR/MS

(Churchman et al. 1957). The second strand originated

in the 1980s at the University of Hull in England

and can be regarded as a response to the development,

in British OR, of soft systems methodology

(Checkland 1981, 1985; Checkland and Scholes

1990), along with a number of soft OR methods or

problem structuring methods (Rosenhead 1989) and
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some other approaches to complex and dynamic

problem contexts (e.g., management cybernetics and

viable systems diagnosis, Beer 1972, 1985), all of

which not only led to a growing variety of methods

and underlying research paradigms but also to

a perception of paradigmatic insecurity or crisis in

parts of the OR profession.

Two Key Issues of Critical Systems Thinking

CST responded to these developments in American

and British OR/MS by focusing its methodological

efforts on two key issues:

• The first issue emerged from recognizing that the

way professionals understand and define problem

contexts has value implications, in the practical

sense that it may do more or less justice to the

different views and needs of people. Professional

practice cannot avoid, in every specific context of

intervention, choices as to what views

(observations, data) and what needs (concerns,

interests) of people are to be considered relevant

and what other views and needs should not or

cannot be considered equally relevant. The

question is: “What should constitute the basis of

knowledge and values for rational practice?”

When it comes to this normative core of practice,

there is a need to support professionals and

everyone else concerned in handling their

assumptions in a transparent and self-critical way,

as well as to deal adequately with the consequences

these assumptions may have for the different parties

concerned.

• The second issue emerged from recognizing that

different problem situations put different demands

on professional competence and accordingly also on

themethods professionals use. Professional practice

cannot avoid, in defining and employing its methods

of analysis and intervention, assumptions about the

nature of problem situations, particularly with

respect to the kind of complexity that matters; for

real-world complexity takes different forms and

there is consequently no single best way to

understand and handle it. The question is: “What

are the assumptions, strengths, and weaknesses of

different approaches and methods regarding the

nature of problem contexts, that is, different kinds

of social reality? When it comes to the variety of

methodological options available today in applied

systems thinking, there is a need to support

professionals in handling these options in

a theoretically informed and justifiable way.

Critical systems thinking, then, is the use of systems

ideas for probing into these two different (though not

entirely independent) sources of contextual selectivity,

that is, assumptions that shape the understanding and

handling of problem contexts—the selection of

relevant facts and values, and the selection of

adequate methodologies and methods. Both shape the

way problems will be understood within their contexts.

However, they place rather different demands on

good practice. What assumptions different systems

approaches make regarding the nature and

complexity of problem contexts depends on their

theoretical underpinnings and thus can be identified

theoretically once and for all; good practice in this

respect means informed methodology choice. By

contrast, relevant facts and values need to be

identified anew in each specific problem situation and

therefore are mainly a responsibility of practice itself;

good practice in this respect means reflective practice.

Two different strands of critical systems thinking

have accordingly developed: critical systems

heuristics (CSH) and total systems intervention (TSI).

Their shared core idea is that systems thinking can be

a useful source of critical reflection about contextual

selectivity. A precise yet comprehensive definition of

CST may therefore be formulated as follows.

Definition

Critical systems thinking (CST) is an application of

systems thinking that aims to support good practice

with regard to (a) the normative core of the knowledge

and value basis that informs professional findings and

conclusions and (b) the theoretical assumptions that

inform the variety of methodologies and methods

employed. The common denominator of (a) and (b) is

that they both condition the perception of relevant

problem contexts.

Terminology: CST, CSH, and TSI

The term “critical systems thinking” was coined in

July 1989, when the originators of the two strands

met at the 33rd Annual Conference of the

International Society for the Systems Sciences (ISSS)

in Edinburgh, Scotland, and decided to unite their

efforts under the umbrella of critical systems

Critical Systems Thinking 315 C

C



thinking. Due to differing methodological conceptions

and philosophical backgrounds, the cooperation

between the two strands of CST remained a brief

episode in the late 1980s and early 1990s; but the

term CST has survived as a name for their shared

interest in handling contextual assumptions critically.

Some confusion was subsequently caused by

the circumstance that both strands have continued

to refer to their efforts as critical systems thinking.

For the sake of terminological clarity, it is advisable

to use the term as a higher-level concept

under which CSH and TSI may meaningfully be

subsumed, rather than identifying it with either strand

(Fig. 1).

Due to their separate development and also to

different theoretical foundations, the two strands,

despite their shared core idea and complementary

ends, have brought forth partly incompatible

frameworks for CST. They are therefore introduced

separately. However, to facilitate comparison and

synthesis, the account follows the same structure and

uses the same criteria.

Critical Systems Heuristics (CSH): Facing the
Normative Core of Professional Practice

CSH was fully worked out in the late 1970s at the

University of California at Berkeley but became

widely known only in the early 1980s, when the main

theoretical work (Ulrich 1983) was published with

some delay after the author’s return to Switzerland.

With a view to submitting his work to the test of

practice, Ulrich assumed a position as chief policy

analyst and evaluation researcher in the public sector

and also returned to teaching at his home university,

the University of Fribourg (Philosophical Faculty).

This double experience in public policy making and

university teaching has helped Ulrich to develop CSH

continuously since. CSH has meanwhile found

resonance and applications in many applied

disciplines and is gradually evolving into a more

comprehensive framework for reflective practice in

the civil society (Ulrich 2000), critical pragmatism

(Ulrich 2006 and 2007), and philosophy for

professionals (Ulrich 2007).

Core Idea

Professional practice involves validity claims (e.g., to

truth, rightness, sincerity, objectivity, rationality, and

relevance) that have practical consequences but which

it cannot fully justify. Applied systems thinking makes

no exception, for its effort to appreciate the systemic

nature of problems, and thus to gain a comprehensive

or whole-systems view of problem situations, does not

supersede the need for making value judgments as to

what exactly is to be considered the problem to be dealt

with (i.e., what merits improvement), what constitutes

the relevant problem context (i.e., what is the sum total

of the relevant facts and concerns), and wherein would

consist a good solution (i.e., how to define

improvement). No kind of systems methodology or

other methodology can fully justify the answers to

such inevitable questions as “whose problem is to be

solved in the first place?” and “for whom should

improvement be achieved and for whom should it

not?” What is possible, however, is a conscious and

careful handling of this normative core of all

professional intervention.

Critical systems thinking as understood

in CSH therefore begins with the idea that

holistic or whole-systems thinking—the quest for

comprehensiveness—is a meaningful effort but not a

meaningful claim. Doing full and equal justice to the

views and values of all the people concerned is an

ideal; but applied systems thinking should not be

expected to achieve ideals. To put it differently,

holism is not a philosophically and methodologically

credible source of justification, it is a problem. Hence,

rather than trying to be holistic, CSH tries to support

practice—professionals as well as ordinary citizens—in

Critical Systems Heuristics

= a discursive framework

for promoting reflective

(i.e., transparent and self-

critical) practice

Total Systems Intervention

= a meta-methodological

framework for facilitating critical

(i.e., theoretically informed and

justified) methodology choice

Critical Systems Thinking

= applied systems thinking in

the service of good practice

CST

TSICSH

Critical Systems Thinking, Fig. 1 Critical systems thinking
(CST) and its two strands—basic terminology (Source: Adapted
from Ulrich 2003, 327)
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appreciating the inevitable selectivity of the claims

involved (e.g., to putting a problem well and to

securing improvement) with regard to the facts

(observations) and values (concerns) it takes to be

relevant and on which its rationality and

consequences depend.

In practical contexts of action, selectivity usually

translates into partiality in the sense that different

parties will be affected differently. CSH consequently

also aims to help professionals and citizens in

analyzing these consequences and how they may

change if assumptions about relevant observations

and concerns are modified. Good practice cannot

avoid selectivity and partiality, but it will make it

transparent to all those concerned how the selectivity

of assumptions and the partiality of consequences

depend on one another. It will give all the parties an

opportunity to articulate their critique, and will then try

to modify assumptions and consequences accordingly.

Critical systems thinking, thus understood, is reflective

practice—a methodologically disciplined effort to

support such processes of critique systematically.

Methodological Approach

CSH is both a new philosophical foundation and

a practical implementation of a discursive framework

for value clarification and critique. Like the previously

used concept of the normative core of rational practice,

the term “value clarification” again refers to the

selectivity of both considerations of facts

(the empirical or knowledge basis of rational action)

and of values (the normative or value basis of rational

action) in contexts of practical action. The choice of

the knowledge basis of professional interventions—of

relevant data, judgments of fact, personal views, and

other empirical conjectures (e.g., anticipated

consequences of action)—has no less normative

implications than does the choice of its value basis,

that is, of relevant concerns, notions of improvement,

and ethical standards. Both sources of selectivity and

partiality demand a critical handling.

But applied systems thinking not only implies

empirical and normative selectivity, it also holds

a key to handling such selectivity critically. Systems

thinking compels professionals, as well as everyone

else concerned, to pay attention to the systems

boundaries that delimit any specific system of

interest. Systems thinking can thus be understood as

a tool for reflecting about the boundaries of concern

that (consciously or not) inform all analysis of

problems and related proposals and arguments,

regardless of whether systems terms are used in the

first place or others. Systems thinking then becomes

a source of critique—of questioning boundary

assumptions and the ways they condition validity

claims—rather than, as it is more usually understood,

a source of justification, that is, a way of buttressing

validity claims by more comprehensive considerations

of fact and value.

In the terms of CSH, critical systems thinking can

support professionals and all the parties concerned in

identifying and questioning boundary judgments that

delimit the reference systems for defining problems

and relevant contexts, solution designs, evaluations,

proposals for action, and so on. Boundary judgments

determine for a number of basic boundary issues and

related boundary categories what is to be considered

and what is to be left out when it comes to defining

relevant observations (judgments of fact) and concerns

(judgments of value). A reference system is the set of

boundary judgments that together define the context of

application which a specific claim or proposal refers to

and for which it is valid.

Boundary judgments are the perfect device for

questioning the relevance and quality of reference

systems; for unlike what one might assume at first

glance, they define not just the scope of the context

considered (i.e., how narrow or comprehensive it is

delimitated) but equally its content, that is, what

observations about that context are collected and

taken to be relevant; how they are formulated,

interpreted, and used; what importance is attached

to them; and how well related conjectures are

argued. This is so because any aspects of a problem

situation that are not properly considered, say, because

those involved argue incoherently or anticipate

consequences incorrectly, or fail to do justice to the

concerns of others, have in fact been excluded from

the relevant knowledge and value basis. Even if one

recognizes some aspects as relevant and agrees with

others they should be considered but then fails to take

them properly into account, due to lacking knowledge,

to an error of judgment, or some communicative

misunderstanding, or because those in control of the

situation decide to suppress their discussion, the

aspects are in fact (deliberately or not) excluded

from the considered reference system. Thus the
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argumentative quality of a validity claim or related

discussion very well reflects itself in boundary

judgments.

The main device to promote such argumentative

quality is critical systems discourse, a dialogical form

of boundary critique. Boundary critique is basically

a systematic process of identifying the boundary

judgments that are built into any specific validity

claims, in an effort to unfold their normative core

(selectivity) and what it may mean for the parties

concerned (partiality). A second basic aim is to show

that there are always options for defining boundary

judgments, and to make it visible how different the

claims in question may look in the light of such

options. In cooperative settings where the parties are

prepared to try and see whether they can agree on their

boundary judgments, these can be modified

accordingly. In controversial settings this may not be

possible; boundary critique then gains a new meaning

and consists in employing boundary judgments for

critical purposes against those who are not prepared

to disclose and question them or who even try to

impose them on the basis of authority and power

rather than argumentation. Critical systems discourse

thus becomes a discursive process of challenging

validity claims by demonstrating that and how they

depend on boundary judgments that have not been

declared or are imposed by nonargumentative means.

To be sure, selectivity, not comprehensiveness, is

the fate of everyone who tries to solve problems and to

do something about the state of the world. The point of

boundary critique consists, in terms of CSH, in

a critical turn of applied systems thinking and its

notion of good professional practice. It recognizes

that there is no objective but only a critical solution

to the fundamental problem of practical reason, of how

claims to rational practice can be justified in the face of

their inevitable selectivity and partiality. The problem

has remained unresolved in practical philosophy, the

philosophical discipline concerned with the normative

dimension of rational action, in that no theoretical

solutions have been found that would at the same

time be practicable. (A more complete account

of the concept of a critical solution is given in

Ulrich (1983, 2001, 2003).)

Methodological Core Principle

CSH’s answer to the unresolved problem of practical

reason is the principle of boundary critique. It says

that both the meaning and the validity of claims

depend on the reference system which these claims

refer to and, hence, that one cannot understand and

qualify (appreciate and criticize) their adequacy

without examining the boundary judgments that

define that reference system. The basic idea and

aim of CSH, then, is to support systematic processes

of boundary critique as a way to secure at least

a critical solution of the problem of practical reason.

To this end, there are 12 CSH boundary categories

(Fig. 2).

1. Client

2. Purpose

3. Measure of

 improvement

Boundary

categories

Boundary

issues

4. Decision-maker

5. Resources

6. Decision

 environment

Those

involved

Those

affected

Sources of

motivation

Sources of

power

The reference system

(system of concern)

that determines what

observations (“facts”)

and evaluations

(“values”) are

considered relevant

when it comes to

assessing the

merits or defects

of a proposition

Sources of

knowledge

Sources of

legitimation

10. Witness

11. Emancipation

12. World view

7. Professional

8. Expertise

9. Guarantee

Critical Systems Thinking,

Fig. 2 Boundary categories
of critical systems
heuristics (Source: Ulrich
1983, 258)
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These boundary categories stand for four crucial

sources of selectivity built into all practice. Each

boundary category translates into two boundary

questions: one asking what is the case (“is” mapping,

i.e., descriptive analysis) and the other what should be

the case (“ought” mapping, i.e., normative analysis).

This yields an extensive checklist of boundary

questions that explicitly define the precise intent of

each boundary category (Ulrich 1987, 1996, 2000;

Ulrich and Reynolds 2010). They can be used, first,

to identify boundary judgments systematically;

second, to examine how alternative boundary

judgments may change the way one sees problem

definitions, findings, and conclusions, and thus what

is considered to be adequate and rational; and third, to

challenge any claims to knowledge, rationality, or

improvement that rely on hidden boundary judgments

or take them for granted.

The last-mentioned application leads to an

argumentative employment of boundary judgments,

known as polemical or emancipatory boundary

critique, that creates an improved symmetry of critical

competence among all the parties concerned,

professionals and citizens alike, regardless of their

theoretical knowledge or special expertise with respect

to the problem at issue. As a practicable model of cogent

critical argumentation (Ulrich 1983, 1993, 2000), it

embodies a critical pragmatization of Habermas’

(1973, 1979) ideal model of rational practical discourse

(a model that underpins his discourse ethics and confines

it to being a moral theory rather than a practicable

model of moral justification). It constitutes a chief

methodological backing of the critical turn of the

concept of rational practice proposed above.

In sum, CSH can be defined as a methodological

framework for boundary critique, that is, for

identifying and debating boundary judgments, with

the aim of securing at least a critical solution to the

unsolved problem of practical reason—the question of

how claims to rational practice can be justified despite

the unavoidable selectivity and partiality of all

practice. Despite its emancipatory implications (the

aspect for which it is best known), CSH should not be

misunderstood and used as an emancipatory systems

approach only; its principle of systematic boundary

critique is vital for sound professional practice in

general, whatever importance may be attached to

emancipatory issues. For the same reason, CSH does

not aim to be a self-contained systems methodology,

but is better understood as an approach that should

inform all critical professional practice, whatever

specific methodology is used.

Practical Implementation (Main Procedure)

Boundary critique is best implemented as an iterative

process of reflecting on, and discussing, the implications

of alternative boundary judgments. When some

boundary judgment changes, the reference system of

which it is constitutive will change too; consequently,

all other boundary judgments may need being

reconsidered and adapted. However, iterative

processes are not particularly easy to learn and to

handle; experience with boundary critique suggests

that it is useful for beginners to have available, and

follow, a standard sequence for unfolding the

boundary categories and questions of CSH (Fig. 3).

Total Systems Intervention (TSI) or Creative
Holism (CH): Ensuring Informed
Methodology Choice

TSI stems from work done at the University of Hull,

England, in the mid and late 1980s, about the evolution

of OR and systems thinking in terms of changing

underlying theoretical assumptions. This work resulted

in the early 1990s in the proposal of ameta-methodology

for choosing among methodologies according to

situational requirements (Flood and Jackson 1991;

Jackson 1991). By that time CSH and TSI had joined

their efforts under the new name of “critical systems

thinking” (CST), after previously using different names

such as critical systems approach (CSH) and critical

management science (TSI). But due to differing notions

of what critical practice was to mean, the two strands of

CST ultimately found it difficult to integrate their

approaches and consequently returned to developing

their frameworks separately. Both have nevertheless

continued to use the name critical systems thinking.

Meanwhile, Jackson (2003; 2006b) refers to his work

on critical systems thinking and practice as creative

holism (CH).

Core Idea

Applied systems thinking depends for its choice of

systems methodologies and methods on basic

assumptions regarding the nature of the problem

contexts (typically: organizational contexts) with
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which it is dealing. Some of these assumptions can

usefully be captured in terms of a number of

sociological paradigms for describing the nature of

social reality as they have been analyzed, for

example, by Burrell and Morgan (1979), as well as

by organizational images or systems metaphors as

they have been described most systematically by

Morgan (1986). Different systems methodologies,

because they usually are developed with different

problem contexts in mind, can similarly be

characterized in terms of underlying metaphors and

paradigms. Hence, since the characteristics of both

problem contexts and systems methodologies can be

captured in terms of adequate paradigms and

metaphors, it becomes possible to match contexts and

methodologies in a systematic way and thus to support

professionals in choosing among the increasing

number of available systems methodologies and

conforming methods that are best suited to deal with

a problem situation at hand.

CST as understood in TSI/CH therefore begins with

the idea that systems thinking—the attempt to

understand organizational or societal problem

contexts in systems terms—is meaningful only to the

extent people are aware of the sociological paradigms

and organizational metaphors that inform it. Since

different systems methodologies rely on different

paradigms and metaphors—that is, on different

theoretical assumptions about the nature of problem

contexts—applied systems thinking depends for its

justification and rationality on paradigmatic fit

between systemsmethodologies and problem contexts.

Sources of

influence

Social roles

(stakeholders)
Specific 

concerns

(stakes)

Key problems

(Stakeholding
issues)

Motivation 1 Beneficiary/client 2 Purpose 3 Measure of improvement

Control 4 Decision-maker 5 Resources 6 Decision environment

Knowledge 7 Professional 8 Expertise 9 Guarantor

Legitimacy 10 Witness 11 Emancipation 12 Worldview

Critical Systems Thinking,

Fig. 3 CSH’s process of
unfolding: a standard
sequence of boundary critique
(Source: Ulrich and Reynolds
2010, 259; Adapted from
Reynolds 2007, 106)
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In applied OR/MS, as in other forms of applied

research, the requirement of paradigmatic fit

translates into a need for informing the selection and

use of methodologies and methods by previous

paradigm analysis as well as, where relevant,

metaphor analysis, as a condition for doing justice to

the nature of the problem context at issue. TSI/CH

consequently puts its critical focus on the theoretical

underpinnings of alternative research paradigms

rather than on the normative core of professional

practice, as does CSH. CST, thus understood, is about

methodology choice—a theoretically informed way to

support processes of matching methodologies and

methods with problem contexts.

Methodological Approach

The basic strategy of TSI/CH can be described as

a contingency approach to methodology choice,

based on paradigm analysis and, to a lesser degree,

also on metaphor analysis of the three major

traditions of systems thinking thus far—hard, soft,

and critical systems thinking. The idea is that there is

no such thing as a best systems methodology and

underpinning tradition of systems thinking; rather,

situational aspects of the problem context at hand

determine what tradition of systems thinking is best

suited as a source of methodological guidance and

specific methods or tools of intervention. In OR/MS,

such an approach promises to resolve the OR in crisis

debate of the 1970s and 1980s, for it allows hard and

soft OR approaches to be seen as appropriate for

dealing with different problem contexts rather than

competing for the same ones.

Contingency frameworks are also called

contingency theories, as they involve theoretical

generalizations about the crucial aspects of the

application domain to which the framework is to be

applied. This theoretical device is often used in the

social sciences (e.g., in management and organization

theories) when a variety of approaches are required to

handle a given class of problems, as the proper

approach is dependent (contingent) on the situation

or, more precisely, on a range of changing situations.

Applied to contexts of professional intervention,

using a contingency approach implies that some

independent (contextual) variables can be identified

empirically which regularly, for reasons that can be

explained theoretically, may be expected to condition

the outcome of interventions. A contingency approach

can then (and only then) make sure that the way one

deals with a situation matches situational requirements

and, on that basis, can also justify the credibility of the

results. To the extent this condition is fulfilled, one can

properly speak of a contingency theory. It follows that

the crucial question for any contingency approach is

whether it can identify and theoretically justify a small

number of empirical dimensions (ideally only two) in

terms of which the range of situations in question can

be usefully classified, so that each type of empirical

situation can then be identified in a relevant and

reliable way.

Methodological Core Principle

TSI/CH’s answer to the problem of ensuring

paradigmatic fit between intervention approaches and

problem contexts is a classification of problem

contexts, and of systems methodologies assigned to

them, called the system of systems methodologies

(SOSM). It says that systems methodologies and

conforming methods are well chosen if their

underlying systems metaphor (machine, organism,

etc.) and/or paradigm (functionalist, interpretive, etc.)

match with the nature of the problem context, or more

exactly, with assumptions about the kind of

complexity that needs to be handled in the problem

context. The basic idea and aim of TSI/CH, then,

is to support systematic processes of informed

methodology choice, as a way to secure paradigmatic

fit between intervention methods and intervention

contexts. To this end, TSI/CH proposes the SOSM

(see Fig. 4).

There was an earlier, four-celled version of the

SOSM (Jackson and Keys 1984) that is now often

cited as the origin of the TSI strand of CST.

However, it only distinguished hard and soft

methodologies, and its discussion in that early paper

did not yet introduce the notion of critical systems

thinking.

CSH became known to Jackson and Keys shortly

after publishing their 1984 paper. First hints at

a planned extension of their work appeared in a few

articles in the late 1980s (Jackson 1987, 1990); the

extended SOSM was presented later in Flood and

Jackson (1991) and Jackson (1991).

Due to the underlying logic of the SOSM, the

extended scheme could not manage to include CSH

except by constricting its notion of critical systems

thinking considerably. This logic assumes that any
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methodology can be meaningfully assigned to a single

type of problem context and to a conforming

(dominant) theoretical paradigm. There is no room in

such a scheme for an approach that focuses on the

genuinely normative core of practice as such, whatever

the theoretical paradigm adopted may be and the choice

ofmethodology and conformingmethods itmay inspire.

This makes it understandable why the extended SOSM

rather arbitrarily assigned CSH a merely emancipatory

purpose, as opposed to the critical purpose of the

SOSM. To render this choice more plausible, CSH was

associated with a prison metaphor, which then seemed

to render CSH adequate for coercive problem contexts

only and thus provided a rationale for assigning it to

a specific emancipatory paradigm (for critical

discussion and alternatives, see Ulrich 2003). In this

way, CSH became in the SOSM scheme an apparently

self-contained methodology that, quite against its

original intentions, was to be chosen (or not) as an

alternative to soft and hard systems methodologies. Its

concern for the practical-normative side of all practice

thus moved out of sight.

In British OR/MS, CSH was henceforth understood

mainly through the lens of the SOSM, and critical

systems thinking became widely identified with

TSI. Consequently, CST was now almost the same as

the SOSM—an updated contingency framework for

methodology choice, as well as for continuing

discussions about the evolution of OR/MS (e.g.,

Jackson 2006a). Both uses attracted much interest

and the mentioned difficulties of the extended SOSM

did not hamper its success in helping to raise awareness

in the profession that there are options for conceiving

of good professional practice. The discussion that the

SOSM was able to generate in turn has helped to make

CSH more known, so that its core principle of

boundary critique is increasingly being recognized as

an important, independent source of critical thought on

practice. These diverse successes of the SOSM

certainly have contributed to the comparatively high

level of methodological awareness and discussion by

which the OR/MS profession distinguishes itself from

other fields, which has allowed it to pioneer soft and

critical systems ideas that are now radiating into many

other fields.

Practical Implementation (Main Procedure)

To support methodology choice in practice, the SOSM

still needed to be embedded in a methodology,

properly speaking, that is, a framework that would

guide practitioners in asking relevant questions and

proceeding systematically. This is what total systems

intervention (TSI), a name adopted in 1991, is all

about. It stands for the practical procedure of

methodology choice and implementation that Flood

and Jackson (1991) proposed on the basis of the

SOSM. The aim is to provide a meta-methodology

for methodology choice and implementation.

The procedure may be employed in a linear or

iterative way. Originally it consisted of three phases

labeled creativity, choice, and implementation, to

which Jackson (2003, 2006b) later, in the extended
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Critical Systems Thinking, Fig. 4 The extended system of systems methodologies (SOSM) (Source: Adapted from Flood and
Jackson 1991, 42; Jackson 1991, 29 and 31; 2000, 359)
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version he now prefers to call creative holism, added

a fourth phase, Reflection (Table 1).

The creativity phase is intended to encourage

consideration of what alternative systems paradigms

and root metaphors might mean for thinking about

a problem context at hand, so that a dominant

metaphor could be identified as most adequate, that

is, in effect, preference for a hard (functionalist), soft

(interpretive), or critical (emancipatory) orientation. In

the choice and implementation phases, a conforming

particular systems methodology should then be chosen

based on the SOSM and used to implement specific

change proposals.

A new element in CH as compared to its

predecessor TSI is the reflection phase, which brings

in an element of reflective practice as CSH understands

it, by looking at the outcomes of methodology choice

and implementation rather than at its theoretical

justification only. Although the underlying notion of

evaluation is still not genuinely practical in the sense of

CSH and practical philosophy, this development does

promise to open up new chances for reflective practice.

Another new element, following a considerable

amount of discussion in the literature about

methodological complementarism or pluralism

(Jackson 1997, 1999), mixing methods (Midgley

1997), and multi-methodology (Mingers and Gill

1997), is that creative holism, unlike TSI, no longer

insists on choosing a single dominant paradigm.

Instead, a combination of methodologies, or parts of

methodologies and conforming methods, is now

encouraged, which makes the framework more flexible

and brings it closer to actual practice. As Jackson

describes it, CH now is a “meta-methodological”

framework that aims to help practitioners to “harness

the various systems methodologies, methods and

models” by being “multi-paradigm, multi-methodology

and multi-method in orientation” (Jackson 2006b, 248

and 253).

A Summary Comparison of CSH and TSI

To provide an overview of the discussed aspects of

critical systems thinking, Table 2 summarizes the

accounts of CSH and TSI in a way that should

facilitate comparison.

Concluding Remarks

The claim of professional practice to relevance, rigor,

and rationality depends on many requirements. Among

these, two crucial ones are putting the problem well

Critical Systems Thinking, Table 1 The meta-methodology of TSI/CH: standard phases of methodology choice and use

Phase Activity/Aim

(1) CREATIVITY

Task To identify major aims and issues of the problem context

Tools Use of different metaphors and paradigms to gain different perspectives

Outcome Appreciation of dominant and dependent metaphors/paradigms and related issues

(2) CHOICE

Task To choose appropriate systems methodologies and methods

Tools Use of SOSM to reveal strengths and weaknesses of methodologies and methods

Outcome Choice of dominant and dependent systems methodologies and methods

(3) IMPLEMENTATION

Task To arrive at and implement specific positive change proposals

Tools Systems methodologies and methods used properly according to the logic of TSI/CH

Outcome Relevant change according to the concerns of the different paradigms

(4) REFLECTION

Task To evaluate the intervention and ensure methodological learning

Tools Understanding of the concerns of different paradigms regarding good practice

Outcome Methodological progress

TSI total systems intervention ¼ phases 1–3, CH creative holism ¼ phases 1–4, SOSM system of systems methodologies
(Source: Adapted from Flood and Jackson 1991, 54; Jackson 1991, 276; 2000, 372; and 2006b, 654)
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and tackling it by means of adequate methods. In

different ways, both of these embody crucial

requirements of professional competence. Both of

them stand for efforts to make sure that relevant

issues are properly identified and the implications of

related assumptions are made transparent and

evaluated.

• Putting problems well is an issue that involves

empirical (observational) as well as normative

(ethical) problem structuring and reflection.

The selection of relevant facts and values depends

on a proper understanding of the problem, which is

hardly achievable without questioning the

scope and diversity of the social context that

matters. It also depends on the extent to which

justice is done in practice to the diversity of views

and concerns of the different parties concerned.

A problem may be ill defined so long as this

normative core of any quest for rational practice is

not well understood.

• Choosing and employing methods properly

involves analysis and reflection about the

demands of problem situations on the one hand

and about the availability of methods that respond

to these demands on the other. The selection of

adequate methodologies and methods depends on

a proper understanding of the theoretical and

paradigmatic assumptions involved, which is

hardly achievable without questioning the nature

of the complexity that matters. It also depends on

the extent to which the matching of such

assumptions with specific situations is successful

in practice. A methodology and conforming

methods may be ill chosen so long as this

theoretical core of the quest for rational practice

is not well understood.

Neither effort replaces or precludes the other.

Critical systems thinking, properly understood, aims

to promote good practice with regard to both. To this

end, the two strands of CST bring to bear within the

field of OR/MS, and in the applied sciences in general,

new philosophical and theoretical foundations, along

with new practical tools for analyzing contextual

complexity and diversity. CSH draws on practical

philosophy and consequently conceives of rational

practice in terms of discursive tools of value

clarification and critique, in particular boundary

critique and discourse. TSI/CH draws on

organizational sociology and conceives of rational

practice in terms of theoretically informed tools of

methodology choice, in particular paradigm analysis

and metaphor analysis.

Different as the resulting frameworks of CSH and

TSI are, their shared concern remains the idea that

Critical Systems Thinking, Table 2 CSH and TSI compared

Aspect CSH TSI/CH

Core idea Professional practice involves validity claims that cannot
be justified theoretically but at least can be handled
openly and critically in the process of intervention itself

Professional practice involves methodological choices
that can be justified theoretically by analyzing
underpinning research paradigms and systems
metaphors

Critical focus Reflective practice: surfacing the reference systems
underpinning all judgments of fact and value and
analyzing how they condition practical claims (e.g.,
problem definitions, relevant contexts, standards of
improvement, and proposals for action)

Paradigm analysis: surfacing the theoretical
underpinnings of alternative research paradigms
(e.g., functionalist, interpretive, emancipatory, or
post-modern) and analyzing how they condition
different perceptions of problem contexts and suitable
methodological choices

Approach Critical systems discourse: a discursive framework for
value clarification and critique

Contingency theory: a contingency framework for
methodology choice and use

Methodological

core principle

Boundary critique: unfolding the selectivity of reference
systems

Informed methodology choice: matching systems
methodologies with problem contexts

Main critical

device

Checklist of boundary questions: a definition of boundary
categories for “is” and “ought” mapping (i.e., descriptive
and normative analysis) of reference systems

System of systems methodologies (SOSM):
a classification of problem contexts and conforming
systems methodologies

Implementation A discursive process of unfolding selectivity: a standard
sequence of boundary critique

A holistic meta-methodology of paradigm analysis:

standard phases of methodology choice and reflection

CSH critical systems heuristics, TSI/CH total systems intervention/creative holism
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good professional practice depends crucially on

making sure that problems are well put and methods

of intervention are well chosen; and that to meet both

requirements, it is essential to properly situate

problems in their contexts and make sure one

understands those contexts well. Formulated in

everyday terms, the essential message of CST to

professionals might thus be summarized as follows:

Critical Systems Thinking: Its Operational

Imperative

As a professional intervening in a specific

context, pay attention to your contextual

assumptions and try to identify and examine

them systematically, so as to understand them

well. Then make sure everyone concerned

understands them well too. Work toward

mutual understanding about how problem

definitions and solutions depend on and change

with the facts and values considered relevant.

Make sure divergent views and values are

properly addressed. Adapt your choice of

methodologies and methods to the amount of

diversity that you find in the problem context,

and to the resulting nature of the complexity that

matters. Finally, whatever problem definitions

and methods your professional practice

ultimately relies on, reflect on the validity

claims your professional findings and

conclusions imply and how, if taken as a basis

for action, they may affect the different parties

concerned. Make boundary critique a standard

practice to this end, and always remember

that no professional intervention can do

justice to all views and values, that is, can

justify all its implications. But at least it can

deal with this inevitable lack of complete

justification in a transparent and self-reflecting

way. This is what critical professional practice is

all about.

See

▶Community OR

▶Cybernetics and Complex Adaptive Systems

▶ Practice of Operations Research and Management

Science

▶ Problem Structuring Methods

▶ Soft Systems Methodology

▶ System Dynamics

▶ Systems Analysis
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Introduction

The cross-entropy (CE) method is a versatile Monte

Carlo technique introduced by Rubinstein (1999,

2001), extending earlier work on variance

minimization (Rubinstein 1997). A tutorial on the CE

method is given in de Boer et al. (2005). A

comprehensive treatment can be found in Rubinstein

and Kroese (2004); see also Rubinstein and Kroese

(2007, Chap. 8).

The CE method can be applied to two types of

problems:

1. Estimation: Estimate ‘ ¼ ½HðXÞ�, where X is

a random object taking values in some set X and

H is a function on X . An important special case is

the estimation of a probability ‘ ¼ ðSðXÞ � gÞ,
where S is another function on X .

2. Optimization: Optimize (i.e., maximize or

minimize) S(x) over all x ∈ X , where S is some

objective function on X .
In the estimation setting, the CE method can be

viewed as an adaptive importance sampling procedure

that uses the cross-entropy or Kullback–Leibler

divergence as a measure of closeness between two

sampling distributions. In the optimization setting, the

optimization problem is first translated into a rare-event

estimation problem, and then the CE method for

estimation is used as an adaptive algorithm to locate

the optimum.

Estimation

Consider the estimation of

‘ ¼ f HðXÞ½ � ¼
Z

HðxÞ f ðxÞ dx; (1)
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where H is a real-valued function and f is the

probability density function (pdf) of the random

vector X. It is assumed, for simplicity, that X
is a continuous random variable. For the discrete

case, replace the integral in (1) by a sum. Let g be

another pdf—which must be nonzero for every x for

which H(x) f(x) 6¼ 0. Using the pdf g, ‘ can be

represented as

‘ ¼
Z

HðxÞ f ðxÞ
gðxÞ gðxÞdx ¼ g HðXÞ f ðXÞ

gðXÞ

� �
; (2)

where the subscript g indicates that the expectation is

taken with respect to g rather than f. Consequently, if

X1, . . . , XN are independent random vectors with

pdf g, written as X1, . . . , XN�iid g, then

‘̂ ¼ 1

N

XN

k¼1
HðXkÞ

f ðXkÞ
gðXkÞ

(3)

is an unbiased estimator of ‘—a so-called importance

sampling estimator. The optimal importance sampling

pdf, that is, the pdf g* that minimizes the variance of

‘̂, is proportional to jHj f (see, e.g., Rubinstein and

Kroese (2007, 132)), but is in general difficult to

evaluate. The idea of the CE method is to choose the

importance sampling pdf g in a specified class of pdfs

such that the Kullback–Leibler divergence between the

optimal importance sampling pdf g* and g is minimal.

The Kullback–Leibler divergence between two pdfs g

and h is given by

Dðg;hÞ ¼ g ln
gðXÞ
hðXÞ

� �
¼
Z

gðxÞ lngðxÞ
hðxÞ dx

¼
Z

gðxÞ lngðxÞ dx�
Z

gðxÞ lnhðxÞ dx: (4)

In most cases of interest the function H is

nonnegative, and the nominal pdf f is parameterized

by a finite-dimensional vector u; that is, f(x) ¼ f(x; u).
It is then customary to choose the importance sampling

pdf g in the same family of pdfs; thus, g(x)¼ f(x; v) for
some reference parameter v. The CE minimization

procedure then reduces to finding an optimal

reference parameter vector, say v*, by cross-entropy

minimization:

v� ¼ argmin
v
Dðg�; f ð
; vÞÞ

¼ argmax
v

Z
HðxÞf ðx; uÞ ln f ðx; vÞ dx

¼ argmax
v

Eu HðXÞ ln f ðX; vÞ

¼ argmax
v

Ew HðXÞ ln f ðX; vÞ f ðX; uÞ
f ðX;wÞ ; (5)

where w is any reference parameter. This v* can be

estimated via the stochastic counterpart of (5):

v̂¼ argmax
v

1

N

XN

k¼1
HðXkÞ

f ðXk; uÞ
f ðXk;wÞ

ln f ðXk; vÞ; (6)

where X1, . . . , XN �iid f (·; w). The optimal parameter

v̂ in (6) can often be obtained in explicit form, in

particular when the class of sampling distributions

forms an exponential family; see, for example,

Rubinstein and Kroese (2007, 319–320). Indeed,

analytical updating formulas can be found whenever

explicit expressions for the maximal likelihood

estimators of the parameters can be found, cf. de

Boer et al. (2005, 36).

Example: Exponential Random Variables.
Consider the case where X1 ¼ (X1, . . . , Xn) is

a vector of independent exponential random variables

with expectations u1, . . . , un. Let u ¼ (u1, . . . , un) and

let v ¼ (v1, . . . , vn) be the reference parameter of the

importance sampling pdf f (x; v), given by

f ðx; vÞ ¼
Yn

i¼1

e�xi=vi

vi
:

Hence, under this importance sampling pdf,

X1, . . . , Xn are again independent and exponentially

distributed, but now with expectations v1, . . . , vn.

Writing Hk ¼ H(Xk) and the likelihood ratio

Wk ¼ f(Xk; u)/f(Xk; w) in (6), the optimal parameter v̂

is found by maximizing

Xn

i¼1

XN

k¼1
HkWk ln f ðXk; uÞ

¼
Xn

i¼1

XN

k¼1
HkWk

�Xki

vi
� ln vi

� �
; (7)
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where Xki is the i-th component of Xk. This maximum

can be found by differentiating and equating to zero the

right-hand side of (7) for each vi, resulting in the

equations

XN

k¼1
HkWk

Xki

v2i
� 1

vi

� �
¼ 0; i ¼ 1; :::; n;

from which it follows that

v̂i ¼
PN

k¼1 HkWkXkiPN
k¼1 HkWk

; i ¼ 1; :::; n: (8)

Often ‘ ¼ ðSðXÞrgÞ for some function S and level

g, in which case H(x) takes the form of an indicator

function:HðxÞ ¼ IfSðxÞrgg; that is,H(x)¼ 1 if S(x)r g,

and 0 otherwise. A complication in solving (6) occurs

when ‘ is a rare-event probability; that is, a very small

probability (say less than 10–4). Then, for moderate

sample size N, most or all of the values H(Xk) in (6)

are zero, and the maximization problem becomes

useless. In that case a multilevel CE procedure is

used, where a sequence of reference parameters and

levels is constructed with the goal that the former

converges to v* and the latter to g. This leads to the

following algorithm; see, for example, Rubinstein and

Kroese (2007, 238).

Algorithm 1 (CE Algorithm for Rare-Event
Estimation).
1. Define v̂0 ¼ u. Let Ne ¼ RNd e. Set t ¼ 1 (iteration

counter).

2. Generate X1, . . . , XN �iid f (·; v̂t�1). Calculate

Si ¼ S(Xi) for all i, and order these from smallest

to largest: S(1) � . . . � S(N). Let ĝt be the sample

ð1� RÞ-quantile of performances; that is,

ĝt¼ SðN�Neþ1Þ. If ĝt > g, reset ĝt to g.

3. Use the same sample X1, . . . , XN to solve the

stochastic program (6), with w ¼ v̂t�1. Denote the

solution by v̂t.
4. If ĝt < g, set t ¼ t + 1 and reiterate from Step 2;

otherwise, proceed with Step 5.

5. Let T be the final iteration counter. Generate

X1; : : : ;XN1
�iid f ð
; v̂TÞ and estimate ‘ via

importance sampling, as in (3).

Apart from specifying the family of sampling pdfs,

the sample sizes N and N1, and the rarity parameter R

(typically between 0.01 and 0.1), the algorithm is

completely self-tuning. The sample size N for

determining a good reference parameter can usually

be chosen much smaller than the sample size N1 for the

final importance sampling estimation, say N ¼ 1000

versus N1 ¼ 100,000. Under certain technical

conditions the deterministic version of Algorithm 1 is

guaranteed to terminate (reach level g) provided that R

is chosen small enough; see Sect. 3.5 of Rubinstein and

Kroese (2004).

Example: Rare-Event Probability Estimation.
A stochastic activity network is a frequently used

tool in project management to schedule concurrent

activities. Each arc corresponds to an activity and is

weighted by the duration of that activity. The maximal

project duration corresponds to the length of the longest

path in the graph. Figure 1 shows a stochastic activity

network with eight activities. Suppose the durations of

the activities are independent exponential random

variables X1, . . . , X8, each with mean 1.

Let S(X) denote length of the longest path in the

graph; that is,

SðXÞ ¼maxfX1 þ X4 þ X6 þ X8; X1 þ X4 þ X7; X1

þX5 þ X8; X2 þ X8; X3 þ X6 þ X8; X3 þ X7g

Suppose the objective is to estimate the rare-event

probability  SðXÞ � 20ð Þ using importance sampling

where the random vector X ¼ (X1, . . . , X8) has

independent exponentially distributed components with

mean vector v¼ (v1, . . . , v8). Note that the nominal pdf

is obtained by setting vi¼ 1 for all i. At the t-th iteration

of themultilevel CEAlgorithm 1, the solution to (6) with

HðXÞ ¼ I SðXÞ�ĝtf g, using (8), is given by

v̂t;i ¼
PN

k¼1 I SðXkÞ�ĝtf gWkXkiPN
k¼1 I SðXkÞ�ĝtf gWk

; (9)

where X1, . . . , XN �iid f(·; v̂t�1), Wk ¼ f(Xk;

u)/f(Xk; v̂t�1), and Xki is the i-th element of Xk.

8

2

4

5

6

7

1

3
start finish

Cross-Entropy Method, Fig. 1 A stochastic activity network
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Table 1 lists the successive estimates for the

optimal importance sampling parameters obtained

from the multilevel CE algorithm, using N ¼ 105 and

R ¼ 0.1.

The last step in Algorithm 1 gives an estimate of

4.15 · 10–6with an estimated relative error of 1%, using

a sample size ofN1¼ 106. A typical crudeMonte Carlo

estimate (i.e., taking v ¼ u ¼ (1,1, . . . , 1)) using the

same sample size is 3 · 10–6, with an estimated relative

error of 60%, and is therefore of little use.

For large-size activity networks the accurate

estimation of the optimal parameters via (9) runs into

problems due to the degeneracy behavior of the

likelihood ratio; cf. Rubinstein and Kroese (2007,

133). For such systems it is recommended to estimate

the optimal CE parameters by drawing samples

directly from g*, for example, via Markov chain

Monte Carlo; see Chan (2010).

Optimization

Let X be an arbitrary set of states and let S be

a real-valued performance function on X . Suppose the
goal is to find the maximum of S over X , and the

corresponding maximizer x* (assuming, for simplicity,

that there is only one). Denote the maximum by g*,

so that

Sðx�Þ ¼ g� ¼ max
x2X

SðXÞ: (10)

Associate with the above problem the estimation of

the probability ‘ ¼ (S(X) � g), where X has some

probability density f(x; u) on X (e.g., corresponding

to the uniform distribution on X ) and g is some level.

Thus, for optimization problems, randomness is

purposely introduced in order to make the model

stochastic, as in the estimation setting. If g is chosen

close to the unknown g*, then ‘ is typically a rare-event

probability, and the CE approach of section

“Estimation” can be used to find an importance

sampling distribution close to the theoretically optimal

importance sampling density, which concentrates all its

mass on point x*. Sampling from such a distribution

thus produces optimal or near-optimal states. Note that

the final level g¼ g* is generally not known in advance,

in contrast to the rare-event simulation setting. The CE

method for optimization produces a sequence of levels

fĝtg and reference parameters v̂tf g such that the former

tends to the optimal g* and the latter to the optimal

reference vector v* corresponding to the point mass

at x*; see, for example, Rubinstein and Kroese (2007)

p. 251.

Algorithm 2 (CE Algorithm for Optimization).
1. Choose an initial parameter vector v̂0. Let

Ne ¼ dRNe. Set t ¼ 1 (level counter).

2. Generate X1, . . . , XN �iid f(·;v̂t�1). Calculate the

performances S(Xi) for all i, and order them from

smallest to largest: S(1) �. . .� S(N). Let ĝt be the

sample (1 – R)-quantile of performances; that is,

ĝt ¼ SðN�Neþ1Þ.

3. Use the same sample X1, . . . , XN and solve the

stochastic program

max
v

1

N

XN

k¼1
I SðXkÞ�ĝtf g ln f ðXk; vÞ: (11)

Denote the solution by v̂t.
4. If some stopping criterion is met, stop; otherwise,

set t ¼ t +1, and return to Step 2.

To run the algorithm, one needs to provide the

class of sampling pdfs, the initial vector v̂0, the

sample size N, the rarity parameter R, and

the stopping criterion. Any CE algorithm for

optimization involves thus the following two main

iterative phases:

1. Generate a random sample of objects in the search

space X (trajectories, vectors, etc.) according to

a specified probability distribution.

2. Update the parameters of that distribution, based on

the Ne best performing samples (the so-called elite

samples), using CE minimization.

Note that Step 5 of Algorithm 1 is missing in

Algorithm 2. Another main difference between the

two algorithms is that the likelihood ratio term

f ðXk; uÞ=f ðXk; v̂t�1Þ in (6) is missing in (11).

Cross-Entropy Method, Table 1 Convergence of the
sequence fðĝt ; v̂tÞg
t ĝt v̂t

0 – 1 1 1 1 1 1 1 1

1 7.32 1.93 1.12 1.39 1.83 1.32 1.81 1.37 1.96

2 12.01 3.33 1.09 1.58 2.98 1.50 2.95 1.58 3.32

3 20 5.03 1.00 1.88 4.63 1.51 4.73 1.47 5.14
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Often a smoothed updating rule is used, in which the

parameter vector v̂t is taken as

v̂t ¼ a ~vt þ ð1� aÞv̂t�1; (12)

where ~vt is the solution to (11) and 0 � a � 1 is

a smoothing parameter. Many other modifications can

be found in Kroese et al. (2006), Rubinstein and Kroese

(2004, 2007). When there are two or more optimal

solutions, the CE algorithm typically “fluctuates”

between the solutions before focusing on one of the

solutions. The effect that smoothing has on

convergence is discussed in detail in Costa et al.

(2007). In particular, it is shown that with appropriate

smoothing the CE method converges and finds the

optimal solution with probability arbitrarily close to 1.

Necessary conditions and sufficient conditions under

which the optimal solution is generated eventually

with probability 1 are also given. Other convergence

results, including a proof of convergence along the

lines of the convergence proof for simulated annealing

can be found inMargolin (2005). The CEmethod is also

effective for solving noisy optimization problems, for

example, when the objective function value is obtained

via simulation. Typical examples may be found in Alon

et al. (2005) and Cohen et al. (2007).

Combinatorial Optimization

When the state space X is finite, the optimization

problem (10) is often referred to as a discrete or

combinatorial optimization problem. For example, X
could be the space of combinatorial objects such as

binary vectors, trees, paths through graphs,

permutations, etc. To apply the CE method, one needs

to first specify a convenient parameterized random

mechanism to generate objects X in X . An important

example is where X ¼ (X1, . . . , Xn) has independent

components such that Xi ¼ j with probability

pij, i ¼ 1, . . . , n, j ¼ 1, . . . , m. In that case, the CE

updating rule (see de Boer et al. 2005, 56) at the t-th

iteration is

p̂t;ij ¼
PN

k¼1 I SðXkÞrĝtf g I Xki¼jf gPN
k¼1 I SðXkÞrĝtf g

; i ¼ 1; . . . ; n;

j ¼ 1; . . . ;m;

(13)

where X1, . . . , XN are independent copies of

X � fp̂t�1;ijg and Xki is the i-th element of Xk. Thus,

the updated probability p̂t;ij is simply the number of

elite samples for which the i-th component is equal to j,

divided by the total number of elite samples.

A possible stopping rule for combinatorial

optimization problems is to stop when the overall

best objective value does not change over a number

of iterations. Alternatively, one could stop when the

sampling distribution has “degenerated” enough. For

example, when in (13) the fp̂t;ijg differ less than some

small e > 0 from the fp̂t�1;ijg.

Example: Max-Cut Problem. The max-cut problem

in a graph can be formulated as follows. Given

a weighted graph G(V, E) with node set V ¼ {1, . . . , n}

and edge set E, partition the nodes of the graph into two

subsets V1 and V2 such that the sum of the (nonnegative)

weights of the edges going from one subset to the other is

maximized. Let C ¼ (C(i, j)) be the matrix of weights.

The objective is to maximize

X

ði;jÞ2V1�V2

ðCði; jÞ þ Cðj; iÞÞ (14)

over all cuts {V1, V2}. Such a cut can be conveniently

represented by a binary cut vector x ¼ (1, x2, . . . , xn),

where xi ¼ 1 indicates that i ∈ V1. Let X be the set of

cut vectors and let S(x) be the value of the cut

represented by x, as given in (14).

To maximize S via the CE method one can generate

the random cut vectors by drawing each component

(except the first one, which is set to 1) independently

from a Bernoulli distribution, that is, X ¼ (1, X2, . . . ,

Xn)� Ber(p), where p¼ (1, p2, . . . , pn). Given an elite

sample set E, with size Ne, the updating formula (13)

is then:

p̂t;i ¼
P

X2EXi

Ne
; i ¼ 2; . . . ; n: (15)

That is, the updated success probability for the i-th

component is the mean of the i-th components of the

vectors in the elite set.

Figure 2 illustrates the evolution of the Bernoulli

parameters for a max-cut problem from de Boer

et al. (2005) of dimension n ¼ 400, for which

the optimal solution is given by x* ¼ (1, . . . , 1,

0, . . . , 0).

Continuous Optimization

When the state space is continuous, in particular when

X ¼ 
n, the optimization problem is often referred to
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as a continuous optimization problem. The sampling

distribution on ℝ
n can be quite arbitrary and does not

need to be related to the function that is being

optimized. The generation of a random vector

X ¼ (X1, . . . , Xn) ∈ ℝ
n is most easily performed by

drawing the coordinates independently from some

2-parameter distribution. In most applications,

a normal (Gaussian) distribution is employed for each

component. Thus, the sampling distribution for X is

characterized by a vector of means m and a vector of

standard deviations s. At each iteration of the CE

algorithm, these parameter vectors are updated

simply as the vectors of sample means and sample

standard deviations of the elements in the elite set;

see, for example, Kroese et al. (2006).

Algorithm 3 (CE for Continuous Optimization:
Normal Updating).
1. Initialize: Choose m̂0 and ŝ2

0. Set t ¼ 1.

2. Draw: Generate a random sample X1, . . . , XN

from the Nðm̂t�1; ŝ
2
t�1Þ distribution.

3. Select: Let I be the indices of the Ne best

performing (¼ elite) samples.

Update: For all j ¼ 1, . . . , n let

~mt;j ¼
X

i2I
Xij=N

e
(16)

and

~s2t;j ¼
X

i2I
ðXij � ~mt;jÞ2=N

e
: (17)

4. Smooth:

m̂t¼a~mtþð1�aÞm̂t�1; ŝt¼a~stþð1�aÞŝt�1 (18)

5. If maxjfŝt;jg < e stop and return mt as an

approximate solution. Otherwise, increase t by 1

and return to Step 2.

For constrained continuous optimization problems,

where the samples are restricted to a subset X � 
n,

it is often possible to replace the normal sampling

with sampling from a truncated normal distribution

while retaining the updating formulas (16–17). An

alternative is to use a beta distribution. Instead of

returning m̂t as the final solution, one often returns

the overall best solution generated by the algorithm.

Smoothing, as in Step 4, is often crucial to prevent

premature shrinking of the sampling distribution.

Instead of using a single smoothing factor, it is often

useful to use separate smoothing factors for m̂t and ŝt.

An alternative is to use dynamic smoothing for ŝt:

at ¼ b� b 1� 1

t

� �q

; (19)

where q is an integer (typically between 5 and 10) and

b is a smoothing constant (typically between 0.8 and

0.99). Another approach is to inject extra variance into

the sampling distribution, for example, by increasing

the components of s, once the distribution

has degenerated; see Botev and Kroese (2004).

Finally, significant speed up can be achieved by

0
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Fig. 2 Sequence of reference
vectors for a synthetic max-cut
problem with 400 nodes.
Iterations 0, 5, 10, 15, and 20
are displayed
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using a parallel implementation of CE; see, for

example, Evans et al. (2007).

Example: Parameter Estimation for Differential
Equations. Consider the FitzHugh–Nagumo

differential equations:

dVt

dt
¼ c Vt �

V3
t

3
þ Rt

� �
;

dRt

dt
¼ � 1

c
ðVt � aþ bRtÞ; (20)

which model the behavior of certain types of neurons

(Nagumo et al. 1962). Ramsay et al. (2007) consider

estimating the parameters a, b, and c from noisy

observations of (Vt) by using a generalized smoothing

approach. The simulated data in Fig. 3 correspond to the

values of Vt obtained from (20) at times 0, 0.05, . . . ,

20.0, adding Gaussian noise with standard deviation 0.5.

The true parameter values are a ¼ 0.2, b ¼ 0.2, and

c ¼ 3. The initial conditions are V0 ¼ �1 and R0 ¼ 1.

Estimation of the parameters via the CEmethod can

be established by minimizing the least-squares

performance

SðxÞ ¼
X400

i¼0
ðyi � V0:05iðxÞÞ2;

where {yi} are the simulated data, x ¼ (a, b, c, V0, R0),

and Vt(x) is the solution to (20) for parameter vector x.
Algorithm 3 was implemented with m̂0 ¼ (0, 0, 5, 0, 0),

ŝ0 ¼ (1,1,1,1,1), N ¼ 100, Ne ¼ 10, and e ¼ 0.001.

Constant smoothing parameters a1 ¼ 0.9 and a2 ¼ 0.5

were used for the fm̂tg and the fŝtg, respectively. The
following solution was found (note that the initial

condition was assumed to be unknown): â ¼ 0.19,

b̂ ¼ 0:21, ĉ ¼ 3.00, V̂0 ¼ �1.02, and R̂0 ¼ 1.02. The

smooth curve in Fig. 3 gives the corresponding

estimated curve, which is practically indistinguishable

from the true one.

See

▶Monte Carlo Methods

▶Monte Carlo Simulation

▶Rare Event Simulation

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization
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Crossover

A genetic-algorithm operator which exchanges

corresponding genetic material from two parent

chromosomes (i.e., solutions), allowing genes on

different parents to be combined in their offspring.

See

▶Genetic Algorithms

CS

Computer science.

See

▶Computer Science and Operations Research Interfaces

Curse of Dimensionality

The situation that arises in such areas as dynamic

programming, control theory, integer programming,

combinatorial problems, and, in general,

time-dependent problems in which the number of

states and/or data storage requirements increases

exponentially with small increases in the problems’

parameters or dimensions; sometimes referred to as

combinatorial explosion.

See

▶Combinatorial Explosion

▶Control Theory

▶Dynamic Programming

▶ Integer and Combinatorial Optimization
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Customer Distribution

The probability distribution of the state of the

process that customers observe upon arrival to

a queueing system. In general, it is not the same as

the distribution seen by a random outside observer; but

the two distributions are the same for queueing systems

with Poisson arrivals (PASTA). Since customers

entering a queue must also exit, the probability

distribution seen by arriving customers who are

accepted is the same as that for the number of

customers left behind by the departures.

See

▶Outside Observer Distribution

▶ PASTA

▶Queueing Theory
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Cut

A set of arcs in a graph (network) whose removal

eliminates all paths joining a node s (source node) to

a node t (sink node).

See

▶Graph Theory

▶Max-Flow Min-Cut Theorem

▶Maximum-Flow Network Problem

Cutset

A minimal set of edges whose removal disconnects

a graph.

See

▶Cut

▶Graph Theory

Cutting Stock Problems

Robert W. Haessler

University of Michigan, Ann Arbor, MI, USA

Introduction

Solid materials such as aluminum, steel, glass, wood,

leather, paper and plastic film are generally produced in

larger sizes than required by the customers for these

materials. As a result, the producers or primary

converters must determine how to cut the production

units of these materials to obtain the sizes required by

their customers. This is known as a cutting stock

problem. It can occur in one, two or three dimensions

depending on the material. The production units may be

identical, may consist of a few different sizes, or may be

unique. Theymay be of consistent quality throughout or

may contain defects. The production units may be

regular (rectangular) or irregular. The ordered sizes

may be regular or irregular. They may all have the

same quality requirements or some may have different

requirements. They may have identical or different

timing requirements which impact inventory. The first

Some examples follow:

• cutting rolls of paper from production reels of the

same diameter.

• cutting rectangular pieces of glass from rectangular

production sheets.

• cutting irregular pieces of steel from rectangular

plates.

• cutting rectangular pieces of leather from irregular

hides.

• cutting dimensional lumber from logs of various

size.

There are two other classes of problems which are

closely related to the above cutting problems. The first is

the layout problem. An example of this would be the

problem of determining the smallest rectangle which

will contain a given set of smaller rectangles without

overlap. Solving this problem is essentially the same as

being able to generate a cutting pattern in the discussion

of cutting stock problems which follows. The second

type of problem, which in many cases can be solved by

the same techniques as cutting stock problems, is the

(bin) packing problem. A one-dimensional example of

this would be to determine the minimum number of

containers required to ship a set of discrete items

where weight and not floor space or volume is the

determinant of what can be placed in the container. If

floor space or volume is the key determinant, then the

problem is equivalent to a two or three-dimensional

cutting stock problem in which guillotine cuts are not

required. Even though the following discussions focuses

on cutting stock problems, it is also applicable to solving

both packing and layout problems.

Although cutting stock problems are relatively easy

to formulate, many of them especially those with

irregular shapes, are difficult to solve; there are no

efficient solution procedures available. The major

difficulty has to do with the generation of feasible low

trim loss cutting pattern. As will be discuseed below,

this ranges from being simple in one-dimension to

complex in two-dimensions, even with regular shapes.

The first known formulation of a cutting stock

problem was given in 1939 by the Russian economist

Kantorovich (1960). The first and most significant

advance in solving cutting problems was the seminal
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work of Gilmore and Gomory (1961, 1963) in which

they described their delayed pattern generation

technique for solving the one-dimensional trim loss

minimization problem using linear programming.

Since that time, there has been an explosion of interest

in this application area. Sweeney and Paternoster

(1992) have identified more than 500 papers which

deal with cutting stock and related problems and

applications. The primary reasons for this activity are

that cutting stock problems occur in a wide variety of

industries, there is a large economic incentive to find

more effective solution procedures, and it is easy to

compare alternative solution procedures and to identify

the potential benefits of using a proposed procedure.

Cutting stock problems are introduced with

a discussion of the one-dimensional problem and the

techniques available for solving it. The article

concludes with an extension to the regular two

dimensional problem.

One-Dimensional Problems

An example of a one-dimensional cutting stock problem

is the trim loss minimization problem that occurs in the

paper industry. In this problem, known quantities of

rolls of various widths and the same diameter are to be

slit from stock rolls of some standard width and

diameter. The objective is to identify slitting patterns

and their associated usage levels that satisfy the

requirements for ordered rolls at the least possible total

cost for scrap and other controllable factors. The basic

cutting pattern feasibility restriction in this problem is

that the sum of the roll widths slit from each stock roll

must not exceed the usable width of the stock roll.

Let Ri be the nominal order requirements for rolls of

width Wi, i ¼ 1, . . ., n, to be cut from stock rolls of

usable width UW. We have RLi and RUi as lower and

upper bounds on the order requirement, for customer

order i, reflecting the general industry practice of

allowing overruns or underruns within specified

limits. Depending on the situation, Ri may be equal to

RLi and/or RUi. All orders are for rolls of the same

diameter. This problem can be formulated as follows,

with Xj as the number of stock rolls to be slit using

pattern j and Tj as the trim loss incurred by pattern j:

minimize
X

j

TjXj (1)

s:t RLi �
X

j

AijXj � RUi for all i (2)

Tj ¼ UW �
X

i

AijWi (3)

Xj � 0; integer: (4)

where Aij is the number of rolls of width Wi to be slit

from each stock roll that is processed using pattern j. In

order for the elements Aij, i ¼ 1, . . ., n, to constitute

a feasible cutting pattern, the following restrictions

must be satisfied:

X

i

AijWi � UW; (5)

Aij � 0; integer (6)

Note that the objective in this example is simply to

minimize trim loss. In most industrial applications, it is

necessary to consider other factors in addition to trim

loss. For example, there may be a cost associated with

pattern changes and, therefore, controlling the number

of patterns used to satisfy the order requirements

would be an important consideration.

Because optimal solutions to integer cutting stock

problems can be found only for values of n smaller

than typically found in practice, heuristic procedures

represent the only feasible approach to solving this

type of problem. Two types of heuristic procedures

have been widely used to solve one-dimensional

cutting stock problems. One approach uses the

solution to a linear programming (LP) relaxation of

the integer problem above as its starting point. The LP

solution is then modified in some way to provide

a integer solution to the problem. The second

approach is to generate cutting patterns sequentially

to satisfy some portion of the remaining requirements.

This sequential heuristic procedure (SHP) terminates

when all order requirements are satisfied.

Linear Programming Solutions

Almost all LP-based procedures for solving cutting

stock problems can be traced back to Gilmore and

Gomory (1961, 1963). They described how the next

pattern to enter the LP basis could be found by solving
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an associated knapsack problem. This made it possible

to solve the trim loss minimization problem by linear

programming without first enumerating every feasible

slitting pattern. This is extremely important because

a large number of feasible patterns may exist when

narrow widths are to be slit from a wide stock roll.

Pierce (1964) showed that in such situations the

number of slitting patterns can easily run into the

millions. Because only a small fraction of all possible

slitting patterns need to be considered in finding the

minimum trim loss solution, the delayed pattern

generation technique developed by Gilmore and

Gomory made it possible to solve trim loss

minimization problems in much less time than would

be required if all the slitting patterns were input to

a general-purpose linear programming algorithm.

A common LP relaxation of the integer programming

problem given in (1)–(3) can be stated as follows:

minimize
X

j

Xj (7)

s:t
X

j

AijXj � RUi for all i; (8)

Xj � 0; integer: (9)

LetUi be the dual variable associated with constraint

i. Then the dual of this problem can be stated as:

minimize
X

i

RiUi (10)

s:t:
X

i

AijUi � 1 (11)

Ui � 0: (12)

The dual constraints in (11) provide the means for

determining if the optimal LP solution has been

obtained or if there exists a pattern which will

improve the LP solution because the dual problem is

still infeasible.

The next patternA¼ (A 1,. . ., A n ) to enter the basis,

if one exists, can be found by solving the following

knapsack problem:

Z ¼ maximize
X

i

UiAi (13)

s:t:
X

i

WiAi � UW (14)

Ai � 0; integer (15)

If Z � 1, the current solution is optimal. If Z > 1,

then A can be used to improve the LP solution.

Once found, the LP solution can be modified in

a number of ways to obtain integer values for the Xj

which satisfy the order requirements. One common

approach is to round the LP solution down to integer

values, then increase the values of Xj by unit amounts

for any patterns whose usage can be increased without

exceeding RUi. Finally, new patterns can be generated

for any rolls still needed using the sequential heuristic

described in the next section.

Sequential Heuristic Procedures (SHP)

With an SHP, a solution is constructed one pattern at

a time until all the order requirements are satisfied. The

first documented SHP capable of finding better

solutions than those found manually by schedulers

was described by Haessler (1971). The key to success

with this type of procedure is to make intelligent

choices as to the patterns which are selected early in

the SHP. The patterns selected initially should have

low trim loss, high usage and leave a set of

requirements for future patterns which will combine

well without excessive side trim.

The following procedure is capable of making

effective pattern choices in a variety of situations:

1. Compute descriptors of the order requirements yet to

be scheduled. Typical descriptors would be the

number of stock rolls still to be slit and the average

number of ordered rolls to be cut from each stock roll.

2. Set goals for the next pattern to be entered into the

solution. Goals should be established for trim loss,

pattern usage, and number of ordered rolls in the

pattern.

3. Search exhaustively for a pattern that meets those

goals.

4. If a pattern is found, add this pattern to the solution

at the maximum possible level without exceeding

Ri, for all i. Reduce the order requirements and

return to 1.

5. If no pattern is found, reduce the goal for the usage

level of the next pattern and return to 3.
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The pattern usage goal provides an upper bound on

the number of times a size can appear in a pattern. For

example, if some ordered width has an unmet

requirement of 10 rolls and the pattern usage goal is 4,

that width may not appear more than twice in a pattern.

If after exhaustive search no pattern satisfies the goals

set, then at least one goal,most commonly pattern usage,

must be relaxed. This increases the number of patterns to

be considered. If the pattern usage goal is changed to 3 in

the above example, then the width can appear in the

pattern three times. Termination can be guaranteed by

selecting the pattern with the lowest trim loss at the

usage level of one.

The primary advantage of this SHP is its ability to

control factors other than trim loss and to eliminate

rounding problems by working only with integer

values. For example, if there is a cost associated with

a pattern change, a sequential heuristic procedure

which searches for high usage patterns may give

a solution which has less than one-half the number of

patterns required by an LP solution to the same

problem. The major disadvantage of an SHP is that it

may generate a solution which has greatly increased

trim loss because of what might be called ending

conditions. For example, if care is not taken as each

pattern is accepted and the requirements reduced, the

widths remaining at some point in the process may not

have an acceptable trim loss solution. Such would

be the case if only 34-inch rolls are left to be slit

from 100-inch stock rolls.

Rectangular Two-Dimensional Problems

The formulation of a higher dimensional cutting

stock problem is exactly the same as that of the

one-dimensional problem given in (1)–(4). The only

added complexity comes in trying to define and

generate feasible cutting patterns. The simplest

two-dimensional case is one in which both the stock

and ordered sizes are rectangular. Most of the

important issues regarding cutting patterns for

rectangular two-dimensional problems can be seen in

the examples shown in Fig. 1.

One important issue not covered in Fig. 1 is a limit

on the number of times an ordered size can appear in

a pattern. This generally is a function of the maximum

quantity of pieces, RUi, required for order i. If Ri is

small, it is just as important for the two-dimensional

case as the one dimensional case that the number of

times size i appears in a pattern should be limited. This

becomes less important as Ri becomes larger and as the

difference between RUi and RLi becomes larger.

The cutting pattern shown in Fig. 1(a) is an example

of two-stage guillotine cuts. The first cut can be in

either the horizontal or vertical direction. A second

cut perpendicular to the first, yields a finished piece.

Figure 1(b) is similar except a third cut can be made to

trim the pieces down to the correct dimension.

Figure 1(c) shows the situation in which the third cut

can create 2 ordered pieces.

For simple staged cutting such as shown in Fig. 1

(a, b, c), Gilmore and Gomory (1965) showed how

cutting patterns can be generated by solving two

one-dimensional knapsack problems. To simplify the

discussion, assume that the orientation of each ordered

piece is fixed relative to stock piece and the first

guillotine cut on the stock pieces must be along the

length (larger dimension) of the stock piece. For each

ordered widthW k, find the contents of a strip of width

Wk and length L which gives the maximum

contribution to dual infeasibility:

Zk ¼ maximize
X

ieIk

UiAik (16)

L

W

(a) 2-STAGE GUILLOTINE
NO TRIMMING

(c) 3-STAGE GUILLOTINE

(e) NONGUILLOTINE

(b) 2-STAGE GUILLOTINE
WITH TRIMMING

(d) GENERAL GUILLOTINE

Cutting Stock Problems, Fig. 1 Sample cutting patterns
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s:t:
X

ieIk

LiAik � L (17)

Aik � 0; integer: (18)

Ik ¼ ijWi � Wkf g: (19)

Next find the combination of strips which solve the

problem

Z ¼ maximize
X

k

ZkAk (20)

X

k

WkAk � W (21)

Ak � 0; integer: (22)

Any pattern for which Z is greater than one will

yield an improvement in the LP solution.

Themajor difficulty with this approach is the inability

to limit the number of times an ordered size appears in

a pattern. It is easy to restrict the number of times a size

appears in a strip and to restrict the number of strips in

a pattern. The problem is that small ordered sizes with

small quantities may end up as filler in a large number of

different strips. This makes the two-stage approach to

developing patterns ineffective when the number of

times a size appears in a pattern must be limited.

Wang (1983) developed an alternative approach to

generating general guillotine cutting patterns which

limits the number of times a size appears in a pattern.

She combined rectangles in a horizontal and vertical

build process as shown in Fig. 2 whereO i is an ordered

rectangle of width W i and length L i.

She used an acceptable value for trim loss, B, rather

than the shadow price of the ordered sizes to drive her

procedure which is as follows:

• Step 1

(a) Choose a value for B the maximum acceptable

trim waste.

(b) Define L (O) ¼ F (O) ¼ {O1,O2,. . ., On}, and set

K ¼ 1.

• Step 2

(a) Compute F (K) which is the set of all rectangles

T satisfying (i) T is formed by a horizontal or

vertical build of two rectangles from L(K�1), (ii)
the amount of trimwaste in T does not exceedB,

and (iii) those rectangles Oi, appearing in T do

not violate the constraints on the number of

times a size can appear in a pattern.

(b) Set L(K) ¼ L(K�1) UF(K). Remove any

equivalent (same component rectangles)

rectangle patterns from L (K).

• Step 3. If F (K) is non-empty, setK¼ K + 1 and go to

Step 2; otherwise, set M ¼ K � 1, and choose the

rectangle in L (M) which has the smallest total trim

waste when placed in the stock rectangle.

Concluding Remarks

It is clear that moving from one to two-dimensions

causes significant difficulty in the pattern generating

process. This is all the more alarming in light of the

fact that only rectangular shapes were considered.

This clearly suggests that there is much

more research needed on procedures for solving

two-dimensional cutting stock problems. An

alternative worth considering, especially in those cases

where there are many different ordered sizes with small

order quantities, might be to first select a subset of

orders to consider by solving a one-dimensional

knapsack problem as in (13)–(15) based on area and

then see if the resulting solution can be put together into

a feasible two-dimensional pattern. Wang’s algorithm

seems to be ideal for this purpose inasmuch as the trim

loss in the pattern would be known.

A candidate set of items to be included in the

next pattern could be found by solving the following

problem:

Z ¼ maximize
X

i

UiAi (23)

(a) Horizontal build of O1 and O2 (b) Vertical build
of O1 and O2

O1

O2

O1

O2

Cutting Stock Problems, Fig. 2 Guillotine cutting patterns
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X

i

ARiAi � UAR for all i (24)

Ai � bi (25)

Ai � 0; integer: (26)

where ARi is the area of ordered rectangle i,UAR is the

usable area of the stock rectangle, and bi is the upper

limit on the number of times order i can be included in

the pattern.

The candidate pattern (A1, . . ., An) could then be

tested for feasibility usingWang’s procedure. If the AR

i are small, the chances are that there will be little trim

loss in the candidate patterns generated. This may

require that UAR be reduced to force some trim loss

to make it more likely that feasible patterns are found.

See

▶Bin-Packing

▶ Integer and Combinatorial Optimization

▶Linear Programming
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Cybernetics and Complex Adaptive
Systems
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Introduction

Cybernetics is a term that is occasionally used in the

literature of such areas as systems engineering and

OR/MS to denote the study of control and

communication in, and, in particular between

humans, machines, organizations, and society. The

word cybernetics comes from the Greek word

Kybernetes, which means controller, or governor, or

steersman. The first modern use of the term was due to

Professor Norbert Wiener, an MIT professor of

mathematics, who made many early and seminal

contributions to mathematical system theory (Wiener

1949). The first book formally on this subject was titled

Cybernetics and published in 1948 (Wiener 1948). In

this book, Wiener defined the term as “control and

communication in the animal and the machine.” This

emphasized the concept of feedback control as

a construct presumably of value in the study of neural

and physiological relations in the biological and

physical sciences. In the historical evolution of

cybernetics, major concern was initially devoted to

the study of feedback control and servomechanisms,

studies which later evolved into the area of control

systems or control engineering (Singh 1990).

Cybernetic concerns also have involved analog and

digital computer development, especially computer
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efforts that were presumed to be models of the human

brain and the combination of computer and control

systems for purposes of automation and remote

control (Ashby 1952, 1956; George 1971; Lerner

1976).

There were a number of other early influences on

cybernetics, including artificial intelligence (AI). The

two are quite different subjects, however. Artificial

Intelligence is generally concerned with endowing

computers with machine intelligence such that they

can emulate certain forms of human behavior,

generally cognitive behavior. Cybernetics is an

epistemological subject that is fundamentally

concerned with limits on how we know what we

know. It seeks to understand systems in a variety of

media — technological, biological, social, or

organizational — and descriptions of these limits as

a most important result. So while AI seeks to endow

computers with human cognitive capabilities, a subject

associated with much controversy (Dreyfus 1992),

cybernetics is much more concerned with using

computational capabilities to develop models of

systems based on the information, feedback, and

control properties of these systems. In a cybernetic

system, information and knowledge are attributes of

interactions that occur within the system. It was the

initial presumed resemblance, at a neural or

physiological level, between physical control systems

and the central nervous system and human brain that

concerned Wiener. He and close associates, Warren

McCulloch, Arturo Rosenblueth, and Walter Pitts,

were the initial seminal thinkers in this new field of

cybernetics. Soon, it became clear that it was fruitless

to study control independent of information flow;

cybernetics thus took on an identification with the

study of communications and control in humans and

machines. An influence in the early notions of

cybernetics was the thought that physical systems

could be made to perform better by, somehow,

enabling them to emulate human systems at the

physiological or neural level. Thus, early efforts in

what is now known as neural networks began as

cybernetic studies.

Another early concept explored in cybernetics was

that of homeostasis, which has come to be known as

the process by which systems maintain their level of

organization in the face of disturbances, often

occurring over time, and generally of a very large

scale (Ashby 1952). Cybernetics soon became

concerned with purposive organizational systems, or

viable systems, as contrasted with systems that are

static over time and purpose (Beer 1979). Further,

organizations operate in the face of incomplete and

redundant information by establishing useful patterns

of communications (Beer 1979). Thus, organizations

can potentially be modeled and have been modeled

as cybernetic systems (Steinbrunner 1974).

Cybernetics has often been viewed as a way of

looking at systems, or as a philosophical perspective

concerning inquiry, as contrasted with a very specific

method. This is perhaps much more the case now than

during the very early history of use of the term.

An excellent collection of Norbert Wiener’s original

papers on cybernetics studies is contained in

Volume IV of an edited anthology (Masani 1985).

Fundamental to any cybernetic study is the notion of

modeling, and, in particular, the interpretation of

the results of a modeling effort as theories that

have normative or predictive value. Today, there is

little explicit or implicit agreement concerning

a precise definition for cybernetics. Some users of the

term cybernetics infer that the word implies a study of

control systems. Some uses refer to modeling only at

the neural and physiological level. Some refer to

cognitive ergonomic modeling without necessary

consideration of, or connection to, neuronal level

elements. Other uses of the word are so general that

cybernetics might seem to infer either nothing,

or everything. Automation, robotics, artificial

intelligence, information theory, bionics, automata

theory, pattern recognition and image analysis,

control theory, communications, human and

behavioral factors, and other topics have all, at one

time or another, been assumed to be a portion of

cybernetics.

Complex adaptive systems (CAS) involve

phenomena associated with interactions of many

individual agents that self-organize at higher

aggregate system levels. This results in emergent and

adaptive properties that are not exhibited by the

individual agents. These systems are cybernetic like

systems that receive data and information from their

environments, find regularities in the data and

information, and then identify internal models that

process this data and information in order to describe

and forecast likely futures. These systems are
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evolutionary in the sense that these internal models are

subject to selection pressures based on particular

environmental conditions and this results in changes

to the structure and parameters associated with the

internal models. These systems function best under

conditions between chaos and order, sometimes

referred to as at the edge of chaos (Langton 1990) or

self-organized criticality (Bak and Chen 1991; Bak

1996). The emergent characteristics of a particular

complex system (Holland 1996) are often equivalent

to individual agents acting in a higher level complex

system. Adaptation occurs when either the functional

or structural properties of an agent change in such

a manner as to improve survival probabilities in the

environment of the agent. Often the only way to study

these complex adaptive systems is through computer

simulation.

Definition of Cybernetics and Complex
Adaptive Systems

The notion of the physiological aspects of the human

nervous system as playing a necessarily critical role in

modern cybernetics has all but vanished, except in very

specialized classic works. This does not suggest that

interest in neural type studies has vanished as there is

much interest today in neural networks and related

subjects (Freeman and Skapura 1991; Zurada 1992).

A much more cognitive perspective is now prevalent,

at least in many systems engineering views of

cybernetics. In this article, cybernetics is defined as

the study of the communication and control processes

associated with human-machine interaction in systems

that are intended to support accomplishment of

purposeful tasks. While this is not a universally

accepted definition of cybernetics, it is a useful one

for many systems engineering studies involving

human-system interaction through communications

and control (Sage 1992). Complex systems theory is

a general approach to understanding the overall

behavior of system comprised of many nonlinearly

interacting parts. The complex systems approach

tries to construct minimal underlying rule sets from

which desired behaviors naturally emerge. Complex

adaptive system theory also assumes that systems are

composed of interacting agents that continually adapt

by changing their internal rules as the environment,

and their experience in that environment, evolve over

time. Systems transition naturally between equilibrium

points through environmental adaptation and

self-organization. A complex adaptive system

behaves and evolves according to three key

principles: (1) order is emergent as opposed to

predetermined, (2) the system’s history is

irreversible, and (3) the system’s future is generally

unpredictable. Complex adaptive systems are complex

systems consisting of many nonlinearly interacting

parts or agents. These agents can adapt to changing

environments where each agent typically exists

within a nested hierarchy of agents within agents.

The purpose of this article is to discuss cybernetics

and complex adaptive systems, and the design of

support systems based on these concepts for such

purposes as knowledge support to humans. Especial

concern is with the human-system interactions

that occur in such an effort. Thus, the discussions

here are particularly relevant to knowledge-based

system design concerns relative to human-machine

cybernetic problem solving tasks, such as fault

detection, diagnosis and correction. These are very

important concerns for a large number of

knowledge-support systems engineering applications

that require fundamentally cognitive support to

humans in supervisory control tasks (Sage 1991,

1992, 1995; Sheridan 1992; Rasmussen 1986;

Rasmussen et al. 1994).

The need for humans to monitor and maintain the

conditions necessary for satisfactory operation of

systems and to cope with poorly structured and

imprecise knowledge is greater than ever. Ultimately,

these primarily cognitive efforts, which involve

a great variety of human problem solving activities,

are often translated into physical control signals for

controlling or manipulating some physical process.

As a consequence of this, there are a number of

human interface issues that naturally occur between

the human and the machines over which the human

must exercise control. Many advances in information

technology result in systems that enable a significant

increase in the amount of information that is available

for judgment and decision-making tasks at the problem

solving level. Even the highest quality information,

however, will generally be associated with

considerable uncertainty, imprecision, and other

forms of imperfections. Above all else, there is
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a major need for information to be associated with

context such that it becomes knowledge useful for

judgment and choice. The contemporary use of

information technology has led to and is expected

to continue to lead to major organizational

transformations in the future (Harrington 1991; Scott

Morton 1991; Davenport 1993; Drucker 1995, 1998.

Cybernetics, Complex Adaptive Systems,
and Systems Management

A human-machine cybernetic system may be defined

as a functional synthesis of a human system and

a technological system or machine. The interaction

and functional interdependence between these

two elements pre-dominantly characterize

human-machine systems. The introduction of

communication and control concerns results in

a cybernetic system. All kinds of technological

systems, regardless of their degree of complexity,

may be viewed as parts of a human-machine

cybernetic system: industrial plants, vehicles,

manipulators, prostheses, computers or management

information systems. A human-machine system may,

of course, be a subsystem that is incorporated within

another system. For example, a decision support

system may be incorporated as part of a larger

enterprise management, process control, or

computer-aided design system that also involves

human interaction. This use of the term

human-machine cybernetic system corresponds,

therefore, to a specific way of looking at

technological systems through the integration of

technological systems and human-enterprise systems,

generally through a systems management or systems

engineering process.

The overall purpose of any human-machine

cybernetic system is to provide a certain function,

product, or service with reasonable cost under

constraint conditions and disturbances. This concept

involves and influences the human, the machine, and

the processes through which they function as an

integrated whole. The primary inputs to a

human-machine cybernetic system are a set of

purposeful performance objectives that are typically

translated into a set of expected values of performance,

costs, reliability, and safety. Also, the design must

be such that an acceptable level of workload and

job satisfaction is maintained. It is on the basis of

these that the human is able to perform the following

activities (Sage 1992):

1. Identify task requirements, such as to enable

determination of the issues to be examined further

and the issues to be not considered;

2. Identify a set of hypotheses or alternative courses

of actions which may resolve the identified issues

to be resolved;

3. Identify the probable impacts of the alternative

courses of action;

4. Interpret these impacts in terms of the objectives or

inputs to the task;

5. Select an alternative for implementation and

implement the resulting control;

6. Monitor performance such as to enable

determination of how well the integrated

combination of human and system are performing.

Many researchers have described activities of this

sort in a number of frameworks that include behavioral

psychology, organizational management, human

factors, systems engineering, operations research and

management science.

Many questions can be raised concerning the use of

information for judgment and choice activities, as well

as activities that lead to the physical control of an

automated process. Any and all of these questions

can arise in different application areas. These

questions relate to the control of technological

systems. They concern the degree of automation with

respect to flexible task allocation. They also concern

the design and use of computer-generated displays.

Further, they relate to all kinds of human-computer

interaction concerns, as well as management tasks at

different organizational levels: strategic, tactical, and

operational. For example, computer-based support

systems to aid human performance continue to invade

more and more areas of the engineering of systems:

design, operation, maintenance, and management.

The importance of augmenting hardware and

micro-level programming aspects of system design to

architectural and software systems management

considerations is great. The integrated consideration

of systems engineering and systems management for

software productivity is expressed by the term

software systems engineering (Sage and Palmer 1990).

Human tasks in human-machine cybernetic systems

can be condensed into three primary categories:

(1) controlling (physiological); (2) communicating
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(cognitive), and (3) problem solving (cognitive)

(Johannsen et al. 1983). In addition, there exists

a monitoring or feedback portion of the effort that

enables learning over time. Ideally, but not always,

the humans involved learn well. There needs to be

metalevel learning, or learning how to learn if

improvements are to truly be lasting, as contrasted

with only specific task performance learning.

Associated with the rendering of a single judgment

and the associated control implementation, the

human monitors the result of the effect of these

activities. The effect of present and past monitoring

is to provide an experiential base for present

problem conceptualization. In the categorization

above, activities 1 through 4 may be viewed as

problem (finding and) solving, activity 5 involves

implementation or controlling, and activity 6 involves

communications or monitoring and feedback in which

responses to the question “How good is the process

performance?” enables improvement and learning

through iteration. Of course, the notion of

information flow and communication is involved in

all of these activities.

These three human task categories are fairly

general. Controlling should be understood in a much

broader sense than in many control theory studies.

Controlling in this narrower sense includes open loop

vs. closed-loop and continuous vs. intermittent

controlling, as well as discrete tasks such as reaching,

switching and typing. It is only through these

physiological aspects of controlling that outputs of

the human-machine cybernetic system can be

produced. Controlling, in the sense of the cognitive

ergonomic concerns that support human information

processing and associated judgment and choice, is

also included. Although human functions on

a cognitive level can and do play a role in control

implementation, their major importance occurs in

problem solving activities. Tasks such as fault

detection, fault diagnosis, fault compensation or

managing, and planning are particularly important in

problem solving. Fault detection concerns the

identification of a potential difficulty concerning the

operation of a system. Fault diagnosis is concerned

with identification of a set of hypotheses concerning

the likely cause of a system malfunction, and the

evaluation and selection of a most likely cause. It is

primarily a cognitive activity. Fault compensation or

managing is concerned with solving problems in actual

failure situations. This may occur through the use of

rules that are based on past experience, and the

updating of certain rules based on the results of their

present application. It is accomplished with the

objective of returning the overall system to a good

operating state. Fault compensation or managing

involves both cognitive and physiological activities.

Planning is a cognitive activity concerned with

solving possible future problems in the sense of

mentally generating a sequence of appropriate

alternatives. Appropriate planning involves the use of

knowledge perspectives, knowledge principles, and

knowledge practices (Sage 1992). They are based on

experiential familiarity with analogous situations and

are often expressed in the form of and through the

use of skills, rules, and formal knowledge based

reasoning efforts (Rasmussen 1986; Rasmussen et al.

1994). Human error issues are of particular

importance, especially those concerned with the

design of systems that cope with human error through

avoidance and amelioration efforts (Reason 1990).

Many of these systems can only be described as

complex. While some components of them may be

naturally adaptive, they often need to be engineered

to possess adaptive characteristics. The subject of

complex adaptive systems is closely related to that of

complexity theory. Complexity theory (Kaufman

1995; Axelrod 1997; Holland 1998) is a field of study

that has evolved from five major knowledge areas:

mathematics, physics, biology, organizational

science, and computational intelligence and

engineering. Fundamentally, a system is complex if it

cannot be understood through simple cause-and-effect

relationships or other standard methods of systems

analysis. In a complex system, the interplay

of individual elements cannot be reduced to the

study of individual elements considered in isolation.

Often, several different models of the complete system,

each at a different level of abstraction, are needed.

There are several sciences of complexity, and they

generally deal with approaches to understanding the

dynamic behavior of units that range from individual

organisms to the largest technical, economic, social,

and political organizations. Often, such studies involve

complex adaptive systems and hierarchical systems,

are multidisciplinary in nature, and involve or are at

the limits of scientific knowledge (Arthur 1994;

Coveney and Highfield 1995; Arthur et al. 1997;

Epstein 1997).
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Complexity studies attempt to pursue knowledge

and discover features shared by systems described as

complex. These include studies such as complex

adaptive systems, complex systems theory,

complexity theory, dynamic systems theory, complex

nonlinear systems, and computational intelligence.

Many scientific studies, prior to the development of

simulation models and complexity theory, involved

the use of linear models. When a study resulted in

anomalous behavior, the failure was often incorrectly

blamed on noise or experimental error. It is now

recognized that such errors may reflect inherent

inappropriateness of linear models — and linear

thinking. Meeting the modeling challenge is

complicated by the fact that not all critical

phenomena cannot be fully understood, or even

anticipated, based on analysis of the decomposed

elements of the overall system. Complexity not only

arises from there being many elements of the system,

but also from the possibility of collective behaviors

that even the participants in the system could not have

anticipated (Casti 1997).

Thus, many critical phenomena can only be studied

once they emerge. In other words, the only way to

identify such phenomena is to let them happen.

The challenge is to create ways to recognize the

emergence of unanticipated phenomena and be able to

manage their consequences, especially in situations

where likely consequences are highly undesirable.

One measure of system complexity is the complexity

of the simulation model necessary to effectively predict

system behavior (Casti 1997). The more the simulation

model must embody the actual system to yield the same

behavior, the more complex the system. In other words,

outputs of complex systems cannot be predicted

accurately based on models with typical types of

simplifying assumptions. Consequently, creating

models that will accurately predict the outcomes of

complex systems is very difficult. A model can be

created, however, that will accurately simulate the

processes the system will use to create a given output.

This awareness has profound impacts for

organizational efforts. For example, it raises concerns

related to the real value of creating organizational

mission statements and plans with expectations that

these plans will be inexorably executed and missions

thereby realized. It may be more valuable to create

a model of an organization’s planning processes

themselves, subject this model to various input

scenarios, and use the results to generate alternative

output scenarios. The question then becomes one of

how to manage an organization where this range of

outputs is possible.

Interestingly, most studies of complex systems

often run completely counter to the trend toward

increasing fragmentation and specialization in most

disciplines. Complexity studies tend to reintegrate the

fragmented interests of most disciplines into

a common pathway. This needed transdisciplinarity

(Wilson 1998) provides the basis for creating

a cohesive systems ecology (Sage 1998) to guide the

use of information technology for managing complex

systems. Whether they be human-made systems,

human systems, or organizational systems, the use of

systems ecology could more quickly lead to organizing

for complexity (McMaster 1996), and associated

knowledge and enterprise integration.

An important aspect of complex systems is path

dependence (Arthur 1994). The essence of this

phenomenon begins with a supposedly minor

advantage or inconsequential head start in the

marketplace for some technology, product, or

standard. This minor advantage can have important

and irreversible influences on the ultimate market

allocation of resources, even if market participants

make voluntary decisions and attempt to maximize

their individual benefits. Such a result is not plausible

with classical economic models that assume that the

maximization of individual gain leads to market

optimization unless the market is imperfect due to

the existence of such effects as monopolies.

Path dependence is a failure of traditional market

mechanisms and suggests that users are locked into

a sub-optimal product, even though they are aware of

the situation and may know that there is a superior

alternative.

This type of path lock-in is generally attributed to

two underlying drivers: 1) network effects, and 2)

increasing returns of scale. Both of these drivers

produce the same result, namely that the value of

a product increases with the number of users.

network effects, or network externalities, occur

because the value of a product for an individual

consumer may increase with increased adoption of

that product by other consumers. This, in turn, raises

the potential value for additional users. An example is

the telephone, which is only useful if at least one other

person has one as well, and becomes increasingly
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beneficial as the number of potential users of the

telephone increases.

Increasing returns of scale imply that the average

cost of a product decreases as higher volumes are

manufactured. This effect is a feature of many

knowledge-based products where high initial

development cost dominates low marginal production

and distribution cost. Thus, the average cost per unit

decreases as the sales volume increases and the

producing company is able to continuously reduce

the price of the product. The increasing returns to

scale, associated with high initial development costs

and the low sales price, create barriers against market

entry by new potential competitors, even though they

may have a superior product.

The controversy in the late 1990s over the integration

of the Microsoft Internet Explorer with the Windows

Operating System may be regarded as a potential

example of path dependence, and appropriate models

of this phenomenon can potentially be developed using

complexity theory. These would allow exploration of

whether network effects and increasing returns of scale

can potentially reinforce the market dominance of an

established but inferior product in the face of other

superior products, or whether a given product is

successful because its engineers have carefully and

foresightedly integrated it with associated products

such as to provide a seamless interface between

several applications.

Information technology enables systems where

the interactions of many loosely structured elements

can produce unpredictable and uncertain responses

that may be difficult to control. The challenge is to

understand such systems at a higher level. Control is

likely to involve design and manipulation of incentives

to participate and rewards for collaborative behaviors.

It may be impossible and probably undesirable to

control behaviors directly. The needed type of control

is similar to policy formulation. Success depends on

efficient experimentation much more than possibilities

for mathematical optimization due to the inherent

complexities that are involved. Thus, insights from

complexity theory may be brought to bear on these

situations (Merry 1995).

Information access and utilization, as well as

management of the knowledge resulting from this

process, are complicated in a world with high levels

of connectivity and a wealth of data, information, and

knowledge. The underlying problem is the usually

tacit assumption that more information is inherently

good to have. What users should do with this

information and how value is provided by this usage

are seldom clear. The result can be large investments in

information technology with negligible improvements

of productivity (Harris 1994). One of the major needs

in this regard is to support bilateral transformations

between tacit and explicit knowledge (Nonaka 1994;

Nonaka and Takeuchi 1995).

Prior to the development of simulation models and

complexity theory, most studies involved use of linear

models and assumed time-invariant processes (i.e.,

ergodicity). Most studies also assumed that humans

use deductive reasoning and techno-economic

rationality to reach conclusions. But, information

imperfections and limits on available time often

suggest that rationality must be bounded. Other forms

of rationality and inductive reasoning are necessary.

There are a number of descriptive models of human

problem solving and decision making. Generally, the

appropriate model depends upon the contingency

task structure, characteristics of the environment, and

the experiential familiarity of humans with tasks

and environment. Thus, the context surrounding

information and the experiential familiarity of users

of the information is most important. In fact, it is the

use of information within the context of contingency

task structures and the environment that results in the

transformation from information to knowledge.

It is appropriate to interpret knowledge in terms of

context and experience by sensing situations and

recognizing patterns. Features similar to previously

recognized situations can thus be discerned. The

problem can then be simplified by using these to

construct internal models, hypotheses, or schemata to

use on a temporary basis. Simplified deductions are

attempted based on these hypotheses and one acts

accordingly. Feedback of results from these interactions

enables more to be learned about the environment and

the nature of the task at hand. Hypotheses are revised,

reinforcing appropriate ones and discarding poor ones.

This use of simplified models is a central part of

inductive behavior (Holland et al. 1986).

Models of inductive processes can be constructed in

the following way. A collection of generally

heterogeneous agents is first determined. It is assumed

that the agents are able to form hypotheses based on

mental models or subjective beliefs. Further, each agent

is assumed tomonitor performance relative to a personal
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set of belief models. These models are based on the

results of actions, as well as prior beliefs and

hypotheses. Through this iterative procedure, learning

takes place as agents discern which hypotheses are most

appropriate. Hypotheses, or models, are retained not

because they are correct, but because they have

worked in the past. Agents differ in their approach to

problems and the way in which they subjectively

converge to a set of useful hypotheses.

This process may bemodeled as a complex adaptive

system. As noted, models cannot be created that will

accurately predict the outcomes of many complex

systems. But, a model can often be created that will

accurately simulate the processes the system uses to

create outputs. The major constructs associated with

such models are: the interactions and feedback

relations between the various agents whose choices

depend upon the decisions of others, and linearity and

return to scale considerations. There are many

implications associated with these models. Among

them are questions of steady state versus continued

evolutionary behavior, the nature and possibility of

time-invariant processes (ergodicity), and questions

of path dependence.

The Design of Cybernetic and Complex
Adaptive Systems

All of this has major implications with respect to the

design of systems for the human user and for

associated cybernetic and complex adaptive systems

as well. It requires, for appropriate system design, an

understanding of human performance in problem

solving and decision-making tasks. This understanding

has to be at a descriptive level, predicting what humans

will likely do in particular situations. It has to be at

a normative level, understanding what would be best

performance under restrictive axiomatic conditions that

will generally not exist in practice. Also, this

understanding has to be at a prescriptive level such

that humans can be aided in various real-world

cognitive tasks. This requires much attention to the

evolutionary and emergent properties of systems.

Technological advances have changed and will

continue to change the specific design requirements

for human-machine cybernetic systems needed in any

given application area. This is especially true due to

the many advances made possible through modern

information technologies, for industrial plants with

integrated automated manufacturing capabilities, and

for aids to cognitive activities in strategic planning,

design, or operational activities. Office automation

systems and information systems for observation,

planning, executive support, management, and

command and control tasks in business, defense,

and medicine are similarly influenced by efforts in

human-machine cybernetic and complex adaptive

systems. These involve not only the operation of

technological and management oriented information

systems by highly skilled and knowledgeable

personnel, but also systems that are intended for use

by the less skilled. A major use for new generation

systems is to provide computer assistance for the

maintenance of existing systems and for the design of

new systems of all types.

The methods and tools for supporting emergence of

a theory of complex systems that will fully satisfy

the requirements posed by systems that must

intentionally operate satisfactorily at the edge of

chaos will always be in a state of continuous

evolution. There seems little question that the

methods of operations research and management

science, especially those associated with modeling

and simulation of large systems, have and will play

a major role in the theory of design of cybernetic and

complex adaptive systems. Addressing the key

challenges requires utilizing many of the concepts,

principles, methods, and tools of OR/MS. In addition,

it will require a new, broader perspective on the nature

of information access and utilization, as well as

knowledge management. Fortunately, OR/ MS is an

inherently dynamic field of study. However, achieving

the goal of cybernetic and complex adaptive system

understanding and development capability will

require much attention to the integration of OR/MS

approaches with those in disciplines not often involved

in OR/MS studies and the development of knowledge

unity and integration perspectives.

See

▶Artificial Intelligence

▶Control Theory

▶Dynamic Programming

▶Neural Networks

▶ Simulation Metamodeling
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▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization

▶ System Dynamics

▶ Systems Analysis
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Cycle

A path in a graph (network) joining a node to itself.

See

▶Chain

▶ Path

Cyclic Queueing Network

A closed network of queues in which customer routing

is serial.

See

▶Networks of Queues

▶Queueing Theory

Cyclic Service Discipline

When a congestion system with several different

locations (service centers) of customers are served by

a single service facility. For a given period of time

determined by an a priori rule, the service process

only works on customers from (at) a given location

and then switches to the next group when the period

is over.

See

▶Queueing Theory

Cycling

A situation where the simplex algorithm cycles

(circles) repeatedly through some sequence of bases

and corresponding basic feasible solutions. This

can occur at a degenerate extreme point solution

where several bases correspond to the same

extreme point.

See

▶Anticycling Rules

▶Degeneracy

▶Linear Programming

▶ Simplex Method (Algorithm)
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D

Dantzig-Wolfe Decomposition Algorithm

A variant of the simplex method designed to solve

block-angular linear programs in which the blocks

define subproblems. The problem is transformed

into one that finds a solution in terms of convex

combinations of the extreme points of the subproblems.

See

▶Block-Angular System

▶Decomposition Algorithms
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Data Envelopment Analysis
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Introduction

DEA (Data Envelopment Analysis) is a data oriented

approach for evaluating the performance of a collection

of entities called DMUs (Decision Making Units) which

are regarded as responsible for converting inputs into

outputs. Examples of its uses have included hospitals and

U.S. Air Force Wings, or their subdivisions, such as

surgical units and squadrons. The definition of a DMU is

generic and flexible. The objective is to identify sources

and to estimate amounts of inefficiency in each input and

output for everyDMU included in a study. Uses that have

been accommodated include: (i) discrete periods of

production in a plant producing semiconductors in order

to identify when inefficiency occurred; and (ii) marketing

regions towhichadvertisingandother salesactivitieshave

been directed in order to identify where inefficiency

occurred. Inputs as well as outputs may be multiple and

eachmay bemeasured in different units.

A variety of models have been developed for

implementing the concepts of DEA, for example, the

following dual pair of linear programming models:

min h0 ¼ y0 � e
Xm

i¼1
s�i þ

Xs

r¼1
sþr

 !

subject to 0 ¼ y0xi0 �
Xn

j¼1
xij lj � s�i

yr0 ¼
Xn

j¼1
yrj lj � sþr

0 � lj; s
þ
r ; s

�
i

(1a)

and

max y0 ¼
Xs

r¼1
mr yr0

subject to 1 ¼
Xm

i¼1
vi xi0

0 �
Xs

r¼1
mryrj �

Xm

i¼1
vixij

e � mr; vi

(1b)
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where xij ¼ observed amount of input i used by DMUj

and yrj ¼ observed amount of output r produced by

DMUj, with i¼ 1, . . ., m; r¼ 1, . . ., s; j¼ 1, . . ., n. All

inputs and outputs are assumed to be positive. (This

condition may be relaxed (Charnes et al. 1991).

Efficiency

The orientation of linear programming has changed

here from ex-ante uses, for planning, and apply it to

choices already made ex-post, for purposes of

evaluation and control. To evaluate the performance

of any DMU, (1) is applied to the input–output data for

all DMUs in order to evaluate the performance of each

DMU in accordance with the following definition:

Efficiency — Extended Pareto-Koopmans Definition :
Full (100%) efficiency is attained by any DMU if and
only if none of its inputs or outputs can be improved
without worsening some of its other inputs or outputs.

This definition has the advantage of avoiding the

need for assigning a priori weights or other measures of

relative importance to any input or output. In most

management or social science applications, the

theoretically possible levels of efficiency will not be

known. For empirical use, the preceding definition is

therefore replaced by the following:

Relative Efficiency: A DMU is to be rated as fully (100%)
efficient if and only if the performances of other DMUs
do not show that some of its inputs or outputs can be
improved without worsening some of its other inputs or
outputs.

To implement this definition, it is necessary only to

designate any DMUj as DMU0 with inputs xi0 and

outputs yr0 and then apply (1) to the input and output

data recorded for the collection of DMUj, j ¼ 1, . . ., n.

Leaving this DMUj¼ DMU0 in the constraints insures

that solutions will always exist with an optimal

y0 ¼ y0� � 1. The above definition applied to

(1) then gives

DEA Efficiency: The performance of DMU0 is fully
(100%) efficient if and only if, at an optimum, both (i)
y0� ¼ 1, and (ii) all slacks ¼ 0 in (1a) or, equivalently,Ps

r¼1 m�r yr0 ¼ 1 in (1b), where ∗ represents an optimal

value.

A value y�0 < 1 shows (from the data) that

a non-negative combination of other DMUs could

have achieved DMU0’s outputs at the same or higher

levels while reducing all of its inputs. Non-zero slacks

similarly show where input reductions or output

augmentations can be made in DMU0’s performance

without altering other inputs or outputs. These

non-zero slacks show where changes in mixes could

have improved performance in each of DMU0’s inputs

or outputs, while a y�0 < 1 shows “technical

inefficiency” in which all inputs could have been

reduced in the same proportion. (This is a so-called

input-oriented model. An output-oriented model can

be similarly formulated by associating a variable

’0 with all outputs to be maximized DMU0.

The measures are reciprocal, i.e., ’�0 y�0 ¼ 1, so this

topic is not developed here.)

Many applications to many different kinds of

entities engaged in complex activities with no clearly

defined bottom line have been reported in many

publications by many different authors in many

different countries. Examples include applications to

schools (including universities), police forces, military

units, and country performances (including United

Nations evaluations of country performances). See,

for example, Emrouznejad et al. (2008) who list

more than 1,600 published papers by more than

2,500 different authors in more than 40 different

countries. Also see Berber et al. (2011) and Cooper

et al. (2009).

Farrell Measure

The scalar y�0 is sometimes referred to as the Farrell

measure after M.J. Farrell (1957). Notice, however,

that a value of y�0 ¼ 1 does not completely satisfy the

above definition of Relative Efficiency if any of the

associated slacks, sþ�i or sþ�r , in (1) are positive —

because any such non-zero slack provides an

opportunity for improvement which may be used

without affecting any other variable, as should be

clear from the primal problem which is shown in (1a).

There is a need to insure that an optimum with

y�0 ¼ 1 and all slacks zero is not interpreted to mean

that full (100%) efficiency has been attained when an

alternate solution with y�0 ¼ 1 and some slacks

positive is also available. To see how this is dealt

with, attention is called to the fact that the slack

variables s�i and sþr in the objective of the primal

(minimization) problem, (1a), are each multiplied by
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e > 0 which is a non-Archimedean infinitesimal —

the reciprocal of the “big M” associated with the

artificial variables in ordinary linear

programming — so that choices of slack values

cannot compensate for any increase they might

cause in y0. This accords pre-emptive status to the

minimization of y0, and DEA computer codes

generally handle optimizations in a two-stage

manner which avoids the need for specifying e

explicitly. Formally, this amounts to minimizing

the value of y0 in stage 1. Then one proceeds in

a second stage to maximize the sum of the slacks

with the condition y0 ¼ y�0 fixed for the primal in

(1a). Since the sum of the slacks is maximized, one

can be sure that a solution with all slacks at zero in

the second stage means that DMU0 is fully efficient

if the first stage yielded y�0 ¼ 1.

N.B. Weak efficiency is another term used instead

of Farrell efficiency when attention is restricted to (i)

in DEA Efficiency above. It is also referred to as

a measure of technical efficiency. However, when

(1a) is used, this might be referred to as purely

technical efficiency in order to distinguish these

inefficiencies from the mix inefficiencies associated

with changes in the proportions used that are then

associated with non-zero slack. The term technical

efficiency can then be used to comprehend both

purely technical and mix inefficiencies as

determined by reference to technical conditions

without recourse to prices, costs, and/or subjective

evaluations.

Example

Figure 1 is a geometric portrayal of four DMUs

interpreted as points P1,. . ., P4, with coordinate

values corresponding to the amounts of two inputs

which each DMU used to produce the same amount of

a single output. P3 is evidently inefficient compared

to P2 because it used more of both inputs to achieve

the same output. In fact, its Farrell measure of

inefficiency relative to P2 can be determined via the

formula

y0 ¼
dð0; P2Þ
dð0; P3Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 22

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 þ 42

p ¼ 1

2
;

where d(.,.) refers to the Euclidean, or l2, measure of

distance.

Referred to as a radial measure of efficiency in

the DEA literature, y0 is really a ratio of two

distance measures, namely, the distance along the

ray from the origin to the point being evaluated

relative to the distance from the origin to the

frontier measured along this same ray. This same

value of y0 is obtained, and hence this same radial

measure, by omitting the slacks and rewriting

the primal problem in (1a) in the following

inequality form,

minimize y0

subject to

6y0 � 2l1 þ 3l2 þ 6l3 þ 1l4

4y0 � 2l1 þ 2l2 þ 4l3 þ 4l4

1 � 1l1 þ 1l2 þ 1l3 þ 1l4

0 � l1; . . . ; l4;

(2)

where the third constraint reflects the output y ¼ 1

which was produced by each of these DMUs.

An optimum is achieved with y�0 ¼ 1/2, l�2 ¼ 1 and

this designates P2 for the evaluation of P3. However,

it is also needed to take account of the slack

possibilities. This is accomplished without

specifying e > 0 explicitly by proceeding to

x1

x2

P41
4

2
2

2
3

6
4

P1 P2

P3

Data Envelopment Analysis, Fig. 1 DEA efficiencies
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a second stage by using the thus obtained value of y�0
to form the following problem:

maximize s�1 þ s�2 þ sþ

subject to

0 ¼ �6y0 þ 2l1 þ 3l2 þ 6l3 þ 1l4 þ s�1
0 ¼ �4y0 þ 2l1 þ 2l2 þ 4l3 þ 4l4 þ s�2
� 1 ¼ �1l1 � 1l2 � 1l3 � 1l4 þ sþ

0:5 ¼ y0

0 � l1; . . . ; l4; s�1 ; s�2 ; sþ

(3)

Following through in this second stage, with

y�0 ¼ 0.5, it can be found that l�2 ¼ 1 and s��1 ¼ 1,

with all other variables zero. This solution is

interpreted to mean that the evidence from other

DMUs (as exhibited by P1’s performance) shows that

P3 should have been able (a) to reduce both inputs to

one-half their observed values, as given by the value of

y0, and should also have been able (b) to reduce the first

input by the additional amount given by s��1 ¼ 1.

This slack, s��1 ¼ 1, represents the excess amount

of the first input used by P2, and it, too, must be

accounted for if the above definition of relative

efficiency is to be satisfied. In fact, using the primal

in (1a) to evaluate P2, it will be found that it is also

inefficient with y1
∗ ¼ 1 and l∗ ¼ s��1 ¼ 1. The use of

(1a) to determine whether the conditions (i) and (ii)

for relative efficiency are satisfied has a further

consequence in that it insures that only efficient

DMUs enter into the solutions with positive

coefficients in the basis sets that are used to effect

efficiency evaluations. Computer codes that have

been developed for DEA generally use this property

to reduce the number of computations by identifying

all such members of an optimal basis as efficient and,

hence, not in need of further evaluation.

As can be seen from Fig. 1, P1 dominates P2 and

hence also dominates P3. Only P1 and P4 are not

dominated and hence can be regarded as efficient

when DEA is restricted to dominance, as in Bardhan

et al. (1996). However, if an assumption of continuity

is added, then the entire line segment connecting P1

and P4 becomes available for use in effecting

efficiency evaluations. This line segment is referred

to as the efficiency frontier. The term efficient

frontier is appropriate because it is not possible to

move from one point to another on the line

connecting P1 and P4 without worsening one input to

improve the other input.

Given the assumption of continuity, points not on

the efficiency frontier are referred to it for evaluation.

Even when not dominated by actually observed

performances, the nonnegative combinations of l�j
and slack values will locate points on the frontier

which can be used for effecting efficiency evaluations

of any DMU in the observation set.

The following formulas, called the CCR projection

formulas, may be used to move points up to the

efficiency frontier:

x̂i0 ¼ y�0 x̂i0 � s��i � x̂i0; i ¼ 1; . . . ; m

ŷr0 ¼ yr0 þ sþ�r � yr0; r ¼ 1; . . . ; s

�

(4)

where each (x̂i0, ŷi0) represents a point on the efficiency

frontier obtained from (xi0, yr0), DMU0’s observed

values. The point on the efficiency frontier thus

obtained from these CCR projections is the point

used to evaluate (xi0, yr0), i ¼ 1, . . ., m; r ¼ 1, . . ., s,

for any DMU0.

Ratio Form Models

The name Data Envelopment Analysis is derived from

the primal (minimization) problem (1a) by virtue of the

following considerations. The objective is to obtain as

tight a fit as possible to the input–output vector for

DMU0 by enveloping its observed inputs from below

and its observed outputs from above. As can be seen

from (1a), an optimal envelopment will always involve

a touching of the envelopment constraints to at least

one of DMU0’s inputs and one of its outputs.

The primal problem, (1a), is said to be in envelopment

form. The dual problem, (1b), is said to be in multiplier

form by reference to the values of m and n as dual

multipliers. The objective is to maximize y0, which is

called the virtual output. This maximization is subject to

the condition that the corresponding virtual input is unity,

that is,
Pm

i¼1 ni xi0 ¼ 1, as given in the first constraint.

The other constraints require that the virtual output

cannot exceed virtual input for any of the DMUj,

j ¼ 1, . . ., n, that is,

X

s

r¼1
mr yrj �

X

m

i¼1
vi xij j ¼ 1; . . . ; n:
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Finally, the conditions mr, ni � e > 0 mean that

every input and every output is to be assigned “some”

positive value in this “multiplier” form, where as

previously noted, the value of e need not be specified

explicitly.

To add interpretive power for the use in DEA, all of

the variables in (1b) are multiplied, the (dual) problem

of (1a), by t > 0 and then introduce new variables

defined in the following manner:

mr ¼ tmr � te; ni ¼ tni � te;

t ¼
Xm

i¼1
tni xi0:

(5)

Multiplying and dividing the objective of the dual

problem in (1b) by t > 0 and then multiplying all

constraints by t gives the following model, which

accords a ratio form to the DEA evaluations:

max

Ps

r¼1
ur yr 0

Pm

i¼1
ni xi0

subject to

Ps

r¼1
uryrj

Pm

i¼1
ni xij

� 1; j ¼ 1; . . . ; n

ur
Pm

i¼1
nixi0

� e; r ¼ 1; . . . ; s

ni
Pm

i¼1
ni xi0

� e; i ¼ 1; . . . ; m:

(6)

An immediate corollary from this development is

0 �

Ps

r¼1
u�ryr0

Pm

i¼1
n�i xi 0

¼
Xs

r¼1
u�ryr0 ¼ y�0

�
Xm

i¼1
s��i þ

Xs

r¼1
sþ�r � 1;

(7)

where “∗” designates an optimal value. Thus, in

accordance with the theory of fractional

programming, as given in Charnes and Cooper

(1962), the optimal values in (6) and (1b) are equal.

The formulation (6) has certain advantages. For

instance, Charnes and Cooper (1985) used it to show

that the optimal ratio value in (6) is invariant to the

units of measure used in any input and any output and,

hence, this property carries over to (1b). Equation 6

also add interpretive power and provide a basis for

unifying definitions of efficiency that stretch across

various disciplines. For instance, as shown in

Charnes et al. (1978), the usual single-output to

single-input efficiency definitions used in science and

engineering are derivable from (6). It follows that these

definitions contain an implicit optimality criterion. The

relation of (6) to (4), established via fractional

programming, also relates these optimality conditions

to the definitions of efficiency used in economics. (See

the above discussion of Pareto-Koopmans efficiency.)

This accords a ratio form (as well as a linear

programming form) to the DEA evaluations.

As (6) makes clear, DEA also introduces a new

principle for determining weights. In particular the

weights are not assigned a priori, but are determined

directly from the data. A best set of weights is

determined for each of the j,. . ., n DMUs to be

evaluated. Given this set of best weights the test of

inefficiency for any DMU0 is whether any other DMUj

achieved a higher ratio value than DMU0 using the

latter’s best weights [Care needs to be exercised in

interpreting these weights, since (a) their values will

in general be determined by reference to different

collections of DMUs and (b) when determined via

(1), allowance needs to be made for non-zero slacks.

See the discussion in Charnes et al. (1989), where

dollar equivalents are used to obtain a complete

ordering to guide the use of efficiency audits by the

Texas Public Utility Commissions].

DEA also introduces new principles for making

inferences from empirical data. This flows from its

use of n optimizations — to come as close as possible

to each of n observations — in place of other

approaches, as in statistics, for instance, which uses

a single optimization to come as close as possible to

all of these points. In DEA, it is also not necessary to

specify the functional forms explicitly. These forms

may be nonlinear and they may be multiple

(differing, perhaps, for each DMU) provided they

satisfy the mathematical property of isotonicity

(Charnes et al. 1985).
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Other Models

The models in (1) and (6) are a subset of several DEA

models that are now available. Thus, DEA may be

regarded as a body of concepts, and methods which

unite these models and their uses to each other. These

concepts, models and methods comprehend extensions

to identify scale, and allocative and other inefficiencies.

By virtue of the already described relations between

(6) and (1) the models are referred to as the CCR ratio

model. Other models include the additive model,

namely,

max
Xm

i¼1
s�i þ

Xs

r¼1
sþr

subject to

0 ¼ x̂i 0 �
Xn

j¼1
x̂ijlj � s�i

ŷr0 ¼
Xn

j¼1
ŷrjlj � sþr

0 � lj; s
þ
r ; s

�
i ; 8i; j; r

(8)

for which the conditions for efficiency are given by

Additive Model Efficiency: DMU0 is fully (100%)

efficient if and only if all slacks are zero — namely,

s��i , sþ�r ¼ 0, 8 i, r in (8).

With the constraint
P

j¼1n lj ¼ 1 adjoined, the

model (8) becomes “translation invariant.” That is, as

shown by Ali and Seiford (1990), the solution to (8) is

not altered if the original data (x̂ij,ŷrj) are replaced by

new data

x̂0ij ¼ x̂0ij þ di; i ¼ 1; : : : ; m

ŷ0rj ¼ ŷ0rj þ cr; r ¼ 1; : : : ; s
(9)

where the di and cr are arbitrarily constants. This

property can be of value in treating negative data

since most theorems in DEA assume that the data are

positive or at least semi-positive. See Pastor (1996) for

examples and extensions of the Ali-Seiford theorems.

Theorems like the following from Ahn et al. (1988)

relate the additive models to their CCR counterparts.

Theorem: A DMU0 will be evaluated as fully

(100%) efficient by the CCR model if and only if it is

rated as fully (100%) efficient by the corresponding

additive model.

Note, however, that the CCR and additive models

use different metrics, so they need not identify the

same sources and amounts of inefficiency in an

inefficient DMU.

The additive model (8) can also be related to

another class, called multiplicative models (Charnes

et al. 1982). An easy way is to assume that the (x̂ij,ŷrj)

are stated in logarithmic units. Taking antilogs then

gives

xi 0 ¼ a�i
Yn

j¼1
x
l�j
i j ; i ¼ 1; : : : ; m;

yr 0 ¼ b�r
Yn

j¼1
y
l�j
rj ; r ¼ 1; : : : ; s;

(10)

where a�i ¼ es��i, b�r ¼ esþ�r, and the (xij, yrj) are stated
in natural units. Each xi0, yr0 is thus generated by

a Cobb-Douglas process with estimated parameters

given by the starred values of the variables.

To relate these results to a ratio form for efficiency

evaluation, the dual to (8) is written as

min
Xm

i¼1
nix̂i 0 �

Xs

r¼1
mr ŷr 0

subject to

Xm

i¼1
nix̂i j �

Xs

r¼1
mr ŷr j � 0; j ¼ 1; : : : ; n

ni; m r � 1; i ¼ 1; : : : ;m; r ¼ 1; : : : ; s;

(11)

where the (x̂ij, ŷrj) are stated in logarithmic units.

Recourse to antilogarithms then produces

max
Ys

r¼1
ŷ
mr
r0

Ym

i¼1
x̂uii0

,

subject to

Ys

r¼1
ŷ
mr
rj

Ym

i¼1
x̂uii0 � 1; j ¼ 1; : : : ; n

,

ni; mr � 1; i ¼ 1; : : : ; m; r ¼ 1; : : : ; s;

(12)

and we once again make contact with a ratio form for

effecting efficiency evaluations.

To obtain conditions for efficiency, antilogs to (8)

are applied and (10) is used to obtain
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max

Qs

r¼1
es
þ�
r

Qm

i¼1
e�s

��
i

¼

Qs

r¼1

Qn

j¼1
yl
�
j

r j
yr0
�

Q

m

i¼1

Q

n

j¼1
xl
�
j

i j
xi0=
� 1: (13)

The lower bound on the right is obtainable if and

only if all slacks are zero. Thus the efficiency

conditions for the multiplicative model are the same

as for the additive model.

An interpretation of (13) can be secured by

noting that

Y

n

j¼1
yl
�
j

r j

 !1
P

n

j¼1
l�j

�

;
Y

n

j¼1
xl
�
j

i j

 !1
P

n

j¼1
l�j

�

represent weighted geometric means of outputs and

inputs, respectively. Thus (13) is a ratio of the

product of weighted geometric totals relative to the

outputs and inputs which each of these expressions is

evaluating.

It is necessary to note that the results in (13) are not

units invariant (i.e., they are not dimension free in the

sense of dimensional analysis) except in the case of

constant returns to scale (see Thrall, 1996). This

property, when wanted, can be secured by adjoining
P

j¼1nlj ¼ 1 to (8). See also Charnes et al. (1983).

To conclude this discussion it is noted that the

expression on the left of (13) is simpler and easier to

interpret and the computations from (8) are

straightforward.

The class of multiplicative models has not been

much used, possibly because other models are easier

to comprehend. Even allowing for this, however, they

have potentials for use either on their own or in

combination with other DEA models as when, for

instance, returns to scale characterization are needed

that differ from those which are available from other

types of DEA models. See Banker and Maindiratta

(1986) for further discussion of such uses.

Extensions and Uses of Dea Models

1. Returns to Scale — There is an extensive literature

on returns to scale and their uses in DEA which

reflects two different approaches. One approach,

due to F€are et al. (1985, 1994) proceeds in an

axiomatic manner and employs only radial

measures. The other approach is based on

mathematical programming. Conceptualized by

Banker et al. (1984), it was subsequently ex-tended

(and made wholly rigorous) by Banker and Thrall

(1992). As might be expected, equivalences between

the two approaches have been established in (among

other places) Banker et al. (1996). See also Banker

et al. (1998).

2. Returns to Scope — Partly because of difficulty in

assembling data in pertinent forms, the literature on

returns to scope is relatively sparse in DEA. Indeed,

a bare beginning has been made in Chapter 10 of

F€are et al. (1994).

3. Assurance Regions and Allocative Inefficiency —

Many other developments have occurred and

continue to occur. Thompson, Dharmapala and

Thrall and their associate introduced the now

widely used concept of assurance regions

(Thompson et al. 1986; Dyson and Thanassoulis,

1988). This approach uses a priori knowledge to set

upper and lower bounds on the values of the

multiplier variables in DEA models like (1b). This

can alleviate problems encountered in treating

allocative or price efficiency either because (i)

exact data on prices, costs, etc., are not available,

or (ii) because the presence of wide variations in

these data make the use of exact value

a questionable undertaking. See Schaffnit et al.

(1997), where limiting arguments are used to

establish an exact relation between allocative

efficiency and the bounds used in assurance region

approaches.

4. Cone Ratio Envelopments— In a similar spirit, but

in a different manner, Charnes et al. (1990) and their

associates developed what they refer to as

a cone-ratio envelopment approach. In contrast to

the assurance region treatments of bounds on the

variables, these cone-ratio approaches utilize

a priori information to adjust the data. This makes

it possible to take account of complex (multiple)

considerations that might otherwise be difficult to

articulate. See Brockett et al. (1997), who show how

to implement the Basle Agreement, which was

recently adopted by U.S. bank regulators to treat

multiple risk factors in banking by adjusting the

data reported in the FDIC call reports. These

regulations are rigid and ill-fitting, so Brockett
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et al. (1997) provide an alternative Cone-ratio

envelopment approach which uses results from

excellent banks (that are also found to be efficient)

to adjust the call-report data for other banks in a use

of DEA to effect such risk-adjusted evaluations.

5. Exogenous and Categorical Variables — Other

important developments include methods for

treating input or output values which are

exogenously fixed for some, or all, DMUs.

Developed by Banker and Morey (1986a) for

treating demographic variables as important inputs

in different locations for a chain of fast food outlets,

these methods have found widespread use in many

other applications. Similar remarks apply to the

Banker and Morey (1986b) introduction of

methods for treating categorical (classificatory)

variables in work which has since been modified

and extended by other authors; see Neralić and

Wendell (2000).

6. Statistical Treatments — Various attempts have

recently been made to join statistical and

probabilistic characterizations to the deterministic

models and methods of inference in DEA. For

instance, using relatively mild postulates, Banker

(1993) has shown that (i) DEA estimators of y�0 are
statistically consistent; (ii) DEA estimates

maximize the likelihood of obtaining the

corresponding true values; and (iii) these

properties hold under fairly general structures that

do not require assumptions about the parametric

forms of the probability density functions. See

pages 272–275 in Banker and Cooper (1994) for

a succinct discussion. See also Korostelev et al.

(1995), who show that the rates of convergence

are slow.

Simar and Wilson (1998) utilize bootstrap

procedures to study sampling properties of the

efficiency measures in DEA. Unlike Banker, who

restricts his analysis to the single output case, this

bootstrap approach accommodates multiple outputs

as well as multiple inputs. Omitted, however, is any

treatment of nonzero slacks. Brockett and Golany

(1996) also approach the topic of statistical

characterizations by means of Mann–Whitney

rank order statistics, but do not note that need for

explicitly stating a ranking principle. This is needed

because (as noted above) the DEA efficiency scores

are generally determined relative to different

reference sets (or peer groups) of efficient DMUs.

(For a discussion of how this problem is treated for

the efficiency audits conducted by Texas Public

Utility Commission, see Charnes et al. 1989).

7. Probabilistic Models — Alternate approaches via

chance constrained programming were initiated by

Land et al. (1994) and have been ex-tended by

others to include the use of joint chance

constraints in addition to the conditional chance

constraints used by Land, Lovell and Thore

(Olesen and Petersen 1995; Cooper et al. 1998).

Of special interest is the use of chance constraints

to obtain a satisficing approach for efficiency

evaluation, as in Cooper et al. (1996), where the

term satisficing is used in the sense of H.A. Simon’s

(1957) behavioral characterizations in terms of (i)

achievement of a satisfactory level of efficiency,

and (ii) a satisfactory probability (¼chance) of

achieving this level. Finally, allowance is also

made for situations in which these levels or

probabilities may need to be revised because the

data show that they are not possible of attainment.

Unlike the statistical characterizations described in

item 6, these chance constrained programs

generally require knowledge of the parameters as

well as the forms of the probability functions so that

here, too, there is more work to be done.

See Jagannathan (1985) for a start.

8. Cross-Checking — As noted in the earlier

discussions, the inference principles in DEA differ

from those in statistics. This suggests additional

possibilities for their joint use. One such

possibility is to use the two approaches as cross

checks on each other to help avoid what is referred

to as methodological bias in Charnes et al. (1988).

See also Ferrier and Lovell (1990).

9. Complementary Uses — Another possibility is to

use statistics and DEA in a complementary manner.

An example is provided by Arnold et al. (1996),

who applied this strategy in a two-stage manner to

a study of Texas public schools as follows. At stage

1, DEA is used to identify efficient schools; then, at

stage 2, these results are incorporated as dummy

variables in an OLS (Ordinary Least Squares)

regression. This yielded very satisfactory results on

data which had previously yielded unsatisfactory

results with an OLS regression. A subsequent

simulation study by Bardhan et al. (1998)
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compares this approach not only to OLS but also

to stochastic frontier regressions (i.e., regressions

which apply statistical principles to obtain

frontier estimates for efficiency evaluations).

Using observations that reflected mixtures of

efficient and inefficient performances the OLS

and SF approaches always failed to provide

correct estimates whereas, with only one minor

exception, the complementary two-stage use of

DEA and statistics always yielded estimates that

did not differ significantly from the true

parameter values.

Sources and References

As the above discussions suggest, many important

developments have been effected in DEA since its

initiation by Charnes et al. (1978). These

developments have occurred pari passu with

numerous and widely varied applications of DEA

which are being reported from many different parts

of the world. See the bibliography by Seiford (1994).

For a comprehensive text, see Cooper et al. (1999).

See

▶Dual Linear-Programming Problem

▶ Fractional Programming

▶Linear Programming

References

Ahn, T., Charnes, A., & Cooper, W. W. (1988). A note of
the efficiency characterizations obtained in different
DEA models. Socio-Economic Planning Sciences, 22,
253–257.

Ali, A. I., & Seiford, L. M. (1990). Translation invariance in data
envelopment analysis. Operations Re-search Letters, 9,
403–405.

Arnold, V., Bardhan, I., & Cooper, W. W. (1993). DEA models

for evaluating efficiency and excellence in Texas Secondary

Schools (Working Paper, IC2) Austin: Institute of the
University of Texas.

Arnold, V., Bardhan, I., Cooper, W. W, & Gallegos, A. (1984).
Primal and dual optimality in ideas (integrated data
envelopment analysis systems) and related computer codes.
Proceeding of a Conference in Honor of G.L. Thompson,
Quorum Books

Arnold, V., Bardhan, I., Cooper, W. W., & Gallegos, A. (1998).
Primal and dual optimality in IDEAS (Integrated Data
Envelopment Analysis Systems) and related computer
codes, operations research: Methods, models and
applications. Proceedings of a Conference in Honor of G.L.

Thompson, Westport, CT: Quorum Books.
Arnold, V., Bardhan, I., Cooper, W. W., & Kumbhakar, S.

(1996). New uses of DEA and statistical regressions for
efficiency evaluation and estimation–with an illustrative
application to Public Secondary Schools in Texas. Annals
Operations Research, 66, 255–278.

Banker, R. D. (1993). Maximum likelihood, consistency and
data envelopment analysis: A statistical foundation.
Management Science, 39, 1265–1273.

Banker, R. D., Chang, H. S., & Cooper, W. W. (1996).
Equivalence and implementation of alternative methods for
determining returns to scale in data envelopment analysis.
European Journal Operational Research, 89, 473–481.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some
models for estimating technical and scale inefficiencies in
data envelopment analysis. Management Science, 30,
1078–1092.

Banker, R. D., & Cooper, W. W. (1994). Validation and
generalization of DEA and its uses. TOP (Sociedad de

Estadistica e Investigación Operativa), 2, 249–297. (with
discussions by E. Grifell-Tatje, J. T. Pastor, P. W. Wilson,
E. Ley and C. A. K. Lovell).

Banker, R.D., Cooper, W.W., & Thrall, R. M. (1998). Finished
and unfinished business for returns to scale in DEA. Research
Report, Graduate School of Business, University of Texas at
Austin.

Banker, R. D., & Maindiratta, A. (1986). Piecewise loglinear
estimation of efficient production surfaces. Management

Science, 32, 385–390.
Banker, R. D., & Morey, R. C. (1986a). Efficiency analysis for

exogenously fixed inputs and outputs. Operations Research,
34, 513–521.

Banker, R. D., & Morey, R. C. (1986b). Data envelopment
analysis with categorical inputs and outputs. Management

Science, 32, 1613–1627.
Banker, R. D., & Thrall, R. M. (1992). Estimation of returns to

scale using data envelopment analysis. European Journal

Operational Research, 62, 74–84.
Bardhan, I., Bowlin, W. F., Cooper, W. W., & Sueyoshi, T.

(1996). Models and measures for efficiency dominance in
DEA. Part I: Additive models and med measures. Part II:
Free disposal hulls and Russell measures. Journal of the
Operations Research Society Japan, 39, 322–344.

Bardhan, I. R., Cooper, W. W., & Kumbhakar, S. C. (1998).
A simulation study of joint uses of DEA and statistical
regression for production function estimation and
efficiency evaluation. Journal Productivity Analysis, 9,
249–278.

Berber, P., et al. (2011). Efficiency in fundraising and
distributions to cause-related social profit enterprises.
Socio-Economic Planning Sciences, 45, 1–9.

Bowlin, W. F., Brennan, J., Cooper W. W., & Sueyoshi, T.
(1984). A DEA model for evaluating efficiency dominance,
Research Report. Texas: Center for Cybernetic Studies,
Austin, (submitted for publication).

Data Envelopment Analysis 357 D

D

http://dx.doi.org/10.1007/978-1-4419-1153-7_200158
http://dx.doi.org/10.1007/978-1-4419-1153-7_362
http://dx.doi.org/10.1007/978-1-4419-1153-7_545


Brockett, P. L., Charnes, A., Cooper, W. W., Huang, Z. M., &
Sun, D. B. (1997). Data transformations in DEA cone ratio
envelopment approaches for monitoring bank performances.
European Journal of Operational Research, 95, 250–268.

Charnes, A., & Cooper, W. W. (1962). Programming with linear
fractional functionals. Naval Research Logistics Quarterly,

9, 181–186.
Charnes, A., & Cooper, W. W. (1985). Preface to topics in data

envelopment analysis. In R. Thompson & R. M. Thrall
(Eds.), Annals operations research (Vol. 2, pp. 59–94).

Charnes, A., Cooper, W. W., Divine, D., Ruefli, T. W., &
Thomas, D. (1989). Comparisons of DEA and existing ratio
and regression systems for efficiency evaluations of
regulated electric cooperatives in Texas. Research in

Governmental and Nonprofit Accounting, 5, 187–210.
Charnes, A., Cooper, W. W., Golany, B., Seiford, L., & Stutz, J.

(1985). Foundations of data envelopment analysis and
Pareto-Koopmans efficient empirical production functions.
Journal of Econometrics, 30, 91–107.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring
efficiency of decision making units. European Journal of

Operational Research, 1, 429–444.
Charnes, A., Cooper, W. W., Seiford, L., & Stutz, J. (1982).

A multiplicative model for efficiency analysis. Socio-

Economic Planning Sciences, 16, 223–224.
Charnes, A., Cooper, W. W., Seiford, L., & Stutz, J. (1983).

Invariant multiplicative efficiency and piecewise
Cobb-Douglas envelopments. Operations Research Letters,

2, 101–103.
Charnes, A., Cooper, W. W., & Sueyoshi, T. (1988). Goal

programming-constrained regression review of the bell
system breakup. Management Science, 34, 1–26.

Charnes, A., Cooper, W. W., Sun, D. B., & Huang, Z. M. (1990).
Polyhedral cone-ratio DEA models with an illustrative
application to large commercial banks. Econometrics

Journal, 46, 73–91.
Charnes, A., Cooper, W. W., & Thrall, R. M. (1991). A structure

for classifying and characterizing efficiency and inefficiency
in data envelopment analysis. Journal of Productivity

Analysis, 2, 197–237.
Cooper, W. W., Huang, Z. M., & Li, S. (1996). Satisficing DEA

models under chance constraints. Annals Operations

Research, 6, 279–295.
Cooper, W. W., Huang, Z., Lelas, V., Li, X. S., & Olesen, O. B.

(1998). Chance constrained programming formulations for
stochastic characterizations of efficiency and dominance in
DEA. Journal of Productivity Analysis, 9, 53–79.

Cooper, W. W., Seiford, L. M., & Tone, K. (1999). Data

envelopment analysis. Boston, MA: Kluwer Academic
Publishers.

Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Handbook on
data envelopment analysis. New York: Springer.

Cooper, W. W., Thore, S., & Traverdyan, R. (2009). A utility
function approach for evaluating country performances —
The twin goals of decent work and affair globalization. In
R. R. Hockley (Eds.), Global operations management.
NOVA Science Publishers.

Dyson, R. G., & Thanassoulis, E. (1988). Reducing weight
flexibility in data envelopment analysis. Journal of

Operational Research Society, 39, 563–576.

Emrouznejad, A., Parker, B. R., & Tavares, G. (2008).
Evaluation of research in efficiency and productivity:
A survey and analysis of the first 30 years of scholarly
literature in DEA. Socio-Economic Planning Sciences, 42,
151–157.

F€are, R., Grosskopf, S., & Lovell, C. A. K. (1994). Production
frontiers. Cambridge, UK: Cambridge University Press.

F€are, R., Grosskopf, S., & Lovell, C. A. K. (1995). The

measurement of efficiency of production. Norwell, MA:
Kluwer.

Farrell, M. J. (1957). The measurement of productive efficiency.
Journal of Royal Statistical Society, Series A, 253–290.

Ferrier, G. D., & Lovell, C. A. K. (1990). Measuring cost
efficiency in banking: Econometric and linear programming
evidence. Journal of Econometrics, 46, 229–245.

Jagannathan, R. (1985). Use of sample information in stochastic
recourse and chance constrained programming models.
Management Science, 31, 96–108.

Kamakura, W. A. (1988). A note on the use of categorical
variables in data envelopment analysis. Management

Science, 34, 1273–1276.
Korostelev, A., Simar, L., & Tsybakov, A. (1995). Efficient

estimation of monotone boundaries. Annals Statistics, 23,
476–489.

Land, K., Lovell, C. A. K., & Thore, S. (1994). Chance
constrained data envelopment analysis. Managerial and

Decision Economics, 14, 541–554.
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Introduction

When Wal-Mart installed their 24 terabyte data

warehouse, it was among the largest in the world.

Just a few years later, they were adding over a billion

rows of data a day (Babcock 2006), and operating

a 5 petabyte database (Lai 2008). An even more

striking example is eBay, which started with

a 14 terabyte database in 2002. It has since been

adding over 40 terabytes of auction and purchase data

every day into a data warehouse that is expected to

exceed 20 petabytes by 2011. Clearly, as the cost of

capturing data has decreased and easier-to-use data

capture tools have become available, the volumes of

data being accumulated have grown at a very rapid

pace. Technological developments, with the evolution

of the Internet playing a fundamental role, have enabled

an increase in the volume of traditional data being

recorded. Further, such developments have made

possible the capture of information in far greater detail

than ever before (based on barcodes or RFID, for

example) and often of information that was not easily

recordable before, such as eye or mouse movements.

What is Data Mining?

The availability of large data repositories has resulted in

significant developments in themethodologies to analyze

them, both in terms of the technology available for

analysis, and in terms of its mainstream acceptance.

From what was a relatively esoteric technology at the

close of the 20th century, datamining – defined succinctly

as “the science of extracting useful information from

large data sets” (Hand et al. 2001) – has developed into

a powerful set of tools indispensable to most

organizations. In fact, it is gradually morphing into

a key component of the merger of quantitative

techniques into a new label called business analytics.

Many of the techniques used in data mining have

their roots in traditional statistics, artificial

intelligence, and machine learning. Developments in

data mining techniques went hand-in-hand with

developments in data warehousing and online

analytical processing (OLAP). From the early 1990s

when data mining started being viewed as a viable

business solution, the cost of computing has dropped

steadily, while processing power has increased. This

made the benefits of data mining apparent, and

triggered many companies to start using it regularly.

Commercial applications of data mining abound.

A 2010 poll of data miners (conducted by

KDNuggets) listed customer relations management,

banking, healthcare, and fraud detection as the top

four fields where data mining is applied. It is also

commonly used in finance, direct marketing,

insurance, and manufacturing. In fact, it has become

common practice in almost every industry to discern

new knowledge from data; only the extent of

penetration varies across industries.

This is, of course, in addition to the vast quantities of

data collected in the non-business world. It has found

application in disciplines as varied as astronomy,

genetics, healthcare, and education, just to name a few.

The U.S. Department of Homeland Security applies data

miningforavarietyofpurposes, including thecomparison

of “traveler, cargo, and conveyance information against

intelligence and other enforcement data by incorporating

risk-based targeting scenarios and assessments,” and “to

improve thecollection,use, analysis, anddisseminationof

information that is gathered for the primary purpose of

targeting, identifying, and preventing potential terrorists

and terrorist weapons from entering the United States”

(DHS 2009).

The availability of new types of data has opened up

additional opportunities for selective extraction of

useful information. Data originating from the Web

can be mined based on content, network structure, or

usage (e.g., when was a page used and by whom).

There has been considerable interest in the mining of

text from a variety of perspectives – to filter e-mail, to

gain intelligence about competitors, to analyze the

opinions of movie viewers to better understand movie

reviews, as well as the mining of social network data

both in terms of user behaviors and networks,

including text mining of comments. The analysis of

audio and video files is another difficult but promising
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avenue for data mining. Speech recognition

technologies have improved significantly. But, audio

mining goes much further by providing users the

ability to search and index the digitized audio content

in a variety of contexts like news and webcasts,

recorded telephone conversations, office meetings,

and archives in libraries and museums.

How Does Data Mining Work?

Most of the general ideas applicable to modeling of

any kind hold true for data mining as well. To work

effectively, data mining requires clearly stated

objectives and evaluation criteria. The process

(often referred to as the Knowledge Discovery in

Databases – or KDD – process) entails various

critical steps. All data need to be cleaned to eliminate

noise and correct errors. As data usually come from

multiple, heterogeneous sources, there has to be

a logical process of data integration. Once an

objective has been identified for analysis, all

appropriate data needs to be retrieved from the

storage warehouse(s). If necessary, extracted data

may need to be transformed into a form amenable for

mining. Once all these preprocessing steps are

completed, relevant data mining techniques can be

applied. As with any analysis technique, the output

from the mining process usually needs to be interpreted

by the analyst after imposing as much domain

knowledge as possible to intelligently glean useful

information. Any model that is built should be tested

and validated before putting to full use. Additionally, the

KDD process has to be iterative for it to be beneficial.

The knowledge discovered through mining can be used

to obtain feedback from the user which in turn can be

used to improve the mining process.

Data mining tasks fall into two main groups –

descriptive tasks that characterize properties of the

data being analyzed, and predictive tasks which

make predictions about new data points based on

inferences made from existing data. Data mining

algorithms traditionally fall into one of three

categories — classification and prediction, clustering,

and association discovery. Other functionalities like

data characterization and outlier analysis are also

common, as are applications that form key

components of recommender systems. Data

visualization plays an important role in many of these

techniques by guiding the users in the right direction.

Some of these techniques are described briefly below.

Classification. Classification, or supervised

induction, is perhaps the most common of all data

mining activities. The objective of classification is to

analyze the historical data stored in a database and

to automatically generate a model that can predict

future behavior. This induced model consists of

generalizations over the records of a training data set,

which help distinguish predefined classes. The hope is

that this model can then be used to predict the classes

of other unclassified records. When the output variable

of interest is categorical, the models are referred to as

classifiers, while models where the output variable

is numerical are called prediction models.

Tools commonly used for classification include

neural networks, decision trees, and if-then-else rules

that need not have a tree structure. Statistical tools like

logistic regression are also commonly used. Neural

networks involve the development of mathematical

structures with the ability to learn. They tend to be

most effective where the number of variables involved

is large and the relationships between them too

complex and imprecise. It can easily be implemented

in a parallel environment, with each node of the

network doing its calculations on a different

processor. There are disadvantages as well. It is

usually very difficult to provide a good rationale for

the predictions made by a neural network. Also,

training time on neural networks tends to be

considerable. Further, the time needed for training

tends to increase as the volume of data increases, and

in general, such training cannot be done on very large

databases. These and other factors have limited the

acceptability of neural networks for data mining.

Decision trees (DTs) classify data into a finite

number of classes, based on the values of the

variables. DTs are comprised of essentially a

hierarchy of if-then statements and are thus

significantly faster than neural nets. Logistic

regression models are used for binary classification,

with multinomial logistic models being used if there

are more than two output categories.

Clustering. Most clustering algorithms partition the

records of a database into segments where members of

a segment share similar qualities. In fact, clustering is

sometimes referred to as unsupervised classification.

Unlike in classification, however, the clusters are

unknown when the algorithm starts. Consequently,
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before the results of clustering techniques are put

to actual use, it might be necessary for an expert to

interpret and potentially modify the suggested clusters.

Once reasonable clusters have been identified, they

could be used to classify new data. Not surprisingly,

clustering techniques include optimization; we want to

create groups, which have maximum similarity among

members within each group and minimum similarity

among members across the groups. Another common

application is market basket analysis.

Association Discovery. A special case of

association rule mining looks at sequences in the

data. Sequence discovery has many applications, and

is a significant sub-field in itself. It can be to conduct

temporal analysis to identify customer behavior over

time, to identify interesting genetic sequences, for

website re-design, and even for intrusion detection.

Visualization. The insights to be gained from

visualizing the data cannot be over-emphasized. This

holds true for most data analysis techniques, but is of

special relevance to data mining. Given the sheer

volume of data in the databases being considered,

visualization in general is a difficult endeavor. It can

be used, however, in conjunction with data mining to

gain a clearer understanding of many underlying

relationships.

Recommender Systems. Many companies claim that

a substantial portion of their revenues are a result of

effective recommendations. Among the better known

examples are Amazon.com, which was one of the

earlier proponents of recommender systems, and

Netflix, which claims that “roughly two-thirds of the

films rented were recommended to subscribers by the

site” (Flynn 2006). The impact and importance of a

well implemented recommendation system is

exemplified by the fact that Netflix offered a

million-dollar prize for anyone who could improve

their recommendation accuracy by at least 10%.

A variety of techniques exist for making

recommendations, with user and item based

collaborative filtering being the most common.

Other Relevant Aspects

Software. There are many large vendors of data mining

software. Some of the key commercial packages

include SAS Enterprise Miner, IBM SPSS Modeler

(Formerly SPSS Clementine), Oracle, DigiMine,

Microsoft SQL Server, SAP Business Objects. Weka

is a well reputed freeware out of The University of

Waikato in New Zealand. Another open source data

mining software is Rapid Miner.

Privacy. Data mining has been restricted in its

impact due to privacy concerns. In particular, in

privacy concerns when applying data mining to

healthcare data. A contested court case concerns the

mining of physicians’ prescription history to increase

drug sales; some states are trying to limit access to this

information (Field 2010). The fundamental issue

underlying these concerns relate to the intent behind

data collection. For example, while consumers

explicitly agree to the use of data collected for bill

payment for that specific purpose, they may not

know or want to agree to the use of their data for

mining – that would go beyond the original intent

for which the data were acquired.

Another area of data mining privacy concerns

counterterrorist information Claburn (2008). A report

dealing with the balance between privacy and security

by the National Research Council recommends that

the U.S. government rethink its approach to

counterterrorism in light of the privacy risks posed by

data mining.

Although some work has been done to incorporate

privacy concerns explicitly into the mining process,

this is still a developing field. In all likelihood, the

matter of privacy in the context of data mining will

be an issue for some time. A simple solution is

unlikely. These issues will probably be resolved only

through a blend of legislation and additional research

into privacy preserving data mining.

The Role of Operations Research

Data mining algorithms are a heterogeneous group,

loosely tied together by the common goal of

generating better information. Operations research is

concerned with making the best use of available

information. By selecting the appropriate definition

of information, operations research has been playing

a significant role on both sides of the data mining

engine. Formulations for clustering and classification

were introduced in the 1960s and 70s (Ólafsson 2006).

Nonlinear programming solution techniques have

been adapted for faster training in neural network

applications. Scalability, the ability to deal with
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large amounts of data, is a difficult and important issue

in data mining, one in which OR could play

a significant role.

The lack of reliable data (or of the data itself) is

a common problem faced by operations researchers

trying to get a good model to work in the real world.

This problem becomes more acute when data needs to

be deciphered from terabytes of stored information.

Data mining tools make accessing and processing the

data easier and may provide more reliable data to the

OR modeler. There are opportunities for operations

research to be applied at a more fundamental level as

well. Ultimately, as with any analysis tool, the outputs

of dataminingmodels are only as good as the inferences

the analyst can make from them. OR techniques can be

of assistance in making the best use of the outputs

obtained. For example, research has been conducted to

improve recommendations by combining information

from multiple association rules, and to provide the best

set of recommendations to maximize the likelihood of

purchase. Similarly, combining information on prior

purchase histories and revenue optimization models

enables a new blend of practical business decision

making. As noted, this integration of data mining and

optimization has been labeled business analytics. IBM

and other major vendors are developing new business

groups focused on analytics that arise from

combinations of organizations in optimization and data

mining (Turban et al. 2010, pp. 78).

Concluding Remarks

By detecting patterns hitherto unknown, data mining

techniques could suggest new modes to pursue old

objectives. They could even allow the formulation of

better, more sophisticated models in the wake of new

information. In general, the gains to be made from

exploiting newly discovered information are

significantly higher than the marginal improvements

that can be made by improving existing solution

procedures. As the volume and types of data being

collected increase, so will the need for better tools to

analyze the data. Consequently, the future of data

mining seems to be full of possibilities. The

enthusiasm for discovering new information,

however, needs to be tempered with the need to

address privacy concerns, as not doing so could have

long term repercussions on the parties involved.

See

▶Artificial Intelligence

▶Cluster Analysis

▶Computer Science and Operations Research

Interfaces

▶Decision Trees

▶Neural Networks

▶Nonlinear Programming

▶Visualization
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Introduction

The data warehouse is one of the key information

infrastructure resources for Operations Researchers.

Its difference from the conventional transactional

database, which is used to keep track of individual

events, is shown in Table 1.

The typical transaction database contains details

about individual transactions such as the purchase of

merchandise or individual invoices sent or paid.
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Transactional databases are concerned with operations

while data warehouses are organized by subject. For

example, operational data in a bank focuses on

transactions involving loans, savings, credit cards,

and trust accounts, while the data warehouse is

organized around customer, vendor, product, and

activity history.

The continually changing transactional data is not

in the form needed for planning, managing, and

analyzing. That is where the data warehouse comes in.

The classic data warehouse is defined as “a subject

oriented, integrated, non-volatile, time variant,

collection of data to support management’s decisions”

(Inmon 1992, p. 29).

The characteristics of the data warehouse that were

summarized in Table 1 are given in more detail in

Table 2.

In addition, the characteristics of the data itself are

different, as shown in Table 3.

Data warehouses are really databases that provide

both aggregated and detailed data for decision making.

They are usually physically separated from both the

organization’s transaction databases and its

operational systems.

Note that data normalization, which is used in

transactional databases, makes sure that an individual

data point appears once and only once. Normalization is

not required conceptually in data warehouses. Some data

warehouse designs, however, do normalize their data.

Flow of Data

The flow of data into and out of the data warehouse

follows these steps:

1. Obtain inputs

2. Clean inputs

3. Store in the warehouse

4. Provide output for analysis

Inputs to the data warehouse are the first step in

what is called the extract, transform, and load

process (ETL). Data sources, often from what are

called legacy systems, push data to the warehouse

rather than the warehouse pulling data from the

sources. The sources send updates to the data

warehouses at pre-specified intervals. This

operation is performed on a fixed schedule where

the interval between updates can range from nearly

real time to once a day or longer, depending on the

source.

Each source may have its own convention for what to

call things and may even use different names and/or

different metrics. For example, different transactional

databases may store gender as (m, f), (1, 0), (x, y),

(male, female) or may have different names for the

same person (e.g., S. Smith, Sam Smith, and

S. E. Smith). To overcome inconsistencies and to make

Data Warehousing, Table 1 Data warehouse vs. transaction database

Data Warehouse Subject oriented Integrated Time-variant Non-volatile

Transaction
Database

Transaction oriented Un-integrated Current status Changes as trans- actions occur

Data Warehousing, Table 2 Data warehouse characteristics

Subject
orientation

Data are organized by how users refer to it, not
by client

Data
Integration

Data are organized around a common identifier,
consistent names, and the same values
throughout. Inconsistencies are removed.

Time Data provide time series and focus on history,
rather than current status.

Non-volatile Data can be changed only by the upload process,
not by the user.

Data Warehousing, Table 3 Characteristics of data in the
warehouse

Summarized In addition to current operational data when
needed, data summaries used for decision
making are also stored.

Larger database Time series implies much more data is
included.

Not normalized Data can be redundant.

Metadata Includes data about how the data is organized
and what it means.

Sources of input
data

Data comes from operational systems
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sure that users see only one version of the truth, data

cleansing is performed by the warehouse on the input.

Data cleansing involves changing the input data so

that it meets the warehouse’s standards. Specialized

software (usually referred to as ETL) makes the input

data extracted from the sources consistent (e.g., in

format, scaling, and naming) with the way data is

stored in the warehouse. For example, the warehouse

standardizes on one of the formats for gender and

translates all other versions to the standard.

Transformation uses metadata (i.e., data about the

data) to accomplish this. The data are loaded (i.e.,

stored) in the warehouse only after they are cleansed.

The goal is to establish a single value of the truth

within the warehouse.

The data warehouse is used for analytics and routine

reporting. Both create information useful to managers

and professionals. Analytics refers to using models and

performing computations on the data. Routine

reporting refers to creating, documents, tables, and

graphics, usually on a repetitive schedule. Routine

outputs include dashboards (which mostly present

status), scorecards (which show how well goals are

being met), and alerts (which notify managers when

current values are outside prescribed limits).

What is in the Data Warehouse

The data warehouse contains not only the current detail

data that was transferred from the legacy systems, but

also lightly summarized or highly summarized data, as

well as old detail data. Metadata are usually also stored

in the data warehouse.

The current detail data reflects the most recent

happenings and is usually stored on disk. Detail data

is voluminous and is stored at higher levels of

granularity. Granularity refers to the level of detail

provided in the data warehouse. The more detail

provided, the higher the level of granularity. The

highest level is transaction data such as is required

for data mining. For decision support, analysis, and

planning, the level of granularity can be much lower.

Granularity is an important trade-off because the

higher the level of granularity, the more data must be

stored, the greater the level of detail available, and

the more computing needs to be done, even for

problems that do not use that level of granularity. For

example, if a gasoline company records every

motorist’s stop at its stations, it can use the credit

transaction to understand its customers detailed

buying patterns. For total sales by station, that level

of granularity is not needed.

Lightly summarized data is generally used at the

analyst level, whereas highly summarized data (which

is compact and easily accessible) is used by senior

managers. The choice of summarization level

involves tradeoffs because the more highly

summarized the data, the more the data is actually

accessed and used, the quicker it is to retrieve, but the

less detail is available for understanding it. One way to

speed query response time is to pre-calculate

aggregates which are referred to often, such as annual

sales data.

To keep storage requirements within reason, older

data are moved to lower cost storage with much slower

data retrieval. An aging process within the data

warehouse is used to decide when to move data to

mass storage.

Metadata contains two types of information:

1. What the user needs to know to be able to access the

data in the warehouse. It tells the user what is stored

in the warehouse and where to find it.

2. What information systems personnel need to know

about how data is mapped from operational form to

warehouse form, i.e., what transformations

occurred during input and the rules used for

summarization.

Metadata keeps track of changes made converting,

filtering, and summarizing data, as well as changes

made in the warehouse over time, e.g., data added,

data no longer collected, and format changes.

Warehouse Data Retrieval and Analysis

The data stored in the data warehouse are optimized for

speedy retrieval through on-line analytical processing

(OLAP). The retrieval methods depend on the data

format. The three most common are:

• Relational OLAP (ROLAP), which works with

relational databases

• Multidimensional OLAP (MOLAP) for data stored

in multi-dimensional arrays

• Hybrid OLAP (HOLAP) which works with both

relational and multidimensional databases.

OLAP involves answering multidimensional

questions such as the number of units of Product
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A sold in California at a discount to resellers in

November (i.e., product, state, terms of sale,

customer class, time).

To enable relational databases (that store data in

two dimensions) to deal with multidimensionality,

two types of tables are introduced: fact tables that

contain numerical facts, or dimension tables that

contain pointers to the fact tables and show where the

information can be found. A separate dimension table

is provided for each dimension (e.g., market, product,

time). Fact tables tend to be long and thin and the

dimension tables tend to be small, short, and wide.

Because a single fact table is pointed to by several

dimension tables, the visualization of this

arrangement looks like a star and hence is called

a star schema. A variant, used when the number of

dimensions is large and multiple fact tables share some

of the same dimension tables, is called a snowflake

schema.

Multidimensionality allows analysts to slice and

dice the data, i.e., to systematically reduce a body of

data into smaller parts or views that yield more

information. Slice and dice is also used to refer to the

presentation of warehouse information in a variety of

different and useful ways.

Why a Separate Warehouse?

A fundamental tenet of data warehouses is that their

data are separate from operational data. The reasons

for this separation are:

Performance. Requests for data for analysis are not
uniform. At some times, for example, when a proposal

is being written or a new product is being considered,

huge amounts of data are required. At other times, the

demand may be small. The demand peaks create havoc

with conventional on-line transaction systems because

they slow them down considerably, keeping users (and

often customers) waiting.

Data Access. Analysis requires data from multiple

sources. These sources are captured and integrated by

the warehouse.

Data Formats. The data warehouse contains

summary and time-based data as well as transaction

data. Because the data are integrated, the information

in the warehouse is kept in a single, standard format.

Data Quality. The data cleansing process of ETL

creates a single version of the truth.

Other Forms of Data Warehouses

As organizations found new ways of using the

warehouse, they created specialized forms for

specific uses. Among these are:

• Data marts

• Operational data stores

• Real-time warehouses

• Data warehouse appliances

• Data warehouses in the cloud

• Separate data warehouses for casual and power

users

Data marts are a small-scale version of a data

warehouse that include all the characteristics of an

enterprise data warehouse, but are much smaller in

size and cost. Data marts can be independent or

dependent.

• Independent data marts are typically stand-alone

units used by departments or small strategic

business units that often support only specific

subject areas. A data mart is appropriate if it is the

only data warehouse for a small or medium sized

firm. Multiple independent data marts become

a problem rather than a solution if they differ from

department to department. Integrating them so that

there is only a single value of the truth throughout

the organization is difficult, particularly if a

comprehensive data warehouse is later attempted.

• Dependent data marts, such as those used by

analytics groups, contain a subset of the

warehouse data needed by a particular set of users.

To maintain a single value of the truth, care is taken

that the dependent data mart does not change the

data from the warehouse.

An Operational Data Store (ODS) is a data

warehouse for transaction data. It is a form of data

warehouse for operational use. The ODS is used

where some decisions need to be made in near

real-time and require the characteristics of a

warehouse (e.g., clean data). The ODS is subject

oriented and integrated like the warehouse but, unlike

the data warehouse, information in an ODS can be

changed and updated rather than retained forever.

Thus, an ODS contains current and near-current

information, but not much historical data.

When data moves from legacy systems to the ODS,

the data are re-created in the same form as in the

warehouse. Thus, the ODS converts data, selects

among sources, may contain simple summaries of the
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current situation for management use, alters the key

structures and the physical structure of the data, as well

as its internal representation. Loading data into a data

warehouse from an ODS is easier than loading from

individual legacy systems, because most of the work

on the data has been performed. It contains much less

data than a data warehouse but also includes some that

is not stored in the data warehouse. The ODS is usually

loaded more frequently by data sources than the

warehouse to keep it much more current. For

example, the Walmart ODS receives information

every 15 minutes.

The real-time data warehouse is used to support

ongoing analysis and actions. A form of operational

data store, real time data warehouses are closely tied to

operational systems. They hold detailed, current data

and try to use even shorter times between successive

loadings than operational data stores. With these data

warehouses, enterprises can respond to customer

interactions and changing conditions in real time. For

example, credit card companies use it to detect and

stop fraud as it happens, a transportation company uses

it to reroute its vehicles, and online retailers use it to

communicate special offers based on a customer’s

Web surfing or mobile phone behavior. The real-time

data warehouse is an integral part of both short-term

(tactical) and long-term (strategic) decisions.

The real-time data warehouse changes the decision

support paradigm, which has long been associated with

strategic decision making. It supplies support for

operational decision making such as customer-facing

(direct interactions or communications with customers)

and supply chain applications.

A data warehouse appliance is similar in concept to

an all-in-one PC, i.e., it integrates the physical

components of a data warehouse (servers, storage,

operating system) with a database management

system and software optimized for the data

warehouse. These low-cost appliances are designed

to provide terabyte to petabyte capacity warehouses.

Cloud computing refers to using the networked, on-

demand, shared resources available through the

Internet for virtual computing. Typically, rather than

each firm owning its own warehouse, a third-party

vendor provides a centralized service to multiple

clients based on hardware and software usage.

Although, as of 2010 - no data warehouse in the

cloud exists, some inferences can be drawn. Agosta

(2008) argues that in cloud computing the data in

a warehouse will have to be location independent and

transparent rather than being a centralized, non-

volatile repository. Furthermore, the focus will be on

distributed data marts and analytics rather than large

data stores because of the problems and costs in

moving the huge amounts of data in a warehouse to

the cloud.

Data warehouses attract two types of users

(Eckerson 2010):

• Casual users. These users are executives and other

knowledge workers who consume information but

do not usually create it. Their use is mostly

static. They check dashboards, monitor regular

reports, respond to alerts, and only occasionally

dig deeper into the warehouse to create ad hoc

reports.

• Power users. These users explore the data and build

models. Conventional reports are insufficient for

their needs. They model data in unique ways and

supplement warehouse contents with data obtained

from other sources.

In most organizations, the conventional data

warehouse is used by both types of users despite their

different needs. Some organizations, however, are

moving to separate warehouses, one for each type of

user. The conventional data warehouse feeds its data to

the one for the power users, so that there is still only

one version of the truth. In these organizations,

conventional data warehouses continue to serve

casual users whose requirements are mostly

static. The idea is that performance gains are

achieved by creating a separate warehouse

customized to power users. Over the years, the

special warehouses for power users have operated

under a variety of names such as exploration data

warehouse (for number crunching) (Inmon 1998),

prototype data warehouse (for new approaches to

warehouse design), and data warehouse sandbox.

Eckerson (2010) describes to three types of sandbox

architectures for analytics: physical, virtual, and

desktop.

The physical sandbox is built around a data

warehouse appliance or a specialized database with

rapid access (e.g., columnar or massively parallel

processing) that contains a copy of the data in

the warehouse. Complex queries from the data

warehouse are offloaded and used, together with data

not stored in the warehouse. The result is that runaway

queries (so large that they overload the warehouse) do
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not slow the warehouse and analysts can safely and

easily explore large amounts of data.

The virtual sandbox is created inside the

warehouse by using workload management utilities.

Again, data can be added to that available in the

warehouse. The advantage is that warehouse data

does not need to be replicated. The disadvantage is

that care must be taken to keep processing for casual

and power users separate.

In desktop sandboxes, analysts are provided with

powerful in-memory desktop databases that can be

downloaded from the warehouse. Analysts gain local

control and fast performance but much less data

scalability than in physical or virtual sandboxes.

Applications

Data warehousing is central to data mining and

business intelligence. Other applications include:

• Customer churn prediction

• Decision support

• Financial forecasting

• Insurance fraud analysis

• Logistics and inventory management

• Trend analysis

See

▶Business Intelligence

▶Data Mining

▶Decision Support Systems (DSS)

▶ Information Systems and Database Design in

OR/MS

▶Visualization
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Introduction

The term decision analysis identifies a collection of

technologies for assisting individuals and

organizations in the performance of difficult

inferences and decisions. Probabilistic inference is

a natural element of any choice made in the face of

uncertainty. No single discipline can lay claim to all

advancements made in support of these technologies.

Operations research, probability theory, statistics,

economics, psychology, artificial intelligence, and

other disciplines have contributed valuable ideas now

being exploited in various ways by individuals in many

governmental, industrial, and military organizations.

As the term decision analysis suggests, complex

inference and choice tasks are decomposed into

smaller and presumably more manageable elements,

some of which are probabilistic and others preferential

or value-related. The basic strategy employed in
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decision analysis is divide and conquer. The

presumption is that individuals or groups find it more

difficult to make holistic or global judgments required

in undecomposed inferences and decisions than to

make specific judgments about identified elements of

these tasks. In many cases we may easily suppose that

decision makers are quite unaware of all of the

ingredients that can be identified in the choices they

face. Indeed, one reason why a choice may be

perceived as difficult is that the person or group

charged with making this choice may be quite

uncertain about the kind and number of judgments

this choice entails. One major task in decision

analysis is to identify what are believed to be the

necessary ingredients of particular decision tasks.

The label decision analysis does not in fact

provide a complete description of the activities of

persons who employ various methods for assisting

others in the performance of inference and choice

tasks. This term suggests that the only thing

accomplished is the decomposition of an inference or

a choice into smaller elements requiring specific

judgments or information. It is, of course, necessary to

have some process by which these elements can be

reassembled or aggregated so that a conclusion or

a choice can be made. In other words, we require

some method of synthesis of the decomposed elements

of inference and choice. A more precise term for

describing the emerging technologies for assistance in

inference and choice would be the term decision

analysis and synthesis. This fact has been noted in an

account of progress in the field of decision analysis

(Watson and Buede 1987). As it happens, the same

formal methods that suggest how to decompose an

inference or choice into more specific elements can

also suggest how to reassemble these elements in

drawing a conclusion or selecting an action.

Processes and Stages of Decision Analysis

Human inference and choice are very rich

intellectual activities that resist easy categorization.

Human inferences made in natural settings

(as opposed to contrived classroom examples)

involve various mixtures of the three forms of

reasoning that have been identified: (1) deduction

(showing that some conclusion is necessary), (2)

induction (showing that some conclusion is

probable), and (3) abduction (showing that something

is possibly or plausibly true). There are many varieties

of choice situations that can be discerned. Some

involve the selection of an action or option such as

where to locate a nuclear power plant or a toxic waste

disposal site. Quite often one choice immediately

entails the need for another and so we must consider

entire sequences of decisions. It is frequently difficult

to specify when a decision task actually terminates.

Other decisions involve determining how limited

resources may best be allocated among various

demands for these resources. Some human choice

situations involve episodes of bargaining or

negotiation in which there are individuals or groups

in some competitive or adversarial posture. Given the

richness of inference and choice, analytic and synthetic

methods differ from one situation to another as

observed in several surveys of the field of decision

analysis (von Winterfeldt and Edwards 1986; Watson

and Buede 1987; Clemen 1991; Shanteau et al. 1999).

Some general decision analytic processes can,

however, be identified.

Most decision analyses begin with careful

attempts to define and structure an inference and/or

decision problem. This will typically involve

consideration of the nature of the decision problem

and the individual or group objectives to be served by

the required decision(s). A thorough assessment of

objectives is required since it is not possible to assist

a person or group in making a wise choice in the absence

of information about what objectives are to be served. It

has been argued that the two central problems in decision

analysis concern uncertainty and multiple conflicting

objectives (von Winterfeldt and Edwards 1986,

pp. 4–6). A major complication arises when, as usually

observed, a person or a group will assert objectives that

are in conflict. Decisions in many situations involve

multiple stakeholders and it is natural to expect that

their stated objectives will often be in conflict.

Conflicting objectives signal the need for various

tradeoffs that can be identified. Problem structuring

also involves the generation of options, actions, or

possible choices. Assuming that there is some element

of uncertainty, it is also necessary to generate hypotheses

representing relevant alternative states of the world that

act to produce possibly different consequences of each

option being considered. The result is that when an

action is selected we are not certain about which

consequence or outcome will occur.
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Another important structuring task involves the

identification of decision consequences and their

attributes. The attributes of a consequence are

measurable characteristics of a consequence that are

related to a decision maker’s asserted objectives.

Identified attributes of a consequence allow us to

express how well a consequence measures up to the

objectives asserted in some decision task. Stated in

other words, attributes form value dimensions in

terms of which the relative preferability of

consequences can be assessed. There are various

procedures for generating attributes of consequences

from stated objectives (e.g., Keeney and Raiffa 1976,

pp. 31–65). Particularly challenging are situations in

which we have multiattribute or vector consequences.

Any conflict involving objectives is reflected in

conflicts among attributes and signals the need for

examining possible tradeoffs. Suppose, for some

action Ai and hypothesis Hj, vector consequence Cvij
has attributes {A1, A2,. . ., Ar,. . ., As,. . ., At}. The

decision maker may have to judge how much of Ar to

give up in order to get more of As; various procedures

facilitate such judgments. Additional structuring is

necessary regarding the inferential element of choice

under uncertainty. Given some exhaustive set of

mutually exclusive hypotheses or action-relevant

states of the world, the decision maker will ordinarily

use any evidence that can be discovered that is relevant

in determining how probable are each of these

hypotheses at the time a choice is required. No

evidence comes with already-established relevance,

credibility, and inferential force credentials, these

credentials have to be established by argument. The

structuring of complex probabilistic arguments is

a task that has received considerable attention (e.g.,

see Pearl 1988; Neapolitan 1990; Schum 1990, 1994).

At the structural stage just discussed, the process of

decomposing a decision is initiated. On some occasions

such decomposition proceeds according to formal

theories of probability and value taken to be

normative. It may even happen that the decision of

interest can be represented in terms of some existing

mathematical programming or other formal technique

common in operations research. In some cases the

construction of a model for a decision problem

proceeds in an iterative fashion until the decision

maker is satisfied that all ingredients necessary for

a decision have been identified. When no new problem

ingredients can be identified the model that results is

said to be a requisite model (Phillips 1982, 1984).

During the process of decomposing the probability and

value dimensions of a decision problem it may easily

happen that the number of identified elements quickly

outstrips a decision maker’s time and inclination to

provide judgments or other information regarding each

of these elements. The question is: how far should the

process of divide and conquer be carried out? In

situations in which there is not unlimited time to

identify all conceivable elements of a decision

problem, simpler or approximate decompositions at

coarser levels of granularity have to be adopted.

In most decision analyses there is a need for a variety

of subjective judgments on the part of persons involved

in the decision whose knowledge and experience

entitles them to make such judgments. Some

judgments concern probabilities and some concern the

value of consequences in terms of identified attributes.

Other judgments may involve assessment of the relative

importance of consequence attributes. The study of

methods for obtaining dependable quantitative

judgments from people represents one of the most

important contributions of psychology to decision

analysis (for a survey of these judgmental

contributions, see von Winterfeldt and Edwards 1986).

After a decision has been structured and subjective

ingredients elicited, the synthetic process in decision

analysis is then exercised in order to identify the best

conclusion and/or choice. In many cases such synthesis

is accomplished by an algorithmic process taken as

appropriate to the situation at hand. Modern computer

facilities allow decision makers to use these algorithms

to test the consequences of various possible patterns of

their subjective beliefs by means of sensitivity analyses.

The means for defending the wisdom of conclusions or

choices made by such algorithmic methods re-quires

consideration of the formal tools used for decision

analysis and synthesis.

Theories of Analysis and Synthesis

Two major pillars upon which most of modern

decision analysis rests are theories of probabilistic

reasoning and theories of value or preference. A very

informative summary of the roots of decision theory

has been provided by Fishburn (1999). It is safe to say

that the conventional view of probability, in which

Bayes’ rule appears as a canon for coherent or
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rational probabilistic inference, dominates current

decision analysis. For some body of evidence Ev,

Bayes’ rule is employed in determining a distribution

of posterior probabilities P(Hk|Ev), for each

hypothesis Hk in an exhaustive collection of mutually

exclusive decision-relevant hypotheses. The

ingredients Bayes’ rule requires, prior probabilities

(or prior odds) and likelihoods (or likelihood ratios),

are in most cases assumed to be assessed subjectively

by knowledgeable persons. In some situations,

however, appropriate relative frequencies may be

available. The subjectivist view of probability,

stemming from the work of Ramsey and de Finetti,

has had a very sympathetic hearing in decision analysis

(see Mellor 1990, and de Finetti 1972, for collections

of the works of Ramsey and de Finetti).

Theories of coherent or rational expression of

values or preferences stem from the work of von

Neumann and Morgenstern (1947). In this work

appears the first attempt to put the task of stating

preferences on an axiomatic footing. Adherence to

the von Neumann and Morgenstern axioms places

judgments of value on a cardinal or equal-interval

scale and are often then called judgments of utility.

These axioms also suggest methods for eliciting utility

judgments and they imply that a coherent synthesis of

utilities and probabilities in reaching a decision

consists of applying the principle of expected utility

maximization. This idea was extended in the later work

of Savage (1954), who adopted the view that the

requisite probabilities are subjective in nature. The

canon for rational choice emerging from the work of

Savage is that the decision maker should choose from

among alternative actions by determining which one

has the highest subjective expected utility (SEU).

Required aggregation of probabilities is assumed to

be performed according to Bayes’ rule. In some

works, this view of action-selection is called

Bayesian decision theory (Winkler 1972; Smith 1988).

Early works by Edwards (1954, 1961) stimulated

interest among psychologists in developing methods

for probability and utility elicitation; these works also

led to many behavioral assessments of the adequacy of

SEU as a description of actual human choice

mechanisms. In a later work, Edwards (1962)

proposed the first system for providing computer

assistance in the performance of complex

probabilistic inference tasks. Interest in the very

difficult problems associated with assessing the utility

of multiattribute consequences stems from the work of

Raiffa (1968). But credit for announcing the existence

of the applied discipline now called decision analysis

belongs to Howard (1966, 1968).

Decision Analytic Strategies

There are now many individuals and organizations

employed in the business of decision analysis.

The inference and decision problems they encounter

are many and varied. A strategy successful in one

context may not be so successful in another. In most

decision-analytic encounters, an analyst plays the role

of a facilitator, also termed high priests (vonWinterfeldt

and Edwards 1986, p. 573). The essential task for the

facilitator is to draw out the experience and wisdom of

decision makers while guiding the analytic process

toward some form of synthesis. In spite of the

diversity of decision contexts and decision analysts,

Watson and Buede (1987, pp. 123–162) were able to

identify the following five general decision analytic

strategies in current use. They make no claim that

these strategies are mutually exclusive.

1. Modeling. In some instances decision analysts will

focus upon efforts to construct a conceptual model of

the process underlying the decision problem at hand.

In such a strategy, the decision maker(s) being served

not only provide the probability and value ingredients

their decision requires but are also asked to

participate in constructing a model of the context in

which this decision is embedded. In the process of

constructing these often-complex models, important

value and uncertainty variables are identified.

2. Introspection. In some decision analytic encounters,

a role played by the facilitator is one of assisting

decision makers in careful introspective efforts to

determine relevant preference and probability

assessments necessary for a synthesis in terms of

subjective expected utility maximization. Such

a process places great emphasis upon the

reasonableness and consistency of the often large

number of value and probability ingredients of

action selection.

3. Rating. In some situations, especially those involving

multiple stakeholders and multiattribute

consequences, any full-scale task decomposition

would be paralytic or, in any case, would not

provide the timely decisions so often required.
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In order to facilitate decision making under

such circumstances, models involving simpler

probability and value assessments are often

introduced by the analyst. In some forms of decision

analysis, many of the difficult multiattribute utility

assessments are made simpler through the use of

various rating techniques and by the assumption of

independence of the attributes involved.

4. Conferencing. In a decision conference the role of

the decision analyst as facilitator (or high priest)

assumes special importance. In such encounters,

often involving a group of persons participating to

various degrees in a decision, the analyst promotes

a structured dialogue and debate among participants

in the generation of decision ingredients such as

options, hypotheses and their probability, and

consequences and their relative value. The analyst

further assists in the process of synthesis of these

ingredients in the choice of an action. The subject

matter of a decision conference can involve action

selection, resource allocation, or negotiation.

5. Developing. In some instances, the role of the

decision analyst is to assist in the development of

strategies for recurrent choices or resource

allocations. These strategies will usually involve

computer-based decision support systems or some

other computer-assisted facility whose

development is justified by the recurrent nature of

the choices. The study and development of

decision support systems has itself achieved the

status of a discipline (Sage 1991). An active

and exciting developmental effort concerns

computer-implemented influence diagrams

stemming from the work of Howard and Matheson

(1981). Influence diagram systems can be used to

structure and assist in the performance of inference

and/or decision problems and have built-in

algorithms necessary for the synthesis of

probability and value ingredients (e.g., Shachter

1986; Shachter and Heckerman 1987; Breese and

Heckerman 1999). Such systems are equally

suitable for recurrent and nonrecurrent inference

and choice tasks.

Controversies

As an applied discipline, decision analysis inherits

any controversies associated with theories upon

which it is based. There is now a substantial

literature challenging the view that the canon for

probabilistic inference is Bayes’ rule (e.g., Cohen

1977, 1989; Shafer 1976). Regarding preference

axioms, Shafer (1986) has argued that no normative

theories of preference have in fact been established

and that existing theories rest upon an incomplete set

of assumptions about basic human judgmental

capabilities. Others have argued that the probabilistic

and value-related ingredients required in Bayesian

decision theory often reflect a degree of precision

that cannot be taken seriously given the imprecise or

fuzzy nature of the evidence and other information

upon which such judgments are based (Watson et al.

1979). Philosophers have recently been critical of

contemporary decision analysis. Agreeing with

Cohen and Shafer, Tocher (1977) argued against

the presumed normative status of Bayes’ rule.

Rescher (1988) argued that decision analysis can

easily show people how to decide in ways that are

entirely consistent with objectives that turn out not to

be in their best interests. Keeney’s work (1992) took

some of the sting out of this criticism. Others (e.g.,

Dreyfus 1984) question whether or not decomposed

inference and choice is always to be preferred

over holistic inference and choice; this same

concern is reflected in other contexts such as law

(Twining 1990, pp. 238–242). So, the probabilistic

and value-related bases of modern decision

analysis involve matters about which there will be

continuing dialogue and, perhaps, no final

resolution. This acknowledged, decision makers in

many contexts continue to employ the emerging

technologies of decision analysis and find, in the

process, that very complex inferences and choices

can be made tractable and far less intimidating.

See

▶Choice Theory

▶Decision Analysis in Practice

▶Decision Making and Decision Analysis

▶Decision Support Systems (DSS)

▶Decision Trees

▶Group Decision Making

▶ Influence Diagrams

▶Multi-attribute Utility Theory

▶Utility Theory
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Decision Analysis in Practice

James E. Matheson

SmartOrg, Inc., Menlo Park, CA, USA

Introduction

Decision analysis (DA) is all about practice, as the title

of Ronald Howard’s defining paper (Howard 1966;

presented in 1965) was “Decision Analysis: Applied

Decision Theory.” He went on to elaborate: “Decision

analysis is a logical procedure for the balancing of the

factors that influence a decision. The procedure
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incorporates uncertainties, values, and preferences in

a basic structure that models a decision. Typically it

includes technical, marketing, competitive, and

environmental factors. The essence of the procedure

is the construction of a structural model of the decision

in a form suitable for computation and manipulation;

the realization of this model is often a set of computer

programs.”

In about 1968, a program of DA was begun at

Stanford Research Institute. This group rapidly grew

into a major department called the Decision Analysis

Group dedicated to helping decision makers in

organizations, both industry and government, reach

good decisions, while also consolidating these

experiences and doing research on DA methodology

(Howard and Matheson 1983). This group was the

most intensive DA consulting group through the early

1980s. One of the powerful new methodological tools

invented by this group was the Influence Diagram (see

entry). DA practice has always developed new tools and

approaches based on the challenges of real problems.

At the end of the next decade, with this experience

behind him, Professor Howard goes on to say (Howard

1980), “Decision Analysis, as I have described it, is, as

a formalism, a logical procedure for decision making.

When Decision Analysis is practiced as an applied art

the formalism interacts with the intuitive and creative

facilities to provide understanding of the nature of

the decision problem and therefore guidance in

selecting a desirable course of action. I know of no

other formal-artistic approach that has been so

effective in guiding decision-makers.”

In this sense there is no real theory of DA. Its

philosophy is grounded in decision theory and

systems engineering, with more recent contributions

from psychology, but in the end it is an applied art.

This Decision Engineering approach is discussed in

depth in an INFORMS tutorial (Matheson 2005).

This article describes some of the keys to good

application and the kinds of positive changes DA

promotes in the organizations that adopt it.

A Decision: The Defining Element

A decision is defined as an irrevocable allocation of

resources. Exactly what is meant by irrevocable

depends on the context. If a single individual—the

decision maker (DM)—makes and executes

a decision, then the decision and the irrevocable

action are one – the individual might decide to take

one path versus another along a road. Traveling down

the new path is an irrevocable decision in the sense that

changing the decision would require going back to the

junction and taking the second path, but at a later time.

However, when an organizational DM takes a big

strategic decision, the DM asks many other people

to take later irrevocable actions, which might not

even be fully specified at that time of the original

decision (for example, asking someone to find an

appropriate company and acquire it). In these

settings, a decision is often defined as a commitment

to allocate resources, which opens new questions of

possible execution failure and nested or sequential

decisions. In any case, the decisions at hand provide

the focus for DA, which distinguishes DA from all

kinds of studies and statistical analyses that are not

directly serving decisions. This means that, once the

decision arena has been defined, the DM can guide all

subsequent activity, such as modeling and information

gathering, on its ability to inform better decisions.

Issues that might make a great deal of difference to

the outcome, but do not have the potential to change

the decision taken, are unimportant, while issues of

less impact but that do inform the decision are of

greater importance. The DM uses this sort of decision

sensitivity to intuitively and analytically guide the

whole process, and to do what is most important to

making a decision in the limited time and resources

available to make it.

Framing: The Perceived Situation

Perhaps the biggest decision failure is a careful

analysis of the wrong problem. Often a decision

arises in an organization as just another tactical

decision, when actually new strategies are called

for – but strategy is not the prerogative or in the

comfort zone of those considering the decisions.

Thus, old products and whole companies are

displaced by competitors who perceived the situation

differently, and who were able to act in new ways.

Also, executives spend most of their time and energy

operating efficiently and find it difficult to “waste

time” on strategy or to get into a strategic mind set.

The beginning of a DA should review the decision

frame, possibly bringing in outside perspectives
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and new team members, often expanding the frame,

and then reviewing that frame at key points during the

process. When a DA process gets stuck, reframing

maybe in order (Matheson 1990).

Outcomes: What are the Results

In the face of uncertainty, the decision maker (DM)

is forced to distinguish between decisions – what

can be done, outcomes – what happens, and

preferences – what is wanted. The DM wants good

outcomes, but can only control the quality of the

decisions, not the outcomes. For example, the DM

may invest $10,000 in a venture having only a 10%

chance of returning $10,000,000, and considers that

a good investment. Quite likely, however, the bad

outcome may occur. Clearly, the quality of this

decision cannot be judged by its outcome; a bad

outcome should not dissuade the DM from looking

for similar good investments later. Given this

distinction between decision quality and outcome

quality, there is a need for a definition of a good

decision – DA itself is that definition!

In many organizational cultures, champions are

asked to claim that investment proposals are sure

things and guarantee that they will succeed. On

course, many of these investments fail, but

inconsistency does not stop this irrational culture

from persisting. However, organizations that can

overcome a culture of hiding from uncertainty and

instead actually search for the hidden uncertainties in

their investments often outperform those that do not.

Good DA vets these uncertainties, assesses

their probabilities and impacts, and determines what

to do about them, such as information gathering

and hedging, or even creating new alternatives,

before proceeding to recommend the primary

decision – a principle called embracing uncertainty

(Matheson and Matheson 1998).

There are well established procedures for assessing

uncertainties and avoiding well-known biases, such as

the work on probability assessment processes by

Spetzler and Staël von Holstein (1975). Most

practical decision analyses, however, do not require

such careful assessment; three points, say 10-50-90

percentiles, are so much better than one single and

often biased point. It is essential that those three

points not be biased. Most of the de-biasing

techniques of Spetzler and Staël von Holstein (1975)

are useful preparation before assessing even

a three-point distribution. Perhaps the most useful

technique is backcasting, as it simultaneously

eliminates all sorts of biases.

Preferences: What is Wanted

Because only one thing can be maximized, a good or

optimal decision cannot be defined without being clear

about value trade-offs that create a single measure to

maximize. In most commercial decision analyses, it is

best to reduce all values to monetary ones. In fact,

seeking a monetary value scale is always a good

practice, because money can often be spent to create

better alternatives or seek better information, and,

without a monetary scale, the DM cannot evaluate

those efforts. There is a story about a Swedish

executive who had promised the residents of a town

that he would never close their factory, but, under hard

times, he was facing heavy losses by keeping it open.

He was asked by a decision analyst if he would close it

if he were losing a million dollars a year, to which he

quickly answered, “of course not – this is Sweden

where we owe that much to the community.” He was

then asked if he would close the plant if it were losing

a hundred million dollars a year, to which he replied,

“it would be our duty to close it as the country and our

company cannot sustain such heavy losses.” After

haggling over the price, he realized that the high

monetary value he had just made explicit allowed

him to visualize new alternatives, where he would

close the plant, pay some additional closing costs to

the community and guarantee workers jobs in other

factories. He ultimately took these actions and saved

his company from financial ruin. Being forced to make

a monetary value tradeoff enabled him to invent to

better alternatives. He was not valuing things like

higher employment on an absolute scale. He was only

assessing a tradeoff value in the context of his specific

decision – this value is personal and subjective, just

like probability, in this case not his own, but one he

expresses as a fiduciary of the company he represents.

Converting values to monetary equivalents is an

excellent practice, because it establishes how

much money could be afforded to build new

alternatives – money is a common denominator to

translate disparate values.
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What about value over time? In a simple case,

a highly rated company regularly adjusts or rebalances

its financial capital at a weighted cost of capital of R%. If

the company has opportunities (or preferences) that

imply a value other than R%, the company should

rearrange its investments using its banking relationships

until its needs are exactly in line with the financial rate of

R%. At that point, the company’s own time preferences

are exactly the same as the financial rate. Because of this

harmonization process, this cost of capital becomes the

company’s own time value of money. Another way to

state this observation is that the company should invest to

maximize net present value (NPV) at its cost of capital,

and then spread that NPV over time optimally using

financial transactions at the same rate, separating

investment funding and usage decisions.

How should preferences under uncertainty be

treated? Assuming that each uncertainty has been

characterized satisfactorily in the form of probability

distributions over NPV, which investment should be

picked? If the company is large enough to undertake

many investments of this size during each year, then

maximizing the expected value is a reasonable way to

maximize long-term economic-value creation.

However, if the range of the uncertainties could

impact the financial structure or soundness of the

company, it would be wise for it to be risk averse.

Some financial pundits argue that companies traded

on the stock market should not be risk averse as the

shareholders can diversify. There are many arguments

against this position, including the actual behavior of

most companies, the cost of bankruptcy or other

financial distress, the inability of the shareholder to

gain information and change positions quickly (lack

of liquidity), but, perhaps most significantly, are the

availability of risk hedging options to the company that

are not available to shareholders. The risk attitude of

the company is assessed by asking series of questions

about which of several hypothetical investments they

would undertake or reject. This attitude is almost

always captured as the risk tolerance, say expressed

in millions of dollars, which is the parameter of an

exponential utility function:

UðxÞ ¼ �aeð�x=rÞ where a> 0 and r¼ risk tolerance

One test question to determine the risk tolerance is

considering a hypothetical but typical investment, in

terms of complexity and time duration, where there is

a 0.5 probability of winning the risk tolerance and a 0.5

probability of losing one-half that amount. The risk

tolerance is then adjusted until the DM is indifferent

between taking and rejecting this investment.

There are good arguments that risk tolerance should

be set for the total organization and not for a division or

a project. One advantage of being a division of a large

organization is to be able to use the corporate risk

tolerance, which a similar stand-alone organization

could not do. Figure 1 compares the measured risk

tolerances of three large corporations, which were all

engaged in a joint venture. This chart can be used to get

an initial approximation for other public companies,

commonly by estimating risk tolerance as 1/6 of

shareholders’ equity or 1/5 of the market value of

outstanding shares of stock.

Investments with a range of outcomes on the order

of the risk tolerance need explicit treatment using

utility theory. Investments with a range of outcomes

less than of 10% of the risk tolerance should usually be

evaluated using expected values, and investments with

a range of outcomes larger than the risk tolerance

should be avoided, partnered, or treated by a very

Size Measure A B C
Approximate
Ratio to Risk

Tolerance

Net Sales

Net Income

Equity

Market Value

Risk Tolerance

2,300

120

1,000

940

150

16,000

700

6,500

4,600

1,000

31,000

1,900

12,000

9,900

2,000

15:1

1:1

6:1

5:1

Decision Analysis in

Practice, Fig. 1 Risk
tolerance in millions of dollars
as measured from top

executives of three publically
traded companies, A, B, and C
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experienced decision analyst. The author has seen one

such case in a lifetime of professional practice. If the

exponential utility will not suffice, the analysis is in

very deep water indeed! In dealing with uncertainties

large enough to require risk aversion, there is a need to

beware of dependencies among uncertainties in other

investments or the background cash flow of the

organization. Hedging and diversification impacts are

likely to overshadow other considerations.

Alternatives: What Can be Done

In simple decisions problems, such as classroom

examples, a limited number of well-specified

alternatives are given. In most real situations,

however, new alternatives can and should be created

to uncover more valuable ones. Part of the natural

reluctance of organizations to generate and consider

new alternatives is that the decision problems arise out

of situations where natural alternatives are evident. In

addition, those product or investment champions and

others who have made an emotional investment by

picking winners prematurely, see alternative

generation as a waste of time or even a direct threat.

There are many ways to create new alternatives, but

a simple one is to use the project team itself in a session

with a ground rule that at least five new significantly

different alternatives must be developed. There are

many tools to stimulate creativity, most requiring that

a wealth of information and new possibilities be put on

the table before evaluating them; such as examples of

what others have been done, what competitors are

saying, what consumers are asking for. After the

analysis enters the financial modeling stage;

sensitivity analysis should also be used to drive the

discussion of alternatives that minimize risk (hedge or

diversify) or take advantage of uncertainties.

For situations with complex multidimensional

alternatives, decision hierarchies and strategy tables

are extremely useful. The decision hierarchy for

a plant modernization decision (Fig. 2) identifies the

strategic decisions under consideration, the policy

decisions that are not currently being questioned, and

the tactical or implementation decisions which will be

made or optimized after the strategy is selected. The

list of identified strategic decisions are further

specified in the columns of the strategy table,

illustrated in Fig. 3. The columns list specific

mutually-exclusive alternatives for each strategy

variable. Thus, a selection of one item from each

column constitutes a well-specified strategic

alternative. The special column at the left gives

names and symbols for each alternative, which is

read by following its symbol across the columns.

Further descriptions of these tools can be found in

Matheson and Matheson (1998) and McNamee and

Celona (2007).

Decision Modeling: Analyzing as Simply as
Possible

The process of DA uses the decision to be made as

a guide to cut through many complex modeling issues.

Often details, such as numerous market segments or

• Continue
   manufacturing

Policy
Decisions

• Plant configuration and
  location
• Technological stretch
• Product range
• Quality and cost position
• Marketing strategy

Strategic
Decisions

• Product design
• Manufacturing operations
• Marketing plans

Tactical
Decisions

Decide
Later

Focus on in
this analysis

Take as
given

Decision Analysis in

Practice, Fig. 2 Decision
hierarchy for a plant
modernization decision
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multiple product generations, can be treated with

multipliers, followed by sensitivity analysis to the

value of those multipliers, to determine if something

important was missed. Verisimilitude is unimportant,

only the impact on gaining clarity of action. Good

modeling for decision making is an important

professional task, see McNamee and Celona, (2007).

A special kind of sensitivity analysis called

a tornado chart (Fig. 4) is a key tool for checking the

model and gaining new insights. Each uncertain

variable is varied one at a time over the range of the

low (10 percentile) and high (90 percentile)

assessments, to determine the range of (deterministic)

NPV resulting from different runs of the model,

usually while holding the other values at their

medians. Notice that output ranges of each variable

correspond to the same range of uncertainty on their

inputs, so if the results are arranged in a decreasing

order of the output ranges, they are also in order of the

impact of each uncertainty on value, as in Fig. 4. Since

for independent variables, the uncertainty ranges

should add as the square root of the sum of the

squares, only the first several results are big

contributors, which often produces insight into which

factors are driving risk, as well as ideas for how to

reduce that risk. More sophisticated tornado diagrams

overlay results for multiple alternatives to give insight

into which uncertainties could actually cause

a decision switch, as these would be the most critical

to learn more about.

Commitment to Action: Getting It Done

The author has decided to diet many times, without

actually following through. And that is only dealing

with himself! It is much more difficult to align an

organization to carry out the chosen action. A good

analysis sets the stage for implementation success at

the beginning by the choice of individuals involved in

reaching the decision. It is natural not to put the

potential naysayers on the decision making or the

decision analyzing team, but if they are not chosen,

they will often veto the result, overtly if they have the

power and covertly if not. It is best to put any skeptical

person with veto power on the team, even if only in

a review board role, and require that they raise their

issues during the analysis process rather than objecting

later – speak up or forever hold your peace. In this way

they have the opportunity to inform the team of their

Current

Close #1;
build 
domestic
greenfield

Close #1;
build foreign
greenfield

State of art

Proven

Current

Full line

One basic
line and
specialties

Value-
added
specialties
only

Quality 
and cost 
leadership

Improved 
quality;
deferred
cost
reduction

Minimal
quality
improvements

Sell
quality 
and  
influence 
market 
growth

Sell
quality

Current

Aggressive 
Modernization

Moderate
Modernization

Consolidation

Run Out

Plant
Configuration
and Location

Technological
Stretch

Product
Range

Quality 
and Cost
Position

Marketing
Strategy

Strategy
Alternatives

Close #1

Decision Analysis in Practice, Fig. 3 Strategy table for a plant modernization decision
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important issues, which can be taken into account

during the analysis, and they acquire a deeper

understanding of the decision situation by

participating, giving them a much better chance of

ultimately buying in to the conclusions. It gives them

needed psychological time and space to reconsider and

revise long held convictions. Also, put key

implementers on the team so they understand and buy

Dealing effectively with uncertainty builds trust in 

the evaluation framework and helps focus attention 

on value drivers. Commercial Value Given Development Success
NPV of Cash Flows ($ millions)

Efficacy Relative to Major Competitor

Market Share Given Slightly Better Efficacy  (%)

Annual Real Price Growth/Decline (%)

Market Size Ceiling (M Therapy Days)

Price Drop on Product Patent Expiry (%)

Variable COGS ($/Therapy Day)

Market Share Loss at Product Patent Expiry (%)

Launch Date

Time to Peak Market Share (Years)

Safety Profile Relative to Major Competitor

Base Case = 420

0 100 200 300 400 500 600 700 800 900

“Me Too”:
Same Efficacy,

Price War 6 10

2,000

10

1.0–2.0

1,600

40

0.080.16

5075

19992000

35

Significantly BetterSameBetter

MedianVariables

Blockbuster:
50% Better
Efficacy,
Premium Price

Low GDP, Strong
Governmental

Price Pressure

Flat Manufacturing
Learning Curve

Steep Manufacturing
Learning Curve
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Governmental
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–0.5

1,800
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0.13

60

1999

4

9
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Decision Analysis in Practice, Fig. 4 Tornado chart
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into what they are asked to implement. The Dialog

Decision Process (Fig. 5) was devised to organize all

of these actors into a highly workable project structure.

The Decision Quality Chain

The key elements described above are often arranged

in a decision quality chain (Fig. 6), originally proposed

by Carl Spetzler (Keelin and Spetzler 1992). The

metaphor of a chain is used to express that the chain

is only as good as its weakest link – that is the most

important one; the weakest link changes as the DA

proceeds. Decision analysts sometimes use a spider

diagram to score progress at each team review

(Keelin et al. 2009).

Embedding Good Decision-Making Skills
into Organizations

The book, The Smart Organization, (Matheson and

Matheson 1998), describes “Nine Principles of

a Smart Organization” that characterizes a set of habits

and a mindset conducive to good decisions, Fig. 7. This

book also presents an organizational IQ test to measure

compliance with these norms. These tests have been

administered to thousands of organizations. The payoff

for being a smart organization was striking –

organizations in the top quartile of IQ were over five

times more likely to be in the top quartile of financial

performance, as reported in Matheson and Matheson

(2001). Organizations with high scores have patterns

of behavior that enable them to spontaneously see the

need for decisions, request and frame appropriate

decision analyses, and conduct and participate in

decision analyses more efficiently and effectively. A

few organizations are leading the way by integrating

DA into their organizational DNA. Among them,

most notably, has been Chevron, which won the

annual Decision Analysis Society’s Practice Award

(2010) for “The implementation of Decision Analysis

Practice at Chevron: 20 years of building a DA culture.”

Matheson and Matheson (2007) discuss how DA

principles can become the basis of the Decision

Organization.

A high-quality decision produces personal or organizational
commitment to the best prospects for creating value.

Appropriate
Frame

Creative,

Doable

Alternatives

Meaningful,
Reliable

Information

Clear

Values

and 

Trade-

offs

Logically

Correct

Reasoning

Commitment
to 

Action

Elements of
Decision
Quality

These links also specify good design principles for each decision.

Decision Analysis in

Practice, Fig. 6 Decision
quality chain
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Concluding Remarks

DA has evolved from specialized high-level

consulting to changing culture and embedding

processes into organizational routines. The various

roles that a DA professional might be called upon to

play include:

1. Decision Analyst - responsible for processing

numbers,

2. Decision Facilitator - responsible for meetings,

3. Decision Consultant - responsible for attaining

commitment,

4. Decision Engineer - responsible for process,

systems and organizational design,

5. Decision Change Agent - responsible for personal,

organizational, and cultural change necessary for

routine, high quality decision making.

See

▶Decision Analysis

▶Decision Making and Decision Analysis

▶Decision Trees

▶ Influence Diagrams
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Decision Maker (DM)

An individual (or group) who is dissatisfied with some

existing situation orwith the prospect of a future situation

and who possesses the desire and authority to initiate

actions designed to alter the situation. In the literature,

the letters DM are often used to denote decision maker.

See

▶Decision Analysis

▶Decision Analysis in Practice

▶Decision Making and Decision Analysis

Decision Making and Decision Analysis

Dennis M. Buede

Innovative Decisions, Inc., Vienna, VA, USA

Introduction

Decision making is a process undertaken by an

individual or organization. The intent of this process

is to improve the future position of the individual or

organization, relative to current projections of that

future position, in terms of one or more criteria. Most

scholars of decision making define this process as one

that culminates in an irrevocable allocation of

resources to affect some chosen change or the

continuance of the status quo. The most commonly

allocated resource is money, but other scarce

resources are goods and services, and the time and

energy of talented people.

Once the concept of making a decision is accepted

as a human action, an immediate question is “what is

the difference between a good and a bad decision?”

The common tendency is to attribute good decisions to

situations in which good outcomes were obtained. This

approach, however, implies that good decisions cannot

be recognized when they are made, but only after the

outcomes are observed (which may be seconds or

decades later). This common tendency also implies

that good decisions have nothing to do with the

decision-making process; throwing a dart at a chart of

alternatives may lead, on occasion, to good outcomes,

while long, hard thought about values and

uncertainties does not always yield good outcomes.

So leaders in the decision analysis field have defined

a good decision as one that is consistent with the values

and uncertainties of the decision maker (DM) after

considering as many relevant alternatives as possible

within the appropriate time frame and with the

available information. The belief is that better

outcomes will be more likely, but are not guaranteed,

with a sound decision making process than throwing

darts at a chart of alternatives.

Three primary decision modes have been identified

by Watson and Buede (1987): (1) choosing one option

from a list, (2) allocating a scarce resource(s) among

competing projects, and (3) negotiating an agreement

with one or more adversaries. Decision analysis is the

common analytical approach for the first mode,

optimization using decision analysis concepts of

value objectives for the second, and a host of

techniques have been applied to negotiation decisions.

The three major elements of a decision that cause

decision making to be troublesome are the creative

generation of options; the identification and

quantification of multiple conflicting criteria, as well

as time and risk preference; and the assessment and

analysis of uncertainty associated with the causal

linkage between alternatives and objectives. To claim

to have made a good decision, the DM must be able to

defend how these three elements were addressed.

Many DMs claim to be troubled by the feeling that

there is an, as yet unidentified, alternative that must

surely be better than those so far considered. The

development of techniques for identifying such

alternatives has received considerable attention

(Keller and Ho 1988; Keeney 1992). Additional

research has been undertaken to identify the pitfalls

in assessing probability distributions that represent the

uncertainty of a DM (Edwards et al. 2007). Research

has also focused on the identification of the

most appropriate preference assessment techniques

(Edwards et al. 2007). Keeney (1992) has advanced
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concepts for the development and structuring of

a value hierarchy for key decisions. Very little

research has been done on the issue of causal

linkages between alternatives and the objectives.

The making of a good decision requires a sound

decision making process. However, doing research on

competing decision processes, with sound validation

using ground truth, is not possible. It is not possible to

create multiple versions of reality so that the DM can

try the preferred alternative from competing decision

processes to identify which would have turned out

best. Researchers have proposed multi-phased

processes for decision making, e.g., (Howard 1968;

Witte 1972; Mintzberg et al. 1976). The common

phases include: intelligence or problem definition,

design or analysis, choice, and implementation.

A weakness in one phase in the decision making

process often cannot be compensated for by strengths

in the other phases. In general, the decision-making

process must address the development of a reasoned

set of objectives and associated preference structure;

decision alternatives; and the facts, data, opinions, and

judgments needed to relate the alternatives to the

value model. Then, of course, the logic of evaluating

the alternatives in light of the value structure must

be sound.

Decision Analysis

The field of decision analysis involves both analysis

and synthesis. Analysis is a process for dividing

a problem into parts and performing some

quantitative assessment of those parts. Synthesis then

combines those assessments into a macro assessment.

Decision analysis provides an integrating framework

for doing this assessment, as well as the theory and

techniques for doing the analyses of the parts. These

parts are traditionally values (objectives for improving

the DM’s situation), alternatives (resources the DM

can expend to change the world), and the linkage

between the alternatives and the values (the facts and

uncertainties within the DM’s world). Nonetheless,

experienced decision analysts often ask the DM for

a holistic assessment of the alternatives prior to

showing the analysis results (as part of the synthesis

process) so that the analysis results can be compared to

this holistic standard and the differences noted and

examined. Often this comparison to the holistic

assessment identifies some issues that were missed in

the analysis.

Decision analysis has its roots in many fields.

Some of the most obvious are operations research,

engineering, business, psychology, probability and

statistics, and logic. Fishburn (1999) provides a

well-documented summary of these roots of decision

analysis. Von Neumann and Morgenstern (1947)

provided the first axiomatic structure for decision

making, incorporating both probabilistic and value

preferences into a principle of expected utility

maximization. Savage (1954) recognized the need for

subjective probabilities to be combined with subjective

utility judgments, leading to subjective expected utility

(SEU). Since decision making involves trying to

predict how the future world will evolve, the

subjectivist approach to uncertainty is the primary

perspective adopted in decision analysis. De Finetti

(1972) provides a detailed review of the subjectivist

approach. Bayes’ rule is often required in the

computation of expected utility, i.e., Bayesian

decision theory is used to describe the decision

analysis process (Smith 1988). Interestingly,

Bayesian probability and subjectivist probability are

used interchangeably. Howard (1966, 1968), Raiffa

(1968), and Edwards (1962) all made important

contributions in transforming an academic theory into

a practical discipline to guide DMs through the

difficulties of real world decision making.

Values represent what the DM wants to improve in

the future. As an example, when considering the

purchase of a new car, the DM may be weighing

reduced cost in the future against improved safety,

comfort, prestige, and performance. The context of

this decision and, therefore, the values, is the likely

uses of a car for commuting, long distance travel,

errands, etc. Keeney (1992) provides a structure for

thinking about how to separate out the ends (or

fundamental) objectives from the means objectives.

Several authors have defined the mathematics behind

the quantification of a value structure for the analysis

of alternatives, see Keeney and Raiffa (1976), French

(1986), and Kirkwood (1997). In general, the

quantification of preferences must deal with tradeoffs

among objectives, risk preference introduced by

uncertainty, and time preference introduced by

achieving payoffs across the objectives at different

points in time. Besides having complex issues to

quantify, the DM must deal with subjective
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judgments, because there can be no source of

preference information other than human judgment.

Those approaches that attempt to avoid human

judgment are throwing the proverbial baby out with

the bath water.

Alternatives are the actions (expenditures of

resources) that the DM can take now and into the

future. In general, the set of alternatives also includes

what are termed options or delayed actions that the DM

can decide to take in the future if certain events occur

between now and the time associated with the option.

The space of alternatives is commonly defined over

a discrete set, though there is nothing in the theory of

decision analysis that precludes a continuous selection

set. Various processes have been used to define this set

of alternatives, including brainstorming activities. The

most commonly discussed approach is called a strategy

table or morphological box (Buede 2009). The strategy

table divides the alternative space (including any

options) into a discrete number of elements or

components. For each element, multiple possible

selections are defined. The combination of elements

and choices within each element are analogous to

a buffet dinner during which each diner selects zero,

one or more choices from each element and places

them onto a plate. If we require each diner to take

one and only one selection from each of N elements

of the dinner, there are (n1 x n2 x . . . x nN) possible

dinners that could be selected. When the choice

process is broaden to include no selection or several

selections from each element, the number of possible

dinners grows. (Note: it is also possible that some of

these combinations are impossible or very negatively

valued.) Typically, members of the decision-making

team are asked to pick five to fifteen representative and

interesting selections from the large number of

possible selections for the analysis to consider. Often,

the evaluation of the initial selection of alternatives

from the strategy table will be followed by a second

selection of alternatives from the strategy table, with

a second round of analysis for this new set. The second

set (and possibly a third set) would examine

alternatives more like those that did well in the first

evaluation and less like those that did poorly.

The linkage between the alternatives and values

(both certain and uncertain) is the third element of

analytic decomposition of decision analysis. Some

parts of this linkage may be well known and

deterministic, such as a specific cost of a car,

a defined amount of money to purchase. Other parts

of this linkage may not be well known, thus requiring

the development of a probability distribution; for

example, the same car with a known purchase price

may not have such a well-known operating cost over

the next five to ten years. In some cases, we can

develop a probability distribution for this

intermediate variable which has a known relationship

to a measure for the relevant objective. In other cases,

the relationship to one of the objectives may also be

probabilistic, requiring the development of an

influence diagram with chance nodes separating some

or all of the alternatives from the objectives, see Fig. 1.

Once the analytical structure has been built by

decomposing the decision problem into such

constructs as alternatives, value models, and

uncertainties, there is a need to compute (or

synthesize) the expected utility of each possible

alternative, and to answer additional questions that

the DM may have. Examples of common questions

are: there is some disagreement about what the risk

preference (or time preference or value trade-offs or

probabilities) should be, does this make any

difference?; alternatives 1 and 2 are much better than

the rest, but are very close in expected utility, what are

the major differences between these two alternatives?;

if one cannot be sure about some parameter’s value in

the model, will changing it by x% change the order of

the alternatives in terms of expected utility? This whole

process of computing the results and posing/answering

questions regarding the meaning of the analysis and the

robustness of the parameters in the analysis is called

synthesis. This is exactly why a quantitative model is

so much more helpful than a qualitative model.

A qualitative model cannot provide these answers

without a great deal of fuzziness, leading to continued

discussion and argument.

A common criticism of decision analysis is that

those involved cannot provide the preference and

probabilistic numbers reliably and consistently. Many

years of research has demonstrated this conclusively

(Edwards et al. 2007; von Winterfeldt and Edwards

1986; Watson and Buede 1987). The real question,

however, is not whether humans can provide

these judgments accurately, but whether inaccurate

judgments for a specified quantitative model leads to

a better conversation about the decision being made

than does a meandering, fuzzy conversation that starts

and stops many times without having such a model or
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any other anchor guiding it. Those who have

participated in such meandering, fuzzy conversations

have been often left with an empty feeling that there is

no real agreement or understanding about the

implications of the decision. As long as the key DMs

have been involved in the quantitative modeling and

understand the results of the synthesis, it is possible to

argue that the quantitative analysis, with all of it flaws,

has produced useful insights into the decision and

provides an accurate audit trail about what was known

and not known at the time of decision. The quantitative

model is, however, a model and thus subject to the

famous quote: “Essentially, all models are wrong, but

some are useful” (Box and Draper 1987, p 424).

Decison Analytic Strategies

Many individuals and consulting companies have aided

DMs and their organizations to arrive at better decisions.

Watson and Buede (1987, pp. 123-159) identified five

strategies: (1) modeling, (2) introspection, (3) rating,

(4) conferencing, and (5) developing. A sixth strategy

that is added here is aggregating mathematically.

1. Modeling. The modeling strategy involves building

complex representations (models) that link the

selection of specific options or alternatives to the

values of the DM so that the expected utility across

time of each option can be calculated. These models

may be decision trees, influence diagrams (Shachter

1986) or simulation models. This approach runs the

risk that the DM cannot understand the modeling

and, therefore, does not gain the important insights

from the model nor trust the results.

2. Introspection. The introspection strategy requires

deep thought about (i.) the multiple-objective utility

function across competing objectives, and (ii.) the

joint probability distribution that relates the

alternatives to these objectives. This approach is

characterized by a question and answer process

involving the decision analyst and a single DM

(Keeney 1977). This approach does not benefit

from additional opinions and expertise beyond the

single DM.

3. Rating. The rating strategy is the simplest and most

used. This strategy typically involves the

assumption of an additive value model across

multiple objectives, while ignoring time and risk

preference, and a deterministic relationship

between each alternative, the set of objectives, and

their measures. Edwards (1971) introduced this

approach under the acronym SMART, but later

changed it to SMARTS to reflect the importance

of using swing weights rather than importance

weights. This approach ignores the complexities

of value issues and uncertainty relating the

alternatives to the objectives, and uses an ad hoc

approach towards gathering information from other

participants and experts.

4. Conferencing. The conferencing strategy employs

simple models as used in Rating with a carefully

constructed group (Phillips 2007). The advantage of

the simple model is that it is transparent enough to

the group to be trusted, and can then focus group

discussions across the spectrum of concerns

characterized by the objectives, allowing the

appropriate experts to weigh in on their topics of

expertise. This approach assumes the complexity

of the problem is being addressed by the collection

of individuals in their reasoning processes, but

always runs the risks that the collective reasoning

process has interpreted the complexity incorrectly.

This alternative reasoning process is difficult

to document and scrutinize. Other conferencing

approaches exist that utilize computer technology

extensively (Nunamaker et al. 1993). These

technological approaches to conferencing

emphasize giving every participant a chance to

enter their inputs via keypads, often limiting

discussion. The critical issue is information

transfer via open discussion versus group

domination by a few individuals. The collective

reasoning process is even harder to assess when

individuals are communicating via key pads.

5. Developing. The developing strategy involves the

development of a decision support system that will

be used by an individual or collection of individuals

for a specific class of decisions over time. This

approach usually adopts either a modeling or

rating approach to be embed inside the decision

support system, along with access to a changing

database (see Sauter (1997) for a summary). There

continues to be a wide variety of software

implementations that serve as a basis for these

decision support systems.

6. Aggregating mathematically. There are a number

of academics and some practitioners who believe

a group is best supported by analyzing the decision
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from each individual’s perspective, and then

creating a mathematical aggregation of those

individual perspectives. These approaches have

been categorized as: social choice theory, group

utility analysis, group consensus, and game theory.

See
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▶Utility Theory

References

Box, G., & Draper, N. (1987). Empirical model-building and

response surfaces. New York: John Wiley.
Buede, D. M. (2009). The engineering design of systems: Models

and methods. New York: John Wiley.
De Finetti, B. (1972). Probability induction, and statistics: The

art of guessing. New York: John Wiley.
Edwards, W. (1962). Dynamic decision theory and probabilistic

information processing. Human Factors, 4, 59–73.
Edwards, W. (1971). Social utilities. The Engineering

Economist, 6, 119–129.
Edwards, W., Miles, R. F., Jr., & von Winterfeldt, D. (Eds.).

(2007). Advances in decision analysis: From foundations to

applications. New York: Cambridge University Press.
Fishburn, P. (1999). The making of decision theory. In

J. Shanteau, B. Mellers, & D. Schum (Eds.), Decision

science and technology: Reflections on the contributions of

Ward Edwards (pp. 369–388). Boston, MA: Kluwer.
French, S. (1986). Decision theory: An introduction to the

mathematics of rationality. Chichester, UK: John Wiley.
Hammond, F. S., Keeney, R. L., & Raiffa, H. (1999). Smart

choices: A practical guide to making better decisions.
Cambridge, MA: Harvard Business School.

Howard, R. (1966). Decision analysis: Applied decision theory.
In Hertz, D.B., & Melese, J. (eds), Proceedings fourth

international conference on operational research. New
York: Wiley-Interscience.

Howard, R. (1968). The foundations of decision analysis. IEEE
Transactions on Systems, Science, and Cybernetics, SSC-4,
211–219.

Keeney, R. L. (1977). The art of assessing multiattribute utility
functions. Organizational Behavior and Human

Performance, 19, 267–310.

Keeney, R. (1992). Value-focused thinking. Boston: Harvard
University Press.

Keeney, R. A., & Raiffa, H. (1976). Decisions with multiple

objectives: Preferences and value tradeoffs. New York:
John Wiley.

Keller, L., & Ho, J. (1988). Decision problem structuring:
Generating options. IEEE Transactions on Systems, Man,

and Cybernetics, SMC-15, 715–728.
Kirkwood, C. W. (1997). Strategic decision making: Multiple

objective decision analysis with spreadsheets. Belmont, CA:
Duxbury Press.

Mintzberg, H., Raisinghani, D., & Theoret, A. (1976). The
structure of ‘unstructured’ decision processes. Administrative
Sciences Quarterly, 21, 246–275.

Nunamaker, J., Dennis, A., Valacich, J., Vogel, D., & George, J.
(1993). Group support systems research: Experience from
the lab and field. In L. Jessup & J. Valacich (Eds.), Group
support systems. New York: Macmillan.

Phillips, L. D. (2007). Decision conferencing. In W. Edwards
et al. (Eds.), Advances in decision analysis. New York:
Cambridge University Press.

Raiffa, H. (1968). Decision analysis: Introductory lectures on
choices under uncertainty. Reading, MA: Addison-
Wesley.

Sauter, V. L. (1997). Decision support systems: An applied

managerial approach. New York: John Wiley.
Savage, L. J. (1954). The foundations of statistics. New York:

John Wiley.
Shachter, R. D. (1986). Evaluating influence diagrams.

Operations Research, 34, 871–882.
Smith, J. Q. (1988). Decision analysis: A Bayesian approach.

London: Chapman and Hall.
von Neumann, J., & Morgenstern, O. (1947). Theory of games

and economic behavior. Princeton, NJ: Princeton University
Press.

von Winterfeldt, D., & Edwards, W. (1986). Decision analysis

and behavioral research. New York: Cambridge University
Press.

Watson, S., & Buede, D. (1987). Decision synthesis: The

principles and practice of decision analysis. Chichester,
UK: Cambridge University Press.

Witte, E. (1972). Field research on complex decision-making
processes–The phase theorem. International Studies of

Management and Organization, 156–182.

Decision Problem

The basic decision problem is as follows: Given a set

of r alternative actions A¼ {a1,. . ., ar}, a set of q states

of nature S ¼ {s1,. . ., sq}, a set of rq outcomes

O ¼ {o1, . . ., orq}, a corresponding set of rq payoffs

P ¼ {p1,. . ., prq}, and a decision criterion to be

optimized, f (aj), where f is a real-valued function

defined on A, choose an alternative action aj that

optimizes the decision criterion f(aj).
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Introduction

Throughout history there has been a deeply embedded

conviction that, under the proper conditions, some

people are capable of helping others come to grips

with problems in daily life. Such professional helpers

are called counselors, psychiatrists, psychologists,

social workers, and the like. In addition to these

professional helpers, there are less formal helpers,

such as ministers, lawyers, teachers, or even

bartenders, hairdressers, and cab drivers.

The proposition that science and quantitative

methods, such as those used in OR/MS, may help

people is relatively new, and is still received by many

with deep skepticism. There are some disciplines

overlapping and augmenting OR/MS. One important

one is called decision support systems (DSS).

Before discussion of DSS, it is to be stressed that the

expression is used in a different manner by different

people, and there is no general agreement of what DSS

really is. Moreover, the benefits claimed by DSS are in

no way different from the benefits claimed by OR/MS.

To appreciate DSS, a pluralistic view must be taken of

the various disciplines offered to help managerial

decision making.

Features of Decision Support Systems

During the early 1970s, under the impact of new

developments in computer systems, a new

perspective about decision making appeared. Keen

and Morton (1973) coined the expression decision

support systems, to designate their approach to the

solution of managerial problems. They postulated

a number of distinctive characteristics of DSS,

especially the five listed below:

• A DSS is designed for specific decision makers and

their decision tasks,

• A DSS is developed by cycling between design and

implementation,

• A DSS is developed with a high degree of user

involvement,

• A DSS includes both data and models, and

• Design of the user-machine interface is a critical

task in the development of a DSS.

Figure 1 shows the structure andmajor components of

a DSS. The database holds all the relevant facts of the

problem, whether they pertain to the firm or to the

environment. The database management system (Fig. 2)

takes care of the entry, retrieval, updating, and deletion of

data. It also responds to inquiries and generates reports.

The modelbase holds all the models required to

work the problem. The modelbase management

system (Fig. 3) assists in creating the mathematical

model, and in translating the human prepared

mathematical model into computer understandable

form. The critical process of the modelbase

management system is finding the solution to the

mathematical model. The system also generates

Database Modelbase

Database management
system

Modelbase management
system

Dialog generation

Decision maker

Choice

Decision Support Systems (DSS), Fig. 1 Components of
a DSS
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reports and assists in the preparation of computer-

human dialogs.

While OR/MS stresses the model, DSS stresses

the computer-based database. DSS emphasizes the

importance of the user-machine interface, and the

design of dialog generation and management software.

Advocates of DSS assert that by combining the

power of the human mind and the computer, DSS is

capable of enhancing decision making, and that DSS

can grapple with problems not subject to the traditional

approach of OR/MS.

Note that DSS stresses the role of humans in

decision making, and explicitly factors human

capabilities into decision making. A decision support

system accepts the human as an essential subsystem.

DSS does not usually try to optimize in a mathematical

sense, and bounded rationality and satisficing provide

guidance to the designers of DSS.

Designing Decision Support Systems

The design phases of DSS are quite similar to the

phases of the design, implementation, and testing of

other systems. It is customary to distinguish six phases,

although not all six phases are required for every DSS.

1. During the systems analysis and design phase,

existing systems are reviewed and analyzed with

the objective of establishing requirements and

needs of the new system. Then it is established

whether meeting the specifications is feasible from

the technical, economical, psychological, and social

points of view. Is it possible to overcome the

difficulties, and are opportunities commensurate

with costs? If the answers are affirmative,

meetings with management are held to obtain

support. This phase produces a conceptual design

and master plan.

2. During the design phase, input, processing, and

output requirements are developed and a logical

(not physical) design of the system is prepared.

After the logical design is completed and found to

be acceptable, the design of the hardware and

software is undertaken.

3. During the construction and testing phase, the

software is completed and tested on the hardware

system. Testing includes user participation to assure

that the system will be acceptable both from the

points of view of the user and management, if they

are different.

4. During the implementation phase, the system is

retested, debugged, and put into use. To assure

final user acceptance, no effort is spared in

training and educating users. Management is kept

up-to-date on the progress of the project.

5. Operation and maintenance is a continued effort

during the life of the DSS. User satisfaction is

monitored, errors are uncovered and corrected, and

the method of operating the system is fine-tuned.

6. Evaluation and control is a continued effort to

assure the viability of the system and the

maintenance of management support.

A Forecasting System

Connoisseur Foods is a diversified food company with

several autonomous subdivisions and subsidiaries

(adapted from Alter 1980, and Turban 1990). Several

of the division managers were old-line managers relying

on experience and judgment to make major decisions.

Topmanagement installed a DSS to provide quantitative

help to establish and monitor levels of such marketing

Database management system

Data entry
Data retrieval
Updating
Report generation

Decision Support Systems (DSS), Fig. 2 Database
management system

Modelbase management system

Create model
Verify model
Translate the model into computer form
Solve model
Verify answers

Create reports, dialogs

Decision Support Systems (DSS), Fig. 3 Modelbase
management system
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efforts as advertising, pricing, and promotion. The DSS

model was based on S-shaped response functions of

marketing conditions to such decision functions as

advertising. The curves were derived by using both

historical data and marketing experts. The databases

for the farm products division contained about

20 million data items on sales both in dollars and

number of units for 400 items sold in 300 branches.

The DSS assisted management in developing better

marketing strategies and more competitive positions.

Top management, however, stated that the real benefit

of the DSS was not so much the installation of isolated

systems and models, but the assimilation of new

approaches in corporate decision making.

A Portfolio Management System

The trust division of Great Eastern Bank employed 50

portfolio managers in several departments (adapted

from Alter 1980 and Turban 1990). The portfolio

managers controlled many small accounts, large

pension funds, and provided advice to investors in

large accounts. The on-line DSS portfolio

management system provided information to the

portfolio managers.

The DSS includes lists of stocks from which the

portfolio managers could buy stocks, information, and

analysis on particular industries. It is basically a data

retrieval system that could display portfolios, as well

as specific information on securities.

The heart of the system is the database that allowed

portfolio managers to generate reports with the

following functions:

• Directory by accounts,

• Table to scan accounts,

• Graphic display of breakdown by industry and

security for an account,

• Tabular listing of all securities within an account,

• Scatter diagrams between data items,

• Summaries of accounts,

• Distribution of data on securities,

• Evaluation of hypothetical portfolios,

• Performance monitoring of portfolios,

• Warnings if deviations from guidelines occur; and

• Tax implications.

The benefits of the systems were better investment

performance, improved information, improved

presentation formats, less clerical work, better

communication, improved bank image, and enhanced

marketing capability.

Concluding Remarks

Advocates of DSS claim that DSS deals with

unstructured or semistructured problems, while OR/

MS is restricted to structured problems. Few workers

in OR/MS would agree.

At the onset, it is frequently the case that a particular

business situation is confusing, and, to straighten it out,

a problem must be instituted and the problem must be

structured. Thus, whether OR/ MS or DSS or both are

involved, attempts will be made to structure as much of

the situation as possible.

The problem will be structured by OR/MS or DSS

to the point that some part of the problem can be taken

care of by quantitative methods and computers, and

some others are left to human judgment, intuition, and

opinion. There may be a degree of difference between

OR/MS and DSS: OR/MS may stress optimization, the

model base; DSS the database.

Attempts to draw the line between DSS and OR/MS

are counterproductive. Those who are dedicated to

help management in solving hard problems need to

be concerned with any and all theories, practices, and

principles that can help. To counsel management in the

most productive manner requires that no holds be

barred when a task is undertaken.

The principles of DSS are often used without

mention in simulation programs. Moreover, as in the

spirit of DSS, the user-machine interface is often

visual, given the animation capability of modern

computers. Thus, managerial decisions may be

influenced not only by using traditional quantitative

measures, but also by judging customer perceptions.

See
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Introduction

A decision tree is a pictorial description of a well-

defined decision problem. It is a graphical

representation consisting of nodes (where decisions

are made or chance events occur) and arcs (which

connect nodes). Decision trees are useful because

they provide a clear, documentable, and discussible

model of either how the decision was made or how it

will be made.

The tree provides a framework for the calculation of

the expected value of each available alternative. The

alternative with the maximum expected value is the

best choice path based on the information and mind-set

of the decision makers at the time the decision is made.

This best choice path indicates the best overall

alternative, including the best subsidiary decisions at

future decision steps, when uncertainties have been

resolved.

The decision tree should be arranged, for

convenience, from left to right in the temporal order

in which the events and decisions will occur.

Therefore, the steps on the left occur earlier in time

than those on the right.

Decision Nodes

Steps in the decision process involving decisions

between several choice alternatives are indicated by

decision nodes, drawn as square boxes. Each available

choice is shown as one arc (or path) leading away from

its decision node toward the right. When a planned

decision has been made at such a node, the result of

that decision is recorded by drawing an arrow in the

box pointing toward the chosen option. As an example

of the process, consider a pharmaceutical company

president’s choice of which drug dosage to market.

The basic dosage choice decision tree is shown in

Fig. 1. Note that the values of the eventual outcomes

(on the far right) will be expressed as some measure of

value to the eventual user (for example, the patient or

the physician).

Chance Nodes

Steps in the process which involve uncertainties are

indicated by circles (called chance nodes), and the

possible outcomes of these probabilistic events are

again shown as arcs or paths leading away from the

node toward the right. The results of these uncertain

factors are out of the hands of the decision maker;

chance or some other group or person (uncontrolled

by the decision maker) will determine the outcome of

this node. Each of the potential outcomes of a chance

node is labeled with its probability of occurrence.

Dosage A
Value of A

Dosage B
Value of B

Dosage C
Value of C

Decision Trees, Fig. 1 The choice of drug dosage
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All possible outcomes must be indicated, so the sum of

the potential outcome probabilities of a chance node

must equal 1.0. Using the drug dose selection problem

noted above, the best choice of dose depends on at least

one probabilistic event: the level of performance of the

drug in clinical trials, which is a proxy measure of the

efficacy of the drug. A simplified decision tree for that

part of the firm’s decision is shown in Fig. 2. Note that

each dosage choice has a subsequent efficacy chance

node similar to the one shown, so the expanded tree

would have nine outcomes. The probabilities (p1, p2,

and p3) associated with the outcomes are expected to

differ for each dosage.

There are often several nodes in a decision tree; in

the case of the drug dosage decision, the decision will

also depend on the toxicity as demonstrated by both

animal study data and human toxicity study data, as

well as on the efficacy data. The basic structure of this

more complex decision is shown in Fig. 3. The

completely expanded tree has 27 eventual outcomes

and associated values. Notice that although not

always the case, here the probabilities (q1, q2, and

q3) of the toxicity levels are independent of the

efficacy level.

One use of a decision tree is to clearly display the

factors and assumptions involved in a decision. If the

decision outcomes are quantified and the probabilities

of chance events are specified, the tree can also be

analyzed by calculating the expected value of each

alternative. If several decisions are involved in the

problem being considered, the strategy best suited to

each specific set of chance outcomes can be planned

in advance.

Dosage A

Efficacy Level E1

P1
Toxicity level T1

Q1

Value of E2 & T1

Toxicity level T2

Q2

Value of E2 & T2

Toxicity level T3

Q3

Value of E2 & T3

Efficacy Level E2

P2

Efficacy Level E3

P3

Dosage B

Dosage C
Decision Trees, Fig. 3 The
choice of dosage based on
uncertain efficacy and toxicity

Dosage A

Efficacy Level E1

P1

Efficacy Level E2

Value of level E1

P2

Efficacy Level E3

Value of level E2

P3

Value of level E2

Dosage B 

Dosage C 

Decision Trees, Fig. 2 The choice of drug dosage based on
efficacy outcome

Decision Trees 391 D

D



Probabilities

Estimates of the probabilities for each of the outcomes

of the chance nodesmust bemade. In the simplified case

of the drug dose decision above, the later chance node

outcome probabilities are modeled as being

independent of the earlier chance nodes. While not

intuitively obvious, careful thought should show that

the physiological factors involved in clinical efficacy

must be different from those involved in toxicity, even if

the drug is being used to treat that toxicity. Therefore,

with most drugs, the probability of high human toxicity

is likely independent of the level of human efficacy. In

the more general non-drug situations, however, for

sequential steps, the latter probabilities are often

dependent conditional probabilities, since their value

depends on the earlier chance outcomes.

For example, consider the problem in Fig. 4, where

the outcome being used for the drug dose decision is

based on the eventual sales of it. The values of the

eventual outcomes now are expressed as sales for

the firm.

The probability of high sales depends on the efficacy

as well as on the toxicity, so the dependent conditional

probability of high sales is the probability of high sales

given that the efficacy is level 2 and toxicity is level 2,

which can be written as p(High Sales|E2&T2).

Outcome Measures

At the far right of the tree, the possible outcomes are

listed at the end of each branch. To calculate numerical

expected values for alternative choices, outcomes must

be measured numerically and often monetary measures

will be used. More generally, the utility of the

outcomes can be calculated. Single or multiple

attribute utility functions have been elicited in many

decision situations to represent decision makers’

preferences for different outcomes on a numerical

(although not monetary) scale.

The Tree as an Aid in Decision Making

The decision tree analysis method is called fold-

back and prune. Beginning at a far right chance

node of the tree, the expected value of the

outcome measure is calculated and recorded for

each chance node by summing, over all the

outcomes, the product of the probability of the

outcome times the measured value of the outcome.

Figure 5 shows this calculation for the first step in

the analysis of the drug-dose decision tree.

This step is called folding back the tree since the

branches emanating from the chance node are folded

Dosage A

Efficacy Level E1

Toxicity level T1

High Sales
Value of High Sales

Medium Sales
Value of Medium Sales

Low Sales
Value of Low Sales

Toxicity level T2

Toxicity level T3

Efficacy Level E2

Efficacy Level E3

Dosage B

Dosage C

Decision Trees, Fig. 4 The
choice of dosage based on
efficacy and toxicity and their
eventual effect on sales
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up or collapsed, so that the chance node is now

represented by its expected value. This is continued

until all the chance nodes on the far right have been

evaluated. These expected values then become the

values for the outcomes of the chance or decision

nodes further to the left in the diagram. At a decision

node, the best of the alternatives is the one with the

maximum expected value, which is then recorded by

drawing an arrow towards that choice in the decision

node box and writing down the expected value

associated with the chosen option. This is referred to

as pruning the tree, as the less valuable choices are

eliminated from further consideration. The process

continues from right to left, by calculating the

expected value at each chance node and pruning at

each decision node. Finally the best choice for the

overall decision is found when the last decision node

at the far left has been evaluated.

Example

In this example, a decision faced by a patient who is

considering laser eye surgery to improve her vision

will be considered. The basic decision process is

shown in Fig. 6. The initial decision a patient

encounters is whether to: have the surgery, wait for

more technological advances, or not have the surgery

at all.

Suppose that if a patient chooses to wait at the first

decision node, she will observe the outcome of

possible technological advances at the first chance

node, and then will have to make the decision of

whether to have the surgery or not. Figure 7 shows

a detailed decision tree of this patient’s decision

process. The entries at the end of the branches can be

seen as a measure of health utility to the patient, on

a 0-100 scale, where 100 is the best level of health

utility. Other patients can customize this tree to their

personal circumstances using a combination of chance

and decision nodes.

P(9.2|B,E2,T2)=0.50

Dosage A

Efficacy Level E1

Toxicity level T1
Value

High Sales

P(11.5|B,E2,T2)=0.30
$11.5 M

Medium Sales
$9.2 M

Low Sales

P(6.3|B,E2,T2)=0.20
$6.3 M

Toxicity level T2

Toxicity level T3
Value

Efficacy Level E2

Efficacy Level E3

Dosage B

Dosage C

EV = 9.31

Decision Trees, Fig. 5 The
first step, calculating the
expected value of the chance
node for sales: EV¼ 0.3(11.5)
+ 0.5(9.2) + 0.2(6.3) ¼ 9.31

Surgery

Wait 5 Yrs

No Surgery

Decision Trees, Fig. 6 The initial decision point
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Following the method of folding back the tree, the

expected health utility of having the surgery

immediately is 89.70, waiting 5 years is 91.74, and

not having the surgery at all is 40.00, where the

calculation of each chance node is the expected

health utility. And so waiting 5 years is the optimal

decision for the patient in this example.
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Successful

0.75
100

Successful w/ Setbacks

0.21
70

Unsuccessful

0.04
0

Surgery

Successful

0.95
95

Successful w/ Setbacks

0.04
65

Unsuccessful

0.01
0

Surgery

No Surgery
40

Significant Tech
Improvements

0.70

Successful

0.92
95

Successful w/ Setbacks

0.06
65

Unsuccessful

0.02
0

Surgery

No Surgery
40

Moderate Tech
Improvements

0.20

Successful

0.75
95

Successful w/ Setbacks

0.21
65

Unsuccessful

0.04
0

Surgery

No Surgery
40

No Tech Improvements

0.10

Wait 5 years

No Surgery
40

Decision Trees, Fig. 7 Complete mapping of the decision process of whether or not to have lasik surgery
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Decision Variables

The variables in a given model that are subject to

manipulation by the specified decision rule.
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Introduction

The notion of uncertainty has taken different meanings

and emphases in various fields, including the physical

sciences, engineering, statistics, economics, finance,

insurance, philosophy, and psychology. Analyzing

the notion in each discipline can provide a specific

historical context and scope in terms of problem

domain, relevant theory, methods, and tools for

handling uncertainty. Such analyses are given by

Agusdinata (2008), van Asselt (2000), Morgan and

Henrion (1990), and Smithson (1989).

In general, uncertainty can be defined as limited

knowledge about future, past, or current events. With

respect to policy making, the extent of uncertainty

clearly involves subjectivity, since it is related to the

satisfaction with existing knowledge, which is colored

by the underlying values and perspectives of the

policymaker and the various actors involved in the

policy-making process, and the decision options

available to them.

Shannon (1948) formalized the relationship between

the uncertainty about an event and information in

“A Mathematical Theory of Communication.”

He defined a concept he called entropy as a measure

of the average information content associated with

a random outcome. Roughly speaking, the concept of

entropy in information theory describes how much

information there is in a signal or event and relates

this to the degree of uncertainty about a given event

having some probability distribution.

Uncertainty is not simply the absence of

knowledge. Funtowicz and Ravetz (1990) describe

uncertainty as a situation of inadequate information,

which can be of three sorts: inexactness, unreliability,

and border with ignorance. However, uncertainty can

prevail in situations in which ample information

is available (Van Asselt and Rotmans 2002).

Furthermore, new information can either decrease or

increase uncertainty. New knowledge on complex

processes may reveal the presence of uncertainties

that were previously unknown or were understated. In

this way, more knowledge illuminates that one’s

understanding is more limited or that the processes

are more complex than previously thought (van der

Sluijs 1997).

Uncertainty as inadequacy of knowledge has

a very long history, dating back to philosophical

questions debated among the ancient Greeks about

the certainty of knowledge, and perhaps even further.

Its modern history begins around 1921, when Knight

made a distinction between risk and uncertainty

(Knight 1921). According to Knight, risk

denotes the calculable and thus controllable part of

all that is unknowable. The remainder is the

uncertain � incalculable and uncontrollable. Luce

and Raiffa (1957) adopted these labels to distinguish

between decision making under risk and decision

making under uncertainty. Similarly, Quade (1989)

makes a distinction between stochastic uncertainty

and real uncertainty. According to Quade, stochastic
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uncertainty includes frequency-based probabilities and

subjective (Bayesian) probabilities. Real uncertainty

covers the future state of the world and the

uncertainty resulting from the strategic behavior of

other actors. Often, attempts to express the degree of

certainty and uncertainty have been linked to whether

or not to use probabilities, as exemplified by Morgan

and Henrion (1990), who make a distinction between

uncertainties that can be treated through probabilities

and uncertainties that cannot. Uncertainties that cannot

be treated probabilistically include model structure

uncertainty and situations in which experts cannot

agree upon the probabilities. These are the more

important and hardest to handle types of uncertainties

(Morgan 2003). As Quade (1989, p. 160) wrote:

“Stochastic uncertainties are therefore among the

least of our worries; their effects are swamped by

uncertainties about the state of the world and human

factors for which we know absolutely nothing about

probability distributions and little more about the

possible outcomes.” These kinds of uncertainties are

now referred to as deep uncertainty (Lempert

et al. 2003), or severe uncertainty (Ben-Haim 2006).

Levels of Uncertainty

Walker et al. (2003) define uncertainty to be “any

departure from the (unachievable) ideal of complete

determinism.”

For purposes of determining ways of dealing

with uncertainty in developing public policies or

business strategies, one can distinguish two

extreme levels of uncertainty—complete certainty and

total ignorance—and five intermediate levels (e.g.

Courtney 2001; Walker et al. 2003; Makridakis et al.

2009; Kwakkel et al. 2010d). In Fig. 1, the five levels are

defined with respect to the knowledge assumed about

the various aspects of a policy problem: (a) the future

world, (b) the model of the relevant system for that

future world, (c) the outcomes from the system, and

(d) the weights that the various stakeholders will put

on the outcomes. The levels of uncertainty are briefly

discussed below.

Complete certainty is the situation in which

everything is known precisely. It is not attainable, but

acts as a limiting characteristic at one end of the

spectrum.
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Context A clear enough
future

Alternate futures
(with probabilities)

Alternate futures
with
ranking

A multiplicity of
plausible futures

An unknown
future

System

model

A single
(deterministic)
system model

A single
(stochastic) system
model

Several system 
models, one of 
which is most 
likely 

Several system
models, with
different
structures

Unknown system
model; know we
don’t know

System

outcomes

A point
estimate for
each outcome

A confidence
interval for each
outcome

Several sets of 
point estimates, 
ranked according 
to their perceived 
likelihood 

A known range
of outcomes

Unknown
outcomes; know
we don’t know

Weights on

outcomes

A single set of
weights

Several sets of
weights, with a
probability
attached to each set

Several sets of 
weights, ranked 
according to their 
perceived 
likelihood 

A known range
of weights

Unknown weights;
know we don’t
know

Deep Uncertainty, Fig. 1 The progressive transition of levels of uncertainty from complete certainty to total ignorance
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Level 1 uncertainty (A clear enough future)

represents the situation in which one admits that one

is not absolutely certain, but one is not willing or able

to measure the degree of uncertainty in any explicit

way (Hillier and Lieberman 2001, p. 43). Level 1

uncertainty is often treated through a simple

sensitivity analysis of model parameters, where the

impacts of small perturbations of model input

parameters on the outcomes of a model are assessed.

Level 2 uncertainty (Alternate futures with

probabilities) is any uncertainty that can be described

adequately in statistical terms. In the case of

uncertainty about the future, Level 2 uncertainty is

often captured in the form of either a (single) forecast

(usually trend based) with a confidence interval or

multiple forecasts (scenarios) with associated

probabilities.

Level 3 uncertainty (Alternate futures with

ranking) represents the situation in which one is

able to enumerate multiple alternatives and is able

to rank the alternatives in terms of perceived

likelihood. That is, in light of the available

knowledge and information there are several

different parameterizations of the system model,

alternative sets of outcomes, and/or different

conceivable sets of weights. These possibilities can

be ranked according to their perceived likelihood

(e.g. virtually certain, very likely, likely, etc.). In

the case of uncertainty about the future, Level 3

uncertainty about the future world is often captured

in the form of a few trend-based scenarios based on

alternative assumptions about the driving forces

(e.g., three trend-based scenarios for air transport

demand, based on three different assumptions

about GDP growth). The scenarios are then ranked

according to their perceived likelihood, but no

probabilities are assigned, see Patt and Schrag

(2003) and Patt and Dessai (2004).

Level 4 uncertainty (Multiplicity of futures)

represents the situation in which one is able to

enumerate multiple plausible alternatives without

being able to rank the alternatives in terms of

perceived likelihood. This inability can be due to

a lack of knowledge or data about the mechanism or

functional relationships being studied; but this

inability can also arise due to the fact that the

decision makers cannot agree on the rankings. As

a result, analysts struggle to specify the appropriate

models to describe interactions among the system’s

variables, to select the probability distributions to

represent uncertainty about key parameters in the

models, and/or how to value the desirability of

alternative outcomes (Lempert et al. 2003).

Level 5 uncertainty (Unknown future) represents

the deepest level of recognized uncertainty; in this

case, what is known is only that we do not know.

This ignorance is recognized. Recognized

ignorance is increasingly becoming a common

feature of life, because catastrophic, unpredicted,

surprising, but painful events seem to be occurring

more often. Taleb (2007) calls these events “Black

Swans.” He defines a Black Swan event as one that

lies outside the realm of regular expectations (i.e.,

“nothing in the past can convincingly point to its

possibility”), carries an extreme impact, and is

explainable only after the fact (i.e., through

retrospective, not prospective, predictability). One of

the most dramatic recent Black Swans is the

concatenation of events following the 2007 subprime

mortgage crisis in the U.S. The mortgage crisis (which

some had forecast) led to a credit crunch, which led to

bank failures, which led to a deep global recession in

2009, which was outside the realm of most

expectations. Another recent Black Swan was the

level 9.0 earthquake in Japan in 2011, which led to

a tsunami and a nuclear catastrophe, which led to

supply chain disruptions (e.g., for automobile parts)

around the world.

Total ignorance is the other extreme on the scale of

uncertainty. As with complete certainty, total

ignorance acts as a limiting case.

Lempert et al. (2003) have defined deep

uncertainty as “the condition in which analysts do

not know or the parties to a decision cannot agree

upon (1) the appropriate models to describe

interactions among a system’s variables, (2) the

probability distributions to represent uncertainty

about key parameters in the models, and/or (3) how

to value the desirability of alternative outcomes. They

use the language ‘do not know’ and ‘do not agree

upon’ to refer to individual and group decision

making, respectively. This article includes both

individual and group decision making in all five of

the levels, referring to Level 4 and Level 5

uncertainties as ‘deep uncertainty’, and assigning

the ‘do not know’ portion of the definition to Level

5 uncertainties and the ‘cannot agree upon’ portion of

the definition to Level 4 uncertainties.
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Decision Making Under Deep Uncertainty

There are many quantitative analytical approaches to

deal with Level 1, Level 2, and Level 3 uncertainties.

In fact, most of the traditional applied scientific work

in the engineering, social, and natural sciences has

been built upon the supposition that the uncertainties

result from either a lack of information, which

“has led to an emphasis on uncertainty reduction

through ever-increasing information seeking and

processing” (McDaniel and Driebe 2005), or from

random variation, which has concentrated efforts on

stochastic processes and statistical analysis. However,

most of the important policy problems faced by

policymakers are characterized by the higher

levels of uncertainty, which cannot be dealt

with through the use of probabilities and cannot

be reduced by gathering more information, but are

basically unknowable and unpredictable at the

present time. And these high levels of uncertainty can

involve uncertainties about all aspects of a policy

problem — external or internal developments,

the appropriate (future) system model, the

parameterization of the model, the model outcomes,

and the valuation of the outcomes by (future)

stakeholders.

For centuries, people have used many methods to

grapple with the uncertainty shrouding the long-term

future, each with its own particular strengths. Literary

narratives, generally created by one or a few

individuals, have an unparalleled ability to capture

people’s imagination. More recently, group

processes, such as the Delphi technique (Quade

1989), have helped large groups of experts combine

their expertise into narratives of the future. Statistical

and computer simulation modeling helps capture

quantitative information about the extrapolation of

current trends and the implications of new driving

forces. Formal decision analysis helps to systematically

assess the consequences of such information.

Scenario-based planning helps individuals and groups

accept the fundamental uncertainty surrounding the

long-term future and consider a range of potential

paths, including those that may be inconvenient or

disturbing for organizational, ideological, or political

reasons.

Despite this rich legacy, these traditional methods

all founder on the same shoals: an inability to grapple

with the long term’s multiplicity of plausible futures.

Any single guess about the future will likely prove

wrong. Policies optimized for a most likely future

may fail in the face of surprise. Even analyzing

a well-crafted handful of scenarios will miss most of

the future’s richness and provides no systematic means

to examine their implications. This is particularly true

for methods based on detailed models. Such models

that look sufficiently far into the future should raise

troubling questions in the minds of both the model

builders and the consumers of model output. Yet the

root of the problem lies not in the models themselves,

but in the way in which models are used. Too often,

analysts ask what will happen, thus trapping

themselves in a losing game of prediction, instead of

the question they really would like to have answered:

Given that one cannot predict, which actions available

today are likely to serve best in the future?

Broadly speaking, although there are differences in

definitions, and ambiguities in meanings, the literature

offers four (overlapping, not mutually exclusive) ways

for dealing with deep uncertainty in making policies,

see van Drunen et al. (2009).

Resistance: plan for the worst conceivable case or

future situation,

• Resilience: whatever happens in the future, make

sure that you have a policy that will result in the

system recovering quickly,

• Static robustness: implement a (static) policy that

will perform reasonably well in practically all

conceivable situations,

• Adaptive robustness: prepare to change the policy,

in case conditions change.

The first approach is likely to be very costly and

might not produce a policy that works well because of

Black Swans. The second approach accepts short-term

pain (negative system performance), but focuses on

recovery.

The third and fourth approaches do not use models

to produce forecasts. Instead of determining the best

predictive model and solving for the policy that is

optimal (but fragilely dependent on assumptions), in

the face of deep uncertainty it may be wiser to seek

among the alternatives those actions that are most

robust — that achieve a given level of goodness

across the myriad models and assumptions consistent

with known facts (Rosenhead and Mingers 2001). This

is the heart of any robust decision method. A robust

policy is defined to be one that yields outcomes that are

deemed to be satisfactory according to some selected
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assessment criteria across a wide range of future

plausible states of the world. This is in contrast to an

optimal policy that may achieve the best results among

all possible plans but carries no guarantee of doing so

beyond a narrowly defined set of circumstances. An

analytical policy based on the concept of robustness is

also closer to the actual policy reasoning process

employed by senior planners and executive decision

makers. As shown by Lempert and Collins (2007),

analytic approaches that seek robust strategies are

often appropriate both when uncertainty is deep and

a rich array of options is available to decision makers.

Identifying static robust policies requires reversing

the usual approach to uncertainty. Rather than seeking

to characterize uncertainties in terms of probabilities,

a task rendered impossible by definition for Level 4

and Level 5 uncertainties, one can instead explore how

different assumptions about the future values of these

uncertain variables would affect the decisions actually

being faced. Scenario planning is one approach to

identifying static robust policies, see van der Heijden

(1996). This approach assumes that, although the

likelihood of the future worlds is unknown, a range

of plausible futures can be specified well enough to

identify a (static) policy that will produce acceptable

outcomes in most of them. It works best when dealing

with Level 4 uncertainties. Another approach is to ask

what one would need to believe was true to discard one

possible policy in favor of another. This is the essence

of Exploratory Modeling and Analysis (EMA).

Long-term robust policies for dealing with Level 5

uncertainties will generally be dynamic adaptive

policies—policies that can adapt to changing

conditions over time. A dynamic adaptive policy is

developed with an awareness of the range of

plausible futures that lie ahead, is designed to be

changed over time as new information becomes

available, and leverages autonomous response to

surprise. Eriksson and Weber (2008) call this

approach to dealing with deep uncertainty Adaptive

Foresight. Walker et al. (2001) have specified

a generic, structured approach for developing

dynamic adaptive policies for practically any policy

domain. This approach allows implementation to

begin prior to the resolution of all major

uncertainties, with the policy being adapted over time

based on new knowledge. It is a way to proceed with

the implementation of long-term policies despite the

presence of uncertainties. The adaptive policy

approach makes dynamic adaptation explicit at the

outset of policy formulation. Thus, the inevitable

policy changes become part of a larger, recognized

process and are not forced to be made repeatedly on

an ad hoc basis. Under this approach, significant

changes in the system would be based on an analytic

and deliberative effort that first clarifies system goals,

and then identifies policies designed to achieve those

goals and ways of modifying those policies as

conditions change. Within the adaptive policy

framework, individual actors would carry out their

activities as they would under normal policy

conditions. But policymakers and stakeholders,

through monitoring and corrective actions, would try

to keep the system headed toward the original goals.

McCray et al. (2010) describe it succinctly as keeping

policy “yoked to an evolving knowledge base.”

Lempert et al. (2003, 2006) propose an approach

called Robust Decision Making (RDM), which

conducts a vulnerability and response option analysis

using EMA to identify and compare (static or dynamic)

robust policies. Walker et al. (2001) propose a similar

approach for developing adaptive policies, called

Dynamic Adaptive Policymaking (DAP).

Some Applications of Robust Decision
Making (RDM) and Dynamic Adaptive
Policymaking (DAP)

RDM has been applied in a wide range of decision

applications, including the development of both static

and adaptive policies. The study of Dixon et al.

(2007) evaluated alternative (static) policies

considered by the U.S. Congress while debating

reauthorization of the Terrorism Risk Insurance Act

(TRIA). TRIA provides a federal guarantee to

compensate insurers for losses due to very large

terrorist attacks in return for insurers providing

insurance against attacks of all sizes. Congress was

particularly interested in the cost to taxpayers of

alternative versions of the program. The RDM

analysis used a simulation model to project these

costs for various TRIA options for each of several

thousand cases, each representing a different

combination of 17 deeply uncertain assumptions

about the type of terrorist attack, the factors

influencing the pre-attack distribution of insurance

coverage, and any post-attack compensation
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decisions by the U.S. Federal government. The RDM

analysis demonstrated that the expected cost to

taxpayers of the existing TRIA program would prove

the same or less than any of the proposed alternatives

except under two conditions: the probability of a large

terrorist attack (greater than $40 billion in losses)

significantly exceeded current estimates and future

Congresses did not compensate uninsured property

owners in the aftermath of any such attack. This

RDM analysis appeared to help resolve a divisive

Congressional debate by suggesting that the existing

(static) TRIA program was robust over a wide range of

assumptions, except for a combination that many

policymakers regarded as unlikely. The analysis

demonstrates two important features of RDM: (1) its

ability to systematically include imprecise

probabilistic information (in this case, estimates of

the likelihood of a large terrorist attack) in a formal

decision analysis, and (2) its ability to incorporate very

different types of uncertain information (in this case,

quantitative estimates of attack likelihood and

qualitative judgments about the propensity of future

Congresses to compensate the uninsured).

RDM has also been used to develop adaptive

policies, including policies to address climate change

(Lempert et al. 1996), economic policy (Seong et al.

2005), complex systems (Lempert 2002), and health

policy (Lakdawalla et al. 2009). An example that

illustrates RDM’s ability to support practical adaptive

policy making is discussed in Groves et al. (2008) and

Lempert and Groves (2010). In 2005, Southern

California’s Inland Empire Utilities Agency (IEUA),

that supplies water to a fast growing population in an

arid region, completed a legally mandated (static) plan

for ensuring reliable water supplies for the next

twenty-five years. This plan did not, however,

consider the potential impacts of future climate

change. An RDM analysis used a simulation model to

project the present value cost of implementing IEUA’s

current plans, including any penalties for future

shortages, in several hundred cases contingent on

a wide range of assumptions about six parameters

representing climate impacts, IEUA’s ability to

implement its plan, and the availability of imported

water. A scenario discovery analysis identified three

key factors — an 8% or larger decrease in

precipitation, any drop larger than 4% in the rain

captured as groundwater, and meeting or missing the

plan’s specific goals for recycled waste water— that, if

they occurred simultaneously, would cause IEUA’s

overall plan to fail (defined as producing costs

exceeding by 20% or more those envisioned in the

baseline plan). Having identified this vulnerability of

IEUA’s current plan, the RDM analysis allowed the

agency managers to identify and evaluate alternative

adaptive plans, each of which combined near-term

actions, monitoring of key supply and demand

indicators in the region, and taking specific additional

actions if certain indicators were observed. The

analysis suggested that IEUA could eliminate most of

its vulnerabilities by committing to updating its plan

over time and by making relative low-cost near-term

enhancements in two current programs. Overall, the

analysis allowed IEUA’s managers, constituents, and

elected officials, who did not all agree on the likelihood

of climate impacts, to understand in detail

vulnerabilities to their original plan and to identify

and reach consensus on adaptive plans that could

ameliorate those vulnerabilities.

An example of DAP comes from the field of airport

strategic planning. Airports increasingly operate in

a privatized and liberalized environment. Moreover,

this change in regulations has changed the public’s

perception of the air transport sector. As a result of

this privatization and liberalization, the air transport

industry has undergone unprecedented changes,

exemplified by the rise of airline alliances and low

cost carriers, an increasing environmental awareness,

and, since 9/11, increased safety and security concerns.

These developments pose a major challenge for

airports. They have to make investment decisions that

will shape the future of the airport for many years to

come, taking into consideration the many uncertainties

that are present. DAP has been put forward as a way to

plan the long-term development of an airport under

these conditions (Kwakkel et al. 2010a). As an

illustration, a case based on the current challenges of

Amsterdam Airport Schiphol has been pursued. Using

a simulation model that calculates key airport

performance metrics such as capacity, noise, and

external safety, the performance of an adaptive policy

and a competing traditional policy across a wide range

of uncertainties was explored. This comparison

revealed that the traditional plan would have

preferable performance only in the narrow bandwidth

of future developments for which it was optimized.

Outside this bandwidth, the adaptive policy had

superior performance. The analysis further revealed
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that the range of expected outcomes for the adaptive

policy is significantly smaller than for the traditional

policy. That is, an adaptive policy will reduce the

uncertainty about the expected outcomes, despite

various deep uncertainties about the future. This

analysis strongly suggested that airports operating in

an ever increasing uncertain environment could

significantly improve the adequacy of their long-term

development if they planned for adaptation (Kwakkel

et al. 2010b, 2010c).

Another policy area to which DAP has been applied

is the expansion of the port of Rotterdam. This

expansion is very costly and the additional land and

facilities need to match well with market demand as it

evolves over the coming 30 years or more. DAP was

used to modify the existing plan so that it can cope with

a wide range of uncertainties. To do so, adaptive policy

making was combined with Assumption-Based

Planning (Dewar 2002). This combination resulted in

the identification of the most important assumptions

underlying the current plan. Through the adaptive

policy making framework, these assumptions were

categorized and actions for improving the likelihood

that the assumptions will hold were specified (Taneja

et al. 2010).

Various other areas of application of DAP have

also been explored, including flood risk management

in the Netherlands in light of climate change (Rahman

et al. 2008), policies with respect to the

implementation of innovative urban transport

infrastructures (Marchau et al. 2008), congestion

road pricing (Marchau et al. 2010), intelligent speed

adaptation (Agusdinata et al. 2007), and magnetically

levitated (Maglev) rail transport (Marchau et al.

2010).

See

▶Exploratory Modeling and Analysis

References

Agusdinata, D. B. (2008). Exploratory modeling and analysis:

A promising method to deal with deep uncertainty. Ph.D.
dissertation, Delft University of Technology, The
Netherlands.

Agusdinata, D. B., Marchau, V. A. W. J., & Walker, W. E.
(2007). Adaptive policy approach to implementing

intelligent speed adaptation. IET Intelligent Transport

Systems (ITS), 1(3), 186–198.
Ben-Haim, Y. (2006). Information-gap decision theory:

Decisions under severe uncertainty (2nd ed.). New York:
Wiley.

Courtney, H. (2001). 20/20 foresight: Crafting strategy in an

uncertain world. Boston: Harvard Business School Press.
Dewar, J. A. (2002). Assumption-based planning: A tool for

reducing avoidable surprises. Cambridge, UK: Cambridge
University Press.

Dixon, L., Lempert, R.J., LaTourrette, T., & Reville, R.T.
(2007). The Federal role in terrorism insurance:

Evaluating alternatives in an uncertain world (MG-679-

CTRMP). Santa Monica, CA: RAND.
Eriksson, E. A., & Weber, K. M. (2008). Adaptive foresight:

Navigating the complex landscape of policy strategies.
Technological Forecasting and Social Change, 75, 462–482.

Funtowicz, S. O., & Ravetz, J. R. (1990). Uncertainty and

quality in science for policy. Dordrecht, The Netherlands:
Kluwer.

Groves, D. G., Davis, M., Wilkinson, R., Lempert, R. (2008).
Planning for climate change in the inland empire: Southern
California. Water Resources IMPACT, July 2008.

Hillier, F. S., & Lieberman, G. J. (2001). Introduction to

operations research. New York: McGraw Hill.
Knight, F. H. (1921). Risk, uncertainty and profit. New York:

Houghton Mifflin Company (republished in 2006 by Dover
Publications, Mineola, NY).

Kwakkel, J. H., Walker, W. E., & Marchau, V. A. W. J. (2010a).
Adaptive airport strategic planning. European Journal of

Transport and Infrastructure Research, 10(3), 249–273.
Kwakkel, J. H., Walker, W. E., & Marchau, V. A. W. J. (2010b).

From predictive modeling to exploratory modeling: How to
use non-predictive models for decision-making under deep
uncertainty. 25th Mini-EURO Conference on Uncertainty

and Robustness in Planning and Decision Making

(URPDM 2010), Coimbra, Portugal, 15–17 April 2010.
Kwakkel, J. H., Walker, W. E., & Marchau, V. A. W. J. (2010c).

Assessing the efficacy of adaptive airport strategic planning:
Results from computational experiments. World Conference

on Transport Research, Porto, Portugal, 11–15 July 2010.
Kwakkel, J. H., Walker, W. E., & Marchau, V. A. W. J. (2010d).

Classifying and communicating uncertainties in model-
based policy analysis. International Journal of Technology,
Policy and Management, 10(4), 299–315.

Lakdawalla, D. N., Goldman, D. P., Michaud, P.-C., Sood, N.,
Lempert, R., Cong, Z., de Vries, H., & Gutlerrez, I. (2009).
US pharmaceutical policy in a global marketplace. Health
Affairs, 28, 138–150.

Lempert, R. J. (2002, May 14). A new decision sciences for
complex systems. Proceedings of the National Academy of

Sciences, 99(Suppl. 3), 7309–7313.
Lempert, R. J., & Collins, M. T. (2007). Managing the risk of

uncertain threshold response: Comparison of robust,
optimum, and precautionary approaches. Risk Analysis,

27(4), 1009–1026.
Lempert, R. J., & Groves, D. G. (2010). Identifying and

evaluating robust adaptive policy responses to climate
change for water management agencies in the American
west. Technological Forecasting and Social Change, 77,
960–974.

Deep Uncertainty 401 D

D

http://dx.doi.org/10.1007/978-1-4419-1153-7_314


Lempert, R. J., Groves, D. G., Popper, S. W., & Bankes, S. C.
(2006). A general, analytic method for generating robust
strategies and narrative scenarios. Management Science,

52(4), 514–528.
Lempert, R. J., Popper, S. W., & Bankes, S. C. (2003). Shaping

the next one hundred years: New methods for quantitative

long-term strategy analysis (MR-1626-RPC). Santa Monica,
CA: The RAND Pardee Center.

Lempert, R. J., Schlesinger, M. E., & Bankes, S. C. (1996).
When we don’t know the costs or the benefits: Adaptive
strategies for abating climate change. Climatic Change, 33,
235–274.

Luce, R. D., & Raiffa, H. (1957). Games and decisions. New
York: Wiley.

Makridakis, S., Hogarth, R. M., & Gaba, A. (2009).
Forecasting and uncertainty in the economic and
business world. International Journal of Forecasting, 25,
794–812.

Marchau, V., Walker, W., & van Duin, R. (2008). An adaptive
approach to implementing innovative urban transport
solutions. Transport Policy, 15(6), 405–412.

Marchau, V. A. W. J., Walker, W. E., & van Wee, G. P. (2010).
Dynamic adaptive transport policies for handling deep
uncertainty. Technological Forecasting and Social Change,

77(6), 940–950.
McCray, L. E., Oye, K. A., & Petersen, A. C. (2010). Planned

adaptation in risk regulation: An initial survey of US
environmental, health, and safety regulation. Technological
Forecasting and Social Change, 77, 951–959.

McDaniel, R. R., & Driebe, D. J. (Eds.). (2005).Uncertainty and
surprise in complex systems: Questions on working with the

unexpected. Springer.
Morgan, M. G. (2003). Characterizing and dealing with

uncertainty: Insights from the integrated assessment of
climate change. The Integrated Assessment Journal, 4(1),
46–55.

Morgan, M. G., & Henrion, M. (1990). Uncertainty: A guide

to dealing with uncertainty in quantitative risk and

policy analysis. Cambridge, UK: Cambridge University
Press.

Patt, A. G., & Dessai, S. (2004). Communicating
uncertainty: Lessons learned and suggestions for climate
change assessment. Comptes Rendu Geosciences, 337,
425–441.

Patt, A. G., & Schrag, D. (2003). Using specific language to
describe risk and probability. Climatic Change, 61, 17–30.

Popper, S. W., Griffin, J., Berrebi, C., Light, T., & Min, E. Y.
(2009). Natural gas and Israel’s energy future: A strategic

analysis under conditions of deep uncertainty (TR-747-
YSNFF). Santa Monica, CA: RAND.

Quade, E. S. (1989). Analysis for public decisions (3rd ed.). New
York: Elsevier Science.

Rahman, S. A., Walker, W. E., & Marchau, V. (2008). Coping
with uncertainties about climate change in infrastructure

planning – An adaptive policymaking approach. ECORYS
Nederland BV, P.O. Box 4175, 3006 AD, Rotterdam, The
Netherlands.

Rosenhead, J., & Mingers, J. (Eds.). (2001). Rational analysis
for a problematic world revisited: Problem structuring

methods for complexity, uncertainty, and conflict.
Chichester, UK: Wiley.

Seong, S., Popper, S. W., & Zheng, K. (2005). Strategic choices
in science and technology Korea in the era of a rising China

(MG-320-KISTEP). Santa Monica, CA: RAND.
Shannon, C. E. (1948). A mathematical theory of

communication. Bell System Technical Journal, 27,
379–423. 623–656, July, October.

Smithson, M. (1989). Ignorance and uncertainty: Emerging

paradigms. New York: Springer.
Taleb, N. N. (2007). The black swan: The impact of the highly

improbable. New York: Random House.
Taneja, P.,Walker,W. E., Ligteringen, H., Van Schuylenburg,M.,

& van der Plas, R. (2010). Implications of an uncertain
future for port planning. Maritime Policy & Management,

37(3), 221–245.
van Asselt, M. B. A. (2000). Perspectives on uncertainty and

risk. Dordrecht, The Netherlands: Kluwer.
van Asselt, M. B. A., & Rotmans, J. (2002). Uncertainty in

integrated assessment modelling: From positivism to
pluralism. Climatic Change, 54, 75.

van der Heijden, K. (1996). Scenarios: The art of strategic

conversation. Chichester, UK: Wiley.
van der Sluijs, J. P. (1997). Anchoring amid uncertainty: On the

management of uncertainties in risk assessment of

anthropogenic climate change. Ph.D. dissertation,
University of Utrecht, The Netherlands.

van Drunen, M., Leusink, A., Lasage, R. (2009). Towards
a climate-proof Netherlands. In A. K. Biswas, C. Tortajade,
& R. Izquierdo (Eds.), Water management in 2020 and

beyond. Springer.
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Degeneracy

The situation in which a linear-programming problem

has a basic feasible solution with at least one basic

variable equal to zero. If the problem is degenerate,

then an extreme point of the convex set of solutions

may correspond to several feasible bases. As a result,

the simplex method may move through a sequence of

bases with no improvement in the value of the

objective function. In rare cases, the algorithm may

cycle repeatedly through the same sequence of bases

and never converge to an optimal solution. Anticycling

rules, and perturbation and lexicographic techniques

prevent this risk, but usually at some computational

expense.
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See

▶Anticycling Rules

▶Bland’s Anticycling Rules

▶Cycling

▶Linear Programming

▶ Simplex Method (Algorithm)

Degeneracy Graphs

Tomas Gal

Fern Universit€at in Hagen, Hagen, Germany

Introduction

For a given linear-programming problem, primal

degeneracy means that a basic feasible solution has at

least one basic variable equal to zero. The problem is

dual degenerate if a nonbasic variable has its reduced

cost equal to zero (the condition for a multiple optimal

solution to exist). Primal degeneracy may arise when

there are some (weakly) redundant constraints

(Karwan et al. 1983) or the structure of the

corresponding convex polyhedral feasible set causes

an extreme point to become overdetermined.

In nonlinear programming, such points are

sometimes called singularities (Guddat et al. 1990).

Here, constraint redundancy is equivalent to the

failure of the linear independence constraint

qualification of the binding constraint gradients,

which, in general, leads to the nonuniqueness of

optimal Lagrange multipliers (Fiacco and Liu 1993).

We focus here on primal degeneracy in the linear

case: it is associated with multiple optimal bases and it

allows for basis cycling to occur, that is, the

nonconvergence of the simplex method due to the

repeating of a sequence of nonoptimal feasible bases.

Let s, called the degeneracy degree, be the number

of zeros in a basic feasible solution. Also, let Umin and

Umax be the minimal and the maximal number of

possible bases associated with a degenerate vertex,

respectively (Kruse 1986). To illustrate how many

bases can be associated with a degenerate vertex,

Table 1 shows, for some values for n, the number

of (decision) variables, the associated values of s,

Umin and Umax.

Historical Background

Soon after the simplex method had been invented by

George Dantzig, he recognized that degeneracy in the

primal problem could cause a cycle of bases to occur.

In fact, Dantzig’s original convergence proof of the

simplex method assumed that all basic feasible

solutions were nondegenerate. In the Fall of 1950,

Dantzig made the first suggestion of a nondegeneracy

procedure in a lecture on linear programming (LP)

(Dantzig 1963). Charnes (1952) proposed a so-called

perturbation method to prevent cycling. Since then,

many variants of nondegeneracy and anticycling

methods have been developed. For a review of

degeneracy and its influence on computation, see Gal

(1993).

In the end of the 1970s, a unifying approach to the

analysis of degeneracy problems was proposed in

terms of degeneracy graphs (Gal 1985). These graphs

are used to define the connections among the bases

associated with a degenerate vertex. From Table 1, it

obvious that for real-world problems, with large

numbers of constraints and variables, such systems of

connections might have quite complex structures. It

was felt that the language of graph theory could be

applied to good advantage in explaining the

relationships between degenerate bases.

Since they were first proposed, degeneracy graphs

have become an important topic of research

(Geue 1993; Kruse 1986; Niggemeier 1993; Zörnig

1993). In these works, the general theory of

degeneracy graphs has been developed, the

possibilities for their application to transportation,

integer programming and other problems have been

studied, and algorithmic aspects to solve various

degeneracy problems have been investigated.

The main problem that led to the idea of using

a graph theoretical representation was the so called

Degeneracy Graphs, Table 1 Values for s, Umin, Umax

n s Umin Umax

5 3 16 56

10 5 12 3003

50 5 752 3.48 � 106

50 40 6.59 � 1012 5.99 � 1025

100 30 3.865 � 1010 2.61 � 1039

100 50 2.93 � 1016 2.01 � 1040

100 80 1.33 � 1025 3 � 1052
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neighboring problem: Given a vertex of a convex

polytope, find all neighboring vertices. This is not

a problem if the given vertex is nondegenerate. It

becomes a problem (Table 1) when the given vertex

is degenerate.

Degeneracy Graphs

Given a s-degenerate vertex xo; to this vertex the set

Bo ¼ BjB feasible basis of xof g

is assigned. Denote

by ‘‘ þ! ’’ a pivot� stepwith a positive

pivot a positive pivot� stepð Þ
by ‘‘ �! ’’ a pivot� stepwith a negative

pivot a negative pivot� stepð Þ
by ‘‘ ! ’’ a pivot� step if any nonzero

pivot can be used pivot� stepð Þ:

The graph of a polytope X is the undirected graph

GðXÞ :¼ G ¼ V;Eð Þ;

where

V ¼fBjB is a feasible basis of the corresponding

system of equationsg

and

E ¼ B;B0f g � VjB þ! B0f g:

The degeneracy graph (DG) that is used to study

various degeneracy problems with respect to a

degenerate vertex is defined as follows.

Let xo ∈ X � ℜ
n be a s-degenerate vertex. Then

the (undirected) graph

G xoð Þ :¼ Go ¼ Bo;Eoð Þ

where

Eo ¼ Bu;Bvf g � BojBu  ! Bvf g; u; v
2 1; . . . ;Uf g;Umin � U � Umax (1)

and U, the degeneracy power of x
o, is called the

general s � n � G of xo. If, in (1), the operator

is ← + ! or ← � !, then the corresponding graph

is called the positive or negative DG of xo,

respectively.

These notions have been used to develop a theory of

the DG. For example: the diameter, d, of a general DG

satisfies d � min{s, n}; a general DG is always

connected; a formula to determine the number of

nodes of a DG has been developed; the connectivity

of a DG is �2; every pair of nodes in any DG lies on

a cycle (Zörnig 1993).

An interesting consequence of this theory is that

every degenerate vertex can be exited in at most d

(diameter) steps. Other theoretical properties of DGs

help in explaining problems in, for example,

sensitivity analysis with respect to a degenerate

vertex (Gal 1997; Kruse 1993). Also, this theory

helps to work out algorithms to solve the

neighborhood problem and to determine all vertices

of a convex polytope (Gal and Geue 1992; Geue

1993; Kruse 1986). With respect to a degenerate

optimal vertex of an LP-problem, algorithms to

perform sensitivity analysis and parametric

programming have been developed (Gal 1995).

Also, the connection between weakly redundant

constraints, degeneracy and sensitivity analysis has

been studied (Gal 1992).

Concluding Remarks

Degeneracy graphs have been applied to help solve

the neighborhood problem, to explain why cycling in

LP occurs, to develop algorithms to determine

two-sided shadow prices, to determine all vertices of

a (degenerate) convex polyhedron, and to perform

sensitivity analysis under (primal) degeneracy.

DGs can be used in any mathematical-programming

problem that uses some version of the simplex

method or, more generally, in any vertex searching

method.

See

▶Degeneracy

▶Graph Theory

▶Linear Programming
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▶ Parametric Programming

▶Redundant Constraint

▶ Sensitivity Analysis
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Degenerate Solution

A basic (feasible) solution in which some basic

variables are zero.

See

▶Anticycling Rules

▶Cycling

▶Degeneracy

▶Degeneracy Graphs

Degree

The number of edges incident with a given node in

a graph.

See

▶Graph Theory

Delaunay Triangulation

▶Computational Geometry

▶Voronoi Constructs

Delay

The time spent by a customer in queue waiting to start

service.

See

▶Queueing Theory

▶Waiting Time
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Delphi Method

James A. Dewar and John A. Friel

RAND Corporation, Santa Monica, CA, USA

Introduction

The Delphi method was developed at the RAND

Corporation from studies on decision making that

began in 1948. The seminal work, “An Experimental

Application of the Delphi Method to the Use of

Experts,” was written by Dalkey and Helmer (1963).

The primary rationale for the technique is the

age-old adage “two heads are better than one,”

particularly when the issue is one where exact

knowledge is not available. It was developed as an

alternative to the traditional method of obtaining

group opinions — face-to-face discussions.

Experimental studies had demonstrated several

serious difficulties with such discussions. Among

them were: (1) influence of the dominant individual

(the group is highly influenced by the person who talks

the most or has most authority); (2) noise (studies

found that much communication in such groups had

to do with individual and group interests rather than

problem solving); and (3) group pressure for

conformity (studies demonstrated the distortions of

individual judgment that can occur from group

pressure).

The Delphi method was specifically developed to

avoid these difficulties. In its original formulation

it had three basic features: (1) anonymous

response — opinions of the members of the group are

obtained by formal questionnaire; (2) iteration and

controlled feedback — interaction is effected by

a systematic exercise conducted in several iterations,

with carefully controlled feedback between rounds;

and (3) statistical group response — the group

opinion is defined as an appropriate aggregate of

individual opinions on the final round.

Procedurally, the Delphi method begins by having

a group of experts answer questionnaires on a subject

of interest. Their responses are tabulated and fed back

to the entire group in a way that protects the anonymity

of their responses. They are asked to revise their own

answers and comment on the group’s responses. This

constitutes a second round of the Delphi. Its results are

tabulated and fed back to the group in a similar manner

and the process continues until convergence of

opinion, or a point of diminishing returns, is reached.

The results are then compiled into a final statistical

group response to assure that the opinion of every

member of the group is represented.

In its earliest experiments, Delphi was used for

technological forecasts. Expert judgments were

obtained numerically (e.g., the date that a

technological advance would be made), and in that

case it is easy to show that the mean or median of

such judgments is at least as close to the true answer

as half of the group’s individual answers. From this,

the early proponents were able to demonstrate that the

Delphi method produced generally better estimates

than those from face-to-face discussions.

One of the surprising results of experiments

with the technique was how quickly in the successive

Delphi rounds that convergence or diminishing returns

is achieved. This helped make the Delphi technique

a fast, relatively efficient, and inexpensive tool for

capturing expert opinion. It was also easy to

understand and quite versatile in its variations.

By 1975, there were several hundred applications of

the Delphi method reported on in the literature. Many

of these were applications of Delphi in a wide variety

of judgmental settings, but there was also a growing

academic interest in Delphi and its effectiveness.

Critique

Sackman (1975), also of the RAND Corporation,

published the first serious critique of the Delphi

method. His book, Delphi Critique, was very critical

of the technique — particularly its numerical

aspects — and ultimately recommended (p. 74)

“that . . . Delphi be dropped from institutional,

corporate, and government use until its principles,

methods, and fundamental applications can be

experimentally established as scientifically tenable.”

Sackman’s critique spurred both the development

of new techniques for obtaining group judgments

and a variety of studies comparing Delphi with other

such techniques. The primary alternatives can be

categorized as statistical group methods (where the

answers of the group are tabulated statistically

without any interaction); unstructured, direct

interaction (another name for traditional, face-to-face
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discussions); and structured, direct interaction (such as

the Nominal Group Technique of Gustafson et al.

1973). In his comprehensive review, Woudenberg

(1991) found no clear evidence in studies done for

the superiority of any of the four methods over the

others. Even after discounting several of the studies

for methodological difficulties, he concludes that the

original formulation of the quantitative Delphi is in no

way superior to other (simpler, faster, and cheaper)

judgment methods.

Another comprehensive evaluation of Delphi

(Rowe et al. 1991) comes to much the same

conclusion that Sackman and Woudenberg did, but

puts much of the blame on studies that stray from the

original precepts. Most of the negative studies use

non-experts with similar backgrounds (usually

undergraduate or graduate students) in simple tests

involving almanac-type questions or short-range

forecasts. Rowe et al. (1991) point out that these are

poor tests of the effects that occur when a variety of

experts from different disciplines iterate and feed back

their expertise to each other. They conclude that

Delphi does have potential in its original intent as

a judgment-aiding technique, but that improvements

are needed and those improvements require a better

understanding of the mechanics of judgment change

within groups and of the factors that influence the

validity of statistical and nominal groups.

Applications

In the meantime, it is generally conceded that Delphi is

extremely efficient in achieving consensus and it is in

this direction that many subsequent Delphi evaluations

have been used. Variations of the Delphi method, such

as the policy Delphi and the decision Delphi, generally

retain the anonymity of participants and iteration of

responses. Many retain specific feedback as well, but

these more qualitative variations generally drop the

statistical group response. Delphi has been used in

a wide variety of applications from its original

purpose of technology forecasting (one report says

that Delphi has been adopted in approximately 90%

of the technological forecasts and studies of

technological development strategy in China) to

studying the future of medicine, examining possible

shortages of strategic materials, regional planning of

water and natural resources, analyzing national drug

abuse policies, and identifying corporate business

opportunities.

In addition, variations of Delphi continue to

be developed to accommodate the growing

understanding of its shortcomings. For example, a

local area network (LAN) was constructed, composed

of lap-top computers connected to a more capable

workstation. Each participant had a dedicated

spreadsheet available on a lap-top computer. The

summary spreadsheet maintained by the workstation

was displayed using a large-screen projector, and

included the mean, media, standard deviation, and

histogram of all the participants scores. In real-time,

the issues were discussed, the various participants

presented their interpretation of the situation,

presented their analytic arguments for the scores they

believed to be appropriate, and changed their scoring

as the discussion developed. Each participant knew

their scores, but not those of the other participants.

When someone was convinced by the discussions to

change a score they could do so anonymously. The

score was transmitted to the workstation where a new

mean, median, standard deviation, and histogram were

computed and then displayed using a large screen

projector. This technique retained all the dimensions

of the traditional Delphi method and at the same time

facilitated group discussion and real-time change

substantially shortening the time typically required to

complete a Delphi round.

See

▶Decision Analysis

▶Group Decision Computer Technology

▶Group Decision Making
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Density

The proportion of the coefficients of a constraint matrix

that are nonzero. For a given (m� n) matrixA¼ (aij), if

k is the number of nonzero aij, then the density is given

by k/(m � n). Most large-scale linear-programming

problems have a low density of the order of 0.01.

See

▶ Sparse Matrix

▶ Super-Sparsity

Density Function

When the derivative f(x) of a cumulative probability

distribution function F(x) exists, it is called the density

or probability density function (PDF).

See

▶ Probability Density Function (PDF)

Departure Process

Usually refers to the random sequence of customers

leaving a queueing service center. More generally, it is

the random point process or marked point process with

marks representing aspects of the departure stream

and/or the service center or node from which they

are leaving. For example, the marked point process

(Xd, Td) for departures from an M/G/1 queue takes Xd

as the Markov process for the queue length process

immediately after the departure time and T
d is the

actual time of departure.

See

▶Markov Chains

▶Markov Processes

▶Queueing Theory

Descriptive Model

A model that attempts to describe the actual

relationships and behavior of a man/machine system.

For a decision problem, such a model attempts to

describe how individuals make decisions.

See

▶Decision Problem

▶Expert Systems

▶Mathematical Model

▶Model

▶Normative Model

▶ Prescriptive Model

Design and Control

For a queueing system, design deals with the

permanent, optimal setting of system parameters

(such as service rate and/or number of servers), while

control deals with adjusting system parameters as the

system evolves to ensure certain performance levels

are met. A typical example of a control rule is that

a server is to be added when the queue size is greater

than a certain number (sayN1) and when the queue size

drops down to N2< N1, the server goes to other duties.

See

▶Dynamic Programming

▶Markov Decision Processes

▶Queueing Theory
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Detailed Balance Equations

A set of equations balancing the expected, steady-state

flow rates or probability flux between each pair of

states or entities of a stochastic process (most

typically a Markov chain or queueing problem), for

example written as:

pjq j; kð Þ ¼ pkq k; jð Þ

where pm is the probability that the state is m and

q(m, n) is the flow rate from states m to n.

The states may be broadly interpreted to be

multi-dimensional, as in a network of queues, and

the entities might be individual service centers or

nodes. Contrast this with global balance equations,

where the average flow into a single state is equated

with the flow out.

See

▶Markov Chains

▶Networks of Queues

▶Queueing Theory

Determinant

▶Matrices and Matrix Algebra

Deterministic Model

A mathematical model in which it is assumed that all

input data and parameters are known with certainty.

See

▶Descriptive Model

▶Mathematical Model

▶Model

▶Normative Model

▶ Prescriptive Model

▶ Stochastic Model

Developing Countries

Roberto Diéguez Galvão1 and Graham K. Rand2

1Federal University of Rio de Janeiro, Brazil
2Lancaster University, Lancaster, UK

Introduction

OR started to establish itself in the developing

countries in the 1950s, approximately one decade

after its post-war inception in Great Britain and the

United States. The main organizational basis of OR in

the developing world are the national OR societies.

These are in some cases well established, in other

cases incipient. A number of them are members of

the International Federation of Operational Research

Societies (IFORS) and belong to regional groups

within IFORS. In particular, ALIO, the Association

of Latin American OR Societies, has the majority of

its member societies belonging to developing

countries. APORS, the Association of Asian-Pacific

OR Societies within IFORS, also represents OR

societies from developing countries. In 1989

a Developing Countries Committee was established

as part of the organizational structure of IFORS, with

the objective of coordinating OR activities in the

developing countries and promoting OR in these

countries.

The Social, Political, and Technological
Environment

To speak of developing countries in general may

lead to erroneous conclusions, since the conditions

vary enormously from one country to another.

First of all, how to characterize a developing

country? Which countries may be classified as

developing? The United Nations has, for some

years now, started to distinguish between more

and less developed countries in the developing

world. It has adopted the term “less developed

countries” (LDCs) to address those developing

countries that fall below some threshold levels

measured by social and economic indicators.

But these questions are clearly well beyond the

scope here.
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The view here is that developing countries are those

in which large strata of the population live at or below

the subsistence level, where social services are

practically nonexistent for the majority of the

population, where the educational and cultural levels

are in general very low. The political consequence of

this state of affairs is a high degree of instability for the

institutions of these countries, at all levels.

The economy is generally very dependent on the

industrialized nations. Bureaucracy, economic

dependence and serious problems of infrastructure

conspire against economic growth. In the technical

sphere there is again a high level of dependency on the

industrialized world, with very little technological

innovation produced locally. It is against this difficult

background that one must consider the role OR can play

and how OR can be used as a tool for development.

The Use of OR

Here the existence of three different emphases in the

development of OR is considered: (i) development of

theory, which takes place mostly in the universities;

(ii) development of methods for specific problems,

which occurs both in the universities and in the

practical world; (iii) applications, which occur mostly

in the practical world. The problems of OR are

therefore a continuum, and both developing and

industrialized nations share in all these three aspects

of the continuum. The more important aspect for the

developing countries tends, however, to be

applications due to the nature of problems these

nations have to face and their social, political, and

technological environment discussed above.

According to Rosenhead (1995), another important

aspect is that existing theory and methods, grown in

the developed world, are in many cases a poor fit for

the problems facing the developing countries. Work on

novel applications will be likely to throw up new

methods and techniques of general interest.

The use of OR in the developing world is often seen

as disconnected from the socio-economic needs of the

respective countries, see Galvão (1988). Valuable

theoretical contributions originate in these countries,

but little is seen in terms of new theory and methods

developed for the problems facing them.

A common situation in developing countries is

a highly uncertain environment, which leads to the

notion of wicked problems. These are, for example,

problems for which there is often little or no data

available, or where the accuracy of data is very poor.

Complex decisions must nevertheless be made, against

a background of competing interests and decision

makers. There are not many tools available for

solving these wicked problems, which are quite

common in developing countries.

One of the main characteristics of applied OR

projects in developing countries is that a large

majority of them have not been implemented, see

Löss (1981). This is due to a high degree of

instability in institutions in these countries, to a lack

of management education in OR, and to a tendency by

OR analysts to attempt to use sophisticated OR

techniques without paying due attention to the local

environment and to the human factor in applied OR

projects. These issues arise both in developed and

developing countries, but experience indicates that

they are more often overlooked in the latter.

A Special Issue of the European Journal of

Operational Research (Bornstein et al. 1990) was

dedicated to OR in Developing Countries. A review

paper (White et al. 2011) provides an overall picture of

the state of OR in the developing countries. In

particular, it examines coverage in terms of countries

and methods and highlights the contribution which OR

is making towards the theme of poverty, the reduction

of which is regarded as the key focus of development

policy interventions as reflected in the Millennium

Development Goals. Jaiswal (1985) and Rosenhead

and Tripathy (1996) contain important contributions

to the subject of OR in developing countries.

ICORD ’92: The Ahmedabad Conference

Since the 1950s, there has been a controversy on the

role of OR in developing countries. The central issue in

this controversy is the following: Is there a separate OR

for developing countries? If so, what makes it different

from traditional OR? What steps could be taken to

further OR in developing countries?

This issue has been discussed in different venues

and several published papers have addressed it, see,

for example, Bornstein and Rosenhead (1990).At one

end of the scale there are those who think that there is

nothing special about OR in developing countries,

perhaps only less resources are available in these
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countries to conduct theoretical/applied work. They

argue that the problem should resolve itself when

each country reaches appropriate levels of

development, and not much time should be

dedicated to this issue. At the other end there are

those who think that because of a different material

basis and due to problems of infrastructure, OR does

have a different role to play in these countries. In the

latter case, steps should be taken to ensure that OR

plays a positive role in the development of their

economies and societies.

Much changed in the latter part of the 1990s with

the demise of communism in Europe and the

emphasis on the globalization of the economy. The

viewpoint that there is a separate OR for developing

countries lost strength as a consequence. It had its

high moment during ICORD ’92, the first

International Conference on Operational Research

for Development, which took place in December

1992, at the Indian Institute of Management (IIM) in

Ahmedabad. It was supported by IFORS, The British

OR Society and the OR Society of India. It was partly

funded by IIM itself, The Tata Iron and Steel

Company (India) and (indirectly) by the

Commonwealth Secretariat. Participants at the

Conference numbered more than 60 and countries

represented included Australia, Brazil, Eire, Great

Britain, Greece, India, Kenya, Malaysia, Mexico,

Nigeria, Peru, South Africa, Sri Lanka, United

States, and Venezuela. Some 40 contributed papers

were delivered and plenary speakers included the

President of IFORS, Professor Brian Haley,

Professor Kirit Parikh, Director of the Indira Ghandi

Institute for Development in Bombay, and Dr.

Francisco Sagasti of Peru, who had just spent five

years in senior positions at the World Bank

(Rosenhead 1993).

A series of plenary sessions were held, which

resulted in a statement which has come to be known

as the Ahmedabad Declaration, a political document

drafted with the intention of strengthening the OR

for Development movement, that called for

a range of actions from IFORS to support and

strengthen OR in developing countries, including

a call for more space for discussion of OR for

Development issues in OR departments in developed

countries, for IFORS support for successor

conferences to ICORD ’92, and for IFORS increased

economic support of OR activities in developing

countries. It relied mainly on IFORS for its

implementation. Despite IFORS’ continued support

of some OR activities in the developing countries,

few of the main recommendations of the declaration

were implemented. ICORD ’96, the second

Conference in the series, which took place in Rio de

Janeiro, Brazil, in August 1996, was a disappointing

sequel to the Ahmedabad Conference and signaled the

decline of the movement.

Despite the perceived lack of commitment on the

part of IFORS to implement these proposals

(Rosenhead 1998), IFORS support of development

related OR activities have continued, including the

support of successor ICORDs, held in Manila, The

Philippines (1997), Berg-en-Dal, South Africa

(2001), Jamshedpur, India (2005), Fortaleza, Brazil

(2007) and Djerba Island, Tunisia (2012). The IFORS

Prize for OR in Development (known as the Third

World Prize until 1993) competition has been held at

every triennial conference since 1987. The Prize

recognizes exemplary work in the application of OR

to address issues of development. More recently,

a particular focus has been encouraging the

development of an OR infrastructure in Africa, and,

with EURO, IFORS has sponsored conferences and

scholarships in the African continent.

A fuller account of IFORS initiatives in promoting

the use of OR for development is described in by Rand

(2000). See also del Rosario and Rand (2010).

Is it safe to conclude, therefore, that those who

advocate that there is nothing special about OR in

developing countries had the better insight on the

controversy? The hard facts of life show that little has

changed in the social, political and technological

environment in the developing countries. The decline

of the OR for Development movement is a consequence

of the new balance of power in global affairs since the

Soviet Union ceased to exist. This decline did not occur

because conditions in the developing world improved,

or because OR has failed to contribute to the

development of the respective economies and societies.

See

▶ IFORS

▶ Practice of Operations Research and Management

Science

▶Wicked Problems
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Development Tool

Software used to facilitate the development of expert

systems. The three types of tools are programming

languages, shells, and integrated environments.

See

▶Expert Systems

Devex Pricing

A criterion for selecting the variable entering the basis in

the simplex method. Devex pricing chooses the

incoming variable with the largest gradient in the space

of the initial nonbasic variables. This is contrasted with

the usual simplexmethod entering variable criterion that

chooses the incoming variable based on the largest

gradient in the space of the current nonbasic variables.

The Devex criterion tends to reduce greatly the total

number of simplex iteration on large problems.

See

▶Linear Programming

▶ Simplex Method (Algorithm)

Deviation Variables

Variables used in goal programming models to

represent deviation from desired goals or resource

target levels.

See

▶Goal Programming

DFR

Decreasing failure rate.

See

▶Reliability of Stochastic Systems

Diameter

Themaximumdistancebetweenany twonodes inagraph.

See

▶Graph

▶Graph Theory
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Diet Problem

A linear program that determines a diet satisfying

specified recommended daily allowance (RDAs)

requirements at minimum cost. Stigler’s diet problem

was one of the first linear-programming problems

solved by the simplex method.

See

▶Linear Programming

▶ Simplex Method (Algorithm)

▶ Stigler’s Diet Problem
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Differential Games
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University of Washington, Seattle, WA, USA

Introduction

Differential games offer a valuable modeling

approach for problems in operations research

(OR) and management science (MS). Differential

game models are useful because they combine the

key aspects of dynamic optimization and game

theory. As such, differential game modeling

allows the analysis of a broad set of problems

that involve decisions by multiple players over

a time horizon. After a discussion of the

essential concepts of differential games,

applications from the literature are reviewed as

examples of how differential game methodology

has been used to study problems of interest to OR

and MS.

Discussion

A differential game is a game with continuous-time

dynamics. Two types of variables are involved, state

variables and control variables, both of which vary with

time. Control variables are managed by the players.

State variables are subject to the dynamic influence of

the control variables, and evolve according to

differential equations. Each player has an objective

function that consists of a stream of instantaneous

payoffs integrated over a horizon, plus, perhaps,

a salvage value if the horizon is finite. The decision

problem for each player is to determine a continuous

path of control variable values that maximizes the

player’s objective function, while taking into account

what the player knows or anticipates about the decisions

of the other players in the game.

Complete information is assumed in a differential

game, so that player outcomes given different

combinations of player strategies are known to all

players, and each player is able to infer correctly the

best strategies for the other players. Also, an

assumption is typically made that the players are

unable to agree to cooperate, and so are engaged in

a noncooperative differential game. Further, if the

players choose their strategies simultaneously,

the appropriate way to determine what strategies the

players are likely to adopt is to identify a Nash

equilibrium. A Nash equilibrium is a set of player

strategies such that each player is unable to improve

their outcome, given the strategies of the remaining

players. In a Nash equilibrium, no individual player

has an incentive to deviate to another strategy.

There are two types of Nash equilibrium that can be

derived: open-loop and feedback. Alternative terms for

feedback are closed-loop and Markovian (Dockner

et al. 2000, p. 59). The two equilibrium types differ

in terms of what information is used to develop the

players’ strategies. In an open-loop Nash equilibrium,

the players’ strategies are a function of time only,

while feedback Nash equilibrium strategies depend

on levels of the state variables as well as time.

Further, for a differential game with an infinite

horizon, and in which time is an explicit factor in the

objective functions only through discount factors, it is

appropriate to focus on stationary feedback strategies,

which depend on levels of the state variables only

(Jørgensen and Zaccour 2004, pp. 7–8).
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Different methods are typically used to derive the

different Nash equilibrium concepts. The maximum

principle of optimal control, with Hamiltonians and

costate variables, is used to determine open-loop

Nash equilibria (Kamien and Schwartz 1991, p. 274).

To derive an open-loop equilibrium, a Hamiltonian is

created for each player, and necessary conditions

produce a system of differential equations that can be

solved numerically as a two-point boundary value

problem.

In theory, a feedback Nash equilibrium can also be

determined using optimal control methods, but the

maximum principle is difficult to apply for feedback

strategies, since the solution requires that the strategies

of the players be known even as they need to be

derived. An alternative way to develop feedback

Nash equilibrium strategies is through a dynamic

programming approach with value functions and

Hamilton-Jacobi-Bellman equations (Kamien and

Schwartz 1991, p. 276). The Hamilton-Jacobi-Bellman

equations form a system of partial differential

equations, which for many problems are inherently

impossible to solve. For certain problems, though, it is

possible to discern an appropriate functional form for

the value functions that allows a solution. In particular,

for infinite horizon games, it is often possible to derive

stationary feedback equilibrium strategies analytically

as closed-form functions of the state variables.

An alternative to simultaneous play of strategies is

that of Stackelberg games (Dockner et al. 2000, ch.5;

Jørgensen and Zaccour 2004, pp. 17–22). Stackelberg

games have an alternative information structure, one in

which one player takes on a leadership role and makes

their strategy choice known before other players

choose their strategies. Such a structure can be

appropriate for certain problems, such as supply

chain management, where coordination may be

achieved to benefit of the supply chain overall

through one of the members of the supply chain

taking a leadership role.

As for Nash equilibria in games with simultaneous

play, there are open-loop and feedback Stackelberg

equilibria that can be derived. In an open-loop

Stackelberg equilibrium with two players (Dockner

et al. 2000, pp. 113–134; Jørgensen and Zaccour

2004, pp. 17–20), the Stackelberg leader announces

a control path, and, if the Stackelberg follower

believes that the leader will stay with the announced

control path, the follower will determine their best

response control path by solving an optimal control

problem with the leader’s control path as given. The

leader then solves an optimal control problem that

incorporates the follower’s best response.

For a feedback Stackelberg equilibrium, Basar and

Olsder (1995, pp. 416–420) present a feedback

Stackelberg solution, which involves instantaneous

stagewise Stackelberg leadership, where a stage is an

arbitrary combination of time and state variable values.

In the development of the feedback Stackelberg

solution, stagewise Hamilton-Jacobi-Bellman

equations are formed for the leader and the follower,

the equation for the follower defining an optimal

response and that for the leader incorporating the

optimal response of the follower.

The open-loop and feedback equilibrium concepts

for both Nash and Stackelberg games can be further

examined on the basis of important credibility-related

criteria. Dockner et al. (2000, pp. 98–105) and

Jørgensen and Zaccour (2004, pp. 15-16) discuss two

such criteria, time consistency and subgame

perfectness.

A Nash equilibrium is time consistent if at some

intermediate point in a differential game, the players

choose not to depart from their equilibrium strategies.

Dockner et al. (2000, p. 99) and Jørgensen and Zaccour

(2004, p. 15) define a subgame that begins at an

intermediate time point in the game, and has particular

values for the state variables at the time. An equilibrium

for the original game “. . .is time consistent if it is also an

equilibrium for any subgame that starts out on the

equilibrium state trajectory. . .” (Jørgensen and

Zaccour 2004, p. 15). Both open-loop and feedback

Nash equilibria are time consistent. The open-loop

Stackelberg equilibrium is not always time consistent,

however. As Dockner et al. (2000, pp. 113–134)

discuss, an open-loop Stackelberg equilibrium fails to

be time consistent in games in which the leader finds it

to their benefit to reset its control path at a some point in

time after the game has begun.

Subgame perfectness is a stronger condition than

time consistency, requiring that an equilibrium also be

an equilibrium for any possible subgame, “. . .not only

along the equilibrium state trajectory, but also in any

(feasible) position. . .off this trajectory.” (Jørgensen

and Zaccour 2004, p. 16). A feedback Nash

equilibrium that satisfies the Hamilton-Jacobi-Bellman

equations, is by construction subgame perfect. Also, the

feedback Stackelberg solution is, according to Basar
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and Olsder (1995, p. 417), “. . .strongly time consistent

(by definition)”, and strong time consistency coincides,

at least essentially, with subgame perfectness (Dockner

et al. 2000, pp. 106–107).

Differential Game Applications

The differential game framework is designed to model

the decisions of multiple decision makers in

a continuous-time dynamic context. This framework

can be applied to a variety of problem areas of interest

and relevance to OR and MS. Furthermore, modeling

the passage of time as continuous, rather than discrete,

allows the possibility of mathematical, and therefore

generalizable, conclusions. This section discusses

applications in advertising, pricing, production, and

supply chain management.

Advertising

Competitive advertising in the context of dynamics has

been especially a popular area of study. Erickson

(2003) provides a review. Two particular models of

demand evolution have acted as foundations for

differential-game applications to advertising. Kimball

(1957, pp. 201–202) presents four versions of

Lanchester’s formulation of the problem of combat,

one of which, Model 4,

dn1 dt= ¼ k1n2 � k2n1; dn2 dt= ¼ k2n1 � k1n2

has become the foundation for what is known as the

Lanchester model. Kimball (1957, p. 203) offers the

following interpretation of Model 4: “The n1 and n2
are then to be interpreted as the numbers of customers

for two similar products, while k1 and k2 are in

essence the amounts of advertising.” The Lanchester

model in application is generally interpreted in terms

of market shares rather than numbers of customers

(Erickson 2003, p. 10), so that advertising for

a competitor works to attract market share from the

competitor’s rival.

Vidale and Wolfe (1957) introduce a model of sales

evolution for a monopolistic company

dS dt= ¼ bAðtÞ M � Sð Þ M= � lS

in which A(t) is the advertising rate, S the sales rate,M

the maximum sales potential, b an advertising

effectiveness coefficient, and l a sales decay

parameter. In the Vidale-Wolfe model, advertising

attracts demand from the untapped sales potential,

and the sales attracted are subject to decay. Although

the Vidale-Wolfe model is defined for a monopolist, it

has been adapted for the study of advertising

competition.

Many differential-game applications using the

Lanchester and Vidale-Wolfe models study open-loop

Nash equilibria, since the two models do not readily

allow the derivation of subgame-perfect feedback Nash

equilibria. Sorger (1989) offers a modification of the

Lanchester model that does allow a feedback

equilibrium to be derived for duopolistic competitors.

Sorger (1989, p. 58) develops a differential game with

market-share dynamics

_xðtÞ ¼ u1ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xðtÞ

p
� u2ðtÞ

ffiffiffiffiffiffiffiffi
xðtÞ

p
; xð0Þ ¼ x0:

where _xðtÞ ¼ dx dt= ; x(t) is competitor 1’s market

share, and u1ðtÞ and u2ðtÞ are advertising rates for

firm’s 1 and 2, respectively. The square-root form in

the market share equation in the model allows

value functions that are linear in the market share

state variable, which allows a solution to the

Hamilton-Jacobi-Bellman equations for the

differential game. Sorger derives both open-loop and

feedback equilibria, and finds that the feedback and

open-loop equilibria do not coincide.

The Sorger (1989) modification of the Lanchester

model allows subgame-perfect feedback Nash

equilibria for a duopoly. Feedback equilibria,

however, are not achievable in an extension of the

Lanchester model to a general oligopoly, in which

the number of competitors may exceed two. For an

oligopoly, Erickson (2009a, b) provides a modification

of the Vidale-Wolfe model that allows the derivation

of feedback equilibria. Erickson’s (2009a) model has

sales dynamics for each oligopolistic competitor i of

n > 2 total competitors,

_si ¼ biai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N �
Xn

j¼1

sj

vuut � risi:

In the model, ai is the advertising rate, si the sales

rate, N the maximum sales potential, bi an advertising

effectiveness parameter, and ri a sales decay

parameter. The expression under the square-root sign
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represents untapped potential, that is, the maximum

sales potential minus the total sales for all n

competitors, including competitor i. An instantaneous

change in the sales rate for a competitor comes from two

sources: (1) the competitor’s advertising attracting sales

from the untapped potential in square-root form,

(2) a decay from the competitor’s current sales rate.

Erickson (2009b) extends the model to allow multiple

brands for each competitor. As for the Sorger (1989)

model, the square-root form in the model allows value

functions linear in the state variables, so that the

Hamilton-Jacobi-Bellman equations can be solved.

Both the Sorger (1989) and Erickson (2009a, b)

models are related to a monopolistic modification of

the Vidale-Wolfe model suggested by Sethi (1983).

Erickson (2009a) uses the derived expressions

for feedback Nash equilibrium advertising strategies in

an empirical study of the U.S. beermarket, and Erickson

(2009b) empirically applies the multiple-brand model

extension to the carbonated soft drink market.

Pricing

Pricing is a primary and challenging task for

management. Prices are the source of revenue for the

firm, but also affect demand for the firm’s products,

especially in a competitive setting. The challenge is

compounded when dynamics are involved, and prices

are expected not to stay at the same levels. This is the

case for new products, in particular new durable

products, for which demand tends to develop through

a diffusion process that is influenced by the price

strategies of competing firms.

Bass (1969) provides a diffusion model of first-time

adoption of a new durable product that combines

innovation and imitation on the part of customers

SðTÞ ¼ pþ qYðTÞ=mð Þ m� YðTÞð Þ;

where S(T) represents current sales at time T and Y(T)

cumulative sales, so that S(T) ¼ dY(T) / dT. Further,

p is an innovation coefficient, q is an imitation

coefficient, and m is the total number of customers

who will eventually adopt the new product. The Bass

(1969) model has been accepted by much of the OR

and MS literature as the primary model of new durable

product diffusion.

The Bass (1969) model is for a single firm, and does

not consider price explicitly. Dockner and Jørgensen

(1988) develop a more general framework for new

product diffusion, one that includes competition and

prices, which they use to study new-product pricing

strategies through differential-game analysis. Dockner

and Jørgensen (1988, p. 320) offer the general

diffusion model specification

_xi ¼ f iðx1; :::; xM; p1; :::; pMÞ; xið0Þ ¼ xi0 � 0:

In the model, xi is the cumulative sales volume of

competitor i ¼ 1, 2,. . ., M, and the prices p1,. . ., pM of

the competitors are assumed to vary with time. To

determine their dynamic price strategies, each

competitor is assumed to seek to maximize its

objective function

Ji ¼

ZT

0

e�rit pi � cið Þf idt

where unit cost ci is a nonincreasing function of

cumulative sales xi, as is often the case with new

durable products, that unit cost declines with

experience. For mathematical tractability reasons,

Dockner and Jørgensen (1988) study open-loop Nash

equilibria.

Dockner and Jørgensen (1988) derive the necessary

conditions for an open-loop Nash equilibrium for their

differential game involving the general diffusion

model; for further insights, they analyze more

specific functional forms. They consider three special

cases, competition with price effects only,

multiplicative separable price and adoption effects,

and adoption effects only with a multiplicative

own-price effect.

Production

The management of production quantities and timing

is a critical operations function. Dynamics are

involved, since production plans may imply that

production does not equal customer demand at

particular times. This can result in inventories, which

need to be carried at a cost, or backlogs, which involve

delay in delivery to customers, presumably at a cost to

the firm.

Production management can be studied in

a competitive context. Eliashberg and Steinberg

(1991) consider the dynamic price and production

strategies of two competing firms with asymmetric
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cost structures. As Eliashberg and Steinberg (1991,

p. 1453) explain: “The objective of this paper is to

gain insight into the dynamic nature of the

competitive aspects of the various policies of two

firms, one operating at or near capacity, facing

a convex production cost, and the other operating

significantly below capacity, facing a linear cost

structure. The firms are assumed to face a demand

surge condition. We will refer to the firm operating at

or near capacity as the ‘Production-smoother’ and the

firm operating below capacity as the ‘Order-taker.’ ”

Eliashberg and Steinberg (1991) define a differential

game in which production levels and prices are control

variables for the two competing firms, and pursue an

open-loop Nash equilibrium. They derive several

propositions regarding the equilibrium policies of the

two competitors. A particular finding is that the

Production-smoother follows a strategy of first building

up inventory, then drawing the inventory down, and

finishing a seasonal period by engaging in a policy of

carrying zero inventory for a positive interval.

Supply Chain Management

A supply chain involves various independent players—

e.g., supplier, manufacturer, wholesaler, retailer—as raw

materials become products that are distributed to retail

locations where final customers are able to buy them. All

players have an economic stake in their position in the

supply chain that is affected by the decisions of the other

players. The interest of supply chain management is in

coordination of the decisions of the players, given the

players’ strategic interdependence.

When dynamics are involved, the interdependence

of the players in a supply chain can be interpreted as a

differential game. A cooperative differential game

would produce full coordination. However, since

binding agreements among the supply chain players

are difficult to establish and maintain, an alternative

focus is to consider noncooperative games with

coordinating mechanisms.

One mechanism for achieving coordination is

through one of the players in the chain becoming the

leader. If there are two players in a supply chain, the

differential game becomes a leader-follower game in

which a Stackelberg equilibrium provides the

coordinating solution. A study that considers this

approach is Jørgensen et al. (2001), who analyze the

advertising and pricing strategies of two players in

a marketing channel, a manufacturer and a retailer.

With the differential game that they develop,

Jørgensen et al. (2001) derive four different

equilibrium solutions: Markovian (feedback) Nash,

feedback Stackelberg with the retailer as the

Stackelberg leader, feedback Stackelberg with the

manufacturer as the leader, and a coordinated channel

solution. They give a detailed comparison of the

outcomes for the four solutions.

Concluding Remarks

This article outlines the basic concepts of differential

games, along with brief descriptions of relevant

applications. More in-depth coverage is given in

Dockner et al. (2000) and Jørgensen and Zaccour

(2004). Differential games provide a powerful

modeling framework for the study of the interaction

of multiple decision makers in dynamic settings. As

the applications illustrate, the understanding of

dynamic and game-theoretic OR and MS problems

has been advanced through the analysis of

differential-game models.

See

▶Advertising

▶Decision Analysis

▶Dynamic Programming

▶Game Theory

▶Marketing

▶ Production Management

▶ Supply Chain Management
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Diffusion Approximation

A heavy-traffic approximation for queueing systems

in which the infinitesimal mean and variance of

the underlying process are used to develop

a Fokker-Planck diffusion type differential equation

which is then typically solved using Laplace transforms.

See

▶Queueing Theory

Diffusion Process

A continuous-time Markov process on  or 00 which

is analyzed similar to a continuous-time physical

diffusion.

Digital Music

Elaine Chew

Queen Mary University of London, London, UK

Introduction

The advent of digital music has enabled scientific

approaches to the systematic study, computational

modeling, and explanation of human abilities in

music perception and cognition, and in music

making, which includes the activities of music

performance, improvisation, and composition. The

move from analog to digital music, and from music

stored on a compact disc to music streamed live over

the Internet, has brought new engineering challenges,

innovation opportunities, and creative outlets.

The pervasiveness of computing power and the

Internet has changed the ways in which people

interact with, and make, music. The research

communities at the cusp of music science and

engineering came about after the turn of the last

millennium, and have been increasing exponentially

since. A short list of the communities involved in

scholarly pursuits in music science and engineering is

provided in Chew (2008).

Impact of Digital Music Research

Science and technology has changed the face of arts

and humanities scholarship. Advances in digital music

technology have enabled new discoveries by

harnessing the computational power of modern

computers for music scholarship. For example, the

Joyce Hatto scandal, documented in The Economist

and elsewhere in 2007, in which over 100 CDs

released in recent years under her name were in fact

the work of other pianists, was unveiled in part because

of the machinery available to automatically evaluate

and compare recordings of musical works. The

technology exists to begin mapping the myriad

decisions involved in composing and performing

music, and to start charting human creativity. The

fact that mathematical models, and by extension

operations research (OR) methods, are widely applied

in digital music research and practice should come as
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no surprise, given the historical connections between

music, mathematics, and computing.

The music technology industry has emerged as

a major economic force. The phenomenal explosion

in digital music information has led to the need for new

technologies to organize, retrieve, and navigate digital

music databases. Examples of major advances in the

organizing and retrieval of digital music include

Pandora, a personalized Internet radio service that

helps people discover new music according to their

tastes, and Shazam, a service that helps people

identify and locate the music they are hearing.

Pandora generates a playlist based on an artist or

song entered by the user, and refines future

recommendations based on user preference ratings of

the songs in that list. Shazam identifies the song and

artist, and the precise recording, from a musical

excerpt supplied by the user over a device such as an

iPhone. In both Pandora and Shazam, the user is

offered the opportunity to purchase the song that is

playing, or that has been identified, from various

vendors. As of 2010, Pandora had 50 million

registered users, and more than 1 billion stations,

covering 52% of the Internet radio market share. In

December 2010, Shazam announced that it has

surpassed 100 million users in 200 countries.

Any young or young-at-heart person may be familiar

with the music video game, Guitar Hero®, which allows

everyone to live the dream of being a rock star in their

own living room by pushing colored buttons on the

guitar interface in sync with approaching knobs in the

video screen. In a few short years, Guitar Hero took over

a significant share of the video game market, grossing

over two billion dollars by 2009 and leading to it being

featured in a South Park television episode. Bands

featured in the game — owned and marketed by

Activision — experience significant increases in song

sales, so much so that major labels vie for their music to

be included in new versions of it and in its successor,

Rock Bandpt® vie for their music to be included in new

versions.

Music Structure

The understanding of music structure is fundamental to

computer analysis of music, and a precursor to digital

music processing and manipulation. Music consists of

organized sounds with perceptible structures in both

time and frequency domains. Often, music can be

considered to comprise of a sequence of tones, or

several concurrent sequences of tones. Each tone has

properties such as pitch (the perceived fundamental

frequency of the tone), duration, timbre, and

loudness. Much of the music that is heard consists of

more than a single stream of tones. When hearing

multi-tone textures, the ear can segregate the

collection of sounds into streams. The most

prominent of these streams is often considered to be

the melody of the music piece. Structures relating to

individual streams as they progress over time are

sometimes referred to as horizontal structures. Like

language, music streams can be segmented into

phrases. Salient tone patterns in music phrases form

motifs, short patterns that recur and vary throughout

the piece. The varying of these patterns forms the

surface structure of the music piece.

Overlapping pitches in the overlay of multiple tone

sequences form chords; conversely, one could say that

chords consist of the synchronous sounding of two or

more pitches. Chords constitute mid-level structure in

music. Structures, such as chords, that relate to

synchronous sounds or chunks of music over

overlapping streams are sometimes referred to as

vertical structures. In Western tonal music, the pitches

and durations and their ordering generates the

perception of pitch stability relative to one another.

This pattern of perceived stability is set up as soon as

the ear hears as few as only three to four tones in the

sequence. The most stable pitch is the name of the key

of the tone sequence. The key, in turn, implies

adherence to the pitch set of the scale. The pitches in

a scale have varying levels of perceived stability, the

result of the physics of sound, the physiology of the ear,

or exposure to music. The varying of the most stable

pitch over time forms the deep structure of the piece.

The structure of a musical piece can also be

conceptualized as a sequence of section labels such

as AB (binary form), ABA (ternary form),

ABACAC0ADA (a sample rondo form), and

intro-(verse-chorus)n-outro (a common popular music

form). While some composers, when writing in a

particular genre, choose to adopt a particular form for

a composition, structure can also emerge from choices

made in composition or improvisation to manage a

listener’s attention.

Sequences of durations, or sequences of

inter-onset-intervals, form rhythms. Periodic onsets
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generate perceived beats, and accent and stress patterns

in beat and in rhythm sequences. The periodic accent

patterns in beat sequences, in turn, result in meter.

For example, there are cyclic patterns of four beats in

the march with a strongest-weak-strong-weak

accent pattern, whereas each of the four beats in a

tango is subdivided into two with a resulting

strong-weak-weak-strong-weak-weak-strong-weak

accent pattern. Conversely, the meter of a composition

often implies a persistent periodic accent pattern. The

beat rate charts the tempo of the music: a high beat rate

results in fast music, and a low beat rate results in slow

music. Like many things in art, it is deviations from the

norm that form the core of artistic expression. Thus, a

large part of expressive musical performance is the art

of systematically varying the tempo, and deviating

from an underlying time grid. For example, not

playing the beats as notated is essential to playing a

convincing swing rhythm. Other important parameters

of variation in expressive performance include

loudness and timbre.

Structure guides expressive decisions in

performance, and expressive performance, in turn,

influences structure. For example, a performer may

choose to emphasize unusual key changes by slowing

down the tempo and dramatically reducing the

loudness of the sound produced at the juncture of

change. Alternatively, by punctuating the playback of

a tone stream with judicially placed accents and

pauses, the performer can impute phrase and motivic

structure on a music stream.

Music problems can be broadly categorized into the

areas of analysis, performance, and composition and

improvisation. When the problems are concerned with

human abilities in music making and listening, they

also touch upon the area of music perception and

cognition. It is beyond the scope of this article to give

a comprehensive survey of problem formulations and

solutions in computational modeling of music. Rather,

this article focuses on representative problems in each

category and solutions, covering some essential

background on music representation and computation.

Computational Music Analysis

The goal of computational music analysis is to

automatically abstract structures, such as those

described above, from digital music.

Key and Harmony

The determination of key is a problem in the detection

of vertical pitch structure. Key finding (a.k.a. tonal

induction) can be described as the problem of finding

the note on which a music piece is expected to end. The

most stable pitch in a key is also the one that is expected

to end a piece of music in that key. Key finding is an

important step preceding a number of music

applications such as automatic music transcription,

accompaniment, improvisation, and similarity

assessment. While the focus here is key finding, it is

worthwhile to mention chord tracking, a related

problem for which the solution bears similarities to

key finding. A survey of automatic chord analysis

algorithms can be found in Mauch (2010).

Key Finding Using Correlation:Key is most often

inferred from pitch information. Each pitch can be

represented as an integer, according to pitch height.

For example, in MIDI (musical instrument digital

interface) notation, the pitches A, B[, B, C in the

middle range of the piano keyboard are represented

as 57, 58, 59, 60. Pitches repeat on the keyboard, and

the twelfth tone above C is C again, one octave higher.

Sometimes only the pitch class is of interest, and pitch

numbers can be collapsed into pitch classes using

modulo arithmetic. If p is a pitch number, then the

corresponding pitch class is p mod 12.

Key-finding algorithms tend to match music data

with templates representing the prototypical profile for

the 24 major and minor keys. A key-finding algorithm

by Krumhansl and Schmuckler (described in

Krumhansl 1990) compares a vector, d ¼ ½di	,
summarizing total note duration for each of the

twelve pitch classes, to experimentally obtained

probe tone profiles for each of the major and minor

keys, vi ¼ ½vij	 for i ¼ 1 . . . 24, by calculating their

correlation coefficients, rdvi . Each probe tone profile

is generated by playing a short sequence of chords to

establish the key context, then having listeners rate

(on a scale of 1 to 7) how well a probe tone that is

then played fit in the context. The best match key probe

tone profile is the one having the highest correlation

coefficient with the query vector, i.e.

argmax
i

rdvi ¼ argmax
i

sdvi
sdsvi

:

Creating Spatial Models: Having a spatial model

that mirrors the mental representation of tonal space is
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something that is of interest not only to cognitive

scientists, but also to computational scientists who use

these spaces to design algorithms for tonal induction.

Kassakian and Wessel (2005) proposed a convex

optimization solution for incrementally creating spatial

representations of musical entities, such as key and

melody, in Euclidean space in such a way as to satisfy

a set of dissimilarity measures. Assuming the existing

elements to be ri 2 
n and the vector of dissimilarity

distances between the new element and existing ones to

be s ¼ ½si	 � 0, where i ¼ 1; 2; . . . ;m. The problem

then becomes one of finding

argmin
x;g

Xm

i¼1

ðjjx� rijj � gsiÞ
2:

Using the geometric insight that each

ðjjx� rijj � gsiÞ is the optimal value of

minbi jjx� bijj
2
for some bi 2 

n inscribed on the

ball of radius gsi around the point ri, the problem can

be re-written as:

min
x;g;b

jjJx� bjj2

s:t: jjri � bijj
2 ¼ g2s2i ; i ¼ 1; 2; . . . ;m

where b 
 ½bT1 ; b
T
2 ; . . . ; b

T
m	

T
2 

mn

and J 
 ½I; I; . . . ; I	T 2 
mn�n

While the primal problem is not convex, the dual

obtained by Lagrangian relaxation is convex, as is the

dual of the dual. The authors used a semi-definite

programming solver to obtain a solution to the dual of

the dual. Because the dual’s dual is a relaxation of the

primal, they computed a primal feasible solution from the

relaxation using a randomized method reported by

Goemans and Williamson, and generalized by

Nesterov. The problem can also be solved using more

conventional gradient descent methods.The resulting key

space map generated in this fashion corresponds well to

Krumhansl’s map created using multi-dimensional

scaling (Krumhansl 1990).

Key Finding Using Geometric Spaces: Starting

from a model of tonal space that concurs with human

perception can be an advantage in the design of

computational algorithms for key finding. Observing

that the pitch classes in a major key and in a minor key

each occupy distinctly shaped compact spaces on the

harmonic network or tonnetz, Longuet-Higgins, and

Steedman (1971) proposed a shape matching

algorithm to determine key from pitch class

information.

The tonnetz is a network model for pitch classes

where horizontal neighbors are pitch classes whose

elements have a fundamental frequency ratio of

approximately 2:3 (four major/minor scale steps

apart), neighbors on the northeast diagonal have

a ratio of approximately 4:5 (two major scale steps

apart), and neighbors on the northwest diagonal have

a ratio of approximately 5:6 (two minor scale steps

apart). The dual graph of the harmonic network

connects all triads (three-note chords) sharing two

pitches, the transition between which has the property

of smooth voice leading. Lewin (1987) lays the

foundation for the theory underlying transformations

on this space in his treatise on Generalized Intervals

and Transformations. Callendar, Quinn, and

Tymoczko (Tymoczko 2006; Callender et al. 2008)

further generalized these chord transition principles

to non-Euclidean space.

The tonnetz is inherently a toroid structure. By

rolling up the planar network so that repeating pitch

classes line up one on top of another, one gets the pitch

class spiral configuration of the harmonic network.

Inspired by interior point approaches, Chew (2000)

proposed the spiral array model, which uses

successive aggregation to generate higher level

representations, inside this three-dimensional

structure, from their lower level components. For

example, if pitch classes were indexed by their

positions on the line of fifths, then each pitch classes

can be represented as:

Pkþ1 
 R � Pk þ h;

where R ¼

0 1 0

�1 0 0

0 0 1

2

64

3

75; h ¼
0

0

h

2

64

3

75; k 2 :

The positions of major and minor chords are

computed as convex combinations of their

component pitches:

CM;k 
 o1 � Pk þ o2 � Pkþ1 þ o3 � Pkþ4;

and

Cm;k 
 u1 � Pk þ u2 � Pkþ1 þ u3 � Pk�3;
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respectively, where o1 � o2 � o3 > 0, u1 � u2 �

u3 > 0,
P3

i¼1 oi ¼ 1, and
P3

i¼1 ui ¼ 1. Major and

minor keys are generated from the weighted average

of their defining chords:

TM;k 
 o1 � CM;k þ o2 � CM;kþ1 þ o3 � CM;k�1;

Tm;k 
 u1 � CM;k þ u2 � ½a � CM;kþ1 þ ð1� aÞ � Cm;kþ1	

þ u3 � ½b � Cm;k�1 þ ð1� bÞ � CM;k�1	;

where o1 � o2 � o3 > 0, u1 � u2 � u3 > 0,
P3

i¼1 oi ¼ 1,
P3

i¼1 ui ¼ 1, and 0 � a � 1;

0 � b � 1. The calibration of the spiral array, finding

solutions to the variables that satisfy perceived

properties of pitch relations, is a nonlinear constraint

satisfaction problem for which the author found

near-feasible solutions using a gradient-inspired

heuristic.

Given a music sequence of pitches that map to the

pitch representations Pif g, with corresponding

durations, d ¼ ½di	, where i ¼ 1; . . . ;m, the center of

effect of the sequence, CE 

Pm

i¼1 di � Pi. The most

plausible key for the sequence is given by the key

representation nearest to the center of effect of the

sequence:

arg min
m2fM;mg;k

jjCE� Tm;k jj:

Extensions: The descriptions of key-finding

algorithms have focussed on discrete information. It

is possible to apply probabilistic approaches using the

same representations. For example, Temperley (2007)

explores a Bayesian approach to the Krumhansl

key-finding framework.

Both Krumhansl’s probe tone profile method and

Chew’s spiral array center of effect generator

algorithm have been extended from symbolic to

audio key finding. The underlying methodology

remains the same. However, when starting from

audio, some pre-processing of the signal needs to be

done to convert it to pitch class information.

Similarly, the key templates may have to be adapted

for audio input. Common techniques for extracting

frequency information from the signal include the

Fast Fourier Transform and the Constant-Q

Transform. This step is followed by the mapping of

spectral information to pitch class bins, then the

key finding algorithm is applied accordingly.

While signal-based information tends to be more

noisy than discrete symbolic information, much of

the noise results from the harmonics of the

fundamental frequency of each tone, which tend to

be frequencies in the key, and help reinforce and

stabilize key identity.

Meter and Rhythm

While historically the modeling of meter and rhythm

has not received as much attention as that of key and

harmony, the feeling of pulse, and the grouping of

events embedded in that pulse, are some of the most

visceral responses humans have to music. An overview

of symbolic and literal (signal) representations of

rhythm can be found in Sethares (2007) and Smith

and Honing (2008). In symbolic music, tone onsets

are encoded explicitly in the representation.

When analyzing audio, a pre-processing step of

extracting onset information must first be performed.

An overview of onset detection methods is given in

Bello et al. (2003).

Meter Induction: The determining of meter can be

described as the finding of the periodic accent patterns

in the underlying pulse of music. Meter induction, like

key finding, is an important step for numerous music

applications such as automatic music transcription,

generation, and accompaniment. Most algorithms for

finding meter apply autocorrelation to find periodicity

in the signal, see for example, Gouyon and

Dixon (2006). A different computational model for

extracting meter from onset information is described

inMazzola’s extensive volume onmathematical music

theory (Mazzola 2002), and expanded by Volk (2008)

to investigate local versus global meters.

The solution method is restated here in a slightly

different format. Suppose  indexes the smallest grid

possible to capture all event onsets in a score. And

suppose we are interested in pulse layers at onset

times of all possible periodicities, g 2 , and offsets,

f ¼ 0; . . . ; i� 1, then a pulse layer might be indexed

by y ¼ 1
2
� gðg� 1Þ þ 1þ f and be represented as

a vector py ¼ ½pyi	, where

pyi ¼
1 if i 2 fgk � f : k 2 g;
0 otherwise:

�

Suppose the onsets in the music are represented as

a vector, o ¼ ½oi	, where
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oi ¼
1 if an onset occurs on that grid marking; and

0 otherwise;

(

poyi ¼
1 if ðpyi ¼ 1Þ \ ðoi ¼ 1Þ; and

otherwise:

(

Effectively, poy serves as an indicator function

for when an onset in the music coincides with

a pulse at layer y. Introducing one more variable,

let ‘yi be the span of the longest chain of ones

surrounding poyi. ‘yi can be defined recursively as

follows:

‘yi ¼ ‘Ryi þ ‘Lyi;

where ‘Ryi ¼
0 if poyi ¼ 0;

1þ ‘yiþ1 if poyiþ1 ¼ 1;

(

‘Lyi ¼
0 if poyi ¼ 0;

1þ ‘yi�1 if poyi�1 ¼ 1:

(

The metric weight of an onset at time i is then given by

wi ¼
X

y

‘ayi:

The resulting vector, w gives a profile of the accents

and reveals the periodicity in the rhythm. Recall that

y ¼ 1
2
� gðg� 1Þ þ 1þ f . A variation on this

technique (Nestke and Noll 2001) assigns the

weight ‘yi to all points on pulse layer y, i.e.

8i ¼ gk � f ; k 2 .

Genre Classification using Metric Patterns:
Periodicity patterns are one of the defining

characteristics of dance music, and this feature has

been used to classify music into different genres such

as tango, rumba, and cha cha (Dixon et al. 2003; Chew

et al. 2005). Dixon et al. (2003) uses a set of rules, which

can be implemented using decision trees, to categorize the

music using tempo and periodicity features. Similar to the

key-finding methods, (Chew et al. 2005) uses correlation

to compare the metric weight profiles derived from the

data to templates for each dance category.

Segmentation in Time

Few pieces of music stay entirely in one key or one

rhythmic pattern. Composers generate interest by

varying the tonal and rhythmic content of the

music over time. Thus, it would be unrealistic to

compute only one key or one meter based on

available information. A common adaptation of

key-finding or meter induction algorithms to allow

for changing key or metric identity is to use

a sliding window (Shmulevich and Yli-Harja

2000), or an exponential decay function (Chew

and François 2005).

The determining of section boundaries is important

in music structure analysis, the applications for which

include music summarization. Using the key and meter

representation frameworks introduced above, it is

possible to create a dynamic programming

formulation, with an appropriate penalty function for

change between two adjacent windows, for assigning

boundaries in a piece of music, for example for key as

discussed in Temperley (2007). Another method for

determining key change is described in Chew (2002),

which borrows ideas from statistical quality control.

In large structure analysis, it is often useful to be able

to label sections (for example, as chorus or verse

in popular songs). Toward this end, Levy and

Sandler (2008) have applied a number of clustering

techniques to audio features extracted from music

signal.

Melody

Melody represents the horizontal structure of

music. Apart from the straightforward event string

representation of melody, melody can also be

decomposed into building blocks and represented as

grammar trees, as prescribed by Lerdahl

and Jackendoff (1983).

Similarity Assessment: Quantifying the similarity

between two melodies is important for music

information retrieval. Typke et al. (2003) describe

the use of the Earth Mover’s Distance (EMD) to

quantify melodic similarity. Represent each melody

as weighted points in pitch-time space, for example,

melody A ¼ fa1; a2; . . . ; amg and melody

B ¼ fb1; b2; . . . ; bng with respective weights,

oi; uj 2 
þ [ f0g, where i ¼ 1; . . .m and

j ¼ 1; . . . n. The similarity measure between the two

melodies is the EMD, the minimum cost flow to

transform one melody into another by moving

weight from one point in A to one point in B, where

the cost is the weight moved times the distance

traveled.
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SupposeW ¼
Pm

i¼1 wi andU ¼
Pn

i¼1 , and fij is the

flow of weight from ai to bj over the distance dij. The

problem can thus be stated as:

min
Xm

i¼1

Xn

j¼1

fijdij

s:t:
Xn

j¼1

fij � wi; i ¼ 1; . . . ;m;

Xm

i¼1

fij � uj; j ¼ 1; . . . ; n;

Xm

i¼1

Xn

j¼1

fij ¼ minðW;UÞ;

fij � 0; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n;

which can be solved using linear programming, and

EMDðA;BÞ ¼

Pm
i¼1

Pn
j¼1 f �ijdij

minðW;UÞ
:

Stream Segregation: A number of approaches

have been proposed to tackle the problem of

automatically separating a polyphonic (multi-line)

music texture into its component voices. An example

might be to separate a fugue by Johann Sebastian Bach

into its four parts. A randomized local search method

to optimize a parametric cost function that penalizes

undesirable traits in a voice-separated solution was

proposed by Kilian and Hoos (2002). Chew and Wu

(2004) proposed a contig-mapping approach to first

break a piece of music into contigs with overlapping

fragments of music. Then, exploiting perceptual

principles such as voices tend not to cross in maximal

voice contigs, the algorithm re-connects the fragments

in neighboring contigs using distance minimization.

Composition and Improvisation

The use of mathematical models in music composition

has become an active area for musical innovation since

Xenakis (2001), who used stochastic processes,

probabilistic models, and game theory to guide his

compositions. With widespread access to computing

to help solve music composition mathematical

problems, computer-assisted composition has

emerged as a useful tool to help composers create

new music, as well as an important area of digital

music research.

Constraints

A number of music composition problems can be

naturally described as constraint satisfaction

problems (CSPs). Solution methods for CSPs include

combinatorial optimization and local search

techniques such as Tabu search, simulated annealing,

and genetic algorithms.

Truchet and Codognet (2004) list fourteen

examples of musical CSPs and propose to apply

a heuristic adaptive search technique to solve the

CSPs. An example of a compositional CSP is as

follows: Given a sequence of chords, suppose the

composer is interested in finding an ordering of

the sequence such that two adjacent chords have the

maximal number of common tones. If the chords were

represented as nodes, and the distance between any

two nodes is the number of common tones, then the

problem of interest takes the form of the Traveling

Salesman Problem. Every chord must be visited

once, and the desired solution must minimize

ð�1Þ � distance.

Related to this is the classic problem of providing

harmonization for a given melody. The most widely

used solution method for generating a score from

a melody is via constraints, and a variety of approaches

and results are reviewed in Pachet and Roy (2004).

Markov Chains and Other Network Models

The use of Markov chains (MCs) forms another

solution method that is commonly used in the

generating of music. In the case of MCs, the

probabilities are estimated from existing data, and

used to generate music in the style of the training

data set. Farbood and Schoner (2001) use MCs to

generate music in the style of Palestrina. Using the

tonnetz as scaffolding to reduce the search space,

Chuan and Chew (2007a) use MCs to generate

style-specific accompaniment for melodies given

only a few examples. MCs are excellent models for

imitating local structure, but lack high level structure

knowledge to guide the shaping of a composition. To

remedy this deficiency, researchers have considered

computer systems that create the local surface

structure while relegating higher level structural

control to humans.
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In Pachet’s Continuator, the system builds prefix

trees from music data, weights each possible

continuation with a probability estimated from the

data, and uses the resulting MC to generate music in

dialog with a human musician. Extensions of the basic

MC model consider hierarchical representations and

ways of imputing rhythmic structure to the resulting

music. Assayag and Dubnov (2004) describe an

alternate approach using factor oracles. The suffix

links in the resulting network model is assigned

transition probabilities that causes the original music

material to be recombined smoothly. Using the same

factor oracle approach, François et al. (2010) created

Mimi4x, an installation that allows users to make

high-level structural improvisation decisions while

the computer manages surface details on four

improvising systems.

Expressive Music Performance

Music is rarely performed as notated. The score is an

incomplete description of the experience of a music

piece, and leaves much to interpretation by

a performer. In expressive music performance,

a performer manipulates parameters such as tempo,

loudness, and articulation for expressive or interpretive

ends, and to guide the listener’s perception of groupings

andmeter. The expressive devices in the performance of

music is sometimes called musical prosody. See Palmer

and Hutchins (2006) for a definition and review of

research on musical prosody. The extraction of

performance parameters can be viewed as the

continuous monitoring of expressive features such as

tempo and loudness over time.

Representation

Tempo and loudness are two important features of

music performance. Suppose the list of onsets in the

performed music are O ¼ fo0; o1; . . . ; ong. Then the

inter-onset-interval at time i is IOIi ¼ oi � oi�1. If

a listener sat and tapped along to the beat of the

music, then the list of beat onsets might be

B ¼ fb0; b1; . . . ; bng. The interbeat-interval would be

IBIi ¼ bi � bi�1, and the instantaneous tempo would

be Ti ¼
1

IBIi
. Often, some smoothing is desired, and one

would report a moving average for the smoothed

tempo. Sometimes, the acceleration is desired, where

ai ¼ DTi ¼ Ti � Ti�1. A number of models for

deriving loudness from the signal exist, many of

which have been implemented in Matlab. Timmers

(2005) surveys some ways of measuring tempo and

loudness in musical performance and of comparing

them across performances.

Using the tempo-loudness representation proposed

by Langner and Goebl, Dixon et al. (2002) created

a computer system for for real-time visualization of

performance parameters in the Performance Worm.

The exploration of Langner’s tempo-loudness space

for performance analysis led to its use for performance

synthesis in the Air Worm (Dixon et al. 2005).

In the spirit of annotations of speech prosody,

Raphael proposed a series of markup symbols for

expressing musical flow (Raphael 2009). The

symbols consist of

fl�; l�; lþ; l!; l ; l�g:

fl�; l�; lþg denote a sense of arrival, where l� is a direct
and assertive stress, l� is a soft landing that relaxes upon

arrival, and lþ is an arrival whose momentum continues

to carry forward into the future. fl!; l�gmark notes that

continue to move forward toward a future goal, l! is

a passing tone and l� is a passing stress, and fl g
denotes a pulling back movement. Because it is hard

to determine the exact sets of tempo and loudness

parameters, and more locally, the exact amounts of

delay or anticipating of an onset, that lead to these

flow sensations, Raphael uses a hidden Markov model

(HMM) to estimate the most likely hidden variables to

have given rise to the observed prosodic annotation.

Phrases

In expressive performance, performers indicate phrase

groupings by varying tempo (accelerate and decelerate

at beginnings and ends of phrases) and/or loudness

(crescendo and decrescendo at beginnings and ends

of phrases). As a result, this aspect of a performer’s

interpretations can be directly inferred from tempo and

loudness data. For example, Chuan and Chew (2007b)

propose a dynamic programming (DP) method for

automatic extraction of phrases. The authors test

a model that fits a series of quadric curves (first

modeled by polynomials of degree two, then by

a series of quadratic splines) to the tempo time series.

The best fit curve is found using quadratic

programming, and the phrase boundaries are

determined using DP.
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Alignment

A common use of DP in music processing is in the

alignment of music sequences that may be in the same

or different format. Arifi et al. (2004) reviews the state

of the art, and describes an algorithm for aligning music

sequences in two of three possible formats � score,

Musical Instrument Digital Interface (MIDI), and

pulse-code modulation (PCM) audio format.

Assuming the two sequences are the score, s ¼ ½si	,
and a PCM representation of the audio performance,

p ¼ ½pj	. The first task is to generate a cost matrix for

aligning any point, si, in the score with any point, pj, in

the PCM audio. In Arifi et al. (2004), the distance

minimization step is embedded in the cost matrix.

Suppose the cost matrix is represented by C ¼ ½cij	,
each element of which expresses the cost minimizing

SP-match for ½s1; s2; . . . ; si	 and ½p1; p2; . . . ; pj	, i.e.

cij ¼ min ci;j�1; ci�1;j; ci�1;j�1; d
SP
ij

n o
:

Then, the algorithm for synchronizing the two streams

is as follows:

SCORE-PCM-SYNCHRONIZATION(C, s, p)
1 i = length(s), j = p, SP-Match = 0

2 while (i > 0) and ( j > 0)

3 do if c[i, j] = c[i, j � 1]

4 then j = j � 1

5 else if c[i, j] = c[i � 1, j]

6 then i = i � 1

7 else SP-Match = SP-Match [
{(i, j)}, i = i�1, j = j�1

8 return SP-Match

Dixon and Widmer (2005) introduced MATCH,

a tool chest for efficient alignment of two time series

using variations on the classic dynamic time warping

(DTW) algorithm. Niedermayer and Widmer (2010)

proposed a multi-pass algorithm that uses anchor notes

(notes for which the alignment confidence is high) to

correct inexact matches.

Concluding Remarks

Digital music research has rapidly evolved with

computing advances and the increasing possibilities for

connections between music and computing. The latest

advances in the field are reported in the annual

Proceedings of the International Conference on Music

Information Retrieval, Proceedings of the Sound and

Music Computing Conference, and the Proceedings of

the International Symposium on Computer Music

Modeling and Retrieval, the biennial Proceedings of

the International Conference on Mathematics and

Computation in Music, and the occasional Proceedings

of the International Conference on Music and Artificial

Intelligence. They can also be found in the traditional

conferences of the multimedia, databases, human

computer interaction, and audio signal processing

communities. The archival journals include the

Computer Music Journal, the Journal of New Music

Research, and the Journal of Mathematics and Music.

There exist close ties between digital music

research and the fields of music perception and

cognition and computer music (which places greater

emphasis on the creating of music), and the community

of researchers interested in interfaces for musical

expression. Work that overlaps with these other areas

can be found in the biennial Proceedings of the

International Conference on Music Perception and

Cognition, and the annual Proceedings of the

International Computer Music Conference and

Proceedings of the International Conference on New

Interfaces for Musical Expression.

See

▶Constraint Programming

▶Dynamic Programming

▶Linear Programming

▶Markov Chains

▶Mathematical Programming
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Digraph

A graph all of whose edges have a designated one-way

direction.

See

▶Graph Theory

Dijkstra’s Algorithm

A method for finding shortest paths (routes) in

a network. The algorithm is a node labeling, greedy

algorithm. It assumes that the distance cij between any

pair of nodes i and j is nonnegative. The labels have

two components {d(i), p}, where d(i) is an upper bound

on the shortest path length from the source (home)

node s to node i, and p is the node preceding node i

in the shortest path to node i. The algorithmic steps for

finding the shortest paths from s to all other nodes in

the network are as follows:

Step 1. Assign a number d(i) to each node i to denote

the tentative (upper bound) length of the shortest

path from s to i that uses only labeled nodes as

intermediate nodes. Initially, set d(s) ¼ 0 and

d(i) ¼ 1 for all i 6¼ s. Let y denote the last node

labeled. Give node s the label {0, �) and let y ¼ s.

Step 2. For each unlabeled node i, redefine d(i) as

follows:

d(i) ¼ min{d(i), d(y) + cyi)}. If d(i) ¼ 1 for all

unlabeled vertices i, then stop, as no path exists

from s to any unlabeled node i with the smallest

value of d(i). Also, in the label, let p denote the

node from which the arc that determined the

minimum d(i) came from. Let y ¼ i.

Step 3. If all nodes have been labeled, stop, as the

unique path of labels {d(i), p} from s to i is

a shortest path from s to i for all vertices i.

Otherwise, return to Step 2.

See

▶Greedy Algorithm

▶Minimum-Cost Network-Flow Problem

▶Network Optimization

▶Vehicle Routing

Directed Graph

▶Digraph

Direction of a Set

A vector d is a direction of a convex set if for every

point x of the set, the ray (x + ld), l� 0, belongs to the

set. If the set is bounded, it has no directions.

See

▶Convex Set

Directional Derivative

A rate of change at a given point in a given direction of

the value function of a optimization problem as

a function of problem parameters.

See

▶Nonlinear Programming
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Introduction

Due to significant losses of life, as well as extremely

high economic costs, the prevention and improvement

of disaster response has been a continuing area of

research. OR analysts have been in the forefront

of such work and have made significant contributions

that have helped to mitigate the impact of disasters.

This article reviews some of the basic concepts related

to disaster management (DM) and summarizes many

of the topics that have been addressed.

The presentation is as follows: section one reviews

disaster definitions and types; section two focuses on the

role of DM, the concepts associated, and the stages that

are traditionally identified within DM; section three

discusses the role of the planning process; section four

reviews the related logistics issues; section five

discusses DM topics based on a sample of work from

the period 2005-2010; and the last section presents

a summary and concluding remarks.

Definition of Disaster

According to the International Federation of Red Cross

and Red Crescent Societies (IFRC), a disaster is a

sudden event that causes disruption of the normal

functioning of a community; causes human,

economic, and environmental losses; and generates

requirements that exceeds the capacity of response

using available resources.

Losses due to disasters may be of the order of

thousands of lives and billions of dollars. Kunkel,

Pielke, and Changnon (1999) give some statistics

about human and economic losses due to weather and

climate extremes in the U.S. They estimate that

between 1986 and 1995 there was an annual mean

loss of 96 lives due to floods and 20 due to

hurricanes. In the same period, the annual mean of

economic losses was $6.2 billion for hurricanes. In

2005, the National Hurricane Center estimated that

hurricane Katrina left a total of 1,200 reported

casualties, with a total damage cost of $81 billion.

Man-made disasters can also have drastic

consequences if they are purposely planned.

For example, according to the National Commission

on Terrorist Attacks upon United States, more than

2,981 people died in the attacks of 9/11. Even though

environmental disasters typically do not involve many

human casualties, they do cause great ecological

damages, e.g., the Gulf of Mexico oil spill that

affected thousands of turtles, birds, and mammals, as

reported by the International Disaster Database Web

site (in addition to the considerable monetary loss for

British Petroleum). The types of natural and man-made

disasters are listed in Fig. 1.

This classification derives partly from IFRC,

Alexander (2002), and Van Wassenhove (2006).

Natural

Technological

Biological

Meteorological

Climatoligical

Hydrological

Geophysical
Earthquakes

Landslides

Tsunamis

Volcanic Activity

Avalanches

flood

Extreme

temperatures

Drought

Wildfires

Cyclones

Storms/wave surges

Disease epidemics

Insect/animal plagues

Complex/social

   emergencies/conflicts

Industrial accidents

Transport accidents
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Fig. 1 Types of disasters
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Natural disasters may be grouped into predictable

ones, such as hurricanes, and unpredictable events,

such as earthquakes. Data about predictable disasters

are not deterministic, but some information about the

time and place of such disasters is available. Such

disasters can also be classified with respect to their

time of onset. Tornadoes happen suddenly and last

for a short period of time, while events such as

pandemics may go from a few days to several

months. These classifications become important at

the time of planning and responding: for predictable

disasters actions like evacuation or prepositioning of

supplies are possible, while for unpredictable ones,

such actions are not possible alternatives; for very

short-term disasters it is easier to estimate the amount

of resources needed to overcome the situation, where

for long-term disasters this is a more difficult task.

Figure 2 summarizes these classifications.

Role of Disaster Management

According to the IFRC, themanagement of resources and

responsibilities to respond to humanitarian needs after an

emergency is known as Disaster Management (DM).

DM can be viewed as including the strategic,

tactical, and operational activities, as well as the

personnel and technologies involved at various stages

of a disaster situation for the purpose of mitigating its

possible consequences (Lettieri et al. 2009).

The different stages involved in DM are classified

as mitigation, preparedness, response, and recovery

(McLoughlin 1985). Miller, Engemann, and Yager

(2006) provide a detailed explanation of the four DM

stages. Each of these stages is briefly discussed below

with respect to a flood disaster.

Mitigation consists of those activities that help to

reduce the long-term risk of the occurrence of

a disaster or its consequences. For a flood scenario,

mitigation would involve not building on low

lands, and creating barriers along rivers or ponds.

Preparedness refers to planning operational activities

to respond to a disaster—creating shelters,

prepositioning supplies, and evacuating people

from most dangerous locations is a way in which

preparedness may be applied for a flood setting.

The response stage includes actions that correspond

to those performed upon the occurrence of the disaster

to help affected people to overcome their needs of

essential resources or getting them out from

danger e.g., delivering supplies and rescuing people.

The recovery phase involves short and long-term

activities to restore normal functioning of the

community, as well as repairing roads and buildings.

The recovery phase should be designed in such

a way that it contributes to mitigation efforts. For the

flood example, rebuilt houses should not be located in

lands known to be highly exposed to floods. This is

how DM could be viewed as a cycle created by the link

of mitigation and recovery activities. In general, the

different stages of DM require a previous planning

process to coordinate all the ulterior actions that

would be performed. In addition, a logistic process is

involved mainly, but not exclusively, for the

preparedness and response phases.

Disaster Management and Planning Process

The Oxford English Dictionary defines the verb “to

plan” as meaning “to devise, contrive, or formulate

(something to be done, or some action or proceeding

to be carried out.)” For DM, Alexander (2002)

distinguishes emergency planning in terms of long

and short-term. The former gives the context for the

latter. It involves forecasting, warning, educating, and

training people for the event of a disaster. It includes

the study of patterns to predict the possible time and

place at which a disaster could occur. Seasonal natural

disasters, such as tropical storms in the Caribbean, are

examples. The concept of long-term planning is related

Criteria

Cause

Onset

Detection

Classification

Natural

Technological

Sudden

Slow

Predictable

Unpredictable

Disaster Management: Planning and Logistics,

Fig. 2 Disaster classification
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to the definition of emergency planning given by Perry

and Lindell (2003) for whom emergency planning

focuses on the two objectives of hazard assessment

and risk reduction. The purpose of short-term

planning is to guarantee the prompt deployment of

resources where and when needed.

Alexander (2002) describes an outline of the

methodological components of an emergency plan

and includes a generic emergency planning

model. The planning process may be summarized as

gathering information, managing and analyzing it,

extracting some conclusions and actions to be

developed, and communicating the resulting plan to

the staff involved.

Disaster Management and Logistics

Several definitions are used for the term logistics. Van

Wassenhove (2006) gives a brief and illustrative

review of some of these definitions as applied to

business, military, and humanitarian DM logistics. In

summary, logistics, when applied to DM, is referred to

as the storage and deployment of resources and

information, as well as the mobilization of people in

an effective way to reduce the impact of the disaster.

Kovács and Spens (2007) and VanWassenhove (2006)

reflect upon the comparison between business and

humanitarian DM logistics. However, despite the

differences, business and humanitarian logistics are

intrinsically related and they both refer to a process

that includes planning, distribution and transportation,

storage, location and supply chain management

(SCM).

In what follows, some common problems related to

planning and logistics in DM and OR are discussed.

OR and DM

A survey of OR research related to DM since 2005 was

conducted. A total of 222 items in journals, books,

book chapters, and conference papers were reviewed.

A finding was that topics of planning and logistics in

DM attracted most of the attention. For planning, the

most common topics were evacuation and risk

analysis. General humanitarian logistics was a topic

addressed in terms of (i) transportation, (ii) inventory,

(iii) location analysis, and (iv) humanitarian logistics

(in general). Material from (i) to (iii) are referred to as

specific activities inside the concept of logistics, while

that from (iv) considers logistics as a whole or that

combines different aspects of humanitarian logistics.

Other topics of logistics are reviewed separately

because they constitute a widely studied topic as is

the case for transportation that includes research on

routing, traffic and network management.

Even though there were many other topics of OR

interest in the reviewed research such as demand

forecast, business continuity, and hospital capacity,

the topics mentioned earlier represent the main

streams that were studied. In the following sections,

the topics will be discussed separately focusing on the

relationship to DM phases, methodologies, objectives,

and real-life applications.

Evacuation: The major way for reducing the

potential population affected by a disaster is

evacuation. An evacuation typically involves

mobilizing people from endangered zones to safer

ones, which includes routing strategies and

preparation of shelters, among other activities. This

process is mostly associated with the preparedness

phase of DM, and, therefore, to the planning

processes. However, some related work for real-time

decisions may be linked to the response phase

(Chiu and Zheng 2007). For predictable disasters, it

is possible to develop evacuation plans to be performed

before the disaster strikes; no pre-disaster-evacuation

planning is possible for unpredictable disasters.

The most common objective in evacuation research

was minimizing the evacuation time of the total

affected population (Chen and Zhan 2008).

Other objectives included maximizing the total

number of evacuees during a given evacuation time

(Miller-Hooks and Sorrel 2008), maximizing the

minimum probability of reaching an exit for any

evacuee (Opasanon and Miller-Hooks 2009),

and minimizing total system travel time (Chiu et al.

2007). Some studies considered multiple objectives.

In Saadatseresht, Mansourian, and Taleai (2009)

the objectives were to minimize travel distance,

evacuation time, and overload capacity of safe areas.

Stepanov and Smith (2009) provide a critique of

performance measures for evacuation that include

clearance time, total traveled distance, and blocking

probabilities.

Simulation was the most used method to solve

evacuation problems. Bonabeau, (2002) and
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Chen and Zhan, (2008) used agent-based simulation—

the process in which entities termed autonomous

agents assess their situations and make decisions

according to a set of rules(say something about

validation). Other studies developed multi-level

models (Liu et al. 2006), queue analysis (Stepanov

and Smith 2009), mixed integer linear programming

(Sayyady and Eksioglu 2010); others used Cell

Transmission Models (Chiu et al. 2007), and genetic

algorithms (Miller-Hooks and Sorrel 2008).

Most of the studies employed real data to validate

their results. For example, Chen, Meaker and Zhan

(2006) developed a simulation model for evacuating

the Florida Keys under a hurricane setting.

They considered two questions: one related to the

time for evacuating the total population, while

the other considered how many residents would need

to be accommodated if evacuation routes were

impassable. The authors used a previous study as

a reference for comparing the results of their model.

However, no validation based on real evacuation times

is reported.

Risk Analysis: DM risk analysis is mainly

concerned with quantifying the risk of the occurrence

of an undesirable event, as well as developing

measures to diminish the impact of a disaster. Risk

analysis is mainly a planning tool related to the

mitigation. The objectives of the DM risk analysis

studies were forecasting, infrastructure planning and

design, vulnerability, and analysis of uncertainty, as

discussed next.

In relation to forecasting, Hu (2010) uses

a Bayesian approach to analyze flood frequencies.

Infrastructure planning and design based on risk

analysis refers in some cases to making the

infrastructure (buildings, networks, supply chains,

etc.) more resistant to disaster damages and

disruptions, and to building physical barriers or

diversions to diminish the impact of a disaster on an

endangered community. Snyder et al. (2006) reviewed

several models for designing supply chains resilient to

disruptions. These models considered costs from the

business point of view, with objectives, in most of

the cases, being the minimization of the expected or

the worst case cost. Li, Huang and Nie (2007) used

a model for flood diversion planning under uncertainty

where, among the objectives considered, was the

minimization of risk of system disruption.

Vulnerability relates to the way in which current

systems are affected by damages. Matisziw and

Murray (2009) maximized system flow for

a disrupted network. Barker and Haimes (2009)

focused on a sensitivity analysis of extreme

consequences due to uncertainties on the parameters,

and Xu, Booij and Tong (2010) analyzed the sources of

uncertainty in statistical modeling.

Probability and statistics were the main methods

used to analyze risk analysis. In the case of Li,

Huang, and Nie (2007) the authors used a

methodology that combines fuzzy sets and stochastic

programming. Another example in which fuzzy sets

have been incorporated into risk analysis is given by

Huang and Ruan (2008). In this DM area, even though

some researchers used real data to develop numerical

examples, complete case studies were rare.

Transportation: Transportation problems

typically deal with routing, vehicle schedule, traffic,

and network management. The problems may be to

transport goods to provide relief supplies, evacuate

people from endangered areas, or movement of

resources such as medical staff to areas where their

services are required.

For transportation analyses, as applied to DM, there

are a wide variety of objectives related to the efficiency

of delivery times. Campbell, Vandenbussche, and

Hermann (2008) considered two objectives for

minimizing the arrival times of relief to demand

points. Similarly, Yuan and Wang (2008) minimized

the total travel time through a path selection

methodology, while Jin and Ekşioğlu (2008)

minimized vehicle delay.

Methods used included mathematical programming

and its derivates, such as stochastic and integer

programming, Campbell, Vandenbussche, and

Hermann (2008) and Yuan and Wang (2009). Jotshi,

Gong and Batta (2009) used the HAZUS program to

develop a post-earthquake scenario in Los Angeles.

[HAZUS is a computer-based system created and

distributed via the Web by the Federal Emergency

Management Agency (FEMA) for estimating

potential losses caused by earthquakes, floods and

hurricanes].

Inventory: Traditionally, in the commercial area,

inventory analyses address a number of areas:

materials, components, work-in-process, and finished

goods (Nahmias 2009). But, businesses may use

inventory theory to pre-analyze forecasted disasters,

e.g., Taskin and Lodree (2011) developed an inventory
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model for a manufacturing facility whose demand

could be impacted by a potential storm. This might

also be appropriate for DM in the case of items such

as canned food, lamps, and coolers. In general,

humanitarian logistics inventory concerns are mostly

related to the prepositioning or early acquisition of

relief goods. Decisions related to inventory problems

fit better in the preparedness phase of DM, but they

may affect directly the effectiveness of the response

phase if a shortage of inventory occurs.

Most of the inventory-oriented papers shared one

common objective: minimize expected cost. This cost

may be expressed as a loss function (Taskin and

Lodree 2011) or may be a composition of traditional

inventory costs including the cost per order, holding

inventory cost, and back-order cost (Beamon and

Kotebla 2006). Salmerón and Apte (2010)

developed a two-stage model for a humanitarian

logistics for optimally allocating a budget for

acquiring and positioning relief assets. Two

objectives were pursued: minimization of the

expected number of casualties, and minimization of

the expected amount of unmet transfer population.

Here, casualties were the result of seriously injured

people who were not served promptly by medical

staff, and people needing relief supplies who do not

get them on time. On the other hand, transfer

population represent people who are not in a critical

condition, but still need to be evacuated to relief

centers. Unmet transfer population applies when

these people are not promptly evacuated.

DM inventory problems were analyzed using

stochastic optimization combined with statistical

tools such as Bayesian methods. Taskin and Lodree,

(2011) present some numerical examples with

simulated data, while other research used

hypothetical data from previous studies.

Location: In general, location analysis deals with

problems of siting facilities in a given area (ReVelle

and Eiselt 2005). Such problems are commonly

classified by businesses as strategic, i.e., a type of

decision whose effects are expected to last for a long

period due to the fixed cost of opening a facility, and/or

changing the location of a facility may be a very

expensive. In humanitarian logistics, however,

location analysis may be best defined as a tactical

decision, as most often it considers locating

temporary shelters and warehouses where relief

assets may be kept safe. These facilities generally

consist of existing sites suitable, such as schools,

stadiums, or churches.

Depending on the objectives pursued, results from

location analysis may set the framework for ulterior

decision problems such as: where to store

prepositioned supplies; given the location of such

relief supplies, how they would be distributed;

where the evacuees will be directed to; and where

to locate emergency vehicles or provisional health

centers. Location analysis may be more accurately

relate to the preparedness phase of DM. But, it could

also be associated to the mitigation phase for locating

facilities in low-risk areas, or, based on the disaster,

in the response phase to improvise additional shelters

or medical centers other than those that were

planned.

Facility location applied in the preparedness phase

is discussed by Balcik and Beamon (2008) who sought

to locate distribution centers and determine the amount

of supply to preposition at such centers to maximize

the total expected demand covered. Lee et al. (2009)

studied multiple dispensing points to service a large

population searching for prophylaxis, with the

objective to minimize the maximum expected

traveled distance.

For the mitigation phase, Berman et al. (2009)

analyzed where to locate p facilities to maximize

coverage on a network whose links could be

destroyed. Beraldi and Bruni (2009) studied

the location of emergency vehicles under congested

settings with the objective of minimizing cost.

Most of the DM location analysis research used

mixed integer programming (MIP) and, in some

cases, applied heuristic methods to help determine

the solution of large problems (Berman et al. 2009).

Other studies used stochastic programming models

(Beraldi and Bruni 2009), or simulation to generate

potential scenarios so as to compare the model results

to actual data form a case study (Afshartous et al.

2009).

Logistics Models Overview

DM logistics involves several activities that include

planning, warehousing, location, and distribution,

among other elements. Some studies combined one

or more of these activities, with others focused on an

integrated and general concept of logistics.
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Kovács and Spents (2007) and Van Wassenhoven

(2006) describe humanitarian logistics as a whole.

They sought a better understanding of planning and

carrying out of logistics in disaster relief through

a literature review. Van Wassenhoven presents

a parallel between private and humanitarian logistics,

and also proposes some guidelines for developing

a better preparedness strategy for the latter.

Yi and Özdamar (2007) define an integrated

capacitated location-routing model. Their model was

designed to coordinate the distribution of relief

material and the transportation of evacuees to

emergency units selected through location analysis.

The objective was to minimize the relationship

between the weighted sum of unsatisfied demand

and the weighted sum of wounded people at

temporary and permanent emergency units using

a two stage MIP model.

Chang, Tseng and Chen (2007) analyze

a combination of location and transportation: the

coordination activities related to rescue logistics

efforts under a flood setting in an urban area. They

consider the location of rescue resource inventory,

allocation and distribution of rescue resources, and

the structure of rescue organizations. Using two

models, they first classified the rescue areas

according to levels of emergency with the objective

of minimizing the shipping cost of rescue equipments;

the second model was a two stage stochastic-

programming model that minimized set-up cost of

storehouses and rescue equipment costs.

Yan and Shih (2009) developed a model for

roadway repair scheduling and subsequent

distribution of relief supplies. The objective was the

minimizing the total expected time for repair and

distribution using a MIP model. A related study in

which a distribution system is modeled as a supply

chain where the echelons are the relief suppliers,

relief distribution centers, and relief demanding areas

is described in Sheu (2007). Here, the objective was to

minimize the expected cost of relief distribution during

the three days following the onset of the disaster using

a hybrid fuzzy-clustering method.

Balcik, Beamon and Smilowitz (2008) studied what

is termed the last mile relief distribution, i.e., the

distribution of relief assets from distribution centers

to final demand. Their model dealt with the allocation

of relief supplies to local distribution centers, and the

delivery of schedules and routes for distributing

vehicles. Their MIP model minimized the expected

cost of distribution that included routing costs and

a penalty for unmet demand.

Concluding Remarks

This article presented an overview of DM focused on

planning and logistics. It is clear that planning and

logistics are inseparable, intrinsically related, and

both present in different phases of DM. These phases

should be performed in a cyclic fashion so that the

recovery efforts should also pursue mitigation

objectives. Related research showed that many OR/

MS-based studies have been directed at improving

the effectiveness and efficiency of DM. The impetus

for this is probably due to the catastrophic events of the

Twin Towers attack in 2001, the 2004 tsunami in the

Indian Ocean, and hurricane Katrina in 2005. These

events have contributed to generating an increasing

concern of reducing both the risk of such disasters

happening and diminishing their consequences.

A comparison between humanitarian and business

logistics highlighted both their differences as well as

their commonalities.

The main topics found from the review of OR/MS

research, as related to DM, appear to be evacuation,

risk analysis, and logistics. The following remarks

with respect to these main topics are based on

a review of a fraction of the available literature in

this area; it is felt, however, that they do represent an

accurate view of the state of the art in this growing

field, circa 2011.

In general, the evacuation problems showed that the

main concern was the minimization of evacuation

time. Some researchers stated that one of the

important limitations of such studies was predicting

the behavior of evacuees—many variables would have

to be considered, as well as social context of the

evacuated population. Peacock, Morrow, and

Gladwin (1997) analyzed how some people may not

respond to evacuation measures before a disaster

strikes as a function of their ethnic origin or their

socio-economic level. The authors’ main conclusion

dealt with the perception the evacuee population may

have about authorities who may stop them from

following pre-disaster evacuation orders.

Risk analysis has proved to be a useful concept

when planning for disasters, especially during the
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mitigation phase. A problem is the difficulty of

enumerating the possible risk scenarios. Moreover,

many studies are based on statistical analyses to

historical data, but in some occasions, the events

being studied are so infrequent that no reliable

analysis can be achieved.

For humanitarian logistics research, a distinction

was made between transportation, location analysis,

inventory, and humanitarian logistics, in general.

A limitation that may arise in a transportation study

is the inability to incorporate the presence of

congestion, even though some studies do, see for

example Beraldi and Bruni (2009). Inventory theory

has been used by both business and humanitarian

logistics to better prepare for disasters, including, as

well, location analysis problems from business being

applied in humanitarian location settings.

The research papers reviewed referred mainly to

the preparedness phase of DM, followed by response

and mitigation phases; no work was found related to

the recovery phase. Altay and Green, (2006) noted

the lack of OR studies related to recovery efforts in

comparison to the other phases. Another aspect in

which the findings obtained here agree with the

ones presented by Altay and Green (2006) is that

most of the studies reviewed consists of the

development of models, rather than theoretical

studies or application tools such as software. For

the disasters most commonly studied, there was not

a clear reference to man-made disasters such as

terrorist attacks; the case studies always dealt with

natural disasters.

For DM, an important challenge for the OR/MS

community “is to develop a science of disaster

logistics that builds upon, among others, private

sector logistics and to transfer to private business the

specific core capabilities of humanitarian logistics,”

(Van Wassenhove 2006).

See

▶ Inventory Modeling

▶Linear Programming

▶Logistics and Supply Chain Management

▶Risk Assessment

▶ Scheduling and Sequencing

▶ Simulation of Stochastic Discrete-Event Systems

▶Vehicle Routing
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Discrete-Time Markov Chain (DTMC)

A discrete-time, countable-state Markov process. It is

often just called a Markov chain.

See

▶Markov Chains

▶Markov Processes

Disease Prevention, Detection, and
Treatment

Jingyu Zhang1, Jennifer E. Mason2, Brian T. Denton3

and William P. Pierskalla4

1Philips Research North America, Briarcliff Manor,

NY, USA
2University of Virginia, Charlottesville, VA, USA
3University of Michigan, Ann Arbor, MI, USA
4University of California, Los Angeles, CA, USA

Introduction

Advances in medical treatment have resulted in

a patient population that is more complex, often with

multiple diseases, competing risks of complications,

and medication conflicts, rendering medical decisions

harder because what helps one patient or condition

may harm another. The use of Operations Research

(OR) methods for the study of healthcare has a long

history. Furthermore, there is a growing literature on

emerging applications in this area. This article

provides examples of contributions of OR methods,

including mathematical programming, dynamic

programming, and simulation, to the prevention,

detection, and treatment of diseases. More extensive

surveys of OR studies of health care delivery,

including medical decision making, can be found in

Pierskalla and Brailer (1994), Brandeau et al. (2004),

and Rais and Viana (2010).

Advances in medical treatment have extended the

average lifespan of individuals, and transformed many

diseases from life threatening in the near term to

chronic conditions in need of longterm management.

Many new applications of OR are emerging as

treatment options and population health evolve over

time. For example, new treatments have become

available for various forms of cancer, HIV, and heart

disease. In some cases, patients are living decades with

diseases that previously had low short-term survival

rates. As a result, more patients are living with

co-morbid conditions, and competing risks, creating

challenging decisions that must balance the downside

of treatment (e.g., medication side effects and

long-term complications) with the benefits of

treatment (e.g., longer life expectancy and better

quality of life).

Diabetes is a good example of a chronic disease for

which medical treatment is complex. With nearly 8%

of the U.S. population estimated to have diabetes, it is

recognized as a leading cause of mortality and

morbidity. It is associated with long-term

complications that affect almost every part of the

body, including coronary heart disease (CHD),

stroke, blindness, kidney failure, and neurological

disorders. For many patients, diabetes might be

prevented through improved diet and exercise.

However, due to the slow development of symptoms

in many patients, diabetes can go undetected for years.

For patients that are diagnosed with diabetes, risk

models exist to predict the probability of

complications, but alone these models do not provide

optimal treatment decisions. Rather, they provide raw

data that can be used in OR models to make optimal

treatment decisions. This general situation is true of

many chronic diseases. As a result, there are many

emerging opportunities for applications of OR to

disease prevention, detection, and management.

This article is organized as follows. The section on

Disease Prevention and Screening describes

important contributions of OR to disease

prevention, including vaccination and screening

methods for detecting disease in a population of

potentially infected people. The section on

Treatment Choices focuses on applications to long-

term management of chronic diseases, including

selection among multiple treatment choices, and

decisions about timing and dosage of treatment. The

section on Emerging Applications reviews some

emerging applications to real-time decision making

at the point of care and patient decision aids. Finally,

research opportunities are discussed in the

Conclusions section.
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Disease Prevention and Screening

Prevention and screening are important factors in

determining overall population health. OR has been

applied to help inform decisions related to prevention

and screening for decades. Two major topics in this

area, that are prominent in the OR literature, are

vaccination and disease screening. Vaccination

emphasizes the prevention of infectious diseases,

while disease screening is common for both

non-infectious and infectious diseases. Each of these

topics will be discussed in detail in this section.

Vaccination

The biological and genetic sciences have greatly

increased the knowledge of how viruses and bacteria

operate within the body to create disease. This has led

to the discovery of many new vaccines. However, the

myriad interactions as well as controversy about their

effects on individuals, and an overall population, have

drawn considerable public attention. These

interactions and effects present several challenges in

the utilization of the vaccines for disease control. First,

there are a large number of diseases for which effective

vaccines are available. Some have specific

requirements, such as multiple doses that must be

administered within a minimum or maximum time

window. Also, some have conflicts with other

vaccines. Second, many new vaccines are coming on

the market, including combination (multi-valent)

vaccines that can cover multiple diseases. Third, for

some diseases there is uncertainty about the future

evolution of epidemic strains, leading to questions

about optimal design of vaccines. Finally, there are

challenges in the vaccine manufacturing process

including uncertain yields, quality control, supply

chain logistics, and the optimal storage location of

vaccine supplies. OR models have been applied to

address many of these challenges.

Pediatric Vaccination

Pediatric or childhood vaccination is the most common

means of mass vaccination. OR researchers have

developed models to aid in the selection of a vaccine

formulary, pricing of vaccines, and design of

vaccination schedules. Jacobson et al. (1999)

proposed integer-programming models to determine

the price of combination vaccines for childhood

immunization. Their models considered all available

vaccine products at their market prices and constraints

based on the U.S. national recommended childhood

immunization schedule. Their objective was to find

the vaccine formularies with the lowest overall cost

from the patient, provider, and societal perspectives.

Their integer-programming models considered the

first five years of the recommended childhood

immunization schedule against six diseases. They

used binary decision variables to denote whether

a vaccine is scheduled for a particular month’s visit.

In a later study, Jacobson et al. (2006) investigated

a pediatric vaccine supply shortage problem to assess

the impact of pediatric vaccine stockpile levels on

vaccination coverage rates of the guidelines during

supply interruption. Their model was similar to

inventory models that consider stock-outs, as well as

lot sizing problems with machine breakdowns.

Objectives of their model included optimizing service

level and minimizing a standard loss function. Using

their model, they concluded that the guidelines are

only sufficient to mitigate a vaccine production

interruption of eight months.

Hall et al. (2008) considered a childhood

vaccination formulary problem that allows

for combination vaccines. They proposed an

integer-programming model to minimize the cost of

fully immunizing a child under the constraints of

a recommended schedule. They proved their

proposed model is NP-hard. They proposed exact

algorithms using dynamic programming and

heuristics for approximating near optimal solutions to

their model. Engineer et al. (2009) further investigated

an extension that involves catch-up scheduling for

childhood vaccination. They provided details of

a successful implementation of their model as

a decision support system.

Flu Vaccination

Some diseases evolve rapidly over time, necessitating

frequent vaccination on a regular basis. For example,

the composition of seasonal flu vaccine changes every

year. Wu et al. (2005) proposed a model for flu vaccine

design. They used a continuous-state discrete-time

dynamic-programming model to find the optimal

vaccine-strain selection policy. In their dynamic

program, the state was represented by the antigenic

history, including previous vaccine and epidemic

strains. The decision variable (action) was the

vaccine strain to be selected, and the reward is the
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cross-reactivity representing the efficacy of

the vaccine. The objective was to maximize the

expected discounted reward. Approximate solutions

were obtained by state-space aggregation and

compared to an easy to-implement myopic policy

based on approximating the multi-stage problem by

a series of single period problems. They compare

policies suggested by their model to theWorld

Health Organization (WHO) recommended policy.

Based on their results, the authors suggested that the

WHO policy is reasonably effective and should be

continued.

Vaccination for Bio-defense

OR researchers have contributed to problems related to

vaccination strategy for bio-defense. For instance,

Kaplan et al. (2003) analyzed bio-terror response

logistics using smallpox as an example. The authors

proposed a trace vaccination model using a system of

ordinary differential equations (ODEs) incorporating

scarce vaccination resources and queueing of people

for vaccination. An approximate analysis of the ODEs

yields closed-form estimates of numbers of deaths and

maximum queue length. They also obtained

approximate closed-form expressions for the total

number of deaths under mass vaccination. Using

these results, approximate thresholds for controlling

an epidemic were derived.

Kress (2006) also considered the problem of

optimizing vaccination strategy in response to

potential bio-terror events. The author developed

a flexible, large-scale analytic model with discrete-

time decisions. The author used a set of difference

equations to describe the transition of the number of

people at each epidemic stage and proposed

a vaccination policy, which is a mixture of mass and

trace vaccination policies.

Other Vaccination Related Problems

Several other vaccine-related problems have been

investigated by OR researchers. For example, vaccine

allocation problems must consider criteria and

constraints related to vaccine manufacturing and

supply chain logistics. Becker and Starczak (1997)

formulated the optimal allocation of vaccine as

a linear-programming problem. Their objective was

to prevent epidemics with the minimum required

vaccine coverage. Their linear-programming model

considered heterogeneity among individuals and

minimized the initial reproduction number for

a given vaccination coverage. The optimal vaccine

allocation strategy suggested more individuals need

to be vaccinated in larger households.

Disease Screening

Disease screening is important in extending life

expectancy and improving people’s quality of life.

Effective screening can also reduce costs to the

healthcare system by avoiding the high costs

associated with treatment of late-stage disease.

However, when and how to screen for a specific

disease is a complex decision. For instance, model

formulation is often difficult due to unclear pathology

and risk factors, uncertainty in disease staging and the

relationship to symptoms and test results, and the

trade-off between the benefit of early detection and

the side effects and costs of screening and treatment.

The types of OR methods employed depend on

whether the disease is non-infectious or infectious.

Following are several examples from each category

of diseases.

Non-infectious Disease Screening

Modeling disease progression among different

stages throughout a patient’s lifetime, as well as the

trade-off between pros (e.g., longer life expectancy

and better quality of life) and cons (e.g., side effects

and costs of over-diagnosis and over-treatment) of

disease screening are central to non-infectious

diseases. Shwartz (1978) proposed one of the first

models for breast cancer screening to evaluate and

compare alternative screening strategies. Their

stochastic model consisted of a discrete set of

breast cancer disease states and criteria including

life expectancy and the probability of diagnosis.

A significant amount of research on breast cancer

screening has developed; see Mandelblatt et al.

(2009) for a review of breast cancer screening

models.

Eddy (1983) presented a general model of

monitoring patients with repeated and imperfect

medical tests. The model considered clinical and

economic outcomes such as the probability of

detecting a disease, the method and timing of

detection, the stage at which the disease is detected,

costs, and the benefit of screening based on the
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willingness to pay. The model incorporated disease

incidence, the natural history of disease progression,

the effectiveness of tests and subsequent treatments,

and the order and frequency of tests. The model was

illustrated using a hypothetical example. The model

had subsequently been applied in clinical practice to

several cancer screening problems.

To capture uncertainty in identifying disease states,

OR techniques such as partially observable Markov

decision process (POMDP) have been applied. For

example, Zhang et al. (2012) developed a POMDP

model for prostate cancer screening. Due to the slow

growing nature of prostate cancer, the imperfect nature

of diagnostic tests, and the quality of life impact of

treatment, whether and when to refer a patient for

biopsy is controversial. The objective of their model

was to maximize the quality adjusted life expectancy

and minimize the costs of screening and treatments.

They assumed that cancer states are not directly

observable, but the probability a patient has cancer

can be estimated from their PSA test history.

A control-limit type policy of biopsy referral and the

existence of stopping time of prostate cancer screening

were proven. The authors compared policies suggested

by their model, to commonly recommended screening

policies, and concluded there may be substantial

benefits from using prostate cancer risk to make

screening decisions.

Screening for disease is greatly influenced by the

diagnostic accuracy of the tests. An example of work

done in this area is given by Rubin et al. (2004) in

which the authors used a Bayesian network to

assist mammography interpretation. Interpreting

mammographic images and making correct diagnoses

are challenging even to experienced radiologists.

False-negative interpretations can cause delay in

cancer treatment and lead to higher morbidity and

mortality. False positives, on the other hand, result in

unnecessary biopsy causing anxiety and increased

medical costs. The American College of Radiology

developed BI-RADS which is a lexicon of

mammogram findings and the distinctions that

describe them. The authors showed that their

Bayesian network model may help to reduce

variability and improve overall interpretive

performance in mammography.

Many other diagnostic areas have been addressed

including gastrointestinal diseases, neurological

diseases, and others.

Infectious Disease Screening

In infectious diseases screening, one of the goals

is to prevent an epidemic outbreak. Therefore,

disease progression and communication throughout

a population is an important consideration.

Lee and Pierskalla (1988) proposed a

mathematical-programming model for contagious

diseases with little or no latent periods. The objective

of their model was to minimize the average number of

infected people in the population. Their model was

converted to a knapsack problem. They considered

both perfect and imperfect reliability of tests and

showed the optimal screening policy has equally

spaced screening intervals when the tests have perfect

reliability.

Disease screening problems often involve multiple

criteria, stemming from the patient, provider, and

societal perspectives. For example, Brandeau et al.

(1993) provided a cost-benefit analysis of HIV

screening for women of childbearing age based on

a dynamic compartmental model incorporating

disease transmission and progression over time. The

model was formulated as a set of simultaneous

nonlinear differential equations. The authors found

the primary benefit of screening is to prevent the

infection of their adult contacts, and that screening of

the medium to high risk groups may be cost-beneficial,

but it is not likely to be cost-beneficial for low

risk women.

Blood screening tests have been used to improve the

quality of the blood supply. An early example to

improve the performance of testing strategies in the

1980s was provided by Schwartz et al. (1990) for

screening blood for the HIV antibody, and making

decisions affecting blood donor acceptance. At the

time the work was done, limited knowledge was

available about the biology, epidemiology, and early

blood manifestations of HIV. Furthermore, the initial

and conditional sensitivities and specificities of

enzyme immunoassays and Western blot tests had

wide ranges of errors. A decision tree, with the

decisions probabilistically based on which screening

test to use, and in what sequence, was used to minimize

the number of HIV infected units of blood and blood

products entering the nation’s blood supply subject to

a budget constraint. The model was used at a meeting

of an expert panel of the U.S. National Heart Lung and

Blood Institute to inform the panelists who were

deciding which blood screening protocol to
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recommend. The model provided outputs including:

expected number of infected units entering the blood

supply per unit time, expected number of uninfected

units discarded per unit time, expected number of

uninfected donors falsely notified, and the

incremental cost among screening regimens.

Efficiency of screening can be a defining factor in

the success or failure of proposed screening methods.

Wein and Zenios (1996) proposed models for pooled

testing of blood products for HIV screening.

Optimization of pooled testing involves decisions

such as transfusion, discarding of samples in the pool,

and division of the pool into sub-pools. Several models

were proposed to minimize the expected costs. The

outcome of an HIV test was measured by an optical

density (OD) reading, a continuous measurement

which is determined by the concentration of the

antibodies. The states of the system were the previous

history of the OD readings. A dynamic-programming

model with a discretized state space and a heuristic

solution algorithm were introduced to obtain near

optimal solutions. The policy obtained by the

heuristic algorithm was proposed as a cost-effective,

accurate, and relatively simple alternative to the

implemented HIV screening policies.

Treatment Choices

The following section focuses on treatment decisions

for patients with chronic diseases such as diabetes,

HIV, cancer, and end-stage renal disease. Treatment

of patients with chronic diseases is often complex due

to the long-term nature of the illness and the future

uncertainty in patient health. Complicating matters,

these patients may have other comorbidities that need

to be taken into account when treatment decisions are

made. In the following section, two areas related to

choice of treatment are presented where OR is used to

address challenges related to drug treatment decisions

and organ transplantation for patients with chronic

conditions.

Drug Treatment Decisions

Many diseases involve complex drug treatment

decisions, particularly for chronic conditions.

Decisions about which medications to initiate, when

to initiate treatment, and the appropriate dosage are of

primary importance. Additional challenges arise from

the fact that there is uncertainty about the future health

of the patient, adherence to treatment, and the efficacy

of drugs for a particular patient. Treatment decisions

must also take into account the often irreversible

nature of treatment decisions. Many treatment

optimization models employ the use of a natural

history model of the disease and all-cause mortality,

incorporating the influence of competing risks into the

treatment decision.

Choice of Treatment

When there are multiple candidate treatments

available, the choice of treatment may be unclear. OR

techniques have been used to select treatments. For

example, Pignone et al. (2006) presented a Markov

model to select among aspirin, statins, and

combination treatment, for the prevention of coronary

heart disease (CHD). The model simulated the

progression of middle-aged males with no history of

CHD. The model was used to estimate cost per

quality-adjusted life year (QALY) gained. The

authors found that aspirin dominates no treatment

when a patient’s ten-year risk of CHD is at least

7.5%. If a patient’s risk is greater than 10%,

combination treatment is recommended.

Hazen (2004) used dynamic influence diagrams to

analyze a chain of decisions as to whether a patient

should proceed to total hip replacement surgery or not.

The objective in making this decision was to calculate

the optimal expected costs and QALYs under each

choice. The use of QALYs for the objective was

important because an older person undergoing hip

replacement may not have more expected years of

life relative to not doing surgery, but the quality of

life improvement can be considerable and, quite

possibly, worth the cost.

Timing of Treatment

With chronic conditions that can span many years, the

optimal time to initiate particular treatments may be

unknown. There have been several studies that

researched the optimal timing of treatment. Two

models relate to the optimal timing of HIV treatment.

This question is of particular interest since patients that

begin HIV treatment will only be able to use the drug

for a limited amount of time, as the virus builds up

resistance to the drug. Shechter et al. (2008) used

a Markov decision process (MDP) model to find the

optimal time to initiate HIV therapy, while
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maximizing the patient’s quality of life. At monthly

decision epochs, the decision was made to initiate

therapy or wait until the next month to decide. The

health states were based on the number of CD4 white

blood cells, the primary target of HIV, and the reward

was the expected remaining lifetime in months. They

assumed a stationary infinite horizon model and found

that if it is optimal to initiate treatment at a given CD4

count, it is also optimal to initiate treatment for patients

with higher CD4 counts. The model supported earlier

treatment, despite trends toward later treatment.

Braithwaite et al. (2008) analyzed the timing of

initiation based on CD4 counts for varying viral

loads. They used a simulation to compare different

CD4 count treatment thresholds for initiation of

therapy. The model compared life expectancy and

QALYs for the different strategies of initiation. In

agreement with Shechter et al.’s finding, the

simulation suggested that the use of earlier initiation

of treatment (higher CD4 count thresholds) results in

greater life years and QALYs.

Agur et al. (2006) developed a method to create

treatment schedules for chemotherapy patients using

local search heuristics. The model simulated cell

growth over time and finds two categories of drug

protocols: one-time intensive treatment and a series

of nonintensive treatments. Chemotherapy schedules

were evaluated based on a patient’s state at the end of

a given time period, number of cancer and host cells,

and the time to cure. Simulated annealing, threshold

acceptance, and old bachelor acceptance—a variant of

threshold acceptance in which the trial length is set by

users—were used to obtain better treatment schedules.

The authors reported good results with all three

techniques, but they showed simulated annealing

resulted in the greatest computational effort.

Denton et al. (2009) investigated the optimal timing

of statin therapy for patients with type 2 diabetes. This

problemwas formulated as a discrete time, finite horizon,

discounted MDP in which patients transition through

health states corresponding to varying risks of future

complications, their history of complications, and death

from other causes unrelated to diabetes. The objective

was to maximize reward for QALYs minus costs of

treatment. The optimal timing of treatment for patients

was determined using three published risk models for

predicting cardiovascular risk. The earliest time to start

statins was age 40 for men, regardless of which risk

model was used. However, for female patients, the

earliest optimal start time varied by 10 years, depending

on the riskmodel.Mason et al. (2012) extended this work

to account for poor medication adherence. The authors

used a Markov model to represent uncertain future

adherence after medication was initiated. They

observed that the optimal timing of statins should be up

to 11 years later for patients with uncertain future

adherence. However, they also found that improving

adherence has a much larger effect on QALYs than

delaying the timing of initiation.

Paltiel et al. (2004) constructed a simulationmodel to

treat asthma. The model forecasted asthma-related

symptoms, acute exacerbations, quality adjusted life

expectancy, health-care costs, and cost-effectiveness.

Their intent was to reduce asthma manifestations,

improve life quality, and reduce costs of care. The

authors pointed out that similar models could be

constructed for the control of other subpopulation-wide

diseases such as obesity, smoking, and diabetes.

A great deal of work has also been done on

modeling CHD interventions. Cooper et al. (2006)

provided an excellent review of many models used

for this disease. Most of the models reviewed by the

authors are decision trees, Markov processes, or

simulation models. Decisions included when and

what types of interventions, and what types of drugs

to employ, at various stages of disease.

Dosage of Treatment

Given a particular treatment has been selected, the

appropriate dosage must be determined. He et al.

(2010) provided a discrete-state MDP model for

determining gonadotropin dosages for patients

undergoing in vitro fertilization-embryo transfer

therapy. This work focused on patients with the

chronic condition of polycystic ovaries syndrome that

tend to be more sensitive to the gonadotropin

treatment. The resulting policies from the MDP

model were evaluated through simulation to

determine the impact of misclassifying patients. In

general, the use of OR techniques can be used to

provide a better starting dosage with less fine tuning

needed after initiation of treatment.

Dosage decisions are also important in radiation

treatment planning. Several studies have focused on

radiotherapy for cancer using mathematical

optimization techniques. Although the vast majority

of these treatment plans are designed by clinicians

through intelligent trial and error, it is becoming

D 442 Disease Prevention, Detection, and Treatment



essential to use optimization for extremely

complicated and complex plans. Holder (2004) used

linear programming for intensity modulated

radiotherapy treatment (IMRT). Ferris et al. (2004)

discussed various optimization tools for radiation

treatment planning. In both of these papers, the

objective was to deliver a specified dose to the target

area (above a minimum and below a maximum level of

dosage) and spare or minimize damage to surrounding

healthy tissue and nearby critical body structures and

organs.

Organ Transplants

End-stage liver disease (ESLD) and end-stage renal

disease (ESRD) have received a great deal of study in

the OR literature. They are chronic conditions that

can result in patients eventually needing liver or

kidney transplants, respectively. Chronic liver

disease or liver failure can result from many causes,

including liver cancer and chronic hepatitis. Often,

initial treatment of liver failure attempts to manage

the underlying cause, followed by intensive care and

management of complications such as bleeding

problems. If patients continue to deteriorate to

ESLD, liver transplantation may be the only option.

Patients with chronic kidney disease have

a continuing loss of renal function, leading to

ESRD. Once a patient has ESRD, renal replacement

therapy in the form of dialysis or kidney

transplantation is necessary.

While organ transplants are the best long-term

solution for patients with chronic liver or kidney

disease, there is a shortage of organs for transplant

and a growing waiting list of patients. OR techniques

have been applied to optimize the allocation of organs

and timing of transplants for increasing quality and

length of life of the recipients. The allocation of

kidneys and livers for transplantation is challenging

because both living and cadaveric donors are possible.

With living donors, there is more flexibility in the

timing of the transplant, allowing for the transplant

timing decision to be optimized. For both kidney and

liver transplantation, there are challenging decisions

about whether to use a living or cadaveric donor

(if both are available), and when the transplant should

occur. OR techniques have also aided in finding the

greatest number of donor-recipient matches,

considering the challenges of blood and tissue type

compatibilities.

Alagoz et al. (2004) studied the question of the

optimal timing of liver transplantation. They

developed an MDP model to find the optimal timing

for a patient to have a transplant from a living donor.

The patients transitioned through health states defined

by a scoring system for ESLD. With the donor assumed

to be available at any time, the MDP maximized the

patient’s quality adjusted lifetime—striking a balance

between having the transplant before the patient

becomes too sick and waiting long enough due to the

limited amount of time a patient can live after

a transplant.

Su and Zenios (2004) presented an M/M/1 queueing

model to determine if incorporating patient choice into

allocation will improve efficiency and reduce waste of

organs offered to patients but not accepted. Their model

incorporated uncertain arrival of patients and organs,

with the service process being the kidney transplant.

Since organs cannot be stored, the service time was

given by the interarrival time of organs. In addition to

the traditional M/M/1 assumptions, each organ had

a reward corresponding to its quality, and patients

may reject an organ they believe has poor quality. The

authors found that a first-come-first-serve policy can

lead patients to refuse organs of lesser quality, leading

to waste of up to 15% of organs. They also found that

last-come-first-serve (LCFS) allocation lowers the

wasteful effect of patient preference. While LCFS was

not a feasible rule to implement, their results

highlighted the need for adjustment of incentives

associated with patient choice to prevent wasting

organs.

A common way for patients to find organ donors is

to ask willing family members or friends to be tested

for compatibility. Another area, where OR has

contributed, considers patients with willing donors

that are not matches. Segev et al. (2005) considered

the problem of paired kidney donation, matching two

incompatible pairs with each other resulting in two

successful transplants. The study considered a graph

theory representation of a large pool of incompatible

patient-donor pairs where each pair was represented

with a node and two compatible pairs were linked with

an edge. An algorithm based on the Edmonds matching

algorithm (Edmonds 1965) was used to find all

feasible matching solutions, and the best solution was

chosen based on some predefined criteria, including

the number of total matches and the number of

transplant patients alive five years after the operation.
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This matching strategy was compared to the first-

accept scheme, which only finds one feasible

solution, that is used in practice. The authors found

that their algorithm could increase the total number of

matches and take into account patient priorities.

Emerging Applications

Rapid advances in medicine are driving new OR

research opportunities. As evidence of this, over the

period from 2000–2010 the total number of health care

related presentations at the Institute for Operations

Research and Management Science (INFORMS)

annual meeting has grown from 35 in 2000 to 281 in

2009 (Denton and Verter 2010). This section provides

some specific examples of emerging areas of research.

Personalized Medicine

With the sequencing of the human genome and many

advances in biomarkers for certain diseases, the idea of

personalized medicine has received a great deal of

attention. There are some examples of successful

applications of personalized medicine, such as breast

cancer treatment. However, for most diseases even

basic risk factors are not yet considered as part of the

standard guidelines. For example, gender is a well

known risk factor for heart disease and stroke. While

this has been known for decades, in many countries,

including the U.S., the published treatment guidelines

for control of risk factors such as cholesterol and blood

pressure are the same for men and women. These

examples point to opportunities to improve the design

of screening and treatment guidelines through

consideration of individual patient risk factors.

Decision Aids

The use of OR techniques in the development of

decision aids is not as wide as in other areas of

treatment choices. This is an area of research that

must expand if OR models are to be translated into

practice. Researchers have attempted to use artificial

intelligence and computer science/information

systems to provide decision support to the physician

and/or patient. However, many clinicians still hesitate

to use models for diagnosis or treatment. There are

many possible reasons for the slow diffusion into

practice. An important goal is the study of the

clinician-model interface. In spite of adoption

difficulties, there are examples of where OR has

contributed significantly to treatment decisions.

Several examples follow.

White et al. (1982) developed a quantitative

model for diagnosing medical complaints in an

ambulatory setting with the goal of reducing costs

and improving quality of diagnoses. The model

structure was influenced by three methods: decision

analysis, partially observed semi-Markov decision

process models, and multi-objective optimization

therapy (MOOT). The authors used Bayesian-based

modeling of disease progression and heuristics (a

single-stage decision tree that reduces the amount

of computation time and storage space per patient) to

consider individual patient and physician

preferences. For the MOOT heuristic, suggested by

White et al. (1982), the list of possible diagnosis

tests were provided, highlighting nondominated

tests. The authors described a detailed example of

the decision aid to treat a patient in an ambulatory

setting.

Policies related to health information exchanges

assume patients want to explicitly decide who can

have access to their medical records. Marquard and

Brennan (2009) tested this assumption by questioning

31 patients from a neurology clinic about their

willingness to share information about their

medication with a primary care physician,

a neurologist, and an emergency room physician.

Almost all patients decided to share their current

medication usage with all three doctors citing the

potential clinical care benefits. However, not all

patients understood the possible effects of sharing

this information. The use of realistic decision

scenarios and structured conversations used in this

study are likely to reveal more true patient

preferences than abstract opinion surveys that are

commonly used in practice. In addition to correctly

identifying patient preferences, it is important to

assess patient understanding of the consequences of

their choices. Understanding the true willingness of

patients to share health information is an important

step in the development of decision aids and the

inclusion of patient choices in medical decisions.

Using multi-attribute utility theory, Simon (2009)

considered the choice of treatments for prostate cancer

including surgery, external beam radiation,

brachytherapy, and no treatment. The model used

data collected from the medical literature to compute
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probabilities regarding the likelihood of death and

other side effects for each of the choices. The model

also incorporated the patient’s individual preferences

regarding length of life and quality of life in view of the

possible side effects (impotence, incontinence, and

toxicity). The model evaluated each treatment

alternative and compared the results for the particular

patient.

Real Time Decision Making

Many medical treatment decisions must be made in

real time. Depending on the particular application, the

definition of real time could be anything from a few

seconds to several minutes. Such applications can be

highly demanding, often trading off the need for high

quality decisions with available time.

One area in which OR has contributed to real time

decision making is blood glucose control in patients

with diabetes. Patients with type 1 diabetes are insulin

dependent, and careful control of blood glucose within

defined physiological limits is necessary to avoid

a potentially life threatening occurrence of

hypoglycemia (very low blood glucose that can lead

to coma and/or death if not treated immediately).

Blood glucose levels can change significantly over

very short periods of time (seconds) depending on

a variety of factors, such as caloric intake. The most

common treatment for patients with type 1 diabetes is

to inject insulin. However, the need for regular

injection has a serious impact on a patient’s quality

of life. Research has been conducted on the design of

closed loop control algorithms that could enable an

implantable device to optimize insulin delivery

(Parker et al. 2001).

Outpatient procedures can also pose a series of

challenging decisions that must be made in real

time (minutes). For instance, radiation treatment for

cancer patients involves a series of complex

decisions that can influence the effectiveness of

treatment. One example is brachytherapy for

prostate cancer treatment, that involves the

implantation of radioactive seeds in close proximity

to a tumor. The method of brachytherapy is to place

seeds in and around a tumor such that dual goals of

maximizing dose to the tumor and minimizing dose

to healthy tissue are balanced. Due to changes that

occur in tumor size and shape and the physical

movement of healthy tissue and organs in proximity

to the tumor over short time periods, such decisions

must be made in real time at the point of placement.

This real time analysis selects the actual placements

of the seeds in the prostate from the thousands of

possible locations, millimeters apart. Lee and

Zaider (2008) presented a nonlinear mathematical-

programming model to make location decisions

using real time imaging information. They

demonstrated a practical application in which the

clinical goals of reduced complications (e.g.,

impotence and incontinence) and reduced costs

($5,600 per patient) were achieved.

Concluding Remarks

The use of OR for the study of disease treatment and

screening decisions has a long history. Furthermore,

advances in medicine are creating new challenges

which are in turn resulting in new applications of OR

and new methods. This article surveyed some of the

significant contributions of OR methods, including

mathematical programming, dynamic programming,

and simulation. Contributions of OR to disease

prevention and screening, long term management of

chronic conditions, and several emerging application

areas for OR were discussed.

Many examples of successful OR applications were

described, as well as many challenges. For example,

the availability of data for analyzing medical decisions

is often more complex compared to other real-world

decision situations. This is true for a variety of reasons

including confidentiality concerns, the fragmented

nature of health care delivery, and the lack of the

requisite information systems. There are also

challenges related to the fundamental difficulty of

measuring criteria related to medical decision

making, such as the cost to the patient as a result of

a burdensome treatment plan. Finally, there are

significant challenges in the translation of OR models

from theory to practice.
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Introduction

The choice of appropriate probability distributions is

the most important step in any complete stochastic

system analysis and hinges upon knowing as much as

possible about the characteristics of the potential

distribution and the physics of the situation to be

modeled. Generally, the first thing that has to be

decided is which probability distributions are

appropriate to use for the relevant random

phenomena describing the model. For example, the

exponential distribution has the Markovian

(memoryless) property. Is this a reasonable condition

for the particular physical situation under study?

Assume the problem is to describe the repair

mechanism of a complex maintained system. If the

service for all customers is fairly repetitive, then an

assumption might be that the longer a failed item is in

service for repair, the greater the probability that its

service will be completed in the next interval of time

(non-memoryless). In this case, the exponential

distribution would not be a reasonable candidate for

consideration. On the other hand, if the service is

mostly diagnostic in nature (the trouble must be

found and fixed), or there is a wide variation of

service required from customer to customer so that

the probability of service completion in the next

instant of time is independent of how long the

customer has been in service, the exponential with its

memoryless property might indeed suffice.

The actual shape of the density function also gives

quite a bit of information, as do its moments. One

particularly useful measure is the ratio of the standard

deviation to the mean, called the coefficient of

variation (CV). The exponential distribution has

a CV ¼ 1, while the Erlang or convolution of

exponentials has a CV < 1, and the hyperexponential

or mixture of exponentials has a CV > 1. Hence,

choosing the appropriate distribution is a

combination of knowing as much as possible about

distribution characteristics, the physics of the

situation to be modeled, and statistical analyses when

data are available.

Hazard Rate

An important concept that helps in characterizing

probability distributions that is strongly associated

with reliability modeling is the hazard-rate (also

termed the failure-rate) function. This concept,

however, can be useful in general when trying to

decide upon the proper probability distribution to

select. In the discussion that follows, the hazard rate

will be related to the Markov property for the

exponential distribution, and its use as a way to gain

insight about probability distributions will be

discussed.

Suppose it is desired to choose a probability

distribution to describe a continuous lifetime

random variable T with a cumulative distribution

function (CDF) of F(t). The density function,

f(t) ¼ df(t)/dt, can be interpreted as the approximate

probability that the random time to failure will be in

a neighborhood about a value t. The CDF is, of course,

the probability that the time will be less than or equal to
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the value t. Then the hazard rate h(t) is defined as the

conditional probability that the lifetime will be in

a neighborhood about the value t, given that the time

is already at least t. That is, if the situation deals with

failure times, h(t)dt is the approximate probability that

the device fails in the interval (t, t + dt), given it is

working at time t.

From the laws of conditional probability, it can be

shown that

hðtÞ ¼
f ðtÞ

1� FðtÞ
:

This hazard or failure-rate function can be

increasing in t (called an increasing failure rate, or

IFR), decreasing in t (called a decreasing failure

rate, or DFR), constant (considered to be both IFR

and DFR), or a combination. The constant case

implies the memoryless or ageless property, and

this holds for the exponential distribution, as will

be shown. If, however, it is believed that the device

ages and that the longer it has been operating the

more likely it is that the device will fail in the next

dt, then it is desired to have an f(t) for which h(t) is

increasing in t; that is, an IFR distribution. This

concept can be utilized for any stochastic

modeling situation. For example, if instead of

modeling lifetime of a device, the concern is with

describing the service time of a customer at a bank,

then, if service is fairly routine for each customer,

then an IFR distribution would be desired. But if

customers required a variety of needs (say a queue

where both business and personal transactions were

allowed), then a DFR or perhaps a CFR exponential

might be the best choice.

Reversing the algebraic calculations, a unique F(t)

can be obtained from h(t) by solving a simple linear,

first-order differential equation, i.e.,

FðtÞ ¼ � exp �

Z t

0

hðuÞ du

� �

:

The hazard rate is another important information

source (as is the shape of f(t) itself) for obtaining

knowledge concerning candidate probability

distributions.

Consider the exponential distribution

f ðtÞ ¼ y expð�ytÞ:

From the discussion above, it is easily shown that

hðtÞ ¼ y. Thus, the exponential distribution has

a constant failure (hazard) rate and is memoryless.

Suppose, for a particular situation, there is a need for

an IFR distribution for describing some random times.

It turns out that the Erlang has this property. The

density function is

f ðtÞ ¼ yktk�1 expð�ytÞ=ðk � 1Þ!

(a special form for the gamma), with its CDF

determined in terms of the incomplete gamma

function or equivalently as a Poisson sum. From

these, it is not too difficult to calculate the Erlang’s

hazard rate, that also has a Poisson sum term, but is

somewhat complicated to ascertain the direction of h(t)

with twithout doing some numerical work. It does turn

out, however, that h(t) increases with t and at

a decelerating rate.

Suppose the opposite IFR condition is desired,

that is, an accelerating rate of increase with t. The

Weibull distribution can obtain this condition. In fact,

depending on how the shape parameter of the Weibull

is chosen, an IFR can be obtained with decreasing

acceleration, constant acceleration (linear with t), or

increasing acceleration, as well as even obtaining

a DFR or the constant failure rate exponential. The

CDF of the Weibull is given by

FðtÞ ¼ 1� expð�at bÞ

and its hazard rate turns out to be the simple monomial

h(t) ¼ abt b-1, with shape determined by the value of b

(called the shape parameter).

As a further example in the process of choosing an

appropriate candidate distribution for modeling,

suppose, for an IFR that has a deceleration effect,

such as the Erlang, there is a believe that the CV

might be greater than one. This latter condition

eliminates the Erlang from consideration. But, it is

known that a mixture of (k) exponentials (often

denoted by Hk) does have a CV > 1. It is also

known that any mixture of exponentials is DFR. In

fact, it can be shown that all IFR distributions have

CV < 1, while all DFR distributions have CV > 1

(Barlow and Proschan 1975). Thus, if there is

convincing evidence that the model requires an

IFR, CV < 1 must be accepted. Intuitively, this can

be explained as follows. Situations that have CV > 1
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often are cases where the random variables are

mixtures (say, of exponentials). Thus, for example,

if a customer has been in service a long time, chances

are that it is of a type requiring a lot of service, so the

probability of completion in the next infinitesimal

interval of width dt diminishes over time. Situations

that have an IFR condition indicate a more consistent

pattern among items, thus yielding a CV < 1.

Range of the Random Variable

Knowledge of the range of the random variable under

study can also help narrow the possible choices in

selecting an appropriate distribution. In many cases,

there is a minimum value that the random variable can

assume. For example, suppose the analysis concerns

the interarrival times between subway trains, and it is

given that there is a minimum time for safety of g. The

distributions discussed thus far (and, indeed, many

distributions) have zero as their minimum value.

Any such distribution, however, can be made to

have a minimum other than zero by adding

a location parameter, say g. This is done by

subtracting g from the random variable in the

density function expression. Suppose the

exponential distribution is to be used, but we have

a minimum value of g. The density function would

then become f ðtÞ ¼ y expð�y½t� g	Þ. It is not quite so
easy to build in a maximum value if this should be the

case. For this situation, a distribution with a finite

range would have to be chosen, such as the uniform,

the triangular or the more general beta distribution

(Law and Kelton 1991).

Data

While much information can be gained from

knowledge of the physical processes associated

with the stochastic system under study, it is very

advantageous to obtain data, if at all possible. For

existing systems, data may already exist or can be

obtained by observing the system. These data can

then be used to gain further insight on the best

distributions to choose for modeling the system.

For example, the sample standard deviation and

mean can be calculated, and it can be observed

whether the sample CV is less than, greater than,

or approximately equal to one. This would give an

idea as to whether an IFR, DFR or the exponential

distribution would be the more appropriate.

If enough data exist, just plotting a histogram can

often provide a good idea of possible distributions

from which to choose, since theoretical probability

distributions have distinctive shapes (although some

do closely resemble each other). The exponential

shape of the exponential distribution is far different,

for example, than the bell-shaped curve of the normal

distribution.

There are rigorous statistical goodness of fit

procedures to indicate if it is reasonable to assume

that the data could come from a potential candidate

distribution. These do, however, require a considerable

amount of data and computation to yield satisfactory

results. But, there are statistical packages, for example,

Expert Fit (Law and Vincent 1995), which will analyze

sets of data and recommend the theoretical

distributions that are the most likely to yield the kind

of data being studied.

Distribution selection (or input modeling, as it is

sometimes called) is not a trivial procedure. But

this is a most important aspect of stochastic

analysis, since inaccuracies in the input can make

the output meaningless. Fitting data to standard

statistical distributions, which are mostly two-

parameter distributions, limits focus on the first

two moments only. There is evidence to suggest

that this is not always sufficient (see Gross and

Juttijudata 1997).

Finally, for emphasis, the point is made again

that choosing an appropriate probability model is

a combination of knowing as much as possible

about the characteristics of the probability

distribution being considered and as much as

possible about the physical situation being

modeled.

See

▶ Failure-Rate Function

▶Hazard Rate

▶Markov Chains

▶Markov Processes

▶Reliability of Stochastic Systems

▶ Simulation of Stochastic Discrete-Event Systems

▶ Stochastic Input Model Selection
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DMU

Decision making unit.

See

▶Data Envelopment Analysis

Documentation

Saul I. Gass

University of Maryland, College Park, MD, USA

Introduction

As many operations research studies involve

a mathematical decision model that is quite complex

in its form, it is incumbent upon those who developed

the model and conducted the analysis to furnish

documentation that describes the essentials of the

model, its use, and its results. Of especial concern are

those computer-based models that are represented by

a computer program and its input data files. The most

serious weakness in the majority of OR model

applications, both those that are successful and those

that fail, is the lack of documents that satisfy the

minimal requirements of good documentation

practices (Gass et al. 1981; Gass 1984). The reasons

for requiring documentation are many-fold and

include, among others, “to enable system analysts

and programmers, other than the originators, to use

the model and program,” “to facilitate auditing and

verification of the model and the program

operations,” and “to enable potential users to

determine whether the model and programs will serve

their needs” (Gass 1984).

The most acceptable view of model documentation

is that which calls for documents that record and

describe all aspects of the model development

life-cycle. The life-cycle model documentation

approach given in Gass (1979) calls for the

production of 13 major documents. However, it is

recognized that in terms of the basic needs of model

users and analysts, these documents can be rewritten

and combined into the following four manuals:

Analyst’s Manual, User’s Manual, Programmer’s

Manual, and Manager’s Manual. Brief descriptions

of the contents of these manuals are given below;

detailed tables of contents for each are given in

Gass (1984).

Analyst’s Manual

The analyst’s manual combines information from the

other project documents and is a source document for

analysts who have been and will be involved in

the development, revisions, and maintenance of the

model. It should include those technical aspects

that are essential for practical understanding and

application of the model, such as a functional

description, data requirements, verification and

validation tests, and algorithmic descriptions.

User’s Manual

The purpose of the user’s manual is to provide

(nonprogramming) users with an understanding of

the model’s purposes, capabilities, and limitations so

they may use it accurately and effectively. This

manual should enable a user to understand the

overall structure and logic of the model, input

requirements, output formats, and the interpretation

and use of the results. This manual should also

enable technicians to prepare the data and to set up

and run the model.
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Programmer’s Manual

The purpose of the programmer’s manual is to provide

the current and future programming staff with the

information necessary to maintain and modify the

model’s program. This manual should provide all

the details necessary for a programmer to understand

the operation of the software, to trace through it for

debugging and error correction, for making

modifications, and for determining if and how the

programs can be transferred to other computer

systems or other user installations.

Manager’s Manual

The manager’s manual is essential for computer-based

models used in a decision environment. It is directed at

executives of the organization who will have to

interpret and use the results of the model, and support

its continued use and maintenance. This manual should

include a description of the problem setting and origins

of the project; a general description of the model,

including its purpose, objectives, capabilities, and

limitations; the nature, interpretation, use, and

restrictions of the results that are produced by the

model; costs and benefits to be expected in using

the model; the role of the computer-based model in

the organization and decision structure; resources

required; data needs; operational and transfer

concerns; and basic explanatory material.

See

▶ Implementation

▶Model Evaluation

▶Model Management

▶ Practice of Operations Research and Management

Science
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Domain Knowledge

The knowledge that an expert has about a given subject

area.

See

▶Artificial Intelligence

▶ Forecasting

DP

▶Dynamic Programming

DSS

▶Decision Support Systems (DSS)

Dual Linear-Programming Problem

A companion problem defined by a linear-programming

problem. Every linear-programming problem has an

associated dual-programming program. When the

linear-programming problem has the form

Minimize cTx

subject to Ax � b

x � 0

then its dual problem is also a linear-programming

problem with the form
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Maximize bTy

subject to ATy � c

y � 0

The original problem is called the primal problem.

If the primal minimization problem is given as

equations in nonnegative variables, then its dual is

a maximization problem with less than or equal to

constraints whose variables are unrestricted (free).

The optimal solutions to primal and dual problems

are strongly interrelated.

See

▶Complementary Slackness Theorem

▶Duality Theorem

▶ Symmetric Primal-Dual Problems

▶Unsymmetric Primal-Dual Problems
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Duality Theorem

A theorem concerning the relationship between the

solutions of primal and dual linear-programming

problems. One form of the theorem is as follows:

If either the primal or the dual has a finite optimal

solution, then the other problem has a finite optimal

solution, and the optimal values of their objective

functions are equal. From this it can be shown that

for any pair of primal and dual linear programs, the

objective value of any feasible solution to the

minimization problem is greater than or equal to

the objective value of any feasible solution to the

dual maximization problem. This implies that if one

of the problems is feasible and unbounded, then the

other problem is infeasible. Examples exist for which

the primal and its dual are both infeasible. Another

form of the theorem states: if both problems have

feasible solutions, then both have finite optimal

solutions, with the optimal values of their objective

functions equal.

See

▶Dual Linear-Programming Problem

▶ Strong Duality Theorem

Dualplex Method

A procedure for decomposing and solving a

weakly-coupled linear-programming problem.

See

▶Block-Angular System

Dual-Simplex Method

An algorithm that solves a linear-programming

problem by solving its dual problem. The algorithm

starts with a dual feasible but primal infeasible

solution, and iteratively attempts to improve the

dual objective function while maintaining dual

feasibility.

See

▶Dual Linear-Programming Problem

▶ Feasible Solution

▶ Primal-Dual Algorithm

▶ Simplex Method (Algorithm)

Dummy Arrow

A dashed arrow used in a project network diagram to

show relationships among project items, a logical

dummy, or to give a unique designation to an
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activity, thus called a uniqueness dummy. A dummy or

dummy arrow represents no time or resources.

See

▶Network Planning

Dynamic Programming

Chelsea C. White III

Georgia Institute of Technology, Atlanta, GA, USA

Introduction

Dynamic programming (DP) is both an approach to

problem solving and a decomposition technique that

can be effectively applied to mathematically

describable problems having a sequence of interrelated

decisions. Such decision-making problems are

pervasive. Determining a route from an origin

(e.g., home) to a destination (e.g., school) on a network

of roads requires a sequence of turns. Managing a retail

store (e.g., that sells, say, television sets) requires

a sequence of wholesale purchasing decisions.

Such problems share important characteristics. Each

is associated with a criterion to be optimized: choosing

the shortest or most scenic route from home to school,

and the buying and selling of television sets by the retail

store manager to maximize expected profit. Also, each

problem has a structure such that a currently determined

decision has impact on the future decision-making

environment. In going from home to school, the turn

currently selected will determine the geographical

location of the next turn decision; in managing the

retail store, the number of items ordered today will

affect the level of inventory next week.

Roots and Key References

In his 1957 book, Richard Bellman described the

concept of DP and its broad potential for application.

See Bellman’s earlier publications that describe

his initial developments of DP (Bellman 1954a, b);

also see Bertsekas (1987); Denardo (1982); Heyman

and Sobel (1984); Hillier and Lieberman (2004,

Chapter 10), and Ross (1983) for in depth

descriptions and applications of DP.

Central to the philosophy and methodology of DP is

the Principle of Optimality, as related to the following

multistage decision problem (Bellman 1957).

Let {q1, q2,. . . qn} be a sequence of allowable

decisions called a policy; specifically, an n-stage

policy. A policy that yields the maximum value of

the related criterion function is called an optimal

policy. Decisions are based on the state of the

process, that is, the information available to make

a decision. The basic property of optimal policies is

expressed by the following:

Principle of Optimality: An optimal policy has the
property that whatever the initial state and the initial
decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the
first decision (Bellman 1957).

The Principle of Optimality can be expressed as an

optimization problem over the set of possible decisions

by a recursive relationship, the application of which

yields the optimal policy. This is illustrated next by

two examples.

1. An itinerary selection problem. The problem is to

find the shortest path from home to school. A map

of the area describes the network of streets that

includes home and school locations, intermediate

intersections, connecting streets, and the distance

from one intersection to any other intersection that

is directly connected by a street. The DP model of

this problem is as follows. Let N be the set

composed of home, school, and all intersections.

An element of N is termed a node. For simplicity,

assume all of the streets are one-way. A street is

described as an ordered pair of nodes; that is, (n, n0)

is the street going from node n to node n0 (n0 is an

immediate successor of node n). Let m(n, n0) be the

distance from node n to node n0; that is, m(n, n0)

represents the length of street (n, n0).

The problem is examined recursively as follows.

Let f (n) equal the shortest distance from the node n

to the goal node school. The objective is to find f

(home), the minimum distance from home to school,

and a path from home to school that has a distance

equal to f (home), a minimum distance path.
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Note that f (n)�m(n, n0) + f(n0) for any node n0 that is

an immediate successor of node n. Assume that an

immediate successor n00 of n such that f (n)¼m(n, n00)

+ f (n00) has been found. Then, if at node n, it seems

reasonable that the street that takes us to node n00 is

traversed. Thus, the evaluation of all of the values f

(n) determine both f (home) and a minimum distance

path from home to school. Formally, determination

of these values can proceed recursively from the

equation f (n) ¼ min {m(n, n0) + f (n0)}, where the

minimum is taken over all nodes n0 that are

immediate successors of node n and where f

(school) ¼ 0 is the initial condition.

2. An inventory problem. Let x(t) be the number of

items in stock at the end of week t, d(t + 1) the

number of customers wishing to make a purchase

during week t + 1, and u(t) the number of items

ordered at the end of week t and delivered at the

beginning of week t + 1. Although it is unlikely

that d(t) is known precisely, assume the probability

that d(t)¼ n is known for all n¼ 0, 1, . . . . Keeping

backorders, then x(t + 1) ¼ x(t) � d(t + 1) + u(t).

A reasonable objective is to minimize

the expected cost accrued over the period from

t ¼ 0 to t ¼ T (T > 0) by choice of u(0), . . .,

u(T � 1), assuming that ordering decisions are

made on the basis of the current inventory level,

that is, the mechanism that determines u(t) (e.g., the

store manager) is aware of x(t), for all t ¼ 0, . . .,

T � 1. Costs might include a shortage cost

(a penalty if there is an insufficient amount of

inventory in stock), a storage cost (a penalty if

there is too much inventory in stock), an ordering

cost (reflecting the cost necessary to purchase items

wholesale), and a selling price (reflecting the

income received when an item is sold; a negative

cost). Let c(x, u) represent the expected total cost

to be accrued from the end of week t till the end

of week t + 1, given that x(t) ¼ x and u(t) ¼ u.

Then the criterion to be minimized is

E fc ½x ð0Þ; u ð0Þ	 þ . . .þ c½x ðT � 1Þ; u ðT � 1Þ	g;

where E is the expectation operator associated with

the random variables d(1), . . ., d(T).

This problem can be examined recursively. Let

f (x, t) be the minimum expected cost to be accrued

from time t to time T, assuming that x(t) ¼ x. Clearly,

f (x, T) ¼ 0. Note also that

f ½x ðtÞ; t	 � c ½x ðtÞ; u ðtÞ	

þ E ff ½x ðtÞ � d ðtþ 1Þ þ u ðtÞ; tþ 1	g

for any available u(t). As was true for Example 1, an

order number u00 which is such that

f ½x ðtÞ; t	 ¼ c ½x ðtÞ; u00	

þE ff ½x ðtÞ � d ðtþ 1Þ þ u00; tþ 1	g

is an order to place at time twhen the current inventory

is x(t). Thus, the recursive equation determines both

f (x, 0) for all x and the order number as a function of

current inventory level.

Common Characteristics

Two key aspects of DP are the notion of a state and

recursive equations. The state of the DP problem is the

information that is currently available to the decision

maker on which to base the current decision.

For example, in the itinerary selection problem,

the state is the current node; in the inventory problem,

the state is the current number of items in stock.

In both examples, how the system arrived at its current

state is inconsequential from the perspective of decision

making. For the itinerary selection problem, all that is

needed is the current node and not the path that lead to

that node to determine the best next street to traverse. The

determination of the number of items to order this week

depends only on the current inventory level equations

(other names include functional equations and optimality

equations) that can be used to determine the minimum

expected value of the criterion and an optimal sequence

of decisions that depend on the current node or current

inventory level. In both cases, the recursive equations

essentially decompose the problem into a series of

subproblems, one for each node or current state value.

See

▶Approximate Dynamic Programming

▶Bellman Optimality Equation

▶Dijkstra’s Algorithm

▶Markov Decision Processes

▶Network
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Earliest Finish Time

The earliest possible time an activity can be completed

without reducing the duration of any of the preceding

activities as described in a project network. It is simply

the sum of the earliest start time for the activity and the

duration of the activity.

See

▶Critical Path Method (CPM)

▶Network Planning

▶ Program Evaluation and Review Technique (PERT)

Earliest Start Time

The earliest possible time an activity can begin without

reducing the duration of any of the preceding activities

as described in a project network. It is calculated by

summing the durations of all activities on the longest

path leading to the event that identifies the beginning

of the activity.

See

▶Critical Path Method (CPM)

▶Network Planning

▶ Program Evaluation and Review Technique (PERT)

Early British OR

Maurice W. Kirby and Graham K. Rand

Lancaster University, Lancaster, UK

The term operational research (OR) was first used in

the later 1930s to describe the process of evaluation of

radar as an essential aid to the air defense of Great

Britain. Emanating from the work of Robert

Watson-Watt of the National Physical Laboratory,

the novel concept of controlled interception of enemy

aircraft by electronic means could only be tested by

practical experiment entailing the application of

quantitative techniques of analysis. Under the

auspices of the Committee for the Scientific Survey

of Air Defence, the resulting research program was an

outstanding success insofar as the home radar chain

proved decisive in more than offsetting RAF Fighter

Command’s numerical inferiority during the Battle of

Britain in 1940. With its credentials intact as a means

of enhancing the effectiveness of an entire military

command at a critical stage in the war, OR was

thereafter diffused throughout the greater part of the

British armed forces both at home and abroad.

At the end of the war, in conformity with the

experience in Fighter Command, operational

researchers, under the leadership of Blackett, regarded

as the “father of Operational Research,“could

congratulate themselves on their substantial and, on

occasion, decisive contributions to the war effort in

a number of theaters. In the RAF Coastal Command

and the Admiralty, for example, operational
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researchers were responsible for a sequence of tactical

innovations which led to the defeat of the U-boats in

the North Atlantic. For Operation Overlord, moreover,

a detailed plan of targets in the French railway system

was devised on the basis of quantitative assessment of

their capacity for enemy logistical reinforcement,

thereby enabling RAF Bomber Command to offer

outstanding tactical support to the allied invading

forces.

With achievement on this scale it is hardly

surprising that the advocates of OR should have

sought to secure its peacetime future via its diffusion

beyond the military sector. In this respect, the period

from 1945 to the mid-l970s may be viewed as the

golden age of British OR, at least in methodological

terms, when the new discipline was diffused into the

nationalized industries, departments of civil

government, and the corporate sector. Institutional

developments were also notable, with the

transformation of an informal OR Club, founded in

1948, created following the initiative of Sir Charles

Goodeve, into the Operational Research Society in

1953, together with the establishment of that ultimate

hallmark of professional status — a specialist journal:

The Operational Research Quarterly first appeared in

1950, and continued in that form until 1978 when it

was redesignated as the official Journal of the

Operational Research Society with twelve annual

issues. These developments may be viewed as

a testament to the growing professionalization of the

discipline, the subscription to common methodologies,

and belief in its economic and social utility.

Coincidentally, as OR was being recognized as

a practically useful tool of analysis for executive

decision makers, its public profile was further

enhanced by formal academic recognition. By the

early 1960s, several universities were making

provision for OR taught courses for postgraduate

students, and this served as a precursor to the

expansion of the subject at undergraduate level after

1964.

A combination of acknowledged utilitarian value

and formal academic recognition within thirty years

of its foundation is consistent with an impressive

trajectory of achievement for any human endeavor.

Yet despite open acknowledgment of its wartime

role, it is instructive to note that beyond the

nationalized coal industry and the British Iron and

Steel Research Association (BISRA), OR made little

headway in civil government in the early postwar

years. This is all the more surprising in view of the

election in 1945 of Britain’s first majority Labor

Government ostensibly committed to centralized

measures of economic and social planning. Indeed,

the new government sought to alleviate resource

constraints at the level of manufacturing industry by

emphasizing the need for enhanced efficiency both in

terms of managerial standards and the organization of

work. In this respect, the official Committee on

Industrial Productivity proclaimed the virtues of OR

from the standpoint of “a scientific approach to running

industry,” and also as an aid to the machinery of

government in planning the allocation of resources.

In any event, a combination of civil service

conservatism and mounting political opposition to

centralized measures of economic planning were

sufficient to severely constrain the diffusion of OR in

this particular context for a generation to come. Even

within the coal and iron and steel industries it is evident

that successful diffusion was heavily dependent on the

efforts of specific individuals, in the former case, Sir

Charles Ellis in his capacity as Scientific Member of

the National Coal Board (NCB), and in the latter Sir

Charles Goodeve, the first director of BISRA. Both

men professed a firm appreciation of the wartime

benefits of OR and were determined to apply

quantitative methods of analysis as an aid to rational

managerial decision making in their particular spheres.

Goodeve, however, possessed a missionary zeal for the

dissemination of OR beyond the iron and steel industry

to embrace the manufacturing sector as a whole. From

the late 1940s to the late 1970s, his advocacy was

vigorous and persuasive and there is much

documentary and anecdotal evidence to suggest that

Goodeve, more than any other individual, was

responsible for the adoption of OR in an increasing

range of firms in the corporate sector.

Other key individuals in the dissemination process

were Goodeve’s colleagues at BISRA, Roger Eddison

and Roger Collcutt, and in the private sector iron and

steel firms, Steve Cook, Stafford Beer and Keith

Tocher, and in the coal industry, Donald Hicks, Pat

Rivett and Brian Houlden. It is significant that several

of these key practitioners were instrumental in

establishing OR as an academic discipline worthy of

advanced study in the university sector. In this setting,

the leading role was fulfilled by Pat Rivett who was

appointed to the new University of Lancaster in 1964
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as the first UK Professor of OR. This followed in the

wake of his efforts to publicize the value of OR in

higher education after his election as President of the

OR Society in 1960.

The diffusion of OR was also facilitated powerfully

by the development of analytical techniques and the

innovation, during the course of the 1950s, of digital

computers geared to the needs of commercial firms. In

the former case, there were two outstanding

developments. The first was linear programming

emanating from the USA in the later 1940s. Although

the foremost pioneer in the UK was Steven Vajda

working at the Admiralty Research Laboratory in the

early 1950s, the first significant use of linear

programming in British industry took place in the NCB

from the mid-1950s. Thereafter, it spread rapidly to the

electricity, chemical and oil industries with British

Petroleum (BP) developing a substantial OR effort in

this area by the late 1960s. Complementing linear

programming was the technique of simulation as an aid

to rational decision making. The modeling of complex

systems simulation, entailing the creation of a physical

or mathematically-based analogue, was pioneered in the

NCB and BISRA in the 1950s. In addition, an abstract

approach could be adopted utilizing mathematical

equations and logical relationships. However, such

procedures were time consuming and repetitive and

were thus ideally suited to digital computerization,

a procedure which became increasingly commonplace

in the coal and steel industries during the 1960s.

Innovative OR techniques, therefore, complemented

by the development of the computer, had important roles

to play in the diffusion of OR and in extending its

practical scope. During the 1960s, the quantum leap in

computer power through the use of the transistor, and the

associated hype and mystique attached to computers,

helped to ensure their commercial proliferation.

Although there was a double-edged factor in this

development — in the sense that the specialized needs

of OR departments were rendered increasingly

subordinate to overall company computing needs —

the fact remains that by the mid-1960s computers were

an essential tool for operational researchers, encouraging

more powerful linear programming codes and new

high-level simulation languages.

If the later 1950s and the 1960s witnessed

methodological and technological developments

conducive to the spread of OR, it remains to be said

that the period also gave birth to corporate OR in

a variety of business settings both in manufacturing

and services. The precipitating factor was an upsurge

in merger activity which entailed considerable changes

in managerial styles and structures. Hitherto, the

managerial organization of British business had

reflected a continuing commitment to personal

capitalism or family influence and control. This fact

in itself had served to limit the extent of

professionalism in British management, especially in

an Anglo-American context.

The merger movement of the 1960s, however, in

giving birth to a U.S.-style corporate economy, resulted

in the recruitment of professional managerial hierarchies

on the U.S. model, often on the advice of North

American management consultants. In these

circumstances, the Anglo-American corporate gap was

closed, but in such a way as to encourage the adoption of

OR as a management tool. As the structure of business

became increasingly complex, the administration of

larger scale enterprises was rendered more tractable by

a combination of new instruments of control and decision

making enshrined in the computer and OR. In a survey

carried out on behalf of the Operational Research Society

in 1967, 766 OR groups were identified in industrial

sectors as wide ranging as printing and publishing, shoe

manufacturing, textiles, glass, brewing, transport and

banking. Although the figure embraced a large number

of one-person teams, it remains true that by the end of the

1960s, corporate OR was an established fact with an

impressive sectoral coverage.

Coincident with the revolution in the managerial

structure of British business, the 1960s also witnessed

a reforming movement at the level of central

government which had major implications for the

British OR community. This concerned the efforts of

the post-1964 Labor government to reform the Civil

Service in the wake of the recommendations of the

Fulton Committee. The committee’s terms of

reference, embracing management as well as

recruitment, provided the Operational Research

Society with an excellent opportunity to advance the

cause of OR as a solution to major policy problems.

The formal evidence submitted by the Society fell on

fertile ground in the Treasury, where the Permanent

Secretary, Sir William Armstrong, proved entirely

receptive to the Society’s cause. Thus, following the

publication of the Fulton Report, the Treasury was

divided in 1968 with the Treasury retaining

responsibility for economic policy and the
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management of the Civil Service being taken over by

a new Civil Service Department headed by Armstrong.

It was the latter which provided a home for a central

government OR facility and this served as a precursor

to the establishment of OR groups in an increasing

range of government departments after 1970.

In surveying the early history of British OR, a number

of interrelated themes can be identified. In the first

instance, there can be no doubting the vigor and

enthusiasm of the discipline’s postwar advocates,

motivated by the conviction that the application of OR

was conducive to the public good in a variety of settings,

both economic and social. It is also true that the

peacetime diffusion of OR was propelled, in part, by

perceptions of its wartime role and status–the fact that

operational researchers had outstanding achievements to

their credit, both strategic and tactical, and had enjoyed

privileged access to military commanders of the highest

rank. But these war-induced relationships could not be

replicated in peacetime. The organization of civil affairs

was always unlikely to offer the same opportunities for

high-level influence if only because the sheer urgency of

wartime problem-solving was lacking. It is true that

OR was adopted with some success by the postwar

nationalized industries and penetrated into the corporate

sector from the mid-1950s with a notable acceleration in

diffusion during the 1960s. This was one consequence of

the professionalization of decision-making, entirely

consistent with the continuing demise of family

influence and control in British business.

But although OR enjoyed substantial penetration into

civil affairs, questions remained about its relative position

in organizational structures. In theNCB, the high status of

OR was underwritten from the outset by the presence on

the board of a scientific member, and, in the case of

BISRA, the long standing director was himself an ardent

advocate of the discipline as a result of wartime

experience. Elsewhere, however, the status of OR and

the level at which advice was delivered was dependent

upon the idiosyncratic enthusiasms of individual

executives. This was exemplified by the rapid diffusion

of ORwithin the civil service after 1967 as a result of the

strong personal backing of Sir William Armstrong.

A second and related theme concerns the nature of

peacetime OR. To the extent that it was outstandingly

tactical it was but one element in the decision- making

process and therefore vulnerable to slippage of status

according to the perceived value of the work done. Even

when OR had a powerful role to play in determining

overall strategy, as in the case of the oil companies, it

was dependent not only upon high-level backing, but

also on a stable external environment. As the world

became more turbulent after 1970, the limitations of

linear programming became all too evident, especially

for global corporations increasingly sensitive to

prevailing economic and political conditions. Within

Britain itself, the end of the long postwar boom —

signaled by the economic recession of the early

1970s — underlined the still uncertain status of OR as

a number of corporate OR groups were downsized,

closed, or absorbed elsewhere. This was repeated in the

early 1980s by which time the British OR community in

the university sector was attempting to come to terms

with Russell Ackoff’s powerful and controversial attack

on the extreme mathematization of the discipline in that

particular context. It is clear, therefore, that British OR

was entering a new phase of its evolution after 1970. The

expansionary phase, as indicated by the rapid growth of

membership of the Operational Research Society in the

1960s, was now to be followed by a period of

introspection. This was most evident at the level of

academic OR, but practitioners too began to modify

their claims to the status of expert problem solvers by

taking on a charge agent role conducive to the

enhancement of decision-making processes in general.

See

▶Air Force Operations Analysis

▶Center for Naval Analyses

▶Operations Research Office and Research Analysis

Corporation

▶Operational Research Society (ORS)

▶RAND Corporation
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Econometrics

Harry H. Kelejian and Ingmar R. Prucha

University of Maryland, College Park, MD, USA

Introduction

Literally speaking, econometrics stands for

measurement in economics. Broadly speaking,

econometrics is concerned with the empirical analysis

of economic relationships. While early empirical work

goes back at least to Sir William Petty’s political

arithmetic in the seventeenth century, econometrics as

a field was firmly established through the foundation

of the Econometric Society in 1930. Publication of

its journal, Econometrica, started in 1933. The scope

of the society is defined as follows: “The Econometric

Society is an international society for the

advancement of economic theory in its relation to

statistics and mathematics . . .” Samuelson et al. (1954,

p. 142) in a report on Econometrica defined

econometrics

. . . as the quantitative analysis of actual economic
phenomena based on the concurrent development of
theory and observation, related by appropriate methods
of inference.

Similar definitions can be found inmost econometric

texts. For example, Goldberger (1964, p. 1) defined

econometrics

. . . as the social science in which the tools of economic
theory, mathematics, and statistical inference are applied
to the analysis of economic phenomena. Its main
objective is to give empirical content to economic
theory. . .

Single Equation Regression Models

Much of the early work in econometrics is related to

the classical linear regression model

yt ¼ xtbþ ut; t ¼ 1; . . . ; n; (1)

where yt is the tth observation on the dependent

variable, xt is the 1 � k vector of observations on the

explanatory variables, b is a k � 1 vector of unknown

parameters and ut is the tth disturbance term. The

assumptions of the classical model are: (i) E(ut ) ¼ 0,

(ii) Eðu2tÞ ¼ s2 and E(ut us) ¼ 0 for t 6¼ s, (iii) xt is

nonstochastic and (iv) X ¼ ðx01; . . . ; x0nÞ
0

has

full column rank. Under these assumptions, the

Gauss-Markov theorem implies that the ordinary least

squares estimator is best (in the sense of having

the smallest variance covariance matrix) within

the class of linear unbiased estimators. If the

disturbances are normally distributed, exact small

sample inference is available. If normality is not

maintained, then approximate inference is possible

under additional assumptions on xt and ut.
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The nature of economic data and models are such

that the above assumptions are restrictive in certain

applications, and hence, various extensions of the

classical model have been considered. In particular,

disturbances have been permitted to be autocorrelated

and/or to have different variances, that is, to be

heteroskedastic. Other extensions permit for the

regressors to be stochastic. Stochastic regressors

arise, for example, if the regressors are measured

with error. They also arise in dynamic models in

which one or several of the regressors depend on

lagged values of the dependent variable. Models in

which the parameters are permitted to vary

deterministically or stochastically from observation

to observation have also been considered. Still other

extensions relate to sample selection issues. Text

presentations of the issues discussed above are, for

example, given in Amemiya (1985), Davidson and

MacKinnon (1993), Judge et al. (1985), and Schmidt

(1976).

Simultaneous Equation Models

The economy is a complex system of relationships. For

this reason, economic models often involve more than

one equation and so more than one dependent variable.

To see the issues involved consider the following

system of m equations:

yt ¼ ytBþ ztCþ ut; t ¼ 1; . . . ; n; (2)

where yt is a 1 � m vector of the jointly dependent

variables, zt ¼ ðyt�1; . . . ; yt�h; xtÞ where xt is a 1 � k

vector of nonstochastic variables, ut is a 1 � m vector

of disturbances, and B and C are correspondingly

defined matrices of parameters.

Basic assumptions for the model are: (i) ut is i.i.d.

with finite fourth moments and E(ut)¼ 0, Eðu0tutÞ ¼ O

with O nonsingular, (ii) (I � B) is nonsingular and the

diagonal elements of B are zero, (iii)

n�1
P

x 0
txt�t ! QðtÞ where the matrices QðtÞ are

finite, and nonsingular for t ¼ 0, (iv) the system is

dynamically stable. Since (I � B) is invertible the

system can be solved as

yt ¼ ztPþ ut;

P ¼ CðI � BÞ�1
and ut ¼ utðI � BÞ�1:

(3)

In the literature, equations (2) and (3) are called the

structural and reduced form of the model, respectively.

The parameters in B and C are generally not identified

and hence, not consistently estimable without additional

parameter restrictions. These parameter restrictions

often take the form of exclusion restrictions based on

economic theory; that is, theory may suggest that every

variable does not appear in every equation and so certain

elements of B and C are specified to be zero.

As is obvious from (3), the elements of yt depend in

general on all of the elements of ut. As a consequence

the structural equations in (2) cannot in general be

estimated consistently by ordinary least squares.

Fundamental work on estimation and identification of

the model in (2) was done by the Cowles Foundation,

which focused on the maximum likelihood technique

based on the normal distribution; see Koopmans

(1950) and Hood and Koopmans (1953). Estimation

procedures developed later were typically based on

instrumental variable techniques which do not require

specific distributional assumptions; see Basmann

(1957) and Theil (1953) for early fundamental

contributions, and, for example, Amemiya (1985),

Davidson and MacKinnon (1993), Judge et al. (1985)

and Schmidt (1976) for later text presentations.

In recent years, the model in (2) has been

generalized in ways that are similar to those

mentioned above in reference to model (1). In

addition, starting with the fundamental contributions

of Jenrich (1969) and Malinvaud (1970), estimation

theory has been developed for nonlinear counterparts

to models (1) and (2); for recent presentations of

estimation theory for dynamic nonlinear systems see,

for example, Gallant and White (1988) and Pötscher

and Prucha (1991a, b). Finally, Bayesian extensions of

these models have been considered, see, for example,

Zellner (1971) for early fundamental work and Judge

et al. (1985) for a more recent text presentation.

Other Modeling Techniques

(a) Time series models—An important class of models

used to describe economic data are autoregressive

moving average (ARMA) models. These models

have been popularized in economics by Box and

Jenkins (1976); for a recent discussion of time series

techniques see, for example, Brockwell and Davis

(1991), and Harvey (1993).
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A stationary stochastic process yt (time series) that

satisfies for every t

yt ¼ a1yt�1 þ � � � þ apyt�p þ et þ b1et�1 þ � � � þ bqet�q

(4)

where EðetÞ ¼ 0, Eðe2tÞ ¼ s2e and EðetesÞ ¼ 0 for t 6¼ s

is called an ARMA(p, q) process. If yt was obtained by

differencing some process zt, then zt is called an

autoregressive integrated moving average (ARIMA)

process. If the specification in (4) also permits

nonstochastic regressors, then the corresponding

processes are called ARMAX and ARIMAX,

respectively. Clearly, the reduced form in (3) can be

viewed as an ARMAX model. Although ARMAX

models do not describe the structure of the system,

they have been found, for example, to be useful for

prediction purposes.

An important recent development in the time series

literature is the introduction of the concept of

cointegration as an equilibrium relationship between

integrated variables. This development has particular

appeal to economists because many economic

variables appear to have random walk representations

but yet certain linear combinations of them appear to

be stationary. The basic ideas were proposed by

Granger (1981); recent extensions and developments

are discussed in Davidson and MacKinnon (1993), and

Engle and Granger (1991).

(b) Qualitative and limited dependent variable

models — Economists often formulate models to

explain events which are at least partially qualitative

in nature. For example, one might be interested in the

factors determining whether or not a bank fails, a firm

undertakes an investment, etc. More generally, such

models could relate to events that are described by

more than one category. Models relating to

occupational choice, firm structure, and travel mode

fall in this class.

Another class of models are limited dependent

variable models. In these models the range of the

dependent variable is constrained in some way. As

one example, consider a model describing the selling

price of a house. A limited dependent variable problem

would arise if, for example, the only transactions that

are recorded are those for which the selling price

exceeds a certain dollar amount. The techniques

involved for limited dependent variable models are

similar to those in qualitative models. In recent years

econometric models relating to qualitative and limited

dependent variables have been generalized in ways

that are similar to those described in the sections

above. Excellent early reviews are given in

McFadden (1974, 1976) and in Amemiya (1981).

Later text presentations are given in Amemiya

(1985), Maddala (1983), and Judge et al. (1985).

Concluding Remarks

This review has just touched upon a few of the major

topics in econometrics. Many other topics were not

covered, including model specification tests, rational

expectations models, and model simulation.

See

▶Economics and Operations Research

▶Regression Analysis

▶Time Series Analysis
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Economic Order Quantity

The policy for a simple, deterministic inventory model

that tells howmuch to order so that the sum of ordering

and holding costs is minimized.

See

▶ Inventory Modeling

▶Economic Order Quantity Model Extensions

Economic Order Quantity Model
Extensions

Benjamin Lev

Drexel University, Philadelphia, PA, USA

The classical EOQ (Economic Order Quantity) model

has a long list of assumptions. Begin by assuming that the

horizon of the process is infinite and that all parameters

stay the same over time. Then the solution to the classical

EOQproblem is EOQ ð1Þ ¼ Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AD=vr

p
where the

parameters A, D, v, and r are the fixed cost of

replenishment in $/ order, (constant) annual demand

in units/year, unit cost in $/unit, and carrying charge in

$/unit/year, respectively. A typical picture of inventory

level over time is displayed in Fig. 1.

A first possible extension to the classical model

is to assume a finite horizon T; an example might

be when a producer announces the discontinuation

of an existing model at a future time T. The

optimal solution is a series of n equal orders,

each one of size DT/n, where n is the smallest

integer such that

nðnþ 1Þ �
DruT2

2A

(Schwartz 1972). The optimal solution is then either

the integer

n ¼ T

ffiffiffiffiffiffiffiffi
Dru

2A

r" #

or

n ¼ T

ffiffiffiffiffiffiffiffi
Dru

2A

r" #

þ 1:

Another extension is to relax the assumption that v

is constant over time. An example is that the producer

announces that in a future time T price will increase

from v1 to v2(v2 > v1). The U.S. Postal Service

increased the first class stamp rate on January 1999

from v1 ¼ 32 to v2 ¼ 33 cents (Fig. 2).

Naddor (1966) assumed that the inventory on hand

is zero at the last opportunity to order at v1 and

suggested the solution of

E 464 Economic Order Quantity

http://dx.doi.org/10.1007/978-1-4419-1153-7_479
http://dx.doi.org/10.1007/978-1-4419-1153-7_269


EOQ ð1; u1Þ ¼ Q1 ¼

ffiffiffiffiffiffiffiffiffi
2AD

u1r

r

(read this as the EOQ with infinite horizon and

parameter v1) followed by a single order size

Qs ¼
Dðu2 � u1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AD=ru2

p

ru1

followed by a series of order sizes

v1

Q1

T v2 Time

Q2

Qs v2>v1

Economic Order Quantity

Model Extensions,
Fig. 2 EOQ with price
increases at time T

Q/D Time

inventory

level

Slope = −D

Economic Order Quantity

Model Extensions,
Fig. 1 Classical EOQ model

Type I

Policy

Type II

Policy

Q1

v1, r1, A1 v2, r2, A2

Q1

Q2

Q2

v2>v1 or v1>v2

v2>v1 or v1>v2

v2, r2, A2

T

T

Q1

m orders

m orders

H (finite or infinite)

H (finite or infinite)

n orders

v1, r1, A1

n orders

Economic Order Quantity

Model Extensions,
Fig. 3 EOQ with finite or
infinite horizon H and
parameters changing at time T
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EOQ ð1; u2Þ ¼ Q2 ¼

ffiffiffiffiffiffiffiffiffi
2AD

u2r

r
:

This solution was later improved to include three

possible solutions. The one suggested by Naddor where

the inventory on hand is zero at time T, a solution when

the inventory at time T is positive with either n orders

during (0, T), or n + 1 orders during (0, T). A complete

solution is presented in Lev and Soyster (1979).

The next extension is a combination of the previous

two. Assume a finite horizonH, and at time T (T < H),

some or all the parameters A, v, r might change (each

one may increase or decrease, Fig. 3). There are two

possible policies: Type I is used when the inventory on

hand at time T is zero, and Type II is used when the

inventory on hand at time T is positive. A procedure for

finding n, Qs, m for Type I and (n, m) for Type II is in

Lev and Weiss (1990). See also Goyal (1992).

See

▶Economic Order Quantity

▶ Inventory Modeling
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Economics and Operations Research
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Introduction

To understand the relationship between economics and

operations research, one needs to understand some of

the history of both fields. Operations research was

developed prior to and during World War II with

the pragmatic goal of improving military operations

through the use of mathematics. The founders

of the field of operations research came from

diverse backgrounds, including physics, mathematics,

engineering and economics. Operations research as

a field has maintained its multidisciplinary character.

Yet, the vast majority of the literature in the field has

remained within the planning and operations areas of

organizations and on algorithms to solve the models

used for planning and operations. The textbooks on the

subject contain a common set of subjects: stochastic

modeling, simulation, optimization, inventory, and

game theory.

Economics as a subject has been explored and

developed for centuries. The field used to be called

political economy, reflecting its public policy

orientation, which carries through to today. The

subject areas of economics can be defined broadly as

follows: macroeconomics, the study of economic

aggregates and the state of entire economies, and

microeconomics, the study of economic agents, such

as firms, and the market or organizational structures

within which these agents operate to optimize their

utility or profits. Examples of markets include

monopolies, oligopolies, and perfect competition.

Economists also develop tools such as the statistical

techniques of econometrics, which are used for

estimating the parameters of economic models.

Despite strong connections between microeconomics

and operations research, little overlap exists between

macroeconomics and operations research.

While some early writers such as Adam Smith and

Karl Marx were very influential as social philosophers,

professional economists did not play an important role

in day-to-day discussions of specific public policies

and programs until well into the 20th century.
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For example, the first tax cut based on macroeconomic

theory and intended to stimulate the U.S. economy was

implemented in the Eisenhower administration in the

late 1950s, and regulatory reform based on

microeconomic theory started to make headway in

the 1970s, decades after the basics of the theory of

workably competitive markets was understood.

Economists drove many of the reforms in regulations

around the world, most notably in the U.S., with Alfred

Kahn leading the changes during the Carter

administration. Economists played an even more

central role in the restructuring of the British

economy under Margaret Thatcher. The decisions of

Competition Authority in the E.U. are based on

modern economic theory and their work has led to

new theory, such as understanding how electricity

markets work. The European economies have also

seen some restructuring reflecting the better

understanding of markets. The remarkable rise of

China is a result of the switch from a controlled

economy to one that is more market based.

Economics developed contemporaneously with

operations research and its broad impact in decision

making is a post-World War II phenomenon as with

operations research. The post-war development of

economics and operations research was driven by the

infusion of mathematics into areas beyond the hard

sciences and engineering and the declining cost of

computers and the greater reliance on analytics in

making policy and operational decisions.

The Common History

Both fields apply mathematics to build and understand

models that only approximate the reality being studied

but improve decision making. Given this common

starting point and the interest of operations

researchers in finding the most economic solutions,

the overlap in the fields has to be significant. The

connections were most prominent in the early days of

operations research and they involved such areas as

optimization, inventory theory, and game theory.

Hitchcock (1941), a physicist, and Koopmans

(1951), an economist, independently developed the

first useful optimization model, the transportation

model. Kantorovitch (1939), a mathematician in the

Russian central planning agency, developed several

linear programming (LP) models for production and

distribution including the transshipment model. Stigler

(1945), an economist, developed the diet/feed mix

model. Dantzig (1951a and 1963), at the time,

a mathematician in the US Air Force, invented the

first generic linear programs and the simplex

algorithm for solving them. The simplex algorithm

has survived for 60 years as the primary method for

solving linear programs. The collection of papers in

Koopmans (1951) defined the beginning of the

subjects of optimization, game theory, and the

relationship between the two. It also devoted

a substantial amount of space to generalizing the

input–output model of an economy. Dantzig (1963)

pointed to the work of Leontief in input–output

models of the US economy as an important beginning

for his ideas. The contributing authors to Koopmans’

book were a mix of economists and mathematicians.

Another important early book on linear programming,

Dorfman et al. (1958), was written by economists.

Indeed, Dorfman (1953) wrote the intuitive

description of linear programming models that are

found in all of the textbooks today. Current texts on

microeconomics continue to include chapters on

optimization and game theory.

Many of the first articles on optimization appeared

in such journals as Econometrica (see the references in

Dantzig 1963). Charnes and Cooper, the developers of

many of the first linear programming models, also

published in the economics journals (see, e.g.,

Charnes et al. 1952). Agricultural economists were

quick to develop the feed-mix model for farmers.

Mathematical programming has become a mainstay

for agricultural economists (see Hazell 1986).

In the early days of inventory theory, the links

between economists and operations researchers were

equally strong. This area involved using such

optimization techniques as dynamic programming

and traditional, calculus-based methods to find

optimal inventory policies (Arrow et al. 1958; Whitin

1957). However, the development of the field moved

very quickly into the hands of operations researchers

because the issues in inventory analysis evolved

into the implementation of inventory systems and

situation-specific models, away from the more

broadly-based economic considerations.

Game theory was developed by von Neumann to

study issues of conflict and cooperation at a theoretical

level. He and Morgenstern applied game theory to

economics (von Neumann and Morgenstern 1944).
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The RAND Corporation became an early center for the

development of game theory right after World War II,

in good part to understand geopolitical and military

strategy. The link between non-cooperative game

theory and optimization was understood from very

early on (see Dantzig 1951b; Gale et al. 1951). Game

theory outside the military context plays a larger role in

economics than it does in operations research, mainly

because games are used for the qualitative analysis of

interactions among players, which is appropriate for

developing general policies, and few models are ever

calibrated with numbers that reflect a specific situation.

The theory of auctions is an area of game theory

with both qualitative and quantitative results and of

interest to both economists and operations researchers.

Auctions have been around for millennia, back to

Babylonia. In one of the more notable auctions,

Praetorian guards auctioned off the Roman Empire in

A.D. 193, Shubik (1983). See Klemperer (1999) for

a review of the literature. The economics literature

focuses on single-item auctions whereas research on

combinatorial auctions is in the operations research

literature because of the emphasis on solution

methods. Rothkopf et al. 1998 developed an approach

to solve combinatorial auctions using integer

programming. See de Vries and Vohra (2003) for

a survey of combinatorial auctions.

The restructuring of electric utilities into a highly

regulated market was driven by economics. However,

the method for clearing the daily electricity markets is

mainly linear programming, with integer programming

coming in. Integer programming models for clearing

the market take into account that there is a fixed cost to

generating from the need to ramp power plants up and

down. Some independent system operators such as

PJM Interconnection are using integer programming.

This has led to a literature on developing prices

(see O’Neill et al. 2005, for one approach) using

these models, as integer programs do not generate

prices in the way linear programs do (see for

example, Murphy et al. 2010).

Operations research techniques and operations

researchers have contributed significantly to

economics. Once Samuelson (1952) recognized the

connection between mathematical programming and

economic equilibrium models, mathematical

programming became an important tool for economic

analysis. In fact, the GAMS modeling language

was developed by operations researchers at the

World Bank for the purpose of solving computable

general equilibrium models for evaluating national

development plans (Brooke et al. 1993). An

economist, Gustafson (1958), used dynamic

programming, an operations research tool, to develop

the first grain storage models to protect against

famine. One of the most prominent microeconomic

policy-analysis models of the 1970s, the Project

Independence Evaluation System (PIES), was built

by a team of operations researchers and economists

led by William Hogan (1975), an operations

researcher, who went on to organize the International

Association of Energy Economists. Anyone working

in electricity market restructuring has to be conversant

in optimization, see Stoft (2002).

The Different Perspectives

Economics and operations research are distinct fields

because the economists and operations researchers

have different interests. Economists are primarily

interested in qualitative analysis for policymaking

and econometric modeling and estimation to

understand the structure of an industry. Operations

researchers are more interested in assisting decision

making within the firm and have a strong

computational orientation. For example, oil

companies use the results of their mathematical

programming models for operating their refineries

and taking positions in forward markets. Even when

economists are interested in numbers, they are

looking to measure the impact of the sum of

individual decisions rather than determining the

decisions. This distinction between the fields is not

absolute. Econometricians are interested in

computational issues and the theoretical properties

of their estimation methods. Scarf and Hansen

(1973) has developed algorithms for computing

economic equilibria. An emerging computationally

intensive area of economics is agent-based

modeling, which is a form of simulation where

programmed agents act in their self interest and the

simulations show how economies or ecologies

evolve. The function of corporate planning and

public policy studies produced by operations

researchers is to provide insight rather than specific

numbers. This is done through constructing multiple

scenarios, examining alternative policies, and
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analyzing the sensitivity of the results to the

underlying parameters.

The different perspectives can be seen in the study

of inventories. For the past few decades operations

researchers and computer scientists have been

implementing inventory systems, while the

economists have been focusing on the effect of

inventories on the business cycle rather than

inventory policies per se and they gather data on

inventories to measure aggregate inventory levels.

The popularity of scientific inventory management in

corporations and the desire to reduce inventories to

free up capital and gain operational flexibility with

just-in-time manufacturing has led to a significant

decline in the inventory-to-sales ratio and rapid

adjustments to inventories in response to changes in

sales. That is, inventories turn over more quickly and

companies are able to adapt to fluctuations in demand

more rapidly with less draconian changes in

production levels. The recession of 2008–2009 had

a classic inventory reduction with the rebuilding of

inventories contributing to the early recovery.

Inventory changes are known accelerators of

business cycles. See Forrester (1961) for an

illustration of this at the firm level. The smaller

aggregate inventories are, relative to GNP, the less

effect they have on business cycles. Economists

measure this drop at the national level and factor this

secular change into their macroeconomic models to

explain the resultant dampening of business cycles.

For example, the recession in the early 1990s was

slow in coming and going but also shallow relative to

past recessions because of the cumulative impact of

individual improvements of inventory systems and

production management. The 2000 recession did not

have a strong inventory component to the decline or

recovery, which made the recovery extremely

sluggish, while recession of 2008–2009 is notable for

the inventory movements that deepened the recession

and provided an important component to growth in the

first half of 2010. However, inventories were

a secondary factor in that recession and not as

important as they were in the recessions of the 1950’s

through the 1980’s.

The different views of production functions taken

by the two fields further illustrates the distinctions

between the fields. When economists estimate

production functions and are not building process

models, they typically posit a differentiable

functional form, gather data and estimate the

parameters of the function using regression

techniques. They do this to estimate output prices and

understand the rates of substitution of inputs as

a function of input prices. They are not looking inside

the firm at the production process. Instead they are

looking at market consequences. For example, from

the rates of substitution, one can derive a demand curve

for an input given the prices of the other inputs.

The operations research tool of data envelopment

analysis (Charnes et al. 1978) estimates production

functions using an alternative approach with different

assumptions and goals. In data envelopment analysis

the goal is to identify which decision-making units are

efficient and which are not. That is, data envelopment

analysis is a benchmarking tool for finding the best

production practices with the ultimate goal of

improving production processes. Unlike the

econometric assumption that errors are in the data,

data envelopment analysis assumes the data is error

free and differences among decision-making units are

due to different resource mixes and managerial

effectiveness. The production function is the inputs

and outputs of the decision-making units as activities

in a linear program. A linear program is solved for each

decision-making unit to see if it is on the efficient

frontier. If it is, it represents best practices, given its

mix of resources and products. If not, it is a candidate

for improvement.

For every differentiator between operations

research and economics, one can find an exception.

Economists have focused on how agents interact in

a framework and draw conclusions about the effect of

changes in the framework, while operations

researchers have been more interested in aiding the

agents making the decisions. An exception to this is

the study of traffic equilibria where the agents are

travelers on a network of roads. The defining paper of

this subject appeared in a civil engineering journal.

Wardrop (1952) stated a set of equilibrium conditions

based on trip times that are directly related to the

equilibrium conditions for spatial economic equilibria

based on cost. Although economists contributed to the

early literature (e.g., Beckmann et al. 1956, established

the relationship with economic equilibria), the bulk of

the literature is in transportation journals with an

operations research connection. See Nagurney (1993)

for a description of different types of equilibrium

models.
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Agent-based modeling and OR-style simulation

illustrate an area that has commonalities and

differences between the economic and OR

perspectives. In agent-based modeling one endows

the agents with some knowledge of their environment

and procedural rationality rather than a full

understanding of how to optimize. The procedural

rationality can be the steps of an optimization or

search algorithm or a set of behavioral rules. See

Epstein and Axtell (1996) and Tesfatsion and Judd

(2006) for introductions to the subject. Usually,

randomness in choices and/or outcomes is

introduced. The agents interact in simulations and the

equilibria or lack of equilibria are observed. This form

of modeling is especially useful in exploring possible

outcomes that can be later assessed using standard

qualitative analysis methods or for observing markets

that are too complicated for qualitative analysis.

See Weidlich (2008) for a simulation of the German

electricity market, a market that is too elaborate for

standard qualitative analysis. The difference between

agent-based modeling and the typical stochastic

simulation built for operational purposes is that these

simulations describe physical situations and look at

material flows. When these simulations include

people, the people are typically represented using

probability distributions on some characteristic such

as arrival patterns in a queueing simulation.

Simulations can incorporate optimizations. However,

the optimizations are for the system being studied and

not the individual agents (see, for example, Andrews

et al. 1996).

The Common Interests

The two fields overlap in several areas, including

public policy analysis, finance, game theory, and

decision analysis. There are others such as yield

management that link both fields. The convergence of

the fields in policy analysis comes about because

politicians want quantitative analyses of programs.

Economic models have a lot to say about how

economic agents behave and operations researchers

have the computational skills and modeling expertise

to implement the economic theories and solve for the

economic impacts of policy alternatives.

Examples here include the activity at the World

Bank in building country and sector models. The

close working relationships between economists

and operations researchers have continued with

the successor models to PIES, the Intermediate

Future Forecasting System (Murphy et al. 1988) and

the National Energy Modeling System (Energy

Information Administration 2009). See Murphy and

Shaw (1995) for a history of the energy models at the

Energy Information Administration.

A key feature of these kinds of policy models is that

in some sectors they model the decisions using

optimization by representing the technology choices

directly in the model. The main reason for using

optimization is that the models need to have

representations for policies and technologies that

affect more than input and output prices and

quantities and there is no history to assess the

resulting decisions for some sectors. Other reasons

include the need to link more than one sector and the

existence of a convoluted data history that muddies

the econometric analysis for estimating such things

as a production function for electric utilities. The

optimization models are usually simplified versions

of the planning models used by the industry with

coefficients based on industry aggregates and are

process models as described by Manne and

Markowitz (1961). They are treated as simulation

models based on the result of Samuelson (1952)

showing the connection between optimization and

economic equilibrium models.

Markowitz (1954) proposed using process models

almost 60 years ago as a way to model the whole

economy, extending the input–output model to

represent alternative production technologies.

Henderson (1955) and Land (1956) successfully built

models of coal markets using this approach. Only

recently have databases, computers, and algorithms

progressed to the point where these ideas can be

realized for economy-wide models.

Policy models almost always include econometric

components as well. For example, the above-mentioned

energy models include econometrically estimated

demand curves along with the process models for

coal supply and transportation and electricity generation

and transmission. In econometric models of

production, one measures the inputs and outputs to

statistically estimate the parameters of a production

function. The model makes no statement about

the actual decisions made by the agents. Instead, it

models the outcomes of the decisions made by
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the actors in the economic sector. Econometric

approaches dominate optimization when there is too

much heterogeneity among participants to specify the

parameters of their decision environment, as in demand

modeling or the behavior of producers when the

industry has a large number of independent, small

firms. In large-scale, capital-intensive industries,

process models work well.

The finance literature is dominated by economic

studies of financial markets and their efficiency. An

example is the book A RandomWalk DownWall Street

by Malkiel (1973). This book showed that movements

in stock prices are a random walk, illustrating why

stock pickers in general cannot beat the market. Also,

Tobin’s (1958) results on the relationship between risk

and return were key to the development of decision

models in finance. Equilibrium conditions lead to an

efficient frontier in portfolio theory that simplifies the

choices to a tradeoff between an index of risky assets

and a risk-free asset, typically, government bonds. See

Bodie et al. (2005) for an introduction to the subject.

For a book that covers finance from an operations

research perspective see Luenberger (1998).

Financial markets are not entirely efficient and the

Black and Scholes (1973) model for pricing options

created a whole new segment of the finance industry.

Its basis is dynamic programming. The book by the

economists Dixit and Pindyck (1994) emphasized the

role of dynamic programming in properly valuing

investments with uncertain returns.

Optimization models have come to play an

important role in determining the mix of assets in

a portfolio, the first one being the model by

Markowitz (1952), which represents the beginning of

computational finance. That model is a quadratic

program that trades off expected return and portfolio

variance. Because of the ability to solve far larger

linear programs than in the past, stochastic

programming models for building portfolios have

made an important mark in the industry. For

example, see Carino et al. (1994) for a description of

the kind of operations research models used by the

people known as “rocket scientists” in the financial

press. Because of the difficulty of determining

probability distributions and finding stable

correlations among assets, an alternative approach

known as robust optimization is gaining traction.

Here random variables are captured in uncertainty

sets. The model optimizes an objective function

subject to satisfying all constraints for all parameter

values in the uncertainty sets. In some sense this is

a maximin optimization. See Bertsimas and Thiele

(2006) for a tutorial on the subject.

Portfolio theory also uses the concepts of value at

risk and conditional value at risk. Say a portfolio

manager wants to limit the worst case outcomes by

choosing a portfolio that maximizes the value of

a cutoff point (minimizing the loss) on the left tail of

a probability distribution where the left tale covers 5%

of the possible outcomes. This is the value-at-risk

optimization. Conditional value at risk minimizes the

expected value of the losses below the value-at-risk

loss. For readers with an inventory background, value

at risk corresponds to setting reorder points and safety

stocks at a level that targets a given probability of stock

out. Conditional value at risk is the equivalent of

setting reorder points at a target number of expected

units short during lead time. There are convexity issues

with value at risk. Rockafellar and Uryasev (2000)

show how to formulate the conditional value at risk

optimization as a linear program.

The interconnection between economics and

operations research in game theory can be illustrated

by the Averch-Johnson hypothesis (1962). This

hypothesis states that regulated firms have a bias

to overinvesting in capital rather than labor.

They demonstrated their results by evaluating the

Kuhn-Tucker conditions of an optimization model,

where a firm with a monopoly maximizes profits

subject to a rate-of-return constraint. With the

deregulation of many industries, it is now known that

these firms were not only overcapitalized, but they also

had toomuch labor, in violation of the Averch-Johnson

hypothesis.

The problem with the Averch-Johnson model was it

presumed that the firm was a single entity and could

optimize its behavior. However, one must not treat the

firm as the atom. Instead, one must look at how

the agents within the firm interact and look further

into the nature of the behaviors of the agents who

make up the firm. Figuring out the underlying

incentives of the members of a firm and analyzing

their behavior relative to the interests of stockholders

is known as principal agent theory, an important area

of microeconomics. For example, one could explain

the behavior of regulated firms as follows: managers

increase their importance by increasing the number of

employees under them and buying labor peace by
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paying high wages to unionized employees. Given the

extent to which electric utilities were perceived as

highly inefficient in the Averch-Johnson sense, it is

interesting to see the differences in performance of

investor-owned generators that were restructured,

those that were not, and municipal utilities. Fabrizio

et al. (2007) find only modest improvement.

Studying the behavior of economic agents and other

individuals has a long tradition in economics and is the

essence of game theory. Since little data exists for

numerically evaluating game models, almost all

studies examine the qualitative properties of the

resulting games. Economists have focused mostly on

markets (Shubik 1959). Indeed, outside of von

Neumann’s early work on parlor games, the book by

von Neumann and Morgenstern (1944) was the first

major treatment of the subject and focused on

economics. Operations researchers have studied other

types of games such as war games and invented some

of what are now the classics like the prisoner’s

dilemma game (Poundstone 1992). The center for

this work was RAND. An example of a strategic

game that was studied was the stability of mutual

assured destruction as a defense against nuclear war.

Schelling (1980) presented an analysis of these

strategic games. Both groups study the generic

properties of games that abstract common situations.

Shubik presented an interesting example of someone

who does both strategic and economic games. As part

of his examination of strategic issues, he used the

dollar auction game to describe games of escalation

such as war and lawsuits (Poundstone 1992).

Part of the reason for the common interest of

economists and operations researchers in game theory

is its universality in understanding conflict and

cooperation. Political scientists and sociologists have

become involved in game theory for the same reason.

The link between political science and games is direct

through the games already mentioned and the use of

game theory concepts in negotiation. Sociologists use

games to understand social interactions. The prisoner’s

dilemma game has been used repeatedly to explain the

behavior of individuals in social situations and social

structures. Thus, the notions of game theory have

moved beyond the disciplines in which they were

developed and influence important areas of the social

sciences.

Rational decision making encompasses game

theory. Indeed, a still invaluable work on the subject

that treated both together is the book by Luce and

Raiffa (1957). What is a rational decision is subject

to debate. To explore the subject, von Neumann and

Morgenstern developed the concept of expected

utility. Utility is a simple concept in many situations

when the goal can be clearly stated as with maximizing

profits. However, in real life an individual faces many

trade-offs. Examples include the willingness to bear

risk, how to value income versus leisure, what value is

in the products consumed, and how to value the future

over the present. In the decision-making literature,

Keeney and Raiffa (1976) explored the issues

associated with multi-attribute utility in decision

making. The notion of multi-attribute utility is central

to the study of negotiation (Raiffa 1982), as the

different parties in a negotiation generally value

different aspects of the subject under discussion,

creating an opportunity for joint gain.

As in other areas, economists have not focused

on making actual decisions except in the

general properties that can be understood from

the decision-making process, as in Arrow (1951). In his

seminal work on social choice, Arrow posits a set of

axioms that define rationality and then shows how

group interactions and voting processes lead to

irrational decisions even though the original actors have

rational utility functions. Another example of this is the

economics literature on rational expectations. In its most

basic form, the question addressed in the context of

macroeconomic models is: “How do the consequences

of macroeconomic policy change when the participants

in the economy have rational expectations about the

effect of macroeconomic policies and adjust their

decisions?” See Redman (1992) or Sargent (1993) for

a discussion of this area of economics.

In much economics theory the literature presumes

the agents have full information and know their utility

functions. These are questionable assumptions and one

should treat the theorems of economics as hypotheses

rather than foregone conclusions. Econometricians

historically have done the testing. Smith (1994, 2005)

developed the field of experimental economics by

laboratory studies in which the subjects were

rewarded based on their performance in economic

situations. He verified results such as the effect of

risk aversion on auction designs. This kind of work

does not appear in the operations research literature

because operations research is prescriptive rather than

descriptive.
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Operations research has come to dominate the

subject so far as making actual decisions. For an

example of a detailed decision analysis in

a corporation see Borrison (1995). Some of the most

important literature has come from psychologists

trying to understand peoples’ thought processes. The

psychology literature is aimed squarely at the rational

actor hypothesis of economics and finds it wanting. For

a book that examines the approaches of all three

disciplines see Bell et al. (1988). For a description of

experiments that bring out cleverly human thought

processes, see Ariely (2008). An area known as

happiness research is moving economics from

standard utility theory. Researchers do surveys to

understand what makes people feel better. For

example, rich people are happier than poor people.

However, as a society gets richer, happiness does not

increase. This has implications for the kinds of

measures that should be used to determine the

wellbeing of a society. See Graham (2005) for an

overview. Again, a key difference between

economics and operations research is that the goal of

economics is to be descriptive, a science that discovers

what is, and operations research, which comes

from the engineering tradition of achieving

organization-specific goals such as improved supply

chains, looks to engineer better decisions.

An operations researcher cannot be an effective

modeler and analyst without a good understanding of

the basics of economic theory. Here is a simple

example. The simplex algorithm represents the

behavior of a set of independent economic agents

(activities) making decisions to act or not based on

a set of incentives in the form of objective

coefficients and resource prices (dual variables). And

if they choose to act based on profitability (reduced

costs), they proceed until they reach a resource limit or

drive a competitor out of business (the replaced

activity reaches zero in the simplex pivot). By

looking at a solution from the perspective of the

simplex algorithm as an economic process, one gains

the deeper insights into the story contained in the

solution that takes analyst beyond just the value of

the objective function and the level of activities.

The basic notions of substitutes and complements in

production processes determines the character of

optimization models. Network linear programs are

models of pure substitution. Whereas, a product-mix

model consists of activities that have inputs that are

pure complements. The vast majority of the constraints

in an LP can be classified as supply, demand or material-

balance constraints. Greenberg (1981) used the notions

of substitutes and complements to gain deeper insights

into linear- programming models and their solutions.

Concluding Remarks

Economics and operations research have common roots.

The fields often use the same tools, such as the Karush-

Kuhn-Tucker conditions. In economics these conditions

are used for pricing, marginal analysis, as with the search

for institutional distortions of the marketplace in the

Averch-Johnson hypothesis, and for such uses as the

derivation of cost functions from production functions.

Operations researchers exploit these conditions to

improve algorithms and use the actual duals and ranges

for evaluating the stability of the model results,

estimating the effects of uncertainty in the coefficients

on the solution, and determining the costs of constraints

with an eye towards adding or reducing resources when

making decisions within the firm.

Typically, the fields use these tools differently for

different purposes. This reflects the different

professional goals of the individuals involved in these

fields. Operations researchers focus on making specific

decisions and economists study the consequences of

different organizational and market structures and

policies through an assumption of rational decision

making. Both groups are interested in understanding

rational decision making and the consequences of

rational decisions. This can be seen in the different

views of the firm. The traditional economic theory of

the firm is really a theory of the interactions of firms or

constituencies within the firm. Whereas, operations

research models provide a theory of decision making

within the firm and are an important component of

a theory of the internals of the firm. The operations

research models do not provide a complete theory of

decision making in the firm because operations

researchers, although commenting on conflicts in the

firm, tend to not focus on the incentives and structures

that create these conflicts. This is where agency theory

fits in and one of the places where game theory links

both fields. The result is that operations research

models tend to be most successful in capital intensive

firms where the issues are managing those assets rather

than large numbers of people.
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The fields are now distinct because operations

research takes an engineering perspective: the goal is

to invent improved ways for making decisions, and in

the process of doing this, inventing new models and

algorithms as needed. In fact, the very success of

operations research in building and using large

computer-based models for planning and operations

has led to the complaints of Ackoff (1987) that the

field has abdicated its role in corporate strategy and

public policy. Economics, instead, is a social science

where the goal is to understand the existing world and

study the consequences of policies that affect this

world using the basic theme of exploring the

consequences of rational self-interest. The two fields

come together when there is the need to change the

rules of the marketplace or when the marketplace

creates opportunities to engineer new products that

provide a profit as in finance and electricity markets.

Both fields have their distinct niches, yet will always

be connected by their tools and history. Each will

continue to enhance the other field, an example of the

economic notion of joint gain through comparative

advantage.

See

▶Banking

▶Corporate Strategy

▶Data Envelopment Analysis

▶Decision Analysis

▶Econometrics

▶Game Theory

▶ Input–Output Analysis

▶Karush-Kuhn-Tucker (KKT) Conditions

▶Linear Programming

▶ Portfolio Theory: Mean-Variance Model

▶ Public Policy Analysis

▶Quadratic Programming

▶RAND Corporation

▶Utility Theory
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Edge

(1) An edge is the line segment joining two extreme

points of a polyhedron such that no point on the

segment is the midpoint of two other points of the

polyhedron not on the segment. (2) A line connecting

two nodes in a graph (network).

See

▶Graph Theory

▶Network Optimization

▶ Polyhedron

Efficiency

In statistics, an unbiased estimator’s efficiency is the

relative size of its variance compared to other unbiased

estimators.

See

▶Data Envelopment Analysis

▶Efficient Solution

Efficiency Frontier

▶Data Envelopment Analysis

Efficient Algorithm

▶Computational Complexity

Efficient Point

▶Efficient Solution

▶Multiobjective Programming

Efficient Solution

For a maximizing multi-objective problem,

a solution x0 is efficient if x0 is feasible and there

exists no other feasible solution x such that cx � cx0

and cx 6¼ cx0. An alternative definition is that

a feasible x0 is efficient if and only if there exists no

other feasible x such that ck x� ck x
0 and ck x> ck x

0

for at least one k. An efficient solution is a feasible

solution for which an increase in value of one

objective can be achieved only at the expense of

a decrease in value of at least one other objective.

Efficient solutions are also called nondominated

solutions or Pareto-optimal solutions.

See

▶Multiobjective Linear-Programming Problem

▶Multiobjective Programming

▶ Pareto-optimal Solution

Eigenvalue

▶Analytic Hierarchy Process

▶Matrices and Matrix Algebra

Eigenvector

▶Analytic Hierarchy Process

▶Matrices and Matrix Algebra
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Introduction

An electric power system is designed for reliable,

economic, and socially acceptable production and

delivery of electricity to individual customers. It

involves many interrelated elements: generation

stations, control centers, transmission lines,

distribution substations, and distribution feeders. With

an intricate system structure, complex economic and

social objectives, and numerous reliability, safety,

and resource constraints, power system planning and

operation has long been an ideal field for the

development and application of operations research

and management science (OR/MS) techniques. These

developments and applications continue to expand and

evolve with the advancements in power technologies

and changes in the utility industry. In the following

sections, electric power generation system planning

and operation is first used as a prototype example to

present some basic concepts. This is then followed with

a discussion of trends and challenges in the electricity

industry to provide a glimpse of the enormous

opportunity for OR/MS applications to power systems.

Overview

Electric power systems have been planned,

constructed, and operated to supply electricity to the

general public by regulated utilities. As regulated

entities, these utilities are allowed to recover their

capital investments and operating costs for supplying

electricity, with an allowance for reasonable returns by

collecting revenues from customers in the form of

electric rates. To assure the economic efficiency of

the utilities, regulatory commissions in general have

required utilities to minimize their total revenues

required for electricity supply. Therefore, electric

power system planning and operation has been

a classical OR/MS problem of minimizing utility

revenue requirements to meet projected electric

demand growth over a future time period at a given

level of reliability.

An electric power systems have three major parts:

generation, transmission, and distribution. Because

power flows in transmission and distribution are still

difficult to be estimated accurately and economically,

most applications of optimization techniques have

been in generation system planning and operation.

Specifically, the generation system planning and

operation problem is to select a combination of

power plants and unit dispatch schedules to minimize

the present worth of the total capital, fuel, and

operations and maintenance expenditures for meeting

future electric demand while satisfying generally

agreed-upon generation system reliability standards.

Optimal Generation System Reliability

Setting generation system reliability standards is itself

an optimization problem, because too low a standard

would cause economic losses to the customers from

frequent electric supply interruptions, while too high

a standard would cause low capacity utilization of

power plants and thus high electricity costs.

In the past, a commonly accepted empirical generation

system reliability standard has been the one day in 10 year

loss of load probability, that is, the daily electric peak load

not to exceed available generating capacity of eachdayby

more than one day in 10 years. However, with increasing

technical capability, computationally efficient procedures

have been developed to enable utilities to assess

generation system reliability in detail (Yu 1978).

Further-more, cost/benefit approaches have been used to

derive the optimal reliability standard for a given socio-

economic environment by determining the appropriate

tradeoffs between the cost of power supply shortage and

disruption and the cost of over-capacity to the customers

(Kaufman 1975; Telson 1975; Keane andWoo 1992).

Optimal Dispatch of Generating Units

Because electric load varies by hour, day, and season

in a year, the dispatching of generating plants to meet

daily load requirements is also itself an optimization
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problem. This so-called production costing problem

strives to determine the plant dispatch schedule that

will minimize the fuel as well as operations and

maintenance costs for meeting the load. In a broader

context, the production costing problem also involves

power purchases from neighboring utilities for either

low cost or backup capacity. Therefore, for optimal

generation system planning, a solution to the

operational sub-problem of production cost

optimization must first be found.

A classical generation system operation

optimization problem is the combined scheduling of

hydroelectric and thermal power plants. Specifically,

ineffective use of hydropower will increase the use of

high operating cost thermal plants. The power system

operator’s problem is, therefore, to minimize the total

cost of generation system operations for a given time

period with uncertainties in load requirement and

water availability.

Generation System Expansion Planning

In a simplified form, the generation system expansion

planning problem for a time horizon [0, T], may be

expressed as follows (Anderson 1972):

Minimize cf ðx1;x2; :::; xnÞ þ cu y1ðtÞ; y2ðtÞ; :::; ynðtÞ½ �

such that
X

i

yiðtÞ � LðtÞ for t in ½0;T�

0� yiðtÞ � dixi

xi is the capacity of plant i;

yi (t) is the capacity of plant i used at time t;

L(t) is the load at time t;

di is the derating of plant i because of random forced
outages;

cf is the present worth of the fixed costs; and

cv is the present worth of the variable costs.

In a more sophisticated formulation, the random

nature of plant outage is taken into account by

replacing the first constraint with:

Pr
X

i

yiðtÞ < LðtÞ

( )

� p for t in ½0; T�

Probabilistic simulation models have been used to

determine the optimal dispatch schedule accurately

(Stremel et al. 1980; Sidenblad and Lee 1981). With

the solution of the production costing subproblem,

a number of OR/MS techniques, including linear and

nonlinear programming, can be used to solve the

overall generation system planning problem.

Another level of sophistication is to require xi to be

integer-valued. In this case, either mixed integer

programming (Benders 1962) or dynamic

programming (Jenkins and Joy 1974) can be used for

generation system planning solutions.

A comprehensive application of OR/MS and other

engineering-economic analysis techniques to

generation system expansion planning has been the

Electric Generation Expansion Analysis System

(EGEAS) developed by the Electric Power Research

Institute (EPRI 1983).

Optimal Maintenance Scheduling of
Generating Units

Another optimization problem in generation system

operations is unit maintenance scheduling. Each

generating unit has a set period each year for preventive

maintenance. The objective of optimal maintenance

scheduling is to minimize the overall production cost

while meeting the generation system reliability standards

throughout the year. The problem is somewhat similar to

theknapsackprobleminOR/MS.Becauseutilitybusiness

requirementsvary,oftenaheuristicapproachisrequiredto

find a solution for maintenance scheduling for a specific

power system (Yu and Freddo 1978).

Fuel Inventory Planning

One other area in generation system planning

amenable to OR/MS application is fuel inventory

planning. Chao et al. (1989) have developed an

optimization computer program that performs formal

cost-benefit analysis of the following problems:

• uncertain fuel deliveries and fuel burn;

• seasonality in fuel use and fuel supply;

• supply disruption of varying severity, warning times, and
duration; and

• nonlinear shortage costs.
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Utility Resource Planning

Over the past years, there have been major changes in

the electric utility industry in the United States. As

a result, utility resource planning objectives have also

evolved (Yu and Chao 1989).

In the 1970s, growing environmentalism imposed

an additional tradeoff between environmental control

cost and generation system reliability. A major

application of OR/MS techniques was the

development of the Over/Under Capacity Expansion

Model funded by the Electric Power Research Institute

(EPRI 1987).

In the 1980s, prevailing energy conservation ethics

has given rise to the widespread adoption of the Least

Cost Planning concept, also referred to as Integrated

Resource Planning. Under this planning concept, in

addition to an economic comparison among

themselves, electric supply alternatives are to be

further compared with demand-side management

options, that include energy conservation and load

management. As the research management arm of the

U.S. electric utility industry, EPRI has also funded the

development of a number of major optimization tools in

this area (EPRI 1988), including the Multi-objective

Integrated Decision Analysis and Simulation (MIDAS)

model and the Utility Planning Model (UPM).

Trends and Challenges

There has been a fundamental changing trend in the

electricity industry worldwide. This trend is largely

driven by the ideological popularity of market

economy and the development of low-cost

high-efficiency gas turbine combined cycle

generation technology. In this changing trend, the

traditionally vertically integrated electricity industry

is disintegrated and restructured so that electricity

generation and retailing become competitive

businesses while transmission and distribution

systems remain regional monopolies.

In this restructured electricity industry, the

applications of OR/MS tools become more important

than ever to effectively manage the complexity and

uncertainty in the competitive business environment

and ensure the fairness of the market and the

profitability of the investors. The following are a few

major examples of these applications.

Transmission System Congestion Charge
Allocation

In the restructured industry, a transmission system

becomes a common carrier for all generating units. In

addition to transmission charges, these units also need

to pay a charge for the right to ship power under

congestion. How to accurately estimate and properly

allocate the congestion charge is a complex task that

requires a systematic and quantitative approach. One

such an approach that has received increased

acceptance has been proposed by Chao and Peck

(1996). Their idea is to allocate a fixed and finite set

of transmission capacity rights to electricity suppliers

according to a trading rule for the short-term leasing of

these rights. The holders will set a price that maximizes

its profit, while the rights are assigned to market

participants that value them the most highly. As

a result, this approach is efficient and involves

a series of optimization analysis.

Game Theory Applications in Generation
Competition

In the competitive generation market, there are many

opportunities for game theory applications. In this

market, a common bidding rule is the so-called

second price bidding rule. By this rule, electricity

suppliers bid on an hourly basis the amounts and the

prices they would be willing to supply power. These

prices are staggered from low to high together with

their respective amount to form a electricity supply

curve of that hour. At the same time, the power

purchasers would bid the amounts and prices they

would be willing to pay at the given hour. Their

prices are staggered from high to low together with

their respective amounts to form the electricity

demand curve for the hour. The price at which

supply and demand curves meet is the market

clearing price, that will be paid to all suppliers and

paid by all purchasers. With game theory, market

participants can develop bidding strategies by

anticipating the actions and reactions of the

competitors. On the other hand, regulators who are

responsible for the fairness and effectiveness of the

market can also use game theory to detect potential

dominance of the market by a small number of

participants and possible collusive behavior among
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participants. Several technical papers about these

applications have collected by the Institute for

Electrical and Electronics Engineers (IEEE 1999).

Risk Management through Option Theory

In the competitive market, investments in generation

plants entail unprecedented risks, because they are no

longer protected by economic regulation for guaranteed

returns. Similarly, there are considerable risks as well as

profitability in the retailing of electricity based on

a combination of long-term contract and short-term

market trading. As a result, both investors and retailers

need to effectively manage their risks while maximize

profitability. In addition to the usual decision and risk

analysis techniques, a new approach for these

investment and portfolio strategies, called real option

has been developed through the extension of option

theory from the financial field. In this approach, to

provide flexibility in a highly uncertainty business

environment, investors will make small initial

investments to secure the rights for future large-scale

investment options and retailers will negotiate option

contracts tomanage uncertainty and hedge against risks.

This area is rapidly expanding, see Trigeorgis (1996) for

an introduction and review. In addition, Smith and Nau

(1995) provides an insightful comparison between

option pricing theory and decision analysis.

The Smart Grid

Electric power system has always been information

intensive. Because electricity generally cannot be

stored, the operation center of a power system must

continuously monitor changes in electricity demand

and matches it by increasing or decreasing power

supply in accordance with the merit order of the

marginal cost of generation. In the meantime, the

center also needs to constantly maintain the

reliability of the system by stabilizing the system

voltage and frequency and re-routing electricity in

response to breakdowns and outages in the system.

These functions require large-scale information

acquisition, data analysis, and system control

functions, which are the basis of the Supervisory

Control and Data Acquisition/Energy Management

System (SCADA/EMS) of modern power systems.

With the rapid advances in information technology

(IT), it has been envisioned that such SCADA/EMS

can be expanded far beyond the existing power

delivery network that supplies electricity to an

uncontrolled demand. Instead, advanced IT—

so-called Smart IT because of its ability to actively

acquire, process, communicate, analyze, and display

information to provide interactive and adaptive control

of both the system inputs and responses—will enable

the power system to optimally manage both electricity

supply and demand through real-time electricity

pricing signals; interactive end-use sensors,

communications, and controls; and environmentally

based energy-trading mechanisms, as well as to

effectively integrate distributed energy resources,

including renewable, energy storages, and electric

vehicles. Through advanced data analysis by the

Smart IT, the power system can further anticipate

future changes and develop appropriate responses,

including self-healing in case of system breakdown

and emergency control in case of natural or

man-made disasters. In other words, Smart IT can

provide constant information acquisition, processing,

analysis, communication, and control to create a Smart

Grid that simultaneously optimizes all generation,

transmission, distribution, and end uses to continuously

adapt to changing supply conditions, customer demands,

and environmental and other policy requirements.

This is a vision that has caught the imagination of

both researchers and business people and gained

the popularity among technical professionals and

government officials alike throughout the world.

However, as IT continues its revolutionary changes,

the Smart Grid vision also continues to evolve. To

develop a Smart Grid based on a given set of Smart IT

would not only be a long and expensive undertaking, but

the results could also become technically obsolete as

soon as it is completed. (A prominent example was the

development of a Customer Information System by

a major U.S. electric utility in the 1990s, which took

5 years at a cost of over 300 million dollars, but became

outdated as soon as it was completed.) Therefore, in all

countries in the world, Smart Grid concepts have been

partially implemented in various segments of the power

system, such as smart end-use management, two-way

communications and interactions between utilities and

customers, utility asset management with smart

substations, and smart regular and emergency

operation centers.
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At the same time, these concepts have been also

implemented more comprehensively in a smaller-scale

local power grid, called the microgrid, in which there

are often many independent power generators with

renewable energy sources. Both these incremental

developments of large-scale smart grid and the

interactions between the more fully developed

microgrids with the main power grid pose great

challenges, but at the same time provide enormous

opportunities for research in OR/MS in the

optimization of resource allocation and system

operation, see (Chakrabortty and Ilić 2011; Vasant

et al. 2011) for some initial summaries.

See

▶Decision Analysis

▶Game Theory

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Nonlinear Programming
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Introduction

Electronic Commerce (EC) has become a significant

way of selling products and services because of the

major improvements in electronic and Information

Systems (IS) technology. This technology, however,
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can only be exploited effectively by specialized

business structures and organizational practices. At

the same time, new laws, treaties, and international

standards were enacted to respond to the worldwide

changes needed to control and yet ease the movement

of goods and data over borders. Because of its

effectiveness, the term electronic commerce has been

expanded to encompass types of systems that use

similar technology, but have only marginal

commercial aspects, such as governmental systems

that interface with citizens. For example, the Internal

Revenue Service (IRS) has a site that provides

electronic forms for income tax submission and

social systems that provide interfaces to members of

social or professional organizations.

The definition of EC may be derived from that of

normal commerce, which is as follows:

Commerce (noun): the exchange or buying and

selling of commodities on a large scale involving

transportation from place to place (Merriam-Webster).

Electronic Commerce is thus the use of information

technology (IT) to provide an infrastructure with

interfaces that allow communication between people

and organizations for business or commercial

purposes. It is buying, selling, or exchanging of

products, services and information via an electronic

network (generally the Internet, Intranet, and its

extensions) (Efraim et al. 2010).

As a result of Information Technology (IT), most

large stores include a pure brick (physical) operation

and an on-line presence. The combination is termed

“brick and click” and allows a seller to reach more

customers and a world-wide audience, as well as

compete with other businesses. Today, there are also

stores that reside purely online (e.g., selling digital

media, such as books, music, or operating systems)

and rely completely on the Internet as its interface

with customers. More businesses are expected to

move online in order to stay competitive.

Using the Internet model, the process of buying

goods and services becomes more transparent. EC

allows the buyer to browse vendor offerings and prices.

Some History of Electronic Commerce

In the United States, starting in the 1960s major

organizations used computers to automate

previously manual operations, thereby improving

the speed and accuracy of business computations.

By 1970, most large enterprises had automated their

simple manual business functions, such as payroll,

and some early database management systems

facilitated data sharing. Soon after this, the first

internal networks were implemented by large firms.

Additionally well-informed managers started

interconnecting their geographically distributed

computer systems via phone lines. Within years, the

Internet was born and by the mid-1980s, there had

been major adoption of network technology.

Moreover, the advantage of communicating between

consumers and suppliers (business to business or

B2B) had led to the idea of electronic data

interchange (EDI) where orders could be placed

electronically, according to nationally defined and

contractually approved methods. Electronically

controlling inventory significantly reduced the costs

of supply chain management. Because of the advent

of gateways between networks and countries, the

World Wide Web became a reality. The Internet had

therefore joined phones and fax machines as

a medium for commerce at a distance. All seemed

well until the 1990s when the EC industry suddenly

faced loss of public confidence. Banks and investors

became doubtful of EC as a profitable venture and

stopped funding EC startups. Consequently, the

so-called dot com bubble burst. In the following

years, however, EC sites gradually recovered from

this setback and some e-businesses returned profits.

As a result, today, most large US stores and

businesses have effective Web sites with personal

and corporate customers accessing them. This

confirmed EC as an effective way of doing business.

Fields Associated with Electronic Commerce

EC technology changes the way that merchants

conduct business; manufacturers develop

relationships with other merchants; and consumers

access information and obtain goods and services.

Their IS must be adapted to take advantage of the

opportunities of EC, as well as satisfy the

expectations of those who establish a relationship

with or purchase goods and services from the

organization. This online medium redefines the

ways in which companies and customers

communicate.
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As EC becomes a new source of customers and

a means for the expansion and creation of business

opportunities, many business and related disciplines

become, directly or indirectly, an important part of

the business model. Some affected business related

areas are:

• Law and Policy: Legislators have passed new laws

and are finding it necessary to modify or reinterpret

old ones to deal with EC. The hierarchy of laws and

regulations includes control over all transactions

between governments, organizations, and people,

thus incorporating international, national, and local

laws. Major organizations must also negotiate for

special considerations with various regulatory

bodies throughout the world. Governments must

also influence business processes to gain taxation

and other revenue, protect national values and

culture, and maintain relevance, while regulatory

bodies have to deal with the effect of case law.

Such issues of governance must be solved; within

the firm, policy makers must therefore react by

creating new rules and procedures that deal with the

effect of the new modes of business.

• Finance and Accounting: This discipline must deal

with new means of payment worldwide, therefore

understanding the many different taxes (e.g.,

purchase tax, value added tax, etc.), currencies,

and accounting requirements are important.

• Managerial: Corporate management must

understand the cultural and political issues that

affect the profitability and general operation of

their organization around the world. The new way

of conducting business must cope with many

cultures and religions, whose members may find

some content offensive or even blasphemous. The

opportunity for illegal activities or even mischief

also has increased; thus, ethical behavior plays

a major role in the development of the EC Web

site and also of the care of the information passing

into and out of the Web site. Of course, this also

implies a need for businesslike behavior within the

Web site.

• Information Technology: The chief information

officer, who is in charge of the IT systems and

their maintenance, must deal with many issues

including development of the Web site and its

database and their maintenance. The Web site

must be protected against the depredations of the

cyber criminal or hacker.

• Psychology/Organizational Behavior: The system

designers must be aware of the behavior of

a customer while shopping online. Attention to

this can aid in customer retention; navigation

within a site, searching for products, and ensuring

general ease of operation. Analyzing the differences

between the feel or playfulness of Web sites are

important to the customer who has the site as his

or her major interface with the store.

• Marketing: This discipline must adapt to a new type

of customer or face potential loss of market share.

There is seldom any salesperson available on the

site and thus the designer or architect of the site

should provide a surrogate to aid the customer in

navigating the site and learning of other people’s

feelings about the goods. The marketing consultant

should, therefore, use new techniques such as data

mining to find how to attract customers and

implement new advertising techniques.

• Economics and Operations Research: Economists

study markets, products, and commodities. As the

Internet becomes an integral part of today’s

economy, supply and demand, as altered by EC,

become important. Supply chain management is

a particular example of the application of

operations research (OR) principles to EC systems.

The Classification of Electronic Commerce

EC can be characterized by the types of entities that are

communicating; these include Businesses (B), Consumer

or Citizens (C), Governments (G) and Employee or

Exchange (E). Obviously, these are paired and thus are

referenced Business to Consumer (B2C) implying the

use of specific types of transactions between Bs and Cs.

The most important in terms of volume and financial

commitments is B2B, where linked transactions take

place between two or more companies resulting in

supply chains. Some other classifications discussed by

Efraim et al. (2010) include:

• Consumer-to-Consumer (C2C) – transactions

between customers. Examples of such a site would

be in person to person sale of artwork or second

hand equipment;

• Business-to-Employee (B2E) – transactions within

an organization, e.g., a business allowing its

employees to perform transactions such as

submitting time sheets online;
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• Government-to-Citizen (G2C) – transactions where

citizens make payments or apply for forms online;

• Mobile Commerce (M-COMMERCE), transactions

that take place via a network, possibly using a phone

or personal digital assistant (PDA) as the input device;

• LocationCommerce (L-COMMERCE) – transactions

that locate the user and solicit attention, such as the use

of global positioning satellites (GPS) data in mashups

on the PDAor cell phone or by sending a textmessage

to a potential customer near a restaurant.

The Process of Electronic Commerce

Customers using an EC site experience a similar

procedure to that when shopping at a traditional store.

The normal steps are:

Step 1. Search for the Store of Interest
Similar to using a phone book’s business directory,

a potential buyer will often browse, or surf, the World

Wide Web (WWW) to window shop or find a product.

This surfer may use a search engine to locate stores,

expand the search to worldwide, and establish

conversation/dialogue with stores. One particularly

important aspect of operation in the WWW is in the

use of intelligent autonomous software agents or bots.

These may be spawned by a site as a means of gathering

information about possible suppliers or competitors.

The bots are able to search the Web (mimicking real

person inquiries) via search engines and visiting

possible sites of interest, and may determine which

sites offer the best prices or service. This can help the

purchaser make a choice based on their criteria.

Step 2. Navigation and Selection
Similar to walking within a store, a surfer moves

within a Web site to find items of interest. This may

result in a customer selecting a particular item because

of its price, the site’s terms and conditions, and the

seller’s overall reputation. For chosen items,

a selection is made by moving the product or service

into a so-called shopping cart. A transaction may also

depend on negotiating a price between the buyer and

seller in some medium of exchange or barter. The

seller may thus present the product or service for sale

and reduce the asking price until a sale occurs,

particularly in retail situations where the costs of

maintaining inventory may erode the profit margin at

the asking price or when the inventory has a limited

lifetime (like fruit and vegetables or seasonal

material). This devaluation is usually hidden from the

customer except at discount outlets.

Step 3. Checkout (Payment)
Similar to payment via a checkout counter, payment

within an EC site involves forms of electronic payment,

including ways of submitting e-cash or billing systems.

The actual exchange of money may occur either before

or after delivery, with intermediaries (such as credit and

debit card companies or banks) aiding in the exchange.

For EC to work, efficient and paperless settlement

processes must exist; each charges the merchant

a relatively small transaction cost.

Step 4. Delivery
Similar to a traditional buying technique, once the sale

has been completed, the parties must agree on the time

and method of delivery of the product or service. For

products, online merchants sometimes maintain small

inventories of the most popular products and coordinate

with suppliers for the delivery of the remainder. This

coordination is contracted in advance and the consumer

is unaware of the inventory of the merchant. Since

business consist of moving quantities of inventory

from the manufacturer to the consumer, lowering

inventory costs at each step is important. Just-in-time

(JIT) operations can reduce inventory cost to zero (if the

EC site is merely acting as an intermediary in the

transaction) or close to zero. The vendor will often

send a confirmation that includes information so that

the buyer can track the process of delivery.

The Elements of an Electronic Commerce Site

Any business with an online Web site should consider

how certain important elements are to be implemented.

The most common sections/elements on EC sites

(Efraim et al. 2010) are:

• AboutUs section – this contains information about the

business. Some include the history of the company, its

vision, mission, and objectives, while others include

management team and major hierarchies

(departments, etc.) of the company and even

a message from its Chief Executive Officer (CEO).

• Terms of Use – in which the company provides

information on its overall policies, especially its
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view of and care in ensuring security and thus

how it stores and preserves private information

provided by its customers when making

a purchase.

• Customer Database/Customer Account – almost

every company creates an account for its

customers. The customer account normally allows

the user to give a username and password for

selecting and tracking purchases. However, if

a customer is only window shopping or navigating

an electronic catalog, this is seldom required,

though the EC business could use such

information in future promotion campaigns.

• Electronic Catalog – an electronic catalog offers

information about the products or services

provided. They can be displayed in the form of

text, pictures, or even videos. A customer can be

sent a customized catalog compiled from

knowledge stored in the Web site database about

the customer’s prior purchases.

• Search Engine – for large companies, a special

search engine is often provided to customers to

help them narrow and speed up their Web site

navigation by typing in keywords that should help

them find information on possible products or

services that appear to suit their needs.

• Shopping Cart – a shopping cart or shopping bag

where shoppers can accumulate items that they are

considering or intend buying.

• Payment Gateway – a check out process where

a customer pays for products and services on the

Web site.

• Contact Us – a section that usually gives information

on ways that a customer may contact the company:

toll-free numbers, email addresses, and even live

chats are available on most sites, thereby providing

a surrogate for the missing salesperson in an

automated site.

Non Traditional Business Models and EC

Social Networking and EC

Social networks are analogous to traditional town

meetings; they can be viewed from two revenue

perspectives:

1. Through their Business Model, where their revenue

was mainly achieved by assessing an annual or

shorter term fee or subscription from participants.

2. As an electronic billboard, displaying advertisements,

such as pop-up, banners, or sidebars that provide

income.

They provide regular meeting space where

members can create groups or sell products simply by

posting them, the electronic equivalent of classified

ads in a C2C format.

Auctions and EC

Alternatives to traditional auction houses may be

found in EC form. English (forward) or Dutch

(reverse) auctions, for example, may be completed

online.

Bartering and EC

Some EC sites now use pure bartering methods or

pass merchant money (scrip) as a way of charging

and paying for goods or services. The site revenue is

then obtained from traditional advertising methods or

the income of the Web site developer from users

purchasing the scrip at a slight cost from the site

owner for use in exchanging or bartering. One

advantage to barter participants is the lack of a trail

showing any equivalent to a monetary transaction;

this makes such transactions difficult to track by

local or governmental authorities who find it

difficult to impose taxation.

Revenue Models

Revenue models in EC describe “how the firm will

earn revenues, produce profits, and produce

a superior return on invested capital” (Laudon and

Traver 2010). The most common revenue models

are:

• Advertising – receiving revenue from companies

advertising on the site.

• Subscription – a fee charged for offering content or

service to members of a special site, such as

a professional organization or social club.

• Transaction fee – charging a fee for a particular

transaction on a site, similar to charging for

a newspaper classified advertisement.

• Sales – revenue based on the profit from selling

goods, services, or information.

• Affiliate – revenue from a referral fee resulting from

redirecting a consumer to another site at which he or

she made a purchase.
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Web Economics

The area of economics is somewhat expanded by

adding commerce over a network. The term

Webonomics was coined to show a difference and

underline new effects. It can be considered as the

study of the effect of the WWW on production,

distribution, and consumption of goods and services.

The world is now dealing with an information-based

economy and this redefines the way that the network

can be exploited.

At least four major groups profit from using a Web:

• Consumers – The buyer and the individual or group

wishing to trade something of value. The consumer

will be interested in an online product or service

only if it is the best, cheapest, or most convenient

alternative and is from a trustworthy source; lack of

safety and privacy standards hamper growth.

• Content Creators – The providers of raw materials

and manufacturers. They are vying to attract

consumers and often maintain their own Web

sites, which must be as attractive and as up-to-date

as possible; they are hoping to build their image

among the millions of surfers.

• Marketeers – Themarketers of products, facilitating

the barter, trade, and purchasing processes bringing

content creators to consumers and vice versa.

• Infrastructure companies – The engineers of the

Web who build and sell computing and

communication hardware, such as Web servers,

routers, etc., as well as the software for building

and maintaining sites.

Internet Marketing and Electronic
Commerce

The use of EC allows the vendor to utilize new

methods for marketing with no immediate

relationship to non-EC marketing. Four of these are:

• Banner advertising – This is often found on pages

regularly read by buyers, including the header page

of a search engine, news service, or local news site.

• Preference profiles – By using tracking

mechanisms, such as cookies, a vendor can

determine the likes and dislikes of prior customers

and target them for future special offers. Cookies

are text files placed on the user’s computer hard

drive when visiting some Web sites; they contain

data that was collected from a purchase and

stored for future use. During subsequent visits,

these text files are retrieved by the site software

and used to personalize advertising. Thus, the user

has to enter less data when making a new purchase

and sellers can tailor marketing efforts via data

mining.

• Leveraging information about a community – The

seller can use push technologies, based on market

assessment data, such as expected income or

sociological characteristics of an area. These allow

the seller to provide unsolicited information about

a product or service that may be attractive such as

winter cruises to warm climates for retired people

living in relatively high priced localities; the buyers

provide (sometimes unwittingly) a profile of their

interests. For example, a book seller will send

e-mail to customers when a previously purchased

author has had a new book published.

• Broadcast desired product requirements – These

provide a virtual tradingfloor where the buyer

presents requirements and solicits bids from

vendors. The buyer can then contact the most

promising vendor and initiate a purchase. This is

comparable to newspaper classified ads.

Technological Aspects

All EC sites can be considered to consist of two layers:

the connectivity layer and the modules.

The Connectivity Layer

• EC has, as its base, a communication network,

which is the way that organizations and people

communicate. The medium for the network may

vary in complexity from:

• Direct Connection – similar to a phone line

between organizations or parts of an

organization. This was the original way that

early B2B systems were implemented and it is

still in use. EC for some vending machines and

modern parking meters, which use cash or credit

card as a method of payment (micropayments);

these transactions are for less than $10.00.

However, more locations such as airports and

shopping malls have vending machines that sell

electronic devices such as cameras worth $200.00

or more. And
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• Internet Connections – through a public network,

like the Internet, with a need for some way of

protecting the transmission of data from

interception, corruption, or altering, such as

encryption of the data on and off the network.

Direct Connection Networks were originally built and

maintained by large manufacturing corporations

primarily to support their supply chains. These were

effective, but the cost of building and maintaining

private networks can seldom be justified, except when

the security needs of the organization are very high.

Some examples of such special needs are in national

security systems (the Department of Defense, etc.) or

industries with extremely high competitive

environments. These may require substantial

protection over technology or process and thus need

internal data retention with limited sharing of data

with members of its supply chain (such as leading

members of the aircraft and electronics industries).

Most commercial systems and private users find it

sensible to use an external, public service that provides

an interface to the internet (an so-called Internet Service

Provider or ISP). The speed of access and transmission

of ISP services has risenmarkedly through the years due

to the demand of users and the availability of faster

network components. The economies of scale make

the large systems provided by ISPs much cheaper and,

thus, few organizations can no longer afford the luxury

of a private network. Virtual Private Networks (VPN),

however, are becoming popular and new architectures,

such as cloud computing, seem to be viable.

The VPN is a special service of an ISP that provides

high security by encrypting and authenticating

technology to protect data entering and leaving the

storage facilities. Thus, its users can experience

a similar effect to that of a private network except

that there is some delay due to the time spent in

encrypting and decrypting the data. The security can

be tailored to the organization, group (such as branches

or divisions), or individual at the cost of servicing sets

of encryption keys.

Cloud computing involves the use of the Internet as

a massive, but inexpensive, storage device provided by

an ISP. While it has little security (unless encryption is

added in much the same way as in a VPN), the

economies of scale again make this architecture very

cheap. Many social networks are therefore using

a cloud for storing their data, but with little or no

expectation of security on the part of their users.

The Modules

• There are four modules that interface with the

connectivity layer. They communicate through the

layer and to the Internet. The modules are:

• Customer Information – This contains all customer

related data such as name, address, and credit card

information, possible interests, latest purchases, etc.

• Product and Services Information – This contains

information about all products and services that are

currently available for sale, including their prices

and discount, detailed description of the product,

and possible graphics. This module presents the

information to customers in an easy to read and

pleasing format.

• Payment Information – This module interfaces with

the seller’s financial institution so that it can

authenticate the buyer’s solvency prior to

completing a sale.

• Shipping Information – This contains information

about the various shipping methods available and

their costs. The information is sent to customers

who then select their preferred method and the

consequent price is added to their payment

information.

Trust in Electronic Commerce

Without trust no one will purchase from a store; the

customer must believe that the product is well made

and the seller must believe that the payment is not

fraudulent. Similarly, in EC there must be trust

between the parties, except that they are usually

separated by some geographic distance and are

potentially unknown to one another. Consequently,

the primary challenge to the proliferation of EC has

been in bolstering trust in the site and ensuring trust in

the payment. The first entails assuring the customer of

the security of the site and the vendor’s intent to

exclude hackers and crackers, while the second is

provided by the banking system by authenticating the

payment. Thus, security requires mechanisms that

ensure non release and safe retention of data while

privacy ensures that personal and other important

data is not released to other people or organizations

without the customer‘s explicit permission that the

vendor may do so.

A lost credit card can result in significant loss to its

owner or the credit card company. If someone steals
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a card and publishes its number on the Web, there is

likely to be a very rapid loss of cash, more than that

from a single criminal who holds one stolen credit

card.

When a direct link is established between a private

network and the Internet, a company’s internal

network and all company resources are extremely

vulnerable to hackers. Thus, the more a company

allows access to its sites (describing products,

services, and processes), the more vulnerable the

enterprise is to information loss (stealing). For this

reason, most systems use one of the many forms of

encryption, which allows them to provide the

necessary services of:

• Non-Repudiation – proof that the person or

organization really participated in an electronic

exchange of information resulting in a financial

commitment;

• Confidentiality – mechanisms to ensure that any

message cannot be read by unauthorized

individuals;

• Authorization – internal functions to ensure that the

internal staff are assigned access based on their role

in the organization;

• Integrity – mechanisms to make sure that data are

not modified by unauthorized persons during their

storage or transmittal; and

• Authentication – Because an Internet transaction

does not involve face-to-face interaction, this must

guarantee that the person participating is not

a fraud. The authentication function verifies that

the offer of goods or services is from a registered

provider and validates the identity of the purchaser,

while ensuring and monitoring that each party is

adhering to the terms of agreement. There are two

basic models for authentication: digital signatures,

and certificates.

“Web site owners are using a terms of use/terms of

service agreement posted at their Web site to allocate,

limit, reduce, mitigate, avoid, and otherwise manage

potential risks in cyberspace,” (Westermeier et al.

2007). Almost all Web sites contain a Terms of Use

section. Such service agreements add to the confidence

in or trust that a customer feels for a Web site.

Furthermore, some users and vendors are concerned

with (i) transaction or credit card details stolen in

transit, (ii) customers’ credit card details stolen from

a merchant’s service, or (iii) merchants or customers

masquerading as legitimate buyers or sellers (Chaffey

et al. 2007). Thus the Terms of Use section explains

how the site will provide security for concerned users

by discussing how it deals with authentication,

unauthorized access, and hardware and software used

to provide security (e.g., its use of firewalls). Similarly

the section provides Web site users information on

how the site deals with their privacy by stating that

the customer information will be kept confidential, that

there are a restricted set of operations allowed on the

data (such as data mining for customer interests), the

use of cookies, and any third party to whom data

maybe released, such as a bank.

Validation in Electronic Commerce Research
and Development

Research on EC Web site effectiveness generally

involves the collection of customer feelings about

a specific aspect of a Web site and its consequent

use. As such, the research tends to be psychological

in nature, requiring the development of a model of

the process being investigated, determining the

variables that interact in that process, and using this

model to help in positing hypotheses. It is then

necessary to examine the variables for any overlap

or interactivity between them and decide how to

measure them. This leads to the construction and

validation of survey instruments that measure the

feelings or perceptions of customers about the Web

site or its architecture.

Thus, the research requires the development of

validated methods of measuring the customer’s

reaction to the Web site followed by collection of

data from a relevant population of Web site users.

The data from the survey must then be analyzed

utilizing one of the many statistical methods, such as

Structural Equation Modeling (SEM), to derive

relationships between the data and thus prove or

disprove the hypotheses.
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Elementary Elimination Matrix

A square nonsingular matrix obtained by replacing

a column of the identity matrix by some vector.

Every pivot operation on a system of linear equations

is equivalent to multiplication of the system from the

left by an elementary elimination matrix. In the

simplex method, such a pivot matrix is called an

eta-matrix.

See

▶Matrices and Matrix Algebra

▶ Simplex Method (Algorithm)

▶ Simplex Tableau

Elimination Method

▶Gaussian Elimination

Ellipsoid Algorithm

The first polynomial-time algorithm for linear

programming. The ellipsoid algorithm was originally

developed by Shor, Udin and Nemirovsky as a method

for solving convex programming, but it was Khachian

who showed that this method can be adapted to

give a polynomial-bounded algorithm for linear

programming. The basis of the ellipsoid algorithm is

a method for finding a feasible solution to a set of linear

equalities. This method constructs a sequence of

ellipsoids of shrinking volume, each of which contains

a feasible point (if one exists). If the center of one of

these ellipsoids is feasible to the system of inequalities,

the algorithm terminates. If not, then after a known

(polynomial) number of iterations the volume of the

ellipsoid will be too small to contain a feasible point,

and hence the system is infeasible. This method for

solving inequalities can be used to solve linear-

programming problems in polynomial time, by writing

the primal and dual feasibility constraints and the

equality of the primal and dual objectives as a system

of inequalities. Despite its tremendous theoretical

importance, the ellipsoid algorithm appears to have

little practical significance, since its computational

performance has been very poor.

See

▶Computational Complexity

▶ Interior-Point Methods for Conic-Linear

Optimization

▶ Simplex Method (Algorithm)
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ELSP

Economic lot scheduling problem.

See

▶ Production Management

Embedded Markov Chain

▶ Imbedded Markov Chain

Embedding

(1) The drawing of a graph on a surface without edge

crossings. (2) The use of a subsidiary stochastic

process to solve a larger one in which the subsidiary

is contained.
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See

▶ Imbedded Markov Chain

▶Queueing Theory

Emergency Services

Kenneth Chelst

Wayne State University, Detroit, MI, USA

Introduction

Emergencies range in scope from the

routine—situations involving limited police, fire,

and/or medical personnel—to the catastrophic—such

as large-scale natural or man-made disasters. The latter

category includes Hurricane Andrew and Hurricane

Katrina, the Exxon Valdez and Deepwater Horizon oil

spills, nuclear power plant meltdowns in Chernobyl and

northeast Japan, earthquakes in Haiti and New Zealand,

and tsunamis in Indonesia and Japan.

Whether emergencies occur hundreds of times each

day, once a decade, or once in a lifetime, the planning

and management of emergency services are

complicated by various uncertainties:

1. The time and location of the emergency

2. The scope of the emergency

3. The type of call and the personnel and equipment

needed to handle the initial emergency

4. The type of call and the personnel and equipment

needed to handle the aftereffects of the initial

emergency

Because of the differences in frequency and

scope between the more routine basic emergency

and the rare large-scale disaster, different strategic,

tactical, and operational planning approaches are

required.

Common Emergencies: Police, Fire, and
Emergency Medical Services

Police, fire, and emergency medical services (EMS)

all operate in a complex, unpredictable year-round

24-7 environment. Typically, managers of these

emergency services function within severely

constrained budgets and face two common complex

operational questions:

1. How many emergency service vehicles should be

staffed each hour of the day?

2. Where should these vehicles and personnel be

located?

In an ideal world, decision makers would focus on

their ultimate goals when addressing these questions.

Police officials would evaluate strategies in terms of

their relative effectiveness in reducing crime and the

fear of crime. Fire service administrators would

allocate equipment and personnel so as to reduce fire

damage. EMS managers would compare alternatives

with regard to lives saved and disabilities avoided.

Unfortunately, the relationship between many

decisions and their ultimate impact are not fully

understood. For example, the impact of a 10%

increase in patrol cars on crime levels cannot be

predicted. Similarly, the number of lives saved as

result of building an additional fire station cannot be

estimated. And, further, the impact of ambulance

service on survival rates following automobile

accidents is not fully understood. In contrast, there

has been significant progress in understanding the

relationship between the number and type of

emergency medical units in a community and the

likelihood that ambulance service will save the life of

a person in full cardiac arrest (Erkut et al. 2008).

As a result, operations research (OR) models

designed to assist emergency service decision makers

use the surrogate measure of response time, as well as

workloads, when structuring resource allocation

decisions. Figure 1 illustrates the total response

pattern to an emergency. It begins with the onset of

symptoms of an emergency (e.g., chest pains, smoke,

suspicious persons). There is a delay until the

symptoms are recognized as an emergency and

a further delay until the emergency is reported. The

dispatcher must process the call and find an emergency

unit to dispatch. It may take time for the unit with its

personnel to leave its location and begin traveling to

the emergency. The final response time delay is the

travel time to the scene of the call. For fire services and

ambulance services housed at stations, there could be

an additional delay between the time the station is

notified of the call and the time it takes for the

vehicle to be in motion on the street. If multiple units

are dispatched to the same call, there will be multiple

arrival times. OR models focus on two components of
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response time: (1) the queueing delay, the time from

call receipt until an emergency unit is available for

dispatch, and (2) the travel time to the scene of an

emergency.

In the 1970s, faculty at M.I.T. and researchers at the

New York City RAND Corporation (a joint venture

between New York City’s government and the RAND

Corporation) developed models that address these two

basic deployment questions, with funding from the

National Science Foundation and the Department of

Housing and Urban Development (Larson 1972; Walker

et al. 1979).One specific relationship that developed from

this research was the square-root law that estimates the

average travel distance to a random call:

Average Travel Distance ¼ c� A= N 1� bð Þ½ �f g1=2

where A ¼ area, N ¼ the number of emergency service

stations or vehicles, b ¼ the proportion of time an

emergency service unit is busy, and c ¼ a constant of

proportionality (usually between 0.6 and 0.7) calibrated

from real-world data. The parameters a and b are

city-specific, while N represents the key decision: the

number of units to deploy. This simple square-root

formula is utilized to make aggregate decisions on

deployment. It predicts that quadrupling the number of

available emergency units reduces average travel

distance by only 50%. The estimated travel distance is

converted into travel time by either assuming an average

speed or by using regression analysis to define

a nonlinear relationship between distance and time.

Police deployment models use average speed, while

fire models tend to use regression analysis.

A major problem in planning emergency services is

that the number of calls per hour is a random variable.

Thus, decision makers use the Poisson process,

a probabilistic model for forecasting the number of

calls in a designated period of time. These forecasts

are the input into simulation or queueing models that

estimate the average delay between the arrival of a call

and the dispatch of an emergency unit. The average

queueing delay is added to average travel time to

determine total average response time.

Police Services: The allocation of police patrol

resources is complicated by a number of factors.

First, the number of police patrol units on the street is

usually much larger than the number of fire stations or

ambulances. Second, these police units respond to

a wide variety of calls with different levels of

urgency (e.g., armed robbery in progress versus loud

music next door). In small and medium-size cities and

suburbs, quality-of-life calls and traffic enforcement

are often the bulk of the police workload. Lastly, police

call rates vary significantly by time of day and day of

week. Because of this added complexity, planning in

a large city might proceed in three phases.

In the first phase, police officials use aggregate data

and a model such as PCAM (Patrol Car Allocation

Model) to determine the number of patrol units to

assign to different parts of the city for different

periods during the week. Next, police commanders

use a descriptive model such as the hypercube or

simulation model to design patrol beats for individual

patrol units (Larson 1974). These models forecast

response times for different priorities of calls, as well

as workloads of patrol units. Police managers can then

apply a mathematical- programming model to design

a work schedule for personnel to ensure that there is

enough manpower on duty to staff the proposed street

personnel plan (Green and Kolesar 2004).

Total Emergency Response Sequence of Events 

other units 

arrive 

on scene
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on scene 

emergency
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emergency 

symptoms 

begin 

symptoms 

detected

emergency 

reported

info about 

emergency 

gathered

Emergency Services, Fig. 1 Total emergency response sequence of events
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In all decision making regarding emergency

services, there is a tension between efficiency and

equity. A deployment plan that minimizes average

response time will tend to concentrate resources in

high-risk areas, leaving other areas with response

times significantly longer than average. This conflict

has been addressed in a variety of ways. To achieve

equity, PCAM allows the decision maker to establish

minimum response time standards for each region of

the city. Once enough patrol units have been

assigned to each region to achieve these minimum

standards, PCAM can allocate excess patrol resources

to minimize citywide average response time

(Chaiken and Dormont 1978). Alternatively, concepts

of multi-attribute utility and group-decision making

can be used to assist decision makers in exploring

tradeoffs between equitable deployment plans and

efficient ones.

The police are responsible for more than simply

responding to emergencies. One goal of routine or

directed patrol is to deter crimes. In addition, police

patrol units are often the first investigators at a crime

scene. (See the entry “▶Crime and Justice” to explore

the link between police and crime).

Local Fire Services: Fire service deployment is the

least complex of the three services to analyze. Fire call

rates are typically low; firemen spend less than an hour

a day responding to calls. Response times are generally

affected by the number of fire stations and whether

firefighters are awake or asleep, rather than variations

in the average call rate over the course of a day.

Consequently, most municipalities tend to staff their

fire stations at the same manpower levels around the

clock to provide a constant level of fire protection.

Some locales, such as Loudon County, Virginia, vary

the mix of volunteers and full-timers by time of day

and day of week. This is more a function of the

availability of volunteers than a reflection of varying

call rates.

The low workload simplifies the analysis of fire

station locations. Fire station planning models make

the reasonable assumption that the nearest fire unit will

be available to dispatch immediately when a need

arises. Among deterministic optimal location models

that are used to situate fire stations, coverage and

p-median models stand out. A coverage model

locates fire stations so as to maximize the number of

people or houses situated within, for example, four

minutes’ travel time of the nearest station. This is

consistent with International Association of Fire

Fighters (IAFF) standards that are reported in terms

of coverage. The p-median model locates stations so as

to minimize the average response time to a target

population at risk.

In some complex environments, such as New York

City, operations researchers have used a descriptive

model that allows the decision maker to add or delete

fire stations and then assess the impact (Walker et al.

1979). The descriptive model provides a wider range

of performance statistics than the coverage and

p-median models, and predicts response times for the

arrival of a second and third fire engine; it also

differentiates between equipment with different roles

(e.g., engine trucks and ladder trucks).

As a result of the 2007–2009 recession, many cities

have seriously considered substantial cutbacks in fire

services. Such cuts are only possible because city

officials generally staff for relatively rare events in

emergency services. For example, the International

City/County Management Association (ICMA) found

that in one city of 300,000, there were still five units

available for immediate response even during the

busiest hour of the year.

Thus the reduction of staff without compromise in

service has been an area of close inquiry. Although the

IAFF standard is four men per engine, a National

Institute of Standards and Technology (NIST) study

found that four men were only 5% more effective than

three, using standard equipment and water (Averill

et al. 2010). Furthermore, fire hoses that operate with

compressed air foam rather than water are much lighter

and easier to handle, thus requiring fewer personnel

than calculated in the IAFF standard. Models for

staffing and overtime related to providing coverage

for vacations, unscheduled absences, and retirements

have also been studied.

Emergency Medical Services: In cities and

densely populated counties, ambulance services

operate at higher workloads than fire services. Often

they are included as part of the fire service. In those

instances, EMS calls often account for more than 80%

of the total call volume of the fire/EMS. Utilization

rates of 15% to 30% are not uncommon, and, in busy

periods during the week, workloads exceed 50%.

Consequently, ambulance location models that

assume the nearest stationed ambulance will not be

busy when a call comes in are oversimplifying

reality. This has led to the development of more
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complex coverage models that incorporate concepts

such as backup coverage and workload adjustment

factors. By doing so, these models approximate

probabilistic concepts while maintaining the

capability of using a deterministic optimal location

model to place ambulances. An alternative to these

optimal location models is the hypercube queuing

model. This model is primarily descriptive and can

be used to evaluate ambulance placement plans.

Heuristic search algorithms have been appended to

the hypercube model to facilitate the search for better

solutions (Morabito et al. 2008).

Unlike fire equipment, ambulances and other EMS

vehicles may be stationed on the street and easily

relocated. State-of-the art dispatch systems facilitate

the dynamic relocation of these vehicles. The

relocation may be triggered by an overload in one

area that has tied up the local ambulances, leaving a

region uncovered. Alternatively, these vehicles may

be redeployed as a result of established patterns of

demand according to area, time of day, and day

of the week. Both integer-programming and

dynamic-programming models have been developed

to assist in this redeployment (Maxwell et al. 2010).

The final stage of emergency medical treatment

occurs in an emergency room. Simulation is

frequently used to study alternative emergency room

designs, staffing levels, and triage policies within this

department (Wang et al. 2009).

Policy Questions: The models described above

focus on developing plans to improve day-to-day

operation of emergency services. OR models have

also played an important role in exploring a number

of policy questions with regard to cost benefits. For

example: (1) which is more cost-effective, to spend

public dollars on more fire stations to reduce response

time or to subsidize the placement and maintenance of

smoke detectors to reduce the delay until the detection

of the fire? (2) Which is more cost-effective, more but

less costly basic life support ambulances or fewer but

more expensive advanced life-support ambulances?

(3) What is the cost-benefit ratio for automatic

defibrillators? (4) What are the relative benefits of

one- and two-officer patrol units? (Chelst 1981).

Cities with populations as large as 70,000 have

trained public safety officers to handle both police

and fire emergencies. This has proven cost-effective

in some locales but not in others. ORmodels have been

used to study suchmergers of emergency services, thus

enabling decision makers to assess the potential impact

on fire and police response times and cost (Matarese

and Chelst 1991).

Despite the success of OR models in key

operational and policy questions, relatively few cities

employ them on a regular basis in their decision

making regarding emergency services. Success

stories from various cities still appear periodically in

the literature, but there is no critical mass of

researchers or operations research analysts dedicated

to improving the performance of these types of

emergency services. Instead, the typical local study

involves one or more faculty members working with

a local area emergency service to solve a particular

problem. Such work generally entails no more than

minor variations on existing research.

Operations researchers whose area of specialization

is location theory continue to enhance their models.

This has included expansion of the definition of

coverage models, incorporation of multiple

objectives, and inclusion of probabilistic issues that

relax the assumption that the nearest emergency

service responder is available when a call comes in.

These enhancements, however, have not generated any

greater practical interest from administrators. One

interesting development is a software system,

ALIAS, that was designed to assist ambulance

location decisions. Its strength is that it integrates

geographic information system (GIS) technology into

a descriptive decision-support system. The system

enables a decision maker to consider multiple

objectives while making specific location decisions.

The recession that started in 2007 and the

subsequent housing collapse have led to serious

shortfalls in financing emergency services. City

managers around the U.S. are taking unprecedented

steps in requesting substantial cuts in emergency

service personnel. In 2007, ICMA began providing

city officials with a clear assessment of the workload

of their police and fire departments, as well as an

analysis of response time. A typical police report

overlays workloads of all types against deployment

levels. In one instance, a city council decided to

reduce its patrol force by 30%, returning it to a level

last seen in the late 1970s.

The most important change in policing since 1990

involves descriptive analytics. New York City

pioneered the use of timely crime data to focus police

resources. These data were used in regularly
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scheduled, wide-ranging meetings in which precinct

commanders accepted responsibility and were held

accountable for implementing strategies to reduce

crime. This concept was called COMPSTAT and

copied in a number of major cities (McDonald 2001).

With the spread of computerized mapping, even

smaller cities can routinely produce crime maps to

identify hot spots. Researchers have now moved

beyond mapping and developed predictive models of

crime patterns (Gorr et al. 2003). In Great Britain,

researchers are making progress in estimating the

likelihood of an arrest for a burglary reported in

progress as a function of response time.

Disaster Planning and Management

In contrast to police, fire, and emergency medical

services, disaster planning, in terms of both frequency

and scope, is at the extreme end of the spectrum of

emergency planning and management. Disasters of

limited scope, such as commercial airplane crashes,

may occur once a year. Calamities on the scale of the

Exxon Valdez oil spill, Hurricane Andrew, the Bhopal-

Union Carbide disaster, or the Chernobyl nuclear

accident were thought to occur no more frequently than

once a decade. However, perceptions may be changing

as four major disasters occurred in just one ten year

period between 2002 and 2011. In any case, when they

do occur, they can affect the lives of millions of people

and despoil millions of square miles of the environment.

As a result of a series of massive disasters, research in

disaster planning and management has gained added

urgency, and decision-support systems to help plan for

and manage disasters are a growing area of research and

software development (Altay and Green 2006).

This growth has been driven in part by regulatory

requirements that mandate disaster plans, as

well as recognition that prevention and planning

are cost-effective. The International Emergency

Management and Engineering Society (TIEMES) was

formed in 1994, and, in 1998, a special issue of IEEE

Transaction on Engineering Management was dedicated

to this topic. The most visible U.S. governmental agency

in this area is the Federal Emergency Management

Agency (FEMA). With respect to past disasters, there is

also increasing global cooperation in developing early

warning systems. A global warning system for tsunamis

was developed in reaction to the 2004 massive tsunami

that led to catastrophic loss of life inmultiple countries in

South Asia. In addition, national public health agencies

cooperate in tracking the spread of epidemics.

Locally Contained Disasters: Disasters can be

grouped into three categories that reflect their scope

and duration (see Table 1). The first category covers

disasters of limited duration, such as an airplane crash,

space shuttle explosion, mine explosion, cave-in, or

bombing. These disasters involve a single short-lived

catastrophic event. The impact is usually limited to the

individuals in the vicinity of the disaster, though it

may, like that of 9/11, affect life far beyond the

immediate focus of the terrorist attacks. The primary

opportunity for risk mitigation in Category 1 disasters

is in disaster prevention. Another strategy is to contain

or dissipate the initial force of the disaster and work to

increase the possibility of survival. Rapid evacuation

may also be important if there is a risk of secondary

explosions or continuing collapse, as in the case of

a mine or building explosion.

Operations research has played a significant role in

understanding and avoiding the risks associated with

air transportation (Machol 1995). Collision-risk

models have been used to establish safe and efficient

separation standards. Simulation models have been

used to design better runway configurations to avoid

takeoff and landing disasters, while maximizing the

efficiency of airports. In the case of the space shuttle,

probabilistic models were used to identify the greatest

sources of potential catastrophic failure, and

Emergency Services, Table 1 Disaster categories

Category 1 Category 2 Category 3

Locally contained
disasters

Localized disasters
with potential for
spread Massive disasters

Aircraft or shuttle
disaster

Forest fire Hurricane

Mine explosion Toxic chemical leak
(train wreck or tanker
overturn)

Tsunami

Disaster at sea
(ship or ferry)

Hazardous oil spill Major snow or ice
storm – large-scale
power outages

Major terrorist
attack

Nuclear power plant
accident

Floods

Mudslides or
avalanche

Earthquake

High-rise fire Volcanic eruption
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organizational pressures were identified that also

contributed to increased risk of failure.

Evacuation has been an area of modeling at every

level of disaster (Yi and Özdamar 2007). Simulation has

been used to study mine-fire escapes and as a training

tool to prepare miners to make the right decisions in an

emergency (Cole et al. 1998). Evacuation of buildings is

the subject of a number of papers that model the escape

routes as a network. If probabilistic issues are factored

in, a queueing network model can be used to study

evacuation capacity. Early warning systems increase

the potential effectiveness of evacuation procedures.

Florida has developed effective strategies for

evacuating large areas when a hurricane is forecast. In

addition, Florida counties have plans to locate disaster

recovery centers to assist victims of a local disaster.

Unfortunately, there was no effective evacuation

strategy or assistance for the New Orleans area as

Hurricane Katrina approached. (See the entry “▶Fire

Safety Modeling and Applications” where evacuations

are discussed in more detail).

Localized Disasters with Potential for Spread:
The second category involves disasters of longer

duration with potential to spread. This category

includes forest fires, oil spills, hazardous waste leaks,

and nuclear power plant accidents. Forest fires have

drawn significant attention from operations researchers

in large part because the USDA Forest Service has used

analytic models in a wide range of areas. Decision

analysis has been used to study different strategies and

tactics to clear away underbrush so as to limit the scope

of fires. A simulation model known as FARSITE

calculates how a fire will spread under specific

prevailing weather and environmental conditions

(Finney 2004). Understanding and planning for forest

fire spread is a continuing area of critical research. The

USDA Forest Service developed the National Fire

Management Analysis System (NFMAS) to assist in

planning attacks on forest fires (Donovan et al. 1999).

The system is a simulation that is used iteratively to

determine the effect of different decisions designed to

reduce the economic impact of a specific forest fire.

With regard to hazardous waste, the focus has been

onmodels to route shipments of hazardous materials so

as to reduce the risk in transit and to determine where

to locate unpopular facilities (List and Turnquist

1998). The Hazardous Materials Transportation

Uniform Safety Act of 1990 has improved the routing

of shipments of hazardous materials and the planning

for emergency response. Because there are different

stakeholders affected by the routing decisions, the

models are generally multi-objective. One set of OR

models integrate the routing decision with the siting of

emergency response teams.

Planning for massive oil spills begins with broad

systemic assessment of risk so as to reduce its

likelihood. This is followed by developing a plan to

pre-position appropriate containment and cleanup

equipment. Mathematical programming has been the

modeling technique of choice. Once an accident

has occurred, the key task is to forecast damage spread

as a function of weather and environmental conditions.

The challenge then is to rapidly assemble needed people

and equipment resources so as contain the accident as

soon as possible. A mathematical-programming model

was developed to model the dispatch of cleanup

equipment (Iakovou et al. 1996).

If the forecast indicates that there are people in

harm’s way, they have to be evacuated as rapidly as

possible. The Nuclear Regulatory Commission

requires utilities to develop and update evacuation

plans. MASSVAC is a software package that models

traffic movement during evacuation and has a user

equilibrium assignment algorithm to improve

evacuation time. Once evacuation has been

accomplished, the next responsibility is to clean up

the mess or repair the damage. The goal is to either

return the environment to its original state or, more

likely, to bring it to an equivalent state of

environmental health. OR’s role in the long-term

problem of restoring the environment has been

limited to waste water contamination problems.

Massive Disasters: The third category involves

massive disasters that can encompass a region, a state,

or even a whole country, such as Haiti. These include

hurricanes, major snow and ice storms, massive

earthquakes, large volcanic eruptions, or extensive

flooding. These massive natural events may not be

preventable, but governmental strategies that

encourage better planning can reduce the impact of the

disaster. In 2011 a number of cities along the

Mississippi River benefited from this type of planning.

They were saved from being deluged by floods when

overflows were diverted to less populated areas. Also,

cities and individuals can be encouraged to build away

from a flood plain or construct buildings and structures

more resistant to earthquakes and hurricanes. One of the

earliest public sector applications of decision analysis
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with imperfect information involved seeding hurricanes

to reduce their impact.

Improvements in forecasting have helped people

carry out short-term tactics, such as boarding up

windows, evacuating from the area of an impending

disaster, and stockpiling emergency supplies. One

decision support system (but without OR models) is

designed simply to convert National Weather Service

forecasts into forecasts of specific emergency hazards

(Subramanian and Kerpedjiev 1998). The first major

application of this system was the Basin Rainfall

Monitoring System, intended to predict in simplified

and useful fashion the risk of flash flooding.

Once the immediate disaster is over, local, state,

and national agencies must cooperate to address

short-term, day-to-day needs, to create and

implement stop-gap solutions such as temporary

roads and bridges, and then to work to help a region

rebuild its housing and industrial infrastructure

(Beresford and Pettit 2009). Rebuilding should be

implemented with an eye toward reducing the chance

of a future similar disaster. One integrated application

of OR techniques involved managing emergency

repair logistics for an electric utility (Zografos et al.

1998). The integrated framework included: (1) a data

management module with GIS to track service

restoration by geography, (2) an information system

module to monitor vehicles and communications, and

(3) an analytic module to optimize the division of the

region into districts and a simulation to study and

improve dispatch operations.

Operations research models in this domain tend to

emphasize centralized and integrated planning. This

planning would include dispatching vehicles around

a transportation infrastructure that has been

compromised and locating facilities to assist people

in need. Often, however, these massive events

seriously undermine communications, making it

difficult to implement a comprehensive plan. It has

been proposed that a more flexible localized effort be

the key element of any strategy.

See

▶Crime and Justice

▶Disaster Management: Planning and Logistics

▶ Facility Location

▶ Fire Safety Modeling and Applications

▶Hypercube Queueing Model

▶Network

▶Queueing Theory

▶RAND Corporation
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Introduction

Different engineering disciplines have unique

characteristics and problems. Operations research (OR)

is a field made up of many conceptually different

methods and algorithms, each suited to a specific

environment. Thus, some specific OR methods

and algorithms are better suited to the solution of

certain types of engineering problems than others.

Applications of OR methods and algorithms to

problems in those engineering disciplines best suited to

such applications are described below.

Communication Systems Engineering

Operations research methods are widely used in

various aspects of communication system planning,

design, manufacturing, and implementation (Daigle

and Langford 1988). Examples that illustrate the

diversity of applications of OR methods to

communication systems include a filter design which

uses game theory (Kazakos 1983) and the use of

Markov chains to model a synchronous time division

multiplexing frame synchronization algorithm

(Liu and Hammond 1980). The use of OR methods in

the design and analysis of computer communication

networks has attracted significant attention in the

literature, since the design and analysis of these

networks depends almost entirely on OR methods.

Sauer and McNair (1983) used simulation to analyze

computer communication systems. Queueing theory

and stochastic processes were used by Hayes (1984)

and by Stuck and Arthurs (1985) to analyze such

systems. Marcus and Papatoni-Kazakos (1983)

analyzed a multi-access protocols problem via

dynamic programming. Self-healing communication

networks that allow re-routing of demands through

switching processes at designated nodes have been

designed using a node-path linear-programming

approximation to the multi-commodity network

formulation (Saniee 1996). Luna et al. (2008) used

a grid-based generic algorithm to solve automatic

frequency planning problems. These problems occur

in global systems for mobile communications

networks. Several evolutionary algorithms applied to

a class of communication network design problems

were evaluated by Nesmachnow et al. (2007). A brief

description of two of the most important problems in

the design of contemporary communication systems

follows.

Statistical Multiplexing — The design of

a communication system based on high-speed links
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that transmit information generated by many users

generally has an economic advantage over a design

based on separate links between pairs of users

(Daigle and Langford 1988). Multiplexing and

concentration are terms used to characterize methods

of assigning the capacity of a link among many users.

Multiplexing represents the case where the capacity of

a link is divided into frequency bands and each user is

assigned to a specific band. Concentration represents

the case where the capacity of a link is smaller than that

needed to accommodate simultaneous requests by all

users, and, thus, a line sharing approach is necessary.

In that case, a queueing system is used to control the

traffic of user requests for communication.

Statistical multiplexing, also called asynchronous

time-division multiplexing, is an approach for link

sharing that combines characteristics of both

multiplexing and concentration (Daigle and Langford

1988). The users’ messages need to be transmitted over

a communication link. While a users’ message is

divided in some systems into packets, the message

remains intact in others. When statistical

multiplexing is implemented, the users’ messages are

kept in a queue before being transmitted over the

communication link. Depending on the volume of

messages, queueing delays may occur. The delays

obviously present an inconvenience to the users, and

should be considered in evaluating the appropriateness

of statistical multiplexing for a particular environment.

Statistical multiplexing systems have been designed

and analyzed using queueing theory, Markov-chain

models and renewal theory. Poisson arrivals are

assumed in many cases to simplify the analysis. The

Poisson-arrivals-see-time-averages (PASTA) property

is often used to obtain analytical results (e.g., seeWolff

1982). The Chapman-Kolmogorov equation is

generally used to analyze discrete-time systems,

while equilibrium balance equations are frequently

used to analyze continuous-time systems (Daigle and

Langford 1988).

Topological Design of Local Distribution

Networks — The problem of designing the

topological aspects of local distributed networks is

composed of five subproblems (Gavish 1982). The

subproblems include determination of: the number of

concentrators; the location of concentrators; the

method of connecting the concentrators to the switch;

the assignment of terminals to concentrators; and the

interconnection between terminals and concentrators.

The subproblems can be solved simultaneously

(Daigle and Langford 1988).

In the terminal layout problem, a tree structure is

sought that minimizes the total cost of connecting all

the terminals to the packet switch, that is, terminal or

node 1 (Daigle and Langford 1988). It is assumed that

the number of terminals or nodes is n � 1, and are

numbered 2 through n. The cost cij of connecting

terminal i to terminal j for 1 � j � n and 1 � i � n is

assumed to be given. It is also assumed that cij is

infinite for i ¼ j. It is further assumed that the

measure of traffic associated with each terminal

identifies the communication flow between the

terminal and the switch. Daigle and Langford (1988)

discussed solution methodologies that have

been applied under the following conditions:

when trees are unconstrained, degree-constrained,

capacity-constrained or both capacity and degree

constrained.

Structural Engineering

Mathematical programming (MP) has been

extensively used to determine the optimal structural

design of various engineering systems. Applications of

MP to the design of civil engineering structures are

surveyed below. MP has also been used to design

structures undergoing free or forced vibrations. An

overview of this subject is also provided below.

Designing Civil Engineering Structures — While

many feasible designs that satisfy functional

requirements often exist, a trial-and-error procedure

may be needed to obtain the optimal solution (Kirsch

1988). The efficiency of the structural design process

can be improved by automating portions of the design

process. Such automation is possible because of the

progress made in computer technology, structural

analysis, and optimization methods (Atrek et al.

1984; Soares 1986).

Kirsch (1988) suggested that an automated design

process be considered an iterative process. The

iterative cycle, in this process, is composed of two

main steps: (1) analysis of the current structural

design, and (2) redesign, that is, modification of the

design by optimizing an objective function subject to

the pertinent constraints.

Some of the parameters characterizing a structure

are fixed during the automated design process.
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The parameters that are not fixed are the design

variables. The design variables represent the

following characteristics of the structure:

1. Physical properties of the materials

2. Topology

3. Configuration or geometric layout

4. Cross-sectional dimensions.

The design of the structure is defined once the value

of the design variables are obtained. From analyzing

the structure, one can determine the forces and

displacements. Structural optimization problems

often deal with cross-sectional design variables.

These variables are usually assumed to be continuous

despite the fact that they actually can obtain only

discrete values (Kirsch 1988).

Truss structure is the subject of most structural

optimization studies. An illustrative example of such

optimization was given by Kirsch (1988). Grillage is

a flexural system composed of beam elements. Moses

and Onoda (1969) illustrated that grillages introduce

significant design difficulties, in addition to those

usually encountered in the optimal design of any

indeterminate structure. The design difficulties

typical to grillages include multiple local optima and

internal forces sensitive to changes in the design

variables. Kirsch (1988) provided an example that

illustrates the possibility of multiple optimal

topologies in flexural systems. The optimal design of

reinforced-concrete structures was formulated by

Kirsch (1988) as a four-level MP problem.

Krishnamoorthy and Murno (1973) formulated

a linear-programming (LP) model to satisfy

compatibility and limited ductility, equilibrium and

serviceability conditions as constraints. The model

has a linearized objective function for the total

volume of steel reinforcement. Kirsch (1988)

formulated a typical prestressed system design

problem using MP.

Designing Optimal Vibrating Structures — The

objective functions used in designing structures that

are subject to dynamic loads include both

maximization of eigen-frequencies and minimization

of dynamic deflection and/or stress (Adali 1988). The

resonance range of structures undergoing free

vibrations are increased by maximizing either the

fundamental or higher-order frequencies. Dynamic

deflections and/or stresses are minimized for

structures undergoing forced vibration to improve the

structure’s service performance. Structures may be

subject to both free and forced vibrations during

operational life. For this reason, lower bounds are

generally imposed on the eigen-frequencies and

upper bounds are imposed on the dynamic deflection

and stresses (Adali 1988). In this case, the resulting

design problem is a constrained optimization problem.

Such problems are routinely solved using penalty

function methods. The problems, however, can also

be formulated as multicriteria optimization problems.

Beam design problems for the case of continuously

vibrating structures were formulated by Adali (1988)

using MP. The objective function in such problems is

maximization of the fundamental frequency. The use

of MP in formulating beam design problems for

discrete structures like frames and trusses is fairly

obvious.

Some structures may be subject to forced vibrations

caused by environmental forces such as wind, waves,

and earthquakes. The objective in designing such

structures is to minimize the deflection and/or

stresses caused by dynamic loads (Adali 1988).

Structures under dynamic loads can be effectively

designed using MP (Khot et al. 1986).

The penalty-function method is an effective

optimization method used to design structures when

there are constraints on stress, deflection, and

maximum frequency. Several penalty-function

techniques useful in designing structures having

constrained beams and frames are discussed by Adali

(1988).

MP has been successfully used to optimally design

composite, lightweight structures like those typically

used in the aerospace industry. After studying the

designs of laminated plates and shells undergoing

free vibrations, Adali (1988) demonstrated how to

use MP in designing such optimal composite

structures.

Results of sensitivity analysis were used by Hsieh

and Arora (1986) for satisfying state-variable

constraints. Sensitivity results for eigen-frequencies

were obtained for frames and composite plates.

Their use was illustrated by Adali (1988) via specific

examples. Evolution strategies were applied by

Hasanceb (2007) to optimize the design of truss

bridges. This optimization problem involves

identification of the bridge’s shape and topology

configurations, as well as sizing of the structural

members for minimum weight. Cagdas and

Adali (2007) developed optimum designs for
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clamped-clamped columns under concentrated and

distributed axial loads. The design objective was the

maximization of the buckling load subject to

volume and stress constraints. Barreled cylinders and

domes of generalized elliptical profile were optimized

by Blachut and Smith (2007) for their buckling

resistance when loaded by static external pressure.

The optimum shells were found using either a static

or adaptive tabu search method.

Chemical Engineering

Many applications of OR techniques can be found in

the design and operation of chemical plants. These

application include refinery planning, equipment

design optimization, and optimization of equipment

networks. Solutions to the complex nonlinear

optimization problems typical of chemical

engineering have been gradually improved due to the

continuous progress made in nonlinear programming

(NLP), mixed integer-linear programming (MILP),

scheduling, and simulation techniques, as well as to

the improvement made in related software (Biegler

et al. 1988).

Many chemical engineering optimization problems

are much too large and complex to be solved by direct

application of generic OR algorithms (Biegler et al.

1988). By examining both the unique physical

characteristics of each system and the unique structure

of each optimization problem, however, it is possible to

reduce very large and often highly combinatorial

problems to manageable size (Biegler et al. 1988).

Biegler et al. (1988) demonstrated that when

addressing the optimal design/operation problem of

continuous processes, an understanding of model

construction and execution must precede algorithm

selection and tuning. Modeling is typically done using

process simulation. By taking advantage of the unique

composition of the system being modeled, one is in

a better position to successfully optimize system design.

The NLP applications from optimizing design/operation

problemsdealingwith continuousprocesses arediscussed

by Biegler et al. (1988), and illustrate the advantages of

both the unique analysis of each problem and the

intelligent applicationofgenericoptimization algorithms.

The combinatorially complex problem for synthesis

of process structures was discussed by Biegler et al.

(1988). Problems related to utility systems, energy

recovery systems, and total processing systems were

considered. The problems related to utility systems can

be formulated as MILP. The binary variables in such

problems are the structural choice variables. It is

possible to significantly reduce the number of binary

variables by taking advantage of the uniqueness of

constraints and problem structure (Biegler et al.

1988). A reduction in the number of binary variables

makes it possible to use software for MILP.

Biegler et al. (1988) showed that a complex mixed

integer-nonlinear programming (MINLP) can be

broken down into a series of subproblems having

well-structured solutions. This decomposition is

accomplished through use of thermodynamic insights

and the system’s structural features. Beigler et al.

(1988) applied these ideas to a total processing

system that consisted of a utility plant, a

heat-recovery network, and the chemical plant itself.

The design and scheduling of noncontinuous

processes generally involves multi-products.

Noncontinuous processes involving multi-products

are typical to some high-value-added chemical

and biochemical products. Problems in these areas

are discussed by Biegler et al. (1988). Two types

of facilities were considered: the network flow shop

configuration and the multi-purpose plant. These

facilities can be modeled using MINLP. Because

of the complexity of the models, approximation and

decomposition methods are necessary to solve them

(Biegler et al. 1988). Design problems in a multipurpose

plant involve some aspects of scheduling and therefore

add to the complexity. While some portions of these

design problems can be formulated and solved as MILP

scheduling and sequencing problems, most portions

require the development of specialized approximation

algorithms. The application of combined continuous-

discrete simulation concepts to modeling and analysis

of continuous batch chemical processes was presented

by Biegler et al. (1988).

Churi and Achenie (1997) developed an MINLP

model for single component refrigerant design . The

design objective is to build a refrigerant molecule that

has desired physical properties and performance

characteristics. Scheduling of chemical batches using

stochastic integer programming was reported by

Urselmann et al. (2007). The scheduling algorithm

combined evolutionary algorithm and mixed-integer

programming into two-stage stochastic programming

problem.
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Aerospace Engineering

The design of an aerospace vehicle is

a multidisciplinary project that involves the following

disciplines: control theory, solid mechanics, fluid

mechanics, dynamics, electronics, and computer

engineering. Optimization theory has a significant role

in aerospace engineering since it is extremely important

to achieve optimal design in every aerospace project.

Aerospace Structures — The motivation for

applications of optimization methods to the design

of aerospace structures is the need for efficient

light-weight structures. The decision variables of

a typical problem involved in optimizing an

aerospace structure are the structural member

dimensions. The objective of such a problem is to

minimize structural weight subject to constraints on

limit stresses in members-nodal displacements, on

natural frequencies of the structure, and on the

stability of the eigenvalues (Hajela 1988).

One way of formulating and solving optimization

problems related to aerospace structures is to first

define an optimality criterion and then attempt to

satisfy the criterion via a numerical algorithm (Berke

and Khot 1974). This approach, however, is very

restrictive as the definition of optimality criterion is

problem dependent (Hajela 1988).

The application of NLP methods to the design of

aerospace structures is more flexible than application

of optimality criterion. NLP methods, however, are

computationally inefficient for design problems

involving large numbers of variables and constraints

(Hajela 1988). A more practical way of achieving an

optimum aerospace structural design is by using

numerical optimization.

Sobieski (1988) showed how numerical

optimization could be used in aerospace structural

design. He also described the role of decision

variables, objective function, constraints, and the

design space in numerical optimization. Sobieski

(1988) illustrated how a search procedure composed

of modules (e.g., search algorithms, approximate

analysis, and sensitivity analysis) could improve the

design of aerospace structures. He also elaborated on

several ways of combining modules into an effective

comprehensive optimization procedure. Sobieski

(1988) described ways of dealing with the unique

difficulties involved in large-scale aerospace

structural design problems.

Aerodynamic Characteristics — The geometry of

the airfoil (that is, wing cross-section) affects

configuration lift and drag characteristics. Design

variables of an airfoil include thickness, distribution

over the chord-wise dimension, radius of curvature of

the airfoil’s nose, and the camber or arch of the airfoil

chord (Hajela 1988). The values of these variables

determine the lift and drag of the aerospace vehicle

given the characteristics of the flow in which the airfoil

is expected to operate. Flow can range from low

subsonic speeds to high supersonic speeds.

Atmospheric re-entry vehicles can experience

hypersonic flow. The entire spectrum of airfoil shapes

and their respective lift and drag for low speed flow

have been documented (Hajela 1988). Simulated flow

conditions in a wind tunnel can be useful in designing

new shapes for airfoils that must operate under

changing flight conditions. The use of wind tunnels is

expensive, however, because it calls for the

development of a model and because delays are

inevitable in scheduling the use of a wind tunnel.

Furthermore, only a limited number of design

alternatives can realistically be examined in a wind

tunnel.

Airfoil shapes can be designed using numerical

computation techniques for fluid flow such as the

finite-difference method or the finite-element method

(Hajela 1988). Aidala (1988) developed the concept of

obtaining optimum airfoil shape by using a weighted

sum of standard airfoil shapes. The weight constants,

in that case, are the decision variables. Their values

must be selected to optimize desired aerodynamic

characteristics. Aidala (1988) also elaborated on

another design approach in which airfoil geometry

was refined to obtain desired pressure distribution

over the airfoil. Variable-complexity methods were

applied by Thokala et al. (2007) to aerodynamic

shape design problems. The objective was to reduce

the total computational cost of the optimization

process. Transonic airfoil design problems

considering inviscid and viscous flow solvers were

solved by Shahrokhi and Jahangirian (2010). They

used a surrogate assisted evolutionary optimization

method to solve the problems.

The aerodynamic design of an aircraft must allow

for a mechanically and aero-elastically acceptable

wing and must also satisfy several different

performance requirements (Aidala 1988). The

Lagrange multipliers method can be used to achieve
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an optimal aerodynamic design when linear theories

are sufficient to characterize the design problem

(Aidala 1988). The typical approach in the more

general nonlinear case has been to integrate analysis

codes with a general nonlinear optimization method

(Aidala 1988). A general nonlinear optimization

approach to aerodynamic design is the most

frequently used in such optimization problems

and described by Aidala (1988). To obtain

computationally efficient results, however, numerical

optimization must be used.

Aerospace Vehicle Performance — A unique

characteristic of aerospace vehicles is that there are

no external forces like buoyant (static) lift or ground

reaction forces that can support a vehicle (Kidwell

1988). Thus, an aerospace vehicle must be designed

to generate the forces needed for longitudinal, lateral,

and vertical translation (Kidwell 1988). The forces

must be proportional to the vehicle’s mass and to the

requirements for acceleration. Growth factor

(Kidwell 1988) is a measure of the overall increase

in the aircraft gross weight caused by adding one

pound of weight (from payload, fuel, structural

weight, etc.). The growth factor indicates the

compounding effect of weight. Any increase in the

requirement for weight necessitates increase in one or

more of the following: wing area to provide the

necessary additional lift; engine size to compensate

for the increase in drag; and fuel requirements that are

a consequence of the greater engine thrust needed to

counter drag (Kidwell 1988). Every component of an

aerospace vehicle must be designed with minimal

weight in mind, as any change in the weight of

a particular component has a significant effect on

the performance of the entire vehicle. Kidwell

(1988) discussed several methods useful in

designing aircraft that meet desired performance

criteria. He also showed how numerical

optimization could be use to achieve an optimal

aircraft design having acceptable computational

effort.

Optimal locations of dual trailing-edge flaps was

determined by Viswamurthy and Ganguli (2007). The

objective was to achieve minimum hub vibration

levels in helicopters. Chang, et al. (2008) developed

a deductive top-down estimation methodology for

assessing the reliability of aircrafts propulsion

system.

Electrical Circuit Design

The filter design problem was formulated by Lasdon

and Waren (1966) as a nonlinear program. Optimal

filters were obtained using an interior penalty

function in a problem formulation having a minimax

type of objective function. Lasdon, Waren et al. used

NLP in designing optimal antenna arrays, cascade

crystal-realizable lattice filters, and optimal filters

(Waren et al. 1977).

The use of optimization methods in the design of

filters and in the modeling of active electrical devices

is reviewed by Temes and Calaham (1967). Temes and

Zai (1969) designed active equalizers based on least

pth approximation. The theory of generalized least pth

approximation was developed by Bandler and

Charalambous (1972). This approach allows one to

use any value of p while solving several minimax

problems.

Madsen et al. (1975) developed a minimax

electrical network optimization algorithm based on

successive linear approximation of a nonlinear

objective function. Applications of their algorithm

include the design of transmission-line transformers

and the design of microwave filters (Bandler and

Rizk 1979).

Optimization methods have been routinely used in

the design of digital filters (Bandler and Rizk 1979).

Optimization methods such as LP, NLP and integer

programming (IP) were used in the design of a

nonrecursive filter based on minimax responses

(Helms 1971). Steiglitz (1970) showed how

optimization methods could be used to design

recursive digital filters. Recursive digital filters with

optimum word length were designed by Bandler et al.

(1975).

Optimization methods have been used extensively

in the design and operation of power networks

(Bandler and Rizk 1979). The problem of

minimizing the cost of fuel for thermal power

plants, for example, is solved on-line every few

minutes. The solution to this problem is periodically

used to adjust the output of the power plant (Bandler

and Rizk 1979). The problems of optimizing

hydroelectric systems are generally much larger

than those of thermal power plants. Gagnon et al.

(1974) developed an NLP model for solving such

problems.
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Computer System Design

Several different aspects of computer system design

are described below.

Selecting an OptimumNetwork Configuration—To

optimize the configuration of a computer system, the

system can be modeled as a closed queueing network.

Consider, for example, the problem of configuring a

batch-oriented, nonpaged, multiprogramming system

(Trivedi and Kinicki 1980). The central server

queueing network given in Sarma et al. (1988) can be

used to model such systems. The system characteristics

that are considered include variables related to both the

size of the main memory and the speed of a fixed

number of secondary storage devices. m + 1 service

facilities (i.e., facility 0,. . ., facility m) in a closed

queueing system represent active resources of the

system such as the CPU and I/O channels. Each

service facility is composed of a single server when

the ith facility has a processing capability of bi work

units per unit of time. The degree of multiprogramming

is denoted by n. The network is composed of n

stochastically equivalent programs that switch back

and forth between service at the CPU and service at

the I/O channels. After processing by the CPU is

complete, service from the ith I/O channel is requested

by a program with probability pi (i ¼ 1, 2, . . ., m).

The device speed vector b ¼ (b0, b1,. . ., bm )in this

design example (see Sarma et al. 1988) is considered

to be the decision variable. The branching probabilities

pi (i ¼ 1,. . ., m) are assumed to be parameters.

The design problem is formulated as follows:

Maximize TðbÞ

subject to FðbÞ þMðnÞ � B

bi � 0; i ¼ 0; 1; 2; : : :; m

where T(b) is the system throughput; F(b) is the

cost of m + 1 service facilities; M(n) is the cost of

the main memory; and B is the budget available for

the purchase of the necessary hardware. For the

method of solving such a problem, see Sarma

et al. (1988).

Design of Fault-Tolerant Computer Systems—The

design optimization problem under consideration

includes measures of system dependability,

performance and cost. More specifically, a shared and

replicated resources architecture designed for high

reliability applications is considered. Real-time

control typifies an application that necessitates high

reliability. The modular multi-processor system

(MMPS) (Pedar and Sarma 1983) is an example of

this architecture.

One characteristic of the MMPS is that the system’s

computational capability, as well as the corresponding

memory contention, change when the processor and

the memory unit fail (Sarma et al. 1988). Trivedi

(1982) showed that system reliability can be analyzed

using Markov models if the failure rates of the

processors and of the memory modules are assumed

to be constant. The state, in this case, represents the

number of operational processors and the number of

operational modules at a given time. It is assumed that

the program memory is divided into several stages.

The decision variables include the number of stages,

the number of modules in each stage, the replication

factor in a give stage, and the number of processors.

The problem faced by the computer design engineer is

to minimize the total cost of the system subject to

constraints on unreliability of the system’s

computations.

Task Allocation in Distributed Computer

Systems — Given a program composed of several

modules, the problem under consideration is the

allocation of the modules to the individual processing

elements of a multiprocessor system. This problem can

be formulated as a constrained optimization problem

(Sarma et al. 1988). The objective of such problems is

to minimize the cost function that depends on

the specific allocations. The constraints include

restrictions on the speed of the processors and

the limits on memory capacity. Allocation problems

are generally computationally intensive (i.e.,

NP-complete). The three most widely used

approaches for solving these problems are graph

theoretic, integer programming, and approximation

algorithms. Graph theoretic algorithms are practical

in solving only problems involving a small number of

processors.While integer programming is more widely

used in solving allocation problems, it is difficult to

predict the amount of computations necessary to obtain

the needed accuracy. Approximation algorithms are

generally considered the most practical method for

solving allocation problems since they can provide

acceptable solutions at low computational cost
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(Sarma et al. 1988). OR methods have been applied to

other aspects of computer systems design.

One example is the use of optimization algorithms

for motion recovery in computer vision (Lee and

Park 2008).

Mechanical Engineering

OR methods have been successfully applied to various

mechanical engineering design problems. A few

examples follow.

Engine design–Aittokoski and Miettinen (2008)

applied a simulation-based optimization to the design

of a two-stroke combustion engine. The optimization

approach involves interactive multiobjective

optimization. A hybrid evolutionary algorithm

consisting of a generic algorithm and particle swarm

optimization was applied by Jeong et al. (2008) to the

geometry design of diesel engine combustion chamber.

The new design resulted in reducing exhaust

emissions.

Yixian et al. (2009) developed a topology

optimization approach for the design of compliant

actuators using mesh-free methods in which the

thermo-mechanical multi-physics modeling and

geometrically non-linear analysis were included.

The optimization problem was formulated as a

nonlinear programming-problem to which a sequential

convex programming method was applied. The

mechanical structure of a five-bar parallel robot

was designed by Villarreal-Cervantes et al. (2010)

using a constraint-handling differential evolution

algorithm to solve the nonlinear dynamic optimization

problem.

See

▶Computer Science and Operations Research

Interfaces

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Markov Processes

▶Networks of Queues

▶Nonlinear Programming

▶ PASTA

▶Queueing Theory

▶Telecommunication Networks

References

Adali, S. (1988). Optimal design of vibrating structures by
mathematical programming. In R. R. Levary (Ed.),
Engineering design: Better results through operations

research methods (pp. 201–225). New York: North-Holland.
Aidala, P. V. (1988). Optimization theory for aerodynamic

design. In R. R. Levary (Ed.), Engineering design: Better

results through operations research methods (pp. 263–275).
New York: North Holland.

Aittokoski, T., & Miettinen, K. (2008). Cost effective
simulation-based multiobjective optimization in the
performance of a internal combustion engine. Engineering
Optimization, 40(7), 593–612.

Atrek, E. R., Gallagher, R. H., Ragsdell, K. M., &
Zienkiewicz, O. C. (Eds.). (1984). New directions in

optimum structural design. New York: John Wiley & Sons.
Bandler, J. W., & Charalambous, C. (1972). Theory of

generalized least pth approximation. IEEE Transactions on

Circuit Theory, CT-19, 287–289.
Bandler, J. W., & Rizk, M. R. M. (1979). Optimization of

electrical circuits. In M. Avriel & R. M. S. Dembe (Eds.),
Engineering optimization, mathematical programming study

11 (pp. 1–64). Amsterdam: North-Holland Publishing.
Bandler, J. W., Bardakjian, B. L., & Chen, J. H. K. (1975).

Design of recursive digital filters with optimized word
length coefficients. Computer Aided Design, 7, 151–156.

Berke, L., & Khot, N. S. (1974). Use of optimality criteria
methods for large scale systems, AGARD Lecture series,
no. 70. Structural Optimization, October 1974.

Biegler, L. T., Grossmann, I. E., & Reklaitis, G. V. (1988).
Application of operations research techniques in chemical
engineering. In R. R. Levary (Ed.), Engineering design:

Better results through operations research methods

(pp. 317–468). New York: North-Holland.
Blachut, J., & Smith, P. (2007). Tabu search optimization of

externally pressurized barrels and domes. Engineering

Optimization, 39(8), 899–918.
Cagdas, I. U., & Adali, S. (2007). Optimization of clamped

columns under distributed axial load and subject to stress
constraints. Engineering Optimization, 39(4), 453–469.

Chang, K. H., Cheng, C. H., & Chang, Y. C. (2008). Reliability
assessment of an aircraft propulsion system using IFS and
OWA trees. Engineering Optimization, 40(10), 907–921.

Churi, N., & Achenie, L. E. K. (1997). On the use of a mixed
integer non-linear programming model for refrigerant
design. International Transactions in Operational

Research, 4(1), 45–54.
Daigle, J. N., & Langford, J. D. (1988). Operations research

methods in the communication fields. In R. R. Levary
(Ed.), Engineering design: Better results through

operations research methods (pp. 644–682). New York:
North-Holland.

Gagnon, C. R., Hicks, R. H., Jacoby, S. L. S., & Kowalik, J. S.
(1974). A nonlinear programming approach to a very large
hydroelectric system optimization. Mathematical

Programming, 6, 28–41.
Gavish, B. (1982). Topological design of centralized computer

networks-formulations and algorithms. Networks, 12,
355–377.

E 504 Engineering Applications

http://dx.doi.org/10.1007/978-1-4419-1153-7_145
http://dx.doi.org/10.1007/978-1-4419-1153-7_145
http://dx.doi.org/10.1007/978-1-4419-1153-7_129
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
http://dx.doi.org/10.1007/978-1-4419-1153-7_667
http://dx.doi.org/10.1007/978-1-4419-1153-7_682
http://dx.doi.org/10.1007/978-1-4419-1153-7_200582
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_200844


Hajela, P. (1988). Optimization applications in aerospace
engineering. In R. R. Levary (Ed.), Engineering design:

Better results through operations research methods

(pp. 252–262). New York: North-Holland.
Hasanceb, O. (2007). Optimization of truss bridges within

a specified design domain using evolution strategies.
Engineering Optimization, 39(6), 737–756.

Hayes, J. F. (1984). Modeling and of analysis computer

communication networks. New York: Plenum Press.
Helms, H. D. (1971). Digital filters with equiripple or minimax

responses. IEEE Transactions on Audio Electroacoustics,

AU-19, 87–94.
Hsieh, C. C., & Arora, J. S. (1986). Algorithms for pointwise

state variable constraints in structural optimization.
Computers & Structures, 22, 225–238.

Jeong, S., Obayashi, S., &Minemura, Y. (2008). Application of
hybrid evolutionary algorithms to low exhaust emission
diesel engine design. Engineering Optimization, 40(1),
1–16.

Kazakos, D. (1983). New results on robust quantizations. IEEE
Transactions on Communications, COM-31(8), 965–974.

Khot, N. S., Venkayya, V. B., & Eastep, F. E. (1986). Optimal
structural modifications to enhance the active vibration
control of flexible structures. American Institute of

Aeronautics and Astronautics Journal, 24, 1368–1374.
Kidwell, G. H. (1988). Aircraft design-performance

optimization. In R. R. Levary (Ed.), Engineering design:

Better results through operations research methods

(pp. 276–293). New York: North-Holland.
Kirsch, U. (1988). Applications of mathematical programming

to the design of civil engineering structures. In R. R. Levary
(Ed.), Engineering design: Better results through operations
research methods (pp. 174–200). New York: North-Holland.

Krishnamoorthy, C. S., & Munro, J. (1973). Linear program for
optimal design of reinforced concrete frames. International
Association for Bridge and Structural Engineering, 33,
119–141.

Lasdon, L. S., & Waren, A. D. (1966). Optimal design of filters
with rounded, lossy elements. IEEE Transactions on Circuit

Theory, CT-13, 175–187.
Lee, S., & Park, F. C. (2008). Cyclic optimization algorithms for

simultaneous structure and motion recovery in computer
vision. Engineering Optimization, 40(5), 403–419.

Liu, S. S., & Hammond, J. L., Jr. (1980). A method for modeling
and analysis of reframing performance of multilevel
synchronous time division multiplex hierarchies. IEEE

Transactions on Communication, COM-28(8), 1219–1228.
Luna, F., Nebro, A. J., Alba, E., & Durillo, J. J. (2008). Solving

large-scale real- world telecommunication problems using
a grid-based genetic algorithm. Engineering Optimization,

40(11), 1067–1084.
Madsen, K., Nielson, O., Schjaer-Jacobsen, H., & Thrane, L.

(1975). Efficient minimax design of networks without using
derivatives. IEEE Transactions on Microwave Theory and

Techniques, MTT-23, 803–809.
Marcus, G. D., & Papatoni-Kazakos, P. (1983). Dynamic

scheduling protocols for a multi-access channel. IEEE

Transactions on Communications, COM-31(9), 1046–1055.
Moses, F., & Onoda, S. (1969). Minimum weight design of

structures with application to elastic grillages. International
Journal for Numerical Methods in Engineering, 1, 311–331.

Nesmachnow, S., Cancela, H., & Alba, E. (2007). Evolutionary
algorithms applied to reliable communications network
design. Engineering Optimization, 39(7), 831–855.

Pedar, A., & Sarma, V. V. S. (1983). Architecture optimization
of aerospace computing systems. IEEE Transactions on

Computers, C-32, 911–922.
Saniee, I. (1996). Optimal routing designs in self-healing

communication networks. International Transactions in

Operational Research, 3(2), 187–195.
Sarma, V. V. S., Trivedi, K. S., & Reibman, A. L. (1988).

Optimization methods in computer systems design. In R. R.
Levary (Ed.), Engineering design: Better results through

operations research methods (pp. 683–705). New York:
North-Holland.

Sauer, C. H., & McNair, E. A. (1983). Simulation of computer

communication systems. EnglewoodCliffs, NJ: Prentice-Hall.
Shahrokhi, A., & Jahangirian, A. (2010). A surrogate assisted

evolutionary optimization method with application to the
transonic airfoil design. Engineering Optimization, 42(6),
497–515.

Soares, M. C. A. (Ed.). (1986). NATO advance study Institute.
Proceedings on Computer Aided Optimal Design, Troia,
Portugal.

Sobieski, J. S. (1988). Optimization in aerospace structures. In
R. R. Levary (Ed.), Engineering design: Better results

through operations research methods (pp. 294–316).
New York: North-Holland.

Steiglitz, K. (1970). Computer-aided design of recursive digital
filters. IEEE Transactions on Audio Electroacoustics,

AU-18, 123–129.
Stuck, B. W., & Arthurs, E. (1985). A computer communications

network performance analysis primer. Englewood Cliffs, NJ:
Prentice-Hall.

Temes, G. C., & Calaham, D. A. (1967). Computer-aided
network optimization-the state-of-the art. Proceedings of

the IEEE, 55, 1832–1863.
Temes, G. C., & Zai, D. Y. F. (1969). Least pth approximation.

IEEE Transactions on Circuit Theory, CT-16, 235–237.
Thokala, P., Joaquim, R. R., & Martins, A. (2007).

Variable-complexity optimization applied to airfoil design.
Engineering Optimization, 39(3), 271–286.

Trivedi, K. S. (1982). Probability and statistics with reliability,

queueing and computer science, applications. Englewood
Cliffs, NJ: Prentice-Hall.

Trivedi, K. S., & Kinicki, R. E. (1980). A model for computer
configuration design. IEEE Computer, 13, 47–54.

Urselmann,M., Emmerich,M. T.M., Till, J., Sand, G.,&Engell, S.
(2007). Design of problem-specific evolutionary algorithm/
mixed- integer programming hybrids: Two-stage stochastic
integer programming applied to chemical batch scheduling.
Engineering Optimization, 39(5), 529–549.

Villarreal-Cervantes,M.G., Cruz-Villar, C.A., Alvarez-Gallegos,
J., & Portilla-Flores, E. A. (2010). Differential evolution
techniques for the structure-control design of a five-bar
parallel robot. Engineering Optimization, 42(6), 535–565.

Viswamurthy, S. R., & Ganguli, R. (2007). Optimal placement
of trailing-edge flaps for helicopter vibration reduction using
response surface methods. Engineering Design, 39(2),
185–202.

Waren, A. D., Lasdon, L. S., Stotts, L. B., & McCall, D. C.
(1977). Recent developments in nonlinear optimization and

Engineering Applications 505 E

E



their use in engineering design. In A. Wexler (Ed.), Large
engineering systems. Oxford, England: Pergamon.

Wolff, R. W. (1982). Poisson arrivals see time averages.
Operations Research, 30, 223–231.

Yixian, D., Zhen, L., Qihua, T., & Liping, C. (2009). Topology
optimization for thermo-mechanical compliant actuators
using mesh-free methods. Engineering Optimization, 41(8),
753–772.

Entering Variable

The non-basic variable chosen to become basic in an

iteration of the simplex or similar linear-programming

algorithm.

See

▶ Simplex Method (Algorithm)

Environmental Systems Analysis

Charles ReVelle

The Johns Hopkins University, Baltimore, MD, USA

Introduction

Within a decade after the emergence of operations

research at the end of World War II, civil and

environmental engineers were already adapting the

remarkable mathematical tools that had evolved in

the defense sector during the war. They quickly

applied these tools to the solution of important

societal problems relating to environmental

protection. Applications of operations research to

urban and regional water management began in the

late 1950s primarily under the leadership of Lynn

and Charnes. Solid wastes management using the

tools of OR began in the mid-1960s led by Liebman

and engineers at Berkeley. The development of

air pollution management models followed not

long after. Parallel to these engineering-based

investigations of environmental issues were

applications in forestry/timber management/recreation

as well as game and fisheries management. The three

engineering-based areas of environmental OR

application will be reviewed.

Urban Water Management

First, in historical sequence of environmental

applications of operations research, was urban and

regional water management. Urban and regional

water management encompasses many activities,

some of which have been approached with OR tools

and others which have seen very little application

activity. Water resources management, a parallel

activity to urban and regional water management,

focuses on the operation of reservoirs and systems of

reservoirs for purposes of water supply, recreation,

flood control, irrigation, hydropower, and navigation.

It also deals with aquifer management, conjunctive use

of ground and surface waters, and interbasin transfers.

The activities of urban and regional water

management, in contrast, are principally concerned

with the local delivery of water, with treatment of

water, with disposal of wastewater, and with the

quality of receiving waters, although quantity and

quality intersect in a number of problem settings.

Water resources management is discussed in this

encyclopedia under its own heading.

Here, water is followed (1) out of the reservoir to the

water treatment plant that produces drinking water,

(2) through the distribution system to the consumer,

(3) from the consumer through the sewer system (4) to

the wastewater treatment plant (sewage treatment plant),

and (5) into the receivingwater body, where the pollution

content of the treated wastewaters of many communities

interact with stream dissolved oxygen resources.

The water treatment plant is designed to produce

drinking water that is free of disease-causing bacteria,

viruses and protozoa. The water should be attractive

(clear) and palatable with little in the way of

objectionable tastes, odors, or color. The processes in

a typical water treatment plant are designed to achieve

these criteria. The design and arrangement of the

component processes are probably susceptible to

a cost optimization in which constraints are placed on

the final concentrations of various contaminants. The

design would constitute the first stage of applications

of systems analysis to urban water management.

However, very little in the way of OR/systems

analysis has been done in water treatment plant design.
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From the water treatment plant, the water enters

a distribution system for delivery to customers. In

this second stage of systems applications, linear

programming and nonlinear programming have been

applied to the design of water distribution systems

although the nonlinearity in the equations has

generally been approached by iterative application of

linear programming to approximate an unknown

multiplicative term. Decisions include which links of

the system to build, the diameters of the pipes, the

water flows in each link of the system, and the

pressure heads at junctions of the system. A series of

papers have appeared on this topic beginning in the late

1960s. A major difficulty in this design problem is the

tradeoff between cost and redundancy (needed for

reliability) and the lack of a good operational

measure of redundancy. A unique article that

explicitly compares a number of the approaches to

this problem was jointly prepared by many of the

researchers in the area of pipe network optimization

and appears under the title “Battle of the Network

Models,” (Walski et al. 1987).

Residential consumers, as well as industry and

commerce, receive the water from the distribution

system, use it and abuse it for washing, bathing, lawn

watering, irrigation and manufacturing processes. As

a consequence of the use, the quality of the water is

degraded, principally by the presence of organic

contaminants, but also with micro-organisms and

inorganic chemicals. Treatment at a sewage treatment

plant is required to restore the water to a level of quality

that will not impair the water in the receiving body.

To reach the sewage treatment plant, the wastes

from residences, commerce and industry enter

a wastewater collection system, the sewer system,

which conveys them to the plant. The design of the

sewer system represents a third stage of application of

systems analysis to urban water management.

A number of optimization models have been built to

determine which links to build, diameters of individual

sewer lines, the depth at which each line is placed and

the slopes of each line. A representative work in this

field is that of Walters (1985).

The sewers transport the wastes from their origins

to the treatment plant which itself requires design. The

design of the wastewater treatment plant represents

a fourth stage of application of systems analysis to

urban water management. The treatment plant

typically consists of ordinary biological processes

which remove organic wastes that are in solid form as

well as organic wastes that are dissolved in the waste

stream. Organic wastes are removed from wastewater

because they will otherwise be degraded by microbes

when they reach a lake or river and that biodegradation

would remove dissolved oxygen from the water.

Because fish and other stream aquatic organisms

require adequate levels of oxygen to survive, it is

imperative that sufficient amounts of organics be

removed from wastewater to protect the dissolved

oxygen resource that sustains the fish and other

aquatic life. Depending on the requirement of the

receiving water, the treatment plant could also

include physical-chemical processes to remove not

only nitrates and phosphates, but also the small

fraction of organics which is resistant to biological

treatment. The design of treatment processes using

optimization methodology was begun in the early

1970s. A research paper on the subject which usefully

refers to past works is that of Tang et al. (1987).

From the treatment plant (where the removal of

organics takes place), the restored wastewater may

enter a river or lake where it mixes with receiving

waters. The concentration of organic wastes

ultimately discharged into the receiving waters will

decrease as the degree of treatment/level of removal

at the wastewater treatment plant increases. Without

much treatment, the amount of dissolved oxygen in the

lake or river consumed by oxidation of the organic

wastes will be relatively large, making the water

environment inhospitable to fish and other desirable

aquatic organisms. Predictive models for the removal

of the oxygen resource and biological decay of organic

wastes were first developed in the 1910s and have

become increasingly descriptive and encompassing

since that time. A text reference that clearly describes

these numerous models is Thomann and Mueller

(1987). These differential and difference equation

models describe the response of the receiving waters

to inputs of organic and other wastes.

While the response of the receiving water to the

input of a single stream of organic wastes had been

largely modeled by the late 1950s, the response of

a river or lake to a number of spatially separated

waste streams had not been described analytically. If

wastes from multiple treatment plants are entering

a river, then an optimization problem arises in which

one seeks the least cost set of treatment plant

efficiencies (level of treatment or degree of removal)
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that can ensure the dissolved oxygen concentration

everywhere in the river remains above a desired level

or standard. The desired level or standard reflects the

uses of the water body whether for fishing, swimming,

boating, etc. Of course, it is possible and desirable to

develop the tradeoff between the system cost of

wastewater treatment and the dissolved oxygen

standard. The dissolved oxygen standard represents

the value of the lowest level of dissolved oxygen that

occurs anywhere along the length of the river. Linear

and dynamic programming models have been

developed for this optimization problem which is

really a problem in linear optimal control — in the

sense that the dissolved oxygen responses are

governed by differential equations.

After manipulation, which can be extensive, of the

governing equations that describe the system and the

constraints on performance, these models can be

converted to the optimization form

Water Pollution AbatementModel :

Minimize
Xn

i¼1

ci ei

s:t:
X

i2I

aij ei � S 8 j 2 J

0 � ei � 1 8 i 2 I

i, I ¼ the sources and set of sources from which

organic pollutants are discharged;

j, J ¼ the points and set of points at which the

dissolved oxygen standard must be met;

ci ¼ cost per unit of removal efficiency at source i;

ei ¼ the removal efficiency at source i;

aij ¼ the amount of dissolved oxygen that is

protected or is allowed to be present in the stream at

point j per unit of removal efficiency at point i; and

S¼ the dissolved oxygen standard that must be met

at all monitoring points in the river.

In an estuarine situation where tidal movements

cause pollutants to mix upstream and downstream of

their point of discharge, all aij coefficients are non-zero

and positive. In contrast, in a non-tidal river, only those

aij are nonzero and positive for which the point j is

downriver from source i. That is, in a non-tidal river,

pollution from a source i has negligible effect on

a point of measurement upstream from that source.

It is useful to develop the multi-objective tradeoff

curve between total treatment cost and the dissolved

oxygen standard because costs may increase rapidly in

some portion of the curve, suggesting that further gains

in quality can be obtained only at considerable

expense. The river basin optimization model that

chooses treatment efficiencies for each of many waste

sources is a fifth stage in the application of systems

analysis to urban water management (see ReVelle and

Ellis 1994; McGarity 1997).

While realistic and relatively complex, the

treatment plant/river basin optimization models do

not completely describe the options for designing

a pollution abatement program for the waste sources

on a river. Their lack centers around the assumption

that each discharge of treated wastewater enters the

receiving water body at a known and prespecified point

somewhere along the river, usually at its point of

origination. Thus, another fundamental problem, and

a sixth stage of application, is the siting of wastewater

treatment plants along a river. That is, the previous

model selected removal efficiencies but assumed that

the flows from each of the wastewater treatment plants

entered the river at the same geographical position as

the community or industry that generated the flow. In

contrast, the problem of siting wastewater treatment

plants assumes a single prespecified and high removal

efficiency for all the plants on the river, but seeks the

positions for discharges which minimize the total

treatment cost. The single treatment level is

presumed to be sufficiently high that dissolved

oxygen standards are not violated along the river. At

one extreme, discharges may still occur at each

community or industry along the river. At the other

extreme, discharges may be consolidated into a single

regional wastewater treatment plant. Most likely,

however, is the partial consolidation of wastewater

flows with some at-source discharges and some flows

merging at regional plants for treatment and discharge.

The motivation of this problem setting is that

economies of scale in treatment may be captured

when wastewater flows are combined and treated

together. Working against this cost advantage in

consolidating flows are the additional costs of piping

and pumping that are incurred when wastewater flows

are merged at central points. Thus, the objective of the

regional wastewater treatment plant problem is to

minimize the sum of treatment costs and piping/

pumping costs. The more dispersed that communities

are along a river, the less likely will be consolidation in

regional plants. Much work has been done on this
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problem since the early 1970s, most of it focusing on

a fixed charge approximation of the concave costs of

treatment. Zhu and ReVelle (1988) provided an

efficient and exact solution to siting regional

treatment plants along an essentially linear river via

integer programming and refer to most previous

published research on the problem. Whitlatch (1997)

provides a review of the literature of regional treatment

plant siting.

A variation of and combination of the two previous

problems has not been well studied; this is the problem

which seeks the least cost set of treatment efficiencies

and the sites for regional wastewater treatment plants

given that a dissolved oxygen standard is honored

along the length of the river. Multiplicative

nonlinearities and concave or fixed charge cost

functions make the problem especially challenging.

A final and seventh stage of application of systems

analysis to urban and regional water management is

the problem of cost or burden sharing. The notion here

is that a regional authority has been created whose goal

is to stimulate cooperation in the solution of

environmental problems. Cooperation takes the form

of joint activities, e.g. regional wastewater plants vs.

separate plants for each community — if the regional

solution saves money. Since the authority is assumed

to be unable to coerce the communities to cooperate, it

must find the means to induce cooperation; the goal is

to find an effective and attractive way to distribute the

savings from joint undertakings. Such a distribution

should be chosen in a way that makes every

participating community better off than it would be if

it were to treat its waste flow alone or to join some

other non-optimal coalition. An article that refers to

prior work in allocation of costs for regional

environmental facilities is Zhu and ReVelle (1990),

but a more expansive treatment of cost allocation

across the many areas of water resources and water

quality is given in Heaney (1997).

Solid Wastes Management

Management of the operation and of the design of urban

and regional solid wastes systems constitutes an

important environmental area for the application of

optimization. Although the level of research activity in

urban solid waste systems has decreased since the

middle 1970s, challenging problems remain and would

surely be addressed if research funding were to flow to

this sector as it did twenty years ago. Regional solid

waste management, especially with regard to hazardous

wastes routing and siting, has been thriving.

The field of urbanwastemanagementmay be roughly

divided into two sectors: a collection/routing sector and

a siting sector. In the first category, collection/routing,

are two related classes of problem: routing within

a district and the creation of districts. Routing within

a prespecified district means either visiting at least once

every link within the district with the least total length

route (minimal retracing of links) or visiting each link

twice (corresponding to collection on both sides of the

street) with the least total length route (no triple tracing

required). The principle of a routing that includes every

link at least once is minimal retracing, a property that is

achieved by minimal length matching of odd nodes

(nodes with an odd number of incident links). In the

routing that covers each arc twice (two-sided

collection) there are no odd nodes so that matching is

not required and the route can be completed with a total

length equal exactly to two times the total length of links

in the district. Alternatively, the best routingmight be the

one with the least total cost, where time is a major factor

in the determination of cost. As a consequence, a route

that included many left turns against a high volume of

oncoming traffic might be inferior to a longer route with

mostly right turns. Route design with consideration of

cost, time and left turns remains a challenging problem.

Thecreationofcollectiondistricts fromalargenetwork

of streets, however, requires a prior step inwhich links are

assigned to each district in such a way that the total

collection distance/time (and possibly volume or weight

loading) in each district is within a preset bound. Once

each district is created, the routing step would be

undertaken next. However, the district creation step and

the routing within a district step influence one another.

That is, the lengthof theminimal length routingwithin the

district is only finally determined by routing so that in

theory the assignment of links to a district cannot be

completed without knowing the length of the minimal

route within the district. Heuristics have been used to

resolve this problem (Liebman 1975).

In the second sector are siting problems. At least

four types of siting problems can be identified: the

central siting of collection vehicles, the siting of

a central incinerator, the siting of sanitary landfills

(of which there may be a number), and the siting of

transfer stations (the stations where smaller trucks
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offload to larger vehicles for more distant hauling). All

of these siting problems have been studied, but not all

are well solved.

A review of solid waste operations management is

given in Liebman (1975), and a review of the siting of

processing facilities and landfill sites is given in

Gottinger (1988). Liebman (1997) revisited routing

and siting in solid wastes management.

Regional solid waste management has received

inspiration from the mounting problems of disposing

of hazardous wastes. Issues of routing, scheduling and

siting abound — with conflicting objectives. On the

one hand, routes and sites should be chosen to

minimize cost. On the other hand, routes and sites

should be chosen to decrease risk and population

exposure. A special issue of Transportation Science,

edited by Turnquist and Zografos (1991), took up the

issues in hazardous materials transportation in five

articles. A review of the logistics of hazardous waste

management is given in Turnquist and Nozick (1997).

Control of Air Pollution

The application of systems analysis to the control of air

pollution dates from the late 1960s. Modeling efforts

drawn from air pollution meteorology were then

applied for the first time to develop predictive

equations that could be applied in constraint form for

air pollutant concentrations downwind from emission

sources. From these predictive equations, transfer

coefficients could be derived. Each such transfer

coefficient provides the unit increment of pollutant

concentration downwind (in say milligrams/cubic

meter) at a particular point of measurement for each

unit of emission (say tons per day) at each pollutant

source. Thus, each ton/day of sulfur dioxide emitted

from a specified source has a quantifiable impact on the

atmospheric sulfur dioxide concentration at each of

a number of downwind sites. With such transfer

coefficients, as well as costs of abatement at the

sources, and, with an atmospheric concentration

standard to be met, it is possible to structure an

optimization model. This air pollution management

model chooses the least cost set of removal

efficiencies, one removal level for every source, that

achieves atmospheric concentrations of the pollutant at

all specified points of concern at or below the standard.

A basic model that has been proposed for the

management of acid rain is described next. The

model follows the same form as the water pollution

abatement optimization model described earlier. It

should be noted that this model presumes no

chemical reactions of pollutants, but only gradual

dissipation of the pollutant.

The optimization problem is given as

Acid RainManagementModel :

Minimize z ¼
X

i2I

ci Ri

s:t:
X

i2I

tij Ei Ri �
X

i2I

tij Ei � Sj ðj 2 JÞ

0 � Ri � 1 8 i 2 I:

I, I ¼ index and set of sources;

J,J ¼ index and set of points at which

concentrations are monitored;

Ri ¼ fractional removal efficiency at source i;

Ei ¼ tons per unit time of emissions at source i

without any removal;

tij ¼ transfer coefficients (mg/m3/ton/day); the

increment to the atmospheric concentration at j per

unit of emissions at i;

Sj ¼ atmospheric standard at receptor point j for the

pollutant; and

ci ¼ cost per unit of pollutant removal.

This basic acid rain management problem can be

manipulated in many ways. The transfer coefficients

can be a single set of known numbers. They can also

be random variables, and the constraints can then be

either expected value constraints or chance constraints.

Many possible sets of transfer coefficients can also be

considered, leading to models that minimize maximum

regret subject to investment in pollutant removal.

Developments in air pollution management models, in

general, and acid rain, in particular, were surveyed in

reviews of water and air quality management by

ReVelle and Ellis (1994) and Ellis (1997).

Concluding Remarks

The environmental models discussed here have much

in common. Air and water pollution control models

both have the equivalent of transfer coefficients which
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translate upstream and upwind discharges and

emissions into downstream and downwind

concentrations. Water pollution control facilities as

well as landfills and incinerators require siting and

regionalization to minimize costs. Where power plant

air emissions are part of the control equations, siting of

power plants also becomes an issue in air quality

management. Finally, burden sharing and cost

allocation issues are common to all these areas of

environmental management. An annotated

bibliographic treatment of applications of

mathematical programming to the many areas of

environmental quality management is provided by

Greenberg (1995). The problem set in environmental

systems analysis is rich, diverse, challenging and

important.

See

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Location Analysis

▶Natural Resources

▶Vehicle Routing

▶Water Resources
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EOQ

Economic order quantity.

See

▶Economic Order Quantity

▶Economic Order Quantity Model Extensions

▶ Inventory Modeling
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Ergodic Theorems

Results giving the conditions for the time averages of

a stochastic process to converge to its limiting or

steady-state probability distribution.

See

▶Markov Chains

▶Markov Processes

▶Queueing Theory

Erlang

The unit of traffic load used in congestion analysis of

telecommunication networks. The traffic load is the

expected number of arrivals during an average

service time. This quantity is dimensionless, but is

refered to as the number of erlangs offered to the

system. Named after the Danish mathematician/

engineer A. K. Erlang, who founded modern

queueing theory with his work on telephony in the

early 1900s.

See

▶Offered Load

▶Queueing Theory

Erlang B Formula

The probability that all servers are busy in the

multiserver queueing system M/M/c with Poisson

input, exponential service and no waiting space, and

thus that an arriving customer will be unable to enter

the system (i.e., is blocked).

See

▶Queueing Theory

Erlang C Formula

The probability that all servers are busy in the

multiserver queueing system M/M/c with Poisson

input, exponential service and infinite capacity.

See

▶Queueing Theory

Erlang Delay Model

The multiserver queueing system M/M/c with Poisson

input and identical exponential service for each server.

See

▶Queueing Theory

Erlang Distribution

A continuous random variable is said to have an Erlang

distribution if its probability density may be written in

the form f(t) ¼ a(at)k�1 e�at/(k � 1)! where k is

a positive integer and a is a positive real number.

The constant k is called the shape parameter, while a

(or various equivalents) is called the scale parameter.

The Erlang distribution is a special case of the gamma

distribution with integral shape parameter.

See

▶Gamma Distribution

Erlang Loss Model

The multiple-server queueing system M/M/c with

Poisson arrivals, exponential service times, c servers,

but no additional space for holding customers.

E 512 Ergodic Theorems

http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_200540
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_200252


See

▶Erlang B Formula

▶Queueing Theory

Error Analysis

▶Numerical Analysis

Eta File

A sequential file storing the sequence of elementary

elimination matrices used to obtain the LU

decomposition of the basis matrix in the simplex

method. Each elementary elimination matrix is

represented by its eta vector.

See

▶Revised Simplex Method

Eta Matrix

▶Elementary Elimination Matrix

Eta Vector

The special column of a pivot (elementary

elimination) matrix that is different from the

corresponding column vector of the identity matrix.

A pivot matrix is uniquely specified by its eta vector

and its location in the matrix.

See

▶Revised Simplex Method

Ethics in the Practice of Operations
Research

Joseph H. Engel

Bethesda, MD, USA

Introduction

Ethics in the practice of operations research is the set of

moral standards to which a practitioner of OR/MS

should adhere in doing his or her work, so that the

analyst can do relevant work responsibly and

objectively, and be perceived as doing so.

The OR/MS worker must apply the basic principles

of scientific methodology in such a way as to be

transparent in the way the work is reported.

A technically qualified but disinterested party should

be able to verify that the work has been carried out in

a valid manner, based on data that have been gathered

and analyzed correctly.

Operations research, as distinguished from the

physical sciences in general, deals with interactions

between people and the systems they operate. With

this in mind, the discussion here concerns the OR/MS

analyst’s ethical requirements operationally, in terms

of beginning, conducting, and reporting a study (as

covered in Caywood et al. 1971, 1129–1130).

In Beginning a Study

The OR/MS analyst should discuss thoroughly with

the client the nature of the problem to be solved, and

should become familiar with the system, so that the

analyst and the client can reach agreement on the

client’s objectives in operating the system to be

studied, measures of effectiveness in achieving the

system objectives, and the boundaries of the system.

Both parties need to “agree on whatwill and will not be

done” (Caywood et al. 1971).

The careful delineation of the objectives of

a system in planning how to begin a study is

important in all cases, particularly where there are

multiple objectives. All component objectives and

measures of performance must be carefully defined.

Of comparable ethical importance in the

formulation of the problem is the determination of

Ethics in the Practice of Operations Research 513 E

E

http://dx.doi.org/10.1007/978-1-4419-1153-7_200185
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_694
http://dx.doi.org/10.1007/978-1-4419-1153-7_200716
http://dx.doi.org/10.1007/978-1-4419-1153-7_200174
http://dx.doi.org/10.1007/978-1-4419-1153-7_200716


the extent of the system to be studied. This means that

analyst and client should agree on which portions of

the system can be affected by the operation of the

system and what phenomena affected by the

operation of the system are of concern to the client.

Then, properly relevant analysis of possible operation

of the system can lead to recommendations which

should lead to the desired improvement.

It also is important for the analyst to understand the

general nature of all of the effects that the system can

have on the total environment, regardless of whether or

not the system operator is directly interested in some of

these effects. Uncovering unexpected effects may

make it possible for the system operator to acquire

a better understanding of the overall relationship of

the system to its surrounding. This, perhaps, may lead

to more useful results than might have otherwise been

possible.

In Conducting a Study

Having selected measures of performance and having

defined the system boundaries, the analyst must plan

for data collection to ensure its maximum accuracy and

relevance to the problem at hand, without interfering

unduly with what the operating personnel are doing.

As in other people-oriented sciences, the OR/MS

scientist often cannot conduct controlled experiments

(because they inflict an undue burden of cost or

damage on the operating personnel). The analyst may

have to be content with observing a series of

operational trials under what are hoped to be relevant

field conditions. But, to the maximum extent possible,

the number and nature of specific data collecting trials

should be stipulated by the analyst, with the

concurrence of the client, so as to ensure that

a statistically valid amount of data covering all

relevant facets of the operation will be collected.

This depends to a great degree on the nature of the

mathematical model being used to describe the

system being studied and how its performance is

affected by factors under the control of the system

operator, as well as by uncontrollable environmental

factors. The time, personnel and equipment available

and costs of conducting trials must also be taken into

account in planning the quantity and extent of data

collection.

The analyst should assure that qualified operators

are trained in using appropriate data recording

equipment and that they do record the data from the

proper number of trials under the desired range of

conditions that are to be recorded, or that they tell the

analyst how many trials were really conducted, and

under what conditions. Wherever possible, the analyst

should observe the data collecting trials directly to

determine whether they are conducted under true

field conditions and to become aware of possible

sources of error or inaccuracy in the data collection.

The analyst should not operate equipment being

evaluated during data collection trials, because the

analyst is not part of the operating system, and such

participation can bias the results of the trials

unexpectedly. This need not preclude the analyst

from operating or observing the system on other

convenient occasions to help build a good

understanding of how the system is supposed to

operate. It is generally preferable for the client’s

operating personnel rather than the analyst to collect

the data. This is most desirable if the collection of such

data is or ought to be part of the normal operating

process (because such procedures are often valuable

to the operators for training and self evaluation

purposes).

Once the data are collected, the analyst must study it

together with the mathematical model being used to

describe system performance. The analyst must not

arbitrarily omit data or add new or nonexistent data

to develop results that are more to the liking of the

analyst (or the client), and should make proper

statistical, mathematical, and logical use of the data

to derive valid conclusions. The analyst should try to

reach an understanding of the nature of the

conclusions, and why they agree (or fail to agree)

with any prior opinions that may exist concerning the

system being studied. The analyst should conduct

sensitivity analyses of the effects of variations in key

parameters or assumptions and should deal with

possible limitations on the accuracy of observed data

values and the effect of these limitations on the

conclusions.

In studying a single objective system, the analyst

uses a mathematical model appropriately to determine

what combination of control variables will yield

maximum performance effectiveness. Multi-objective

systems are more difficult.
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In the comparatively simple case of a single type of

cost versus a single measure of performance, the

analyst can treat the problem by first discovering how

to maximize performance for a given cost, or,

alternatively, by discovering the least expensive way

to achieve a specified level of performance.

The decision maker (usually the client rather than

the analyst) must decide on the maximum amount of

money he or she wishes to spend, or the minimum level

of performance desired. Then the analyst can solve the

problem by recommending how to get the best

performance at the desired expenditure level, or,

alternatively, by recommending the smallest

expenditure to achieve the desired level of

performance.

The general solution in multi-objective systems is

often difficult because there does not exist

a mathematically rigorous method to find how to

optimize the operation of any such system. In the

special case when it can be shown that each of

the objectives can be achieved more effectively when

the system is operated in one certain way rather than in

any other way, that way is a unique and dominating

optimum solution to the problem. Similarly, multiple

dominating solutions (each of them identically effective

to all other dominating solutions with respect to each of

the corresponding values of the component measures,

and at least as effective in all of their components and

more effective than some of the corresponding

components of the non-dominated solutions) can be

found. But dominating solutions do not always exist.

In such cases, it is necessary to consider possibly

conflicting objectives in order to develop balanced

procedures that deal with all important factors

affecting performance. Such a problem might arise,

for example, in optimizing the design of a military

aircraft in terms of its range, cruising altitude, speed,

payload weight, delivery accuracy, defensive ability,

procurement and operating costs.

In general, a multi-objective index is used together

with a sensibly designed mathematical model to be

used to find out how to select values of control

variables to maximize the value of the index. Such

an index is usually structured to increase in value in

a balanced way whenever any component measure

indicates an improvement within an acceptable

range (for example, the index might be a positively

weighted sum of positive powers of each positive

component measure). This is often hard to

accomplish. If, for example, a system must be

designed to optimize a time stream of expected

short-run and long-term future costs and benefits, it

is difficult to decide how to discount and balance

long-term future costs and benefits against the short

term. These long-range planning problems are not

always dealt with properly, as witness frequent

emphasis on ending each fiscal year in the black

without paying enough attention to long-term

profitability.

In Reporting a Study

Having performed the analysis and drawn conclusions,

the analyst must report the findings and their possible

limitations to the client in as complete and

understandable a manner as possible.

It is well worth reviewing the mechanics, as well

as the ethics of reporting a study. All aspects of

the analysis, the data collection procedures, the

fundamental assumptions and mathematical model

used, including the values of any multi-objective

index and each of its components, conclusions,

recommendations and their limitations, should be

reported and explained to the client. When an

analysis is conducted using a multi-objective

index, the analyst should explain to the client how

the values of the coefficients and exponents used in

the index have been chosen, including a thorough

discussion of the implications inherent in their

selection. At all costs, the analyst must avoid

conducting and then reporting the analysis in such

a way as to warp results intentionally so as to

validate the analyst’s own or anyone else’s prior

conclusions. Further, the analyst reports only to the

client and nobody else without prior permission

from the client. Leaks are unethical (Caywood

et al. 1971).

The ethical problems connected with the reporting

process revolve around the need to analyze and report

relevantly, honestly, completely, clearly, and

exclusively, so the client will understand what has

been done as well as what has not been done.

Failure to do so is an ethical failure, because the

analyst will have failed to deliver what was

contracted.
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Concluding Remarks

Beyond the ethical requirement’s of beginning,

conducting, and reporting an OR study, as discussed

above, there are a number of other ethical issues that

analysts encounter in their research and applied

activities. Many of these issues are similar to ones faced

by all professionals, for example, data availability and

computational reproducibility, peer review procedures,

the handling of conflicts of interest. The book edited by

Wallace (1994) covers the full rangeof suchethical issues.

Further ethical concerns are discussed in the special issue

on ethics and operations research of the journal OMEGA

(37, 6, 2009); in particular, see the papers Gass (2009),

Le Menestrel and Van Wassenhove (2009), and Walker

(2009).Caywoodet al. (1971) offers a valuable discussion

of the concept and ethical issues of the analyst as an

advocate. Brams (2002) discusses a multicriteria

decision aid, the PROMETHEE–GAIA procedure, and

shows how it could provide well-balanced solutions

between rationality, subjectivity, and ethics.

See

▶ Implementation

▶Multi-attribute Utility Theory

▶Multiobjective Programming

▶ Practice of Operations Research and Management

Science

▶Verification, Validation, and Testing of Models
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Euler Tour

In an undirected connected graph, an Euler tour is

a cycle that starts at some node, visits each arc

exactly once, and returns to the starting node.

See

▶Chinese Postman Problem

▶Combinatorics

▶Graph Theory

▶ Integer and Combinatorial Optimization

EURO

Association of EuropeanOperational Research Societies.

See

▶ International Federation of Operational Research

Societies (IFORS)

Evaluation

▶Model Evaluation

Event-Driven Simulation

A computer simulation paradigm in which each

simulated event is contained in a (logical) module of

code (subroutine). Each module is executed when and

only when other code determines that event should

occur. Generally, event-driven simulations have

stochastic (random) decisions that determine if and

when (in model time) an event will occur.

See

▶ Simulation of Stochastic Discrete-Event Systems
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Introduction

The Evolutionary Computation (EC) techniques are

stochastic algorithms whose search methods model

some natural phenomena: genetic inheritance and

Darwinian strife for survival. The idea behind

Evolutionary Algorithms (EAs) is to do what nature

does. Consider rabbits as an example: at any given time

there is a population of rabbits. Some of them are faster

and smarter than other rabbits. These faster, smarter

rabbits are less likely to be eaten by foxes, and

therefore more of them survive to do what rabbits do

best: make more rabbits. Of course, some of the

slower, dumber rabbits will survive just because they

are lucky. This surviving population of rabbits starts

breeding. The breeding results in a good mixture of

rabbit genetic material: some slow rabbits breed with

fast rabbits, some fast with fast, some smart rabbits

with dumb rabbits, and so on. And on the top of that,

nature throws in a “wild hare” every once in a while by

mutating some of the rabbit genetic material. The

resulting baby rabbits will (on average) be faster and

smarter than these in the original population because

more faster, smarter parents survived the foxes.

(It is a good thing that the foxes are undergoing

similar process — otherwise the rabbits might

become too fast and smart for the foxes to catch any

of them). So the metaphor underlying evolutionary

algorithms is that of natural evolution. In evolution,

the problem each species faces is one of searching for

beneficial adaptations to a complicated and changing

environment. The “knowledge” that each species has

gained is embodied in the makeup of the chromosomes

of its members. From the point of view of optimization,

EC is a powerful stochastic zeroth order method (i.e.,

requiring only values of the function to optimize) that

can find the global optimum of very rough functions.

This allows EC to tackle optimization problems for

which standard optimization methods (e.g., gradient-

based algorithms requiring the existence and

computation of derivatives) are not applicable.

Moreover, most traditional methods are local in

scope, thus they identify only the local optimum

closest to their starting point.

An Algorithm

A general framework is introduced, which accounts for

most existing Evolutionary Algorithms.

Let the search space be a metric space E, and let F

be a function E!  called the objective function. The

task of evolutionary optimization is to find the

maximum of F on E (the case of minimization is

easily handled by considering � F).

A population of size P 2  is a set of P individuals

(points of E) not necessarily distinct. This population is

generally initialized randomly (at time t ¼ 0) and

uniformly on E. Then the fitness of each individual is

computed (on the basis of the values of the objective

function); a fitness value is represented as a positive

real number—the higher the number, the better

the individual. The population then undergoes

a succession of generations; the process is illustrated

in Fig. 1.

Several aspects of the evolutionary procedure

require additional comments:

– Statistics and stopping criterion: The simplest

stopping criterion is based on the generation

counter t (or on the number of function

evaluations). However, it is possible to use more

complex stopping criteria which depends either on

the evolution of the best fitness in the population

along generations (i.e., measurements of the

gradient of the gains over some number of

generations), or on some measure of the diversity

of the population.

– Parental selection: Choice of some individuals that

will generate offspring. Numerous selection

processes can be used, either deterministic or

stochastic. All are based on the fitness of the

individuals. Depending on the selection scheme

used, some individuals can be selected more than

once. At that point, selected individuals give birth to

copies of themselves (clones).

– Application of variation operators: To each one

of these copies some operator(s) are applied, giving

birth to one or more offspring. The choice among

possible operators is stochastic, according to
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user-supplied probabilities. These operators are

always stochastic operators; it is common to

distinguish between crossover (or recombination)

and mutation operators:

• Crossover operators are operators from Ek into

E, i.e., some parents exchange genetic material

to build up one offspring. In most cases,

crossover involves two parents (k ¼ 2), though

more parents can be used.

• Mutation operators are stochastic operators from

E into E.

– Evaluation: Computation of the fitnesses of all

newborn offspring. As mentioned earlier, the

fitness measure of an individual is directly related

to its objective function value.

– Survival selection: Choice of which individuals

will be part of next generation. The choice can be

made either from the offspring only (in which case

all parents die) or from both the offspring and the

parents. In either case, this survival selection

procedure can be deterministic or stochastic.

Sometimes the variation operators are defined on

the same space as the objective function (called

phenotype space or behavioral space); in other cases,

an intermediate space is introduced (called genotype

space or representation space). The mapping from the

phenotype space in the genotype space is termed

coding. The inverse mapping from the genotype

space in the phenotype space is termed decoding.

Genotypes undergo variation operators, and their

fitness is evaluated on the corresponding phenotype.

The properties of the coding mappings can greatly

modify the global behavior of the evolutionary

algorithm. For more (implementational) details related

to the structure outlined in Fig. 1 and further discussion

on the above aspects of the evolutionary procedure, see

(Michalewicz and Fogel 2004).

An Example

The following example based on an example given in

chapter 2 of (Michalewicz 1996) presents the action-

steps of a standard genetic algorithm — the best-

known paradigm within evolutionary algorithms —

for a numerical optimization problem. These action-

steps illustrate general structure of evolutionary

algorithms given in Fig. 1. Here, without loss of

generality, consider a maximization problem where

the objective function f takes positive values on its

domain.

Consider the maximization of a function of k

variables, f ðx1; . . . ; xkÞ : 
k ! . Suppose further

that each variable xi can take values from a domain

Di ¼ ½ai; bi� 	  and f ðx1; . . . ; xkÞ > 0 for all xi 2 Di.

Assume the optimization specifies some required

precision: suppose six decimal places for the

variables’ values is desirable.

It is clear that to achieve such precision each

domain Di should be cut into ðbi � aiÞ � 10
6

equal size ranges. Denote by mi the smallest integer

such that ðbi � aiÞ � 10
6 � 2mi � 1. Then, a

representation having each variable xi coded as a

binary string of length mi clearly satisfies the

precision requirement. Additionally, the following

formula interprets each such string:

xi ¼ ai þ decimalð1001:::0012Þ �
bi � ai

2mi � 1
;

where decimalðstring2Þ represents the decimal value of

that binary string.

Now, each individual (in genetic algorithms

terminology, individuals are often called

chromosomes) is represented by a binary string of

length m ¼
Pk

i¼1 mi; the first m1 bits map into

a value from the range ½a1; b1�, the next group of m2

bits map into a value from the range ½a2; b2�, and so on;
the last group of mk bits map into a value from the

range ½ak; bk�. A chromosome represents a potential

solution to the problem.

To initialize the population, simply set some

pop size number of chromosomes randomly in

procedure evolutionary algorithm

begin

t ← 0
initialize population
evaluate population

while (not termination-condition) do

begin

t ← t + 1
select individuals for reproduction
apply variation operators
evaluate newborn offspring
select individuals for survival

end

end

Evolutionary Algorithms, Fig. 1 The structure of an
evolutionary algorithm
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a bitwise fashion. However, if there is some knowledge

about the distribution of potential optima, such

information may be used in arranging the set of

initial (potential) solutions.

At each generation (while loop, see Fig. 1),

evaluate each chromosome (using the function f on

the decoded sequences of variables), select new

population with respect to the probability

distribution based on fitness values, and alter the

chromosomes in the new population by mutation and

crossover operators. After some number of

generations, when no further improvement is

observed, the best chromosome represents an

(possibly the global) optimal solution. Often the

algorithm is stopped after a fixed number of

iterations depending on speed and resource criteria.

For the selection process (selection of a new

population with respect to the probability

distribution based on fitness values), a roulette wheel

with slots sized according to fitness is used here; such

a roulette wheel is constructed as follows:

– Calculate the fitness value evalðviÞ for each

chromosome vi (i ¼ 1; . . . ; pop size).

– Find the total fitness of the population

F ¼
Xpop size

i¼1
evalðviÞ:

– Calculate the probability of a selection pi for each

chromosome vi (i ¼ 1; . . . ; pop size):

pi ¼ evalðviÞ=F:

– Calculate a cumulative probability qi for each

chromosome vi (i ¼ 1; . . . ; pop size):

qi ¼
Xi

j¼1
pj:

The selection process is based on spinning the

roulette wheel pop size times; each time select

a single chromosome for a new population in the

following way:

– Generate a random (float) number r from the range

½0::1�.
– If r < q1 then select the first chromosome (v1);

otherwise select the i-th chromosome vi
(2 � i � pop size) such that qi�1 < r � qi.

Obviously, some chromosomes would be selected

more than once. This is in accordance with the

Schema Theorem (see Comparison section): the best

chromosomes get more copies, the average stay even,

and the worst die off.

Now, apply the recombination operator, crossover, to

the individuals in the new population. As mentioned

earlier, one of the parameters of a genetic system is

probability of crossover pc. This probability gives us

the expected number pc � pop size of chromosomes

which undergo the crossover operation. Proceed as

follows:

For each chromosome in the (new) population:

– Generate a random (float) number r from the range

½0::1�;
– If r < pc, select given chromosome for crossover.

Now, mate selected chromosomes randomly: for

each pair of coupled chromosomes generate a random

integer number pos from the range ½1::m� 1� (m is the

total length — number of bits — in a chromosome).

The number pos indicates the position of the crossing

point. Two chromosomes

ðb1b2 . . . bposbposþ1 . . . bmÞ and

ðc1c2 . . . cposcposþ1 . . . cmÞ

are replaced by a pair of their offspring:

ðb1b2 . . . bposcposþ1 . . . cmÞ and

ðc1c2 . . . cposbposþ1 . . . bmÞ:

The next operator, mutation, is performed on a

bit-by-bit basis. Another parameter of the genetic

system, probability of mutation pm, gives us the

expected number of mutated bits pm � m � pop size.

Every bit (in all chromosomes in the whole

population) has an equal chance to undergo mutation,

i.e., change from 0 to 1 or vice versa. So proceed as

follows:

For each chromosome in the current (i.e., after

crossover) population and for each bit within the

chromosome:

– Generate a random (float) number r from the range

½0::1�;
– If r < pm, mutate the bit.

Following selection, crossover, and mutation,

the new population is ready for its next evaluation.
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This evaluation is used to build the probability

distribution (for the next selection process), i.e., for

a construction of a roulette wheel with slots sized

according to current fitness values. The rest of the

evolution is just cyclic repetition of the above steps.

It is relatively easy to keep track of the best

individual in the evolution process. It is customary

(in genetic algorithm implementations) to store “the

best ever” individual at a separate location; in that way,

the algorithm would report the best value found during

the whole process (as opposed to the best value in the

final population) — this approach illustrates so-called

elitist strategy.

Historical Paradigms

This section introduces the four historical paradigms

that build what is today known as Evolutionary

Computation.

Genetic Algorithms

In the canonical genetic algorithm (GA) (Holland

1975; Goldberg 1989), the genotype space is f0; 1gn.
Note that the phenotype space can be any space,

as long as it can be coded into bitstring genotypes.

The parental selection is proportional selection

(the best-known being the roulette wheel selection as

discussed in the previous section): P random choices

are made in the whole population, each individual

having a probability proportional to its fitness of

being selected. The crossover operators replace

a segment of bits in the first parent string by the

corresponding segment of bits from the second

parent, and the mutation operator randomly flips the

bits of the parent according to a fixed user-supplied

probability. In the survival selection phase, all P

offspring replace all parents (aka generational

survival). The best fitness in the population can thus

decrease: the original GA strategy is not elitist.

However, it rapidly became clear that the genotype

space can be almost any space, as long as some

crossover and mutation operators are provided

(Radcliffe 1991; Michalewicz 1996). Moreover,

proportional selection has been gradually replaced

by comparison-based selections, from ranking

(the selection is performed on the rank of the

individuals rather than on their actual fitness), or

tournament selection (one selects the best individual

among a uniform choice of T individuals, T ranging

from 2 to some small proportion of the population

size) – see, e.g., (Chakraborty et al. 1996) for

a discussion on these selection methods. Finally,

most users use the elitist variant of survival selection,

in which the best individual of generation t is included

in generation tþ 1, whenever the best fitness value in

the population decreases.

Evolution Strategies

Evolution Strategies (ESs) (Rechenberg 1972; Schwefel

1981) have been designed as parametric optimization

algorithms, i.e., optimizing functions of floating-point

variables. The original ES handles a population made

of a single individual given as a real-valued vector. This

individual undergoes a Gaussian mutation: addition of

zero-mean Gaussian variable of standard deviation s to

each of the real variables. The fittest from the parent and

the offspring becomes the parent of next generation. The

critical feature is the choice of parameter s: Originally,

the so-called 1=5 thumb rule (i.e., when more than 1=5
mutation are successful (respectively unsuccessful),

increase (respectively decrease) s (Rechenberg 1972).

ES then evolved into population-based algorithms

(B€ack and Schwefel 1993), termed ðm; lÞ � ES or

ðmþ lÞ � ES: m parents generate l offspring. (There

is no parental selection, i.e., every parent produces l=m
offspring on average). Moreover, the survival selection

is deterministic, i.e., the best m individuals become the

parents of the next generation, chosen among the mþ l

parents plus offspring in the elitist ðmþ lÞ � ES

scheme, or among the l offspring in the non-elitist

ðm; lÞ � ES scheme (with l � m).

The main operator remains mutation, generalized

into multi-variate Gaussian mutation, i.e., defined by

a full covariance matrix C and a scaling factor s, also

called the step-size mutation. In the 90s, the powerful

paradigm of self-adaptive mutation was the rule: C and

s were added to the description of the individuals, and

undergo mutation as well. The recent trend is to adapt C

and s based on the history of the evolution, leading

to the state-of-the-art algorithm of Covariance

Matrix Adaptation – Evolution Strategy, CMA-ES

(Hansen and Ostermeier 2001; Auger and Hansen

2005). CMA-ES is almost parameter-free: it uses

a ðl=2; lÞ � ES survival selection, where the

parameter l is chosen as 4þ 3logðnÞb c (Hansen and

Ostermeier 2001), and increased in case of highly-

multi-modal functions (Auger and Hansen 2005).
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Evolutionary Programming

Evolutionary Programming (EP) is one of the oldest

EAs, originally proposed to evolve finite state

machines [27]. As in ESs, there is no parental

selection, and every individual in the population

generates one offspring. Moreover, the only evolution

operator is mutation. Survival selection is what is

today called a ðPþ P-ES, i.e. the best P individuals

among parents and offspring become the parents of the

next generation.

As in the field of GAs, further works rapidly

generalized the approach to handle any search space,

still emphasizing the use of mutation as the only

operator (Fogel 1995). Several variants were

then introduced, from stochastic survival selection to

self-adaptive mutations (similar to the ones from

Evolution Strategies, though discovered completely

independently (Saravanan et al. 1995)).

Genetic Programming

Genetic Programming (GP) as a method for evolving

computer programs first appeared as an application of

GAs to tree-like structures (Koza 1992). Original

GP evolves tree structures representing LISP-like

S-expressions. The strength of this representation is

that a closed crossover operator can easily be defined:

by swapping sub-trees between two valid

S-expressions, one always gets a valid S-expression.

Koza’s original work used a steady state genetic

algorithm evolutionary mechanism (Syswerda 1991):

a parent is selected by tournament (of size 2 to 7

typically), and generates an offspring by crossover

only. The offspring is then put back in the population

using a reverse-tournament: T individuals are

uniformly chosen, and the one with the worst fitness

gets replaced by the newborn offspring.

Since then, most published work considered also

mutation. Further, several variants of tree-based GP

have been proposed (e.g., linear GP (Nordin 1997),

Cartesian GP (Miller and Smith 2006), push-GP

(Spector and Robinson 2002)). At present, Genetic

Programming is viewed more generally as program

evolution (Banzhaf et al. 1998).

Modern Trends: Hybrid Methods

Many researchers further modified evolutionary

algorithms by adding some problem-specific

knowledge to the algorithm. Several papers have

discussed initialization techniques, different

representations, decoding techniques (mapping from

genetic representations to phenotypic representations),

and the use of heuristics for variation operators. Davis

[20] wrote (in the context of classical, binary GAs):

It has seemed true to me for some time that we cannot
handle most real-world problems with binary
representations and an operator set consisting only of
binary crossover and binary mutation. One reason for
this is that nearly every real-world domain has
associated domain knowledge that is of use when one is
considering a transformation of a solution in the domain
[. . .]. I believe that genetic algorithms are the appropriate
algorithms to use in a great many real-world applications.
I also believe that one should incorporate real-world
knowledge in one’s algorithm by adding it to one’s
decoder or by expanding one’s operator set.

Such hybrid/nonstandard systems enjoy a

significant popularity in the evolutionary computation

community. Very often these systems, extended by the

problem-specific knowledge, outperform other classical

evolutionary methods as well as other standard

techniques. For example, a system Genetic-2 N

(Michalewicz 1996) constructed for the nonlinear

transportation problem used a matrix representation for

its chromosomes, a problem-specific mutation (main

operator, used with probability 0.4) and arithmetical

crossover (background operator, used with probability

0.05). It is hard to classify this system: it is not

really a genetic algorithm, since it can run with

a mutation operator only without any significant

decrease of the quality of results. Moreover, all matrix

entries are floating-point numbers. It is not an

evolution strategy, since it did not use Gaussian

mutation, nor did it encode any control parameters in

its chromosomal structures. Clearly, it has nothing to do

with genetic programming and very little (just

matrix representation) with evolutionary programming

approaches. It is just an evolutionary computation

technique aimed at a particular class of problems.

Comparison

Many papers have been written on the similarities and

differences between these approaches (B€ack and

Schwefel 1993; Fogel 1995; B€ack 1995). Clearly,

these similarities and differences can be discussed

from different perspectives.
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– The representation issue
Original GAs, ESs and EP address only bitstrings,

real numbers and finite state machines,

respectively. However, recent tendencies indicate

that this is not a major difference. Moreover, it is

still far from trivial to select appropriate variation

operators for the chosen representation and the

objective function, aka the fitness landscape

(Radcliffe 1991; Michalewicz 1996).

– The usefulness of crossover
According to the Schema Theorem (Holland 1975;

Goldberg 1989), GAs main strength comes from the

crossover operator: better and better solutions are

built by exchanging building blocks from partially

good solutions previously built, in a bottom-up

approach. The mutation operator is then

considered as a background operator. On the other

hand, the philosophy behind EP and ESs is that such

building blocks might not exist, at least for most

real-world problems. Also some experimental

results contradict the building block hypothesis;

for example, uniform crossover (Syswerda 1989)

is very disruptive of short schemata whereas one

and two-point crossover are more likely to conserve

short schemata and combine their defining bits in

offspring. This top-down view considers that

selective pressure plus genotypic variability

brought by mutation are sufficient. This discussion

on significance of the crossover has been going on

for a long time. However, even when crossover is

experimentally demonstrated beneficial to

evolution, it could be because it acts like a large

mutation (Jones 1995). Yet another example of the

duality between crossover and mutation comes

from GP’s history: the original GP algorithm

(Koza 1992) used only crossover, with no

mutation at all, with very large population size:

the rationale is that all building blocks that are

necessary to represent at least one sufficiently

good solution are already present in the initial

population, and only need to be recombined.

– Mutation operators
Whereas the usefulness of crossover has been

heavily discussed, that of mutation is

acknowledged by all trends (with the historical

exception of Koza’s work in GP – Genetic

Programming section). Indeed, mutation is the

only operator that ca re-introduce diversity in the

population, as crossover is de facto limited by

the current population. From a theoretical point of

view, only mutation can guarantee the ergodocity of

the stochastic process (i.e. that all points of the

search space can be reached whatever the current

population). However, the way mutation operators

are applied differ from one paradigm to another,

and should be closely linked to the types of

selection that are used. Traditional GAs use a low

mutation rate, i.e. the average number of bits that

are flipped remains small (though it can take large

values, with very small probabilities). Because all

offspring replace all parents without competition,

high mutation rates would totally prevent any

convergence to any optimal solution, as mutation

gets more and more destructive as the population

contains better and better solutions. Within ESs, on

the other hand, all individuals undergo mutation,

and only the strength of the mutation is varied

(e.g., the standard deviation of the Gaussian

mutation, in one dimension). Together with the

fact that several offspring are generated from each

parent, this nevertheless still allows the algorithm to

converge. Furthermore, it can converge to any

arbitrary precision provided the mutation strength

is decreased accordingly: this was first

demonstrated by self-adaptive ES (Schwefel 1981;

Beyer 2001), and proved right for CMA-ES as well

(Hansen and Ostermeier 2001). Indeed, adaptive

and self-adaptive mutations can have a significant

impact only when all individuals undergo mutation.

Furthermore, it also requires some property of the

mutation with respect to the fitness function

called the strong causality principle emphasized

in Rechenberg (1972): mutation should be

parameterized in such a way that small mutations

have small effects on the fitness. This property is not

specific to floating-point optimization, and should

be kept in mind when designing mutation operators

for a particular representation. In particular,

this property is not true when floating-point

numbers are encoded into binary strings (as is the

case in traditional-syle GAs).

– The selection mechanisms
They range from the totally stochastic fitness

proportional parental selection of GAs with

generational survival, to the deterministic (m; l)
survival selection of ES, through the stochastic, but

elitist (i.e. preserving the best), tournament-based

survival step of EP and the steady-state scheme used
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in GP. Though some studies have been devoted to

selection mechanisms (see e.g., (Chakraborty

et al. 1996)), the choice of both selection steps for

a given problem (fitness-representation-operators) is

still an open question (and is very likely to be

problem-dependent).

The current trend in the EC community is to mix up

all these features on a very pragmatic basis, trying to

best fit the application at hand: some ESs applications

deal with discrete or mixed real-integer spaces

(B€ack 1995), the early arguments (Antonisse 1989)

against the dogma “binary is the best” have diffused

in the community, and the Schema Theorem has been

extended to any representation (Radcliffe 1991).

Moreover, most ESs (including CMA-ES) use some

crossover operator, mutation has been added to GP,

etc. And the different selection operators are more and

more being used now by the whole community.

On the other hand, such hybrid algorithms, by

getting away from the simple original algorithms,

also escape the few available theoretical results, and

EAs can today only rely on successful applications

(see Application Areas section) to demonstrate

their usefulness as general-purpose optimization

algorithms.

Theoretical Results

Theoretical studies of Evolutionary Algorithms can be

roughly categorized into three different types.

– An Evolutionary Algorithm can be viewed as

a Markov chain in the space of populations, as the

population at time tþ 1 only depends on the

population at time t. The full theory of Markov

chains can then be applied. Some asymptotic

results were obtained for general EAs (Eiben et al.

1991), and for more focused algorithms (Rudolph

1997), but for very specific and simple functions.

Stronger results (convergence in finite time) were

obtained using the powerful Friedlin-Wentzell

theory (Cerf 1996), for very general functions, but

a specific algorithm. However, those results have

limited practical consequences as the real-world

environment often requires short response times.

– The specific characteristics of Evolution Strategies

allowed precise theoretical studies on the sphere

function, i.e. the quadratic function. Early

theoretical studies by the ES pioneers resulted in

Rechenberg’s 1/5th rule (Rechenberg 1972), and in

Schwefel’s first self-adaptive ES (Schwefel 1981).

Those works were later pursued in Schwefel’s

group in Dortmund, with the precise study of the

so-called progress rate, i.e. the improvement from

one step of the algorithm to the next, by Beyer

(2001). Finally, those results that had been

obtained asymptotically for very high dimensions,

have been rigorously justified in any dimension. In

particular, all numerical values for optimal settings

have been shown to actually be optimal, with the

help of the theory of irreducible Harris recurrent

Markov chains (Auger 2005; Auger and Hansen

2006).

– Last, but not least, classical Algorithm Complexity

Theory has been used to study EAs on discrete

spaces. The pioneer of this approach was Ingo

Wegener, and most works in this area come from

his group in Dortmund (and some spin-offs groups

led by former Wegener PhD students). Here the

algorithms under study are simple but actual

algorithms (and they get less and less “simple”

every year), while the fitness functions are simple

functions or classes of functions. Results range

from effective complexity for hitting the optimum

of linear boolean functions with a (1 + 1)-ES

(Droste et al. 1998) to general bounds for

stochastic search algorithm in generic black-box

scenarios (Droste et al. 2006).

However, one should keep in mind that all the

above theoretical analyses address some simple

models of Evolutionary Algorithms. As stated earlier,

the modern trends of EC gave birth to algorithms

working on poorly structured search spaces (see next

section), or hybrid algorithms, for which no theory is

applicable at the moment.

Application Areas

It is widely acknowledged that in Evolutionary

Computation theory lags far behind practice. Indeed,

lessons from successful applications are one of the

main driving forces of EA research today. Several

edited books are devoted to applications of EAs (e.g.,

see the recent (Yu et al. 2008)), and almost every event

related to EAs has its own special session dedicated to

applied works, and their proceedings provide a wide

overview of actual applications (e.g., see several
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special sessions of the annual IEEE Congress

on Evolutionary Computation – CEC, and the

Real-World Application track run every year during

the ACM Genetic and Evolutionary Computation

Conference – GECCO).

This section will quickly survey the preferred

domains of application of EAs, and the different

sub-domains will be distinguished according to the

type of search space they involve.

Combinatorial Optimization

Hard combinatorial optimization problems (NP-hard,

NP-complete) involve huge discrete search spaces, and

have been studied extensively by the Operational

Research community. Two different situations should

be considered: academic benchmark problems and

large real-world problems.

As far as benchmark problems are concerned, it is

now commonly acknowledged that pure EAs alone

cannot compete with OR methods (see all papers

about combinatorial optimization in (B€ack et al. 1997)

for instance). However, in the last decade, hybrid

algorithms termed Genetic Local Search, or Memetic

Algorithms where the EA searches the space of local

optima with respect to some OR heuristic, have

obtained the best-so-far results on a number of such

benchmark problems (e.g., from (Merz and Freisleben

1999) to (Merz and Huhse 2009)).

The situation is slightly different for real-world

problems: pure OR heuristics generally don’t directly

apply, and OR methods have to take into account

problem specificities. This is true of course for EAs,

and there are many success stories where EAs,

carefully tuned to the problem at hand, have been very

successful, as for instance in the broad area of

scheduling (Paechter et al. 1998; Semet and

Schoenauer 2006). A few commercial applications of

EAs were also reported; some of them resulted in

a significant return on investment (Michalewicz et al.

2005). However, these applications required also

forecasting components, resulting in hybrid adaptive

business intelligence systems (Michalewicz et al. 2006).

Parametric Optimization

The optimization of functions with floating-point

variables has been thoroughly studied by

practitioners, and many very powerful methods

exists. Though the most well-known methods address

linear convex problems, there are many other cases

that can be handled successfully (Bonnans et al.

1997). However, the recently appeared CMA-ES

(Covariance Matrix Adaptation Evolution Strategy)

(Hansen and Ostermeier 2001; Auger and Hansen

2005) can be viewed as the leading Evolutionary

Algorithms in the continuous domain, outperforming

the best methods from both deterministic

and stochastic domains for highly multi-modal,

irregular, ill-conditioned and non-separable functions.

An impressive list of applications of CMA-ES is

maintained on its inventor’s web page (Hansen 2009).

The situation is different when dealing

with multi-objective problems: Multi-Objective

Evolutionary Algorithms (MOEAs) are the only

ones that can produce a set of best possible

compromise (the Pareto set), and have recently

received increased attention. MOEAs use the same

variation operators than standard EAs, but the

Darwinian components are modified to take into

account the multi-valued fitness (Deb 2001; Coello

et al. 2002). Note that MOEAs are discussed in the

Parametric Optimization section because prominent

application results have been obtained in that area

(see e.g., (Obayashi 1997)), but apply on any search

space, as only the Darwinian part of the algorithm is

different from that of a single-objective EA.

Mixed Search Spaces

Mixed search spaces involve different types of

variables, generally both continuous and discrete, and

EAs are flexible enough to handle such search spaces

easily. Once variation operators are known for

continuous and discrete variables, constructing

variation operators for mixed individuals is

straightforward: crossover for instance can either

exchange values of corresponding variables, or use the

variable-level crossover operator. Many problem have

been easily handled that way, like the optical filter

optimization (B€ack and Sch€utz 1995; Martin et al.

1995), where one is looking for a number of layers,

the unknown being the layer thickness (continuous

variable) and the material the layer is made of

(discrete variable). Furthermore, some platforms now

exist that help the non-EC expert to implement generic

EAs for a given problem involving different types of

mixed search spaces, requiring only a structured

description of potential solutions – and of course

a routine to compute the fitness of those candidate

solutions (Costa and Schoenauer 2009).
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Artificial Creativity

A very promising area of application of EAs, where

EAs can be much more than yet another optimization

method, is that of design, where the ability of EAs to

handle almost any search space allows programmers

(and artists!) to unveil their wildest ideas. The idea of

component-based representations can boost innovation

in structural design (Gero 1998; Hamda and

Schoenauer 2002), architecture (Rosenman 1999),

as well as in many other areas including art

(Bentley 1999). But the most original idea in that

direction is that of emrbyogenies: the genotype is

a program, and the phenotype is the result of

applying that program to “grow an embryo”; the

fitness of the genotype (the program) is obtained

by testing that phenotype in a real situation. Such

approach already lead to astonishing results in analog

circuit design for instance (Koza et al. 1999) – though

exploring a huge search space (a space of programs)

implies a heavy computational cost. Note that

those results were achieved using Genetic

Programming, using both crossover and mutation,

and a huge (distributed) population as well.

Concluding Remarks

Natural evolution can be considered as a powerful

problem solver achieving Homo Sapiens from chaos

in only a couple of billion years. Computer-based

evolutionary processes can also be used as efficient

problem solvers for optimization, constraint

handling, machine learning and modeling tasks.

Furthermore, many real-world phenomena from the

study of life, economy, and society can be

investigated by simulations based on evolving

systems. Last but not least, evolutionary art and

design form an emerging field of applications of the

Darwinian ideas.

An interesting question asks for guidance on the

types of problems for which evolutionary methods

are more appropriate than, say, standard operations

research methods. Real-world problems are usually

difficult to solve for several reasons; these include

(Michalewicz and Fogel 2004):

– The number of possible solutions is so large as to

forbid an exhaustive search for the best answer.

– The evaluation function that describes the quality of

any proposed solution is noisy or varies with time,

thereby requiring not just a single solution but an

entire series of solutions.

– The possible solutions are so heavily constrained

that constructing even one feasible answer is

difficult, let alone searching for an optimum

solution.

Naturally, this list could be extended to include

many other possible obstacles. For example, one

could include noise associated with our observations

and measurements, uncertainly about given

information, and the difficulties posed by problems

that have multiple and possibly conflicting objectives

(which may require a set of solutions rather than

a single solution). All these reasons are just various

aspects of the complexity of the problem.

Note that every time a problem is solved, one is only

finding the solution to a model of the problem. All

models are a simplification of the real world —

otherwise they would be as complex and unwieldy as

the natural setting itself. Thus the process of problem

solving consists of two separate general steps:

(1) creating a model of the problem, and (2) using

that model to generate a solution:

Problem ) Model ) Solution.

Note that the “solution” is only a solution in terms

of the model. If the model has a high degree of fidelity,

there is more confidence that the solution will be

meaningful. In contrast, if the model has too many

unfulfilled assumptions and rough approximations,

the solution may be meaningless, or worse.

So in solving real-world problem there are at least

two ways to proceed:

1. Try to simplify the model so that traditional

methods might return better answers.

2. Keep the model with all its complexities, and use

nontraditional approaches, to find a near-optimum

solution.

In other words, the more complexity in the problem

(e.g., size of the search space, evaluation function,

noise, constraints), the more appropriate it is to use

a nontraditional method, like Evolutionary

Algorithms. One often has to choose between

approximating a model or approximating the

solution. And a large volume of experimental

evidence shows that this latter approach can often be

used to practical advantage.

One can also look at Evolutionary Algorithms from

a broader perspective of population-based methods,

where a set of potential solutions is being processed
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in parallel. Apart from Evolutionary Algorithms, there

are other population-based approaches that have been

proposed over the last 20 years; these include

Differential Evolution (Price et al. 2005), Artificial

Immune Systems (Dasgupta and Niño 2009), Particle

Swarm Optimization (Clerc 2006), Ant Colony

Optimization (Dorigo and Stutzle 2004), and Cultural

Algorithms (Cowan and Reynolds 2004).

See

▶Heuristics

▶Metaheuristics
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EVOP

Evolutionary operation.

See

▶Quality Control

Ex Ante Forecasts

Forecasts that are made without any knowledge of the

period to be forecast.

See

▶ Forecasting

Exclusive-or Node

In a network, an event (node) that will be realized if

one and only one of the arcs leading to it is realized.

See

▶Network Planning
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Introduction

Devising computer-based systems that can solve

problems by reasoning about facts and assertions has

been a central, ongoing quest in the artificial

intelligence field. By the early 1970s, research into

these reasoning systems had begun to focus on

systems that could solve difficult problems in narrow

problem domains such as diagnosing diseases,

assessing chemical structures of unknown molecules,

determining ore deposits in geological sites, and

solving applied mathematical problems. These

systems came to be known as expert systems,

because they solve problems that would otherwise

require services of experts in their respective problem

areas. Perhaps the best known of these early expert

systems is MYCIN, whose approach to diagnosing

blood infections is documented in Buchanan and

Shortliffe (1984). Descriptions of other pioneering

expert systems such as DENDRAL, MACSYMA,

and PROSPECTOR can be found in Barr and

Feigenbaum (1982).

By the early 1980s, the focus in expert system (ES)

research had shifted from demonstrating the feasibility

and efficacy of such systems to the identification of

tools and methods that could facilitate their

development. Each of the pioneering expert systems

was custom-built, requiring considerable expense and

years of development by specialists in artificial

intelligence. If expert systems were to come into

widespread use, it was clear that faster and less costly

means for creating them had to be found. This search

has been largely successful, spawning a host of

commercially available, computer-based tools for ES

development and leading to the creation of specific

methods for guiding the process of ES development.

These tools and methods have been instrumental in the

growing number of expert systems used in such

application areas as engineering, manufacturing,

finance, and business administration (Blanning 1984;

Mockler 1989; Tyran and George 1993; Liebowitz

1998; Liao 2005). When the result of expert system

execution is used in decision making, which is very

often the case, the expert system functions as an

artificially intelligent decision support system

(Holsapple and Whinston 1986, 1996).

Specific examples of expert system applications

range widely from agricultural loan evaluation

(Bryant 2001), to prioritizing sewer inspections

(Hahn 2002), to production system advising

(Wagner et al. 2003), to architectural design

modification (Bachman 2004), to analysis of

disturbances in the quality of power systems (Reaz

et al. 2007), to machine vibration analysis (Ebersbach

and Peng 2008), to interpreting ECG readings

(Mahesh et al. 2009), and so forth. Expert systems

have come to be very widely used on the Web (Duan

et al. 2005). Being routinely embedded into Web-

based applications, they are rarely thought about as

being expert systems. To the extent they are even

named at all, terms such as recommenders or

advisors are much more common.

Two prerequisites for assessing ES possibilities are

an understanding of the nature of expert systems and an

appreciation of how they can be developed. The

general nature of expert systems is described first,

including characterizations of ES functions,

architecture, and operation. Then, ES development is

examined in terms of methodological issues and

classes of available tools.

General Nature of an Expert System

An expert system functions as a readily available

substitute for some source of expertise that cannot

always be consulted in a facile, timely, and

affordable manner. For instance, consider the case of

a person who is an expert in some problem domain,

such as financial planning. This human source of
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expertise about financial planning is able to accept

requests for advice about specific problems in the

domain, reason with the expertise to produce

recommendations, communicate the resultant advice,

and explain the rationale underlying that advice.

A computer-based system that can perform these

same functions, giving recommendations and

explanations comparable to those of the expert, is

called an expert system. Not all ESs substitute for an

individual human expert. An ES can also be a surrogate

for a group of experts, multiple individual experts, the

expertise embodied in a set of historical data, or

expertise revealed in the behavior of some

non-human system.

Expert systems offer many potential advantages

over relying on the original source of expertise for

advice (Holsapple and Whinston 1986, 1996). Unlike

a human expert, an ES does not sleep, become ill, take

vacations, have a bad day, forget, require

compensation, become tied up with more important

matters, or retire. From an organization’s viewpoint,

the exercise of building an ES results in a formalization

and preservation of expertise. It yields an advice giver

that can be readily replicated for simultaneous use at

geographically diverse sites, ensuring consistency of

recommendations. Holsapple and Whinston (1990)

argue that ESs can be instrumental in implementing

competitive strategies.

The functioning of an ES is based on three major

components: a user interface (having two parts:

a language system and a presentation system),

an inference engine, and a body of stored knowledge

that forms the basis for reasoning about problems in

some domain of interest. The user interface is that part

of an ES that its user (e.g., a person seeking advice)

directly experiences. It accepts a user’s

characterization of a specific problem. It asks for

clarifications of that characterization, as needed.

It presents the ES’s advice to the user about treating

the problem. The user interface also accepts user

requests for justifying advice and presents those

justifications to a user. Expert systems can vary

widely in terms of the style and sophistication of

their user interfaces, even when the other two

architectural components are fixed.

A second component of ES architecture is the

knowledge store it possesses. In ES parlance, this is

often called a knowledge base . It typically holds two

distinct kinds of knowledge: descriptive and reasoning.

Descriptive knowledge is concerned with describing

states of the world (e.g., that revenue was $10 million

last year or is expected to be $15 million next year).

Reasoning knowledge is concerned with specifying

what conclusion is valid when a particular situation is

known to exist (e.g., that an unemployment rate of over

8% warrants a certain reduction in revenue

expectations). Additional types of knowledge can be

found in the knowledge bases of some ESs (Holsapple

and Whinston 1996).

There is more than one way to represent each type

of knowledge stored in an ES. Descriptive knowledge

may be simply represented as values of state variables,

often called attribute-value pairs (e.g., the revenue

attribute or variable has a value of $10 million). Or,

such pieces of descriptive knowledge may be

structured into database records, frames, semantic

nets, arrays, spreadsheet cells, and other computer-

based organizations. Similarly, pieces of reasoning

knowledge are subject to multiple representation

modes. One commonly used approach involves the

use of rules. Each rule has a premise, characterizing

some situation, and a conclusion, indicating what

actions can be taken (e.g., what changes can be made

to state variable values) if the situation is determined to

exist. A variety of rule representation languages exist.

They differ in terms of style, flexibility, and power of

representation. Some such differences are surveyed in

Mockler (1989).

Inference Engine

At the heart of general ES architecture is an inference

engine. This is a software component that reasons with

the stored knowledge of an ES to derive advice

corresponding a user’s problem statement. It also

tracks the flow of reasoning about the problem, as

a basis for justifications presented via the user

interface. Clearly, an ES’s inference engine must be

compatible with a) the particular representation

language used to specify stored descriptive and

reasoning knowledge, b) the user interface’s

interpretations of user requests, and c) the user

interface’s ability to package inference engine results.

From one ES to another, inference engines vary not

only to ensure compatibility with different user
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interface and knowledge representation conventions,

but also with respect to how they reason.

Two prominent kinds of reasoning approaches are

forward chaining and backward chaining. In either

case, the inference engine uses rules to establish

values for variables whose states are unknown at the

outset of a consultation. These values constitute the

raw form of the advice that is ultimately packaged for

presentation to a user. Themain difference between the

two kinds of reasoning is the progression of processing

whereby unknown variables become known. In either

case, if an ES holds insufficient knowledge to solve

a problem, the inference engine will fail in its attempt

to establish values for unknown variables.

In the forward chaining case, an inference engine

examines the premise of each rule. If the premise is true,

then the actions specified in the rule’s conclusion are

performed (i.e., the rule is fired). Thus, firing a rule can

result in changes to values of variables, including the

assignment of values to previously unknown variables.

After every rule has been examined in this way, the

inference engine makes a second pass through the rules.

If additional rules are fired in this pass, the process

continues with a third pass, and so forth. Processing

stops when no further rules are fired in a pass or when

someother terminal condition is satisfied (e.g., a valuehas

been established for some designated unknown variable).

In contrast, backward chaining is amore goal-directed

approach to reasoning. It considers a rule’s conclusion

before trying to evaluate the premise. Establishing

a value for a specific unknown variable is the inference

engine’s overall goal. In its effort to meet that goal, the

inference engine identifies the subset of rules whose

conclusions could affect the goal variable’s value.

These are called candidate rules. In considering

a candidate rule, the inference engine attempts to

evaluate the premise. If this evaluation is impossible

because the premise involves unknown variables, then

each of those variables successively becomes the new

current goal. The inference engine performs backward

chaining for the current goal variable, identifying its

candidate rules and attempting to evaluate their

premises. When a rule’s premise is found to be true, the

rule is fired. When a premise is found to be false, the

inference engine proceeds to another candidate rule. This

basic processing pattern continues recursively until

a value is established for the consultation’s overall goal

variable or until that variable’s candidate rules are

exhausted (possibly without reaching a solution).

There are many variations to each of these two

reasoning approaches, affecting both the speed and

the results of inference engine operation. One kind of

variation involves the degree of reasoning rigor. These

are variations in how exhaustive inference engines are

in making passes through a rule set or in considering

candidate rules. Another variation concerns rule

selection order. That is, in what sequence does an

inference engine process rules within a pass or within

a candidate rule subset? There is also considerable

room for variation in the strategies inference engines

use for evaluating a premise (e.g., the order for

considering conditions in a compound premise).

Inference engines can vary greatly in their treatments

of uncertainties about variable values and rule efficacy.

Some ignore the possibility of uncertainties, while

others use specific algebras to combine certainty

factors in an effort to qualify the resultant advice.

Holsapple and Whinston (1986, 1996) present an

extensive discussion of such variations.

Expert System Development

Tools for building expert systems fall into three major

categories: programming languages, shells, and

integrated environments. In using the former, an ES

developer (often called a knowledge engineer) designs

and programs the inference engine and the user

interface. Also, storage structures for holding

reasoning and descriptive knowledge must be

designed so their contents are accessible to the

inference engine. Appropriate knowledge must then

be stored in such structures. A shell removes much of

this work from an ES developer, but also reduces the

developer’s flexibility. With a shell, the developer has

a ready-made inference engine, user interface, and

knowledge storage structure. Thus, the main

development task consists of putting the appropriate

knowledge into that structure. Shells also commonly

give developers some facilities for customizing the

user interface inputs and outputs. Some give

developers a modicum of control over the inference

engine’s reasoning behavior (e.g., over the degree of

rigor, selection order, treatment of uncertainty). Shell

inference engines can often interface to other pieces of

software (e.g., use spreadsheet data).

An integrated environment for ES development has

all the facilities of a shell, plus other computing
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capabilities normally found in separate software tools.

That is, the inference engine is enhanced to accomplish

kinds of processing other than reasoning: database

management, spreadsheet processing, model

management, forms handling, graph generation, and so

forth. Such capabilities can be exercised in the course of

rule processing. Conversely, consultation can occur in

the context of one of these other kinds of processing.

Such tools allow the creation of ESs that more closely

approximate human experts, who are not limited to

reasoning about a problem, but can also do data

retrieval, extensive calculations, fancy presentation, and

so on. A checklist for tool selection, plus an in-depth

examination of an integrated environment, can be found

in Holsapple and Whinston (1986). Mockler (1989)

provides a comparative feature survey of representative

commercial expert system development tools.

Regardless of the tool used, a developer faces the

task of managing the ES development project. The

books of Buchanan and Shortliffe (1984), Hayes-Roth,

et al. (1983), and Liebowitz (1998) contain valuable

insights into the methodology of ES development. The

ES development cycle introduced by Holsapple and

Whinston (1986, 1996) is typical of several that appear

in the literature. One aspect of development that has

received considerable attention is the phenomenon of

knowledge acquisition (KA). This is concerned with the

activity of eliciting reasoning knowledge from a source

(e.g., human expert), perhaps structuring/analyzing it,

and representing it in a form that can be directly stored

in the knowledge base of an ES for later use in making

inferences about specific problems posed by a user.

A representative overview of KA issues, methods,

and tools was provided by Kidd (1987). The methods

include such techniques as structured interviewing and

protocol analysis. The KA tools are primarily induction

mechanisms that attempt to acquire general domain

knowledge from sets of specific examples of expert

behavior. Dhaliwahl and Benbasat (1990) introduced

a variable-oriented framework for guiding empirical

research that evaluates performance of such methods

and tools. Holsapple et al. (1993) provide a summary of

basic theoretical and empirical KA developments.

Expert System Extensions

Over the years, various extensions to the basic idea

of rule-based expert systems have arisen. Some of

these involve alternative approaches to representing

and processing reasoning knowledge, such as the use

of case-based reasoning (Waston 1995; Bergmann

et al. 2003). Other extensions imbue reasoning

systems with learning capabilities, by using such

techniques as skill refinement (Deng et al. 1990),

neural networks (Gallant 1993; Im and Park 2007),

or genetic algorithms (Holland 1992; Dehuri and

Mall 2006). Beyond certainty factors, other

methods to deal with uncertainties in the course of

reasoning include Dempster-Shafer techniques of

evidence (Yager 2008). In a somewhat related vein,

expert systems can be developed to accommodate

representation and reasoning for non-discrete

descriptive knowledge in the form of fuzzy

variables (Siler and Buckley 2005). Another

extension is concerned with the coordination of

multiple expert systems, each having reasoning

knowledge that could be relevant to solving

a problem at hand. Holsapple et al. (1997) have

advanced a market-based mechanism to do this

coordination in a way that causes the community of

expert systems to learn (i.e., improve its

performance) over time.

Further Reading

Aside from the growing number of books dealing

with expert systems, there are several scholarly

journals emphasizing ES topics. These include

Expert Systems; Expert Systems with Applications;

IEEE Intelligent Systems; and Intelligent Systems in

Accounting, Finance, and Management. ES topics

are also covered in more general journals of

artificial intelligence (e.g., Artificial Intelligence),

as well as journals concerned with computer

systems for business (e.g., Decision Support

Systems) and engineering (e.g., IEEE Transactions

on Data and Knowledge Engineering). Links to

numerous World Wide Web sites dealing with

expert systems and artificial intelligence can be

found.

See

▶Artificial Intelligence

▶Decision Support Systems (DSS)
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Introduction

Exploratory Modeling and Analysis (EMA) is

a research methodology that uses computational

experiments to analyze complex and uncertain

systems (Bankes 1993, 1994). EMA can be

understood as searching or sampling over an

ensemble of models that are plausible given a priori

knowledge, or are otherwise of interest. This ensemble
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may often be large or infinite in size. Consequently, the

central challenge of exploratory modeling is the design

of search or sampling strategies that support valid

conclusions or reliable insights based on a limited

number of computational experiments.

EMA can be contrasted with the use of models to

predict system behavior, where models are built by

consolidating known facts into a single package

(Hodges 1991). When experimentally validated, this

single model can be used for analysis as a surrogate

for the actual system. Examples of this approach

include the engineering models that are used in

computer-aided design systems. Where applicable,

this consolidative methodology is a powerful

technique for understanding the behavior of complex

systems. Unfortunately, for many systems of interest,

the construction of models that may be validly used as

surrogates is simply not a possibility. This may be due

to a variety of factors, including the infeasibility of

critical experiments, impossibility of accurate

measurements or observations, immaturity of theory,

openness of the system to unpredictable outside

perturbations, or nonlinearity of system behavior, but is

fundamentally a matter of not knowing enough to make

predictions (Campbell et al. 1985; Hodges and Dewar

1992; Pilkey and Pilkey-Jarvis 2007). For such systems,

a methodology based on consolidating all known

information into a single model and using it to make

best estimate predictions can be highly misleading.

EMA can be useful when relevant information

exists that can be exploited by building models, but

where this information is insufficient to specify

a single model that accurately describes system

behavior. In this circumstance, models can be

constructed that are consistent with the available

information, but such models are not unique.

Rather than specifying a single model and falsely

treating it as a reliable image of the target system,

the available information is consistent with a set of

models, whose implications for potential decisions

may be quite diverse. A single model run drawn

from this potentially infinite set of plausible models

is not a prediction; rather, it provides a computational

experiment that reveals how the world would behave

if the various guesses any particular model makes

about the various unresolvable uncertainties were

correct. EMA is the explicit representation of the set

of plausible models, the process of exploiting the

information contained in such a set through a large

number of computational experiments, and the

analysis of the results of these experiments.

A set, universe, or ensemble of models that are

plausible or interesting in the context of the research

or analysis being conducted is generated by the

uncertainties associated with the problem of interest,

and is constrained by available data and knowledge.

EMA can be viewed as a means for inference from the

constraint information that specifies this set or

ensemble. Selecting a particular model out of an

ensemble of plausible ones requires making

suppositions about factors that are uncertain or

unknown. One such computational experiment is

typically not that informative (beyond suggesting the

plausibility of its outcomes). Instead, EMA supports

reasoning about general conclusions through the

examination of the results of numerous such

experiments. Thus, EMA can be understood as search

or sampling over the ensemble of models that are

plausible given a priori knowledge.

Central Problems and Solutions

Inferring global properties of a large or infinite set

from a finite sample is not a deductive process but

requires some combination of inductive and

abductive inference along with effective data mining

and visualization tools. Consequently, EMA is

computationally a more difficult problem than any

specific question of deductive inference, and

produces results that are more contextual and

provisional. How to cleverly select the finite sample

of models and cases to examine from the large or

infinite set of possibilities is one of the major issues

to be addressed in any EMA application. A wide range

of research strategies are possible, including structured

case generation by Monte Carlo, Latin Hypercube, or

factorial experimental design methods, search for

extremal points of cost functions, sampling methods

that search for regions of “model space” with

qualitatively different behavior, or combining human

insight and reasoning with formal sampling

mechanisms. Computational experiments can be used

to examine ranges of possible outcomes, to suggest

hypotheses to explain puzzling data, to discover

significant phases, classes, or thresholds among the

ensemble of plausible models, or to support reasoning

based upon an analysis of risks, opportunities, or
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scenarios. Exploration can be over both real-valued

parameters and non-parametric uncertainty, such as

that involving different graph structures, functions,

problem formulations, or model formulations.

In making policy decisions about complex and

uncertain problems, EMA can provide new

knowledge, even where validated models cannot be

constructed. A simple example is the use of models

as existence proofs or hypothesis generators.

Demonstrating a single plausible model/case with

counterintuitive properties can beneficially change

the nature of a policy discussion. Another example is

the use of multiple models that capture different

framings of the same policy problem. Instead of

debating which is the right model, the policy debate

can shift to the identification of policies that produce

satisfying results across the different models. Another

simple example of potentially credible inductive

inference from model exploration is provided by

situations where risk aversion is prudent. Here, an

exploration that develops an assortment of plausible

worst case failure modes can be very useful for

designing hedging strategies. This is true even if

models are not validated and sensitivities are

unknown. Other examples of useful research

strategies include the search for special cases where

small investments could (plausibly) produce large

dividends, or extremal cases (either best or worst)

where the uncertainties are all one sided and a fortiori

arguments can be used. All these examples depend on

the fact that partial information can inform policy even

when prediction and optimization are not possible. The

space of models and associated computational

experiments can be searched for examples with

characteristics that are useful in choosing among

alternative policies. The search for information of use

in answering policy questions can often be served by

the discovery of thresholds, boundaries, or envelopes

in a space of models that decompose the entire space

into sub-spaces with different properties. For example,

EMA could seek to discover which models or initial

states have stable or chaotic dynamics, or the search

could have the goal of discovering which regions in

model space favor either of two alternative policies.

EMA will typically result in a very large number of

model runs. The resulting outputs must be analyzed,

and displays need to be made to communicate the

results to analysts and decision makers. The EMA

practitioner is not interested in finding a single best

policy given a validated predictive system model, but

wants to display the pattern of policy performance over

the entire uncertainty space of possible system models.

Successfully applied algorithms in the context of EMA

include the Patient Rule InductionMethod (PRIM) and

Classification and Regression Trees (CART) (Breiman

et al. 1984; Friedman and Fisher 1999; Lempert et al.

2008; Agusdinata 2008). Advances in machine

learning and data mining have generated many more

algorithms that can support EMA, such as Self

Organizing Maps (Kohonen 2001), (t-distributed)

Stochastic Nearest Neighbor Embedding (van der

Maaten and Hinton 2008), and Support Vector

Machines (Vapnik 1995). Increasingly, such

algorithms are available in standard statistical data

analysis software packages (e.g. SPSS). The Evolving

Logic company produced a software environment

called the Computer Assisted Reasoning system

(CARs), which supports the generation of the EMA

cases to be run and the manipulation and display of the

results of the runs.

EMA has proven to be a very powerful approach to

the discovery of robust decisions and the development

of adaptive policies. Adaptive policies are based on

explicit recognition that accurate prediction is

impossible in light of the many uncertainties that are

present. The goal of adaptive policies is to allow

implementation to begin prior to the resolution of all

major uncertainties, with the policy being adapted over

time based on new knowledge. Adaptive policies

combine actions that are time urgent with those that

make important commitments to shape the future,

preserve needed flexibility for the future, and protect

the policy from failure (Walker et al. 2001). EMA can

support the development of adaptive policies by using

the set of plausible models or plausible futures as

a challenge set. Through searching for conditions

under which given policies fail, these policies can

iteratively be improved, resulting in adaptive policies

that are robust against the full range of foreseeable

future situations (Lempert et al. 2003; Agusdinata

2008). In such applications, EMA provides an

important alternative to specifying policies through

optimization. There is a close relationship between

these computational approaches and emerging

adaptive business practices, such as discovery driven

planning (McGrath and MacMillan 1995; McGrath

and MacMillan 2009) and real options (Amram and

Kulatilaka 1999).
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EMA has also been used successfully for scenario

discovery. Scenario discovery is a model driven

approach that builds on the intuitive logic school in

scenario planning (Bryant and Lempert 2010). The aim

of scenario discovery is to analyze the results from

a series of computational experiments in order to reveal

which combinations of hypotheses and guesses were

responsible for generating the results of interest. Results

of interest can be identified based on the performance of

candidate policies, but other criteria can also be used.

One common use of scenario discovery is to identify

combinations of external events that would lead to the

failure of the policy being investigated. For discovering

the combinations of hypotheses and guesses responsible

for the results of interest, both CART and PRIM can be

used (Lempert et al. 2008). Scenario discovery has been

used in the context of water resource management in

California (Groves and Lempert 2007) for evaluating

alternative policies considered by the U.S. Congress

while debating reauthorization of the Terrorism Risk

Insurance Act (Dixon et al. 2007), and for assessing the

impact of a renewable energy requirement in the U.S.

(Groves and Lempert 2007).

Applications of EMA

Exploratory modeling can be driven by data, a question

or decision, or by the needs of model development.

Data-driven exploration can be used to support model

specification — exploring alternative model structures

thatmight be used to explain a dataset. Or, it can provide

an alternative to maximal likelihood or maximal

entropy approaches to model estimation by supporting,

for example, the visualization of level sets in likelihood

surfaces. Question driven exploration begins with

a question to answer (e.g., what policy should the

government pursue regarding global warming?) and

addresses this question by searching over an ensemble

of models and cases believed to be plausible in order to

inform the answer. Question driven exploration

provides an alternative to supporting decision making

through forecasting or prediction. EMA also provides

a strong alternative approach to model development in

allowing guesses and disagreements about uncertain

modeling details to be avoided during the process of

programming and delayed until the process of model

use where these guesses can be motivated by the actual

strategy of model based problem solving.

Although the practice of EMA is under continuing,

it has been used on variety of decision-making

problems. Lempert et al. (2003) applied it to climate

change problems in an effort to identify policy options

that are, on the one hand, acceptable to a wide variety

of countries, depending on their state of development

and their belief about climate change, and, on the other

hand, are robust across a wide variety of different

plausible future climate change developments. In this

study, a system dynamics model was used to generate

a wide variety of futures. Each future arose out of a set

of beliefs about the different factors and their relative

magnitudes that contribute to climate change. Next,

a variety of policy options was identified, and the

performance of these policies in the different futures

was calculated. Using the decision-theoretic minimax

criterion, the robustness of the different policies can be

assessed, and improved, in order to come to a policy

that is robust across as many futures as possible. Or,

as is often the case when different uncertainties and

risks are being considered, no policy may be dominant.

In that case, a priori assignments of values can be

avoided by presenting decision makers with sets of

non-dominated policies and providing analytic

support for understanding how choices among them

trade off among risk categories.

Another EMA application is from the field of energy

generation. Agusdinata (2008) studied how CO2

emissions could be reduced in the Dutch household

sector. The Dutch national government wants to

reduce carbon emissions from Dutch households by

80% in 2050 compared to 1990. The extent to which

that goal can be realized depends on a wide range of

factors and actors. For example, the energy generation

depends on the layout of the electricity and gas

networks. Depending on how these networks evolve,

certain options become available or are excluded.

Agusdinata (2008) used a ‘system of systems’

approach to model these complex interdependencies.

He made 100,000 model runs across a variety of

uncertainties and analyzed them using a CART Tree.

This allowed decision makers to see the different routes

bywhich they could reach their goal, depending on how,

for example, population would evolve.

A third area in which EMA has been applied is

transport planning. Agusdinata et al. (2009) report

a case study related to intelligent speed limiters, which

is similar in approach to Agusdinata’s (2008) household

energy case. The field of airport strategic planning has
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been investigated by Kwakkel et al. (2010). In this

study, several tools from the U.S. Federal Aviation

Administration for calculating airport performance

were integrated into a single fast model that calculates

airport performance in terms of noise, emissions,

external safety, and capacity. This component is

complemented with a variety components that model

different exogenous developments, such as demand,

technological development, and demographics. For

each type of exogenous development, a set of

representations are available. Depending on how these

are combined, 48 structurally different models can be

specified. Kwakkel, et al. explored the performance of

adaptive strategies versus static Master Plans across

these 48 structures and their associated parametric

uncertainties. It was shown that dynamic adaptive

strategies outperformed static Master Plans in

practically all plausible situations.

Other EMA applications are reported in Bankes and

Margoliash (1993), Bankes (1994), Park and Lempert

(1998), Brooks et al. (1999), Lempert et al. (2003),

Pruyt and Hamarat (2010a, b), and Hamarat and Pruyt

(2011a, b).

See

▶Deep Uncertainty

▶Model Accreditation

▶ Practice of Operations Research and Management

Science

▶ Public Policy Analysis

▶ Soft Systems Methodology

▶Verification, Validation, and Testing of Models
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Exponential Arrivals

When customers interarrival times to a queueing

system are defined by a sequence of independent and

identically distributed exponential random variables.

If a system has exponential interarrival times with

distribution function A(t) ¼ 1 � exp(�lt), then the

number of arrivals to the system in any period of time

t has the Poisson distribution with probability function

pn (t) ¼ exp(�lt)(lt) n /n!.

See

▶ Poisson Arrivals

▶Queueing Theory

Exponential Smoothing

Robert G. Brown

Materials Management Systems, Thetford Center, VT,

USA

Introduction

Exponential smoothing is a technique for revising an

estimate of the average of a time series to extrapolate

as a forecast. It was first formalized by R.G. Brown

(about 1944) with continuous variables in the analysis

of a ball-disc integrator used in a naval fire control

device. It was later applied, also by R.G. Brown

(1959), with discrete observations in the early 1950s.

Exponential smoothing with discrete (usually

monthly) observations of demand had considerable

appeal for inventory control because it was possible to

revise the forecasts for all products in an inventory in less

than 30 days with unit record (punched card) equipment.

The formula for revising the estimate of the average is

new forecast ¼ old forecastþ a� ðerrorÞ
¼ old forecastþ a� ðlatest observation

� old forecastÞ
¼ ð1� aÞ � old forecastþ a

� ðlatest observationÞ:

The smoothing constant a was originally set to 0.1,

not from any theoretical considerations, but because one

can multiply on unit-record equipment merely by

moving the wires on the plug board one place to the left

and adding. But, clearly, better approaches for estimating

a good value to use for a would come over time.

Later, Weiner (1949) showed that an estimate of the

average of a time series gave the minimum squared

error when one uses some optimum set of weights. Box

and Jenkins (1970) demonstrated a rigorous procedure

for finding that optimum set of weights. The optimum

weights often decline more or less geometrically with

age. Indeed, for short series the wholly empirical

technique of exponential smoothing was usually

indistinguishable from the optimum weights.

In the late 1950s, Brown (1963) extended the model

to include a secular trend. The first model used single

smoothing and double smoothing. Brown (1967)

showed that this was equivalent to smoothing the

values of the coefficients in a polynomial of any

degree. This led to the generalization to include

complex polynomials that could be interpreted as

Fourier series to approximate repeatable seasonal

variation.

Winters (1962) developed an elaborate simulation

to find the best value of three smoothing constants, for

level, trend, and seasonal profile respectively.

Simulations with different models and different

smoothing constants are usually misleading because

the sampling error with short series is larger than the

effect being sought. Since exponential smoothing

learns, several implementers let the coefficients in the
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model start from arbitrary values. There is a problem in

that the rate of learning takes much longer than the

normal span of patience of people who need a good

forecast now.

The initial values of the coefficients should be

estimated by regression on available history. (For new

products there will be other products in the inventory that

serve the same market which can be used as analogs).

Since the Fourier series is an orthogonal basis, one can fit

all the terms up to the Nyquist frequency (at least two

observations per cycle for the highest frequency) and

reject harmonics that are not significant under a chi-

square test with two degrees of freedom.

Decisions based on a forecast need information about

the probability distribution of forecast errors. The form

of the distribution may be Gaussian, but there are not

infrequent cases where the errors are bounded below,

with a long upper tail. Therefore it is advisable to check

the distribution form that is appropriate to the actual

data. Usually one parameter, the variance, is sufficient to

develop the model of probabilities.

Brown (1959) proposed the use of the Mean

Absolute Deviation (MAD) as a measure of

dispersion. On unit-record equipment, it is simple to

measure the absolute deviation — leave out the wire

that carries sign. If the form of the distribution is

exactly normal the standard deviation is 1.25 times

the MAD. However in actual data the ratio has been

observed to be anywhere from 1 to 1.7. Thus it is

prudent to measure the Mean Squared Error (MSE).

The MSE can be revised with each new observation by

applying exponential smoothing to the square of the

error in the most recent forecast.

A theoretical model of a time series often is

seriously different from actual data. Sales are

distorted by promotions, federal regulations,

competition, weather, and errors in recording. During

the process of revising the forecast it is advisable to

produce exception reports. The demand filter reports

data that are more than K standard deviations from the

most recent forecast. The tracking signal reports

significant bias in the forecast.

The head of forecasting should take these exception

reports seriously. First find the assignable cause for the

exception, and then take appropriate action. Do not

wait until the exception is reported to start thinking

about the assignable cause. Be aware of events in the

operating environment that could cause exceptions and

use the reports to confirm or deny hypotheses about the

problems actually occurring. Look for patterns, where

several series seem to show the same anomalies.

Several techniques have been proposed for the

tracking signal. Brown (1959) originally used

the cumulative sum of forecast errors. However, the

expected value of that sum in the future is the current

sum. A large error can bias the signal so that a very

small error later could cause an exception.

The next technique was the smoothed error tracking

signal (SETS) which applied exponential smoothing to

the error with sign. This technique is slow to react to

a real change in the underlying process which

generates the data. Trigg (1966) proposed using the

SETS tomodify the smoothing constant(s)—make the

forecasts more responsive when they are wrong and

more stable when they are close to the data. They failed

to show that the feedback system is critically damped

in all regions where it may be applied.

Gardner (1985) has done a study of the comparative

effectiveness of a variety of tracking signal techniques.

Barnard (1959) proposed the V-mask based on Wald’s

sequential analysis for quality control (Wald 1947).

Brown (1971) used a parabolic mask as the envelope

of these V-masks with a range of likelihood ratios. The

technique has been extended to monitor the MSE as

well as the forecast, based on analogy with Shewhart’s

(1931) X-bar and R charts for statistical quality control.

During the course of fitting the initial model outliers

are the analogs of demand filter exceptions. Brown

(1990) used the term “significant event” to refer to

history where there is evidence that not all the history

came from a process that can be described by the same

model. Significant serial correlation with a lag of one

observation may be caused by such a significant event

(there are other causes). Brown (1990) has evolved

a method with cumulative sums for estimating the

time when that event occurred, so that the model can

be fitted only to observations since that time.

The whole idea of forecasting from a description of

history is on the way out. It will be common to pass

point-of-sale data quickly and accurately to each

operation in the logistics chain, rather than to forecast

what one enterprise will order from another enterprise.

See

▶ Forecasting

▶Marketing
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▶Quality Control

▶R Chart

▶Regression Analysis

▶Retailing

▶Time Series Analysis

▶ �X Chart

References

Barnard, G. (1959). Control charts and stochastic processes.
Journal of the Royal Statistical Society Series B, 21,
239–271.

Box, G., & Jenkins, G. (1970). Time series analysis. San
Francisco: Holden-Day.

Brown, R. G. (1959). Statistical forecasting for inventory

control. New York: McGraw Hill.
Brown, R. G. (1963). Smoothing, forecasting and prediction.

Englewood Cliffs: Prentice Hall.
Brown, R. G. (1967). Decision rules for inventory management.

New York: Holt, Rinehart & Winston.
Brown, R. G. (1971). Detection of turning points. Decision

Science, 2, 383–403.
Brown, R. G. (1990). Significant events. In Proceedings of ISF,

New York.
Gardner, E. (1985). Exponential smoothing: The state of the art.

Journal of Forecasting, 4, 1–28.
Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008).

Forecasting with exponential smoothing. New York:
Springer.

Shewhart, W. A. (1931). Economic control of quality. New
York: Van Nostrand.

Trigg, D.W. (1966). Monitoring a forecasting system. Journal of
Operational Research Society, 15, 211–274.

Wald, A. (1947). Sequential analysis. New York: Wiley.
Weiner, N. (1949). Extrapolation, interpolation and smoothing

of stationary time series. New York: Wiley.
Winters, P. R. (1962). Constrained rules for production

smoothing. Management Science, 8, 470–481.

Exponential Tilting/Twisting

In stochastic or Monte Carlo simulation, an

exponentially weighted change of measure for

importance sampling in estimating rare events.

See

▶Rare Event Simulation

▶Variance Reduction Techniques in Monte Carlo

Methods

Exponential-Bounded (–Time) Algorithm

An algorithm for which it can be shown that the

number of steps required to find a solution to

a problem is an exponential function of the

problem‘s data. The simplex algorithm is an

exponential-bounded algorithm, although its use in

practice belies that designation.

See

▶ Polynomially Bounded (–Time) Algorithm

(Polynomial Algorithm)

▶ Simplex Method (Algorithm)

Extremal

Maximum or minimum.

Extremal Column

In the Dantzig-Wolfe Decomposition Algorithm, the

extremal columns are the columns of the extremal

(master) problem.

See

▶Dantzig-Wolfe Decomposition Algorithm

Extremal Problem

In the Dantzig-Wolfe Decomposition Algorithm, the

extremal column is the original linear-programming

problem expressed in terms of its extreme point

solutions.

See

▶Dantzig-Wolfe Decomposition Algorithm
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Extreme Direction

A point in a convex set that cannot be expressed as

a convex combination of two other directions of the set.

Extreme Point

A point in a convex set that cannot be expressed as

a convex combination of two other distinct points in

the set. Extreme points are also known as corner points

or vertices. The extreme points of a rectangle are its

four vertices, while the extreme points of a circular

disc are the points on its circumference. For a linear

programming problem, the extreme points of its

convex set of solutions correspond to basic feasible

solutions, and it can be shown that, if the problem has

a finite optimal solution, then one of the extreme points

is optimal.

Extreme Point Solution

A solution to a linear-programming problem that is an

extreme-point of its convex set of solutions. Such

solutions correspond to basic feasible solutions.

Extreme Ray

A ray in a convex set whose direction is an extreme

solution.
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Facilities Layout
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Introduction

In both manufacturing and service operations, the

relative location of facilities is a critical decision

affecting costs and efficiency of operations. The

facility layout problem (FLP) deals with the design of

layouts wherein a given number of discrete entities are

to be located in a given space. The definitions of

entities and spaces can vary considerably, making

solution techniques applicable in a wide variety of

settings, as can be seen from the examples given

below.

Entities Space

Departments Office building

Departments Factory floor

Departments Hospital

Interdependent plants Geographical market

Indicators and controls Control panel

Components Electronic boards

Keys Typewriter keyboard

In what follows, approaches used to model the FLP

are discussed first, followed by optimal algorithms

and heuristic approaches for solving these problems,

and ending with some remarks concerning directions

for future research.

The Quadratic Assignment Formulation

The FLP is most often treated in the OR/MS literature

as the Quadratic Assignment Problem (QAP), which

is a special case requiring identical area and

shape requirements for the locations of all facilities.

This allows pre-definition of the locations and

calculation of the distances between them (typically

center-to-center, either rectilinear or Euclidean).

Suppose there are N facilities to be assigned to

N locations. Define four N � N matrices whose

elements are, respectively:

cij ¼ fixed cost of assigning facility i to location j

Fij ¼ level of interaction between facilities i and j

dij ¼ cost of one unit of interaction (e.g., the distance) between
locations i and j

xij ¼ 1 if facility i is assigned to location j, and 0 otherwise.

Then the QAP is to

Minimize
X

i;j

cijxij þ
X

i;p

X

j;q

f ip djqxijxpq (1)

subject to
X

j

xij ¼ 1 8 i (2)

X

i

xij ¼ 1 8 j

xij 2 f0; 1g 8 i; j

(3)

S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research and Management Science,
DOI 10.1007/978-1-4419-1153-7, # Springer Science+Business Media New York 2013

http://dx.doi.org/10.1007/978-1-4419-1153-7_1108


Alternatively, r(i) can be defined as the location to

which facility i is assigned, leading to an equivalent but

more compact statement of the problem. The QAP is

then to find a mapping of the set of facilities into the set

of locations so as to

Minimize
X

i

ci;r ðiÞ þ
X

i;p

drðiÞ;rðpÞ: (4)

Objective

Minimize cost of interactions

Minimize cost of material handling

Minimize movement of patients and medical staff

Maximize profit

Minimize eye/hand movement

Minimize cost of connections

Minimize typing time

The quadratic assignment problem was first

formulated by Koopmans and Beckmann (1957) in

the context of the location of interdependent plants.

The cij elements represent the expected revenue of

operating plant i at location j independent of other

plant locations, the fij elements represent the required

commodity flows from plant i to plant j, and the

dij elements represent the transportation costs per unit

between location i and location j. The objective function

maximizes the net revenue, that is, the excess of

expected revenue over the transportation costs.

It is the interdependence of facilities due to

interactions between them that leads to the quadratic

term in the objective function and makes the problem

a difficult one. If the departments are independent of

each other (i.e., all fij ¼ 0), the QAP reduces to the

familiar linear assignment problem, for which efficient

solution techniques exist. Further, the traveling

salesman problem is a special case of the QAP. To

see this, consider the interaction matrix to be a cyclic

permutation matrix with the following interpretation:

A flow of one unit (the salesman) travels from the first

city in the tour to the second city in the tour to the third

city, and so on, finally returning to the first city in the

tour. The distance matrix is simply the matrix of

distances between cities, and the fixed costs are zero.

A solution to this QAP can be interpreted as follows.

If xij ¼ 1, then city i is in the jth location in the tour.

This shows that the QAP belongs to the class of

NP-hard problems.

The Adjacency Requirements Formulation

This approach is based on adjacency requirements

and closeness ratings. The former stipulate the set of

pairs of facilities that must be adjacent, or must not be

adjacent, in any feasible solution, whereas the latter

are measures of the desirability of locating a pair

of facilities in adjacent locations, generally based on

the interaction between them. The adjacency

requirements must permit at least one feasible

solution. If there is more than one feasible solution,

then the closeness ratings are used to choose the

optimal solution. In evaluating a solution, the

closeness ratings are added only for facility pairs

that are adjacent.

The QAP has received most of the attention in the

literature for the following two reasons. First, it

considers interaction costs for all pairs of facilities,

whereas the adjacency requirements formulation

maximizes the sum of closeness ratings for adjacent

facilities only, while satisfying the adjacency

requirements. Second, the adjacency requirements

formulation does not consider fixed costs which can

be important, especially when a layout is being

redesigned, which is more common than design of

a brand-new facility. In the rest of this article, the

discussion is restricted the QAP. Further information

on the adjacency requirements approach can be found

in Foulds (1983) and amore extensive list of references

for the QAP can be found in the review by Kusiak and

Heragu (1987). The book by Heragu (2008) offers a

comprehensive look at applications of the QAP model

in different settings.

Optimal Algorithms for the QAP

Algorithms for obtaining exact solutions to the QAP

can be classified under the categories of linearization

and implicit enumeration.

Linearization — Several linearizations have been

proposed for the QAP. The first one was by

Lawler (1963) who linearized the problem by

defining variables yijpq ¼ xij xpq. Compared to the

original QAP, the resulting integer programming

problem has N 4 additional binary variables and N 4 +

1 additional constraints. A linearization proposed by

Kaufman and Broeckx (1978) is the most compact,
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adding only N 2 new continuous variables and N 2 new

constraints. Bazaraa and Sherali (1980) suggested

another linearization to which they applied

Benders decomposition. None of these approaches

has proved to be computationally effective. More

details can be found in the survey paper by Kusiak

and Heragu (1987).

Implicit Enumeration — Branch-and-bound

algorithms have been the most successful in solving

the QAP to optimality; problems with as many as 15 or

16 facilities can be solved in reasonable time.

Some earlier implicit enumeration methods were

pair-assignment algorithms where a node in the

branch-and-bound tree corresponds to the assignment

of a pair of facilities to a pair of locations (Land 1963;

Gavett and Plyter 1966). These did not prove to be

competitive with single-assignment algorithms which

assign one facility to one location at each node.

Gilmore (1962) and Lawler (1963) independently

developed a lower bound for use in a single-assignment

branch-and-bound procedure. This lower bound forms

the basis for the most successful implicit enumeration

algorithms published (Bazaraa and Kirca 1983;

Burkard and Derigs 1980). How the Gilmore-Lawler

lower bound is calculated is described next.

Suppose ℱ is the set of facilities (possibly empty)

that have already been assigned, and ℒ is the set of

locations to which these facilities have been assigned.

Using the alternate formulation (4), a lower bound on

completions of this partial assignment is given by

Min
X

i2ℱ

ci;rðiÞ þ
X

i2ℱ

X

p2ℱ

f ip drðiÞ;rðpÞ

þ
X

i2ℱ

X

p62ℱ

½f ip drðiÞ;rðpÞ þ f pidrðpÞ;rðiÞ�

þ
X

i 62ℱ
ci;rðiÞ þ

X

i 62ℱ

X

p62ℱ
f ip drðiÞ;rðpÞ:

(5)

The first two terms in the expression (5) are

the known fixed and interaction costs of assignments

already made; the third term captures the interaction

costs between assigned facilities and those yet to

be assigned; and the last two terms represent

the fixed and interaction costs of assignments

not yet made. A minimum can be calculated for the

last three terms as follows. Consider the assignment

of any unassigned facility i =2 ℱ to a free

location j =2 ℒ. The incremental cost due to this

assignment is

X

p2ℱ
½f ip dj;rðpÞ þ f pidrðpÞ;j� þ cij þ

X

p 62ℱ
f ipdj;rðpÞ: (6)

Now the first two terms of (6) are known, and

the third term needs to be minimized. Form a vector

of flows consisting of the ith row of the flow matrix

minus the diagonal element minus the elements

corresponding to assigned facilities (i 2 ℱ). Arrange

the elements of this vector in decreasing order. Form

a similar vector of distances consisting of the jth row of

the distance matrix minus the diagonal element minus

the elements corresponding to filled locations (j 2 ℒ),

and arrange it in increasing order. The scalar product of

these vectors provides the necessary minimum cost.

Essentially, the largest interaction with i incurs the

lowest per unit cost, the second largest interaction

incurs the second lowest cost, and so on. Repeat for

all pairs (i, j) such that i =2ℱ and j =2ℒ. A solution to the

linear assignment problem (LAP) with these

incremental costs as cost coefficients provides

a lower bound on the three unknown terms of (5).

Let the value of this solution be z∗. The

Gilmore-Lawler lower bound is then obtained as

LB ¼
X

i2ℱ
ci;rðiÞ þ

X

i2ℱ

X

p2ℱ
f ipdrðiÞ;rðpÞ þ z�: (7)

Any node at which the lower bound is greater-than-

or-equal-to the upper bound can be fathomed in the

usual way. However, an attractive feature of this lower

bound is the fact that additional information is

available to be used in the search process. Consider

the solution to the LAP solved to obtain the lower

bound, with facility i =2 ℱ assigned to location r(i).

The dual variables of the optimal solution can be used

to reduce the cost matrix so that every (i, r (i)) element

is zero. Adding together the next smallest element in

that row and in that column gives the regret or

minimum additional cost if assignment (i, r(i)) is not

made. The lower bound plus regret gives the alternate

cost of this assignment. Using this cost as a branching

rule, the next assignment is chosen with the maximum

alternate cost. Further, while backtracking, if the
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alternate cost at a node is greater than the upper bound,

no more nodes need to be evaluated at that level on the

present branch.

Heuristic Solution Methods for the QAP

Given the limited size of problems that can be solved to

optimality (smaller than most practical problems),

there has been considerable interest in developing

heuristic procedures for the QAP. Heuristics for the

QAP can be classified as limited enumeration,

construction methods, improvement methods, and

hybrid methods.

Limited Enumeration — It has often been

observed that an optimal solution is found fairly early

in a branch-and-bound procedure, with the majority of

the solution time then being spent in proving

optimality. A heuristic based on limited enumeration

takes advantage of this feature by setting a cut-off time

to truncate the search process. The search can either be

shortened or allowed to cover more of the search space

in a fixed amount of time by fathoming a node at which

the gap between the lower and upper bounds is

sufficiently small. This gap can be set based on

empirical evidence about the behavior of bounds, for

example, in the QAP the lower bound rises rapidly at

higher levels of the branch-and-bound tree and then

more gradually. Thus a dynamic gap could be used,

larger at higher levels and decreasing at lower levels of

the tree.

Construction Methods — A constructive

procedure starts with an empty assignment and adds

assignments one at a time until a complete solution is

obtained. The rule used to choose the next assignment

can be a simple one such as assign the facility with the

maximum interaction with a facility already assigned

and place it as close as possible to that facility.

Alternatively, a rule may be employed that takes into

account assignments already made, as well as future

assignments to be made, which is likely to lead to

better solutions. Examples of the latter type of rule

would be the use of alternate costs obtained in the

process of calculating lower bounds (see above)

or the use of an evaluation function such as

that devised by Graves and Whinston (1970). The

Graves-Whinston method uses statistical properties to

compute an expected value for the completion of any

partial assignment using only basic arithmetic

operations. The computation time is very reasonable,

thus making it a good choice as a constructive

heuristic. In addition to the notation defined earlier,

defineℒ as the set of locations that have been assigned

facilities. Suppose also that k assignments have already

been made. The expected value of a complete

assignment is given by expression (8) whose terms

are analogous to those in (5):

EV ¼
X

i2ℱ

ci;rðiÞþ
X

i2ℱ

X

p2ℱ

f ipdrðiÞ;rðpÞ

þ

P

i2ℱ

P

p 62ℱ

P
j62ℒ

½f ipdrðiÞ;j þ f pidj;rðiÞ�

n� k

þ

P

i=2ℱ

P
j=2ℒ

cij

n� k
þ

P

i;p=2ℱ
f ip

P
j;q=2ℒ

djq

 !

ðn� kÞðn� k � 1Þ :

(8)

Improvement Methods — Improvement

procedures start with some sub-optimal solution and

attempt to improve it through partial changes in the

assignments. The design of an improvement routine

requires decisions concerning the following: type of

exchange — pairwise, triple, or some higher order;

number of exchanges to consider — should all

possible exchanges be considered or a limited set;

choice of exchange actually made — first

improvement or best improvement; order of

evaluation — random or predetermined. An effective

strategy is to use pair-wise exchanges in fixed order of

decreasing interactions, considering all possible

exchanges, and accepting the first improvement.

Higher order exchanges are best used sparingly.

Other improvement techniques, such as simulated

annealing (Connolly 1990) and tabu search

(Skorin-Kapov 1990), that avoid the trap of local

optima have been applied with success to the QAP.

Hybrid Methods — Some of the most successful

heuristic solution methods for the QAP can be termed

hybrid methods because they combine the power of

improvement methods with some method for

obtaining solutions to be improved, for example,

construction methods (Ligett 1981), limited

enumeration (Bazaraa and Kirca 1983), or cutting

planes (Burkard and Bonniger 1983). Kaku et al.

(1991) successfully combined constructed solutions

with exchange improvement by systematically
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constructing solutions that were different from each

other. This forces different areas of the search space to

be examined.

Concluding Remarks

The QAP formulation suffers from two drawbacks.

First, it assumes identical area and shape

requirements for all facilities. Unequal areas could be

dealt with by dividing all facilities into equal-area

modules which could be kept together in a solution

by introducing very high artificial flows between them.

However, this increases the size of the problem.

Improvement methods can employ such a strategy

since the number of facilities is less of a concern,

however, exchanges are then limited to either equal-

sized facilities or to adjacent facilities. Work by Bozer

et al. (1994) incorporating the use of space-filling

curves in facility layout overcomes this handicap for

improvement methods. Second, the QAP deals

exclusively with interaction costs, generally material

handling costs. This is not likely to be the only concern

in facility layout. For this reason, the general practice

is to allow a human designer to evaluate and fine tune

a solution before implementation. For example, Fu and

Kaku (1997) examined the effect of layout design on

work-in-process (WIP) levels in a factory, an issue of

great interest when considering lean manufacturing.

They found that good QAP solutions generally

reduce the levels of WIP, but there are exceptions

which the QAP approach cannot discern. The

following are some of the features that are desirable

in a heuristic solution procedure for the FLP: The

ability to handle different area requirements; the

ability to produce good solutions with reasonable

computational requirements; and the ability to either

consider multiple criteria or present the decision maker

with good layout alternatives to choose from.

See

▶Branch and Bound

▶ Facility Location

▶Heuristics

▶Location Analysis
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▶Tabu Search
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Introduction

Location problems that can be quantified

as optimization problems are natural candidates

for operations research approaches, and many

such problems have been studied using

mathematical-programming methodology. This

article gives an overview of some of this activity.

Models of these location problems are classified as

planar, network, and mixed integer-programming

models, and methodology for solving such types of

models is outlined. There is little doubt that the

contributions to facility location consist principally of

algorithms — well-defined computational procedures

for solving quantifiable problems.

A location problem must be quantifiable for there to

be any hope of solving it with an algorithm: there must

be a well-defined objective to be optimized, for

example, cost to be minimized, or profit to be

maximized. Likewise there are usually well-defined

constraints, for example, budget constraints, which

limit the scope of the optimization. Location

problems which are highly subjective or political in

nature are thus usually not very good candidates for

operations research approaches, although even for

such problems there may be results which can help to

reduce the scope of the problem under consideration,

or identify basic tradeoffs of interest.

In what follows, some basic location models are

considered. For further reading, see the texts by

Handler and Mirchandani (1979); Love et al. (1988)

and Francis et al. (1992).

Selected Models

This section describes some of the basic but popular

and useful models of location theory, along with brief

discussions of their solution approaches. Note that

demand points are referred to as existing facilities

and the facilities to be located as new facilities. In

developing the models, the following notation is used:

p: number of new facilities. The value of p may be a decision
variable or may be fixed;

m: number of existing facilities;

wi : weight associated with existing facility i;

X: location of a single new facility;

X ¼ (X1, . . ., Xp ): locations of p new facilities; and

Di (X): the distance between existing facility i and the nearest
new facility.

Model 1, P-Center Problem

The objective in this model is to locate p new facilities

to minimize the maximum distance to an existing

facility. Let g(X) ¼ maxi ¼ 1,. . .,m {wi Di (X)}

represent the maximum (weighted) distance any

person has to travel; then the problem can be posed as

Minimize
x

gðXÞ:

This problem is known as the p-center problem and,

besides other applications, has been used to model

locations of emergency medical facilities such as the

location of a helicopter to minimize the maximum time

to respond to an emergency, and the location of

a transmitter to maximize the lowest signal level

received.

Model 2, Covering Problem

In this problem, the number of facilities to be located is

not fixed a priori. Each existing facility should be

within a specified weighted distance from at least one

new facility. The objective is to find the number of new

facilities, p, and their locations, X, to minimize the cost

of the new facilities.

The version of the covering problem with a finite set

of candidate facility locations can be modeled

as a set-covering problem. With S as the set of

n candidate sites for facilities, denote the sites by

j ¼ 1, . . ., n. Define variables y j which take on a value

1 if a new facility is opened at site j and 0 otherwise.

Let fj represent the cost of locating (opening) a facility

at j. Customers (existing facilities) are indexed
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by i¼; 1,. . .,m. Let aij¼ 1 if a new facility located at site

j can cover existing facility i, 0 otherwise, i ¼ 1,. . ., m

and j¼ 1,. . ., n. Note that the aij values are constants and

are determined prior to the formulation. An integer-

programming formulation of the set-covering problem

can be written as:

min
X

j2S

f iyi

subject to :
X

j2S

aijyi � 1; 8i ¼ 1; :::;m

yi 2 f0; 1g 8i ¼ 1; :::; n:

The objective function sums up the fixed costs of

locating the new facilities. When each fj ¼ 1, the

objective function minimizes the number of new

facilities to be located. The first constraint ensures

that each existing facility is covered while the second

constraint restricts the variables to be binary.

Model 3, Simple Plant Location Problem

In the simple plant location problem (SPLP), a number

of new facilities need to be opened (the actual number

is a decision variable) to serve a given set of customers.

There is a fixed cost of opening each facility. The

objective is to minimize the sum of the fixed and

variable costs of serving the demand points, and to

determine the optimal allocation pattern for all

customers.

The SPLP can be formulated as a mixed-integer

program as follows. In addition to S, fj and yj defined

earlier, let cij ¼ 0, i ℒ 1,. . ., m and j ¼ 1,. . ., n, be the

unit cost of servicing customer i from a new facility

located at j. Letting xij denote the fraction of customer

i’s service provided by site j, a formulation of the

SPLP is:

min
X

j2S
f iyi þ

Xm

i¼1

X

j2S
cijxij (1)

subject to :
X

j2S
xij ¼ 1; i ¼ 1; :::;m (2)

yj 2 f0; 1g; j ¼ 1; :::; n (3)

xij � 0; i ¼ 1; :::;m; j ¼ 1; :::; n (4)

and

xij � yj; i ¼ 1; :::;m; j ¼ 1; :::; n (5)

Expression (1) totals site costs and service costs.

The requirement that each customer be completely

served is assured by (2). Expression (3) prevents

a fractional opening of a site, and (4) assures

nonnegative service. The condition that service

cannot be provided from an unopened facility is

guaranteed by (5).

If there are no facility related cost terms in the

objective function (i.e., fj ¼ 0 for all j) and the number

of facilities is restricted to exactly p, then the resulting

problem is known as the p-median problem.

Solving the Models

In order to describe selected contributions that

operations research has made towards providing

solution procedures for the above problems, the

problem space is divided into three classes: planar

models, network models, and discrete models. Many

of the above models can be posed on any one of the

three spaces with some slight modifications, and

almost all models can be put into one of the three

classes.

The main difference in these three classes of models

is the manner in which the distance between two points

is defined. In planar models, the distance function d(�)
is a norm, often Euclidean, rectilinear, or some other

norm, and the number of possible locations for new

facilities is infinite. This renders the corresponding

problems as continuous. If (ai, bi ) are the coordinates

of a point i, then the Euclidean distance between points

i and j is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai � ajÞ2 þ ðbi � bjÞ2

q
, while the

rectilinear distance is given by |ai + aj| � |bi � bj|,

where |�| is the absolute value function.
Many of the best known OR algorithms for solving

location problems involve choosing best locations

from a finite collection of possible sites. Since a site

either is chosen or is not, such problems are

intrinsically discrete in nature and are candidates for

being solved as integer-programming problems. For

example, a banking corporation might be uncertain as

to how many branch banks there should be. The

corporation would realize that the more banks it

Facility Location 547 F

F



locates, the more convenient the branches would be to

its customers in terms of travel time or travel cost. On

the other hand, the more branches there are, the higher

would be the operating expenses and fixed costs. Thus

there is a trade-off between convenience and operating

costs, which it would be important to analyze. Such

trade-offs often occur in solving location problems.

In discrete models, the number of existing facilities

and the number of potential sites for new facilities is

finite. Distances may be derived from planar or

network distances, or some more general type of

transport cost which is proportional to distance.

Discrete problems, modeled as mixed integer

programs, are often more difficult to solve. On the

other hand, many realistic assumptions can be

incorporated in discrete models which cannot be

included in planar or network models.

When a location problem has substantial transport

costs, and the fixed site costs are relatively independent

of location, there are several other approaches to

modeling it. Often it is assumed that transport costs

are directly proportional to transport distances. When

these distances are incurred on a transport network,

such as a road network, the result is often a network

model. Such models usually employ shortest path

algorithms to compute travel distances. The focus of

network model research has been principally upon two

topics: 1) algorithms to solve the problems, and 2)

localization results, such as vertex-optimality results,

which reduce to a finite collection the set of locations

which must be considered to obtain an optimal solution

(Hooker et al. 1991) Once such a finite set is obtained,

the resulting remaining problem may well be modeled

as an integer- or mixed- integer programming problem.

Distances are often more accurately represented in

network models than in planar models, but the need for

data is also higher in network models since the length

of each segment is needed. For many models it

becomes advantageous to work directly with the

network, exploiting its properties in developing

a solution procedure. The existing facilities are

located on the network, and the new facilities are to

be located at points on the network. An additional

advantage of network models is that they make

problem visualization easier. Thus, even if the

problem is not solved as a network problem,

a solution presented in network form may assist the

decision maker in understanding the problem and the

issues involved.

It is possible, for a network location problem, that it

may be prohibitively expensive to obtain, or to work

with, the necessary network data. In such cases,

network distances may well be approximated using

planar distances, for example, Euclidean or

rectilinear distances. This results in what is called

a planar model. The related problems are often easier

to analyze, and can be helpful for providing insight.

Often results from nonlinear programming can be

employed to help solve such problems.

Real-world location problems which occur in

urban contexts may well have millions of demand

points when each private residence is a demand

point. It is common to use some means of

aggregating demand points. The aggregation reduces

the problem size, but introduces error into the model.

There is evidence that aggregation errors decrease

with the number of aggregate demand points at

a decreasing rate. For a small number of aggregate

demand points, the error may be quite high; for

a larger number it may be quite low, and increasing

the number even more will give little additional

decrease in the error, see Francis et al. (1999).

As concerns algorithms/solution approaches to the

three classes of problems, planar problems are usually

solved using linear or nonlinear programming

methods; network problems are usually solved

using network and graph-theoretic methods;

discrete problems are usually solved using

integer-programming methods. More information on

these methods can be found in the references.

In addition, many artificial intelligence based

heuristic approaches, such as genetic algorithms, tabu

search, and simulated annealing, can be used to solve

location problems.

See
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Factorable Programming

Richard H. F. Jackson

National Institute of Standards and Technology,

Gaithersburg, MA, USA

Factorable programming problems are mathematical

programming problems of the form

minimize
x2Rn

f ðxÞ;

subject to giðxÞ > 0;

for i¼ 1,. . ., m, in which all the functions involved are

factorable. Loosely, a factorable function is

a multivariate function that can be written as the last

of a finite sequence of functions, in which the first n

functions in the sequence are just the coordinate

variables, and each function beyond the nth is a sum,

a product, or a single-variable transformation of

previous functions in the sequence. More rigorously,

let [ f1(x), f2(x),. . ., fL (x)] be a finite sequence of

functions such that fi : R
n ! R where each fi (x) is

defined according to one of the following rules:

Rule 1: For i ¼ 1,. . ., n, fi (x) is defined to be the ith

Euclidean coordinate, or fi (x) ¼ x i.

Rule 2: For i ¼ n + 1,. . ., L, f1(x) is formed using

oneof the following compositions:

a. fi (x) ¼ fj(i)(x) + fk(i)(x); or

b. fi (x) ¼ fj(i) (x) � fk(i)(x); or
c. fi (x) ¼ Ti [fj(i)(x)];

where j(i) < i, k(i) < i, and Ti is a function of a single

variable. Then f(x)¼ fL (x) is a factorable function and

[ f1(x), f2(x),. . ., fL (x)] is a factored sequence.

Thus a function, f(x), will be called factorable if it

can be formed according to Rules 1 and 2, and the

resulting sequence of functions will be called

a factored sequence, or at times the function written

in factored form.

Although it is not always immediately grasped, the

concept of a factorable function is actually a very natural

one. In fact it is just a formalization of the natural

procedure one follows in evaluating a complicated

function. Consider for example the function

f ðxÞ ¼ ½aTx� sin½bTx� exp½cTx�;

where a, b, c, and x are (2 � 1) vectors. The natural

approach to evaluating this function for specified

values x01 and x02 is first to compute the quantities

within the brackets then to apply the sine and

exponential functions, and finally to multiply the

three resulting quantities. This might be done in

stages as follows:

f1 ¼ x01 f9 ¼ c1 f1

f2 ¼ x02 f10 ¼ c2 f2

f3 ¼ a1 f1 f11 ¼ f9 þ f10

f4 ¼ a2 f2 f12 ¼ sinð f8Þ
f5 ¼ f3 þ f4 f13 ¼ expð f11Þ
f6 ¼ b1 f1 f14 ¼ f5 � f12
f7 ¼ b2 f2 f15 ¼ f13 � f14
f8 ¼ f6 þ f7

This is one possible factored sequence for f(x).

To understand what follows, the concept of an outer

product matrix must be introduced. An (m � n) matrix

A is called an outer product matrix if there exists

a scalar a, an (m � 1) vector a, and an (n � 1) vector

b such that

A ¼ a abT :

The expression a abT is called an outer product or

a dyad. Note that a dyad is conformable since the
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dimensions of the product are (m � 1)(1 � 1)(1 � n),

which yields the (m � n) outer product matrix A as

desired. A useful property of outer product matrices is

that, if kept as dyads, matrix multiplication is

simplified to inner products alone, saving the

computations required to form the matrices involved.

For example,

Ac ¼ a a½bTc�;
dTA ¼ ½dTa� abT ; and

AF ¼ a a½bTF�;

where c is (n � 1), d is (m � 1) and F is (n � m).

It is well-known (McCormick 1983) that factorable

functions possess two very special properties that can

be exploited to produce efficient (fast and accurate)

algorithms: i) once written in factorable form, their

gradients and Hessians may be computed exactly,

automatically, and efficiently; and ii) their Hessians

occur naturally as sums of dyads whose vector factors

are gradients of terms in the factored sequence. The

first of these properties eases the task of providing the

derivatives of a nonlinear programming problem to

a computer software solution routine, and has the

potential eventually to trivialize it. The second, as

noted above, changes the way matrix multiplication

is interpreted, which in many cases results in less

computational effort.

There are factorable problems whose structure is

such that the factorable approach results in more

work: small, dense problems, for example. For these

problems, the factorable approach can still be used for

easy input, but some of the matrix techniques would be

replaced by classical approaches.

Software packages have been written that perform

the factoring automatically from natural language

input. See Jackson and McCormick (1988) for

a history of such efforts, as well as Jackson,

McCormick, and Sofer (1989). The latter paper

describes a system that allows user input for

nonlinear functions in a format similar to FORTRAN,

without any requirement on the user to understand the

details of factorable functions.

As mentioned above, one fundamental value of

factorable functions lies in the simple and

computationally efficient forms that result for their

Hessians. In fact, factorable programming is based on

the existence of, and the simplified operations that

result from, these simple forms. The seminal result is

that the Hessian of a factorable function can be written

as the sum of dyads, or outer products, of gradients of

functions in the factored sequence (Fiacco and

McCormick 1968, pp. 184–188). This basic result

was generalized in Jackson and McCormick (1986).

Before explaining the generalization, it is necessary to

generalize the concepts of Hessian and dyad.

Let A 2 R( n1x. . .xnN ), and let A i1,. . .,i N denote the

(i1,. . ., i N )th element of this array. For the purposes of

this article, A is called the Nth-order tensor of

a multivariable function f(x) if

Ai1;...;iN ¼ @Nf ðxÞ=@xiN . . . @xi1 :

Note that gradients and Hessians are tensors of

order 1 and 2 respectively.

An N-dimensional array A is called a generalized

outer product matrix if there exists a scalar a, and

an ordered set of vectors a1,. . ., aN (where each ak is

(nk � 1)) such that each element of A is generated by

the product of the scalar a and certain specific elements

of the vectors a1,. . ., aN as follows:

Ai1;...;iN ¼ a � a1;i1 � � � � � aN;iN

for i1 ¼ 1,. . ., n1;. . .; iN ¼ 1,. . ., nN, where ak,i k

represents the (ik )th element of the (nk � 1) vector ak.

The scalar and set of vectors which generate

a generalized outer product matrix taken together are

called a polyad and are written

ða : a1 � � � aNÞ; (1)

where order is important, that is, the vector in position j

is associated with the jth dimension. A polyad

containing N vector factors is an N-ad. Also,

an expression containing a sum of polyads

is a polyadic, and an expression containing a sum of

N-ads is an N-adic. (The actual addition here is

performed as a sum of the associated generalized

outer product matrices.) When vector factors in

a polyad are repeated, exponential notation is used, as

in the case of the symmetric N-ad, (a:[a]N). Note

that the representation of a generalized outer

product matrix by a polyad is not unique.
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For example, (a | g:[a 1 g]. . .aN) generates the same

N-dimensional array of numbers as does (1) for any

nonzero scalar g. Finally, a 2-ad of the form (a:ab) is

equivalent to the more familiar dyad of the form a abT ,

and the two will be used interchangeably.

The generalization mentioned above is that all

tensors (that exist) of factorable functions possess

a natural polyadic structure. Furthermore, the vector

factors that comprise the monads of the gradient are the

same vector factors which comprise the dyads of the

Hessian, the triads of the third order tensor, and so on.

This has important computational implications in

mathematical programming. It means that once the

gradient of a factorable function is computed,

a major portion of the work involved in

computing higher-order derivatives is already

calculated. Consequently, high-order minimization

techniques, previously considered computationally

intractable, are once again worthy of consideration

(Jackson and McCormick 1986).

It should be noted that, by their very nature, the

tensors of factorable functions are ideally suited for

computation on parallel processing and array

processing computers. Few other such ideal

applications in numerical optimization are known.

Also, it has been shown (McCormick 1985) that all

factorable programming problems have an equivalent

separable programming representation, and that

efficient algorithms (Falk and Soland 1969; Falk

1973; Hoffman 1975; McCormick 1976; Leaver

1984) exist for finding global solutions to these

problems. Thus there exists the potential of finding

global solutions to factorable programming problems

fast and accurately.

The discovery and development of factorable

functions and their uses in mathematical

programming is credited to McCormick (1974). Since

the discovery of these functions, the theory of

Factorable Programming has been further developed

and refined. Ghaemi and McCormick (1979)

developed a computer code (FACSUMT), which

processes the functions in a factorable program and

provides the interface to the SUMT nonlinear

programming code (see Mylander et al. 1971).

A preliminary version of this code is described in

Pugh (1972).

Further extensions of factorable programming

theory were provided by Shayan (1978), who

developed an automatic method for computing the

mth order of a solution technique that can be

evaluated when the functions are factorable by

counting basic operations and basic functions, a more

accurate measure of efficiency than the popular

technique of counting the number of equivalent

function evaluation (Miele and Gonzalez 1978).

The natural dyadic structure of the Hessian of

a factorable function was exploited by Emami (1978)

to develop a matrix factorization scheme for obtaining

a generalized inverse of the Hessian of a factorable

function. Ghotb (1980) also capitalized on this

structure and provided formulae for computing

a generalized inverse of a reduced Hessian when it is

given in dyadic form. Sofer (1983) extended this last

concept further by utilizing the dyadic structure to

obtain computationally efficient techniques for

constructing a generalized inverse of reduced Hessian

and updating it from iteration to iteration.

Another direction was pursued by DeSilva and

McCormick (1978), who developed the formulae and

methodology to utilize the input to general nonlinear

programs in factorable form to perform first-order

sensitivity analysis on the solution vector. This was

generalized in Jacksonand McCormick (1988), where

second order sensitivity analysis methods were

developed, with formulae involving third order

tensors used to compute second derivatives of

components of a local solution with respect to

problem parameters.

It is important to understand that the derivative

calculations performed in factorable programming

are not estimations, but mathematically exact

calculations. Furthermore they are also compact,

since factored sequences mimic hand calculations.

Thus, this technique is different from symbolic

manipulation techniques for differentiation, which

tend to produce large amounts of code. The

techniques used in factorable programming are

efficient exploitations of the special structure inherent

in factorable functions and their partial derivative

arrays. Moreover, while it is true that some symbolic

differentiaters also can recognize functions which

can be described similarly as a sequence of rules,

each of which can be differentiated, the similarity

ends there. Such symbolic differentiaters continue to

differentiate the rules, without exploiting the

polyadic structure of the result (Kedem 1980; Rall

1980; Wengert 1964; Reiter and Gray 1967; and

Warner 1975). It is this latter effort which provides

Factorable Programming 551 F

F



the real value of factorable functions and which

therefore separates the two techniques.

See

▶Mathematical Programming

▶Nonlinear Programming
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Failure-Rate Function

The failure rate at time t of a unit with lifetime density

f(t) and lifetime CDF F(t) is defined by the

(approximate) probability h(t)Dt that a random

lifetime ends in a small interval of time Dt, given that
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it has survived to the beginning of the interval. For the

continuous case, this is formerly written as

h tð Þ ¼ lim
Dt!0

Pr failure in t; tþ Dtð Þjsurvival up to tf g

Dt

� �

¼
f tð Þ

1� F tð Þ :

The function h(t) is often also called the hazard rate

function, the force of mortality, or the intensity rate

function.

See

▶Distribution Selection for Stochastic Modeling

▶Reliability Function

▶Reliability of Stochastic Systems

Farkas’ Lemma

Given a matrix A and a column vector b, one and

only one of the following two alternatives holds.

Either: (1) there exists a column vector x � 0 with

Ax ¼ b, or (2) there exists an unrestricted row vector y

for which yA � 0 and yb < 0. This lemma can be

proved by defining appropriate primal and dual

linear-programming problems and applying the

duality theorem.

See

▶Gordan’s Theorem

▶ Strong Duality Theorem

▶Theorem of Alternatives

Farrell Measure

▶Data Envelopment Analysis

Fast Fourier Transform

An efficient algorithm for computing the discrete

Fourier transform and its inverse.

Fathom

To analyze a computational path in enough detail to

logically conclude that the analysis of the path has

provided as much information possible and/or required.

See

▶Branch and Bound

Fat-Tailed Distribution

▶Heavy-Tailed Distribution

FCFS

The First-Come, First-Served queueing discipline in

which customers are selected for service in the

precision order in which they arrive to the queue.

See

▶Queueing Theory

Feasible Basis

A basis to a linear-programming problem that yields

a solution that satisfies all the constraints of the problem.

See

▶Linear Programming

▶ Simplex Method (Algorithm)

Feasible Region

The set of points that satisfy prescribed restrictions

(constraints) on a solution.
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Feasible Solution

A solution to an optimization problem that satisfies its

constraints. In linear programming, these are the

conditions Ax ¼ b and x � 0.

See

▶ Infeasible Solution

▶Linear Programming

FEBA

Forward edge of a battle area.

See

▶Battle Modeling

Feedback Queue

A system where customers may return upon

completion of service. In many real problems, there

is a nonzero probability that a customer just

completing service returns to the end of the queue

and is serviced again.

See

▶Networks of Queues

▶Queueing Theory

Field Analysis

Howard W. Kreiner

Center for Naval Analyses, Alexandria, VA, USA

Introduction

Field analysis is the practice of operations research

usually at the place where the operations occur. It uses

observations and data from those operations as they are

carried out by the people who normally conduct them. Its

purpose may be the immediate modification of an

unsatisfactory process, or at longer range, the

elucidation of the critical steps in the process for further

analysis of options and changes—its vital importance to

systems analysis lies in this latter alternative.

As the operations under study are real and current,

they involve the use of equipment or machines already

in place, and the practices of operators who have been

trained in their use. Projections of possible future

capabilities and alternative training methods are not

a major part of the basic data on which the analysis

must be based.

Problems that are visible are those that obviously

interfere with the smooth functioning of the system.

Their solution must make major differences to

be considered useful. There is a need to seek a

solution that can improve matters by hemibels (about

a factor of 3). Anything less may be lost in the noise of

the system. In investigating the causes of problems,

many of the potential variables will not lie within the

control of the operators or the analyst as attempts are

made to identify them. The analyst must think in

heuristic terms, rather than those of full scientific rigor.

Case studies often are interesting for their

problem-solving methodologies, but as the problems

differ in detail, such case studies do not fall into clear

groupings that can be characterized as the essence of

field analysis. The mathematical content of many, if

not most field analyses, is simple, usually not beyond

the level of undergraduate mathematics. Therefore, it

is methods of behavior, thought, and exposition rather

thanmathematics that truly constitute the methodology

of field analysis.

Historical Origins

The term field analysis arose in the earliest activities of

operations analysts in the U.S. Navy. The Navy set up

the nation’s first operations research organization in

1942. It did so because it was engaged with the

Germans submarine forces in a battle that was not

going well. Forces, doctrine, and tactics that had

grown from experience were proving insufficient to

defeat the enemy. The people it brought into the

operations research organization, however, were

civilian scientists with little or no direct experience of
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naval operations. There was only the hope that a fresh

scientific view of the situation might produce new

methods and the means of victory. The hope was

based upon successes of operations research in the

British effort against the German bombing campaign.

The scientists at first worked with the statistics of

combat derived from action reports. They soon found,

though, that full understanding of the action reports

required that they have closer contact with the

operating forces that engaged the enemy and wrote

the reports.

To obtain this contact, they sent scientists to the

naval commands deployed against the German

submarines. Their purpose was to talk directly with

the naval officers and men who performed the

combat activities, and to the degree possible, to

observe at first hand the circumstances of warfare.

Initially, their efforts were intended to insure that the

scientists at the home office made proper

interpretations of the reports and the statistics they

derived. As they became more experienced, and as

the aims of the operations research progressed toward

model development and predictions of effectiveness,

the analysts’ purposes and roles with the operating

forces also broadened. This pattern of visits and later,

longer assignments, became known as the field

program, and the analysis done by the analysts at the

deployed commands, as the field analyses.

At the end of the war, Morse and Kimball (1946)

characterized the program’s purposes as: (a) direct help

to the service units, (b) securing difficult-to-obtain

information for the headquarters organization, and

(c) providing to the individual analyst the practical

education indispensable in avoiding the pitfalls to

which the pure theorist may be subject. They also

commented on the administrative factors that made

for successful field work. They stressed the need for

the command receiving the analyst to invite the

assignment and to approve the individual. The analyst

should be attached to the highest level of the field

activity, take assignments from the commanding

officer, and make reports at the same level. There

should be regular rotation of analysts at the field

command, to bring back to the central staff the

experience gained in the field.

Morse and Kimball typified the nature of the

scientific work of field analysts in six categories:

1. Analytical

2. Statistical

3. Liaison

4. Experimental

5. Educational

6. Publication

At any field assignment station, however, work

would not be limited to just one of these categories;

the analysts might do all these types of work in some

proportion.

The system of field assignments worked well under

the pressure and circumstances of the war. Problem

areas were of vital urgency. Help from this promising

source was generally welcome at the field commands

(though there were instances where it took dramatic

analytic successes to establish acceptance for the

analyst), and in the senior levels of the service.

One instance of initial reluctance overcome by

analytic success was Steinhardt’s development of

barriers against South Atlantic blockade runners

(Tidman 1984).

At the end ofWorldWar II, the postwar successor to

the U.S. Navy’s Operations Research Groups, the

Operations Evaluation Group continued the practice

of field assignments and field analyses. Because of

a reduction in the size of the group, and because the

activities of the Navy’s deployed forces also were

greatly curtailed, the field assignments were limited

to units of the Navy’s test and evaluation forces. The

start of the Korean War caused an increase in the size

of the parent group, and a revival of the assignment of

analysts to fleet staffs and combat operational units.

The activities of operations analysts in the field

were not limited to the U.S. Navy. The U.S. Army,

both ground and air forces (and later, the U.S. Air

Force), also formed analytic groups that sent

representatives to field forces. Not all followed

precisely the same administrative procedures, but the

principal purposes of the assignments were paralleled

in each case. Postwar, also, these organizations

continued the practice, and expanded their field

activities as war and other circumstances required.

The first paper published by the Journal of the

Operations Research Society of America to report on

field analysis in a non-military subject was

Thornthwaite (1953). Among operations research

practitioners used to the military version of the

profession, it was a great relief and cause for elation.

It showed that there truly was a possibility that the kind

of operations research, field analysis, with which they

were most familiar in the military services also could

Field Analysis 555 F

F



be applied successfully in the non-military world.

More than forty years later, the methods it describes

are in use in unchanged form at the site where they

were developed. Kreiner (1994) revisits

Thornthwaite’s paper to fill and clarify gaps in its

exposition and make explicit the qualities it exhibits

as a fine example of field analysis.

Since then, many other examples of good field

analyses have appeared in various formats and

publications. As remarked above, they generally have

been identified primarily by the subject matter of the

problem, rather than as examples of field analysis

viewed as a separately defined branch of operations

research.

Field Analysis in an Era of Systems Analysis

During World War II, there was a very close tie

between the work of the military field analyst and

that of the headquarters staff. The initial motivation

for creating a field program was exactly that close tie;

headquarters staff interest was directed almost

exclusively to the day-to-day problems and success

of the deployed forces. The guiding principles of

operations research formulated in the postwar

summaries were identical for the field and the

headquarters analyses. In the years since the U.S.

creation of formal operations research organizations,

this has continued to be true when war dominates the

activities of the military services from combat forces to

the highest command levels. It also was true to a large

extent in peacetime immediately after World War II.

The field analysts’ assignments were to operational test

and evaluation commands concerned with individual

combat systems whose procurement decisions

depended upon those test results.

The tie has become less close in the military

services with the trend to high-level systems analysis

at headquarters operations research groups. The

increasing complexity and interaction of systems,

their cost, and the very long development time for

newer combat systems made headquarters command

levels more concerned with future systems. It elevated

the procurement process to the strategic level, and

concentrated the attention of the central military staff

on long-term budgetary matters. Headquarters

operations research groups necessarily altered their

point of view as well. Field commands, however,

retained their concern with training their forces to

operate and integrate systems already in use. The

problem of divergence of interest between the field

analyst and the headquarters group did not disappear

entirely even during the Vietnam War and the Gulf

War. Those wars were limited in character, and the

Cold War and the larger threat of nuclear war still

tended to dominate budgetary and strategic interests.

For the field analyst, however, the main subjects for

analysis continue to be the operations involving the use

of equipment already designed, developed, produced

and distributed. If the equipment is not quite at this

stage, it is at least far enough along in the process to

justify operational testing and tactical development.

The field analyst’s concerns in commercial,

nonmilitary government or military activities, are

with the practices for employing, and with the

training of people to make the equipment and its use

as effective and efficient as possible. To the extent that

a central group, commercial or military, arranges to

provide field analysts and uses the field assignments

both for training analysts and to insure realism in

describing current and possible future operations, it

shares the same objectives. It can be difficult for

a central group, however, to balance priorities for

attention to field analysis with those of important

future systems studies.

A Continuing Role for Field Analysis

Compared with the circumstances at the time

operations research first was introduced, there now

are greatly improved methods for data collection, and

greatly enhanced ability of computers to model

interactions of equipment and people. There have

been theoretical developments in operations analysis

and problem-solving techniques that are reported

worldwide in the journals of numerous operations

research societies. Yet, if operations research retains

its focus on problem solving in operations, there

continues to be an important mission for analysis to

be done at the point, and in direct observation of the

operations under study. This is particularly important

when large-scale modeling of operations is a major

means of analysis in the headquarters groups. Both

during the building of models and afterwards, it can

be extremely difficult to review and test all the

assumptions and possible omissions of critical factors.
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Morse and Kimball made the point that it was a

strength of the operations analyst to think in hemibels,

to seek improvements in operations that multiply

effectiveness by a factor of three or more. This differs

qualitatively from the notion of improvements in small

increments. The field analyst is in a unique position to

see opportunities for hemibel improvements; the analyst

she can observe at first hand the factors that control the

operation. If there are differences between what has

been assumed about those factors and what actually is

occurring, the analyst can document them, measure

them, and propose changes to exploit the differences in

favor of improved understanding, and ultimately,

improved operations.

Kreiner (1992) noted an example in radar detection

of small targets, in which the field analyst identified

assumptions about the statistical character of radar

returns. Current data at the field site proved the

assumptions to be faulty. Ultimately, the original

theory had to be abandoned, and alternate methods

devised. Kreiner (1992) also reports on an analytical

look at an operational plan that revealed unstated,

unconsidered, and erroneous assumptions. The plan

assumed static, fixed naval forces, assured of long

warning times of possible attack, and manned by

pilots expected to fly missions they considered

suicidal, although safer, equally effective alternatives

were available. When the analysis made these

assumptions explicit, the entire plan had to be

rewritten.

The field analyst also is in a better position to

examine the choice of measures for evaluating

operational effectiveness than any counterpart located

at headquarters. Larson (1988), though not assigned as

a field analyst, nevertheless functioned as one as

a customer of a queueing system when he attempted

to buy a bicycle for his daughter. In his job as an analyst

of such systems, he had accepted the standard measure

of average customer waiting time, and the goal of

minimizing this measure. As an actual customer,

however, he discovered a major deficiency in the

measure, a lack of perceived fairness to the individual

customer. His article explores the ways to make the

queues and the measures of their performance more

responsive to the broader interpretation of effectiveness.

The field analyst has another important requirement,

the need to develop results in terms that serve primarily

the purposes of the customer. Scientific journals,

including those of the operations research societies,

require presentations that are concise, rigorous, and of

enough generality to be of interest to a spectrum of

fellow professionals. The field analyst has another

audience entirely, that is, the analyst must initially

establish a role as a participant in the operations

analyzed, lest the activities lack credibility. As an

outsider, the analyst may not gain access to the

intimate, seemingly tiny details that make up the

operation. The field analyst similarly must make

reports in operational terms. The audience will classify

problems in their own terms, rather than by the

methodologies used to solve them. The report must

make the same close connection with the immediate

problem. It may be important to the analyst to innovate

in methodology. The client wants only assurance that

the methodology addresses the correct aspects of the

problem, that the analyst is competent to apply it, and

that the results enable them to improve their operations.
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FIFO

The First-In, First-Out queue discipline in which

customers are taken out of the line for service in the

exact order in which they arrived (meant to be

equivalent to the first-come, first-served scheme).
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Introduction

Financial engineering refers to the application of

scientific methods to the design, analysis, and

implementation of financial products and services.

The applications within this domain extend from

trading at the nano–second timescale to informing

investment decisions that can stretch across centuries.

Much of financial engineering can be aligned with

classical methods in operations research, including

the following functions: (i) asset–pricing, particularly

for derivatives, relying heavily on stochastic modeling

and simulation; (ii) portfolio optimization and

asset–liability management, using various methods

from optimization; (iii) trading and hedging, often

involving dynamic programming and control

techniques; and (iv) risk management, involving

many of the principles of reliability theory.

The following sections describe basic applications

within each of these areas and the associated relevant

operations research methods.

Asset–Pricing and Derivative Evaluation

Much of the interest in financial engineering began with

the widespread use of the Black–Scholes–Merton

formula for option pricing following the publication in

the academic literature of their seminal papers

describing this pricing method (Black and Scholes

1973; Merton 1973a), although the concepts appeared

earlier starting with Bachelier (1900). The formula

applied directly to the basic (European) call and put

options, which provide the buyer the right (but the

obligation) to purchase (for a call) or sell (for a put) an

asset (e.g., a share of a stock) at a fixed price (called the

strike or exercise price) at a future expiration (or

maturity) date. Extensions of this methodology have

been applied to many other types of derivative

securities that derive their value from the price of a set

of intrinsic (or underlying) assets over some specified

period of time. They are also referred to as contingent

claims since their payoff depends on some unknown

outcome.

The basis for this and other asset–pricing models is

an application of linear programming duality theory,

known as the Fundamental Theorem of Asset Prices

(Harrison and Pliska 1981), which states that either the

securitiesmarket admits an arbitrage opportunity to earn

a non–negative risk–free payoff in all future states (and

a positive payoff in some state) without any initial

investment or there exists a price or weighting on each

future state that in expectation yields the current market

price for any security in the market. Most pricing

formulae can then be derived from assuming that the

market does not allow arbitrage (at least for any

extended period of time) and that the prices of

securities not currently in the market (or whose market

prices might be stale or suspect) can be evaluated from

the prices of other securities. If markets are complete in

representing all possible future cash flows, then prices

should be unique in this framework, but even if the

market is incomplete, an assumed absence of arbitrage

can imply bounds on prices that are consistent with the

market, e.g., settings with physical assets such as energy

and commodities (Staum 2008).

As an example of the asset–pricing theorem,

suppose an asset has future payoff S distributed as Si
with probability pi at time T ¼ 1 for i ¼ 1; . . . ;N for N

future states of the market. (Continuous future cash

flow distributions can be modeled in the same way

with a more general linear programming model).
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Absence of arbitrage implies that no one in the

market can purchase or sell an equivalent cash flow

to S in such a way that always produces non–negative

and, with some positive probability, positive surpluses.

This result means, in particular, that a buyer cannot sell

or purchase at unit price s an equivalent cash flow to

a share x of S with y in other assets (with current prices

f and future prices Fi in state i) and risk–free investing

(B at a risk–free rate r that yields erB in the future with

certainty) and obtain positive future cash flows, i.e., the

maximum expected value of a future position for

buying a share x with no losses is zero:

0 ¼ max
x;y;B

X

i

piðSix� FT
i y� erBÞ (1)

subject to� sxþ f Tyþ B ¼ 0; (2)

� Sixþ FT
i yþ erB � 0 8i; (3)

0 � x � 1; (4)

where the superscript “T” denotes the transpose

operator. The feasibility of the dual problem when

the value of (1)–(4) is bounded above (no arbitrage)

then provides the Fundamental Theorem of Asset

Pricing. The dual is:

0 ¼ min
l�0;p�0;r

r (5)

subject to
X

i

Sipi þ lsþ
X

i

piSi � r � 0; (6)

�
X

i

Fipi � lf �
X

i

piFi � 0; (7)

� er � l�
X

i

pie
r ¼ 0: (8)

For an optimal dual solution, ðl�; p�; r�Þ, l� < 0

(where the strict inequality follows from (8)), p� � 0,

and r� ¼ 0;

s �
X

i

Siðpi þ p�i Þ=ð�l�Þ; (9)

f ¼
X

i

ðpi þ p�i ÞFi=ð�l�Þ; (10)

� l� ¼ er 1þ
X

i

p�i

 !

: (11)

If a strictly positive x� > 0 solves (1)–(4), then the

inequality (9) must be tight by complementarity. This

condition would follow if the cash flow in Si can be

reproduced perfectly by FT
i y and erB with

f Tyþ B ¼ sx, which holds if the market is complete.

This then implies

s ¼ e�r
X

i

si
pi þ p�i

1þ
P

i p
�
i

¼ e�r
X

i

si
pi þ p�iP
i ðpi þ p�i Þ

¼ e�r
X

i

siq
�
i ; (12)

where q�i � 0 and
P

i q
�
i ¼ 1, i.e., q�i

� �
define

a probability distribution (called a risk–neutral or

equivalent martingale measure) on Si for the price s,

which is also consistent with the other assets so that

f ¼ e�r
P

i Fiq
�
i . In a complete market, everything

could be priced this way with the same probabilities;

or state prices as in the general equilibrium of Arrow

and Debreu (1954). If the market is not complete, then

a range of prices s 2 ½sL; sU� would be consistent with

a cash–flow that is not completely represented in the

market.

The basic principles of replicating a cash flow from

existing market instruments with an assumption of no

arbitrage or of using a consistent set of prices underly

most asset–pricing applications. The following section

on portfolio optimization discusses asset pricing

theories — the Capital Asset Pricing Model (CAPM)

and Arbitrage Pricing Theory (APT) — based on

market agents’ preferences, but the basic

consequences of consistent prices with no arbitrage

opportunities account for much of actual pricing

practice in financial engineering; see Derman and

Taleb (2005) for a discussion of such practical

approaches to pricing.

To see the implications of consistent prices,

consider the pricing of a simple European call option

to purchase a share of a non–dividend–paying stock at

time T at a price K. In a complete market with no

arbitrage, the Fundamental Theorem of Asset Pricing

implies that the value of the call (or premium) C0 at

time t ¼ 0 is the present value of the expected future
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cash flows using the consistent (risk–neutral or

equivalent martingale) probability density qT on

future states at time T that exists from the theorem.

Since the payoff of the call option is ðST � KÞþ when

the price of a share is ST at T, the theorem implies

C0 ¼ e�rT

Z 1

0

ðST � KÞþqTðSTÞdST : (13)

The next step then is to determine the appropriate

distribution represented by qT .

For the distribution of ST given by qT , if the

risk–free rate r is constant, the no–arbitrage property

implies that from any time t when the share has price

St, the conditional expectation of ST under qT
discounted back to t must be St, i.e.,

St ¼
Z 1

0

e�rðT�tÞSTqTðSTÞdST ; (14)

which is the martingale property of the process

Yt ¼ e�rtSt, such that Ys ¼ EQðYtjYsÞ for any t � s,

whereQ represents the probability distribution implied

by the no–arbitrage condition at each time t. This

means that, under Q, the prices of all non–dividend

paying assets increase at the same exponential rate r.

Now, if price changes are the result of random arrivals

of new information that push prices up or down in

a way that does not change in terms of relative

increases or decreases in price over time, i.e., the

price changes have the features of a random walk,

then, as the arrival rate of information increases, the

prices should follow geometric Brownian motion

(GBM). Assuming no dividends, a constant risk–free

rate, and no changes in the information arrival rate or

its effects (which keeps the volatility in the process

constant), prices under the distribution given by Q

would obey the following stochastic differential

equation:

dSt ¼ rStdtþ sStdWt; (15)

where s is the volatility of the price process and Wt is

a standard Brownian motion. If St follows the

dynamics of (15), then logST � logS0 is normally

distributed with mean ðr � s2=2ÞT and variance sT,

i.e., ST is log–normally distributed under Q with mean

erTS0 and variance e2rTðes2T � 1ÞS20. This result leads

to the Black–Scholes–Merton (BSM) option pricing

formula (Black and Scholes 1973; Merton 1973a)

by evaluating the integral in (13) with qT as the

log–normal density:

C0 ¼ S0F
logðS0=KÞ þ ðr þ s2=2ÞT

s
ffiffiffi
T

p
� �

� e�rTKF
logðS0=KÞ þ ðr � s2=2ÞT

s
ffiffiffi
T

p
� �

; (16)

whereF is the standard normal cumulative distribution

function.

The formula in (16) can be derived in many ways.

One approach is to start with the physical model of the

dynamics of the price St and of the call option value Ct

and to note that Ct can be dynamically replicated by

continuously adjusting a fraction of St and a risk–free

bond (which assumes that trading is frictionless or has

no transaction cost). An equivalent approach is to

model a random walk in prices directly, to solve

a dynamic program recursion that gives the fraction

to hold of St and the risk–free bond at each point to

replicate the option, and then to take the limit of this

value as the discretization interval reduces to zero.

Each approach yields the same formula and the

observation that the price does not depend on

investors’ risk attitudes.

The significance of the BSM formula is that the

option price can be found without making an

assumption on risk preferences. The actual physical

distribution of ST would be different from that given

by qT if the market includes a non–zero risk premium,

but the evaluation can be done under qT without

deciding what that premium should be. The formula

does, however, rely on several assumptions, such

as a constant risk–free rate, constant volatility, the

log–normal density at any point in time, and the

completeness of the market to ensure the existence of

the equivalent risk–neutral distribution.While much of

the work in financial engineering considers deviations

from these assumptions, the basic framework provides

an efficient description of prices and amethodology for

checking price consistency.

From the formula in (16), European put option

prices (i.e., the option to sell at a given price) can be

found again with a no–arbitrage principle of put–call

parity on non–dividend paying assets that, since the

payoff of a call minus a puton the same asset at the
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same exercise priceK and maturity T is the same as the

payoff of the asset minus a risk–free bond paying K at

T, the present values must be the same as well, i.e.,

Ct � Pt ¼ St � e�rðT�tÞK; (17)

where r is the risk–free discount rate (from t to T).

Other relationships can be found to bound prices of

options at different exercise prices and maturities.

A main emphasis of financial engineering is to

determine prices of different types of derivatives and

to relax some of the assumptions involved in (16), e.g.,

see Hull (2011). In general, analytical formulae for

payoffs at a fixed point in time can be found under

the basic assumptions plus a variety of extensions

(some of which require additional assumptions or

information on risk preferences to obtain the

formulas) including dividends; stochastic risk–free

rate; stochastic volatility; different price dynamics,

including time–varying drift, non–linear volatility,

processes with jumps, and general Lévy processes

(Carr et al. 2003; Cont and Tankov 2004; Wu 2008);

and different payoff structures, including different

linear payoff structures, payoffs on multiple assets

(including different currencies and interest rates), 0–1

(digital options), and other non–linear payoff

structures, including bonds and convertible bonds.

In addition to derivatives that depend on asset

values at a fixed point in time, other derivatives can

depend on entire sample paths of prices. Basic

examples of such path–dependent options are

American options that are identical to the European

call and put options described here except that they can

be exercised at any time until maturity. They

effectively then have two components, the European

option value plus a premium for early exercise. In

some cases, such as an American call option on

a non–dividend paying under the assumptions for the

basic BSM model, the early exercise premium is zero,

but, in other cases, including the simple American put

option, the early exercise premium is positive and can

be difficult to compute. These options do not have

simple analytical formulas for evaluation and require

an approximation or numerical method.

Other path–dependent options include Asian

options that depend on the average asset price until

maturity, barrier options that depend on whether the

asset price ever crosses a threshold (or thresholds), and

lookback options that depend on the extreme

(minimum or maximum) prices achieved by the

option. In these cases, Laplace transforms can yield

analytical expressions for these derivatives that can

then be inverted (Craddock et al. 2000; Kou 2008a, b).

Other analytical approaches include spectral methods

that, for example, yield formulas for Asian option

values (Linetsky 2004, 2008), and fast Hilbert

transform methods (Feng and Linetsky 2008).

In more general and complex settings, pricing can

require either numerical solutions of systems of partial

differential equations (PDE) or methods based on

Monte Carlo simulation. For PDE methods, basic

methods in a financial context appear in Tavella and

Randall (2000) and approaches appropriate for more

general conditions are given in Feng et al. (2008). For

Monte Carlo methods, Glasserman (2004) provides

a comprehensive review of this methodology’s use in

all areas of financial engineering.

Portfolio Optimization and Asset–Liability
Management

The discussion of the Fundamental Theorem of Asset

Pricing in the previous section on pricing applications

relied on the absence of arbitrage, i.e., the inability to

construct a portfolio of market securities to obtain

risk–less profits relative to any given market security.

In practice, portfolios include varying levels of

investment risk in exchange for a premium on the

return of the portfolio. A goal in portfolio

construction is then to find combinations to form an

efficient portfolio that obtains the lowest possible level

of risk for a given return.

Markowitz (1952) formulated this problem of

finding an efficient portfolio as a quadratic program

to minimize the variance of portfolio returns over

a fixed time period subject to meeting a constraint on

the expected return over that period. If the proportion

of wealth invested in asset i is xi for i ¼ 1; . . . ; n, the

expected return of asset i is ri with r ¼ ðr1; . . . ; rnÞT ,
and the covariance between returns on assets i and j is

sij, where sii ¼ s2i , the variance of the return on asset i,

with S ¼ ½sij�, then the Markowitz mean–variance

model with return target level r0 isto find

x ¼ ðx1; . . . ; xnÞT and portfolio variance vðr0Þ ¼

min xTSx (18)
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subject to rTx � r0; (19)

eTx ¼ 1; (20)

where e is a column vector containing all 1’s. The set

of solutions ðr0; vðr0ÞÞ defines the mean–variance

efficient frontier of portfolios. Much effort in financial

engineering involves finding efficient portfolios using

variations on the model in (18)–(20). The basic

extensions of the mean–variance model include

variations in the utility (which is quadratic here) or in

the assumptions on the distribution of returns. The

objective represents a wide–range of risk preferences

or utilities if returns are normally distributed (since the

return distribution of the portfolio is normal as well and

is determined by its mean and variance), but if the

distribution of returns is not normal, then the quadratic

form of preferences appears more restrictive (although

it could still be approximately correct). Any

implementation of (18)–(20) also requires estimates of

S and r, which can present some difficulties. Some of

the work on portfolio optimization in financial

engineering includes compensation for estimation

errors, as discussed in Kan and Zhou (2007).

Other approaches consider different utility

functions, which are particularly relevant for

non–normal distributions. One approach assumes that

S and r are only known to be within some range

(uncertainty set). This approach is called robust

portfolio optimization (Fabozzi et al. 2007;

Cornuéjols and T€ut€unc€u 2007). Other alternatives

consider different utility forms and non–Gaussian

return distributions.

An implication of the mean–variance model is that,

if everyone in the market believes the assumptions

leading to (18) and chooses an efficient portfolio,

then, in equilibrium, the price of each asset in the

market simply reflects that asset’s contribution to the

portfolio’s risk. The result is the Capital Asset Pricing

Model (CAPM), pioneered by Sharpe (1964) and

Lintner (1965), which states that, in an equilibrium,

if the market corresponds to an efficient portfolio with

expected return rm and variance on return s2m, then the

expected return of any asset i is given by:

ri ¼ rf þ biðrm � rf Þ; (21)

where rf is the risk–free rate and bi ¼ sim=s
2
m.

Many of the pricing models in financial engineering

use the CAPM as a basis for analysis (although not

necessarily as a direct pricing method). Empirical tests

of the CAPM suggest that prices may not completely

reflect (21) using standard proxies for the market return

such as a stock index, but it is not clear how to obtain or

measure rm, the return on the entire market (Fama and

MacBeth 1973; Ferson 2003). The market portfolio

may, however, be explained by multiple risk factors

such as an index and the differences in portfolios of

firms based on their size and leverage (Fama and

French 1993). This version would suggest that

ri ¼ rf þ bTi l; (22)

where l is the expected excess (i.e., above rf ) returns

on the relevant set of risk factors bi. This conclusion on
prices also arises from the Arbitrage Pricing Theory

(APT) of Ross (1976) that does not require all investors

in the market to follow a mean–variance strategy (but

that relies on the availability of many assets). In any

case, the relationship in (22) can provide a pricing tool

for financial engineering, and also an alternative for

constructing optimal portfolios, since the large

estimation requirements in determining S and r are

replaced with a reduced set for finding the bi
coefficients. In addition, a financial engineer may

have a particular view about a certain asset such that

ri � rf ¼ ai þ bTi l for some non–zero ai. In that case,

these views can be combined with the data estimates in

bi. A consistent methodology for this is the approach in

Black and Litterman (1992), which imposes views on

top of a prior based on the CAPM to obtain a posterior

distribution on returns.

Another difficulty in the form of (18) is that this

model is purely static, while portfolios change

dynamically over time. A dynamic version of the

mean–variance portfolio considers the utility of

a portfolio that is continuously adjusted over time. If

the prices of the assets all follow a process like (15) and

the drift is ri for asset i and Brownian motionWi given

with covariances S, then the value of a portfolio

beginning at time 0, which maintains a fraction xi in

asset i has a value at time T given by

wT ¼ eðr
Tx�xTSx=2ÞTþ

ffiffiffiffiffiffiffiffiffiffiffiffi
ðxTSxÞT

p
Z; (23)

where Z is a standard normal random variable. For

power constant–relative risk aversion, the utility
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function has the form wg=g for some g > 0 (or logðwTÞ
if g! 0), and the objective function becomes:

E½wg
T=g� ¼ egðr

Tx�1�g
2

xTSxÞ=g. The utility–maximizing

solution in this case is then again a mean–variance

efficient portfolio. If an (nþ 1)st risk–free asset is

included and the returns given as excess above the

risk–free rate, with xnþ1 ¼ 1�
Pn

i¼1 xi, effectively

removing the constraint for
Pn

i¼1 xi ¼ 1, the solution

is given by x� ¼ ðx�1; . . . ; x�nÞ
T ¼ S�1r

1�g
with 1�

Pn
i¼1 xi

invested in the risk–free asset. This dynamic portfolio

can then yield an inter temporal CAPM; see Fama

(1970); Merton (1973b); Constantinides (1982); and

Duffie (2003) for justification of CAPM pricing in

fairly general settings.

In practice, portfolio optimization requires

consideration of additional issues such as transaction

costs and delays, limited liquidity, and trading

restrictions, such as lock–in and vesting periods.

These practical considerations complicate models

beyond the simple form in (18) and require dynamic

considerations over time. In those cases, financial

engineering may provide control rules (typically

tested with Monte Carlo simulation) or more general

stochastic optimization formulations to find

xt; t ¼ 1; . . . , where xt 2 Xt (some feasible set

that may depend on state realizations) to maximize

(given x0)

X1

t¼1

E½ f tðxt�1; xt; stÞ�; (24)

where f t is the utility function, st represents a state

vector that is revealed over time and the decisions xt
can represent investment, consumption, and trading

activity, such as allocations in each asset or asset

class, purchases and sales of assets, consumption, and

commitments for future sales or purchases. A variety

of methods can then be used to solve these problems

that take advantage of structural properties of the

models; see the summary in Birge (2008).

Trading and Hedging

The dynamic model in (24) represents the general form

of models that can also be used for trading assets and

hedging their values over time. When the frequency of

trading increases, approximations are generally

required either in terms of the model parameters

(such as the objective) or the range of possible

controls. Examples described in this section focus on

shorter time horizons than those for the longer–period

asset allocation decisions in the previous section.

These situations include identifying and exploiting

arbitrage opportunities (or market inefficiencies)

across markets and securities, minimizing slippage

(excess transaction costs) to execute an order, and

maintaining a risk–neutral position for a derivative

security exposure.

The problem of identifying an exploitable arbitrage

requires the rapid consideration of what is often a large

number of prices and quick execution of the proposed

actions. A simple form of these trading examples

might include the comparison of the prices of

constituent prices in an index with a security

representing the index. Program trading often refers

to the practice of automatically identifying

discrepancies between these two quantities and

executing trades to take advantage of the difference.)

As a more computationally–focused application,

consider a set of European options (e.g., on an index)

on the same underlying, all with the same maturity.

Suppose the call options have a highest bid price bci
with vci contracts bid at that price and a lowest offered

or ask price aci with uci contracts at that price, and

suppose corresponding put options with bid prices b
p
i

with v
p
i contracts and ask prices a

p
i with u

p
i contracts, all

at strike prices, Ki; i ¼ 1; . . . ; n. The bid and offered

prices should reflect put–call parity and any other

relationship implied by the absence of arbitrage, but

occasionally trading in each option can lead to

inefficiencies that can be exploited (at least to the

depth of the orders at bid and offered prices).

A linear program can be used to discover these

pricing anomalies. Let xc	i and x
p	
i represent the

number of call and put option contracts, respectively,

with exercise Ki to trade, where the superscript

þ indicates a purchase and � indicates a sale. Net

borrowing is B at rate r (which can be positive or

negative here but could also correspond to two

variables with different rates for borrowing and

lending). The objective is to maximize payoffs at

maturity subject to constraints ensuring no losses:

max
Xnþ1

i¼1

pi (25)
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subject to

Xn

i¼1

ðbci x
c�
i þ b

p
i x

p�
i � aci x

cþ
i � a

p
i x

pþ
i Þ � B ¼ 0;

(26)

Xn

i¼1

ð�x
p�
i þ x

pþ
i Þ � 0; (27)

Xn

i¼1

ð�xc�i þ xcþi Þ � 0; (28)

Xn

i¼j

ð�ðKi � KjÞxp�i þ ðKi � KjÞxpþi Þ þ

Xj

i¼1

ð�ðKj � KiÞxc�i þ ðKj � KiÞxcþi Þ þ BerT � pi;

j ¼ 1; . . . ; n; (29)

0 � pi; 0 � xc� � uci ; 0 � xcþ � vci ; (30)

0 � xp� � u
p
i ; 0 � xpþ � v

p
i : (31)

Constraints (26) balance cash at origination of the

trade. Constraints (27) and (28) ensure no losses

outside the range of the exercise prices of options in

the market. Constraints (29) give the net proceeds at

each exercise price. If a positive objective (25) can

be attained, then trading at the current market

conditions produces a risk–less surplus at maturity

(although the trade is more likely to be un–wound

before maturity when the bid and ask orders return to

equilibrium).

Pure arbitrages, as when (25) has a positive value,

are rare in liquid markets and require rapid execution

before additional orders enter the market or previous

orders are withdrawn. More common arbitrages are

statistical in nature and depend on identifying when

current prices depart from an historically valid

statistical relationship among prices. Identification of

these opportunities may also involve optimization to

recognize the strength of the relationship and the

departure from the historical conditions and to design

a trading strategy that maximizes an objective that may

involve risk adjustment.

The identification of patterns or information not yet

absorbed in terms of price movements by the market

over longer time scales leads to longer–term trading

requirements for purchases and sales of varying

numbers of assets. When these numbers are large

relative to the market size, placing a market order for

the full number of shares can have a significant effect

on the price and add to the transaction or execution cost

(a phenomenon known as slippage). Optimization

methods can also be used to minimize slippage by

breaking an order for a large number of shares into

smaller orders that are submitted sequentially.

Models for optimally choosing these trade sizes

balance the price impact of execution with the risk

over price changes in delays in completing the

execution; examples are given in Bertsimas and Lo

(1998) and Almgren and Chriss (2000). In general,

these models use a dynamic program, with some

approximation. For example, suppose the goal is to

buy a total of s0 ¼
PT

t¼1 st shares with purchases

st � 0 at times t ¼ 1; . . . ; T; where the purchase

price ptðst; p�t Þ is a function of the number sold st and

the (ask) price p�t immediately before the tth

transaction, and the objective is an additive (convex

for risk–averse minimization) function, with

V1ðp�1 ; s0Þ ¼ min
s1;:::;sT�0:s0¼

PT

t¼1
st

E
XT

t¼1

utðptstÞ
" #

:

The Bellman equation for this dynamic program is

Vtðp�t ; sÞ ¼ min
st

futðptðst; p�t ÞstÞ

þ E½Vtþ1ðp�tþ1; s� stÞjpt; st�g
(32)

with boundary condition, VTðp�T ; sÞ ¼ uTðpTðs; p�T ÞsÞ.
Note that the price dynamics and value function in the

future may include some effect of the order size at time

t as well as the last price at t. The state space could also

be enlarged to include more order book information.

With a model of the effect on prices of differently sized

orders at different points in time and a model of price

dynamics, the dynamic program can be solved to

obtain an optimal (with respect to the model) policy.

Another trading function of financial engineers is to

maintain a hedging position for a trader with a net

position in a given derivative, e.g., either because the

trader is a market maker in an exchange–traded
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product (and is, therefore, obligated to accept

a fraction of the trades within some market

responsibility) or has sold an option over–the–counter

to a buyer. Much of this trading involves balancing the

changes in values from long and short positions using

the derivatives of the option prices with respect to the

underlying (called delta hedging), but the general

optimization framework in (25)–(31) can also be used

to minimize the cost in maintaining hedged positions

so that net positions do not vary as market conditions

change.

Risk Management

Risk management is another broad category of

financial engineering practice that generally refers to

identifying, analyzing, and controlling the impact of

uncertain conditions on financial performance. The

types of risks that can affect this performance include:

• Market risk, which generally refers to changes in

the prices of assets traded in the market;

• Credit risk, which refers to the likelihood of an

economic agent’s not fulfilling a financial

obligation, such as repaying a loan;

• Liquidity risk, which is sometimes paired with

market risk and refers to uncertainty in the depth

(or accessibility) of a market for an asset;

• Operational risk, which refers to the risks in

executing a process, such as a trade, as intended;

• Behavioral and environmental risk, which is used

here to refer to risks not captured in the other areas,

such as the prepayment risk of a mortgage loan due

to customer choice, changes in mortality affecting

the liabilities of a pension fund, changes in the

demand for electricity due to weather conditions,

and the risk of a regulatory change affecting the tax

treatment of an asset;

• Model risk, which is used as another broad category

to refer to the risk in basing actions on a model that

does not adequately reflect reality.

Comprehensive treatments of the financial

engineering applications in these areas appear in

McNeil et al. (2005) and, particularly for credit risk,

in Duffie and Singleton (2003) and Bielecki and

Rutkowski (2004).

The general use of derivatives and optimal

asset allocations is often for the purpose of managing

risks, such as a firm’s exposure to interest rate

movements or the exposure of a pension fund to

changes in the value of assets and liabilities. The

general approaches described in the previous sections

can then be used in those circumstances. Other risk

exposures focus on the reliability of other market

participants. An example of these different types of

exposures is the exposure of a bank to credit risk in the

form of defaults on loans.

The bank must maintain reserve funds as economic

capital to cover losses in the event of defaults.

Consider a simple example with n equally–sized

loans such that upon default each results in a loss (or

loss given default) of L. The bank wishes to reserve

sufficient economic capital C to cover all losses until

time t with some confidence levela. Alternatively, the

bank requires that no loss greater than C occurs with

probability greater than 1� a (or C is the a–level

Value–at–Risk (VaR) for this portfolio of loans).

The presentation here frames this requirement in

terms of reliability theory; see Barlow and Proschan

(1975) for fundamentals of reliability theory and

D’Amico et al. (2005) for an additional view of loan

portfolios from this perspective. In this framework, the

bank’s loan system fails if C=L or more of the n loans

default. This defines a k–of–n system (with

k ¼ C=Ld e). If the state of the system is given

by the structure function, fðx; C=Ld e; nÞ, where

x ¼ ðx1; . . . ; xnÞ are indicators for the functioning of

each loan, then

fðx; C=Ld e; nÞ ¼ 1
Xn

i¼1

xi �
C

L

( )

; (33)

where 1 �f g denotes the indicator function. Now, let

XiðtÞ be the random variable defined by XiðtÞ ¼ 1 if the

default time Ti of loan i satisfies Ti > t, and XiðtÞ ¼ 0

otherwise. The capital decision is then to find

C ¼ min
C

CjE½fðX; C=Ld e; nÞ� � a:f g (34)

Calculating the reliability depends critically on the

correlations between components of X. Vašı̀ček (1987)

gave a method for computing E½fðX; k; nÞ� that is

consistent with a CAPM model. This formula

assumes that each loan is the debt obligation of an

asset with future values consistent with a GBM

from a homogeneous set with a uniform correlation

r between the asset values of any pair of assets.
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If each loan in this setup has an equal probability p of

defaulting by time t, then

E½fðX; k; nÞ� ¼
Xn

l¼k

n

l

� �Z 1

�1
F

F�1ðpÞ � ffiffiffi
r

p
u

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� �l

1� F
F�1ðpÞ � ffiffiffi

r
p

u
ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� �� �n�l

dFðuÞ:

(35)

The limiting distribution on k ¼ ny for some

fraction y of all loans as n ! 1 is then

lim
n!1

E½fðX; ny; nÞ� ¼ F

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
F�1ðyÞ � F�1ðyÞ

ffiffiffi
r

p
� �

:

(36)

The formulae in (35) and (36) are useful in extending

results for k–of–n systems from standard formulas for

independent failures to those with a specific form of

correlation, but they require assumptions that are met

by few (if any) loan portfolios. They also can be used

(with appropriate change of the probability distributions

to reflect a risk premium) in computing the value of loan

portfolio derivatives, such as credit default obligations.

Practical financial engineering implementations in these

contexts should, however, involve more detailed

analyses to include differences from the simplifying

assumptions for (35) and (36). These extensions can,

for example, employMonte Carlo simulation to capture

the characteristics of each loan and their relationships.

In this model, the idiosyncratic components

and default correspond to a first passage time of the

asset below some level, as in the model of default of

Merton (1974), but perhaps not exactly equal to the

sum of obligations. Extensions of this model form the

basis for the methodologies used by Moody’s KMV

and RiskMetrics Group in their commercial

applications.

Concluding Remarks

Methods from operations research are widely applied in

financial engineering, with the main areas overviewed

here. The topics described illustrate how different

techniques from stochastic modeling, optimization,

dynamic systems, control, and reliability all contribute

to financial engineering practice.

See

▶Approximate Dynamic Programming

▶Bellman Optimality Equation

▶Conditional Value-at-Risk (CVaR)

▶Dynamic Programming

▶ Financial Markets

▶Markov Decision Processes

▶ Portfolio Theory: Mean-Variance Model

▶Risk Management for Software Engineering

▶ Simulation of Stochastic Discrete-Event Systems
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Introduction

Over the last half-century, a strong relationship

between operations research (OR) and finance has
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developed, resulting in a large and rapidly growing

literature. Although most applications have been of

OR techniques to finance, finance problems have also

stimulated the development and refinement of OR

techniques.

Finance problems, and especially those relating to

financial markets, are particularly well suited to

analysis using OR techniques. These problems are

generally separable and well defined, have a clear

objective (often to maximize profit or minimize risk),

and have variables which are quantified in monetary

terms. The relationships between the variables in

finance models are usually stable and well defined, so

that the resulting OR model is a good representation of

the problem. As there are few concerns about human

behavior ruling out the implementation of some

solutions, the solutions produced by the analysis can

usually be implemented. In addition, large amounts of

data, both historic and real-time, are readily available

and can be used in OR models. Some finance problems

involve very large sums of money, so that even a very

small improvement in the quality of the solution is

profitable to implement.

This review describes the application of OR to

problems in the analysis of financial markets (e.g. the

markets for debt, equity and foreign exchange markets

and the corresponding derivatives markets). A more

extensive analysis of OR in financial markets appears

in Board, Sutcliffe and Ziemba (2003). For a review of

the application of OR to other areas of finance, such as:

the management of the firm’s finances, working capital

management, capital investment, multinational

taxation, and financial planning models (such as

those developed for banks), see Ashford, Berry and

Dyson (1988).

Portfolio Theory

A seminal application of OR techniques to finance was

by Harry Markowitz (1952, 1987) when he specified

the portfolio problem in terms of optimization over the

assumed known means, variances and co-variances of

the assets available, and proposed the solution of this

problem through quadratic programming. In addition

to specifying the portfolio problem in terms of OR

techniques, Markowitz also developed solution

algorithms for more general quadratic programming

problems. This provides an example of the

interaction between OR techniques and finance, with

the former sometimes being adapted to meet the needs

of the latter.

The most obvious application of portfolio theory is

in choosing efficient equity portfolios, and empirical

papers (e.g., Board and Sutcliffe 1994; Perold 1984

have used quadratic programming for this problem).

The technique can also be applied more widely to

selecting portfolios of currencies, bonds, or

commercial loans. Multi-period portfolio problems

have been specified as dynamic programming

problems (Elton and Gruber 1971). Mulvey and

Vladimirou (1992) used a stochastic generalized

network model, and stochastic programming models

have become widely used (Ziemba 2003, 2010).

OR researchers have also modified or replaced the

quadratic programming approach to portfolio

problems, often by explicitly specifying the relevant

utility function and using stochastic linear

programming with recourse to model risk in

a multi-period framework. For example, Bradley and

Crane (1972) proposed forming bond portfolios to

maximize their expected value using stochastic linear

programming to allow for interest rate risk. The

scenarios included in portfolio models may be

generated by Monte Carlo simulation, prior to the use

of stochastic programming to maximize expected

utility, e.g., (Golub et al. 1995; Zenios 1991, 1993b;

Vassiadou-Zeniou and Zenios 1996; Zenios et al.

1998), who applied this approach to form portfolios

of mortgage backed securities.

The investment policy of a pension fund can be

formulated using asset-liability management (ALM)

models that allow for the correlations between the

values of the fund’s assets and liabilities. While these

problems can be formulated using quadratic

programming (Board and Sutcliffe 2005), they have

usually been solved in other ways (Ziemba andMulvey

1998; Wallace and Ziemba 2005). For example,

Mulvey (1994) assumed that the objective was to

maximize the expected value of a nonlinear utility of

wealth function, and specified the problem as

a nonlinear network problem, with the simulation of

future pension fund liabilities. Mulvey et al. (2008)

used multi-period stochastic programming to

determine investment policy for a defined benefit

pension scheme. Similar asset-liability problems are

also faced by insurance companies, for example

Cariño et al. (1994, 1998a, b) formulated this
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problem for a Japanese insurance company. Klaassen

(1998) pointed out that the use of Monte Carlo

simulation can bias the results by including arbitrage

opportunities in the sampled scenarios. To avoid this,

he aggregated an arbitrage-free event tree before its

inclusion in a multi-stage stochastic programming

model of the asset-liability problem. Surveys of

implemented ALM models and their theory are in

Ziemba (2003); Wallace and Ziemba (2005); Zenios

and Ziemba (2006, 2007).

Another application of quadratic programming is

generalized hedging in which the objective is usually

to minimize the variance of a portfolio of a given set of

assets and the chosen hedging instruments. If the

hedging instruments include options, this introduces

a nonlinearity into the hedging decision, and Murtagh

(1989) devised a nonlinear programming model to

hedge foreign currency exposure using a mixture of

currency forward and options contracts. Similarly,

quadratic programming has been used to construct

index tracking portfolios, where the purpose is to

select a portfolio of assets (e.g. equities or bonds)

which, when combined with a matching short

position in the index to be tracked, has minimum risk

(Meade and Salkin 1989, 1990; Rudd 1980; Seix and

Akhoury 1986). Multi-stage stochastic programming

with recourse, in conjunction with Monte Carlo

simulation to generate the scenarios, has been used

by Vassiadou-Zeniou and Zenios (1996) and Zenios

et al. (1998) to track an index of mortgage backed

securities; also see Zenios and Ziemba (2007).

A related problem is that of portfolio immunization

in which the objective is to construct a portfolio of

interest rate dependent securities whose value is the

same as some target asset (usually another interest rate

dependent asset). There is also a literature on

managing the assets and liabilities held by banks

(which are taken to exclude equities), where the

objective is usually to maximize the value (or

expected value) of the portfolio over one (or many)

time periods (net of penalty costs from constraint

target violations), subject to restrictions of the total

investment, maximum capital loss, and various bank

regulations. By matching the duration of the portfolio

with that of the target asset, the portfolio is immunized

against small parallel shifts in the yield curve (the yield

curve shows the interest rates for different maturities),

see Fong and Vasicek, (1983); Kornbluth and

Salkin, (1987); Nawalkha and Chambers, (1996);

Alexander and Resnick, (1985). These immunization

studies use a risk measure which does not

involve squares or cross products of the decision

variables, and so linear programming, not quadratic

programming, is the solution technique.

In some applications of portfolio theory, the

decision variables must be integer. Peterson and

Leuthold (1987) and Shanker (1993) used

quadratic-integer programming to compute hedging

strategies involving futures.

Some authors have argued that formulation and

solving quadratic-programming portfolio problems is

too onerous, and proposed simplified solution

techniques. Sharpe (1963) proposed a single index

model which can be solved by the use of special

purpose quadratic-programming algorithms. When

each asset represents only a small proportion of the

portfolio, Sharpe (1967) showed that his single index

model can be treated as having a linear objective

function. In 1971, Sharpe suggested using

a piecewise linear approximation to the quadratic

objective function, enabling the application of linear

programming to solve portfolio problems. Another

proposal is to minimize the mean absolute deviation

(MAD), which can be solved using linear

programming, rather than quadratic programming

(Konno and Yamazaki 1991, 1997; Yawitz et al.

1976; Zenios and Kang 1993; Worzel et al. 1994).

Another approach is to specify the problem as

choosing between a range of prespecified equity

portfolios using data envelopment analysis

(Premachandra et al. 1998). A further approach is to

reformulate the portfolio problem as a nonlinear

generalized network model for which efficient

solution algorithms exist (Mulvey 1987).

Portfolio problems, with the twin objectives of

maximizing returns and minimizing risk, can also be

viewed as goal programming problems with two goals.

Additional goals can be introduced, and a number of

authors have solved portfolio problems using goal

programming, among them Kumar, Philippatos and

Ezzell (1978), Kumar and Philippatos (1979), and Lee

and Lerro (1973). The stochastic programming

literature uses one objective, usually expected wealth

maximization, with targets for the other objectives. The

non-attainment of targets then yields convex penalties in

various periods for the goals. An implemented

application of this approach to the Siemens Austria

pension fund is Geyer and Ziemba (2008).
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Pricing Derivatives

It is very important when trading in financial markets

to have a good model for valuing the asset being

traded, and OR techniques have made a substantial

contribution in this area. Indeed, the very rapid

growth of these markets is partly due to the

application of OR techniques in pricing models.

In 1977, Boyle proposed the use of Monte Carlo

simulation as an alternative to the binomial model for

pricing options for which a closed form solution is not

readily available. Monte Carlo simulation has the

advantage over the binomial model that its

convergence rate is independent of the number of state

variables (e.g., the number of underlying asset prices

and interest rates), while that of the binomial model is

exponential in the number of state variables. Simulation

is used to generate paths for the price of the underlying

asset until maturity. The cash flows from the option for

each path, weighted by their risk neutral probabilities

(i.e., the probabilities which can be inferred from prices

by assuming that investors are risk neutral), are

discounted back to the present using the risk free rate,

allowing the average present value across all the sample

paths to be computed, thus yielding the current price of

the option (Boyle, Broadie and Glasserman 1997). As

well as generating option prices, Monte Carlo

simulation can be used to compute the sensitivities of

results to misspecification of model parameters,

including the hedge ratio, which are essential for many

trading strategies (Broadie and Glasserman 1996).

In the past, it was thought that Monte Carlo

simulation could not be used to price American style

options because no closed form solutions for their price

exist. This was considered a major problem, as the

majority of options are American style. Progress has

being made, however, in developing Monte Carlo

simulation techniques for pricing American style

options (Broadie and Glasserman 1997; Grant et al.

1997). Options have also been priced using finite

difference approximations, and Dempster and Hutton

(1996) and Dempster, Hutton and Richards (1998)

have proposed using linear programming to solve the

finite difference approximations to the price of

American style put options. In addition, American

style options can be priced using dynamic

programming, Dixit and Pindyck (1994).

Provided a price history is available, a neural

network can be trained to produce prices using

a specified set of inputs, which can then be used for

the out-of-sample pricing (Hutchinson et al. 1994;

Bennell and Sutcliffe 2004) of securities.

Mortgage backed securities (MBS) are created by

the securitization of a pool of mortgages. For any

specific mortgage, the borrower has the right to repay

the loan early (the prepayment option), or may default

on the payments of capital and interest. Thus, MBS are

hybrid securities, as they are variable interest rate

securities with an early exercise option. Monte Carlo

simulation can be used to generate interest rate paths

for future years. Forecasts of the mortgage prepayment

rates then permit the computation of the cash flows

from each interest rate path, and these sequences of

cash flows are used to value the MBS (Zenios 1993a;

Ben-Dov et al. 1992; Boyle 1989). This procedure,

which can be used to identify mispriced MBS in real

time, is computationally demanding and parallel (and

massively parallel) and distributed processing have

been used in the solution of the problem. Simulation

has also been used to price collateralized mortgage

obligations or CMOs (Paskov 1997). Other hybrid

securities, such as callable and putable bonds and

convertible bonds face similar valuation problems to

MBS and require similarly intensive solution methods.

There is an active secondary market in loan

portfolios which may carry a significant default risk.

Del Angel et al. (1998) used a Markov chain analysis

with 14 loan performance states and Monte Carlo

simulation to generate the probability distribution of

the present value of loan portfolios.

Trading Tactics

As well as accurately pricing financial securities,

traders are interested in finding imperfections in

financial markets which can be exploited to make

profits. One aspect of this is the search for weak form

inefficiency (i.e., that an asset’s past prices can be used

as the basis of a profitable trading rule). Among the

early attempts to find such exploitable regularities in

stock prices were use of Markov chains (Dryden 1968,

1969).

Arbitrageurs seek to exploit small price

discrepancies to give riskless profits, and network

models have been used to find arbitrage opportunities

between sets of currencies (Christofides et al. 1979;

Kornbluth and Salkin 1987; Mulvey 1987;
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Mulvey and Vladimirou 1992). This problem can be

specified as a maximal flow network, where the aim is

to maximize the flow of funds out of the network, or as

a shortest path network.

OR techniques have been widely used by hedge

funds to devise trading strategies. For example,

Shaw, Thorp and Ziemba (1995) show how to

construct and implement risk arbitrage in the

Japanese warrant market, while Mulvey, Ural, and

Zhang (2007) examine overlay strategies.

There has been a growing interest in using artificial

intelligence based techniques (expert systems, neural

networks, genetic algorithms, fuzzy logic, and

inductive learning) to develop trading strategies for

financial markets (Trippi and Turban 1993; Refenes

1995; Goonatilake and Treleaven 1995; Wong and

Selvi 1998). Such approaches have the advantage that

they can pick up nonlinear dynamics and require little

prior specification of the relationships involved.

Funding Decisions

OR techniques have also been used to help firms

determine the most appropriate method by which

to raise capital from the financial markets. Brick,

Mellon, Surkis and Mohl (1983) put forward

a chance-constrained linear programming model to

compute the values of the debt-equity ratio each

period that maximize the value of the firm. Other

studies have specified the choice between various

types of funding as a linear goal programming

problem (Hong 1981; Lee and Eom 1989).

A different approach to the debt problem is to

assume that the firm has found its desired debt-equity

ratio and is purely concerned with raising the requisite

debt as cheaply as possible. In this case, debt can be

treated like any other input to the productive process,

and inventory models used to determine the optimal

reorder times and quantities (Bierman 1966;

Litzenberger and Rutenberg 1972).

The design of callable bonds has been addressed by

Consiglio and Zenios (1997a, b), who used nonlinear

programming, while Holmer, Yang and Zenios (1998)

used a simulated annealing algorithm. Firms which

have issued callable debt face the bond-scheduling

problem in which they must decide when to call

(repay) the existing debt and refinance it with a new

issue, presumably at a lower cost. This is a dynamic

programming problem and has been modeled as such

by Weingartner (1967), Elton and Gruber (1971) and

Kraus (1973).

Finally, the problem facing borrowers of choosing

between alternative mortgage contracts (e.g., fixed

rate, variable rate and adjustable rate mortgages) has

been modeled using decision trees (Heian and Gale

1988; Luna and Reid 1986).

Strategic Problems

In recent years, some of the decisions facing traders

and market makers in financial markets have been

analyzed using game theory (O’Hara 1995; Dutta and

Madhavan 1997). Traders in stock markets seek to

trade at the most attractive prices, and large trades

are often broken up into a sequence of smaller trades

in an effort to minimize the price impact. This can be

viewed as a strategic problem, and Bertsimas and Lo

(1998) used stochastic dynamic programming to

compute an optimal trading strategy.

Powers (1987) applied game theory to the situation

where a company has two major shareholders, and

a large number of very small shareholders. This can

be modeled as an oceanic game, in which the two large

players behave strategically while the many small

shareholders (the ocean) do not. This approach can be

used to derive the highest price a large shareholder will

pay in the market for corporate control.

Regulatory and Legal Problems

Financial regulators have become increasingly

concerned about financial markets with their very

large and rapid international financial flows. OR

techniques have proved useful in regulating the

capital reserves held by banks and other financial

institutions to cover their risk exposure. OR

techniques have also been used to ensure compliance

with various legal requirements by designing

appropriate strategies, and to solve other legal

problems relating to financial markets.

A key regulatory issue is determining the capital

required by financial institutions to underpin their

activities in financial markets. An increasingly

popular approach to this problem is the value at risk

(VaR), which involves quantification of the lower tail
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of the probability distribution of outcomes from the

firm’s portfolio. Portfolios usually include options (or

financial securities with option-like characteristics),

and these have highly asymmetric payoffs. For such

securities, analytical solutions to finding the

probabilities in the lower tail of the pay off

distribution are unreliable. RiskmetricsTM uses

approximations of the probability tail behavior for

options that are at or near the money (an option is at-

the-money when the current price of the underlying

asset is close to the price at which the option can be

exercised), and Monte Carlo simulation for other

options positions (Morgan and Reuters 1996).

A related application of Monte Carlo simulation is

stress testing, which quantifies the sensitivity of

a portfolio to specified, often adverse market

scenarios. Some securities are also subject to credit

risk, which has a highly nonnormal distribution for

all instruments. Therefore, Monte Carlo simulation is

relevant to modeling the credit risk of portfolios of

financial instruments (e.g., loans, letters of credit,

bonds, trade credit, swaps, forwards) as in

CreditMetricsTM (Morgan 1997).

Data envelopment analysis has been used to assist

in bank regulation by measuring bank efficiency,

which is then used to predict bank failure (Barr et al.

1993; Bauer et al. 1998).

Traders are required to put up margin when they

trade options, and Rudd and Schroeder (1982) have

developed a linear programming model in which the

problem was modeled as a transportation problem.

An extensive set of rules governs the way in which

a to-be-announced MBS can be structured, leading to

a complex problem in devising a feasible solution. This

can be specified as a complicated integer programming

problem (with the objective of maximizing the

originator’s profit). Collateralized mortgage

obligations (CMOs) also involve the securitization of

a mortgage pool, but in this case the pool is structured

into a series of bonds (or tranches), each with

a different maturity and risks. Dahl, Meeraus and

Zenios (1993) have proposed a complex zero–one

programming model for solving this problem, with

the objective of maximizing the proceeds from the

issue.

Sharda (1987) proposed a linear programming

formulation to establish the maximum loss that

investors could have sustained from trading in

a company’s shares. This figure can then be used by

the company’s lawyers when fighting a lawsuit

claiming damages from a misleading statement by

the company.

In August 1982, the Kuwait Stock Market collapsed

leaving $94 billion of debt to be resolved. This led to

the problem of devising a fair method for distributing

the assets seized from insolvent brokers among the

other brokers and private investors. This problem was

solved using linear programming, which reduced the

total unresolved debt to $20 billion, saving an

estimated $10.34 billion in lawyer’s fees (Taha 1991;

Elimam et al. 1996, 1997).

Economic Understanding

OR can help in trying to understand the economic

forces shaping the finance sector. Using a linear

programming model of a bank, Ben-Horim and

Silber (1977) employed annual data to compute

movements in the shadow prices of the various

constraints. They suggested that a rise in the shadow

price of the deposits constraint led to the financial

innovation of negotiable CDs.

Arbitrage Pricing Theory (APT) seeks to identify

the factors which affect asset returns. Most tests of the

APT use factor analysis and have difficulty in

determining the number and definition of the factors

that influence asset returns. To overcome these

problems, Ahmadi (1993) suggested using a neural

network, which also has the advantage that the results

are distribution free.

Concluding Remarks

Mathematical programming is the OR technique that

has been most widely applied in financial markets.

Most types of mathematical programming have been

employed— linear, quadratic, nonlinear, integer, goal,

chance constrained, stochastic, fractional, DEA and

dynamic. Monte Carlo simulation is also widely used

in financial markets — mainly to value exotic options

and securities with embedded options, and to estimate

the VaR for various financial institutions. In some

cases the use of OR techniques has influenced the

way financial markets function since they permit

traders to make better decisions in less time. For

example, exotic options would trade with much wider
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bid-ask spreads, if they traded at all, in the absence of

the accurate prices computed using Monte Carlo

simulation.

Other OR techniques are less used in financial

markets. Arbitrage and multi-period portfolio

problems have been formulated as network models,

while market efficiency has been tested using neural

networks. Game theory has been applied to battles for

corporate control, decision trees to analyze mortgage

choice, inventory models to set the size and timing of

corporate bond issues, and Markov chains to valuing

loan portfolios and testing market efficiency. One

important OR technique — queueing theory — has

found little application in financial markets.

This review has shown that OR techniques have been

usefully applied to portfolio problems and the accurate

pricing of complex financial instruments. They are also

used by financial regulators and financial institutions in

setting capital adequacy standards.

See

▶Data Envelopment Analysis

▶Dynamic Programming

▶ Financial Engineering

▶Goal Programming

▶Linear Programming

▶Nonlinear Programming

▶ Portfolio Theory: Mean-Variance Model

▶Quadratic Programming

▶ Stochastic Programming

▶ Simulation of Stochastic Discrete-Event Systems
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Finite Source

When the potential number of customers who could

use a queueing system is finite, as in models of

machine repair.

See

▶Queueing Theory
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Introduction

Individuals and organizations make decisions where

fire safety is an explicit or implicit objective. Much of

the modeling available to support decisions where the

objective is explicit is drawn from an OR/MS concept

or is used within a larger OR/MS framework.

OR/MS professionals may find themselves working

on problems and for decision makers where part of the

relevant objective function involves a measure of fire

loss, risk, or safety. When that happens, they may want

to avail themselves of some of the fire safety models

and calculation methods developed in the fields of fire

protection engineering, fire safety engineering, and

fire safety science, to predict or estimate measures of

fire loss, risk or safety. Alternatively, the OR/MS

professional may encounter such models and methods

in the analytic work of others on their project team or

competing project teams or advocates. For any of these

reasons, those working on issues of fire safety will

want to be familiar with fire safety models and

applications.

Types of loss may involve fire damage to people or

property – the most familiar and most common

measures of interest – or may involve fire damage to

continuity of mission, business or operations; to the

environment; or to cultural heritage.

Among the tools in use, the term “fire model” is

normally reserved for physics-based models of the

spread of combustion products and other fire effects

through a defined space. The term “fire safety science”

is also normally used in this way. The OR/MS

professional, like the fire protection engineer, may

need other models and calculation methods to

complete an analysis, including:

• Models of the effects of fire on specified targets,

including the health of people (such as burn, heat

stress, and toxic effects) and the value and

functionality of objects (such as corrosion or

degradation of structural strength and integrity).

• Models of the behavior of people and the usage of

products, needed to produce timelines of locations

of potential targets which will, when combined with

timelines of fire conditions by location, produce

a timeline of degree of fire exposure for such targets.

OR/MS professionals may be asked to frame the

decision problem in terms of a fire risk assessment of

each of several alternative courses of action. Some of

the fire safety field’s fire risk assessment methods are

based on fire models and other physical models used

within a scenario-based structure. Other methods are

not so detailed.

This article provides the construct in which fire

safety objectives are established and an overview of

fire models and other physical models relevant to fire

safety evaluation in terms of the threat and the

potential consequences. Most of the material,

however, is devoted to an overview of fire risk

assessment methods.

Objective-Setting

A generic OR/MS formulation of a decision problem

identifies

• a set of controllable variables,

• a set of uncontrollable variables,

• a set of outcomes with measures of their

attractiveness, and

• a model that shows how controllable and

uncontrollable variables combine to produce

outcomes.

The analyst can then optimize the choice of

controllable variables or use the model to select the

best controllable variables from a limited set of

available alternatives.

F 576 Finite Source

http://dx.doi.org/10.1007/978-1-4419-1153-7_847


Some fire safety codes and standards have fairly

recently added explicit statements of their goals and

objectives. These include protection of people,

property, mission, environment, and cultural heritage.

Life safety is the most commonly regulated fire

safety objective. It is greatly focused on the occupants

of a building, but may also include people who respond

to fire emergencies and, in that capacity, may enter

a burning building. Measures of effectiveness are

typically in terms of expected mortality.

Property protection fire safety objectives may

include the facility (structure), as well as its contents

(processes, storage, etc.). In many cases, the property

protection risk management objective will be related to

limiting the spread of fire to a defined area and may be

converted to an expected loss value. It is also common

to first establish a monetary value for acceptable loss,

and then determine the maximum tolerable fire size

(i.e., the extent of fire and smoke spread and the

potential suppression agent damage that would lead

to the maximum tolerable loss).

Continuity of operations objectives typically reflect
the maximum tolerable downtime of a process, building

or facility due to fire. In many respects, objectives for

continuity of operations will follow the analysis used for

property loss, but the focus is on the cost associated with

a return to operations. Establishing continuity of

operations objectives requires the decision maker to

determine to what extent the organization understands

and values the process, building, facility, or concern.

Environmental protection objectives are typically

related to air pollution, ground water contamination,

ecosystem damage, and adverse health effects. They

may address sustainability issues as well, including

recycling and reuse of materials.

Cultural heritage resources represent intangible or
non-economic values that may not be recoverable. At

risk is the loss of resources such as architecture,

artifacts, and art from fire or fire fighting, or the

intrusion of fire safety systems on authenticity.

Controllable Variables, Outcomes, and
Measures of Attractiveness

In a fire safety context, the controllable variables might

be:

• the design characteristics of a building,

• the design characteristics of a burnable product,

• the design characteristics of an object that could

provide the ignition heat for a fire,

• the design characteristics of a product that is

required to contain, resist, or continue performing

a function despite exposure to fire,

• the design characteristics of equipment or a system

for fire detection or suppression, or

• the specifications for an educational or training

program.

As for outcomes and measures of their

attractiveness, it is likely that there will be a variety

of interested parties affected by the choices, and they

may all have a say in the specification of outcomes.

The conventional OR decision maker – who might be

the architect or builder of a building or the

manufacturer of a new product – is often constrained

by codes, standards, and regulations designed to limit

the potential harm from an approved design.

In this decision-making environment, analysis is

typically performed not as a multi-objective

constrained optimization problem, but as an exercise

in establishing equivalency; that is, demonstrating that

the outcomes associated with the candidate design will

be no worse than those that would have occurred with

a fully code-compliant conventional design, even if the

candidate design does not itself fully comply with the

more prescriptive requirements of the code.

Fire Models and Formal Scenario-Based
Analysis

It is almost never the case that one can identify, for

a fire safety problem, a complete set of controllable and

uncontrollable variables, each expressible on

a quantitative scale and each linked to needed data. If

one could do so, then it is even more unlikely that there

would be a validated model linking all variables to

each other and to the outcomes of interest. Some type

of simplification is necessary.

This section discusses scenario-based approaches to

analysis. The fire models described in this section are

particularly relevant when the decision maker or the

project team insist on the kind of detail and evidence of

validity associated with fire protection engineering,

which is to say, strong reliance on detailed

mathematical models of physical phenomena

supported by data taken primarily from laboratory

testing of the properties of materials, products,
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assemblies and systems. The next section discusses

qualitative, semi-quantitative, and purely statistical/

empirical methods.

Fire and Behavioral Scenarios

The universe of possible combinations of

uncontrollable variables is, in the fire safety analysis

world, the universe of possible fire and related

scenarios. A fire scenario describes fire conditions

as a function of spatial location and time, from

the beginning of the fire to its conclusion.

Related scenarios are used to provide parallel

characterizations of the locations and conditions of

potential targets of harm from the fire. Objects that

could be subject to property damage, environmental

damage, or cultural damage are likely to be fixed,

which means the scenario need only describe

locations and conditions at the start of the fire,

knowing that those locations and conditions will

not change during the fire. People who could be

injured or killed by fire are a different matter,

because they probably will change their locations

during the fire. Hence, fire scenarios are likely to be

used with behavioral scenarios to produce parallel

timelines for fire conditions and conditions of

potential victims.

Each scenario is a different kind of fire challenge to

the design. A scenario structure identifies a finite

number of scenarios, each of which represents many

like scenarios and all of which collectively capture the

universe. In a complete risk assessment, each

representative scenario is weighted by the combined

likelihood of the scenarios it represents. In a more

typical engineering analysis, a small number of

scenarios are considered to represent the most typical

and the distinct types of most challenging scenarios. In

either type of analysis, the same types of models are

used to calculate the predicted consequences (the

preferred term for the measure of attractiveness of the

predicted outcomes).

Models of Use in Scenario Analysis

There are several comprehensive references that

should be consulted for additional information on fire

safety models for scenario-based analysis: SFPE

Handbook, 2008; Engineering Guide: Fire Risk

Assessment, 2006; SFPE Engineering Guide to

Performance-Based Fire Protection, 2007; Olenick

and Carpenter 2003; NFPA 551 2007.

Fire Models

Fire models predict the change in heat and mass

(smoke) conditions over space and time. They do not

predict fire initiation or fire growth but rather predict

the spread of heat and combustion products. Such

models adapt the more general models of fluid

mechanics and heat transfer to the specific purpose of

fire modeling. (See most of Section 1 in the SFPE

Handbook).

Fire models differ greatly in granularity. The

earliest fire models treated each room or

compartment as a single zone, see Chapter 3–7, SFPE

(2008). For several decades, popular so-called zone

models used two-zone representations of each

compartment, taking advantage of the fact that within

a compartment, the most important and pronounced

variation in fire conditions is between the upper layer,

which fills with fire and smoke first, and the cleaner

lower layer, with the two layers separated by

a boundary that moves down over time.

Advances in computing speed and power have

shifted usage to so-called computational fluid

dynamics (CFD) or field models, see Chapter 3–8,

SFPE (2008). CFD models represent a compartment

by many small control volumes in a grid

representation. The laws of conservation of mass,

momentum, and energy are used to predict fire

conditions in successive time intervals. When zone

models were popular, CFD models were commonly

limited to representations in thousands of control

volumes, while today millions of control volumes are

often used in analyses that cost less and take less time

than the coarser-grid analyses of the past.

The more sophisticated the fire model is, the more

extensive are its associated data needs, including

quantities and burning properties of potential fuel

sources in the fire area and the spatial dimensions and

fire properties of the boundaries of compartments.

While there has been extensive verification and

validation work on CFD models, with associated

development of rules of good practice, there has been

far less work on the sensitivity of results to

variations in estimated data values for the many

uncontrollable variables used by the fire models that

must use estimates because of the absence of well-

established sources of data.

There is also a tradition of stochastic fire

models – notably Markov process (or state transition)

models and network model, see Chapter 3–14,

F 578 Fire Safety Modeling and Applications



SFPE (2008). Such models do not produce the kind of

detailed descriptions of fire conditions by place and

time that are produced by zone models, let alone CFD

models, but they can provide useful and valid

predictions when the fire safety problem does not

require such details. For example, it may be quite

sufficient for evaluation of a building design to know

which rooms and how many rooms were fire involved,

without knowing the heat and smoke conditions within

any room.

Network models have a notable advantage over

CFD and zone models in the area of phase change

events. The likelihood and time delay in burning

through a barrier, such as a door or wall, is more

easily modeled using a network model. The same can

be true for window breaking, a random event that

produces a qualitative change in ventilation for the

fire, and for the deformation or collapse of

a load-bearing element.

Traditional fire risk assessment models using event

trees can be modified to treat the spread of combustion

products as simply a set of events.

Modeling Fire Consequences for Scenario Analysis

Egress. There are a number of models available to

predict the movement of people in response to fire

cues, see Chapters 3-11, 12, 13 and 17, SFPE (2008).

Early models simplified the process in either of two

ways. Hydraulic-style models moved people through

corridors as if they were ball bearings in a tube. These

models tend to predict egress times far shorter than

those that are observed in practice. The other approach

was to construct a network model with a number of

embedded behavioral rules to guide behavioral

choices. Whereas the hydraulic model ignored

behavioral choices entirely, and thus was primarily of

value in modeling large buildings where the timeline

was dominated by travel over distance, the network

models were designed to concentrate primarily or

exclusively on behavior and were primarily of value

in modeling small buildings where travel distances are

short.

Some of the more popular current egress models

adapt the format of CFD fire models. These models

track the positions of individuals, as the hydraulic

models did not, and so they have been more easily

adapted to deal with queueing delays, as well as more

complex phenomena such as counter-flows. As with

CFD fire models, egress models tend to be more

simplified when they are required to model very large

spaces and buildings.

There is very little data available to support the

behavioral rules needed by egress models both during

and before egress. Empirical studies have found large

variations in the time spent before egress travel begins.

Most fire safety engineering studies assume that people

initiate egress shortly after a shared cue, such as

a building-wide fire alarm.

From a validation standpoint, most fatal victims of

fire are not fatally injured while trying to escape, and

almost no large-life-loss fires have involved multiple

deaths because egress took too long to complete.

If the fire safety analysis requires a fully developed

calculation of expected fire risk, then the failure to use

egress models that reflect common practice is a major

concern. If the fire safety analysis requires only

a focused assessment of equivalency to existing

codes, then one would be justified in examining only

those behavioral scenarios for which a fully

code-compliant design would produce acceptable

outcomes.

Toxicity and Damage. For assessments of loss of

life or health, models are needed to translate fire

conditions at the location of an individual with an

unacceptable adverse change in health. This is

generally referred to a toxicity model, although the

fire effects considered are not limited to toxic effects

of smoke, but also include heat effects and effects on

escape behavior, such as an inability to find the way to

safety through dense smoke, see Chapters 2–4, 2–6,

3–11, SFPE (2008).

A toxicity model is built on thresholds of cumulative

dose or instantaneous exposure (concentration) that

produce the level of effect defined as unsatisfactory.

There has been considerable controversy over the

selection of unsatisfactory levels and the specification

of thresholds. The earliest toxicity models

defined unsatisfactory effect as a lethal dose, which

focused attention on carbon monoxide and other

narcotic gases. The consensus has shifted to define

incapacitation as the unsatisfactory level on the

theory that an incapacitated person will be stuck in

place in a hazardous environment and is very likely

to receive a fatal dose before receiving needed

assistance to escape. This has broadened attention

to irritant gases, burns, heat stress, and fire effects

that act indirectly, such as smoke obscuration that

does not physically incapacitate the individual,
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but may make attempts to complete egress

ineffective. Standards developers are working on

even lower thresholds, corresponding to changes in

behavior and egress effectiveness, such as reduced

speed.

In addition to the controversy associated with

shifting the definition of unsatisfactory further and

further away from the fatal end-point, there are

controversies involved in the inference of human

thresholds from primarily animal-based data and on

the use of safety factors to reflect the variation in

sensitivities across people. The safety factors for

sensitivity sometimes appear to take a calculation

modification that would help to ensure safety and use

it inappropriately in a prediction of likely outcomes.

There is some evidence that the use of these standard

factors would predict far more deaths and injuries

under realistic fire conditions than actually occur.

Similar thinking is required – but is not nearly so

advanced – to convert physical fire conditions near

targets into estimates of property damage (for

example, due to corrosion or simple soiling) or

environmental damage (where the targets can be

plant and animal species or regions of air, water and

land that will, if contaminated, lead to harm to plants

and animals).

Fire safety analysis will often compensate for the

lack of advanced tools for calculating fire impact by

treating any movement of fire effects into the space

occupied by targets as an unacceptable outcome. This

will produce conservative results, but may not produce

practical results unless, for example, the lower zone of

a room filling with smoke is assumed to be completely

uncontaminated.

Cost. While not strictly part of the calculation of

fire consequences, cost will typically be part of the

overall assessment of acceptability. ASTM

Committee E06 has published a number of standards

to systematize the calculation of costs for various

building designs.

Modeling Likelihood for Scenario Analysis

Ignition. Most fire safety analyses treat ignition

empirically because the data are rarely available to

apply existing science about the conditions of

ignition for different materials.

If a building design is being assessed, it may be

enough to estimate the likelihood of different gross

types of initial burning rates (such as extended initial

smoldering, ordinary flaming, fast flaming, explosion)

and different areas of fire origin. The most challenging

areas of origin, however, may not be the most common

areas of fire origin.

The typical areas of origin are the rooms that are

normally occupied such as living rooms, kitchens,

bedrooms, offices, and other site-specific function

areas. Fires beginning in concealed spaces, structural

areas, or exterior surfaces or nearby properties such as

sheds or brush, all are far less common but collectively

represent a fire challenge with non-trivial likelihood

and possibly heightened potential to evade or defeat

protective measures.

Even empirical estimates can be improved through

the use of modeling. For example, fire incident data

can be used to estimate the annual likelihood of a fire

beginning with ignition of a piece of upholstered

furniture by a lit cigarette. Laboratory test data can

be used to distinguish the relative ease of ignition by

cigarette of different parts of the upholstered furniture

(for example, cushion, arm, crevice). By chaining

together probability estimates, one can develop

a final estimate of the needed likelihood specific to

the item in question.

As with reliability estimates, there are a number of

failure mode models that can also be used, beginning

with traditional fault trees, but there is rarely enough

data to obtain full value from these sophisticated

methods, and they tend to under-emphasize the

human errors that historically are involved in most

fire ignitions.

SystemReliability. For all the different elements of

fire safety built into a design, the decision to include

the element and the initial specifications of the element

will typically be controllable variables, but the status

of the element when fire begins will be an

uncontrollable variable. This is a generalization of

reliability. Will the element be in condition to

perform at all, and if so, will it be in condition to

perform as designed and intended? This would

include detection and suppression equipment that is

not able to respond at all or responds ineffectively

because of delay or some other problem, see

Chapter 5–3, SFPE (2008).

There are many models of system and equipment

failure, beginning with simple fault trees, but most

cases of failure for most types of protective

equipment are entirely or primarily due to human

error. Models of behavior are not nearly so well
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developed as models of equipment failure, and the data

to validate and support behavioral models is largely

lacking. For these reasons, fire safety analyses may use

empirically based estimates of needed reliability

parameters, although there are small quantities of

such data available, and the available estimates are

rarely able to distinguish different types of

equipment, let alone different designs, models or

brands.

Reliability is an issue not only for active systems

but also for passive features. Doors can be chocked

open. Walls can be penetrated by holes. Stairways can

be unenclosed and permit easy passage of fire and

smoke from floor to floor. Empirical data on these

failures are even more rare than data on failures of

active systems.

Uncertainty. All guidance documents to the use of

fire safety models emphasize the importance of

uncertainty analysis, but few fire safety analyses

provide depth or substantive treatment of uncertainty,

see Chapter 13, SFPE (2006) and Chapter 5–4, SFPE

(2008).

Research is underway to provide validation and

verification for some of the major classes of models,

including CFD models. Precision and bias statements

are also typically lacking for standard test methods,

and the nature of the major fire incident databases

makes it very difficult to meaningfully characterize

the uncertainty of estimates from the more detailed

databases, see Chapter 5–5, SFPE (2008).

Other Risk Models

The more formal approaches described in the previous

section tend to be relevant where the decision maker is

a regulatory body, seeking an engineering justification

for the design or adoption of a proposed requirement,

or a builder, seeking an engineering case for declaring

an innovative design equivalent in safety to

a conventional design that is fully compliant with an

existing code. Other fire-safety decision makers do not

require this level of engineering detail, which is

fortunate, because fire safety decisions often have to

be made under conditions where the data are sparse

and uncertain. The technical parameters of fire safety

evaluation are complex and involve a network of

interacting components, the interactions generally

being nonlinear and multidimensional.

Under such circumstances, are results more valid

when they come from a detailed engineering analysis

using extensive engineering judgment to fill in missing

data or from a less-detailed approach that does not

require such data but incorporates the key phenomena

and interactions in a way that makes sense

conceptually? Some decision makers, notably the

insurance industry and managers responsible for risk

management across a wide range of types of risk (not

just fire), have favored the latter approach and have

developed a number of different kinds of tools to

support such analysis.

Four types of fire risk models are discussed here:

• qualitative fire risk matrix,

• logic diagrams, including decision trees,

• fire risk indexing, and

• stress-strength models.

In the cases of the more generic concepts of logic

diagrams and probabilistic models, a specific example

of application to fire safety is presented.

Qualitative Fire Risk Matrix

Fire risk is generally considered a function of the two

characteristics of an unwanted event or fire scenario,

that is, likelihood (frequency) and consequence

(severity). Figure 1 illustrates that events with low

frequency or likelihood and low severity or

consequence have low risk while events with high

frequency and high severity are considered high risk.

Throughout the range of likelihood and

consequence, there are many levels of risk. The

concept of combining these characteristics in the

form of a graphical risk matrix was widely adopted in

the 1960’s as a systems safety technique for military

systems and was documented in MIL-STD-882 (DOD

1969). It has since been incorporated in fire risk

assessment guides produced by the National Fire

Frequency

Severity

LOW

HIGH

MODERATE

Fire Safety Modeling and Applications, Fig. 1 Fire Risk
Function
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Protection Association (NFPA 551 2007) and the

Society of Fire Protection Engineers (SFPE 2006).

The fire risk function can be quantified by applying

discrete measurement scales to the axes. It then

becomes a means of evaluating the relative level of

fire risk for representative fire scenarios involving

a building or other system. In this approach, each

hazard or fire scenario is assigned a probability level

and a severity category. Tables 1 and 2 below are

adapted from corresponding tables in MIL-STD-882

(DOD 1969).

The probability levels and severity categories can

then be used to represent the axes of a two-dimensional

risk matrix such as shown in Fig. 2.

Each fire scenario will have a likelihood category

(on the left of the matrix) and a consequence category

(at the bottom of the matrix). This will locate each fire

scenario within one of the 16 cells of the matrix.

According to a scenario’s location, the matrix

indicates that improbable scenarios with negligible

consequences (lower left) represent a low risk and

frequently occurring scenarios with greater

consequences (upper right) represent high risk levels.

Usually, fire scenarios of low risk are considered to

be acceptable. Conversely, fire scenarios of high risk

are unacceptable and must be eliminated or have

appropriate mitigation strategies implemented. Fire

scenarios of moderate risk need to be considered

carefully to address whether the risk needs to be

mitigated or can be considered to be acceptable.

These may be the scenarios that are chosen for more

detailed analysis such as that described in the previous

section. In such circumstances, the matrix operates like

a scenario triage tool.

Logic Diagrams, Including Decision Trees

The main tools for quantifying fire experience and

other forms of failure using information on basic

Fire SafetyModeling andApplications, Table 1 Probability
Levels

Frequent Likely to occur frequently (p > 0.1)

Probable Likely to occur several times in system life
(p > 0.001).

Occasional Unlikely to occur in a given system operation
(p > 10�6)

Remote So improbable it can be assumed this hazard will
not be experienced (p < 10�6).

Improbable Probability of occurrence cannot be distinguished
from zero (p ~ 0.0)

Fire Safety Modeling and Applications, Table 2 Severity
Categories

Negligible The impact of loss will be so minor that it would
have no discernible effect on the facility or its
operations.

Marginal The loss will have noticeable impact on the
facility. It may have to suspend some operations
briefly. Some monetary investments may be
necessary to restore to full operations. May cause
minor personal injury.

Critical Will cause personal injury or substantial
economic damage. Loss would not be disastrous,
but the facility would have to suspend at least part
of its operations immediately. Reopening the
facility would require significant monetary
investment.

Catastrophic Will produce death or multiple death or injuries,
or the impact on operations will be disastrous,
resulting in long-term or permanent closing. The
facility would cease to operate immediately after
the fire occurred

Probable

Occasional

Remote

Improbable

Negligible Marginal Critical Catastrophic

Key (Risk)

LOW MODERATE      HIGH

Fire Safety Modeling and Applications, Fig. 2 Risk Matrix
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events that contribute to this experience is the logic

diagram. There are a number of different types of logic

diagrams used in fire risk analysis, usually in the

structure of a tree. Among these are:

• Decision a tree

• Fault tree

• Success tree

• Event tree

• Cause-consequence diagram

Decision trees are logic diagrams used to represent

the outcomes of decisions and events made at different

levels. Fault trees are logic diagrams used to represent

the alternative ways in which a system can fail,

resulting in a critical event, referred to as the top

event in the tree. Success trees are logic diagrams

used to represent alternative ways in which a certain

goal can be achieved. They can be constructed as

the dual of a fault tree or separately as a qualitative

logic diagram such as the Fire Safety Concepts

Tree, discussed in more detail below. A quantified

fault or success tree applies probabilities at every

branch, which permits calculation of the overall

likelihood of success or failure – useful if the fire

safety objectives can be expressed qualitatively – and

analysis of which parts of the design provide the

greatest leverage to improve the overall likelihood of

success or failure.

Event trees are logic diagrams used to represent the

alternative ways in which a system can continue

following an initial critical event, e.g., fire.

Cause-consequence trees are logic diagrams that are

used to represent causes (backward in time) and

consequences (forward in time from a given critical

event). Both replace logical relationships with

temporal sequencing relationships. A quantified event

tree or cause-consequence tree applies probabilities to

branching points, similar to a quantified fault or

success tree, but also applies costs and benefits to

branching points and/or final outcomes. This permits

a quantitative calculation of overall risk.

Fire Safety Concepts Tree. The Fire Safety

Concepts Tree (FSCT) is a logic diagram with

a tree-root like structure (NFPA 550 2007). It

branches downward from specified fire safety

objectives to identify all possible means of achieving

fire safety. Fire safety objectives include life safety,

property protection, operational continuity,

environmental protection, and heritage preservation.

The FSCT is very comprehensive in terms of its

included objectives, and is widely used to obtain an

integrated overview of the key elements of a project

before more quantitative risk analysis is begun.

The Tree, as presented in the figures below, shows

the elements that must be considered in building fire

safety and the interrelationship of those elements. It

enables a building to be analyzed or designed by

progressively moving through the various levels of

events in a logical manner. Its success depends upon

the completeness by which each level of events is

satisfied. Lower levels on the decision tree, however,

do not represent a lower level of importance or

performance; they represent a means for achieving

the next higher level.

The Tree requires that the “Fire Safety Objective(s)”

(goals) be clearly identified. These objectives describe

the degree to which the building should protect its

occupants, property contents, continuity of operations,

and neighbors. The objectives should be stated with

enough detail that success or failure in meeting them is

clearly defined, rather than stated in broad or

general terms.

The life safety objective, for example, might state

that all occupants be safeguarded against the

intolerable or untenable effects of the fire. It may be

further stated that emergency personnel such as fire

fighters, who may be expected to stay in areas

considered too dangerous for the occupants, should

be protected against unexpected collapse of the

building or entrapment. A range of specific life safety

objectives may be appropriate for varying types of

occupancies. Nursing home requirements, for

example, are vastly different from those for offices,

and both differ from industrial occupancies or storage

facilities.

Prevent
fire

ignition

Manage
fire

Impact

Fire safety
objective(s)

+

The Tree provides the logic required to achieve fire

safety, i.e., it provides conditions whereby the fire

safety objectives can be satisfied, but it does not

provide the minimum condition required to achieve

those objectives. Thus, according to the Tree, the fire
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safety objectives can be met if fire ignition can be

prevented or if, given ignition, the fire can be

managed. This logical “OR” function is represented

by the symbol (+) on the Tree.

The “Prevent Fire Ignition” branch essentially is the

entry point for what could be elements of a fire

prevention code. Most of the concepts described in

this branch require continuous monitoring for

success. Consequently, the responsibility for

satisfactorily achieving the goal of fire prevention is

ultimately an owner/occupant responsibility.

However, some of the elements along the branch may

involve choices of the designer, such as the type of

central heating, main cooking, and electrical

distribution equipment to be used.

It is impossible to prevent completely the ignition of

fires in a building. Therefore, to reach the overall fire

safety objective, from a building design viewpoint,

a high degree of success in the “Manage Fire Impact”

branch assumes a significant role. After an ignition

occurs, all considerations shift to that branch to

achieve the fire safety objectives.

Manage
fire

impact

+

Manage
fire

Manage
exposed

According to the logic of the Tree, the impact of the

fire can be managed through either the “Manage Fire”

or “Manage Exposed” branches. The “OR” gate

indicates that the objectives may be reached through

either or both of the branches, as long as the path

selected completely satisfies the fire safety objective.

Naturally, it is acceptable to do both, which will

increase the probability of success over using only

one branch.

The Manage Fire objective can be achieved by any

of three different means:

(1) Controlling the combustion process,

(2) Suppressing the fire, or

(3) Controlling the fire by construction.

Here, again, any one of these branches of the Tree

will satisfy the Manage Fire event. Thus, for instance,

in some fires success is achieved where the building

construction controlled the fire. And in other fires,

success is achieved by controlling the combustion

process, either by controlling the fuel or the environment.

The “Suppress Fire” event is the output of a logical

“AND” gate, which signifies that all of the elements in

the level immediately below the gate are necessary to

achieve the event above the gate. To accomplish the

automatic suppression event, for example, all three

events–detecting the fire, initiating action, and

controlling the fire are necessary. Similarly, to

manually suppress the fire, all six events must take

place. The omission of any single event is sufficient

to break the chain and cause the failure of this

automatic suppression event.

In considering the Manage Exposed branch, it can

be successful either by limiting the amount or number

exposed or by safeguarding the exposed. For example,

the number of people as well as the amount or type of

property in a space may be restricted. Often this is

impractical. If this is the case, the objectives may still

be met by incorporating design features to safeguard

the exposed.

The exposed people or property may be safeguarded

either by moving them to a safe area of refuge or by

defending them in place. For example, people in

institutionalized occupancies such as hospitals, nursing

homes, or prisons must generally be defended in place.

To do this, the “Defend Exposed in Place” branchwould

be considered. On the other hand, alert, mobile

individuals, such as those expected in offices

or schools, could be moved to safeguard them from

fire exposure on either a short term or long range basis

depending upon other key design elements, such as a

checklist of actions that might be taken. For example,

“Provide Safe Destination.”

The distinct advantage of the FSCT is its systems

approach to fire safety. It considers all aspects of fire

safety and shows how they interact to influence

achievement of fire safety goals and objectives.

Usefulness of the Tree is in providing an overall

structure with which to analyze the potential impact

of requirements or design concepts on a particular fire

safety problem. It can support a decision to use

a nontraditional approach to fire safety when

accompanied by sound fire protection engineering

principles.

The FSCT Tree in its entirety has seven levels of

branches. A more complete description of the tree is
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found in National Fire Protection Association

document, NFPA 550, Guide to the Fire Safety

Concepts Tree (NFPA 550 2007), which also

contains detailed descriptions of tree elements,

a glossary, and an administrative action guide.

Fire Risk Indexing

Fire risk indexing (FRI) is representative of the

quantitative fire risk assessment that originated with

the insurance rating schedule in the early 20th century.

The approach has broadened to include a wide variety

of applications. In general, fire risk indexing assigns

values to selected variables based on professional

judgment and past experience. The selected variables

represent both positive and negative fire safety features

and the assigned values are then operated on by some

combination of arithmetic functions to arrive at

a single value. This single value can be compared to

other similar assessments or to a standard to rank the

fire risk. Examples of fire risk indexing are presently

included or referenced in current building and fire

safety codes. As opposed to the pass/fail criteria of

strict code compliance, indexing recognizes the value

of building attributes that are superior to code

requirements as well as the deficiencies. A broader

collection of fire risk indexing models has evolved

over the last 30 years.

Indexing refers to the agglomeration of measures of

two or more attributes to produce a single summary

measure that appropriately reflects all the included

attributes. For example, to estimate how cold the

weather feels a wind-chill factor combines the wind

speed and temperature into a single measure.

Characteristics of FRI. In the spectrum of fire risk

assessment methods, FRI is positioned between

qualitative checklists and analytical calculation

methods. While checklists can be endlessly

comprehensive in their scope, this is not always

practical or efficient, and the format provides no

quantitative decision-making risk information related

to either likelihood or severity of consequences. And

while analytical calculation can provide a detailed

level of resolution that is appealing to fire protection

engineers, it is expensive, time-consuming, and highly

dependent on large quantities of data, including

extensive use of engineering judgments. FRI has the

following characteristics:

• Greatly expands the usefulness of checklists by

incorporating quantitative measurement

• More practical than analytical calculation methods

by facilitating inclusion of fire hazards and safety

features for which proven fire models and necessary

experimental or field data are generally lacking,

e.g., fire department response.

• Can be designed to receive input and adjustment

from analytical calculations where appropriate.

Fire risk indexing applications come in many forms.

Among the most popular, as described in Chapters

5–10, 12, SFPE (2008), are:

• Fire Safety Evaluation System (FSES)

• International Existing Building Code (IEBC)

• DOW Fire and Explosion Index (FEI)

Decision Analysis Background of FRI. One of the
most common and most powerful heuristic

decision-making techniques is multiattribute

evaluation, an approach that is supported by a large

body of knowledge described in the literature of

decision analysis and management science.

Multiattribute evaluation is used to develop

simplified but robust models of complex systems.

Values are assigned to important attributes of the

problem based on professional judgment and

experience. These values are then operated on by

some combination of arithmetic functions to arrive at

a single score or index. The result can be compared

with other similar assessments or to a standard.

As implied above, fire safety decisions require

more than one attribute to capture all relevant aspects

of the consequences. If there are n attributes (x1, x2,

x3, . . . , xn) for a decision problem, then an evaluation

function E(x1, x2, x3, . . ., xn) needs to be determined

over these measures to conduct a performance

assessment. It has been established that if tradeoffs

among the attributes do not depend on the levels of

the remaining attributes, then a single measure of the

overall outcome of a system is given by

Eðx1; . . .; xi; . . .; xnÞ ¼ S
n

i¼1
wi Ri ðxiÞ

where the wi are weighting constants greater than zero

and the Ri(xi) are normalizing functions of the

attributes. Additional information is in Chapter 13,

Rasbash et al. (2004).

Management science has long dealt with this type of

problem. A large body of knowledge exists on the

subject of Multiattribute Evaluation, closely related
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to Multiattribute Decision Analysis, Multicriteria

Decision Making, and Multiattribute Utility Theory.

Stress-Strength Models

There are many nondeterministic modeling techniques

that have been applied to fire protection engineering

problems. These include both stochastic and

probabilistic approaches.

Stochastic models of fire growth predict the course

of fire development in a building. In these models,

various states occur sequentially in space and time

according to probability distributions. The most

common types of stochastic models used are

networks and Markov chains. Other approaches may

include randomwalks, diffusion processes, percolation

theory, and epidemiologic models, see Chapter 3–14,

SFPE (2008).

Probability models generally deal with a final

outcome such as success or failure of a fire safety

component, number of fire deaths, economic loss,

spatial extent of damage, etc. They consider the

outcome as a continuous random variable reaching

various levels according to a generated probability

distribution. Large values of the variable may follow

the extreme-value distribution, see Chapter 5–8,

SFPE (2008).

A promising method is the convolution integral or

stress-strength model. It is generally well-established

in structural integrity analysis and in civil and

mechanical engineering applications, thus making it

a naturally attractive overall framework for building

performance analyses where there are other

phenomena as well as fire at issue.

Convolution Integral. Fire safety incorporates

many concepts that are not discrete events, including

attributes that may exist in a greater or lesser degree,

e.g. combustibility, fire resistance, suppression,

etc. These attributes can be represented by

a probability distribution of occurrence over the

range of possible values. A critical value of such an

attribute may depend upon the level of another element

of the same form. For example, the necessary degree of

fire resistance, a continuous variable, is dependent on

the level of fire severity to which it is exposed, another

continuous variable. One way to combine these

elements to calculate the probability that a critical

value is reached or exceeded is by using

a convolution integral, also referred to as a stress-

strength model (Watts 1983).

Let X be a random variable denoting the maximum

stress encountered and let Y be a random variable

denoting the effective strength. Since the units of

stress and strength are the same, their probability

density functions may be plotted on the same axes.

When strength of the system is y*, then the reliability

of the system (i.e. the probability that the stress will be

less than the strength) is the area under the stress curve

to the left of y*:

P X � y�ð Þ ¼
ðy�

�1

f xð Þdx

If the exact strength (y*) is unknown, the reliability

is also a function of the strength distribution g(y):

P X � Yð Þ ¼
ð1

�1

ðy

�1

f xð Þg yð Þdxdy

¼
ð1

�1

Fx yð Þg yð Þdy

This is the usual form of the stress-strength model.

Stress-StrengthModel of a Fire Barrier. Let R be

a random variable that represents the fire resistance of

the barrier and let S represent the stress or the severity

of fire to which the barrier is exposed. Then the

characteristic of interest is the probability that the fire

resistance will be greater than the fire severity:

P R > Sð Þ ¼ P R=Sð Þ > 1:0½ �
¼ P X > 1:0ð Þ where X ¼ R=S

and

ln X ¼ ln R – ln S, by the properties of logarithms.

If R and S are lognormal random variables, then ln R

and ln S are normally distributed. It has been shown

that a linear combination of independent, normally

distributed random variables is also normally

distributed. Assuming, therefore, that the fire severity

and the fire barrier are independent,

Y ¼ lnX ¼ lnR� ln S

is a normally distributed random variable with mean

m ¼ mln R – mln S

and variance s2 ¼ s2ln R + s2ln S.
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Now the probability of interest may be expressed in

terms of the normal random variable Y:

P X > 1:0ð Þ ¼ P Y > ln 1:0ð Þ

¼ P Y > 0ð Þ

The standard normal variate is a normally

distributed random variable with a zero mean and

unit standard deviation. As any normal variate (x)

may be represented as a standard normal (z) by the

transformation z ¼ (x-m)/s.

Thus:

P Y > 0ð Þ ¼ P Z > � m=sð Þ½ �:

For any standard normal variable:

P X > xð Þ ¼ P X � ð�x½ Þ�

The probability may then be written in the more

usual form:

P R > Sð Þ ¼ P Z � m=sð Þ½ �:

Thus the probability of a given barrier withstanding

a given fire may be represented as a standard normal

random variable.

The convolution integral may be used to model the

relationship between two elements of fire safety

represented by probability distributions. This is

referred to in the structural engineering literature as

a stress-strength model. The barrier model presented is

similar to structural applications. However, this

concept is also applicable to the evaluation of

suppression systems by defining the convolution of

the suppressibility of the system and the

suppressibility of the fire. The model is equally

suitable in application to ignitibility or other similar

fire protection engineering concepts.

On a broader scale, the stress-strength model can be

used to evaluate life safety from fire. Two concepts that

are commonly used in this regard are ASET and RSET.

ASET is a measure of the Available Safe Egress Time,

a function of the space and fire growth. RSET is the

Required Safety Egress Time, typically determined by

calculation of the speed with which evacuation of

a building or fire area takes place. If ASET > RSET

then the premises are considered safe. Although

a safety factor is incorporated in the evaluation, the

many assumptions and variations that are inherent in

the calculations indicate that a probabilistic treatment

such as a stress-strength model, as has been adapted

(He 2010), may have useful advantages.

Concluding Remarks

Fire-safety decision making involves objectives,

available choices, and a surrounding framework that

indicates, with some degree of quantification, how the

choices translate into relative success in meeting the

objectives. This is a classic OR/MS formulation of

a decision problem. Some surrounding frameworks

make more extensive use of physical models and

laboratory data; they tend to be more attractive and

familiar to engineers and, therefore, more appropriate

when decision makers or project teams are most

attuned to an engineering style of decision making.

Other surrounding frameworks rely more on

bare-bones logic with limited quantification and that

primarily in probabilistic form; they tend to be more

attractive to decision makers for whom the engineering

aspects are embedded in a much larger statement of

the problem. In either setting, there are ways to use

OR/MS methods, and there are resources available

from other technical fields that can be used in

combination with OR/MS methods or in ways similar

to traditional OR/MS approaches.

See

▶Decision Analysis

▶Emergency Services

▶Multi-attribute Utility Theory

▶Multiple Criteria Decision Making
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Firing a Rule

The activity of carrying out the actions in a rule’s

conclusion, once it has been established that the

rule’s premise is true.

See

▶Artificial Intelligence

▶Expert Systems

First Feasible Solution

The feasible (usually basic) solution used to initiate the

Phase 2 procedure of the simplex method. The solution

satisfies both Ax ¼ b and x � 0. The first feasible

solution is often a product of the Phase I procedure

of the simplex method, while in other instances, it is

user-supplied or generated by previous solutions of the

problem.

See

▶ Phase I Procedure

▶ Phase II Procedure

▶ Simplex Method (Algorithm)

First-Fit Decreasing Algorithm

▶Bin-Packing

First-order Conditions

Conditions involving first derivatives.

Fixed-Charge Problem

A problem in which a one-time cost is incurred only if

the associated variable is positive. The fixed cost is

added to the linear variable cost. Problems with linear

constraints and fixed charges are usually reformulated

using subsidiary binary variables.

Fleet Assignment

See

▶Airline Industry Operations Research

Flexible Manufacturing Systems

Kathryn E. Stecke

The University of Texas at Dallas, Richardson,

TX, USA

Introduction

In the metal-cutting industry, a flexible manufacturing

system (FMS) is an integrated system of machine tools

linked by automated material handling. Because of

the versatility of the machine tools and the quick

(in seconds) cutting tool interchange capability, these

systems are quite flexible with respect to the number of

part types that can be produced simultaneously and in

low (sometimes unit) batch sizes. These systems can

be almost as flexible as a job shop, while having the

ability to attain nearly the efficiency of a well-balanced

assembly line.
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An FMS consists of several computer numerically

controlled machine tools, each capable of performing

many operations. Each machine tool has a limited

capacity tool magazine that holds all of the cutting

tools required to perform each operation. Once the

appropriate tools have been loaded in the tool

magazines, the machines are under computer control.

During system operation, the automatic tool

interchange capability of each machine allows no idle

set-up time in between consecutive operations or

between the use of consecutive tools. When a new

tool is required, the tool magazine rotates into

position, and the changer automatically interchanges

the new tool with the one that is in the spindle in

seconds. Each part type that is machined is defined

by several operations. Each operation requires several

cutting tools (about 5-20). All tools for each operation

need to occupy slots in one or more of the machine

tool’s magazine.

Each cutting tool takes 1, 3, or 5 slots in a magazine.

Magazines can have 40-160 slots, typically sixty to

eighty. Tools wear and break, so a computer needs to

track the “lives” of all tools. A tool that breaks during

the cut can severely damage the part and sometimes the

machine or spindle. Tools can be delivered to the FMS

either manually or automatically, for example, via

automated guided vehicles, with the delivered tools

manually or automatically loaded into the magazines.

Tooling information is discussed in Stecke (1983) and

Hirvikorpi et al. (2007).

An FMS has an automated materials handling

system that transports parts from machine to machine

and into and out of the system. These may consist of

wire-guided automated guided vehicles, a conveyor

system, or tow-line carts, with a pallet interchange

with the machines. The interfaces between the

materials handling system and the parts are pallets

and fixtures. Pallets sit on the cart and fixtures hold

and clamp the parts onto the pallets. Pallets are

identical and fixtures are usually of different types.

Thus, fixtures are able to hold securely different types

of parts and in different orientations. The number of

pallets in an FMS defines the maximum amount of

work-in-process inventory in the system.

After some machining, parts are often checked at

the machine by automatically interchanging a probe

into the spindle. The probe does some at-the-machine

inspection of the cuts that were made. After several

operations, a cart may bring the part to a washing

station to remove the chips before either further

machining, refixturing, or inspection.

An example of an FMS, built by Sundstrand

Machine Tool Company for Caterpillar Tractor

Company, is shown in Fig. 1 (Stecke and Solberg

1981). This FMS consists of four 5-axes mills (OM),

three 4-axes drills (OD), two vertical turning lathes

(VTL), and an inspection station. The parts machined

are housings for automatic transmissions—transmission

cases, transmission covers, an assembly of these two,

and several sizes of each.

Detailed descriptions of several systems can be

found in Stecke (1992). A decision to automate

should be based on both economic comparisons and

strategic considerations. Assuming that management

has decided that flexible manufacturing is appropriate

for a particular application, perhaps to increase

capacity in a certain department producing changing

products or for new families of part types, there are

many design issues that have to be addressed. Details

and descriptions of these design problems are given in

Stecke (1985, 1992).

The amount of flexibility that is needed or desired

has to be decided, as this helps to determine the degree

of automation and the type of FMS to be designed.

Impacting the latter decision is the type of automated

material handling system that will move the parts from

machine to machine and into and out of the system.

Browne et al. (1984), Sethi and Sethi (1990), and de

Treville et al. (2007) discuss a spectrum of flexibility

types and options.

LOAD-UNLOAD STATIONS

INSPECTION
MACHINEVTLVTL

OD OD OD

OM OMOMOM

Flexible Manufacturing

Systems, Fig. 1 Sundstrand/
Caterpillar FMS
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Efficient and accurate mathematical and other

models are useful in helping to define the appropriate

FMS design. See Buzacott and Yao 1986; Stecke 1983;

and Solberg 1977. Following the development and

subsequent implementation of the selected FMS

design, models are then useful in helping to set up

and schedule production through the system.

FMS Planning and Scheduling

Because of the quick automated cutting tool capability,

there is negligible set-up time associated with

a machine tool in between consecutive operations, as

long as all of the cutting tools required for that next

operation have previously been loaded into the

machine tool’s limited capacity tool magazine.

However, determining which cutting tools should be

placed in which tool magazine and then loading the

tools into the magazine requires some planning and

system set-up time. Those set-up decisions that have to

be made and implemented before the system can begin

to manufacture parts are called FMS planning

problems (Stecke 1983). When the system has been

set-up and can begin production, the remaining

problems are those of FMS scheduling.

The first FMS planning problem is to decide which

of the part types that have production requirements

(either forecasted demand or customer orders) should

be manufactured next during the same time over the

immediate time period. This information can be used

to help determine the amount of pooling among the

identical machine tools that can occur. Pooling, or

identically tooling all machines that are in the

same machine group, has many system benefits. For

example, alternative routes for parts are automatically

allowed, and machine breakdowns may not cause

production to stop. This is because all machine tools

in a group, being tooled identically, are able to perform

the same operations.

Another FMS planning problem is to determine the

relative ratios at which the selected part types should

be on the system. Making this decision correctly can

help an FMS to attain good utilization. The limited

numbers of pallets and fixtures of each fixture type

impact these production ratios. Finally, each

operation and its associated cutting tools of the

selected set of part types has to be assigned to one or

more of the machine tools in an intelligent manner.

Different loading objectives that can be followed are

applicable in different situations. When all of these

decisions have been made and the cutting tools

loaded into the selected tool magazines, production

can begin. Then the following FMS scheduling

problems have to be addressed.

These problems are concerned with the operation of

the system after it has been set up during the planning

stage. One problem is to determine an appropriate

policy to input the parts of the selected part types into

the FMS, or efficient means to determine which parts

to input next. He and Smith (2007) suggest an

approach.

Then, applicable algorithms to schedule

the operations of all parts through the system have to

be determined. Real-time scheduling is usually more

appropriate for these automated systems, as opposed to

a fixed schedule. Tool breakage, down machine tools,

etc., would totally disrupt a fixed schedule. However,

a fixed schedule is useful as an initial guideline to

follow. Potential scheduling methods range from

simple dispatching rules to sophisticated algorithms

having look-ahead capabilities. Machine breakdowns

and many other system disturbances should be

considered when developing scheduling and control

procedures. If the system is set-up during

the planning phase with sufficient care and flexibility,

the scheduling function will be much easier.

FMS control involves the continuous monitoring of

the system to be sure that it is doing what was planned

for it to do and is meeting the expectations set up for it.

For example, during the FMS design phase, policies

should be determined to handle breakdown situations

of many types. In any case, it is desirable to reallocate

operations and reload the cutting tools (if they have to

be) so that the tool changing time is minimized.

Monitoring procedures for both the processes and

cutting tool lives have to be specified, as well as

methods to collect data of various types, e.g.,

monitoring and breakdown. Tool life estimates

should be reviewed and updated. Reasons for process

errors have to be found—machine or pallet

misalignment, cutting tool wear and detection, chip

problems—and the problems corrected.

Because the planning and scheduling problems are

complex and require a lot of data to be considered,

many of these problems have been framed and

subdivided within a hierarchy. The solution of each

subproblem provides constraints on problems lower in
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the hierarchy. The partition of FMS problems into

planning (before time zero) and scheduling (after

production begins) is one example of a hierarchy.

The FMS planning problems are another hierarchical

decomposition of a system set-up problem. Stecke

(1983, 1985) describes hierarchical and iterative

approaches to several of these problems.

FMS Models

Models are useful in identifying key factors that

will affect system performance and to provide

insights into how a system behaves and how the

system components interact. Models should be

applied to help determine the appropriate procedures

to design and set up a system or strategies to help run

a system efficiently.

Depending on the amount of information that is

built into a particular model, simulation has the

potential to be the most detailed and flexible model,

allowing as much detail as desired or necessary to

mimic reality. Simulation can also potentially be the

most expensive and time-consuming to develop,

debug, and run. Many computer runs may be required

to investigate the possibilities before a decision is

made. Simulation has been used to help design an

FMS and to solve operation problems. Stecke (1981)

and Schriber and Stecke (1988) have used simulation

models to address some FMS planning and scheduling

problems.

Both open and closed queueing networks have been

used to model an FMS at an aggregate level of detail.

These models can take into account the interactions

and congestion of parts competing for the same

machines and the uncertainty and dynamics of an

FMS. Most simple queueing networks require as

input, certain average values, such as the average

processing time of an operation at a particular

machine tool and the average frequency of visits to

a machine. The outputs obtained are average values

and are useful for evaluating the performance of

a suggested system configuration. Such outputs

include the steady state expected production rate,

mean queue lengths, and machine utilizations.

Solberg (1977) first suggested the use of a simple,

single-class, multiserver, closed queueing network to

model an FMS. His computer program, called CAN-Q,

analyzes product-form queueing network FMS

models. A review of related analytical queueing

network models is given in Buzacott and Yao (1986).

Some FMS problems have been formulated

mathematically, either as nonlinear integer programs

or as linear and integer programs (Stecke 1983).

Depending on the problems, some formulations are

detailed and tractable and, thus, useful; other

formulations, however, are detailed and untractable.

Heuristics and algorithmic solution approaches have

been developed from the exact formulations. Stecke

(1992) describes other FMS models. Each model is

useful under different circumstances and for different

types of problems. For some problems, a hierarchy of

models is used to solve them. Several application areas

for flexible manufacturing are given in the following

sections.

Flexible Manufacturing Applied to Mass
Customization

A flexible manufacturing system can be a key tool for

companies that aim to compete using mass

customization or mass personalization. Mass

personalization has been defined to be a strategy

where a company can serve profitably a market of

one person at a time . . . rather an extreme application

of mass customization (Kumar 2007; Chen and

Tseng 2007). Kumar and Stecke (2007) develop

a methodology that measures the effectiveness of

a mass customization and personalization strategy

using a mass customization and mass personalization

effectiveness index. The ability of an FMS to produce

in batches of size one clearly is an advantage in

implementing a mass customization strategy. He and

Smith (2007) describe an algorithm that can be used

for this purpose. An FMS’s ease in producing variants

of existing products is clearly useful for mass

customization.

Planning Capacity in Flexible Manufacturing

For an FMS, if planned well, there is no setup time

in between consecutive operations, thus enabling

a very high capacity utilization. Various aspects of

capacity planning in flexible manufacturing are

discussed in Deif and ElMaraghy (2007),

Hassanzadeh and Maier-Speredelozzi (2007), and
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Zaeh and Mueller (2007). Koltai and Stecke (2008)

specify methods to calculate the available capacity in

an FMS without needing to specify part routes through

the system, providing a robust capacity planning tool.

Matta, Tomasella, and Valente (2007) address

capacity-level reconfiguration to match market

demands. A Markov decision problem considers both

capacity expansion and reduction possibilities.

Reconfigurable Manufacturing

A reconfigurable manufacturing system (RMS) is an

extension of an FMS where the system can be quickly

changed to provide significant capabilities

when needed that did not exist before. An example

is a rapid machine tool reconfiguration from

3-axis capability to 4-axis capability. This is not

a quick or easy accomplishment without significant

advance planning and new (reconfigurable) machine

tool design. Various aspects of reconfiguration

are discussed in Koren (2010) and Kuzgunkaya and

ElMaraghy (2007). Youssef and ElMaraghy (2007)

suggest approaches to determine an appropriate

RMS configuration that includes machine layout,

equipment selection, and assignment of operations to

machines.

See

▶ Job Shop Scheduling

▶Markov Decision Processes

▶Networks of Queues

▶ Production Management

▶ Simulation of Stochastic Discrete-Event Systems
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Float

The amount of time a project job can be delayed

without affecting the duration of the overall project.

Total float is the difference between the time that is

calculated to be available for a work item to be

completed and the estimated duration of that item.

See

▶Network Planning

Flow

The amount of goods or material that are sent from one

node (source) in a network to another node (sink).

See

▶Network Optimization

Flow Shop

▶ Scheduling and Sequencing

Flow Time

▶ Scheduling and Sequencing

FMS

▶ Flexible Manufacturing Systems
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Introduction

The field of forecasting is concerned with making

statements about matters that are currently unknown.

The terms forecast, prediction, projection, and

prognosis are interchangeable as commonly used.

Forecasting is also concerned with the effective

presentation and use of forecasts.

Useful knowledge comes from empirical

comparisons of alternatives and this entry is concerned

primarily with evidence-based or scientific procedures.

Scientific knowledge about forecasting has been

summarized as a set of principles that are available at

the Forecasting Principles Internet Web site.

Before forecasting, one should consider whether it

is necessary. Forecasting is needed only if there is

uncertainty; a forecast that the tide will turn is of no

value. Forecasts are also unnecessary when one can

control events. For example, predicting the

temperature in your home does not require

forecasting because you can control it. Nevertheless,

many situations are uncertain, and proper forecasting

procedures can help to reduce and assess uncertainty

and thereby help managers to make better decisions.
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Forecasting and Planning

Forecasting should not be confused with planning.

Whereas planning is concerned with what the planner

thinks the future should be like, forecasting is

concerned with what it will be like. Figure 1

summarizes the appropriate relationships between the

two activities.

Managers should start by planning. Forecasting

procedures are then used to predict outcomes for the

plans. If the managers do not like the forecasts, the

planning and forecasting processes can be repeated

until a plan is found that leads to forecasts of

acceptable outcomes. The best plan can then be

implemented and actual outcomes monitored so that

the feedback can be used in the next planning period.

Progress in Forecasting

A strong emphasis on empirical comparisons of

alternative methods has helped forecasting researchers

to achieve many advances in forecasting, especially

since 1980. The founding of the International Institute

of Forecasters, a multidisciplinary society of

researchers and practitioners, encouraged useful

forecasting research. The Institute established two

academic journals in the 1980s: the Journal of

Forecasting and the International Journal of

Forecasting. The Institute has also organized an

International Symposium on Forecasting every year

since 1981.

Perhaps the most influential paper in the field of

forecasting is the M-competition paper (Makridakis

et al. 1982). This paper was based on a study in

which forecasters were invited to describe and apply

the forecasting method that they thought would be best

for deriving forecasts for many times series. Entrants

submitted their forecasts to an umpire who calculated

the errors. This was the first in a series of

M-competition studies, the most recent being the

M3-Competition (Ord et al. 2000). The

M-competitions initiated a remarkable growth in

experimental studies and, consequently, a rapid

development in knowledge about forecasting. For

a summary of progress in forecasting to 2005, see

Armstrong (2006a).

Forecasting Methods

The Methodology Tree for Forecasting (Fig. 2)

is a classification schema of all forecasting

methods organized on the basis of the source of the

knowledge the forecaster has about the situation. Some

methods use primarily judgmental or qualitative

knowledge while others require statistical data. There

is an increasing integration in the use of judgment

and statistics in the procedures as one follows the

Tree down. Makridakis et al. (1998), and Armstrong

(1985) provide instructions on how to use many of the

methods.

The most common way to make forecasts is to ask

experts to think about a situation and predict what will

happen. If experts’ forecasts are derived in an

unstructured way the approach is referred to as

unaided judgment. It is fast, can be inexpensive when

few forecasts are needed, and can be appropriate when

small changes are expected. It is most likely to be

useful when the forecaster knows the situation well,

makes frequent forecasts, and gets good feedback

about the accuracy of his forecasts, as is the case with

short-term weather forecasting and sports betting.

Harvey (2001) described principles for improving

expert forecasts.

Expert forecasting refers to combining forecasts

obtained from experts using validated structured

techniques. Which method is most appropriate

depends on time constraints, dispersal of knowledge,

access to experts, expert motivation, and need for

confidentiality. To use expert forecasting methods,

one should obtain the services of between five and

twenty diverse experts who each have relevant

information. Pre-test questions to elicit forecasts from

the experts, and specify procedures for combining the

forecasts obtained from the experts (e.g., use the

median) in advance.

It is best if the experts do not make the their

forecasts in a traditional meeting (Armstrong 2006b).

The nominal group technique (NGT), developed by

Van de Ven and Delbecq (1974), avoids some of the

drawbacks that traditional meetings have for

forecasting by imposing a structure on the

interactions of the experts. Group members work

independently and generate individual forecasts. The

group then conducts an unstructured discussion to

deliberate on the problem. Finally, group members

work independently and provide their final forecasts.

The NGT forecast is a combination of the individuals’

final forecasts.

Consider also the Delphi method for combining the

forecasts of experts. Delphi involves at least two
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rounds of anonymous interaction between experts. An

administrator summarizes individual forecasts and

arguments and reports this feedback to participants

after each round. In the light of the feedback, the

participating experts provide revised forecasts and

further reasoning. The Delphi forecast is

a combination of the final round forecasts.

Rowe and Wright (2001) found that Delphi

improved accuracy over unstructured groups in five

studies, harmed accuracy in one, and the comparison

was inconclusive in two. In his summary of the

literature, Woudenberg (1991) also found Delphi

forecasts to be slightly superior to those from

unstructured interactions. Delphi is most suitable if

one expects experts to have different information, but

it can be conducted as a simple one-round survey for

situations in which experts possess similar

information. Software for conducting Delphi surveys

is available on the Internet, see Principles of

Forecasting and Delphi Survey Web sites.

Prediction markets can be useful for combining

forecasts to provide continuously updated numerical

or probability forecasts. In a prediction market,

anonymous participants reveal information by trading

contracts whose prices reflect the aggregated group

opinion. Incentives to participate in a market may be

monetary or non-monetary. Although prediction

markets seem promising, to date there has been no

published meta-analysis of the accuracy of prediction

market forecasts. For a discussion of the relative merits

of prediction markets and Delphi see Green et al.

(2007).

Where it is not possible or feasible to obtain

forecasts from several experts, ask a single expert to

provide a second forecast by assuming the first forecast

was wrong and specifically considering information

that was ignored when making the first forecast.

Herzog and Hertwig (2009) called this procedure

dialectical bootstrapping.

The structured analogies method uses information

about similar situations to obtain forecasts. Experts

identify situations that are analogous to a target

situation, describe similarities and differences to the

target, and then derive an overall similarity rating. The

outcome or decision implied by each expert’s top-rated

analogy is the structured analogies forecast from that

expert.

Green and Armstrong (2007) analyzed structured

analogies for the difficult problem of forecasting the

decisions people will make in conflict situations.

Data

Plans

yes
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Are forecasted
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When experts were able to identify two or more

analogies and their best analogy was from direct

experience, 60% of structured analogies forecasts were

accurate compared to 32% of experts’ unaided judgment

forecasts, the latter being little better than guessing.

Decomposition involves breaking down

a forecasting problem into components that are easier

to forecast than the aggregate problem. The

components are multiplicative (e.g., to forecast

a brand’s sales, one would separately forecast the

relevant population, the purchase rate of the product

type, and the market share of the brand).

Decomposition is most likely to be useful in

situations involving high uncertainty. High

uncertainty is common when making forecasts that

involve large numbers, such as a country’s GDP.

Results from three studies involving 15 tests and

found that under high uncertainty, judgmental

decomposition led to a 42% reduction in error

(MacGregor 2001). When the conditions for

decomposition were met, decomposition of time

series by causal forces reduced forecast errors by

two-thirds (Armstrong et al. 2005).

Judgmental bootstrapping is a method for

deriving a forecasting model by regressing experts’

forecasts against the information the experts used

to make their forecasts. The method is useful

when expert judgments have predictive validity

but data are scarce (e.g., forecasting new products)

and outcomes are difficult to observe (e.g., predicting

performance of executives). Once developed,

judgmental bootstrapping models are a low-cost

forecasting method. A meta-analysis found

judgmental bootstrapping to be more accurate than

unaided judgment in 8 of 11 comparisons. Two tests

found no difference, and one found a small loss in

accuracy. The typical error reduction was about 6%

(Armstrong 2006a).

Expert systems are forecasting rules derived from

the reasoning experts use when they make forecasts.
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They can be developed using knowledge from diverse

sources such as surveys, interviews of experts, or

protocol analysis in which the expert explains what

he is doing as he makes forecasts. A meta-analysis on

the predictive validity of the method found that expert

systems were more accurate than unaided judgment in

six comparisons, similar in one, and less accurate in

another. Expert systems were less accurate than

judgmental bootstrapping in two comparisons and

similar in two. Expert systems were more accurate

than econometric models in one comparison and as

accurate in two (Collopy et al. 2001).

If people have valid intentions or expectations

about how they would behave in a situation,

responses from surveys of intentions or expectations

can be used to make forecasts. Both methods are most

useful when (1) responses can be obtained from

a representative sample, (2) responses are based on

good knowledge, (3) respondents have no reason to

lie, and (4) new information is unlikely to change

people’s behavior. The Juster Scale, a zero-to-ten

probability scale, is recommended. For example, ask

a respondent how likely it is that the respondent will

make an international trip in the next 12 months.

A quantitative forecast for the population can be

derived by averaging the survey responses and

multiplying by the population. Intentions are more

limited than expectations in that they are most useful

when (a) the event is important to the respondent, (b) the

behavior is planned, and (c) the respondent can fulfill the

plan (e.g., their behavior is not dependent on the

behavior of others). Morwitz (2001) provided evidence

on the validity of the methods, and guidance on how to

conduct the surveys and analyze the data for forecasting.

A meta-analysis involving 47 comparisons with

over 10,000 subjects found a strong relationship

between intentions and behavior (Kim and Hunter

1993). Another meta-analysis found that purchase

intentions provide unbiased predictions of behavior

(Wright and MacRae 2007).

One can conduct experiments by varying key causal

variables in a systematic way, ensuring that the

changes do not correlate with one another. They can

be used to estimate relationships and use these

estimates to derive forecasts. Experiments can be

used for such problems as to predict the effects of

different policies or regulatory schemes, or to assess

the effectiveness of alternative advertisements. Test

markets for new products are a form of experiment.

Role playing involves asking people to think and

behave in ways that are consistent with a role and

situation described to them. Role playing for the

purpose of predicting the behavior of people who are

interacting with each other is called simulated

interaction. The decisions made in the simulated

interactions are used as forecasts of the actual

decision. Green (2005) found that 62% of simulated

interactions forecasts were accurate for eight diverse

conflict situations. By comparison, only 31% of

forecasts from the traditional approach (unaided

expert judgment) were accurate. Game theory

experts’ forecasts had a similar level of accuracy:

31%. Experts’ unaided judgment forecasts and game

theorists’ forecasts were little better than chance,

which was at 28% for the eight conflicts examined.

Simulated interaction is useful when little or no

quantitative data are available, when the situation to

forecast is unique or unusual, and when decision

makers wish to predict the effects of different

policies or strategies (e.g. what pay offer will avoid

a strike or what strategy is most likely to induce rebel

forces to surrender). Simulated interactions can be

conducted quite cheaply by using students to play the

roles. In a simplified form, they can also be conducted

rapidly. For example, the New Zealand Armed

Offenders Squad test different approaches for dealing

with an armed stand off by simulating each before

choosing which one to employ.

Conjoint analysis is a method for eliciting people’s

preferences for different possible offerings (e.g. for

alternative mobile phone designs or for different

political platforms) by exposing people to several

combinations of features (e.g. weight, price, and

screen size of a mobile phone.) The possibilities can

be set up as experiments where variations in each

variable are unrelated to variations in other variables.

Regression-like analyses are then used in order to

predict the combination of features that people will

find most desirable.

Extrapolation models use time-series data on the

situation of interest (e.g., data on automobile sales

from 1947–2010). One extrapolation method is

exponential smoothing, which implements the

principle that more recent data should be weighted

more heavily when forecasting. Quantitative

extrapolation methods do not use knowledge about

the situation but rather assume that the causal forces

that have shaped history will continue to the forecast

Forecasting 597 F

F



horizon. If this assumption turns out to be wrong,

forecast errors can be large. As a consequence, one

should only extrapolate trends when they are

consistent with the prior expectations of domain

experts and with long-term trends and variability.

Extrapolation can also be used for cross-sectional

data. For example, to predict whether a particular job

applicant will last more than a year on the job, one

could use the percentage of the last 50 people hired for

that type of job who lasted more than a year.

Armstrong (2001b) provides guidance on the use of

extrapolation. An example is the advice to be

conservative when the situation is uncertain, as is

usually the case with long forecast horizons. In such

a situation, one should reduce the magnitude of the

trend in the data as the forecast horizon increases,

a procedure known as trend damping.

Quantitative analogies are similar to structured

analogies with the exception that there is ample data

to analyze for each analogous situation. Experts

identify analogous situations for which time-series or

cross-sectional data are available, and rate the

similarity of each analogy to the target situation.

These inputs are used to derive a forecast. This

method is especially useful in situations with little

historical data. For example, one could average data

from cafés in suburbs identified by experts as similar to

a new (target) suburb in order to forecast demand for

the services of a café in the target suburb.

Rule-based forecasting combines expert domain

knowledge and statistical techniques for extrapolating

time series. Experts are used to identify features of the

forecasting problem that cannot be identified

automatically from the series to be forecast.

Primarily, experts are needed to identify the causal

forces that are acting on trends in the series. For

example, in forecasting the real price of oil, experts

might identify that, over the long-term, innovation and

discovery act as downward forces but may conclude

that, in the short term, political actions will lead to

upward pressure on prices. Rule-based forecasting

was found to be more accurate than extrapolation

methods that did not incorporate expert knowledge,

especially for long-term forecasts (Collopy and

Armstrong 1992).

Causal models include regression analysis, the index

method, and segmentation. These methods are useful

if data are available on variables that might affect

the situation of interest. Allen and Fildes (2001)

found that forecasts from causal models were more

accurate than forecasts derived from extrapolating

the dependent variable. Theory, prior research, and

expert domain knowledge provide information about

relationships between the variable to be forecast and

explanatory variables. Because causal models can

relate planning and decision-making variables to

forecasts, they can be used to forecast the effects of

different policies.

Regression analysis involves estimating the

coefficients of a causal model from historical data.

Models consist of one or more regression equations

used to represent the relationship between a dependent

variable and one or more explanatory variables. They

are useful in situations with few important variables

and many reliable observations that include data in

which the causal variables varied independently of

one another.

Important principles for developing regression

models are to (1) use prior knowledge and theory, not

statistical fit, for selecting variables and for specifying

the directions of effects, (2) use simple models, and

(3) discard variables if the relationship estimated from

the data conflicts with prior evidence on the nature of

the relationship.

Because regression models tend to over-fit data,

damping the estimated coefficients of a model tends

to improve out-of-sample forecast accuracy,

particularly if uncertainty is high as occurs when one

has small samples and many variables. As this

situation is common for many prediction problems,

unit (or equal weight) models – the most extreme

case of damping – often yield more accurate forecasts

than models with statistically fitted regression

coefficients (Dana and Dawes 2004). Cuzán and

Bundrick (2009) found that equal-weight versions of

prominent presidential election forecasting regression

models provided more accurate forecasts than the

original models.

Damping seasonal factors improves forecast

accuracy. Miller and Williams (2003, 2004)

developed a procedure for damping seasonal factors

estimated from historical data. When they applied the

procedure to the 1,428 monthly time series from the

M3-Competition, forecasts were more accurate for

68% of the series. Averaging seasonal factors

estimated from related series reduced forecast error

by about 20% in a study by Bunn and Vassilopoulos

(1999) and, in a study by Gorr et al. (2003), pooling of

F 598 Forecasting



seasonal crime rate factors across six precincts

increased forecast accuracy by 7%.

The index method is suitable for situations in which

many causal variables are important. Use prior

empirical evidence to identify predictor variables and

to assess each variable’s directional influence on the

outcome. Results from experiments are especially

valuable. If possible, draw on findings from meta-

analyses. If no data or prior studies are available,

independent expert judgments can be used to choose

the variables and determine the directions of their

effects. If prior knowledge is ambiguous or

contradictory and thus does not allow for estimating

a variable’s directional influence on the outcome, do

not include the variable in the model. Index scores are

calculated by adding the number of variables that favor

the outcome.

The index method is especially useful for selection

problems (e.g., which candidate will win an election or

which advertisement will pull best). If sufficient

historical data are available, index models can be

generated to predict numerical outcomes (e.g.,

a candidate’s vote-share) by regressing index scores

against historical data. The indexmethod can be used if

valid and reliable quantitative data are scarce relative

to the number of causal variables or if there is little

need for precision in estimating the magnitude of

relationships. Armstrong and Graefe (2011) describe

the use of the method to make early forecasts of the

outcomes of U.S. presidential elections from

biographical information about potential candidates.

Based on a list of 59 variables, their relative index

scores correctly predicted the winner in 27 of the 29

elections from 1896 to 2008.

For situations in which some causal variables are

much more important than others or if knowing about

one causal variable provides knowledge about other

causal variables, the take-the-best heuristic (TTB)

can be used to infer which of two alternatives is most

likely to occur (Gigerenzer and Goldstein 2006).

Czerlinksi, Gigerenzer, and Goldstein (1999)

compared take-the-best to models estimated using

multiple regression and unit-weight models for 20

prediction problems (e.g. forecasting high school

drop-out rates, mortality in U.S. cities, salaries of

college professors, and obesity among children) for

which the number of variables varied between 3 and

19. TTB out-of-sample forecasts were more accurate

than forecasts from unit-weight models and forecasts

from multiple regression models. Graefe and

Armstrong (2012) used TTB to predict the outcomes

of the ten U.S. presidential elections from 1972 to 2008

based on information about how well voters believed

the candidates would deal with the most important

issue facing the country. The TTB model forecasts

were similarly accurate to forecasts from methods

that incorporate substantially more information,

including econometric models and prediction markets.

Segmentation can be applied when a heterogeneous

whole can be divided into homogenous parts of

roughly equal importance that respond to changes in

different ways, and that can be forecast more

accurately than the whole. For example, in the airline

industry, price changes have different effects on

business and personal travelers.

Segmentation is useful when large changes are

expected. It is more appropriate than regression

analysis when the situation involves interactions

among variables, non-linear effects, or causal

priorities. Segmentation does, however, require good

prior knowledge about the problem and very large

sample sizes. Use a priori analysis to identify causal

variables and causal priorities. Specify the cut-points

(divisions) that will define the segments using a priori

analysis in conjunction with inspection of the data.

Appropriate forecasting methods should be used to

forecast the population and the behavior of individual

segments.

Experts prefer the bottom-up approach for

segmentation because it allows them to more

effectively use their knowledge about the problem.

Segmentation is also advantageous because the

forecasting errors in the different segments may

offset one another. For example, assume that there

are ten divisions in a company. Accuracy might be

improved by forecasting each division separately,

then adding the forecasts. But caution is in order: if

the samples of data for the segments are small and the

data are erratic, the forecasts might contain very large

errors.

Favorable results were obtained in a number of

comparative studies on segmentation Armstrong

(1985, p. 286–287 and 412–420). Dangerfield and

Morris (1992), in their study on bottom-up

forecasting, found that forecasts from segmentation

were more accurate than global forecasts for 74% of

192 monthly time series from the M-Competition. In

a study involving seven teams making estimates of the
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time required to complete two software projects,

Jørgensen (2004) found that the error from the

bottom-up forecasts was 51% less than that for the

top-down approach.

Selection of Methods

The Forecasting Method Selection Tree, shown in

Fig. 3, provides guidance on selecting the best

forecasting methods for a given problem. The Tree

has been derived from evidence-based principles.

Users of this Tree must answer questions about the

availability of data and the state of knowledge about

the situation for which forecasts are required.

The first question is whether sufficient objective

data are available to perform statistical analyses. If

not, one must use judgmental methods.

In deciding among judgmental procedures, one

must assess whether the future is likely to be

substantially different from the past, whether policy

analysis is needed and whether the situation involves

decision makers who have conflicting interests. Other

considerations are whether forecasts are made for

recurrent and well-known problems, whether domain

knowledge is available, and whether information about

similar problems is available.

If much objective data are available and it is

therefore possible to use quantitative methods, the

forecaster has to determine first whether there is

useful knowledge about causal relationships, whether

cross-sectional or time-series data are available, and

whether large changes are involved.

For situations about which there is little empirical

knowledge about relationships, one needs to assess

whether policy analysis is required and whether there

is expert domain knowledge about the situation.

If there is good prior knowledge about empirical

relationships and the future can be expected to differ

substantially from the past, the number of variables and
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the presence or absence of interactions among them, and

the number of observations determine which causal

method can be used. For example, regression models

that rely on non-experimental data can typically use no

more than 3 or 4 variables – even with massive sample

sizes. For problems involving many causal variables,

variable weights should not be estimated from the

dataset (Dana and Dawes 2004). Instead one should to

draw on independent sources of evidence (such as

empirical studies and experts’ domain knowledge) for

assessing the impact of each variable on the outcome.

The Forecasting Method Selection Tree provides

guidance, but on its own the guidance is not

comprehensive. Forecasters may have difficulty

identifying which conditions apply to the situation

they wish to forecast. In that case, use different

methods that draw on different information, and

combine the forecasts according to rules determined

before the forecasts were made. Imagine you have two

forecasts of a quantity: how big would the error of the

second forecast need to be in order for the error of the

average of the two forecasts to be larger than the error

of the first forecast alone? The answer is that the error

of the second forecast would need to be bigger than the

error of the first forecast if the error was in the same

direction (sign) and more than three times the error of

the first forecast if the error had the opposite sign.

To increase the likelihood that two forecasts bracket

the true value, use forecasts that differ substantially.

Batchelor and Dua (1995) found that the extent and

probability of error reduction through combining were

higher the greater the differences in the underlying

theory or method that produced the component

forecasts. For example, when combining real GNP

forecasts, combining the 5% of forecasts that were

most similar in their underlying theory reduced the

error compared to the typical forecast by 11%. By

comparison, combining the 5% of forecasts that were

most diverse in their underlying theory yielded an error

reduction of 23%.

Simple averages are a good starting point for

combining forecasts. Differential weights should only

be used if there is strong evidence about the relative

accuracy of forecasts from the different methods. The

relative accuracy of forecasts from different methods

depends on the conditions. For example, in situations

where uncertainty was high, trend extrapolation should

be weighted less heavily and naı̈ve extrapolation more

heavily (Collopy and Armstrong 1992).

A meta-analysis of 30 studies found that combined

forecasts (typically averages of different forecasts

from a single type of method) yielded a 12%

reduction in error compared to the average error of

the components. The reductions of forecast error

ranged from 3 to 24%. In addition, the combined

forecasts were often more accurate than the most

accurate component (Armstrong 2001c). Studies

since that meta-analysis suggest that under favorable

conditions (i.e., when forecasts are made for an

uncertain situation, and many forecasts are available

from several valid methods and different data sources)

combining reduces errors almost by half (Graefe et al.

2011). Combining forecasts is especially useful if the

forecaster wants to avoid large errors and if there is

uncertainty about which method will be most accurate.

The final issue addressed in the Selection Tree is

whether important information has been omitted in the

process of deriving a forecast. One should consider

adjustments to the forecasts only when the data do

not fully reflect recent events, or experts know about

events or changes to come, or key variables were not

included in the forecasting process. If one or more of

these conditions are met, the forecaster should provide

written instructions on how the forecasts will be

adjusted, solicit written adjustments from diverse

experts, ask for adjustments before the experts see the

forecasts, and record reasons for the adjustments

(Goodwin 2005).

Judgmental adjustments should be avoided with

cross-sectional forecasts such as who will be the most

useful employee or whether to operate on a patient.

Meehl (1956) summed up the evidence on making

predictions about people as follows “. . . the first rule

to follow. . . is to carefully avoid talking to him, and the

second rule is to avoid thinking about him.” Lewis

(2003) described how Billy Bean, the manager of the

Oakland Athletics baseball team followed this advice

by contracting players to fit the needs of the team using

only performance statistics. The result was a team that

won games. Other teams have decided that to be

competitive they must also use such methods.

Measuring Accuracy

Use error measures that are relevant to the decision.

Ideally, error measures should allow for comparing the

benefits from improved accuracy with the costs for

obtaining the improvement. This can be difficult to

assess in some situations, so one might simply use
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the method or methods that provide the most accurate

forecasts for the situation. Useful error measures

include Mean Absolute Deviation (MAD), Mean (or

Median) Absolute Percentage Error (MAPE or

MdAPE), and Median Relative Absolute Error

(MdRAE). The latter is calculated by dividing the

absolute forecast error for a proposed model by the

corresponding error for the random walk. The random

walk is a simple and easy to understand benchmark

model in forecasting. It uses the latest observation as

the forecast for all periods in the forecast horizon.

These measures are calculated as the mean or median

of the following statistics:

AD¼ F�Aj j APE¼ F�A

A

				

				 RAE¼ F�A

Frw�A

				

				

where F is the forecast, A is the actual value, and rw is

the random walk method.

The selection of a measure depends upon the

purpose of the analysis. For example, when making

comparisons of accuracy across a set of time series, it is

important to control for scale, the relative difficulty of

forecasting each series, and the number of forecasts

being examined (Armstrong and Collopy 1992).

Two measures of error should be avoided. The first

of these, R2 (which assesses the pattern of the forecasts

relative to that of the actual data), is not particularly

useful to forecasters and its use does more harm than

good when choosing a model to forecast time-series

data. The secondmeasure to avoid, Mean Square Error,

should not be used because it is unreliable and difficult

to explain to decision makers (Armstrong 2001d).

Assessing Forecast Uncertainty

In addition to improving accuracy, forecasting is also

concerned with assessing uncertainty. Early

approaches to assessing uncertainty used measures of

how well forecasts fit historical data as a way to infer

forecast uncertainty. This approach can in some cases

provide reasonable approximations of prediction

intervals for forecasts based on models derived using

cross-sectional data, such as with forecasts of how

much a house will sell for. However, for time-series

data, the historical fit typically leads to prediction

intervals that are too narrow. Some empirical studies

have shown that over half of actual outcomes are

outside the 95% confidence intervals estimated using

historical data (Makridakis et al. 1987).

The best approach to assessing forecast uncertainty

is to simulate the forecasting situation as closely as

possible. Thus, to determine how well one can forecast

two years into the future, one examines a sample of ex

ante two-year-ahead forecasts and the corresponding

actual values. Ex ante means that one looks as if from

before and does do not use knowledge about the

situation after the starting point for forecasting.

Chatfield (2001) describes proper procedures for

estimating prediction intervals.

Use of Forecasts

Whether a forecast is used or not depends not only on

the intrinsic merit of the forecast, but also the

willingness of decision-makers to accept it. Expert

reasoning can be persuasive for decision makers.

Nevertheless, accurate forecasts are often ignored,

particularly when they involve bad news or imply

that change is necessary. If possible, one should ask

the decision maker to agree on the methods that will be

used and to commit to accept forecasts from the agreed

upon process.

Scenarios, which are detailed stories about what

happened in the future, can increase the chances

a forecast will be used by making the forecast seem

likely to occur. Techniques for scenario writing

include using concrete examples, showing a logical

sequence of causal events, using past tense, and

having decision makers describe how they would

have acted in each scenario (Gregory and Duran 2001).

Concluding Remarks

Progress in forecasting has been due primarily to

empirical testing of alternative approaches.

Forecasting research has begun to address the

conditions under which different methods are most

useful. These research strategies have provided many

useful findings that have been summarized as

principles. The principles can help to improve

accuracy, assess uncertainty, and gain the acceptance

of forecasts. Often research findings conflict with the

expectations of statisticians and decision makers. The

conflicts between standard practice on the one hand

and empirical findings on the other have meant that

practitioners and academics have often been slow to

adopt new methods and improved procedures. That

state of affairs means that for those who are willing
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to use the findings of forecasting research will have

many opportunities to improve forecasting and

decision-making.

See

▶Delphi Method

▶Expert Systems

▶Exponential Smoothing

▶Regression Analysis
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Forward Chaining

An approach to reasoning in which an inference engine

determines the effect of current known variable values

on unknown variables by firing all rules whose

premises can be established as being true.

See

▶Artificial Intelligence

▶Expert Systems

Forward Kolmogorov Equations

In a continuous timeMarkov chain {X(t)}, define pij (t)

as the probability that X(t + s) ¼ j, given that

X(s) ¼ i, for s, t � 0, and rij as the transition rate out

of state i to state j. Then Kolmogorov’s forward

equations say that, for all states i,j and times t � 0,

dpij (t)/dt ¼
P

k 6¼jrkj pik (t) � nj pij (t), where nk is the

transition rate out of state k, nk ¼
P

j rkj.

See

▶Markov Chains

▶Markov Processes

Forward-Recurrence Time

Suppose events occur at epochs T1, T2, . . . such that the

interevent times Tk � Tk � 1 are IID positive random

variables. Then the forward recurrence time from an

arbitrary time t is the time from t to the next

occurrence.

See

▶ Point Stochastic Processes

▶Renewal Process

Fourier Transform

For any function f(t), its Fourier transform is defined

as fbðsÞ ¼
R1
�1 e�2pistf ðtÞdt, which is equal to

E½e�2pisX� if f(t) is a probability density function for

random variable X, where i denotes the imaginary

number √�1.
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Fourier-Motzkin Elimination Method

A computational procedure for solving a system of

linear inequalities.

Fractional Programming

Siegfried Schaible

University of California, Riverside, CA, USA

Introduction

Certain decision problems in OR/MS, as well as other

extremum problems, give rise to the optimization of

ratios. Constrained ratio optimization problems are

commonly called fractional programs. They may

involve more than one ratio in the objective function.

One of the earliest fractional programs (though not

called so) is an equilibrium model for an expanding

economy in which the growth rate is determined as the

maximum of the smallest of several output–input ratios

(vonNeumann 1937, 1945). Since then, but mostly after

the classical paper by Charnes and Cooper (1962), some

nine hundred publications have appeared in fractional

programming; for comprehensive bibliographies,

see Schaible (1982, 1993). Monographs solely devoted

to fractional programming include Schaible (1978)

and Craven (1988).

Almost from the beginning, fractional programming

has been discussed in the broader context of generalized

concave programming. Ratios, though not concave in

general, are often still generalized concave in some

sense. An introduction to fractional programming in

this context is Avriel et al. (1988).

Notation and Definitions

Suppose f, g and hj ( j ¼ 1,. . ., m) are real-valued

functions which are defined on the subset X of

the n-dimensional Euclidean space ℜ
n and let

h ¼ (h1,. . ., hm)
T where T denotes the transpose. The

ratio considered is given by

q xð Þ ¼ f xð Þ=g xð Þ (1)

over the set

S ¼ x 2 X hðxÞ � 0jf g (2)

assuming g(x) > 0 on X. The nonlinear program

sup qðxÞ x 2 Sjf g (3)

is called a (single-ratio) fractional program.

In addition, the following three types of multi-ratio

fractional programs are of interest:

sup
Xp

i¼1

qiðxÞ x 2 Sj

( )

; (4)

sup min
1�i�p:

qiðxÞ x 2 Sj


 �
; (5)

and the multi-objective fractional program

sup
x2S

q1ðxÞ; : : : ; qpðxÞ
� �

: (6)

Here qi (x)¼ fi (x)/gi (x) (i¼ 1,. . ., p) when fi and gi are

real-valued functions on Xwith gi (x)> 0. Problem (5)

is often referred to as a generalized fractional program

(Schaible and Ibaraki 1983).

The focus in fractional programming is the

objective function and not the feasible region S. As in

most publications, it is assumed that the h j are convex

functions on the convex domain X yielding a convex

feasible region S.

Most of the theory for fractional programs (3)–(6) is

developed under the assumption that ratios satisfy the

following concavity/convexity condition: f is concave

and g is convex on the convex set X (f is to be

nonnegative if g is not affine-linear, as below). Such

problems are called concave fractional programs. It is

to be noted, however, that the objective function in

these problems is not concave in general; hence they

are not concave programs. Problem (3) is called

a quadratic fractional program if f and g are quadratic

functions and S is a convex polyhedron.

A special case is the linear fractional program

where f and g are affine-linear functions and S is

a convex polyhedron

supfðcTxþ aÞ=ðdTxþ bÞjAx � b; x � 0g: (7)
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Here c, d 2 ℜ
n, b 2 ℜ

m, a, b 2 ℜ, A is an m � n

matrix and the denominator is positive on the feasible

region. It will be seen below that linear and concave

fractional programs have still many properties in

common with linear and concave programs.

Single-Ratio Fractional Programs

The following types of single-ratio fractional

programming applications can be found in the

literature: economic, non-economic and indirect

applications.

Economic Applications — The efficiency of

a system is sometimes characterized by a ratio of

economical and/or technical terms. Then,

maximizing the efficiency leads to a fractional

program. Examples of such ratios are: profit/capital,

profit/revenue, cost/volume, productivity, relative

usage of material, return/cost, return/risk, expected

cost/beta-index, (expected) cost/time, profit/time,

liquidity, earnings per share, dividend per share,

weighted outputs/weighted inputs, income/

(investment + consumption), mean/standard deviation.

Such ratios arise in resource allocation,

transportation, production, maintenance, inventory,

finance, data envelopment analysis, and macroeconomics

for example. No longer are these rates merely used to

control past economic behavior. Instead, the

optimization of rates is getting more attention in

decision making for future projects. Depending on

the form of the functions in the numerator and

denominator, many of the ratio optimization

problems above are linear, quadratic or concave

fractional programs.

Non-economic Applications — In information

theory, the capacity of a communication channel can

be defined as the maximal transmission rate, thus

giving rise to a (nonquadratic) concave fractional

program. In numerical analysis, the eigenvalue

problem can be reduced to constrained maximization

of the Rayleigh quotient, and hence, leads to a

(nonconcave) quadratic fractional program.

In physics, maximization of the signal-to-noise ratio

gives rise to a concave quadratic fractional program.

Indirect Applications — Fractional programs

may also arise in the process of solving other

optimization problems involving no ratios. Examples

are: subproblems in large-scale mathematical

programming, deterministic substitutes in stochastic

mathematical programming, subproblems in

nondifferentiable convex programming, problems in

connection with interior-point methods for linear

programming, dual location problems, approximations

to numerically intractable portfolio selection

problems, bounds on the trauma outcome function for

emergency medical facilities.

Depending on the original optimization problem,

often linear, quadratic or concave fractional programs

are encountered.

Properties

Concave fractional programs have the following

properties (Avriel et al. 1988):

Proposition 1: A local maximum is a global maximum

since the objective function q(x) ¼ f(x)/g(x) is

semi-strictly quasiconcave.

Proposition 2: A maximum is unique if the numerator

f(x) is strictly concave or the denominator g(x) is

strictly convex since in this case the objective

function is strictly quasiconcave.

Proposition 3: In case of differentiable functions f(x),

g(x), h(x), a solution of the Karush-Kuhn-Tucker

conditions is a maximum since the objective

function q(x) is pseudoconcave.

For linear fractional programs, the following

additional property holds:

Proposition 4: A maximum is attained at a vertex in

case of a (nonempty) bounded feasible region S,

since the objective function is quasiconvex (in

addition to quasiconcave).

Concave and linear fractional programs share

not only the above properties with concave and linear

programs, respectively, but they can also be related to

these programs through transformations. The first

transformation below changes the variables, whereas

the second one maintains the same variables, but

requires a parameter in the transformed problem.

Introducing the new variables

y ¼ 1=gðxÞ½ �x; t ¼ 1=gðxÞ; (8)
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It can be shown (Schaible 1976):

Proposition 5: A concave fractional program (3) with

an affine-linear denominator can be reduced to the

concave program

supftf ðy=tÞjthðy=tÞ � 0; tgðy=tÞ ¼ 1;

y=t 2 X; t > 0g: (9)

If g(x) is not affine-linear, an equivalent concave

program is obtained for (9) by relaxing the equality

in (9) to tg(y/t) � 1.

In the special case of a linear fractional program

(7), the equivalent concave program (9) becomes

the linear program

supfcTyþ atjAy� bt � 0; dTyþ bt ¼ 1;

y � 0; t > 0g (10)

where t > 0 can be replaced by t � 0 if (7) has an

optimal solution. The equivalence between (7) and

(10) was first established by Charnes and Cooper

(1962).

In the second transformation, variables and the

feasible region are maintained and a parameter is

introduced to separate numerator and denominator

(Dinkelbach 1967). Consider

sup f ðxÞ � lgðxÞjx 2 Sf g; l 2 < parameter: (11)

If (3) is a concave, linear, or quadratic fractional

program, then (11) is a parametric concave, linear,

or quadratic program, respectively.

Suppose f(x), g(x) are continuous and S is a (non-

empty) compact set. Then:

Proposition 6: Problems (3) and (11) have the same

optimal solutions where l ¼ �l is the unique zero of

the strictly decreasing, continuous function

F lð Þ ¼ sup f ðxÞ � lgðxÞx 2 Sf g: (12)

Turning now to duality for fractional programs, it is

noted that standard concave programming duality

relations are no longer true in case of concave, or

even linear-fractional programs. However,

Proposition 5 can be used to introduce duality via the

equivalent concave program (9) (Schaible 1976). For

a detailed presentation of various duality approaches as

well as their use in sensitivity analysis, see Schaible

(1978), Avriel et al. (1988), and Craven (1988).

The properties of concave and linear fractional

programs in Proposition 1–6 allow for at least four

different solution strategies (Martos 1975; Schaible

and Ibaraki 1983; Craven 1988):

a. direct solution of the quasiconcave

(pseudoconcave) program (3);

b. solution of the equivalent concave (linear) program

(9);

c. solution of the dual of (9);

d. solution of the parametric concave (linear) program

(11).

In the case of d), rather than applying parametric

programming techniques, the iterative method by

Dinkelbach (1967) can be used. It turns out to be

equivalent to Newton’s classical method for finding

the zero l of F(l) in (12). Various modifications and

computational results were discussed in Schaible and

Ibaraki (1983).

Multi-ratio Fractional Programs

Maximizing the Sum of Ratios— Problem (4) arises

naturally in decision making when several of the rates

above are to be optimized and a compromise is sought

that optimizes the weighted sum of these rates. Other

applications of this model were given by Schaible

(1990).

Unfortunately, none of the above properties of

concave fractional programs hold anymore if each

ratio is a quotient of a concave and a convex

function, even in the linear case. Only some

preliminary theoretical and algorithmic results are

known for this important, but difficult problem

(Craven 1988; Schaible 1990).

Maximizing the Smallest of Several Ratios —

Apart from the economic equilibrium model by von

Neumann (1937, 1945), problems in financial planning

and fund allocation under equity considerations give rise

to a generalized fractional program (5) (Schaible 1990).

Furthermore, the same model is of interest in numerical

mathematics in rational approximation involving the

Chebyshev norm. In all these examples, the ratios are

quotients of concave and convex functions.
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Starting with von Neumann (1937, 1945), several

authors have proposed a duality theory for concave

generalized fractional programs (Avriel et al. 1988;

Craven 1988; Schaible 1990). Though different

approaches are employed, most duals coincide and

are again a generalized fractional program. The

objective function of the primal is semi-strictly

quasiconcave and the one of the dual is semi-strictly

quasi convex (Avriel et al. 1988). Thus a local optimal

solution is global in both the primal and the dual.

A duality theory has been established for these

non-concave problems which is as rich as the one for

concave and linear programs.

Concave generalized fractional programs can be

solved in either the primal or the dual by an extension

of Dinkelbach’s algorithm. In case of more than one

ratio, this is no longer identical with Newton’s method.

It gives rise to a sequence of concave (linear) programs

as subproblems. The convergence properties are well

analyzed. Computational results for various

modifications of this algorithm have been

encouraging (Schaible 1990).

Multi-Objective Fractional Programs —

Problem (6) arises when several rates above are to be

maximized simultaneously and, in contrast to the

problems in (4) and (5), a unifying objective function

is not considered; instead, the decision maker is to be

provided with the set of efficient alternatives, that is,

all those feasible solutions for which none of the

rates can be increased without decreasing another

rate. Some theoretical results are known for (6) in

case of ratios of concave and convex functions

including duality relations (Craven 1988; Schaible

1990). Also, the connectedness of the set of efficient

alternatives has been established under limiting

assumptions. Additional theoretical and algorithmic

results are known for the case of two ratios

(Schaible 1990).

Concluding Remarks

Concave single-ratio fractional programs, as well as

concave generalized fractional programs, have been

analyzed quite successfully, both theoretically and

algorithmically. More research needs to be done for

the nonconcave case, sum-of-ratios problem (4), and

multi-objective fractional programming (6).

See

▶Data Envelopment Analysis

▶Linear Programming

▶Multiobjective Programming

▶Nonlinear Programming

▶Quadratic Programming
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Framing

Refers to how a problem is presented to decision

makers, or how they formulate it in their minds.

See

▶Choice Theory

▶Decision Analysis in Practice

Frank-Wolfe Method

▶Quadratic Programming

Free Float

The amount of time a designated activity can be

delayed without affecting succeeding activities of

a project. This will be the float for the final activity of

a chain, or for a single activity which does not lie on

a chain with equal float.

See

▶ Float

▶Network Planning

Free Variable

A variable that can take on any value, as contrasted to

a variable that must take on nonnegative values. In

a linear-programming problem, a variable that is free

can be expressed as the difference between two

nonnegative variables. However, when using the

simplex method to solve a linear-programming

problem with free variables, it is more effective to

eliminate those variables by means of constraints in

which they appear.

See

▶Unrestricted Variable

Freight Routing

The itinerary of a shipment through a logistics

network.

Ftran

The procedure for computing the updated version of

the entering column in a simplex iteration, when the

LU factors of the basis matrix are given in product

form. The name FTRAN (forward transformation)

derives from the fact that the eta file is scanned

forward in the process.
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Introduction

In classical set theory, an element either does or

does not belong to a set, being characterized by

a membership in the set that may have one of two

values: 1 or 0. Fuzzy sets generalize classical sets

(in fuzzy set theory often called crisp sets) by

allowing the gradual assessment of the memberships

of elements in a set. Thus, by use of a membership

function valued in the real unit interval [0, 1], each

element is assigned a number in that interval, which

measures its grade of membership in the set. Fuzzy

systems are systems that are modeled using fuzzy sets.

They have been widely used for both research and

practical applications, even for industrial purposes.
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Fuzzy logic provides a convenient way to build

models, decision making systems and controllers, by

incorporating qualitative knowledge and heuristics.

These inherent characteristics of fuzzy logic offer

a very attractive way of handling imprecision in the

data and/or complex systems, where the derivation of

an accurate model is difficult or even impossible.

Fuzzy sets and systems encompass artificial

intelligence, information processing and theories

from logic to pure and applied mathematics, such as

graph theory, topology, control and optimization. The

theory of fuzzy sets was introduced by Lotfi Zadeh

(1965, 1973). In Zadeh (1973, p. 1), he stated, “. . . as

the complexity of a system increases, our ability

to make precise and yet significant statements

about its behavior diminishes until a threshold is

reached beyond which precision and significance

(or relevance) become almost mutually exclusive

characteristics.”

Indeed, the derivation of mathematical models that

can describe in an efficient manner real world

problems is quite often overwhelming or even

an impossible task due to the inherent ambiguity

of characteristics that these problems may

possess. The main advantage of fuzzy logic

techniques over more conventional approaches in

solving complex, nonlinear and/or ill-defined

problems lies in their inherent capability of

incorporating a priori qualitative knowledge and

expertise about system behavior and dynamics.

This renders fuzzy logic systems almost

indispensable for obtaining a more transparent and

tactile qualitative insight for systems whose adequate

representation with exact mathematical models is

poor or impossible. Besides, fuzzy schemes can be

used either as enabling to other approaches or as

self-reliant methodologies providing thereby a

plethora of alternative structures and schemes.

For systems involving nonlinearities and lack of

a reliable analytical model, fuzzy logic control has

emerged as one of the most promising approaches.

Fuzzy inference is a step towards the simulation

of human thinking. In fact, fuzzy systems generate

nonlinear functions according to a representation

theorem by Wang (1992), who stated that any

continuous nonlinear function can be approximated

as exactly as needed with a finite set of fuzzy

variables, values and rules. Therefore, by applying

appropriate design procedures, it is always possible

to design a fuzzy controller that is suitable for the

nonlinear system under control.

The applications of fuzzy logic have dramatically

increased since 1990, ranging from cognitive and

decision processes, engineering and industrial

applications to systems control, economics and

management (Karr and Gentry 1993; Sugeno and

Yasukawa 1993; Østergaard 1977; 1990); robotics

(Ruan et al. 2003); transportation (Chen et al. 2008);

nuclear engineering (Kunsch and Fortemps 2002),

medicine (Blanco et al. 2002; Kilic et al. 2002),

economics (Gil-Lafuente 2005), see applications

section for more. Table 1 depicts some benchmark

results in the foundation years of fuzzy logic.

Research on the theory of fuzzy sets is directed

towards various disciplines, including possibility

theory (Cayrac et al. 1996), fuzzy operators (Pradera

et al. 2002; Yager 2002a); fuzzy relations (Naessens

et al. 2002; Pedrycz and Vasilakos 2002), measures of

information and comparison (Hung 2002; Yager

2002b), non-classical logics (Biacino and Gerla 2002;

Novak 2002), algebra (Di Nola et al. 2002); topology

(Albrecht 2003).

Fuzzy Set Theory

The notion of membership. The membership of an

element x in a classical set A is given by:

mðxÞ ¼
1

0




Fuzzy Sets, Systems, and Applications, Table 1 Critical
points in the foundation years of fuzzy logic

First paper on fuzzy systems (Zadeh 1965)

Linguistic approach (Zadeh 1973)

Fuzzy Logic controller (Assilian and Mamdani 1975)

Table-Based Controller (Mamdani,1977)

Heat Exchanger based on fuzzy logic (Østergaard 1977)

Self-organizing fuzzy controller (Mamdani 1977; Procyk and
Mamdani 1979)

Fuzzy logic control for cement production (Holmblad and
Østergaard 1982)

Fuzzy controllers on Tokyo subway shuttles (Hitachi 1984)

Fuzzy Chip (Togai and Watanabe 1986)

Hardware implementation of fuzzy system (Yamakawa andMiki
1986)

Hybrid Neural-Fuzzy systems (Kosko 1992)
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Hence an element is assigned to a set A or not. That

can be expressed as:

A \ �A ¼ Ø

where the symbol \ denotes intersection.

On the other hand, fuzzy logic is a logic based on

truth-values that are numbers in the closed unit interval

[0,1]. Fuzzy logic is thus based on fuzzy sets. A fuzzy set

is a set consisting of members with a degree

of membership, rather than being either members or not

members. The function that ties a number, commonly

in the [0,1] interval, to each element of a set (the universe

of discourse) is called membership function.

Membership functions. Let X denote the universe of

discourse. Every fuzzy set F in X is characterized

completely by its membership function.

Definition: The membership function mF of a fuzzy set

F in X is a function

mF : X! ½0; 1�

The most commonly used membership functions

are the following (Dubois and Prade 1980;

Zimmermann 1996): Triangular, Trapezoid, Linear,

Sigmoidal, P – type, Gaussian.

The triangular membership function (Fig. 1a)

is defined as:

Triðx; a; b; gÞ ¼

0 x < a

x�a
b�a

a � x < b

� x�g
g�b

b � x < g

0 x � g

8
>>>><

>>>>:

The trapezoid membership function (Fig. 1b)

is defined as:

Traðx; a; b; g; dÞ ¼

0 x < a

x�a
b�a

a � x < b

1 b � x < g

� x�d
d�g

g � x < d

0 x � d

8
>>>>>>><

>>>>>>>:

The monotonically increasing linear membership

function (Fig. 2a) is given by

Lðx; a; bÞ ¼
0 x<a

x�a
b�a

a � x � b

1 x > b

8
><

>:

0

a b

0.5

1

0

0.5

1

Fuzzy Sets, Systems, and

Applications, Fig. 1 (a)
Triangular; (b) Trapezoid
membership function

0

0.5

1

0

a b

0.5

1

Fuzzy Sets, Systems, and

Applications, Fig. 2 (a)
Monotonically increasing; (b)
Monotonically decreasing
linear membership function
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The monotonically decreasing linear membership

function (Fig. 2b) is given by

Lðx; a; bÞ ¼

0 x<a

� x�b
b�a

a � x � b

1 x > b

8
>><

>>:

The monotonically increasing sigmoidal

membership function (Fig. 3a) is given by

Sðx; a; b; gÞ ¼

0 x < a

2 x�a
g�a

� 2

a � x � b

1� 2 x�g
g�a

� 2

b � x � g

1 x > g

8
>>>>>><

>>>>>>:

Themonotonically decreasing sigmoidal membership

function (Fig. 3b) reads:

Sðx; a; b; gÞ ¼

1 x < a

1� 2 x�a
g�a

� 2

a � x � b

2 x�g
g�a

� 2

b � x � g

0 x > g

8
>>>>>><

>>>>>>:

TheP- membership function (Fig. 4a) is defined as

Pðx; a; b; gÞ ¼
Sðx; g� b; g�b

2
; gÞ x � g

1�Sðx; g� b; gþb
2
; gþ bÞ x � g

(

The Gaussian membership function (Fig. 4b) is

given by

Gðx; k; gÞ ¼ expð�ðg� xÞ2=2s2Þ

where s is the standard deviation

As an example, the room temperature for low-level

work activities could be described by the following 5

fuzzy sets characterized by triangular or trapezoid

membership functions, where a temperature around

18 
C is a comfortable one, around 26
 a warm one

(though not during summer!) while above 40 
C is

definitely too warm, and around 12 
C can be

characterized as a cold while below that too cold

(Fig. 5).

Fuzzy logical operations. Fuzzy theory set operations

are of utmost importance to the better understanding and

design of fuzzy systems. Below the most basic fuzzy set

operations are presented, which are defined with respect

to their corresponding membership functions.

0

0.5

1

0

a b

0.5

1

Fuzzy Sets, Systems, and

Applications, Fig. 3 (a)
Monotonically increasing; (b)
Monotonically decreasing
sigmoidal membership
function

−1 −0.5 0 0.5 1
0

0.5

1

0

a b

0.5

1

Fuzzy Sets, Systems, and

Applications, Fig. 4 (a) P;
(b) Gaussian membership
function
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Equality: Two fuzzy sets A and B are equal on the

universe of discourse X if their membership functions

are equal for each x 2 X iff

8x 2 X : mAðxÞ ¼ mBðxÞ:

Subset: A fuzzy set A is a subset of B ðA � BÞ iff

8x 2 X : mAðxÞ � mBðxÞ:

Intersection: For the operation of intersection \ of

two fuzzy sets A and B, there is a plethora of definitions

in the bibliography. The choice is application

dependant.

8x 2 XmA\B ¼

minðmAðxÞ; mBðxÞÞ
mAðxÞþmBðyÞ

2

mAðxÞmBðyÞ
:::::::::::::::::::

8
>><

>>:

9
>>=

>>;

Union: The union [ of two fuzzy sets A and B is

also defined in several ways:

8x 2 X : mA[B ¼

maxðmAðxÞ; mBðyÞÞ
2minðmAðxÞ;mBðyÞÞþ4maxðmAðxÞ;mBðyÞÞ

6

mAðxÞ þ mBðyÞ � mAðxÞmBðyÞ
:::::::::::::::::::::::::::::::

8
>><

>>:

In the third definition, the union is put equal to 1 if

the sum is greater than 1.

Complement: The complement A0 of a fuzzy set

A is defined as:

8x 2 X : mAðxÞ ¼ 1� mAðxÞ

Transformation operators. Another important group

of operators that characterize fuzzy set theory are the

transformation operators. These act on themembership

functions in order to modify the linguistic value of the

respective fuzzy set. For example, in the clause

“number very close to 10,” the transformation

operator “very” acts on the linguistic term “close to

10” which corresponds to a fuzzy set. Examples of

such operators are given in Table 2 (Ross 1995;

Zimmermann 1996).

Cartesian inner product of fuzzy sets. If A1, A2,. . ., An

are fuzzy sets defined in U1, U2,. . ., Un, the Cartesian

inner product of A1, A2,. . ., An is a fuzzy set F in

U1x U2x,. . .x Un with membership function

(Yan et al. 1994):

mFðu1;u2; . . .uvÞ ¼ \i ¼ 1:vmA1
ðuiÞ

e:g: mFðu1;u2; . . . ;unÞ ¼minfmA1 u1ð Þ;mA2 u2ð Þ; . . . ;mAnðunÞg
or mFðu1;u2; . . . ;unÞ ¼mA1 u1ð ÞmA2 u2ð Þ . . .mAnðunÞ

Fuzzy relations. Let U1 and U2 be two universes of

discourse and the membership function mR: U1�U2 !
[0,1]. Then a fuzzy relation on U1�U2 is defined as

(Zimmerman 1996):

Rc ¼
Z

U�B

mRðu1;u2Þ=ðu1;u2Þ if U1;U2 are continuous in space

or Rd ¼
X

U�V

mRðu1;u2Þ=ðu1;u2Þ if U1; U2 are discrete:

Fuzzy Set Composition. Let R1 and R2 be two fuzzy

relations on U1�U2 and U2�U3 respectively, then the

composition of R1 and R2 is defined as follows:

C ¼ R1 
 R2 ¼fðu1; u3Þ;[ðmR1
ðu1; u2Þ \ mR2

ðu1; u2ÞÞg;
u1 2 U1; u2 2 U2; u3 2 U3:

Implication Rules. Let A and B be two fuzzy sets in

U1,U2 respectively. Then the implication I:A¼> B ->
U1�U2 is defined as (Zimmerman 1996):

I ¼ A� B ¼
ð

U1�U2

mAðu1Þ \ mBðu2Þ=ðu1; u2Þ

0 12 18 26 40

too cold cold comfortable warm too warm

Fuzzy Sets, Systems, and Applications, Fig. 5 Fuzzy
representation of a room temperature

Fuzzy Sets, Systems, and Applications, Table 2 Examples
of transformation operators

Very m ~AðxÞ ¼ ðmAðxÞÞn; n > 1

More/less m ~AðxÞ ¼ ðmAðxÞÞn; 0 < n < 1
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For example, the rule: “If the error is negative big,

then control output is positive big”is an implication

error ¼ > control action.

Let the two discrete fuzzy sets A¼ {S mA(ui)/ui, i¼
1,. . .,n}, B ¼ {S mB(vi)/vi, i ¼ 1,. . .,m}

Then the implication A¼ > B takes the form:

mAðu1Þ

mAðu2Þ

::::::::

mAðunÞ

2

6664

3

7775� mBðv1Þ mBðv2Þ . . . mBðvmÞ½ �

¼

mAðu1Þ ^ mBðv1Þ mAðu1Þ ^ mBðv2Þ . . . mAðu1Þ ^ mBðvmÞ
mAðu2Þ ^ mBðv1Þ mAðu2Þ ^ mBðv2Þ . . . mAðu2Þ ^ mBðvmÞ

:::::::::::: ::::::::::: ::::::: ::::::::::

mAðunÞ ^ mBðv1Þ mAðunÞ ^ mBðv2Þ . . . mAðunÞ ^ mBðvmÞ

2

6664

3

7775

Inference rules. Let R be a fuzzy relation on U1�U2,

and let A be a fuzzy set in U1. The composition

AoR ¼ B,

is a fuzzy set in U2 representing the implication

(conclusion) from the fuzzy set A (fact) based on the

implication R (rules). For a multiple input, single

output rule base with N rules, the i-th rule is given by

If Ai1 and . . . and Aij and . . . and Ain then Bi; where

n ¼ the number of input variables xi
Aij ¼ fuzzy set of input variable xj in i-th rule

Bi ¼ fuzzy set of output variable yj in i-th rule

The i-th rule is the implication Ii ¼ Ai¼ > Bi,

Ai ¼ \n
i¼1Aij. Then the implication Itot of N rules is

given by Itot ¼ [N
i¼1Ri ¼ [N

i¼1Ai ! Bi:
Fuzzy similarity measures. Fuzzy similarity

measures introduce the notion of approximate

equality between fuzzy sets. Several fuzzy similarity

measures have been proposed, each one with different

attributes, see (Pappis and Karacapilidis 1993 and

1995; Wang et al. 1995).

Basic structure of a fuzzy system. The fuzzy

knowledge base contains four main types of

information: (a) a fuzzification unit (fuzzifier), (b)

a fuzzy inference unit, (c) a rule base which

essentially maps fuzzy values of the inputs to fuzzy

values of the outputs and (d) a defuzzification unit

(Fig. 6).

(a) The fuzzifier maps the measured inputs, which

usually are crisp values, into the fuzzy linguistic

values (fuzzy sets) used by the fuzzy reasoning

mechanism.

(b) The fuzzy rules incorporated in the rule base

express the input–output relationships usually in

an IF-THEN format. For instance, for a two-input,

one-output fuzzy system, a fuzzy rule has the

general form:

Rule i : IF x is Ai and y is Bi THEN z is Ci

where x and y are input measured variables, z is the

controller output variable; Ai, Bi and Ci are

linguistic terms (fuzzy sets) such as “negative

big”, “positive small” or “zero”. The if-part of

the rule is called condition or premise or

antecedent, and the then-part is called the

consequence or action.

Two are the main approaches in the design of rule

bases (Yan et al. 1994):

(i) Heuristic-Mamdani’s type approaches

(Mamdani 1977; King and Mamdani 1977;

Pappis and Mamdani 1977) which provide

a convenient way to build fuzzy rules in order

to achieve the desired output response,

requiring only qualitative knowledge for the

behaviour of the system under study.

(ii) Systematic approaches based on Sugeno-type

inference systems (Takagi and Sugeno 1985;

Pappis and Sugeno 1985; Sugeno and Kang

1988; Sugeno and Yasukawa 1993; Laukoven

and Pasino 1995) including hybrid neural-fuzzy

frameworks (Kosko 1992), Chebyshev series

and Kohonen’s networks (Siettos et al. 2002;

Alexandridis et al. 2002).

FUZZY KNOWLEDGE DATABASE

RULE BASE DATA BASE

Fuzzification
Unit

Defuzzification
UnitInference

Fuzzy Sets, Systems, and

Applications, Fig. 6 Basic
structure of a fuzzy inference
system
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(c) The fuzzy reasoning unit performs various fuzzy

logic operations to infer the action for the given

fuzzy inputs. During fuzzy inference, the

following operations are involved for each fuzzy

rule:

1. Determination of the degree of match between

the fuzzy input data and the defined fuzzy sets

for each system input variable.

2. Calculation of the fire strength for each rule

based on the degree of match and the

connectives (e.g. AND, OR) used with input

variables in the antecedent part of the rule.

3. Derivation of the fuzzy outputs based on the

calculated fire strength and the defined fuzzy

sets for each output variable in the consequent

part of each rule.

(d) The defuzzification unit performs the inverse

operation of fuzzification, i.e. extracts the crisp

output value from the fuzzy outputs. Several

techniques have been proposed for the inference

of the fuzzy output based on the rule base. The

most commonly used are those of mean of

maximum, centroid, and center of sum of areas

(Driankov et al. 1993; Ross 1995).

Applications. In developing fuzzy logic and the

theory of fuzzy sets, extensive effort has been

undertaken by scientists and engineers to deal with

a variety of important research topics: inference

systems (del Amo et al. 2001); computational

linguistics and knowledge representation (Intan

and Mukaidono 2002); neural networks (Alpaydin

et al. 2002; Oh et al. 2002); genetic algorithms

(Spiegel and Sudkamp 2002); information processing

(Liu et al. 2002; Hong et al. 2002; Nikravesh et al.

2002); pattern analysis and classification (Gabrys

and Bargiela 2002; de Moraes et al. 2002; Pedrycz

and Gacek 2002); decision making (Yager 2002b;

Wang 2000; Zimmermann et al. 2000; Wang and

Lin 2003).

Apart from mathematics and algorithms, fuzzy sets

theory has been widely utilized in the context of real

life problems (Zimmermann 2001). Such problems are

commonly full of uncertainty or approximate

reasoning and it is often very difficult to develop

mathematical models that can fully describe and

incorporate their complexities. In these cases, fuzzy

sets theory is essential as it assists on the development

of mathematical models that embed imprecision.

Fuzzy sets theory has been extensively utilized in the

context of operations management, medicine, finance,

risk analysis and assessment, water resources

management, environmental management, and social

sciences. The practical applications of fuzzy logic are

wide, indeed, including, among others, process control

(Tong et al. 2002); robotics (Ruan et al. 2003);

scheduling (Adamopoulos et al. 2000; Karacapilidis

et al. 2000; Muthusamy et al. 2003); transportation

(Chen et al. 2008); nuclear engineering (Kunsch and

Fortemps 2002); medicine (Barro and Marin 2002;

Blanco et al. 2002; Kilic et al. 2002); and economics

(Kahraman et al. 2002; Gil-Lafuente 2005). A review

of specific areas of application of fuzzy sets theory

follows.

Management Science: Fuzzy sets theory has been

widely utilized in the case of management science.

Facets of the theory of fuzzy sets have been

incorporated into supply chain management and even

strategic management decision-making processes. The

potential utilization of fuzzy sets theory has long been

noticed in the case of operations management

(Zimmerman 1983). More specifically, fuzzy logic

has been incorporated into models addressing issues

in the context of outsourcing logistics activities

(Bottani and Rizzi 2006; Cheng et al. 2008; Liu and

Wang 2009); manufacturing and production problems

(Lee and Yao 1998; Majozi and Zhu 2005; Liang and

Cheng 2009), supply chain modeling (Petrovic et al.

1999; Sevastjanov and Róg 2003; Sheu 2004; Zhang

and Lu 2007); optimization of supply chain operations

(Silva et al. 2007); and traffic and transportation

processes (Teodorović 1994). In addition, fuzzy logic

has been used in the context of strategic management

(Dutta 1993; Kardaras and Karakostas 1999; Lin and

Hsieh 2004; Narukawa and Torra 2007; Xu et al. 2009)

as well as marketing (Setnes and Kaymak 2001;

Ramkumar et al. 2010). Fuzzy logic has also been

applied in industrial applications (Sàrfi et al. 1996;

Bansal 2003), including power systems planning

(David and Zhao 1991; Ong and Nee 1994; Guan et al.

1995; Ramı́rez-Rosado and Domı́nguez-Navarro 2004)

and product conformance specification procedures

(Bradshaw 1983).

Medical Science: Decision-making processes in

medicine science can be hindered due to the

complexity of biological systems and high data

uncertainty. Fuzzy logic theory provides a means

of better modeling related problems. Applications of

fuzzy sets theory can be found in the context

Fuzzy Sets, Systems, and Applications 615 F
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of medical diagnosis (Belacel and Boulassel 2001; De

et al. 2001; Szmidt and Kacprzyk 2004; Polat et al.

2006); effective management of medical diagnostic

problems (Chen 1994) and multiple alternative

decision-making problems during medical diagnosis

(Cheng and McInnis 1980). Additionally, fuzzy logic

has been applied inmedical expert systems (Hudson and

Cohen 1994) and used for the development of measures

for the anxiety induced by a given decision-making

process by an individual (Yager 1982). A survey with

respect to the application of fuzzy sets theory inmedical

sciences is given in Abbod et al. (2001).

Social Sciences:Biswas (1995) used fuzzy logic for
the evaluation of students’ answer scripts. Lalla et al.

(2005) utilized fuzzy sets theory for the evaluation of

teaching activities, and Smithson (1982) presented

tools for applying fuzzy sets concepts to the social

and behavioral sciences and examples of their uses.

Financial Science: Here fuzzy sets theory has been
utilized in the context of ratio analysis (Gutierrez and

Carmona 1988), enterprise financial status synthetic

evaluation (Lee and Chang 2009), and in ranking

vague economic investment information when

a present worth criterion is used (Sorenson and Lavelle

2008). In addition, fuzzy logic has been utilized in the

context of multi-objective finance-based scheduling for

construction projects under uncertainty (Afshar and

Fathi 2009); financial evaluation in the public sector

(Ammar et al. 2004); engineering economic decision-

making of firms (Kahraman 2008); financial analysis

during corporate acquisition processes (McIvor et al.

2004); evaluation of fuzzy financial profitability of

load management alternatives (Sheen 2005),

development of financial models that assist the

identification of different states of one market so that

a firm could modify its actions and make successful

trades (Van den Berg et al. 2004); financial risk

management and credit scoring (Yu et al. 2009) and in

other problems in economics and finance (Buckley

1987; Buckley 1992).

Environmental Science:Applications of fuzzy sets
theory in environmental science include (Esogbue

et al. 1992), where fuzzy sets methodologies

were used to solve an optimal flood control

planning problem by an integration of structural

and non-structural measures with the objective of

optimizing the flood damage reduction due to

recurrent floods. Koo and Shin (1985) utilized fuzzy

sets for multi-objective river quality management

under a direct regulation scheme, and Liou et al.

(2003) proposed an indicator model for evaluating

trends in river quality using two-stage fuzzy set

theory to condense efficiently monitoring data.

Hanesch et al. (2001) utilized fuzzy c-means cluster

analysis and non-linear mapping for tracing the

distribution and source of pollutants to assess

potential environmental hazards, and McBratney and

Odeh (1997) studied the potential applications of fuzzy

set theory and fuzzy logic in soil science. Fuzzy logic

was applied to timber harvest planning (Boyland et al.

2006) and to environmental risk assessment by

Ghomshei and Meech (2000).

Other applications: A sample range of

applications of fuzzy sets theory to other real-world

problems include: Nguyen (1985) in the context of

mining geomechanics decision-processes; Cayrac

et al. (1996) for satellite fault diagnosis procedures;

McBratney and Moore (1985) for dealing with

the continuity of climatic data; Cao and Chen

(1983) for meteorological forecasting; developing

of electronic video camera image stabilizers (Egusa

et al. 1995); handling uncertain image information

(Laplante and Sinha 1996); classification of

geometric figures and chromosome images through

the use of shape-oriented angular and dimensional

proximity measures (Lee 1976); the problem of

image reconstruction (Nobuhara et al. 2006); the

fatigue problem of reinforced concrete decks of

bridge structures (Shiraishi et al. 1988); data mining

processes (Li and Deogun 2009); disaster control

systems planning (Esogbue 1996); etc.

See

▶Artificial Intelligence

▶Control Theory
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Sàrfi, R. J., Salama, M. M. A., & Chikhani, A. Y. (1996).

Applications of fuzzy sets theory in power systems planning
and operation: A critical review to assist in implementation.
Electric Power Systems Research, 39(2), 89–101.

Setnes, M., & Kaymak, U. (2001). Fuzzy modeling of client
preference from large data sets: An application to target
selection in direct marketing. IEEE Transactions on Fuzzy

Systems, 9(1), 153–163.
Sevastjanov, P. V., & Róg, P. (2003). Fuzzy modeling of

manufacturing and logistic systems. Mathematics and

Computers in Simulation, 63(6), 569–585.
Sheen, J. N. (2005). Fuzzy-financial decision-making: Load

management programs case study. IEEE Transactions on

Power Systems, 20(4), 1808–1817.
Sheu, J. B. (2004). A hybrid fuzzy-based approach for

identifying global logistics strategies. Transportation

Research Part E: Logistics and Transportation Review,

40(1), 39–61.
Shiraishi, N., Furuta, H., & Ozaki, Y. (1988). Application of

fuzzy set theory to fatigue analysis of bridge structures.
Information Sciences, 45(2), 175–184.

Siettos, C. I., Boudouvis, A. G., & Bafas, G. V. (2002).
Approximation of fuzzy control systems using truncated
Chebyshev series. Fuzzy Sets and Systems, Fuzzy Sets and

Systems, 126, 89–104.
Silva, C. A., Sousa, J. M. C., & Runkler, T. A. (2007).

Optimization of logistic systems using fuzzy weighted
aggregation. Fuzzy Sets and Systems, 158(17), 1947–1960.

Smithson, M. (1982). Applications of fuzzy set concepts to
behavioral sciences. Mathematical Social Sciences, 2(3),
257–274.

Sorenson, G. E., & Lavelle, J. P. (2008). A comparison of fuzzy
set and probabilistic paradigms for ranking vague economic
investment information using a present worth criterion. The
Engineering Economist, 53(1), 42–67.

Spiegel, D., & Sudkamp, T. (2002). Employing locality in the
evolutionary generation of fuzzy rule bases. IEEE

Transactions on Systems Man Cybernet – Part B:

Cybernetics, 32(3), 296–305.
Sugeno, M., & Kang, G. T. (1988). Structure identification of

fuzzy model. Fuzzy Sets and Systems, 28, 15–23.
Sugeno, M., & Yasukawa, T. (1993). A fuzzy-logic-based

approach to qualitative modeling. IEEE Transactions on

Fuzzy Systems, 1(1), 7–31.
Szmidt, E., & Kacprzyk, J. (2004). A similarity measure for

intuitionistic fuzzy sets and its application in supporting
medical diagnostic reasoning. Lecture Notes in Artificial

Intelligence (Subseries of Lecture Notes in Computer

Science), 3070, 388–393.

Fuzzy Sets, Systems, and Applications 619 F

F



Takagi, T., & Sugeno, M. (1985). Fuzzy identification of
systems and its application to modelling and control. IEEE
Transactions on Systems Man Cybernetics, 15, 116–132.
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Introduction

Game theory studies situations involving conflict and

cooperation. The three main elements of a game are

players, strategies, and payoffs. Games arise when two

or more decision makers (players) select from various

courses of action (called strategies) which in turn result

in likely outcomes (expressed as payoffs). There must

be at least two interacting participants with different

goals in order to have a game. Game theory makes use

of the vocabulary from common parlor games and

sports. It is, nevertheless, a serious mathematical

subject with a broad spectrum of applications in the

social, behavioral, managerial, financial, system, and

military sciences.

Game theory differs from classical optimization

subjects in that it involves two or more players with

different objectives. It also extends the traditional uses

of probability and statistics beyond the study of

one-person decisions in the realm of statistical

uncertainty. This latter case is often referred to as

games of chance or games against nature in contrast

to the games of skill studied in game theory. Many

aspects of social and physical science can be viewed as

zero-person games since actions are frequently

specified by various laws that are not under human

control.

Game theory presumes that conflict is not an evil in

itself and as such unworthy of study. Rather, that this

topic arises naturally when individuals have free will,

different desires, and the freedom of choice.

Furthermore, this subject often provides guidelines to

aid in the resolution of conflict. Game theory also

assumes that the players can quantify potential

outcomes (as in measurement theory or utility

theory), that they are rational in the sense that they

seek to maximize their payoffs, and skillful enough to

undertake the necessary calculations. The theory of

games attempts to describe what is optimal strategic

behavior, the nature of equilibrium outcomes, the

formation and stability of coalitions, as well as

fairness.

There are many different ways to classify games.

A significant difference exists between the two-person

games and the multiperson ones (also called the

n-person games when n � 3). There is a major

distinction depending upon whether games are played

in a cooperative or noncooperative manner. The nature

of the types or amount of information available to the

players is very fundamental in the analysis of games,

and this relates to whether the best way to play

involves pure or randomized strategies.

A further way to classify games is if they are played

over one period or repeatedly over time. Static games

are single period games in which all players move

simultaneously without observing any other moves.
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Dynamic games are multiperiod games where

players interact by playing simultaneous moves

numerous times. Unlike static games, players have

some information about past moves and payoffs

so they may change strategies as the game

proceeds. Evolutionary Game Theory (discussed

below) provides a specialized framework for studying

dynamic games.

Information and Strategies

Any possible way a player can play completely

through a game is called a pure strategy for this

player. It is an overall plan specifying the actions

(moves) to be taken in all eventualities which can

conceivably arise. In theory such pure strategies

suffice to solve many popular recreational games

such as checkers which have perfect information.

A game has perfect information if throughout its play

all the rules, possible choices, and past history of play

by any player are known to all of the participants. In

this case there are no unknown positions or hidden

moves, and thus no need for secrecy, deception, or

bluffing.

The first general theorem in game theory was

published by the logician Ernst Zermelo in 1913. It

states that there is an optimal pure strategy for playing

any finite game with perfect information. An

elementary game with perfect information such as

tic-tac-toe soon becomes no real challenge. Each

player soon discovers a strategy that prevents the

other from winning. From then on this game always

results in a draw. On the other hand, Zermelo’s

theorem is an example of an existence theorem. It

does not provide a practical way to determine an

optimal pure strategy for many interesting but

complex games with perfect information such as

chess. Furthermore, one cannot even spell out one

pure strategy for chess — one that lists a possible

response to all legal moves by an opponent. The

challenge of such games comes from the bewildering

complexity and imagination involved.

Many other games like the card games known as

poker, however, do not have perfect information.

Secrecy, deception, randomness, and bluffing are in

order. Another level of interest and a new notion of

strategic choice enter. Pure strategies no longer suffice

for optimal play. The main fundamental concept for

such noncooperative games is that of a mixed strategy.

A mixed strategy for a player is a probability

distribution over the player’s pure strategies. The

idea is that a player will pick a particular pure

strategy with some given probability. This greatly

enlarges the realm of strategies from which each

player can choose. The tradeoff, on the other hand, is

that the players must now view their potential payoffs

as averages. They thus resort to maximizing their gains

in terms of expected values in a statistical sense. These

ideas are best illustrated by the theory of matrix games.

Matrix Games

The best known games are the two-person, zero-sum

games. Any game is called zero-sum when the

particular payoffs to the players always sum to zero.

In the case of two players this states that one’s

winnings equal the other’s losses. There is clearly no

room for cooperation in this case. These games are also

referred to as strictly competitive or antagonistic. They

arise in many sorts of duels, inspections, searches,

business competitions, and voting situations, as well

as most parlor games and sports contests.

These games are characterized by an m� n table of

numbers and are accordingly referred to as matrix

games. The rows of the table correspond to the pure

strategies for the first player, denoted by I. The

columns are likewise identified with the pure

strategies of the second player, II. The numbers

within the table itself are the corresponding payoffs

received by player I from player II. A negative number

in the matrix means that I makes a (positive) payment

to II. Each player seeks to select a strategy so as to

maximize the player’s payoff.

The theory of matrix games can be illustrated by the

following 2 � 2 zero-sum game of matching coins.

Player I has two pure strategies: to show heads H or

tails T. Player II can likewise select H or T. If the two

players’ coins match with either two heads or else two

tails, then player I wins $3 or $1, respectively, from

player II. If the coins do not match (one H and one T),

then player II collects $2 from player I. This game can

be represented by Fig. 1.

The worse thing that can happen to player I is the

maximin value of �2. (This is the largest of

the smallest numbers from each row.) Similarly, the

minimax value for player II is 1. This is the smallest
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loss player II can guarantee and it occurs when player

II plays the second column T (while I plays the second

row T). There is a gap of $3 between this maximin

value of $1 and the minimax value of � $2. Both

players can win some of this gap of 3 units if they

resort to mixed strategies and are willing to evaluate

their payoffs in terms of expected values.

If either player uses the optimal mixed strategy of

playing H with probability 3/8 and T with probability

5/8, the player can ensure an average payoff of

3 3 8=ð Þ � 2 5 8=ð Þ ¼ �1 8= ¼ �2 3 8=ð Þ þ 1 5 8=ð Þ

against any strategy by the opposing player. Using

mixed strategies the players can close the gap

between �2 and 1 to the game’s (expected) value

of �1/8. This game favors player II who should

average a gain of 12.5¢ per play. This game is not

fair in the sense that optimal play does not produce

an expected outcome of 0. The optimal mixed

strategies (3/8, 5/8) for players I and II along with the

value �1/8 are called the solution of this matrix game.

(In general, the two players will not have the same

optimal mixed strategy as is the case for this game

with a symmetric payoff matrix.)

The main theoretical result for matrix games is the

famous minimax theorem proved by John von

Neumann in 1928. It states that any matrix game has

a solution in terms of mixed strategies. Each player

has an optimal mixed strategy which guarantees that

the player will achieve the value of the game (in the

statistical sense of expected values).

Von Neumann also observed in 1947 that the

duality theorem in linear programming is equivalent

to his minimax theorem. Furthermore, it is known that

the subjects of matrix games and linear programming

are entirely equivalent mathematically. Various

algorithms are known for solving m � n matrix

games. However, one typically expresses the solution

for a matrix game in terms of a pair of dual linear

programs and employs one of the popular algorithms

used in the latter subject.

Noncooperative Games

When games are not zero-sum or have more than two

players, then it is essential to distinguish between

whether they are played in a cooperative or

noncooperative manner. To cooperate means the

players are able to communicate (negotiate or

bargain) and correlate their strategy choices before

they play. Also, that any agreements made are

binding (enforceable). In contrast, each player in

a noncooperative game chooses a strategy unaware of

the selection made by the other players.

For noncooperative games the primary ingredient to

any notion of solution is that of an equilibrium point.

A set of (pure or mixed) strategies, one for each player,

is said to be in equilibrium if no one player can change

strategy unilaterally to obtain a higher payoff.

Unfortunately, equilibrium outcomes do not always

possess every property that one would desire for

a satisfactory concept of solution. Nevertheless, this

idea of equilibrium seems crucial to the very notion of

what can be called a solution to a noncooperative

game. It is the social science analogy to the idea of

equilibrium or stability in mechanical systems.

The difficulties that might arise with equilibrium

outcomes are illustrated by the following two 2 � 2,

nonzero-sum, two-person games known as the

prisoner’s dilemma and chicken. These are the

driving forces behind escalation (arms races and price

wars) and confrontation, respectively. In these two

games each player has two strategies: to compromise

C or to defect D. The resulting payoffs are indicated in

Figs. 2, 3 where it is assumed that each player prefers

the outcome of 4 over 3 over 2 over 1. The payoffs in

these tables give a pair of numbers (a, b) where a is the

payoff to player I (the row player) and b is for player II

(the column player). For example, if players I and II

select the strategies D and C, respectively, in Chicken

(Fig. 3) they obtain the respective payoffs of 4 and 2.

In either of these games, the best overall outcome

for the two players when taken together is the strategy

pair (C,C) where each compromises and in turn

receives the second best payoff of 3. This would be

the likely outcome if these games were played

Column maxima:

Player I

Player II

H

H

T

T
Row minima

−2−2

−2

3

1

3 1

−2

Game Theory, Fig. 1 A matrix game

Game Theory 623 G

G



cooperatively. This result, however, is not in

equilibrium. Either player can achieve the higher

payoff of 4 if the player alone were to switch from

strategy C to D. In the prisoner’s dilemma the

dominant strategy for each player is D. One does

better individually by selecting D, no matter what the

other chooses. This leads to each receiving 2, their

second worse payoff. In chicken the two (pure)

strategy pairs (C,D) and (D,C) both lead to an

equilibrium result. No one player can switch strategy

and do better in either case. However, these two

outcomes are not inter-changeable. If both players

select D in an attempt to reach the particular

equilibrium that would pay them 4, then the resulting

strategy pair (D,D) leads to their worst payoffs (1,1).

Of the 78 possible static 2� 2 games, these two are the

most troublesome.

Some noncooperative games have no equilibrium in

pure strategies. In 1950 John F. Nash extended von

Neumann’s minimax theorem for two-person,

zero-sum games to prove that every finite multiperson,

general-sum game has at least one equilibrium outcome

in mixed strategies. Algorithms to calculate equilibria

involve nonlinear techniques and often use path-

following approaches that may be approximate in

nature. There are also many refinements and

extensions of the idea of equilibrium described here,

and these concepts are fundamental to quantitative

approaches in modern economics and politics, as well

as system analysis and operations research.

The 1994 Nobel Memorial Prize in the Economic

Sciences acknowledged the role of noncooperative

game theory. It honored Nash for his fundamental

theoretical contributions, as well as some important

extensions. Later developments included the repeated

play of games with incomplete information introduced

by John C. Harsanyi, and aspects of dynamical

interaction and evolutionary stability of equilibrium

introduced by Reinhard Selten. The 2005 Nobel Prize

was again awarded to two game theorists, Robert

Aumann and Thomas Schelling, for contributions of

game theory to understanding conflict and cooperation.

Cooperative Games

If the players in a game are allowed to cooperate, they

typically agree to undertake joint action for the

purpose of mutual gain. In this case coalition

formation is a common activity, and the additional

worth that can accrue to any potential coalition is of

primary interest. In practice, the players often solve

some optimization problem or consider some

noncooperative game in order to arrive at the amount

of additional value available from cooperation. The

problem that remains concerns how this newly

obtained wealth will be, or should be, divided among

the players. This latter aspect is again a competition as

each participant seeks to maximize their own gain.

This may involve negotiations, bargaining, threats,

arbitration, coalitional realignments, attempts to

arrive at stable allocations or coalition structures, as

well as appeals to different ideas about fairness. It is

thus not surprising that several different models and

solution concepts have been proposed for multiperson

cooperative games.

The first general model and idea of a solution for the

multiperson cooperative game was presented in

the monumental book by John von Neumann and

Oskar Morgenstern in 1944 (3rd ed., 1953). Their

approach is referred to as the n-person game in

characteristic function form. One begins with a set

N ¼ {1, 2, . . ., n} of n players who are indicated by

1, 2, . . ., and n. A characteristic function v assigns

a value v(S) to each subset S of N. This number v(S)

represents the worth achievable by the coalition S,

independent of the remaining players in the

complementary set N � S. In this context they

proposed a notion of solution that they called

a solution and which is often referred to now as

a stable set. Stable sets proved to have some
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difficulties of both a theoretical and practical nature.

They are also rather mathematically involved, and,

thus, are not presented here. They are, nevertheless,

still a useful tool, especially for the class of games for

which the core (see below) is nonexistent. Dozens of

alternate solution concepts have since been proposed

for these coalition games, and five of these have

received the most attention. Three of these solution

concepts will be described in the context of the

following three-person illustration.

Three neighboring towns A, B, and C plan to tap into

an additional water source atO. The costs (in $100,000)

for installing the alternate segments of water pipe

appear on the edges in Fig. 4. The joint costs for the

various subsets of the three-person coalition {A, B, C}

are obtained by finding the minimal cost spanning tree

for each such coalition. The total cost for the coalition

{A, B, C} is c(ABC) ¼ 18 and it is realized by the link

OACB. Similarly, the minimal costs for the six other

coalitions are:

c ABð Þ ¼ 15 viaOAB; c ACð Þ ¼ 11 viaOAC;
c BCð Þ ¼ 16 viaOCB; cðAÞ ¼ 5 viaOA;
cðBÞ ¼ 14 viaOB; and cðCÞ ¼ 9 viaOC:

(Expressions like c({A, B, C}) and v({A, B, C }) are

shortened to c(ABC) and v(ABC), respectively.)

One can reformulate this problem in terms of the

savings available by means of cooperation. Each

coalition considers what it saves in a joint project

over what it would have cost its members if they

were each to make a separate connection to the

source O. This savings game has the following

characteristic function: v (ABC) ¼10 [¼ c(A) + c(B)+

c(C)� c(ABC)], v(AB)¼ 4, v(AC)¼ 3, v(BC)¼ 7, and

v(A)¼ v(B)¼ v(C)¼ 0. The three towns can save 10�
$100,000 ¼ $1,000,000 by acting together. The

problem is: how should these savings be allocated to

the individual towns? How does one select the three

numbers (xA, xB, xC) in the imputation set determined

by the relations xA + xB + xC ¼ 10 ¼ v(ABC),

xA � 0 ¼ v(A), xB � 0 ¼ v(B), and xC � 0 ¼ v(C)?

These points are pictured by the large triangle in Fig. 5.

One solution concept for cooperative games is

called the core. The core consists of those allocations

in the imputation set for which every coalition S

receives or exceeds its value v(S). No coalition has

the capability to improve its total allocation at a core

point by going off on its own. For the savings game, the

core consists of all imputations (xA, xB, xC ) that satisfy

the inequalities xA + xB � 4 ¼ v(AB), xA + xC �
3 ¼ v(AC), and xB + xC � 7 ¼ v(BC). This is the

four-sided region in Fig. 5. Note that the core is not

a unique allocation, and for some games it can be the

empty set. However, the core is always non-empty for

such cost allocation games.

Another popular solution concept is called the

nucleolus. The nucleolus is the one allocation in the

center of the core. For the savings game, the nucleolus

is the imputation v ¼ (6/4, 19/4, 15/4). (The nucleolus

is also defined for those games with empty cores as the

unique imputation where the core would first appear

when each proper coalition S has its value v(S)

decreased uniformly.) If the nucleolus for the savings

game is translated back to a cost allocation for the

original problem, the following allocation is obtained:

$100;000 5; 14; 9ð Þ � v½ �
¼ $350;000; $925;000; $525;000ð Þ:

In 1951, Lloyd S. Shapley introduced a solution

concept that also provides a fair and unique outcome

for the savings game. The Shapley value in general

gives the average of each player’s marginal

contribution taken over all possible orderings of a set

N of n players. Each one of the n! orderings
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(permutations) is a way the full coalition N could build

up, one player at a time. There are six orderings of the

three towns A, B, and C: (CBA), (BCA), (CAB), (BAC),

(ACB), and (ABC). The Shapley value jA for town

A is accordingly 6jA ¼ 2[v(ABC) � v(BC)] +

[v(AB) � v(B)] + [v(AC) � v(C)] +

2[v(A) � 0] ¼ (2�3) + 3 + 4 + (2�0) ¼ 13. A similar

calculation gives 6jB ¼ (2�7) + 4 + 7 + (2�0) ¼ 25 and

6jC ¼ (2�6) + 3 + 7 + (2�0)¼ 22. The Shapley value j

for the savings game is j ¼ (jA, jB, jC ) ¼ (13/6,

25/6, 22/6). Note that this point is in the core of this

game, although this is not always the case for cost

allocation problems. In the original cost problem, j

corresponds to the result ($283,333; $983,333;

$533,333).

The various solution concepts for multiperson

cooperative games have been applied throughout

economics, political science, and operations research.

The core is important in the study of economic

markets. The nucleolus is viewed as a fair outcome

for many bargaining situations. The Shapley value has

also been employed as a measure of power for voting

systems, where the core is typically the empty set.

Dynamic Games

All previous examples used so far have involved static

games. A dynamic game can be thought of as a static

game that is repeated for a finite or infinite amount of

time. A similar equilibrium concept for a dynamic

game can be developed by extending the idea for

a static game. The central issue in all dynamic games

is credibility. Since players may analyze previous

moves and payoffs, strategies trying to predict the

other players’ moves become very important. Hence,

non-credible players often lose out. Since many static

games make up a dynamic game, the concept of

a subgame equilibrium becomes useful as a means

for equilibrium in a dynamic game. A set of

strategies for a dynamic game is said to be in

subgame equilibrium if all subgames (static portions

and their combinations) are in equilibrium. Dynamic

games can be played with perfect or imperfect

information and can be cooperative or noncooperative.

Consider the finite dynamic version of the Prisoner’s

Dilemma, which is the static Prisoner’s Dilemma

repeated N times, and both players know that the game

will end after this. Again, as in the static version, the

best overall outcome is for both players to playC in each

of the N turns. However, as in the static game, this

outcome is not in equilibrium. As an example of an

optimal deviation, suppose both players play C (N – 1)

times. In the final move, player I can choose to deviate

to D and get a total payoff of 3(N – 1) + 4 which would

have been more than his or her payoff if he or she

would have played C for the final move. Player 2 has

a similar deviation, in fact this deviation need not take

place at the last move and could be played at any stage.

One subgame equilibrium of the finitely repeated

Prisoner’s Dilemma is that both players play D for all

the N moves. Clearly, no player has any optimal

deviation at any one point in the game. However, to

prove this is an actual subgame equilibrium (so that

there exist no sequence of strategies that is an optimal

deviation from playing D in all moves), a technique

called backward induction is used.

After the last turn, no further interaction will be

possible. Hence, in the final turn, both players choose

the dominant outcome D, and play the equilibrium for

the static game. Knowing that they both will defect in

the last period, both players play D in the second to last

period as well, since they know no matter what

happens, the last turn will involve both of them

defecting. Hence, using this inductive procedure, it’s

easy to prove that both players playing D for all periods

is a subgame equilibrium. This process of starting from

the final move and moving backwards is known as

backward induction. Note that backward induction is

only a valid technique in a finite dynamic game, as

there is no final move in an infinitely repeated game.

Dynamic games can also involve moving

sequentially. In a Stackelberg Duopoly, two players

choose quantities of production to maximize

individual profits. However, one player, the leader,

gets to move first and the second player, the follower,

moves after observing the first player’s move. In the

Stackelberg game, the leader often has a higher payoff

in a subgame equilibrium. Using backward induction,

for a simple finite Stackelberg game, it is easy to figure

out the subgame equilibrium. A Stackelberg game is

also an example of a mathematical program with

equilibrium constraints.

For infinitely repeated dynamic games, the analysis

tends to be slightly different. Backward induction can

no longer be used to find and prove that a strategy is

a subgame equilibrium. To study infinitely repeated

games, a discount factor (less than or equal to one) is
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introduced to discount future payoffs. Strategies

known as trigger strategies comprise equilibria

of such games. One widely studied strategy is

a tit-for-tat strategy, in which a player cooperates

until the opponent stops cooperating. Then the player

does not cooperate until the opponent starts

cooperating again. Another trigger strategy is a grim

strategy, where a player cooperates until the opponent

stops cooperating, after which the player proceeds to

not cooperate forever. For example, in an infinitely

repeated Prisoner’s Dilemma, subgame equilibria can

be different from both players playing D for all turns.

Various grim strategies and tit-for-tat strategies can be

devised as subgame equilibria depending on the value

of the discount factor.

Dynamic games without perfect information can

also be studied. In such games, there is a sender of

information and a receiver. The sender observes their

type, and sends a message to the receiver about it. The

receiver chooses an action after predicting what the

senders type will be based on the message received. An

example is Spence’s (1976) model of job market

signaling. A job applicant (sender) knowing about

their productive ability (type) sends details regarding

their education (message) to an employer or a market

of employers (receiver). The wage paid by the

employer is then the action of the receiver.

One of the problems with traditional game theory, as

outlined above, is that it often does not mirror the actual

decisions by human beings and institutions. To achieve

equilibrium, players are assumed to be extremely

rational and have perfect foresight. Many experiments

show that this is not true. Another shortcoming is the

presence of multiple equilibria in game theory. There is

no consistent method for determining which

equilibrium is picked when the game is played out in

practical life with real players. The next section

provides a brief overview of how recently developed

theory has attempted to resolve these problems.

Evolutionary Game Theory

Evolutionary Game Theory is the study of dynamic

games that focuses on strategy development by players

who interact, usually as part of a large population. By

looking at strategy development as opposed to finding

equilibrium points, evolutionary game theory

overcomes the problem of selection from multiple

equilibria. It provides a framework for studying how

strategies evolve and which equilibrium point gets

picked. Also, by studying strategy, evolutionary

game theory does not assume that the players are

excessively rational. Fisher (1930) was the first to use

evolutionary game theory to understand why some

species of mammals have an equal sex ratio even

though the majority of males never mate. At other

instances, evolutionary game theory has done well to

model the behavior of animals, which are assumed to

be even less rational than human beings.

The first mainstream introduction of evolutionary

game theory was made by Smith and Price (1973)

when they published “The logic of animal conflict.”

While it was of great interest to evolutionary biology,

many economists also recognized its use in modeling

human behavior. Axelrod (1984) was one of the first

economists to apply this theory to cooperation among

human players. The essential features of all models in

evolutionary game theory is repetition of player moves

and the adaptive behaviors and strategies resulting

from these repetitions in large populations. A strategy

that can withstand changes, or mutations, is regarded

as an evolutionary stable strategy. This helps biologists

understand the decision making of animals and

organisms and helps social scientists extract

information about decision-making processes in

humans.

The Prisoner’s Dilemma also has an evolutionary

counterpart. Consider the dynamic Prisoner’s Dilemma

played repeatedly by a large population. It can be shown

that all players cooperating is an unstable equilibrium, in

that if a small percentage of the population deviates

from cooperating, the dynamics will drive the entire

population to defect. Thus defecting in the

evolutionary version of the Prisoner’s Dilemma is

a stable equilibrium. There are evolutionary versions

of signaling games and other dynamic games as well.

Again, evolutionary game theory analyzes the process

of choosing equilibria as opposed to finding them,which

is the focus of traditional game theory.

See

▶Decision Analysis

▶Duality Theorem

▶ Prisoner’s Dilemma

▶Utility Theory
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Introduction

Abt (1970) broadly defined a game as “an activity

among two or more independent decision-makers

seeking to achieve their objectives in some limiting

context.” Gaming involves the activity itself, whereas

game theory uses mathematics to seek the best

strategies, the sets of decisions that decision-making

players might make.

Games are played for entertainment, sport,

teaching, training, and research. As a research

method, gaming is used by psychologists, educators,

and sociologists interested in how people learn and

play games and by operations researchers, other

analysts, and decision makers interested in

developing, exploring, and testing policies, strategies,

hypotheses, and other ideas.

As an OR/MS method, gaming is controversial,

often practiced more as an art than a science. Few

methods have been so inadequately named,

prompting ridicule from skeptics and attempts by

adherents to call it something more serious sounding

or descriptive, such as operational gaming, simulation

gaming, free-form gaming, and, in defense analysis,

war gaming and political-military gaming. Although

gaming has not been made as scientifically

rigorous nor as universally accepted as adherents

hoped for decades ago, it has helped importantly in

developing strategy, in pretesting policies before

actual implementation, and in communicating

understanding of operational complexities.

Research games are often played as part of the

planning process in developing important policies

and strategies for organizations in competitive

situations. Accordingly, the results — and sometimes

the existence of gaming — are not publicized.

For example, several Iraq-Kuwait scenarios were

gamed in 1990 before Iraq actually attacked, but they

are not fully documented in the open (unclassified)

literature. Sources of information on research gaming

include special interest sections at operations research/

management science professional conferences, reports

and bibliographies published by organizations with

a tradition of gaming (such as the Naval War

College, RAND, and others), the journal Simulation

& Games, and various books and articles. Shubik

(1975) presents comprehensive discussions of

gaming, including a game theory background for

gaming, analytical, and behavioral models, and

examples of games used for a variety of purposes.

Brewer and Shubik (1979) provides an historical

review of the use of military war games. Dunnigan

(2000) details the designing and playing of

commercial and professional war games.

Learning from Gaming

People can learn from gaming by designing the game,

by playing it, or by analyzing the play or
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results (Perla and Barrett 1985). Greenblat (1988)

discusses game design as a five-stage process:

(1) setting objectives of and constraints on the game,

(2) conceptual model development, (3) decisions about

representation, (4) construction and refinement, and

(5) documentation. Because a game is meant to

model one or more important aspects of something

that is operationally complex, game design is usually

an intense intellectual exercise in analysis. Analysts

commonly learn a great deal from the process of

designing a game, as is true with other types

of model design. Gredler (1994) discusses how

Lewinian or Piagetian theories of learning can be

applied to game design.

Most games have two or more teams, each

representing a decision-making entity, such as

a country, a military command, or a business firm,

with from one to hundreds of players on a team.

Players may be assigned specific roles — a leader of

a country, a CEO in a regulated industry, a local

warlord — in which they can criticize or embrace the

policies of their own or competing governments or

organizations. Formal games have rigid rules for

play, while seminar or free-form games, have

few rules.

Play of a game is usually divided into moves, each

being a period of real time during which game time

(often posited to be in the future) is assumed to be

frozen. Game time is usually advanced further into

the future between successive moves; however, it can

be advantageous to roll back game time for the final

move, to allow players to apply what they learned

about possible future consequences in formulating

better near-future policies, initiatives, or options

(Molander et al. 1996).

Moves usually begin with teams being presented

with information that players are asked to accept as

true for the purposes of the game and use as a basis for

their deliberations and decisions. This information is

often in the form of a scenario, a story about how the

future might plausibly evolve, carefully crafted to help

people “recognize and adapt to changing aspects of our

present environment” (Schwartz 1991). The set of

decisions made by a player or team during a move

period is sometimes called its move. Game

administrators, who usually include researchers who

designed the game and will analyze its results, are

commonly called controllers or referees. Games have

usually been played with all participants at one site;

however, distributed games can be played with

remotely located players communicating via

electronic mail or other means.

Despite the make believe aspects of gaming, players

often become intellectually (and sometimes

emotionally) caught up in the game, engaging in

intense, goal-focused thought and discussion. In the

process they learn about the issues, about their

teammates, and about themselves. Controllers often

learn what can go wrong operationally and how

signals and other forms of communications between

teams can be misunderstood.

Analysis usually begins with a critique at the end of

the last game move, attended by players, controllers,

and observers. The game director may ask each team

leader to present their analysis of what the team saw as

the major issues, how they analyzed their options, what

they decided, and what results they expected. Whether

analysis is more formal than this depends in part on

whether the game was designed as an experiment, to

yield data or other observations suitable for analysis.

If a series of games is played, then there is opportunity

for comparative analysis.

Why Game?

Unlike many other techniques of analysis, gaming is

not a solution method. The output of a game is not

a forecast or prediction, solution, or rigorous

validation. The output of a good game is increased

understanding.

Gaming can do several things: reveal errors or

omissions in concept; explore assumptions and

uncover the implicit ones; draw out divided opinion;

examine the feasibility of an operational concept;

identify areas that are particularly sensitive or in

which information is lacking (Quade 1975); pool the

knowledge of several experts; suggest questions or

hypotheses for further study; identify the values

or measures of effectiveness (MOEs) that people

care about; breadboard approval-winning or

implementation of policies; or test strategies for

long-term consequences. No matter how rigorous

the analysis, gaming can do something an individual

cannot do, namely, list the things that would

never occur to the individual. It can help identify all

the ways that a carefully composed statement

can be misinterpreted. As Levine, Schelling, and
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Jones (1991) noted, it can also “generate the

phenomena of understanding and misunderstanding,

perception and misperception, bargaining,

demonstrations, dares and challenger’s accommodation,

coercion and intimidation, conveyance of intent,

and uncertainty about what each other has already

done or decided on. There are some things that just

cannot be done by a single person or by a team that

works together.”

Prospects for Gaming

The popularity of gaming is cyclical. Its use, however,

appears to be on an upward path. Video conferencing

and electronic mail networks open possibilities for less

expensive games with broader participation, including

international play. Advances in computers and

software make it easier to develop models to support

games, to use them on the fly during games to update

scenarios, to query data files in response to player

questions during games, and to prepare presentation

graphics during the games and for post-game critiques.

Videotaping has been used to present scenario updates

to players in newscast format and to present pre-taped

briefings by experts to players. Expert systems are used

to support some games, but the use of artificial

intelligence, rule-based agents in gaming is not as

active as it was in the 1980s.

Gaming has often not been as well integrated into

studies using other methodologies as might be

warranted. Gaming is but one form of analysis to

inform policy, managerial, or operational decisions.

Figure 1, adapted from Paxson (1963), summarizes

some of the relationships between gaming and

other analysis. Regardless of whether gaming ever

achieves the rigor early proponents sought, it appears

to have continuing value. Gaming can often respond

to changing operational or strategic contexts

more rapidly than other methods. Challenges

remain in making games less demanding of player

time (especially important in enlisting senior officials
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as players), in reducing costs of games (including travel

costs), and in using game results responsibly and

effectively in analyses to inform decisions.

See

▶Battle Modeling

▶Game Theory

▶Military Operations Other Than War

▶Military Operations Research

▶RAND Corporation

▶ Simulation of Stochastic Discrete-Event Systems
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Gamma Distribution

A continuous random variable is said to have a gamma

distribution if its probability density can be written in

the form f(t) ¼ a(at) b�1 e �at /G(b) where a and b are

any positive real numbers and G(b) is the gamma

function evaluated at b. The constant b is called the

shape parameter, while a (or various equivalents) is

called the scale parameter. If b happens to be a positive

integer, then G(b) ¼ (b � 1)! and this gamma

distribution is also called an Erlang distribution.

Furthermore, if b is either an integer or half-integer

(1/2, 3/2, etc.) and a ¼ 1/2, the resultant gamma

distribution is equivalent to the classical w2

distribution of statistics.

See

▶Erlang Distribution

GAMS

General Algebraic Modeling System. An algebraic

modeling language for mathematical programming

that supports numerous commercial and open source

software solvers, including BARON, COIN-OR,

CPLEX, Gurobi, MINOS, SNOPT and KNITRO.

Gantt Charts

Steven Nahmias

Santa Clara University, Santa Clara, CA, USA

Introduction

There are three well-known types of Gantt charts: the

Gantt load chart, the Gantt layout chart, and the Gantt

project chart. A Gantt chart is essentially a bar chart

laid on its side. The horizontal axis corresponds to time

and the vertical axis to a collection of related activities,

machines, employees, or other resource. Bars are used

to represent load durations or activity starting and

ending times. The Gantt chart is appealing in that it is

easy to interpret and can provide a visual summary of

a complex schedule.

In principal, the three types of Gantt charts are

similar, but each has a somewhat different

application. The load chart is used to show the
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amount of work assigned to resources (typically

equipment) over a given amount of time. Sequencing

issues are ignored here. Load charts are useful for

showing work assigned to a project, but do not show

the progress of an on-going project. The Gantt layout

chart is used to block out reserved times on facilities

and is one means of keeping track of the progress of an

ongoing project.

The most popular type of Gantt chart is the Gantt

project chart. A Gantt project chart is used to show the

starting and ending times of all the activities

comprising a project. It can be used to monitor the

progress of a project and determine where stumbling

blocks may be. Next is an example of a Gantt project

chart.

Example

Suppose that a project consists of four activities: A, B,

C, and D requiring, respectively, 4, 7, 3, and 5 days.

Figure 1 is a Gantt chart representing the starting and

ending times for these activities.

According to this chart, A and B are started at day

0 and are scheduled to be completed, respectively, at

the start of days 4 and 7. Activity C is begun when

A ends on day 4 and is completed at the start of day 7,

while D is started on day five and completed on day 10.

While the chart shows the start and finish times of each

activity, it has the shortcoming of not showing

precedence relationships. Specifically, is C required

to wait for the completion of A or could C have been

scheduled earlier? Does D require A to be completed

before it could start? Should D have been started on

day 4 instead of day 5? Because of this significant

limitation, years later professionals recognized that

networks were much more powerful ways of

representing projects, since precedence constraints

could be incorporated directly into a network

structure. Both the Critical Path Method (CPM) and

Project Evaluation and Review Technique (PERT)

overcome this shortcoming of Gantt charts. Even

though it has limitations as a planning tool, the Gantt

chart is still one of the most convenient ways to

represent a schedule once it is determined.

While Gantt charts vary considerably in format and

structure, this example contains the basic elements of

all Gantt project charts. Invariably, the horizontal axis

corresponds to time, and the vertical axis to a set of

activities (or machines or resources for the other types

of Gantt charts). Interpret activities very broadly here.

They may be parts of a project, they may be part

numbers, or machines or personnel. The bars

generally correspond to beginning and ending times

for activities, but might have different interpretations

in other contexts. For example, they may correspond to

a work shifts for personnel or delivery and shipment

times for parts.

Implementation Issues

There are some issues one must be concerned with

when trying to implement a Gantt chart. One is the

way time is measured and scaled. In the example

above, time is shown in numbers of elapsed days

from an arbitrary day labeled day 0. In practice, it is

more common, however, for time to be measured in

calendar days. The horizontal axis would correspond

to specific calendar dates. While calendar dating

makes starting and ending times more explicit, there

are other issues to consider as well. How long is a day?

In most work environments, a work day is 8 hours. In

other contexts, a day may be 24 hours. Another issue is

whether operations continue during weekends. There

are several ways to handle this problem. The easiest is

just to exclude weekend dates from the chart. The

interested reader should refer to Battersby (1967) and

Clark (1952) where these and related issues are

discussed in detail.

Extensions

An extension of the Gantt project chart which was the

precursor of modern networks is the milestone chart.
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Gantt Charts, Fig. 1 Four-activity Gantt chart
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Networks are collections of nodes and directed arcs. In

the context of project planning, nodes represent

completion of a collection of activities, and directed

arcs to the durations of specific activities. Developed in

the 1940s by the U.S. Navy, the milestone chart is

a Gantt chart with circles representing key time

periods which occur during the completion of an

activity. The milestones could then be linked, in

much the same way that nodes are linked on a project

network. An example of a milestone Gantt chart is

shown in Fig. 2.

The vertical line linking Activities A and C means

that C cannot be started before A is complete. In the

case of activities B and D, the vertical line there

implies that D cannot be started until five days after

B has started. (This suggests that B should be

represented as two activities.) The diagonal line

connecting A and D means that D cannot be started

until A is completed.

Uses

The Gantt chart was the precursor to several

commercial graphical control systems, many of

which are found today adorning the walls of

manufacturing facilities throughout the United States.

In his classic work, Moore (1967) noted several

commercial variations of the Gantt chart available in

the 1960s including Productrol boards, Schedugraphs,

and Boardmasters. All use a time scale across the top

and horizontal lines to picture machines, schedules or

orders or whatever is being graphed. Although very

popular in the 1950s, these manual techniques have

lost favor because computers can quickly update and

print progress charts.

History

The concept was originally developed by Henry L.

Gantt, a contemporary of Frederick Taylor’s,

a major force in the development of scientific

methods for operations and production control.

Gantt developed the idea of a bar chart to monitor

project status while he was affiliated with the Army

Bureau of Ordnance during World War I. His original

intent was to display graphically the status of

munitions program for that day. Gantt recognized

that time was a key variable against which the

progress of a program could be assessed. Gantt’s

development was certainly a first key step in the

development of scientific methods for project

management, a powerful tool for project planning.

Both CPM and PERT were consequences of the kind

of planning recommended by Gantt. Dozens of texts

have been written on the subject and the methods have

been applied to a large variety of industries. Personal

computer software products are widely available

which make extensive use of Gantt charts to display

schedules. An overview of project planning is given

in Nahmias (2009), and more details on project

planning techniques can be found in Moder,

Phillips, and Davis (1983).

See

▶Critical Path Method (CPM)

▶Network Planning

▶ Program Evaluation and Review Technique (PERT)
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Gaussian Elimination

Acomputational procedure for reducing a set of (m�m)

linear equations Ax ¼ b to the formMAx ¼Mb, where

MA¼ U is an upper triangular matrix. The variables of

the solution vector are found by solving the resulting

triangular system for one variable in the last equation,

and back-substituting in the next to last equation, and so

on. Some form of elimination is central to the simplex

method for solving linear-programming problems.

See

▶Matrices and Matrix Algebra

▶ Simplex Method (Algorithm)

Gauss-Jordan Elimination Method

Acomputational procedure for reducing a set of (m�m)

linear equations Ax ¼ b to the explicit solution form of

x ¼ A�1 b.

See

▶Gaussian Elimination

Gene

In genetic algorithms, the unit of inheritance, carried

by chromosomes (i.e., solutions); a piece of the genetic

material that determines the inheritance of a particular

characteristic.

See

▶Genetic Algorithms

Generalized Erlangian Distribution

The probability distribution of a finite sum of

independent, exponentially distributed random

variables whose parameters may not be the same.

Sometimes, the term is also used for a convex sum of

Erlang distributions, which, however, is more often

called a mixture.

Generalized Upper-Bounded (GUB)
Problem

A linear-programming problem with a set of constraints

of the form
P
j2 J

xj ¼ 1, where J is a subset of the indices

j ¼ 1, 2,. . ., n and each j can appear at most once in

some J. This problem is called a GUB problem and

a special adaptation of the simplex method is available

that reduces the computational burden of having a large

number of GUB constraints.

Generating Function

▶ Probability Generating Function

Generator (of a Markov Chain/Process)

The matrix of state-transition rates (intensities).

See

▶Markov Chain Equations

▶Markov Chain Monte Carlo

▶Markov Chains

▶Markov Processes

Genetic Algorithms

Probabilistic algorithms from the class of Evolutionary

Algorithms.

See

▶Evolutionary Algorithms
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Introduction

The most widely known and used form of

a Geographic Information System (GIS), one

everyone takes for granted, is the navigation system

in our cars - Global Positioning System (GPS) - that

shows where you are and tells you how to get to where

you are going. Google Maps and Google Earth, two

other GIS examples, became standards almost

overnight in 2005. Geographic Information Systems,

however, are more pervasive and important than that

gadget in your car or the free maps available on the

Internet; they have millions of users. GIS software

combines database management systems, map layers,

and visualization to support cartographic display,

spatial query, and analytical modeling. They integrate

locational, topological, and thematic data to allow

constructing, exploiting, and visualizing complex

spatial relations among data types at a variety of

scales, levels of aggregation, and dimensionality. As

such, they are a fundamental tool for Operations

Research (OR).

Geographic information technology allows

exploiting increasingly available amounts of valuable

geographic and spatial data in a form easily

comprehended by analysts and decision makers.

Among the problems to which GIS has been applied

are:

• site selection;

• urban 3D design;

• election administration and redistricting;

• infrastructure management;

• mapping and modeling of Federal geospatial

information, such as that of Department of

Homeland Security, Department of the Interior,

Department of Housing and Urban Development,

and Bureau of the Census;

• natural resource exploration;

• public health and safety (e.g., modeling

communicable diseases; analyzing natural

disasters before, during, and after; emergency

response planning; and optimizing dispatch of

emergency vehicles);

• real estate marketing, sales, and management;

• renewable energy management (wind, solar, hydro,

and geothermal);

• military and defense applications combining GIS

with sensors and satellite imagery;

• transportation, fleet management, supply chain, and

other logistics; and

• urban and regional planning, including modeling

and analysis of cities, populations, urban sprawl,

taxation, land use, zoning, utilities and urban 3D

design.

GIS Background and Capabilities

The term geographic information system was coined in

the 1960s. It now applies to generic capabilities for

studying and analyzing spatial phenomena. (Longley

et al. 2010; Clarke 2010). They define its capabilities

as including:

• collecting, storing, and retrieving spatial location

data;

• identifying locations which meet specified criteria;

• exploring relationships among spatial layers and

associated data sets;

• analyzing related spatial data to aid in making

decisions;

• facilitating assessment of alternatives and their

impacts;

• displaying selected environments both visually and

numerically.

• modeling spatial phenomena;

• designing solutions to problems based on spatial

analysis and visualization.

Databases and Computer Advances

One of the most powerful examples of the essential

role of GIS as an earth systems analytic tool is in the

efforts to understand the processes of global change.

GIS tools combine ecosystem and biological data,

meteorological information, distribution of manmade

emissions sources, regulatory data, site monitoring

data, satellite and aircraft sensing and imaging data.

They use the integrated information to simulate the
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interactions and impacts of complex natural and

manmade systems. The analytic potential of GIS

tools is enhanced by the power of GIS visualization.

Researchers and practitioners view modeling results

in a realistic terrain rendering that facilitates

understanding and provides a valuable mode for

presenting research results to non-technical audiences

(Maguire et al. 2005).

The key to GIS application and the impetus behind

its fast growing use is the combination of the

availability of massive databases and the continually

increasing power of mobile, desktop, and server

computer hardware that enable storing and

manipulating these databases. The databases are

increasingly being stored in large commercial and

governmental spatial server farms, such as those of

ESRI Inc., Google, and the U.S. Geological Survey.

An example of a particularly important national base

map is the TIGER files (Topological Integrated

Geographic Encoding and Referencing System)

located at the U.S. Census Bureau. TIGER is

essential to systemizing the many basic geographic

layers of government geographies such as census

tract boundaries, highways, national boundaries, and

administrative districts, so that demographic and

economic data can be visualized precisely. The

TIGER files are updated and corrected regularly.

Software

Specialized software links attributes (discrete object

values) superimposed 2D map layers and higher

dimensional geometries through common identifiers.

This analysis function permits displaying multiple

spatial relationships:

• overlaying combinations of features and recording

resulting conditions;

• analyzing networks;

• defining areas in terms of specified criteria; and

• fitting models more accurately through spatial

statistics

In practice, for most earth surfaces, a GIS consists

of a series of layers, each presenting a particular

feature that can be superimposed accurately on top of

one another. Each feature constitutes a distinct layer

that can be displayed or not, as desired by the analyst.

Basic features take the form of points, lines, or

polygons, representing the full spectrum of spatial

phenomena. For example, lines may represent

transportation options, such as railroads or highways.

Because the typical map contains vector-based

longitude and latitude data, distances traversed

along a route are easily calculated and available for

inclusion in analysis. A GIS is able to recognize 3D

geometry and perform spatial analysis of these more

complex forms, for example, to model shadows on

the urban landscape from new skyscrapers being built

in cities.

A feature supporting analysis of spatial

distributions is electronic street addresses, either

defined for the ends of blocks or positioned at regular

intervals along major thoroughfares. The GIS software

typically contains interpolation algorithms enabling

the analyst to pinpoint specific phenomena by

address, termed geo-coding. There is a competitive

industry marketing software and databases products

to transform street addresses, or nine-digit zip codes,

into map coordinates. In marketing applications, for

example, this capability is used to locate customers or

potential customers. In school districting, the location

of students can be represented.

The display of variable densities or thematic

mapping displays (e.g., expenditures, activity levels,

or incidents by selected administrative districts) is

a standard GIS software capability. For example, the

incidence of people aged 60 and over, based on census

data, can be displayed by location representing age

categories by different gray scales or colors.

The primary mode of building GIS maps is based on

vector models using points, lines, and polygons. An

alternative approach is to build raster maps in which

real world features are shown as pixels on a grid. Each

dot becomes a data point in a raster GIS. Most imaging

satellites can now create digital/raster images. Although

a raster GIS is typically much more hardware and

software intensive than vector GIS, it can answer

spatial questions that vector GIS cannot. Whereas

vector models compute distance with lines that form

a network, a raster GIS does not require a line-based

network. Thus, a raster GIS can better measure the

distances traveled by wolves in Yellowstone National

Park in that they do not follow a network.

Raster GIS models are not inherently superior to

vector-based models. Both have strengths and

weaknesses. They should be considered different
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tools to help solve different spatial questions.

Historically, a vector GIS was more prevalent than

a raster GIS because of the limitations of hardware

and software, but advanced GIS software is able to

move back and forth seamlessly between vector and

raster models. The general user is not even aware that

a change takes place. A well known raster GIS product

is GRASS (Geographic Resources Analysis Support

System) that was initially developed and maintained

as public-domain software by the U.S. Army

Construction Engineering Research Laboratories. It is

now maintained by a private company. The leading

GIS products feature both vector and raster

capabilities.

In general, the major features of GIS software can

be grouped under the headings of user interface,

analysis tools, and data management (Longley et al.

2010). The user interface can vary in complexity from

dozens of features for client applications such as

Google Earth, and up to many hundreds of features

in advanced software such as the Web-based ArcGIS.

Analysis tools range from traditional simple tools

such as query, distance measurement, buffering, and

overlays, up to advanced spatial analysis, graphical

model building, 3D visualization, space-time

modeling, spatial statistics, integrated routing and

inventory models, and network analysis (Longley

et al. 2010). Data management features include

internal tables, linkages to common spreadsheets,

and connections to leading relational databases and

geo-databases, that are hybrids that combine

relational, object, and spatial capabilities. The

software can be implemented at the cloud, server,

desktop, and mobile levels, and companies now

offer families of products that allow these levels to

be connected together. For larger firms, enterprise

GIS software is offered based on powerful internal

and external servers, and can be coupled with

business Enterprise Resource Planning software.

GIS software markets are increasingly being

supported by outsourcing part or all of it.

Spatial Decision Support System (SDSS) for
Decision Making

Spatial Decision Support Systems enlarge the standard

DSS model of data management, model management,

and knowledge management by adding spatial analysis

and spatial data components. Thus, an SDSS refines

and strengthens conventional DSS analysis by

complementing it with spatial analysis and spatial

data. SDSSs can be divided into those systems that

rearrange existing information and those that

generate new information (Nyerges and Jankowski

2010; Longley et al. 2010). To rearrange is to observe

data presented in different ways, as in looking at a map

of income distribution by census tract to locate retail

outlets or target an advertising campaign. New

decision-making outcomes can be the result of

overlaying regions and spatially analyzing their

features in new ways. For example, in site selection,

the decision can be affected by layers that define

available water, available electricity, school

locations, parking availability, and traffic densities as

a function of time of day. Such spatial relations are

usually not evident in spreadsheet or tabular data.

SDSSs benefit decision making because they

provide access to additional information usually in

a different format. As a result, managers are provided

not only with additional data, but also with more

flexibility in which they can view the data The

conventional wisdom on the impact of an SDSS is

that the political and ethical/moral underpinnings

become more explicit, thereby helping decision

makers understand the impacts of the choices made.

Earth Systems Analysis

One of the most powerful examples of the essential

role of a GIS as an earth systems analytic tool is in the

efforts to understand the processes of global

change. GIS tools combine ecosystem and biological

data, meteorological information, distribution of

manmade emissions sources, regulatory data, site

monitoring data, satellite and aircraft sensing, and

imaging data. They use the integrated information to

simulate the interactions and impacts of complex

natural and man-made systems. The analytic

potential of GIS tools is enhanced by the power of

GIS visualization. Researchers and practitioners

view modeling results in realistic terrain

rendering that facilitates understanding and provides

a valuable mode for presenting research results to

non-technical audiences (Maguire et al. 2005).
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Use of GIS in Urban Planning and Other
Policy Making Activities

Because GIS technology has matured on multiple
fronts over the past decades, we are able to consider
more of the relevant conditions and impacts when
deciding on how to address [a complex systems of
human-environment-society] relationships (Nyerges and
Jankowski 2010).

Typical planning models tend to be displays of existing

facilities, for example, retailing and transportation.

The applications tend to involve structured issues,

such as allocation, rather than the indefinite set of

options policy makers face.

GIS used in urban planning depends upon a series of

powerful urban methods and models: population

potential, location quotients, grid analysis, network

analysis, Markov chains, gravity models, geo-

demographic techniques, central place theory, and

visual modeling (Nyerges and Jankowski 2010;

Greene and Pick 2006). Cities and regions are taken

to be complex systems with structures composed of

hierarchical subsystems, primarily spatial and

nominally static. Planning for these systems consists

of optimizing general systems properties, such as

idealized population distributions. Difficulties arise

from the interactions of systems at the periphery of

any region under study.

The early interest in applying computerized

capabilities to urban planning issues faced the

obstacles of collecting data, task size in terms of

data representation, and difficulty in developing

appropriate system models (Brewer 1973; Lee 1973).

These operational problems coincided with a changing

planning philosophy shifting practitioners’ interest

toward more pragmatic approaches. There is now less

emphasis on optimization and more concern with

broader-based issues of equity. This transformation in

urban planning thrust is evidenced in current demand

for data systems for facility location, emergency

services planning, resource management and

conservation, and property and tax register recordings.

Forrest (1990) listed over 60 distinct systems and

problem areas to which a GIS might be applied,

ranging across such apparently disparate issues as

navigation, political redistricting, hazardous waste

management, and wildlife protection. GIS systems are

toolkits whose designs include enough flexibility to

accommodate these multiple dimensions (Nyerges and

Jankowski 2010).

In the 1980s, the predominant GIS platform was

a stand-alone powerful workstation. It required

a substantial personnel and training investment to

build a GIS capability. Survey results show it was not

until the late 1980s that many city and regional planning

departments adopted and used GIS systems (French and

Wiggins 1989, 1990). With the advent in the 1990s of

powerful, inexpensive desktop computing and software,

GIS tools have become a fundamental part of regional

planning department infrastructure. In the first decade of

the 21st century, GIS platforms moved to mobile and

web-based platforms, powered by spatial servers.

Modern GIS software has the capability to integrate

spatial data and analysis across these different

platforms. A GIS is also reinforced by its integration

with increasing types of small sensor and locational

devices, such as GPS in vehicles, radio frequency

Identification, light detection and ranging, and thermal

sensors. They allow real-time data to be input into a GIS

with the capability for very fast decision making.

Over the last several years, GIS technology has

evolved into a platform that encourages direct citizen

engagement in urban planning and other policy

activities. Government sources increasingly provide

data that can be used by any party to analyze policy

issues. For example, the U.S. government now provides

an extensive array of data through a Web portal aimed

facilitating transparency in government affairs (Federal

CIO Council 2009). This portal contains a GIS viewer

that allows federal data to be rendered in a GIS format

and integrated with other data sources.

3D and Interactive Applications

Performance increases and growth in 3D referenced

data sets are facilitating the creation of 3D visual

models for GIS (Smith and Friedman 2004).

Integrative approaches allow the use of 3D GIS for

computer-aided design, architectural design, and city

planning. For example, 3Dmodels are used to simulate

alternative growth strategies for small towns by using

a GIS platform and building 3D and interactive

applications (Orton 1999). Simulated buildings and

their surrounding material and natural environments

can be visualized from many perspectives, engage the
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public in participation, and lead to design changes and

improvements (Longley et al. 2010). The advent of

Google Maps, Google Earth, and Microsoft Virtual

Earth in 2005 made 3D GIS capabilities available for

mass consumption. Although largely not realized as

yet, 3D optimization models combined with GIS offer

potential for more precise spatial decision-making.

Interactivity is further enhanced through the World

Wide Web. The Web’s graphic interface is particularly

suited to the visual nature of GIS. The ability to access

data from remote locations enables interactive

databases to be created that can be queried along many

number of dimensions. For example, traffic safety

conditions can be analyzed by local communities

using an interactive Web site, SafeRoadMaps.org, that

allows the users to customize the scale and type of

analysis based on local community interests and

conditions (Hilton et al. 2009).

Examples of OR Analyses Using GIS

The following examples describe OR studies that deal

with communications networks, forest management,

and personnel assignments. Two of these studies were

carried out in an earlier software environment that had

fewer capabilities than are above. Nonetheless, the

fundamental ideas are still in use and each new group

of analysts needs to read the sources and absorb the

approaches into their applications.

Modeling Communications Networks: An

example of the use of a GIS and visual interactive

modeling is given by Anghern and L€uthi (1990).

They built a GIS system, Tolomeo, in a Macintosh

environment that incorporates elements of modeling-

by-example, an expert systems technique. They

applied it to the problem of selecting the number and

location of switching centers and routes in

a communications network. The model displays the

geographical area under consideration, the location of

existing transmitting and receiving stations, proposed

switching centers (nodes), and the transmission

channels (arcs). By making the model object

oriented, it was possible to attach to each node and

arc data defining such quantities as traffic, cost, and

transmission times. Users can redefine the network

model interactively on the screen. Furthermore, they

can create multiple views of the situation, using

different visual metaphors. As the user modifies the

model, the underlying data are recalculated to show the

implications of proposed changes. Constraints and

goals can be introduced so that the calculations take

into account constraints and show where the current

solution fails to meet goals. The modeling-by-example

capability provides suggestions to the user on

directions for improvement. These suggestions are

based on applying optimization.

Forest Management: Two articles, Fletcher et al.

(1999) and Epstein et al. (2006), deal with forest

management projects in which a GIS was used in

conjunction with other OR techniques. Fletcher et al.

was based on work by The Pacific Lumber Co. and its

GIS contractor, while Epstein et al. involved

collaboration between the University of Chile and

Oregon State University, working with a group of

forestry companies.

In Fletcher et al., the objective was to develop

a 120-year, 12-period forest-ecosystem management

plan for the company’s properties that met the then

new state wildlife, fisheries, and timber resource

requirements. The company also wanted to make sure

that its harvesting would be optimal and the yields

would be self-sustaining. The project was done under

the auspices of a large lumber company in far Northern

California that controlled extensive stands of redwood

trees. The contractor built a model that seamlessly

integrated a GIS with a database and a policy

alternative model and that allowed adaptive

management.

They started with using the GIS to divide the

200,000 acres held by the company into 406 strata

types with each stratum containing one type of tree.

Using GIS overlays of areas of special concern (e.g.,

stream barriers, wildlife corridors, owl buffers,

watersheds), these strata were further subdivided into

7837 areas that were the fundamental decision units in

the model. Each unit was defined by the tree type

grown, amount of growth, and yield.

A linear-programming solution was first obtained

and displayed on a map. Wildlife biologists then

performed spatial integration of wildlife habitat types

within the long-range planning model to determine

reasonableness of the fragmentation, edge effects,

and distribution of the watershed assessment areas.

The Epstein et al. article concerns the problem

timber firms face in locating harvesting machinery
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and transporting timber over a road network, while

trying to reduce total cost and lower environmental

impact. Optimization and GIS techniques were

combined in a model which, for a forested area,

locates harvesting machinery, and spatially optimizes

the road network for transport of harvested trees to

exit points. A mixed-integer programming model

optimizes for the route that would incur the lowest

total cost of road building and transportation.

The model divides the forest into spatial grid

coverage of 10x10 meter terrain cells that have

associated topographical and production attributes

including timber volume. Each cell is defined by

3D coordinates, thus allowing for estimation of

slope angles in the predominantly mountainous

timberlands. Slopes constrain the type of harvesting

machinery (fixed versus vehicular) and the feasibility

of locating roads. The user can re-set the locations of

harvesting machinery and modify the maximal

harvesting costs and allowable slope angles.

A heuristic algorithm computes the cost of road

building and timber transport over challenging terrain

to exit points. Usual practice involves a forest area of

2,500 acres, with 75,000 spatial cells, 100,000 road

vertices, 5,000 potential harvesting tractors and 300

fixed harvesting towers. The software has resulted in

average operational cost reductions of 15–20 percent

for large timber firms such as Forestal Bio Bio,

Forestal Monteaguila (Shell Group), and Bosques

Arauco S.A.in Chile.

Dispatching and Home Delivery: The retailing

giant, Sears, uses a combination of OR models and

a GIS to improve routing and scheduling for its truck

delivery services:

• logistic delivery system for delivering newly

purchased furniture and appliances, and

• product services system for installing and repairing

appliances and providing home improvements and

services.

Both systems involve sending trucks to customer

homes, the first with over 1000 vehicles making 4

million deliveries annually, and the second with over

12,500 vehicles responding to 15 million service calls

annually. Although they are run separately, the two

systems are remarkably similar from both OR and

GIS perspectives.

The original Sears system dates back to the 1990s

(Weigel and Cao 1999). The objectives were (and are)

(1) to deliver articles or arrive for service within

a customer’s time window, (2) minimize operational

costs, and (3) provide consistent routes for drivers. In

an updated version, they were still in operational use in

2010 (Longley et al. 2010).

The systems operate nationally, distributed among

regional offices. Their big task is to make sure that

items are delivered and calls are answered within

a time window agreed upon with the customer. At

a simple level, the systems solve the conventional

analytic vehicle-routing problem with time windows

(VRPTW)which was solved in the 1980s and l990s. At

least they would be if the number of destinations were

small and fixed, such as a set of warehouses or retailers.

However, since the destinations are individual homes

and vary from day to day, the standard OR solution is

not adequate. The problems are much larger and must

be solved in reasonable time every day. To make

the systems efficient, they require mating VRPTW

and GIS.

The system uses algorithms to build an

origin–destination matrix and to improve sequencing

and routing among other factors. Not only must the

system take into account the customer’s time window,

it must also deal with labor constraints such as the

available personnel, their skills and time for specific

jobs, the down time for lunch and other breaks, and

their schedule. In addition, the system must take

routing into account, using the GIS since driving time

varies, for example, by traffic as a function of time of

day, the flatness or hilliness of the route, andmuchmore.

The algorithms also include intra-route and inter-route

improvement routines, based on Tabu Search.

The system works as follows: When customer data

are downloaded, the geo-code module locates the

customer’s x-y coordinates. Based on the street data

stored by the GIS, it calculates the distance between

all customers, providing the information for the

assignment and route improvement modules. Using

distances, driving times, time windows, and personnel

specialties and other constraints, the computer generates

routes. Since special circumstances rise frequently (e.g.,

customer changes in time windows, service time) and

some constraints may be violated, the routings can be

over-ridden manually.

Sears has reaped benefits from this system in

on-time performance, much reduced daily

route-computation time, reduced miles between

stops, more customers handled per truck per day,

reduced overtime, and reduced drive time.
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Concluding Remarks

Geographic Information Systems provide the base for

powerful OR analyses that integrate the visual

capabilities of the computer with available

spatial information and optimization techniques.

The GIS capabilities offer the opportunity to change,

fundamentally, the way 2D problems, such as location-

allocation, and 3D problems are approached. The rise

of Web-services and related cloud architectures has

provided a means to take GIS from a highly

customized application to one that is becoming

a ubiquitous analysis tool for business, government,

and individuals.

See

▶Decision Support Systems (DSS)

▶Heuristics

▶ Information Systems and Database Design

in OR/MS

▶Location Analysis

▶Logistics and Supply Chain Management

▶Vehicle Routing
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Geometric Programming

Joseph G. Ecker

Rensselaer Polytechnic Institute, Troy, NY, USA

Introduction

Early work in geometric programming was stimulated

by Zener (1961, 1962) in his investigation of cost

minimization techniques for engineering design

problems. Subsequent work by Duffin (1962), Duffin

and Peterson (1966), and Duffin, Peterson, and Zener

(1967) provided the fundamental groundwork of the

subject. Geometric programming refers to a class of

optimization problems that have the form

Pð Þminimize g0ðtÞ

subject to gkðtÞ � 1 and t>0

where t¼ (t1, t2,. . ., tm ) is a vector of variables and, for

k ¼ 0,1,. . ., p, the functions gk(t) are sums of terms

having the form

uiðtÞ ¼ cit
ai1
1 t

ai2
2 � � � taimm

where the coefficients {ci} and the exponents {aij} are

arbitrary real numbers. The following is an example of

a possible geometric program with three variables:

minimize g0ðtÞ ¼ 40
t1t2t3

þ 40t2t3

subject to g1ðtÞ ¼ 1
2
t1t3 þ 1

4
t1t2 � 1

and ti > 0; i ¼ 1; 2; 3:

The term geometric programming was adopted

because of the role that the geometric–arithmetic

mean inequality played in the initial development of

a duality theory for problems having the above form.

Initially, the class of problems was restricted by

requiring that the coefficients be positive and the

corresponding terms ui (t) were called posynomials.

Thus, the term posynomial programming might well

have been chosen instead of geometric programming.

Many engineering design problems do have the form

of a geometric program where the coefficients are

positive. Several examples of such problems

are given in Duffin, Peterson, and Zener (1967), in

the paper on methods, computations, and applications

of geometric programming by Ecker (1980), and in the

references of the latter paper.

Geometric programs where some of the {ci}

coefficients can be negative are called signomial

programs and this class of optimization problems was

first studied by Passy and Wilde (1967) and Blau and

Wilde (1969). The initial theory of geometric

programming has been generalized to a much broader

class of optimization problems. The review article by

Peterson (1976) shows how the approach to

developing a duality theory through the use of

inequalities can be generalized to a very broad class

of problems.

Equivalence of Posynomial and Convex
Programs

Posynomial programs can be reformulated so that the

objective function g0 and the constraint functions gi are

convex. The simple transformation

tj ¼ ezj for j ¼ 1; 2; . . . ;m

allows each posynomial term to be rewritten in the

form

uiðtÞ ¼ cie
ai1z1þai2z2þ���þaimzm :

Let A be the matrix whose ith row Ai gives the

exponents of the ith posynomial term, then ui (t) can

be written as

uiðtÞ ¼ cie
Aiz

where z is the column vector with entries zi. The

matrix A is usually called the exponent matrix.

Notice that A is n � m where m is the number of

variables and n is the number of posynomial terms.
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For our example three-variable problem, the exponent

matrix A is given by

A ¼

�1 �1 �1

0 1 1

1 0 1

1 1 0

0

BB@

1

CCA:

Defining x ¼ Az, then each geometric program with

positive coefficients can be written so that the

objective function and all of the constraints are

convex functions of the variables x because then each

posynomial term can be written as

uiðtÞ ¼ cie
xi

where the linear constraints x ¼ Az are added.

The Dual of a Posynomial Program

Through the use of the geometric–arithmetic mean

inequality a maximization problem can be generated

from the posynomial program (P) above. The

maximization problem has a dual variable di for each

posynomial term ui so that dual vector is given by

d ¼ d1; d2; . . . ; dnð ÞT :

Let

Lk ¼ the sum of the variables di

corresponding to the kth function gk (t).

The dual program has the form

max vðdÞ ¼ c1
d1

c2
d2
� � � cn

dn
LL11 LL22 � � � LLpp

subject to : L0 ¼ 1

ATd ¼ 0 and d � 0:

The three variable example above has the following

dual program:

max vðdÞ ¼ 40
d1

� �

40
d2

� �

1
2d3

� �

1
4d4

� �

d3 þ d4ð Þd3þd4

subject to : ATd ¼ 0

d1 þ d2 ¼ 1

d � 0:

The duality theory showing how to use a solution to the

dual program to obtain a solution to the original primal

program (P) is developed in Duffin, Peterson, and

Zener (1967). The problem (P) is called canonical if

there is a dual vector d satisfying

d > 0 with ATd ¼ 0:

Canonical problems always have a minimizing point

t∗ and if, the set of all points satisfying the constraints

in (P) has a non-empty interior, then the following

duality results hold:

1. The dual problem has a maximizing vector d∗;

2. The maximum value of the dual is equal to the

minimum value for the primal program (P);
3. Each minimizing point t for (P) satisfies ui (t) ¼ d�i

v(d∗) for each i corresponding to the terms ui (t) in

the objective function, and u i (t) ¼ d∗i /Lk (d
∗) for

all i when L k (d
∗) > 0.

The right-hand side of each equation in (iii) is

a positive constant and, given a solution d∗, one can

take common logarithms of both sides of the equations

to obtain a linear system in the variables log(ti). Typically,

this linear system has more equations than variables so it

uniquely determines a minimizing vector t∗.

Computational Methods

The first published algorithm for solving posynomial

programs was a method by Frank (1966) that solves the

dual problem and then uses the above duality relations

to obtain a minimizing point for (P). Blau and Wilde

(1971) and Rijckaert and Martens (1976) developed

similar methods that solve the Karush-Kuhn-Tucker

optimality conditions for the dual problem. Other

dual methods have been investigated, as for example

in Dinkel, Kochenberger, and McCarl (1974) and in

Beck and Ecker (1975).

A class of computational methods that solve (P)
directly are based on the idea of linearizing geometric

that was initially proposed by Duffin (1970). Avriel

and Williams (1970) and Avriel, Dembo, and Passy

(1975) use the idea of condensing each function into

a single posynomial term to formulate a linear program

that can be used to obtain an approximate solution to

(P) even if some of the coefficients are negative. For

more details on these types of approaches were given

in Dembo (1978).
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See

▶Convex Optimization

▶Nonlinear Programming
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GERT

Graphical Evaluation and Review Technique; model

of a network where all the nodes are of the exclusive-or

type on their receiving side.

See

▶Network Planning

▶ Project Management

▶Research and Development

GIS

▶Geographic Information Systems

Gittins Index

For the multi-armed bandit model under certain

assumptions, it can be shown that an index policy

specifying the choice of the arm with the highest

index is optimal. The earliest result establishing this

seminal structural result was Gittins (1979), so the

resulting index is most commonly attributed to him.

See

▶Multi-armed Bandit Problem
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Global Balance Equations

A system of steady-state equations for a Markov chain

(typically a queueing problem) obtained by balancing

the mean flow rates or probability flux in and out of

each individual state, symbolically written as pQ ¼ 0.
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▶Networks of Queues
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Global Climate Change Models

Hans W. Gottinger

International Institute for Technology Management

and Economics, Bad Waldsee, Germany

Introduction

For many years, operations research has impacted the

conceptual foundations, the scale and scope of models

providing normative and predictive explanations

on a potentially serious environmental threat known

as the greenhouse effect. To assess long-term socio-

economic changes due to the prevalence of the

greenhouse effect, integrated models of energy,

economy and the environment (EEE) of various

levels of complexity have been constructed and put to

use (Dowlabati 1995).

Structure of Energy-Economy-Environmental
(EEE) Models

Early modeling approaches, in the context of carbon

dioxide (CO2) policies, involved an activity analysis

model adapted to the CO2 problem (Nordhaus 1979,

1980). This is an instructive example of the application

of simple optimization models to a quantitative,

qualitative and integrated analysis of CO2 strategies.

The analysis contains the major ingredients of

EEE models of this kind: (1) the dynamics of the

CO2 cycle, the sources of CO2 and the diffusion

of atmospheric CO2 and the limits of CO2

concentrations; (2) the CO2 energy model, for example

a multi-sector activity analysis model which involves

step-wise linear programming type optimization over

a set of equidistant periods; and (3) the development

of control strategies based on shadow prices of CO2

emissions and costs of abatement.

A new generation of global EEE models (Peck and

Teisberg 1993; Nordhaus 1993, 1994) contains special

features, for example, the explicit consideration of the

dynamics of economy and climate and a real

interactive link-up between economic and climate

dynamics models, relating to a time path of global

mean temperature.

A culmination of efforts in the category of global

EEE models has been the work of Nordhaus (1993,

1994). His approach centers around the construction,

integration, model assessment and policy analysis of

his economic control model DICE (Dynamic

Integrated Model of Climate and Economy). DICE

is a dynamic, intertemporal, optimal, interactive,

welfare-economic control model based on structural

equation constraints such as population growth,

production constraints, capital stock accumulation,

and emission constraints [where greenhouse gases

(GHGs) are normalized by their carbon dioxide

equivalent in terms of their global warming potential

(GWP)]. The model contains a critical economy

climate interface that links GHG emissions to their

accumulation and transport in the atmosphere, the

radiative forcing of the GHGs and their links to

climate change. To assess the economic impacts such

as damages, DICE contains feedbacks from climate

change to economics, by specifying the loss of global

output due to climate change. The climate part of

DICE relates to specifications of General Circulation

Models (GCMs), condensed as a minimodel of climate

change to have it fit with the economic interface. Given

the structure of DICE, Nordhaus puts his model to test.

He first estimates damage profiles of GHG induced

damages, for particular sectors as well as enticing the

entire GDP loss. Furthermore, he looks at the welfare

economic implications (net benefits) of seven major

policy strategies to control global climatic changes:

(1) no controls; (2) optimal policy; (3) ten-year delay

of optimal policy; (4) stabilizing emissions at 1990

rates; (5) 20% emission reduction from 1990 levels;

(6) geoengineering; and (7) climate stabilization with

upper limit of total mean temperature increase by

1.5 	C from 1990. The net benefits vary significantly

in size from each other, where it is remarkable that, in

general, more interventionist strategies (stabilization),

as strongly advocated by environmentalists, fare much

worse than less interventionist ones (except for

geoengineering which, of course, is hardly to the

environmentalist’s delight).

The extent of uncertainty in the model parameters

gives rise to estimating the impact range on strategic

Global Climate Change Models 645 G

G

http://dx.doi.org/10.1007/978-1-4419-1153-7_667
http://dx.doi.org/10.1007/978-1-4419-1153-7_847


outcomes, as well as it applies to regulatory decision

making on how to optimally impose regulatory

controls to minimize over or undershooting of

environmental regulation and policy measures (the

value of information of waiting vs. acting).

Another string of models and research results

of resource economics (on the depletion of

non-renewable resources) could be applied with

simple modifications to the CO2 problem. Under two

crucial assumptions, the problem of fossil fuel use in

the face of increasing carbon dioxide is parallel to the

problem of consumption of a limited resource. The first

assumption is that the carbon dioxide absorption rate is

sufficiently small to be ignored. The second is that CO2

impacts follow a step pattern, that is, CO2 (as

a pollution stock) has no impact on productivity until

a critical level, Mc, is reached; then if the CO2 level

exceeds Mc, production drops sharply (or more

extremely, falls to zero).

Amodel with endogenous neutral technical progress,

as in Gottinger (1998a), has been proposed to provide

a better explanation of technical changes used to date in

EEE models. Such a model originates from a similar

attempt by Chiarella (1980). He proved the existence of

a steady state growth path and a simple rule governing

the rate of investment in research. Research investment

along the optimal path should be carried out until the

growth rate in the marginal accumulation of technology

equals the difference between the marginal product due

to an extra unit of research investment and the marginal

product of capital.

Another issue is uncertainty. Here again there is

a link with models of resource use for a limited,

non-renewable resource when the reserve of the

resource is unknown. The key finding of models by

Loury (1978) and Gilbert (1979) was that plans for

resource use based on the expected level of

a resource will be overly optimistic. Gilbert’s model

is conducive to models of fossil fuel use when the

critical CO2 level is uncertain. Under the above

assumptions, this problem is equivalent to

determining the rate of fossil fuel use when the

critical concentration of atmospheric carbon dioxide

is unknown. Their results show that the optimal use of

fossil fuel is lower when uncertainty is properly

considered than when the expected values are

assumed to be certainty equivalents.

A significant additional element is the possibility of

undertaking exploration to find new reserves. The

parallel in the CO2 problem is R&D to increase the

probability of finding a technology for the removal of

CO2 from the atmosphere.

Issues of Uncertainty

Existing EEE models suffer from poor data,

indeterminate structure, and a frequent lack of attention

to the consequences of uncertainty. The factors linking

energy activities to their environmental effects are

known only imprecisely. EEE models rely on

behavioral assumptions that are widely questioned, and

on parameters that can vary substantially from one

model or data source to the next.

Most EEE models, including those well-established

and highly used, conceal this uncertainty behind

a blanket or output detail: a profusion of fuel prices

and quantities, sectoral disaggregation, regional detail,

growth rates and target figures, which often steer the

analysis toward a desired conclusion. Unfortunately,

this complexity rarely contributes to a resolution of

uncertainty, and may serve only to increase the error

and expense. Concerning models of possible

greenhouse effects and CO2 emissions, uncertainty

analysis assumes many facets. It involves:

(1) changes in climate to be expected; (2) impact of

climate change; and (3) costs of adapting to climate

change.

It is appropriate to distinguish between uncertainty

about occurrences of events and impacts. Policy

uncertainty is also of great concern. For the CO2

problem, some argue that it is premature to think

about doing other than intensive research, others

claim that the risks of waiting are simply too great.

What is the value of reducing scientific uncertainty?

Scenario analysis only provides an indirect treatment

of uncertainty, all uncertainties are resolved prior to

decision-making. But uncertainty, information and

decision-making are intimately connected and

a comprehensive approach based on Bayesian

decision analysis shows promise (Manne and Richels

1990).

Based on the described structure of EEE models,

entire families of models have emerged in Europe,
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the United States, and through international

organizations (OECD, EU, World Bank, etc.), they

range from highly aggregated general equilibrium

models to multi-sectoral econometric models

(Gottinger 1998a, b).

An interesting problem emerges in dealing with

outcome uncertainties in climate change, that is with

the timing of regulation. Such a design relates to

problems of optimal stopping (Conrad 1992).

Choosing the level of GHG emission-limiting

regulations that will maximize social welfare by

optimally balancing the costs of emission control

against the benefits of decreased environmental

damage is inherently not possible, because of

pervasive uncertainty about the likely size of the

critical GHG budget, its relationship to the quantity of

GHG emitted, the effects of GHG in the atmosphere,

and the appropriate valuation of these consequences.

Moreover, learning more about each of these areas of

uncertainty can be expected through continuing

scientific-technological research, and through

observation of atmospheric responses to past and

current GHG emissions. Because, overall, it is

expected that these uncertainties will diminish over

time, the appropriate policy is likely to be an

incremental and dynamic one. The risk to delaying

before further restricting GHG emissions is that, if

significant emission reductions become necessary to

prevent serious adverse consequences, their cost may

bemuch larger than if emission reductions begin sooner.

On the other hand, the risk to adopting further

restrictions now is that these restrictions may later

prove to have been unnecessary; the costs incurred

would have produced no benefits. The question is

analogous to that of whether to purchase insurance, as

formulated by Manne and Richels (1992); by imposing

additional regulations now, immediate costs are

incurred in exchange for a potential reduction in the

costs of preventing and adapting to future GHG

accumulation. Gottinger (1995, 1996) attempted to

provide insight to this question. First, he developed

a general formulation of the policy question which can

be conceived as an infinite-horizon, stochastic dynamic

program with learning (Bertsekas 1976, Part II).

This formulation clarifies the issues, but is

mathematically hard to manage. To provide more

explicit guidance, advantage is taken of specific

features of this problem to develop a simplified

decision framework. Because of the long time delay

in the relationships between GHG emissions,

accumulation and effects in the atmosphere, the policy

choice can be structured so that the environmental

damages and benefits are approximately the same

under each policy. Thus, the framework focuses

attention on a comparison of the expected economic

costs of alternative regulatory strategies.

In a different model framework, the aspect of

learning has been given further attention by Kolstad

(1993), with a survey of relevant approaches provided

by Arrow et al. (1994).

Philosophy of EEE Modeling

Because the feedback effects of CO2 are extremely

uncertain, many modelers are reluctant to incorporate

these effects in their models. In some scenarios,

feedback effects might indeed be unimportant. For

example, in models with finite horizons, if CO2

effects are insignificant until after the horizon of the

model no modeling of feedback effects is needed. In

models which optimize over an infinite horizon, future

effects may change current policies, and feedback

effects are always of importance. In these same

models, however, feedback effects may make

solution much more difficult.

In predictive models with long time horizons,

feedback effects will also be important. Further, in

predictive models that estimate production and

energy use at individual points of time, such as those

surveyed previously, feedback effects can be easily

included. Experience with the inclusion of feedback

effects in optimizing models, shows that they usually

lower the optimal initial use of fossil fuels. The

longterm changes in fossil fuel use due to feedback

effects are more uncertain and dependent on themodel.

In general, one could say that in most models the

feedback slows the economy and thus reduces the

demand for fossil fuels in the future. If optimization

were included in the models discussed, this effect

would be likely.

Given the uncertainty in the severity and timing of

feedback effects, the sensitivity of individual models to

variations in feedback effects is of much interest.
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In proposing a step model of CO2 emissions, the

sensitivity of current fossil fuel use to an ultimate limit

on atmospheric carbon dioxide was also examined. It

was found that current optimal fossil fuel use was

significantly affected by different critical levels of

CO2. A study of the impacts of a critical CO2 level in

a more disaggregated optimizing model would be

useful. Including optimization in models expands their

applicability but may cause analytic problems and

controversy. As with many social problems, an

acceptable objective function for carbon dioxide

control problems is difficult to define. Any definition

will seem both inadequate and overly precise and

certainly would be controversial. This may be the

reason why the models reviewed did not examine

optimal policies. On the other hand, statement of an

objective function does not hide or confuse other

results and can add many new insights. If feedback

effects and an objective function are included in

a model, a crude optimization can be performed

simply by running the model under a variety of policies.

Including optimization raised several new issues for

the models. For example, pollution impoverishes but

technical progress enriches the future. The optimizing

models show how the curvature of the utility function,

determined by the consumption elasticity of utility in

the models, tends to smooth or even out wealth over

time. Without an objective function being stated, the

importance of this redistribution effect in determining

fossil fuel use policy cannot be examined. In predictive

models, a subjective evaluation must be made of the

significance and value of a policy. In an optimizing

model, the costs and benefits of policies are

automatically compared in an explicit manner.

A final benefit of an optimizing model is the

identification of multifaceted responses which may

be ignored when policy changes are specified

exogenously. Integrated optimizing models respond

to problems by adjusting numerous policies

endogenously. For example, in multiple state models

fossil fuel use, research, and capital all respond to

changes in the effects of CO2.

See
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Global Maximum (Minimum)

For an optimization problem, the largest (smallest)

value that the objective function can achieve over the

feasible region.

See
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▶Nonlinear Programming

▶Quadratic Programming

Global Models

Saul I. Gass

University of Maryland, College Park, MD, USA

Global or world models are concerned with the

application of systems analysis to policy problems of

intra and international interest. Typical problems of

concern include population growth, ecological issues

(forestry, fisheries, pesticides, insect infestation),

energy and water resource availability and uses, the

spread of diseases, and environmental models (acid

rain, air pollution), Clark and Cole (1975), Holcomb

(1976). Global models are usually highly aggregated in

their structure and in their data requirements. Such

models, however, can be developed by integrating

lower-level and more detailed national or regional

models. Of related interest are global and regional

predictive models that deal with long-range weather

or macro-economic activity.

Although the trail of global models leads back to

Malthus and his 1798 publication of An Essay on the

Principle of Population, the modern development of

global models begins with the use of systems analysis

in the study of global problems, and the availability of

specific tools for analysis such as (Forrester 1961)

Leontief’s Input–output Interindustry Structure, and

Dantzig’s Linear Programming Model. In particular,

Forrester and his associates brought the use of global

models to the attention of governmental officials and to

the scientific community by their application of the

World 2 and World 3 system dynamics models that

are described in World Dynamics (Forrester 1971) the

and Limits to Growth (Meadows et al. 1972),

respectively.

The World 3 model considers the world as a

whole and evaluates five global indicators and

their interactions: population, consumption of

nonrenewable resources, pollution, food production,

and industrialization. The model’s calculations lead to

the conclusion that sometime in the twenty-first century,

the world will witness a steep decline in food per capita

and in population. The general pessimistic conclusion

reached by the World 3 model (under varying

assumptions such as availability of resources) was that

the world will soon be hitting resource, economic, and

population limits to growth, and measures must be

initiated by the world community to avoid calamity.

The model indicated a stable future only if such

stringent measures as maintaining a stable (zero

growth) world population and capital base, and such

measures are applied soon (Meadows et al. 1972; Clark

and Cole 1975). Criticisms of this conclusion abound

and they address the issues of themodel’s structure, data,

aggregation, and methodological approach. (See, for

example, Cole et al. 1973; Schwartz and Foin 1972,

and a rebuttal by Forrester 1976).

Other global models have been developed in an

attempt to overcome some of the limitations and

criticisms of the World 3 model; in particular, note the

one by Mesarovic and Pestel (1974). This model divided

the world into ten regions and enabled some policy

options (e.g., energy resource utilization) to be

evaluated. Research in global models continues, with

one center for such investigations being the

International Institute for Applied Systems Analysis

(IIASA). IIASA has initiated a database collection for

environmental analyses, developed an acid rain

model for Europe, forest resource and pest management

models, plus econometric and linear-programming-

based approaches to global policy modeling

(Bruckmann 1980).
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Themeans of encompassing the complex interactions

of the global system into a computer-based model will

always be open to criticism. As any model is an

approximation of the real-world, surely a model that

attempts to encompass the whole world or even major

subelements cannot do so with much exactitude. One

would not expect it to be so. As noted by Mason (1976,

p. 4): “We have seen that ultimately there is no objective

way to assess worldmodels.” But, there is no reasonwhy

investigators, building on such past efforts as those

described above and others, cannot develop global

models that would be of value to the world’s

policymakers.
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Introduction

Consider an optimization problem of the general form

min f ðxÞjgiðxÞ � 0; i ¼ 1; . . . ;m; x 2 Xf g ðPÞ

where X is a closed convex set in n; f : O ! ; and

gi : O ! ; i ¼ 1; . . . ;m; are continuous functions

defined on some open setO inn containing X: Setting

D ¼ x 2 XjgiðxÞ � 0; i ¼ 1; . . . ;mf g;

the problem can also be written as

min f ðxÞjx 2 Df g:

Any point �x 2 D is called a feasible solution of the

problem. A feasible solution �x is called a global

optimal solution if it is the best of all feasible

solutions, i.e., if it satisfies

f ð�xÞ � f ðxÞ 8x 2 D: (1)

A feasible solution �x is called a local optimal

solution if it is the best among all feasible solutions

in some neighborhood of it, i.e., if there exists

a neighborhood W of �x such that

f ð�xÞ � f ðxÞ 8x 2 D \W: (2)

Many important practical problems may have many

local optimal solutions with different objective

function values. The need may then arise to find the

best among them, i.e., a global optimal solution.

In convex (linear, resp.) programs where

X ¼ 
n; f ðxÞ; giðxÞ are all convex (linear, resp.),
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any local optimal solution is global, and efficient

algorithms are routinely used for solving these

problems. Aside from these cases, finding a global

optimal solution is a hard problem requiring quite

different techniques. Due to its importance for many

applications, global optimization is an active research

field (Horst and Pardalos 1995; Floudas and Gounaris

2009; Pardalos and Coleman 2009).

Some typical examples of global optimization

applications in operations research and management

science (OR/MS) are presented to show the general

mathematical structure of global optimization

problems. Next, the general concept of branch and

bound, the most popular general purpose method for

solving global optimization problems, is described.

Finally, different classes of global optimization

problems encountered in the applications and

requiring specialized treatment are reviewed.

Examples from OR/MS

In most mathematical programming problems of form

(P) encountered in OR/MS, each function f ðxÞ; giðxÞ
represents a cost, a performance (return, benefit, . . .),

or a negative utility (loss, pollution, . . .) that depends

on the decision variable x 2 
n: The decision maker

may want to determine x 2 
n so as to minimize the

associated cost f ðxÞ subject to constraints giðxÞ � 0

expressing, for example, the requirement that the

total cost of i-th resource involved should not exceed

certain acceptable limit, or the expected i-th utility

should not be less than a certain required level

(in addition to constraints x 2 X reflecting other

“technical” aspects of the problem). A common

phenomenon is that economy of scale (or decreasing

return) prevails in certain sectors or within

certain scale limits, while diseconomy of scale

(or increasing return) prevails in other sectors or

beyond certain scale limits. Mathematically,

economy of scale or decreasing return is modeled by

concave or decreasing functions, diseconomy of scale

or increasing return is modeled by convex or

increasing functions. In more complex situations

increasing and decreasing return phenomena may be

copresent, and more general types of functions have to

be used that are dc functions (differences of convex

functions), or dm functions (differences of monotonic

increasing functions).

Recall that a function f : n !  is said to be convex

if f ðaxþ ð1� aÞx0Þ � af ðxÞ þ ð1� aÞ f ðx0Þ for any

x; x0 2 
n; and any real number a such

that 0 � a � 1; it is said to be increasing if

f ðxÞ � f ðx0Þ for any x; x0 2 
n such that

xi � x0i; i ¼ 1; . . . ; n: A function f ðxÞ is said to be

concave if � f ðxÞ is convex; decreasing if � f ðxÞ is

increasing.

Global optimization has been applied to many fields

such as biomedicine, economics, energy systems,

computational chemistry and biology, and computer

science (Floudas and Pardalos 2003; Rebennack et al.

2010a; Rebennack et al. 2010b). Three examples in

OR/MS are presented here.

EXAMPLE 1. (Production-transportation planning)

Consider k factories producing a certain good to

satisfy the demands dj; j ¼ 1; . . . ;m; of m

destination points. The production cost is

gðy1; . . . ; ykÞ if the factory i produces yi units, where

gð�Þ is a concave function because of economies of

scale. The transportation cost is a function cijðxÞ for x
units shipped from factory i to destination

point j. In addition, there is a shortage penalty

hðz1; . . . ; zmÞ to be paid if the destination point j

receives zj 6¼ dj units, where hðz1; . . . ; zmÞ ¼Pm
j¼1 hjðzjÞ;with hjðzjÞ � 0 if zj � dj, and hjð�Þ is

a decreasing nonnegative function in the interval

½0; djÞ. Usually, the penalty function hð�Þ is

convex, so the total production-transportation cost is

the function f ðx; y; zÞ ¼Pk
i¼1

Pm
j¼1 cijðxijÞþ

gðyÞ þ hðzÞ: This function should be minimized

subject to usual transportation constraints:
Pm

j¼1 xij ¼ yi; i ¼ 1; . . . ; k;
Pk

i¼1 xij ¼ zj; j ¼ 1; . . . ;

m; xij � 0; yi; zj � 0 8i; j:
Even if the transportation costs cijðxÞ are linear, this

problem cannot be handled successfully by conventional

methods of nonlinear programming. Things become

more complicated when the transportation costs cijðxÞ
along certain arcs ðijÞ are dc functions (for instance

S-shaped functions), or some are concave, others are

convex (Holmberg and Tuy 1993).

EXAMPLE 2. (Location planning) A facility has to be

constructed to serve n users located at points a j 2 S of

the plane (i.e., S 
 
2). If the facility is located at

x 2 S, then the attraction of the facility to user j is

qjðhjðxÞÞ, where hjðxÞ ¼k x� aj k is the distance
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from x to aj and qj : !  is a convex decreasing

function (the farther x is away from a j the less

attractive it looks to user j). To determine the

location of the facility with maximal total attraction,

one has to solve the problem

maximize
Xn

j¼1

qjðhjðxÞÞ s:t: x 2 S: (3)

The function ’ðxÞ ¼
Pn

j¼1
qjðhjðxÞÞ is generally

neither convex nor concave. However,

since the functions hj : 
2 ! þ and qj ¼ ! 

are convex, it can be shown that their

compositions qjðhjðxÞÞ; j ¼ 1; . . . ; n; are dc, and

’ðxÞ a sum of dc functions, hence itself a dc

function.

In practice, some of the points a j may actually be

repulsion rather than attraction points. For example,

there may exist a garbage dump, a sewage plant, or

a nuclear plant in the area, and one may wish the

facility to be located as far away from these points as

possible. If J1 is the set of attraction points, J2 the set of

repulsion points, then instead of (3) one should seek to

maximize the function

X

j2J1

qjðhjðxÞÞ�
X

j2J2
qjðhjðxÞÞ: (4)

An even more complex situation occurs

when several facilities must be located. In this case,

each user will be served by the nearest facility, so

the problem is to determine the locations, say x; y and

z, of the facilities, so as to maximize

Xn

j¼1

qjð~hj ðx; y; zÞÞ (5)

over ðx; y; zÞ 2 S� S� S; where

~hj ðx; y; zÞ ¼ minfhjðxÞ; hjðyÞ; hjðzÞg: (6)

Again it can be proven that ~hj ðx; y; zÞ (pointwise

minimum of finitely many convex functions) is

a dc function, and qjð~hj ðx; y; zÞÞ (convex functions of

dc functions) are also dc functions. Therefore,

again this multifacility location problem appears to

be a dc optimization problem (Chen et al. 1992).

Note that this problem is sometimes formulated

as a mixed integer program, much more difficult

to solve.

EXAMPLE 3. (Multilevel programming) Many

decentralized decision-making systems in economics

and other fields involve a “leader” (the higher level

decision maker) who controls a variable x 2 
p and

a “follower” (the lower level decision maker) who

controls a variable y 2 
q. For each decision x made

by the leader, the follower chooses y in order to

optimize his own objective function ’ðyÞ, under

a constraint set OðxÞ associated with the decision x,

i.e., the response y of the follower to the decision x of

the leader is a vector such that

y 2 argminf’ðy0Þjy0 2 OðxÞg:

If the objective of the leader is to minimize

a function f ðx; yÞ; while his own constraint set is

D 
 
p � 

q then the problem he must solve is to

choose x so as to

minimize

f ðx; yÞ (7)

subject to

ðx; yÞ 2 D; y 2 OðxÞ; (8)

’ðyÞ � ’ðy0Þ8y0 2 OðxÞ: (9)

Even in the simplest cases when all data are

linear: f ðx; yÞ ¼ c1xþ d1y; ’ðyÞ ¼ d2y;D ¼ fðx; yÞj
A1xþ B1y � g1; x 2 R

p
þg while OðxÞ ¼ fyjA2x þ

B2y � g2; y 2 R
q
þg; the feedback relation between

upper and lower levels creates nonconvexities that

cannot be easily handled by standard methods of

nonlinear programming.

If hðxÞ denotes the optimal value of the lower

subproblem, i.e., hðxÞ ¼ minf’ðyÞjy 2 OðxÞg; then

the constraint (9) can also be written as

’ðyÞ � hðxÞ:
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Often ’ðyÞ is a convex function and, as in the just

mentioned linear case, for any x1; x2 and any a 2 ½0; 1�,
then aOðx1Þ þ ð1� aÞOðx2Þ 
 Oðax1 þ ð1� aÞx2Þ:
It can then easily be checked that hðxÞ is

a convex function, too, and so the constraint (3), i.e.,

’ðyÞ � hðxÞ � 0; is a dc constraint.

Bilevel, and more generally multilevel,

programming problems of the above kind have

various applications in economics (Stackelberg

duopoly model), agriculture (e.g., fertilizer supply,

water supply, agricultural policy), financial

management, and network design (Wen and

Hsu 1991). Thus a host of problems of

practical interest in economics, OR/MS and

engineering involve dc functions or dm functions

in their description. Other problems reported

from computer science (VLSI chip design,

databases), wireless communications, system

reliability, mechanics (structural optimization),

physics (nuclear design, microcluster phenomena in

thermodynamics), chemistry (phase and chemical

reaction equilibrium), or ecology (design and

cost allocation for waste treatment systems)

can analogously be identified as dc or dm

optimization problems (Floudas and Pardalos 1999;

Floudas 2000).

A problem (P) where all functions

f ðxÞ; g1ðxÞ; . . . ; gmðxÞ are dc (dm, resp.) is called

a dc (dm, resp.) optimization problem. These are

two basic classes of global optimization problems.

Practically, every global optimization can be

reformulated, possibly via a change of variables, as

a dc or a dm optimization problem.

Branch and Bound Methods

A popular method for solving a global optimization

problem (P) is by using a BB (branch and bound)

procedure.

The Generic BB Procedure

For convenience assume that X ¼ ½a; b� ¼
fx 2 

njaj � xj � bj; j ¼ 1; . . . ; ng; so that the

feasible set in problem (P) is

D ¼ fx 2 ½a; b�jgiðxÞ � 0; i ¼ 1; . . . ;mg:

The generic BB procedure for solving (P) involves

two basic operations: partitioning and bounding.

• Partitioning: Starting from the initial box

(hyperrectangle) M1 ¼ ½a; b�; at each iteration

a box is selected and subdivided into two

subboxes according to a subdivision rule. Through

this partitioning process, a tree is generated with the

root at M1 and the nodes represented by the

subboxes that appear as successive descendants of

the initial box.

Let M ¼ ½p; q� be a box selected for subdivision in

a given iteration. A common subdivision rule called

the standard bisection consists in dividing M into

two equal subboxes using a hyperplane

perpendicular to a longest edge of M at the

midpoint of this edge. An important property of

this subdivision rule is its exhaustiveness, meaning

that any infinite nested sequence of boxes Mk

generated by it shrinks to a point (i.e., diam

Mk ! 0 as k ! þ1Þ:
• Bounding: At each iteration, two new boxes appear

as a result of the subdivision operation. For each

new boxM ¼ ½ p; q�, a lower bound is computed for

f ðxÞ over the feasible points in M, i.e., a number

bðMÞ 2  [ f�1;þ1g satisfying

bðMÞ � inf ff ðxÞjx 2 M \ Dg; (10)

Mk \ D ¼60 ) bðMÞ ¼ þ1: (11)

The latter condition, which is essential, amounts to

requiring that bðMÞ < þ1 only if M \ D 6¼60:
The number bðMÞ is usually computed by considering

an underestimator’ðxÞ of f ðxÞ over a setO � M; i.e.,
a function satisfying ’ðxÞ � f ðxÞ8x 2 O; and taking

bðMÞ ¼ inf f’ðxÞjx 2 Og; where ’ðxÞ and O are

chosen so that the latter problem can be solved

easily. Also to obtain tight bounds it is often

necessary to replace the partition set M by a suitable

smaller setM0 
 M: the procedure is then referred to

as a branch-and-reduce algorithm.

While computing the lower bounds, it may

happen that some feasible points are obtained: the

feasible point with smallest objective function

value is then recorded as the current best feasible

solution (CBS) and the associated objective

function value as the current best objective

function value (CBV). Once every current box has

been assigned a lower bound, all boxes M with
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bðMÞ > CBV (in particular those with

bðMÞ ¼ þ1Þ are pruned (deleted). If no box

remains after that, the procedure is terminated and

CBS gives a (global) optimal solution. Otherwise,

a box with smallest lower bound among all

remaining boxes is selected for further

subdivision, and a new iteration is started.

Proposition. If bounding is consistent with

branching in the sense that

bðMÞ �minff ðxÞjx 2 M \ Dg ! 0

as diam M ! 0;
(12)

then as k ! þ1, the box Mk with smallest lower

bound at iteration k shrinks to a point which is an

optimal solution, while bðMkÞ tends to the optimal

value minðPÞ of the problem.

Case of a Nice Feasible Set

Suppose the feasible set is nice, i.e., such that a feasible

solution can be computed cheaply (as is the case, for

example, when each giðxÞ is convex or each giðxÞ is
increasing). Then at each iteration k, a current best

feasible solution CBS is available that provides an

upper bound for minðPÞ: In that case

bðMkÞ � minðPÞ � CBS, so if xk is CBS at iteration

k, then as k ! þ1 the sequence fxkg tends to a limit

�x yielding an optimal solution of the problem.

Furthermore, this convergence can be sped up by

using instead of the standard bisection an adaptive

bisection rule ensuring convergence without

condition (12) (Tuy 1998, 2000). Given a tolerance

� > 0, by stopping the procedure when

f ðxkÞ � bðMkÞ � �, an �-optimal solution of the

problem, i.e., a feasible solution x� satisfying

f ðx�Þ � minðPÞ � �; is obtained. Thus, everything

works well if the feasible set is nice.

Case of a Hard Feasible Set

By contrast, if the feasible set is such that a feasible

solution cannot be computed cheaply, then several

difficulties may arise with the generic BB method.

Namely, in this case it may not be easy to compute

lower bounds satisfying conditions (11) and (12),

while failing these conditions the algorithm may

converge to an incorrect solution which is infeasible

and quite far from the optimum. Another drawback is

that since at every iteration no feasible solution is

available, no partition set can be pruned aside from

those M with bðMÞ ¼ þ1; causing an excessive

growth of the size of the collection of partition sets to

be stored. Also, the convergence accomplished with an

exhaustive subdivision process is in general slow. As

a result, in finitely many steps the BB procedure can at

best give an ðe; �Þ-approximate optimal solution, i.e.,

an �x satisfying gið�xÞ � e; i ¼ 1; . . . ;m and

f ð�xÞ � minðPÞ þ �: Unfortunately, such an ðe; �Þ-
optimal solution is not guaranteed to be feasible and

close to the true optimum, and, moreover, it may

change drastically upon a small change of the

tolerances e and �; causing numerical instability

problems in practical implementation.

The way out of these difficulties is to reduce any

problem (P) with a hard feasible set to a sequence of

problems with a nice feasible set. This is possible by

using the following result (Tuy 2010):

By simple manipulations, any dc optimization

problem (i.e., any problem (P) where f ðxÞ and all

giðxÞ are dc) can be reformulated as an equivalent

dc optimization problem with a convex

objective function. Likewise, any dm optimization

problem (i.e., any problem (P) where f ðxÞ and all

giðxÞ are dm) can be reformulated as an equivalent

dm optimization problem with an increasing objective

function.

So for studying a dc optimization problem (P), one

can without loss of generality assume that f ðxÞ is

convex. Setting gðxÞ ¼ mini¼1;...; m giðxÞ, the problem

(P) can then be written as

minff ðxÞjgðxÞ � 0; x 2 ½a; b�g; ðP0Þ

where gðxÞ is still a dc function by a known property of
dc functions (Tuy 1998). Now, given any number

g � minðP0Þ, consider the problem

minfgðxÞjf ðxÞ � g; x 2 ½a; b�g: ðQgÞ

Since f ðxÞ is convex, this problem has a nice

feasible set and can be solved by the above BB

method. Clearly min ðQgÞ � 0 (because g � minðP0Þ)
and if the problem ðP0Þ is such that

minðP0Þ ¼ inff f ðxÞjgðxÞ < 0; x 2 ½a; b�g
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(a condition satisfied in most cases), it can easily be

shown that min ðQgÞ ¼ 0 only if minðP0Þ ¼ g:

Based on this relationship between ðP0Þ and (Qg),

the followingmethod (Tuy 2010) can be used to find an

�-optimal solution of ðP0Þ, i.e., a feasible solution x� of
(P0) such that f ðx�Þ � minðP0Þ � �:

Suppose a feasible solution �x of ðP0Þ is available.

With g ¼ f ð�xÞ � �, apply the above described

BB procedure for solving (Qg). If at some iteration k

of this BB procedure, the current best

solution xk satisfies gðxkÞ � 0, then xk is

a feasible solution of ðP0Þ such that f ðxkÞ � f ð�xÞ � �:
Otherwise, gðxkÞ > 0 8k and from (12)

it follows that min ðQgÞ ¼ lim gðxkÞ � 0; hence

minðP0Þ ¼ g ¼ f ð�xÞ � �; i.e., �x is an �-optimal

solution of ðP0Þ.
Thus, given a feasible solution �x of ðP0Þ, by solving

(Qg) with g ¼ f ð�xÞ � � one can either identify �x as an

�-optimal solution of ðP0Þ or find a feasible solution x

of ðP0Þ such that f ðxÞ � f ð�xÞ � �: Since � > 0; by

repeating this procedure finitely many times, one will

eventually obtain an �-optimal solution of ðP0Þ.
To obtain an initial feasible solution �x of ðP0Þ, it

suffices to take any number g > minðP0Þ and apply the
BB procedure for (Qg).

That is the basic idea of successive incumbent

transcending for solving any dc optimization problem

(P) with a hard feasible set. An analogous method can

be used for solving a dm optimization problem with

a hard feasible set: first rewrite it in the form ðP0Þ with
an increasing function f ðxÞ and a dm function gðxÞ;
then find an �-optimal solution of ðP0Þ by successive

incumbent transcending via solving problem (Qg) with

adaptively adjusted g:

Specific Problem Classes

Aside from general purpose methods for global

optimization, more efficient specific methods are

available to solve specific problems by exploiting

their underlying mathematical structure (Pardalos

and Romeijn 2002). Other cases with specialized

algorithms not discussed below include concave

minimization and optimization with differences

of monotonic functions or Lipschitz functions

(Horst and Pardalos 1995; Horst and Tuy 1996).

Furthermore, there is a rich body of literature on

tailored decomposition algorithms for global

optimization problems (Rebennack et al. 2009).

Quadratic Optimization

A quadratic optimization problem is a problem (P) where

f ðxÞ; g1ðxÞ; . . . ; gmðxÞ are quadratic functions, i.e.,

f ðxÞ¼ 1
2
x;Q0x
� �

þ c0;x
� �

; giðxÞ¼ 1
2
x;Qixh iþ ci;xh iþ

di with Qi; i¼ 0;1; ... ;m; being symmetric n�n

matrices and ci 2
n; di 2 

To solve a quadratic optimization problem by

BB, the basic question is how to compute lower

bounds. Two most used bounding methods are

reformulation–linearization (Sherali and Adams 1999)

and Lagrangian relaxation (Tuy 1998; Floudas 2000).

• Reformulation–linearization: Setting xixj ¼ yij
for every ði; jÞ with 1 � i � j � n and y ¼ fyijg,
every quadratic function f ðxÞ of x 2 

n can be

expressed as an affine function of x; y; denoted by

½ f ðxÞ�‘: For example, ½2x1x3 þ 3x21 � 5x2x3 þ 8x3�‘
¼ 2y13 þ 3y11 � 5y23 þ 8x3: Moreover, it can be

shown that the constraint p � x � q is equivalent to

the system of quadratic constraints gijðxÞ ¼ ðxi � piÞ
ðxj � qjÞ � 0 8i; j¼ 1; . . . ;n: Then for M ¼ ½p;q�,
the problem minff ðxÞjgkðxÞ � 0;k ¼ 1 . . . ;m;

p� x� qg can be rewritten as

minf½ f ðxÞ�‘ j½gkðxÞ�‘ � 0; k ¼ 1 . . . ; h;

yij ¼ xixj; 1 � i � j � ng; (13)

where the constraints gkðxÞ � 0; k ¼ mþ 1; . . . ; h;
include all the just-mentioned constraints

gijðxÞ � 0: Clearly (13) is a linear program, with

the additional nonconvex constraints

yij ¼ x1xj; i � i � j � n: Therefore, as a lower

bound for minff ðxÞjgkðxÞ � 0; k ¼ 1; . . . ;

m; x 2 Mg, one can take

bðMÞ ¼ inff½ f ðxÞ�‘ j½gkðxÞ�‘ � 0; k ¼ 1 . . . ; hg:

It can be shown that this bounding operation

satisfies (11) and (12), so the generic BB

algorithm using this bounding method is correct,

although its convergence is generally slow, due to

the large number of additional variables introduced.

However, there are various ways to improve the

method, for example by adding implied

constraints to (13) (Sherali and Adams 1999) or by

using the incumbent transcending approach

discussed earlier.
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• Lagrangian Relaxation: For a given problem (P),

the function Lðx; uÞ ¼ f ðxÞ þ
Pm

i¼1 uigiðxÞ;
u 2 

m
þ, is called the Lagrangian, and the problem

sup
u2m

þ

inf
x2X

Lðx; uÞ ðLPÞ

the Lagrangian relaxation of (P). It is easily seen

that minðLPÞ � minðPÞ; so minðLPÞ is a lower

bound of minðPÞ: The Lagrangian relaxation is

called exact if minðLPÞ ¼ minðPÞ: This occurs

effectively, for example, when m ¼ 1 and

X ¼ 
n; i.e., when the problem is

minff ðxÞjgðxÞ � 0; x 2 
ng

where f ðxÞ; gðxÞ are quadratic functions and there is
an x� 2 

n such that gðx�Þ < 0: Indeed, it is known

that in this special case, the Lagrangian relaxation is

exact and equivalent to a SDP (semi-definite

programming problem) that can be solved by

efficient methods (Ben-Tal and Nemirovski 2001).

So, in particular, the minimization of a nonconvex

quadratic function over an ellipsoid is equivalent to

a SDP, i.e., essentially a convex problem.

In the general case m > 1;X ¼ ½p; q�; by replacing

the constraint x 2 ½p; q� with an equivalent system

of quadratic inequalities as mentioned above, it can

always be assumed that X ¼ 
n: Although the

corresponding Lagrangian relaxation is also

an SDP, it seems difficult to use exclusively this

bounding method to produce a convergent BB

algorithm. However, it can be incorporated into

a convergent primal-relaxed dual decomposition

approach (Floudas 2000).

Also note that a quadratic function of the formP
0�i�j�n cijxixj with cij � 0 is an increasing

function on 
n
þ: Therefore, any quadratic function

on 
n
þ is a dm function, and thus a quadratic

optimization problem (P) where X ¼ 
n
þ can be

viewed alternatively as a dm problem and as such

can be solved by the method described earlier.

Multiobjective Programming

A multiobjective program is a generalization of

problem (P) where FðxÞ is a vector of k objective

functions

min fFðxÞ ¼ ½ f1ðxÞ; f2ðxÞ; . . . ; fkðxÞ�T

jgiðxÞ � 0; i ¼ 1; . . . ;m; x 2 Xg

where X represents the set of feasible decisions and

fiðxÞ : O ! ; i ¼ 1 . . . ; k are the objective functions

that the decision maker wants to minimize. A feasible

decision x0 is said to be efficient (Pareto-optimal) if for

any x 2 X; fiðxÞ � fiðx0Þ8i implies fiðxÞ ¼ fiðx0Þ8i; it
is said to be weakly efficient if there is no x 2 X such

that fiðxÞ < fiðx0Þ8i: An efficient or weakly efficient

solution achieves a kind of equilibrium and in certain

situations the decision maker may want to find an

equilibrium minimizing some objective function. For

example, starting from a feasible solution, the decision

maker may want to reach an equilibrium by the

“cheapest” way (see Thach et al. 1996 for an example

in bond portfolio optimization). If XE denotes the set of

efficient solutions, then the goal of the decision maker

is to minimize a certain function hðxÞ over XE, i.e.,

minimize hðxÞ subject to x 2 XE: (14)

In general, the set XE is nonconvex, so even if hðxÞ
is linear, this is a difficult global optimization problem

(Marler and Arora 2004). A relaxed variant of problem

(14) is

minimize hðxÞ subject to x 2 XWE; (15)

where XWE denotes the set of weakly efficient

solutions. It can be shown that when fiðxÞ are linear,

(15) is equivalent to the problem

minfhðxÞjx 2 X; l 2 L; gðlÞ � lFðxÞ � 0g;

where L is a simplex in Rk and

gðlÞ ¼ supflFðyÞjy 2 Xg is a convex function (so

gðlÞ � lFðxÞ is a dc function). This allows the use of
the BB method discussed earlier.

Fractional Programming

Fractional programming deals with problems

where a ratio of two objective functions has to be

optimized. Several different forms of fractional

programs can be distinguished (Frenk and Schaible

2004; Stancu-Minasian 1997).
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• Single-ratio fractional programs: For

extended real-valued continuous functions

f ðxÞ; hðxÞ : O! ½�1;þ1� with finite value

on D, single-ratio fractional programs are given in

the general form

inf
f ðxÞ
hðxÞ

�

�

�

�

giðxÞ � 0; i ¼ 1; . . . ;m; x 2 X

� �

: (16)

For the special case where f ðxÞ and giðxÞ are convex
functions 8i and hðxÞ is a positive concave function
in D, (16) is called a single-ratio convex fractional

program and is a nonconvex global optimization

problem. Note that the ratio
f ðxÞ
hðxÞ is not a convex

function in general. Typical applications in

OR/MS include the maximization of productivity,

maximization of return on investments,

maximization of return versus risk, minimization

of cost versus time, and maximization of output

versus input.

• Generalized fractional program: Extending (16)

to multiple ratios leads to generalized fractional

programs of the form

inf
x2D

sup
1�l�k

flðxÞ
hlðxÞ

; (17)

with flðxÞ; hlðxÞ: O ! ½�1;þ1� for all l and

positive functions hlðxÞ for x 2 D.

• Sum-of-ratios fractional program: Minimizing

the sum of ratios leads to the following

optimization problem

inf
X

p

l¼1

flðxÞ
hlðxÞ

�

�

�

�

�

giðxÞ � 0; i¼ 1; . . . ;m; x 2 X

( )

;

(18)

with the same assumptions on the function flðxÞ and
hlðxÞ as in the generalized fractional programs.

Bond portfolio optimization problems are

examples of sum-of-ratios fractional programming

problems.

Multiplicative Programming

One standard approach to simultaneously optimizing

several objectives without a common scale is to

optimize the product of these objectives. This leads

to consider multiplicative programming problems of

the form

inf
Y

p

l¼1

flðxÞ
�

�

�

�

�

giðxÞ � 0; i ¼ 1; . . . ;m; x 2 
n

( )

(19)

where fl : 
n ! 

þ; gi : 
n ! : Practical methods

for solving these problems are available when each

flðxÞ is either quadratic or affine and each giðxÞ
is convex, for p � 5 and n;m � 100 (Konno et al.

1997). In particular, linear multiplicative programming

problems, i.e., problems (19) where p ¼ 2 and all

functions fl; gi are affine, can be solved very fast by

a variant of the parametric simplex algorithm.

Applications of multiplicative programming

include bond portfolio optimization and

economic analyses.

See

▶Branch and Bound

▶Convex Optimization

▶ Fractional Programming

▶Mathematical Programming

▶Multiobjective Programming

▶Nonlinear Programming

▶Quadratic Programming
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Global Solution

An optimal solution over the entire feasible region.

See

▶Global Optimization

Goal Constraints

Mathematical expressions consisting of resource

utilization rates, decision variables, deviation

variables, and targeted minimum and maximum

resources levels. They are used to model individual

resource goals in a goal programming model.

Goal Programming

Marc J. Schniederjans

University of Nebraska-Lincoln, Lincoln, NE, USA

Introduction

Goal Programming (GP), also called linear goal

programming (LGP), can be categorized as a special

case of linear programming (LP). The origin of GP as

a means of resolving infeasible LP problems attests to

its characterization as a LP methodology (Charnes and

Cooper 1961). GP is now considered a multi-criteria

decision making (MCDM) method (Steuer 1986); it is

used to solve multi-variable, constrained resource and

similar problems that have multiple goals.

GP Modeling

Similar to LP, the GP model has an objective function,

constraints (called goal constraints), and nonnegativity

requirements. The GP objective function is commonly

expressed in minimization form as (Schniederjans

1984):

minimize Z ¼
PT

i¼1
wklPk d�i þ dþi

	 


for k ¼ 1; . . . ;K; l ¼ 1; . . . ; L;

where i is the goal constraint index, k is the priority

rank index, and l is the index of the deviation variables

within priority rank. In the objective function, Z is the

summation of all deviations, the wkl are optional

mathematical weights used to differentiate deviation

variables within a kth priority level, the Pk are optional

rankings of deviation variables within goal constraints,
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the d�i values are the negative deviational variables,

and the dþi values are the positive deviational

variables. The Pk rankings are called preemptive

priorities because they establish an ordinal priority

ranking (where P1 > P2 > P3 > . . . etc.) that orders

the systematic optimization of the deviation variables.

The fact that the optimization of the variables in the

objective function is ordered by the preemptive

priority ranking has given rise to the use of the term

satisficing. This term results from the fact that

a solution in a GP model satisfies the ranking

structure while minimizing deviation from goals.

[See Simon (1955) for his original definition of

satisficing with respect to rational choice.] One of the

best features of GP is that the Pk permit the decision

makers to rank goals in accordance with their personal

preferences, and even weight the importance of those

preferences within goals using wkl. The greater the wkl

mathematical weighting, the greater the importance

attached to its related deviation variable.

The goal constraints in a GP model can be

expressed as:

X

j

aijxj þ d�i � dþi ¼ bi for all i:

The aij are the resource utilization rates

representing the per unit usage of the related resource

bi, and the xj are the decision variables to be

determined. The goal constraints thus seek minimize

the deviations from the each goal constraint’s

right-hand-side bi goal targets. In essence, this use of

deviation variables minimizes the absolute difference

between the right-and left-hand sides of each

constraint. The d�i are termed underachievement

variables and the dþi are overachievement variables.

The nonnegativity requirements in a GP model are

usually expressed as:

xj; d
�
i ; d

þ
i

	 


� 0 for all i; j:

When preemptive priorities are not established, the GP

model takes on the form

minimize Z ¼P
i

w�
i d

�
i þ wþ

i d
þ
i

	 


subject to :
P

j

aijxj þ d�i � dþi ¼ bi for all i

xj; d
�
i ; d

þ
i

	 


� 0 for all i; j:

The w�
i and wþ

i are positive, negative or zero weights.

A constraint may not be a goal constraint in that one

can let d�i ¼ dþi ¼ 0 if the condition must be met

exactly, as, for example, a fixed budget condition.

Such constraints are said to be hard. In contrast, goal

constraints are said to be soft, as their goals can be

underachieved, overachieved or met exactly, as, for

example, a production requirement.

GP Solution Methods

Different solution methodologies exist to solve

a variety of types of GP models. The type of GP

model depends on special requirements placed on the

decision variables in the model. Borrowing from LP,

most of the solution methodologies for GP models are

based on the revised simplex method. Simplex

based-solution methods for GP problems originate

from the sequential goal (preemptive priority)

procedure of Lee (1972). There are additional

methodologies for solving integer GP problems,

zero-one GP problems and nonlinear GP problems.

Like LP, these special types of GP solution methods

are based on revised simplex methods, enumeration

methods, and the calculus.

Duality and sensitivity analysis information can

also be obtained from the simplex based GP solution

methods (Ignizio 1982). Duality in GP models is

focused on examining trade-offs in deviation between

priorities. The software system by Lee and Shim

(1993) computes the marginal trade-offs of revising

right-hand-side bi goal targets to reduce deviation

from lower priority goals. There are a variety of

LP-based sensitivity analysis procedures for GP.

Unique to GP is Pk -sensitivity analysis

(Schniederjans 1995). In Pk -sensitivity analysis,

alterations in sets of k priority level goals are

implemented to examine their ordering effect upon

the model’s solution. Other issues in modeling and

overcoming problems with GP methodologies can be

found in Romero (1991).

GP Research and Applications

While both GP modeling and GP solution methods

share LP origins, there are two characteristics of GP

that differentiate the application of GP from LP
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problems: multiple goals and an ordinal ranking of

the goals to deal with conflict. Since many

business and governmental problems contain the

same two characteristics, GP became a very popular

methodology in analyzing such problems.

During the 1960s and early 1970s, most research

on GP focused on revisions of prior LP-type models,

but with a ranking of conflicting goals. The series of

case applications presented in Lee (1972) typify the

work during this period. The most common

applications followed functional areas in business,

such as budgeting in accounting, portfolio analysis in

finance, production planning in management, and

advertising resource allocation in marketing.

Having examined these areas of application in

depth, interest in GP started to wane. In the late

1970s and early 1980s, however, integer (particularly

zero-one) GP methodologies appeared and

caused a renewed interest in the application of GP.

Zero-one GP solution methods permitted the model

to be applied in binary outcome situations and

broadened the potential application base of GP.

Zero-one GP applications include project selection,

personnel selection, and logistics. This period also

saw the combining of other operations research

and management science methodologies within

a GP model: the transportation simplex method,

assignment method, network models, nonlinear

programming, dynamic programming, simulation,

game theory, fuzzy programming and heuristic

procedures (Steuer 1986).

In the late 1980s and through the 1990s, GP

micro-computer software was developed, placing

fairly powerful solution capabilities in the hands of

practitioners, thus causing another burst of interest in

GP applications: planning in small businesses,

improving productivity in service operations, and

planning product development. GP engineering

applications include: planning flexible manufacturing

systems, robot selection, strategic planning, metal

cutting and inventory lot sizing. Improvements in GP

weighting strategies have been developed using the

analytic hierarchy process (AHP) (Liao and Kao

2010) and regression analysis (Garcia et al. 2010).

GP has also been combined with the analytic network

process (ANP) to solve capital asset pricing problems

(Aznar et al. 2010).

A GP model’s ability to use personal preference

information has made it a very useful tool in dealing

with socially sensitive issues. Throughout GP’s

history, applications and models have illustrated how

GP is a powerful tool for analyzing public policy

issues. Applications include: weapon system selection

(Lee et al. 2010) and labor market satisfaction

(Marcenaro-Gutierrez et al. 2010).

See

▶Analytic Hierarchy Process

▶Linear Programming

▶Multiobjective Programming

▶Multiple Criteria Decision Making

▶Nonlinear Programming

▶Regression Analysis

▶ Simplex Method (Algorithm)
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Gomory Cut

A linear constraint that is added to a linear-programming

problem to reduce the solution space without cutting off

any integer-valued points. Such cutting planes are the

basis of many solution procedures that find integer

solutions to a linear constrained optimization problem.

The idea is to eventually reduce the solution space so that

its optimal integer solution corresponds to an extreme

point of the reduced solution space.

See

▶ Integer and Combinatorial Optimization

▶Linear Programming

Gordan’s Theorem

Let A be an m � n matrix, then exactly one of

the following systems has a solution: (i) Ax < 0 or

(ii) AT y ¼ 0, y � 0, y 6¼ 0.

GP

▶Goal Programming

Gradient Vector

For the function f (x) of the vector x, the gradient is the

vector of the first partial derivatives (if they exist)

evaluated at a specific point x0 and is written as

=f x0
	 


¼ @f x0
	 


@x1
;
@f x0
	 


@x2
; . . . ;

@f x0
	 


@xn

� �

:

It is normal or perpendicular to the tangent of the

contour of f(x) that passes through x0. Its direction is

the direction of maximum increase of f(x) and its

length is the magnitude of that maximum rate of

increase.

Graeco-Latin Square

▶Combinatorics

Graph

A graph G¼ (V, E) consists of a finite set V of vertices

(nodes, points) and a set E of edges (arcs, lines) joining

different pairs of distinct vertices.

Graph Theory

Douglas R. Shier

Clemson University, Clemson, SC, USA

Introduction

Graph theory is the general study of

the interconnection of various elements. While the

origins of graph theory can be traced back to the

eighteenth century, this area of discrete mathematics

experienced most of its tremendous growth during the

latter half of the twentieth century. This rapid growth,

both in the development of new theory and

applications, reflects the fact that graphs can model

a wide variety of natural and technological systems.
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A number of physical systems can be viewed as

graphs, composed of nodes (or vertices) connected

together by edges (or arcs). For example, a local area

computer network defines a graph whose nodes

represent individual computers (or peripheral devices)

and whose edges represent the physical cables

connecting such computers. A telecommunication

network consists of access points (and central

switching stations) joined by sections of copper wire

(and optical fibers); an airline system has airports as its

nodes and direct flights as its edges; a street network

involves road segments (edges) whose intersections

define its nodes; and an electronic switching circuit

contains logic gates whose input and output leads form

a graph.

In addition, graphs can with equal ease represent

logical relationships between elements. For example,

the subroutines of a computer program can be

represented as nodes of a graph, with edges

indicating the flow of control or data between

subroutines. A project involving a large number of

tasks can be modeled by a graph, with the tasks being

nodes and logical precedence relations defining the

edges. In an ecological system the edges could

indicate which species (nodes) feed upon other

species. Examination scheduling at a university can

be studied using a graph whose nodes are courses and

whose edges indicate whether two courses contain

students in common; examinations for such adjacent

courses should not be scheduled at the same time.

Table 1 shows a sample of other application areas in

which graph models provide a useful representation.

As suggested by these applications, the direct

connections between nodes can be bidirectional (such

as in making a telephone call, or in traversing a major

highway) or there can be a specific orientation implied

by the relationship (as the precedence relation in

a project graph, or the predator–prey relation in an

ecological graph). Consequently, graph theory treats

both undirected graphs (in which the underlying

relationship between nodes is symmetric) and

directed graphs, or digraphs (in which the

relationship need not be symmetric). These two graph

models are pictured in Figs. 1 and 2, respectively. In

this exposition, the focus is on undirected graphs,

since the analogous concepts for digraphs are

usually apparent. Throughout G ¼ (N, E) will

indicate an undirected graph with node set N and

edge set E.

One of the earliest applications of graph theory was

to the structure of molecular compounds, in which

atoms (nodes) are joined by chemical bonds (edges).

The task of identifying which chemical compounds are

Graph Theory, Table 1 Graph models

Application area Nodes Edges

Information theory Strings of binary
digits

Single-bit changes

Radio broadcasting Broadcast stations Interference

Genealogy Family members Parent/child
relation

Sociology Individuals Interaction
patterns

Architecture Rooms Accessibility

Electronics Junctions Wires

Personnel
assignment

Applicants, jobs Compatibility

Politics Nations Alliances

Genetics Chromosome
segments

Overlapping

Engineering Joints Beams

Commerce Web sites Hyperlinks

Graph Theory, Fig.1 An undirected graph

Graph Theory, Fig. 2 A directed graph

G 662 Graph Theory



structurally the same is reflected in the graph-theoretic

concept of isomorphism, meaning that two given

graphs are the same up to relabeling of their nodes. In

addition, each atom has a valency that indicates the

number of other atoms to which it is connected. In

graph-theoretic terms this is called the degree of the

node, the number of edges with which it is incident.

This concept provides a quantifiable measure of local

connectivity. For instance, the degree of a node in

a communication network indicates the relative

burden on that node in transporting information, so

a robust communication system would be designed to

avoid nodes with large degrees. Since such systems

support point-to-point communication, a more global

measure of connectivity is also needed. Thus,

a fundamental concept is that of a path between

nodes i and j: an alternating sequence of nodes and

incident edges leading from node i to node j. A cycle is

a closed path. The graphG is connected if every pair of

distinct nodes is joined by a path in G. The distance

between two nodes of G is defined as the smallest

number of edges in a path joining the nodes. Then an

overall measure of compactness of the graph is given

by its diameter: the maximum distance between any

two of its nodes.

Eulerian and Hamiltonian Cycles

In certain applications, specific types of paths or cycles

are sought in the graph. For example, an Eulerian cycle

is a cycle in the graph G that traverses each edge of G

exactly once. This concept models the task of

efficiently routing trucks for collection of trash

throughout a city, since multiple passes along a road

are not desirable. Another application occurs in

planning police beats, in which every street of an area

needs to be patrolled. A Hamiltonian cycle in G is

a cycle in the graph that visits each node exactly

once. This concept has been applied to the temporal

sequencing of artifacts found at archaeological sites,

the manufacture of electronic circuit boards, DNA

mapping, order picking in a warehouse, and vehicle

routing. The concepts of Eulerian paths and

Hamiltonian paths are defined analogously.

In designing a logistics system it seems prudent to

require several paths joining nodes i and j, thus

providing redundant routes for sending messages in

case of node or edge failures. For example, an

adversary might select various edges (bridges, roads)

for destruction in order to disrupt the flow of materiel

from node i to node j. An i-j cutset is a minimal subset

of edges whose removal disconnects i from j in G. To

disrupt communication between i and j in an efficient

manner, the adversary might then attack an i-j cutset

having the minimum size (number of edges) lij (G).

The celebrated max flow-min cut theorem of networks

(Gross and Yellen 1999) shows that the maximum

number of edge-disjoint paths joining i and j equals

the minimum number of edges in an i-j cutset. An

analogous conclusion holds if the paths are

node-disjoint and the cutsets are defined in terms of

nodes. This min-max relationship is known as

Menger’s theorem (Chartrand and Zhang 2005).

Trees

A related concept addresses the connectivity of all

nodes, rather than just a specified pair. A tree is

a connected graph containing no cycles, and

a spanning tree of the graph G ¼ (N, E) is a tree with

node set N and whose edge set is a subset of E. Any

spanning tree thus supports communication among all

nodes of the graph. On the other hand, a cutset of G is

a minimal set S of edges whose removal disconnects

some pair of nodes in the graph. The edges of S must

intersect the edge set of every spanning tree of G. An

overall connectivity measure for the graph G is the

minimum size l(G) of a cutset in G. Interestingly, the

number of spanning trees of a graph can be computed

efficiently, using the matrix-tree theorem (Chartrand

and Zhang 2005); by contrast, counting the number of

cutsets is NP-hard.

Trees find many other applications in the theory of

graphs. Trees can be used to model the organizational

hierarchy of a corporation, the table of contents of

a book, the possible evolutionary history of species,

or the syntactic structure of languages. Trees also serve

as useful data structures for organizing elements of

a database for subsequent retrieval and updating.

For example, the branch-and-bound method for

integer-programming problems is implemented using

a tree structure. In addition, trees are used by compilers

of computer languages to provide a concise

representation of arithmetic expressions. Various

ways of traversing trees (in particular depth-first

search and breadth-first search) are important in
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designing efficient algorithms for network optimization

problems. Also of relevance to operations research is the

fact that spanning trees correspond exactly to basic

solutions for linear programming problems formulated

on graphs.

Evolving Networks

What accounts for the structure of real-world networks

and how do they continue to evolve? These questions

have led to the investigation of small-world networks

and scale-free networks. Rather than following the

classic random networks studied by Erdös and Rényi

(Watts 2003), many important networks such as the

World Wide Web, social networks, cellular metabolic

networks, and airline networks have characteristics

quite different from those of random networks. In one

model of random networks, the adjacencies of each

node are randomly selected (controlled by a fixed

connection probability p); in another model, a graph

with n nodes and m edges is randomly selected from

among all graphs having n nodes and m edges. Both

models lead to quite similar characteristics.

Specifically these classical random graphs have small

clustering coefficients and small average (shortest)

path lengths. The clustering coefficient simply

measures for a typical node the average number of

neighbors of the node that are in turn neighbors of

one another. The average path length measures for

a typical node the average number of steps (edges)

needed to reach another node in the most efficient

way (fewest number of edges).

By contrast, many real-world networks exhibit

substantially larger clustering coefficients: e.g., in

a social network, friends of a given node are likely to

be friends of one another. In groundbreaking work,

Watts and Strogatz (1998) studied the prevalence and

construction of small-world networks in which nodes

are typically not very far apart (small average path

length) but have significantly higher clustering

coefficients than in random networks. Another model

for real-world graphs was first developed by Barabási

and Albert (1999). These scale-free networks also have

small average path lengths and significant clustering

coefficients, yet typically contain a number of hub

nodes with relatively large degree. More specifically,

in scale-free networks the distribution of node degrees

follows a power law: the proportion of nodes having

degree k is proportional to k–b, where 2 � b � 3

typically holds. By contrast, the distribution of node

degrees in small-world networks follows a binomial

distribution. A variety of dynamic graph models have

been proposed to account for the creation and

expansion of scale-free networks. For example, such

networks can grow by means of preferential

attachment: new nodes are successively added and

(probabilistically) linked to existing nodes according

to the degrees of the existing nodes. They can also

grow by a certain type of copying mechanism.

Embeddings and Colorings

Special types of graphs find application in the layout of

circuit boards, in which it is desired to place the

components and their connections so that no two

wires meet except at a component. This corresponds

to an embedding of the graph in the plane so that edges

only intersect at nodes. Kuratowski’s theorem provides

an elegant characterization of which graphs are in fact

planar. More generally, any graph G can be

decomposed into a number of edge-disjoint planar

subgraphs, and the minimum number of such

subgraphs is termed the thickness y(G) of the graph.

For example, highways are designed to minimize the

number of overpasses required. Planar graphs G are

also of interest because a dual G∗ of such graphs

can be defined. In particular, the cycles of G are in

one-to-one correspondence with the cutsets of G∗.

Coloring the nodes of a graph also arises in several

applications. A proper coloring ofGwith k colors is an

assignment of these colors to the nodes of G such that

adjacent nodes are colored differently. For example, if

the nodes of G represent courses and edges represent

conflicts (courses that cannot have examinations

scheduled at the same time), then a proper coloring of

G with k colors defines a conflict-free schedule using k

time periods. In another application, suppose the graph

G indicates a compatibility relationship between tasks.

A k-coloring of the complement of G (a graph whose

edges are those node pairs not appearing as edges ofG)

then yields a partitioning of the nodes of G into k

groups of mutually compatible tasks. The minimum

number of colors w(G) needed to color G properly is

termed the chromatic number of G. The famous

four-color conjecture, proposed in 1852 and finally

proved in 1976, states that w(G) � 4 holds for any
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planar graph G. Coloring problems also arise in the

assignment of frequencies of the electromagnetic

spectrum. Locations that are nearby must be assigned

different frequencies to avoid interference, and the

efficient allocation of frequencies then involves

coloring the underlying neighborhood graph using the

fewest number of colors.

Matchings

A matching is a set of mutually nonadjacent edges in

G. A maximum size matching is a matching of G

having the largest number of edges. These concepts

arise in various applications, such as assigning

personnel to jobs, target tracking, crew scheduling,

and scheduling on parallel machines. In another

example, pairs of pilots are to be assigned to aircraft

that serve international routes. Two pilots are

considered compatible if they are fluent in a common

language and have comparable flight training. Finding

a largest set of aircraft to fly with compatible

pilots then requires finding a maximum size

matching in the associated compatibility graph. In

telecommunications, the problem of exchanging

unique pieces of information so that all users will

quickly know the totality of information can be

viewed as a problem of constructing a sequence of

matchings; each matching represents a set of

simultaneous exchanges that can be carried out in

a single time period. The arrangement of simultaneous

kidney exchanges between multiple pairs of compatible

(but unrelated) individuals has been carried out using

maximum size matchings; see kidney paired donations

on the World Wide Web.

Optimization

One important aspect of graphs is that they distill the

essential adjacency relationships between objects.

Another is that they suggest certain optimization

problems. It is apparent that determining the

connectivity l(G), thickness y(G), and chromatic

number w(G) are graph optimization problems. Other

graph optimization problems arise directly from

applications in which it might be required to

optimally schedule courses, allocate facilities, route

goods, or design computer systems, relative to some

objective function and subject to appropriate

constraints. As a specific example, it might be required

to design a minimum diameter communication graph

with lij (G) � k for all distinct node pairs i and j, using

a fixed number of edges.

More generally, quantitative information may be

associated with the nodes and/or edges of a graph,

reflecting the cost, time, distance, capacity, or

desirability of these components. A variety of graph

optimization problems are then apparent: (1) find

a spanning tree of G having minimum cost (minimum

spanning tree problem); (2) find a minimum length

path joining two nodes of G (shortest path problem);

(3) find the maximum amount of material that can

feasibly flow from an origin node to a destination

node (maximum flow problem); (4) find a minimum

cost Hamiltonian cycle in G (traveling salesman

problem); (5) optimally locate facilities on the edges

of G to serve demands arising at the nodes (facility

location problem); (6) find a maximum weight set of

nonadjacent edges in G (maximum weight matching

problem); (7) find a minimum cost traversal of all

edges of G such that each edge is used at least once

(Chinese postman problem).

There are additional application areas in which

graphs are used to model a variety of physical and

logical systems. While the discussion has

concentrated on undirected graphs, directed graphs

are pertinent in other areas, such as in representing

the state diagram of a Markov chain. Connectivity in

this digraph G can be used to classify the states of the

chain, and the (directed) cycle lengths in G define

the periodicity of the chain. Directed graphs are also

the basis of project planning models. Clearly the

hyperlink structure of the Internet can be modeled

with directed edges, indicating which Web pages link

to others; the ubiquitous PageRank algorithm

(Langville and Meyer, 2006) used by search engines

to rank the relevance of Web pages for a search query

is carried out on this directed graph. In essence, the

algorithm calculates the importance of a Web page

recursively by taking into account the importance of

each Web page linking to it.

The study of optimization problems on graphs and

digraphs has in turn stimulated research into the design

of effective algorithms for solving such problems, as

well as determining when these problems belong to an

inherently difficult class of problems (NP-hard

problems). In the latter case, it is important to
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identify special types of graphs (e.g., planar graphs)

for which the computation can be carried out

efficiently, even though there may not exist an

efficient solution method applicable to all graphs.

Several heuristics for the traveling salesman problem

utilize the minimum spanning tree of the graph and an

associated Eulerian cycle, both of which can be

efficiently computed.

Further Reading

The book by Biggs et al. (1976) provides an excellent

reference for the history of graph theory. Bondy and

Murty (1979), Fulkerson (1975), Gross and Yellen

(1999), Michaels and Rosen (1991), and Roberts

(1976) discuss a variety of applications of graphs.

Wilson and Watkins (1990) and Chartrand and Zhang

(2005) give nice introductions to the theory of graphs,

with more advanced treatment provided in Diestel

(1997) and West (1996). The books by Barabási

(2002), Buchanan (2002), and Watts (2003) are very

readable introductions to small-world and scale-free

networks. Algorithmic aspects of graph theory are

discussed in Evans and Minieka (1992).

See

▶Chinese Postman Problem

▶Computational Complexity

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Markov Chains

▶Matching

▶Network

▶ Project Management

▶Traveling Salesman Problem
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Graphical Evaluation and Review
Technique

▶GERT

Graphics

▶Visualization

Greedy Algorithm

A heuristic algorithm that at every step selects the best

choice available at that step without regard to future

consequences. A greedy method never rescinds its

choices or decisions made earlier. A greedy method

is usually applied to an optimization problem for

which the method attempts to determine an optimal

solution (least cost, maximum value), with no
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guarantee that the optimal solution will be found.

Kruskal’s and Prim’s minimum spanning tree

algorithms are greedy methods that do produce an

optimal solution.

See

▶Algorithm

▶Heuristic Procedure

▶Kruskal’s Algorithm

▶ Prim’s Algorithm

GRG Method

Generalized reduced gradient method.

See

▶Quadratic Programming

Group Decision Computer Technology

Dennis M. Buede

Innovative Decisions, Inc., Vienna, VA, USA

George Mason University, Fairfax, VA, USA

With the rise of computer technology and the success

of quantitative decision support technology, there has

been a great deal of interest in moving these

technologies into the boardroom, so to speak. There

is no commonly accepted approach for supporting

group decision making, see Dennis and Gallupe

1993; DeSanctis and Gallupe 1987; and Nunamaker

et al. 1993. The oldest approach is decision

conferencing (Watson and Buede 1987), which

started in 1979 and has spread but not exploded.

Decision conferencing is a group process that is led

by a decision analytic facilitator. The facilitator

employs simple decision analysis models to focus the

group’s discussion on the objectives, options, and

uncertainties. The facilitator also mixes analytic

activities with creative problem structuring and

option generation activities. The decision conference

can be as short as two days or may involve several

two to three day sessions. References for

decision conferences include Phillips (1984) and

Reagan-Cirincione (1992).

There are a range of approaches for group decision

support that place a computer in the hands of each

participant. This approach still employs a group

process facilitator, although there is some

disagreement about the importance of the facilitator

amongst the researchers and practitioners in this area.

The computer technology is designed to enhance the

productivity of the individual and the communication

of information among individuals. The effectiveness of

computer technology as a communication medium

when the group has a single decision focus is

questioned by some. Computer technology, however,

opens the group’s options in terms of whether they

meet at the same place or even at the same time. The

major options of the group have been named: same

time, same place; same time, different place; different

time, same place; and different time, different place.

Substantial work and adaptation has taken place in this

area, see Dennis and Gallupe 1993; and Nunamaker

et al. 1993.

Developments over time have seen these two

extremes of decision conferencing and computer-

supported and linked individuals merge. The

individuals now have button boxes that feed a single

computer via infrared beams. The individuals are able to

input their votes or numeric judgments into the

computer that displays the results and spurs discussion

and debate. The results of the group inputs can then be

recorded and incorporated into a broader analysis.

Group process support continues to be an expanding

research and application area. For the group process to

be considered successful, researchers must show that

the group acting with decision support can be more

effective than the second most effective of the group

(Reagan-Cirincione 1992). The group must be

provided with both cognitive support and social

support in their activities; there is no lack of options

for providing this support (see Connolly 1993;

Nunamaker et al. 1993; and Huber et al. 1993).

See

▶Group Decision Making
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Group Decision Making

Fatemeh Mariam Zahedi

University of Wisconsin-Milwaukee, Milwaukee,

WI, USA

Introduction

Group decision making focuses on problems in which

there is more than one decision maker and more than

one choice. The choices or alternatives have multiple

attributes. In other words, the decision makers must

consider more than one objective or criterion in their

decision. Hence, group decisions involve multiple

criteria and multiple decision makers. Since

preferences and objectives of individual decision

makers vary and may be in conflict, arriving at

a decision is far more complex in a group setting than

in individual cases.

Group decision covers a wide range of collective

decision processes and encompasses numerous

methods designed under various assumptions and for

different circumstances. One can divide the group

decision approaches into the following categories:

utility theory, group consensus, group analytic

hierarchy process, social choice theory, and game

theory.

Group Utility Analysis

Group utility theory is based on the von Neumann-

Morgenstern utility function. This method

assumes that there is a multicriteria utility function

Ui (x1, x2,. . ., xm), where i represents member i, xm
represents the mth attribute, and m is the number of

attributes. Based on the assumption that the utilities of

members are functionally independent, the group

utility function is computed as the aggregation of the

member utility functions by one of the following two

function types.

The additive form of the function is

U ¼
Xn

i¼1

WiUi

where n is the number of attributes, and the

multiplicative form is

wU þ 1 ¼
Xn

i¼1

wwiUi þ 1ð Þ;

where w and wi are scaling constants satisfying 0 < wi

< 1, and w > �1, and w 6¼ 0. The estimation of

member utility functions follows the assumptions and

procedures used in estimating the individual

multicriteria utility functions. The important question

in the group utility estimation is the determination of

the scaling constants. Keeney and Kirkwood (1975)

suggested that these constants could be determined

either by a benevolent dictator or internally by group

members.

To resolve the problem of assigning weights to the

utility functions of group members, two methods have

been proposed. First, Bodily (1979) suggested the

delegation process. This method is an iterative

process for combining the utility functions of group

members. The idea is that each member should assign

weights to other members. This process assumes that

each member is adequately familiar with the views and

utilities of other members. Each member replaces his

or her utility by linearly combining other members’
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utilities. Members will not know the weights assigned

to them by others. The method consists of the

following steps:

Step 1. A delegation subcommittee for member i is

formed consisting of the remaining n � 1 members.

Member i assigns a weight wij (a value between

0 and 1) to member j, and repeats the weight

assignment for all n � 1 members. The n � 1 assigned

weights should sum to 1. The weight for member i is 0;

that is, wii ¼ 0.

Step 2. The combined utilities of the delegation

subcommittee are computed as

u1i ¼
Xn

j¼1

wijuj;

and replaces member i’s utility. This process is

repeated for all members.

Step 3. Step 2 is iterated for a second time as

u2i ¼
Xn

j¼1

wiju
1
j ;

and for the rth time as

uri ¼
Xn

j¼1

wiju
r�1
j :

In matrix form, the iteration can be represented as

Ur ¼ PUr�1;

where

Ur ¼ ur1; u
r
2; . . . ; u

r
n

 �
:

If the process is repeated adequately, one can show

from a theorem in Markov processes that under certain

conditions, Ur converges and represents the group

utility function.

Brock Method

Brock (1980) developed a method for estimating the

weights for aggregating the utilities. The Brock

Method is based on the assumptions that the solution

for the group decision should be Pareto optimal,

obtained from the additive combination of

member utilities, and that utility gains should be

distributed based on the needs of the affected parties.

The needs are defined as the intensity of desire,

computed as

ui � di

uj � dj
¼ � dui

duj
8i; j:

Brock showed that the relative weights of members’

utility functions are the reciprocals of the above

coefficients.

Group Consensus

Group consensus methods combine the observed

preferences of members to create consensus points.

These points are used to estimate the consensus

function for the group. Group consensus methods

do not require explicit estimation of member

utility functions and may not necessarily lead to

the estimation of a function for the group.

This approach is in contrast with the utility approach,

in which the utility functions of members are

estimated, then combined to arrive at a group utility

function.

Krzysztofowicz Method — The Krzysztofowicz

method (1979) is based on the following assumptions:

1. The group utility function can be decomposed into

functions (Wi) of its attributes (xi) and these

functions could be combined via another function

(H) such that:

W x1; x2; . . . ; xnð Þ ¼ H W1 x1ð Þ;W2 x2ð Þ; . . . ;Wn xmð Þð Þ

2. where Wi(xi) is the group marginal utility of

attribute xi and m is the number of attributes

relevant to the group decision.

3. The group’s observed preference is the result of

combining members’ observed preferences by the

decision rule d.

4. The group members are divided into subgroups of

experts. Each subgroup has expertise in a subset of

attributes, and each subgroup is responsible for

estimating Wi(xi).
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5. Each member and subgroup behave according to

the axioms of utility theory.

In this method, the group is divided into sub-groups.

Each subgroup estimatesWi (xi) based on its expertise.

The group’s marginal utility functions of attributes are

then combined by H, which is either an additive or

multiplicative function, similar to those in the group

utility theory.

In the subgroup estimation ofWi (xi), the expressed

preferences of members are combined by the decision

rule d. This leads to a series of consensus points from

which the function Wi (xi) is estimated.

Zahedi Group Consensus Method — This method

(1986a) is based on the following assumptions:

1. Preferences of individual members are uncertain.

2. The relative weight (or importance) of a member is

inversely proportional to his or her degree of

uncertainty in his or her response.

3. Standard deviation is the measure of uncertainty.

4. A member’s preference response has a normal

probability distribution.

5. Correlations among members remain constant over

various alternatives.

6. A consensus point is generated by combining the

members’ expressed preference responses such that

the combined point has the minimum variance or

uncertainty.

7. The consensus function is estimated based on the

generated consensus points.

Based on the above assumptions, the following

steps lead to the estimation of the group consensus

function:

Step 1. For each multicriteria alternative a, member

i assigns an interval score [xai, yai].

Step 2. Estimate the mean and standard deviation of

the interval by

Ûai ¼
yaiþxai

2

ŝai ¼
yai�xai

6

�

Step 3. Compute group member correlations by

r̂ik ¼
Cov Ûi; Ûk

	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Ûi

	 


� Var Ûk

	 


q ;

where i and k are members. Form a covariance matrix

among group members for alternative a by using the

standard deviations obtained in Step 2 and pairwise

covariance obtained in Step 3. This matrix is

symmetric of size n, where n is the number of group

members. The main diagonal elements are the

variances of n members. The off-diagonal element of

row i and column j is ŝai r̂ik.

Step 4. Compute member i’s weight for alternative

a(wia) by

wia ¼

P

n

k¼1

aika

P

n

h¼1

P

n

k¼1

ahka

;

where ahka is the element of the inverse of the

covariance matrix computed at Step 3.

Step 5. Compute the consensus point for alternative

a by using the results of Steps 2 and 4 in

Ûa ¼
X

n

i¼1

wiaÛia:

Step 6. The consensus point could be used directly for

selecting the alternative with the highest consensus

value. Furthermore, one can estimate the group

consensus function by using the consensus points as

the dependent variable in a regression analysis in

which the independent variables are attribute values.

In the Zahedi method, consensus values and the

consensus function are obtained directly from the

preference responses of members. It does not assume

the existence of utility axioms and does not require

members’ utility estimation.

Nominal Group Technique — The nominal group

technique was first proposed by Delbecq and Van de

Ven (1971). The idea of nominal group technique

became one of the methods of consensus generation

in total quality management (TQM). In this technique,

the ideas are generated in silence and recorded, then

they are discussed in group, their importance is voted

upon, and the final vote is taken. It has the following

steps:

Step 1. The team leader presents the group with the

description of the problem and each member records

his or her idea or solution individually in silence.

Step 2. The leader asks members to express their

ideas one at a time and records them on a chart.

Step 3. Members discuss the recorded ideas so that

all members understand each idea.
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Step 4. Each idea is voted upon and ranked by

members and the average ranking for each idea is

computed.

Step 5. Another round of discussions clarifies the

position of various members.

Step 6. The final vote is taken by a procedure similar

to that of Step 4.

Delphi Method — The Delphi method, developed

by Dalkey (1967), is used for generating consensus

among members who are not in the same location. It

involves written questionnaires and written answers. In

this method, the group leader identifies the problem or

the question, identifies group members, and contacts

them. A sample of group members is selected by the

group leader. The method goes through iterations of

the following steps:

Step 1. Design the questionnaire to be answered by

the selected group members.

Step 2. Have members complete the questionnaire.

Step 3. Analyze responses, make changes in the

questionnaire, and include the aggregated responses

from the previous round. Ask the members to react to

the results of the previous round.

After a number of iterations, the final results are

computed, and alternatives are ranked accordingly.

Iterative Open Planning Process — Ortolano

(1974) suggested the open planning process. In this

method, the activities are divided into four stages:

problem identification, plan formulation, impact

assessment, and evaluation. There are two sets of

decision makers: planners and the affected

public. Planners and the public interact at each stage.

• At the problem identification stage, planners

determine and evaluate factors from many

perspectives and the public articulates problems

and concerns.

• At the plan formulation stage, planners delineate

alternatives and the affected public suggests

alternatives.

• At the impact assessment stage, planners forecast

and describe the impacts, while the affected public

assists them in describing the impacts.

• At the evaluation stage, planners organize and

display information on alternatives and impacts,

and the affected public evaluates impacts, makes

tradeoffs, and expresses preferences.

These stages take place concurrently and the

planners and the affected public repeat the process

a number of times.

Group Analytic Hierarchy Process

The analytic hierarchy process (AHP) method was

developed by Saaty (1977) and extended to group

decision making by Aczel and Saaty (1983). In this

method, the alternatives receive a score computed via

AHP. This method does not require estimation

of utility functions and does not assume axioms of

utility analysis. The group AHP method consists

of the following steps (Zahedi 1986b).

Step 1. A decision hierarchy is created based on the

nature of the decision problem. This hierarchy has

multiple levels. At the upper-most level, the decision

goal is specified as selecting the best alternative. The

next level consists of categories of the attributes that

are of importance in the group decision. The next level

details each category of attributes into finer and more

tangible features. The lowest level of the hierarchy

contains the decision alternatives.

For example, for selecting the best car, the highest

level of the hierarchy has the selection of the best car as

its only element. The second level of the hierarchy

includes cost, safety, and design attributes. At the

third level of the hierarchy, these attributes are

divided into more specific attributes. For example,

the cost attribute may be divided into purchase price,

preventive maintenance costs, and repair costs at the

third level. The safety attribute may be divided into

accident outcomes and frequency of breakdowns. The

design attribute may be divided into esthetics, driver

comfort, and space. The fourth level of the hierarchy

includes the decision alternatives — cars to be

selected — say, Toyota, Ford, and GM.

Step 2. At each level of the hierarchy, elements are

compared pairwise for their role or importance in each

element on the level immediately above. The input

matrix for the pairwise comparisons has the

following form:

A ¼

a11 a12 a13 � � � a1n
a21 a22 a23 � � � a2n
a31 a32 a33 � � � a3n
� � � � � � �
� � � � � � �
an1 an2 an3 � � � ann

0

BBBBBB@

1

CCCCCCA

where aij¼ 1/aji for all i, j¼ 1, 2,. . ., n, aii¼ 1, and n is

the number of elements of one level being compared

Group Decision Making 671 G

G



pairwise for their role in accomplishing one of the

elements on the upper level.

For example, Toyota, Ford, and GM cars could be

compared pairwise in their purchase price to get

a pairwise comparison matrix A. The size of this

matrix will be 3. One such matrix is needed for each

of the elements of the prior level — purchase price,

preventive maintenance costs, repair costs, accident

outcomes, frequency of breakdowns, esthetics, driver

comfort, and space.

Step 3. At this step, a computational method is used

to reduce the matrix of pairwise comparisons into

a vector of local relative weights. The best known

and most widely used computational method is the

eigenvalue method, in which the local relative

weights are computed as AW ¼ lW, were W is the

vector of local relative weights, which is the largest

eigenvector of A, and l is the largest eigenvalue of

matrix A.

Step 4. At this step, the local relative weights are

combined to arrive at one vector of global relative

weights for alternatives at the lowest level of the

hierarchy in accomplishing the goal specified at

the highest level of the hierarchy. The alternative

with the highest global relative weight is the best

choice, according to the AHP.

Applied to the group decision setting, the group

must reach a consensus as to the structure of the

hierarchy at Step 1. At Step 2, there will be a matrix

of pairwise comparison elicited for each member of the

group. The group pairwise matrix is computed from

combining the member matrices. Each element of this

matrix is the geometric average of the corresponding

elements of the member matrices.

For example, assume that there are four decision

makers involved in the decision to purchase a car.

When three cars are compared pairwise for purchase

price, one matrix of pairwise comparison is

created when there is only one decision maker. When

there are four decision makers, there will be four

such matrices. To compute the group matrix for

comparing cars, gij, the ijth elements of the four

matrices are multiplied and then raised to one-fourth

power, so that gij ¼ (a1ij a2ij a3ij a4ij)
1/4, where

the superscript on aij represents the decision

maker and gij is the geometric mean of the four

decision makers’ pairwise values. Steps 3 and 4

of the group AHP are the same as those of the

single-decision-maker AHP.

Extensions of The Group Analytic Hierarchy
Process

The group AHP has been extended in a number of ways

by synthesizing it with other methods and approaches,

such as entropy optimization, Bayesian estimation

procedure, and data envelopment analysis.

1. Gass and Rapcsák (1998) have extended the group

AHP method to the case where the decision makers

do not have equal voting power. In their

formulation, there is one relative-weight vector Wi

for each decision maker i ¼ 1, 2, . . ., m. They

formulate an optimization problem that minimizes

one of the Hölder-Young distances of the weighted

sum of the relative weight vectors from the

unknown vector x ¼ (x1, x2,. . ., xn). The solution

to this entropy optimization problem is

xj ¼
Xm

i¼1

vi

v

� �

wa
ij

" #1 a=

; j ¼ 1; 2; . . . ; n;

where vi is the voting power of decision maker i, and

v ¼
X

m

i¼1

vi:

In this set of solutions, a varies from 0 to 1. In a special

case, the above solution set yields an explicit form that

corresponds to the geometric mean in the following

form:

xj ¼
Y

m

i¼1

w
vi v=
ij ; j ¼ 1; 2; . . . ; n;

where xj is the relative weight of alternative j for the

group.

2. Gargallo et al. (2007) have developed another

extension of the group AHP in which a Bayesian

estimation procedure has been used to compute the

priorities in the group AHP analysis. In this

approach, the individual priorities are assumed to

have a mixture of normal distributions. Using

a hierarchical cluster algorithm, this method

identifies opinion subgroups within the group.

3. Ramanathan (2006) and Wang and Chin (2009)

have extended the group AHP and synthesized it
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with the data envelopment analysis in order to

address inconsistencies in input matrices in the

group. Wang and Chin (2009) have suggested a

data envelopment method to compute the best

local priorities regardless of the extent of

inconsistencies in the pairwise comparison

matrices.

4. Dong et al. (2010) have combined the group AHP

with the Chiclana et al. (2008)’s consensus

framework to develop the AHP group consensus

model. They define a consensus index to represent

the extent of agreement among individual decision

makers’ input matrices, and propose two AHP

consensus models that could result in an improved

consensus index.

5. Monroe-Jimènez et al. (2008) have also proposed

a method for the identification of consensus among

a group of decision makers. They present the

consistency consensus matrix for the purpose of

consensus building within the decision group,

particularly in large groups, such as democratic

voting.

6. Although not an extension of AHP, fuzzy group

decision making has emerged as yet another

method in handling group decisions (see, for

example, Gabriella and Yager 2006 for a review).

Li (2010) suggests a fuzzy multi-attribute group

decision making in which input information

(equivalent to the matrices of pairwise comparison

in AHP) are non-homogeneous, in that the

preferences for attributes could be expressed in

four different formats: qualitatively in linguistic

terms, fuzzy numbers, interval values, and real

numbers. These formats of preference expression

and elicitation are similar to those available in the

AHP approach. Li (2010) has proposed a method to

transform the non-homogeneous inputs to a fuzzy

group decision making formulation. In this

approach, decision makers are viewed as

attributes. The solution to this approach is called

a compromise solution, which maximizes the group

utility of the majority and minimizes individual

regret for the minority (p. 99).

Social Choice Theory

The group decision problem was of interest as early as

the eighteenth century, when Borda studied voting

problems in the 1770s, and Marquis de Condorcet

noticed the paradoxes and problems of majority rule

in the 1780s. One example of such problems is that of

three alternatives a, b, and c, where a is preferred to b,

b is preferred to c, and c is preferred to a. Attention to

methods for making a social choice continued in

nineteenth century and greatly intensified in this

century.

One way to arrive at a group decision is

through voting, which also falls under the heading of

social choice theory. Social choice theory investigates

the process of arriving at a group decision in

democratic societies through the expression of the

majority’s will. Voting involves selecting an

alternative or candidate based multiple criteria. It

involves two processes: voting and the aggregation

method for determining the winner, that is, voting

and counting the vote. There are a number of

methods for voting, such as bivalue (yes, no), rating,

and ranking the alternatives. Counting could be

a simple counting of yes or no votes, averaging

the rates, or a more complex aggregation method

using ranks.

Social Welfare Function — In the social welfare

function, the voting and counting processes are given

a formal mathematical structure. Each member has

a utility function based on which he or she

determined the ordinal ranking of all alternatives.

A member’s ordering of alternatives is called the

preference profile. The social welfare function is

a rule for structuring group preference orderings of

alternatives from the members’ preference profiles.

Obviously, there are numerous ways to arrive at

group ordering alternatives. Arrow sought to limit the

number of possible group orderings of alternatives,

which led to his famous impossibility theorem.

Arrow’s Impossibility Theorem — Arrow (1951)

observed that by imposing rational conditions, one

can reduce the number of solutions in the social

welfare function. He postulated that:

1. All possible choices are already included in the

problem set.

2. If one alternative is dropped such that the

preference relations remain unchanged, the group

preference will not change.

3. For any given two alternatives, the group can

express its preference of one over the other.

4. There is no individual in the group whose

preference represents the group preference.
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5. Assume the group prefers alternative 1 to 2. If one

member’s preference for alternative 1 increases

without affecting the pairwise preference ordering

of other alternatives, the group will continue to

prefer alternative 1 to 2.

Arrow’s famous impossibility theorem states that

there is no social welfare function that satisfies all of

the above five properties.

Note that in voting and the social welfare function,

the strength of members’ preferences is not taken into

account, whereas in utility theory, consensus

generation methods, and AHP, the strength of

members’ preferences is incorporated into the

method. In utility theory and consensus generation

methods, members’ preferences are assigned relative

weights, relative to their importance in the group

decision.

Boiney’s Envy-Based Fair Group

Decision — Boiney (1995) developed a model for

fair choice among limited options under uncertainty

when preferences are heterogeneous. The measure of

fairness in this model is built on the degree of envy.

Pairwise envy is defined as

eijðxÞ ¼ max 0; ui xj
	 


� ui xið Þ
	 


;

Where eij is i’s envy of j, xi is i’s bundle of goods, xj ’s

bundel of goods, and uj is i’s utility. Individual i’s

envy is

eiðxÞ ¼
1

n� 1

X

j

eijðxÞ;

where the constant (n � 1) is used to normalize the

extent of envy between 0 (no envy) to 1 (maximum

envy). Under certain conditions of linearity,

independence, monotonicity, and anonymity, group

envy could be computed as the (weighted) average of

individual envies, where weights, if used, are the

relative importance of individuals. Using this

measure of envy, Boiney defined ex post and ex ante

measures of unfairness, combining them into an

overall measure of fairness F. This measure is, in

turn, combined with the group utility function to

determine social preference function, which could be

used in making a fair and efficient choice among

limited options.

Game Theory

Game theory has been developed in the context of

decision makers (or players) who are in conflict.

Game theory, however, has been extended to include

a cooperative n-person game, in which the players

cooperate with one another in order to maximize their

own gain or payoff. The Nash-Harsanyi and Shapley

methods are among the game-theoretic methods of

group decision.

Nash-Harsanyi Bargaining Method—Nash (1950,

1953) developed the two-person cooperative game,

which was generalized to the n-person cooperative

game by Harsanyi (1963). In this model, one can find

a unique solution to the n-person cooperative game

problem by solving the following:

max
xi

Q

n

i¼1

xi � dið Þ
s:t: xi � di x 2 P;D ¼ d1; d2; . . . ; dnð Þ;

where P is the set of payoff vectors, andD is the payoff

when disagreement exists.

The above formulation is based on the following

assumptions:

1. No payoff is better than the solution of the above

formulation.

2. The players’ payoffs are the same.

3. The linear transformation of all payoffs does not

change the solution to the above problem.

4. Assume there are two games 1 and 2 with the same

payoffs for disagreement, and the payoff vector of

game 1 is a subset of the payoff vector of game 2. If

the solution of game 2 is in the payoff vector of

game 1, then it is also the solution to game 1. This

assumption ensures that adding nonoptimal payoffs

does not change the optimal solution.

Harsanyi (1977) has shown that the above formulation

can also be derived from Zeuthen’s principle that the

player who has the highest risk-aversion toward conflict

always makes the next concession.

The Shapley Value — If the utility of the players is

transferable — that is, one player can transfer money,

goods, or services to another player such that the sum

of the two players’ utilities remain the same— then the

Nash-Harsanyi solution does not hold. This is due to

the fact that there would not be a unique payoff vector
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for disagreement. Shapley (1953) provides a solution

for an n-person cooperative game with a transferable

utility function.

A coalition is defined as a subgroup of members.

The grand coalition consists of all the group members.

If a member i joins a coalition, his or her marginal

contribution to the coalition C is specified as

V(C) � V(C � i). The payoff to member i should

be the average marginal contribution of the player

to the grand coalition. Assume that the grand

coalition is formed by members gradually joining

the coalition and the order of members joining the

coalition is equally likely, then the payoff of each

player, (Pi, i ¼ 1, 2,. . ., n) or the Shapley value, is

Pi ¼
X

C�N

c� 1ð Þ! n� cð Þ!
n!

VðCÞ � V C� ið Þ;

where c is the number of players in C, n is the number

of players, and N is the set of players.

The above solution is based on the following

assumptions:

1. The value of the entire game is the sum of the

payoffs to members.

2. All members receive an equal payoff.

3. If a game consists of two subgames, the payoff of

the game is the sum of the payoffs of the two

subgames.

Computer-Based Group Decision Process

A number of computer-based methods have been

developed to facilitate the group decision process in

various circumstances. These systems can divided into

two groups: intelligent systems and group decision

support systems.

Intelligent Systems for Group Decisions — In

a sequential group process, there is more than one

party involved in a negotiation process that takes

place sequentially through time. One can use the

artificial intelligence and expert system techniques to

facilitate the process. A number of such systems have

been developed.

Sycara developed PERSUADER, which simulates

the labor-management negotiation process (Sycara

1991). This system uses frame-based knowledge

representation and case-based reasoning of artificial

intelligence with graph search and multi-attribute

utilities to propose problem restructuring for

simulated negotiations. The system restructures

the problem by (1) introducing new goals,

(2) substituting goals, and (3) abandoning goals.

The logical representation of the negotiation

process using the framework of mathematical logic is

another way to model the group negotiation process.

Kersten et al. (1991) showed how one can model

negotiation and restructure it for arriving at

a negotiated solution.

Group Decision Support Systems—Group decision

support systems refer to computer-based systems and

methods developed to facilitate group decision

making. One category of such systems is the

electronic meeting system (EMS), which consists of

a collection of hardware, software, audio and video

equipments, and group procedures to create

a supportive environment for the group decision

process (Dennis et al. 1988).

These systems are designed for various purposes:

• Generating group options and brainstorming.

• Supporting and improving communication among

the group members.

• Increasing participation.

• Providing computational and procedural support for

the group process.

There are different conclusions regarding the

existence and extent of positive contributions of such

systems (Jessup and Valacich 1993; Fjermestad and

Hiltz 1999). However, group decision support systems

have gained increasing acceptance within industry as

tools that increase the efficiency of group decision

processes.

Intelligent Agents — The use of group

decision methods has found an unexpected

application in creating multiagent intelligent systems.

Although there is no consensus regarding the

definition of software agents, one can describe it as

components that take actions on behalf of users

(ACM 1999). Capturing users’ preferences is one of

the important aspect of software agents developed

for electronic commerce (Maes et al. 1999). If

multiagents act on behalf of one entity and need to

come to an agreement regarding an action, then

they need to apply group decision methods for

arriving at a consensus.
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Issues in Decision Making in Interactive
Groups

The use of computer-based group decision making has

generated interest in factors that may impact the

outcome and quality of group decisions. These

factors include group facilitation, anonymity of

group members, group size, nature of decision,

decision process, and groupthink (Bostrom et al.

1993; El-Shinnawy and Vinze 1998; Esser 1998;

Fjermestad and Hiltz 1999).

An important property of the group decision is the

number of new ideas and information initiations during

the course of decision making. Silver (1995) posited

that the number of ideas and negative evaluation of

them are the most important determinant factors of

group decisions. He formulated a two-stage

optimization heuristics for the dual motives of group

members: maintaining their relative status in the group

and contributing to group objectives. At the first stage,

the members maintain their status by contributing

ideas that minimize the probability of receiving

negative evaluations. At the second stage, members

contribute ideas that incrementally increase the

probability of receiving negative evaluations in

proportion to their relative status, in order to

contribute to the group decision quality.

See

▶Analytic Hierarchy Process

▶Decision Analysis

▶Delphi Method

▶Electronic Commerce

▶Game Theory

▶Group Decision Computer Technology

▶Markov Processes

▶Multi-attribute Utility Theory

▶Multiple Criteria Decision Making

▶Total Quality Management
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GUB

▶Generalized Upper-Bounded (GUB) Problem

GUI

Graphical user interface. Means by which users

interact with electronic devices via images, e.g.,

computers using pull-down or touch-screen menus, in

contrast with typed text commands.

See

▶Computer Science and Operations Research

Interfaces

▶Visualization

▶WIMP
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H

Half Space

▶Linear Inequality

Hamiltonian Tour

In an undirected connected graph, a Hamiltonian tour

is a sequence of edges that passes through each node of

the graph exactly once.

See

▶Graph Theory

▶Traveling Salesman Problem

Hamilton-Jacobi-Bellman Equation

Condition specifying a partial differential equation that

the (optimal) value function must satisfy in an optimal

control problem, analogous to the Bellman optimality

equation in dynamic programming.

See

▶Bellman Optimality Equation

▶Dynamic Programming

▶Optimal Control

Hazard Rate

▶Distribution Selection for Stochastic Modeling

▶ Failure-Rate Function

▶Reliability of Stochastic Systems
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Introduction

The techniques of operations research have found their

way into health care management, not just in the

logistical and managerial support of clinical services,

but in the central decision processes of disease

screening, diagnosis and therapy, and in medical

education. Hundreds of citations to operations

research and its associated analytical techniques are

to be found in the medical literature and are accessible

in the U.S. National Library of Medicine’s on-line

MEDLARS system. The early applications spawned

new professional organizations and journals, now

thriving in the medical arena. Many operations

research applications are indexed to the near

synonymous term, Medical Informatics, the

application of computers and information technology

to the broad field of health care. Operations research

techniques that most frequently applied to solve

managerial issues in health care organizations can be
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found in health care management text books (Ozcan

2009; Shiver and Eitel 2009). To understand the

position of operations research in the medical

literature, a simple rule helps: medical informatics

relates to medicine and health care as operations

research relates to the work of business and industry.

Both place a heavy emphasis on exploitation of

the potentials of computer and information

technologies. In addition to these, in conjunction with

bioengineering and medical physics, more recent

advances in computational biology and medical

applications had used OR in treatment design and in

genomics. These applications range from optimizing

the dose and location of radiation treatments to

optimization and simulation models to identify

correct diagnosis and treatment for genetic variants

of some diseases (Greenberg et al. 2009); similarly,

using optimization and extensive classification

systems to predict immunity to a vaccine without

exposing individuals to infection (Lee 2010);

abnormal brain activity (Chaovalitwongse et al. 2008).

In short, to address contemporary issues in health care,

diverse disciplines including electrical engineering,

biomedical engineering, industrial engineering, and

medicine attempt to bridge a vital gap between

operations research and medical research with the

help from data mining, signal processing techniques

can be used to tackle the most challenging problems

in modern medicine (Chaovalitwongse et al. 2010).

Major traditional operations research methods that

predominate in health care applications include

stochastic models, computer simulation, mathematical

programming, and decision analysis.

Simulation and Stochastic Models

Computer simulation plays an important role in

teaching, research, and development of medical

practice, expanding beyond its early role as a mimic of

complex stochastic processes. A review of over hundred

documents indexed both to simulation and medicine

reveals a range of applications from the traditional

Monte Carlo representation of physiological processes

to three-dimensional imaging. An example of use of

computer simulation to develop a protocol for burn

care is given by Roa and Gomez-Cia (1994). Many

applications are devoted to medical education by

simulation of clinical problems, either through random

sequences of events in diagnosis and therapy or the

responsive behavior of images or a manikin, a move

toward virtual reality. Examples of simulation as an

instructional aid in a clinical setting are: in cardiac

care (Lipner et al. 2010; Kobayashi et al. 2010),

prostate care (Wang et al. 2010), training and teaching

in obstetrics and gynecology (Dayal et al. 2009),

training in anesthesiology (Waisel et al. 2009).

Serving as a decision support tool, computer

simulation offers management detailed information

about the processes of health care, enabling

management to make better decisions through

performance data on a variety of issues of in terest

before any change was introduced within the process.

Thus, use of computer simulation makes information

better and faster without requiring intensive financial

and resources, especially when there are a number of

alternatives under consideration. Computer simulation

has found its application particularly in both estimating

and forecasting of several issues involved in hospital

industry, with the primary objective of guiding hospital

management and policy makers about evaluating

alternatives involved in allocation of scarce resources

or anticipating results from certain changes that can

be made to solve the problems identified. Some

examples of simulation and stochastic programming as

a management aid in a hospital setting:

• Application of stochastic programming and

simulation of nurse assignments (Punnakitikashem

et al. 2008; Sundaramoorthi et al. 2010);

• Analysing management policies for operating room

planning using simulation (Persson and Persson

2010);

• Reducing patient wait times and improving

resource utilization using simulation at ambulatory

cancer care units (Santibáñez et al. 2009);

• Redisign of hospital based pharmacy delivery

processes using simulation and oprimization

(Augusto and Xie 2009);

• Improving patient flow at outpatient settings

(Chand et al. 2009);

• Simulation of strategies for cervical cancer

screening (McLay et al. 2010).

The field of epidemiology, lying within the domain

of medicine, has been attractive to stochastic model

building and simulation. Understanding the origin,

spread, and decline of epidemics is essential to

recognition of causal agents and vectors of transmittal

and the development and evaluation of prevention
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measures. The complexity of epidemics and

interventions to control them often defies a purely

mathematical analysis. In early studies of mathematical

epidemiology, Bailey (1967) used computer simulation

to predict both temporal and spatial progress of

epidemics, expressed in stochastic models. Examples

of stochastic models and simulation are found in

epidemic models of HIV/AIDS (Rossi 1999; Rauner

2002). The problem of allocation of resources for this

disease is addressed by Brandeau et al. (2005).

Mathematical Programming

Increasing health care costs, in particular hospital costs,

have provided incentive for health care researchers to

analyze performance of hospitals through mathematical

programming techniques. Growing interest in

performance has led to increasing applications of

various efficiency measurement techniques, as a means

of evaluating performance. Proposed methods to

measure efficiency can be classified into two broad

categories: parametric and non-parametric methods.

The former assumes a particular functional form, for

example, Cobb-Douglas method, while the latter does

not assume a functional form, for example, Data

Envelopment Analysis (DEA) method.

DEA is a mathematical programming tool that is

designed to evaluate how efficiently an organizational

entity, called the decision-making unit or DMU,

produces a mixture of outputs with an available

mixture of inputs. The power of DEA methodology

as a multifactor productivity tool in contrast

to unidimensional ratio analysis and central-

tendency-based regression analysis has been

demonstrated in the health care literature (Sherman

1984; Sexton 1986; Huang 1990; Sherman and Zhu

2006, chapter 5; Ozcan 2008). In particular, DEA is

recognized as a superior method to identify the sources

and amounts of inefficiency in the use of inputs.

Pioneering uses of DEA by Charnes et al. (1978, 1981)

were followed in the operations research field by many

applications across service and program-oriented

industries. In health care, Sherman (1984) applied DEA

to hospital multifactor productivity studies. Some studies

in the health care organization or program efficiency

arena followed the Sherman study for benchmarking

hospitals (Clement et al. 2008; Nayar and Ozcan 2008;

Sikka et al. 2009; Kazley and Ozcan 2009; Ozcan and

Luke 2010; Sahin et al. 2010; Ozcan et al. 2010;

Lobo et al. 2010), nursing units (Mark et al. 2009),

ambulatory surgery centers (Iyengar and Ozcan 2009),

and nursing homes (Ferrier and Valdmanis 1996;

Björkgren et al. 2001; Knox et al. 2003).

Decision Analysis in Medical Decision
Making

The notion of tradeoff among benefits and losses

carries through to decisions made under certainty in

screening and clinical diagnosis, where the costs of

missing a case — a false negative — are balanced

against the costs of interpreting as present a condition

not there — a false positive. The expression in the

normal form of search for a Bayesian solution, that is,

as a minimization of expected loss, bears strong

resemblance to linear programming, but the evolution

of medical decision theories has yielded a number of

new approaches. Nearly parallel in time to the early

applications of operations research to the logistical

and organizational problems of health services,

examples of the techniques appeared directly in the

procedures of diagnosis and therapy. The availability

of large databases linking patient signs, symptoms, and

other descriptors to disease states has led applications

of statistical analysis and value theory to diagnostic

processes and choice of therapy. A review by Barnoon

and Wolfe (1972) cited early work on the logistical

foundations of diagnosis (Ledley and Lusted 1959) and

on disease screening (Flagle 1967), demonstrating

that the optimal screening level of a test is a specific

function of prevalence of undetected disease and their

relevant costs, or regrets, of false negative and false

positive determinations. The applications of linear

programming, pattern recognition and decision

support systems for breast cancer diagnosis are

described in Mangasarian et al. (1990), Wolberg and

Mangasarian (1993), and Mangasarian et al. (1995).

Improvement in screening through increases in

sensitivity and specificity of test still remains an

objective, and is aided by multivariate analyses

made possible by large databases and clinical trials.

Emergence of the term, “Computer-Aided Diagnosis,”

has accompanied many efforts to sharpen the

statistical relationship between symptoms and disease

(Chan et al. 1999; Nawano et al. 1999; Lowe and

Harrison 1999). Turning attention to treatment,
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knowledge gained from statistical analysis and

systematic compilation of outcomes has led beyond

estimation of diagnostic probabilities to a large

enterprise in expert systems, in which the process of

successful therapy are expressed in algorithmic

form built around a patient database interfaced to

a knowledge base (Wang et al. 1998). Beyond expert

systems to diffuse and implement protocols, efforts

have been made to understand and emulate the

decision process itself — an approach to artificial

intelligence (AI). Early development in AI related to

specific diseases is reviewed by Szolovits and Pauker

(1978). There are also applications of AI processes in

medical care using neural networks and applying them

to computer-aided decision processes (Chaudhry 2008;

Eken et al. 2009).

Concluding Remarks

Two major patterns are discernible in the evolution

of medical practice aided by growing databases,

improving analytic techniques, and new communication

technologies. First is the formalization of decision

processes in the multi-disciplinary protocols or practice

guidelines based on outcomes of research and technology

assessment. The major challenge in developing

guidelines is that of creating flexible guidelines that are

applicable to broad patient populations and practice

settings that differ substantially (Dawson, 1997).

Therefore, development of practice guidelines is an

important area of interest for physicians and operations

researchers.

The format of guidelines, which often contain

a prescriptive algorithm familiar to operations

researchers, also quite frequently contain a version

for patients. This marks the enlightened involvement

of patients in decisions about choice of therapeutic

strategies, such as optimal and personalized treatment

design thanks to new biological findings and imaging

technologies (Lee 2010). Other developments include

the incorporation of medical decision processes in

chronic disease management, as well as optimizing

the capability and efficiency of the delivery systems

through supply–demand alignment while reducing

variability in delivery (Carter 2002; Greenberg et al.

2009; Lee 2010). A collaboration of a physician and

OR analyst has remained, while the concepts have

become internalized in the medical decision process.

See

▶Artificial Intelligence

▶Data Envelopment Analysis

▶Decision Analysis

▶Decision Support Systems (DSS)

▶Emergency Services

▶Expert Systems

▶Health Care Strategic Decision Making

▶Hospitals

▶ Information Systems and Database Design in

OR/MS

▶Linear Programming

▶ Simulation of Stochastic Discrete-Event Systems
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Introduction

The joining of operations research/management

science (OR/MS) and strategy may, at first, seem

a bit incongruous, as they often address issues at very

different levels within organizations. OR/MS typically

deals with the internal workings and performance of

organizations, strategy with external market conduct

and consequent gains (or losses) in competitive

advantage. The presumed bright line dividing

operations from strategic decision making, however,

does not always hold. Indeed, the field of strategy has

long recognized the role internal systems management

can play in driving advantage.

Internal considerations have always been part

of strategy analysis. It is notable that the rather

well-known analytical framework of strengths,

weaknesses, opportunities, and threats (SWOT)

addresses internal organizational strengths and

weaknesses, as well as external opportunities

and threats (Andrews 1971). And, the so-called

resource-based view (Barney and Clark 2007), takes

a decidedly internal perspective in assessing strategy

by suggesting that competitive advantage is dependent

on an organization acquiring (and sustaining the

distinctiveness of) superior resources and capabilities.

The predominant view in the field of strategy, the

market structural perspective, focuses mostly on

external concerns within markets, most particularly on

two sources of advantage: distinctive positioning relative

to consumer preferences and the buildup of market

power as might be accomplished through acquisitions

andmergers and/or integration of existing business units.

But, internal considerations emerge even within this

perspective. For instance, Michael Porter – the primary

proponent of the market structural perspective – has

highlighted the need for organizations to align internal

activities, which collectively comprise their so-called

value chains (Porter 1985).

Thus, while OR/MS tends to focus on the internal

and strategy analysis on the external, these two
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perspectives can be and often are overlapping and

complimentary. It follows that the key distinction is

not internal versus external, but the degree to which

solving an organizational problem is important

strategically, that is, the degree to which it may

contribute to an organization’s market advantage.

For example, a decision about staffing may be

operational or strategic, depending on such factors

as the resource scarcity, impact on the bottom line

(and, on gains/losses in competitive advantage),

disruptiveness of the decision outcome to an

organization, and so on. Hospitals commonly fight

over physicians who specialize in clinical areas that

are of critical importance to them, including, in

particular, physicians in the areas of cardiac surgery,

orthopedics, obstetrics, oncology, and a number of

other areas. Thus, the characterization of those

decisions, as well as the management level at which

they are made, is likely determined by such factors as

complexity, uncertainty, and impact.

This article argues that internal decisions have

recently become much more important strategically

than was the case in the not too distant past. This

is especially true for acute care, a sector to which

OR/MS techniques have been extensively applied in

addressing a great diversity of management problems.

The increased relevance of such applications, however,

is attributable to the significant restructuring that has

occurred over the last several decades, the result of

which was to produce a great many complex, highly

intra-dependent provider clusters that dominate

markets nationally. Within just a few years,

health care delivery systems in the United States

(and in the many other countries around the world)

grew significantly in scale, product scope, and

inter-organizational complexity; and, importantly, this

occurred mostly at local and regional levels (Luke

2010). The growth in common ownership, combined

with high spatial proximities. introduced very

important inter-organizational interdependencies that

have increased exponentially the need for multi-unit

coordination and rationalization and, consequently,

the need for the combined application of system

optimization and OR/MS techniques.

Regionalized health care systems must rationalize

costly resources and capabilities across system

members, a task that heretofore could only be

accomplished by informal coordination or as the

product of government regulatory effort, neither of

which, over the years, did much improve inter-

organizational coordination (Bice 1984). The complex

organizations that have formed, in other words, have

become true laboratories within which OR/MS and

strategy analysis can be joined to transform system

spatial coordination into competitive advantage.

This article shows that the wave of mergers and

acquisitions, especially those that occurred in the

1990s, produced a large number of provider clusters

in this country, which, as a result, has created

important opportunities for OR/MS to address truly

strategic issues affecting health care organizations.

These clusters combine hospitals and other providers

within local markets, which clusters now must make

a large number of cluster-level operational decisions,

many of which could have great impact on competitive

strategy.

What follows is divided into three sections. The first

summarizes why clusters have formed, thereby

providing the basic rationale for why application of

OR/MS tools and techniques to these systems is

needed. The second describes patterns of cluster

formation across the country for the purpose of

identifying the configurational diversity that

complicates the application OR/MS tools to solving

cluster problems. And, the third concludes by

summarizing strategically relevant organizational

issues that arise when one addresses system problems

within local and regional health systems.

Clusters: An Emerging Concept in
Health Care

The idea that geographic clustering could lead to

improved performance is neither new in health care

nor is it limited to the health care industry. Economists

have long argued that geographic proximities and

associated inter-organizational coordination can have

a major impact on organizational and competitive

performance. For example, Marshall (1920), focused

on the economics of geographical proximities that

could lead competitors to locate near one another.

His work on industrial districts in England created

the theoretical foundations upon which a number of

fields, including economic geography, location theory,

and the study of clustering have been built.

In the early 1990s, Michael Porter (1996), the

leading expert in the field of strategy, argued that
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spatial clustering should become a central focus of

scholarly investigation, not only for the study of

individual companies, but also of whole industries

and even nations. All of these, he reasoned, could

experience significant gains in competitive advantage

were they more actively to promote the formation

of local clusters. As he pointed out, geographic

proximities “amplify many of the productivity

and innovation benefits” attributable to multi-

organizational production, largely by reducing

transaction costs, improving communication flows,

and increasing opportunities to share and innovate as

collectives (Porter 1996, p. 222).

Porter identified a number of specific economies

that interdependent organizations derive from shared

geographic proximities. These included: productivity

improvements (e.g., due to shared access to specialized

inputs and employees), sharing in technical and

market information, improved coordination with

complementary businesses and support institutions,

innovations through cross-company and cross-industry

collaboration, new business formation, collaboration in

quality improvement, shared technology. Porter even

suggested that the study of geographic clusters could

produce greater understanding of the dynamics of

production and competition than would be possible

were one to focus exclusively on individual firm or

industry-level behaviors. This is because clusters

often represent natural and relatively complete

production arrangements, within which the full

range of vertical and horizontal interactions among

organizations occur.

Porter also identified two structural dimensions

that could be key to improving cluster performance:

configuration (how and where cluster production

activities are distributed in geographic space) and

coordination (activities that integrate production and

management systems across cluster members). Note

that these two dimensions are equivalent to Lawrence

and Lorsch’s (1967) concepts of differentiation

(equivalent to configuration) and integration

(equivalent to coordination). The difference is that

Porter applied these to organizations located within

the same general geographic space, whereas

Lawrence and Lorsch did not consider geography in

their analyses. Porter’s argument is that geographic

proximities greatly enhance the potential for

exchanging and centralizing functions, facilitating

communications across clustered members, and

resolving inter-organizational conflicts and the

need for compromise. Both Porter (and Lawrence

and Lorsch) recognized that configuration (or

inter-organizational differentiation) comes first, after

which coordination is needed to ensure that the

interdependent, spatially proximate and increasingly

specialized organizational units collectively achieve

a unity of effort.

From the perspective of this article, it should be clear

that OR/MS applications can contribute to both

configuration and coordination, by enabling better

analysis and planning for optimal configurations and

designing systems that help multi-organizational

configurations become integrated/holistic systems.

The health care clusters are described below and some

of the configurational diversity that distinguishes them

are illustrated. Then some specific issues that uniquely

arise whenOR/MS techniques are applied to the clusters

are identified. While coordinative arrangements per se

are not addressed here, it is suggested that these

techniques apply to both the configurational and

coordinative problems health care clusters face.

The idea that clusters might improve performance is

also not new in health care. Fox (1986) argued that the

regional model of delivery organization has been at

the core of public policy in the U.S. and England for

nearly a century. In the early decades of the last

century, the industry focused on fragmentation,

a problem that plagued this industry from the

beginning of modern medicine (Starr 1982; Stevens

1989). In the first third of the last century, the

Committee on the Costs for Medical Care produced

a number of reports recommending major reforms in

health care, many of which focused on ways by which

coordination between physicians and hospitals could

be improved (Falk 1958). In the 1940s and through the

1970s the focus shifted to a concern with costs and

duplicated capacity, especially within the increasingly

complex and costly acute care sector (Stevens 1989).

In this period, a series of federal and state-sponsored

planning efforts – from the Hill Burton Act in 1946 to

the National Health Planning and Resources

Development Act of 1974 – addressed primarily the

rationalization of capacity locally and regionally.

These efforts, however, had little impact on system

structures, let alone on patterns of coordination, for

many reasons, but mostly because the industry

successfully defended historic expectations for

professional and organizational autonomy (Bice 1984).

H 686 Health Care Strategic Decision Making



With passage of Medicare and Medicaid in 1965,

the policy focus began to shift away from system

strategies and coordination toward the use of

regulation and incentives to control rapidly rising

costs. Inter-organizational coordination reemerged in

the Health Maintenance Organization Act of 1973, but

as it turned out, this produced little change at the level

of health services delivery. Twenty years later, in the

context of rising pressures for health care reform, the

failed Clinton Health Security Act of 1993 sparked

enormous system change, especially within the

hospital sector (Sisk and Glied 1994). In those years,

industry advocates promoted their own version of

a system model, which they labeled integrated

delivery networks (IDNs). Thus, in the early 1990s,

almost as if in anticipation of a successful effort

to reform the industry, the hospital sector proposed

that informal local and regional provider collectives

form (the IDNs; AHA, Section for Health Care

Systems 1990). They argued that structures of

inter-organizational coordination would help to

establish the clinical and management systems

needed to ensure that patients and information would

flow smoothly through the complex latticework of

local provider systems. The industry proposals also

acknowledged the need to restructure capacity

(configuration changes), but choose to play these

down, emphasizing patient flows over system

reconfiguration.

As it turned out, the hospital sector gave mostly lip

service to clinical integration while it engaged in one

of the most significant periods system restructuring

ever to have occurred in the industry’s history. As

discussed below, not only did hospitals rush into

multi-hospital systems, but they formed clusters in an

effort to consolidate local markets. And, those

clusters have since discovered the power of

inter-organizational strategies for incorporating

physician practices, creating ambulatory surgery

centers, expanding into other clinical areas (e.g.,

long-term care), restructuring clinical capacities and

functionality across cluster members, and coordinating

infrastructure.

It is notable that even the Veterans Health

Administration (VHA) became involved in the

movement toward regional models. In 1995, the

VHA restructured its network of historically highly

independent hospitals and clinics forming regionally

coordinated Veterans Integrated Service Networks

(VISNs; Perlin 2006). And, the VHA combined this

innovative strategy with an integrated information

system and a shift in emphasis toward ambulatory

care—all of which would be coordinated by the

VISNs. These changes, in combination, appear to

have had a major impact on VHA health system

performance (Ozcan and Luke 2011).

It is also significant that many of the advanced

nations of the world have been adopting the regional

model as an explicit policy strategy (Luke 2010).

Canada, Australia, New Zealand, Scotland, Wales,

most of the Scandinavian nations, a number of central

European nations (e.g., Spain, Italy, and Portugal) are all

heavily invested in regional strategies (Lewis and Kouri

2004; Gauld 2003; Healy et al. 2006). While it has not

organized regional provider systems as such, England

created 10 regional entities, called Strategic Health

Alliances (SHAs), that are responsible regionally for

overseeing and evaluating care, ensuring government

policy is implemented, and recommending changes at

the provider and institutional levels. England also plans

and implements its IT strategies and operates its supply

channel through regionalized configurations.

It is important to point out that the business clusters

examined by Porter represent geographic

combinations of otherwise independent companies,

many of which are even direct competitors. By

contrast, the health care clusters are more formally

structured arrangements that, as a result, should have

the advantage in overcoming the many sources of

resistance that complicate inter-organizational

reconfiguration and coordination among otherwise

independent entities. On the other hand, formal

structures do not guarantee that the clusters will be

able to control their hospitals, let alone the physicians

who join them. All providers groups historically have

resolutely defended their autonomies and many even

today are unwilling to abandon those autonomies

despite having become members of systems. As

a result, the clusters often face significant challenges

in reforming and restructuring. It thus should be no

surprise that the health care literature has thus far

reported only limited performance improvements

attributable to cluster formation (Bazzoli et al. 2004).

Of relevant interest, however, is the use of Data

Envelopment Analysis (DEA) in the study of the

efficiency of hospital-based clusters (Sikka et al. 2009).

Nevertheless, as the systems mature and the

environment changes, the clusters are likely to find
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ways to overcome historic and future constraints to

system rationalization. External pressures will likely

spur changes and refinements within the clusters over

time. Such pressures include growing technological

complexities, the continuing probability of an

extended downturn in the economy, the broad effects

of health care reform, continued restrictions on

payment, continued demographic change, increasing

consolidation in the markets and consequent increases

in competitiveness (non-price competition), continued

substitution of ambulatory for acute care and the

consequent need to integrate acute and other

delivery modalities, and other important system and

environmental changes. Within this powerful mix of

forces and pressures for change, OR/MS analysts are

likely to find many opportunities to apply their tools

and techniques to help systems improve performance

and gain competitive advantage within their markets.

Patterns of System Formation in the US

This section describes the configurational diversity

that exists among the clusters. To illustrate this

diversity, the focus will specifically be on the

configuration of acute facilities, the lead, largest, and

most important entities in most clusters. In so doing, it

is recognized that many of the clusters are heavily

invested in other related businesses, many of which

are highly interdependent with the hospitals in terms of

operations, production, and strategy.

The focus is specifically on three configurational

dimensions: 1) number of hospitals per cluster, 2) the

geographic dispersion of the hospitals, and 3) the

hierarchical diversity among cluster hospital members.

Using a national database on hospital systems, these

three configurational characteristics have been

reported, updated for the year 2009. (The hospital

data are based on 25 years of monitoring system

memberships and markets, the most recent full update

was completed in 2009. This was supplemented by

2007 American Hospital Association Annual Survey

data for individual hospitals).

Before examining the clusters, however, it is

essential that they be distinguished from their parent

organizations, the multi-hospital systems (MHSs).

The MHSs are companies that own, lease or manage

two or more hospitals, whereas the clusters are

subunits of the MHSs; specifically, they are

combinations of two or more same MHS hospitals

that are located in the same geographic areas.

It is noted that some MHSs are themselves clusters

(e.g., the 5 hospital INOVA health system located

within the Northern Virginia part of the Washington

D.C. metropolitan area). Other MHSs are dispersed

much more widely in space, although many (but not

all) of these operate one or more clusters. The Hospital

Corporation of America, for instance, operates

multiple clusters that are located in markets across

the country. Alternatively, the for-profit SunLink

Healthcare Corporation operates seven hospitals and

nursing homes that are located in rural areas in the

Midwest and South, no one of which is close enough

to any of the others to constitute a cluster.

As of 2009, a total of 56 percent or 2,688 of 4,767

acute care hospitals nationally were members of 418

MHSs. The companies that operate these hospitals

differ importantly by ownership. A total of 55 percent

of MHS hospitals are in not-for-profit systems,

23 percent in for profit, and 22 percent Catholic

systems. This compares to the distribution of MHSs

by ownership, which breaks down to 79 percent

not-for-profit, 9 percent for profit, and 11 percent

Catholic. When examined together, these two

distributions show that most for profit and Catholic

MHSs are much larger on average, whereas the more

numerous not-for-profit MHSs are far smaller as

systems.

While the number of hospitals in MHSs grew

significantly over the past 20 years, and especially so

within the mid-1990s when the industry experienced

a spike in mergers and acquisitions, the growth

overwhelmingly favored not-for-profit hospitals and

systems. Virtually all of the net growth in this period

can be attributed to the not-for-profit sector

(Luke 2010). This is very significant, for a number of

reasons. First, andmost importantly, a number of large,

often referral not-for-profit hospitals took the initiative

in this period to form systems and these hospitals

mostly chose as partners other hospitals that were

located within and/or around their same metropolitan

areas. This development, therefore, not only generated

a significant increase in the number of clustered system

hospitals, but also produced a number of large and

powerful hierarchical model types, which join

together referral with community hospitals (as well

as with other provider entities) into highly

interdependent, hub-spoke cluster configurations.
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Second, most of the restructuring affecting for profit

and Catholic systems involved mergers among

systems as opposed to new hospitals joining systems.

But, these mergers also produced a number of

important clusters, as the combined systems often

brought same market hospitals together into clustered

configurations. The key point is that clusters grew

rapidly in this period, which dramatically altered the

landscape of health care. And, this development has

created a large number of very important entities that

now need to be refined, rationalized, and optimized—a

task, if properly performed, could produce very

consequential strategic outcomes for these new and

important organizational entities.

The Clusters

The central problem in defining clusters is specifying

the outer geographic limit within which hospitals

would appropriately be considered members of

clusters. The most common approach is to define

them as combinations of two or more same system

hospitals located within the same CBSAs (core based

statistical areas); METSAs–metropolitan statistical

areas or MICSA–micropolitan statistical areas; e.g.,

see Cuellar and Gertler 2003 and 2005; Luke et al.

2003. While this is a highly reliable approach, it is

also true that many same system hospitals are located

outside the urban boundaries, in nearby rural or other

urban areas. These often interact operationally and

strategically with their urban partners, and thus they

should be joined with their nearby urban partners in

designating cluster memberships. On the other hand,

relaxing the boundaries to include such other hospitals

introduces error at the outer limit – how far out should

one extend the boundaries to find the same cluster

members?

A number of techniques for identifying the regional

clusters were explored, including by setting distance

breaks (e.g., 30 miles, 60 miles, 90 miles, etc.; Wong

et al. 2005). However, such proved highly arbitrary,

given that regionalized configurations vary

dramatically from one to the other. Among the

hospitals operated by the 15-hospital East Texas

Medical Center Regional Healthcare System

(ETMC), which operates out of 200,000 population

Tyler, Texas, are two regional hospitals each of

which is located about 110 miles from the system

center (the location of the major ETMC referral

center) in Tyler. One is north in Clarkesville and the

other is south in Trinity. Both are operated as regional

spokes in the hub-spoke ETMC system. By

comparison, HCA operates two hospitals that are

about the same distance apart – HCA’s 194-bed

St Lucie Medical Center, located in the Port St.

Lucie-Fort Pierce, FL Metro area, and 235-bed

Osceola Regional Medical Center, located in

Kissimmee in south Orlando. HCA incorporates the

former within its Miami cluster (within its East Florida

Division) and the latter within a much smaller Orlando

cluster (and more generally within its West Florida

Division). Clearly, distance is not the only

consideration required for designating cluster

boundaries. Many other factors come into play, such

as market density (both urban and rural), system

ownership type, system organizational strategies,

system size and complexity, and so on.

Fortunately, most clusters are relatively easy to

identify, especially in the many cases in which their

facilities are grouped exclusively within or just

surrounding single metropolitan areas (such as was

the case for the ETMC system). A small number of

the regional clusters, however, were more difficult to

identify, again, mostly those that combine hospitals

run by the more dispersed, multi-hospital systems

(which are mostly for profit and Catholic systems).

Many of the clusters in these MHSs were easily

discerned (e.g., the HCA clusters in Denver, Kansas

City, Richmond, and in most other large metropolitan

areas), but others were not. For the latter, a process

of hospital inclusion, beginning with the largest

markets per MHS, looking for same market and

nearby same state combinations, and then working

through the remaining hospitals to identify additional

spatially-proximate combinations was used. Those few

systems that specialize in small urban and non-urban

markets (e.g., Community Health Systems and

Lifepoint) presented the greatest challenge in

identifying clusters. Accordingly, some judgment

was required for a small number of clusters and

cluster members belonging to systems such as these.

A total of 505 urban clusters and 638 regional

clusters among 418 MHS chains operating in the U.S.

have been identified. These represent 59 and

91 percent, respectively, of all MHS hospitals. Once

the boundaries are relaxed and nearby hospitals

(outside primary urban and/or rural centers) are
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included, the number of hospitals and clusters

obviously rises considerably – by 880 hospitals

(a 56 percent increase) and by 134 clusters (a 26

percent increase). Clearly, a choice to use urban

boundaries only would result in a very significant

underrepresentation of clusters. Such a choice also

would affect the configurational characteristics of the

clusters, such as their relative dispersion and the

combinations of large and small hospitals and other

providers within the clusters. In what follows,

therefore, the emphasis is on the regional (as opposed

to the urban) approach to defining and measuring

clusters.

Cluster Configurations. The important point in

this article is that the clusters come in many different

forms, the characteristics of which should be important

when applying OR/MS techniques to solving system

problems. Three configurational dimensions

were identified earlier in the paper (focusing on the

acute care facilities within the clusters) – cluster

size (numbers of hospitals per cluster), geographic

dispersion, and hierarchical diversity. It is probable

that the size of the cluster itself will affect the other

configurational dimensions. Larger clusters will likely

have larger central hospitals, more dispersion, and

more diversity in business units. It is also likely that

the size of the market will affect the patterns as well.

For instance, the dispersion of facilities beyond the

urban boundaries is very much greater in smaller than

in larger markets. Also, the size of the central or lead

hospital facility per cluster tends to be much larger in

the larger markets. Further, the size of the smaller

hospitals in each cluster are likely to be much smaller

in the clusters that emanate out of smaller urban areas.

Thus, given the likely importance of both cluster and

market size, control for these two dimensions is

emphasized in the analyses below.

Cluster size. The average number of hospitals per

cluster is just under four hospitals per cluster.

Two-hospital clusters represent 39 percent of the

total, which means that just over 60 percent

of clusters have three or more hospitals in them

(25 percent are five or more). This suggests that

many of the clusters represent much more than mere

hospital/hospital mergers, but rather mature (in terms

of size and scope) multi-organizational groupings.

As might be expected, the larger clusters tend to be

found in the larger markets of one million population

and over – 4.4 hospitals per cluster – compared to those

in the smaller markets – 3.4 hospitals per cluster.

While this relationship is statistically significant,

there is much variation across market size categories

(as reflected in the very large ETMC system described

above).

Hospital dispersion. Within clusters, the average

miles per cluster from the urban center (defined by the

location of the largest hospital in the cluster) to each

cluster member is about 21 miles. As would be

expected, the averages increase by cluster size and

decline with market size. The relationship with

market size reflects a common pattern in which

clusters located in larger markets tend to combine

urban members, whereas those located in smaller

markets often spill over to nearby rural and other

urban areas. The average distances are 16 miles for

clusters centered in markets of one million and over

and 24 miles for those centered in markets fewer than

one million. Clusters centered in the smaller markets,

in other words, are very much more likely to

incorporate within them more distant hospitals

located outside their urban boundaries. The distances

rise with cluster size, as follows: 2 hospitals – 14 miles,

3 to 4 hospitals – 22 miles, 5 to 6 hospitals – 28 miles,

and 7 & over hospitals – 33 miles. (Means in the

market and cluster size comparisons are significantly

different). This reflects the need for clusters, as they

grow, to reach further out in distance to find additional

cluster partners.

Hierarchical configuration. This reflects the

degree to which clusters combine large and small

hospitals (the hub-spoke model). The range in bed

size averages 278 beds, which suggests considerable

variation across individual cluster members in the size

of their hospitals. The significance of this is that

differentiation among the cluster members indicates

possibilities for within cluster rationalization of

function and service capacity. And, the range is

positively associated with cluster and market size.

The ranges by cluster size are: 170, 288, 383, and 481

beds for clusters with 2, 3–4, 5–6 and seven and over

hospitals per cluster. For 1 million and over markets,

the average range in beds is 326 beds and for those

centered in markets under one million, it is 240 beds.

(All of these means are statistically significantly

different from one another.) This suggests that the

larger clusters located in the larger markets represent
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those clusters that are most likely to exhibit significant

functional differentiation among cluster members.

Considering the three dimensions together (size,

dispersion, and hierarchy), it is clear that the clusters

come in very different configurational combinations.

And, these also vary directly with market size. The

larger market clusters tend to be larger, less widely

dispersed, more contained within the urban

boundaries, and more hierarchical, by comparison to

those in smaller markets.

Analytical Challenges in Studying Clusters

The most important challenge that arises when

studying multi-unit business organizations (as

opposed to studying free-standing facilities) is the

analytical problems become exponentially more

complicated. This is all the more true for spatially

interdependent entities, such as the health care

clusters. To help make this point clear, four issues are

discussed that highlight some of the analytical

challenges inherent in the study of geographically

configured, multi-organizational forms: boundary

specification, intensity of interdependencies, business

unit diversity, and aggregation.

Boundary specification. This issue was raised

above when the specification of the spatial

boundaries of clusters were discussed. But, this is

important for the OR/MS analyst as much as it is for

the health services researcher. A too narrow definition

of cluster boundaries risks under representing the total

resources involved in the delivery of services, which

could significantly affect optimization solutions

involving multi-organizational systems. The reverse

would be true for a too broad definition of cluster

boundaries. Obviously, the boundary specification

problem is less of a concern for clusters that are

limited to urban areas or even are located within

single counties. However, as discussed, many clusters

spread well outside such boundaries, including, in

particular, clusters that are centered within smaller

urban markets. The boundary specification problem

makes it necessary for the OR/MS researcher to

grapple with the distinctive geographies, the logic of

individual system design, and, importantly, the

diversity and complexity of the management

problems being addressed.

Intensity of interdependencies. Differences in the

intensity of interdependencies can greatly compound

the organizational boundary issue. Interdependencies

will vary by location, functional capabilities, facility

size and power, tightness of legal ownership

arrangements, distinctive characteristics of parent

organizations, and many other organizational

characteristics. For example, a small, relatively distant

hospital might have a tight and intense relationship with

an urban centered, same system, referral hospital

member, whereas a large, suburb-based (and much

more geographically proximate) hospital might be

very much more self sufficient with regard to its

nearby referral partner. Given its self sufficiency, the

suburb member might even be a fierce competitor with

its same system partner. On the other hand, the more

geographically proximate same system facilities

might have more opportunities to engage in other

coordinative activities, such as integrating purchasing

and supply distribution, physician recruitment, IT

strategies, the establishment of other related

businesses within their metropolitan areas (e.g.,

ambulatory surgery centers), marketing activities,

laboratory and other clinical and technological

support activities, and so on. Each cluster, in other

words is likely to be somewhat unique in how it

captures the synergies of same system membership

and geographic proximities.

Facility interdependencies will vary not only across

clusters, but also across markets. The Wellstar health

system, for instance, that operates five hospitals in the

northwest quadrant of Atlanta, is likely to view system

interrelationships among its hospitals far differently

than will the New York Presbyterian Health System

that geographically concentrated throughout the

densely populated New York metropolitan area.

Facilities in the latter tend to be larger and much

more independent, given history and other factors.

It should be clear that OR/MS analysts must take

particular care to ensure that they understand the

particular configurational, structural, integrative and

competitive features of the clusters they study.

Business unit diversity. The clusters also vary

greatly in their diversity of business units. Indeed, the

U.S. health care clusters are becoming far more than

acute care agglomerations; many are expanding more

rapidly into clinical areas well beyond acute care. This

has important implications for how one conceptualizes
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the clusters as production systems. Some of these other

businesses are highly interdependent with cluster acute

care activities, others are only tangentially related.

Ambulatory care surgery is perhaps the most

interconnected, because every case that is performed

in the ambulatory setting represents a lost admission

(and, lost revenues) to a hospital. However, this is not

just a relationship of financial substitution. Hospitals

provide much needed back up to their free-standing

ambulatory surgery centers, by covering them in the

event complications arise, providing ancillary

services, coordinating site of surgery, recruiting

physicians and staff, offering supply channel and

other management support, and so on.

The largest private hospital chain in the country,

HCA, has invested heavily in ambulatory surgery

centers. HCA owns and operates 105 freestanding

surgery centers and about 165 hospitals nationally, as

well as in London. Significantly, all of HCA’s surgery

centers are located in markets in which HCA already

has at least one hospital. This suggests that HCA is not

investing in ambulatory businesses per se, but rather is

investing in this rapidly growing business as an

extension of the acute care business and to strengthen

market positions within the markets in which the

company already has facilities. Ambulatory surgery

centers thus have become major components of the

clusters’ overall production and market strategies

and, therefore, should be incorporated into the overall

analyses of cluster operations and performance.

Many other system and production

interrelationships also need to be understood when

assessing cluster performance. The urban/rural

clusters offer a particularly interesting example of

high interdependencies among spatially distant

cluster members. The Tyler, Texas-based ETMC

health system, is actively engaged in integrative and

support activities between its hub facility and the

smaller, highly dependent rural facilities. ETMC, for

example, operates emergency transport systems (both

helicopter and ground systems), mobile imaging and

other clinical services vehicles, and a network of

clinics and specialty service centers that support

their geographically sprawling system. Notably, there

is no single template for how the clusters are

configured or what particular services and business

units they offer. There are general patterns, but every

cluster is comprised of a unique mix of resources,

capabilities, competitors, geographic constraints, and

environmental conditions that determine their mix of

providers and patterns of interrelationships. The key

point is that distinctive combinations of facilities and

businesses in geographic space greatly increases

analytical complexity, making it essential that the

systems are analyzed as integrated production

systems (Ozcan 2009).

The foregoing is further complicated by the regulatory

and legal contexts within which multi-organizational

coordination takes place, especially within shared

geographies. For instance, health systems are subject to

Federal policies promulgated by CMS (Federal Centers

for Medicare and Medicaid Services) that greatly

increase the strategic importance and the urgency with

which systems engage in coordination to achieve system

improvements. As an example, the government’s use of

“meaningful use” criteria (require providers to meet

minimum standards in the use of certified electronic

health record technologies) to support bonus payments

to health care providers makes it all the more important

that their investments in costly and strategically

significant health information technologies be examined

at the cluster level (Blumenthal and Tavenner 2010; Ford

et al. 2010; and Hikmet et al. 2007).

Aggregation. Related to the above is the problem of

aggregation. This issue may not be as important when

examining single-facility organizations. But, when

multiple, geographically configured units are studied

as if they were single production systems, it becomes

necessary to address issues of standardization and

weighting. Often this is a simple matter of summing

across the units as if they were mere extensions of

a production system. But, the diversity that exists

across hospitals, let alone, between hospitals and

other provider units, makes it necessary to consider

how to count inputs and outputs. How, for instance,

does one weight hospital-based surgeries versus

ambulatory care surgeries? How does one weight

outpatient visits versus emergency department visits.

These problems exist even when examining single

organizations, but they are magnified when

evaluating multi-organizational systems that are as

large and complex as are the clusters.

See

▶Decision Analysis

▶Health Care Management

▶Hospitals
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Heavy-Tailed Distribution

A probability distribution that has more probability in

its tail than exponentially decaying densities such as

the normal (Gaussian) and exponential distributions.

Sometimes also called fat-tailed distribution,

particularly in the finance community. The precise

technical definition may differ in the literature, but

a commonly used one is the following: The

cumulative distribution function F is heavy-tailed if

there exists a g > 0 such that

lim
x!1

egxFcðxÞ ¼ 1;

where the superscript c denotes the complement.

Special cases include long-tailed distributions and

subexponential distributions. The most commonly

known heavy-tailed distributions are also long-tailed

and subexponential, including the lognormal, Pareto,

Heavy-Tailed Distribution 693 H

H



and Weibull with certain shape parameter values

(one-tailed), and the student-t, Caucy, and family of

stable distributions (two-tailed).

See

▶Light-Tailed Distribution

▶Rare Event Simulation

Heavy-Traffic Approximation

As the traffic intensity of a queueing problem

approaches 1 (from below), the measures of

effectiveness for the system often take on patterns

which become essentially insensitive to the exact

form of the input and service processes defining the

system and, for example, may depend only on

expectations and variances. As an illustration, the

distribution for line delay of the general G/G/1 queue

with utilization rate r¼ 1� e can bewell approximated

byWq (t) ¼ 1 � exp(�at), where a ¼ (1/2)(interarrival

time variance + service-time variance)/(mean

interarrival time � mean service time).

See

▶Queueing Theory

Hedging

In finance, a trading strategy that leaves one indifferent

to market outcomes. For example, a delta hedge of

a stock option is intended to make the portfolio

indifferent to whether the underlying stock price

increases or decreases.

See

▶ Financial Engineering

▶ Financial Markets

▶Risk Management for Software Engineering

Hessenberg Matrix

A matrix that would be upper triangular except for

having nonzero elements immediately below the

main diagonal. Such matrices arise when trying to

preserve sparsity in computing a matrix inverse.

See

▶Matrices and Matrix Algebra

Hessian Matrix

For a function f(x) of the n-dimensional vector variable

x, the Hessian, denoted by H2 f(x), is an n � n square

matrix of second-order partial derivatives (assuming they

exist) evaluated at a specific point x, with the (i, j)th

element given by

H2f ðxÞij ¼
@2f ðxÞ
@xi@xj

:

If the second partial derivatives are continuous at x,

then the Hessian is a symmetric matrix.

See

▶Nonlinear Programming

▶Quadratic Programming

Heterogeneous Lanchester Equations

Differential (of difference) equations equating force

size changes for each of several weapons systems

(components) on each side to sums of the products of

coefficients and component force sizes. The concept is

that each component is attrited to some degree by each

component of the opposing side; however, the killing

mechanism and rate depend on the pairing. Hence,

each term defines the mechanism (such as square law

or linear law) and rate (the coefficient) and the sum of
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the terms defines the total attrition for the system.

Therefore, rather than the two equations of

a homogeneous Lanchester law, there is one equation

for each component of each side.

See

▶Battle Modeling

▶Lanchester’s Equations

Heuristic Procedure

For a given problem, a collection of rules or steps

that guide one to a solution that may or may not be

optimal. The rules are usually based on the problem’s

characteristics, intuition, hunches, good ideas, or

reasonable processes for searching.

See

▶Greedy Algorithm

▶Heuristics

▶Metaheuristics

▶ Simulated Annealing

▶Tabu Search

Heuristics
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Introduction

The word heuristics derives from the Greek heurisken,

which means to find or to discover. In general, for

a given problem, a heuristic procedure is a collection

of rules or steps that guide one to a solution that may

or may not be the best (optimal) solution. The rules

are usually based on the problem’s characteristics,

reasonable processes for searching, plus one’s

intuition, hunches, or good ideas.

In general, heuristics describes a class of procedures

for finding acceptable solutions to a variety of difficult

decision problems, that is, procedures for searching for

the best solutions to optimization problems. The

solution set of most real world optimization problems

often include a large or even an infinite number of

possible solutions, as well as a criterion or a set of

criteria to evaluate the merit of a solution. These

problems may be stated as finding the values for a set

of decision variables for which one or more objective

functions reach a minimum or a maximum value.

Restrictions may be placed on the values of

individual variables or combination of variables. In

what follows, important operations research models

are discussed first to help illuminate the main theme

of heuristics.

Illustrative Examples

Optimization problems are found in many areas of

business, engineering, and science. Some problem

classes are relatively easy to solve. For instance,

consider a simplified version of a problem that arises

in telecommunications in which it is desired to connect

a number of customers in a network using the least

amount of cable. Figure 1 shows a network of 22

possible cable links joining 12 customers (labeled

A to L) and the costs of the potential links. Note, that

with 22 links, there are many ways a subset can be

selected that would connect all customers. The

problem is to find the subset with the least amount of

total cable. That is, for each customer, one of the

possible links that connects the customer has to be

chosen. For the network in Fig. 1, can 11 such links

(decision variables) be found?

It is well know that the optimal solution (i.e., the

connection that guarantees the minimum cable cost)

can be found by a simple procedure that starts with

choosing the link with the smallest cost in the network.

Similarly, the remaining links are chosen successively

to minimize the increase in total cost at each step,

where the links considered meet exactly one

customer from those that are endpoints of links

previously chosen. The resulting solution is called

a tree, which is defined as a set of links that contains

no cycles, i.e., the tree contains no paths that start and

end at the same customer (without retracing any links).

In Fig. 1, the first link to be added to the solution is

A-B, with a cost of 1. To minimize the additional cost

of connecting a new customer, the A-D link must be
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chosen. That link has a cost of 25, resulting in a total

cost of 26 to connect A, B, and D. Now, it is possible to

connect either customer C, F or G. Cost minimization

dictates that link D-G should be added, resulting in

customer G to be connected to the partial solution

with a total cost of 1 + 25 + 8 ¼ 34. The next

candidates to be connected to the current tree are

customers C, F, and H. The link with the minimum

cost between the end points of the current tree and

the candidate customers is G-F with a cost of 6.

After adding this link, the total cost is 40. Subsequent

links are added in a similar fashion, resulting in the tree

shown in Fig. 2 that has a total connection cost of 112.

The above process can be interpreted as a heuristic

approach to solving the connection problem by

someone uninitiated in any formal knowledge of trees

or related matters.

The tree shown in Fig. 2 is called a minimum

spanning tree. It can be shown to be a least cost

optimal tree for the problem. The procedure avoids

cycles because it is easy to verify that no optimal

solution of the problem includes a cycle, since

a cycle adds an unnecessary link and therefore

additional cost (assuming that all costs are strictly

positive). Note that an alternative optimal solution is

available in which the F-H link is replaced with the F-I

link. Since ties are arbitrarily broken, either solution is

acceptable and optimal. The procedure is exact, that is,

it guarantees an optimal solution; it is simple and can

be applied to very large networks. Unfortunately, the

great majority of optimization problems are not as easy

to solve. In fact, sometimes what seems to be a simple

change to a problem definition may turn the problem

from easy to hard. For example, if the problem of

Heuristics, Fig. 2 Minimum
spanning tree

Heuristics,

Fig. 1 Illustrative network
with 12 customers
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finding the minimum-cost connection of all

customers is changed to finding the minimum-cost

connection of a subset of customers, the problem

becomes extremely difficult. This is known as the

minimum k-tree problem and consists of finding

a tree with k links so that the sum of the costs is

minimized. Figure 3a shows the solution that

is obtained from the application of the procedure

described above for the case of k ¼ 4. However, this

solution (with a cost of 40) is not optimal for the

minimum k-tree problem. The optimal solution is

shown in Fig. 3b and has a total cost of 34.

A solution procedure that is exact (i.e., optimal) for

the minimum spanning tree problem becomes

a heuristic for the minimum k-tree problem.

Linear programming is one of the most valuable

mathematical modeling techniques in operations

research. As an example that reflects the main

heuristics theme of this article, consider a relatively

simple linear-programming model known as the

continuous knapsack problem. Here, there are 10

items available to be placed in a knapsack whose

associated weights are given in the subject to

inequality; the utility or value of each item to the

person with the knapsack is given in the maximize

objective function, e.g., item 1 has a weight of 5 and

a utility of 67. Note that this example allows a fraction

of an item to be placed in the knapsack.

Maximize 67x1 þ 500x2 þ 98x3 þ 200x4 þ 120x5

þ 312x6 þ 100x7 þ 200x8 þ 180x9 þ 100x10

Subject to 5x1 þ 45x2 þ 9x3 þ 19x4 þ 12x5 þ 32x6

þ 11x7 þ 23x8 þ 21x9 þ 14x10 � 100

0 � xj � 1 for j ¼ 1, . . . ; 10

Linear-programming problems are typically solved

using standard techniques such as the simplex

algorithm. The problem above, however, has

a special structure that makes it easy to find the

optimal solution by applying what can be considered

to be an obvious heuristic approach. Specifically, an

optimal solution procedure to this problem can be

found by performing three simple steps:

1. Order the variables by their decreasing “bang for

the buck” ratio. The ratio is calculated by dividing

the objective function coefficient (utility) by the

corresponding constraint coefficient (weight).

2. Consider each variable in order, one at a time, and

set its value as large as possible without violating its

upper bound of 1 or the 100 capacity restriction.

3. When capacity is reached, set the remaining

variables to zero.

For convenience, the variables in this example have

been ordered by their bang for the buck ratio. The

procedure may then be applied by simply considering

the variables in the order as specified by their index

value. The application of the three steps requires

setting the first 5 variables to their maximum possible

value of 1 with an associated total utility of 67 + 500 +

98 + 200 + 120 ¼ 985; the total weight is 5 + 45 + 9 +

19 + 12 ¼ 90. Since variable 6 has a weight of 32 and

the remaining capacity is 10, then this variable cannot

take on its maximum value of 1. Thus, variable 6 is set

to a value of 10/32 ¼ 0.3125. The additional utility is

(0.3125 � 312) ¼ 97.5 for a total objective function

value of 985 + 97.5¼ 1,082.5, the optimal value to the

example. The three-step procedure is an exact method

for this problem because it guarantees to find an

optimal solution.

Heuristics, Fig. 3 (a)
Heuristic solution versus (b)
optimal solution
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The problem may be transformed into an

integer-programming model, by requiring the variables

take on integer values, in this case 0 or 1. This

interpretation requires each variable to be either

wholly selected for inclusion in the knapsack, or not

selected at all, until the knapsack reaches its limited

capacity or falls below it as the selection of any other

item will exceed the capacity. Again, the objective

function coefficients represent the utility of the item,

the constraint coefficients represent the weight of the

items, and the right-hand-side of the equation indicates

the total weight limit (or capacity of the knapsack). One

logical solution approach to finding a solution is to

apply the bang for buck method and then stop when it

is not possible to select another item without violating

the capacity limit. This may be achieved by simply

assigning a value of zero to the variable that has

a fractional value in the solution to the continuous

problem (i.e., the one that does not force the variables

to take on integer values). In particular, the rounded

solution to the example above is such that the first five

variables (x1 to x5) take on values of 1 and the last

5 variables (x6 to x10) take on values of zero. The total

utility of this solution is 985 with a total weight of 90. It

turns out, however, that this solution is not optimal. The

method that is exact for the continuous case becomes

a heuristic for the integer case. Finding the optimal

solution would require an additional search that would

replace item 5 with item 9. That is, variable x5 should

be set to 0 and x9 to 1. The net gain in utility is 60 for

a total utility of 1,045 and the total weight becomes 99.

The Role of Heuristics

The preceding examples illustrate the notion of

problem difficulty. It is often possible to readily find

optimal solution to some problems, while what may be

perceived as a simple change to the problem may

increase considerably the difficulty of finding an

optimal solution. The meaning of a difficult problem is

captured by the computer-science term NP-hard, which

is commonly applied in the context of algorithmic

complexity. A difficult optimization problem is one

for which it is not possible to guarantee that the

optimal solution will be found within a reasonable

computational time. The existence of a great variety of

difficult problems that arise in practice motivated the

development of efficient procedures capable of finding

good (or acceptable) solutions even when these

solutions could not be proven optimal, that is heuristic

methods. The development of a heuristic method is

usually concerned with both solution speed and

solution quality. A definition of heuristics in the

context of optimization is the following:

A heuristic is a well-defined intelligent

procedure — based on intuition, problem context and

structure — designed to find an approximate solution

to an optimization problem.

In contrast with exact methods that are designed to

find optimal solutions, heuristic methods find solutions

that are not necessarily optimal. The time that exact

methods require for finding and proving the optimality

of a solution is typically orders of magnitude larger

than the time required by a heuristic. The effectiveness

of a heuristics depends on the quality of the

approximations that it produces. Heuristics have not

always been accepted as an elegant and perhaps even

valid form of optimization, as noted by Fred Glover

(1977, p. 156):

Algorithms are conceived in analytic purity in the high
citadels of academic research, heuristics are midwifed by
expediency in the dark corners of the practitioner’s lair
. . . and are accorded lower status.

The effectiveness of heuristics, particularly when

applied to difficult practical problems (such as those in

the area of combinatorial optimization), has made them

popular among practitioners and academics, as reflected

by the increased number of articles and publications

devoted to them. Combinatorial optimization is

a fertile area of application for heuristics because it

includes a large number of practical problems that are

difficult to solve (within reasonable computer time) by

means of exact procedures. The objective of these

problems is to maximize or minimize a function over

a finite set of solutions. No conditions or properties are

placed on the form of the objective function and the set

of feasible solutions tends to be so large that evaluating

them all to search for the best is impractical. The

minimum k-tree and the knapsack problems fall within

the area of combinatorial optimization. There are

several reasons for employing heuristics when facing

an optimization problem:

• The problem is such that no exact solution method

is known for it.

• Known exact solution methods are computationally

expensive and, therefore, they are able to solve only

small instances of the problem.
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• The flexibility of the heuristic approach enables the

incorporation of realistic problem features that

otherwise would be difficult to model.

• A heuristic method is used within an exact

procedure to generate an initial solution or to

guide the search.

Typically, heuristic methods are developed for

a particular class of problems. That is, most heuristics

are context dependent. For example, there are many

heuristics for scheduling jobs in production settings

that take the form of dispatching rules: FIFO (first in

first out) specifies that jobs should be processed in the

order in which they arrived, SPT (shortest processing

time) suggests to process the smallest (in terms of

estimated duration) jobs first, and EDD (earliest due

date) gives preference to those jobs that are more

immediately due. Some of these dispatching rules

are indeed optimal under certain limited circumstances,

but for the most part they are applied as heuristic

procedures.

Heuristics are also found in more general settings

for which the context is provided by the modeling

framework, e.g., the class of problems that may be

modeled as integer programs that are solved with

exact methods based on branch and bound. These

methods are such that the search for the optimal

solution results in the examination of many partial

solutions. Within this structure, it is desirable to

eliminate search directions that can be ruled out

because it is possible to determine that they lead to

suboptimal solutions. This can be accomplished by

improving the quality of the best-known solution,

also referred to as the incumbent solution. If a partial

solution consists of a subset of variables for which their

integer values have been fixed by a sequence of

systematic decisions, with the remaining variables

holding fractional values, a rounding heuristic may

be applied to convert the fractional values into

integers to obtain a complete solution to the problem.

If the rounded heuristic solution becomes the

incumbent solution, some branches of the search

tree may be eliminated. The optimization software

Cplex allows the use of heuristics during the

branch and bound process. These heuristics may be

used to find feasible solutions quickly, avoid

exploring unproductive subtrees, and diversify the

search. Within this framework, the combination of

branch and bound and local search heuristics

has been suggested and applied to tackle difficult

integer-programming problems. Furthermore,

a branch-and-bound process that is terminated

prematurely and hence not allowed to confirm the

optimality of an incumbent solution is considered

a heuristic method.

Classification of Heuristics

Although most heuristics are designed for specific

problems, it is possible to classify them into five

general categories:

• Decomposition: These procedures decompose the

original problem into subproblems that are simpler

to solve. The solutions to the subproblems are

merged to provide a solution to the original

problem.

• Induction: These procedures are based on the

notion that solution strategies learned from small

or simplified instances of the original problem may

be applied to the original problem.

• Reduction: This technique consists of identifying

properties that are common to good or optimal

solutions and introducing them as problem

constraints. The goal is to reduce the solution

space and hence simplifying the original problem.

The risk in doing so is that the optimal solution may

be unintentionally left out.

• Construction: Many heuristics fall into this

category, which includes all those procedures

designed to build solutions by applying a sequence

of selection steps. The selections are typically

deterministic and are based on a measure of merit

for choosing elements that are not yet in the solution.

• Local Search: These procedures operate on an

existing solution to the problem with the goal of

improving it. The neighborhood (as defined by

a move mechanism) is explored at each step and

the process continues as long as it is possible to

move to a neighbor with a better objective

function value.

The merit of heuristic procedures is judged by their

efficiency (i.e., computational effort), the average

quality of the solutions that they produce, and their

robustness (i.e., their ability to avoid extremely

inferior solutions). To assess the performance of

a heuristic procedure, researchers and practitioners

usually rely on the following five methods:

• Comparison against optimal solutions:
Occasionally, it is possible to find optimal
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solutions to a limited number of instances of the

problem of interest. The solutions obtained by the

heuristic may be compared to the optimal solutions

to measure, for example, the percent deviation from

optimality.

• Comparison against bounds: When optimal

solutions are not available, it is possible, in some

situations, to calculate bounds that can be used to

assess solution quality. Of course, the quality of the

assessment depends on the quality of the bound, as

measured by its proximity to the optimal solution.

• Comparison with an incumbent solution from
a truncated search of an exact method:
A common practice when attempting to solve

difficult problems (e.g., those formulated as

integer programs) consists of applying an exact

procedure, such as branch and bound, for a limited

computational time. If successful, the search yields

a feasible incumbent solution and an optimality

gap. These values may be used to assess the

quality of a heuristic solution.

• Comparison against other heuristics:
If alternative heuristics for the problem of interest

are available, their solutions can be used as

benchmarks for comparison purposes.

• Worst case analysis: This assessment method is

quite popular and consists of identifying a bound

for the worst possible performance of the heuristic

procedure. The advantage of this analysis is that it

provides a guarantee that the performance of

a procedure (typically measured as a deviation

from the optimal solution) will never fall below

a certain value. The disadvantage, however, is that

knowledge of this worst case does not give

information on average or best performance. Also,

the worst-case analysis is not trivial for most

heuristics.

Construction Search Heuristics

Construction and local search heuristics have become

the cornerstones of the development of many

metaheuristics that include strategies to search the

solution space beyond local optimality (Glover 1986;

Glover and Kochenberger 2003). The attitude towards

the development and application of heuristics and

metaheuristics as tools for optimization has changed

over the years, gaining their recognition as valuable

methods of analysis. In some application areas, such as

scheduling, heuristics and metaheuristics are indeed

the main solution approaches. Morton and Pentico

(1993) make an excellent case for heuristics in

scheduling production systems and project

management. Related to scheduling and sequencing

is the traveling salesman problem (TSP). Its objective

is to find a tour (cyclic permutation) that visits a set of

cities such that the total distance traveled is minimized.

The TSP represents an appropriate context to illustrate

the principles associated with construction and local

search heuristics.

The TSP is typically stated in terms of a problem

on graphs. Given a complete graph (i.e., a set of nodes

and edges that connect each node to all others) and

a distance matrix, the TSP consists of finding the

shortest Hamiltonian cycle (tour) in the graph.

The symmetric variant of the TSP, used for illustrative

purposes below, assumes that the distance from one

node to any other is the same in both directions.

Figure 4 shows a partial representation of a graph with

8 vertices, in which, for the sake of clarity, not all

possible edges (dotted lines) are included and a tour is

shown by solid lines.

The nearest neighbor procedure is probably the

most intuitive heuristic for obtaining a tour. It starts

by randomly selecting a node in the graph. Then, it

adds the edge that connects the node that is closets to

the last node added to the partial tour. The procedure

terminates after all nodes have been included and the

edge that connects the last node to the first one is added

to the tour. This procedure is an example of a so-called

greedy heuristic because at each step it selects the most

attractive option without considering that this can lead

to inferior choices in future steps. That is, the selection

of the next element to be added to the solution

is myopic.

An alternative approach to obtaining a relatively

good tour is the insertion procedure. In this heuristic,

nodes are inserted in the best position of the current

partial tour. That is, the node is inserted in the position

that results in a new subtour of minimum length.

As shown in Fig. 5, four different criteria are

typically considered for the selection of the node to

be inserted: the nearest (closest to the nodes in the

subtour), the cheapest (closest to the edges in

the subtour) the farthest and one at random. The

selection of the farthest may seem counterintuitive,

but since this node will become part of the tour at
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some point, selecting it earlier in the construction may

in fact be beneficial.

The savings heuristic is a specialization of a more

general heuristic proposed by Clarke and Wright

(1964). An arbitrary node is selected to play the role

of the central node or depot. The method starts by

creating subtours from the depot to each other node.

One edge is added to go from the depot to a node and

one to come back from the node to the depot.

This initially creates a number of subtours that is

Heuristics, Fig. 4 Graph
with 8 nodes and TSP tour

Heuristics, Fig. 5 Subtour
and insertion candidates
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equal to the number of nodes in the graph minus one

(the depot). Then, at each step, two subtours are

merged as shown in Fig. 6 (by replacing a length-2

path from one non-central node to another by a direct

link), thus reducing the number of subtours by one unit.

The method finishes when all the sub-tours have been

successively merged into a single tour.

The Christofides (1976) procedure is another

heuristic for constructing TSP tours. It is based on

graph theory. It starts with a minimum spanning tree

to which the number of edges is doubled to obtain

an Eulerian graph (where every node has even

degree). Then an Eulerian tour is found that is turn

converted into a traveling salesman tour by using

shortcuts. The graphical representation of this

procedure is more complex than the previous ones

discussed.

The above TSP heuristics have been applied to

a set of TSPs for which the optimal answers are

known. The results show that the savings and the

insertion heuristics obtain the best results, with

an average deviation from optimality of 9.6% and

9.9%, respectively. The nearest neighbor and

Christofides heuristics have similar performance

with deviations of 18.6% and 19.5%, respectively.

The computational effort is similarly small for all

four heuristics, making them attractive as the basis

for developing more complex search procedures.

While in some settings, deviations of almost 10%

from optimality may be acceptable, a more precise

solution may be required in others. One way of

discovering solutions of higher quality is through

the combination of construction and local search

heuritics.

Local Search Heuristics

Local search methods are based on the notion of

neighbor structures that generate changes to move

from one solution to another in the solution space.

Local searches perform moves as long as the current

solution improves and terminate when no further

improvement is possible. The resulting solution is

said to be locally optimal (i.e., the solution cannot be

improved within the neighbor structure under

consideration). In the context of the TSP, the most

popular moves are the so-called k-opt.

The 2-opt procedure consists of replacing two

non-adjacent edges by two others that create a tour

after the first two are removed. Figure 7 illustrates

this move and shows that once the two edges are

removed there is only one way to reconnect the two

sub-paths in order to create a tour. The move value is

the change in the objective function produced by the

move. In the case of the TSP, it is the difference

between the distances of the added edges minus the

distance of the dropped ones.

A natural extension of the 2-opt heuristic is to

consider three edges to drop and then relink the

resulting sub-paths in the best possible way. The 3-opt

heuristic results in seven possibilities for reconnecting

the sub-paths, which makes it computationally more

expensive than the 2-opt procedure. Several strategies

have been proposed to reduce this computational effort.

The most successful one consists of building, offline,

a candidate subgraph that contains a reduced set of

promising edges that will be considered for exchange.

There are
n

k

 !

possible ways to remove k edges in

Heuristics, Fig. 6 Step of
Clarke and Wright savings
heuristic
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a tour and ðk � 1Þ!2k�1 ways to reconnect the tour.

This is why only small values of k are usually

considered in k-opt heuristics with k ¼ 2 and k ¼ 3

the ones most commonly used. However, in special

situations of large scale TSP instances, k ¼ 4 and

k ¼ 5 have been employed.

The TSP examples illustrate the creativity involved

in the development of heuristic procedures that are

designed to tackle a specific class of problems. They

also show the effectiveness of combining heuristics

(e.g., construction and local search), even without the

addition of search strategies (e.g., memory or

mechanisms to combine solutions) that are typical

to metaheuristic methodologies. The combination

of heuristics is the notion behind the framework

known as hyperheuristics (Burke et al. 2003). While

a metaheuristic searches in the solution space,

a hyperheuristic is designed to search in the

heuristics space. Acknowledging that all heuristics

have strengths and weaknesses, the goal of

a hyperheuristic is to select the right heuristic in any

given situation. Hyperheuristics attempt to automate

(through machine learning techniques) what a human

would do when faced with a challenging problem and

with the knowledge of several applicable heuristics.

Additional details on heuristics and their role in

solving operational research problems are found

in (Silver, et al. 1980) and Silver (2004).

See

▶Algorithm

▶Branch and Bound

▶Greedy Algorithm

▶Hamiltonian Tour

▶ Integer and Combinatorial Optimization

▶Knapsack Problem

▶Kruskal’s Algorithm

▶Metaheuristics

▶Minimum Spanning Tree Problem

▶NP, NP-Complete, NP-Hard

▶ Prim’s Algorithm

▶Traveling Salesman Problem
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Hidden Markov Models

Yariv Ephraim

George Mason University, Fairfax, VA, USA

Introduction

HiddenMarkov models (HMMs) constitute a family of

versatile statistical models that have proven useful in

many applications. HMMs were introduced in their

full generality in 1966 by Baum and Petrie (1966).

Baum, Petrie and other colleagues (Baum et al. 1970)

at the Institute for Defense Analysis also developed

and analyzed a maximum likelihood (ML) procedure

for efficient estimation of the HMM parameters

from a training sequence. This procedure turned out

to be an instance of the now well-known EM

(Expectation-Maximization) algorithm of Dempster,

Laird and Rubin (1977). A form of HMM, referred to

as a Markov Source, was introduced as early as 1948

by Shannon in developing a model for the English

language (Shannon 1948).

Baum et al. (1970) referred to HMMs as

probabilistic functions of Markov chains. Indeed, an

HMM process comprises a Markov chain whose states

are associated with some probability distributions.

For example, the Markov states may be associated

with Poisson probability distributions that differ in

their means. At each time instant, a random variable

with probability distribution that depends on the state

in which the Markov chain lies is generated. An HMM

process is thus comprised of a Markov state

sequence and an associated sequence of random

variables. Normally, only that sequence of random

variables is observed while the corresponding

sequence of Markov states is not; hence, the term

hidden Markov models.

The significance of the states of an HMM varies

with the application. For example, in automatic

speech recognition, states may represent phonemes

of the language. The probability distributions

associated with the states may represent statistical

variations of the acoustic signals corresponding to

the different phonemes. In this application, only the

acoustic signal is observed while the phonemes are

estimated from the given signal during the recognition

process.

Since their introduction in 1966, HMMs have been

extensively studied and applied primarily to modeling

of speech signals in automatic speech recognition

applications. Jelinek and his group at IBM Research

Labs proposed a purely statistical HMM-based speech

recognition system in the early 1970s (Jelinek 1974).

The models were popularized in the early 1980s

primarily by Ferguson and his colleagues at

the Institute for Defense Analysis (Ferguson 1980)

and by Rabiner and his group at AT&T Bell

Laboratories (Rabiner 1989). Since then, many

advances in the theory and application of

HMMs have been introduced. HMMs have been

successfully used in Image Recognition, Sonar Signal

Processing, Automatic Fault Detection and

Monitoring, Speech Enhancement, Communication

and Control, Epidemiology and Biometrics and in

various Biomedical applications. An excellent survey

of the field is contained in the 1996 dissertation

of Couvreur. The structure and basic concepts of

HMMs are first reviewed and then the Baum

algorithm is presented.

Hidden Markov Models

Consider a homogeneous Markov chain of M states.

Let p ¼ (p m, m ¼ 1, . . ., M} denote the vector of

initial state probabilities and A ¼ {aij, i, j ¼ 1, . . .,M}

denote the stochastic matrix of state transition

probabilities. Let SN0 ¼
D

S0; S1; . . . ; SNf g; denote the
sequence of random variables representing the states of

the HMM process at time instants n ¼ 0, . . ., N.

A realization of the sequence S0
N is given by

s0
N ¼ {s0, s1,. . ., sN}, where sn 2 {1, 2, . . ., M} for

n ¼ 0,. . ., N. The probability that the Markov chain

visits state sn at time n, given that it was in state sn�1 at
time n � 1 is denoted by as n�1s n. For n ¼ 0,

asn�1s0 ¼ ps0. Thus, for example, if s n�1 ¼ i and s

n ¼ j, 0 � i, j � M, then asn�1sn ¼ aij for n > 0 and

asn�1sn ¼ p j for n ¼ 0.

Let YN
0 ¼

D
Y0; Y1; . . . ; YNf g; denote a sequence of

scalar random variables observed at time instants

n ¼ 0, . . ., N. The probability distribution of the

random variable Yn given that the HMM is in state Sn
is denoted by PYnjsn ðynjsnÞ for sn ¼ 1, . . ., M. The

observable random variables {Yn} may be discrete,

continuous or a mixture of both. Moreover, each

scalar random variable Yn may in fact be a vector Yn
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of K random variables. In that case, a vector of random

variables with conditional probability distribution

PYnjsn ðynjsnÞ is emitted whenever state sn is visited.

The vector notation will be used to cover both scalar

and vector observable random variables.

The probability density function (PDF), or the

probability mass function (PMF), of a sequence

of observable random vectors YN
0 from an

HMM process is given next. This PDF (or PMF)

is conveniently written using the sequence of states

S0
N, i.e.,

pYN
0
yN0
� �

¼
X

sN
0

pSN
0
YN
0
SN0 ; yN0
� �

¼
X

sN
0

pSN
0
SN0
� �

p
YN
0 jSN0 yN0

�

�SN0
� �

¼
X

SN
0

Y

N

n¼0
aSn�1SnpYnjSnÞ ynjsnð Þ

(1)

where the Markov property has been invoked in

assuming that given the state Sn ¼ sn, the observed

random vector Yn is independent of past and future

states and observable random variables.

An important example for the conditional PDF

pYnjsn ðynjsnÞ in (1) results when a K-dimensional

Gaussian observable random vector Yn is emitted from

a visited state, say sn ¼ j. In that case,

pYnjsnðynjsn ¼ jÞ ¼ N ðmj;RjÞ, where mj and Rj are,

respectively, the mean vector and covariance matrix

associated with state j. When a single PDF is not

sufficient to describe the data associated with a given

state, a mixture of probability distributions is useful. For

example, a mixture of Gaussian PDFs may be

associated with each state of the HMM.

Statistical properties of an HMM process are

inherited from properties of its Markov chain

(Grimmett and Stirzaker 1995). An irreducible

Markov chain is said to be ergodic if all states

are positive recurrent and aperiodic. An irreducible

ergodic Markov chain is strongly stationary if

the initial state probability distribution p equals

the unique stationary probability distribution of the

chain. This stationary probability is obtained from

the unique nonnegative solution of the matrix

equation p ¼ pA. Stationarity of the Markov chain

{Sn} implies stationarity of the observable sequence

of random variables {Yn}; see Theorem 2.2 in

Couvreur (1996). If {Sn} is stationary and ergodic,

then the observable sequence of random variables

{Yn} is ergodic; see Lemma 1 in Leroux (1992).

HMM Parameter Estimation

Modeling of a random process by an HMM involves

estimation of the parameters set of the HMM from

training data generated by the process. To specify the

HMM, one must choose the number of states for the

Markov chain, the allowable state transitions and

the type of conditional probability distributions of

the HMM that best fit the nature of the random

process being modeled. When a Markov chain of M

states is used, the parameter set of the HMM is given

by l¼ (p, A, B), wherep is theM-dimensional vector

of initial state probabilities, A is the M � M matrix of

state transition probabilities, and B is the set of

parameters of the conditional probability distributions

for the various states. If these conditional distributions

are Gaussian, B consists of the set of M mean vectors

and M covariance matrices.

A random process from which a training sequence

YN
0 is available by anM-state HMMwith parameter set

l is shown next. The modeling is commonly performed

by

max
l

1

N
log p y

Nj
0 jl
�

;
�

(2)

where p(yN0 |l), is the PDF or PMF in (1) evaluated for

the training sequence YN
0 , and ~N¼D K N þ 1ð Þ is the

total number of samples in the training data. Note that

the subscript YN
0 from (1) has been dropped, with the

dependence of this PDF or PMF on the parameter set l

shown explicitly now. This notation will be adopted

henceforth. ~N
�1

log p(yN0 |l) in (2) is referred to as the

normalized log-likelihood function or simply the

likelihood function. The estimation approach outlined

by (2) is motivated by the Maximum Likelihood (ML)

parameter estimation approach. Under certain

conditions, the ML estimation approach has optimal

asymptotic properties when the training sequence is

generated by the HMM whose parameters are being

estimated.

Maximization of the likelihood function in (2) is not

trivial because the problem is inherently nonlinear.

Furthermore, it is easy to see from (1) that evaluation
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of the likelihood function requires (2N + 1)MN+1

multiplications, since there are MN+1 possible state

sequences {s0, s1,. . ., sN}, and summation is over

products of 2(N + 1) terms along each such state

sequence. This constitutes an exponentially growing

number of multiplications as a function of the length of

the training sequence. Since N is required to be large to

achieve statistical consistency of the estimate of l, any

iterative maximization procedure that requires

evaluation of the likelihood cost function will be

prohibitively expensive. Fortunately, Baum et al.

(1970) developed an efficient estimation procedure

for iterative maximization of the likelihood cost

function, and an efficient approach for calculating the

likelihood function.

The Baum Algorithm

Suppose that an estimate lm of the parameter set l is

available at the end of the mth iteration of the Baum

algorithm. Let ~l denote any other estimate of the

parameter set l. Let L lmð Þ¼D ~N1 log p yN0 jl
� �

denote

the likelihood function of the training sequence under

the HMM with parameter set lm. Then, using Jensen’s

inequality, Baum et al. (1970) showed that

L ~l
� �

� L lmð Þ �
1

~N
Q ~l; lm

� �

� Q lm; lmð Þ
h i

; (3)

where

Q ~l; lm

� �

¼D E log p SN0 ; yN0

�

�~l
� �

jyN0 ; lm

n o

(4)

is called the auxiliary function. Clearly, if lm+1 is

chosen to be

lmþ1 ¼ arg max
~l

Q ~l; lm

� �

; (5)

then from (3), L(lm+1) � L(lm), since ~l can always be

chosen to be equal to lm. Thus, starting with an initial

estimate l0, and alternating between (4) and (5) results

in a sequence of estimates lm for the parameter set l

with non-decreasing likelihood values L(lm). The

iterations may be terminated if a fixed point of the

algorithm is reached, that is, when lm+1 ¼ lm. In that

case, L(lm+1)¼ L(lm ). Equations (4) and (5) constitute

the Baum algorithm, or the E-step and M-step,

respectively, of the EM algorithm.

It is easy to see that the ML estimate of l is a fixed

point of the algorithm. The algorithm, however, may

have many other fixed points that may not even be

stationary points of the likelihood function.

Convergence of the sequence of estimates lm can be

established by applying the Global Convergence

Theorem to the EM algorithm (Wu 1983).

So far the discussion has focused on modeling of

one random process, which is not necessarily an HMM

process, by another random process in the form of an

HMM. Thus, the training sequence available for

estimating the parameter set of the HMM may not be

generated by an HMM. In that case, no true HMM

parameter set exists, and the quality of the estimate of

the HMM parameter set is judged by the performance

of subsequent applications. For example, if HMMs are

estimated for acoustic signals from various words in

a vocabulary, then the performance of a speech

recognition system which relies on the estimated

HMMs is measured. If, however, a training sequence

generated by an HMM is available, then the goal of the

estimation procedure is to provide an accurate estimate

of the true parameter set of the HMM in some given

sense. Thus, if the length of the training sequence is N,

and the ML estimate of the parameter set l is given by
~l(N), then it is desirable that ~l(N) ! l as N !1
with probability one. An estimator ~l(N) satisfying this

property is called a strongly consistent estimator. One

may also be interested, among other properties of the

estimator, in the asymptotic distribution of ~l(N) as

N ! 1. Note that these convergence properties of

the estimator ~l(N) are substantially different from

those of an instance lm of the Baum algorithm. While

the first case studied stochastic convergence of the

estimator as more and more data become available,

the second case studied deterministic convergence of

an iterative algorithm for given fixed training data.

Baum and colleagues have studied both aspects of

convergence; Baum et al. (1970) established similar

convergence properties of lm to those developed by

Wu (1983) for two special models. Baum and Petrie

(1966) verified the strong consistency and asymptotic

normality of the ML sequence of estimates ~l(N) for

HMMs with discrete observable random variables and

stationary and ergodic Markov chains. Strong

consistency holds for HMMs with continuous

observable random variables under some additional

regularity conditions (Leroux 1992). Note that ML
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estimation may not be achieved by the Baum

algorithm, for example, when the likelihood function

has multiple local maxima.

The Re-Estimation Formulas

Maximization of the auxiliary function Q(~l, lm) in (5)

results in the so-called re-estimation formulas for

the parameter set of the HMM, since they provide

a new estimate of the parameter set in term of an old

estimate of that set. These re-estimation formulas can

be conveniently described using the posterior

probabilities q(sn�1, sn |yN0 , lm) of the Markov state

pair (sn�1, sn) calculated from an HMMwith parameter

set lm and the training sequence yN0 . Specifically,

maximization of (4) over ~p and ~aij for a given lm
results in the following re-estimation formulas:

pj mþ 1ð Þ ¼ q s0 ¼ jjyN0 ; lm
� �

; (6)

aij mþ 1ð Þ ¼

P

N

n¼1
q sn�1 ¼ i; sn ¼ jjyN0 ; lm
� �

P

M

j¼1

P

N

n¼1
q sn�1 ¼ i; sn ¼ jjyN0 ; lm
� �

:

(7)

For HMMs with Gaussian conditional PDFs, the

re-estimation formulas for the mean vector mj and the

covariance matrix Rj , respectively, are given by

mj mþ 1ð Þ ¼

P

N

n¼0
q sn ¼ jjyN0 ; lm
� �

yn

P

N

n¼0
q sn ¼ jjyN0 ; lm
� �

(8)

and

Rj mþ 1ð Þ

¼

P

N

n¼0
q sn ¼ jjyN0 ; lm
� �

yn � mjðmÞ
� �

yn � mjðmÞ
� �T

P

N

n¼0
q sn ¼ jjyN0 ; lm
� �

(9)

Note that the posterior probability q(sn |yN0 , l) is

obtained from summing q(sn�1, sn |yN0
, l) over all

possible values of sn�1. Efficient recursive

calculation of q(sn�1, sn |yN0 , l) can be performed by

using the forward-backward formulas as shown next.

The Forward-Backward Formulas

Let F(sn , y
N
0 ) and B(yNn�1|sn ), n ¼ 0, 1, . . ., N, denote,

respectively, the forward and backward probability

functions. The definitions of these functions and their

recursive calculation are as follows:

F s0; y0ð Þ¼D p s0; y0jlð Þ ¼ ps0p y0js0ð Þ (10)

F sn; yn0
� �

¼D p sn; yn0

�

�l
� �

¼
X

sn�1

F sn�1; yn�10 � 1
� �

asn�1snp ynjsnð Þ

0 < n � N;

(11)

B yNN�1
�

�sN
� �

¼D 1;

B yNn�1
�

�sn
� �

¼D p yNn�1
�

�sn
� �

¼
X

sn�1

B yNn�2
�

�sn�1
� �

asnsn�1p yn�1jsn�1ð Þ;

0 � n < N:

(12)

These relations straightforwardly result by

considering the PDF or PMF p(yN0 |l) given in (1).

Note that F(sn , yN0 ) and B(yNn�1|sn) are referred to as

the forward and backward probability functions, since

strictly speaking they are neither PDFs nor PMFs.

Using the forward and backward probability

functions, it can be shown that the desired state

posterior probabilities are given by

q sn�1; snjyN0 ; l
� �

¼
F sn�1; yn�10

� �

B yNn�1
�

�sn
� �

asn�1snp ynjsnð Þ
P

sn�1; sn
F sn�1; yn�10

� �

B yNn�1
�

�sn
� �

asn�1snp ynjsnð Þ
(13)

for 0 < n � N, and by

q snjN; lð Þ ¼ F sn; yn0
� �

B yNn�1
�

�sn
� �

P

sn

F sn; yn0
� �

B yNn�1
�

�sn
� � (14)

for 0 � n � N.
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Equations (10)–(14) provide an efficient recursion

for calculating the state posterior probabilities required

by the re-estimation formulas (6)–(9). Moreover, by

definition of the forward probability function,

p yN0

�

�l
� �

¼
X

sN

F sN; yN0
� �

: (15)

Thus evaluation of the likelihood function using the

forward formula (10) can be performed using only

2NM2 + M multiplications, in contrast with the

(2N � 1)MN+1 multiplications required by direct

calculation of p(yN0 |~l). Thus, the forward formula

enables calculation of the likelihood function with

linear rather than exponential complexity as

a function of N.

See

▶Markov Chains

▶Markov Decision Processes

▶Markov Processes
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Hierarchical Production Planning

Arnoldo C. Hax

Massachusetts Institute of Technology, Cambridge,

MA, USA

Introduction

Production management encompasses a large number

decisions that affect several organizational echelons.

These decisions can be grouped into three broad

categories:

1. Strategic decisions, involving policy formulation, capital
investment decisions, and design of physical facilities.

2. Tactical decisions, dealing primarily with aggregate
production planning.

3. Operational decisions, concerning detailed production
scheduling issues.

These three categories of decisions differ markedly

in terms of level of management responsibility and

interaction, scope of the decision, level of detail of

the required information, length of the planning

horizon needed to assess the consequences of each

decision, and degree of uncertainties and risks

inherent in each decision. These considerations have

led to the favoring of a hierarchical planning system to

support production management decisions, which

guarantees an appropriate coordination of the overall

decision-making process but, at the same time,

recognizes the intrinsic characteristics of each

decision level.

Hierarchical Production Planning

The basic design of a hierarchical planning system

includes the partitioning of the overall planning

problem, and the linkage of the resulting subproblems.
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An important input is the number of levels

recognized in the product structure. Three different

levels are identified:

1. Items are the final products to be delivered to the customers.
They represent the highest degree of specificity regarding the
manufactured products.

A given product may generate a large number of items
differing in characteristics such as color, packaging, labels,
accessories, size, and so on.

2. Families are groups of items which share a common
manufacturing setup cost. Economies of scale are
accomplished by jointly replenishing items belonging to the
same family.

3. Types are groups of families whose production quantities are
to be determined by an aggregate production plan. Families
belonging to a type normally have similar costs per unit of
production time, and similar seasonal demand patterns.

These three levels are required to characterize

the product structure in many batch-processing

manufacturing environments. In this section,

a hierarchical planning system is proposed based on

these three levels of item aggregation.

The first step in the hierarchical planning approach

is to allocate production capacity among product types

by means of an aggregate planning model. The

planning horizon of this model normally covers a full

year in order to take into proper consideration the

fluctuation demand requirements for the products.

The use of a linear- programming model is advocated

at this level.

The second step in the planning process is to

allocate the production quantities for each product

type among the families belonging to that type by

disaggregating the results of the aggregate planning

model only for the first period of the planning

horizon. Thus, the required amount of data collection

and data processing is reduced substantially. The

disaggregation assures consistency and feasibility

among the type and family production decisions and,

at the same time, attempts to minimize the total setup

costs incurred in the production of families. It is only at

this stage that setup costs are explicitly considered.

Finally, the family production allocation is divided

among the items belonging to each family. The

objective of this decision is to maintain all items with

inventory levels that maximize the time between

family setups. Again, consistency and feasibility are

the driving constraints of the disaggregation process.

Figure 1 shows the overall conceptualization of the

hierarchical planning effort.

Aggregate Production Planning for Product
Types

Aggregate production planning is the highest level

of planning in the production system, addressed at

the product-type level. Any aggregate production

planning model can be used as long as it adequately

represents the practical problem under consideration.

The following simplified linear program is considered

at this level:

Problem P

Minimize

Xl

i¼l

XT

i¼l
citXitþ hi; tþLIi; tþL
� �

þ
X

T

i¼l
rlRlþ olOlð Þ

subject to

Xit� Ii; lþLþ Ii; lþL�1 ¼ di; tþL i¼ 1; . . . ; I; t¼ 1; . . . ; T

X

I

i¼I
mtXit ¼OtþRt t¼ 1; . . . ; T

Rt � rmð Þt t¼ 1; . . . ; T

Ot � omð Þt t¼ 1; . . . ; T

XitIi; tþL � 0 i¼ 1; . . . ; I; t¼ 1; . . . ; T

Rt; Ot � 0 t¼ 1; . . . ; T:

The decision variables of the model are: Xit, the

number of units to be produced of type i during t; Ii,t+L,

the number of units of inventory of type i left over at the

end of period t + L: and Rt andOt, the regular hours and

the overtime hours used during period t, respectively.

The parameters of the model are: I, the total number

of product types; T, the length of the planning horizon;

L, the length of the production lead time; cit, the unit

production cost (excluding labor); hit, the inventory

carrying cost per unit per period; rt and ot, the cost

per man-hour of regular labor and of overtime labor;

(rm)t and (om)t, the total availability of regular

hours and of overtime hours in period t, respectively;

and mi, the inverse of the productivity rate for type i

in hours/unit; di,t+L is the effective demand for

type i during period t + L.
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Because of the uncertainties present in the planning

process, only the first time period results of the

aggregate model are implemented. At the end of

every time period, new information becomes

available that is used to update the model with

a rolling planning horizon of length T. Therefore, the

data transmitted from the type level to the family level

are the resulting production and inventory quantities

for the first period of the aggregate model. These

quantities will be disaggregated among the families

belonging to each corresponding type.

The Family Disaggregation Model

The central condition to be satisfied at this level for

a coherent disaggregation is the equality between the

sum of the productions of the families in a product type

Read in last period’s demand

Update inventory status

(physical inventory, amuont

on oredr, backorders,

available inventory)

Update demand forecasts,

safety stocks, overstock

limits, and runout

times

Determine effective demands

for each product type

Aggregate  plan for types

(aggregate planning reports)

Family disaggregation

(family planning reports)

Management

interaction

Item disaggregation

(item planning reports)

Detail status reports

Hierarchical Production

Planning, Fig. 1 Conceptual
overview of hierarchical
planning system
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and the amount dictated by the higher level for this

type. This equality will assure consistency between

the aggregate production plan and the family

disaggregation process. This consistency is achieved

by determining run quantities for each family that

minimize the total setup cost among families.

Bitran and Hax (1977, 1981) proposed the

following model for family disaggregation which has

to be solved for every product type i and gives rise to

a continuous knapsack problem:

Problem Pi

Minimize
X

j2J0
sjdj
�

�Yj
� �

subject to
X

j2J0
Yj ¼ X�i

lbj � Yj � ubj j 2 J0
� �

where Yj is the number of units of family j to be

produced; sj is the setup cost for family j; dj is the

forecast demand (usually annual) for family j; lbj and

ubj are lower and upper bounds for the quantity Yj ; and

X∗

i is the total amount to be allocated among all the

families belong to type i. The quantity X∗

i has been

determined by the aggregate planning model and

corresponds to the optimum value of the variable Xi1

since only the first-period result of the aggregate model

is to be implemented.

The lower bound lbj, which defines the minimum

production quantity for family j, is given by:

lbj ¼ max 0; dj; 1 þ dj;2 þ � � � þ dj; Lþ1
� �

� AIj þ SSj
� �

;

where dj,1 + dj,2 + . . . + dj,L+1 is the total forecast

demand for family j during the production lead time

plus the review period (assumed equal to one); AIj
is the current available inventory for family j

(equal to the sum of the physical inventory and the

amount on order minus the backorders); and SSj is the

required safety stock. The lower bound lbj guarantees

that any backorder will be caused by forecast errors

beyond those absorbed by the safety stock SSj .

The upper bound ubj is given by:

ubj ¼ O Sj � AIj;

where OSj is the overstock limit of family j.

The objective function of problem Pi assumes that

the family run quantities are proportional to the setup

cost and the annual demand for a given family. This

assumption, which is the basis of the economic order

quantity formulation, tends to minimize the average

annual setup cost. Notice that the total inventory

carrying cost has already been established in the

aggregate planning model; therefore, it does not enter

into the current formulation.

The first constraint of problem Pi,

X

j2J0
Yj ¼ X�i

assures the equality between the aggregate model input

X∗

i and the sum of the family run quantities.

Initially, Jo contains only those families which

trigger during the current planning period. A family

is said to trigger whenever its current available

inventory cannot absorb the expected demand for the

family during the production lead time plus the review

period, that is, those families whose current available

inventory is such that

AIj < dj; 1 þ dj; 2 þ � � � þ dj; 1
� �

þ SSj:

Equivalently, one can define Jo as containing all

those families whose run out times are less than one

time period, that is,

ROTj ¼
AIj � SSj

P

Lþ1

t¼1
dj; t

< 1:

It is necessary to start production for these families

in order to avoid future backorders. All other families

are put on a secondary list and will be scheduled only if

extra capacity is available. Bitran and Hax (1977)

proposed an efficient algorithm to solve problem

through a relaxation procedure.

The Item Disaggregation Model

For the period under consideration, all the costs have

already been determined in the former two levels,

and any feasible disaggregation of a family run

quantity has the same total cost. However, the
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feasible solution chosen will establish initial

conditions for the next period and will affect future

costs. To save setups in future periods, one could

distribute the family run quantity among its items

in such a way that the run out times of the items

coincide with the run out time of the family. A direct

consequence is that all items of a family will trigger

simultaneously. To attain this objective, the use of

the following strictly convex knapsack problem is

proposed for each family j.

Problem Pj

Minimize

1

2

X

k2K0

Y�j
P
k2K0

AIk � SSkð Þ

P
k2K0

PLþ1

t¼1
dk; l

� Zk þ AIk � SSk

PLþ1

t¼1
dk; l

2

6664

3

7775

2

subject to
X

k2K0

Zk ¼ Y�j

Zk � OSk � AIk

Zk � max 0;
XLþ1

t¼1
dk; l � AIk þ SSk

" #

where Zk is the number of units to be produced of item

k; AIk , SSk , and OSk are, respectively, the available

inventory, the safety stock, and the overstock limit of

item k; dk,t is the forecast demand for item k in period t ;

Ko ¼ {1, 2, . . ., j}; and, Y∗j is the total amount

to be allocated for all items belong to family j.

The quantity Y∗ was determined by the family

disaggregation model.

The first constraint of problem Pj requires

consistency in the disaggregation from family to

items. The last two constraints are the upper and

lower bounds for the item run quantities. These

bounds are similar to those defined for the family

disaggregation model in the previous section.

The two terms inside the square bracket of the

objective function represent, respectively, the run out

time for family j and the run out time for an item k

belonging to family j (assuming perfect forecast). The

minimization of the square of the differences of the run

out times will make those quantities as close as

possible. (The term 1/2 in front of the objective

function is just a computational convenience.)

For a description of the algorithm recommended

to solve this problem, as well as a discussion on

performance of the hierarchical production planning

model, the reader is referred to Hax and Candea

(1984).

See

▶Knapsack Problem

▶Operations Management

▶ Production Management
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Introduction

Until the mid-1960s, rigorous planning techniques and

serious attention to campus resource allocations were

relatively uncommon in higher education. Expansionist

institutions were flush with both students and public

support. In the ensuing years, however, academic

administrators’ interest in better management

techniques was heightened by the increasing size and

complexity of academic organizations and by

persuasive warnings of shrunken public financing and

reduced numbers of college-going young people. By the

early 1980s, college and university operations were

a well-established locus of interest among OR/MS

professionals.

Since that time, there has been a continued diffusion

of analytic innovations and decision support systems

within higher education, and operations research

and management science have become increasing

important in those settings. Business intelligence

software, academic space planning tools,

enrollment-management systems, and smart-grid

technologies are just a few of the OR/MS applications

enabling institutions to streamline operations and

improve overall efficiency and effectiveness.

Historical Background

The earliest appearance of modern OR/MS

applications in higher education came in the

development of formal planning and budgeting

models for institutions and systems. The first

planning model, CAMPUS (Comprehensive

Analytical Methods for Planning University

Systems), began in 1964 at the University of Toronto.

CAMPUS was part of an attempt to build

a computer-based econometric model simulating cost

patterns in Canadian universities. Early versions of

CAMPUS required extensive data input and placed

great demand on computer capacity, making

widespread use by a number of colleges and

universities virtually impossible. CAMPUS clearly

demonstrated, however, the feasibility of developing

useful planning and decision-making tools for

postsecondary institutions.

Among the first budgeting processes was the

planning, programming, and budgeting systems

approach (PPBS). PPBS was initially developed by

the RAND Corporation for use by the Department of

Defense, but was adopted by many higher-education

institutions in the early 1960’s. The purpose of PPBS

was to connect programmatic information to planning

and budgetary decision making, and in higher

education it represented one of the earliest efforts to

tighten couplings among the academy’s historically

fragmented structures and processes.

In the late 1960s, planning and budgeting models

began to proliferate. With funding from the U.S.

Office of Education, the National Center for Higher

Education Management Systems (NCHEMS)

developed RRPM (the Resource Requirements

Prediction Model), a computer-simulation model

aimed at providing institutions detailed information on

costs and resource requirements for establishing and

maintaining academic programs. In Europe, two

significant planning models emerged: the HIS

(Hochschule Information System) in West Germany

and the TUSS (Total University Simulation System) in

Holland. HIS and TUSS focused mainly on the efficient

use of instructional space and certain other aspects of

academic operations. As such, they were less ambitious

than the North American models of the time, and much

less powerful than the models soon to come.

In 1977, Stanford University developed

a computer-based financial planning model called

TRADES to assist administrators in forecasting

income and expenses. True to its name, the TRADES

model focused on the trade-offs facing campus leaders.

Specifically, it allowed the user to manipulate certain

Primary Planning Variables (such as the number of

faculty, the number of admitted students, or the level

of utility rates), plus approximately 200 other variables

to create what-if scenarios for any variety of campus

and environmental conditions. Because it was

interactive, fast, and extraordinarily comprehensive

in scope, the TRADES model represented a distinct

advance for the field. Soon, Stanford’s Academic
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Planning Office produced a generalized version for use

in other institutions: GENTRA (GENeralized

TRAdes). The TRADES and GENTRA models were

the first to handle the large volume of tedious

calculations involved in systematic, holistic financial

forecasting. As a consequence, the models gave their

users greater freedom to focus directly on core issues in

institutional planning. In subsequent years, Stanford’s

pioneering models were both adapted and imitated.

Perhaps the best known of the descendant models is

EFPM, the EDUCOM Financial Planning Model.

Developed in the late 1970s by the EDUCOM

consortium of over 350 U.S. colleges and

universities, EFPM provided a sophisticated financial

projection system.

Beginning in the mid-1990’s, developments in

computing and online technologies dramatically

expanded and diversified OR/MS applications within

the higher-education sector (McClure 2005).

Institutions’ internal management systems were

varied and resided on a wide assortment of hardware

platforms, operating systems, and databases, however.

Responding to the proliferation of incompatible

homegrown systems emerging within different

administrative units on campuses, universities began

to adopt Enterprise Resource Planning (ERP) systems

to consolidate and streamline operations and improve

end-to-end connectivity (Stevens 2003). As Murphy

(2004, p. 29) noted, ERP systems hold potential to

“integrate disconnected business operations such as

student administration, human resources, and

financial systems that have been previously handled

by disparate legacy systems, while satisfying the need

for real-time, on-demand information.

Although OR/MS applications have been employed

for over half a century in higher education, colleges

and universities have generally lagged in adoptions of

approaches popularized in other organizational

sectors. Those lags have both been sensible and

restricting. On one hand, fund accounting, systematic

asset management, and other innovations have

successfully been imported from business to higher

education. Yet many applications have achieved only

marginal success, including performance-based and

zero-based budgeting, total quality management, and

process reengineering. Birnbaum (2000) argue

persuasively that many of these management and

analytic innovations are merely fads borrowed from

business or government without full consideration of

their limitations within the university’s distinctive

organizational structures, processes, and cultures.

Consequently, imported management approaches

often have a limited life cycle and only brief

popularity in higher education before abandonment.

Inevitably, though, it seems that every failed import

is soon followed by the introduction of some other idea

novel to the setting.

While imported management processes and

systems have had limited success in higher education,

universities increasingly rely on OR/MS applications

to support core operational functions. In financial and

business process management, such applications aid in

financial planning and modeling, budget systems, asset

management, quality management, enterprise resource

planning, business process design, and institutional

development and fund raising. OR/MS techniques

have been extensively utilized in facilities planning

and management in such domains as space planning,

energy management, and campus master planning.

In institutional effectiveness efforts, OR/MS has been

applied in institutional research and assessment,

business intelligence and action analytics, strategic

planning, enrollment management, and retention

management. In risk management, managers have

paid growing attention to crisis preparedness and

business continuity. And, in research management,

regulatory compliance has become a focus of systems

development.

The Literature

Literature on the uses of OR/MS approaches in higher

education falls into three general categories: 1) general

reviews of OR/MS applications in higher education; 2)

specialized essays and research reports; and 3) case

studies, technical papers, and presentations produced

by consultants, vendors, end users, and specialized

industry associations. Selected work in each of these

arenas merits attention here.

Schroeder (1973) provided an excellent early

example of general reviews of OR/MS applications

in higher education. The author critically surveyed

work on Program Planning Budgeting Systems

(PPBS); management information systems (MIS);

resource-allocation models; and mathematical models

for enrollment planning, faculty staffing, and

optimization of resource use. Wilson (1981) provided
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a less technical piece in this same vein, with eight

short, well-documented articles describing actual and

proposed applications. Around the same time, Hussain

(1976) and Bleau, (1981b) produced thorough reviews

of the packaged planning models being developed then

for higher education, including CAMPUS, RRPM,

HIS, TUSS, TRADES, and EFPM.

In this period, two classic, comprehensive works on

OR/MS applications in higher education appeared:

Halstead (1974) and Hopkins and Massy (1981). The

Halstead book focused on the planning efforts of

state-level postsecondary officials, and paid special

attention to forecasting revenues and costs and

examining alternative possible uses of scarce state

resources. The Hopkins and Massy book, in contrast,

addressed central financial issues facing individual

institutions. The authors defined financial planning

models, outline what these models could reasonably

be expected to accomplish, specified how to build the

necessary models, and offered historical background

on Stanford University’s experience in developing and

applying planning models. Both of these books

became widely cited in the field and are useful

references.

Later in the 1980s, improvements in software-based

decision-support systems (DSS) made the use of

complex planning models more accessible and

attractive to administrators not trained in technical

applications. Rohrbaugh and McCartt (1986)

presented a solid overview of the emerging uses of

DSS in higher education at that time, considering such

topics as Markov-based decision-support applications,

formal decision models, tactical and strategic decision

making, system-dynamics simulation models, and

alternative approaches for evaluating decision

processes. At around the same time, Yancey (1988)

provided a comprehensive overview of the statistical

methods then being employed by institutional research

(IR) offices on campus, and White (1987) provided

a useful listing of publicly known OR/MS applications

in higher education, classifying extant applications

along six dimensions: (1) administrative level,

(2) primary purpose of the model, (3) program type,

(4) techniques used, (5) resources being allocated, and

(6) implementation.

Hoenack and Collins (1990) provided an important

contribution focusing theoretically and practically on

decision making and planning on campuses.

Employing concepts from both economics and

OR/MS, the book’s contributing authors reviewed

thinking on resource allocation, decision processes and

priorities, incentive structures, fiscal environments,

and cost functions. William Becker, in an especially

valuable chapter in the volume, examined the

extensive econometric research on students’ sensitivity

to institutional prices and considered the implications

of that research for institutional and system-wide

planning efforts. In a less ambitious but similarly

framed review, Cheng (1993) explored the impacts of

OR techniques on higher-education administration

across a variety of functional areas, prominently

including resource allocation, budgeting, registration,

academic scheduling, and tuition-setting.

As technological developments of the past decade

have further lowered costs and expanded information

availability on campuses, numerous reviews have

focused the uses and analysis of institutional data.

Most prominently, McLaughlin et al. (2004) provided

a comprehensive overview on the conceptual and

theoretical framework for managing institutional

data, including the emerging use of innovative

technologies to improve data quality, streamline

reporting systems, and enhance planning, assessment,

and data-driven decision making processes.

Specialized essays and research reports comprise

a second category of relevant OR/MS literature.

Among the earliest applications of OR/MS in

colleges and universities were efforts to improve

facilities management, notably including increasing

efficiency in buildings and grounds use and

maintenance, identifying and analyzing new facility

requirements, improving space utilization, examining

inventory patterns, projecting demand, and decreasing

energy consumption. Facilities planners have to act in

the context of an institution’s multiple, sometimes

conflicting goals of teaching, research, and service,

creating a need for sophisticated multi-objective

analytic techniques (Ritzman et al. 1979).

While facilities management continues to be

a major concern on campuses, it is increasingly

incorporated into broader, human-resource modeling,

including enrollment management. Large institutions

require sophisticated models for scheduling, loading,

and controlling students’ course enrollments across

different physical locations. Similarly, planning for

short and long-term faculty and staff needs creates

challenges because of ongoing changes in legal and

financial conditions and changes surrounding
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employment. Before the 1980s, OR/MS approaches to

enrollment and employment forecasting largely

extrapolated historical data into the near and

long-term future (Cox and Jesse 1981), but

subsequent approaches have incorporated far more

variables and more advanced statistical techniques,

including Markov chain methods (Bleau 1981a).

Beyond facilities and human-resource management

lie OR/MS-based analyses of many topics relating to

quality assessment, assurance, and improvement.

Performance issues have long been prominent topics

in higher education, and OR/MS work has contributed

integrally to quality analysis. Dressell (1976) argued

that such techniques as program budgeting,

management by objectives (MBO), cost-benefit

analysis, MIS, Program Evaluation Review

Technique (PERT), and PPBS could provide logical,

systematic, comprehensive, and, above all, rational

support for evaluation and assessment processes.

Although preferred techniques have evolved

appreciably over the years, Dressel’s early

observations proved prescient. In an era in which

institutions are being held to increasingly difficult

accountability standards, evaluation and assessment

have become central important aspects of

administration on virtually every campus.

Much of the work on quality assessment, assurance,

and improvement in higher education has focused on

efficient and effective resource allocation and

management, and on the tools needed to achieve

those goals. Lee and Van Horn (1983) proposed

improving institutional management through joining

administration-by-objectives with goal programming,

and included useful technical analyses of several

resource-allocation modeling approaches. Lewis

(1988) reviewed academic-program assessment

efforts as of the 1980s and argued that they might be

cast more productively in cost-effectiveness terms. His

conceptual and empirical work provided directions for

later work in that vein, as cost concerns became

increasingly pressing.

In the mid-1990s, Geraint and Jill Johnes at

Lancaster University’s management school focused

on funding, pricing, and cost issues in British higher

education. G. Johnes (1996) used production theory

and multiple-regression and stochastic-frontier

techniques to estimate institutions’ multi-product cost

functions. J. Johnes (1996) explored potential ways to

produce comparative indices of institutional

performance taking into account substantial

differences in inputs. Ryan (2004) pursued similar

themes, examining relationships between inputs, in

terms of expenditures on varied production factors,

and outputs in degree-production terms. His results

suggest that relationships between spending and

outputs over time, across a wide set of institutions,

are positive and merit greater attention in models of

student persistence and graduation rates. Lavieri,

Puterman and colleagues addressed similar issues in

workforce planning: they applied linear programming

to Canadian healthcare workforce data to support

health human resources (HHR) planning (Lavieri

et al. 2008), and used a linear-programming-based

hierarchical planning model in pursuit of optimal

training, promoting, and recruiting for Canadian

nurses over a two-decade period (Lavieri and

Puterman 2009).

Work by Welsh and Metcalf (2003) critically

examined the institutional effectiveness perspective

on quality. Arguing that management efforts to

improve quality have consistently failed, despite

increased external pressures for change and

accountability, the authors maintain that the

institutional-effectiveness concept holds the potential

to become institutionalized within higher education,

rather than another passing fad. Their empirical

analysis found that faculty and administrators hold

differing perceptions regarding the importance of

pursuing institutional effectiveness, owing to

ideological and historical factors. They nevertheless

contend these resistances may be overcome through

careful planning and collaboration, and suggest

a variety of OR/MS-related approaches that may

prove useful in improving quality assessment and

achieving campus-wide support.

Much empirical OR/MS work in higher education

has centered on DSS. Often, such work is not published

in readily available outlets, but there are exceptions.

Stallaert (1997) reported on the design and

implementation of a course timetabling system for

the management school at UCLA, using sophisticated

integer-programming and heuristic algorithms. The

author and his dean reported major scheduling

efficiency improvements from the initiative (p. 81).

Similarly, Darroch and Toleman (2006) explored the

implementation of a learning management system in

an online education environment for an Australian

university. Learning management systems (LMS) are
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specialized, integrated software toolsets, developed

specifically for the support of online course delivery

(Turban et al. 2005). Familiar examples include

WebCT and Blackboard. The case-study suggests

a number of lessons and recommendations for future

LMS implementations. Finally, Maltz et al. (2007)

found that a DSS system dramatically improved

enrollment management at a small liberal arts college.

Both responsiveness and real-time management

improved, and knowledgability increased among key

administrators, leading to attainment of several

strategic enrollment objectives.

Of all the empirical work using OR/MS in higher

education since the 1990s, perhaps no approach has

consumed greater attention than data envelopment

analysis (DEA). This is unsurprising, given the heavy

attention to the topic in OR/MS more generally in the

preceding years (Seiford 1997; Sarafoglou 1998).

DEA is an analytical procedure for measuring the

relative efficiency of decision making units

performing similar functions with similar goals and

objectives. Noting the special characteristics of

higher-education systems, institutions, and units, Ahn

et al. (1988a) and Ahn et al. (1988b) compared

DEA-generated efficiency indexes across sizable

samples of public and private U.S. colleges and

universities. Somewhat later, Ahn and Seiford (1993)

provided an especially useful examination of the

history and development of the DEA approach, in the

context of further analyses of inter-institutional

efficiency.

Tomkins and Green (1988) provided one of the

earliest efforts to examine the uses of DEA in

academic departments and centers, as opposed to

institutions as a whole. Focusing on university

accounting departments in the U.K., they cautioned

that there are inevitably concerns over data quality in

such analyses, and that efforts to incorporate

judgments of scholarly performance can raise

concerns over subjectivity. Nevertheless, they

concluded that comparable efficiency scores could be

reliably and productively calculated for academic

units.

Shortly after the Tomkins and Green analysis, DEA

research on academic departments began to

proliferate. Beasley (1990) provided a DEA model

for comparing university departments in chemistry

and physics departments in the U.K. Sinuany-Stern

et al. (1994) produced a useful exploration of a range

of academic departments in Israel, and Sarafoglou and

Haynes (1996) did the same for business and economic

departments in Sweden. Friedman and Sinuany-Stern

(1997) added consideration of Canonical Correlation

Analysis (CCA) to the use of DEA, aiming to provide

full-rank scaling for all units rather than simple

classification into efficient and inefficient units alone.

Attempting to bridge the gap between the frontier

approach of DEA and the mean-tendencies approach

of econometrics, the authors noted some problems, but

some promise in this approach as well.

Colbert et al. (2000) used DEA to determine the

relative efficiency of 24 top ranked U.S. MBA

programs. Focusing on output that measured student

satisfaction, output that measured recruiter

satisfaction, and output that measured both, the

authors sought to compare the relative efficiency

scores of certain foreign and U.S. MBA programs.

The authors note numerous data issues limiting the

analysis, but conclude that new rankings based on

DEA would “more completely and accurately

represent MBA programs [and]. . . make it possible to

more fairly compare specific programs” (p. 668).

In an effort to allow effective cross-disciplinary

efficiency analyses, Moreno and Tadepalli (2002)

used DEA for evaluating the efficiency of a diverse

sample of academic departments at a public university

in the U.S. Arguing that such analyses are imperative

in the increasingly accountability-driven political

context of the U.S., the authors suggested that

computation of a single summary measure of relative

unit efficiency, across different fields, may become

central in ongoing debates over resource allocation.

They concluded, however, that numerous conceptual

and methodological issues require attention before

summary measures can be used most effectively on

a given campus or across campuses.

Acknowledging such difficulties, Korhonen et al.

(2001) focused on the output measurement issues that

have constrained earlier work using DEA. These

authors sought to combine DEA and decision maker

preferences into what they term a Value Efficiency

Analysis of academic research performance at

universities and research institutes. The analysts

suggest that their work defines the efficiency of

research units “in the spirit of . . . DEA,

complemented with decision maker’s . . . preference

information” (p. 121). Preferences were obtained by

asking leaders to “locate a point on the efficient
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frontier having the most preferred combination of

input and output values” (p. 121). The authors

conclude that this approach has real promise for

addressing in difficult issues central to the further

development and assessment of disciplinary units in

European universities.

J. Johnes (2006) identified and attempted to resolve

a methodological problem plaguing earlier DEA

analyses at the unit and institutional level. Noting

that prior analyses of teaching efficiency have been

aggregated across students, which tends to blur

individual and organizational contributions, Johnes

argued that “analysis at the individual level can give

institutions insight into whether it is the students’ own

efforts or the institution’s efficiency which are

a constraint on increased efficiency” (p. 443). Her

empirical work on a sample of economics graduates

and units in U.K. universities supports that conclusion,

and casts doubt on the utility of aggregated DEA

analyses, which have long been the norm in the field.

The third category of relevant OR/MS literature

in higher education is case studies, technical papers,

and presentations produced by consultants, vendors,

end users, and specialized industry associations.

This knowledge base has grown along with the rapid

expansion and diversification of commercialized

management tools and software. Technology companies

and industry experts often produce research to

differentiate themselves from their competitors, while

institutional administrators increasingly become

engaged in specialized learning communities to

exchange information and share best practices on

emerging topics in the industry. The result has been

a growing literature base not reflected in traditional

journal and book outlets.

Among the higher-education associations providing

relevant OR/MS research and technical reports

are the Web-based groups EduCause, the Society

for College and University Planning (SCUP), and

the Association for Institutional Research (AIR).

EduCause is a nonprofit association supporting

information-technology professionals in higher

education. EduCause’s online resource center

provides an information repository concerning the

use and management of information technology in

higher education, including applied research and case

studies on OR/MS topics. SCUP and AIR are

professional associations for decision makers,

planners, and management analysts in higher

education. Both provide numerous online and paper

resources on OR/MS uses in higher education.

Beyond the associations, individual vendors often

produce reports regarding their products’ performance,

sometimes in conjunction with end users. Such

industry-funded efforts must necessarily be evaluated

with awareness of the self-interests involved, of

course. Unfortunately, there are few independent and

objective publicly available analyses of the

performance of vendors’ products (Birnbaum 2000).

The Complexity of OR/MS in Higher
Education

Without question, some institutional leaders

perceive OR/MS approaches to be too complex,

too user-hostile, or too foreign to elements of

their institutions’ traditionally decentralized and

participatory organizational culture. With that in

mind, they resist implementations on the academic

side of the business (i.e., curriculum decisions,

hiring decisions, admissions decisions). Such views

are in keeping with the distinctive organizational

characteristics of colleges and universities

(Birnbaum 1991). While virtually all large

institutions have adopted OR/MS approaches in

non-academic areas such as business operations and

facilities management, it appears that openness to OR/

MS approaches in academic decision making

varies widely across institutions. This variation is

unsurprising, given the long acknowledged differences

among colleges and universities in organizational

forms and processes. Earlier work (Baldridge et al.

1978; Baldridge and Tierney 1979) suggests that

adoption of business-style techniques in the academic

side of campus operations may come most easily to

strongly hierarchical institutions, such as community

colleges, vocational/technical institutions, and for-

profit institutions. Power and control tend to be less

centralized in liberal arts colleges and selective

universities, and faculty leaders there may resist

demands for stepped-up management systems.

Pointedly, Birnbaum (2000) has suggested that

faculty compliance in such settings may often be

more symbolic, virtual, cynical, or self-interested

than sincere. And many leaders may simply not

pursue implementations of OR/MS techniques in

areas touching closely on faculty domains.
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But substantial OR/MS work does take place in

higher education, and is simply not made widely

visible to external audiences. This limited public

availability of information regarding OR/MS

applications and innovations in campus settings

makes definitive conclusions about the state of the

field difficult if not impossible. Several factors

contribute to this dearth of information.

Notably, the rapid evolution and diversification of

commercialized OR/MS applications and the short

life-cycle of many management innovations adopted

from industry limit the continuity and consistency

necessary to collect data and conduct publishable

research for traditional professional and academic

outlets. Traditional research methodologies often do

not align well to these timing constraints. What is

more, the public visibility of institutional OR/MS

work is constrained by 1) intense competition among

vendors, each working to establish competitive

advantage in a high-stakes, high-risk environment; 2)

managerial and political demands on campuses,

including the need to keep certain kinds of analyses

in-house for competitive reasons; and 3) the limited

professional rewards and outlets for publicly

disseminating educationally oriented OR/MS work.

The resulting invisibility unquestionably limits

broader knowledge regarding the use, and usefulness,

of OR/MS approaches.

Locally generated, limited-use techniques have

found their way into the administrative portfolios of

many institutions. Non-academic institutional units

often operate with substantial autonomy under

institutions’ unique governance and management

structures (Birnbaum 2000). Thus, much applied work

is done on a small scale (e.g., at the level of a financial-

aid office alone, rather than an entire campus), andmuch

of that work remains unknown to those not directly

involved. For example, decisions such as choosing

among several options for meeting campus heating

needs or designing an approach for using residence

halls more efficiently are important and are clearly

solvable in the OR/MS tradition, but are also

constrained in scope. An institution’s financial-aid

office may choose to deploy business intelligence

software as a data management and decision-support

system or the university may develop an energy-

management policy, but such initiatives may never

become widely known on campus or have a significant

impact on the institutional core.

Some of the most avid users of sophisticated,

albeit localized, OR/MS applications work in

offices of institutional research on campuses. Among

the tools employed in many such offices are

1) enrollment-management techniques for monitoring

and shaping the characteristics of student bodies;

2) models for assessing statistically the relative

importance of various student characteristics in

predicting whether newly admitted freshmen will

register; 3) Markov projections and related predictive

models for forecasting enrollments; and 4)

student-flow models for analyzing the movement of

students into or out of specific programs.

Unfortunately, these efforts usually remain unknown

to those outside of these specialized offices, unless

targeted dissemination efforts are undertaken.

Thus, a variety of factors hamper efforts to estimate

overall levels of OR/MS use, and indeed hamper

efforts to more fully embed OR/MS in campus life.

But, whatever the limitations, there can be no denying

that OR/MS techniques and approaches can contribute

to the effectiveness and efficiency of colleges and

universities as they encounter the multiple

opportunities and threats that are ongoing features of

their environments. Increasingly, institutions are

dependent on good information to frame and support

decision making. The emergence of lower-cost

computing, improved decision-support systems,

expanded telecommunications, and smart-grid

technologies all raise expectations that OR/MS

applications will continue to play a central role in

institutional adaptation and health.

See

▶Business Intelligence

▶Cost Analysis

▶Data Envelopment Analysis

▶Decision Support Systems (DSS)

▶Total Quality Management
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Hirsch Conjecture

The Hirsch conjecture has a long history in

linear programming. For a bounded (m � n)

linear-programming problem, the conjecture concerns

how many simplex iterations (basis changes) are

necessary in going from one extreme point to

another. In a 1957 verbal communication with

George B. Dantzig, Warren M. Hirsch (a probabilist

from New York University who had worked earlier

with Dantzig in the Pentagon) asked: “Does there

exist a sequence of m or less pivot operations, each

generating a new basic feasible solution, which starts

with some given basic feasible solution and ends with

some other given basic feasible solution, where m is

the number of equations?” (Dantzig 1963, p. 160;

Dantzig and Thapa 2003, pp. 25, 31, 33, 34). Over

the years, there have been many attempts to prove or

disprove the Hirsch conjecture; all of them were

eventually shown to be false until Francisco Santos,

University of Cantabria, Spain, announced and

published his paper, “On a counterexample to the

Hirsch conjecture, ”(Santos 2010; also see De Loera

2011; Ziegler 2011).

In geometric terms, the Hirsch conjecture states that

if a polytope (bounded polyhedron) is defined by n

linear inequalities in d variables, then the length of

the longest shortest path among all possible pairs of

vertices (its diameter) should be at most (n – d). That is,

any two vertices of the polytope may be connected

to each other by a path of at most (n – d) edges

(Santos 2010). Santos showed that the conjecture was

false by constructing a 43-dimensional polytope with

86 facets and a diameter greater than 43.
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Hit-and-Run Methods

Zelda B. Zabinsky1 and Robert L. Smith2

1University of Washington, Seattle, WA, USA
2University of Michigan, Ann Arbor, MI, USA

Introduction

Hit-and-run is a Markov chain Monte Carlo (MCMC)

sampling technique that iteratively generates

a sequence of points in a set by taking steps of

random length in randomly generated directions.

Hit-and-run can be applied to virtually any bounded
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region in <n, and has nice convergence properties.

Hit-and-run can generate a sequence of points that

asymptotically approach a uniform distribution on open

sets, and modifications of hit-and-run can approximate

arbitrary multivariate distributions, including the

Boltzmann distribution. The versatility of hit-and-run

to approximate an arbitrary distribution makes it useful

in a number of settings, including global optimization,

identification of redundant constraints, simulation,

volume estimation and integration estimation. In

addition to converging to a target distribution, a good

MCMC sampler will converge quickly from an arbitrary

starting point, also known as rapid mixing. The mixing

time of the original version of hit-and-run is

polynomially bounded for convex sets, as opposed to

an exponential mixing time for a ball walk.

Hit-and-run was introduced by Smith (1984) as

a way to approximate uniformly distributed points in

an open set, but many other uses emerged. Diverse

applications of hit-and-run include: identifying

non-redundant constraints in linear programs (Berbee

et al. 1987); evaluation of multidimensional integrals

(Chen and Schmeiser 1996); volume estimation of

convex sets (Kannan et al. 1997); statistical model

validation; construction of a confidence interval for

Bayesian inference; discrete-event simulation

(Rubinstein and Kroese 2008), and global

optimization (Bertsimas and Vempala 2004; Kalai

and Vempala 2006; Mete et al. 2011; Romeijn and

Smith 1994; Shen et al. 2007; Zabinsky 2003;

Zabinsky et al. 1992, 1993).

Hit-and-run in its simplest form is discussed next,

followed by its convergence to a uniform distribution

and its mixing time. Then a generalized form of hit-and-

run that converges to an arbitrary target distribution is

discussed, followed by specific variations and

implementation considerations. Next, forms of hit-and-

run that operate on discrete or mixed continuous/integer

sets are discussed, as the previous algorithms assume

that the set to be sampled from is continuous. The final

section describes simulated annealing-type algorithms

for global optimization that embed hit-and-run as a part

of their sampling method.

Definition of Hit-and-Run

Hit-and-run, in its simplest form for a bounded open

set S in <n, makes a one-step transition from a point

x 2 S � <n to another point y 2 S by generating

a direction vector uniformly distributed on the

surface of a unit hypersphere centered around x, and

then generating a point y uniformly distributed on the

union of the line segments created by the intersection

of a line along the direction vector and S. This line

sampling is typically accomplished by employing

a one-dimensional rejection method on the line

segment intersected by an enclosing box for S.

Hit-and-run generates a sequence of points

Xk; k ¼ 0; 1; . . .f g in a bounded open set S 	 <n as

follows.

Algorithm 1(Hit-and-Run)
Step 0 Initialize X0 2 S and set k ¼ 0

Step 1 Generate a random direction Dk uniformly

distributed over the surface of a unit

hypersphere centered around Xk.

Step 2 Generate a random point Xkþ1 ¼ Xk þ lDk

uniformly distributed over the line set

Lk ¼ fx : x 2 S and x ¼ Xk þ lDk;

l a real-valued scalarg:
If Lk ¼ ;, go to Step 1.

Step 3 If a stopping criterion is met, stop. Otherwise

increment k and return to Step 1.

The hit-and-run chain has two distinguishing

characteristics: (i) it is globally reaching, i.e., it can

move from any point x 2 S � <n to a neighborhood of

any other point y 2 S in one step, and (ii) it can be

implemented easily even when the feasible set S is

defined by membership oracles. As Andersen and

Diaconis (2007) describe, the algorithm “hits a point

on the sphere and runs in that direction.”

Smith (1984) proved that hit-and-run converges

in total variation to a uniform distribution. Of

course, a direct way to sample a point uniformly

from S is to enclose it in a box and sample

uniformly from the box until a point lands in S.

Then this point is exactly uniformly distributed.

However, the expected number of points sampled

until one lands in S is exponential in dimension, so

this is an impractical method for a large-dimensional

set. Thus, Markov chain samplers become attractive

as a means to approximately sample from a uniform

distribution in much less time. Of the MCMC

samplers, hit-and-run converges in polynomial

time, and is considered to be the most efficient

algorithm known to date for generating an
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asymptotically uniform point in a convex set

(Lovász 1999; Lovász and Vempala 2006).

The analysis of the mixing time of hit-and-run on

a convex body in <n by Lovász (1999) assumed that

the initial distribution of the Markov chain was not far

from uniform, i.e., a ‘warm-start’. This assumption

was later relaxed, preserving hit-and-run’s

polynomial efficiency, making it the only known

random walk that converges efficiently to a uniform

distribution starting from any point inside a convex

body (Lovász and Vempala 2006). In contrast, the

ball walk takes an exponential time to get out of

a corner. Moreover, hit-and-run was also shown to be

polynomially efficient for sampling from log-concave

distributions over convex bodies.

Some insight into hit-and-run’s efficiency is

presented by Ghate and Smith (2009), who showed

that the network of points and arcs generated by

hit-and-run is a small world network in which most

nodes are not neighbors of one another, but most nodes

can be reached from every other in a small number of

steps. Thus another interpretation of hit-and-run is that

it generates a small world on the fly.

Given hit-and-run’s success at efficiently

approximating a uniform distribution, many

variations and generalizations have been developed.

Generalizations of Hit-and-Run

The most celebrated Markov chain sampler,

introduced by Metropolis et al. (1953), used the idea

of an acceptance-rejection step to act as a filter and bias

the chain towards a Boltzmann distribution. The

original hit-and-run algorithm was extended by

Romeijn and Smith (1994) to converge to a target

distribution p by adding an appropriate filter, and

later further extended using a conditionalization on p

to the one-dimensional line segment (Bélisle et al.

1993). Thus, hit-and-run converges to an arbitrary

target distribution p in total variation.

Andersen and Diaconis (2007) proposed

a generalization of hit-and-run algorithms for MCMC

samplers and related it to the Gibbs sampler,

Swendsen-Wang block spin dynamics, data

augmentation, auxiliary variables, slice sampling, and

the Burnside process under a unifying scheme. They

describe choosing the point Xkþ1 according to the

density p restricted to the line determined by the

direction vector, as in Bélisle et al. (1993). The

choice of the uniform distribution for direction is

replaced by a general choice, and even the concept of

a one-dimensional Euclidean line determined by the

direction vector is generalized to include subsets of S.

The following algorithm generalizes hit-and-run

with a general direction distribution and a Metropolis

filter that converges to an arbitrary target distribution p

on S, where v is an absolutely continuous probability

distribution defined on the surface of an n-dimensional

unit sphere, with density bounded away from zero.

Algorithm 2 (Hit-and-Run for Target
Distribution p)
Step 0 Initialize X0 2 S and set k ¼ 0.

Step 1 Generate a random direction Dk from the

direction distribution v on the surface of

a unit hypersphere centered around Xk.

Step 2 Generate a candidate point Z ¼ Xk þ lDk

uniformly distributed over the line set

Lk ¼ x : x 2f S and x ¼ Xk þ lDk;

l a real-valued scalarg
If Lk ¼ ;, go to Step 1.

Step 3 Accept or reject the candidate point Z with

a Metropolis filter for the target distribution p,

Xkþ1 ¼ Z w:p: min 1; pðZÞ=pðXkÞf g
Xk otherwise:

	

Step 4 If a stopping criterion is met, stop. Otherwise

increment k and return to Step 1.

Note that if p is a uniform distribution, then all

candidate points are accepted and Algorithm 1 is

a special case of Algorithm 2.

Specific variations and implementations of

hit-and-run are discussed next.

Variations and Implementations of
Hit-and-Run

Several variations with specific direction distributions

and candidate point sampling methods have been

studied in the literature.

The most common direction distribution, and

one that is readily implemented, is the uniform

distribution on the surface of an n-dimensional

hypersphere, termed hyperspherical direction (HD) in
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Berbee et al. (1987); Zabinsky et al. (1992). It is easily

implemented by generating n independent values

di; i ¼ 1; 2; . . . ; n from a standard normal distribution,

Nð0; 1Þ and scaling them to determine the unit

direction vector D:

D ¼ ðd1; d2; . . . ; dnÞ
Xn

i¼1
di

2

 !�1=2
: (1)

Another natural choice for direction distribution,

termed coordinate direction (CD), is a uniform

distribution over the n coordinate vectors (spanning <n).

Both HD and CD versions of direction choice were

presented and applied to identifying nonredundant linear

constraints in Berbee et al. (1987).

While hit-and-run is guaranteed to converge for

a wide class of target distributions p when using the

HD choice, the same is not true when using the CD

choice. It is possible to construct situations where CD

will not converge to p. For example, CD will fail to

converge to a uniform distribution on disconnected

regions with the property that some points cannot be

reached from others along a sequence of coordinate

direction moves.

Another modification of the direction choice,

introduced by Romeijn et al. (1999), is called

a reflection generator. The reflection generator was

motivated by the problem of stalling, which may

occur if the line intersects a small portion of the

feasible set. For example, when the current point x is

near a corner of a hypercube, there is a high probability

that the next sample point is very close to x, and a very

low probability that the next point generated is

a substantial distance from x, especially when the

number of dimensions is large. This problem is

similar to jamming, a well-known problem in

nonlinear programming. The reflection generator

essentially lengthens the line associated with

a chosen direction by reflecting it off the boundaries

of the feasible region into the interior. This increases

the probability of sampling a point far away from the

current point. A general reflection generator is defined

in Romeijn et al. (1999), with a straightforward

component-by-component reflection implementation.

Convergence results are preserved, and positive

numerical experience was reported.

Kaufman and Smith (1998) exploited the robustness

in direction distribution to accelerate the rate of

convergence of hit-and-run. They derived a unique

non-uniform direction distribution that optimizes the

rate of convergence of hit-and-run to a uniform

distribution on a convex set. They used sampled

points to fit an ellipsoid to the convex set, and used

the parameters of the ellipsoid as bootstrap parameters

in the direction distribution to approximate the optimal

direction distribution; calling the Markov chain

artificial centering hit-and-run.

In addition to variations on choosing the direction

distribution in Step 1, there are variations on choosing

the random candidate point on the line in Step 2.

Theoretically, the point could be chosen according to

the target distribution p restricted to the line. However,

in practice, this may be computationally difficult to

implement. The line sampling is often referred to as

step-size distribution. In hit-and-run as stated in

Algorithm 1 and Algorithm 2, the step size l is

uniformly distributed on the intersection of the

random bidirection with the feasible region. Other

variations include a fixed step-size or a variable

length interval that can shrink or expand.

A parametrized step-size distribution is used in

Ghate and Smith (2009) for solving the Small World

problem. The probability density function for the

step-size l is parametrized by a, and is roughly

proportional to ð1=jljaÞ. When a ¼ 0, the distribution

is the familiar uniform sampling distribution. Ghate and

Smith (2009) showed that the expected hitting time

for the Small World problem is minimized when the

parameter a ¼ 1 for the step-size distribution, and that

a ¼ 1 is the unique choice of a that is scale invariant

among all nonnegative values. This parameterized

step-size distribution was further explored with

hit-and-run in the context of global optimization.

Another consideration in implementing Step 2 is

the difficulty in identifying the intersection of the line

determined by the random direction, and the feasible

set S, even when S is convex. Step 2 can be

straightforward to implement if it is possible to

determine the points of intersection on the line, i.e.,

find lmin and lmax such that Xk þ lDk 2 S for

lmin � l � lmax. When S is defined by linear

inequalities, or analytically invertible functions, the

intersection points can be easily expressed (Zabinsky

2003). Then l can be chosen uniformly over that

interval, or according to the conditionalization of p,

thus producing the random candidate point.

H 724 Hit-and-Run Methods



However, if the feasible region S is nonconvex,

and/or the intersection points are not easily

determined, then a common implementation is to

enclose the feasible set S in a box B, or any regular

shape that is easy to determine intersection points, and

use a one-dimensional acceptance-rejection scheme to

produce the random candidate point.

The following algorithm on an enclosing box B is

a modification of hit-and-run with a general direction

distribution, as in Bélisle et al. (1993), with details of

the one-dimensional acceptance-rejection sampling, as

provided in Kiatsupaibul et al. (2011).

Algorithm 3. (Hit-and-Run on a Box)
Step 1 Generate a random direction Dk with direction

distribution n and set i ¼ 1.

Step 2 Generate lk;i from the step-size (typically

uniform) distribution on

Rk ¼ fr 2 < : Xk þ rDk 2 Bg:

Step 3 If Xk þ lk;iDk is not in S, set i ¼ iþ 1 and

return to Step 2. Otherwise, set

Z ¼ Xk þ lk;iDk.

Step 4 Accept or reject the candidate point Z with

a Metropolis filter for the target distribution p,

Xkþ1
Z w:pmin f1,pðZÞ=pðXkÞg
Xk otherwise

(

Step 5 If a stopping criterion is met, stop. Otherwise

increment k and return to Step 1.

The additional computation due to the

one-dimensional acceptance-rejection has been

analyzed by Kiatsupaibul et al. (2011) for the case

when p is a uniform distribution. They show that the

size of the box is not a critical factor to the overall

computational effort. More precisely, bounds on the

expected mixing time of hit-and-run on a box

including all sample points increases only by

a linear function of the box diameter (i.e., longest

chord in the box).

Another variation to speed up the convergence rate

and reduce the number of rejected sample points is to

incorporate the shrinking algorithm, also known as

a slice sampler, into hit-and-run. The idea is to shrink

the interval for selecting l, as follows.

Algorithm 4. (Hit-and-Run on a Box with Shrinking
Step-Size)
Step 0 Initialize X0 2 S and set k ¼ 0.

Step 1 Generate a random direction Dk with direction

distribution v, defining the step-size set as

Rk ¼ fr 2 < : Xk þ rDk 2 Bg:

Set lþ1 ¼ maxrRk and l�1 ¼ minrRk, and set

i ¼ 1.

Step 2 Generate lk;i from the uniform distribution on

the open interval ðl�i ; lþi Þ.
Step 3 If Xk þ lk;iDk is not in S, set lþiþ1 and l�iþ1 as

follows:

if lk;i > 0, set lþiþ1 ¼ lk;i and keep l�iþ1 ¼ l�i ;
if lk;i < 0, set l�iþ1 ¼ lk;i and keep lþiþ1 ¼ lþi .
Then, set i ¼ iþ 1 and return to Step 2.

Otherwise, if Xk þ lk;iDk is in S, set

Z ¼ Xk þ lk;iDk.

Step 4 Accept or reject the candidate point Z

with a Metropolis filter for the target

distribution p,

Xkþ1 ¼ Z w:p: min 1; pðZÞ=pðXkÞf g
Xk otherwise:

	

Step 5 If a stopping criterion is met, stop. Otherwise

increment k and return to Step 1.

Algorithm 4 differs from Algorithm 3 in that the

step-size interval is shrinking. This shrinkage increases

the probability of acceptance in Steps 2 and 3. Because

every open subset S can still be reached in one step, the

convergence property of the new Markov chain

remains the same.

When S is convex, the iteration point process

generated by Algorithm 4 is the same as that

generated by Algorithm 3, so the mixing rate of the

two processes is the same. However, when S is not

convex, the iteration point processes from the two

algorithms distribute differently, and, hence, the

mixing rates may be different. Computational results

in Kiatsupaibul et al. (2011) suggest that Algorithm 4

is faster than Algorithm 3 when S is not convex.

Other computational results are given in Chen and

Schmeiser (1996), where empirical comparisons are

made between variations of hit-and-run and other

sampling methods including the Gibbs sampler.
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Hit-and-run for Discrete and Mixed
Continuous/Integer Sets

Given the exceptional performance of hit-and-run on

continuous sets in<n, it is natural to wonder if it can be

extended to discrete sets, or mixed sets in <n � Zm.

The generalized line set in Andersen and Diaconis

(2007) with conditions for convergence allows a wide

variety of versions that converge to a target

distribution. Baumert et al. (2009) provide a detailed

definition of discrete hit-and-run (DHR) with mixing

times for some specific classes of problems. Mete et al.

(2011) introduces a variation on DHR, called pattern

hit-and-run (PHR) that is efficiently implemented on

both discrete and mixed continuous/integer sets. Both

DHR and PHR, summarized next, maintain many of

the nice convergence properties of hit-and-run,

including polynomial mixing time for some classes

of sets.

DHR defines its line set using a bidirectional

random walk, called a biwalk. Whereas classical

Markov chains such as the nearest neighbor

random walk or the coordinate direction random

walk fail to converge to a target distribution p on

general discrete sets, because they can get trapped

in isolated regions of the support set, DHR

converges because it retains the global reaching

property of hit-and-run.

Consider a finite set Swith amembership oracle that

is a subset of B given by a a bounded hyper-rectangle

intersected with the n dimensional integer lattice 
n.

The third step applies aMetropolis filter with respect to

the target distribution to accept or p reject the

candidate point and complete the transition of DHR.

The DHR algorithm follows.

Discrete Hit-and-Run (DHR)

Step 0 Initialize X0 2 S and set k ¼ 0.

Step 1 Generate a biwalk by generating two

independent, nearest neighbor random walks

inB that start at Xk and end before they step out

of B. The biwalk may have loops but has finite

length with probability one. The sequence of

points visited by the biwalk is stored in an

ordered list.

Step 2 Generate a candidate point Z by choosing

a point uniformly distributed from the

intersection of the list and S. Note the

intersection always contains at least one

point, the current point Xk.

Step 3 Accept or reject the candidate point Z with

a Metropolis filter for the target distribution p,

Xkþ1 ¼ Z w:p: min 1; pðZÞ=pðXkÞf g
Xk otherwise:

	

Step 4 If a stopping criterion is met, stop. Otherwise

increment k and return to Step 1.

The reason for employing two independent nearest

neighbor walks to define the line set in Step 1 instead of

one walk, and for working with the ordered sequence

of points in Step 2 as opposed to the set of distinct

points visited, is to ensure symmetry of the candidate

generator Markov chain. It is easy to construct

examples where symmetry fails by employing

a single nearest neighbor random walk and/or use the

set of distinct points visited (Baumert et al. 2009). The

Markov chain of DHR is globally reaching. The global

reaching property together with symmetry and other

characteristics imply that DHR converges to the target

distribution p as desired.

An upper bound on the mixing time of DHR to

a uniform distribution is given in Baumert et al.

(2009), and polynomial upper bounds for four

examples are given. The four examples include:

a box within a box, a wedge inside a cube, multiple

cubes inside a cube, and isolated yet aligned points

within a cube. Note that conventional random walks

such as the nearest neighbor random walk and the

coordinate direction random walk also mix in

polynomial time on the first two examples; however,

both of these walks get stuck in isolated regions of S in

the third and fourth examples and fail to converge to

a uniform distribution. A fifth example given in

Baumert et al. (2009) of diagonal points inside a cube

only yields exponential bounds for the mixing time,

although convergence is still maintained.

The success of discrete hit-and-run with random

biwalks inspired the development of pattern

hit-and-run for mixed continuous/integer domains.

The biwalk in DHR is computationally expensive to

implement because each move in the biwalk requires

a randomization, and the list associated with the biwalk

must be stored to perform the acceptance-rejection

step. A more efficient implementation was introduced

in Mete et al. (2011), where the biwalk is defined
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with the use of patterns, visualized as a repetition

of n step-sizes. An advantage to the use of

a pattern-generated biwalk is that the pattern is easily

generated with only n random number generations, and

the acceptance-rejection on the biwalk can be

performed by generating a single random number and

analytically mapping it to a point on the biwalk. In

Mete et al. (2011), two methods for generating patterns

are defined; a sphere biwalk and a box biwalk. PHR

with either sphere or box biwalk preserves the

convergence properties of hit-and-run to a target

distribution, and PHR with sphere biwalk converges

to continuous hit-and-run as the mesh of the discretized

points becomes finer, approaching a continuum. PHR

with box biwalk converges to a variation of hit-and-run

where the direction distribution is uniform on the

surface of a box, instead of the common surface of

a hypersphere.

When the feasible set S is ill-structured, the

acceptance-rejection on the intersection of the biwalk

and S is inevitable. However, a well-structured set of

interest is an integer or mixed continuous/integer

polytope, as often arises in integer programming or

mixed integer linear programming feasible sets.

Mete and Zabinsky (2012) remove the inefficiency

that arises from rejecting infeasible points, and utilize

the linearity of the constraints defining the polytope

to directly sample from the intersection of the biwalk

and the polytope. This provides an efficient variation

of pattern hit-and-run that converges to a target

distribution on a discrete or mixed continuous/discrete

polytope.

Convergence to p on a general discrete polytope is

not simple to attain. For example, a nearest neighbor

random walk will not converge to a uniform

distribution on a thin polytope that has isolated points

without feasible adjacent neighbors. PHR is able to

maintain the global reaching property on any

polytope by determining all the feasible points on the

biwalk, even though they may not be adjacent. Mete

and Zabinsky (2012) derive a method to analytically

generate a uniform point on the intersection of a biwalk

and a discrete polytope by determining the number of

feasible points on the biwalk and mapping a uniform

point on ½0; 1
 to a uniform feasible point on the biwalk.

They extend the idea to a mixed continuous/discrete

lattice of a polytope.

Moreover, PHR converges to a uniform distribution

in polynomial time on a class of discrete polytopes;

specifically, discrete polytopes that are defined by

a finite number of knapsack constraints i.e.,Pn
j¼1 aijxj � bi where aij are nonnegative and bi are

positive for i ¼ 1; . . . ;m and the number of constraints

m is independent of the number of dimensions n. This

polynomial time performance and the convergence of

PHR to hit-and-run on continuous sets suggests the

potential efficiency for hit-and-run samplers on

a broad class of sets.

Hit-and-Run for Global Optimization

Hit-and-run has been successfully applied to

optimization, initially continuous problems, and

expanded to mixed continuous/integer problems

(Bertsimas and Vempala 2004; Kalai and Vempala

2006; Mete et al. 2011; Romeijn and Smith 1994;

Shen et al. 2007; Zabinsky 2003; Zabinsky et al. 1993).

Consider the following global optimization

problem:

minimize f ðxÞ
subject to x 2 S � B:

An initial application of hit-and-run to optimization

was called Improving Hit-and-Run (IHR) by Zabinsky

et al. (1993), which modifies Step 3 in Algorithm 2 by

simply accepting a candidate point only if it has an

improving objective function value, as follows:

Step 3 Complete the transition to Xkþ1 where,

Xkþ1 ¼ Z if fðZÞ < fðXkÞ
Xk otherwise:

	

IHR has been successfully applied to realistic

problems (Zabinsky et al. 1992, 2006). The

complexity of IHR is, on average, of Oðn5=2Þ for

a certain class of convex programs (Zabinsky et al.

1993). The direction distribution of IHR on elliptical

programs, as defined in Zabinsky et al. (1993), is

a multivariate normal distribution with mean zero

and covariance matrix equal to the Hessian inverse of

the objective function, H�1. If the covariance matrix is

the identity matrix, then the direction distribution is

simply HD. Although the Hessian is not typically

known, the results indicate the ability to guide the

direction distribution for better performance.
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Romeijn and Smith (1994) embedded hit-and-run

into a simulated annealing algorithm and called it

Hide-and-Seek. They added acceptance probabilities

according to the Metropolis criterion with

a temperature parameter Tk so that Step 3 becomes

Step 3. Accept or reject the candidate point Z

according to a Metropolis filter with temperature Tk,

Xkþ1 ¼ Z w:p: min 1; e�ðfðZÞ�fðXkÞÞ=Tk

 �

Xk otherwise:

	

A property of Hide-and-Seek is that it converges to

a Boltzmann T distribution, for a fixed temperature

(Bélisle et al. 1993). For a general cooling schedule,

Romeijn and Smith (1994) showed that if

Hide-and-Seek ran long enough at each temperature

value to converge to its stationary Boltzmann

distribution, then the number of these temperature

values would be linear in dimension. This led to an

analytically derived adaptive cooling schedule, which

was later extended to apply to both continuous and

discrete global optimization problems (Shen et al.

2007). The analysis was motivated by the result that

a sequence of such Boltzmann distributions achieves

a linear complexity on the average number of function

evaluations. Hit-and-run embedded as a candidate

generator in simulated annealing has both analytical

and numerical success.

Even though the acceptance probability for

simulated annealing is interpreted as aiding the

algorithm to escape local optima, simulated annealing

has also been successfully applied to convex programs.

Bertsimas and Vempala (2004) and Kalai and Vempala

(2006) used hit-and-run as a candidate generator in

a simulated annealing-type algorithm for solving

convex programs with a membership oracle. In Kalai

and Vempala (2006), simulated annealing is shown to

converge quickly, and under certain conditions, the

Boltzmann distribution is proven to be optimal for

annealing on convex problems.

Simulated annealing on finite combinatorial

problems has been successful; however, the candidate

point generator is specifically chosen for each

problem. Pattern hit-and-run, for integer or mixed

continuous/integer sets, has been embedded into

simulated annealing in Mete et al. (2011) and

numerically shown to be very effective on many test

problems.

See

▶Global Optimization

▶Markov Chain Monte Carlo

▶Monte Carlo Simulation

▶ Simulation of Stochastic Discrete-Event Systems

References

Andersen, H. C., & Diaconis, P. (2007). Hit and run as a unifying
device. Journal de la societe francaise de statistique & revue

de statistique appliquee, 148(4), 5–28.
Baumert, S., Ghate, A., Kiatsupaibul, S., Shen, Y., Smith, R. L., &

Zabinsky, Z. B. (2009). Discrete hit-and-run for generating
multivariate distributions over arbitrary finite subsets of
a lattice. Operations Research, 57(3), 727–739.

Bélisle, C. J. P., Romeijn, H. E., & Smith, R. L. (1993).
Hitand-run algorithms for generating multivariate
distributions. Mathematics of Operations Research, 18,
255–266.

Berbee, H. C. P., Boender, C. G. E., Rinnooy Kan, A. H. G.,
Scheffer, C. L., Smith, R. L., & Telgen, J. (1987).
Hit-and-run algorithms for the identification of
nonredundant linear inequalities. Mathematical

Programming, 37, 184–207.
Bertsimas, D., & Vempala, S. (2004). Solving convex

programs by random walks. Journal of the ACM, 51(4),
540–556.

Chen, M. H., & Schmeiser, B. W. (1996). General hit-and run
Monte Carlo sampling for evaluating multidimensional
integrals. Operations Research Letters, 19, 161–169.

Ghate, A., & Smith, R. L. (2009). A hit-and-run approach for
generating scale invariant small world networks. Networks,
53(1), 67–78.

Kalai, A. T., & Vempala, S. (2006). Simulated annealing for
convex optimization. Mathematics of Operations Research,

31(2), 253–266.
Kannan, R., Lovász, L., & Simonovits, M. (1997). Random

walks and an O*(n5) volume algorithm for convex bodies.
Random Structures and Algorithms, 11, 1–50.

Kaufman, D. E., & Smith, R. L. (1998). Direction choice for
accelerated convergence in hit-and-run sampling.
Operations Research, 46(1), 84–95.

Kiatsupaibul, S., Smith, R. L., & Zabinsky, Z. B. (2011).
An analysis of a variation of hit-and-run for uniform
sampling from general regions. ACM Transactions on

Modeling and Computer Simulation (ACM TOMACS),

21(3), 16:1–16:11.
Lovász, L. (1999). Hit-and-run mixes fast. Mathematical

Programming, 86, 443–461.
Lovász, L., & Vempala, S. (2006). Hit-and-run from a corner.

SIAM Journal on Computing, 35(4), 985–1005.
Mete, H. O., Shen, Y., Zabinsky, Z. B., Kiatsupaibul, S., &

Smith, R. L. (2011). Pattern discrete and mixed hitand-run
for global optimization. Journal of Global Optimization,

50(4), 597–627.

H 728 Hit-and-Run Methods

http://dx.doi.org/10.1007/978-1-4419-1153-7_1142
http://dx.doi.org/10.1007/978-1-4419-1153-7_1164
http://dx.doi.org/10.1007/978-1-4419-1153-7_200485
http://dx.doi.org/10.1007/978-1-4419-1153-7_959


Mete, H. O., & Zabinsky, Z. B. (2012). Pattern hit-and-run for
sampling efficiently on polytopes. Operations Research

Letters, 40, 6–11.
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., &

Teller, E. (1953). Equation of state calculations by fast
computing machines. Journal of Chemical Physics, 21,
1087–1090.

Romeijn, H. E., & Smith, R. L. (1994). Simulated annealing for
constrained global optimization. Journal of Global

Optimization, 5, 101–126.
Romeijn, H. E., Zabinsky, Z. B., Graesser, D. L., & Neogi, S.

(1999). New reflection generator for simulated annealing
in mixed-integer/continuous global optimization. Journal
of Optimization: Theory and Applications, 101(2),
403–427.

Rubinstein, R. Y., & Kroese, D. P. (2008). Simulation and the

Monte Carlo method (2nd ed.). Hoboken, NJ: Wiley.
Shen, Y., Kiatsupaibul, S., Zabinsky, Z. B., & Smith, R. L.

(2007). An analytically derived cooling schedule for
simulated annealing. Journal of Global Optimization, 38,
333–365.

Smith, R. L. (1984). Efficient Monte Carlo procedures for
generating points uniformly distributed over bounded
regions. Operations Research, 32, 1296–1308.

Zabinsky, Z. B. (2003). Stochastic adaptive search for global

optimization. Boston: Kluwer.
Zabinsky, Z. B., Graesser, D. L., Tuttle, M. E., & Kim, G. I.

(1992). Global optimization of composite laminate using
improving hit and run. In C. A. Floudas & P. M. Pardalos
(Eds.), Recent advances in global optimization

(pp. 343–365). Princeton, NJ: Princeton University Press.
Zabinsky, Z. B., Smith, R. L., McDonald, J. F., Romeijn,

H. E., & Kaufman, D. E. (1993). Improving hit and run
for global optimization. Journal of Global Optimization, 3,
171–192.

Zabinsky, Z. B, Tuttle, M. E., Khompatraporn, C. (2006).
A case study: Composite structure design optimization.
In J. Pinter (Ed.), Global optimization: Scientific and

engineering case studies (pp. 507–528). New York:
Springer-Verlag.

Homogeneous Lanchester Equations

Simple Lanchester equations with one equation for

each side. These equations are used when the

weapons for each side are homogeneous in nature (all

small-arms) or as a simplified approximation of

a heterogeneous situation.

See

▶Lanchester’s Equations

Homogeneous Linear Equations

A set of linear equations of the form Ax ¼ 0.

Homogeneous Solution

A solution to the set of equations Ax ¼ 0. The solution
x ¼ 0 is called a trivial solution, while a solution

x 6¼ 0 is called a nontrivial solution.

Horn Clause

A logical expression of the formA ! C, where A (the

antecedent) is a simple conjunction of basic (atomic)

propositions and C (the consequent) is either null or is

a single atomic proposition.

See

▶Artificial Intelligence
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Introduction

Hospitals represented a growing $760 billion industry

in the U.S. in 2009 and were responsible at that time for

about 32.6% of the nation’s health care expenditures.

There are 5,815 registered hospitals in U.S., and they

have treated 127 million people in emergency

departments, admitted 35.1 million for in patient

care, and provided 642 million outpatient visits.

These hospitals employ 5.4 million professionals or

34.6% of the all health care jobs in U.S. The effect of

hospital expenditures on total output in U.S. economy

reaches $2.5 trillion (AHA 2011).
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There are several types of hospitals: acute care

(i.e., defined to be those hospitals with average

lengths of stay less than 30 days); psychiatric

hospitals; chronic rehabilitation; nursing homes; and

Federal (e.g., Veterans Administration Hospitals). The

staffed hospital capacity in the U.S. is about 951

thousand beds. The majority of the hospitals are

not-for-profit community hospitals (50.3%), and 17%

are investor owned (for-profit) community hospitals.

Fifty-seven percent of the community hospitals are

part of a system, i.e., more than one hospital managed

by a central organization. Almost 30% of the

community hospitals are part of a network—hospitals,

together with physicians and other providers including

insurers, coordinate the care delivery in a given

community. The major issues linked to the entire

hospital industry may be summarized as access or

availability, costs, and (broadly defined) quality of care.

The key issues and trends associated with these concepts

are the following (US Department of Labor 2010):

Access. In 1965, two government-sponsored health

insurance plans were created in the U.S., Medicare and

Medicaid. The Medicare program provides health

insurance for people over 65, the disabled, and

people with end-stage renal disease. The Medicaid

program provides health insurance for people whose

income and resources are below a level established by

the individual state-government-sponsored health

insurance programs. Despite this, there remain over

51 million uninsured people in the U.S., resulting in

a large volume of uncompensated hospital care.

In addition, insurance company policies on

pre-existing conditions, people changing their jobs,

and insurance companies deprive many people access

to care. Health care reform in the U.S. has been enacted

to overcome some of these access concerns. The

Patient Protection and Affordable Care Act and

the Health Care and Education Reconciliation Act

of 2010 became law in March, 2010. Their

implementation, however, will take until 2014 and

beyond. By 2019, the uninsured population maybe

cut in half, with other changes taking effect sooner,

thus easing the access to care for families with

children, individuals, people with disabilities, seniors,

and young adults.

Costs. Due to spiraling health care costs over the

years, cost containment policies have been a focal

point for payers, including the U.S. Federal

government programs. The introduction of the

prospective payment system (PPS) in 1983 created

strong incentives for hospitals to reduce costs. Prior

to PPS, hospitals were reimbursed on the basis of

actual costs plus an allowed return on equity.

Following PPS, hospitals have been reimbursed by

a fixed fee per patient for each diagnosis-related

group (DRG). The DRG is the basic unit of analysis

for inpatient hospitalization. The Federal government

established DRGs as a way to pay hospitals for

Medicare patients; many other payers also use DRGs.

Each DRG has a numeric weight or case-severity

rating reflecting the national average hospital

resource consumption by patients for that DRG

compared to the national average resource

consumption of all patients. This has forced hospitals

to adapt to a new price-competitive environment.

Quality of care. Due to the introduction of PPS, the
shift to a price-competition situation, and a fear that

hospitals might compromise quality of care to enhance

their profitability, there was a surge in efforts to

measure, monitor, and improve hospitals’ delivered

level of quality of care. Part of this effort was also to

satisfy the employers who sought relationships with

hospitals providing low cost but high quality care. The

key outcome measures have typically included

mortality rate, infection rate, complication rate,

readmission rate (also referred to as adverse

outcomes), and functional status. Much of the data

analyses involved here is very similar to that used in

device and system reliability analyses conducted by

operations researchers (Fries 1997; Dhillon 2000).

Efforts towards quality of care created a new

discipline called outcomes research. Since patients

differ in the severity of their illnesses and the

number and nature of medical and social problems

they bring with them, there was the recognition of the

need for adaptation of risk-adjustment methods

(Schwartz et al. 1996). This is quite important in

order that outcomes from patients with different

severity of illness can be more confidently compared

among hospitals.

In the past, many state agencies and private

coalitions have used report cards to evaluate

risk-adjusted hospital outcomes for specific conditions

or procedures, while providing information that

patients, employers, and health plans can use to make

better decisions. In general, however, hospital leaders

view quality-of-care report cards with little enthusiasm

and are skeptical about their usefulness. The extent of
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lack of knowledge and skepticism appears to vary

by hospital size and service volume, ownership type,

the method used to generate outcome information

(administrative data vs. clinical data), and the time

lag between submission of data and publication

(Romano et al. 1999).

The U.S. Department of Health and Human

Services developed a Web site, Medicare Hospital

Compare, where potential patients can explore and

compare quality outcomes:

1. Process of care measures in surgical care, heart

attack or chest pain, pneumonia, heart failure, and

children’s asthma;

2. Outcome of care measures including mortality,

readmission rate, use of medical imaging;

3. Survey of patients’ hospital experiences; and

4. Medicare payment and volume data.

Major Trends and Issues in Hospital Industry

Strongly influenced by PPS, the hospital industry has

undergone substantial transformations, most

importantly from the rise of managed care plans and

the concomitant rise of integrated delivery systems.

These areas are of interest to the operations research

field because of its ability to assist managers in

analyzing systems, designing or redesigning systems,

and implementing appropriate changes in systems.

Also of interest are the processes that enable efficient

and effective delivery modalities. These include

innovations to disease management and the delivery

process, as well as health information technology

(HIT) implementations, of electronic health/medical

records.

Innovation in Health Care Delivery. The

competitive health market, national quality standards,

and outcomes of some delivery processes, will

challenge hospitals and health systems to self

examine their service lines and redesign their

processes and bring innovation and new adaptations

to health care delivery. Many hospitals that belong to

systems must consider health care delivery issues

beyond the hospital. This includes other hospitals in

the system or in the market, service line integrations,

physicians, health care supply chains, and related

entities. An important tool to integrating all these

operations is the application of information

technology. This will not only help hospital service

delivery, but also help to develop a new modality

termed the Medical Home—a patient centered

delivery system that will coordinate and optimize

the health status of each patient (Bradley et al. 2012;

Rich et al. 2012).

Evidence based medicine where outcome driven

best-practices surface as value to both patients and

providers requires redesign of the care delivery

process in health care facilities. The goals of redesign

processes include elimination of variation in care

delivery and produce higher quality outcomes.

Hence, hospitals can employ six-sigma,

reengineering or lean engineering techniques to

achieve their evidence based process delivery goals

(Paulus et al. 2008).

As part of redesign effort, the adaptation of

Electronic Medical Records (EMR) will alleviate

some of the major hospital process and quality issues.

The Veterans Administration Hospitals were early

adopters of complete EMR and have reaped benefits

not only in outcomes, but also in efficient delivery

(Ozcan and Luke 2011).

Pay for Performance. Pay-for-Performance (P4P)

programs are evolving to include both quality and

costs. P4P financially challenges providers to

consider to increase quality and safety, thus improve

patient outcomes. Accompanying this accountability,

is increased transparency on public posting of quality

and patient safety data. In addition to these,

Accountable Care Organizations (ACOs) may

become a reality to allow qualified providers to

assume responsibility for overall costs and quality of

care for certain populations through bundled payment

structures. This may require hospitals to employ

more primary care physicians to coordinate the care

and enhancing the access. Altogether, the integrated

models will have a major role in increasing efficiency,

lowering costs, and improving outcomes (Fisher et al.

2007; Shortell et al. 2010).

Role of OR/MS

Specific problem day-to-day hospital management

areas in which OR/MS techniques have had some

success include: outpatient/ inpatient scheduling;

service capacity planning; service demand

forecasting; service system design; site location

selection; health care supply chains; staffing and
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scheduling; strategic planning; and service delivery

(Ozcan 2009) Promising possibilities relative to the

of access, cost, and quality include:

• Measuring of quality of care on the outpatient side,

• Measuring effectiveness in hospitals, including

economies-of-scale and economies of scope. What

causes a hospital to be evaluated as efficient—how

does it apportion its resources, what procedures and

processes does it employ to set itself apart from

poorly performing counterparts?

• Predicting hospital risk, early disease diagnosis and

treatment, and outcome prediction.

• How does the volume of services in a hospital affect

cost and quantity?

• Are the current compliance measures for process of

care (in surgical care, hearth attack or chest pain,

pneumonia, hearth failure, and children’s asthma)

reasonable proxies for quality of care assessment?

What other measures will are needed to form amore

comprehensive outcome portfolio.

• What methods and cultural adaptations or mandates

are needed to produce nationwide reports for

mishaps in hospital delivery processes. e.g.,

medication errors, infections, patient falls?

• Measuring the effects of reform efforts.

• What are the impacts of new technologies on

efficiency and outcomes?

Concluding Remarks

Only when the answers (or partial insights) to some of

the above issues are available will hospital decision

makers have the information and tools necessary to

make informed tradeoffs and to improve operations

both tactically and strategically (Ozcan 2009,

Chapter 3). Probably no other area of the economy

can benefit more from application of OR/MS than the

health care area in general, and the hospital sector in

particular.

See

▶Decision Analysis

▶Health Care Management

▶Health Care Strategic Decision Making
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Hundred Percent Rule

Given an optimal basic feasible solution to

a linear-programming problem, this rule allows for

simultaneous changes in objective function coefficients

or right-hand-side values of a linear-programming

problem that maintains the optimality of the current
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basis. The name comes from the fact that the sum of the

ratios of the proposed changes over their respective

possible ranges must sum to one or less.

See

▶ Sensitivity Analysis

▶Tolerance Analysis
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Hungarian Method

An algorithm for solving the assignment problem that

is based on the following version of a theorem that was

first stated by the Hungarian mathematician König and

later generalized by the Hungarian mathematician

Egerváry: if A is a matrix and m is the maximum

number of independent zero elements of A, then m

lines can be drawn in the rows and columns of

the matrix that contain all the zero elements of A.

(A set of elements of a matrix is said to be independent

if no two elements lie in the same row or column.)

See

▶Assignment Problem
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Hybrid System

A dynamic system that is modeled with a state

representation containing both a discrete-valued and

continuous-valued component.

See

▶ Simulation of Stochastic Discrete-Event Systems
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Hypercube Queueing Model

Richard C. Larson

Massachusetts Institute of Technology, Cambridge,

MA, USA

Introduction

The hypercube queueing model was developed in the

late 1960s and early 1970s, a period driven by

a national commitment to devote scientific energies

to the USA’s urban ills. The initial application focus

for the model was the deployment of urban police

patrol cars. Issues that could be examined with the

model involved determining appropriate numbers of

cars to allocate in each part of the city, spatially

deploying the cars to police beats or other territories,

and evaluating the impact of alternative dispatch

policies. Over the years, the model has been applied

to a large number of police departments and ambulance

services, and to other services as well, both public and

private. This article reviews the history of the model’s

development, the key ideas of the model, and its

implementation, including the evolution and framing

of the model and its implementation impact.

Early Work

The hypercube model’s roots started with the author’s

work on the Science and Technology Task Force of

President Johnson’s Commission on Law Enforcement

and Administration of Justice (Government Printing

Office 1967) and with MIT-affiliated work with the

Boston Police Department. From numerous hours
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riding around in the rear seats of police patrol cars and

standing behind police radio dispatchers, it was clear

that the fleet of police cars in an area of the city can be

viewed as spatially distributed servers in a queueing

system. Customer inputs to this queueing system are

generated by citizens calling 911 and asking for

emergency on-scene service. Unlike most multi-

server queues, the police queueing system has

a heterogeneous pool of servers. Each server faces

their own workload situation, dependent of local

geography, patterns of customer demand, and

workloads of near-by servers. While writing a Ph.D.

thesis in 1969, the need for a multi-server queueing

model was recognized whose state space retained

knowledge of which servers were available and

which were busy: “If the state of a server is either

‘busy’ or ‘idle,’ then there are 2N possible states of

the system, corresponding to all possible combinations

of servers busy and idle. It is convenient to represent

a particular state i by a binary number, the ‘ones’

corresponding to the busy servers and the ‘zeros’ to

idle servers. The state of server l is represented by

the lth most significant digit. For instance, state

i ¼ 01000 . . . corresponds to server N � 1 busy and

all others idle. State i ¼ 2N � 1 implies that all servers

are busy and that a queue may exist.” (Larson 1969,

p. 124). In the thesis, these hypercube issues are discussed

further, and illustrated by numerical examples worked

out for small N. But the algorithmic implementation for

arbitrary N required further development.

Simultaneously with the thesis, the author sought to

confirm the nature of the spatial queueing by

conducting a two-week data gathering study in the

New York Police Department (NYPD), (Larson 1971).

Data were collected by the passenger officer in 54

precinct tours, where a precinct tour is defined to be

a full set of operational data from one eight-hour tour or

shift gathered over all police vehicles (typically 12 or

less) fielded in a precinct or local area police command.

While queueing in the usual sense was rare, queueing in

the sense of probabilistic congestion was common.

To understand probabilistic congestion, suppose

that one lives in police beat A and calls 911

requesting rapid on-scene police response. Further,

suppose the police car assigned to beat A is busy

with customers a fraction of time rA, representing

the utilization factor of the car ostensibly assigned to

beat A, the so-called A car. It is assumed that the time

the caller needs police service is independent of the

real-time status of car A, busy or free. Thus, when

calling 911, there is a probability rA that the beat car

is currently unavailable for immediate dispatch to the

calling address. In that event, the dispatcher will select

a near-by car that is available and dispatch that one.

Such inter-beat dispatches are sometimes called

workload sharing dispatches, because car B, say, will

respond when available into beat A and, conversely,

car A will occasionally respond into beat B, when

needed. In that way, cars A and B share each other’s

workload. In general, a large number of cars share

each other’s workload in complex ways. Now

suppose that the utilization factors of all cars A, B,

C, etc. are all equal, that is, rA ¼ r
B
¼ r

C
¼ . . . ¼ r.

In that case, whenever anyone in the service region

calls 911, the chance that the responding car will be

their beat car will be 1 � r. Consequently, the fraction

of dispatches that are inter-beat or workload sharing

dispatches is equal to r. In urban America, a typical

value for in the 1960s was 0.5; in the 2010’s, typical

values ranged from 0.5 to 0.8.

The results of checking the prediction of this simple

aggregate queueing model for inter-beat dispatching

for NYPD Division 16, Tour 3, Friday, February 28,

1969, were as follows:

Precinct
Percentage of time
unavailable

Percentage of dispatches
that are Inter-beat

103 48 55

105 59 57

107 38 48

109 38 37

111 36 48

As can be seen, the extent of inter-beat dispatching

is never significantly less than the percentage of time

unavailable, and it may be significantly more. There

are sound theoretical arguments for suggesting that the

simple Poisson model above represents a lower bound

on the amount of inter-beat dispatches (Larson 1969).

The results were important for two reasons. First,

the percentage of dispatches that are inter-beat

dispatches is a useful performance measure of the

fielded police force. The officers in each police car

are, in theory, supposed to build an identity with the

beat to which they are assigned, their patrol beat. This

beat identity should cause the officer to feel personally

responsible for public order in that beat. However, as it

could have been seen empirically and argued

theoretically, a patrol car is quite frequently
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dispatched to incidents in beats other than its

designated beat, a phenomenon known in police

circles as flying. The more flying there is, the less the

officer builds a strong beat identity. Prior to the

research described here, police commanders, in

general, had no idea that flying was as rampant as it

in fact was. Later, in the 1990s, it was far worse.

Second, the results, theoretical and empirical,

demonstrated that the fielded police force is

a complex spatially distributed queuing system, with

the statuses and workloads of the various servers

heavily dependent on one another.

Based on these results and the preliminary

hypercube models described in Larson (1969), a more

general model was developed. Prior to this work,

there was very little in terms of analytical guidance

for the police planner who wanted to design police

beats. A common practice had been to design each

beat to have equal internally generated workload.

It was thought that equal internal workload would

result in equal workloads experienced by the

officers in the police cars. Subsequent hypercube

developments and related empirical studies

showed that this rule-of-thumb can be very wrong

(Larson 1974b).

Central Ideas on State, Transition, and
Probabilities

State — The hypercube model can be visualized as the

corners and edges of a regular cube. For anN ¼ 3 police

car system, for example, one state of the system could

be specified in words: Unit 1 is free or available; Unit 2

is busy; Unit 3 is busy. This state would be depicted

by the binary set {0, 1, 1}, which is a corner of the

three-dimensional cube. The state {0, 0, 0} represents

the situation in which all three units are simultaneously

free. The state {1, 1, 1} represents a situation is which

all units are simultaneously busy and in which a queue

of waiting 911 callers may exist. If there is a queue, the

augmentation to the cubic state space may be thought of

as an infinitely long tail emanating from state {1, 1, 1},

a situation resembling a Chinese kite.

In generalizing the three-dimensional cube, the

analogous figure for an N ¼ 2 unit system is

a square. For N > 3, visualization extends into

hyperspace by imagining a unit-volume cube residing

in the positive orthant of an N dimensional hyperspace.

This is the motivation for calling the model the

hypercube model, a model having 2N states.

Transitions — A state transition occurs whenever

a server changes status from free to busy or from busy

to free. Each such transition occurs only along a given

edge of the hypercube. This requirement imposes the

assumption that only one server (e.g., police car) is

assigned to each customer, that is, there are no bulk

services of customers.

Transitions occur probabilistically. Downward

transitions, corresponding to completions of service

on customers, occur for server j with rate mj. It is

assumed that the service time distribution for server j

is negative exponential. The rate of upward transitions

from a given state to another adjacent state is

determined by a complex set of dispatching rules or

server assignment policies. Computation of the upward

transition rates is a daunting task for a human user of

a large system and has to be automated. It is assumed

that from each area within the service territory,

customers arrive as in a Poisson process, each

process in non-overlapping neighborhoods operating

independently. Thus, once the set of upward transition

rates is known, the process governing upward

transitions from any given state is Poisson. Hence,

the entire model is a continuous-time Markov model.

State Probabilities — The system performance

measures of the hypercube model can be obtained

once the limiting probabilistic behavior is

determined. To do this requires the computation of

the limiting or steady-state probability that the

system is operating in some state, i ¼ 0,1,. . .,

2N � 1, where the hypercube vertices are indexed in

some convenient way. This is simply done by

employing a balance of flow argument: In the steady

state, the probability that the system will enter state i

in any small interval of time Dt must equal the

probability that the system will exit that state in

a time interval of length Dt. That is, inward and

outward probability fluxes must be equal. Iif they

were not, then there would be a net buildup or

builddown of probability in state i, a contradiction to

the steady-state hypothesis. The balance-of-flow

equations are generated by constructing an

N-dimensional sphere around each hypercube vertex,

and then equating outward flow to inward flow.

In general, there are 2N equations to solve, with one

being redundant and replaced by the condition that the

sum of all probabilities must equal unity.
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Campbell was the first to create a general computer

code for the N-server hypercube model (Campbell

1972). Larson generalized that code, a program

written in PL/1, and released it into the public

domain in 1975 (Larson 1975b). That version

contained several algorithms that sped up the

execution time of the model, including an enhanced

Gauss-Seidel procedure, a general method for

performing a complete unit step tour of the

hypercube and more. The code implemented all of

the ideas discussed in the first journal paper

describing the model (Larson 1974a).

The Physical Assumptions of the
Original Model

The original model, called the basic hypercube model,

required the following assumptions (Larson 1978;

Larson and Odoni 1981):

1. Geographical atoms. The area in which the system provides
service can be broken down into a number NA of statistical
reporting areas or geographical atoms. These might
correspond, for instance, to census blocks, small collections
of city blocks, or police reporting areas. In the model, each
atom is modeled as a single point located in the center of the
atom. Each can also be viewed as a node or vertex of
a transportation network over which the servers operate.

2. Independent Poisson Arrivals. Each atom is viewed as an
independent Poisson generator of customers requiring
on-scene service, with the rate lj being the Poisson arrival
rate from atom j.

3. Travel times. Data are available to estimate the mean travel
time tij from each atom i to each atom j. In the absence of
such data, plausible approximations for travel times can be
made using analytical models and/or transportation network
algorithms.

4. Servers. There are N spatially distributed servers or response
units, each of which can travel to any geographical atom in
the service region.

5. Server locations. The server location methodology includes
both the probabilistic locations of patrolling police cars and
the deterministic locations of ambulances. Define
a probability lnj ¼ probability that server n is located in atom
j at a random time during which server n is known to be free
or idle. For an ambulance n with a known fixed location
(when idle), there is one lnj having value unity and all other
{lnj} (for fixed n) equal to zero. For a police car, which may
have to patrol several atoms, several lnj 6¼ 0 are assigned,
corresponding to the atoms in which the car patrols.

6. Server assignment. In response to each customer call, exactly
one server is dispatched to the customer, assuming that at
least one server is currently available in the service region. If

(continued)

no unit is currently available, there are options of queueing or
forwarding the customer to some backup service, for
example, a private ambulance service.

7. Fixed preference dispatching. Server assignment takes place
according to a fixed preference procedure. That is, for each
atom there is an ordered list of preferred servers to dispatch
to that atom. The dispatcher will search that list in order and
always dispatch the first idle server. Usually the list is
generated by concerns of geography, such as travel time
minimization, but on occasion other concerns such as
assigning bilingual personnel could be important.

8. Service times. The service time associated with servicing
a customer, including travel time, on-scene time, and
possible related follow-up time, has a known average value.
In general, each server may have its individualized average
value. Service-time distribution, as discussed above, is
assumed to be negative exponential, an obvious crude
approximation in some cases.

9. Service-time dependence on travel time. Variations in service
times that are due solely to variations in travel time are
assumed to be second order compared to variations of
on-scene time and related off-scene time.

Given the assumptions above, the model is used to

generate a variety of useful performance measures

related to server workloads, travel times throughout the

service region and disparities among neighborhoods in

quality of service received (Larson 1974a, b).

In practice, no actual system will ever conform

exactly to all the model’s assumptions. There is always

a balance to be struck between modeling simplicity and

operational reality, with the determining factor being the

quality of decisions that can be derived from the model

with limited expenditure of effort.

Approximations

In 1973, the author received a telephone call from the

New Haven, Connecticut police department. The

planners there wanted to use the hypercube model.

This was an exciting offer as it was likely to be the

first real test-bed application. The hypercube model

had been programmed in PL/1 to accommodate up to

15 servers, a limit imposed at the time by the number of

bits in a computer word. If New Haven were like

New York City or Boston, it would be divided into

a number of independently operating precincts or

commands, with typically 8 to 12 servers (police

cars) in each. In New York City and in many other

large U.S. cities, police cars do not routinely cross over

precinct boundary lines, so each precinct can be

modeled independently with the hypercube model.
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For New Haven, however, any police car could be

assigned to virtually any address in the city. In fact,

for the hypercube model, all of New Haven was one

big precinct, with N ¼ 48 police cars. This would

result in a computational problem of note—an

N ¼ 48 hypercube model would require the solution

to 248 simultaneous linear equations! The curse of

dimensionality imposed by the state-space structure

of the hypercube model doubled the size of the state

space with each additional server.

Motivated to solve the New Haven problem,

a simple idea was resorted to: the equations used to

compute performance measures suggested that it was

not necessary to compute the fine grain 2N state

probabilities in order to evaluate the system

performance measures. All that was really needed

were the workloads (utilization factors) of the

respective units and the dispatch frequencies in the

form of the fraction of dispatches that send unit n to

atom j. However, the logic behind this sort of argument

was wrong because there is an implicit assumption that

the units operate independently.

But, in 1975, a probabilistically valid way of

dealing with this lack-of-independence problem was

derived (Larson 1975a). Using an M/M/N queueing

model to represent the aggregate probabilistic

behavior of the system, a set of correction factors

were developed to make the prior approximation

precisely correct for an M/M/N system having

a homogeneous pool of servers with a random

dispatch policy, and approximately correct for the

heterogeneous server system that had to be resolved

by the hypercube model.

Armed with the correction factors, one can write

a set of N simultaneous nonlinear equations whose

solution provides the (approximate) utilization factors

of all the N units. The nonlinear equations have a nice

geometrically decreasing quality that results in

solutions usually within three or four Gauss-Seidel

type iterations. From this result, using the correction

factors again, the fraction of dispatches that send

server n to atom j can be computed. From that, the

problem is solved and all required performance

measures can be found. For a period of two years, the

exact hypercube and the approximate models were run

concurrently with numerous different data sets. In

almost all of the runs, the approximate model was

within about 2% of the exact model’s results. This

accuracy was judged to be within the modeling

accuracy of the exact model. From that point on,

It was decided to proceed only with the approximate

model in implementations. The results of the use of the

approximate model in NewHaven were documented in

Chelst (1975).

Additional Hypercube Model Applications

Emergencymedical services. In Brazil, the hypercube
model has been applied and developed further in

a number of areas. A key focus has been on the

configuration and operation of the emergency medical

services on highways, which operate with dispatching

policies somewhat different from police and ambulance

services in urban settings, (Iannoni and Morabito 2007;

Morabito et al. 2008; Iannoni et al. 2009). Their work

includes heuristic-based location optimization, dispatch

of multiple units, back-up units, non-homogeneous

units, plus implementation issues.

Ambulance Location and Relocation.
A significant amount of research has been developed

using the hypercube model as the physics of the

system, while attempting to optimize, usually with

respect to home locations of dispatchable servers.

Because how busy a server is depends on where the

server is located, and location of an ambulance is

a decision variable, finding the busy probability of

each individual server a priori becomes virtually

impossible. Embedding the hypercube model or its

approximations in meta-heuristic search methods

enables the estimation of individual server

busy-probabilities at run time, thereby greatly

increasing the location models’ realism.

In an effort to increase the accuracy and realism of

the Daskin (1983) maximum expected coverage

location model (MEXCLP) that uses a system-wide

ambulance busy probability (estimated a priori),

Saydam and Aytug (2003) developed a genetic

algorithm (GA) that combined MEXCLP with an

efficient approximation of the hypercube model.

Instead of using a system-wide busy probability, this

approach enabled location-specific ambulance busy

probability estimates. They showed that locations

prescribed by the MEXCLP were generally robust,

but the corresponding predicted expected coverage

could be significantly off. Their hypercube embedded

GA model yielded the same solutions as did the

MEXCLP for 17 problems, found better solutions for

51 problems, and, for only four of the 72 problems,

they were off by a very small margin.
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Rajagopalan, Saydam and Xiao (2008) developed

the Dynamic Available Coverage Location Problem

(DACL), where DACL minimizes the number of

ambulances required to cover a city over multiple

time periods when demand is fluctuating. The DACL

takes into account redeployment of ambulances within

a city. It uses the Jarvis (1985) approximation of the

hypercube model inside a Reactive Tabu-Search-based

Incremental Search Algorithm to calculate the

individual server busy probabilities at run time and,

thus, ensures that coverage constraints are not violated.

The Minimum Expected Response Location

Problem (MERLP) minimizes the expected response

time while maintaining coverage requirements

(Rajagopalan and Saydam 2009). Minimizing

expected response times saves lives, prevents

permanent injuries and reduces suffering. In this

model, the Jarvis approximation of the hypercube

model is embedded in a greedy search algorithm to

calculate the expected coverage and to calculate the

expected response time using individual server busy

probabilities (Jarvis 1985).

Implementations

The hypercube decision technology has been tested

extensively (Chelst and Barlach 1981) and

generalized over the years, with almost all upgrades

due to implementation experience and suggestions; see

Larson (1979) for an early detailed technical

description. Among notable improvements is

inclusion of GPS (Global Positioning Satellite)

information or other vehicle locator technologies,

supported by a new hypercube dispatch algorithm

that assigns the closest real-time available response

unit (Larson and Franck 1978).

The hypercube model has been implemented by

police departments in many cities, including

Hartford, Connecticut; Orlando, Florida (Sacks and

Grief 1994); Rotterdam, the Netherlands (Larson and

McEwen 1974); Chapel Hill, North Carolina; Dallas,

Texas; New York City (Larson and Rich 1987; Larson

1979); and Cambridge, Massachusetts. In Hartford, for

instance, the focus was to redesign the spatial

deployment of the police cars so that a number of

them could be freed from the usual 911 responding

force and reassigned to special drug fighting units; this

was successfully done in 1991. Using the model, the

Orlando Police Department in 1992 essentially

redesigned the deployment of its entire force within

a project that implemented a new down-town police

precinct. The Cambridge, Massachusetts Police

Department used the model to demonstrate to city

management the deleterious consequences of

reducing the size of the force in response to the tax

cutting required fromMassachusetts Proposition 2 1/2.

The hypercube model has also been implemented by

ambulance services in Boston (Brandeau and Larson

1986; Hill et al. 1981; Larson 1982) and New York

City. In ambulance deployments, finding nearly

optimal locations for the ambulances was a major task.

The ambulance services coauthors cited here found the

locate-allocate heuristic described in Larson (1979)

extremely robust and useful for this task.

See

▶Markov Chains

▶Markov Processes

▶Queueing Theory

▶RAND Corporation
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Hyperexponential Distribution

A continuous random variable is said to be

hyperexponential (or mixed exponential) when

its probability density function is the convex sum

of exponential density functions. The term

hyperexponential is due to always having a coefficient

of variation greater than 1, which is the coefficient of

variation for an exponentially distributed random

variable.

See

▶Queueing Theory
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Hypergame Analysis

A problem structuring method which addresses

situations of conflict and cooperation between the

independent actors. A key feature is its ability to

represent differing perceptions of the situation which

may be held by different actors.

See

▶ Problem Structuring Methods

Hyperplane

A hyperplane in n-dimensional space is defined by the

set of vectors X ¼ (x1,. . ., xn) that satisfy a linear

function of the form a1 x1 + . . . + an xn ¼ b for given

numbers aj and b. This can be written as ax ¼ b,

a ¼ (a1,. . ., an). For n ¼ 2, the function defines

a line, and for n ¼ 3, the function defines a plane.
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I

Identity Matrix

A square matrix A ¼ aij with aii ¼ 1 and all aij ¼ 0 for

i ¼ j.

See

▶Matrices and Matrix Algebra

IFORS

▶ International Federation of Operational Research

Societies (IFORS)

IFR

Increasing failure rate.

See

▶Distribution Selection for Stochastic Modeling

▶ Failure-Rate Function

▶Reliability of Stochastic Systems

IIASA

▶ International Institute for Applied Systems Analysis

(IIASA)

IID

Independent and identically distributed (random

variables).

Imbedded Markov Chain

An analysis technique used to analyze a queueing system

that is not a continuous-time Markov chain. It appraises

the system at selected time points which allow the system

to be analyzed via a discrete-parameter Markov chain.

The queue length process in the M/G/1 queueing system

is not Markovian, but can be analyzed via a Markov

chain at service completion time points.

See

▶Markov Chains

▶Markov Processes

▶Queueing Theory

Implementation

R. E. D. Woolsey

Colorado School of Mines, Golden, CO, USA

The Watch It and Model It Approach

The primary assumption of this approach to OR

Implementation is that if the OR/MS person is
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sufficiently educated in the theoretical constructs and

methodology that only minimum exposure to the

actual situation is required. This assumption often

works startlingly well in practice because the

graduates of such programs are customarily drawn

from the already rich and/or extremely bright quartile

of the population. In short, entrance to these schools

requires either massive amounts of money or

outstanding academic performance which generates

a scholarship. The argument is as follows.

The product of this approach, when confronted with

a real-world problem, could do a memory search from

their conceptual education and unerringly choose the

proper model for the solution of the problem. It is often

implied that the rest is dog work which can be safely

handed to others.

The good news about this approach is that if the

OR/MS person is quite bright, quick and politically

aware, excellent results usually obtain in spite of lack

of knowledge of the system. Any tailoring of the process

again is accomplished quickly due to the acuteness of

the intellect of the person. It must also be pointed out

that the customer is often sufficiently in awe of the

educational, cultural, and economic background of the

consultant that Gestalt psychology plays no small part in

acceptance of models. This approach has been found to

be particularly effective in strategic and high-level

corporate planning with correspondingly high

acceptance by top management. Another way to

characterize situations where this approach does well

is to say that the less measurable the results, the better

the acceptance.

The bad news about this approach is that it almost

uniformly fails in the tactical world. Manufacturing

managers are justly famous for having little time for

academic experts with no shop floor experience. This

often supports the argument about how little OR/MS

has actually been used in the manufacturing workplace

as opposed to the corporate levels mentioned above.

The time it takes to accomplish a Ph.D. militates

strongly against a person having also the shop floor

experience in a manufacturing situation. A story going

the rounds of the profession is of interest here. It is

alleged that a Lanchester Prize winner for nonlinear

optimization was suddenly thrown out of work by the

Army pulling the monetary plug on his particular

Beltway Bandit employer. He well knew that

refineries had a multitude of nonlinear problems in

the production of hydrocarbons. He therefore hide

himself off to the nearest refinery and offered his

services to the refinery manager to solve

his nonlinear refinery optimization problems. He

named a price for his services, and the refinery

manager then asked him how much he knew about

chemical engineering. When he confessed his total

ignorance in this area, the refinery manager politely

asked him how much he was prepared to pay the oil

company for him to learn enough about chemical

engineering to help them! With this cautionary tale,

the difference between conceptual excellence and

practical reality is addressed next.

The principal reason for failure at the tactical level

is that the customer must perceive that the consultant

knows enough about their area so that the consultant

(a) Understands that politics wins over optimality all

the time and

(b) That such knowledge will create respect for what

they have to put up with

Further, people at the tactical level of companies are

not impressed by anyone unless the latter have gone

through the same boot camp learning process that they

have. In short, the author believes that an education

from an eminent institution may be actually more of

something to be overcome than an asset in the milieu

of tactics.

The Get Down and Do It Approach

It is the author’s custom to encourage implementation

in OR by attending conventions and asking the

presenters the following questions.

1. Did you know what was happening on the project

before you modeled it?

If the answer is yes, they are then politely asked:

2. How do you know?

The only acceptable answer is that the presenter

found out by doing the work being modeled under

the conditions of the people who are presently doing

it until they had enough confidence in the presenter

to take a day off and let the presenter do it alone.

Anyone that believes that one can learn enough by

watching should be treated with the amusement

they deserve.

The next question is:

3. Did they accept and use your model?

If the answer is yes, the author proceeds to the last

question which is:
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4. Do you have measurable results in, for example,

dollars at present worth, after tax, adjusted for

inflation?

It is the author’s opinion that people who answer no to

any of the above questions have failed the test of

operations research implementation.

See

▶ Field Analysis

▶ Implementation of OR/MS in the Public Sector

▶ Practice of Operations Research and

Management Science

Implementation of OR/MS in the
Public Sector

Kenneth Chelst

Wayne State University, Detroit, MI, USA

Introduction

The successful use and impact of OR/MS in the public

sector varies by domain. Areas of continuing

operational and policy impact include the military,

energy administration, and environmental quality.

With forest land management, OR/MS successes

extend to all corners of the globe: U.S., Chile, and

New Zealand. When policies are debated with regard

to illicit drugs, prison populations, homeland security,

or air traffic safety, the leading experts are operations

researchers who have made a long-term commitment

to studying the issues. In contrast, the growing list of

city government success stories of the 1970s has now

become an infrequent event. With regard to social

welfare and educational policy, there are no

significant successes to speak of in the U.S. in part

because operations researchers have not even

attempted to penetrate these areas.

The OR/MS literature of the 1960s and 70s began to

document a growing concern about implementation

failure of many OR/MS models and studies in

business. The primary goal of these papers was to

raise the level of awareness of practitioners and cause

them to think beyond the technical validity and

sophistication of their models. They needed to

recognize that OR/MS model implementation often

engenders organizational change. OR/MS practitioners

were encouraged to view factors affecting model

implementation as part of the broader framework of

the difficulty of change management. In this article,

even more complex implementation challenges faced

by OR/MS modelers in the public sector will be

explored.

In the context of this article, the term public sector

covers primarily governmental agencies and services

at every level from local to federal. The focus is mainly

on the U.S. perspective, but also includes the greater

role OR/MS has played in Great Britain and in the

developing world. The term public sector can also be

applied to hospitals, health insurance, other health care

providers, as well as public utilities. The services

provided are of such public importance that in many

countries these organizations and systems are

government run. For example, in Great Britain, there

is one health care system that provides and pays for

services. It was then possible for an OR/MS team to

plan and help successfully launch a medical assistance

hotline called National Health Service (NHS) Direct

(Royston et al. 2003). In the U.S., health care

providers, insurance companies, and power generators

are quasi-public and in some cases regulated

monopolies that receive special oversight from all

levels of governmental. Thus, the factors that affect

implementation are not significantly different from

that of the private sector. If anything, legal and

regulatory restrictions on major decisions encourage

the use of quantitative analysis and models. For

example, major power plant location decisions and

related rate increases require formal analysis and

hearings to justify and assess the impact of these

decisions. Similarly, hospital capacity expansion in the

U.S. has long been governed by a requirement to prove

a need. OR/MS models with explicit assumptions and

logic can be valuable tools in these public presentations.

Public Sector Implementation: Definition

OR/MS models play three distinct roles in the public

sector and successful implementation has a different

meaning in each context. These are:

1. Operating efficiency and effectiveness,

2. Evaluating major policy initiatives, and

3. Public debates
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In the first category, successful implementation has the

same goal as in the private sector. Do managers of the

governmental agency use the model to make decisions

or manage and improve operations? In the second

category, agencies such as the Federal Energy Agency,

U.S. Forestry Service, or the Environmental Protection

Agency are charged with assessing the impact of

changes in policy, budgeting, regulation, and law.

Successful model implementation means that as issues

arise and alternatives are considered, models are run and

their results play an important part in the internal and

external discussions. In essence, model implementation

means the OR/MS study fits Little’s characterization of

model success as “updating the intuition of decision

makers,” (Little 1970), or agrees with Murphy’s goal

of “communicate core insights,” (Murphy 1991). The

fact that politiciansmay choose to override the results of

the analysis is not necessarily reflective of a poorly

designed OR/MS model.

The last category is unique to public decisions. For

macro policy decisions, there is often extensive public

data available for analysis. An OR/MS analyst can

build a model and explore the issue. Successful

modeling is reflected in the OR/MS researcher

playing the role of expert in public testimony before

legislative bodies or being interviewed and quoted in

the mass media. In this role, the OR/MS researcher

may face an ethical dilemma. At what point, if any, as

the public debate evolves, does the researcher move

from the role of analyst, who simply presents findings

and assumptions, to the role of an advocate vigorously

supporting and defending positions.

Governmental Operations

Many of the barriers to the implementation of OR/MS

models to improve governmental operations in the

U.S. are the same as those reported in the Total

Quality Management (TQM) experience (Radin and

Coffee 1993). The areas in which OR/MS has had

limited success have many of the following

characteristics:

• Measurement – hard to measure outputs of messy

systems

• Accountability – little or none

• Lack of pressure to improve – no crisis

• Fragmentation of governmental systems

• Multiple interest groups with conflicting objectives

• Leadership – top executives and managers are

political appointees that often change

• Weak management skills of core organization

especially with regard to analysis

• Unstable budgeting and accompanying uncertainty

and

• Extensive demagoguery

Conversely, the likelihood of success is greater in

organizations with clearly defined measures for which

leaders are held accountable, and that are facing major

budget crises that demand improved efficiency. Thus,

OR/MS had an opportunity to facilitate more effective

collection of state taxes in NewYork (Miller et al. 2012).

Similarly, areas not prone to demagoguery, such as

allocating resources and scheduling road repaving, have

led toOR/MSmodeling successes (Feunekes et al. 2011).

The factors listed above are often interrelated.

Measurement, accountability, and pressure are

obviously linked. Without measures, an agency

cannot be held accountable. Where will pressure

come from to improve service performance? For

example, what is the output of a department of social

services or an unemployment agency? It would be

absurd to hold any one governmental agency

accountable for the number of broken families or

unemployed workers. How do you measure the

performance of a fire department? Can you blame the

fire service for an increase in fires or fire damage?

Thus, the agency can sidestep most attempts at

accountability. Without total system performance

accountability, it would be rare for a political leader

to feel any pressure to improve services except in

response to a highly publicized mishandled event.

In the 1990s, the federal government launched an

initiative to use performance based budgeting to

encourage more accountability and continuous

improvement. It was also hoped that the federal

example would lead to parallel efforts at the state

level. There have been sporadic success stories at the

federal level and even fewer at the state level (Jordan

and Hackbart 1999). These were not enough to create

a culture of measurement that might have spurred the

greater use of OR/MS to make resource allocation

decisions or improve processes. In contrast, in Great

Britain, an OR/MS group is an integral part of the

Prime Minister’s Delivery Unit in the Cabinet Office

that has overall responsibility for improving the

operation of all government agencies (Turner 2008).

In areas in which ultimate outputs cannot be measured,
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OR/MS studies have successfully improved

operational efficiency. One study, for example,

improved the process of managing children who are

placed in foster care or put up for adoption.

Even when society has a measure, there is often little

known about the measure’s link to the operations of

relevant agencies. There is ample data on reported

crime and victimization studies to monitor crime

trends. The success of COMPSTAT in New York City

has created a culture of precinct commander

accountability for crime levels. Other large cities have

attempted to copy New York’s usage of crime data

analytics to continually refine strategies to suppress

and deter crime. However, without research that

defines relationships between inputs and outputs, there

is little chance for OR/MS to contribute to increased

crime fighting efficiency and effectiveness.

The vertical and horizontal fragmentation of

governmental systems in the U.S. adds another

barrier to implementation. Local, county, state and

federal agencies often play complex interrelated roles

that impact the ultimate service. Although state and

federal agencies assert regulatory and budgetary

control, the vast majority of services are provided by

an enormously diverse set of independent and

relatively small jurisdictions. For example, there are

more than 16,000 local area police forces in the U.S.,

as compared to approximately 50 in Great Britain. For

the vast majority of U.S. cities, their size makes it

impossible to justify the development of internal

operations research groups. Also, the relative scarcity

of funds and lack of accountability has discouraged the

development of a critical mass of consultants to fill this

technical gap. In contrast, the State of Israel has

a national police force that has an internal operations

research group. Great Britain has highly regarded OR/

MS groups deployed broadly in government agencies

that carry out operational studies and contribute to

policy analysis. They assist in technology transfer

and provide analytic support for local jurisdictions.

Operations researchers seem to be most effective

when they are embedded in interdisciplinary teams.

In addition laws that require formal analysis as part

of an approval process, as in the case of land use

planning, also contribute to OR/MS’s success.

Table 1 provides 2005 data on the number of OR/MS

professionals in various departments of the British

government. These totals are double the number in

the Civil Service 10 years earlier (Turner 2008).

One exception to this lack of critical mass in the U.S.

occurred in the 1970s when the federal government

helped fund a joint venture between New York City and

the RAND Corporation, the New York City-RAND

Institute. This organization and its affiliated researchers

at MIT developed mathematical models that continue to

form the basis for analyzing the deployment of

emergency services. These researcher and consultants

provided the technical support needed for OR/MS

model transfer to other jurisdictions. This organization,

however, disappeared before the decade ended as a result

of political changes in New York City. With its demise,

there was a dramatic decline in the implementation of

OR/MS models in city government (Green and Kolesar

2004). Now, when model implementation is attempted,

it is generally a story of one or two dedicated academics

and their students working with a local agency. These

individuals occasionally succeed by force of will and

persistence in overcoming the barriers listed above.

Rarely can they provide the continuity of support

necessary to institutionalize the use of an OR/MS

model. One promising development has been due to the

International City/County Managers Association

(ICMA). In 2007, the ICMA organized an analytic

public safety consulting group to help small and

medium sized cities. In 2011, this group completed an

average of two public safety studies a month.

In addition to fragmentation, the U.S. system of

government at every level has built in checks and

balances that limit the power and ability of any agency

to work with a consistent vision. This dispersion of roles

and responsibilities compounds the problem of

accountability. For example, state legislation on prison

Implementation of OR/MS in the Public Sector,

Table 1 Government operational research services staff by
department (Turner 2008)

Department Headcount Per cent

Department for work & pensions 89 27

HM revenue & customs 66 20

Department for education & skills 41 12

Home office 40 12

Department of health 35 11

Export credit guarantees department 18 5

Department for trade & industry 13 4

Department for transport 8 2

Office of the Deputy Prime Minister 6 2

Cabinet Office 4 1

Others 9 3
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sentencing and state budgets for corrections may run up

against court orders resulting from prison and jail

overcrowding.

Public sector OR/MS studies face an added

complexity in that public agencies serve multiple

interest groups, all of which have a legitimate voice in

the operation of government. Almost every change in

operation or policy will have winners and losers. The

differential impact may vary by geography and social

class. Equity and efficiency measures may conflict. As

a result, most public sector analyses that use models are

descriptive tools for evaluating the impact of a policy or

operational change on diverse segments. OR/MSmodels

by their nature explicitly quantify the overall impact of

change and identify the winners and losers. This is not

necessarily a blessing for the politically appointed

managers operating under freedom of information acts

and sunshinemeeting laws. The political clout of a small

group, or in some cases a single individual, can

overwhelm the analysis that supports seemingly

superior solutions. The political clout could reside with

the government workers themselves who might impede

changes that would benefit the public, but which they

perceive as negatively impacting their jobs. For

example, the adamant and militant opposition of

firefighters to police-fire mergers has discouraged

almost all city officials from proceeding with a change

that OR/MS models have shown can save money and

improve performance (Matarese and Chelst 1991). As

a result, the natural instincts of survival of top political

appointees can lead to decisions that are not in the broad

public interest and undermine the value of an OR/MS

study. OR/MS procedures have been shown to facilitate

a negotiated agreement among multiple interest groups

with divergent objectives. OR/MS helped design an

agreement on water release polices for the Delaware

River by clarifying the benefits and minor risks of

proposed policies on each constituency (Kolesar and

Serio 2011). Similarly, OR models help competitive

airlines deal with major weather related schedule

disruptions and negotiate equitable allocations of

landing slots that enable them to efficiently return to

their daily schedule (Sud et al. 2009).

Multi-criteria decision analysis (MCDA) is one set

of modeling tools that offers the greatest potential for

addressing concerns of multiple interest groups with

conflicting objectives. Different perspectives can be

reflected in the weights assigned to the various

objectives and measures. MCDA can determine

whether or not these different weights affect the

overall rankings of the alternatives. If they do, the

discussion can focus on reasons for the differences in

an attempt to identify an alternative that best balances

the competing visions (Kersten 2003; Danielson et al.

2008). It is especially useful in an open participatory

budget process that has been used in hundreds of

municipalities around the world (Cabannes 2004).

Perhaps it could be argued that the models are often at

fault because they do not adequately reflect political

realities. However, is it appropriate for an operations

researcher to design a model that addresses the concern

articulated by a well-traveled police chief? “Why can’t

yourmodelmaximize the chance that the police chiefwill

keep his job?” It is similarly inappropriate for an optimal

location model to give greater weight to a neighborhood

of a wealthy contributor to a recent political campaign or

automatically assign a governmental office to the

congressional district of a powerful House of

Representative committee chairman. This dominance of

politics over analysis discourages operations researchers

from investing the time and energy needed to bring

models to bear on local government decisions.

British OR/MS researchers have developed

a structured analysis approach, termed Soft OR (soft

systems methodology) that is designed to help analyze

the complex multi-stakeholder real-world problems such

as those encountered in the public sector, as well as in

other areas (Cooper et al. 2006). Soft OR contrasts to the

standard mathematical analysis approach that is basic to

OR/MS, that is, Hard OR. The latter emphasizes formal

data analysis and building and applying OR/MS models.

Soft OR assists in structuring the problem context by

incorporating the values and perceptions of the multiple

stakeholders early in the identification of project goals

and viable alternatives. Soft OR is process oriented and

may involve workshops designed to integrate competing

perspectives. It facilitates successful implementation by

explicitly incorporating the views of the stakeholders in

the model development and application.

The OR/MS analyst working with local and state

government managers quickly notices their weak

analytic skills. Many government services are case or

incident driven. Promotions tend to be based more on

people skills than analysis. The educational experiences

of these managers also tend to minimize analysis.

In addition, their case or incident based data systems

rarely provide good system statistics that would be

important for analysis. Thus, the OR/MS analyst is
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working against the grain of the organization when

attempting to bring in sophisticated mathematical

models that are data driven. Interestingly, these

perceived weaknesses are considered an important

factor in the growth of government OR/MS groups in

Great Britain, as they provide the otherwise missing

quantitative analysis requested by federal authorities.

In the U.S., federal departments, agencies, and

centers have a decided advantage over state and local

agencies when it comes to using analysis techniques.

These organizations are usually large enough to

support a core group of quantitative analysts. Even

when top leadership is transient and politicized, these

professionals have the long-term stability to integrate

OR/MS models into the decision making process.

In addition, Congress routinely asks for studies and

data when making policy decisions. These are some

of the factors that have contributed to the use of

OR/MS type models, for example, in the Department

of Energy, the Federal Aviation Administration, U.S.

Army Core of Engineers, U.S. Forest Service,

Environmental Protection Agency, and the Centers

for Disease Control and Prevention.

Further, the bizarre political budgeting process that

occurs annually at every level of government discourages

long-term planning that might warrant the development

of OR/MS models. When faced with a sudden budget or

personnel cutback, the public agency manager may

decide that the wisest course is to maximize the

damage caused by the cutback rather than efficiently

use the resources that are left. The goal is to maximize

the public outcry against the pain caused by the cutbacks

so as to generate political support for restoring the lost

funds as soon as possible. Needless to say, OR/MS tools

are not generally intended for this type of counter-

productive decisions. However, the recession of

2007–2009 and accompanying decline in property

values in many locales has forced many city officials to

take a closer look at the high cost of emergency services.

This has contributed to the demand for studies from the

ICMA public safety consulting group. Continuing

deficits in the U.S. Postal Service have led the

leadership of this independent agency to embrace OR/

MS models to improve efficiencies (Chakravarthy et al.

2009). However, when it comes to closing local post

offices or distribution centers that provide jobs, politics

can undermine analysis.

The military is unique in that all of the barriers listed

above are not found in most military operations

decisions. All aspects of military operations can be

measured in terms of effectiveness. Battles are won

and lost, air-to-air combat has winners and losers, and

all weapons systems have measures of effectiveness.

There is also a long tradition on accountability in the

military. The next war is always more or less a decade

away and the military must constantly update and adjust

to the pressure. The overwhelming majority of standard

military operations do not run into fragmented

government systems and multiple interest groups.

Politics become an issue only on big decisions and

interest group pressures arise only when economics

come into play. Although the top defense department

officials are civilian political appointees, few

operational decisions get to that level. The education

of the military leadership is rooted in the military

academies where analytic skills are nurtured. OR/MS

research has a proven track record in the military where

staff personnel are often experts in military OR/MS.

As a result, the military has been and will continue to

be a fertile area for successful application of OR/MS.

Major Policy Initiatives and Public Debates

The same barriers discussed earlier apply to most

major policy questions at both the local and state

level. In addition, it is even harder to validate models

at the policy level, which reduces the credibility of the

analysis. OR/MS has not been a significant factor in

decision making at the state level with one major

exception. OR/MS models are used in many states to

evaluate legislative actions and policy decisions that

affect prison populations. Blumstein (2007) and others

were modeling crime and prison populations for more

than a decade when the crisis in prison population

arose in the 1980s. The problem was clearly

measurable; prison populations more than doubled,

quickly outstripping available capacity and budgeted

resources. The easy solutions disappeared very

quickly. Overloading the prisons was prohibited be

federal courts. Letting prisoners go early was

politically unacceptable after several highly

publicized murders. Even a strategy of building more

prisons required a model to forecast growth. Some

states were adding one new prison each month and

watched almost helplessly as corrections’ spending

on buildings and operations overwhelmed almost

every other state budget category. There was an
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obvious link between legislative actions on sentence

length and policies regarding parole eligibility. Thus,

there were a number of elements that facilitated the

adoption of OR/MS models to forecast prison

populations. In addition, once a model was structured

to meet the needs of one state, it did not require major

modifications to adopt it to other states.

At the federal level, OR/MS models have played

a significant role in policy analysis in a number of

areas. Congressional debaters often request the

respective agencies provide detailed analysis of

policy and budgetary changes. In the area of

economic policy, economic model forecasts are

a prerequisite for political debate since the early

1970s. This has set a tone for the use of mathematical

models in other aspects of federal policy and

legislation. The less politicized the debate is, the

greater the role of models. The U.S. Forest Service

began developing and using OR/MS models in the

1970s at a time when citizens were uninterested in

the issues debated by the federal government and the

timber interests. As environmentalism became

a factor, there was time to revamp the models to

make them multi-dimensional and keep them as

viable contributors to congressional debate. Models

in the area of energy policy, air and water quality,

and controlling reservoirs have had an analogous

successful implementation experiences. In each of the

agencies, the model outputs were variables that were

easily measured, although relationships and

assumptions may have been hard to validate.

The development of think tanks has also played an

important role in the success of OR/MS models at the

federal level. These organizations have the critical mass

and stability needed for the development and continued

refinement of models. The most noted is the RAND

Corporation. Initially, it carried out national defense

studies and later extended its skills to other policy

areas such as health care and criminal justice. Its

European division has brought those same analytic

modeling skills to address critical questions of water

management in the Netherlands (Walker et al., 1994).

OR/MS researchers who have made long-term

commitments to a particular problem area are the key

to OR/MS’s contribution to debates in areas such

as criminal justice, aviation safety, and health care.

OR/MS models have provided these nationally

recognized experts a unique perspective, but their

knowledge of the issues extends far beyond just

modeling. It is this breadth of knowledge that is

critical to achieving credibility in the public debate.

Typically, these OR/MS subject area experts head up

a group of researchers either at a university or think

tank. This has enabled them to maintain a long-term

focus as the important topics develop and evolve.

See

▶Community OR

▶Crime and Justice

▶Environmental Systems Analysis

▶Ethics in the Practice of Operations Research

▶Military Operations Research

▶Model Evaluation

▶ Politics

▶ Practice of Operations Research and Management

Science

▶ Public Policy Analysis

▶RAND Corporation

▶ Soft Systems Methodology

▶Verification, Validation, and Testing of Models
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Implicit Enumeration

A process for solving integer-programming problems

in which all possible integer solutions need not be

investigated (enumerated) due to information

obtained in the process that relates to problem

feasibility and value of the objective function. That

is, certain solutions need not be pursued as it can be

shown that they would lead to infeasible solutions or

values of the objective function that are worse than

those that are known to be possible.

See

▶Branch and Bound
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Implicit Price

▶Marginal Value

Importance Sampling

In stochastic or Monte Carlo simulation, a variance

reduction technique whereby the underlying

probability distribution is altered to increase the

probability of (1) simulating events of highest interest,

such as rare events, or (2) sampling from regions that

have a larger effect on the quantity being estimated,

such as a high-dimensional integral.

See

▶Monte Carlo Methods

▶Monte Carlo Simulation

▶ Simulation of Stochastic Discrete-Event Systems

▶Variance Reduction Techniques in Monte Carlo

Methods

Impossibility Theorem

▶Group Decision Making
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Inactive Constraint

An inequality constraint of an optimization problem

that is satisfied as a strict inequality.

See

▶Active Constraint

▶ Slack Variable

▶ Surplus Variable

Incidence Matrix

▶Node-Arc Incidence Matrix

Incident

An edge of a graph is said to be incident with the two

nodes it connects, and conversely.

See

▶Adjacent

▶Node-Arc Incidence Matrix

Independent Float

The amount of time that an activity can be delayed

without affecting the earliest start of the preceding

activity and the latest finish of the succeeding activity

in a project network.

See

▶Network Planning

Independent Private Values Bidding
Model

A bidding model in which a bidder’s estimate of

value for what is being auctioned is statistically

independent of the value estimate for any other

bidder. In such a model, no bidder has any reason

to adjust an estimate of value upon learning the

information of any other bidder.

See

▶Bidding Models
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Indirect Costs

In the simplex method, the indirect costs are found by

taking the inner products of the multiplier (pricing)

vector with each column of the problem’s defining A

matrix. This product, for a column j, is usually

denoted by zj. For cj, the original objective function

coefficient for column j, the term (zj�cj) or (cj�zj) is
used to determine if the associated variable is

a candidate to enter the basic feasible solution. For

any basic variable xk, (zk�ck) ¼ 0. The (zj�cj) terms

are called relative costs (relative to the basis) or

reduced costs.

See

▶ Prices
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Introduction

Although this article is based largely on some of the

authors’ experiences and views of European OR/MS, it

is of direct importance to the worldwide OR/MS

community. The field is better known in Europe as

Operational Research or OR, and it occupies itself

with quantitative methods for the analysis and

solution of management problems. Its origins lie in

military organizations during World War II: first the

Royal Air Force (U.K.) preparing for the Battle of

Britain and later on the U.S. Navy fighting German

U-Boote (submarines). After the war, there was

a general feeling that OR/MS could also be helpful to

managers in industry, government, public services, and

financial institutions. The logic was obvious: industrial

activities such as production planning, inventory

control, and physical distribution were quite suitable

for model building and other forms of abstraction that

lead to challenging mathematical problems, and

trained OR workers (analysts) were available. But

soon it became evident that solutions capable of

being applied in practice were not as numerous as

expected. Causes for this phenomenon can be traced

to the following.

On the one hand, models running on the then

available computers were so strongly a simplification

of reality that managers did not recognize their

problems any longer. On the other hand, OR

researchers in academia moved their attention to the

basics of the discipline. Their theoretical results were

very impressive, especially in the field of mathematical

programming, combinatorial analysis, and queueing

theory. But for managerial problems of daily life,

these OR researchers tended to have little interest.

Consequently, decision makers felt disappointed and

lost their confidence in OR/MS and returned to simple,

often too simple, rules of thumb. In this way,

a practicality gap came into existence, a gap between

the managers with real, urgent decision problems

demanding simple solutions, and the OR/MS

scientists who strived for elegant solutions to abstract

problems of their own invention. For a discipline

founded on solving real-world problems, as OR

claimed to be, the gap caused a highly unsatisfactory

situation. Hence, after a while, professional journals

tried remedy the situation, while an outstanding cadre

of OR/MS analysts attempted to regain managers’

interest for management science. But all efforts

seemed in vain. One of the gurus of OR/MS

even concluded that “The future of OR is past”

(Ackoff 1979).

This is how OR/MS lost the good reputation

earned during the war. Even OR analysts in staff

departments of industrial companies had to fight for

their existence and often lost their jobs. Many

departments were dissolved or put at work on other

tasks, for example, on automation projects. Mainly,

the so-called loners, working in decentralized

positions, continued to do OR/MS work (see Fortuin

and Lootsma 1985).

But OR/MS analysts never lost faith in their

discipline. Gradually they improved their position by
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rediscovering real-world problems. In the 1980, two

developments fostered this process: the availability of

low-cost and versatile computer power (PCs) and the

establishment of special university chairs for OR/MS

and other quantitative methods. Ten years after

Ackoff, a completely different sound could be heard:

“The future of OR is bright?” (Rinnooy Kan 1989).

The Faces of OR/MS

OR/MS has two faces: on the one hand it concentrates on

operations and as such it tries to be practical and to

provide solutions to real-world problems; on the other

hand, OR/MS means research, involving theoretical

studies of problems that at best may be regarded as

abstract version of problems that actually exist in the

real world. These two faces of OR/MS have brought into

existence two types of OR/MSworkers: the practitioners

and the theoreticians. The practitioners are to be found

primarily in consultancies, but also at universities, for

example in departments such as industrial engineering

and industrial mathematics. In large companies, loners

can still be found. As for the theoreticians, they tend to

work only at universities and related institutions.

The two types of OR/MS workers are carrying out

their tasks independently, but contact between them is

improving, with exchange of ideas at conferences and

seminars, and bilaterally. This situation originated in

a natural way:

• Most consultants graduated from a university.

They maintain their university network to learn

about theoretical breakthroughs. In return, they

inform their fellow OR/MS analysts in academia

about the problems their clients in industry are

grappling with.

• Many consultants are working as part-time

professors at universities. They use their

experiences to keep their teaching up-to-date and

use the results of their academic studies to support

their consultancy work.

In this way, opportunities for OR/MS have

improved considerably. Other factors have enhanced

this process:

• Modern managers in industry have an academic

background. During their studies, they have

become acquainted with the basics of OR/MS and,

thus, they are easier to convince that OR/MS can

help them. As most managers no longer have

OR/MS staff departments in their organizations,

they become clients of OR/MS consultants.

• Universities have discovered the importance of

good relations with business companies:

1. It makes academic OR/MS workers more

practical and teaches them to cooperate with

managers.

2. It enhances their cash flow by doing contract

research in OR/MS.

3. It offers students an opportunity for working

temporarily in an industry as part of their

program, to the benefit of the quality of their

education.

4. It helps universities to assign priorities to the

items on their research program.

• The pure theoreticians less often select in isolation

the subjects of their investigations. Instead, they

have opportunities to pay attention to the signals

that reach them from their colleagues operating

with their students in industry.

• Information technology has produced powerful

computer software and hardware. Consequently,

model building has become very realistic; all

relevant details are taken into account, and

animated graphics convince managers more easily

than words that indeed their problems are being

analyzed.

This improvement process is reflected in professional

journals on OR/MS. Many successful applications of

OR/MS in practice have been reported in the literature.

These case studies usually have following sequence:

(1) the problem and its environment; (2) the OR/MS

approach towards a solution; (3) results of the OR/MS

analysis; (4) selection by management of a solution from

a set of alternatives; (5) implementation of the solution;

and (6) results in terms of improvements with respect to

the situation before the OR/MS intervention. Examples

can be found in (Bell 1985; Lootsma 1991; Fortuin and

Korsten 1988).

There will always be managers who have to make

decisions in complex and complicated situations, each

with far-reaching consequences. They are obliged,

mostly under time pressure, to select the best

solution. Here they can be supported with OR/MS in

its modern version, given that they are aware of the

powerful methods and tools that OR/MS practitioners

have at hand and the impact that OR/MS has had in
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solving real-world problems; see (Fortuin et al. 1992;

Davenport 2006; Liberatore and Luo 2010).

The main problem lies in gaining the confidence

of managers so that they are prepared to give OR/MS

a chance. The practicality gap has been narrowing,

and there exist opportunities to enhance engagement

between research and practice (Corbett and van

Wassenhove 1993; Sodhi and Tang 2008). To

bridge the gap, OR consultants and academic OR

workers have to act as missionaries to the benefit of

their profession, to their career perspectives, and to

help managers trying desperately to improve their

business in the face of an ever increasing global

competition.

OR/MS In Industry: Where And What?

Fortuin and Zijlstra (1989) reported on the experiences of

an OR group within Philips Electronics, a multinational

company producing consumer products (e.g., domestic

appliances, lighting, television sets, high-fidelity

consumer electronics, and razors) and professional

products (e.g., medical systems, telephone exchanges,

and lighting systems). They analyzed over 200 projects

in OR/MS and showed which areas were most important

for OR/MS application in industry and which OR/MS

tools were most frequently used. A 1992 update of these

investigations confirmed these results. Apparently, the

most frequently occurring projects were the ones on

the design of a production systems, whereby discrete

computer simulation is the OR/MS tool employed to

take complex interactions into account (Tables 1 and 2).

This conclusion holds for a large multi-national

company in Europe. In the U.S., the picture seems to

be slightly different. A longitudinal survey in the journal

Interfaces, for instance, mentions statistics, linear

programming, and discrete simulation as the top three

OR tools, in that order (Harpell et al. 1989).

Model Building

In most OR/MS projects in industry, an important part

of the work is model building. A model is the

description of a piece of reality that has to be

analyzed in the course of the project, leaving out all

irrelevant details while maintaining essential

characteristics. This gives model building the

character of an art rather than of a science.

Model building plays an important part in modern

OR/MS projects, often in combination with discrete

simulation and optimization. Models offer insights and

the possibility to compare decision scenarios in both

the qualitative and the quantitative senses. The

computer is almost always an indispensable tool in

this pursuit. The driving force exerted by

development in informatics cannot easily be

overestimated. A large part of the arsenal of OR

techniques can be used on a PC, thanks to software

that is becoming more and more user-friendly and

cheaper. The ease with which a problem area can be

represented by a model that the problem owners

consider sufficiently realistic has grown enormously.

Large quantities of data can easily be stored in

databases that are simple to access. The opportunities

Industrial Applications, Table 1 Application areas for
OR/MS in industry

Areas of application
Number of
applications

Design of production systems 95

Production 86

Transport and storage 35

Training and courses 16

Design of systems for transport and storage 13

Performance of systems 11

Miscellaneous such as portfolio analysis,
measuring the quality of information systems, and
performance indicators

20

Industrial Applications, Table 2 OR/MS tools applied in
industry

OR/MS tools
Number of
applications

Discrete event simulation 95

Waiting theory models 82

Combinatorial analysis 48

Inventory models 46

Mathematical programming with emphasis on
linear programming

23

Miscellaneous such as the structuring of facts and
figures (many projects start with this type of OR),
which is sometimes is all that the client desires

29
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are great for OR/MS to really contribute to the

reduction of uncertainty in complex industrial

situations and to increasing control of business

processes. But, there still are managers who are

unaware of the help they can get from OR/MS:

quickly calculating the consequences of decision

variants, the preparation of decisions, and decision

support. These managers are unaware that they can

save considerable amounts of money and improve

effectiveness of their decisions.

The Position of OR/MS in Industry

Times have changed. In the 1980s, OR/MS was

primarily in the hands of a company’s staff

department. Since then, many companies have

reorganized about their core business. Consequently,

staff departments were reduced to a bare minimum,

if not completely eliminated. Also, many were

disconnected from their original company. For

instance, the OR/MS department discussed in Fortuin

and Zijlstra (1989) became an independent consultancy

with, not surprisingly, Philips Electronics as its main

client. Such reorganizations also occurred in many

industrial companies in Europe, as well as in North

America.

In Europe, OR/MS support is offered to industry from

two sources. First, there are the consultancies. They

usually follow the project approach, according to which

the work is done in phases. To a certain extent, they have

to compete with the second source, that is, OR/MS

university departments whose study program includes

real-world student-oriented projects that stem from

companies willing to invest in such OR/MS projects.

Both parties profit from this alliance: the students learn

to practice the profession, while the company obtains

a relatively inexpensive solution to a problem or, at

least, begins to explore it by using the experience and

talents of both professors and students. These academic

OR activities are an important means for showing

managers how advantageous the support of external

consultants can be.

The Project Management Approach

Table 3 gives an overview of the OR/MS project

approach. A contract between the client (company)

and the OR/MS consultancy is agree to, with the

contract stating what problem will be studied, and

possibly solved, at what cost, and the study time

interval. The contract also states the contributions the

client and company’s staff are obligated to contribute,

and indicates what deliverables the client may expect.

More details can be found in Fortuin et al. (1992). This

approach has proven to be very successful, for two

reasons:

• The preliminary phase is usually short. Its aim is

reconnaissance of the problem area and a problem

description that the problem owner (manager) can

agree with. Costs are relatively modest so that

financial risk is low. This facilitates the process of

making the manager confident that the consultancy

is indeed able to help solve the problem.

Industrial Applications, Table 3 Summary of the steps in an
OR/MS project: In phases 1 and 2, the consultant is heavily
involved in the project. Usually, Phase 3 is carried out by the
client and/or staff

Activities Details

Phase 1 General survey Discussions with client and staff

Interviews, study of document

Global problem description

Generation of ideas for a possible
approach

Reporting Outline of results to be expected

Proposal for Phase 2

Phase 2 Model building Systematic description of the
problem area. In order not to make
the model too complicated, only the
most relevant factors are taken into
account

Verification Discussions with client and staff: Is
the model correctly presenting the
problem area, the organization, the
methods, processes, and procedures?

Experiments Translation of the model into
computer program

Calculations under various
circumstances

Analysis Investigation of results

Reporting Presentation of the most important
results, conclusions, and
recommendations. A proposal for
Phase 3

Phase 3 Implementation Working out and implementation of
recommendations

Teaching client and/or staff to work
with the new method
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• It may happen, that during the preliminary phase,

the problem becomes so transparent that a solution

can be seen immediately. Then a follow-up phase is

not necessary.

Concluding Remarks

The prospects for the continued application of OR/MS

in industry are excellent:

1. Managing an industrial company is becoming

ever more complicated. Global competition,

globalization of the economy, demanding customers,

decreasing profit margins, new markets, and

fluctuating exchange rates are just a few of the

causes. The time for simple solutions is over, and

only fundamental and theoretically sound analyses

can justify management decisions. Managers lack

the time and the expertise for such analyses.

2. Practitioners now working in independent

consultancy units can make their own business

plans and follow their own strategy when

promoting OR/MS, rather than being ruled, or

overruled, by a general company policy.

3. Computer power is widespread in industry, which

facilitates the implementation of OR/MS solutions,

even if the problems are complex and their

resolution requires large and diverse data bases.

See

▶ Practice of Operations Research and Management

Science
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Industrial Dynamics

▶ System Dynamics

Infeasible Solution

In general, a proposed solution to an optimization

problem that does not satisfy all the constraints. For

the linear-programming problem Ax ¼ b, x � 0,
a vector x0 is an infeasible solution if it does not fully

satisy the equations or the nonnegativity condition.

See

▶ Feasible Solution

Inference Engine

A piece of software or a computational strategy that is

based on a problem statement from the user, uses

reasoning knowledge about the problem area in

attempting to derive a solution, gathers needed

problem-specific information (e.g., from the user) in

the course of reasoning, explains why it needs this
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added information, presents the solution to the user,

and explains the line of reasoning used in reaching the

solution.

See

▶Artificial Intelligence

▶Expert Systems

Infinitesimal Generator Matrix

▶Rate Matrix

Infinitesimal Perturbation Analysis

▶ Perturbation Analysis

Influence Diagrams

James E. Matheson

SmartOrg, Inc., Menlo Park, CA, USA

Introduction

Before influence diagrams were developed, describing

and solving decision problems under uncertainty was

quite difficult. The first difficulty was determining the

probabilistic relationship among uncertain variables,

because it is easy to model many variables as jointly

related, but extremely difficult to assess their

probabilistic relationship. An experienced decision

analyst can reasonably assess the uncertainty in

a single variable (Spetzler and Staël von Holstein

1975), but more than two variables make the task

almost impossible. A better way was needed to

understand the relationship among uncertain

variables. The second difficulty was understanding

and describing the relationship between decisions

and uncertainties, particularly indicating which

uncertainties would be revealed before which

decisions and then transforming the probabilistic

descriptions to condition the probabilities in the

proper order of information revelation, using Bayes’

Rule. The usual, but very awkward, method was to

describe the uncertainties in a possibly very large

probability tree, called nature’s tree, and to describe

the sequence of revelation of uncertainties

and decisions in a decision tree, followed by the

calculations necessary to transform the probabilities

into the sequence needed for the decision tree

(Howard 1965). Only an expert could hope to deploy

these methods, both to think through and describe the

problem and to do the complex assessments and

computations involved. Then, communicating what

had been done, especially to decision makers, was

also a daunting task.

The SRI International Decision Analysis Group was

highly active from about 1968 to the early1980’s. This

group comprised many motivated individuals doing

pioneering applications and research on decision

analysis, largely defining the Stanford School

approach to decision analysis. It included several

award-winning individuals: Ronald A. Howard,

James E. Matheson, D. Warner North, and

Carl S Spetzler. These individuals, along with several

others, MileyW. (Lee) Merkhofer and Allen C. Miller,

were engaged in many problems of probabilistic

inference, especially on a project initiated in 1973 for

the Defense Intelligence Agency, and a previous

project on space-mission planning. Motivated by

the need to efficiently assess highly-dependent

information regarding the conflict in the Persian Gulf,

the group tried many methods, such as coalesced

decision trees – ones having repetitive structures – to

capture that information. Ultimately, this exploration

developed methods for graphically mapping

probabilistic dependence and produced a signal flow

graph method for treating states of information,

termed “influence diagrams”. These formed a

directed graph showing the relationships (arrows)

among both decisions and uncertainties (nodes) that

became simultaneously a presentational device and

a computational tool. A Defense Projects Research

Agency project followed, where these ideas

were solidified and fully described in Howard et al.,

(1976). This seminal paper was published privately

and became one of the most-referenced works in the

field. It was reprinted in a special issue of the Decision

Analysis Journal about 30 years later (Howard et al.

1976; Howard and Matheson 1983, 2005a, b).
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The Nature of Influence Diagrams

Influence diagrams represent both uncertainties and

decisions in a single compact graph. They contain both

the nature’s tree and the decision tree of the older

cumbersome method, showing the probabilistic

relationships among the uncertainties, the sequencing

of the decisions, and the information revealed before

each decision is taken. These relationships are shown by

a set of decision and chance nodes with arrows

connecting them in an acyclic graph. The graphical

relationships are easy to comprehend so that influence

diagrams have become a standardmethod for describing

decision problems and explaining them to subject-

matter experts and to decision makers. In addition, the

nodes of the influence diagram capture the numerical

data describing the situation and thewhole diagrammay

be processed to solve the decision problem, to do

probabilistic inference, and to make many different

insightful derivative graphs and calculations. One

potential output of an influence diagram processor

would be a decision tree describing all or a reduced

portion of the decision situation. Decision trees have

shifted from a computational one to more of

a presentation role, and are easily derived as

a byproduct of influence diagram representations.

About a decade later, a parallel development arose

in the statistics and artificial intelligence communities,

called Belief Nets or Bayesian Networks, that are

roughly equivalent to influence diagrams, but with no

decision nodes. The focus of work in this area has been

in treating complex probabilistic inference problems

and causality issues (Pearl 1986, 2005; Neapolitan

2004). In contrast, the development of influence

diagrams has focused on decision making under

uncertainty.

An influence diagram for a typical real problem is

shown in Fig. 1. The decision nodes are represented

by squares or rectangles, while chance nodes are

represented by circles or ovals. It has become

a common convention to use a double border,

especially on chance nodes, to indicate that the node

contains only deterministic relationships, such as

equations or data tables. Also, often a payoff or

profit node is included, usually as a deterministic

function (which might be as complex as a large

Excel spreadsheet), usually indicated by an octagon,

representing a stop sign, which sometimes degenerates

into a hexagon for easier graphics.

A Straightforward Example

The following simplified example is from Matheson

and Matheson, (2005). A company is expanding an old

plant and wants to decide on how much and how to

expand. Their only uncertainty is what the demand will

be, because they do not want to over-build the

plant and pay for unneeded capacity or under-build

and lose profit opportunities from insufficient

production. Figure 1 is an influence diagram for this

problem, which has three kinds of nodes, a decision

node, representing the Plant Capacity; a chance node,

representing Demand; and a value, or in this case,

a Profit node, that contains the calculation needed to

determine profit. The double outline on the profit node

means that at present the information inside the node

is a deterministic function of its inputs. (During

processing of the diagram the uncertainty in the

Demand node could be pushed into the Profit node, at

which point the Profit node would become uncertain

and have a single border).

Using a computer interface analogy, inside each of

these nodes is embedded information describing that

node. Inside the Plant Capacity node is a list of possible

alternatives under consideration, in this case Continue

as is, with no increase in capacity; Build a conventional

expansion; or retrofit, and fully Automate an expanded

plant. In each case, expansion plans and schedules

have been specified, but are characterized by only

Demand

Profit

Plant
Capacity

Influence Diagrams, Fig. 1 Influence Diagram for the
Capacity Example
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one word for convenience. Similarly, there are

three well-specified potential demand scenarios:

Low, Medium and High; with probabilities carefully

assessed as 0.35, 0.25, and 0.40. Again, this

information can be thought of as inside the node. It is

critical to note that this demand probability assessment

does not depend upon the plant capacity selected,

which is indicated structurally by the absence of

an arrow from Plan Capacity to Demand. Lastly,

a financial value model has been developed for this

decision situation which projects cash flows for each

combination of decision (Capacity) and uncertain

outcome (Demand) and reduces each set of cash

flows to a Net Present Value (NPV). This model can

be thought of as residing inside the Profit node.

Because this example is so limited, the influence

diagram can be solved by using it to generate the

decision tree of Fig. 2. It shows that the best decision

is to Build an expanded conventional plant and make

an expected profit of 61.0. For simplicity, assume that

the company desires to maximize expected value, but

the influence diagram can also treat risk aversion, for

example, by using certain equivalents in place of

expected values. While this result solves the primary

decision problem, many further analyses are possible

to gain insight into the situation. Decision analysis

often asks hypothetical questions about modifying the

original problem before making the primary decision.

Influence diagrams are ideal for clearly specifying

the nature of these hypothetical interventions,

see Matheson, (1990). Two interventions to be

considered are gathering more information and

gaining control over demand. Assume that these

hypothetical interventions can be made without

disturbing the rest of the problem structure. In other

words, there are no unintended consequences. If some

of these idealized interventions look valuable, then real

interventions with all of their potential interactions

should be investigated.

Valuing Interventions

The first intervention to consider is gathering perfect

information on Demand before making the original

primary decision. This intervention is incorporated

into the structure of the influence diagram by adding

an arrow from the Demand node into the Plant

Capacity node, which indicates that the decision

maker will know demand (e.g. the demand will be

revealed by a clairvoyant) before the capacity is

selected, as shown in Fig. 3. A new decision tree

could be generated from this diagram, using the new

ordering, but this problem can be solved by just

inspecting Fig. 2. If the decision maker knows the

demand is going to be Low, the decision maker

makes a maximum of 45.0 by choosing Continue as

is; if the demand will be Medium, value is maximized

with Build for 80.0; if the demand will be High, the

maximum value is achieved by Automate for 100.0.

Since a true clairvoyant will report each of these

forecasts with the same probabilities that have

already been assessed, these numbers are weighted by

those probabilities to get an expected value of 75.75

and subtracting the value of the original situation of 61

to give an expected value of (free) perfect information

of 14.75, sometimes called EVPI.

Another basic intervention is perfect control. If the

decision maker could somehow set a specific demand

of interest (e.g. employing a wizard), before deciding

Automate

Build 

1.0 

Continue

61.0

55.25 

61.0

45.0

0.35

Low 
-10.0 

0.4

High
100.0 

0.25

Medium
75.0

0.35

Low 
20.0

0.4

High
85.0

0.25

Medium
80.0

45.0

Plant Capacity Demand Profit

Influence Diagrams, Fig. 2 The Solved Decision Tree for the
Capacity Example
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on capacity, the decision maker could pick the best of

all possible worlds. In Fig. 4, the Demand node has

been changed to a decision node representing what to

ask of the wizard, with an arrow to indicate the demand

choice is made before selecting the Plant Capacity.

Again, inspecting the earlier tree determines that it

would be best to chose the High demand and

Automate the plant leading to a profit value of 100,

which subtracting the original 61.0 lead to a value of

perfect control of 39.0.

The analyst and the decision maker now look for

more realistic interventions that maybe undertaken.

Assume they cannot find a legal means to control

demand, but they do have a proposal to undertake

a market survey, that can report that the market will

be either Immense or Small. Such a report is usually

modeled by assigning a probability of each report

conditional on each case of what the market might

actually be, as shown if Fig. 5. This information is

captured by inserting a new chance node into

the original influence diagram for the result of the

Market Survey, drawing an arrow from the Demand

node to that node, indicating the functional

dependence or probabilistic relevance, and drawing

another arrow from the Market Survey node to the

Plant Capacity decision node indicating that the

decision maker will know the market survey results

when making the primary decision, as shown in Fig. 6.

Now there is a problem of how to draw a proper

decision tree to solve this influence diagram, as

simply following the arrows will not lead to the

correct tree. Most readers will recognize that what is

needed is the application of Bayes’ Rule to reverse the

arrow between the Demand node and the Market

Survey node. In an influence diagram, an arrow can

Demand

Profit

Plant
Capacity

Influence Diagrams, Fig. 3 The Capacity Example with
Perfect Information on Demand

Demand

Profit

Plant
Capacity

Influence Diagrams, Fig. 4 The Capacity Example with
Perfect Control of Demand

Demand Market Survey 

High

Medium

Low 

0.8 
Immense 

0.2 
Small 

0.6 
Immense 

0.4 
Small 

0.3 
Immense 

0.7 
Small 

Influence Diagrams, Fig. 5 The Conditional Distribution of
the Market Survey
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always be reversed (by Bayes’ Rule) if both nodes have

the same arrows into them, except for the arrow

between them, because this means both nodes are

conditioned on the same state of information.

New arrows may be added to create this condition,

but only if they do not create directed loops in the

diagram. In the original paper (Howard et al. 1976),

a valid influence diagram describing a decision was

called a decision diagram, and one with all nodes

reversed so that a tree could be drawn by simply

following the arrows is called a decision tree

diagram. The ability to express the complete problem

the way it is assessed, and then do this kind of

manipulation, is a unique advantage of influence

diagrams.

Prior to influence diagrams, a decision analyst used

two separate constructs, the decision tree (to state the

sequential nature of the problem) and nature’s tree (to

state the original probability assessments), and then

manipulated nature’s tree into the sequence needed

for inserting revised probabilities into the decision

tree. Influence diagrams allow both the problem

statement and solution to be captured and treated in

the same structure. Since trees expand exponentially as

nodes are added, only the first two levels in the solution

of Fig. 7 are shown, followed by their expected values.

Here, the real market survey raises the value of the

original problem by only 1.9 compared to the value of

perfect information of 14.7 or only about 11.5%.

Perfect information is often not a good guide to the

value of real information, seeMatheson andMatheson,

(2005). Influence diagrams can be used to explore

similar questions in much more complex situations.

An elaborate example, that illustrates a sequence of

more complex but useful influence diagram models of

a space program decision, including dealing with

perplexing counter-factual probability assessments,

appears in Matheson, (1990). Formulating and

solving general interventions to observe or control

decision situations are also discussed in Matheson

and Matheson, (2005).

While influence diagrams can grow large, they

usually can be constructed so they fit onto one sheet

of paper. A corresponding decision tree, however,

would be very unwieldy (it might wrap around the

room!) and be difficult to manipulate. Fortunately,

methods have been developed for solving influence

diagrams directly, without building large trees,

making solutions of large influence diagrams

practical, see (Olmsted 1983; Shachter 1986, 1988).

Summary of Rules, Conventions, and Issues

The references show many rules for constructing

and manipulating influence diagrams, including

manipulations that constitute formal proofs, with no

Profit

Plant
Capacity

Market
Survey

Demand

Influence Diagrams, Fig. 6 Influence Diagram for the
Capacity Example with a Market Survey

Market Survey Plant Capacity Profit

Automate

Build

Continue

0.43

Small

Automate

Build

Continue

0.58

Immense

61.9

46.35

73.39

30.71

46.35

45.0

73.39

71.83

45.0

Influence Diagrams, Fig. 7 Abbreviated Solved Decision
Tree for the Capacity Example with a Market Survey
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numbers involved. Some rules and terminology are

provided here.

An influence diagram usually represents the state of

information of an author. In the graphical

representation, the author is making assertions about

the structure of the problem, usually before assigning

the functions and numbers inside the nodes.

If information is supplied by several parties, a single

author should first review and accept it, then

consolidate that information into the influence

diagram. Large organizations sometimes designate

individual information certifiers, or a small group to

perform these functions, who sign off on the content of

the influence diagrams, much like an architect or

engineer signs blueprints.

One can think of a decision node as a node where

the decision maker specifies a choice by a usually

degenerate probability distribution. The node could

represent a randomized strategy in a gaming context,

so the whole diagram can be viewed as one joint

probability assignment of the decision maker that has

been simplified and specified using the influence

diagram structure. Thus, influence diagrams represent

a conditioning order for representing a joint probability

distribution; they are always directed graphs indicating

a particular conditioning order and cannot have

directed loops.

Influence diagrams usually describe a single

decision maker who remembers previous decisions.

This no forgetting condition means that the decision

nodes should be directly ordered by arrows from all

preceding decisions, although sometimes implied

arrows are left off of the diagram to eliminate

clutter. Arrows into decision nodes are informational

influences. Arrows into chance nodes are conditioning

influences.

The original influence diagram paper did not insist

upon having an explicit value node, essentially

considering it to be deterministic and in another

dimension. But in practice, value nodes are normally

used to show what is being maximized, creating what

are called decision diagrams. Also, in practice, many

deterministic chance nodes surround the value node

to link value from various parts of the problem;

for example, stating that profit is revenue less cost

or revenue is sales volume multiplied by price.

Influence diagrams containing a value node and

other deterministic relationships are sometimes

referred to as value maps. These help to put the

main features of the entire decision model into one

diagram that can be readily explained and understood.

A diagram with only chance nodes is sometimes

called a knowledge map with the arrows relevance

arrows, see Howard, (1990).

The most important assertions in an influence

diagram are given by the lack of possible arrows, as

this lack asserts that the author believes that there are

structural reasons for a lack of influence (or

relevance), and that any subsequent assessment of

actual functions or numbers will preserve this

property. This feature allows graphical dialog and

reasoning about issues that are separate from the

particular assessments that might be made later or

by different authors who all agree on the structure

represented by the diagram. They also allow

graphical proofs about features of the diagram that

are true no matter what numerical assessments are

made. For example, an influence diagram that is

a chain of nodes and arrows between each

successive node, having no arrows bypassing other

nodes, can easily shown to be reversible into the

opposite order, while retaining the same features,

regardless of what assessments are put into the

nodes themselves.

Influence diagrams are often constructed top down.

After establishing a value node, the assessor asks the

subject, “if you wanted to eliminate some of your

uncertainty about value, what question might you ask

(of a clairvoyant)?” The subject might answer, “our

revenue,” which further breaks down into “the amount

sold” and “our realized price.” Asked what

information would help reduce those uncertainties,

the subject might say, “time of entry of foreign

competition” and “U.S. tariff barrier level.” The cost

side might be broken into capital cost and variable cost.

The process continues until the influence diagram

becomes an adequate description of the problem for

assessment and analysis.

Influence diagrams can interconnect many

decisions and uncertainties to express highly complex

problems that would be very difficult to treat with

decision trees. A virtual tree always exists as

a hypothetical construct, but may be too large to be

useful. Decision trees, however, can be useful to

display parts of the diagram or the nature of

solutions. There are many solution methods that do
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not require developing trees, some for solving decision

problems and others specialized to limited situations,

such as propagating the impact of information on

marginal probabilities.

Adding Complexity: Real-World Influence
Diagrams

An example of an influence diagram use to capture

and treat a real-world industrial problem is illustrated

in Fig. 8. A major international electronics company

was concerned about slipping behind in their

television and related electronics strategy as the era

of HDTV was approaching. The Japanese were

already using an early version of HDTV, and an

international standards battle was brewing. These

standards would influence the strategic position of

the company. The company also needed to

determine what areas they would keep in-house as

proprietary. For example, design and manufacturing

technologies, and in what areas they would partner or

outsource. In this instance, all of the decision nodes

are simultaneous, and the arrows among them have

been left off to eliminate clutter. The diagram shows

how the company perceived their decisions and the

influences on the development of the markets for

HDTV and their own participation in it. This work

ultimately set their strategy for the following decade.

(See Matheson and Matheson 1998) for further

discussion).

Another real-world influence diagram, shown here

for illustrative purposes is that of a typical drug

development, Fig. 9 (SmartOrg 2005). The diagram

splits into two: an upper portion that deals with R&D,

and a lower portion that deals with the commercial

contribution that might accrue if the drug is

successfully developed and approved by the FDA for

marketing. This diagram is typical of research or

development problems, including projects such as oil

exploration, or litigation. These problems are all

characterized by a development phase, that determines

whether the project is commercially feasible, followed

by a commercialization phase, that determines the

project’s contribution if it is commercialized.

Some companies find that parts of an influence

diagram repeat themselves in many problems. For

example, an oil company investment may often have

a portion of the influence diagram representing

oil-price economics. This allows the company to do
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Influence Diagrams, Fig. 8 Complex Industrial Influence Diagram
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a careful assessment once and to distribute the assessed

influence diagram to its decision analysts as a starting

point for many situations. This process clearly saves

labor and assures consistency. But beyond that, most of

these companies have a portfolio of investments to

make involving the same assessments. In this case the

common influence diagram insures consistency

and conveys the information needed to determine

dependency among the investments, permitting

analysis of risk concentration and risk compensation,

and providing the analytics needed for diversification

and hedging (Matheson 1983).
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Long-Term
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See

▶Bayes Rule

▶Bayesian Decision Theory, Subjective Probability,

and Utility

▶Decision Analysis

▶Decision Analysis in Practice

▶Decision Trees
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Spetzler, C., & Staël von Holstein, C. (1975). Probability
encoding in decision analysis. Management Science, 22,
340–358.

World Economic Forum. (2011). Global risks 2011: Sixth

Edition, an initiative of the risk response network. January,
Cologny, Geneva.

Information Systems and Database
Design in OR/MS

Heiner M€uller-Merbach

Technische Universit€at Kaiserslautern, Kaiserslautern,

Germany

Introduction

There are many close relations between information

systems, database structures, and operations research

(OR). The models and algorithmic procedures of OR

are becoming more integrated parts of information

systems. The task of OR may continually shift

towards the comprehensive design of information

systems, database structures included.

Architechture of Comprehensive
Information Systems

Traditional data processing was based on collections of

individual programs, separated from one another, each

with its own individual data organization. Similarly,

the characteristic OR packages were stand-alone

solutions for singular types of problems, be it

mathematical programming, network analysis, and

simulation or even more specialized packages for the

knapsack problem, traveling salesman problem, set

covering problem, etc.
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Future information systems, in contrast, will have

a comprehensive architecture. The vast majority of

data will be stored and maintained centrally, on

a data management computer, or on a network of

such computers. Most of the programs will mainly

process such centralized data and the programs

themselves will be available from the comprehensive

information system.

A particular feature of the comprehensive

information systems is the client–server structure,

that is, a network with a huge number of clients

(client computers) being provided with data and

programs from a server (server computer) or

networks of servers.

Relational Databases

The design of such comprehensive information

systems and their databases requires standards, in

particular those for data structures. A quite common

standard today is that of relational databases, such as

designed by Codd (1970). The main principles of

relational databases are (in non-technical terms):

• All the information is organized in terms of

attributes to entity sets. Entity sets are collections

of entities with identical attributes— but individual

attribute values.

• There is no hierarchy between the entity sets. All

the entity sets are at the same level and allow for

immediate access. However, it is sometimes

advantageous to distinguish between elementary

and connecting entity sets. The first ones are

self-contained, while the latter ones connect other

entity sets and, therefore, depend partly on them.

• Any information is only stored once and no

redundancy is allowed. Any attribute, therefore,

has to be attached to its corresponding (elementary

or connecting) entity set. This is the essence of the

normalization concept of relational database

structures.

Models and Databases

There exists a narrow correspondence between

mathematical models and relational database

structures. Indices of a mathematical model indicate

the individual entities of an entity set, single indices

those of elementary, multiple indices those of

connecting entity sets. The constants and variables of

a mathematical model correspond with the attributes

of the entity sets (M€uller-Merbach 1983, 1989;

Geoffrion 1989).

This correspondence can easily be shown by

a production function that connects the quantities of

production factors with the quantities of products:

rj ¼
X

k

ajk xk

with j and k indicating the entities of the entity sets

FACTOR(j) and PRODUCT(k), respectively, and
rj ¼ quantity of production factor j required

xk ¼ quantity of product k to be produced

ajk ¼ production coefficient, representing the quantity

of factor j required per unit of product k.

The relational database structure corresponding

with the production function is given in Fig. 1.

There are the elementary entity sets FACTOR(j)
and PRODUCT(k), as well as the connecting entity

set F � P(j, k). This database structure is to be

considered as a subset of the comprehensive database

of the corresponding enterprise with many more entity

sets and many more attributes to the entity sets.

Any mathematical model (be it from OR, statistics,

etc.) should have such an immediate correspondence

with the database. The entity sets correspond with the

mathematical indices and the attributes to the entity

sets correspond with the constants and variables of the

model.

Therefore, model design and database design

follows the same logical structure. Either one can

proceed the other. However, normally database

design is prior to model design and the attributes

required for a model can be derived from the

data-base. Should, however, the attributes required

for a model not be available in the database, an

appropriate extension of the database may become

necessary.

Mnemonic Notation

Large-scale mathematical models and — even more

so — databases in general tend to cover huge numbers

of entity sets and attributes. In order to cope with them,

a mnemonic notation of the attributes is useful.
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The notation should (i) refer to the entity set,

(ii) specify the content of the attribute, and (iii)

indicate the formal property of the attribute.

Considered be a two-stage production and cost

function, respectively, connecting the three

elementary entity sets LABOR, MACHINE, and

PRODUCT (Fig. 2). The indices indicate the

qualification class of labor (i), the machines (j) and

the products (k). All the attributes of the entity set

LABOR start with an L, the others with an M or a P,

respectively, referring to the entity sets. The content is

represented by a Q (quantity), a T (time required), or

a C (cost) in the second position. The third letter

indicates constants (C), variables (V) and other formal

properties such as discrete variables (D), Boolean

variables (B), etc.

Thus, the constants vector PQCk represents the

known (therefore, C) quantities (Q) of the single

products (P). The variables vector MTVj represents

the times (T) of the machines (M) required for

producing the given quantities of the products. The

variables vector LQVi stands for the quantity (Q) of

labor (L) necessary for running the machines.

In addition, the production coefficients have to be

introduced. They are attributes of the dependent entity

sets, connecting the elementary entity setsMACHINE
and PRODUCT as well as LABOR and MACHINE.
It is convenient that the attributes of the dependent

entity sets refer immediately to the attributes of the

elementary entity sets. Thus, the constants matrix

MTPQCjk represents the machine time (MT) per unit

of the product quantities (PQ). This leads immediately

to the production function for the machine times

required for the given product quantities:

MTVj ¼
X

k

MTPQCjkPQCK:

In a similar way, the quantity of labor hours (LQ)

per unit of the machine times (MT) is represented by

the constants matrix LQMTCij, the basis for the

production function for the labor quantities required

for the computed machine times:

LQVi ¼
X

j

LQMTCi jMTVj:

The cost functions (here only labor costs) are dual

to the production functions. They use the same

production coefficients matrices as the production

functions, but the attributes of the elementary entity

sets are different:

LCCi ¼ cost of quantity unit of labor (qualification

class i)

MCVj ¼ labor cost per time unit of machine j

PCVk ¼ labor cost per quantity unit of product k.

By the first cost function, the labor costs are

assigned to the machines:

MCVj ¼
X

i

LCCiLQMTCi j:

FACTOR
j

PRODUCT
k

FxP
j, k

rj ajk xk

Information Systems and Database Design in OR/MS,

Fig. 1 Relational database structure for a production function
(The attributes are attached to the entity sets FACTOR,
PRODUCT, and F � P.)

LABOR
i

LQVi LQMTCij MTVj PQCk

PCVk

MTPQCjk

MCVjLCCi

MACHINE
j

PRODUCT
k

LxM
i,j

MxP
j,k

Information Systems and Database Design in OR/MS,
Fig. 2 Relational database structure for a two-stage
production function and cost function (The mnemonic

attributes are attached to the elementary entity sets LABOR,
MACHINE, and PRODUCT, as well as to the dependent entity
sets L � M and M � P.)
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By the second cost function, the resulting labor

costs per machine time unit are assigned to the

products:

PCVk ¼
X

j

MCVjMTPQCj k:

Object-Oriented Modeling

There is a tendency from relational databases and

modeling towards object-oriented databases and

modeling. One of the object-oriented features is

the integration of functions and data. Even if there is

no unique standard as yet for object-oriented

databases, the idea of object-oriented mathematical

models can be presented (Fig. 3), with all the

production functions integrated into the database

structure.

Advantage of Integration

The integration of models and algorithmic procedures

of OR into comprehensive information systems

has many convenient properties. The main advantage

is: the data required for a model can immediately be

taken from the centralized database. The results

derived from the model can immediately be

transferred back to the database and is then available

to other users.

See

▶Model Management

▶ Structured Modeling

▶ Systems Analysis
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Information Technology Benefits

Douglas A. Samuelson

Infologix, Inc., Annandale, VA, USA

Many companies and other organizations have adopted

new information technology, expending considerable

effort and resources to do so. Understandably,

managers wish to evaluate whether the organization’s

benefits from these new technologies exceeded the cost

of acquisition and adoption. What was in 2000 a large

and growing literature on this subject seems to have

reached a plateau, as early studies questioning the value

of information technology collided with the reality of

growth and profitability for companies that employed

information technology heavily. Methods to evaluate

utility and appropriateness of information technology

have not kept pace with the technological advances.

Good methods of evaluation do exist, but they are not

prominent in the literature. Using such methods and

developing new ones represent an important challenge

and opportunity for OR/MS analysts.

LABOR
i

MACHINE
j

PRODUCT
k

LxM
i,j

MxP
j,k

LQMTCij MTPQCjk

LCCi

PQCkLQVi =  ∑jLQMTCij MTVj
MTVj =  ∑kMTPQCjk PQCk

MCVj =  ∑iLOCi LQMTCij PCVk =  ∑jMCVj MTPQCjk

Information Systems and Database Design in OR/MS,

Fig. 3 Object-oriented database structure for two-stage
production function and cost-function (The mnemonic

attributes and the functions for the variables are attached to the
elementary entity sets LABOR, MACHINE, and PRODUCT,
as well as to the dependent entity sets L � M and M � P.)
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Much of the earlier published work on the subject,

especially in business journals, focused on examining

whether firms’ profits, typically reported quarterly,

rose substantially in a fairly short time after adoption

of new information technology. This approach proved

uninformative and often misleading, as corporate tax

accounting practices tend to strive for smallish, level

net profits. Hence, the profits metric obscures the true

value of information technology investments.

The high-tech boom and bust of 1999–2000 raised

awareness of the disparities between the claims and

reality for many such investments. Perceptive analysts

began to ask not whether information technology pays

off in general, but what factors most influencewhether it

pays off in particular cases. This area of study, most

prominently in the software engineering literature, as

typified and summarized by Gilb (1988), had been

ongoing for some time, but remained unfamiliar many

business analysts. Gilb emphasized the need to develop

quantified requirements, that is, clear objectives that

could be measured numerically and unambiguously,

and to monitor continuously whether the project met

intermediate milestones as captured by the metrics. Gilb

(2005) expanded on these principles, summarizing

additional lessons learned and elaborating on the

method and some case studies to support his

assessment, with little change in the fundamental ideas.

Strassmann (1990) asserted that growth of assets and

return on investment, that are more promising measures

of benefit, also have drawbacks: return on investment is

hard to define precisely and, in most organizations, hard

to obtain; growth of assets is also subject to problems of

definition, although not to the same extent. Instead, he

suggested computing the total expenditure on all forms

of management, which in his view includes most

support services of any kind, and computing the

company’s return on management. This is usually not

possible without extensive internal auditing of the

company; in some cases, Strassmann reported, he

arrived at a first approximation of the percentage of

total company expenditures devoted to management

by counting the number of windows in the company’s

headquarters that correspond to employees involved in

some level of management and support.

Brynjolfsson and Hitt (1998) and Brynjolfsson and

Yang (1996, 1996) approached the conceptualization

somewhat differently, asserting that information

technology and the attendant restructuring of

organizational processes create a valuable intangible

asset. The resources expended to maintain and protect

this asset — or by competitors to diminish its value or

duplicate it — can then be used as an indication of its

perceived value. This approach has the additional

advantage of being applicable to non-profit

organizations, rather than just corporations.

Shapiro and Varian (1999) gave a considerably

more thorough discussion of the economics of value

of information. They argued strongly that accurate and

timely information has value which may be

considerably greater than one’s first attempts at

measurement would suggest. If a company uses its

information advantage to achieve customer lock-in

and, thereby, enables itself to price its products and

services, within selected market niches at a high profit

margin, it obtains a large return on its information

investment — a return which would escape

many approaches to measurement, as the benefit

is confounded with that of general marketing.

Similarly, accumulating know-how which reduces

costs of production is confounded with other aspects

of cost control.

Another apparently popular method of evaluation

is to survey users of the technology. These surveys

need not and, in fact, should not be restricted to

simple “Do you like it?” items. Subject only to the

respondents’ limits on the time they are willing to

spend, analysts can ask numerous specific questions

about how certain tasks, such as disseminating

background materials for an important decision, are

performed before and after the introduction of new

information technology.

Unfortunately, even the best of these surveys are of

limited value. Respondents asked how much time they

spend finding lost information, for example, may not

know, as many of them delegate such tasks to others.

Individuals, regardless of level, rarely see group costs.

Even more fundamental is the Baywatch Syndrome,

which is that people do not realize what they know.

That is, in the few years after the show left the air in

the U.S.,many peoplewho claimed to be unfamiliar with

the television series Baywatch were nevertheless able to

identify readily a still photograph from the show, rated as

the most widely watched show in the world for several

years in themid-1990s.What happened, however, is that

much of the exposure took place via channel surfing, or

in some other rather haphazard fashion, or via

promotions for the show during other programs. For

many people, the viewing experience never entered
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into their central, attention-directing mental activity, so

they did not recall it without specific prompting.

A similar phenomenon occurs when people adopt

new information technology. Like a manual

gearshift in a car, the information technology slips

out of the person’s central mental activity and into

semi-automatic behavior — and such slippage

precisely defines adoption. Once this has occurred,

the respondent is less and less likely to recall

specifics of use and value of the information

technology, as the person is using it with less and less

conscious, directed thought about it.

This change in attention and in involvement of

higher-order thinking also helps to explain

a phenomenon commonly encountered in surveys:

respondents state that the new technology is of

little value, and one of the primary reasons they

give — often with some irritation — is that it breaks

too often. Upon closer examination, these responses

are contradictory: if the technology is truly of little

value, one would not care how often it breaks. Such

responses should be interpreted as positive with regard

to the perceived value (or at least potential value) of the

technology, though clearly not positive with regard to

satisfaction and ease of use.

The most useful approach in evaluation, therefore,

is to utilize the technology itself to make unobtrusive

measurements of actual usage and patterns of use.

Most Web servers can readily accommodate software

which measures numbers of hits on various resources,

numbers of logins and duration of sessions

(for systems which have a formal login and logout as

part of their access protocols), and similar statistics.

With more effort, and custom software, one can also

track discussion threads by topic, which makes it

possible to answer such questions as how long

it takes to get a specific type of order filled, a specific

type of question answered, or a specific directive

carried out and verified as done. If these measures

then change shortly after additions or modifications

to the information system, association is easy to

identify, and the causal connection is easier to assert.

Finally, some organizations genuinely experience

disappointing results with new information technology

because they do not change their work processes to take

advantage of it. Attempting to maintain hierarchical

structures and traditional controls greatly reduces the

organization’s ability to use the information technology

to support coherent, simultaneous activities which do

not require direct coordination — the types of activity

for which enriched information systems are most

critical. As Arquilla and Ronfeldt (1997) pointed out

in their review of military information warfare,

“The information revolution favors and strengthens

networks, while it erodes hierarchies.... Hierarchies

have a difficult time fighting networks.”

An organization, therefore, which adopts new

information technology but does not have clear,

measurable objectives and the commitment to change

its work processes, will be highly unlikely either to

achieve significant benefits or to be able to measure the

effects accurately. The proper evaluation of

the benefits of information technology requires not

only assessment of use of the technology, but also

a clear statement of the organization’s objectives,

realistic appraisal of how well those objectives are

being met before and after the technology is

introduced, and unflinching accounting for the extent

to which organizational, structural, and political

resistance to change are affecting the results.

Hubbard (2010) gave a number of good examples

of better ways to measure seemingly intangible aspects

of organizational performance, some drawn from

experience with information technology projects.

Hubbard (2009) also noted explicitly the tendency of

managers to over-value some techniques for

decision-making. According to surveys he conducted,

some popular methods, such as balanced scorecards

and some applications of the Analytic Hierarchy

Process (AHP), consistently did better at raising

managers’ confidence in decisions than in improving

outcomes. He concluded that methods of decision

making should be subjected to the same rigorous

quantitative evaluation as other subject areas – if

anything, even more so – with the purpose of driving

out underperforming methods.

Hubbard also noted that metrics’ value is not

inherent, but depends on what is already known. An

approach he invented (or at least stated cogently and

named), Applied Information Economics, addresses this

valuation by calculating the Expected Value of Perfect

Information (EVPI), that is, the risk associated with the

decision if a selected data element were known with

certainty, and devoting resources to those areas of

uncertainty (regarding data elements) in which more

information would most decrease the decision risk. For

example, in information technology investments, his

studies indicated that managers generally knew the

Information Technology Benefits 769 I

I



costs of information projects much better than the

benefits. Hence, they tended to underestimate one of

the biggest risks: cancellation of the project partway

through because of some combination of changing

management objectives, changing perception of

requirements, and frustration with the lack of tangible

progress. Thus, Hubbard arguing from probabilistic-

decision making, reinforces Gilb’s emphasis on the

importance of well-defined quantitative metrics that are

systematically and periodically reviewed throughout the

project’s life.

See

▶Computer Science and Operations Research

Interfaces

▶ Information Systems and Database Design

in OR/MS

▶Model Management

▶ Systems Analysis
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Initial Feasible Solution

▶ First Feasible Solution

Input Process

The stochastic point process representing some aspect

of customers actually entering a queueing system

(or nodal part of one) or some aspect of the state of

the node at the instant of input, with points

representing the instants of entrance. For example, in

finite capacity queues, and (Xa, Ta) process has the Xa

process as a sequence of 1s and 0s representing

whether the queue is full or not at an arrival and the

T
a process represents the times of arrivals. The subset

of the Ta process for which Xa¼ 0 represents the set of

arrival epochs at which a customer actually enters the

node, while the Ta for which X
a ¼ 1 represents the set

of arrival times at which customers do not gain access

to the node but overflow.

See

▶Arrival Process

▶Networks of Queues

▶Queueing Theory

Input–Output Analysis

The economic theory developed by the economist

W.W. Leontief to study a national economy.

The approach requires the development of an

input–output table (matrix) in which the coefficients

in a row indicate how much of the industry designated

by that row is required to produce a unit of output for

itself and all other industries, and the coefficients in
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a column represent the amounts of each industry

required to produce one unit of output for the

industry designated by that column. Under

the assumption that the input–output coefficients are

stable over the near future and reflect a constant return

to scale (linear) relationship, a square set of equations

can be established to determine production levels for

the industries that meets projected demand.

See

▶ Input–Output Coefficients

Input–Output Coefficients

For some linear programming and other production

problems, the A ¼ (aij) coefficients of the constraints

Ax ¼ b can be interpreted as the amount of resource

i required (input) to produce one unit of product

j (output). More generally, an input–output matrix of

American industries formed the bases of the economist

Leontief’s contribution to economic theory.

See

▶Activity-Analysis Problem

▶ Input–Output Analysis

Insensitivity

A property of queueing systems wherein some

measure of effectiveness does not depend on

a particular distribution assumption except through

its mean value. The classical example is the Erlang

loss call formula in the multi-server M/G/c/c queue

that depends on the service-time process only through

its mean value.

See

▶Erlang B Formula

▶Queueing Theory

Institute for Operations Research and
the Management Sciences (INFORMS)

The main organization for operations research and the

management sciences in the United States begun

officially on January 1, 1995 upon the merger of the

Operations Research Society of America (ORSA) and

The Institute of Management Sciences (TIMS).
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Introduction

Integer optimization problems are concerned with the

efficient allocation of limited resources to meet

a desired objective when some of the resources in

question can only be divided into discrete parts. In

such cases, the divisibility constraints on these

resources, which may be people, machines, or other

discrete inputs, may restrict the possible alternatives to

a finite set. Nevertheless, there are usually too many

alternatives to make complete enumeration a viable

option for instances of realistic size. For example, an

airline may need to determine crew schedules that

minimize the total operating cost, an automotive

manufacturer may want to determine the optimal mix

of models to produce in order to maximize profit, or

a flexible manufacturing facility may want to schedule

production for a plant without knowing precisely what

parts will be needed in future periods. In today’s

changing and competitive industrial environment, the

difference between ad hoc planning methods and those

that use sophisticated mathematical models to

determine an optimal course of action can determine

whether or not a company survives.

A common approach to modeling optimization

problems with discrete decisions is to formulate them

as mixed integer optimization problems. This entry

focuses on problems in which the functions required

to represent the objective and constraints are additive,

i.e., linear functions. Such a problem is called a mixed
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integer linear optimization problem (MILP) and its

general form is

max
X

j2B
cjxj þ

X

j2I
cjxj þ

X

j2C
cjxj (1)

subject to
X

j2B
aijxj þ

X

j2I
aijxj

þ
X

j2C
aijxj

�
¼
�

8
><

>:

9
>=

>;
bi 8i 2 M;

(2)

lj � xj � uj 8j 2 N ¼ B [ I [ C; (3)

xj 2 f0; 1g 8j 2 B; (4)

xj 2  8j 2 I; and (5)

xj 2  8j 2 C: (6)

A solution to (1)–(6) is a set of values assigned to the

variables xj, j∈N. The objective is to find a solution that

maximizes the weighted sum (1), where the coefficients

cj, j ∈ N are given. B is the set of indices of binary

variables (those that can take on only values 0 or 1), I is

the set of indices of integer variables (those that can take

on any integer value), and C is the set of indices of

continuous variables. As indicated above, each of the

first set of constraints (2) can be either an inequality

constraint (“�” or “�”) or an equality constraint (“¼”).

The data lj and uj are the lower- and upper-bound values,

respectively, for variable xj, j ∈ N.

This general class of problems has many

important special cases. B ¼ I ¼ ∅ gives what is

known as a linear optimization problem (LP). If

C ¼ I ¼ ∅, then the problem is referred to as a

(pure) binary integer linear optimization problem

(BILP). Finally, if C ¼ ∅, the problem is called a

(pure) integer linear optimization problem (ILP).

Otherwise, the problem is simply a MILP.

Throughout this discussion, refer to the set of

points satisfying (1)–(6) as S, and the set of points

satisfying all but the integrality restrictions (4)–(5)

as P. The problem of optimizing over P with the

same objective function as the original MILP is

called the LP relaxation and arises frequently in

algorithms for solving MILPs.

A class of problems closely related to BILPs are

the combinatorial optimization problems (COPs).

A COP is defined by a ground set E, a set F of

subsets of e that are called the feasible subsets, and

a cost ce associated with each element e ∈ E. Each
feasible subset F ∈ F has an associated (additive)

cost taken to be Se ∈F ce. The goal of a COP is find the

subset F ∈ F of minimum cost. The set F can often

be described as the set of solutions to a BILP by

associating a binary variable xe with each member e

of the ground set, indicating whether or not to include

it in the selected subset. For this reason,

combinatorial optimization and integer optimization

are closely related and COPs are sometimes

informally treated as being a subclass of MILPs,

though there are COPs that cannot be formulated as

MILPs.

Solution of an MILP involves finding one or more

best (optimal) solutions from the set S. Such problems

occur in almost all fields of management (e.g., finance,

marketing, production, scheduling, inventory control,

facility location and layout, supply chain

management), as well as in many engineering

disciplines (e.g., optimal design of transportation

networks, integrated circuit design, design and

analysis of data networks, production and distribution

of electrical power, collection and management of

solid waste, determination of minimum energy states

for alloy construction, planning for energy resource

problems, scheduling of lines in flexible

manufacturing facilities, and design of experiments in

crystallography).

This entry gives a brief overview of the related

fields of integer and combinatorial optimization.

These fields have by now accumulated a rich

history and a rich mathematical theory. Texts

covering the theory of linear and integer linear

optimization include those of Bertsimas and

Weismantel (2005), Chvátal (1983), Nemhauser

and Wolsey (1988), Parker and Rardin (1988),

Schrijver (1986), and Wolsey (1998). Overviews

of combinatorial optimization are provided by

Papadimitriou and Steiglitz (1982) and Schrijver

(2003). J€unger et al. (2010) have produced a

marvelous and comprehensive volume containing

an overview of both the history and current

state of the art in integer and combinatorial

optimization.
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Applications

This section describes some classical integer and

combinatorial optimization models to provide an

overview of the diversity and versatility of this field.

Knapsack Problems

Suppose one wants to fill a knapsack that has a weight

capacity limit of W with some combination of items

from a list of n candidates, each with weight wi and

value vi, in such a way that the value of the items

packed into the knapsack is maximized. This problem

has a single linear constraint (that the weight of the

items selected not exceed W), a linear objective

function (to maximize the sum of the values of the

items in the knapsack), and the added restriction that

each item either be in the knapsack or not—it is not

possible to select a fractional portion of an item. For

solution approaches specific to the knapsack problem,

see Martello and Toth (1990).

Although this problem might seem too simplistic to

have many practical applications, the knapsack

problem arises in a surprisingly wide variety of fields.

For example, one implementation of the public-key

cryptography systems that are pervasive in security

applications depends on the solution of knapsack

problems to determine the cryptographic keys

(Odlyzko 1990). The system depends on the fact that,

despite their simplicity, some knapsack problems are

extremely difficult to solve.

More importantly, however, the knapsack

problem arises as a substructure in many other

important combinatorial problems. For example,

machine-scheduling problems involve restrictions on

the capacities of the machines to be scheduled (in

addition to other constraints). Such a problem

involves assigning a set of jobs to a machine in such

a way that the capacity constraint is not violated. It is

easy to see that such a constraint is of the same form as

that of a knapsack problem. Often, a component of the

solution method for problems with knapsack

constraints involves solving the knapsack problem

itself, in isolation from the original problem

(see Savelsbergh (1997)). Another important example

in which knapsack problems arise is the

capital budgeting problem. This problem involves

finding a subset of the set of (possibly) thousands of

capital projects under consideration that will yield the

greatest return on investment, while satisfying

specified financial, regulatory, and project

relationship requirements (Markowitz and Manne

1957; Weingartner 1963). Here also, the budget

constraint takes the same form as that of the

knapsack problem.

Network and Graph Problems

Many optimization problems can be represented by

a network, formally defined as a set of nodes and

a set of arcs (unidirectional connections specified as

ordered pairs of nodes) or edges (bidirectional

connections specified as unordered pairs of nodes)

connecting those nodes, along with auxiliary data

such as costs and capacities on the arcs (the nodes

and arcs together without the auxiliary data form

a graph). Solving such network problems involves

determining an optimal strategy for routing certain

commodities through the network. This class of

problems is thus known as network flow problems.

Many practical problems arising from physical

networks, such as city streets, highways, rail systems,

communication networks, and integrated circuits, can

be modeled as network flow problems. In addition,

there are many problems that can be modeled as

network flow problems even when there is no

underlying physical network. For example, in the

assignment problem, one wishes to assign people to

jobs in a way that minimizes the cost of the assignment.

This can be modeled as a network flow problem by

creating a network in which one set of nodes represents

the people to be assigned, and another set of nodes

represents the possible jobs, with an arc connecting

a person to a job if that person is capable of

performing that job. A general survey of applications

and solution procedures for network flow problems is

given by Ahuja et al. (1993).

Space-time networks are often used in scheduling

applications. Here, one wishes to meet specific

demands at different points in time. To model this

problem, different nodes represent the same entity at

different points in time. An example of the many

scheduling problems that can be represented as

a space-time network is the airline fleet assignment

problem, which requires that one assign specific

planes to prescheduled flights at minimum cost

(Abara 1989; Hane et al. 1995). Each flight must

have one and only one plane assigned to it, and
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a plane can be assigned to a flight only if it is large

enough to service that flight and only if it is on the

ground at the appropriate airport, serviced and ready to

depart when the flight is scheduled for takeoff. The

nodes represent specific airports at various points in

time and the arcs represent the flow of aircraft of

a variety of types into and out of each airport. There

are layover arcs that permit a plane to stay on the

ground from one time period to the next, service arcs

that force a plane to be out of duty for a specified

amount of time, and connecting arcs that allow

a plane to fly from one airport to another without

passengers.

A variety of important combinatorial problems

are graph-based, but do not involve flows. Such

graph-based combinatorial problems include the

node-coloring problem, the objective of which is to

determine the minimum number of colors needed to

color each node of a graph in order that no pair of

adjacent nodes (nodes connected by an edge) share

the same color; the matching problem, the objective

of which is to find a maximum weight collection of

edges such that each node is incident to at most one

edge; the maximum clique problem, the objective of

which is to find the largest subgraph of the original

graph such that every node is connected to every other

node in the subgraph; and the minimum cut problem,

the objective of which is to find a minimum weight

collection of edges that (if removed) would disconnect

a set of nodes s from a set of nodes t.

Although these graph-based combinatorial

optimization problems might appear, at first glance,

to be interesting only from a mathematical perspective

and to have little application to the decision-making

that occurs in management or engineering, their

domain of application is extraordinarily broad. The

four-color problem, e.g., which is the question of

whether a map can be colored with four colors or less,

is a special case of the node-coloring problem. The

maximum clique problem has important implications

in the growing field of social network analysis.

The minimum cut problem is used in analyzing

the properties of real-world networks, such as

those arising in communications and logistics

applications.

Location, Routing, and Scheduling Problems

Many network-based combinatorial problems involve

finding a route through a given graph satisfying

specific requirements. In the Chinese postman

problem, one wishes to find a shortest walk

(a connected sequence of arcs) through a network

such that the walk starts and ends at the same node

and traverses every arc at least once (Edmonds and

Johnson 1973). This models the problem faced by

a postal delivery worker attempting to minimize the

number of traversals of each road segment on a given

postal route. If one instead requires that each node be

visited exactly once, the problem becomes the

notoriously difficult traveling salesman problem

(Applegate et al. 2006). The traveling salesman

problem has numerous applications within the routing

and scheduling realm, as well as in other areas, such as

genome sequencing (Avner 2001), the routing of

SONET rings (Shah 1998), and the manufacturing of

large-scale circuits (Barahona et al. 1988; Ravikumar

1996). The well-known vehicle routing problem is

a generalization in which multiple vehicles must each

follow optimal routes subject to capacity constraints

in order to jointly service a set of customers

(Golden et al. 2010).

A typical scheduling problem involves determining

the optimal sequence in which to execute a set of jobs

subject to certain constraints, such as a limited set of

machines on which the jobs must be executed or a set

of precedence constraints restricting the job order

(see Applegate and Cook (1991)). The literature on

scheduling problems is extremely rich and many

variants of the basic problem have been suggested

(Pinedo 2008). Location problems involve choosing

the optimal set of locations from a set of candidates,

perhaps represented as the nodes of a graph, subject to

certain requirements, such as the satisfaction of given

customer demands or the provision of emergency

services to dispersed populations (Drezner and

Hamacher 2004). Location, routing, and scheduling

problems all arise in the design of logistics systems,

i.e., systems linking production facilities to end-user

demand points through the use of warehouses,

transportation facilities, and retail outlets. Thus, it is

easy to envision combinations of these classes of

problems into even more complex combinatorial

problems and much work has been in this direction.

Packing, Partitioning, and Covering Problems

Many practical optimization problems involve

choosing a set of activities that must either cover

certain requirements or must be packed together so as
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not to exceed certain limits on the number of activities

selected. The airline crew scheduling problem, e.g., is

a covering problem in which one must choose a set of

pairings (a set of flight legs that can be flown

consecutively by a single crew) that cover all

required routes (Hoffman and Padberg 1993; Vance

et al. 1997). Alternatively, an example of a set packing

problem is a combinatorial auction (Cramton et al.

2006). The problem is to select subsets of a given set

of items that are up for auction in such a way that each

item is included in at most one subset. This is the

problem faced by an auctioneer in an auction in

which bidders can bid on sets of items rather than just

single items. If one requires that all items be sold, then

the auctioneer’s problem becomes a partitioning

problem. There are a variety of languages that allow

users to express the interrelationship among their bids.

Such languages (e.g., “OR,” “XOR,” “ORofXOR,”

“XORofOR”) create a somewhat different structure

to the combinatorial problem.

In the above examples, the coefficients in

constraints (2) are either zero or one and all variables

are binary. The variables represent the choice of

activities, while each constraint represents either

a covering (“�”), packing (“�”), or partitioning

(“¼”) requirement. In many cases, these problems

can be easily interpreted by thinking of the rows as

a set of items to be allocated or a set of activities to

be undertaken and the columns as subsets of those

items/activities. The optimization problem is then to

find the best collection of subsets of the activities/items

(columns) in order to cover/partition/pack the row set.

Surveys on set partitioning, covering, and packing are

given in Balas and Padberg (1976), Borndörfer and

Weismantel (2000), Hoffman and Padberg (1993),

and Padberg (1979b).

Other Nonconvex Problems

The versatility of the integer optimization model

(1)–(6) might best be exemplified by the fact that

many nonlinear/nonconvex optimization problems

can be reformulated as MILPs. For example, one

reformulation technique for representing nonlinear

functions is to find a piecewise linear approximation

and to represent the function by adding a binary

variable corresponding to each piece of the

approximation. The simplest example of such

a transformation is the fixed-charge problem in which

the cost function has both a fixed charge for initiating

a given activity, as well as marginal costs associated

with continued operation. One example of a

fixed-charge problem is the facility location problem

in which one wishes to locate facilities in such a way

that the combined cost of building the facility

(a onetime fixed cost) and producing and shipping to

customers (marginal costs based on the amount

shipped and produced) is minimized (see Drezner and

Hamacher (2004)). The fact that nothing can be

produced in the facility unless the facility exists

creates a discontinuity in the cost function. This

function can be transformed to a linear function by

the introduction of additional variables that take on

only the values 0 or 1. Similar transformations allow

one to model separable nonlinear functions as integer

(linear) optimization problems.

Solution Methods

Solving integer optimization problems (finding an

optimal solution), can be a difficult task. The

difficulty arises from the fact that unlike (continuous)

linear optimization problems, for which the feasible

region is convex, the feasible regions of integer

optimization problems consists of either a discrete set

of points or, in the case of general MILP, a set of

disjoint polyhedra. In solving a linear optimization

problem, one can exploit the fact that, due to the

convexity of the feasible region, any locally optimal

solution is a global optimum. In finding global optima

for integer optimization problems, on the other hand,

one is required to prove that a particular solution

dominates all others by arguments other than the

calculus-based approaches of convex optimization.

The situation is further complicated by the fact that

the description of the feasible region is implicit. In

other words, the formulation (1)–(6) does not provide

a computationally useful geometric description of the

set S. A more useful description can be obtained in one

of two ways described next.

The first approach is to apply the powerful machinery

of polyhedral theory. Weyl (1935) established the fact

that a polyhedron can either be defined as the

intersection of finitely many half-spaces, i.e., as a set of

points satisfying inequalities of the form (2) and (3), or

as the convex hull of a finite set of extreme points plus

the conical hull of a finite set of extreme rays. If the data

describing the original problem formulation are rational
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numbers, then Weyl’s theorem implies the existence of

a finite system of linear inequalities describing the

convex hull of S, denoted by conv(S) (Nemhauser and

Wolsey 1988). Optimization of a linear function over

conv(S) is precisely equivalent to optimization over S,
but optimizing over conv(S) is a convex optimization

problem. Thus, if it were possible to enumerate the set of

inequalities in Weyl’s description, one could solve the

integer optimization problem using methods for convex

optimization, in principle. The difficulty with this

method, however, is that the number of linear

inequalities required is too large to construct explicitly,

so this does not lead directly to a practical method of

solution.

A second approach is to describe the feasible set

in terms of logical disjunction. For example, if j ∈ B,

then either xj ¼ 0 or xj ¼ 1. This means that, in

principle, the set S can be described by replacing

constraints (4)–(5) with a set of appropriately chosen

disjunctions. In fact, it is known that any MILP can be

described as a set of linear inequalities of the form (2)

and (3), plus a finite set of logical disjunctions (Balas

1998). Similarly, however, the number of such

disjunctions would be too large to enumerate

explicitly and so this does not lead directly to a

practical method of solution either.

Although neither of the above methods for

obtaining a more useful description of S leads

directly to an efficient methodology because they

both produce descriptions of impractical size, most

solution techniques are nonetheless based on

generating partial descriptions of S in one of the

above forms (or a combination of both). The general

outline of such a method is as follows:

1. Identify a (tractable) convex relaxation of the

problem and solve it to either

• Obtain a valid upper bound on the optimal

solution value; or

• Prove that the relaxation is infeasible or

unbounded (and thus, the original MILP is also

infeasible or unbounded)

2. If solving the relaxation produces a solution x̂ 2 
N

that is feasible to the MILP, then this solution must

also be optimal to the MILP.

3. Otherwise, either

• Identify a logical disjunction satisfied by all

members of S, but not by x̂ and add it to the

description of P (more on how this is done

below); or

• Identify an implied linear constraint (called

a valid inequality or a cutting plane) satisfied

by all members of S, but not by x̂ and add it to

the description of P
In Step 1, the LP relaxation obtained by

dropping the integrality conditions on the variables

and optimizing over P is commonly used. Other

possible relaxations include Lagrangian relaxations

(Fisher 1981; Geoffrion 1974), semi-definite

programming relaxations (Rendl 2010), and

combinatorial relaxations, e.g., the one-tree relaxation

for the traveling salesman problem Held and Karp

(1970). This discussion initially considers use of the

LP relaxation, since this is the simplest one and the one

used in state-of-the-art software. Additional

relaxations are considered in more detail in section

“Advanced Procedures.”

By recursively applying the basic strategy outlined

above, a wide variety of convergent methods that

generate partial descriptions of S can be obtained.

These methods can be broadly classified as either

implicit enumeration methods (employing the use of

logical disjunction in Step 3) or cutting plane methods

(based on the generation of valid inequalities in Step

3), though these are frequently combined into hybrid

solution procedures in computational practice. In the

next two sections, more details about these two classes

of methods are given.

Enumerative Algorithms

The simplest approach to solving a pure integer

optimization problem is to enumerate all finitely many

possibilities (as long as the problem is bounded).

However, due to the combinatorial explosion resulting

from the fact that the size of the set S is generally

exponential in the number of variables, only the

smallest instances can be solved by such an approach.

A more efficient approach is to only implicitly

enumerate the possibilities by eliminating large classes

of solutions using domination or feasibility arguments.

Besides straightforward or implicit enumeration, the

most commonly used enumerative approach is called

branch and bound.

The branch-and-bound method was first proposed

by Land and Doig (1960) and consists of generating

disjunctions satisfied by points in S and using

them to partition the feasible region into smaller

subsets. Some variant of the technique is used by

practically all state-of-the-art solvers. An LP-based
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branch-and-bound method consists of solving the LP

relaxation as in Step 1 above to either obtain a solution

and an associated upper bound or to prove infeasibility

or unboundedness. If the generated solution x̂ 2 
N to

the relaxation is infeasible to the original MILP, then

x̂j =2  for some j∈B[ I. However, xj 2  for all x∈S.
Therefore, the logical disjunction

xj � x̂j
� �

OR xj � x̂j
� �

(7)

is satisfied by all x ∈ S, but not by x̂. In this case, one

can impose the disjunction implicitly by branching,

i.e., creating two subproblems, one associated with

each of the terms of the disjunction (7).

The branch-and-bound method consists of applying

this same method to each of the resulting subproblems

recursively. Note that the optimal solution to

a subproblem may or may not be the global optimal

solution. Each time a new solution is found, it is

checked to determine whether it is the best seen so

far and if so, it is recorded and becomes the current

incumbent. The true power of this method comes from

the fact that if the upper bound obtained by solving the

LP relaxation is smaller than the value of the current

incumbent, the node can be discarded. Mitten (1970)

provided the first description of a general algorithmic

framework for branch and bound. Hoffman and

Padberg (1985) provided an overview of LP-based

branch-and-bound techniques. Linderoth and

Savelsbergh (1999) reported on a computational

study of search strategies used within branch and

bound.

Cutting Plane Algorithms

Gomory (1958, 1960) was the first to derive a cutting

plane algorithm following the basic outline above for

integer optimization problems. His algorithm can be

viewed, in some sense, as a constructive proof of

Weyl’s theorem. Although Gomory’s algorithm

converges to an optimal solution in a finite number of

steps (in the case of pure integer optimization

problems), the convergence to an optimum may

be extraordinarily slow due to the fact that

these algebraically derived valid inequalities are

weak—they may not even support conv(S) and are

hence dominated by stronger (but undiscovered) valid

inequalities. Since the smallest possible description of

conv(S) is desired, one would like to generate only the

strongest valid inequalities, i.e., those that are part

of some minimal description of conv(S). Such

inequalities are called facets. In general, knowing all

facets of conv(S) is enough to solve the MILP (though

this set would still be very large in most cases).

A general cutting plane approach relaxes the

integrality restrictions on the variables and solves the

resulting LP relaxation over the set P. If the LP is

unbounded or infeasible, so is the MILP. If the

solution to the LP is integer, i.e., satisfies constraints

(4) and (5), then one has solved the MILP. If not, then

one solves a separation problem whose objective is to

find a valid inequality that cuts off the fractional

solution to the LP relaxation while assuring that all

feasible integer points satisfy the inequality—i.e., an

inequality that separates the fractional point from the

polyhedron conv(S). Such an inequality is called a cut
for short. The algorithm continues until termination in

one of two ways: either an integer solution is found

(the problem has been solved successfully) or the LP

relaxation is infeasible and therefore the integer

problem is infeasible.

For ILPs, there are versions of Gomory’s method

that yield cutting plane algorithms that will produce

a solution in a finite number of iterations, at least with

the use of exact rational arithmetic. In practice,

however, the algorithm could terminate in a third

way—it may not be possible to identify a new cut

even though the optimal solution has not been found

either due to numerical difficulties arising from

accumulated round-off error or because procedures

used to generate the cuts are unable to guarantee

the generation of a violated inequality, even when

one exists. If one terminates the cutting plane

procedure because of this third possibility, then, in

general, the process has still improved the original

formulation and the bound resulting from solving the

LP relaxation is closer to the optimal value. By then

switching to an implicit enumeration strategy, one may

still be able to solve the problem. This hybrid strategy,

known as branch and cut, is discussed in the next

section.

Advanced Procedures

Branch and Cut

The two basic methods described above can be

hybridized into a single algorithm that combines the
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power of the polyhedral and disjunctive approaches.

This method is called branch and cut. A rather sizable

literature has sprung up around these methods. Papers

describing the basic framework include those of

Hoffman and Padberg (1991) and Padberg and

Rinaldi (1991). Surveys of the computational issues

and components of a modern branch-and-cut solver

include Atamt€urk and Savelsbergh (2005), Linderoth

and Ralphs (2005), and Martin (2001). The major

components of the algorithm consist of automatic

reformulation and preprocessing procedures (see next

section), heuristics that provide good feasible integer

solutions, procedures for generating valid inequalities,

and procedures for branching. All of these are

embedded into a disjunctive search framework, as in

the branch-and-bound approach. These components

are combined so as to guarantee optimality of the

solution obtained at the end of the calculation. The

algorithm may also be stopped early to produce a

feasible solution along with a bound on the relative

distance of the current solution from optimality. This

hybrid approach has evolved to be an extremely

effective way of solving general MILPs. It is the basic

approach taken by all state-of-the-art solvers for MILP.

Ideally, the cutting planes generated during the

course of the algorithm would be facets of conv(S).
In the early years of integer optimization, considerable

research activity was focused on identifying part

(or all) of the list of facets for specific combinatorial

optimization problems by exploiting the special

structure of conv(S) (Balas and Padberg 1972; Balas

1975; Bauer et al. 2002; Hammer et al. 1975;

Nemhauser and Sigismondi 1992; Nemhauser and

Trotter 1974; Nemhauser and Vance 1994; Padberg

1973, 1974, 1979a; Pochet and Wolsey 1991;

Wolsey 1975, 1976). This led to a wide variety of

problem-dependent algorithms that are nevertheless

based on the underlying principle embodied in

Weyl’s theorem. An extensive survey of the use of

these techniques in combinatorial optimization is

given by Aardal and van Hoesel (1996a, b).

Research on integer optimization is increasingly

focused on methods for generating inequalities based

purely on the disjunctive structure of the problem and

not on properties of a particular class of problems. Part

of the reason for this is the need to be able to solve

more general MILPs for which even the dimension of

conv(S) is not known. With this approach, it is not

possible to guarantee the generation of facets in every

iteration, but theoretical advances have resulted in

vast improvements in the ability to solve general

unstructured integer optimization problems using

off-the-shelf software. A survey of cutting plane

methods for general MILPs is provided by

(Cornuéjols 2008). Other papers on techniques for

generating valid inequalities for general MILPs

include Balas et al. (1993, 1996, 1999), Gu et al.

(1998, 1999, 2000), Nemhauser and Wolsey (1990),

Marchand and Wolsey (2001), and Wolsey (1990).

Equally as important as cutting plane generation

techniques are branching schemes, though these

methods have received far less attention in the

literature. Branching methods are generally based on

some method of estimating the impact of a given

branching disjunction and trying to choose the best

one according to certain criteria. Papers discussing

branching methods include Achterberg et al. (2005),

Fischetti and Lodi (2002), Karamanov and Cornuéjols

(2009), and Owen and Mehrotra (2001).

There has been a surge in research on the use of

heuristic methods within the branch-cut-cut

framework in order to generate good solutions and

improve bounds as the search progresses. Many

search methods are based on limited versions of the

same search procedures used to find globally optimal

solutions. The development of such methods has led to

marked improvements in the performance of exact

algorithms (Balas and Martin 1980; Balas et al. 2004;

Fischetti and Lodi 2002; Nediak and Eckstein 2001).

In current state-of-the-art software, multiple heuristics

are used because they are likely to produce feasible

solutions more quickly than tree search, which helps

both to eliminate unproductive subtrees and to

calculate improved variable bounds that result in

a tighter description of the problem. These heuristics

include techniques for searching within the local

neighborhood of a given linear feasible solutions for

integer solutions using various forms of local search.

Achtenberg and Berthold (2007), Danna et al. (2005),

Fischetti et al. (2009), and Rothberg (2007) provide

descriptions of heuristics built into current packages.

Automatic Reformulation

Before solving an integer optimization problem, the

first step is that of formulation, in which a conceptual

model is translated into the form (1)–(6). There are

often different ways of mathematically representing

the same problem, both because different systems of
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the form (1)–(6) may define precisely the same set

S and because it may be possible to represent the

same conceptual problem using different sets of

variables. There are a number of different ways in

which the conceptual model can be translated into

a mathematical model, but the most common is to use

an algebraic modeling language, such as AIMMS,

AMPL (Fourer et al. 1993), GAMS (Brooke et al.

1988), MPL, or OPL Studio.

The time required to obtain an optimal solution to

a large integer optimization problem usually depends

strongly on the way it is formulated, so much research

has been directed toward the effective automatic

reformulation techniques. Unlike linear optimization

problems, the number of variables and constraints

representing an integer optimization problem may not

be indicative of its difficulty. In this regard, it is

sometimes advantageous to use a model with a larger

number of integer variables, a larger number of

constraints, or both. Discussions of alternative

formulation approaches are given in Guignard and

Spielberg (1981) and Williams (1985), and a

description of approaches to automatic reformulation

or preprocessing is given in Anderson and Anderson

(1995), Atamturk and Savelsbergh (2000), Brearley

et al. (1975), Hoffman and Padberg (1991), Roy and

Wolsey (1987), and Savelsbergh (1994).

A variety of difficult problems have been solved

by reformulating them as either set-covering or

set-partitioning problems having an extraordinary

number of variables. Because for even small

instances, such reformulations may be too large to

solve directly, a technique known as column

generation, which began with the seminal work of

Gilmore and Gomory (1961) on the cutting stock

problem, is employed. An overview of such

transformation methods can be found in Barnhart

et al. (1998). For specific implementations, for the

vehicle routing problem, see Chabrier (2006), for the

bandwidth packing problem, see Hoffman and Villa

(2007) and Parker and Ryan (1995), for the generalized

assignment problem, see Savelsbergh (1997), and for

alternative column-generation strategies for solving

the cutting stock problem see Vance et al. (1994).

Bramel and Simchi-Levi (1997) have shown that the

set-partitioning formulation for the vehicle routing

problem with time windows is very effective in

practice—that is, the relative gap between the

fractional linear optimization solutions and the global

integer solution is small. Similar results have been

obtained for the bin-packing problem (Chan et al.

1998a) and for the machine-scheduling problem

(Chan et al. 1998b).

Decomposition Methods

Relaxing the integrality restriction is not the only

approach to relaxing the problem. An alternative

approach to the solution to integer optimization

problems is to relax a set of complicating constraints

in order to obtain a more tractable model. This

technique is effective when the problem to be solved

is obtained by taking a well-solved base problem and

adding constraints specific to a particular application.

By capitalizing on the ability to solve the base

problem, one can obtain bounds that are improved

over those obtained by solving the LP relaxation.

These bounding methods can then be used to drive

a branch-and-bound algorithm, as described earlier.

Such bounding methods are called constraint

decomposition methods or simply decomposition

methods, since they involve decomposing the set of

constraints. By removing the complicating constraints

from the constraint set, the resulting subproblem is

frequently considerably easier to solve. The latter is

necessary for the approach to work because the

subproblems must be solved repeatedly. The bound

found by decomposition can be tighter than that

found by linear optimization, but only at the expense

of solving subproblems that are themselves integer

optimization problems. Decomposition requires that

one understand the structure of the problem being

solved in order to then relax the constraints that are

complicating.

The bound resulting from a particular decomposition

can be computed using two different computational

techniques—Dantzig-Wolfe decomposition (Dantzig

and Wolfe 1960; Vanderbeck 2000) (column

generation) and Lagrangian relaxation (Fisher 1981;

Geoffrion 1974; Held and Karp 1970). In the former

case, solutions to the base problem are generated

dynamically and combined in an attempt to obtain

a solution satisfying the complicating constraints. In the

latter case, the complicating constraints are enforced

implicitly by penalizing their violation in the objective

function. Overviews of the theory and methodology

behind decomposition methods and how they are used

in integer programming can be found in Ralphs and

Galati (2005) and Vanderbeck and Wolsey (2010).
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A related approach is that of Lagrangian decomposition

(Guignard and Kim 1987), which consists of isolating

sets of constraints so as to obtain multiple, separate,

easy-to-solve subproblems. The dimension of the

problem is increased by creating copies of variables

that link the subsets and adding constraints that

require these copies to have the same value as the

original in any feasible solution. When these

constraints are relaxed in a Lagrangian fashion, the

problem decomposes into blocks that can be treated

separately.

Most decomposition-based strategies involve

decomposition of constraints, but there are cases in

which it may make sense to decompose the variables.

These techniques work well in the case when fixing

some subset of the variables (the complicating

variables) to specific values reduces the problem to

one that is easy to solve. Benders’ decomposition

algorithm projects the problem into the space of

these complicating variables and treats the

remaining variables implicitly by adding so-called

Benders cuts violated by solutions that do not have

a feasible completion and adding a term to the

objective function representing the cost of

completion for any given set of value of the

complicating variables (Benders 1962). For a survey

on Benders cuts, see Hooker (2002).

Concluding Remarks

There are a number of topics related to combinatorial

and integer optimization that have not been covered

here. One such topic is the complexity of integer

optimization problems (Garey and Johnson 1979), an

area of theoretical study that has increased

understanding of the implicit difficulty of integer

optimization dramatically. Another important topic is

that of heuristic solution approaches—that is,

techniques for obtaining good but not necessarily

optimal solutions to integer optimization problems

quickly. In general, heuristics do not provide any

guarantee as to the quality of the solutions they

produce, but are very important in practice for

a variety of reasons. Primarily, they may provide the

only usable solution to very difficult optimization

problems for which the current exact algorithms fail

to produce one. Research into heuristic algorithms has

applied techniques from the physical sciences to the

approximate solution of combinatorial problems. For

surveys of research in simulated annealing (based on

the physical properties of heat), genetic algorithms

(based on properties of natural mutation), and neural

networks (models of brain function) see Hansen

(1986), Goldberg (1989), and Zhang (2010),

respectively. Glover and Laguna (1998) have

generalized some of the attributes of these methods

into a method called tabu search. Worst-case and

probabilistic analysis of heuristics are discussed in

Cornuejols et al. (1980), Karp (1976), and Kan (1986).

Another developing trend is the use of approaches

from other disciplines in which optimization problems

also arise. In some cases, multiple approaches can be

used to handle difficult optimization problems by

merging alternative strategies into a single algorithm

(the so-called algorithm portfolio approach). As an

example, constraint-logic programming was

developed by computer scientists in order to work on

problems of finding feasible solutions to a set of

constraints. During the last decade, many of the

advances of constraint-logic programming have been

embedded into mathematical programming algorithms

in order to handle some of the difficult challenges of

combinatorial optimization such as those related to

scheduling where there is often significant symmetry.

For example, see Hooker (2007) and Rasmussen and

Trick (2007) for some applications that use both

Benders decomposition and constraint programming

to handle difficult scheduling problems. For research

that relates issues in computational logic to those

associated with combinatorial optimization see

McAloon and Tretkoff (1996).

See
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Integer Goal Programming

A goal-programming methodology that generates an

integer solution for decision variables.

See

▶Goal Programming
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Integer-Programming Problem

A mathematical-programming problem in which

some or all of its variables are restricted to integer

values.

See

▶ Integer and Combinatorial Optimization

Intelligent Manufacturing Systems

Automated processing systems for manufacturing

operations that include intelligent machines, advanced

sensors for real-time-in-process measurements, software

for precision control of machine tools, and information

technology for integrating all elements of a product’s life

cycle.

See

▶Automation in Manufacturing and Services

▶ Flexible Manufacturing Systems

▶ Industrial Applications

▶Operations Management

▶ Production Management

Intelligent Transportation Systems

Systems in which synergistic communication and

information technologies are combined with

operations research methodologies such as

simulation and optimization to improve

transportation systems of all modes, from road and

rail to air and water, including their interfaces.

Problems addressed span the spectrum from system

design to real-time control and management of

operations, e.g., traffic management and mobility

management, and encompass infrastructure, vehicles

and users.

Intensity Function

▶ Failure-Rate Function

▶ Point Stochastic Processes

▶Renewal Process

Interactive Multiple Objective
Mathematical Programming

Julia Pet-Armacost, Mansooreh Mollaghasemi and

Robert L. Armacost

University of Central Florida, Orlando, FL, USA

Introduction

Decision making typically involves a decision maker

selecting a course of action that optimizes some

criterion while respecting the resources and other

conditions that must be satisfied. When multiple

criteria are involved, this class of problems is

generally referred to as multiple criteria decision

problems. In some circumstances, the number of

alternatives is limited and the decision maker

identifies a number of (multiple) desirable

measureable attributes. Each of the alternatives is

assessed with respect to each of the attributes to

provide information to the decision maker to aid in

selecting the desired alternative. This type of problem

is generally termed a multiple attribute decision

problem. In other situations, the set of alternatives

may be very large and represented as various types

and levels of particular actions. The decision maker

may be able to determine how various combinations of

these alternatives contribute to a particular objective

(e.g., completion time, cost, profit). When decision

problems involve multiple objectives, the challenge is

to select a set of alternatives (and values) that best

satisfy (optimize) those objectives while respecting

resources and other required conditions. This type of

decision problem is generally referred to as a multiple

objective decision problem. When the multiple

objective problems are expressible in a mathematical

structure, the problems are referred to as multiple
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objective mathematical programming (optimization)

problems. When a mathematical programming

formulation exists, there is typically an analyst

involved in the decision process to support the

decision maker.

The literature on multiple objective decision

making is extensive. White (1990) identified over

500 methods and applications published between

1955 and 1986. Detailed treatments of multiple

objective optimization methods are available in

Chankong and Haimes (1983) and Steuer (1986), the

latter of which provides extensive treatment of linear

multiple objective optimization methods. The text

by Miettinen (1999) is a comprehensive treatment of

nonlinear multiple objective optimization that includes

the essential theory, detailed descriptions of multiple

methods, and over 700 references that address all

aspects of the problem. Branke, Deb, Miettinen, and

Slowiński, (2008) provide basics on multiple objective

optimization including noninteractive and interactive

approaches, a description of recent interactive and

preference-based approaches including evolutionary

methods, and chapters on visualization, modeling,

implementation and applications. Finally, Zopounidis

and Pardalos (2010) provide a compilation of methods

that includes chapters on interactive and evolutionary

approaches for multiple objective optimization

problems.

In general, a multiple objective mathematical

programming problem can be expressed as follows:

Minimize f1ðxÞ; f2ðxÞ; . . . ; fpðxÞ
� �

Subject to gjðxÞ � 0 j ¼ 1; 2; . . . ;m
(1)

where x is an n-dimensional vector of decision

variables, fi(x), i ¼ 1, 2,. . ., p, are p distinct objective

functions, and gi(x), j ¼ 1, 2,. . ., m, are m distinct

constraint functions.

Based on the classification given in Evans (1984),

almost all methods for solving multiple objective

problems involve two general sub-processes:

(1) articulation of the decision maker’s preference

structure, and (2) optimization over the preference

structure. The various methods for solving multiple

objective problems have been categorized into three

types according to the timing of these sub-processes:

(1) prior articulation of preferences where the

preference structure is obtained prior to the

optimization process (a priori), (2) posterior

articulation of preferences where the decision

maker’s preference is elicited after the generation of

a candidate solution set (a posteriori), and

(3) progressive articulation of preferences where the

elicitation of information about the preference

structure is interspersed with optimization processes

(interactive). With a priori methods, the decision

maker acts first and explicitly expresses his or her

preferences and then the analyst generates the best

solution consistent with the decision maker’s

preferences. With a posteriori methods, the analyst

acts first to generate a number of alternative solutions

and then the decision maker applies his or her

preference structure (perhaps implicit) to select the

best solution. With interactive methods, there is

a back and forth exchange between the decision

maker and the analyst that continues until the

decision maker is satisfied that no significantly better

solution exists or can easily be found.

Most multiple objective mathematical

programming methods require the generation of

nondominated solutions. Let X be the set of all

feasible solutions to problem (1). An efficient

(nondominated, Pareto optimal) solution is a feasible

solution x� 2 X, for which there does not exist any

other feasible solution, x 2 X, that is the same or

better in each of the objectives. In other words, you

cannot find another solution x, where fiðxÞ � fiðx�Þ for
i¼ 1, 2,. . ., p, and for at least one i, fiðxÞ< fi x�ð Þ. (Note
that this definition assumes that smaller values of fiðxÞ
are preferred.) Moving from one Pareto optimal

solution to another requires some sort of trade-off

reflecting the value equivalence in improving one

objective relative to degrading another objective.

In some cases, a decision maker does not have any

particular preferences with respect to the values of the

objective functions. In these cases, a method that can

identify a single Pareto optimal point may suffice.

Miettinen (1999) identifies the global criterion

method and the multiobjective proximal bundle

method as two viable approaches. In the global

criterion method, a reference point is selected and

a chosen metric is used to minimize the distance to

the reference point. In this case, all objective functions
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are assumed to be equally important. When the

Lp-metric (1 � p<1) is used, the solution is Pareto

optimal. When p ¼ 1, the metric is called the

Tchebycheff metric. Objective function scaling can

influence the relative importance of particular

objectives in the optimization. Another approach is

the multiobjective proximal bundle (MPB) method

that seeks to move in a direction where the values of

all of the objective functions improve simultaneously.

Unlike other approaches, MPB does not transform the

problem into one with a single objective function.

Rather, its scalarization takes place inside a special

(nondifferentiable) optimizer. The method is

described in detail in M€akel€a (1993).

When a decision maker does have preferences with

respect to the values of the objective functions, it is

necessary to be able to evaluate sets of nondominated

solutions. The following two methods are common

approaches for generating nondominated solutions.

Clearly, the two methods can serve as a posteriori

methods since a decision maker can use the set of

solutions to select the one that best satisfies his or her

preferences. However, many of the interactive solution

methods incorporate either or both of these two basic

approaches.

A Weighting (Scalarization) Approach for

Generating Nondominated Solutions. A common

approach to finding nondominated solutions to

a multiple objective mathematical programming

problem is to convert the set of multiple objectives

into a single objective through the use of weights.

The weighting technique transforms problem (1) into

a single objective problem given in (2):

Minimize f ðxÞ¼w1 f1ðxÞþw2 f2ðxÞþ . . .þwp fpðxÞ
Subject to gjðxÞ� 0 j¼ 1;2; . . . ;m

w1þw2þ . . .þwp¼ 1

wi> 0; i¼ 1;2; . . . ;p

(2)

Given a set of weights that are nonnegative and

that sum to one, the solution to problem (2) is a

nondominated solution. This means that the

weighting approach is guaranteed to generate at least

some of the possible nondominated solutions if the

weights are varied. If the problem is also convex,

then the weighting approach is guaranteed to generate

all of the nondominated solutions if all possible

weights are explored, see Chankong and Haimes

(1983). Of course, there is an infinite number of

possible weights that can be assigned and there could

be an infinite number of nondominated solutions.

«-Constraint-Based Approach for Generating

Nondominated Solutions. Another approach to

finding nondominated solutions to a multiple

objective mathematical programming problem is to

convert the set of multiple objectives into a single

objective by treating all but one of the objectives as

inequality constraints. In this approach, one primary

objective, fk(x), is selected to be minimized while the

remaining objectives are converted into inequality

constraints. Consider the following multiple objective

programming problem:

Minimize fkðxÞ
Subject to gjðxÞ � 0 j ¼ 1; 2; . . . ;m

fjðxÞ � ei j ¼ 1; 2; . . . ; p; i 6¼ k

(3)

If the values of ei are chosen so that problem (3) has

feasible solutions, then the solution is guaranteed to be

nondominated. This means that at least some of the

nondominated solutions can be discovered by solving

problem (3) for specific feasible values for ei. In fact,

unlike the weighting approach, it turns out that all of

the nondominated solutions can be generated if the ei
are varied over all possible feasible values, even for

problems that are not convex.

Interactive Methods

The techniques that rely on a progressive articulation

of preferences (interactive methods) follow a common

pattern. The decision maker is presented with a subset

of the non-dominated alternatives and is asked to

provide some local preference information on these

alternatives. This information allows the formulation

of a single criterion subproblem, which is then solved.

The new nondominated solution and the outcome are

then presented to the decision maker to provide new

local preference information. This process is repeated

until the decision maker either converges toward

a best-compromise solution, or terminates the process

prior to reaching this point. The objective of these

approaches is to find a satisfactory solution after
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a reasonable number of iterations and within

a reasonable amount of time.

Interactive methods differ in how the single

objective optimization problem is formed, how the

preference information is incorporated and obtained

from the decision maker, and how information is

provided to the decision maker. Interactive methods

may involve direct interaction with an analyst or with

a computer program with appropriate interface for the

decision maker. In interactive methods, the decision

maker may be required to provide one of the following

types of information regarding the nondominated

solutions or criteria, (Evans, Stuckman, &

Mollaghasemi, 1991):

1. A ranking of nondominated solutions in the

outcome space,

2. A readjustment of aspiration levels from one

iteration to the next, or

3. Marginal rates of substitution between various

criteria.

Interactive methods may be based on the existence

of an underlying value function for the decision maker

(often implicit), the ability to create reference points

on which the algorithms can operate, the ability to

classify objectives, or a combination of these

approaches. The value function allows a decision

maker to identify trade-off values and generate

marginal rates of substitution. The following methods

are representative of the kinds of interactive

approaches that have been developed for multiple

objective optimization. The first four assume the

existence of a value function and the remaining

methods use reference points and classification.

The following paragraphs provide very brief, high

level descriptions of the various approaches.

Mollaghasemi and Pet-Edwards (1997) provide

additional descriptions. Miettinen (1999) includes

a much more detailed treatment of the methods and

provides much of the background for the following

descriptions.

Interactive Surrogate Worth Trade-off (ISWT)

Method. The basic idea of the interactive surrogate

worth trade-off (ISWT) method (Chankong &

Haimes, 1978) is to maximize an underlying value

function that is known implicitly. The algorithm

begins with the e-constraint method by having the

analyst select one objective to optimize and provide

bounds on the other objectives. The problem is solved

and a Pareto optimal solution is presented to the

decision maker. The opinions of the decision maker

regarding the trade-off rates at the current solution are

used to determine a new search direction. Specifically,

the decision maker conducts a worth assessment using

a specified worth scale to determine how (much) the

decision maker would like to make a trade-off between

the primary response and each secondary response,

where the value of the primary response decreases by

the value of the Lagrange Multiplier for a one unit

increase in value of the secondary response. The

worth values are used to update the right-hand-side of

the secondary response and then the problem is

re-optimized. The process continues until the

decision maker is satisfied with the solution.

Geoffrion-Dyer-Feinberg (GDF) Method. The

Geoffrion-Dyer-Feinberg (GDF) method (Geoffrion,

Dyer, & Feinberg, 1972) also assumes the existence

of a decision maker value function and the process of

the method is similar to the ISWT method, although

the computational approach is different. The GDF

method maximizes a value function and requires the

decision maker to identify the reference function and

then specify marginal rates of substitution between this

function and the other objectives at the current solution

point. The marginal rates of substitution are used to

specify the direction of steepest ascent for the value

function. The decision maker also helps to determine

the step size. The optimization is conducted iteratively

with the decision maker choosing the preferred

solution among each set of solutions until the

decision maker chooses to stop. The GDF method is

one of the most well-known interactive methods.

Sequential Proxy Optimization Technique (SPOT)

Method. The sequential proxy optimization technique

(SPOT) method (Sakawa, 1982) is also based on

maximizing the decision maker’s underlying value

function. SPOT includes some of the ideas of ISWT

and GDF. The algorithm begins with the e-constraint

method like the ISWT method. With that solution, like

the GDF method, the decision maker must specify the

marginal rates of substitution. Then, unlike GDF

where the decision maker is involved in determining

a step size for the next iteration, a proxy function is

generated by solving a series of e-constraint problems

and step size is determined from those results. The

optimization is conducted iteratively until the

decision maker is satisfied.

Interactive Goal Programming. Dyer (1972)

introduced the concept of interactive goal
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programming to provide a linkage between goal

programming and interactive strategies that had been

suggested for the optimization of multiple criteria

optimization problems. The method assumes that the

decision maker can specify a goal for each objective. It

further assumes that the decision maker has an

underlying utility function and can provide

appropriate trade-off weights. These weights are used

in a one-sided goal-programming problem to generate

a new solution. The optimization is conducted

iteratively until the decision maker chooses to stop.

Tchebycheff Method. The Tchebycheff method

(Steuer & Choo, 1983) does not assume the existence

of a decision maker value function and requires much

less information from the decision maker. The

algorithm starts by computing the utopian objective

vector, an infeasible point that is slightly perturbed

from the ideal objective vector that corresponds to

the point where all objectives are at their minimum

value. The algorithm proceeds by minimizing the

maximum weighted distance of the function from the

utopian objective vector using the weighted

Tchebycheff metric. The bounds on the weights are

tightened to reduce the number of Pareto optimal

solutions generated. The decision maker chooses

a most preferred objective vector among a subset of

the generated ones at each iteration until a final

solution is chosen.

STEM (Step Method). The step method (STEM)

(Benayoun, de Montgolfier, Tergny, & Laritchev,

1971) is one of the first interactive methods

developed for multiple objective optimization. While

STEM has some elements similar to the Tchebycheff

method, it focuses on identifying satisfactory solutions

rather than optimizing an underlying value function.

The method is described in more detail below, but

follows the following framework. The decision

maker must be able to indicate functions that have

acceptable values and those that have values that are

too high. The weighted Tchebycheff metric is used to

generate solutions. Then the decision maker is asked to

determine which of the objectives are satisfactory and

relax the upper bounds on those objectives. The

method repeats until the decision maker is satisfied

for all objectives.

Reference Point Method. The reference point

method (Wierzbicki, 1982) is based on the decision

maker specifying a reference point of aspiration levels

that are reasonable or desirable to the decision maker.

The reference point method begins by providing the

decision maker with some information that provides

a range of the Pareto optimal set based on lower and

upper bounds on the objectives. The decision maker

specifies a reference point fromwhich the achievement

function is minimized. The solutions are provided to

the decision maker and if one of the solutions is

satisfactory, the process stops. If not, a new reference

point is determined and the process continues.

The reference point idea has been subsequently

incorporated in other interactive methods. For

example, the reference direction approach (Korhonen

& Laasko, 1986) projects the vector from the current

iteration point to the reference point. This provides the

decision maker with more information to determine

the next direction and also provides a wider part of

the weakly Pareto optimal set to review. The reference

direction method minimizes the computational effort

by having the decision maker determine the number of

steps to be taken in the reference direction, minimizing

the number of alternatives that the decision maker will

review. This method may be facilitated by computer

graphic representations of the Pareto optimal curve.

Korhonen (1987) developed a general software

package to apply this visual interactive graphic

technique to multiple criteria problems in general.

GUESS Method. The GUESS method (Buchanan,

1997) is a relatively simple method that assumes that

lower bounds (ideal objective vector) and upper

bounds (nadir objective vector) can be computed and

are available. The decision maker specifies a reference

point ( a guess) as well as any additional upper or lower

bounds to the objective functions. Then a function

representing the maximum weighted deviation from

the nadir objective vector is optimized with equal

proportional achievement and the solution is

presented to the decision maker. If the solution is

satisfactory the process stops otherwise it is repeated

with the decision maker specifying new bounds and

reference points.

Satisficing Trade-Off Method (STOM). The

satisficing trade-off method (STOM), based on

satisficing decision making, incorporates ideas from

STEM, the reference point method, and GUESS

(Nakayama, 1989). STOM begins by optimizing

a scalarizing function and providing the solution to

the decision maker. Different kinds of scalarizing

functions (and weighting schemes) can be used, but

require that the utopian objective vector is known and

I 788 Interactive Multiple Objective Mathematical Programming



available. The decision maker reviews each objective

and labels them as unacceptable, acceptable with the

ability to relax, or acceptable as is. The decision maker

provides aspiration levels for the objectives to be

improved. Then the modified scalarizing function is

minimized and the process is repeated.

Light Beam Search Method. The light beam search

method has the decision maker identify bounds for each

objective, as well as to specify indifference thresholds

(Jaszkiewicz & Slowiński, 1994). This incorporates

features and reference point methods with concepts

from multiple attribute decision analysis. The decision

maker is asked to specify indifference thresholds and

preference thresholds that are used to establish

preference relations between alternative pairs of

objective vectors. The achievement function is

minimized and the solution, as well as Pareto optimal

neighbors, are presented to the decision maker. If one of

the alternatives is satisfactory, then the process is

stopped. Otherwise, the decision maker can revise

reference points or thresholds and the function is re-

optimized. This method allows the decision maker to

save preferred solutions, explore other directions, and

then select among the preferred solutions.

The preceding general descriptions of the

interactive methods have not rigorously described the

assumptions and characteristics for the objectives and

constraint functions in the multiple objective problem.

The methods described above were developed for

cases where the functions were differentiable and

many required other kinds of smooth properties. In

real-world optimization problems, one may encounter

nondifferentiable functions. For noninteractive

approaches, use of some smoothing approaches may

make a nondifferentiable problem solvable. For

interactive approaches, however, there are limits

since trade-off weights, for example, require twice

continuous differentiability.

NIMBUS. To address these complicated real-

world problems, Miettinen (1994) developed the

Nondifferentiable Interactive Bundle-based optimization

System (NIMBUS). The NIMBUS algorithm includes

two versions: one uses a vector subproblem, and the

other uses a scalar subproblem. They differ with

respect to the handling of the information provided

by the decision maker. The NIMBUS method

requires that at each solution point the decision

maker determines whether each objective should be

decreased freely, decreased to a certain bound,

satisfactory, increased to a certain bound, or changed

freely. These classifications provide more freedom in

developing subsequent solutions. The function is

minimized and the process repeats with input from

the decision maker until the decision maker chooses

a preferred solution. When the vector version is used,

the multiobjective proximal bundle (MPB) method is

required for the optimization. For the scalar version,

any efficient nondifferentiable optimization approach

may be used.

NIMBUS is suitable for both differentiable and

nondifferentiable multiple objective and single

objective optimization problems subject to both

linear and nonlinear constraints with bounds on the

variables. Miettinen and M€akel€a (2006) have

developed a Web-based computer implementation of

the method. See Table 1 for a summary of

representative interactive methods.

STEM (Step Method)

The following description of STEM, the step method,

serves to illustrate an interactive method in more detail.

See Benayoun et al. (1971) for a more complete

description of this method. The original formulation of

the method was designed for maximizing Multiple

Objective Linear Programming problems. Although

the method has been generalized for nonlinear

problems, the original intent is illustrated with an

MLOP problem in the following description that is

based on Mollaghasemi and Pet-Edwards (1997).

STEM, the stepmethod, is an interactive method that

can be used to identify the best compromise solution for

multiple objective mathematical programming

problems. STEM starts by converting the multiple

objective problem into a series of single objective

problems. Assume, without loss of generality, that it is

desirable to maximize p separate linear objective

functions, f1ðxÞ; f2ðxÞ; . . . ; fpðxÞ, where x is an

n-dimensional vector of decision variables and

fkðxÞ ¼
Xn

j¼1
cjkxj (4)

Suppose also that the decision variable values are

constrained by x 2 X, where X is a set of feasible

solutions.
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STEM begins by solving p single objective

problems separately, as shown in (5):

Maximize fkðxÞ ¼
Xn

j¼1
cjkxj

Subject to x 2 X for k ¼ 1; 2; . . . ; p

(5)

The solution to problem (5), xk, results in the

maximum value of fkðxÞ which is represented by

fMk xk
� 	

. Note that this solution is always

a nondominated solution. The values of the

remaining objectives at xk are denoted by f ik xk
� 	

for

i ¼ 1; 2; . . . ; p and k 6¼ i. By solving the p optimization

problems, a p� p payoff matrix is then constructed.

The objective function values associated with the

solutions to problem (5), fMk xk
� 	

, represent the ideal

solutions. They are placed as the diagonal elements of

the payoff matrix and the remaining elements of the

payoff matrix, f ik xk
� 	

; correspond to the values of the

remaining objective functions when the optimal

solution, xk, to problem (5), is substituted into the

objective functions.

The diagonal elements of the matrix give an

outcome associated with an ideal solution.

Unfortunately, due to the conflicting nature of the

objectives, an ideal solution usually does not exist.

However, the payoff matrix provides the decision

maker with a better understanding of the system’s

multiple response surface.

The next step involves identifying the

nondominated solution with the least deviation from

the ideal solution. This is accomplished by solving the

following problem:

Minimize d

Subject to pk fMk � fkðxÞ
� 	

� d; k ¼ 1;2; . . . ;p

x 2 X; d > 0

(6)

where

d¼maximum deviation of an objective from the ideal

solution, and

pk ¼ relative weight of deviation defined as

Interactive Multiple Objective Mathematical Programming, Table 1 Summary of representative interactive methods

Interactive method Features User inputs and actions

Interactive Surrogate Worth Tradeoff
Method (ISWT)

Assumed underlying utility function;
e-constraint based approach

Primary objective and limits on other
objectives; worth function; trade-off rates

Geoffrion-Dyer-Feinberg (GDF) Assumed underlying utility function;
Frank and Wolfe gradient method

Reference function; trade-off values among
objectives; step size; best local solution

Sequential Proxy Optimization Technique
(SPOT) Method

Assumed underlying utility function;
e-constraint based approach

Marginal rates of substitution; best local
solution

Interactive Goal Programming Assumed underlying utility function;
scalar optimization

Target values on the goals (aspiration levels);
Marginal rates of substitution

Tchebycheff Method Computed weighting vector; weighting
method

Best local solution at each iteration

STEM (Step Method) Classification of objectives (2 classes);
weighting method

Objectives to relax and amount of acceptable
relaxation

Reference Point Method Reference point; aspiration levels;
perturbation of reference points

Reference point; assess perturbed solutions

Reference Direction Approach Reference point; works best for MOLP
problems

Reference point; most preferred solutions

GUESS Method Reference point; maximize minimum
distance from nadir (weighted)

Reference point (guess); assessment of
solution and adjustment of reference point

Satisficing Trade-Off Method (STOM) Classification of objectives (3 classes);
weighting method

Classification of objectives; aspiration levels

Light Beam Search Method Reference point; outranking Best and worst values of objectives;
indifference, preference, and veto thresholds

Nondifferentiable Interactive BUndle-
based optimization System (NIMBUS)

Classification of objectives (5 classes);
bundle method

Classification of objectives; aspiration levels
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And fMk ðfmk Þ is the maximum (minimum) of each

column in the payoff matrix. It is evident that the

value of a given weight, pk, is dependent upon the

deviation of the objective from its ideal solution. That

is, the greater this deviation, the larger the magnitude

of pk.

The decision maker is then presented with the

solution to problem (6) (i.e., the solution that results

in the least deviation from the ideal solution.) The

decision maker must then identify the satisfactory

and unsatisfactory objectives and also indicate which

objectives in the current solution can be decreased to

achieve an improvement in the unsatisfactory

objectives. The constraint set in problem (5) is then

modified using this information generating a new ideal

point and the iterations continue until the decision

maker is satisfied with a solution.

STEM has been successfully used in a number of

practical applications. For example, Loucks (1977)

described how the method was used in a water

resources planning project in North Africa. The

aim of the project was to aid government officials in

choosing the best compromise among three

conflicting objectives: maximize water yield,

maximize yield reliability, and minimize total cost.

The solution yielded a single plan for each irrigation

area.

See

▶Decision Analysis

▶Multiobjective Programming

▶Multiple Criteria Decision Making

▶ Pareto-Optimal Solution
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Interchange Heuristic

A type of local improvement heuristic.

See

▶Heuristics

Interfering Float

Float which is shared among the activities on a chain or

path in a project network, that is, all the activities on

the chain have the same float.

See

▶Network Planning

Interior Point

In a constrained optimization problem, an interior

point is a solution point that is not on the boundary of

the solution space S. If S is defined by the set of

constraints {gi (x) � 0}, then x0 in S is an interior

point if gi (x) < 0 for all i.

Interior-Point Methods for Conic-Linear
Optimization

Tamás Terlaky1 and Paul T. Boggs2,3

1Lehigh University, Bethlehem, PA, USA
2Sandia National Laboratories, Livermore, CA, USA
3National Institute of Standards and Technology,

Gaithersburg, MD, USA

Introduction

Even with the success of the simplex method for linear

programming (LP), there was from the earliest days of

operations research a desire to create an algorithm for

solving LP problems that proceeded on a path through

the polytope rather than around its perimeter. Interior

point methods (IPMs) were first developed in 1950s,

analyzed and first implemented in the 1960s. At that

time the conclusion was made that IPMs were not

competitive with other algorithms, especially with

simplex methods. The continuous effort to find

a polynomial algorithm for LP problems led to the

revitalization of IPMs. In 1984 Karmarkar first

proved the polynomial complexity of an IPM, which

led to the “Interior Point Revolution” (Wright 2004) in

mathematical programming. In this article the

motivation for desiring an interior path, the concept

of the complexity of solving LP problems, a brief

history of the developments in the area, and the

research state of the art are discussed, including

generalizations to nonlinear problems.

Background

The LP problem in standard form is
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minimiz ex cTx

subject to Ax ¼ b; ðLPÞ
x � 0;

where c; x 2 Rn; b 2 Rm, and A 2 Rm�n. It will be

assumed that the feasible region for the problem (LP)
has a strictly feasible point, that is, a point x0 such that

Ax0 ¼ b and x0 > 0 (i.e., each component of x0 is

strictly positive). The simplex method proceeds on

a path from vertex to vertex on the boundary of this

region, a process that could require many steps to go

around a multifaceted feasible region, although in

actual practice the method is generally quite efficient.

Intuitively, however, a more direct path through the

interior of the region is appealing since there exists the

possibility of moving through the polytope in very few

steps.

A formal analysis of the complexity of the simplex

method remained elusive until the famous result of

Klee and Minty (1972), who showed with a simple

example that the worst case complexity of some

variants of the simplex method is exponential. Their

example is a slightly out-of-kilter cube (in n

dimensions) in which all 2n vertices can be visited by

a simplex method, i.e., starting at the origin, there is

a path through all of the vertices such that the objective

function is decreased at each step. It was immediately

recognized, however, that no practical simplex method

would use this path; thus there was a desire to explain

the efficiency of practical simplex methods. Later

analyses showed that a simplex method could expect

linear performance, thus partially explaining its

behavior (Borgwardt 1987; Goldfarb and Todd 1989).

The first algorithm for LP that was proven to have

a worst-case polynomial complexity is the ellipsoid

algorithm of Khachiyan (1979). Assuming that the

optimal set is nonempty, Khachiyan’s algorithm first

constructs an ellipsoid that is large enough to contain

the optimal set. At subsequent iterations, that ellipsoid

is shrunk so that the center of the ellipsoid is the

solution to the problem (LP), or after a polynomial

number of steps, evidence for the nonexistence of

optimal solution is derived. For his method,

Khachiyan proved that the complexity is Oðn4LÞ,
where L is the number of bits necessary to specify the

problem. Unfortunately, the algorithm also seemed to

have an expected performance of similar complexity,

and was quickly shown to be noncompetitive in

practice. Note that Khachiyan’s algorithm is not an

interior-point method.

Interior-point methods (IPMs) seek to approach the

optimal solution through a sequence of points that are

always strictly feasible. Such methods have been

known for a long time, but for reasons explained

below were not considered to be effective. One of the

earliest IPMs is the barrier method originally proposed

in the 1950s by Frish (1954). When applied to

problems with only inequality constraints, it is

typically used in conjunction with the sequential

unconstrained minimization technique that is

described more generally in Fiacco and McCormick

(1968). In the primal barrier method for problem (LP),
the following log-barrier function problem with

equality constraints is formed:

Bðx; mÞ ¼ cTx� m
Xm

i¼1

log xi

subject to Ax ¼ b

where m is a positive parameter. Given a positive value

of m and a strictly feasible point x0, the equality

constrained barrier problem

minimizex Bðx; mÞ
subject to Ax ¼ b

BPð Þ

is solved approximately, i.e., a vector x1 is calculated

that satisfies the equality constraints and is close to the

true minimum of the barrier function. (Note that

minimizing a strictly convex function with linear

equality constraints is not difficult). Clearly, x1 will

remain strictly feasible since the log-barrier function

becomes infinite at the boundary of the feasible region.

The parameter m is reduced and (BP) is solved again

using x1 as the initial starting point. It can be shown

that if m is reduced to zero, for example, by setting

m ¼ m
2
at the beginning of each iteration, the resulting

sequence fxig will converge to x�, an optimal solution

to (LP). The set of the minimizers fxðmÞ j m > 0g of the
barrier function Bðx; mÞ gives a smooth analytic curve,

the so-called central path (Sonnevend 1985).

Another interior-point approach, called the method

of centers was suggested by Huard (1967). This

method is initiated with a strictly feasible point x0
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and computes the so-called analytic center of the

polytope formed by the intersection of the original

polytope and the half space of points corresponding

to an objective function value less than cTx0. The

analytic center of this bounded polytope is defined to

be the maximum of the function

Cðx; cTx0Þ ¼ ðcTx0 � cTxÞ
Yn

i¼0
xi:

The functionCðx; cTx0Þ is clearly zero on the boundary
and positive in that part of the interior of the polytope

that corresponds to lower values than cTx0 of cTx, and

thus has a maximum, say x1. The level set is then

redefined using x1 in place of x0, and the process

repeated. It can be shown that the sequence fxig
converges to an optimal solution x�. Moreover, the

set of the minimizers fxðgÞg of the function Cðx; gÞ,
where g runs from the maximum until the minimum of

cTx on the feasible set coincides with the central path.

Early IPMs also include that of Dikin (1967). This

method begins each iteration by scaling the variables

so that the current, strictly feasible point is transformed

to the vector of all ones, a point well away from the

boundary in the affinely scaled space. A steepest

descent step is then applied to this scaled problem,

and the resulting point is transformed back to the

original space to obtain the next iterate. The

advantage of this idea is that the steepest descent step

in the original space can be extremely short if the

current iterate is close to the boundary, whereas long

steps are always possible in the transformed space.

This method is known as the affine scaling algorithm.

Modern variants of log-barrier methods and the

methods of centers enjoy polynomial complexity,

while the polynomiality of Dikin’s affine scaling

method is still open. There is strong belief that primal

or dual affine scaling methods are not polynomial, but

variants of primal-dual affine scaling methods enjoy

polynomial complexity.

All these early methods relate to Karmarkar’s

method, as discussed below. All of them were tried

and compared with the simplex method in the 1970s,

but none was seen to be competitive for two principal

reasons. First, almost all IPMs (see the next section)

require at each step the solution to a linear system of

equations of the form

ATDAu ¼ r; (1)

where u and r are n-vectors and D is an appropriate

positive definite diagonal matrix. It was not until the

1970s that there were sufficiently powerful linear

algebra routines that were able to explore the sparsity

structure of ATDA to solve such systems efficiently.

Second, IPMs tend to outperform simplex methods on

large problems that were well beyond the capabilities

of the computers of the 1960s. Third, IPMs typically

need more memory and need better floating point

calculations than simplex methods. While IPMs were

put aside in the 1970s, significant advances in

numerical linear algebra were made and, of course, in

computational capacity and speed. Interest in IPMs

was then revitalized by the announcement of

Karmarkar (1984) that he had developed an IPM that

had provable polynomial complexity and was

competitive with the simplex method. In fact he

claimed a factor of 100 speed-up, compared with the

state-of-the-art simplex solver MPSX. Karmarkar’s

procedure begins with a strictly feasible point and

then embeds the problem (LP) in a space of one

dimension higher, in which the feasible point is the

center of the higher dimensional polytope. As in

the affine scaling algorithm, a “good” step can then

be taken in this space and the new point projected back

to the original space to obtain the next iterate.

Karmarkar’s method and its relatives, including

the affine scaling algorithm and barrier methods,

were studied intensively. Since then, thousands of

papers have been written on both the theoretical and

computational aspects of IPMs for LP and on the

extension of these ideas to quadratic and more

general nonlinear programming problems. IPMs

opened a new age in the theory, implementations and

applications of mathematical optimization,

mathematical programming.

IPMs for LP

In the theoretical arena, there has been considerable

interest in improving the bound on the number of

iterations required to solve an LP problem. It was

observed early that IPMs could be cast in such a way

as they follow a continuous path, or trajectory, the

central path from an initial interior feasible point to
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an optimal solution. The central path enjoys many

appealing properties. Much analysis of these

trajectories and of algorithms based on following the

central trajectory has been performed. Several versions

of the algorithms described below have also been

extensively analyzed. The best theoretical results for

these methods demonstrate a complexity that is

O
ffiffiffi

n
p

Lð Þ steps with a quadratic asymptotic rate of

convergence. The computationally most successful

IPMs for solving an LP problem are based on using

a primal-dual formulation and applying Newton’s

method to the system of equations arising from the

barrier method, i.e., by perturbing the optimality

conditions. Specifically, the dual problem to (LP) is

maximizey;s

subject to

bTy

ATyþ s ¼ c

s � 0;

DPð Þ

where y 2 Rm and s 2 Rn. By the duality theorem of

LP, at an optimal solution pair the duality gap is zero,

thus

xjTs ¼ cTx� bTy ¼ 0:

The optimality conditions for the primal-dual problem

can thus be formulated as

Ax ¼ b; x � 0;

ATyþ s ¼ c; s � 0;

XSe ¼ 0;

where X denotes the diagonal matrix with xi as its i
th

diagonal element. The last conditions are called the

complementarity conditions, because they require that

at least one of the complementary pair of variables

ðxi; siÞ be zero. By perturbing the complementarity

conditions, the system

Ax ¼ b; x � 0;

ATyþ s ¼ c; s � 0;

XSe ¼ me;

CPð Þ

is obtained, where e denotes the vector with all

coordinates equal to one. This perturbed system (CP)

coincides with the Karush-Kuhn-Tucker (first order)

optimality conditions of the primal Bðx; mÞ, the

dual bTyþ m
Pn

i¼1 log si and the primal-dual

xTs� m
Pn

i¼1 log xisi barrier functions as well, so it

can be concluded that the set of solutions fxðmÞjm > 0g
and fðyðmÞ; sðmÞÞjm > 0g is the primal and dual central

path, respectively.

The Newton Step

Given an interior feasible point x > 0; y; s > 0,

a Newton step can be made to solve the system (CP).
The goal is to compute the displacements ðDx;Dy;DsÞ
such that

Aðxþ DxÞ ¼ b;

ATðyþ DyÞ þ ðsþ DsÞ ¼ c;

ðX þ DXÞðSþ DSÞe ¼ me:

By neglecting the second-order term in the last set of

equations and using that ðx; y; sÞ is interior feasible, the
Newton equation system is obtained:

ADx ¼ 0;

ATDyþ Ds ¼ 0;

XDSeþ SDXe ¼ me� XSe:

Since the matrix A has full rank, the Newton system

has a unique solution, which can be obtained by first

expressing

Ds ¼ X�1ðme� XSeÞ � X�1SDXe

¼ mX�1e� Se� X�1SDXe

from the last equations, which leads to the so-called

augmented system:

0 A

AT �X�1S

� �

Dy

Dx

� �

¼ 0

Se� mX�1e

� �

:

This system has a symmetric indefinite coefficient

matrix. Expressing Dx as a function of Dy

Dx ¼ S�1XATDyþ x� mS�1e;

then the so-called normal equation system
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ðAXS�1ATÞDy ¼ x� mS�1e

is obtained, where the coefficient matrix is symmetric

and positive definite. Highly efficient sparse matrix

techniques are available to solve either the

augmented or the normal equation system. Having

the displacement vectors, an appropriate step-length

a > 0 needs to be determined to get the new iterates:

x :¼ xþ aDx;

y :¼ yþ aDy;

s :¼ sþ aDs:

Centrality Measures

To determine the appropriate step-size, the deviation

of the iterates from the central path needs to be

measured. Besides the barrier functions themselves,

various centrality measures have been developed.

Two such measures are presented here.

Observe that on the central path all the coordinates

of the vector XSe are equal. This observation indicates

that the proximity measure

Dcðx; sÞ :¼
maxiðxi; siÞ
miniðxi; siÞ

;

which equals to one on the central path, is an

appropriate measure of centrality. The use of this

simple measure leads to OðnLÞ complexity, what is

Oð ffiffiffinp Þ worse than the best known iteration

complexity to date. Due to its simplicity, this

centrality measure is frequently used in practice.

Another proximity measure can be defined as follows:

d0ðx; s;mÞ :¼
1

2

XS

m

� �

1
2
e� XS

m

� ��1
2
e

























:

This centrality measure assumes the value zero on the

central path. By using this proximity, polynomial IPMs

are designed with iteration complexity OðnLÞ and

Oð ffiffiffinp LÞ as well.

Generic Interior Point Newton Algorithm.
Inputs:

proximity parameter k;

accuracy parameter e > 0;

variable damping factor a;

update parameter 0 < y < 1;

ðx0; y0; s0Þ, m0 � 1 subject to ðx0; s0Þ > 0

and dðx0; s0; m0Þ � k.

begin

x :¼ x0; y :¼ y0; s :¼ s0; m :¼ m0;
while nm � e do
begin

m :¼ ð1� yÞm;
while dðx; s; mÞ � k

x :¼ xþ aDx;

y :¼ yþ aDy;
s :¼ sþ aDs;

end
end

end

The following crucial issues remain: How to get an

initial interior point that satisfies the initialization

requirements; how to choose the centrality parameter

k; how to update m; and how to damp the Newton step,

when needed. Initialization strategies will be discussed

in the next section; at this moment it is assumed that an

initial interior point, with m ¼ 1, on the central path is

given. The following two parameter choices allow

polynomial complexity proof.

(1) primal-dual log-barrier algorithm with full
Newton steps
This IPM enjoys the best complexity known to date.

The following parameter choices are made:

• dðx; s; mÞ :¼ d0ðx; s; mÞ;
• m0 :¼ 1;

• y :¼ 1
2
ffiffi

n
p ;

• k ¼ 1
ffiffi

2
p ;

• ðDx;Dy;DsÞ is the Newton step;

• a ¼ 1:

Theorem 1. Theorem II.52 in Roos, Terlaky and
Vial (1997) With the given parameter set, the full

Newton step algorithm requires not more than

2
ffiffiffi

n
p

log
n

e

l m

iterations to produce a feasible solution ðx; y; sÞ such
that D0ðx; s; mÞ � k and nm � e:

(2) large-update primal-dual log-barrier algorithm
The following parameter choices are made:

• dðx; s; mÞ :¼ d0ðx; s; mÞ;
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• m0 :¼ 1;

• 0 < y < n
nþ ffiffinp ;

• k ¼
ffiffiffi

R
p

2
ffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffi

R
pp , where R ¼ y

ffiffi

n
p
1�y;

• ðDx;Dy;DsÞ is the Newton step;

• a is the result of a line search, when along the search

direction the primal-dual log-barrier function

xTs� n
X

n

i¼1
log xisi

is minimized.

Theorem 2. Theorem II.74 in Roos, Terlaky and
Vial (1997) With the given parameter set, the large

update primal-dual log-barrier algorithm requires not

more than

1

y
2 1þ

ffiffiffiffiffiffiffiffiffiffiffi

y
ffiffiffi

n
p

1� y

r
 !4

2

6

6

6

3

7

7

7

log
n

e

2

6

6

6

3

7

7

7

iterations to produce a feasible solution ðx; y; sÞ such
that d0ðx; s; mÞ � k and nm � e:

With the choice y ¼ 1
2
, the total complexity becomes

O n log n
e

� 	

, while the choice y ¼ K
ffiffi

n
p , with any fixed

positive value K gives O
ffiffiffi

n
p

log n
e

� 	

complexity.

Hundreds of polynomial time IPMs have been

developed since 1984, including projective methods;

predictor-corrector methods; small- and large-update

methods; higher-order methods that are based on

higher than first-order approximation of the central

path, volumetric barrier methods, self-regular IPMs.

Several variants enjoy quadratic or superlinear

convergence to an optimal solution.

On Finding an Exact Solution

IPMs follow the central path, and the iterates converge

to a maximally complementary solution. However,

IPMs not only converge to a solution but also allow

identification of exact solutions after a finite number of

iterations. This is because the size of the variables can

be bounded along, or close to, the central path. An

absolute lower bound can be given for the variables

that converge to a positive value, while an upper

bound, depending on the parameter m, can be given

for the variables that converge to zero. If m is small

enough, then the algorithm stops. The “small”

variables can be rounded-off to zero, while the

“large” variables can be modified to to get an an

exact strictly complementary solution pair. This is

a strongly polynomial rounding procedure, see Roos,

Terlaky and Vial (1997) and Ye (1997).

The rounding procedure provides an exact strictly

complementary solution. When an optimal basis is

needed then from an optimal solution pair, an optimal

basis can be obtained in strongly polynomial time. The

optimal basis identification procedure is due to

Megiddo; it can be found in the books by Terlaky

(1996) and Roos, Terlaky and Vial (1997). This basis

identification algorithm is successfully implemented in

various commercial packages.

Initialization

IPMs need an interior feasible point to start with.

“Interior” essentially means that having a feasible

solution for which all the inequalities hold with strict

inequality. Further, in the polynomial IPM variants

given above, it is required that the initial solution is

close to the central path. To find such solutions the

following two methods were developed.

Infeasible IPMs: An infeasible interior point for

both the primal and dual LP problem can easily be

selected. Choose x0 ¼ e, y0 ¼ 0 and s0 ¼ e,

where eT ¼ ð1; � � � ; 1Þ. Then clearly x > 0 and s > 0,

i.e., they are interior points of the positive

orthant, but they are infeasible, because usually

the primal rp ¼ b� Ax0 ¼ b� Ae and dual

rd ¼ c� s0 � ATy0 ¼ c� e� AT0 6¼ 0 residuals are

not zero. Nevertheless, starting from such an

infeasible interior point, the working horse of IPMs,

the Newton process, can be launched. In this case the

Newton system becomes

ADx ¼ rp;

ATDyþ Ds ¼ rd;

XDSeþ SDXe ¼ me� XSe:

This differs from the original Newton system just in the

right hand side of the first two equations. Since the

coefficient matrix remains the same, the new Newton

system can be solved the same way as in the feasible

case. During infeasible IPMs the primal and dual

residual and the complementarity gap is reduced to
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zero simultaneously. Infeasible IPMs allow

polynomial complexity proofs. However, the worst

case complexity of infeasible IPMs is OðnLÞ
iterations, a factor of Oð ffiffiffinp Þ worse than the

complexity of feasible IPMs.

Initialization by embedding: Another theoretically

and for infeasible or unbounded problems also

practically more sound initialization procedure is the

self-dual embedding strategy, originally proposed by

Ye, Todd and Mizuno (see the books Ye 1997; Jansen

1997; and Roos, Terlaky and Vial, 1997). The roots of

this approach can be recognized in Goldman and

Tucker’s homogeneous self-dual model. By putting

the primal and dual constraints together, requiring

that the dual objective value be at least as large as the

primal one, and finally by homogenizing the system,

the Goldman–Tucker model is obtained:

Ax �bt ¼ 0; x � 0; t � 0;

�ATy �s þct ¼ 0; s � 0;

þbTy �cTx �r ¼ 0; r � 0:

Any solution of this system where t > 1 gives an

optimal solution to the LP problem; moreover if this

system has no solution with t > 0, then either the

primal or the dual LP is infeasible. Due to the Weak

Duality Theorem, this problem cannot have an interior

feasible solution, but allows the following embedding

with a perfectly centered interior feasible solution.

Let y0 ¼ 0; x0 ¼ e; s0 ¼ e; t0 ¼ 1; r0 ¼ 1; #0 ¼ 1

be the initial value of the variables and let �b ¼ b�
Ae; �c ¼ c� e; g ¼ cTeþ 1; b ¼ g� �cT e ¼ eTeþ 1:
For the embedding problem (SP)

min b#

Subject to

Ax �bt þ�b# ¼ 0; x� 0; t� 0;

�ATy �s þct ��c# ¼ 0; s� 0

þbTy �cTx þg# �r ¼ 0; r� 0;

� �b
T
y þ �cT x �g# ¼�b;

the following statements hold:

– the given initial point is interior feasible;

– it is on the central path of the embedding problem

with m ¼ 1;

– this the embedding problem can be solved by any

feasible IPM;

– (SP) is self dual, thus its optimal value is zero,

hence at optimum # ¼ 0;

– a solution of (SP) with # ¼ 0; t > 0 gives an

optimal solution pair for LP;

– a solution of (SP) with # ¼ 0; r > 0 gives evidence

of primal or dual infeasibility of LP.

When problem (SP) is solved by any feasible IPM,

the linear algebra can be organized so that an iteration

costs hardly any more computational effort than an

iteration at the original problem. Further, IPMs

provide a strictly complementary solution, thus

tr ¼ 0 and tþ r > 0 holds for the solution produced

by IPMs. As a consequence, it suffices to solve (SP) to
solve the original problem LP. Finally, note that the

worst case complexity of IPMs applied to (SP) is the
same as their complexity when applied to the original

problem, because the embedding problem has

mþ 2nþ 3 variables, thus the iteration complexity is

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mþ 2nþ 3
p

L ¼ Oð ffiffiffi

n
p

LÞ.
Initialization by embedding not only allows

initializing IPMs while preserving the best

worse-case complexity, but also provides the most

robust method to detect infeasibility of either the

primal or the dual LP problem. This is due to the fact

that infeasiblity is detected by convergence to an

optimal solution of the embedding problem (SP).
This is in sharp contrast to the divergence of the

iterates when an infeasible IPM is applied to an

infeasible or unbounded problem.

Barrier Approaches

Various extensions of interior point methods were

developed in the past decades. It is natural to replace

the logarithmic barrier (� ln t) by other

barrier functions. Nesterov and Nemirovskii

(1994) introduced the so-called universal barrier

function that allows solution of any smooth convex

optimization problem in a polynomial number of

iterations. However, such an algorithm is not

necessarily polynomial time, because the iterations

might not be possible to compute in polynomial time.

Copositive optimization (see Bomze et al. 2000),

where a linear objective function is optimized over

the intersection of an affine subspace and the cone of

copositive matrices is a convex optimization problem

where the universal barrier approach yields an algorithm

for which the number of iterations is polynomial, but

a single Newton step cannot be made in polynomial

time. Nesterov and Nemirovskii (1994) have also
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developed the theory of self-concordant barrier

functions that allowed development of polynomial

time algorithms for large classes of convex

optimization problems.

Other approaches include the volumetric barrier

method that in a cutting plane framework allows

solution of LP problems in polynomial time. When

a polynomial time separation oracle is available, the

complexity of the volumetric barrier cutting plane IPM

is independent of the number of constraints, its

complexity depending only on the dimension of the

problem. The significance of this result is that a large

set of combinatorial optimization problems, previously

solvable in polynomial time only by the ellipsoid

method, can be solved with better complexity, and so

IPMs completely supersede the ellipsoid method.

Self-regular barrier functions, by Peng, Roos and

Terlaky (2002), allow design of IPMs that operate in

a large neighborhood of the central path, while having

almost the same complexity as small-update IPMs.

IPMs Versus Simplex Methods

An extensive comparison of IPMs and simplex

methods can be found in Illés and Terlaky (2002).

Some important aspects are reviewed here.

Efficiency: IPMs have been extremely successful in

solving some very large linear programs, but they do not

completely replace the simplex method. The best

algorithm is, of course, problem-dependent, but

generally speaking the IPMs perform better on larger

problems and on problems that allow efficient

exploitation of the numerical linear algebra.

Specifically, as noted above, if the structure of ATD2A

can be exploited to solve either the augmented or the

normal equation system quickly, then IPMs have an

advantage. An example of such an A matrix arises in

multi-period resource planning problems where A has

a staircase structure. The matrix ATD2A is then block

diagonal and can usually be factored efficiently. IPMs

also perform better on (highly) degenerate problems

that often arise in large-scale applications, because

degeneracy hardly effects the performance of IPMs.

Basic solution versus strictly complementary

solution: IPMs by nature generate a maximally

complementary optimal solution pair, while

simplex-based solvers generate an optimal basis.

Although users are used to basic solutions, there are

many practical situations when a strictly

complementary solution is desirable. In these

situations simplex methods are clearly outperformed

by IPMs, because finding a strictly complementary

solution from an optimal basis solution is not easier

than solving the original problem.

On the other hand, when an optimal basis is needed,

then as discussed earlier, the identification of an

optimal basis can be made in strongly polynomial

time. Such algorithms are efficiently implemented in

state-of-the-art software packages. So it can be

concluded, that even in this case, the choice between

IPMs and simplex methods should be made on the

basis of their ability to solve the original problem

efficiently, i.e., on the basis of which is better able to

exploit the sparsity structure of the problem.

Sensitivity analysis: Post-optimality analysis has

tremendous importance in practice. Linear programming

software reports sensitivity analysis basedon the obtained

optimal basis, which answers the questions:

Over what range of the parameter values does the

obtained optimal basis remain optimal, and how does

the optimal function value change with this optimal

basis solution?

However, typically the user would prefer to know

the answers to the following questions:

What is the rate of change (shadow price, reduced

cost) of the optimal objective value when a parameter

changes, and for what intervals does this rate remain

valid?

To answer this question correctly requires finding

the possibly different left- and right-hand derivatives

of the optimal value function. For this purpose the

solution of some smaller linear problems is needed.

Both an optimal basic solution and a strictly

complementary solution are appropriate to set up

those subproblems, which can again be solved either

by simplex or IPM solvers. A thorough treatment of

correct sensitivity analysis can be found in Jansen

(1997) and in Roos, Terlaky and Vial (1997).

IPMs, Klee-Minty Examples and Complexity
Bounds

This section reviews some cases when the central path

exhibits extreme behavior.

Klee-Minty Examples for IPMs

The Klee-Minty cube (1972) for which simplex

algorithms may take an exponential number,
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i.e., 2n � 1 pivot steps, is given in the following form,

where the convention x0 ¼ 0 is used, and t is a small

positive factor by which the unit cube ½0; 1�n is

perturbed.

min xn

s.t. t xk�1 � xk � 1� t xk�1 for k ¼ 1; . . . ; n.

This optimization problem has N ¼ 2n constraints

and n variables. The set of feasible solutions is

a perturbed n-dimensional cube. Starting from the

vertex ð0; . . . ; 0; 1ÞT , simplex methods may visit all

the vertices of the feasible set.

Although IPMs are polynomial time algorithms, the

complexity of central-path following IPMs depend on

the number of inequalities in the problem and the

condition number, or input length, see e.g., Roos,

Terlaky and Vial (2006). Deza et al. (2006) show that

in any dimension, the central path of an LP problem,

where the feasible set is the Klee-Minty cube, follows

the simplex path. More precisely, by adding

exponentially many redundant constraints that are

parallel to the facets passing through the optimal

vertex of the Klee-Minty cube, the central path can

be forced to visit a predefined arbitrary small

neighborhood of all the vertices of the Klee-Minty

cube in the same order as simplex methods do. In

other words, this central path has 2n � 2 almost-90	

turns. All redundant hyperplanes are at the same

distance from the Klee-Minty cube, and the number

of inequalities in dimension n is N ¼ Oðn226nÞ. In
subsequent papers the number of redundant

inequalities are reduced significantly. By decaying

geometrically the distances of the redundant

constraints to the corresponding facets, Deza,

Nematollahi and Terlaky (2008) show that the

number of the inequalities N can be reduced to

Oðn322nÞ and that after Oð
ffiffiffiffi

N
p

nÞ iterations, a standard
rounding procedure allows identification of the

optimal solution. This results tighten the gap between

iteration-complexity lower and upper bounds.

The tightest result is given by Nematollahi and

Terlaky (2008). The redundant constraints are placed

parallel to the coordinate hyperplanes at geometrically

decaying distances, so only N ¼ Oðn22nÞ redundant

inequalities are needed to force the central path

to follow the simplex path of the n-dimensional

Klee-Minty cube, yielding an Oðn
3
22nÞ

iteration-complexity upper bound. The iteration

complexity lower bound remains Oð2nÞ, which

follows from the fact that the central path follows the

simplex path arbitrarily close. As a result, the gap

between the iteration complexity upper and lower

bounds is almost closed, because the lower bound for

the number of iterations is Oð
ffiffiffiffiffi

N
lnN

q

Þ, while the upper

bound is Oð
ffiffiffiffi

N
p

lnNÞ.

The Tight Klee-Minty Construction and

Complexity Bounds

To force the central path to follow the simplex path,

redundant constraints are introduced that are given by

the inequalities dk þ xk � 0g, for k ¼ 1; . . . ; n, where

dk is the distance to the respective coordinate plane.

These redundant constraints are repeated hk times,

where the specific values of hk are given in the

sequel. While adding redundant constraints do not

change the set of feasible solutions, the analytic

center and the central path change. The redundant

Klee-Minty example of Nematollahi and Terlaky

(2008) is given as:

min xn
s.t.

t xk�1 � xk � 1� t xk�1 for k ¼ 1; . . . ; n;

0 � dk þ xk repeated hk times; for k ¼ 1; . . . ; n:

For this example the following parameters are

chosen (Fig. 1):

t ¼ n
2ðnþ1Þ; d � 1

4ðnþ1Þ;

d ¼ 1
ffiffiffiffiffiffi

tn�1
p ; 1

ffiffiffiffiffiffi

tn�2
p ; . . . ; 1

ffiffi

t
p ; 0

� �

;

h ¼ 4ð1þ
ffiffiffiffiffiffi

tn�1
p

Þ
ffiffiffiffiffiffi

tn�1
p

d

j k

; 4ð1þ
ffiffiffiffiffiffi

tn�2
p

Þð2þ
ffiffiffiffiffiffi

tn�1
p

Þ
t
ffiffiffiffiffiffi

tn�2
p

d

j k

;
�

. . . ;
4ð1þ ffiffi

t
p Þ
Qn�1

i¼2
ð2þ

ffiffiffi

ti
p

Þ
tn�2

ffiffi

t
p

d

� �

;
4
Qn�1

i¼1
ð2þ

ffiffiffi

ti
p

Þ
tn�1d

� ��

:

Theorem 3. For the given redundant Klee-Minty

example, the iteration-complexity lower and upper

bounds for central-path-following interior point

methods are Oð2nÞ and Oðn
3
22nÞ, respectively. These

bounds expressed in terms of the number of

inequalities are Oð
ffiffiffiffiffiffi

N
lnN

q

Þ and Oð
ffiffiffiffi

N
p

lnNÞ,
respectively. The gap between the lower and upper

bounds is Oðln2NÞ.
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Curvature and Conjectures

Deza, Terlaky and Zinchenko (2008, 2009) present

a construction where all the N constraints are

non-redundant, and the central path makes N � 4

sharp turns. For this non-redundant example, the input

length and the condition number of the problem grow as

the number of inequalities grows. They also relate IPMs

to the Hirsch Conjecture, a claim presented by W.M.

Hirsch to Dantzig in a letter in 1957 (cf. Dantzig 1963),

which asserts a linear upper bound for the diameter of

polytopes. Although the conjecture in its original form

was disproved by Santos (2010), its weaker variants are

still open. Analogous conjectures for the central path

curvature are presented by Deza, Terlaky and

Zinchenko (2008, 2009), substantiating the relationships

and presenting partial results.

Extensions

IPMs were designed for nonlinear problems already in

the sixties, see e.g., Fiacco andMcCormick (1968). Since

then, IPMs have been generalized to large classes of

smooth, convex optimization problems. Some

polynomially solvable classes are summarize here.

QP, LCP

Convex quadratic optimization problems are solvable

in polynomial time by IPMs. The complexity results

are analogous to the case of LP. There are two

differences: typically the step length is shorter in QP

than in LP, but this just adds a constant factor in the

complexity estimates. The other, more important

difference is that no strictly complementary solution

exists in general for QP problems. The consequence is

that identifying an exact solution needs more

computational effort, and the analysis gets also

significantly more involved (see Illés et al. 2000).

Linear complementarity problems (LCPs) are

natural generalizations of LP and QP. The solvability

of an LCP

�Mxþ s ¼ q; x � 0; s � 0; xisi ¼ 0 8 i

depends on the properties of the coefficient matrix M.

The largest polynomially solvable class is the class of

LCPs with P�ðkÞmatrices, for all k � 0. A matrix isM

is a P�ðkÞ matrix if for all x 2 Rn the inequality

ð1þ 4kÞ
X

xiðMxÞi>0

xiðMxÞi þ
X

xiðMxÞi<0

xiðMxÞi � 0

holds. Clearly P�ð0Þ matrices are positive semidefinite.

The union of the classesP�ðkÞ for allk � 0 is the class of

P� matrices, which coincides with the class of sufficient

matrices. It is known that LCPs with sufficient matrices

are solvable with pivoting methods, thus there is no

discrepancy (except worst-case complexity) between

the solvability of LCPs by pivot and IPMs. The book of

Kojima, Megiddo, Noma and Yoshise (1991) is devoted

to IPMs for LCPs.

Conic Linear Optimization Problems

Conic linear optimization (CLO) problems are

obtained when the nonnegativity constraints, i.e., the

requirement that the variables of an LP problem are in

the polyhedral cone of the nonnegative vectors, are

replaced by the requirement that the variables belong

to a convex cone. A primal-dual pair of CLO problems

is given as:

ðPÞ min cTx

s:t: Ax� b 2 C1
x 2 C2

ðDÞ max bTy

s:t: c� ATy 2 C�2
y 2 C�1;

where b; y 2 Rm, c; x 2 Rn, A : m� n matrix, C1;C2

are convex cones and C�
i ¼ fs 2 Rn : xTs � 0;

8x 2 Cig are the dual cones for i ¼ 1; 2.

Interior-Point Methods for Conic-Linear Optimization,

Fig. 1 The Klee-Minty 3-cube and the simplex path that is
traced by the central path

Interior-Point Methods for Conic-Linear Optimization 801 I

I



Large classes of CLO problems are solvable by

IPMs in polynomial time. The best known classes of

CLO problems are the classes of second-order cone

optimization and semidefinite optimization problems.

In a second-order cone optimization problem the cones

C1 and C2 are direct products of second order and linear
cones. The second order cone, or ice cream cone, in

dimension n is given by

Sn2 :¼ x 2 Rn :

ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n�1

i¼1
x2i

v

u

u

t � xn

8

<

:

9

=

;

:

Second-order cone optimization problems are studied

in Nesterov and Nemirovskii (1994); Vandenberghe

and Boyd (1996); and Andersen, Roos, and

T. Terlaky (2003).

Another important class of CLO problems,

semidefinite optimization (SDO), which has

numerous important applications, particularly in

control and combinatorics, is discussed in more detail

here (see e.g., Nesterov and Nemirovskii 1994;

Vandenberghe and Boyd 1996; de Klerk 2002). Let

C;Ai for i ¼ 1; . . . ; n be given symmetric matrices and

b 2 Rm. Let X be denote the symmetric matrix of

variables. The primal problem of semidefinite

optimization can be given as

minimize X TrðCXÞ
subject to TrðAiXÞ ¼ bi; i ¼ 1; . . . ; n; ðCLPÞ

X � 0;

where Trð�Þ indicates the trace of the given matrix and

the positive semidefiniteness of the matrixX is denoted

by X� 0. Analogous to LP, the dual problem can be

given as

maximizeðy;SÞ bTy

subject to
X

n

i¼1

Aiyi þ S ¼ C; ðCLDÞ

S � 0:

The interior point condition for SDO reads as

follows: a feasible solution X and ðy; SÞ exists where
the matrices X and S are positive definite. The design

and analysis of IPMs for SDO are analogous to the case

of LP, with two major differences.

First, the duality theory of SDO is weaker.

There are SDO problems where both the primal

and the dual problem admit an optimal solution,

but the duality gap is nonzero; or where the

optimal value either from the primal or from

the dual side is not attained; or where either

of the problems is weakly infeasible. Special

techniques have been developed to deal with

these pathological cases, see Wolkowicz, Saigal,

and Vandenberghe (2000).

The second difference comes from the calculation

of the search direction. When the interior point

condition holds, the central path is well defined.

Again, it is defined as the set of solutions of the

perturbed optimality conditions:

TrðAiXÞ ¼ bi; i ¼ 1; . . . ; n;X� 0;
Xn

i¼1
Aiyi þ S ¼ C; S� 0; ðCCPÞ

XS ¼ mI:

When Newton’s method is applied to this system to

calculate the search directions, the system

TrðAiDXÞ ¼ 0; i ¼ 1; . . . ; n;
Xn

i¼1
AiDyi þ DS ¼ 0;

XDSþ ðDXÞS ¼ mI � XS

is obtained. When ðDX;Dy;DSÞ is the solution of this

Newton system, then DS is symmetric; however DX is

symmetric if and only if XS is a multiple of the unit

matrix. As a consequence, additional tools are needed

to symmetrize the Newton system. For details the

reader is referred to Wolkowicz, Saigal, and

Vandenberghe (2000), and Todd (1999).

Several codes have been developed to solve SDO

problems. Traditionally nonlinear optimization

software has required a functional description of the

set of feasible solution, hence not allowing

incorporation of conic constraints.

Smooth Structured Nonlinear Programming

Problems

Smooth nonlinear programming (NLP) problems are

also solvable in polynomial time by using IPMs when

a smoothness condition is satisfied. Let a set of convex
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functions f0ðxÞ; f1ðxÞ; . . . ; fmðxÞ : Rn ! R be given.

Further, assume that the NLP problem

minimizex f0ðxÞ
subject to fiðxÞ � 0; i ¼ 1; . . . ; n;

satisfies the interior point condition, i.e., admits

a solution for which all constraints hold with strict

inequality and its level sets are bounded. Let

fmðxÞ :¼ f0ðxÞ � m
Xm

i¼1

logð�fiðxÞÞ

be the log-barrier function. The NLP problem satisfies

the smoothness condition – called k self-concordant –

if there exists a k � 0 for which the inequality

jH3fmðxÞ½h; h; h�j � 2k H2fmðxÞ½h; h�
� �

3
2

holds for any x in the domain of fm and for any h 2 Rn.

Here H2fmðxÞ½h; h� and H3fmðxÞ½h; h; h� denote the

second- and third-order directional derivatives of

fmðxÞ in the direction h 2 Rn, respectively.

When the self-concordancy condition is satisfied,

IPMs applied to NLP admit polynomial complexity

proofs (see den Hertog 1994; Nesterov and

Nemirovskii 1994). Implementations of IPMs for

NLP problems include the KNITRO package Byrd,

Nocedal, and Waltz (2006), and the IPOPT package

W€achter (2002).

Concluding Remarks

IPMs allow polynomial-time solution of large classes

of smooth convex optimization problems, where new

efficiently solvable problem classes such as

semidefinite programming and second-order cone

optimization have been identified. IPMs are efficient

not only in theory, but also in computational practice,

often being the only option for solving large-scale

structured problems. This has contributed heavily to

efficiency improvements in optimization software on

the order of 106 or more (Bixby 2002). Core theory,

such as duality theory and sensitivity analysis, has

been rejuvenated (Roos et al. 2006; Koltai and

Terlaky 2000; Ghaffari Hadigheh et al. 2007).

IPMs have spread to all areas of optimization. For

example, novel robust optimization methodology

developed by Ben-Tal and Nemirovskii (2001) has

opened new opportunities to solve important problem

classes, including problems in truss-topology design,

signal processing, VLSI design and robust and

intensity modulated radiation therapy treatment (Chu

et al. 2008; Craig et al. 2008).

More details on IPMs for LP problems can be found

in Gonzaga (1991a,1991b,1992), Goldfarb and Todd

(1989), Roos and Terlaky (1997), Roos, Terlaky and

Vial (1997), Terlaky (1996), Ye (1997), Wright (1996)

and Wright (2004); for more general convex and

nonlinear problems, see den Hertog (1994), Nesterov

and Nemirovskii (1994), and Wolkowicz, Saigal, and

Vandenberghe (2000).

See

▶Barrier Functions and their Modifications

▶Computational Complexity

▶Duality Theorem

▶Hirsch Conjecture

▶Large-Scale Systems

▶Linear Programming

▶Newton’s Method

▶Nonlinear Programming

▶Optimization

▶Quadratic Programming

▶ Simplex Method (Algorithm)

References

Andersen, E. D., Roos, C., & Terlaky, T. (2003). On
implementing a primal–dual interior–point method for
conic quadratic optimization. Mathematical Programming,

95(2), 249–277.
Ben-Tal, A., & Nemirovski, A. (2001). Lectures on modern

convex optimization: Analysis, algorithms, and engineering

applications (MPS-SIAM series on optimization).
Philadelphia, PA: SIAM.

Bixby, R. E. (2002). Solving real-world linear programs:
A decade and more of progress. Operations Research,

50(1), 3–15.
Bomze, I. M., Duerr, M., de Klerk, E., Roos, C., Quist, A. J., &

Terlaky, T. (2000). On copositive programming and standard
quadratic optimization problems. Journal of Global

Optimization, 18(2), 301–320.
Borgwardt, K. H. (1987). The simplex method: A probabilistic

analysis, algorithms and combinatorics (Vol. 1). Berlin:
Springer.

Interior-Point Methods for Conic-Linear Optimization 803 I

I

http://dx.doi.org/10.1007/978-1-4419-1153-7_57
http://dx.doi.org/10.1007/978-1-4419-1153-7_141
http://dx.doi.org/10.1007/978-1-4419-1153-7_200159
http://dx.doi.org/10.1007/978-1-4419-1153-7_200291
http://dx.doi.org/10.1007/978-1-4419-1153-7_518
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_200514
http://dx.doi.org/10.1007/978-1-4419-1153-7_682
http://dx.doi.org/10.1007/978-1-4419-1153-7_200554
http://dx.doi.org/10.1007/978-1-4419-1153-7_838
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768


Byrd, R., Nocedal, J., & Waltz, R. (2006). KNITRO: An
integrated package for nonlinear optimization. In
G. Di Pillo & M. Roma (Eds.), Large-scale nonlinear

optimization (Nonconvex optimization and its applications,
Vol. 83, pp. 35–59). Berlin: Springer.

Chu, M., Zinchenko, Y., Henderson, S. G., & Sharpe, M. B.
(2008). Robust optimization for intensity modulated
radiation therapy treatment planning under uncertainty.
Physics in Medicine and Biology, 53, 3231–3250.

Craig, T., Sharpe, M. B., Terlaky, T., & Zinchenko, Y. (2008).
Controlling the dose distribution with gEUD-type constraints
within the convex IMRTP framework. Physics in Medicine

and Biology, 53, 3231–3250.
de Klerk, E. (2002). Aspects of semidefinite programming:

Interior point algorithms and selected applications.
Dordrecht, The Netherlands: Kluwer.

den Hertog, D. (1994). Interior point approach to linear,

quadratic and convex programming. Dordrecht, The
Netherlands: Kluwer.

Deza, A., Nematollahi, E., Peyghami, R., & Terlaky, T. (2006).
The central path visits all the vertices of the Klee-Minty
cube. Optimization Methods and Software, 21, 851–865.

Deza, A., Nematollahi, E., & Terlaky, T. (2008). How good are
interior point methods? Klee-Minty cubes tighten iteration-
complexity bounds.Mathematical Programming, 113, 1–14.

Deza, A., Terlaky, T., & Zinchenko, Y. (2008). Polytopes and
arrangements: Diameter and curvature.Operations Research
Letters, 36, 215–222.

Deza, A., Terlaky, T., & Zinchenko, Y. (2009). The continuous
d-step conjecture for polytopes. Discrete and Computational
Geometry, 41, 318–327.

Dikin, I. I. (1967). Iterative solution of problems of linear and
quadratic programming. Soviet Mathematics Doklady, 8,
674–675.

Fiacco, A. V., & McCormick, G. P. (1968). Nonlinear

programming: Sequential unconstrained minimization

techniques. New York: John Wiley.
Frish, K. R. (1954). Principles of linear programming – the

double gradient form of the logarithmic potential method.
Memorandum, Institute of Economics, University of Oslo,
Oslo, Norway.

Ghaffari Hadigheh, A. R., Romanko, O., & Terlaky, T. (2007).
Sensitivity analysis in convex quadratic optimization:
Simultaneous perturbation of the objective and right-hand-
side vectors. Algorithmic Operations Research, 2(2), 4–111.

Goldfarb, D., & Todd, M. J. (1989). Linear programming. In
G. L. Nemhauser, A. H. G. Rinnooy Kan, & M. J. Todd
(Eds.), Optimization (pp. 73–170). Amsterdam/New York:
North Holland.

Gonzaga, C. C. (1991a). Large-steps path-following methods for
linear programming, part I: Barrier function method. SIAM
Journal on Optimization, 1, 268–279.

Gonzaga, C. C. (1991b). Large-steps path-following methods for
linear programming, part II: Potential reduction method.
SIAM Journal on Optimization, 1, 280–292.

Gonzaga, C. C. (1992). Path following methods for linear
programming. SIAM Review, 34, 167–224.

Huard, P. (1967). Resolution of mathematical programming with
nonlinear constraints by the method of centres. In J. Abadie
(Ed.), Nonlinear programming (pp. 209–219). Amsterdam:
North Holland.

Illés, T., Peng, J., Roos, C., & Terlaky, T. (2000). A strongly
polynomial rounding scheme in interior point methods for
P*(k) linear complementarity problems. SIAM Journal on

Optimization, 11(2), 320–340.
Illés, T., & Terlaky, T. (2002). Pivot versus interior point

methods: Pros and cons. European Journal of Operational

Research, 140(2), 6–26.
Jansen, B. (1997). Interior point techniques in ptimization.

Complexity, sensitivity and algorithms. Dordrecht, The
Netherlands: Kluwer.

Karmarkar, N. K. (1984). A new polynomial-time algorithm for
linear programming. Combinatorica, 4, 373–395.

Khachiyan, L. G. (1979). A polynomial algorithm in linear
programming. Translated in Soviet Mathematics Doklady,

20, 191–194.
Klee, V. & Minty, G. J. (1972). How good is the simplex

algorithm. In O. Shisha (Ed.), Inequalities III

(pp. 159–175). Academic Press.
Kojima, M., Megiddo, N., Noma, T., & Yoshise, A. (1991).

A unified approach to interior point al � go � rithms for

linear complementarity problems (Lecture notes in computer
science, Vol. 538). Berlin, Germany: Springer.

Koltai, T., & Terlaky, T. (2000). The difference between
managerial and mathematical interpretation of sensitivity
analysis results in linear programming. International

Journal of Production Economics, 65, 257–274.
Nematollahi, E., & Terlaky, T. (2008). A simpler and tighter

redundant Klee-Minty construction. Optimization Letters,

2(3), 403–414.
Nesterov, Y. E., & Nemirovskii, A. S. (1994). Interior point

polynomial methods in convex programming: Theory and

algorithms. Philadelphia: SIAM.
Peng, J., Roos, C., & Terlaky, T. (2002). Self-regularity: A new

paradigm for primal-dual interior-point algorithms.
Princeton, NJ: Princeton University Press.

Roos, C., & Terlaky, T. (1997). Advances in linear optimization.
In M. DellAmico, F. Maffioli, & S. Martello (Eds.),
Annotated bibliography in combinatorial optimization,

Chap � ter 7. New York: John Wiley & Sons.
Roos, C., Terlaky, G. J., & Vial J. -Ph. (1997). Interior point

methods for linear optimization. (New York: Springer,
2nd ed., 2006). (Roos, C., Terlaky, T., Vial, J. -Ph. (1997).
Theory and algorithms for linear optimization: An interior

point approach. Chichester, UK: John Wiley & Sons).
Santos, F. (2010). A counterexample to the Hirsch conjecture.

arXiv:1006.2814.
Sonnevend, G. y. (1985). An ‘analytic center’ for polyhedrons

and new classes of global algorithms for linear (smooth,
convex) programming. In A. Prékopa, J. Szelezsán, &
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International Federation of Operational
Research Societies (IFORS)

Graham K. Rand

Lancaster University, Lancaster, UK

IFORS, the International Federation of Operational

Research Societies, is an international society whose

members are national operational research societies.

IFORS was founded in 1959 following the first

international OR conference that was held in Oxford,

1957 (Rand 2000).

IFORS was formed by three societies: The U.S.

Operations Research Society of America (ORSA),

the U.K. Operational Research Society (ORS), and

the French Société Française de Recherche

Opérationelle (SOFRO). The Statutes of IFORS

(Anonymous 1959) set out the purpose of the

Federation: “The development of operational

research as a unified science and its advancement in

all nations of the world.” Perhaps the most striking

aspect of the Statutes is the provision that in all

formal votes taken by the IFORS Board, the voting

strength of each member society is in proportion to the

square root of its membership. As of this writing,

50 national societies belong to IFORS, with

a collective individual membership of about 30,000.

See Rand (2001) and del Rosario and Rand (2010) for

fuller information about IFORS’ history.

IFORS publications includes the proceedings of its

triennial conferences from 1957 to 1990; the

abstracting journal, International Abstracts in

Operations Research (IAOR), started in 1961 and

now published on the Internet as well as in print; and,

since 1993, the journal, International Transactions in

Operational Research (ITOR), that publishes selected

conference papers, special issues focused on current

OR topics, as well as international perspectives of OR.

Discussions at the sixth IFORS Conference in Dublin

in 1972 led to the creation, in 1976, of EURO, The

Association of European Operational Research Societies

within IFORS; there are now 31 member societies in

EURO, including South Africa, Egypt and Israel. In

1982, the Association of Latin American OR Societies

(ALIO) was established; there are now eight member

societies in ALIO, including two members of EURO:

Spain and Portugal. The Association of Asian-Pacific

OR Societies within IFORS (APORS) came into being

in 1985; there are now 10 member societies in APORS.

When, in 1987, the IFORS constitution was changed,

NORAM, the Association of North American OR

Societies within IFORS, composed of the OR Societies

inCanada and theUSA,was created solely so that aVice-

President would be able to represent North America.
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International Institute for Applied
Systems Analysis (IIASA)

The International Institute of Applied Systems Analysis

(IIASA) is a nongovernmental research institution

located in Laxenburg, Austria. IIASA was founded in

1972 on the initiative of the academies of science or

equivalent institutions of 12 nations. As of 2012, the

following countries are national member organizations:
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Austria, Brazil, China, Egypt, Finland, Finland,

Germany, India, Japan, Republic of Korea, Malaysia,

Netherlands, Norway, Pakistan, Russian Federation,

South Africa, Sweden, Ukraine and United States of

America. The original motivation for the establishment

of IIASA was to enable scientists from East and West to

work together on problems of common concern.

Although this is still an objective of the Institute, it has

been broadened to encompass joint work by scientists

from most countries. The goal of IIASA is “To conduct

international and interdisciplinary scientific studies to

provide timely and relevant information and options,

addressing critical issues of global environmental,

economic, and social change, for the benefit of the

public, the scientific community, and national and

international institutions” (IIASA Agenda for the Third

Decade). Resident scientists at IIASA coordinate

research projects, working in collaboration with

worldwide networks of researchers, policymakers, and

research organizations. IIASA has been instrumental in

the development of global (world) models that are

concerned with environmental, energy and other

resource, economic and population issues.

See

▶Environmental Systems Analysis

▶Global Models

Intervention Model

▶Time Series Analysis

Invariant Distribution

Another name for the stationary distribution. Also

called invariant measure.

See

▶Limiting Distribution

▶ Stationary Distribution

▶ Statistical Equilibrium

Inventory Modeling

Edward A. Silver1 and David F. Pyke2

1University of Calgary, Calgary, Alberta, Canada
2University of San Diego, San Diego, CA, USA

Introduction

Supply chains have simultaneously become

increasingly globalized and lean. As a result, costs

have often decreased dramatically, but at the expense

of increased complexity and risk. A virus outbreak in

Asia can shut down a factory in Cleveland, and

a volcano in Iceland can shutter automotive factories

in Spain and Germany. These developments suggest

that excellent inventory management and control are

critical to effective management of supply chains.

Managers need to understand the optimal amount of

inventory to hold in stable situations, as well as in

highly dynamic and uncertain environments. The

tendency is often to hold too much inventory, and

thus to avoid stockouts and the resulting fallout that

lands on inventory managers. Companies, however,

are also confronted with the cost of inventory in the

form of reduced working capital that could be used for

other profitable activities such as new product

innovation or paying down debt. How should

managers handle this tradeoff? This article provides

an introduction to the answer to this question.

Standard inventory models, of the type introduced

here, add significant value to many organizations. In

a number of cases, however, the basic models must be

adjusted to account for the complexities of the

situation (Silver 2008). Tiwari and Gavirneni (2007)

argue that inventory researchers should seek close

connections with companies facing these

complexities so that their research will address actual

company needs. This is clearly true. Nevertheless,

there are excellent examples of successful

implementation of challenging inventory models,

including:

i) A major appliance manufacturer demonstrates that

it could reduce its service parts inventory stocked in

service vehicles from $7 million to $3 million

(Gorman and Ahire 2006).

ii) A division of John Deere with sales of $3 billion

improved on-time shipments from 63% to 92%
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while reducing or avoiding inventory costs by $890

million (Troyer et al. 2005).

Inventory decisions can often interact with

decisions in other areas of the organization.

Examples include: i) preventive maintenance

(determination of inventory levels of spare parts);

ii) marketing (effects of pricing and promotion on

demand, hence stock requirements and, in the

opposite direction, more effective inventory

management can reduce customer response time,

hence stimulating increased demand), iii) quality

assurance (higher quality levels reduce the need for

buffer or safety stocks), iv) production scheduling

(provision of supporting raw materials and supplies),

and v) finance (interest rates that vary with the level of

assets held by the firm (Buzacott and Zhang 2004). The

models that deal with these complexities are not

explicitly presented here. Rather, the intention is to

provide an introduction to inventory models per se,

thus providing the reader with an overview of the

general subject area.

In the next section a listing is provided of the

generic reasons why organizations carry inventories.

This is followed by a discussion of the types of costs

that are relevant in the development and use of

inventory models. Then, the subsequent four sections

deal with illustrative models. These are followed by

a general classification scheme. The coverage of the

topic area concludes with a discussion of the important

possibility of changing some of the parameters or

constraints (givens) in inventory models. More

detailed treatments of inventory modeling include

Graves, Rinnooy Kan and Zipkin (1993), Silver,

Pyke, and Peterson (1998), Zipkin (2000), and

Axs€ater (2010).

Reasons for Carrying Inventories

There are six generic reasons for organizations to carry

inventories. Most situations involve a mix of these

reasons, but each is discussed separately to

emphasize the associated rationale:

i) Cycle stock—when the demand pattern is level and

known and there is no uncertainty in supply it still

may make sense to not have the replenishment

inflow precisely match the steady outflow. There

may be physical limits on replenishment sizes

(e.g., batch container sizes in chemical processes),

major fixed costs associated with each

replenishment action, or quantity discounts on

purchase price and/or transportation costs. Full

truck load shipments, for example, are significantly

less expensive than less-than-truckload shipments.

Each of these reasons leads to the repeated (or

cyclic) use of a significant replenishment size.

ii) Congestion stock — even when the reasons for

holding cycle stock are not present and there is

still no uncertainty in supply or demand, it may be

necessary to have inventories of items when they

are produced on the same piece of equipment and it

takes an appreciable amount of time to change over

from production of one item to another. One has to

produce more than the immediate needs of an item

because the congestion on the equipment prevents

producing that item again for an appreciable

amount of time.

iii) Buffer or safety stock—when there is uncertainty

in demand and/or supply and the required

customer response time is lower than the time

necessary to acquire/produce the demanded

goods, it is necessary to have extra stock on hand

to ensure an adequate level of customer service.

Note that the customer can be internal to the

organization; for example, spare parts needed to

repair equipment.

iv) Pipeline stock — if an item has to be moved an

appreciable distance before being delivered to the

customer, then there will be stock in the pipeline.

More generally, if units must go through

a process (transportation is a special case) that

requires a non-negligible amount of time, then

there will be associated pipeline stock equal to the

throughput rate multiplied by the process time

per unit.

v) Anticipation stock—where factors such as demand

levels, raw material availability or raw material

prices are expected to change appreciably with

time it may make sense to build up (and deplete)

inventory levels in anticipation of these changes.

vi) Decoupling stock — in a multi-echelon situation

(or multistage process) stockmay be used to permit

the separation of decision making at the different

levels or echelons. For example, decoupling

inventory allows decentralized decision making

at branch warehouses without every decision at

a branch having an immediate impact on, say, the

central warehouse or factory.
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As discussed below, it may be more appropriate to

eliminate the underlying causes or reasons for carrying

inventories, rather than simply accepting them within

the modeling and inventory control environment.

The Categories of Inventory: Related Costs

The costs associated with inventory management are

often not easy to estimate in practice. Moreover, only

so-called relevant costs, that is, those that can be

influenced by inventory management decisions, should

be considered. In particular, care must be taken with

respect to overhead costs that are often not affected by

inventory decisions., see (Silver et al. 1998).

Five different categories of costs are considered.

a) Costs of the Material Itself: This so-called unit

variable cost (raw material plus any value added

or material handling) is denoted by v, with

dimension of dollars/unit. These costs are relevant

only insofar as they are affected by the size of the

replenishments used. If there are no quantity

discounts in acquisition cost (including the

transportation component), then over a given time

period (such as a year), the costs of the material will

be a constant, independent of the replenishment

sizes used. Specifically, if the unit variable cost is

independent of the replenishment sizes used, then

the total cost of the material isDv per year, whereD

is the demand (or usage) rate in units/year.

b) Fixed Cost of Each Replenishment Action: The

fixed cost of a replenishment action is denoted by

A, that is, the cost component that is independent of

the size of the replenishment. In a production

context, A is often referred to as the setup or

change-over cost. In a retail or distribution

environment, A includes the costs of order forms,

postage, authorization, receiving, inspection, and

handling of vendor invoices.

c) The Costs of Having Material in Inventory (Inventory

Carrying Costs): The common way of modeling the

costs of having material in inventory is as

Cost year= ¼ �Ivr (1)

where �I is the average inventory, in convenient units of

the item under consideration, v is the unit variable cost

in $/unit, and the carrying charge, r, is the cost in

dollars of carrying one dollar of inventory for one

year. The latter encompasses out-of-pocket expenses

(e.g., insurance, taxes, operating the warehouse, etc.)

and the lost opportunity of having capital tied up in the

stock (e.g., it could be invested elsewhere or used to

pay off debt). Some models use the symbol h ¼ vr to

represent the cost per unit in inventory per year.

d) The Costs of Insufficient Stock in the Short Run: If

the stock is inadequate to meet pending demand,

then two types of costs may be incurred – those

associated with stockouts (lost sales, backorders,

loss of goodwill, downtime of equipment, etc.)

and those of emergency actions to avoid stockouts

(e.g., expediting, use of an emergency high-cost

supplier, etc.). There is no universally appropriate

way of modeling such costs as a function of the

occurrence and magnitude of the shortage.

Possibilities include a fixed cost per stockout

occasion, a cost proportional to the number of

units short, and so on.

In lieu of assigning a cost of insufficient stock,

many organizations impose a service constraint on

the inventory policy. Again, there are a wide variety

of possible service measures. Two of the more

common ones are a specified probability of no

stockout prior to the receipt of each replenishment,

and a specified fraction of the demand to be routinely

met from stock. The latter is known as the fill rate.

e) The Costs of the Inventory Control System: Many

models are concerned with minimizing the total of

two or more of the preceding four cost categories.

There is a fifth category, however, that should be

considered in selecting among different inventory

control systems, namely the costs of administering

the system itself. These include the costs of

acquiring and updating the data (e.g., demand rate,

measure of demand variability, cost parameters,

etc.) required for the operation of the system and

its associated decision rules. They also include the

cost of numerical calculations, although these are

likely quite low in most instances, and the cost

training and other aspects of implementation.

The Economic Order Quantity (Wilson
Lot-Size)

The Economic Order Quantity (EOQ) is one of the

earliest results developed in inventory modeling
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(Harris 1913). It addresses the issue of how much

inventory to replenish under very stable conditions

where there is a significant fixed cost (A) per

replenishment. Thus, the economic order quantity

(EOQ) is concerned with cycle stock. Strictly

speaking, it is based on a number of rather severe

assumptions, but it is still an important result for two

reasons: (1) the costs tend to be insensitive to some of

the assumptions; and (2) many of the assumptions can

be relaxed leading to somewhat more complicated

results, but the EOQ or an obvious variation thereof

often still plays a central role.

Assumptions — There are nine underlying

assumptions:

1. the demand rate is constant and known,

2. there are no restrictions on the size of the

replenishment quantity (including that it need not

be an integer number of units),

3. there are no quantity discounts,

4. the cost factors do not change appreciably with

time,

5. each inventory item is treated independently of

others (i.e., it is chosen to ignore any possible

benefits of coordination),

6. the replenishment lead time (the time interval from

when it is decided to place a replenishment order

until the moment that the associated material is on

the shelf ready to satisfy demand) has a known

value,

7. the entire replenishment arrives at the same time

(unlike in a production context where there may be

a gradual buildup of stock),

8. no shortages are permitted,

9. the planning horizon is very long; that is, the

parameters will continue at the current values well

into the future.

Derivation of the EOQ — Under the above set of

assumptions, there is no uncertainty and no parameters

change appreciably with time. Therefore, it is

appropriate to restrict attention to a policy of ordering

the same quantityQ (in units) over and over again with

each replenishment arriving just as the on-hand

inventory goes to zero. Thus, each order is placed

exactly a lead time before the replenishment arrives.

The resulting pattern of inventory versus time is shown

in Fig. 1, where the slope is the negative of the demand

rate, D, in units/year.

From the set of assumptions it follows that there

are only two categories of relevant costs (relevant

in the sense that they will be affected by the choice

of Q), namely the fixed costs of replenishments and

the inventory carrying costs. The total relevant

costs per year as a function of the order quantity

are given by

TRCðQÞ ¼ AD

Q
þ Qvr

2
: (2)

The first term is the product of the fixed cost per

replenishment and the number of replenishments per

year, while the second term comes from

Equation (1) and the fact that �I for the triangles of

Fig. 1 is Q/2.

Setting dTRC(Q)/dQ ¼ 0 leads to the optimum

Q-value as

EOQ ¼
ffiffiffiffiffiffiffiffiffiffiffi

2AD

nr
:

r

(3)

Moreover,

d2TRCðQÞ ¼
d2Q

¼ 2AD

Q3
> 0

for any Q > 0, so that the minimizing value of Q is

indeed found.

Remarks
i) At the EOQ value, one can show that the two

components of TRC(Q) in Equation (2) are equal.

(This is a very special property of the nature of these

two components. In general, when one is

minimizing the sum of two cost functions of

a variable, the two cost functions are not equal at

the minimizing value of the controllable variable,

but at that point it is known that the slopes of the two

component functions are equal and opposite in

sign.)

Slope = −D

In
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n
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e
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ii) The EOQ expressed as a time supply is

EOQ

D
¼

ffiffiffiffiffiffiffiffi

2A

Dnr

r

: (4)

Many organizations have tended to use a very

simple decision rule, namely the same time supply

replenishment quantity for a broad range of items.

For example, they may set Q ¼ six weeks of supply

for all items. Equation (4) shows that this is

inappropriate in that any of A, D and v are likely to

vary between items.

iii) An important relaxation of the EOQ model is to

permit quantity discounts.

As an example, the so-called all units discount

situation is where the unit variable cost

n ¼
n0 if Q < Qb

n1 if Q � Qb

(

where Qb is the breakpoint order quantity and v1 < v0.

Under such circumstances, it can be shown that the

best order quantity must be at one of three positions:

the EOQ using v0,Qb, or the EOQ using v1 (Silver et al.

1998).

iv) Another important extension is where the demand

pattern is still known but varies with time. Trended

demand would be an example. In addition, with the

use of Manufacturing Resources Planning (MRP),

the demand pattern may be lumpy. In these

situations, it no longer follows that repetitive use of

the same Q value is appropriate; hence it is

inadequate to look at average costs in a typical year

and an exact analysis becomes much more

complicated. There is an extensive literature on this

so-called lot-sizing problem, see (Silver et al. 1998).

An Illustrative Model for the Case of
Congestion Stock

Here, a group of n items (numbered i ¼ 1, 2,. . ., n)

satisfying all but two of the EOQ assumptions is

considered. Specifically the items are produced on

the same piece of equipment (i.e., coordination is

necessary) and there is a gradual buildup of the stock

of the item being replenished (mi units/year for item i).

Furthermore, it is assumed that a so-called cyclic

production schedule is used, that is, item 1, then item

2 are produced,. . ., then item n and returned to item 1

to begin a new cycle. There may be idle time in each

cycle, as appropriate. Item i has parameters Di, Ai, vi
and mi and Qi is defined to be its replenishment

quantity. Moreover, assume that there is a setup time

of ti at the beginning of the replenishment of item i.

The single decision variable is the duration of each

cycle, T, in years. The associated replenishment

quantities are given by

Qi ¼ DiT i ¼ 1; 2; . . . ; n: (5)

Production of item i begins just as its inventory level

is depleted, that is, the setup must be commenced ti
before that moment. Production of i continues for Di T/

mi units of time and the inventory reaches a maximum

level of Qi (1 - Di /mi ), not Qi, because usage at rate Di

continues during the production. Thus the average

inventory level of item i is

�Ii ¼
DiT

2
1� Di mi=ð Þ (6)

The total relevant costs per year are

TRCðTÞ ¼
X

n

i¼1

Ai

T
þ
X

n

i¼1

DiT

2
ð1� Di=miÞnir: (7)

One wishes to minimize this expression but subject

to having adequate capacity, namely

X

n

i¼1

ti þ
DiT

mi

� �

� T

or

T � Sti

1� SDi mi=
: (8)

Again, one can show that d2 TRC(T)/dT 2 > 0, so

that setting dTRC(T)/dT ¼ 0 will give a minimum of

TRC(T). This turns out to be where

Topt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2SAi

rSDini 1� Di mi=ð Þ

s

: (9)
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Because of the convexity of TRC(T), Topt is used if it

satisfies condition (8), otherwise T is set equal to the

right-hand side of (8).

A more complicated problem to analyze is where

not every item is produced on each cycle. Rather, now

letQi¼ kiDi Twhere ki¼ 1, 2, 3,. . ., see Chapter 11 in

Silver, Pyke and Peterson (1998).

The Newsvendor (or Single-Period) Problem

The Newsvendor problem applies to situations in

which the selling season is quite brief relative to the

replenishment lead time. Therefore, there is only one

opportunity to purchase the item in advance of actual

demand. Seasonal goods, holiday items, newspapers,

fashion apparel, and even consumer electronics fit in

this category. Indeed, in today’s world, more and

more products share the characteristics that demand

a newsvendor solution. Typically, some type of

forecasting model is used to forecast demand in the

period of interest, and there is an associated

probability distribution of forecast errors or

equivalently of actual demand that will result. Let

the continuous probability distribution of demand x

in the period of interest be denoted by f(x) with

a cumulative distribution

FðxÞ ¼
Z x

0

f ðyÞdy: (10)

The decision to be made is how large a quantity, Q,

of the item to have available to meet demand in the

period. Suppose that there is a shortage (or underage)

cost of cu for each unit of demand not satisfied (i.e.,

when Q< x), and an overage cost of co for each unit of

stock that is not demanded, that is, remaining at the end

of the period (when Q > x).

A marginal is used, as opposed to a total,

cost argument. Specifically consider the Qth unit made

available. It will save an underage cost anytime x � Q.

The probability of this event is 1 � F(Q). Hence, the

expected marginal cost savings of the Qth unit are

EMSðQÞ ¼ cu 1� FðQÞ½ �: (11)

The Qth unit will incur an avoidable cost of co if

demand turns out to be less than Q. Therefore, the

expected marginal cost increase of the Qth unit is

EMIðQÞ ¼ coFðQÞ (12)

It can be argued, that for optimality, one would want

to stop with the Q value where

EMSðQÞ ¼ EMIðQÞ

or, using Equations (11) and (12), the best Q, denoted

by Q∗, must satisfy

F Q�ð Þ ¼ cu

cu þ co
: (13)

Note that (13) is a general result for any continuous

distribution of demand.

Many extensions of this problem have been solved.

A multi–item version with a budget constraint on the

total amount that can be spent on the set of items can be

found in Silver, Pyke and Peterson (1998, pp. 393–396.

Pricing and quantity decisions are reviewed and

extended in Petruzzi and Dada (1999), and situations

with demand substitution are analyzed in Netessine

and Rudi (2003). Numerous additional extensions

exist.

An Illustration of Dealing with Uncertain
Demand in an On-Going Situation

In contrast with the previous section, consider the case

where demand continues on indefinitely so that unused

material can be kept in stock until it is used up by

future demand. Examples include apparel that is not

fashion-oriented and non-perishable staple food items.

These items typically have a non-zero replenishment

lead time. The combination of random demand and

a non-zero lead time forces a more careful definition

on what is meant by inventory level. In fact, there are at

least four different definitions:

i) On-hand stock — material physically present.

ii) Backorders — unsatisfied demand that will be met

when stock becomes available.

iii) Net stock ¼ (On-hand) — (Backorders)

iv) Inventory position ¼ (On-hand)

þ On-order

from supplier

 !

� Backordered

customer demands

 !
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Reordering decisions are based on this last quantity.

Common Individual Item Control Systems: When

demand is uncertain, there are really three decision

variables regarding the inventory management of

a particular item at a specific location, namely,

i) how often to review the status of the item

(continuous review, sometimes called transactions

reporting, versus periodic review and, if the latter,

what review interval (R) to use),

ii) when to initiate a replenishment, and

iii) how much to replenish.

The three most common individual item control

policies are

i) (s, Q) — continuous review (R ¼ 0) with an order

for a fixed quantity Q being placed when the

inventory position drops to the reorder point s or

lower,

ii) (R, S) — every R units of time enough is ordered to

raise the inventory position to the order–up–to–level

S, and

iii) (R, s, S) — every R units of time a review is made.

If the inventory position is at s or lower, enough is

ordered to raise it to S.

It should be emphasized that here one deals with

a so-called independent demand situation, where the

demand for the item under consideration is not

a function of replenishment decisions for other items.

In particular, where an item is a component of another

item, its demand is dependent on the demand for the

latter item, and the control procedures of MRP may be

more appropriate than any of the above control

policies. Furthermore, if the item shares a common

resource, such as a transportation container or

production equipment, it cannot be considered in

isolation of the other items that share the resource.

Selecting s in an (s, Q) System: In an (s, Q) system,

the order quantity, Q, is often chosen using the EOQ or

perhaps a constrained order quantity, such as

a truckload. Here it is focused on choosing the

reorder point, s. It is illustrated for the case of

normally distributed demand during a constant lead

time (of duration L) and for a particular service

constraint, namely, where there is a specified

probability P of no stockout during each lead time.

[A variety of other combinations of control policy,

demand distribution and service measure/shortage

costing method can be treated (Brown 1982; Hax and

Candea 1984; Nahmias 2008; Silver et al. 1998; Zipkin

2000; Axs€ater 2010)].

It is assumed that each replenishment is triggered

when the inventory position is exactly at the level of s.

(If the inventory position falls below s before

a replenishment is triggered, due to large transactions,

the amount below the reorder point is called an

undershoot, and the mathematics becomes substantially

more complex). Letting f(x) be the general probability

distribution of the lead time demand x, then the

probability of no stockout must satisfy

P ¼
Z s

�1
f ðxÞdx (14)

For the special case of f(x) being normally

distributed (with mean mL and standard deviation sL ),

letting

s ¼ mL þ ksL; (15)

then a substitution of u ¼ ðx� mLÞ=sL in

Equation (14) leads to

P ¼ FðkÞ (16)

where FðkÞ ¼
R k
�1fðuÞdu is the unit normal

distribution function and fðuÞ is the probability

density function of that distribution.

In summary, the procedure is as follows: The

specified value of P gives FðkÞ from (16). Then using

the Excel function NORMSINV(FðkÞ), or a table

lookup, find the associated k value. Then s is

determined from equation (15).

The above analysis was based on a constant lead

time L. If the lead time is variable, a more refined

analysis is required. For example, if one can assume

that L and D are independent random variables, then it

can be shown that E(x) ¼ E(L)E(D) and

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðLÞ varðDÞ þ ½EðDÞ�2 varðLÞ
q

, where x, with

mean E(x) and standard deviation sx, is the total

demand in a replenishment lead time, in units; L,

with mean E(L) and variance var (L), is the length of

a lead time (L is the number of unit time periods, that

is, just a dimensionless number); and D, with mean

E(D) and variance var (D), is the demand, in units,
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in a unit time period. In this case, the E(x) and sx

quantities found here should be used in place of mL
and sL in the above decision rule.

Note that the above choice of s is independent of Q.

Other service measures/shortage costing methods lead

to a decision rule for s that depends upon Q. Such

a dependence was ignored in the derivation of the

EOQ. There are optimization procedures for

simultaneously choosing values of Q and s (Hadley

and Whitin 1963; Naddor 1966; Nahmias 2008;

Silver et al. 1998).

The Wide Variety of Possible Inventory
Models

There are a large number of structural parameters that

can take on two or more values in actual inventory

systems. In principle, each combination of these

parameters leads to a different inventory model. In

this section, most of the important parameters are

listed (many of the possible combinations have been

modeled in the literature but often tailor–made

adaptations or approximations are needed to

accurately model the inventory problem of a given

organization (Silver 1981; Silver 2008; Tiwari and

Gavirneni 2007):

Nature of Demand

• deterministic vs. probabilistic (in the latter case,

known versus uncertain probability distribution)

• stationary vs. varying with time (e.g., seasonality)

• influenced by on–hand inventory or not

• consumables vs returnables/repairables

• independent of, vs. dependent on, replenishment

decisions of other items

Time Horizon

• single period vs. multiperiod

• discrete vs. continuous time

• use of discounting or not

Supply Issues

• quantity discounts (economies of scale)

• minimum order size or fixed batch size

• supply available or not in certain periods

• fixed or random lead time

• orders can cross in time or not

• random yield (acceptable quantity received is not

the same as that ordered)

• capacity restrictions

• two or more suppliers used for the same item (i.e.,

possible order-splitting to help cope with either

random lead times or random yield)

Time-Dependent Parameters (Other than

Demand)

• inflation

• one-time special prices

• lead time varies with time

• capacity varies with time

What Happens Under a Stockout Situation

• lost sales vs. backorders vs mix of these

Shelf-Life Considerations

• obsolescence

• perishability (deteriorating inventory)

Single vs. Multiple Items

• group budget or space constraint

• coordinated control (or joint replenishment)

because of common supplier, mode of transport or

production equipment

• substitutable or complementary items

Single vs. Multiechelon

• in multiechelon (multistage) (Schwarz 1981;

Sherbrooke 2004), serial vs. convergent

(e.g., assembly) vs. divergent (e.g., distribution)

Knowledge of Status of Stock (and Other

Parameter Values)

• known exactly or not

• continuously vs. at discrete points in time

Challenging the Underlying Assumptions
and Parameter Values

Traditionally, the underlying assumptions and the

values of the parameters, discussed earlier, have been

accepted as givens in inventory modeling and

associated inventory control. There are a number of
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innovations that challenge this perspective. First, the

philosophy of continuous improvement (an aspect of

the philosophy of Just-in-Time, or JIT) argues that

parameters such as the setup cost, the replenishment

lead time and so on can be changed, often with much

more substantial benefits than simply optimizing

subject to the given parameter values. Another way

of saying this is that it may be better to at least partially

eliminate the causes of inventories rather than just

choosing the best inventory level (Silver 1992).

Second, the Theory of Constraints perspective is that

one should identify the key constraint (e.g.,

a bottleneck operation) that is preventing better

performance and concentrate improvement efforts on

reducing the impact of this constraint (Goldratt and

Cox 1986). Third, the spread of electronic and

internet ordering has significantly reduced both the

cost of communication and the fixed cost of orders,

although substantial costs remain. Fourth,

globalization has encouraged companies to consider

moving operations across the world, sometimes

increasing the replenishment lead time from, say, one

week to eight weeks. Fluctuations in oil prices and

currency exchange rates have caused companies to

reconsider offshoring, moving their sources of supply

back to their domestic markets. Finally, other

innovations in supply chain management, such as

vendor managed inventory (VMI), have improved

communications and therefore forecast accuracy.

These changes do not necessarily change the

appropriate choice of models, but they do demand

that managers should update model parameters and

re-optimize, or even change models to more

accurately capture the new situation.

See

▶Economic Order Quantity Model Extensions

▶Hierarchical Production Planning

▶ Just-in-Time (JIT) Manufacturing

▶Logistics and Supply Chain Management

▶Operations Management

▶ Production Management

▶ Scheduling and Sequencing

▶ Supply Chain Management

▶Theory of Constraints
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Inverse Matrix

For a square m � m matrix A, the inverse matrix A�1

is also an m �m matrix such that A�1 A ¼ I¼ AA�1,

where I is the identity matrix. If a matrix has an

inverse, then its inverse is unique and the matrix is

said to be nonsingular. If an inverse does not exist,

the matrix is said to be singular. A nonsingular

matrix has a nonzero value for its determinant;

a singular matrix has a determinant value equal to

zero.

See

▶Matrices and Matrix Algebra

Inverse Transform Method

In stochastic or Monte Carlo simulation, a method for

sampling from a given probability distribution by

using random numbers transformed by the inverse of

the cumulative distribution function.

See

▶Monte Carlo Simulation

▶Random Number Generators

▶Random Variates

▶ Simulation of Stochastic Discrete-Event Systems

IP

Integer Programming.

See

▶ Integer and Combinatorial Optimization

IPA

Infinitesimal Perturbation Analysis.

See

▶ Perturbation Analysis

IS

Information systems.

See

▶ Information Systems and Database Design in

OR/MS

Isomorphic Graph

Graphs that have identical structure.

ISOP 9000 Standard

▶Quality Control

Isoquant

For a function f(x), the graph or contour f(x) ¼ C,

where C is a constant, is called an isoquant. If f(x) is

a profit (cost) function, then the isoquant is termed an

isoprofit (isocost) line.
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Iteration

The cycle of steps of an algorithm is called an iteration.

For example, in the simplex algorithm for solving

linear-programming problems, one iteration is given

concisely by the steps: (1) select a nonbasic variable to

replace a basic variable, (2) determine the inverse of

the new feasible basis, and (3) determine if the new

basic feasible solution is optimal.

ITS

▶ Intelligent Transportation Systems

IVHS

Intelligent vehicle-highway system.

See

▶Traffic Analysis
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J

Jackson Network

A collection of multi-server queueing systems or nodes

with exponential service and Markovian or memoryless

probabilistic routing of departures from one node to the

others. If there are customers arriving from outside

the network to individual nodes in Poisson streams,

the network is said to open; otherwise it is closed. All

customers who arrive from outside to an open network

must eventually leave after receiving service at one or

more systems within the network.

See

▶Networks of Queues

▶Queueing Theory

JIT

▶ Just-in-Time (JIT) Manufacturing
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Introduction

In the United States there are approximately 62,000

factories producing metal fabricated parts. These parts

end up in a wide variety of products sold here and

abroad. These factories employ roughly 1.5 million

people and ship close to $247 billion worth of

products every year. The vast majority of these

factories are what are called job shops, meaning that

the flow of raw and unfinished goods through them is

completely random. Over the years, the behavior and

performance of these job shops have been the focus of

considerable attention in the operations research (OR)

literature. Research papers on topics such as factory

layout, inventory control, process control, production

scheduling, and resource utilization can be found in

almost every issue of every OR journal. The most

popular of these topics is production (often referred

to as job shop) scheduling. Job shop scheduling can be

thought of as the allocation of resources over

a specified time to perform a predetermined

collection of tasks. Job shop scheduling has received

this large amount of attention, because it has the

potential to dramatically decrease costs and increase

throughput, thereby, profits.

A large number of approaches to the modeling and

solution of these job shop scheduling problems have

been reported in the OR literature, with varying

degrees of success. These approaches revolve around

a series of technological advances that have occurred

mainly since the 1960s. These include mathematical

programming, dispatching rules, expert systems,

neural networks, support vector machines, agents,

genetic algorithms, particle warm optimization, and

inductive learning. In this article, an evolutionary view

is taken in describing how these technologies have been

applied to job shop scheduling problems. To do this,

a few of the most important contributions in each of

these technology areas and trends are discussed.
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Mathematical Techniques

Mathematical programming has been applied

extensively to job shop scheduling problems. Problems

have been formulated using integer programming (Balas

1965, 1967), mixed-integer programming (Balas

1969, 1970), and dynamic programming (Srinivasan

1971). Until recently, the use of these approaches has

been limited because scheduling problems belong to the

class of NP-complete problems. To overcome these

deficiencies, a group of researchers began to

decompose the scheduling problem into a number of

subproblems, proposing a number of techniques to

solve them. In addition, new solution techniques, more

powerful heuristics, and the computational power of

modern computers have enabled these approaches to

be used on larger problems. Still, difficulties in the

formulation of material flow constraints as

mathematical inequalities and the development of

generalized software solutions have limited the use of

these approaches.

Decomposition strategies—Davis and Jones (1988)

proposed a methodology based on the decomposition

of mathematical programming problems that used both

Benders-type (Benders 1960) and Dantzig/Wolfe-type

(Dantzig and Wolfe 1960) decompositions.

The methodology was part of closed-loop, real-time,

two-level hierarchical shop floor control system. The

top-level scheduler (i.e., the supremal) specified the

earliest start time and the latest finish time for each

job. The lower level scheduling modules (i.e., the

infimals) would refine these limit times for each job

by detailed sequencing of all operations.

A multicriteria objective function was specified that

included tardiness, throughput, and process utilization

costs. The decomposition was achieved by first

reordering the constraints of the original problem to

generate a block angular form, then transforming that

block angular form into a hierarchical tree structure. In

general, N subproblems would result plus a constraint

set that contained partial members of each of the

subproblems. The latter are termed coupling

constraints, and included precedence relations and

material handling. The supremal unit explicitly

considered the coupling constraints, while the infimal

units considered their individual decoupled constraint

sets. The authors pointed out that the inherent

stochastic nature of job shops and the presence of

multiple, but often conflicting, objectives made it

difficult to express the coupling constraints using

exact mathematical relationships. This made it almost

impossible to develop a general solution methodology.

To overcome this, a real-time simulation methodology

was proposed by Davis and Jones (1988) to solve the

supremal and infimal problems.

Gershwin (1989) used the notion of temporal

decomposition to propose a mathematical

programming framework for analysis of production

planning and scheduling. This framework can be

characterized as hierarchical and multi-layer. The

problem formulations to control events at higher

layers ignored the details of the variations of events

occurring at lower layers. The problem formulations at

the lower layers view the events at the higher layers as

static, discrete events. Scheduling is actually carried

out in bottom three layers so that the production

requirements imposed by the planning layers can be

met. First, a hedging point is found by solving

a dynamic programming problem. This hedging

point is the number of excess goods that should be

produced to compensate for future equipment

failures. This hedging point is used to formulate

a linear-programming problem to determine

instantaneous production rates. These rates are then

used to determine the actual schedule (which parts to

make and when). Other approaches have been

proposed for generating schedules.

Enumerative techniques and Lagrangian

relaxation—Two popular solution techniques for

integer-programming problems are branch-and-bound

and Lagrangian relaxation. Branch-and-bound is an

enumerative technique (Agin 1966; Lawler and

Wood 1966). A summary of branching is as follows,

(Morton and Pentico 1993): “The basic idea of

branching is to conceptualize the problem as

a decision tree. Each decision choice point–a

node-corresponds to a partial solution. From each

node, there grow a number of new branches, one for

each possible decision. This branching process

continues until leaf nodes, that cannot branch any

further, are reached. These leaf nodes are solutions to

the scheduling problem.”

Although efficient bounding and pruning

procedures have been developed to speed up the

search, this is still a very computational intensive

procedure for solving large scheduling problems. If

the integer constraint is the main problem, then why

not remove that constraint? A technique called
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Lagrangian relaxation, does just that (Shapiro 1979).

Lagrangian relaxation solves integer-programming

problems by omitting specific integer-valued

constraints and adding the corresponding costs (due

to these omissions and/or relaxations) to the objective

function. As with branch and bound, Lagrangian

relaxation is computationally expensive for large

scheduling problems.

Model-Based Optimization—Model-Based

Optimization (MBO) is an optimization approach that

uses mathematical expressions (e.g., constraints

and inequalities) to model scheduling problems as

mixed integer (non) linear programs (MINLP),

(Zentner et al. 1994). A set of methods such as linear

programming, branch-and-bound, and decomposition

techniques are used to search the scenario space of

solutions. Due to the advances in computer

technologies, the computation times are becoming

very practical. These approaches are being enhanced

by the development of English-like scheduling and

high-level graphical interfaces. The scheduling

languages support the developing of the mathematical

formulationswithminimum intervention from the user.

Dispatching rules—Dispatching rules have been

applied consistently to scheduling problems. They are

procedures designed to provide good solutions to

complex problems in real-time. The term dispatching

rule, scheduling rule, sequencing rule, or heuristic are

often used synonymously (Panwalker and Iskander

1977; Blackstone et al. 1982; Baker 1974).

Dispatching rules have been classified mainly

according to the performance criteria for which they

have been developed. Wu (1987) categorized

dispatching rules into several classes. Class 1

contains simple priority rules, which are based on

information related to the jobs. Sub-classes are based

on the particular piece of information used. Example

classes include those based on processing times (such as

shortest processing time, SPT), due dates (such as

earliest due date, EDD), slack (such as minimum

slack, MINSLACK), and arrival times (such as first-in

first-out, FIFO). Class 2 consists of combinations of

rules from class one. The particular rule that is

implemented can now depend on the situation that

exists on the shop floor. A typical example of a rule in

this class is, for example, SPT until the queue length

exceeds 5, then switch to FIFO. This prohibits jobs with

large processing times from staying in the queue for

long periods. Class 3 contains rules that are commonly

referred to as Weight Priority Indexes. The idea here is

to use more than one piece of information about the jobs

to determine the schedule. Pieces of information are

assigned weights to reflect their relative importance.

Usually, an objective function f(x) is defined.

For example,

f ðxÞ ¼ weight1 � Processing Time of Job ðxÞ
þweight2 � Current Time�Due Date of JobðxÞð Þ:

Then, any time a new sequence is needed, the

function f(x) is evaluated for each job x in the queue.

The jobs are ranked based on this evaluation.

The performance of a large number of these rules has

been studied extensively using simulation techniques

(Montazer and Van Wassenhove 1990). These studies

have been aimed at answering the question: If you want

to optimize a particular performance criterion, which

rule should you choose? Most of the early work

concentrated on the shortest processing time rule

(SPT). Conway and Maxwell (1967) were the first to

study the SPT rule and its variations. They found that,

although some individual jobs could experience

prohibitively long flow times, the SPT rule minimized

the mean flow time for all jobs. They also showed that

SPT was the best choice for optimizing the mean value

of other basic measures such as waiting time and system

utilization. Many similar investigations have been

carried out to determine the dispatching rule which

optimizes a wide range of job-related (such as due

date and tardiness) and shop-related (such as

throughput and utilization) performance measures.

This problem of selecting the best dispatching rule for

a given performance measure has been a very active

area of research. The research, however, has been

expanded to include the possibility of switching rules

to address an important problem: error recovery. Two

early efforts to address error recovery were conducted

by Bean and Birge (1986) and Saleh (1988). Both

developed heuristic rules to smooth-out disruptions to

the original schedule, thereby creating a match-up with

that schedule. Bean and Birge (1986) based their

heuristic on Turnpike Theory (McKenzie 1976) to

optimize a generalized cost function. Saleh showed

how to minimize duration of the disruption by

switching the objective function from mean flow

time to makespan based on disjunctive graphs (Adams

et al. 1988).
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Composite dispatching rules are found to be

performing much better than simple dispatching rules

(Binh and Cing 2005). In addition, their performance

depends on the state of the system. Data mining has

been used as a to find these composite dispatching

rules. For instance, Shahzad and Mebarki (2008)

have provide a methodology using data mining to

identify a rule-set by exploring the patterns in the

solution set obtained by an optimization module

based on Tabu Search, a very efficient meta-heuristic.

The rule-set approximates the output of the optimization

module when incorporated in a simulation model of

the system. The C5.0 algorithm (Quinlan 1992) is

used as a data mining algorithm for the induction of

rule-set.

Artificial Intelligence (AI) Techniques

Starting in the early 1980s, a series of new technologies

were applied to job shop scheduling problems. They fall

under the general title of artificial intelligence (AI)

techniques and include expert systems, knowledge-

based systems, and several search techniques. Expert

and knowledge-based systems were quite prevalent in

the early and mid-1980s. They have four main

advantages. First, and perhaps most important, they

use both quantitative and qualitative knowledge in the

decision-making process. Second, they are capable of

generating heuristics that are significantly more

complex than the simple dispatching rules described

above. Third, the selection of the best heuristic can be

based on information about the entire job shop including

the current jobs, expected new jobs, and the current

status of resources, material transporters, inventory,

and personnel. Fourth, they capture complex

relationships in elegant new data structures and

contain special techniques for powerful manipulation

of the information in these data structures. There are,

however, serious disadvantages. They can be time

consuming to build and verify, as well as difficult to

maintain and change. Moreover, since they generate

only feasible solutions, it is rarely possible to tell how

close that solution is to the optimal solution. Finally,

since they are tied directly to the system they were built

tomanage, there is no such thing as a generic AI system.

Expert/knowledge-based systems—Expert and

knowledge-based systems consist of two parts:

a knowledge base and inference engine to operate on

that knowledge base. Formalizations of the knowledge

that human experts use— rules, procedures, heuristics,

and other types of abstractions — are captured in the

knowledge base. Three types of knowledge are usually

included: procedural, declarative, and meta.

Procedural knowledge is domain specific problem

solving knowledge. Declarative knowledge provides

the input data defining the problem domain. Meta

knowledge is knowledge about how to use the

procedural and declarative knowledge to actually

solve the problem. Several data structures have been

utilized to represent the knowledge in the knowledge

base including semantic nets, frames, scripts, predicate

calculus, and production rules. The inference engine

selects a strategy to apply to the knowledge bases to

solve the problem at hand. It can be forward chaining

(data driven) or backward chaining (goal driven).

ISIS (Fox 1983) was the first major expert system

aimed specifically at job shop scheduling problems.

ISIS used a constraint-directed reasoning approach

with three constraint categories: organizational goals,

physical limitations, and causal restrictions.

Organizational goals considered objective functions

based on due-date and work-in-progress. Physical

limitations referred to situations where a resource had

limited processing capability. Procedural constraints

and resource requirements were typical examples of

the third category. Several issues with respect to

constraints were considered, such as constraints in

conflict, importance of a constraint, interactions of

constraints, constraint generation and constraint

obligation. ISIS used a three level, hierarchical,

constraint-directed search. Orders were selected at

level 1. A capacity analysis was performed at level 2

to determine the availability of the resources

required by the order. Detailed scheduling was

performed at level 3. ISIS also provided for the

capability to interactively construct and alter

schedules. In this capacity, ISIS utilized its constraint

knowledge to maintain the consistency of the schedule

and to identify scheduling decisions that would

result in poorly satisfied constraints. Other examples

of expert/knowledge-based scheduling systems

developed are MPECS (Multi-Pass Expert Control

System, Wysk et al. 1986) and OPIS (Opportunistic

Intelligent Scheduler, Smith 1995).

Distributed AI: Agents—Due to the limited

knowledge and the problem solving ability of a single

expert or knowledge based system, these AI
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approaches have difficulty solving large scheduling

problems, as well. To address this, AI researchers

have developed distributed scheduling system

approaches (Parunak et al. 1985). They have done

this by an application of the well-known divide and

conquer approach. This requires a problem

decomposition technique, such as those described

above, and the development of different expert/

knowledge-based systems that can cooperate to solve

the overall problem (Zhang and Zhang 1995). The AI

community’s answer is the agent paradigm. An agent

is a unique software process operating asynchronously

with other agents. Agents are complete knowledge-

based systems by themselves. The set of agents in

a system may be heterogeneous with respect to

long-term knowledge, solution/evaluation criteria, or

goals, as well as languages, algorithms, hardware

requirements. Integrating agents selected from

a library creates a multi-agent system.

For example, one such multi-agent system could

involve two types of agents: tasks and resources.

Each task agent might be responsible for scheduling

a certain class of tasks such as material handling,

machining, or inspection on those resources capable

of performing those tasks. This can be done using any

performance measure related to tasks, such as

minimize tardiness, and any solution technique. Each

resource agent might be responsible for a single

resource or a class of resources. Task agents must

send their resource requests to the appropriate

resource agent, along with the set of operations to be

performed by that resource (Daouas et al. 1995). Upon

receipt of such a request, the resource agent must

generate a new schedule using its own performance

measures, such as maximize utilization, which

includes this request. The resource agent will use the

results to decide whether to accept this new request or

not. To avoid the situation, where no resource will

accept a request, coordination mechanisms need to be

developed. No general guidelines for the design and

implementation of this coordination are available.

Thus, the debates (pros and cons) about centralized

vs. decentralized approaches to job shop scheduling

continue. The agents formalism may provide an

answer to these debates.

Artificial neural networks—Neural networks, also

called connectionist or distributed parallel processing

models, have been studied for many years in an attempt

to mirror the learning and prediction abilities of human

beings. Neural network models are distinguished by

network topology, node characteristics, and training

or learning rules. An example of a three-layer,

feed-forward neural network is shown in Fig. 1.

Supervised learning neural networks—Through

exposure to historical data, supervised learning neural

networks attempt to capture the desired relationships

between inputs and the outputs. Back-propagation is

the most popular and widely used supervised training

procedure. Back-propagation (Rumelhart et al. 1986;

Werbos 1995) applies the gradient-descent technique

in the feed-forward network to change a collection of

weights so that some cost function can be minimized.

The cost function, which is only dependent on

weights (W) and training patterns, is defined by:

CðWÞ ¼ 1

2

X

ij

ðTij � OijÞ (1)

where T is the target value, O is the output of the

network, i is an output node, and j is the training

pattern.

After the network propagates the input values to the

output layer, the error between the desired output and

actual output will be back-propagated to the previous

layer. In the hidden layers, the error for each node is

computed by the weighted sum of errors in the next

layer’s nodes. In a three-layered network, the next

layer means the output layer. The activation function

is usually a sigmoid function with the weights modified

according to

DWij ¼ � Xjð1� XjÞðTj � XjÞXi (2)

or

DWij ¼ � Xjð1� XjÞ
X

k

dk Wjk

 !

Xi (3)

whereWij is weight from node i to node j (e.g., neuron),

� is the learning rate, X j is the output of node j, Tj is the

target value of node j, and dk is the error function of

node k.

If j is in the output layer, Equation (2) is used; if j

is the hidden layers, (3) is used. The weights are

updated to reduce the cost function at each step.

The Job shop scheduling temporal reinforcement

learning in process continues until the error between
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the predicted and the actual outputs is smaller than

some predetermined tolerance.

Rabelo (1990) was the first to use back propagation

neural nets to solve temporal reinforcement learning,

in job shop scheduling problems with several job

types, exhibiting different arrival patterns, process

plans, precedence sequences and batch sizes.

Training examples were generated to train the neural

network to select the correct characterization of the

manufacturing environments suitable for various

scheduling policies and the chosen performance

criteria. In order to generate training samples,

a performance simulation of the dispatching rules

available for the manufacturing system was carried

out. The neural networks were trained for problems

involving 3, 4, 5, 8, 10, and 20 machines. To carry out

this training, a special, input-feature space was

developed. This space contained both job

characteristics (such as types, number of jobs in each

type, routings, due dates, and processing times) and

shop characteristics (such as number of machines and

their capacities). The output of the neural network

represented the relative ranking of the available

dispatching rules for that specific scheduling problem

and the selected performance criteria. The neural

networks were tested in numerous problems and their

performance (in terms of minimizing Mean Tardiness)

was always better than each single dispatching rule

(25% to 50%).

Relaxation models—Neural networks based on job

shop scheduling relaxation models in are defined by

energy functions. They are preassembled systems that

relax from input to output along a predefined energy

contour. Hopfield neural networks (Hopfield and Tank

1985) are a classical example of a relaxation model

that has been used to solve some classic, textbook

scheduling problems (Foo and Takefuji 1988).

Two-dimensional Hopfield networks were used to

solve 4-job, 3-machine problems and 10-job,

10-machine problems (Zhou et al. 1990). They were

extended in (Lo and Bavarian 1991) to 3 dimensions to

represent jobs (i ¼ 1, . . ., I), machines j ¼ 1, . . ., J),

and time (m ¼ 1, . . ., M). In each case, the objective

was to minimize the makespan, total time to complete

all jobs, which is defined as

E ¼ 1

2

X

j¼1

X

i¼l

X

m¼l
ðvijmÞðmþ Tij � 1Þ (4)

where vijm is the output (1 or 0) of neuron ijm, and Tij is

the time required by the jth resource (e.g., machine) to

complete the ith job.

Due to a large number of variables involved in

generating a feasible schedule, these approaches tend

to be computationally inefficient and frequently

generate infeasible solutions. Consequently, they have

not been used to solve realistic scheduling problems.
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Temporal reinforcement learning — It was noted

above that supervised learning neural networks

attempt to capture the desired relationships between

inputs and the outputs through exposure to training

patterns. However, for some problems, the desired

response may not always be available during the time

of learning. When, the desired response is obtained,

changes to the neural network are performed by

assessing penalties for the scheduling actions

previously decided by the neural network. As

summarized by Tesauro (1992), “In the simplest form

of this paradigm, the learning system passively

observes a temporal sequence of input states that

eventually leads to a final reinforcement or reward

signal (usually a scalar). The learning system’s task

in this case is to predict expected reward given an

observation of an input state or sequence of input

states. The system may also be set up so that it can

generate control signals that influence the sequence of

states.”

For scheduling, the learning task is to produce

a scheduling action that will lead to minimizing (or

maximizing) the performance measure (e.g.,

makespan, tardiness) based on the state of the system

(e.g., inventories, machine status, routings, due dates,

layouts). Several procedures have been developed to

train neural networks when the desired response is not

available during the time of learning. Rabelo et al.

(1994) utilized a procedure developed by Watkins

(1989), denominated Q-learning, to implement

a scheduling system to solve dynamic job shop

scheduling problems. The scheduling system was

able to follow trends in the shop floor and select

a dispatching rule that provided the maximum reward

according to performance measures based on tardiness

and flow time.

Support Vector Machines – Support Vector

Machines (SVMs) are algorithms in machine

learning based on advances in statistical learning

theory. Advances in statistical learning theory,

Vapnik-Chervonenkis (VC) theory, (Vapnik 1994;

Vapnik 1995) explain that it is critical to constrain the

class of functions that the learningmachine can generate

to one with a capacity that is appropriate for the

available training data. Burges (1998) states, “There is

a remarkable family of bounds governing the relation

between the capacity of a learning machine and its

performance. The theory grew out of considerations of

under what circumstances, and how quickly, the mean

of some empirical quantity converges uniformly, as the

number of data points increases, to the true mean (that

which would be calculated from an infinite amount of

data).” Therefore, to design efficient learning

algorithms, a class of functions whose capacity can be

computed is essential. SVMs are based on the class of

hyperplanes

w � xh i þ b ¼ 0

where w are the weights, x is an N-dimensional input

vector, and b is a numeric parameter. This class of

hyperplanes corresponds to decision functions of the

fo;bðxÞ ¼ sign w � xh i þ bð Þ

The maximum margin hyperplane is defined as the

one with the maximal margin of separation between

the classes has the lowest capacity. The instances that

are closest to the maximum margin hyperplane are

called support vectors (SVs). Points that are not SVs

have no influence (Burges 1998) and they may be

eliminated without affecting the decision function.

SVMs has been applied for the dynamic dispatching

rule selection classifier (Shiuea 2009). The proposed

SVM classifier using the data-mining-based approach

yields a better system performance than heuristic

individual dispatching rules under various

performance criteria over a long period.

Neighborhood search methods—Neighborhood

search methods are very popular. Neighborhood

search methods provide good solutions and offer

possibilities to be enhanced when combined with

other heuristics. Wilkerson and Irwin (1971)

developed one of the first neighborhood procedures.

This method iteratively added small changes

(perturbations) to an initial schedule, that is obtained

by any heuristic. Conceptually similar to hill climbing,

these techniques continue to perturb and evaluate

schedules until there is no improvement in the

objective function. When this happens, the procedure

is ended. Popular techniques that belong to this family

include tabu search, simulated annealing, and genetic

algorithms. Each of these has its own perturbation

methods, stopping rules, and methods for avoiding

local optimum.

Tabu search—The basic idea of Tabu search

(Glover 1989, 1990) is to explore the search space of

all feasible scheduling solutions by a sequence of
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moves. A move from one schedule to another schedule

is made by evaluating all candidates and choosing the

best available, just like gradient-based techniques.

Some moves are classified as tabu, i.e., they are

forbidden, because they either trap the search at

a local optimum, or they lead to cycling (repeating

part of the search). These moves are put onto the tabu

list, which is built up from the history of moves used

during the search. These tabu moves force exploration

of the search space until the old solution area

(e.g., local optimum) is left behind. Another key

element is that of freeing the search by a short term

memory function that provides strategic forgetting.

Tabu search methods have been evolving to more

advanced frameworks that includes longer term

memory mechanisms. These advanced frameworks

are sometimes referred as Adaptive Memory

Programming (AMP), (Glover 1996).

Tabu search methods have been applied

successfully to scheduling problems and as solvers of

mixed integer-programming problems. Glover (1996)

showed some specialized implementations of tabu

search methods for job shop and flow shop

scheduling problems, including a number of

important cases where tabu search methods are

superior to other approaches such as simulated

annealing, genetic algorithms, and neural networks.

Simulated annealing — Simulated annealing is

based on the analogy to the physical process of

cooling and recrystallization of metals. The current

state of the thermodynamic system is analogous to

the current scheduling solution, the energy equation

for the thermodynamic system is analogous to the

objective function, and the ground state is analogous

to the global optimum. In addition to the global energy

J, there is a global temperature T, which is lowered as

the iterations progress. Using this analogy, the

technique randomly generates new schedules by

sampling the probability distribution of the system

(Kirkpatrick et al. 1983),

pjm exp½�TðDJbest � DJjÞ=K�; (5)

where pj represents the probability of making move j

from among the neighborhood choices, DJbest
represents the improvement of the objective function

for the best choice, and DJj represents the

improvement for choice j, while K is a normalization

factor. Since increases of energy can be accepted, the

algorithm is able to escape local minima.

Simulated annealing has been applied effectively to

job shop scheduling problems. Vakharia and Chang

(1990) developed a scheduling system based on

simulated annealing for manufacturing cells. Jeffcoat

and Bulfin (1993) applied simulated annealing to

a resource-constrained scheduling problem. Their

computational results indicated that the simulated

annealing procedure provided the best results in

comparison with other neighborhood search

procedures.

Variable Neighborhood Search – Variable

Neighborhood Search (VNS) has shown an excellent

capability to solve scheduling problems to optimal or

near-optimal schedules. VNS can be categorized as a

local search-based algorithm, armed with systematic

neighborhood search structures. Roshanaei et al.

(2009) introduced implementations of VNS that

improve the notorious myopic behavior of local

search-based metaheuristic algorithms by the means

of several systematic insertion neighborhood search

structures. Roshanaei et al. (2009) uses the Taillard’s

benchmark to evaluate the efficiency and effectiveness

of their proposed VNS approach against some

effective algorithms. The obtained results strongly

support the high performance of VNS with respect

to other well-known heuristic and metaheuristic

algorithms.

Genetic algorithms — Genetic algorithms (GAs)

are an optimization methodology based on a direct

analogy to Darwinian natural selection and mutations

in biological reproduction. In principle, genetic

algorithms encode a parallel search through concept

space, with each process attempting coarse-grain hill

climbing (Goldberg 1988). Instances of a concept

correspond to individuals of a species. Induced

changes and recombinations of these concepts are

tested against an evaluation function to see which

ones will survive to the next generation.

Starkweather et al. (1993) were the first to use

genetic algorithms to solve a dual-criterion job shop

scheduling problem in a real production facility. The

criteria were the minimization of average inventory in

the plant and the minimization of the average waiting

time for an order to be selected. These criteria are

negatively correlated (the larger the inventory, the

shorter the wait; the smaller the inventory, the longer

the wait). To represent the production/shipping
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optimization problem, a symbolic coding was used for

each member (chromosome) of the population. In this

scheme, customer orders are represented by discrete

integers. Therefore, each member of the population is

a permutation of customer orders. The GA used to

solve this problem was based on blind recombinant

operators. This recombination operator emphasizes

information about the relative order of the elements

in the permutation, because this impacts both

inventory and waiting time. A single evaluation

function (a weighted sum of the two criteria) was

utilized to rank each member of the population. That

ranking was based on an on-line simulation of the plant

operations. This approach generated schedules that

produced inventory levels and waiting times that

were acceptable to the plant manager. In addition, the

integration of the genetic algorithm with the on-line

simulation made it possible to react to system

dynamics.

The utilization of GA has become very dominant in

job shop scheduling. As noted by Fan and Zhang

(2010), 22% of the journal articles from 2000 to

2009 in job shop scheduling proposed the utilization

of GAs. Another dimension of this use of GAs is the

combination of GAs with other methodologies to

improve performance. For instance, Thamilselvan

and Balasubramanie (2009) produced very good

results with GAs combined with TS to create

a combinational heuristic denominated Genetic Tabu

Search Algorithm (GTA). In general, GTA follows the

traditional GA. for the selection process, however,

GTA uses tabu search. In several problems with

combinations of 5 jobs and 5 machines, GTA

outperformed GAs and TSs. Even chaos theory has

been used to help GAs to find optimal solutions. For

example, Zhou et al. (2009) utilized chaos theory to

support the development of a mechanism to avoid local

minima.

Fuzzy logic—Fuzzy set theory has been utilized to

develop hybrid scheduling approaches. Fuzzy set

theory can be useful in modeling and solving job

shop scheduling problems with uncertain processing

times, constraints, and set-up times. These

uncertainties can be represented by fuzzy numbers

that are described by using the concept of an interval

of confidence. These approaches are usually integrated

with other methodologies (e.g., search procedures,

constraint relaxation). For example, Slany (1994)

stressed the imprecision of straightforward methods

presented in the mathematical approaches and

introduces a method known as fuzzy constraint

relaxation, that is integrated with a knowledge-based

scheduling system. This system was applied to a steel

manufacturing plant. Grabot and Geneste (1994) used

fuzzy logic principles to combine dispatching rules for

multi-criteria problems. On the other hand, Krucky

(1994) addressed the problem of minimizing setup

times of a medium-to-high product mix production

line using fuzzy logic. The heuristic, fuzzy logic

based algorithm helps to determine how to minimize

setup time by clustering assemblies into families

of products that share the same setup by balancing

a product’s placement time between multiple-

high-speed placement process steps. Tsujimura et al.

(1993) presented a hybrid system that uses fuzzy set

theory to model the processing times of a flow shop

scheduling facility. Triangular Fuzzy Numbers (TFNs)

are used to represent these processing times. Each job

is defined by two TFNs, a lower bound and an upper

bound. A branch and bound procedure is utilized to

minimize makespan.

Particle Swarm Optimization–Particle Swarm

Optimization (PSO) was invented in the mid-1990s

by Kennedy and Eberhart (1995) as an alternative to

genetic algorithms for solving job shop scheduling

problems. PSO is based on a social simulation of the

movement of flocks of birds. PSO performs

a population-based search to optimize the objective

function. The population is composed by a swarm of

particles that represent potential solutions to the

problem. These particles, that are a metaphor of birds

in flocks, fly through the search space updating their

positions and velocities based on the best experience of

their own and the swarm. The swarm moves in the

direction of “the region with the higher objective

function value, and eventually all particles will gather

around the point with the highest objective value”

(Jones 2005). There are many application of PSO to

job shop scheduling. One of the most prominent ones is

the approach presented by Yen and Ivers (2009) that

uses space division techniques.

Reactive Scheduling — Reactive scheduling is

generally defined as the ability to revise or repair

a complete schedule that has been overtaken by

events on the shop floor (Zweben et al. 1995). Such

events include rush orders, excessive delays, and

broken resources. There are two approaches: reactive

repair and the proactive adjustment. In reactive repair,
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the scheduling systemwaits until an event has occurred

before it attempts to recover from that event. The

match-up techniques described earlier fall into this

category. Proactive adjustment requires a capability

to monitor the system continuously, predict the future

evolution of the system, do contingency planning for

likely events, and generate new schedules, all during

the execution time of the current schedule. The work of

Wysk et al. (1986) and Davis and Jones (1988) fall into

this category. Other approaches utilize artificial

intelligence and knowledge-based methodologies

(Smith 1995). Most AI approaches propose a

quasi-deterministic view of the system, that is,

a stochastic system featuring implicit and/or explicit

causal rules. The problem formulation used does not

recognize the physical environment of the shop floor

domain where interference not only leads to

readjustment of schedules but also imposes physical

actions to minimize them.

Learning in Scheduling — The first step in

developing a knowledge base is knowledge

acquisition. This in itself is a two-step process: get

the knowledge from knowledge sources and store that

knowledge in digital form. To extract knowledge from

these two sources, the machine learning technique that

learns from examples (data) becomes a promising tool.

Inductive learning is a state classification process. If

the state space is viewed as a hyperplane, the training

data (consisting of conditions and decisions) can be

represented as points on the hyperplane. The inductive

learning algorithm seeks to draw lines on the

hyperplane based on the training data to divide the

plane into several areas within which the same

decision (conclusion) will be made.

An algorithm that has been implemented in

inductive aids and expert system shells is that

developed by Quinlan (1986), called Iterative

Dichotomister 3 or ID3. ID3 uses examples to induce

production rules (e.g. IF . . . THEN . . .), which form

a simple decision tree. Decision trees are one way to

represent knowledge for the purpose of classification.

The nodes in a decision tree correspond to attributes of

the objects to be classified, and the arcs are alternative

values for these attributes. The end nodes of the tree

(leaves) indicate classes to which groups of objects

belong. Each example is described by attributes and

a resulting decision. To determine a good attribute to

partition the objects into classes, entropy is employed

to measure the information content of each attribute,

and then rules are derived through a repetitive

decomposition process that minimizes the overall

entropy. The entropy value of attribute Ak can be

defined as

HðAkÞ ¼
XMk

j¼l
PðakjÞ �

XN

i¼1

PðcijakjÞlog2 PðcijakjÞ

( )

(6)

where H(Ak) is the entropy value of attribute Ak;P(akj)

is the probability of attribute k being at its jth value;

P(ci |akj) is the probability that the class value is ci
when attribute k is at its jth value; Mk is the total

number of values for attribute Ak; and N is the total

number of different classes (outcomes).

The attribute with the minimum entropy value will

be selected as a node in the decision tree to partition the

objects. The arcs out of this node represent different

values of this attribute. If all the objects in an arc

belong to one class, the partition process stops.

Otherwise, another attribute will be identified using

entropy values to further partition the objects that

belong to this arc. This partition process continues

until all the objects in an arc are in the same class.

Before applying this algorithm, all attributes that have

continuous values need to be transformed to discrete

values.

In the context of job shop scheduling, the attributes

represent system status and the classes represent the

dispatching rules. Very often, the attribute values are

continuous. Yih (1990) proposed a trace-driven

knowledge acquisition (TDKA) methodology to deal

with continuous data and to avoid the problems

occurring in verbally interviewing human experts.

TDKA learns scheduling knowledge from expert

schedulers without a dialogue with them. There are

three steps in this approach. Step 1, an interactive

simulator is developed to mimic the system of

interest. The expert will interact with this simulator

and make decisions. The entire decision-making

process will be recorded in the simulator and can be

repeated for later analysis. The series of system

information and the corresponding decision collected

is called a trace. Step 2 analyzes the trace and forms

classification rules to partition the trace into groups.

The partition process stops when most of the cases in
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each group use the same dispatching rule (error rate is

below the threshold defined by the knowledge

engineer). Then, the decision rules are formed. Step 3

is to verify the generated rules. The resulting rule base

is used to schedule jobs in the simulator. If it performs

as well as or better than the expert, the process stops.

Otherwise, the threshold value is increased, and the

process returns to Step 2.

As the job shop operates over time, it is important to

be able to modify the knowledge contained in these

rule bases. Chiu (1994) looks at knowledge

modification for job shop scheduling problems by

a framework of dynamic scheduling schemes that

explores routing flexibility and handles uncertainties.

The proposed methodology includes three modules:

discrete-event simulation, instance generation, and

incremental induction. First, a simulation module is

developed to implement the dynamic scheduling

scheme, to generate training examples, and to evaluate

the methodology. Second, in an instance-generation

module, the searching of good training examples is

successfully fulfilled by a genetic algorithm. Finally,

in an incremental-induction module, a tolerance-based

incremental learning algorithm is pro-posed to allow

continuous learning and facilitate knowledge

modification. This algorithm uses entropy values to

select attributes to partition the examples where the

attribute values are continuous. The tolerance is used

to maintain the stability of the existing knowledge

while the new example is introduced. The decision

tree will not be reconstructed unless there is enough

momentum from the new data, that is, the change of the

entropy value becomes significant. The experimental

results showed that the tolerance-based incremental

learning algorithm cannot only reduce the frequency

of modifications, but also enhances the generalization

ability of the resulting decision tree in a distributed job

shop environment.

Theory of Constraints

The Theory of Constraints (TOC) developed by

Eliyahu Goldratt (1990, 1992) is the underlying

philosophy for synchronized manufacturing. Goldratt

(1990) defined synchronized manufacturing as any

systematic method that attempts to move material

quickly and smoothly through the production process

in concert with market demand. A core concept of

TOC is the idea that a few critical constraints exist.

Goldratt contends that there is only one constraint in

a system at any given time. As defined by Dettmer

(1997), a constraint is “any element of a system or its

environment that limits the output of the system.”

A constraint will prevent increases in throughput

regardless of improvements made to the system. The

best schedule is obtained by focusing on the planning

and scheduling of these constraint operations. In

essence, the constraint operations become the basis

from which the entire schedule is derived. TOC has

several important concepts and principles. Among

them (Goldratt 1990; Goldratt 1992):

1. Systems function like chains.

2. The system optimum is not the sum of the local

optima.

3. The effect-cause-effect method identifies

constraints.

4. System constraints can be either physically or

policy.

5. Inertia is the worst enemy of a process of ongoing

improvement.

6. Throughput is the rate at which the entire system

generates money through sales.

7. Inventory is all the money the system invests in

things it intends to sell.

8. Operating expense is all the money the system

spends turning inventory into throughput.

The general process of TOC is as follows (Goldratt

1990):

1. Identify the system’s constraints.

2. Decide how to exploit the system’s constraints.

3. Subordinate everything else to the above decision.

4. Elevate the system’s constraints.

5. If in the previous steps a constraint have been

broken, go back to Step 1, but do not allow inertia

to cause a system constraint.

TOC has been successfully applied to scheduling

problems. Its tools comprise five distinct logic trees,

(see Dettmer 1997), are the Current Reality Tree, the

Evaporating Cloud Diagram, the Future Reality Tree,

the Prerequisite Tree, and the Transition Tree. These

trees are tied to the Categories of Legitimate

Reservation (that provide the logic to guide the

construction of the trees). These tools have not only

been used in production scheduling, but also in other

enterprise functions such as marketing and sales.
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Human-Guided Search

An approach to job shop scheduling is to leverage

people’s abilities in areas in which they currently

outperform computers, Lesh et al. (2003). This will

allow human guidance to steer a computer towards

effective job shop schedules based on their

knowledge of real-world constraints. Furthermore,

users can better understand, justify, and modify

schedules if they participate in their construction.

Lesh et al. (2003) developed a prototype which

“allows users to manually modify the current

schedule, backtrack to previous schedules, and

invoke, monitor, and halt a variety of search

algorithms to find better schedules.” This interactive

scheduling approach provides solutions with the

potential to revolutionize the utilization of optimization

in actual production environments.

Concluding Remarks

Job shop scheduling problems fall into the class of

NP-complete problems. They are most difficult to

formulate and solve. Operations Research analysts

have been pursuing solutions to these problems for

many years, with varying degrees of success.

Job shop scheduling problems are among the most

important found in manufacturing; they impact the

ability of manufacturers to meet customer demands in

an effective and profitable manner. They also impact

the ability of autonomous systems to optimize their

operations, the deployment of intelligent systems, the

development of software, and the optimization of

communications systems.
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Johnson’s Theorem

▶ Scheduling and Sequencing

Judgmental Bootstrapping

In judgmental bootstrapping, a forecaster’s rules are

inferred by regressing the forecasts against the inputs

that were used to make the forecasts.

See

▶Bootstrapping

▶ Forecasting

Just-in-Time (JIT) Manufacturing

A manufacturing philosophy focusing on the

elimination of waste (non-value added activities) in

the manufacturing process by the more timely

sequencing of operations.
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Most of the early ideas originated from work at

Toyota Motor Company in Japan, with the kanban

system being the most well-known innovation.

See

▶Kanban

▶Material Handling

▶ Production Management

▶ Pull System
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K

Kanban

Japanese phrase literally meaning “sign board”

referring to a Just-in-Time (JIT) pull production

system made famous by Toyota, where (kanban)

cards are used to signal that parts are needed.

See

▶CONWIP

▶ Just-in-Time (JIT) Manufacturing

▶ Production Management

▶ Pull System
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Karmarkar’s Algorithm

An algorithm devised by N. Karmarkar (1984) for

solving a linear-programming problem by generating

a sequence of points lying in the strict interior of the

problem’s solution space which converges to an

optimal solution. Karmarkar’s algorithm, and its

many variations, have been shown to be polynomial-

time algorithms that solve large-scale linear-

programming problems in a computationally efficient

manner.

See

▶ Interior-Point Methods for Conic-Linear

Optimization

▶ Polynomially Bounded (−Time) Algorithm

(Polynomial Algorithm)
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Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) conditions are

necessary conditions that a solution to a general

nonlinear-programming problem must satisfy,

provided that the problem constraints satisfy a

regularity condition called constraint qualification.

If the problem is one in which the constraint set

(i.e., solution space) is convex and the maximizing

(minimizing) objective function is concave (convex),

the KKT conditions are sufficient. Applied to a

linear-programming problem, the KKT conditions

yield the complementary slackness conditions of the

primal and dual problems.

See

▶Calculus of Variations

▶Nonlinear Programming

▶Quadratic Programming
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Kendall’s Notation

A shorthand notation of the form A/S/c/K/Q used to

describe queueing systems. The A refers to an acronym

for the interarrival-time distribution, S the service-time

distribution, c the number of parallel servers,

K(�c) the maximum allowable system size (assumed

infinite if omitted), and Q the queue discipline.

Common designations for A and S include: M for

Markovian or exponential; Ek for k-Erlang; D for

deterministic or constant; Hk for hyperexponential of

order k; PH for phase-type; G for general. Common

queue disciplines include first-in, first-out (FIFO), first-

come, first-served (FCFS), last-come, first-served

(LCFS), and processor sharing (PS). Sometimes

another parameters is included between K and Q that

gives the arrival population size, which is assumed

infinite otherwise. For example, an M/M/1 queue

generally refers to a FCFS single-server queue with

a Poisson arrival process and i.i.d. exponentially

distributed service times.

See

▶Queueing Theory

Kilter Conditions

For the minimum cost flow network problem, the

complentary slackness optimality conditions are

called kilter conditions.

See

▶Out-of-Kilter Algorithm

KKT Conditions

▶Karush-Kuhn-Tucker (KKT) Conditions

▶Nonlinear Programming

▶Quadratic Programming

Klee-Minty Problem

The Klee-Minty problem is a linear-programming

problem designed to demonstrate that a problem

exists that would require the simplex algorithm to

generate all extreme point solutions before finding

the optimal. This problem demonstrated that,

although the simplex algorithm (under a

nondegeneracy assumption) would find an optimal

solution in a finite number of iterations, the number

of iterations can increase exponentially. Thus,

the simplex method is not a polynomially bounded

algorithm. One form of the Klee-Minty problem,

which defines a slightly perturbed hypercube, is the

following:

Minimixe� xd

subject to x1 � 0

x1 � 1

�ex1 þ x2 � 0

ex1 þ x2 � 1

..

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

�exd�1 þ xd � 0

exd�1 þ xd � 1

xj � 0

with 0 < e < 1/2.
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Knapsack Problem

The following optimization problem is called the

knapsack problem:

Maximize c1x1 þ c2x2 þ � � � þ cnxn

subject to a1x1 þ a2x2 þ � � � þ anxn � b

with each xj equal to 0 or 1, with all (aj, cj, b) usually

taken to be positive integers. The name is due to

interpreting the problem as one in which a camper

has a knapsack that can carry up to b pounds. The

camper has a choice of packing up to n items, with

xj ¼ 1 if the item is packed and xj ¼ 0 if the item is not

packed. Item j weighs aj pounds. Each item has

a value cj to the camper if it is packed. The camper

wishes to choose that collection of items having the

greatest total value subject to the weight condition. The

knapsack problem arises in many applications such as

selecting a set of projects and as a subproblem of other

problems. It can be solved by dynamic programming or

by integer-programming methods. If the xj are ordered

such that c1/a1 � c2/a2 � . . . � cn/an and the integer

restrictions on the variables are replaced by 0� xj� 1,

then an optimal solution to the relaxed problem is to

just pack all the items starting with the first until the

weight restriction is violated. The item that caused

the violation is then chosen at a fractional value so

that the total weight of the selected set is equal to b.

See

▶Knapsack Problems with Nonlinearities

Knapsack Problems with Nonlinearities

Kurt M. Bretthauer1,2 and Bala Shetty1

1Texas A&M University, College Station, TX, USA
2Indiana University Bloomington, Bloomington,

IN, USA

Introduction

Nonlinear optimization problems with a single

constraint are known as nonlinear knapsack problems

or nonlinear resource allocation problems, and will be

formulated as follows:

Minimize
Xn

i¼1

fiðxiÞ ðIPÞ

s:t:
Xn

i¼1

giðxiÞ � b

li � xi � ui; i ¼ 1; . . . ; n

xi integer; i ¼ 1; . . . ; n

The continuous variable version of the problem also

will be considered, and will be denoted as problem

(CP). Assume xieℜ for i ¼ 1; . . . ; n; fi xið Þ and

gi xið Þ for i ¼ 1; . . . ; n are differentiable functions on

ℜ; b is a constant; li and ui for i¼ 1, . . ., n are lower and

upper bounds on the variables; and the feasible region

is nonempty and bounded.

Practical applications of the nonlinear knapsack

problem abound in financial models (Mathur et al.

1983), production and inventory management

(Bretthauer et al. 1994), stratified sampling

(Bretthauer et al. 1999; Cochran 1963), and the

optimal design of queueing network models in

manufacturing (Bitran and Tirupati 1989; Bretthauer

1996), health care, and computer systems (Gerla and

Kleinrock 1977). The fact that the problem has one

constraint allows efficient solution methods to be

developed that take advantage of its special structure.

Solution methods have been developed for the

following versions of the problem: (1) continuous

and integer variables, (2) constraints of the formPn
i¼1xi ¼ b and

Pn
i¼1 gi xið Þ ¼ b, (3) convex and

nonconvex functions, and (4) additional specially

structured constraints.

Continuous Convex Problems

Two basic approaches for solving the continuous

problem (CP) are multiplier search methods and

relaxation or variable pegging methods. Assume

all objective and constraint functions are convex.

Bretthauer and Shetty (1995) presented a multiplier

search algorithm that solves the problem via

a one-dimensional search for the optimal Lagrange

multiplier of the single constraint. Let l denote

the Lagrange multiplier for
Pn

i¼1gi xið Þ � b, let vi
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denote the multiplier for li � xi, and let wi denote

the multiplier for xi � ui. Also, let f 0i denote

the derivative of fi xið Þ with respect to xi and let g0i
denote the derivative of gi xið Þ with respect to xi.

Assume that a solution xiðlÞ exists to the nonlinear

equation f 0i þ g0i ¼ 0 as a function of l for

i ¼ 1; . . . ; n. Consider the following expressions:

xiðlÞ ¼
li if xiðlÞ � li

xiðlÞ if li < xiðlÞ<ui

ui if xiðlÞ � ui

8
>><

>>:

viðlÞ ¼
f
0
i ðliÞ þ lg

0
iðliÞ if xiðlÞ � li

0 if xiðlÞ > li

(

wiðlÞ ¼
0 if xiðlÞ < ui

f
0
i ðliÞ þ lg

0
iðliÞ if xiðlÞ � ui

(

It can be shown that these equations for xiðlÞ; viðlÞ,
and wiðlÞ satisfy all the Karush-Kuhn-Tucker (KKT)

conditions of problem (CP) except
Pn

i¼1gi xið Þ � b and

lðPn
i¼1gi xið Þ� bÞ ¼ 0 for every l � 0. Problem (CP)

is solved by searching for the optimal l value such that

these two remaining KKT conditions are also satisfied.

This search requires finding the root of one nonlinear

equation if xiðlÞ can be written in closed form as

a function of l, or finding the root of one nonlinear

equation several times if xiðlÞ cannot be written in

closed form as a function of l. The optimal solution

to problem (CP) is obtained by substituting the optimal

l value into the equations for xiðlÞ; viðlÞ, and wiðlÞ:
Relaxation or variable pegging algorithms have

been developed by Kodialam and Luss (1998) for the

problem with nonnegativity conditions and Bretthauer

and Shetty (1990) for the general problem (CP) with

lower and upper bounds on the variables. See Bitran

and Hax (1981), Ibaraki and Katoh (1988), and

Robinson, Jiang, and Lerme (1992) for pegging

algorithms for more specialized versions of the

problem. These algorithms are based on the

observation that if the bounds on the variables are

ignored, then the resulting relaxed problem is

generally easier to solve than problem (CP) and often

has a simple closed form solution. Each iteration of this

class of algorithms solves a relaxed subproblem of this

type and then fixes (or pegs) a subset of the variables

not satisfying their bounds at either their lower or

upper bounds. Pegging variables reduces the size of

the relaxed subproblem that must be solved in the next

iteration. The algorithm terminates in a finite number

of iterations when all unpegged variables in the

solution to a relaxed subproblem satisfy their bounds.

Special versions of the problemwhere all terms in the

objective function are convex and the single constraint is

a simple sum of the variables of the form
Pn

i¼1xi ¼ b

have been widely studied. Ibaraki and Katoh (1988)

provide an excellent discussion of methods for

solving both continuous and integer variable versions

of this special class of nonlinear knapsack problems.

A related version of the problem with a strictly convex

quadratic objective and a linear constraint is discussed in

(Bretthauer et al. 1995; Brucker 1984; Helgason et al.

1980; Pardalos and Kovoor 1990; Robinson et al. 1992;

Shetty and Muthukrishnan 1990). Nielsen and Zenios

(1992) addressed the convex objective and linear

constraint problem.

Integer Convex Problems

Of special interest is the nonlinear knapsack problem

(IP) with integer variables and all functions assumed

convex. The most common methods for solving the

integer convex version of the problem include branch

and bound (Bretthauer and Shetty 1995, 1998); (0, 1)

linearization (Hochbaum 1995; Mathur et al. 1986);

and dynamic programming (Denardo 1982). In

addition, Lawler (1979) describes an approximation

algorithm for problem (IP).

Branch and bound algorithms for solving the

integer problem (IP) solve a series of continuous

subproblems of the form of (CP) using the algorithms

discussed in the previous section. Bretthauer and

Shetty (1995) show how the performance of the

branch and bound algorithm can be improved via

reoptimization procedures that reduce the time spent

solving each subproblem and by heuristically

generating feasible integer solutions to problem (IP)

from the fractional subproblem solutions.

Hochbaum (1995) and Mathur, Salkin, and

Mohanty (1986) present a method for solving problem

(IP) that first converts it to an equivalent linear (0, 1)

knapsack problem with a larger number of variables,

and then solves the resulting (0, 1) knapsack problem.

Hochbaum assumes the objective is the sum of

K 836 Knapsack Problems with Nonlinearities



nonincreasing convex functions and the single

constraint is the sum of nondecreasing convex

functions. Mathur, Salkin, and Mohanty assumes the

objective is the sum of decreasing convex functions

and the single constraint is the sum of increasing

convex functions. Problem (IP) can be converted to an

equivalent linear (0, 1) knapsack problem as follows.

For i ¼ 1; . . . ; n let pij ¼ fi li þ jð Þ� fi li þ jþ 1ð Þ and
qij ¼ gi li þ jð Þ � gi li � j� 1ð Þ for j ¼ 1; . . . ; ui � li.

Using these coefficients, problem (IP) is equivalent to

the following linear knapsack problem:

Minimize
Xn

i¼1

Xui�li

j¼1

pijxij þ
Xn

i¼1

fiðliÞ

s:t:
Xn

i¼1

Xui�li

j¼1

qijxij � b�
Xn

i¼1

giðliÞ

xijef0; 1g; i ¼ 1; . . . ; n; j ¼ 1; . . . ; ui � li

The solution to problem (IP) is obtained from

the solution to the above problem using

xi ¼ li þ
P

j
ui�li
�1 xij for i ¼ 1; . . . ; n.

Nonconvex Problems

Assume that any of the functions fi xið Þ and gi xið Þ for all i
may be nonconvex. This modification makes the

continuous problem much more difficult to solve

because a locally optimal solution may not be globally

optimal. However, nonconvex functions often arise in

practice, in particular concave functions. For example,

fixed charges and costs exhibiting economies of scale

can be modeled with a concave function.

Branch and bound methods for solving continuous

and integer nonconvex optimization problems typically

use convex underestimating functions to the nonconvex

functions for lower bounding purposes in each

subproblem of the search tree. This approach results in

continuous convex subproblems that can be solved with

the methods previously discussed. The convex envelope

is commonly used as an underestimating function to

a nonconvex function. Simply stated, the convex

envelope is the highest possible convex function that

underestimates the nonconvex function over a given set

(see Horst and Tuy 1990, for a formal definition). Let

f ci xið Þ denote the convex envelope of fi xið Þ over

li � xi � ui and let gci xið Þ denote the convex envelope

of gi xið Þ over li � xi � ui. The convex envelope is

particularly attractive as an underestimating function

to a separable concave function because then it is easy

to construct and linear.

A continuous convex underestimating subproblem

of the form

Minimize
Xn

i¼1
f ci ðxiÞ

s:t:
Xn

i¼1
gci ðxiÞ � b

li � xi � ui; i ¼ 1; . . . ; n

is solved at every node in the branch-and-bound tree

using the results discussed in the section on continuous

convex problems. The lower and upper bounds on the

variables will change at the nodes as branching is

performed. See Horst and Tuy (1990) for further details

on algorithms for solving continuous nonconvex

problems and convergence results. Incorporating the

above subproblem within the prototype branch and

bound framework for discrete global optimization

developed by Benson, Erenguc, and Horst (1990)

yields a globally optimal solution to the integer

nonconvex problem (IP) in a finite number of iterations.

Handling Additional Specially Structured
Constraints

It is also possible to develop efficient algorithms for

solving problems that include additional specially

structured constraints. For example, consider the

continuous convex problem with a type of block

diagonal or angular structure in the constraints

(Bretthauer and Shetty 1997; Federgruen and Zipkin

1983; Hochbaum 1994):

Minimize
Xn

ieS

fiðxiÞ

s:t:
X

ieS

giðxiÞ � b

X

ieSk

hiðxiÞ � ck; k ¼ 1; . . . ;K

li � xi � ui; ieS

In this problem, S is the index set of the variables;

S1; S2; . . . ; SK are disjoint subsets of S; the objective
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function is assumed convex; the single constraintP
ieS
gi xið Þ � b involving all the variables is convex;

and the K constraints
P

ieSk
hi xið Þ � ck involving

disjoint subsets of the variables are convex.

To solve the above problem, first form a Lagrangian

relaxation with respect to the one constraintP
ieSgi xið Þ � b. The resulting Lagrangian subproblem

then decomposes into K singly constrained convex

problems. These singly constrained problems can be

solved with the previously discussed methods.

A one-dimensional search must be performed to identify

the optimal value of the single Lagrangemultiplier.

See

▶ Integer and Combinatorial Optimization

▶Knapsack Problem

▶Linear Programming

▶Nonlinear Programming
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Knowledge Acquisition

Theactivityofeliciting, structuring, analyzingknowledge

from some source of expertise and representing it in

a form that can be used by an inference engine.
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See

▶Artificial Intelligence

▶Expert Systems

▶ Inference Engine

Knowledge Base

That part of an expert system containing

application-specific reasoning knowledge that the

inference engine uses in the course of reasoning

about a problem. In expert systems whose reasoning

knowledge is represented as rules, the knowledge base

is a rule set or rule base. A knowledge base can also

contain other kinds of knowledge.

See

▶Artificial Intelligence

▶Expert Systems

Knowledge Engineer

One who develops an expert system, or one who elicits

reasoning knowledge from a human expert for use in

an expert system.

See

▶Expert Systems

Knowledge Management

Heiner M€uller-Merbach

Technische Universit€at Kaiserslautern,

Kaiserslautern, Germany

Introduction

Knowledge management (KM) is a modern term

based on old philosophical insights, such as:

• “All I know is that I know nothing.” (Socrates,

490-399 BC).

• “Knowledge itself is power.” (Francis Bacon,

1561-1626).

• “Cogito ergo sum.” (“I think, therefore I am.”)

(René Descartes, 1596-1650).

• “Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost

in information?” (T. S. Eliot, 1888-1965; in:

The Rock, 1934).

Two views of knowledge management: In most

publications on knowledge management, only one of

two aspects of KM is emphasized:

Either (i) management, leadership, learning, group

organization, i.e. human aspects, or (ii) information

systems, i.e. technical aspects. Or as Begona

Lloria (2003, pp. 77, 88) put it in her extended

review: “. . . managing knowledge (either with

greater emphasis on the human factor or on

information technologies).”

Since (i) most of the information technologies used

in KM were known beforehand and since

(ii) typologies of basic knowledge are neglected in

the KM literature, emphasis will here be put on the

content of KM systems, i.e. the types of knowledge.

References will be given to the relevant philosophers.

Francis Bacon, forerunner of enlightenment:
The British philosopher Francis Bacon (1561-1626)

taught: “Knowledge itself is power.” His intention

was the emancipation of the mind from the

predominance by the church. His doctrine was

accompanied by technological development,

according to Durant (1926, p. 105) “Paper now came

cheaply from Egypt, replacing the costly parchment

that had made learning the monopoly of priests;

printing, which had long awaited an inexpensive

medium, broke out like a liberated explosive, and

spread its destructive and clarifying influence

everywhere.”

Bacon, in his publication, “The Praise of

Knowledge” (1592), even defined the individual by

his/her knowledge: “My praise shall be dedicate to

the mind itself. The mind is the man, and knowledge

mind; a man is but what he knoweth” (Durant, 1926;

p. 111). Today, one might not fully agree with this

statement because everybody is also determined by

his/her character, his/her morals and other attributes,

not only by his/her knowledge.

Such ideas as those by Bacon are the forerunners

of the epoch of enlightenment, i.e. the philosophy

of the 17th and 18th century with Descartes in
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France (1596-1650), John Locke in England

(1732-1704), Kant in Germany (1724-1804) and

many others who set the foundation of modern science.

Did Francis Bacon ring in the knowledge age and/or

the knowledge society, perhaps even KM? Possibly, at

least in a very rudimentary state. But he did not mean

printed material as an end; instead, he meant individual

human knowledge – only supported by printed

material as a means to the end.

Bacon argues with passion: “Is not that knowledge

alone that doth clear the mind of all perturbations?”

(Durant, 1926; p. 111).

Russell (1979, p. 527) wrote: “Bacon’s most

important book, The Advancement of Learning, is in

many ways remarkably modern. . . . The whole basis of

his philosophy was practical: to give mankind mastery

over the forces of nature by means of scientific

discoveries and inventions.”

Bacon did not explicitly consider KM; how could

he, 400 years ago? He concentrated, however, on

human knowledge, and not its sediment: printed

(or electronically stored) information. For him,

printed material (and the same is true for electronic

devices) are only carriers of information and help to

increase human knowledge, but the printed documents,

as such, do not own knowledge themselves, because

they do not have consciousness.

There are some relations between Francis Bacon

and René Descartes who was 35 years younger than

Bacon. One of the most important doctrines by

Descartes was the sentence: “Cogito ergo sum,”

(“I think, therefore I am.”) (Angeles, 1992; p. 47 f.).

To think means creation of knowledge, of

understanding, of insight.

Socrates and his pretended ignorance: About

2,000 years prior to Bacon, Socrates postulated:

“All I know is that I know nothing,” (Angeles, 1992;

p. 280). Was it only modesty? Certainly not! Or was it

an insincere understatement, because he was

considered one of the wisest men in his time, and he

probably knew it? Again no! Instead, he was

convinced that his own knowledge was almost

negligible in comparison to the conglomeration of all

the knowledge of mankind and to the not yet

discovered secrets of the world.

The skepticism outspoken by Socrates in the

quoted sentence, was his certainty. And it is (at least

almost) true for everybody. The piece of knowledge

that anybody owns is nearly zero compared to the

knowledge of the world and the hidden secrets of

nature.

In spite of the small amount of knowledge that

anybody owns, it is worth to expand his/her

knowledge because knowledge helps to master one’s

own live: live long learning.

Discussion

Knowledge Networks: Here lies a trigger for KM:

Since the knowledge of anybody is – in spite of any

individual’s effort in learning – narrowly restricted, the

cooperation between groups of individuals may have

the potential to increase the available group knowledge

remarkably. This requires leadership, i.e. knowledge

management.

This goes together with the development of

information processing. The German philosopher,

J€urgen Mittelstrass (born 1936), has repeatedly

warned that all of us may become information giants

and, at the same time, be knowledge dwarfs

(Mittelstrass. 1972; p. 8d). This means that each of us

may have immediate access to almost any information

available through information systems, but, at the same

time, understand less and less of the information

available. This deficiency can to some extent be

overcome by knowledge networks.

Knowledge a priori versus knowledge
a posteriori: Knowledge has alternatively two

different origins (M€uller-Merbach, 2007a): deduction

(emphasized by Descartes) and induction (emphasized

by Locke).

René Descartes founded French rationalism

and suggested the deductive method of knowledge

creation. Russell (1979; p. 549), interprets Descartes:

“Knowledge of external things must be by the mind,

not by the senses.” Angeles (1992; p. 157) seconds:

“All knowledge is derived by a deductive process

similar to that in axiomatic geometry from this

primitive and absolutely infallible truth.”

Example 1. Any triangle has an angular sum of 180�,

any quadrangle an angular sum of 360�, any polygon

with n nodes an angular sum of (n-2)*180�. This can be

derived by deduction; no empirical experience is

necessary. “The truth of a priori knowledge (a) is not

derived from sense experience, (b) cannot be checked

against sense experience, and (c) cannot be refuted by

any sense experience,” (Angeles 1992; p. 159).
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The other origin of knowledge is British empiricism.

According to Russell (1979; p. 589), John Locke “may

be regarded as the founder of empiricism, which is the

doctrine that all our knowledge . . . is derived from

experience.” Other empiricists are George Berkeley

(Ireland, 1685-1753) and David Hume (Scotland,

1711-1776). According to Angeles (1992; p. 85),

empiricism is defined as “the view that all ideas are

abstractions formed by compounding . . . what is

experienced.” He added: “Experience is the sole

source of knowledge,” and “All that we know is

ultimately dependent on sense data.”

It was Immanuel Kant (Germany) who came up

with a synthesis between the rational, deductive,

French, Cartesian doctrine and the empirical,

inductive, British process of knowledge creation.

He termed them a priori and a posteriori knowledge.

Karl R. (Charles) Popper (1902-1994) stated that

scientific discoveries based upon empirical experience

can never be proven to be right. Instead, they are

subject to the threat of falsification in principle.

Knowledge a priori and knowledge a posteriori may

require quite different handling approaches in

KM systems.

Type and token: Another pair of knowledge terms

are typeandtoken,assuggestedbyCharlesSandersPeirce

(1839-1914), or schema and actualization, or generic acts

and individual acts, according to Georg Henrik von

Wright (1916-2003). The type level represents the

general structure of anything, whereas the token level

applies to a single case (M€uller-Merbach, 2007c).

Example 2. A general system of linear equations

could be written at the type level such as: Ax ¼ b

(in matrix notation). At the token level, a case could

perhaps read:

5x1 þ 7x2 ¼ 41

3x1 þ 2x2 ¼ 18

Solution : x1 ¼ 4; x2 ¼ 3ð Þ

Example 3. A balance sheet and a profit and loss

account of an enterprise would at the type level just

refer to the formal structure of these documents. At the

token level, the concrete numbers of a particular

enterprise and a particular year would be presented.

The two levels are mutually interdependent.

Familiarity with the type level is required as

a frame to understand and to cope with any actual

case and would include the general rules.

Familiarity with cases is necessary in order to collect

experience.

The four causes of Aristotle: Aristotle

(384/3-322/1 BC) created a four-part system of

describing things of any kind: (i) material cause,

(ii) formal cause, (iii) efficient cause, and (iv) final

cause. It is surprising how well the four causes are

suitable to describe anything. Bertrand Russell

(1872-1970) gives an example: “Let us take again the

man who is making a statue. The material cause of the

statue is the marble, the formal cause is the essence of

the statue to be produced, the efficient cause is the

contact of the chisel with the marble, and the final

cause is the end that the sculptor has in view”

(Russell 1979; p. 181).

These four causes can well be used for KM

documentation, e.g. product documents: (i) The material

cause is represented by the bill-of-material documents. (ii)

The formal cause is represented by the construction

drawings. (iii) The efficient cause is represented by the

production process documents. (iv) The final cause is

represented by the user documents.

Aristotle’s documentation system is universal. It is

only surprising that this four causes schema is not

widely used. It is quoted in many philosophical

publications, but almost nowhere in connection with

KM, product management, database design, or

business administration in general.

Information, knowledge, and opinion:
Mittelstrass (1972) distinguishes between information,

knowledge, and opinion. So does M€uller-Merbach

(2006b). The terminology in this field is much broader

and includes e.g.: data, news, intelligence, prudence,

comprehension, ability, judgment, sapience, inspiration,

insight, understanding, wisdom, and many more. Any

discussion of such terms should (i) make clear what the

author means by the single terms, and (ii) help the

author to use the terms in a consistent, not in an

arbitrarily changing sense. This indicates a difficulty

at the present state: The corresponding technical

terms of KM are used quite arbitrarily and with

changing content.

It does not seem to be necessary that everyone

uses a unique terminology. It could perhaps be

sufficient if every contributor (author or speaker)

provides the reader (or listener) with a clear

statement on how the contributor’s terms should be
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understood; see Eysenck (1979) where he

distinguishes between definitions of real objects and

concepts. Real objects always have concrete things to

be compared with, while concepts do not have

concrete things to be compared with. Thus,

everyone has a personal understanding of concepts

such as live, love, intelligence (Eysenck’s example),

knowledge, etc. To have a productive discussion

about any such concept, there is a need to clarify the

individual understandings of the concepts.

The distinction between information, knowledge,

and opinion seems to be quite useful:

• Information may be understood as objective

properties of something. It can be written down on

paper or stored in computer systems;

• Knowledge may be understood as something like

information plus understanding or insight.

Knowledge may be understood as a property that

only human beings can have. A book or an

information system may be designed with the

input of the knowledge of many human beings.

However, the book or the computer itself does not

have knowledge in this sense. Human beings can

learn and therefore develop knowledge by reading

books. These human beings develop knowledge

from information;

• However, neither information nor knowledge

initiates much action. It is one’s opinion why one

votes for candidate A, B, or C in political elections.

It is one’s opinion why one has a preference for car

F, G, or H. It is one’s opinion to either listen to

the music of Debussy or Duke Ellington or

Johnny Cash.

This is the reason why the author emphasizes

the combination of information management,

knowledge management, and opinion management

(M€uller-Merbach, 2006b).

Only living beings can have knowledge and can

have opinions.

Five a posteriori types of knowledge: Knowledge
can be quite different, due to its origin. Five types of

origin are distinguished here (Fig. 1, the horseshoe of a

posteriori knowledge):

(i) Man-made structures: Many structures which are

designed by man have to be dealt with. These

can be laws, contracts, statutes, machines,

(mathematical) models, constructions (and their

drawings), bill-of-material-graphs etc. It is a KM

task to design formal models, databases for those

structures and to implement them into information

systems. It is also a KM task to make these

structures understandable to human beings. This

may require a corresponding course of study, be it

quantitative economics or engineering or product

design etc.

(ii) Scientific discoveries: In other cases, knowledge is

based on scientific understanding, e.g., on

gravitation, on vibration and oscillation. This

may require a scientific background.

(iii) Purely empirical facts: In other cases, one may

have to deal with purely empirical facts, such as

statistical distributions (e.g., of population).

(iv) Social disclosures: In other cases, there may be

a need of knowledge based on the social sciences,

e.g. the influence of prices on demand. Such

information is often vague, i.e., much less

reliable than the results of scientific discoveries.

But, such disclosures may provide empirical

evidence to start from.

(v) Behavioral assumptions: In other cases, one

may depend on assumptions about people

(i) 3, left:

man-made

structures

(ii) 2,left:

scientific

discoveries

(iv) 2,right:

social

disclosures

(iii) 1:

purely

empirical

facts

(v) 3,right:

behavioural

assumptions

Knowledge Management, Fig. 1 Horseshoe of five types of
a posteriori (i.e. empirical) knowledge, organized in three levels
(facts only – natural and social sciences – decisions by man) and
two branches (left: precise, positive; right: vague, conditional),
(M€uller-Merbach (2007b)
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and their behavior, their desires, their objectives,

their needs, their actions and reactions,

their motivation, etc. This kind of knowledge

may be related to results of the liberal arts and

social sciences.

Quite frequently, an interdisciplinary mix of

knowledge is required for the solution of problems.

Therefore, KM may require an interdisciplinary

understanding.

Utopia of Total Knowledge Management: Any
KM in practice would be far away from a collection

of all the knowledge of the world. Such a collection

could hardly be handled, and it could hardly be

designed. However, it could be challenging to think

about the structure and the size of such a collection.

It would have to be much more than a collection of

all available encyclopedia. It would have to be

a network in which all the related entries would be

connected.

Total KM is utopia today and will remain utopia.

KM in practice should start with tiny islands of KM,

and then perhaps spread out.

Large-scale KM systems are extremely rare, in

contrast to large-scale information systems. It is

recommended to start KM with small projects.

Professional organization of knowledge
management: KM is supported by several

professional societies. In some countries, KM

working groups or KM divisions were founded within

computer science societies and OR societies, as well as

in other disciplines. In addition, the Knowledge

Management Professional Society (KMPro) is an

independent organization that was founded in the

Washington, D.C. in 2001.

There are at least five independent KM professional

journals:

• Journal of Knowledge Management, Quarterly,

English, U.K., since 1997.

• Journal of Knowledge Management Practice,

Quarterly, English, Canada, since 1998.

• Journal of Information & Knowledge Management,

Quarterly, English, Singapore, since 2002.

• Electronic Journal of Knowledge Management,

English, U.K., since 2003.

• Knowledge Management Research & Practice,

Bimonthly, English, U.K., since 2003.

An Encyclopedia of Knowledge Management was

published in 2006 (Schwartz 2006).

Many reviews and surveys of KM have been

published, such as a review of the main approaches to

KM (Lloria 2008), and survey on concept maps

(Martin and Wrice 2009). One of the earliest

foundations of KM is the frequently quoted book by

Nonaka and Takeuchi, (1995). A broad and practical

introduction to KM is Nissen (2006).
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König’s Theorem

▶Hungarian Method

Königsberg Bridge Problem

▶Chinese Postman Problem

▶Combinatorics

Kruskal’s Algorithm

A procedure for finding a minimum spanning tree in

a network. The method selects the lowest cost arcs in

sequence, while ensuring that no cycles are allowed.

Ties are broken arbitrarily. For a network with n nodes,

the process stops when n � 1 arcs are selected.

See

▶Greedy Algorithm

▶Minimum Spanning Tree Problem

▶ Prim’s Algorithm

Kuhn-Tucker (KT) Conditions

▶Karush-Kuhn-Tucker (KKT) Conditions

Kullback-Leibler Divergence

Measure of difference between two probability

distributions, given by

ð
f ðxÞ log

f ðxÞ

gðxÞ
dx for PDFs;

and by

X
f ðxÞ log

f ðxÞ

gðxÞ
for PMFs;

ormore generally for two probability measuresP andQ,

by

ð

o2O

log
dPðoÞ
dQðoÞdPðoÞ

for P absolutely continuous with respect to Q, where

dP/dQ is the Radon-Nikodym derivative.

Also called relative entropy, cross entropy, information

divergence. Because it is neither symmetric nor does it

satisfy the triangle inequality, it is not a true distance

metric.

See

▶Cross-Entropy Method

▶Radon-Nikodym Derivative
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L

Lack of Memory

▶Exponential Arrivals

▶Markov Processes

▶Markov Property

▶Memoryless Property

▶ Poisson Process

▶Queueing Theory

Lagrange Multipliers

The multiplicative, linear-combination constants

that appear in the Lagrangian of a mathematical

programming problem. They are generally dual

variables if the dual exists, so-called shadow prices in

linear programming, giving the rate of change of the

optimal value with constraint changes, under

appropriate conditions.

See

▶Lagrangian Function

▶Nonlinear Programming

Lagrangian Decomposition

▶ Integer and Combinatorial Optimization

▶Lagrangian Relaxation

Lagrangian Function

The general mathematical-programming problem

of minimizing f(x) subject to a set of constraints

{gi(x) � bi} has associated with it a Lagrangian

function defined as L(x, l) ¼ f(x) +
P

ili[gi(x)�bi],

where the components li of the nonnegative vector l

are called Lagrange multipliers. For a primal

linear-programming problem, the Lagrange multipliers

can be interpreted as the variables of the corresponding

dual problem.

See

▶Lagrangian Relaxation

▶Nonlinear Programming

Lagrangian Relaxation

Monique Guignard

University of Pennsylvania, Philadelphia, PA, USA

Introduction

Many practical optimization problems include decision

variables that are integer or 0-1. These problems, called

mixed-integer programming problems or MIP for short,

are in general difficult to solve, and there have been

traditionally two classes of approaches to solve them:

branch-and-bound or enumeration, and heuristic

methods, either ad hoc or generic. Broadly speaking,

branch-and-bound methods construct a tree, usually
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binary, that allows the systematic exploration of all

integer or 0-1 combinations of the discrete variables.

Logical considerations and/or bounds on the optimal

value computed as one moves down the tree may

allow the pruning of a branch and backtracking to

its root because one discovers that it would lead

to infeasibilities or inferior solutions. Typically,

bounds are obtained by solving a simpler, relaxed,

optimization problem, most of the time the continuous

relaxation of the MIP problem in which integer or 0-1

variables are allowed to take on fractional values.

Heuristics, on the other hand, search for better and

better feasible integer solutions, and do not usually

compute bounds on the optimum, and therefore, even

though they are getting more and more sophisticated

and excel at finding optimal or near optimal solutions,

cannot guarantee the quality of the solutions found.

Lagrangian relaxation stands somehow at the

crossroads of both approaches. More powerful in

terms of bound quality than the continuous

relaxation, it also produces partially infeasible, but

integer, solutions. These can usually serve as

excellent starting points for specialized heuristics,

referred to as Lagrangian heuristics. Contrary to the

general heuristics mentioned above, given that one has

found a bound called the Lagrangian bound, one

knows whether the best solution found is good

enough, or if it requires further investigation.

There is an enormous amount of literature devoted

to the theory and applications of Lagrangian

relaxation, starting with the seminal papers of Held

and Karp (1970, 1971) and of Geoffrion (1974),

although one could trace it back to earlier sources, for

instance Everett’s multipliers work (1963). Some early

guides include (Fisher 1981, 1985).

Some of the questions to be addressed: Why use

Lagrangian relaxation for integer programming

problems? How does one construct a Lagrangian

relaxation? What tools are there to analyze the

strength of a Lagrangian relaxation? Are there more

powerful extensions than standard Lagrangian

relaxation, and when should they be used? Why is it

that one can sometimes solve a strong Lagrangian

relaxation by solving trivial subproblems? How does

one compute the Lagrangian relaxation bound? Can

one take advantage of Lagrangian problem

decomposition? Does the strength of the model used

make a difference in terms of bounds? Can one

strengthen Lagrangian relaxation bounds by cuts,

either kept or dualized? How can one design

a Lagrangian heuristic? Can one achieve better

results by remodeling the problem prior to doing

Lagrangian relaxation?

The problems considered here have some integer

variables, linear objective functions and constraints,

and everything described below applies to

maximization as well as minimization problems via

the trivial sign transformations:

Max f ðxÞ x 2 Vjf g ¼ �Min �f ðxÞ x 2 Vjf g:

Notation

If (P) is an optimization problem,

FS(P) denotes the set of feasible solutions of problem (P)

OS(P) the set of optimal solutions of problem (P)

v(P) the optimal value of problem (P)

uk, sk, etc., the value of u, s, etc., used at iteration k

xT the transpose of x

xk the kth extreme point of some polyhedron
(see context)

x(k) a solution found at iteration k.

� denotes strict inclusion.

Co(V) denotes the convex hull of set V.

Relaxations of Optimization Problems

Geoffrion (1974) formally defines a relaxation of a

generic minimization problem as follows.

Definition 1. Problem (RPmin): Min gðxÞ x 2 Wjf g is

a relaxation of problem (Pmin): Min f ðxÞ x 2 Vjf g if

and only if (i) the feasible set of (RPmin) contains that

of (Pmin), and (ii) over the feasible set V of (Pmin), the

objective function of (RPmin) dominates (is better than)

that of (Pmin), i.e., 8 x ∈ V, g(x) � f(x).

It clearly follows that v(RPmin) � v(Pmin), in other

words (RPmin) is an optimistic version of (Pmin): it has

more feasible solutions than (Pmin), and for feasible

solutions of (Pmin), its own objective function is at least

as good as (smaller than or equal to) that of (Pmin), thus

it has a smaller minimum.
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Lagrangian Relaxation (LR)

In the rest of the note, (P) is assumed to be of the form

Min x ffx Axj � b,Cx� d, x∈ X}, where X contains the

integrality restrictions on x, i.e. X ¼ 
n�p � 

p, or

X ¼ 
n�p � f0; 1gp. Let I(X) be the set of the p

indices of x restricted to be integer (or binary). The

constraints Ax � b are assumed complicating, in the

sense that, without them, problem (P) would be much

simpler to solve. The constraints Cx � d (possibly

empty) will be kept, together with X, to form the

Lagrangian relaxation of (P) as follows. Let l be a

nonnegative vector of weights, called Lagrangian

multipliers.

Definition 2. The Lagrangian relaxation of (P)

relative to the complicating constraints Ax � b, with

nonnegative Lagrangian multipliers l, is the problem

(LRl) Minxff xþ lðAx� bÞ Cx � d; x 2 Xj g.
Notice that (LRl) is still an integer programming

problem, so its solutions, unlike those of the

continuous relaxation, are integer solutions. However

they need not be feasible solutions of (P), as they may

violate some, or all, of the complicating constraints

Ax � b, which are not enforced any more. In (LRl),

the slacks of the complicating constraints Ax � b have

been added to the objective function with weights l.

One says that the constraints Ax � b have been

dualized. (LRl) is a relaxation of (P), since (i) FS

(LRl) contains FS(P), and (ii) for any x feasible for

(P), and any l� 0, fx +l(Ax� b) is less than or equal to

fx (i.e., not worse, since it is a minimization problem).

It follows that v(LRl) � v(P), for all l � 0, i.e., the

optimal value v(LRl), which depends on l, is a lower

bound on the optimal value of (P).

Definition 3. The problem of finding the tightest

Lagrangian lower bound on v(P) , i.e., (LR) Maxl � 0

v(LRl), is called the Lagrangian dual of (P) relative

to the complicating constraints Ax � b. v(LR) is called

the Lagrangian relaxation bound, or simply the

Lagrangian bound.

Let (LP) denote the linear programming relaxation of

problem (P). By LP duality, any Lagrangian relaxation

bound is always at least as good as the LP bound, i.e., v

(P), never worse. Notice also that (LR) is a problem in

the dual space of the Lagrangian multipliers, whereas

(LRl) is a problem in x, i.e., in the primal space.

Feasible Lagrangian solution

Let x(l) denote an optimal solution of (LRl) for some

l � 0, then x(l) is called a Lagrangian solution. One

may be tempted to think that a Lagrangian solution

x(l) that is feasible for the integer problem (i.e., that

satisfies the dualized constraints) is also optimal for

that problem. In fact this is generally not the case.

What is true is that the optimal value of (P), v(P), lies

in the interval between fx(l)+l[Ax(l)�b] and fx(l),

where fx(l) is the value of a feasible solution of (P),

thus an upper bound on v(P), and fx(l)+l[Ax(l)�b] is

the optimal value of the Lagrangian problem (LRl),

thus a lower bound on v(P). If, however,

complementary slackness holds, i.e., if l[Ax(l)�b] is

0, then fx(l)+l[Ax(l)�b]¼ v(P)¼ fx(l), and x(l) is an

optimal solution for (P).

Theorem 1. (1) If x(l) is an optimal solution of (LRl)

for some l � 0, then fx(l)+l[Ax(l)�b] � v(P). If

in addition x(l) is feasible for (P), then fx(l)

+l[Ax(l)�b] � v(P) � fx(l).

(2) If in addition l[Ax(l)�b] ¼ 0, then x(l) is an

optimal solution of (P), and v(P) ¼ fx(l).

Remarks. Notice first that (2) is a sufficient condition

of optimality, but it is not necessary. I.e., it is possible

for a feasible x(l) to be optimal for (P), even though it

does not satisfy complementary slackness. If the

constraints that are dualized are equality constraints,

and if x(l) is feasible for (P), complementary slackness

holds automatically, thus x(l) is an optimal solution of

(P), with v(P) ¼ fx(l).

Geometric Interpretation

The following theorem, from (Geoffrion 1974), is

probably what sheds most light on Lagrangian

relaxation. It gives a geometric interpretation of

the Lagrangian dual problem in the x- space, i.e., in the

primal space, and this permits an in-depth study of the

strength of specific Lagrangian relaxation schemes.

Theorem 2. The Lagrangian dual (LR) is

equivalent to the primal relaxation (PR)

Minx fx Ax � bj ; x 2 Co x 2 X Cx � djf gf g, in the

sense that v(LR) ¼ v(PR) (Fig. 1).
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This result is based on LP duality and properties of

optimal solutions of linear programs. Remember

though that this result may not be true if the

constraint matrices are not rational.

The following important definition and results

follow from this geometric interpretation.

Definition 4. One says that (LR) has the Integrality

Property (IP for short) if Co x 2 X Cx � djf g ¼
x 2 

n Cx � djf g.
If (LR) has the Integrality Property, then the

extreme points of x 2 
n

Cx � dj
� �

are in X. The

unfortunate consequence of this property, as stated in

the following corollaries, is that such an LR scheme

cannot produce a bound stronger than the LP bound.

Sometimes, however, this is useful anyway because

the LP relaxation cannot be computed easily. This

may be the case for instance for some problems with

an exponential number of constraints that can be

relaxed anyway into easy to solve subproblems. The

traveling salesman problem is an instance of a problem

which contains an exponential number of (subtour

elimination) constraints. A judicious choice of

dualized constraints leads to Lagrangian subproblems

that are 1-tree problems, thus eliminating the need to

explicitly write all the subtour elimination constraints

(Held and Karp 1970, 1971).

Here are the two corollaries of Theorem 2 that explain

the important role played by the Integrality Property.

Corollary 1. IfCo x2X Cx� djf g¼ x2
n Cx� djf g,

then v(LP) ¼ v(PR) ¼ v(LR) � v(P).

In that case, the Lagrangian relaxation bound is

equal to (cannot be better than) the LP bound.

Corollary 2. If Co x2X Cx� djf g� x2 
n Cx� djf g,

then v(LP)� v(PR)¼ v(LR)� v(P), and it may happen

that the Lagrangian relaxation bound is strictly better

than the LP bound.

Unless (LR) does not have the Integrality Property,

it will not yield a stronger bound than the LP

relaxation. It is thus important to know if all

vertices of the rational polyhedron x 2 
njCx � df g

are in X.

Easy-to-Solve Lagrangian Subproblems

It may happen that Lagrangian subproblems, even

though in principle hard to solve because they do not

have the Integrality Property, are in fact much easier to

solve through some partial decomposition; they can

sometimes even be solved in polynomial time, by

exploiting their special structure. It is of course

important to be able to recognize such favorable

situations, especially if one can avoid using

Branch-and-Bound to solve them. It should be noted

that these favorable cases do not in general occur

naturally, but only after some constraint(s) have been

dualized, due to a weakening of the original links

between continuous and integer variables.

One case is due to what is sometimes called the

Integer Linearization Property (or ILP for short) for

mixed 0-1 problems.

Integer Linearization Property

Geoffrion (1974) and Geoffrion and McBride (1978)

described and used this important property of some

Lagrangian subproblems. W.l.o.g., assume that all

Co{x∈XCx ≤ d}

KEEP

RELAX

Co{x∈XCx ≤ d}}

{xCx ≤ d}
{xAx ≤ b}

{xAx ≤ b}∩ x

v(LP)

f

v(PR)

v(P)
x

x

x

x

x x

Lagrangian Relaxation,

Fig. 1 Geometric
interpretation of Lagrangian
relaxation
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variables are indexed by i∈I, and maybe by some

additional indices, and that some of the 0-1 variables

are called yi. If, except for constraints containing only

these 0-1 variables yi, the Lagrangian problem, say,

(LRl), has the property that the value taken by a given

yi decides alone the fate of all other variables

containing the same value of the index i � that

usually means that if variable yi is 0, all variables in

its family are 0, and if it is 1, they are solutions of

a subproblem � one may be able to reformulate the

problem in terms of the variables yi only. Often, but not

always, when this property holds, it is because the

Lagrangian problem, after removal of all constraints

containing only the yi’s � call it (LRPl), for partial

problem – decomposes into one problem ðLRPilÞ for
each i, i.e., for each 0-1 variable yi. The use of this

property is based on the following fact. In problem

ðLRPilÞ, the integer variable yi can be viewed as

a parameter, however one does know that for the

mixed-integer problem ðLRPilÞ, the feasible values of
that parameter are only 0 and 1, and one can make use

of the fact that there are only two possible values for

v LRPil
� �

, the value computed for yi¼1, say vi (¼ vi.yi
for yi¼1), and the value for yi¼0, that is, 0 (¼ vi.yi
for yi¼0), which implies that for all possible values of

yi, v LRPil
� �

¼ vi:yi. Hence the name integer

linearization, as one replaces a piecewise linear

function corresponding to 0 � yi � 1 by a line

through the points (0, 0) and (1, vi) (Fig. 2).

One may in such cases obtain LR bounds much

tighter than the LP bounds, even though the

subproblems are trivial to solve.

Constructing a Lagrangian Relaxation

There are often many ways in which a given problem

can be relaxed in a Lagrangian fashion. A few standard

ones are listed here, mostly to point out that often

some reformulation prior to relaxation can help, and

that for many complex models, intuition and some

understanding of the constraint interactions may

suggest ingenious and efficient relaxation schemes.

(1) One can isolate an interesting subproblem and
dualize the other constraints.
This is the most commonly used approach. It has

the advantage that the Lagrangian subproblems are

interesting (in the sense usually that they have

a special structure that can be exploited) and there

may even exist specialized algorithms for solving

them efficiently.

(2) If there are two (or more) interesting
subproblems with common variables, one can
split these variables first, then dualize the copy
constraint.
This is called Lagrangian decomposition (LD)

(Soenen 1977), variable splitting (N€asberg et al.

1985), or variable layering (Glover and Klingman

1988). One must first reformulate the problem using

variable splitting, in other words, one must rename

the variables in part of the constraints as if

they were independent variables. Problem (P):

Minx f x Ax � bj ;Cx � d; x 2 Xf g is clearly equivalent

to problem (P0): Minx;y f x Ax � b; x 2 X;Cy � d;jf
y 2 X; x ¼ yg, in the sense that they have

equal optimal values (but notice that they have

different variable spaces). In addition if x* is an

optimal solution of (P), then the solution (x, y) � (x*,

x*) is optimal for (P0), and if (x*, y*) is an optimal

solution of (P0) with x*¼ y*, then x* is optimal for (P).

One dualizes the copy constraint x ¼ y in (P0)
with multipliers l, this separates the problem

into an x-problem and a y-problem: (LDl)

Minx;yffxþ lðy� xÞjAx � b; x 2 X; Cy � d; y 2 X ¼g
Minxfðf � lÞx j Ax � b; x 2 Xg þMinyfly j Cy � d;

y 2 Xg.
This process creates a staircase structure, and thus

decomposability, in the model. Notice that here l is not

required to be nonnegative.

Remember also that when one dualizes equality

constraints, a feasible Lagrangian solution is

00

v(LRi
l) v(LRi

l)

1 1
0 ≤ yi ≤ 1 yi = 0 or 1

Lagrangian Relaxation,

Fig. 2 Integer linearization
property
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automatically optimal for the original integer

programming problem. The copy constraint being an

equality constraint, if both Lagrangian subproblems

have the same optimal solution, that solution is

optimal for the IP problem.

Guignard and Kim (1987) showed that the LD

bound can strictly dominate the LR bounds obtained

by dualizing either set of constraints:

Theorem 3.

If v LDð Þ ¼ Maxl½Minxfðf � lÞx Axj � b; x 2 Xg
þMinfly Cj y � d; y 2 Xg� then

v LDð Þ ¼ Min ffx j
y

x 2 Cofx 2 X Aj x � bg
\ Cofx 2 X Cj x � dg:

This new geometric interpretation is demonstrated

in Fig. 3.

Corollary 3.
• If one of the subproblems has the Integrality

Property, then v(LD) is equal to the better of the

two LR bounds corresponding to dualizing either

Ax � b or Cx � d.

• If both subproblems have the Integrality Property,

then v(LD) ¼ v(LP).

A very important application of the splitting

variable scheme can be found in stochastic

optimization, when the uncertainty is represented by

2-stage or multistage scenario trees. The non-

anticipativity constraints (or NAC) must be satisfied

by the variables attached to the scenario groups or

nodes in the tree. Splitting variables in the NAC and

dualizing the copy constraints produces a Lagrangean

decomposition of the Deterministic Equivalent Model.

See Escudero (2009) and Birge and Louveaux (2011),

among others.

Occasionally the variable splitting will correspond

to a physical split of one of the problem’s decision

variables. This is illustrated by the following example.

Example 1. Guignard and Yan (1993) described the

following problem and scheme for a hydroelectric

power management problem.

Electric utility production planning is the selection

of power generation and energy efficiency resources

to meet customer demands for electricity over a

multi-period time horizon. The project described in

the paper is a real-world hydropower plant operations

management problem of a dispatch type. The system

consists of a chain of 10 consecutive hydropower

plants separated by reservoirs and falls with

23 identical machines installed to generate electric

power. Specifically there are two machines installed

in eight power plants (plants 1, 2, 3, 4, 5, 6, 7, and 10),

three machines in one power plant (plant 8) and four

machines in the last power plant (plant 9). Each

machine has two or four work parts for producing

electric power, according to different water

throughput. Since demand for electric power varies

with different time periods, power plant managers

must make optimal decisions concerning the number

of machines that should be operated in each

power plant during each time period. Managing the

power generation requires decisions concerning water

Co{x ∈X Cx ≤d }

{x Cx ≤d }

Co{x ∈X Ax ≤b }

{x Ax ≤ b }

v(LR)

f

v(LD)
x

x

x

x

xx

x

x

x

xx

x

Lagrangian Relaxation,

Fig. 3 Geometric
interpretation of Lagrangean
decomposition
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releases at each plant k in each time period. A period is

two hours. The model (which is confidential) was

constructed by an independent consulting firm. This

results in a large mixed-integer program. The problem

is complex, with 2,691 variables, 384 of which are

binary, and 12,073 constraints. The firm had tried to

solve the problem for the utility company with several

of the best MIP software packages available, with help

from the software companies themselves. Yet they did

not succeed. Guignard and Yan repeated the tests with

several solvers running under GAMS, on several RISC

systems, also to no avail. The best result after 5 days

and six hours on an HP workstation was a

bracket [3174.97, 3534.17], i.e., a residual gap of

more than 11%.

In order to reduce the complexity of the model, they

tried several Lagrangian relaxations and

decompositions. One of the decompositions tested

consists in “cutting” each reservoir in half (see

Fig. 4), i.e. splitting the water level variable in each

reservoir, and dualizing the following copy constraint:

high water level in k þ 1 ¼ low water level in k:

This Lagrangian decomposition produces one

power management problem per power plant k. These

subproblems do not have a special structure, but are

much simpler and smaller than the original problem,

are readily solvable by commercial software, and do

not have the Integrality Property. They were solved by

Branch-and-Bound.

This LD shrinks problem size, and yields

Lagrangian bounds much stronger than the LP

bounds. In addition the Lagrangian solutions can be

modified to provide feasible schedules.

(3) One can dualize linking constraints:
After possibly some reformulation, problems may

contain independent structures linked by some

constraints: Minx;yff xþ gy Aj x � b; x 2 X; Cy � d;

y 2 Y; Exþ Fy � hg. Dualizing the linking

constraints Ex + Fy � h splits the problem into an

x-problem and a y-problem. The original problem may

only contain x and some reformulation introduces a new

variable y, while the relationship between x and y is

captured by the new constraints Ex + Fy � h.

Example 2. A production problem over multiple

facilities contains constraints related to individual

facilities, while the demand constraints link all plant

productions. If one dualizes the demand constraints,

the Lagrangian problem decomposes into a production

problem for each facility, which is typically much

easier to solve than the overall problem. If at least

one of these subproblems does not have the

Integrality Property, this LR may yield a tighter

bound than the LP bound. In (Andalaft et al. 2003),

a forest company must harvest geographically distinct

areas, and dualizing the demand constraints splits the

problem into one subproblem per area, which is

typically much easier to solve than the overall

problem.

(4) One can sometimes dualize aggregate rather
than individual copies of variables.
Instead of creating a copy y of variable x and

introducing y into model (P) by rewriting the

constraint Cx � d as Cy � d, to yield the equivalent

model (P0): Minx;y ff x Aj x � b; x 2 X; Cy � d;

y 2 X; x ¼ yg; one can also create a problem (P00)
equivalent to problem (P) by introducing a new

variable y and forcing the constraint Dy ¼ Cx. This

constraint is in general weaker than the constraint

x ¼ y. Model (P00) is Minx;yff x Aj x � b; x 2 X;

Dy � d; y 2 X; Dx ¼ Cyg. The LR introduced here

dualizes the aggregate copy constraint Dx ¼ Cy.

Notice that the copy constraint is an equality

constraint, therefore if the Lagrangian subproblems

have optimal solutions x and y that satisfy the

aggregate copy constraint, i.e., if Dy ¼ Cx, then the

x- solution is optimal for the IP problem.

Power Plant k+1

low
water
level
of k+1

high
water
level of
k+1

low
water
level
of k

Power Plant k
=

Lagrangian Relaxation, Fig. 4 Lagrangian decomposition
splits the water level
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Example 3. Consider the bi-knapsack problem

(BKP)Maxxf
P

i cixij
P

i bixi � m;
P

i dixi � n;
xi 2 f0; 1g; 8ig:

One can introduce a new variable y, and writeP
i bixi ¼

P
i biyi: The equivalent problem is

(BKP’)Maxx;yf
P

i cixij
P

i biyi � m;
P

i dixi � n;P
i bixi ¼

P
i biyi; xi; yi 2 0; 1f g; 8ig

and the LR problem is

ðLRlÞMaxx;y
X

i
cixi � l

X
i
bixi �

X
i
biyi

� �n
�

�

�:
X

i
biyi � m;

X

i
dixi � n; xi; yi 2 0; 1f g; 8ig

¼ Maxx
X

i
ðci � lbiÞxi

X

i
dixi

�

�

�
� n;

n

xi 2 0; 1f g;8ig

þMaxy l
X

i
biyiÞ

n

X

i
biyi

�

�

� � m; yi 2 0; 1f g; 8ig:

Here l is a single real multiplier of arbitrary sign.

The Lagrangian bound produced by this scheme is

in between that of the LP bound and that of

the Lagrangian decomposition bound obtained by

dualizing xi ¼ yi 8i. This is similar in spirit to the copy

constraints introduced in Reinoso and Maculan (1992).

It would seem natural that a reduction in the number

of multipliers should imply a reduction in the quality of

the LR bound obtained. This is not always the case,

however, as shown in example 4.

Example 4. Chen and Guignard (1998) considered an

aggregate Lagrangian relaxation of the capacitated

facility location problem. The model uses continuous

variables xij that represent the percentage of

the demand dj of customer j supplied by facility i, and

binary variables yi, equal to 1 if facility i with capacity

ai is operational. The constraint
P

j

djxij � aiyi

imposes a conditional capacity restriction on the

total amount that can be shipped from potential

facility i.

(CPLP)

Minx,y Σi Σj cij xij + Σi fi yi

s.t. Σi xij = 1, all j (D) meet 100% of customer

   demand

ship nothing if plant is

   closed

enough plants to meet 

   total demand

ship no more than plant

   capacity

xij ≤ yi, all i, j (B)

(T)

Σj dj xij ≤ ai yi, all i

Σi ai yi ≥ Σj dj,

(C)

xij ≥ 0, yi = 0 or 1, all i, j.

Constraint (T) is redundant, but may help getting

tighter Lagrangian relaxation bounds.

The three best Lagrangian schemes are:

(LR) (Geoffrion and McBride 1978)

One dualizes (D) then uses the integer linearization

property. The subproblems to solve are one continuous

knapsack problem per plant ((C) with yi = 1) and one

0-1 knapsack problem over all plants (constraint (T)).

The Lagrangian relaxation bound is tight, and it is

obtained at a small computational cost.

(LD) (Guignard and Kim 1987).

Duplicate (T). Make copies xij ¼ x0ij and yy ¼ y0i and
use x0ij and y

0
i in (C) and in one of the (T)’s. One obtains

the split

{(D), (B), (T)} ! APLP

{(B), (T), (C)} ! this is like in (LR)

This LD bound is tighter than the (LR) bound, but

expensive to compute, in particular because of a large

number of multipliers.

(LS) (Chen and Guignard 1998).

Copy ∑j dj xij ¼ ∑j dj x
0
ij and yi ¼ y0i in (C). This

yields the same split as (LD), and the same bound. This is

very surprising, as it is less expensive to solve (LS) than

(LD), in particular because (LS) has far fewermultipliers.

In example 4, creating new copy variables x0ij and
y0i, one can create an LS by dualizing the aggregate

(linking) copy constraints
P

j

dj xij ¼
P

j

djx
0
ij and

aiyi ¼ aiy
0
i. Surprisingly, one can prove that the LS

bound for this problem is as strong as the LD bound

obtained by dualizing individual copies xij ¼ x0ij and
yi ¼ y0i. This suggests that “aggregating” variables

before copying them may be an attractive alternative

to Lagrangian decomposition, at least for some problem

structures. A more general structure than CPLP is

actually described in Chen and Guignard (1998).

Characteristics of the Lagrangian Function

The Lagrangian function z(l) ¼ v(LRl) is an implicit

function of l. Suppose that the set Co x 2 X Cj x � df g
is a polytope, i.e., a bounded polyhedron, then there

exists a finite family {x1, x2,. . ., xK} of extreme

points of Co x 2 X Cj x � df g, i.e., of points of

x 2 X Cj x � df g, such that Co x 2 X Cj x � df g
¼ Co x1; x2; . . . ; xK

� �

. It then follows that

Minx fxþ l b� Axð Þ Cj x � d; x 2 Xf g
¼ Mink¼1;...;K f xk þ l b� Axk

� �� �
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and z(l) is the lower envelope of a family of linear

functions of l, f xk þ l b� Axk
� �

, k¼1,. . .,K, and thus

is a concave function of l, with breakpoints where it is

not differentiable, i.e., where the optimal solution of

(LRl) is not unique. Figure 5 shows a Lagrangian

function for the case where (P) is a maximization

problem, this (LR) is a minimization problem, and

z(l) a convex function of (l).

A concave function f(x) is continuous over the

relative interior of its domain, and it is differentiable

almost everywhere, i.e., except over a set of measure 0.

At points where it is not differentiable, the function does

not have a gradient, but is always has subgradients.

Definition 5. A vector y ∈ (Rn)* is a subgradient of

a concave function f(x) at a point x0 ∈ Rn if for all

x ∈ Rn

f ðxÞ � f x0
� �

� y 	 ðx� x0Þ:

Definition 6. The set of all subgradients of a concave

function f(x) at a point x0 is called the subdifferential of

f at x0 and it is denoted ∂f(x0).

Theorem 4. The subdifferential ∂f(x0) of a concave

function f(x) at a point x0 is always nonempty, closed,

convex and bounded.

If the subdifferential of f at x0 consists of a single

element, that element is the gradient of f at x0, denoted

by Hf ðx0Þ.

The dual problem (LR) is

ðLRÞ

Maxl � 0vðLRlÞ ¼ Maxl�0zðlÞ ¼

Maxl � 0Mink¼1;...;K fxk þ l b� Axk
� �� �

¼

Maxl � 0;� � �j � fxk þ lðb� AxkÞ; k ¼ 1; . . . ;K
� �

:

Let l* be a minimizer of z(l), Z* ¼ z(l*), lk be

a current “guess” at l*, let Zk ¼ z(lk), and

Hk ¼ l fj xk þ lðb� AxkÞ ¼ �k
� �

be a level

hyperplane passing through lk.

• If z(l) is differentiable at lk, i.e., if (LRl) has

a unique optimal solution xk, it has a gradient Hz
(lk) at lk:

=
TzðlkÞ ¼ ðb� AxkÞ?Hk:

• If z(l) is nondifferentiable at lk, i.e., if (LRk
l)

has multiple optimal solutions, the vector

sk ¼ ðb� AxkÞT is a subgradient of z(l) at lk. That

vector sk is orthogonal to Hk.

If one considers the contours

Cðkg ¼ l 2 
m
þjzðlÞ � a

� �

, a a scalar, these

contours are convex polyhedral sets. See Fig. 6.

Note: A subgradient is not necessarily a direction of

increase for the function, even locally, as seen on

Fig. 6.

Theorem 5. The vector (b�Axk)T is a subgradient of

z(l) at lk.

Primal and Dual Methods to Solve
Relaxation Duals

A number of methods have been proposed to solve

Lagrangian duals. They are either ad-hoc, like for

instance dual ascent methods, or general purpose,

usually aiming at solving a generic nonsmooth

convex optimization problem. This section reviews

the most important approaches.

Subgradient Method

This method was proposed in (Held and Karp 1971). It

is an iterative method in which at iteration k, given the

current multiplier vector lk, a step is taken along a

subgradient of z(lk), then, if necessary, the resulting

point is projected onto the nonnegative orthant.

z = f x 2 + λ(b −A x 2)

f x 1

f x 2

f x k

η

z(λ)

λ

z = f x 1 + λ(b −A x 1)

z = f x k + λ(b −A x k)

Lagrangian Relaxation, Fig. 5 The Lagrangean function of a
maximization problem
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Let x(k) be an optimal solution of (LRk
l). Then

sk ¼ ðb� AxðkÞÞT is a subgradient of z(l) at lk. If l*

is an (unknown) optimal solution of (LR), with Z* ¼ z

(l*), let l0k+1 be the projection of lk on the hyperplane
H* parallel to Hk, defined by

H
 ¼ l fj xk þ lðb� AxðkÞÞ ¼ �

n o

:

The vector sk is perpendicular to both Hk and H*,

therefore l0k+1 � lk is a nonnegative multiple of sk:

l0k
þ1 � lk ¼ msk; m � 0:

Also, l0k+1 belongs to H*:

f xðkÞ þ l0kþ
1ðb� AxðkÞÞ ¼ �
;

therefore f xk þ mskðb� AxðkÞÞ ¼ �k þ msk:sk ¼ �


and m¼ð�
��kÞ=jjskjj2,
so that l0k

þ1 ¼ lkþ sk: ð�
��kÞ =jjskjj2.
Finally define lk

þ1 ¼ ½l0kþ1�þ, i.e., define the next

iterate lk+1 as the projection of l0k+1 onto the

nonnegative orthant, as l must be nonnegative. Given

the geometric projections described above, it is clear

that lk+1 is closer to l* than lk, thus the sequence

jjlk � l
jj2 is monotone nonincreasing.

Remark. This formula unfortunately uses the

unknown optimal value Z* of (LR). One can try to

use an estimate for that value, but then one may be

using either too small or too large a multiple of sk. If

one sees that the objective function values do not

improve for too many iterations, one should suspect

that Z* has been overestimated (for a maximization

problem) and that one is overshooting, thus one should

try to reduce the difference Z*-Zk. This can be

achieved by introducing from the start a positive

factor ek ∈ (0,2), in the subgradient formula:

lk
þ1 ¼ lk þ sk: ekð�
 � �kÞ =jjskjj2;

and reducing the scalar ek when there is no

improvement for too long.

Practical convergence of the subgradient method is

unpredictable, sometimes quick and fairly reliable,

sometimes erratic. Many authors have studied this

problem and have proposed a variety of remedies.

Dual Ascent Methods

In this kind of approach, one takes advantage of the

structure of the Lagrangian dual to create a sequence of

multipliers that guarantee a monotone increase in

Lagrangian function value. This approach had been

pioneered by Bilde and Krarup (1967, 1977) for

solving approximately the LP relaxation of the

uncapacitated facility location problem (UFLP).

General principles for developing a successful

Lagrangian dual ascent method can be found in

(Guignard and Rosenwein 1989).

Contour of z(λ):

z(λ) =  ηk

Space of λ

region where xk is optimal for (LRl )

Hk = {λf x k + λ(b −Axk ) = ηk }

−sk = −(b −Axk )

H∗

λ∗

λk

λ ,k+1

Lagrangian Relaxation,

Fig. 6 Contours and
subgradient
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Constraint Generation Method (Also Called

Cutting Plane Method, or CP)

In this method , one uses the fact that z(l) is the lower

envelope of a family of linear functions:

LRð Þ

Maxl�0vðLRlÞ¼Maxl�0zðlÞ¼

Maxl�0Mink¼1;...;K f xkþl b�Axk
� �� �

¼

Maxl�0;� � �j � f xkþl b�Axk
� �

;k¼ 1; . . . ;K
� �

:

At each iteration k, one generates one or more cuts

of the form

� � fxk þ lðb� AxðkÞÞ;

by solving the Lagrangian subproblem (LRk
l) with

solution x(k). These cuts are added to those generated

in previous iterations to form the current LP master

problem:

MPk
� �

Maxl�0;� � �j � fxðhÞþlðb�AxðhÞÞ;h¼ 1; . . . ;k
n o

;

whose solution is the next iterate lk+1. The process

terminates when v(MPk) ¼ z(lk+1). This value is the

optimal value of (LR).

Column Generation (CG)

(CG) has been used extensively, in particular for

solving very large scheduling problems (airline,

buses, etc.). It consists in reformulating a problem as

an LP (or an IP) whose activities (or columns)

correspond to feasible solutions of a subset of the

problem constraints, subject to the remaining

constraints. The variables are weights attached to

these solutions.

There are two aspects to column generation: first,

the process is dual to Lagrangian relaxation and to CP.

Secondly, it can be viewed as an application of Dantzig

and Wolfe’s decomposition algorithm (Dantzig and

Wolfe 1960, 1961).

Let the xk 2 x 2 XjCxk � d
� �

, k∈K, be chosen

such that Co xk
� �

¼ Co x 2 X Cj x � df g. A possible

choice for the xk’s is all the points of

Co x 2 X Cj x � df g but a cheaper option is all

extreme points of Co x 2 X Cj x � df g.
Problem (P): Minx fx Aj x � b;Cx � d; x 2 Xf g

yields the Lagrangian dual (i.e., in the l-space) problem

LRð Þ Maxl�0Minx fxþ lðAx� bÞ Cj x � d; x 2 Xf g

which is equivalent to the primal (i.e., in the x-space)

problem

PRð Þ Minx fx Aj x � b; x 2 Co x 2 X Cj x � df gf g;

which itself can be rewritten as (PR)

Minx f
X

k2K
mkx

k

 !

A
X

k2K
mkx

k

 !�

�

�

�

�

x � b

( )

¼ Minx
X

k2K
mk:ðfxkÞ

X

k2K
mk:ðAxkÞ � b

�

�

�

�

�

( )

;

given

that one can write x 2 Co x 2 X Cj x � df g as

x ¼
P

k2K
mkx

k, with
P

k2K
mk ¼ 1 and mk � 0.

The separation of a problem into a master- and

a sub-problem is equivalent to the separation of the

constraints into kept and dualized constraints. The

columns generated are solutions of integer

subproblems that have the same constraints as the

Lagrangian subproblems.

The value of the LP relaxation of the master

problem is equal to the Lagrangian relaxation bound.

The strength of a CG or LR scheme would then seem to

be based on the fact that the subproblems do not have

the integrality property. It may happen however that

such a scheme can be successful at solving problems

with the integrality property because it permits the

indirect computation of v(LP) when this value could

not be computed directly, e.g., because of an

exponential number of constraints (Held and Karp

1970, 1971).

One substantial advantage of (CP) or (CG) over

subgradient algorithms is the existence of a true

termination criterion v(MPk) ¼ z(lk+1).

Bundle Methods

Lemaréchal (1974) introduced an extension of

subgradient methods, called bundle methods, in

which past information is collected to provide

a better approximation of the Lagrangian function.

The standard CP algorithm uses the bundle of the

subgradients that were already generated, and

constructs a piecewise linear approximation of the

Lagrangian function. This method is usually slow

and unstable. Three different stabilization approaches

have been proposed. At any moment, one has a model

representing the Lagrangian function, and a so-called

stability center, which should be a reasonable

approximation of the true optimal solution.
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One generates a next iterate which is a compromise

between improving the objective function and keeping

close to the stability center. The next iterate becomes the

new stability center ( a serious step) only if the objective

function improvement is “good enough”. Otherwise,

one has a null step, in which however one improves

the function approximation. In addition, this next

iterate shouldn’t be too far away from the stability

center. The three stabilization approaches propose

different ways of controlling the amount of move that

is allowed. Either the next iterate must remain within

a so-called trust region, or one adds a penalty term to the

approximation of the function that increases with the

distance from the stability center, or one remains within

a region where the approximation of the function

stays above a certain level (for a maximizaton

problem). This proximity measure is the one parameter

that may be delicate to adjust in practical

implementations. There is a trade-off between the

safety net provided by this small move concept, and

the possibly small size of the bound improvement.

The Volume Algorithm (VA)

The volume algorithm (Barahona and Anbil 2000),

an extension of the subgradient algorithm, can be

seen as a fast way to approximate Dantzig-Wolfe

decomposition, with a better stopping criterion, and

it produces primal as well as dual vectors by

estimating the volume below the faces that are

active at an optimal dual solution. It has been used

successfully to solve large-scale LP’s arising in

combinatorial optimization, such as set partitioning

or location problems.

Subproblem Decomposition

Inmany cases, the Lagrangian subproblem decomposes

into smaller problems, and this means that the feasible

region is actually the Cartesian product of several

smaller regions. One clear advantage is the reduction

in computational complexity for the Lagrangian

subproblems: indeed, it is generally much easier to

solve 50 problems with 100 binary variables each,

say, than a single problem with 5,000 (i.e., 50x100)

binary variables.

It also means that in column generation, the columns

(i.e., the vectors that are feasible solutions of the kept

constraints) decompose into smaller subcolumns, and

each subcolumn is a convex combination of extreme

points of a small region. By assigning different sets of

weights to these convex combinations, one allows mix-

and-match solutions, in other words, one may combine

a subcolumn for the first subproblem that was generated

at iteration 10, say, with a subcolumn for the second

subproblem generated at iteration 7, etc. , to form a full

size column. If one had not decomposed the problem

ahead of time, one may have had to wait a long time for

such a complete column to be generated.

By duality, this means that in a cutting plane

environment, one can also generate sub-cuts for each

subproblem, which amounts to first replacing Z by

z � lb in

MPk
� �

Maxl�0;� � �j � f xðhÞþlðb�AxðhÞÞ;h¼ 1; . . . ;k
n o

¼Maxl�0;z z�lb zj � ðf �lAÞxðhÞ;h¼ 1; . . . ;k
n o

;

and then z by a sum of scalars zl, with zl � (f l � lAl)

x
ðhÞ
l , where l is the index of the Lagrangian subproblem,

f l, Al, and x
ðhÞ
l are the lth portions of the corresponding

submatrices and vectors, and xhl is a Lagrangian

solution of the lth subproblem found at iteration h,

yielding the disaggregated master problem

MPDk
� �

Maxl�0; zl

X

lzl�lbjzl �ðf �lAÞlxhl ;h¼ 1; . . . ;k
n o

:

Example 5. Consider the Generalized Assignment

Problem, or GAP (for the minimization case,

although it would work in exactly the same way with

maximization).

GAPð Þ Min
X

i

X

j
cijxij

s:t:
X

j
aijxij � bi; 8i 2 I KPð Þ

X

i
xij ¼ 1; 8j 2 J MCð Þ

xij 2 f0; 1g; 8i 2 I; j 2 J:

Its strong Lagrangian relaxation is

ðLRlÞMin
X

i;j
cijxijþ

X

j
ljð1�

X

i
xijÞ

s:t:
X

j
aijxij � bi; 8i KPð Þ

¼
X

j
ljþ

X

i
Minf

X

j
ðcij�ljÞxij

X

j
aijxij � bi;8i

�

�

�

xij 2f0;1g; 8jg;

and (LR) is the maximum with respect to l of v(LRl).
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Let EP KPð Þ ¼ xkjk 2 K
� �

be the set of all integer

feasible solutions of the constraints (KP), and let

EP KPið Þ ¼ xki: k 2 Kij
� �

be the set of all integer

feasible solution of the ith knapsack, with K ¼ Q
i

Ki.

Then a feasible solution of (LRl) can be described by

xij ¼
P

k2Ki

mi
k
xkij; 8i; j:

The Lagrangian dual is equivalent to the aggregate

master problem AMP:

AMPð Þ Maxl;z zjz�
X

i;j
cijx

k
ij
þ
X

j
ljð1�

X

i
xk
ij
Þ;8k2K

n o

¼Maxl;z zþ
X

j
lj zj �

X

ij
cij�lj
� �

xkij; 8k2K
n o

with the substitution z ¼ zþ
P

j lj.

If one had first written the column generation

formulation for the Lagrangian dual, one would

naturally have de-coupled the solutions of the

independent knapsack subproblems, using the

independent sets Ki instead of K, the column

generation master problem would have been

disaggegated:

DMPð ÞMaxl;z
X

i
zi þ

X

j
lj

s:t: zi �
X

j
ðcij � ljÞxkij ; 8i; 8k 2 Ki

and its dual

Minm
X

k2Ki

X

i;j
cijx

k
ij
mðiÞ

k

X

k2Ki

X

i
xk
ij
mðiÞ

k
¼ 1;8j;

�

�

�

mik � 0;
X

k2Ki

mðiÞ
k

¼ 1; 8ig;

is clearly the Dantzig-Wolfe decomposition of the

primal equivalent

PRð Þ Minx
X

i;j
cijxij

X

i
xi;j ¼ 1; xij � 0

�

�

�

n o

of (LR).

Relax-and-Cut

One question that often arises in the context of

Lagrangian relaxation is how to strengthen the

Lagrangian relaxation bound. One possible answer is

the addition of cuts that are currently violated by the

Lagrangian solution. It is clear however that adding

these to the Lagrangian problem will change its

structure and may make it much harder to solve. One

possible way out is to dualize these cuts (for a more

detailed analysis, see (Guignard 1998)). Remember

that dualizing does not mean discarding! The cuts

will be added to the set of complicating constraints,

and intuitively they will be useful only if the

intersection NI (for “new intersection”) of the new

relaxed polyhedron and of the convex hull of the

integer solutions of the kept constraints is “smaller”

than the intersection OI (for “old intersection”) of the

old relaxed polyhedron and of the convex hull of the

integer solutions of the kept constraints. This in turn is

only possible if the new relaxed polyhedron is smaller

than the old one, since the kept constraints are the same

in both cases. This has the following implications.

Consider a cut that is violated by the current

Lagrangian solution:

(1) if the cut is just a convex combination of the

current constraints, dualized and/or kept, it

cannot possibly reduce the intersection, since

every point of the “old” intersection will also

satisfy it; so in particular surrogate constraints of

the dualized constraints cannot help.

(2) if the cut is a valid inequality for the Lagrangian

problem, then every point in the convex hull of the

integer points of the kept constraints satisfies it,

because every integer feasible solution of the

Lagrangian subproblem does;

(3) it is thus necessary for the cut to use “integer”

information from both the dualized and the kept

constraints, and to remove part of the intersection.

(Remember that the Lagrangian solution is an

integer point required to satisfy only the kept

constraints).

A Relax-and-Cut scheme could proceed as follows:

1. Initialize the Lagrangian multiplier l.

2. Solve the current Lagrangian problem, let x(l) be

the Lagrangian solution. If the Lagrangian dual is

not solved yet, update l. Else end.

3. Identify a cut that is violated by x(l), and dualize it.

Go back to 2.

The term Relax-and-Cut was first used by

(Escudero et al. 1994). In that paper, a partial

description of the constraint set was used, and

violated constraints (not cuts) were identified, added

to the model and immediately dualized. The idea, if not

the name, had actually been used earlier. For instance
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in solving TSP problems, subtour elimination

constraints were generated on the fly and

immediately dualized in Balas and Christofides

(1981). The usefulness of constraints is obvious,

contrary to that of cuts. A missing constraint can

obviously change the problem solution.

Here are examples of cuts that if dualized cannot

possibly tighten Lagrangian relaxation bounds.

Non-improving Dualized Cuts: Example

for the GAP

Consider again the GAP model.

If one dualizes (MC), the Lagrangian relaxation

problem decomposes into one subproblem per j:

ðLRlÞ Min
X

i;j
cijxij þ

X
j
ljð1�

X
i
xijÞ

s:t:
X

j
aijxij � bi; 8i KPð Þ

¼ Min f
X

i;j
ðcij � ljÞxij þ

X
j
ljj

X
j
aijxij � bi; 8i; xij 2 0; 1f g; 8i; jg

¼
X

j
ljþ

X
i
fMin

X
j
ðcij � ljÞ xijj

X
j
aijxij � bi; 8i xij 2 f0; 1g; 8jg:

Thus the ith Lagrangian subproblem is a knapsack

problem for the ithmachine. After solving all knapsack

problems, the solution x(l) may violate some multiple

choice constraint, i.e., there may exist some j for whichP
i xij 6¼ 1, and as a consequence the conditionP
i

P
j xij ¼ jJj may be violated. Adding this “cut”

(it indeed cuts out the current Lagrangian solution!),

and immediately dualizing it, does not reduce the

intersection, as every point of the old intersection OI

already satisfies all multiple choice constraints (MC),

i.e., the dualized constraints.

Can kept Cuts Strengthen the Lagrangian Bound?

What happens if one keeps the cuts instead of dualizing

them? It is clear that adding these to the Lagrangian

problem will change its structure, but it may still be

solvable rather easily. The cuts will be added to the set

of easy constraints, and intuitively they will be useful

only if the intersection NI (for “new intersection”) of

the relaxed polyhedron and of the new convex hull of

the integer solutions of the kept constraints is smaller

than the intersection OI (for “old intersection”) of the

relaxed polyhedron and of the old convex hull of the

integer solutions of the kept constraints. This in turn is

only possible if the new convex hull polyhedron is

smaller than the old one, since the dualized

constraints are the same in both cases.

Example 6. Consider again the GAP, and its weak

Lagrangian relaxation in which the knapsack constraints

(KP) are dualized. One could add to the remaining

multiple choice constraints a surrogate constraint of the

dualized constraints, for instance the sum of all knapsack

constraints, which is obviously weaker than the original

knapsack constraints. The Lagrangian problem does not

decompose anymore, but its new structure is that of

a multiple choice knapsack problem, which is usually

easy to solve with specialized software, and much easier

than the aggregate knapsack without multiple choice

constraints. The above strengthening of the Lagrangian

bound is simple, yet potentially powerful.

Lagrangian Heuristics and Branch-and-Price

Lagrangian relaxation provides bounds, but it also

generates Lagrangian solutions. If a Lagrangian

solution is feasible and satisfies complementary

slackness (CS), one knows that it is an optimal solution

of the IP problem. If it is feasible but CS does not hold, it

is at least a feasible solution of the IP problem and one

still has to determine, by BB or otherwise, whether it is

optimal. Otherwise, Lagrangian relaxation generates

infeasible integer solutions. Yet quite often these

solutions are nearly feasible, as one got penalized for

large constraints violations. There exists a very large

body of literature dealing with possible ways of

modifying existing infeasible Lagrangian solutions to

make them feasible. Lagrangian heuristics are

essentially problem dependent. Here are a few hints on

how one may want to proceed. One may for instance try

to get feasible solutions in the following way:
(1) by modifying the solution to correct its

infeasibilities while keeping the objective

function deterioration small.

Example: in production scheduling, if one relaxes

the demand constraints, one may try to change

production levels (down or up) so as to meet the

demand (de Matta and Guignard 1994).

(2) by fixing (at 1 or 0) some of the meaningful

decision variables according to their value in the

current Lagrangian solution, and solving optimally
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the remaining problem. Chajakis et al. (1996)

called this generic approach the lazy Lagrangian

heuristic. One guiding principle may be to fix

variables that satisfy relaxed constraints.

Part of the success of Lagrangian relaxation comes

from clever implementations of methods for solving the

Lagrangian dual, with powerful heuristic imbedded at

every iteration. In many cases, the remaining duality

gap, i.e., the relative percentage gap between the best

Lagrangian bound found and the best feasible solution

found by heuristics is sufficiently small to forego

enumeration. In some instances however an optimal or

almost optimal solution is desired, and a Branch-and-

Bound scheme adapted to replace LP bounds by LR

bounds can be used. If the Lagrangian dual is solved

by column generation, the scheme is called Branch-and-

Price, as new columns may need to be priced-out as one

keeps branching see Desrosiers et al. 1984), (Barnhart

et al., 1998). In that case, branching rules need to be

carefully designed. The hope is that such schemes will

converge faster than LP-based Branch-and-Bound, as

bounds will normally be tighter and nodes may be

pruned faster. The amount of work done at a node,

though, may be substantially more than solving an LP.

Concluding Remarks

• Lagrangian relaxation is a powerful family of tools

for solving approximately integer programming

problems. It provides

• stronger bounds than LP relaxation when the

problem(s) don’t have the Integrality Property.

• good starting points for heuristic search.

• The availability of powerful interfaces (GAMS,

AMPL, etc.) and of flexible IP packages makes it

possible for the user to try various schemes and to

implement and test them.

• As illustrated by the varied examples described in

this paper, Lagrangian relaxation is very flexible.

Often some reformulation is necessary for a really

good scheme to appear.

• It is not necessary to have special structures

embedded in a problem to try to use Lagrangian

schemes. If it is possible to decompose the problem

structurally into meaningful components and to

split them through constraint dualization, possibly

after having introduced new variable expressions, it

is probably worth trying.

• Finally, solutions to one or more of the Lagrangian

subproblems might lend themselves to Lagrangian

heuristics, possibly followed by interchange

heuristics, to obtain good feasible solutions.

Lagrangian relaxation bounds coupled with

Lagrangian heuristics provide the analyst with

brackets around the optimal integer value. These are

usually much tighter than the brackets coming from

LP-based bounds and heuristics

See

▶Branch and Bound

▶Convex Hull

▶Convex Optimization

▶Heuristics

▶ Integer and Combinatorial Optimization

▶Traveling Salesman Problem
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Lanchester Attrition

The concept of an explicit mathematical relationship

between opposing military forces and casualty rates.

The two classical laws are the linear law, that gives the

casualty rate (derivative of force size with respect to

time) of one side as a negative constant multiplied by

the product of the two sides’ force sizes, and the square

law, which gives the casualty rate of one side as

a negative constant multiplied by the opposing side’s

force size.

See

▶Battle Modeling

▶Homogeneous Lanchester Equations

▶Lanchester’s Equations

Lanchester’s Equations

Joseph H. Engel

Bethesda, MD, USA

Introduction

Lanchester’s equations are named for the Englishman,

F.W. Lanchester, who formulated and presented them

in 1914 in a series of articles contributed to the British

journal, Engineering, which then were printed in toto

in Lanchester (1916). More recent presentation of

these results appeared in the 1946 Operations

Evaluation Group Report No. 54, Methods of

Operations Research by Philip M. Morse and George

E. Kimball, which was published commercially by

John Wiley and Sons (Morse and Kimball 1951). In

addition, a reprint of the original 1916 Lanchester

work, “Mathematics in Warfare,” appeared in The

World of Mathematics, Vol. 4, prepared by James R.

Newman and published by Simon and Schuster in

1956.

The significance of these equations is that they

represented possibly the first mathematical analysis

of forces in combat, and served as the guiding light

(for the U.S. and its allies) behind the development,
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during and after World War II, of all two sided combat

models, simulations, and other methods of calculating

combat losses during a battle.

It appears that M. Osipov developed and published

comparable equations in a Tsarist Russian military

journal in 1915, perhaps independent of Lanchester’s

results. A translation of his work into English, prepared

by Robert L. Helmbold and Allen S. Rehm, was

printed in September 1991 by the U.S. Army

Concepts Analysis Agency.

Lanchester’s equations present a mathematical

discussion of concepts such as the relative strengths

of opposing forces in battle, the nature of the weapons,

the importance of concentration, and their effects on

casualties, and the outcome of the battle. His

arguments are paraphrased here, preserving much of

his original symbolism. The equations deal with

ancient warfare and modern warfare.

Ancient Warfare

Lanchester explained that, because of the limited

range of weapons in ancient warfare (like swords),

the number of troops on one side of a battle (the Blue

force) that are actively engaged in hand-to-hand

combat on the combat front at any time during the

battle must equal approximately the number of troops

responding to them on the other side (the Red force).

For this reason, one may assume that the rate at which

casualties are produced is constant, because the

number of troops actively engaged on each side is

constant (until very near the end of the battle), and

the rate c (>0), at which Blue combatants become

casualties is a product of the fixed number of Red

troops engaged and their average individual casualty

producing effectiveness (dependent on the average

strength of Red’s weapons and the effectiveness of

the Blue defenses). Similar results apply to k (>0),

the Red casualty rate. The two casualty rates need not

be the same, as the weapons and defenses of the two

sides may differ.

If b(t) is the number of effective Blue troops at time

t after the battle has started and r(t) is the number of

effective Red troops, the following equations can be

assumed to obtain:

db dt= ¼ �c; dr dt ¼ �k= : (1)

The relationship between the sizes of the two forces

may easily be ascertained by observing from (1) that

db dr= ¼ c k= ; (2)

from which it can be deduced that

k bð0Þ � bðtÞ½ � ¼ c rð0Þ � rðtÞ½ �: (3)

In the above equations, b(0) and r(0) are assumed to

be the initial (positive) sizes of the forces at time 0, the

beginning of the battle, and the equations are valid only

as long as b(t) and r(t) remain greater than zero.

Assuming the combatants battle until all the troops

on one side or the other are useless for combat,

having become casualties, the battle ends at the

earliest time when b(t) or r(t) becomes equal to zero.

Thus, solving for r in (3) when b becomes 0 (or vice

versa) yields: when

bðtÞ ¼ 0; rðtÞ ¼ c
rð0Þ � k
bð0Þ½ � c=

and when

rðtÞ ¼ 0; bðtÞ ¼ k
bð0Þ � c
rð0Þ½ � k= : (4)

Thus, if c∗r(0) > k∗b(0), the Red force wins the

battle, while if k∗ b(0) > c∗ b(0), the Blue force wins

the battle. Summarizing these observations by

designating the initial effectiveness of the Blue force

to be k∗b(0), and that of the Red force c∗r(0), shows

that the force with the larger initial effectiveness wins,

while equal initial effectiveness ensures a draw.

It is also simple to return to the original differential

equations of (1) and to solve them to determine the

number of effective troops of either force as a linear

function of time. This essentially completes

Lanchester’s modeling of ancient warfare.

Modern Warfare

Lanchester postulated that the major difference

between modern and ancient warfare is the ability of

modern weapons (such as rifles and, to a lesser degree

bows and arrows, cross bows, etc.) to produce

casualties at long range. As a result, the troops on one

side of an engagement can, in principle, be fired upon

by the entire opposing force. Consequently, assuming
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that all of each of the troops on a side have the same

(average) ability to produce casualties at a fixed rate,

the combined casualty rate against a given side is

proportional to the number of effective troops on the

other side.

This leads directly to the following differential

equations constituting Lanchester’s model of modern

warfare:

db dt= ¼ �c
r; dr dt= ¼ �k
b: (5)

As in the ancient warfare case, the individual

casualty producing rates, c and k, are assumed to be

known constants for the duration of the battle.

Now combine these two equations (as was done in

the ancient warfare case) and obtain

db dr= ¼ c
rð Þ k
b= : (6)

Equation (6) is solved to obtain the relationship

between the numbers of effective forces on the two

sides as the battle progresses. This leads to

k b2ð0Þ � b2
	 


¼ c r2ð0Þ � r2
	 


: (7)

Since these equations are valid only when b� 0 and

r� 0, observe, as in the ancient warfare case, that, with

the battle ending when the losing side has been reduced

through casualties to no effective troops, and the victor

has a positive number of effective troops, the force

with the larger initial effectiveness, [k∗b2(0) for Blue

and c∗r2(0) for Red], will win the battle, while equal

initial effectiveness produces a draw. Equation (7) and

this paragraph constitute Lanchester’s Square Law for

his model of modern warfare.

Again, as in the ancient warfare case, it is possible

to solve the initial differential equations in (5) to obtain

the specific functions that describe the behavior of the

side of either force as a function of time. These results

also appear in Morse and Kimball, (1951), and this

essentially completes Lanchester’s modeling of

modern warfare.

Extensions

In presenting his results, Lanchester used many

techniques that are taken for granted in contemporary

OR practice. He formulated clear assumptions about the

operation of the system he was studying, derived the

mathematical consequences of his assumptions, and

discussed how variation of assumptions affected results.

Consequently he was able to provide specific numerical

insights into characteristics of the system that could be

translated into useful ways of improving a system that

operated in accordance with the specified assumptions.

It was possible for Lanchester to accomplish his

mathematical modeling by using what is often

referred to as the First Theorem of Operations

Research:

A function of the average equals the average of the
function.

The above result applies only in very special

circumstances; nevertheless, there are many cases in

which use of this theorem allows deterministic results

to be derived easily. Such results will usually provide

a good approximation of average results occurring in

reality. It is through this technique that various

chemical formulas or formulas in the physical

sciences pertaining to concepts such as temperature,

thermodynamics, etc., were derived.

In those formulations, it is assumed that a group of

many small objects moving at various speeds with

a known average speed will function in the same

manner as if all the objects moved at the same

(average) speed. Similarly, in his warfare modeling,

Lanchester assumed that the casualty producing rate of

every one of the troops on one side of a battle was

constant and equal to the average (per troop) casualty

producing rate of the entire force, and the same is true

of the troops on the other side.

The usefulness of Lanchester’s work is primarily in

its demonstration of the fact that it is possible to draw

mathematical and numerical conclusions concerning

the occurrence of casualties in certain battles that can

be described, a priori, as conforming to certain

specified assumptions concerning how the battle is

conducted. From such an observation, it is possible to

generalize and derive other models that conform to

other sets of assumptions, so that a wider range of

combat situations can be dealt with. This has led to

all sorts of models that can be handled through

generalizations of Lanchester’s techniques.

The analyst can take into account other factors not

specifically covered by Lanchester, such as addition or
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withdrawal of troops in the course of an engagement.

Movement of forces can be considered. Different

weapons and defensive techniques can be studied.

Dispersing and hiding the troops on one side of

a battle (as in guerrilla warfare) affects the rate at

which they can be hit by the other side, which led

Lanchester to present another differential equation

for such a force. This leads to analyses in which one

or the other or both forces engage in ancient, modern,

or guerrilla warfare. There are nine kinds of battles that

an analyst can deal with just by adding the

consideration of the possibility of guerrilla warfare to

his bag of tricks (Deitchman 1962).

Clearly there is a great deal of flexibility in deriving

models involving the use of deterministic differential

equations that predict specific average results. The

probabilistic events that take place during the course

of a battle can also be dealt with in comparatively

simple cases as demonstrated by B.O. Koopman and

described in Morse and Kimball (1951). Regrettably,

the mathematics of probabilistic systems is frequently

much more difficult than that of deterministic systems,

and the need to recognize the existence of all sorts of

complications in a battle, frequently leads to rather

complicated and abstruse mathematics which can

best be handled through the use of computers for the

required numerical calculations.

The field of combat simulation is recognized as

a direct descendant of the Lanchester approach. Of

historic interest in this connection is the fact that Lt.

Fiske of the U.S. Navy presented, in 1911, a model of

warfare consisting of a salvo by salvo table that

computed casualties on two sides of a battle. This

material was brought to the attention of contemporary

analysts by H.K. Weiss (1962).

Engel (1963) showed that the equations of the Fiske

model were difference equations that became, in the

limit as the time increment between successive

salvos approached zero, identical to the Lanchester

differential equations of modern warfare. In a

sense, this validated the use of discrete time models

that approximated combat models for computer

calculations, allowing greater confidence on the part

of the analyst that no great surprises would result from

a use of such discrete time approximations of combat

models.

A cautionary note must be sounded at this point.

Before using whatever mathematical model the analyst

may have derived in discussing any past or future

battles, the analyst must be certain that the

assumptions of the model on how the battle will be

conducted and terminated pertain to the battle being

analyzed. The analyst should be able to derive the

appropriate values of any parameters (such as b(0),

r(0), c and k) to be used in the Lanchester or other

models believed to apply in the case under study.

Thought experiments do not suffice. The analyst must

examine data to determine whether the assumptions

provide a valid description of the way the battle

proceeds, and to ascertain from relevant combat and

experimental data that the model’s numerical values

for the parameters are appropriate.

Validation of Equations

Lanchester did not provide any demonstration of

the relevance of his models to any specific historic

battles, although he did discuss examples from

history in which he suggested that the results of

certain tactical actions were consistent with results

that could be derived from his models. A validation

of Lanchester’s modern warfare equations was first

given by Engel (1954), based on an analysis of the

Battle of Iwo Jima during World War II. The analysis

showed that the daily casualties inflicted on the U.S.

forces over the approximately forty days of the battle

were consistent with Lanchester’s model for modern

warfare. Since that time, additional analyses of combat

results and experiments have demonstrated that the

values of various parameters can be estimated for use

in specified combat situations, and that appropriate

combat models can be used in conjunction with those

parameter values to obtain results of interest to military

planners and decision makers.

The modeling methodology pioneered by

Lanchester in the field of combat casualty analysis

has served as a most important guide for analysts of

military problems. He showed how application of

these techniques can be used in developing

mathematical models of combat that can be applied

in forecasting the results of hypothetical battles. This

enables operations research analysts to predict

outcomes of these battles, plan tactics and strategy,

develop weapons requirements, determine force

requirements, and otherwise assist planners and

decision makers concerned with the effective use of

military forces.
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See

▶Battle Modeling

▶Military Operations Research

▶Verification, Validation, and Testing of Models
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Laplace Transform

For any function g(t) defined on t � 0 (e.g., a

probability density), its Laplace transform is defined

as
Ð1
0
e�stg(t)dt, Re(s) > 0.

Laplace-Stieltjes Transform

For any function G(t) defined on t � 0 (e.g.,

a cumulative probability distribution function),

its Laplace-Stieltjes transform (LST) is defined asR
0

1e�stdGðtÞ;ReðsÞ> 0. When the function G(t) is

differentiable, it follows that the LST is equivalent

to the regular Laplace transform of the derivative, say

g(t) ¼ dG(t)/dt.

Large Deviations

In probability theory, the study of asymptotic tail

behavior of sequences of probability distributions.

For example, the probability that a sample mean

exceeds a certain threshold decays exponentially to

zero according to some rate function. Large

deviations theory is used in stochastic simulation for

more effectively estimating rarely occurring events.

See

▶Rare Event Simulation
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Large-Scale Systems

James K. Ho

University of Illinois at Chicago, Chicago, IL, USA

Introduction

In OR/MS, large-scale systems refer to the

methodology for the modeling and optimization of

problems that, due to their size and information

content, challenge the capability of existing solution

technology (Lasdon 1970). There is no absolute

measure to classify such problems. In any given

computing environment, the cost-effectiveness of

problem solving generally depends on the dimensions

and the volume of data involved. As problems get

larger, the cost tends to go up, lowering effectiveness.

Even before the physical limits of the hardware or the

numerical resolution of the software are exceeded, the

effectiveness of the solution environment may have

become unacceptable. Efforts to improve on any of

the relative performance measures such as solution

time, numerical accuracy, memory and other resource

requirements, are subjects in the topic of large-scale

systems. Since solving larger problems more

effectively is also an obvious goal in all

specializations of operations research, there are

natural linkages and necessary overlaps with most

other areas in the field (Nemhauser 1994).
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All known methodology for large-scale systems

can be viewed as the design of computational

techniques to take advantage of various structural

properties exhibited by both the problems and

known solution algorithms (Koussoulas and

Groumpos 1999). Broadly speaking, such special

properties can be regarded as either micro-structures

or macro-structures. Micro-structures are properties

that are independent of permutations in the ordering

of the variables and constraints in the problem. An

example is sparsity in the constraint coefficients.

Macro-structures are those that depend on such

orderings. An example is the block structure of

loosely coupled or dynamic systems.

Using Micro-Structures of Problems

In the modeling of real systems, the larger the problem,

the less likely it is for a variable to interact with all the

others. If each variable is coupled only to a small

subset of the total, the resulting constraints will be

sparse. Techniques that eliminate the representation

of the nonexistent interactions can reduce storage

requirement significantly. For example, a linear

program with 10,000 variables and 10,000 constraints

has potentially 108 coefficients. If on the average, each

variable appears in 10 constraints, there will be only

105 nonzero coefficients, implying a density of 0.1%.

Sparse matrix methods from numerical analysis have

been used with great success here. Furthermore, the

nonzero coefficients may come from an even smaller

pool of unique values. This feature is known as

supersparsity and allows additional economy in

data storage. Large, complex models are usually

generated systematically by applying the logic of the

problem iteratively over myriad parameter sets. This

may lead to formulations with redundant variables

and constraints. Examples include flow balance

equations that produce a redundant constraint when

total input equals total output; lower and upper

bounds that are equal imply the variable can be fixed.

Methods to simplify the problem by identifying and

removing such redundancies are incorporated into the

procedure of preprocessing. It is not unusual to observe

reductions of problem dimensions by 10 to 50% with

this approach.

Using Micro-Structures of Algorithms

Algorithms may have steps that are adaptable

to advanced computing architecture at the

micro-processing level. An example is the vectorization

of inner-product calculations in the simplex method.

A completely different exploit is the relatively low

number of iterations required by interior-point

methods. As the number of iterations seems to grow

rather slowly with problem size, it is a micro-structure

of such algorithms that automatically sheds light on

the optimization of large-scale systems. Yet another

promising approach that falls under this heading is the

use of sampling techniques in stochastic optimization.

Using Macro-Structures of Problems

Most large-scale systems are comprised of interacting

subsystems. Examples are multidivisional firms

with a headquarters coordinating the activities of the

semi-autonomous divisions; time-phased models of

dynamic systems with linkages only among adjacent

time periods; capital investment or financial planning

models with each period linked to all subsequent

periods. Linear programming modeling of the

above examples gives rise to problems with

the block-angular, staircase and block-triangular

structures, respectively (Figs. 1, 2, and 3). Other

variations and combinations are also possible. Two

major approaches to take advantage of such

structures are decomposition and factorization.

Decomposition relies on algorithms that transform

the problem into a sequence of smaller subproblems

that can be solved independently. Various schemes

are devised to coordinate the subproblems and

steer them towards the overall solution. Many

algorithms are derived from the Dantzig-Wolfe

decomposition principle which provides a rigorous

framework for this approach. Factorization is the

adaptation of existing algorithms to take advantage

of the problem structure. In the case of the

simplex method, the representation of the basis

matrix required at each step can be partitioned into

blocks and updated separately. It has been shown

that all of the simplex-based techniques proposed

over the years under somewhat confusing guises
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of partitioning and decomposition are indeed

special cases of the factorization approach (Dantzig

et al. 1981).

Using Macro-Structures of Algorithms

Both decomposition and factorization algorithms are

natural candidates for parallel and distributed

computation since they involve the solution of

independent subproblems. The latter can be solved

concurrently on multiprocessor computers of various

architectures. Particularly suitable is the class of

Multiple-Instruction-Multiple-Data (MIND) machines

that are essentially networks of processors that

can execute independent instructions. They represent

a cost-effective way to harness tremendous computing

power from relatively modest and economical

components. One processor can be programmed as

the coordinator of the algorithmic procedures.

Each of the other processors can be assigned

a subproblem and programmed to communicate with

the coordinating process. As the gain in overall

efficiency is bounded by the number of processors

used, the intent of this approach is to realize the

full potential of certain algorithms rather than

fundamentally enhancing their performance. It is,

however, becoming an essential aspect of large-scale

systems, as multi-processor computers are expected to

be prevalent (Eckstein 1993). Early results have been

obtained for decomposition (Ho and Sundarraj 1997),

factorization (Ho and Sundarraj 1994), and barrier

methods (Lustig and Rothberg 1996).

Concluding Remarks

Linear and mixed integer programming remain

the primary focus in the optimization of

large-scale systems. New computer architectures with

ever-increasing processing power and memory

capacities have facilitated the empirical approach to

algorithmic development. Experimentation with

large-scale problems becomes a viable strategy to

identify, test, and fine tune ideas for improvement.

This has been especially successful in commercial

implementations of both the simplex and interior-point

methods exploiting mainly the micro-structures of

problems and algorithms. Problems with hundreds of

Large-Scale Systems, Fig. 1 Block-angular structure

Large-Scale Systems, Fig. 2 Staircase structure

Large-Scale Systems, Fig. 3 Block-triangular structure

L 866 Large-Scale Systems



thousands of constraints and millions of variables are

solvable on workstation-grade computers (Fourer

2009). Earlier experiences with macro-techniques in

decomposition and factorization did not have the

benefits of the more modern technological advances.

The results are either inconclusive or less than

promising (Ho 1987). Future work, especially in

hybrid schemes using advanced hardware, may lead to

significant contributions to large-scale non-linear,

integer and stochastic optimization.

See

▶Dantzig-Wolfe Decomposition Algorithm

▶Density

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Nonlinear Programming

▶ Parallel Computing

▶ Sparsity

▶ Super-Sparsity
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Las Vegas Algorithm

Randomized algorithm that is guaranteed to give

the correct result 100% of the time, in contrast to

Monte Carlo methods, which provide statistical

bounds.

See

▶Monte Carlo Methods

▶Randomized Algorithm
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Latest Finish Time

The latest time an activity must be completed without

delaying the end of a project. It is simply the sum of the

latest start time of the activity and its duration.

See

▶Network Planning

Latest Start Time

The latest time an activity can start without

delaying the end of a project. A delay of an activity

beyond the latest start time will delay the entire project

completion by a corresponding amount. These times

are calculated on the basis of a reverse pass through

the network.

See

▶Network Planning
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Latin Square

▶Combinatorics

LCFS

A queueing discipline wherein customers are selected

for service in reverse order of their order of their

arrival, i.e., on a last-come, first-served basis.

See

▶LIFO

▶Queueing Theory

LCP

Linear complementarity problem.

See

▶Complementarity Problems

▶Quadratic Programming

LDU Matrix Decomposition

For a nonsingular square matrix A, the transformation

by Gaussian elimination of A into the form LDU,

where L is a lower triangular matrix, D is a diagonal

matrix, and U is an upper triangular matrix. It can

be written so that the diagonal elements of L and

U are equal to one and D is the diagonal matrix

of pivots.

See

▶LU Matrix Decomposition

▶Matrices and Matrix Algebra

Lean Manufacturing

▶Quality Control

Lean Six Sigma

▶Quality Control

Learning

James R. Buck

The University of Iowa, Iowa City, IA, USA

Introduction

Learning is a human phenomenon where performance

improves with experience. There are a number of

reasons for task improvement. As tasks are repeated,

elements of the task are: better remembered, cues are

more clearly detected, skills are sharpened, eye-hand

coordinations are more tightly coupled, transitions

between successive tasks are smoothed, and

relationships between task elements are discovered.

Barnes and Amrine (1942), Knowles and Bell (1950),

Hancock and Foulke (1966), Snoddy (1926), and

Wickens (1992) have described these and other

sources of human performance change. All these

causes of individual person improvement manifest

themselves in faster performance times, fewer errors,

less effort, and there is often a better disposition of the

person as a result.

Learning is implied by performance changes due

primarily to experience. Changes in the methods of

performing a task, replacing human activities with

machines, imparting information about the job,

training, acquiring performance changes with

incentive systems, and many other things can cause

performance changes other than learning. Thus,

detection involves the identification of an

improvement trend as a function of more experience.

It also involves the elimination of other explanations

for this improvement. Analogous to a theory, learning

can never be proved; it can only be disproved.
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After detecting learning, measurement and

prediction follows. These activities involve fitting

mathematical models, called learning curves, to

performance data. First, there is the selection of an

appropriate model. Following the selection of

a model, there is the matter of fitting the selected

model to performance data. In some cases alternative

models are fit to available data and the quality of fit is

a basis in the choice of a model.

Some of those sources which contribute to an

individual person’s improvement in performance with

experience are similar to the causes of improvement by

crews, teams, departments, companies, or even

industries with experience. As a result, similar terms

and descriptions of performance change are often fit to

organizational performance changes. However, the

term progress curves (Konz 1990) is more often

applied to cases involving: assembly lines, crews,

teams, departments, and other smaller groups of

people, whereas the term experience curves is

sometimes applied to larger organizational groups

such as companies and industries (Hax and

Majluf 1982). A principal distinction between

these different types of improvement curves is that

between-person activities (e.g., coordination) occur

as well as within-person learning. In the case of

progress curves, there are improvement effects due

to numerous engineering changes. Experience

curves also embody scientific and technological

improvements, as well progressive engineering

changes and individual-person learning. Regardless

of the person, persons, or thing which improves or

the causes of improvement, the same learning

curve models are frequently applied. Progress

and experience curves are really forms of

personification.

Learning occurs in a number of important

applications. One of these applications is the

prediction of direct labor changes in production. Not

only is this application important to cost estimation, it

is also important in production planning and manning

decisions. Another application is the selection of an

operational method. If there are alternative methods of

performing particular operations which are needed,

then one significant criterion in the selection of an

appropriate method is learning because the average

cost can favor one method over another that has

lower initial performance costs. In other cases, one

operation can cause bottlenecks in others unless the

improvements with experience are sufficient over

time. Also, production errors can be shown to

decrease with experience as another form of learning

and so learning is important in quality engineering and

control.

Performance Criteria and Experience Units

Performance time is the most common criterion used

for learning curves in industry. Production cycles are

also the most commonly used variable for denoting

experience. If ti is the performance time on the ith

cycle, then a learning curve should predict ti as

a function of n cycles. Since learning implies

improvement with experience, then one would expect

ti � ti�1 for the typical case, i ¼ 1, 2,. . ., n cycles.

An associated time criterion on the ith cycle is the

cumulative average performance time on the ith cycle

or Ai. Cumulative average times consists of the sum of

all performance times up to and including the nth cycle

divided by n. In the first cycle, A1¼ t1. With learning, ti
tends to decrease with i and so does Ai. However, Ai

decreases at a slower rate than ti. This effect can be

shown by the first-forward difference of Ai, which is

DAn ¼ Anþ1 � An ¼

Pnþ1

i¼1

ti

nþ 1
�

Pn

i¼1

ti

n
¼ tnþ1 � An

nþ 1
: (1)

So long as tn+1 is less than An, then DAn is negative

and the cumulative average time continues to decrease.

It is also noted in (1) that with sequential values of Ai

for i ¼ 1, 2,. . ., n, the values of ti can be found. On the

other hand, Ai can be predicted directly rather than ti.

Another criterion of interest is accuracy. However,

it is usually easier to measure errors in production as

the complement of accuracy. Thus, the sequence of

production errors are e1, e2,. . ., ei,. . ., en over n serial

cycles where ei is the number of errors found in

a product unit as in typing errors per page (Hutchings

and Towill 1975). If the person is doing a single

operation on a product unit, then either an error is

observed with a unit of production or it is not and

observations over a production sequence is a series of

zeros and ones. A more understandable practice is to

define ei as the fraction of the possible errors, where the

observed number of errors is divided by the m possible
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errors at an operation (Fitts 1966; Pew 1969). In this

way, ei is 0, some proper fraction, or 1. It also follows

that a learning curve could be fit to the series of ei
values over the n observations sequential units of

production or to the cumulative average errors. If

learning is present, then one would expect to see

a general decrease in ei with increases in i ¼ 1, 2,. . .,

n and also the cumulative average errors would

similarly decrease, but with a rate lag compared to

the serial errors.

Pew (1969) invented the speed-accuracy-operating-

characteristic graph which provides simultaneous

analyses of correlated criteria. This operating

characteristic consists of a bivariate graph where one

axis denotes performance time per unit (complement is

the speed) and the other axis denotes the number of

errors per unit (complement is the accuracy).

Simultaneous plots of speeds and accuracies with

experience would be expected to show increases in

both criteria with more experience. The slope of

these plots with increases of experience describes

bias between these criteria. It should be noted that

when the power-form model is used for a prediction

of learning performance, then logarithmic axes’

measurements will linearize the plots.

Other Learning Metrics

Most applications of learning description, usually

known as learning curves, use the production units as

experience units, either as single units or lots. The time

required to produce that product unit is the

corresponding performance units. An alternative

approach to predicting learning effects is to describe

cumulative time as the experience unit (i.e., hours or

days) and the number of production units produced

during that experience unit. Thus, for cumulative

production time t ¼ 1, 2, 3,. . ., k,. . ., m and

corresponding production of n1, n2, n3,. . ., nk,. . ., nm.

Most learning curve models merely relate nk to k. An

alternative model of learning, which is not often

shown, is the discrete exponential model which

relates pairs of nk values as

nk ¼ an1 þ b (2)

where a and b are parameters. This model was

originally proposed by Pegels (1969) for startup cost

prediction. Later, Buck, Tanchoco, and Sweet

(1976) showed that this model was really a first-order

for-ward-difference equation (Goldberg 1961). It

follows in this model that

nk ¼ ak½n1 � n
� þ n
 (3)

where n∗ ¼ b/(1 � a) > n1 and 0 < a <1. Since the

parameter a is a fraction, the first term of (3)

approaches zero with increasing k and so n∗ is the

asymptote. Accordingly, nk approaches n∗

exponentially with each discrete unit of time. Bevis

et al. (1970) provided a similar model as

nk ¼ n
 þ ½n1 � n
�e�ck (4)

where k is a continuous measure to time and c is

a parameter. Buck and Cheng (1993) used the

discrete form in traditional format, but they showed

that this model can be more difficult to fit to data than

the more common power-form model. It can, however,

give a more accurate description of human learning.

See

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Learning Curves
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Learning Curves

Andrew G. Loerch

Center for Army Analysis, Fort Belvoir, VA, USA

Introduction

With experience and training, individuals and

organizations learn to perform tasks more efficiently,

reducing the time required to produce a unit of output.

This simple and intuitive concept is expressed

mathematically through the use of the learning curve.

The learning curve was introduced in the literature

by Wright (1936) who observed the learning

phenomenon through his study of the construction of

aircraft prior toWorldWar II. Since then, these models

have been used in the areas of work measurement, job

design, capacity planning, and cost estimation in many

industries. Yelle (1979) summarized 90 articles

dealing with learning curves. Dutton et al. (1984)

traced the history of progress functions by examining

300 articles. They note that the terms learning curve,

progress function, and experience curve are often used

interchangeably. However, many authors differentiate

between them in the following way. Learning curves

are used to describe only direct-labor learning, while

progress functions also incorporate learning by

managerial and technical personnel, as well as

improvements due to technological change. The term

experience curve is used to describe learning or

progress at the industry level. Experience curves

often use price as a surrogate measure for progress or

learning. In the discussion below, no distinctions are

made between these terms.

Dutton et al. (1984) also noted that learning curves

are frequently confused with economies of scale.

Although they are observed together in many cases,

the two are separate effects with different causes.

Progress and learning can occur in the absence of

changes in size or scale of operations.

Basic learning-curve theory is described below,

with emphasis given to the so-called power model.

Other models are then introduced. Finally, issues

regarding the estimation of learning-curve parameters

are presented.

The Power Model

Also known as the log-linearmodel, the powermodel is

the most frequently encountered implementation of the

various learning-curvemodels.Wright observed that as

the quantity of units manufactured doubles, the number

of direct labor hours it takes to produce an individual

unit decreases at a uniform rate. So, after one doubling

of the cumulative production, direct-labor hours may

have declined to, say 80% of its previous value. After

an additional doubling there is another decline to 80%

of that value, or 64% of the original. The learning rate,

which is the actual decline per doubling, 80% in the

above example, is assumed to be a characteristic of

each particular type of manufacturing process.

In this model, learning curves have the following

mathematical form:

LðyÞ ¼ Ayb;

where L(y) ¼ the number of hours needed to produce

the yth unit,A¼ the number of hours needed to produce

the first unit, y ¼ the cumulative unit number, and

b ¼ the learning index, the learning-curve parameter,

or the learning-curve slope parameter. To account for

the effect of doubling, the learning-curve index is

computed as follows:

b ¼ log rð Þ log 2ð Þ= ;
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where r is the learning rate. Figure 1 shows graphs of

three such curves with different learning rates.

Note that this model is also applicable to cost in

addition to direct-labor hours. In a cost application,

the parameter A would represent the cost of the first

unit produced. The use of learning-curve costing is

complicated by the problem of accounting for

inflation and the change in hourly wages over time. In

any event, labor hours can be easily converted into cost.

In the above model, the number of direct-labor

hours required to produce the yth unit, or the cost of

producing the yth unit is computed. Thus, the model is

referred to as the Unit Formulation, and it is attributed

to James Crawford who introduced its use to the

Lockheed Corporation in 1944 (Smith 1989).

A related model based on the original work of Wright

is the so-called Cumulative Formulation, where, in the

above notation, L(y) would represent the average

labor hours or cost of all the units produced through

the yth unit. Note that the cumulative formulation tends

to smooth the effects of unusually high or low labor

hours or costs for individual or groups of units, and it

has been found to be more useful for application to

batch-type production processes. Although much of

the work on learning curves has been directed at

specifying the functional relation between unit

costs or direct-labor hours and cumulative output, the

range of output measures has been expanded to

include, for example, industrial accidents per unit

output, defects and complaints to quality control per

unit output, and service requirements during warranty

periods.

Variations of the Power Model

While the log-linear model has been, and is the most

widely used model, several other geometries have been

found to provide a better fits in particular sets of

circumstances. Some of the more well-known models

are:

1. Plateau model,

2. Stanford-B model, and

3. S-model.

Figure 2 depicts these models on a logarithmic

scale.

The plateau model was first described by Conway

and Schultz (1959). It is used to represent the

phenomenon that the learning phase of a process is

finite and is followed by a steady state phase. This

model is often associated with machine-intensive

manufacturing.

The Stanford-B model, expressed symbolically as

LðyÞ ¼ A Bþ yð Þb;

represents a process that experiences accelerated

learning after B units are produced (other notation as
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previously defined). This model was developed at the

Stanford Research Institute and is useful for processes

with design changes (Garg and Milliman 1961).

The S-model, described by Cochran (1960),

combines reduced learning at the outset of

production, with another slackening of learning later

in the production process. This model is usually

approximated as a three-segment straight line on

a log-log graph and is sometimes used for heavy

labor-intensive industries.

The choice of the appropriate model is usually

based on empirical studies of the process in question

and historical experience with similar processes. The

utilization of these more complex representations

involves increased difficulty in parameter estimation,

coupled with limited improvement in accuracy. As

such, the basic log-linear model continues to find

favor among practitioners.

Other Factors Affecting Learning

Frequently, other factors affect production that, if

ignored, could bias the estimation of the rate of

learning. As mentioned, the presence of economies of

scale would result in the situation where a more than

proportional increase in output would be obtained due

to an increase in inputs. If the effects of this variable

are not controlled for in the estimation of learning

rates, and the scale of the operation is gradually

increased over time, the amount of learning would be

overestimated. Other such factors that are independent

of direct labor learning include increased capital

investment, multiple shifts, time lapses between

performance of operations, and production rate.

Argote and Epple (1990) provided a review of the

literature regarding the incorporation of factors that

affect learning.

Estimation of Learning-Curve Parameters

Most estimation schemes rely on the logarithmic

representation of the learning curve, written as follows:

log L ¼ logAþ log y:

The learning-curve parameters, A and b, are

estimated either by plotting historical values on a

log-log graph and visually fitting a line, or by

computing the least squares regression line through

the log-log data. Several computer programs are

commercially available to estimate the learning-curve

parameters.

Frequently, organizations collect historical data for

batches or lots, as opposed to discrete units. To

estimate the parameters in this case, the batch’s

average labor or cost and the unit whose labor or cost

corresponds to that average, the lot midpoint, must be

known. The logarithm of this value is then used as the

independent variable in the regression with the log of

the average unit cost of the lot as the dependent

variable. Note that the unit expressed by the batch

size divided by two is not the lot midpoint since the

learning curve is nonlinear. The actual lot midpoint,Q,

is represented as the following:

Q ¼ yl � yf þ 1
� �

1þ bð Þ
yl þ :5ð Þ1þb � yf � :5

� �1þb

" #�1 b=

;
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where yf ¼ the first unit of the batch, and yl ¼ the last

unit of the batch. Observe that this value cannot be

computed without first knowing the learning-curve

index, b. As such, the approximate algebraic lot

midpoint is used. This value is computed by:

Q ¼ yf þ yl þ 2
ffiffiffiffiffiffiffiffi

yf yl
p

4

The learning-curve parameters are estimated first

using the approximate value of Q for each lot. The

value of b is then used to calculate the actual lot

midpoint, and the parameters are estimated again,

and then iterated until the desired accuracy is obtained.

Concluding Remarks

Research in the area of learning curves has been

extensive and many models have been hypothesized

to describe the learning process. Learning-curve

models have proven to be useful tools in many

business and government applications. These include

cost estimation, bid preparation and evaluation, labor

requirement estimation, establishment of work

standards, and financial planning.

See

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Learning
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Level Crossing Methods

Percy H. Brill

University of Windsor, Windsor, Ontario, Canada

Introduction

Level crossing methods for obtaining probability

distributions in stochastic models such as queues and

inventories were originated by Brill (1975, 1976,

1979) and elucidated further in Brill and Posner

(1974, 1975, 1977, 1981), and Cohen (1976, 1977).

These methods began as an essential part of system

point theory and are also known as system point

analysis, sample path analysis, or level crossing

technique, approach, theory, or analysis in the

literature (Brill 1975, 2008). Level crossing methods

are very useful rate conservation techniques for

stochastic models (Miyazawa 1994).
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Model and Stationary Distribution

Consider a stochastic process {W(t), t � 0} where both

the parameter set and state space are continuous. The

random variable W(t) at time point t may denote the

content of a dam with general efflux, the stock on

hand in an (s,S) or (r,nQ) inventory system with stock

decay, or the virtualwait orworkload in a queue.Assume

that upward jumps of {W(t)} occur at Poisson rate lu
and downward jumps at Poisson rate ld. Let upward

and downward jump magnitudes have cumulative

distribution function (CDF) Bu and Bd, respectively.

Assume that the model parameters are such that the

stationary distribution of W(t) exists as t ! 1. Let G

and g denote the stationary CDF and probability density

function (PDF), respectively. The aim here is to obtain

expressions for g andG in terms of themodel parameters

by using a level crossing approach.

Sample Paths

A sample path of the {W(t)} process is

a right-continuous, real-valued function on the

nonnegative reals whose value at time-point t is the

realized value of random variable W(t). Denote an

arbitrary sample path by the function X(t), t � 0. The

function X has either jump or removable

discontinuities on a sequence of strictly increasing

time points ftn; n ¼ 0; 1; . . .g, where t0 ¼ 0

without loss of generality. Typically, the time

points ftng represent input or output epochs in

dams, arrival epochs in queues, or demand or

replenishment epochs in inventories. Assume that

when a sample path is positive valued, it decreases

continuously on time segments between jump points,

described by dX(t)/dt¼�rX(t), X(t)> 0, tn � t<tnþ1;
n ¼ 0, 1, 2, . . . wherever the derivative exists, and

where r(x) > 0 for x > 0. Note that for the virtual

wait process in queues, r(x) ¼ 1(x > 0) and r(0) ¼ 0.

In an (s,S) continuous review inventory system, where

the stock on hand decays at constant rate k, then

r(x) ¼ k for all x between the reorder level s and

order-up-to-level S.

Level Crossing by Sample Paths

Let x denote a fixed state space level and t0 an arbitrary

positive time point. Let t0 be one of the jump time

points ftng, n ¼ 1, 2, . . . and let d0 and u0 denote

the corresponding downward and upward jump

magnitudes, respectively, where at least one of u0, d

0, is strictly positive. The sample path may down cross

level x at t0> 0 if t0 is any positive epoch, but it can up

cross level x at t0 only if t0 is one of the ftng.
If a sample path down crosses level x at t 0 which is

not one of the ftng, then the down crossing is

a continuous down crossing, since the sample path is

continuous at t0. If a sample path down crosses level

x at t0 which is one of the ftng, then the downward

jump of magnitude d0 brings it from above x to a level

below x. If a sample path up crosses level x at t0, then,

necessarily, t0 is one of the epochs ftng, and the

upward jump of magnitude u 0 brings it from below x

to a level above x.

If both u0 and d0 are strictly positive at t0 which is

one of the ftng, the model mechanism would

determine whether the downward or upward jump is

considered to precede the other. In inventories without

lead time, for example, stock depletions due to

demands (downward jumps) precede stock

replenishments (upward jumps). The jumps are not

part of the sample path per se, but serve only to

construct the path. One may also define level

crossings at some time point t0 by considering the net

jump which has magnitude |u0 � d0| and upward

(downward) direction if u0 > d0(u0 < d0).

Level Crossings and the Stationary
Distribution

Down crossings — Let Du
ct(x) denote the number of

continuous down crossings of level x and D
j
t(x), the

number of jump down crossings of level x during (0, t),

t> 0. Then, for r(x)¼ 1, x> 0 and r(0)¼ 0, it follows

with probability 1 that

lim
t!1

Dc
t ðxÞ
t

¼ rðxÞgðxÞ ðfor all xÞ; (1)

(Brill 1975). The following also holds with

probability 1:

lim
t!1

D
j
tðxÞ
t

¼ ld

Z 1

y¼x

�Bdðy� xÞgdðyÞdy ðfor all xÞ;

(2)
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where god is the limiting PDF at embedded downward

jump points as t!1 and �B � 1� B.

Both Eqs. 1 and 2 also hold upon replacing Du
ct(x)

and Du
ty(x) by their expectations, denoted by E[Dc

t (x)]

and E[Du
ty(x)], respectively, and deleting with

probability 1. For exponentially distributed

interarrivals between downward jumps (Poisson

downward jumps), then gd � g, which is the PASTA

principle.

Up crossings —Let U
j
t (x) denote the number of

jump up crossings of level x during (0, t). Then, with

probability 1,

lim
t!1

U
j
tðxÞ
t

¼ lu

Z x

�1
�Buðx� yÞguðyÞdy ðfor all xÞ;

(3)

where gu is the limiting PDF at embedded

upward-jump time points as t ! 1 (Brill 1975).

Formula (3) gives an expression for the long-run

up crossing rate of level x by any typical sample path

at upward jump points, in terms of an integral

of the density gu. For Poisson upward jumps, gu � g

by the PASTA principle.

A Conservation Law for Level Crossings

For each state space level, the following conservation

law holds:

long run total down crossing rate ¼ long run total up

crossing rate.

This conservation law, together with Eqs. 1, 2 and 3,

enables one to write an integral equation for the PDF g

in which every term has a precise interpretation as

a sample-path down or up crossing rate, namely,

rðxÞgðxÞ þ ld

Z 1

y¼x

�Bdðy� xÞgðyÞdy

¼ lu

Z x

y¼�1
�Buðx� yÞgðyÞdy ðfor all xÞ:

(4)

In (4), the left-hand side depicts the total sample

path long-run down crossing rate of level x, while the

right-hand side depicts the long-run up crossing rate of

the level x. Equation (4) is then solved for g by using

standard applied mathematics techniques.

Applicability

The level crossing technique is applicable to dams

with limited capacity, blocked-input rules,

various control level policies, etc.; to complex

variants of M/G/1, M/M/c, G/M/1 queues with

reneging, bounded virtual wait, server vacations,

various state dependencies, cyclic-service queues;

and to a wide class of inventory, production/

inventory, counter, risk reserve, and related models.

The same level crossing ideas as in Eqs. 1, 2 and 3

have been applied to cycles in regenerative processes

by Cohen (1976, 1977). Upon combining the

regenerative-processes level crossing approach

and the embedded level crossing technique of Brill

(1976, 1979) with the previously widely known

bubble diagram method (rate into a state ¼ rate out of

that state) for discrete state continuous time Markov

chains, level crossing methods can be applied to obtain

probability distributions and other characteristics in

a broad class of stochastic models.

Level Crossing Estimation

The principle established in formula (1) motivates the

idea of usingDc
t (x)/[tr(x)] as an estimate for g(x) when

t is large. Level crossing estimation (also known as

system point estimation) consists of three main steps:

(I) simulating a single sample path over a large

simulated time t; (ii) enumerating the continuous

down crossings of all state space levels over (0, t);

and (iii) computing both point and interval estimates

of g, G and the moments (Brill 1991).

See

▶ Inventory Modeling

▶Markov Processes

▶ PASTA

▶Queueing Theory
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Level Curve

Also called isovalue contour: a curve along which

the values of a given associated function remain

constant.

See

▶ Isoquant

Lexicographic Ordering

An ordering of a set of vectors based on the

lexicopositive (negative) properties of the vectors.

For example, the sequence of vectors {x1,. . ., xq}

is ordered in a lexicographic sense if xi � xj is

lexico-positive for i > j. Such orderings are similar

to dictionary ordering of words and are used to

prove finiteness of the simplex algorithm.

See

▶Cycling

▶Lexico-Positive (Negative) Vector

Lexico-Positive (Negative) Vector

A vector x ¼ (x1,. . ., xn) is called lexico-positive

(negative) if x 6¼ 0 and the first nonzero term is

positive (negative). The vector x is lexico-negative

if � x is lexico-positive. A vector x is greater than

a vector y in a lexico-positive sense if x � y is

lexico-positive.

See

▶Lexicographic Ordering

LGP

Linear goal programming.

See

▶Goal Programming

Libraries

Arnold Reisman1 and Xiaomei Xu2
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The American Heritage Dictionary of the English

Language (1976, p. 753) defines a library is
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“a repository for literary and artistic materials such as

books, periodicals, newspapers, pamphlets, and prints

kept for reading or reference.” This rather classical

notion of a library does not recognize the fact that

libraries are now a subset of the broader field known

as Information Systems (IS). Nevertheless, the scope

of this article will be delimited to institutions which

can be defined as above, albeit with some leeway.

The history of the application of operations

research/management science to libraries is not very

distinguished. Contributions in the library field were

constrained up to and through the decade of the 1970s

by the fact that few operations researchers chose

libraries as a field of interest. Moreover, librarians

have not sought out operations researchers to help in

their problem solving, nor did they offer a particularly

fertile environment for doing OR studies (Chen 1974).

On the other hand, since the 1970s, computer science

has made significant inroads into the library field by

merging with library science to create local and

extended area computer networks linking users with

comprehensive databases.

The first known application of OR to libraries in the

United States can be credited to Bacon and Machol

(1958). The 1960s recorded a more widespread

interest (Cox 1964; Morse 1968; Cook 1968).

A comprehensive review on library operations

research was done by Kantor (1979). In that review,

Kantor summarized all of the previous review articles.

Most noteworthy of these from the OR point of view

are the bibliographies by Slamecka (1972) and Kraft

andMcDonald (1977), and surveys and/or assessments

by Bommer (1975), Kraft and McDonald (1976),

Leimkuhler (1970, 1972, 1977a, 1977b), Churchman

(1972) and Morse (1972).

Literature on utilization of OR in libraries has

classified the field in several different ways. Kantor

(1979) classified papers and projects into the following

groups according to the purpose of the research:

system description; modeling the system; parameter

identification; optimization or multi-valuation; and

application. Rowley and Rowley (1981) classified the

work by the nature of the research (recurrent problems,

on/off decisions, etc.). For the purposes of this article,

a three-dimensional classification is used with one of

the dimensions adopting Rowley’s (1981)

classification, with slight modifications. Based on the

type of problems being analyzed, the application areas

are operational or recurrent problems, such as book

storage problems; strategies or on/off decisions, such

as library location problems; and control/design

problems, such as loan policy problems (Rowley and

Rowley 1981).

The second dimension on the application of OR in

libraries is a classification according to the type of OR

techniques used:

1. Queueing models – Given the average book

circulation time (1/m) and the mean number of

persons who borrow the book (l), the expected

circulation rate of that particular book is derived

using queueing theory (Morse 1968).

2. Simulation – With the number of staff, the

volumes of various jobs (users’ requests, new

issues, overdue fees, etc.) and the job processing

times specified, simulation is used to estimate the

delays, processing times and utilization of each

member of staff and the whole facility (Thomas

and Robertson 1975).

3. Facility location algorithms – The library

facilities and relocation problems are discussed

by Min (1988).

4. Mathematical programming – If there are two

types of information services, both of which

share the same set of resources (staff time in

scanning, indexing, abstracting, etc.), and each of

them has a different unit profit, a linear

programming problem is used to find out how

many services of each type to produce to

maximize the total profit (Rowley and Rowley

1981, 58–64).

5. Network flow models – Given the heights and

thicknesses of a given collection of books and the

cost of different shelf heights, a network model is

developed to determine the optimal number of

shelf heights for minimizing shelving costs

through finding the shortest path in a directed

network (Gupta and Ravindram 1974).

6. Decision theory –A decision regarding whether or

not to install a library security system is addressed

given the installation cost and the probabilities of

success and failure (Rowley and Rowley 1981,

91–92).

7. Search theory – Patterns of browsing in libraries

are addressed in Morse (1970).

8. Transportation models – A routing problem is

explored for a vehicle delivering materials to

branches (Heinritz and Hsiao 1969; McClure

1977).
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9. Inventory control theory – An EOQ model is used

to determine the optimal order quantity for the

stock of a certain library supply (Rowley and

Rowley 1981, 111–116).

10. Probability and statistics – Library book

circulation and individual book popularities are

considered as probabilistic processes by Gelman

and Sichel (1987) who demonstrated the

superiority of beta over the negative binomial

distribution.

11. Benefit cost analysis – Library planning is

addressed by Leimkuhler and Cooper (1971).

Each of these categories could be, in turn, further

characterized by whether or not the research work was

grounded, e.g., based on real world library systems

involving real data and/or bona fide librarians in the

study as opposed to models which were basically what

might be called logico/deductive. A more thorough

discussion is given in Reisman and Xu (1994), where

Table I, page 37, provides a taxonomic review of the

vast bulk of the literature in the field.

As can be seen from the above delineation and the

referenced table, the utilization of OR in libraries is far

from achieving its full potential. Except for simulation

and probability and statistics based applications, the

bulk of the literature is not well grounded in real life

settings. The literature reflects the gap between the

complex mathematical models in OR and the usually

not very quantitatively educated library workers

(Stueart and Moran 1987). To enhance the

application of OR in libraries, Bommer (1975)

suggested a closer working relationship between

operations researchers and library managers.

See

▶ Information Systems and Database Design

in OR/MS

References

Bacon, F. R. Jr., & Machol, R. E. (1958). Feasibility

analysis and use of remote access to library card

catalogs. Paper, presented at the Fall meeting of ORSA
(Unpublished).

Bacon, F. R., Jr., Churchill, N. C., Lucas, C. J., Maxfield, D. K.,
Orwant, C. J., & Wilson, R. C. (1958). Applications of

a teller reference system to divisional library card

catalogues: A feasibility analysis. Ann Arbor, MI:
Engineering Research Institute, University of Michigan.

Bommer, M. (1975). Operations research in libraries: A critical
assessment. Journal of the American Society for Information
Science, 26, 137–139.

Chen, Ching-chih. (1974). Applications of operations research
models to libraries: A case study of the use of monographs in

the Francis A. Countway Library of Medicine, Harvard

University. Unpublished Ph.D. dissertation, Case Western
Reserve University, School of Library Science, Cleveland,
OH.

Churchman, C. W. (1972). Operations research prospects for
libraries: The realities and ideals. Library Quarterly,

42, 6–14.
Cook, J. J. (1968). Increased seating in the undergraduate

library: A study in effective space utilization. In
B. R. Burkhalter (Ed.), Case studies in systems analysis in

a university library (pp. 142–170). Metuchen, NJ: Scarecrow
Press.

Cox, J. G. (1964). Optimal storage of library material.
Unpublished Ph.D. dissertation, Purdue University
Libraries, Lafayette, Indiana.

Gelman, E., & Sichel, H. S. (1987). Library book circulation and
the beta-binomial distribution. Journal of the American

Society for Information Science, 38, 4–12.
Gupta, S. M., & Ravindram, A. (1974). Optimal storage of

books by size: An operations research approach. Journal
of the American Society for Information Science, 25,
354–357.

Heinritz, F. J., & Hsiao, J. C. (1969). Optimum distribution of
centrally processed material. Library Resources and

Technical Services, 13, 206–208.
Kantor, P. (1979). Review of library operations research. Library

Research, 1, 295–345.
Kraft, D. H., & McDonald, D. D. (1976). Library operations

research: Its past and our future. In D. P. Hammer (Ed.),
The information age (pp. 122–144). Metuchen, NJ:
Scarecrow Press.

Kraft, D. H., & McDonald, D. D. (1977). Library operations
research: A bibliography and commentary of the literature.
Information, Reports and Bibliographies, 6, 2–10.

Leimkuhler, F. F. (1970). Library operations research: An
engineering approach to information problems. Engineering
Education, 60, 363–365.

Leimkuhler, F. F. (1972). Library operations research:
A process of discovery and justification. Library Quarterly,
42, 84–96.

Leimkuhler, F. F. (1977a). Operational analysis of library
systems. Information Processing and Management,

13, 79–93.
Leimkuhler, F. F. (1977b). Operations research and systems

analysis. In F. W. Lancaster & C. W. Cleverdon (Eds.),
Evaluation and scientific management of libraries and

information centres (pp. 131–163). Leyden, The
Netherlands: Nordhoff.

Leimkuhler, F. F., & Cooper, M. D. (1971). Analytical models
for library planning. Journal of the American Society for

Information Science, 22, 390–398.
McClure, C. R. (1977). Linear programming and library delivery

systems. Library Resources and Technical Services,

21, 333–344.

Libraries 879 L

L

http://dx.doi.org/10.1007/978-1-4419-1153-7_458
http://dx.doi.org/10.1007/978-1-4419-1153-7_458


Min, H. (1988). The dynamic expansion and relocation of
capacitated public facilities: A multi-objective approach.
Computers and Operations Research (UK), 15, 243–252.

Morse, P. M. (1968). Library effectiveness: A systems approach.
Cambridge, MA: MIT Press.

Morse, P. M. (1970). Search theory and Browsing. Library

Quarterly, 40, 391–408.
Morse, P. M. (1972). Measures of library effectiveness. Library

Quarterly, 42, 15–30.
Reisman, A., & Xu, X. (1994). Operations research in libraries:

A review of 25 years of activity. Operations Research,

42, 34–40.
Rowley, J. E., & Rowley, P. J. (1981). Operations research:

A tool for library management (pp. 3–4). Chicago: American
Library Association.

Slamecka, V. (1972). A selective bibliography on library
operations research. Library Quarterly, 42, 152–158.

Stueart, R. D., & Moran, B. B. (1987). Library management

(3rd ed., pp. 200–202). Littleton, CO: Libraries Unlimited.
Thomas, P. A., & Robertson, S. E. (1975). A computer

simulation model of library operations. Journal of

Documentation, 31, 1–16.

LIFO

The Last-In, First-Out queue discipline in which

customers are selected for service in reverse order of

their arrival (meant to be equivalent to the last-come,

first-served scheme).

See

▶LCFS

▶Queueing Theory

Light-Tailed Distribution

A probability distribution that has an exponentially

decaying complementary CDF, e.g., the normal

(Gaussian) and exponential distributions.

See

▶Heavy-Tailed Distribution

Likelihood Ratio Method

A method for gradient estimation in simulation used

for sensitivity analysis and optimization; also known

as the score function method.

See

▶ Perturbation Analysis

▶ Score Functions

▶ Simulation Optimization

Limiting Distribution

Let pij(t) be the probability that a stochastic process takes

on value j at time t (discrete or continuous), given that

it began at time 0 from state i. If for each j, pij(t)

approaches a limit pj as t ! 1 independent of i, the

set {pj} is called the limiting or steady-state distribution

of the process. For Markov chains in discrete time, the

existence of a limiting distribution implies that there is

a stationary (or invariant) distribution found from

p ¼ pP, where P is the single-step transition matrix,

such that p ¼ p. Similarly, for continuous-time chains,

the steady-state distribution is the probability vector

satisfying the global balance equations pQ ¼ 0, where
Q is the transition rate matrix.

See

▶Markov Chains

▶Markov Processes

▶ Stationary Distribution

▶ Statistical Equilibrium

Lindley’s Equation

An integral equation for the steady-state waiting-

time distribution in the first-come, first-served,

single-server G/G/1 queue. If Wq (x), x � 0, is the
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steady-state distribution function of the delay or

waiting time in the queue, then, for x � 0,

WqðxÞ ¼
Zx

�1

Wqðx� yÞdUðyÞ

with Wq (x) ¼ 0 for x < 0, where the function U(y)

is the distribution function of the random

variable defined as the service time minus the

interarrival time.

Lindley’s equation can also be used to refer to the

finite-time transient recursive equation relating delays

in the first-come, first-served, single-server G/G/1

queue as follows:

Dnþ1 ¼ max 0;Dn þ Sn � Anð Þ;

whereDn is the delay of the nth arriving customer, Sn is

the service time of the nth arriving customer, and An

is the interarrival time between the nth and (n + 1)st

arriving customer.

See

▶Kendall’s Notation

▶Queueing Theory

Line

A line is the set of points x xj ¼ 1� lð Þx1 þ l x2f g,
where x1 and x2 are points in n-dimensional space

and l is a real number. The line passes through the

points x1 and x2, x1 6¼ x2.

Line Segment

The straight line joining any two points in

n-dimensional real space is a line segment. More

specifically, if x1 and x2 are the two points, then the

set of points xjx ¼ 1� lð Þx1 þ lx2; 0 � l � 1f g is the
line segment joining x1 and x2.

See

▶Line

Linear Combination

For a set of vectors (x1,. . ., xn), a linear combination is

another vector y ¼
P

j ajxj, where the scalar

coefficients aj can take on any values.

Linear Equation

The mathematical form a1x1 þ a2x2 þ . . .þ anxn ¼ b

is a linear equation, where the aj and b can take on any

values.

See

▶Hyperplane

Linear Functional

A linear functional f (x) is a real-valued function

defined on an n-dimensional vector space

such that, for every vector x ¼ auþ bv,

f ðxÞ ¼ f ðauþ bvÞ ¼ af ðuÞ þ bf ðvÞ for all

n-dimensional vectors u and v and all scalars a and b.

Linear Inequality

The mathematical form a1x1 þ a2x2 þ . . .þ anxn � b

or a1x1 þ a2x2 þ . . .þ anxn � b is a linear inequality,

where the numbers aj and b can take on any values.

The set of vectors x ¼ x1; . . . ; xnð Þ that satisfy

the inequality form a solution half space.

See

▶Hyperplane
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Linear Programming

Frederick S. Hillier

Stanford University, Stanford, CA, USA

Introduction

Linear programming is one of the most widely used

techniques of operations research and management

science. Its name means that planning (programming)

is being done with a mathematical model (called

a linear-programming model) where all the functions

in the model are linear functions.

Linear Programming Models

Linear programming models come in a variety of

forms. To illustrate one common form, consider the

problem of determining the most profitable mix of

products for a manufacturer. Let n be the number of

possible products. For each product j (j ¼ 1, 2, . . ., n),

a decision variable xj is introduced to represent the

decision on its production rate. Let cj be the profit per

unit of product j produced, and let Z be the total rate of

profit resulting from the choice of product mix. This

choice is constrained by the limited capacities of the

production facilities available for these products. Letm

be the number of different types of facilities needed.

For each type i (i¼ 1, 2, . . .,m), let bi be the amount of

capacity available per unit time and let aij be the

amount of capacity used by each unit produced of

product j (j ¼ 1, 2, . . ., n). The resulting linear

programming model then is to choose x1, x2,. . ., xn so

as to

Maximize Z ¼ c1x1 þ c2x2 þ 	 	 	 þ cnxn

subject to : a11x1 þ a12x2 þ 	 	 	 þ a1nxn � b1

a21x1 þ a22x2 þ 	 	 	 þ a2nxn � b2

..

. ..
.

am1x1 þ am2x2 þ 	 	 	 þ amnxn � bm

and

x1 � 0; x2 � 0; . . . ; xn � 0:

The linear function being maximized in this model

is called the objective function.Them inequalities with

a linear function on the left-hand side are referred to as

functional constraints (or structural constraints), and

the inequalities in the bottom row are nonnegativity

constraints. The constants (cj, bi, and aij) are the

parameters of the model. Any choice of values of

(x1, x2,. . ., xn) is called a solution, whereas a solution

satisfying all the constraints is a feasible solution, and

a feasible solution that maximizes the objective

function is an optimal solution.

Many other applications of linear programming

having nothing to do with product mix also fit this

same form for the model. In these cases, activities of

some other kind replace the production of products,

and resources of some other kind replace production

facilities. For each activity j (j ¼ 1,2, . . ., m), the

decision variable xj represents the decision on the

level of that activity. The problem then is to allocate

these limited resources to these interrelated activities

so as to obtain the best mix of activities (i.e., an optimal

solution) according to the overall measure of

performance adopted for the objective function.

Another common form for a linear programming

model is to minimize the objective function, subject to

functional constraints with � signs and nonnegativity

constraints. A typical interpretation then is that the

objective function represents the total cost for the

chosen mix of activities and the functional constraints

involve different kinds of benefits. In particular, the

function on the left-hand side of each functional

constraint gives the level of a particular kind of benefit

that is obtained from the mix of activities, and the

constant on the right-hand represents the minimum

acceptable level for that benefit. The problem then is to

determine themix of activities that gives the best tradeoff

between cost and benefits according to the model.

Still other linear-programming models have an

equality instead of inequality sign in some or all of

the functional constraints. Such constraints represent

fixed requirements for the value of the function on the

left-hand side.

It is fairly common for large linear-programming

models to include a mixture of functional

constraints — some with � signs, some with � signs,

and some with ¼ signs. Nonnegativity constraints

always have a � sign, but it occasionally is

appropriate to delete this kind of constraint for some

or all of the decision variables.
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Successful applications of linear programming

sometimes use very large models. As described in

a later section, exceptionally efficient algorithms are

available for solving these models. When using

state-of-the-art implementations of these algorithms

and a powerful desktop computer or workstation,

a model with several thousand functional constraints

and decision variables is considered to be of moderate

size. Having a few tens of thousands of functional

constraints and even more decision variables is not

considered particularly large. Far bigger problems

with millions of functional constraints and decision

variables sometimes are solved, depending largely on

whether they have a special structure that can be

exploited.

With large models, it is inevitable that mistakes and

faulty decisions will be made initially in formulating

the model and inputting it into the computer.

Therefore, a thorough process of testing and refining

the model, i.e., model validation, is needed. The usual

end-product is not a single static model, but rather

a long series of variations on a basic model to

examine different scenarios as part of post-optimality

analysis (discussed later). A sophisticated modeling

language usually is needed to efficiently formulate

the model and then to expedite a number of model

management tasks, including accessing data,

transforming data into model parameters, modifying

the model whenever desired, and analyzing solutions

from the model.

Some Applications of Linear Programming

The applications of linear programming have been

remarkably diverse. They all involve determining the

best mix of activities, where the decision variables

represent the levels of the respective activities, but

these activities arise in a wide variety of contexts. In

the context of financial planning, the activities might

be investing in individual stocks and bonds (portfolio

selection), or undertaking capital projects (capital

budgeting), or drawing on sources for generating

working capital (financial-mix strategy). In the

context of marketing analysis, the activities might be

using individual types of advertising media, or

performing marketing research in segments of the

market. In the context of production planning,

applications range widely from the product-mix

problem (discussed earlier) to the blending problem

(determining the best mix of ingredients for various

individual final products), and from production

scheduling to personnel scheduling.

In addition to manufacturing, these kinds of

production planning applications also arise in

agricultural planning, health-care management, the

planning of military operations, policy development

for the use of natural resources, etc.

Linear programming has had a great impact on

improving the efficiency and profitability of

numerous organizations around the world.

A considerable number of these applications have

won a prestigious prize in the annual international

competition for the Franz Edelman Award for

Achievement in Operations Research and the

Management Sciences. To mention a few typical

award-winning applications: Bixby et al. (2006)

describe how Swift & Company saved $12 million in

1 year by optimizing its product mix while

dynamically scheduling its beef-fabrication

operations at five plants in real time as it receives

orders; Lee and Zaider (2008) discuss how

a breakthrough in optimizing the application of

brachytherapy to prostrate cancer is having

a profound impact on both health care costs

(potentially saving $500 million annually) and

quality of life for treated patients; Holloran and

Bryne (1986) were early pioneers in applying linear

programming at United Airlines to design the work

schedules for all the employees at the various

reservation offices and airports, thereby saving the

company more than $6 million annually; Leachman,

Kang, and Lin (2002) describe how Samsung

Electronics Corp. captured an additional $200 million

in annual sales revenue by using a linear- programming

model with tens of thousands of decision variables and

functional constraints to increase the efficiency of its

processes for manufacturing random access memory

devices. Hillier and Lieberman (2010, Chap. 3) also

reference other award-winning applications of linear

programming.

Another important kind of application of linear

programming arises from its close relationship to

several other important areas of operations research

and management science, including integer

programming, nonlinear programming, and game

theory. Linear programming often is useful to help

solve problems in these other areas as well.
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Some Special Types of Linear Programming
Models

One particularly important special type of linear

programming problem is the transportation problem.

A typical application of the transportation problem is

to determine how a corporation should distribute

a product from its various factories to various

distributors. In particular, given the amount of the

product produced at each factory and the amount

needed by each distributor, one can determine how

much to ship from each factory to each distributor in

order tominimize total shipping cost. Other applications

extend to areas such as production scheduling.

Camm et al. (1997) describe an award-winning

application of the transportation problem at Procter

& Gamble that saved over $200 million annually by

redesigning the company’s production and distribution

system for its North American operations. Amajor part

of the study revolved around formulating and solving

transportation problems for individual product

categories.

The assignment problem is a special type of

linear-programming problem where assignees are

being assigned to perform tasks. For example, the

assignees might be employees who need to be given

work assignments. Assigning people to jobs is

a common application of the assignment problem.

However, the assignees need not be people. They

also could be machines, or vehicles, or plants, or

even time slots to be assigned tasks. It can be shown

that the mathematical structure of the model for the

assignment problem is a special case of that for

the transportation problem.

Both the transportation problem and the assignment

problem are a special case of another key type

of linear-programming problem, called the

minimum-cost network-flow problem, that involves

determining how to distribute goods through

a distribution network at a minimum total cost.

In particular, the nodes of this network include at

least one supply node and at least one demand node,

and then the rest of the nodes are transshipment nodes.

Given the capacity of each arc for transmitting flow,

the objective is to minimize the total cost of sending

the supply from the supply nodes through the network

to satisfy the given demand at the demand nodes.

Klingman et al. (1987) describe a classic

award-winning application of this type at the

Citgo Petroleum Corporation. This minimum-cost

network-flow problem involved the distribution of

petroleum products through a distribution network

consisting of pipelines, tankers, barges, and hundreds

of terminals. This application is credited with saving

the company well over $15 million annually. (Another

application of linear programming involving Citgo’s

refinery operations was implemented at about the

same time and achieved additional savings of about

$50 million per year).

Another special case of the minimum-cost

network-flow problem is the maximum-flow problem.

Given a connected network with capacity constraints

on the maximum flow through each arc, the objective

now is to maximize the flow through the network from

the source node to the sink node. Some typical

applications include maximizing the flow through

a distribution network, or through a supply network,

or through a system of pipelines, or through a system of

aqueducts, or through a transportation network.

The shortest-path problem (also called the

shortest-route problem) is still another important

special type of linear-programming problem that is

also a special case of the minimum-cost network-flow

problem. The objective now is to find the path through

a network from an origin to a destination that

minimizes the total distance traveled. Arc distances

also can represent costs or times so the objective

becomes to minimize the total cost or total time of

a sequence of activities.

Ireland et al. (2004) describe how the Canadian

Pacific Railway saves roughly $100 million annually

by using network optimization techniques to route its

freight each day over a massive rail network that

encompasses much of North America. Numerous

shortest-path problems are solved each day as part of

the overall approach for this award-winning

application.

There have been many other award-winning

applications of the special types of linear-programming

problems that are described above. Hillier and

Lieberman (2010, Chap. 9) reference some of these

applications.

Solving Linear Programming Models

Two crucial events have been primarily responsible for

the great impact of linear programming since its
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emergence in the middle of the twentieth century. One

was the invention in 1947 by George Dantzig of

a remarkably efficient algorithm, called the simplex

method, for finding an optimal solution for a

linear-programming model. The second crucial event

was the computer revolution that makes it possible for

the simplex method to solve huge problems.

The simplex method exploits some basic properties

of optimal solutions for linear programming models.

Because all the functions in the model are linear

functions, the set of feasible solutions (called the

feasible region) is a convex polyhedral set. The

vertices (extreme points) of the feasible region play

a special role in finding an optimal solution. A model

will have an optimal solution if it has any feasible

solutions (all the constraints can be satisfied

simultaneously) and the constraints prevent

improving the value of the objective function

indefinitely. Any such model must have either

exactly one optimal solution or an infinite number of

them. In the former case, the one optimal solution must

be a vertex of the feasible region. In the latter case, at

least two vertices must be optimal solutions, and then

all convex-linear combinations of these vertices also

are optimal. It is sufficient, therefore, to find the

vertices with the most favorable value of the

objective function in order to identify all optimal

solutions.

Based on these facts, the simplex method is an

iterative algorithm that only examines vertices of the

feasible region. At each iteration, it uses algebraic

procedures to move along an outside edge of the

feasible region from the current vertex to an adjacent

vertex that is better. The algorithm terminates (except

perhaps for checking ties) when a vertex is reached that

has no better adjacent vertices, because the convexity

of the feasible region then implies that this vertex is

optimal.

The simplex method is an exponential-time

algorithm (in the worst case). However, it consistently

has proven to be very efficient in practice. Running time

tends to grow approximately with the cube of the

number of functional constraints, and less than linearly

with the number of variables. Problems with many

thousands of functional constraints and a larger

number of decision variables are routinely solved. One

key to its efficiency on such large problems is that the

path followed generally passes through only a tiny

fraction of all vertices before reaching an optimal

solution. The number of iterations (vertices traversed)

generally is of the same order of magnitude as the

number of functional constraints.

The running time of the simplex method also is

greatly affected by the degree of sparsity of the

matrix of constraint coefficients, where the measure

of sparsity is the proportion of the coefficients that are

not zero. Having a very sparse coefficient matrix

(say, less than 1%) can greatly accelerate the simplex

method.

There also exist useful variants of the simplex

method, including especially the dual simplex

method, that sometimes are used to solve

linear-programming problems. (Using the

terminology introduced at the beginning of the next

section, the dual simplex method operates on the

primal problem as if the simplex method is being

applied simultaneously to the dual problem).

In addition, specialized versions of the simplex

method also are available for exploiting the special

structure in some of the special types of

linear-programming problems described in the

preceding section. In particular, the network-simplex

method does this for the minimum-cost network-flow

problem and the transportation-simplex method does it

for the transportation problem. A variety of special

algorithms also are available for the assignment

problem, the maximum-flow problem, and the

shortest-path problem. Therefore, even though the

general simplex method can solve huge instances of

these problems, these special purpose algorithms can

solve even vastly larger instances.

Any of the various textbooks on linear

programming cited in the references will provide

additional details about the simplex method and these

related algorithms.

Some 37 years after the invention of the simplex

method, N. Karmarkar (1984) created great excitement

in the operations research/management science

community by announcing a new polynomial-time

algorithm for linear programming, along with claims

of being many times faster than the simplex method.

Actually, the first polynomial-time algorithm for linear

programming had been announced earlier by L. G.

Khachiyan (1979), but his ellipsoid method proved to

be not nearly competitive with the simplex method in

practice. Karmarkar’s algorithm moves through the

interior of the feasible region until it converges to an

optimal solution, and so is referred to as an
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interior-point method. The announcement did not

include details needed for computer implementation.

Following Karmarkar’s announcement, there was

a long flurry of research activity to fully develop and

refine similar interior-point methods, along with

sophisticated computer implementations. The

application of these methods to linear programming

now has reached a high level of sophistication. These

methods commonly are called barrier methods or barrier

algorithms because they are based on introducing a

logarithmic barrier function. A specific barrier

algorithm then may be given a specific name to identify

its main features. For example, the primal-dual predictor-

corrector algorithm developed by Mehrotra (1992)

established a structure that has commonly been adopted

by subsequent algorithms. Ye (1997), Vanderbei (2008),

and Luenberger and Ye (2008) provide further details

about the interior-point approach.

A key feature of the interior-point approach is that

both the number of iterations (trial solutions) and total

running time tend to grow very slowly (even more

slowly than for the simplex method) as the problem

size is increased. Therefore, the best implementations

of this approach tend to become faster than the simplex

method (or the dual simplex method) for relatively large

problems. This is not always true, because the efficiency

of each approach depends greatly in different ways on

the special structure in each individual problem. Indeed,

one of the by-products of the emergence of the interior-

point approach has been a major renewal of efforts to

improve the efficiency of computer implementations of

the simplex method and its variants. Impressive

progress has been made. Consequently, when tests

have been conducted to determine when a leading

barrier algorithm, the simplex method, or the dual

simplex method will solve various huge problems

more quickly, the dual simplex method or simplex

method occasionally wins. As time goes on, improving

computer technology (such as massive parallel

processing) will substantially increase the size of

problems that any of the algorithms can solve.

A considerable number of excellent software

packages for linear programming and its extensions

now are available to fill a variety of needs. Leading

packages include CPLEX, Express-MP, Gurobi, and

LINDO. Frontline Systems also has excellent solvers,

including its Risk Solver Platform, for use with Excel

spreadsheets.

As mentioned earlier, when dealing with large

linear-programming problems, modeling languages

also are needed to efficiently input, formulate, and

manage the model. The available modeling languages

include AMPL, MPL, OPL, GAMS, and LINGO.

These languages are designed to be integrated with

the kinds of solvers mentioned in the preceding

paragraph.

Duality Theory and Postoptimality Analysis

Associated with any linear-programming problem is

another linear-programming problem called the dual.

Furthermore, the relationship between the original

problem (called the primal) and its dual is

a symmetric one, so that the dual of the dual is the

primal. For example, consider the two related

linear-programming models shown below in matrix

notation (where A is a matrix, c and y are row

vectors, b, x, and the null vector 0 are column

vectors, all with compatible dimensions, and x and y

are the decision vectors):

Maximize cx Minimize yb

subject to: Ax � b subject to: yA � c

and x � 0. and y � 0.

For each of these problems, its dual is the other

problem.

There are many useful relationships between the

primal and dual problems, so the dual provides

considerable information for analyzing the primal.

This is especially helpful when conducting

postoptimality analysis, i.e., analysis done after

finding an optimal solution for the initial

validated version of the model. A key part of most

linear-programming studies, this analysis addresses

a variety of what-if questions of interest to the

decision makers. The purpose is to explore various

scenarios about future conditions that may deviate

from the initial model. The dual simplex method

frequently is helpful for quickly re-optimizing these

revised models.

Although the parameters of the given

linear-programming model are treated as constants,

they frequently represent just best estimates of

a quantity whose true value may turn out to be quite
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different. A key part of postoptimality analysis is

sensitivity analysis, an investigation of the

parameters to determine which ones are sensitive

parameters, i.e., those that change the optimal

solution if a small change is made in the given

parameter value, and exploring the implications. For

certain parameters, the decision makers may have

some control over its value (e.g., the amount of

a resource to be made available), in which case

sensitivity analysis guides the decision on which

value to choose. An extension of sensitivity analysis

called parametric programming enables systematic

investigation of simultaneous changes in various

parameters over ranges of values.

Fletcher et al. (1999) present an interesting case

study of how an OR team at the Pacific Lumber

Company made extensive use of detailed sensitivity

analysis to develop a sustained yield plan for the

company’s entire landholding. This plan is credited

with increasing the company’s present net worth by

over $398 million while also generating a better mix of

wildlife habitat acres.

Extensions of the simplex method are well

suited for performing these kinds of postoptimality

analysis. However, this is less true for interior-point

methods. Therefore, even when an interior-point

method is used to find an optimal solution, a switch

may be made to the simplex method for subsequent

analysis.

When there is substantial uncertainty about what

the true values of the parameters will turn out to be, it

may be necessary to use a different analysis approach,

called linear programming under uncertainty, in which

some or all the parameters are treated as random

variables. This is especially pertinent when planning

must be done for multiple time periods into an

uncertain future. For example, Infanger (1993)

discusses solving large-scale multi-stage stochastic

linear programs.

Further Reading

Dantzig (1982) describes some of the early history

of linear programming. Gass (1990) gives an

entertaining introduction to the field. Hillier and

Lieberman (2010) expand on all the topics mentioned

here at an elementary level, and F.S. Hillier and

M.S Hillier (2011) emphasize the application of

linear programming from a managerial viewpoint.

Dantzig (1963) provides the classic textbook on the

theory of linear programming. Other excellent

textbooks on linear programming and its extensions

include Bertsimas and Tsitsiklis (1997), Dantzig and

Thapa (1997, 2003), Vanderbei (2008), Luenberger

and Ye (2008), Murty (2010), and Bazaraa, Jarvis

and Sherali (2010), Marsten, Subramanian, Saltzman,

Lustig, and Shanno (1990) discuss the basic concepts

underlying interior-point methods.

See

▶Algebraic Modeling Languages for Optimization

▶Assignment Problem

▶Basis

▶Computational Complexity

▶Density

▶Duality Theorem

▶Game Theory

▶Hierarchical Production Planning

▶ Integer and Combinatorial Optimization

▶ Interior-Point Methods for Conic-Linear

Optimization

▶Mathematical Model

▶Model Management

▶Multiplier Vector

▶Nonlinear Programming

▶ Parametric Programming

▶ Postoptimal Analysis

▶ Primal Problem

▶ Sensitivity Analysis

▶ Simplex Method (Algorithm)

▶ Simplex Tableau

▶ Stochastic Programming

▶Transportation Problem

▶Verification, Validation, and Testing of Models
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Linear-Fractional Programming Problem

The linear-fractional programming problem is one in

which the objective to be maximized is of the form

f ðxÞ ¼ cxþ að Þ dxþ bð Þ= subject to Ax � b, x � 0,
where a and b are scalars, c and d are row vectors of

given numbers, and b is the right-hand-side vector.

The problem can be converted to an equivalent

linear programming problem by the translation

y ¼ x dxþ bð Þ= , provided that dx + b does not

change sign in the feasible region.

See

▶ Fractional Programming

Lipschitz Continuous

A function f (x) is said to be Lipschitz continuous if

there exists a real constant K > 0 (called the Lipschitz

constant) such that for every pair of points x1 and x2,

jjf x1ð Þ � f x2ð Þjj � Kjjx1 � x2jj. If K < 1, then the

function is called a contraction.

Little’s Law

Susan Albin

Rutgers, The State University of New Jersey,

Piscataway, NJ, USA

Little’s Law, among the most fundamental and useful

formulas in queueing theory, relates the number of

customers in a queueing system to the waiting time

of customers for a system in steady state as

L ¼ lW

• L¼ The average number of customers in the system

including customers in service

• l ¼ The average arrival rate of customers to the

system; and

• W ¼ The average time a customer spends in the

system including the time in service

L 888 Linear-Fractional Programming Problem

http://dx.doi.org/10.1007/978-1-4419-1153-7_362


An alternate form of Little’s Law addresses only the

customers in the waiting line, or queue, i.e.,

Lq ¼ lWq

• Lq ¼ The average number of customers in the

queueing (excluding customers in service);

• l ¼ The average arrival rate of customers to the

queueing system; and

• Wq ¼ The average time that a customer spends in

the queueing (excluding the time in service).

Little’s Law, formally proven in Little (1961) and

simplified in Stidham (1974), is remarkably general,

requiring only that the queueing is ergodic and that

no service needs are artificially created or destroyed

(i.e., the system is work conserving). The result holds

for any arrival process, service-time distribution, and

number of servers. It applies for all queueing

disciplines, with the customers not necessarily served

in order of arrival, and for a specific class of customers

that are distinguished from others by priority or some

other characteristic. Little’s formula holds for every

infinite sample path realization of the queueing system,

and it is approximately valid in finite intervals, with the

accuracy increasing as the interval increases.

In the study of queueing, whether by mathematical

analysis, simulation or direct data collection, it is often

simpler to find either the average number in system or

the average waiting time. Once the simpler one has

been found, Little’s Law gives the other. For example,

in an operating manufacturing system, if average time

in the system (lead time) is simpler to estimate from

data, Little’s Law can be used to estimate the average

number of parts in the system (in process inventory).

An outline of a proof of Little’s Law is based on

depicting a sample path of the number in the system

over an interval of time T for a steady-state queueing

system with arrival rate l (Fig. 1). The number of

customer-minutes spent in the system equals A, the

area under the curve. The average number of

customers that arrive in the interval is lT

(approximately); thus the average number of minutes

in the system per customer isW¼ A/(lT). The average

number of customers in the system L ¼ A/T.

Manipulating the two equations, taking limits, and

accounting for end effects yields Little’s Law.

An outline of a proof of Little’s Law is based on

depicting a sample path of the number in the system

over an interval of time T for a steady-state queueing

system with arrival rate l (see Fig. 1). The number of

customer-minutes spent in the system equals A, the

area under the curve. The average number of

customers that arrive in the interval is lT

(approximately); thus the average number of minutes

in the system per customer isW¼ A/(lT). The average

number of customers in the system L ¼ A/T.

Manipulating the two equations, taking limits, and

accounting for end effects yields Little’s Law.

See

▶Queueing Theory
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Little’s Law in Distributional Form

L. D. Servi

The MITRE Corporation, Bedford, MA, USA

Since Little’s Law first appeared in 1961, its simplicity

and importance have established it as a basic tool of

queueing theory. Little’s Law relates the average

number of customers in a system, N, with the average

0

time

n
o
. i

n
 t
h
e
 s

ys
te

m

T

A
1

2

3

4

Little’s Law, Fig. 1 Sample path realization of the number in
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time in the system, T, under very broad conditions. For

example, Keilson and Servi (1988) have demonstrated

that for many systems, the relationship between the

queueing length and the time in the system can be

characterized beyond just their average value.

This is possible, however, if a class of customers

arrives according to a Poisson process, is served

first-in, first-out (FIFO) within the class, and is

processed as either

1. An ordinary single-server queueing,

2. A single-server queueing with one or more classes

of priority which processes each class according to

a preemptive-resume, preemptive-repeat, or

nonpreemptive discipline,

3. A vacation model system, where the server takes

one or more vacations when the queueing is

depleted,

4. A polling system, where a single server moves

cyclically between (real or virtual) queueing,

either serving the customers at the queueing to

exhaustion, employing a Bernoulli schedule, or

serving at most K customers at a queueing before

moving on, or

5. An M/G/G/. . .G/1 tandem queueing system, where

the output of one queueing is the input of another

and the service times at successive queueing are

i.i.d. service times for successive arrivals.

More precisely, Keilson and Servi (1988)

demonstrated that, if for a given class of customers,

(C-1) The arrival process is Poisson with rate l,

(C-2) All arriving customers enter the system and

remain in the system until served,

(C-3) The customers leave the system one at a time in

order of arrival, and

(C-4) For any time t, the arrival process after time t,

and the time in the system of any customer arriving

before time t, are statistically independent,

then the relationship between the probability

distribution of the number in the system and the time

in the system follows the simple formula

pNðuÞ ¼ aT l� luð Þ (1)

where pNðuÞ ¼ E uN½ � is the probability generating

function of N and aTðsÞ ¼ E esT½ � is the Laplace

transform of the density of T.

Since dnpNðuÞ=dun ¼ E½NðN � 1Þ . . . ðN � nþ 1Þ�
for u¼ 1 and dnaTðsÞ=dsn ¼ �1ð ÞnE Tn½ � for s¼ 0, one

can relate the moments of queueing lengths to the

moments of the time in the system by computing

successive derivatives of (1) with respect to u and

then evaluating at u ¼ 1. For example,

E N½ � ¼ E lT½ �

E N2
	 


¼ E lTð Þ2
h i

þ E lT½ �

E N3
	 


¼ E lT½ � þ 3E lTð Þ2
h i

þ E lTð Þ3
h i

E N4
	 


¼ E lT½ � þ 7E lTð Þ2
h i

þ 6E lTð Þ3
h i

þ E lTð Þ4
h i

E N5
	 


¼ E lT½ � þ 15E lTð Þ2
h i

þ 25E lTð Þ3
h i

þ 10E lTð Þ4
h i

(2)

The first of these equations is the familiar Little’s

Law. As is the case of the Pascal Triangle, there is

a simple relation between the coefficients. Specifically,

one can show that

E Nn½ � ¼
Xn

m¼1

S n;mð ÞE lT½ �m (3)

where S(u, m) is a Stirling number of the second kind

defined by the recursion S nþ 1;mð Þ ¼
mS n;mð Þ þ S n;m� 1ð Þ for nþ 1 � m � 1,

S n; 0ð Þ ¼ S n; nþ 1ð Þ ¼ 0 for n � 1 and S 1; 1ð Þ ¼ 1

(Abramowitz and Stegun 1972).

Similarly,

E lTð Þn½ � ¼
Xn

m¼1

�S n;mð ÞE Nm½ �

where �S n;mð Þ are Stirling numbers of the first kind

which satisfy �S n;m� 1ð Þ ¼ �S n;m� 1ð Þ � n�S n;mð Þ
for nþ 1 � m � 1, �S n; 0ð Þ ¼ �S n; nþ 1ð Þ ¼ 0 for

n � 1 and �S 1; 1ð Þ ¼ 1.

The first two equations of (2) imply the simple but

non-intuitive formula

Var N½ �
E N½ � ¼ Var lT½ �

E lT½ � þ 1:

The system could refer to the queueing and the pool

of customers in service or exclusively to the queueing.

In the latter case, additional systems satisfy conditions

(C-1)–(C-4). For example, for a multi-server system,
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the customers do not leave the system consisting of the

queueing and the pool of customers in service on

a first-in, first-out basis [and hence violate condition

(C-3)]. However, if the system refers exclusively to the

queueing, then condition (C-3) is satisfied.

These results have been generalized, for example,

to systems with non-Poisson arrivals (Bertsimas and

Mourtzinou 1997), to systems operating under heavy

traffic (Szczotka 1992), to systems having batch

arrivals (Takahashi and Miyazawa 1994), and has

been used as the basis to derive explicit formulae for

the distribution of the number in the system

(or queueing) as well as the time in the system

(or queueing) for a number of more classical systems

(Keilson and Servi 1990).

See

▶Little’s Law

▶Queueing Theory
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Local Balance Equations

▶Detailed Balance Equations

▶Queueing Theory

Local Improvement Heuristic

A heuristic rule which examines all the

solutions that are closely related to a given initial

solution and is guaranteed to reach at least a

local optimum.

See

▶Heuristic Procedure

▶Local Optimum

Local Maximum

A function f(x) defined over a set of points S is said

to have a local maximum at a point x0 in S if f (x0)� f(x)

for all x in a neighborhood of x0 in S. The point x0
is referred to as a local optimum (maximum).

See

▶Global Maximum (Minimum)

▶Nonlinear Programming

▶Quadratic Programming

Local Minimum

A function f(x) defined over a set of points S is said

to have a local minimum at a point x0 in S if

f x0ð Þ � f ðxÞ for all x in a neighborhood of x0 in S.

The point x0 is referred to as a local optimum

(minimum).

See

▶Global Maximum (Minimum)

▶Nonlinear Programming

▶Quadratic Programming
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Local Optimum

▶Local Maximum

▶Local Minimum

Local Solution

A best solution in a feasible neighborhood.

Location Analysis

Charles ReVelle1 and Vladimir Marianov2

1The Johns Hopkins University, Baltimore, MD, USA
2Pontificia Universidad Católica de Chile, Santiago,

Chile

Introduction

The term location analysis refers to the development

of formulations and algorithms/methodologies to

site facilities of diverse kinds in a spatial or

geographic environment. The facilities may be sited

with relation to demand points, supply points, or with

respect to one another. Although facility layout

falls within this definition, this topic is not generally

considered under the rubric of location analysis.

Common descriptive terms for location analysis are

deployment, positioning, and siting, although these

terms are actually the outcome that follows the

execution of a formulation or algorithm.

Location settings may be classified into two broad

categories: planar problems and network problems.

Planar problems typically assume that the distances

between facilities and demand points, supply points

or other facilities are given by a metric, a formula

that calculates distance between points based on

their coordinates in space. Network problems, in

contrast, assume that travel can only occur on an

underlying network and that distances are the lengths

(or cost) of the shortest paths between the particular

points on the network. A further distinction between

these categories is provided by the assumption in most

planar problems of an infinite solution space, that is,

that facilities can be sited anywhere on the plane,

perhaps subject to exclusion areas or regions.

These planar problems are most often non-linear

optimization problems and more abstract in their

application than network-based problems. In contrast

to the infinite solution space assumed by most

planar problems, all but a few network problems

restrict facilities to sites that have been specified in

advance as eligible to house those facilities. The

network problems tend to be linear zero-one

optimization problems and so pose challenges in their

resolution to integers. First, planar problems and

approaches to them will be discussed; followed

by a discussion about network location formulations

and their solution.

Planar Location Problems

The most famous of the planar problems and the first

location problem to be posed historically is the

minimum Euclidean single facility location problem

first stated by Fermat as a mathematical problem:

“Given three points in the plane, find a fourth such

that the sum of its distances to the three given points

is a minimum” (Kuhn 1967). It is often referred to as

the Weber problem, after the German economist who

first discussed it in economic terms (Weber 1909).

The minimum problem considers points dispersed on

the plane that send items to or receive finished

product from some central factory or facility. The

problem seeks the central point that minimizes the

sum of weights (quantities) times the distances to all

dispersed points. The problem assumes that the

Euclidean distances separate the dispersed points and

the central point, that the central point can be anywhere

on the plane, and that a weight or loading is associated

with each of the dispersed points. An iterative solution

method that can be shown to converge to an optimal

solution was offered in the 1930s, lost to view, and

rediscovered in the early 1960s by several independent

investigators. In the minisum multiple facility

problem (the multi-Weber problem), a number of

central facilities are to be sited, each one associated

with a cluster or partition of the dispersed points.
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An allocation problem arises, i.e., the problem of

deciding which facility serves each dispersed point.

The history of the minisum problem is reviewed in

Wesolowsky (1993). Only in the early 1990s has

this problem yielded to exact methods, followed by

heuristics and metaheuristics (Brimberg et al. 2008).

While the Weber problem in its single and

multi-facility forms utilizes the Euclidean metric for

distances, the minisum rectilinear problem utilizes the

Manhattan or rectilinear metric for distances and

minimizes the sum of weights times these distances to

the central point. The rectilinear distance between two

points is the sum of the horizontal and vertical

separation of the points. Because the problem

can be reduced to the choice among a set of eligible

points, the multi-facility rectilinear minisum

problem yields either to heuristics or to the linear

integer-programming formulation used for the

p-median problem, a problem that will be discussed

under network location models. When the classic

metrics are set aside, solution of the minisum problem

generally becomes more difficult, except in the case of

minimizing the weighted sum of squared distances, in

which case the single facility minisum solution is

simply the centroid.

A second important objective setting in planar

problems is the siting of a single facility under the

objective of minimizing the maximum distance that

separates any demand/supply point from the central

facility. The problem may utilize either of the

two classic metrics, Euclidean or rectilinear. No

matter the number of dispersed points, the minimax

single facility location problem with rectilinear

distances yields to either a geometric solution or to

a four-constraint linear program. The minimax single

facility location problem with Euclidean distances is

a nonlinear-programming problem, but can also be

solved by a geometric argument. Multi-facility

versions of the planar minimax location problems may

yield to heuristics resembling those applied to the

p-median problem. A good general reference dealing

in part with planar location problems is the text of Love

et al. (1988), Plastria (1995) provides a comprehensive

review for the researcher in planar location.

It is worth mentioning that researchers in

continuous location, seeking a greater realism in their

problems, have sought to project the most likely real

distances on a road network between a pair of points

given the spatial coordinates of these points. This

literature is reviewed in Brimberg and Love (1995).

Network Location Problems

In contrast to the use of formula-based metrics for the

siting of facilities on a plane, network location

problems always measure distances across the links

of the network. Interestingly, the assumption of an

infinite solution space can be made in network-based

location problems as well. That is, the infinite solution

space would consist of all the points on every arc of

the network. For some problems, including the

p-median, the solution space can be reduced without

loss of optimality from all the points on all the arcs to

a limited number of eligible points when the triangle

inequality holds throughout the network. Many

network problems simply assume a prespecified set of

eligible facility sites based on needed characteristics

of such points, such as transportation infrastructure,

availability of lots or warehouse space, etc.

Within network location research two distinct foci

are found. The first is cost minimizing/profit

maximizing siting that is goods-oriented, an activity

especially of the manufacturing and distribution

industries. The second is people or service-oriented

siting, an activity mostly of government at a number

of levels from local to national, but also of private

companies. The divisions are not perfect, as it

will be seen, but are, at the least, useful for discussion

purposes. These two settings will be taken up in

that order followed by presentations of some

variations and adaptations of these classes.

Goods-Oriented Siting

By far, the problem setting considered most

extensively in the goods oriented location category is

the simple plant location problem (SPLP). The

problem assumes that an unknown number of

plants are to be sited to manufacture product for

distribution to a number of spatially dispersed

demand points. The plants have no limit as to the

amount manufactured, and each point must be fully

supplied with its demand. The objective is the
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minimization of the total of manufacturing cost and

distribution cost. Manufacturing includes a fixed

opening cost and an expansion cost that can be

linear or nonlinear. The problem may be stated

mathematically as:

minimize z ¼
Xm

i¼1

Xn

i¼1
cijxijþ

Xm

i¼1
fiyi

subject to :

Xm

i¼1
xij ¼ 1; j ¼1; . . . ; n;

yi � xij � 0; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n;

xij; yi 2 0; 1f g; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n:

i ¼ the index of eligible plant sites of which there

are m;

j ¼ index of demand points of which there are n;

fi ¼ opening cost for a plant at i;

cij ¼ cost to deliver j’s full demand from i, including

the production cost at i;

yi 2 {0, 1}, it is 1 if a plant opens at i and 0 otherwise;

and

xij 2 {0, 1}, it is 1 if i delivers j’s full demand and

0 otherwise.

The above problem formulation is due to Balinski

(1965), and is one of several formulations possible

for the SPLP. It is presented here because it is the

basis for a number of solution methods.

The SPLP has attracted attention since the 1950s

when heuristics were first suggested. In the

1960s, Balinski offered his formulation of the

problem but dismissed it as unreliable. In addition,

several branch and bound algorithms were created to

solve the SPLP, but these algorithms proved

impractical for large problems. In the mid-1970s,

Bilde and Krarup (1977) and Erlenkotter (1978) both

proposed dual ascent algorithms for the SPLP; the basic

algorithm proposed by these two sets of investigators

has proved to be capable of handling relatively large

problems. Morris (1978) investigated 500 randomly

generated plant location problems and found that if the

formulation above were solved as a linear program

(without integer requirements on any of the variables)

that 96% of the problems so solved presented with all

zero-one variables. Morris’ experience thus suggested

that linear programming alone was a powerful

technique for the SPLP formulation that Balinski had

abandoned. The problem has since been successfully

pursued by Lagrangian relaxation by Galvão (1989) and

Korkel (1989), who modified the dual ascent algorithm

referred to above to solve remarkably large problems.

While the SPLP has attracted considerable

attention, a related form, the capacitated plant

location problem (CPLP), languished until the late

1980s. The CPLP sets limits on the amount that could

be manufactured at any site, but in all other respects is

the same as the SPLP. First attacked by Davis and

Ray (1969), the problem later received attention from

Pirkul (1987), who provided both references to prior

work and a solution algorithm based on Lagrangian

relaxation. The CPLP also describes a problem in

solid waste management in which waste is generated

at population nodes and must be disposed of at sanitary

landfills with limited capacities. Landfills are to be

sited in this problem statement.

Many other plant location style problems can be

stated. A maximum profit version of the SPLP is one

such statement. The time dimension has been

incorporated in a number of models, Melo et al.

(2005). Multiple products can be treated as well.

Another line of research focuses on the representation

of the cost, since in many cases there are economies of

scale or costs that are piecewise linear. Inventory, aswell

as other logistics costs can be also integrated in these

models, see Snyder et al. (2007). Finally, demands,

prices, and costs can be viewed as random, leading to

stochastic versions of the plant location problem. The

SPLP has been not only used for goods-oriented siting,

but also for the design of telecommunications networks;

in particular, for solving a problem called the

Concentrator Location Problem, whose mathematical

structure is identical to that of the warehouse or plant

location problem. Shen (2007) surveys integrated supply

chain design models.

Public Service-Oriented Siting

Nearly all of the plant location problems – excluding

the concentrator location problem – emphasize the

flow/movement of goods. In contrast, service oriented

siting problems focus on the accessibility of people to

services or services to people. Flow/movement is part

of the equation in some of the models, but simple

geographic coverage can suffice in others.

The same two objectives treated under planar

problems, minisum and minimax, have also been

considered for network location problems of service
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siting. The minisum network location problem is

known as the p-median problem; the minimax

network location problem is known as the p-center

problem. Both were posed together in seminal papers

by Hakimi (1964, 1965). He also proved that there is

always an optimal solution considering location only at

nodes of the network.

The p-median problem, which seeks the minimum

cost assignment of each population node to one of

p facilities, resembles the SPLP in all but one

modeling aspect. Indeed, so strong is the resemblance

of p-median to the simple plant location model that the

same algorithms may be used for solution of both

with minor adaptation, Galvão (1989). The single

difference between the two models is easy to explain

once a mathematical-programming formulation of

the p-median is offered. The p-median problem

seeks to site p facilities in such a way that the least

total of people times distance traveled to the assigned

facility is achieved. Division of this objective by

the total of population reveals that minimization of

the total population-miles objective also minimizes

the average distance that people travel to service.

Travel/assignment is always assumed to the

closest among the p facilities.

The p-median problem may be formulated as:

minimize Z ¼
Xn

i¼1

Xn

j¼1
aidijxij

subject to :

Xn

j¼Ni

xij ¼ 1; i ¼ 1; 2; . . . ; n;

xjj � xij � 0; i; j ¼ 1; 2; . . . ; n; i 6¼ j;

Xn

j¼1

xjj ¼ p

xij 2 0; 1f g; i; j ¼ 1; 2; . . . ; n;

ai ¼ relevant population at demand node i;

dij ¼ shortest distance from node i to node j;

N ¼ number of nodes;

P ¼ number of facilities; and

xij2 {0, 1}; it is 1 if node i assigns to a facility at j and 0

otherwise.

It can be seen from a comparison of the p-median

formulation and that of the SPLP that the objectives

differ only in the presence or absence of fixed opening

costs and their opening variables, and that the

constraints differ only in the presence or absence of

a constraint on the number of facilities. In all other

respects, the formulations look virtually identical.

If the constraint on the number of facilities in the

p-median formulation is brought to the objective with

a multiplier l, the objective becomes

Xn

i¼1

Xn

j¼1

aidijxij þ
Xn

j¼1

lxjj:

The subscripts reflect flow between central facilities

and demand points. The p-median is now fully

equivalent to an SPLP with equal opening costs, thus

making all the techniques for solution of the SPLP

available for solution of the p-median. Ranging the

multiplier l in the p-median is equivalent to trading off

people miles against the number of facilities by use of

the weighting method of multi-objective programming.

Among the methods available for the SPLP that can be

used for the p-median are relaxed linear programming

(ReVelle and Swain 1970), the dual ascent methodology

(Bilde and Krarup 1977; Erlenkotter 1978) and

Lagrangian relaxation (Galvão 1989). A number of

other researchers have used heuristics for the p-median

problem; a listing of many of the early methods for the

p-median problem appeared in ReVelle et al. (1977).

Newer and more effective heuristic and metaheuristic

methods are reviewed in Mladenovic et al. (2007) and

Reese (2006). As the SPLP, the p-median also has

a capacitated version in which each facility can serve

up to a certain number of people.

While the p-median problem attracted considerable

attention, researchers found its focus on the

average condition of population accessibility to be

limiting. Concern for those worst off relative to their

distance to the nearest facility, that is, for the maximum

distance or time separating population centers from

service, gave rise to another concept, that of coverage.

A population node is considered to be covered, i.e.,

adequately served, if it has a facility sited within some

maximum distance or time; that is, sited within a time

standard. Coverage can either be required for all demand

points within the standard, or maximization of demand

covered can be sought, giving rise to a host of new

problems, the earliest of which is the location set

covering problem (LSCP).

The LSCP seeks to position the least number of

facilities so that every point of demand has at least
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one facility sited within the time or distance standard.

The problem can be stated as a linear zero-one

programming problem as follows:

minimize z ¼
X

j2J
xj

subject to :
X

j2Ni

xj � 1 8i 2 I;

xj 2 0; 1f g 8j;

i, I ¼ index and set of demands;

j, J ¼ index and set of eligible sites for facilities;

xj 2 {1, 0}, 1 if a facility placed at j and 0 otherwise;

dji ¼ the shortest distance (or time) from site j

to demand point i;

S ¼ the maximum distance (or time) that a demand

point can be from its nearest facility; and

Ni ¼ {j|dji �S} ¼ the set of facility sites eligible to

serve demand point i, by virtue of being within

S of i.

While general set covering problems may require

integer-programming algorithms to solve them, the

LSCP appears to possess special properties.

In particular, solution of the linear-programming

formulation on data from a geographic problem

without any zero-one requirements produces all

zero-one answers with remarkable regularity (over

95% of the time). If a set of eligible facility sites

is specified in advance, the LSCP can be used to

derive solutions to the p-center problem as well. The

p-center problem seeks to position p facilities in such

a way that the maximum distance that separates

any population node from its nearest facility is as

small as possible. Solutions to this problem can be

found by solving a sequence of LSCP problems, with

decreasing distance standards. As the distance

decreases, the number of facilities required to cover

all demands increases. The minimum distance

standard that makes total coverage feasible with

p facilities is the solution of the p-center problem

(Minieka 1970). If, however, any point on any link of

the network is eligible to house a facility (the infinite

solution space case), the solution of the p-center

problem remains open and challenging.

The LSCP, however, has several shortcomings

as a meaningful problem statement. First, population

is absent from the problem statement; proximity

and population are not linked even though they

should be. Second, all population nodes require

coverage within the standard, a requirement that

could and often proves very costly in terms of the

number of facilities/servers required.

Recognizing these shortcomings of the LSCP,

several researchers have created new models for

siting that utilized the coverage concept not as

a requirement but as a goal. The most widely

known of these models is referred to as the maximal

covering location problem (MCLP) or the partial

covering problem, depending on the specific

formulation. The MCLP seeks the positions for p

facilities among a prespecified set of eligible points

that maximize the population that has a facility sited

within a distance or time standard S, that is, that

maximizes the population covered. The MCLP can

be stated as:

maximize z ¼
X

i2I
aiyi

subject to : yi �
X

j2Ni

xj 8i 2 I;

X

j2J
xj ¼ p;

xj; yi 2 0; 1f g; 8i; j;

where additional notation is

ai ¼ the population at demand node i;

yi 2 {1, 0}, it is 1 if demand i is covered by a facility

within Ni and 0 otherwise; and

p ¼ the number of facilities that can be sited.

Basically, while the LSCP is attempting to find

the least resources to cover all demand nodes within

the distance goal, the MCLP is attempting to distribute

lesser and limited resources to achieve as

much population coverage as possible (Church and

ReVelle 1974).

Related Research and Extensions

The basic models described above have caught the

interest of a number of researchers. The literature on

the subject keeps growing.

Drezner (1987) addressed the unreliable p-median

in which facilities can become inactive. Marianov and
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Serra (1998) proposed models that include the effect of

queuing at the facilities, while Marianov (2003)

maximized the amount of people willing to get

service from a facility when there is demand

elasticity to travel distance and queueing. The user

point of view has been embedded in the p-median by

Drezner and Drezner (2007), who investigated the

effect on location of considering customers’

behavior, represented through gravity models.

Uncertainty has also been considered in covering

models. In probabilistic covering models, the presence

or availability of a vehicle or server within a time

standard is not guaranteed. The probabilistic models

suggest a chance constraint on vehicle availability,

that is, a requirement that a vehicle be available

within the time standard with a specified level of

reliability, see ReVelle and Marianov (1991). The

chance constraint may be a strict requirement or may

be treated as a goal for each population demand node.

Many of the probabilistic, as well as redundant/

backup coverage models, and multiple vehicle type

models were reviewed by Marianov and ReVelle

(1995). A review of the applications of probabilistic

coverage models to emergency systems is provided by

Goldberg (2004).

A number of other lines of research within the

network location setting have been pursued. Among

these are hierarchical location models, models in

which a hierarchy of interacting/interrelated facility

types are sited. One example is the health care

hierarchy in developing nations, that consists of

hospitals, clinics, and remote doctors. Another is

a banking system consisting of central banks,

branch banks, and teller machines. Morphological

relations in hierarchical systems is reviewed by

Narula (1986), with a brief treatment of the topic

given in Daskin (1995). Serra and ReVelle (1994)

provide algorithms for the median version of these

hierarchical problems where coherence of

assignments is enforced. Church and Eaton (1987)

present an interesting set of hierarchical models with

referral between levels.

The concept of coverage has been challenged, since

in some situations it does not seem reasonable to

consider a demand as covered if it is within, say,

500 m from a facility, but not covered if it is at

500.1 m. Models using a gradual coverage have been

reviewed by Eiselt and Marianov (2009a). In these

models, the coverage function, originally a step

function, can take different shapes, representing

quality of coverage as a function of the distance.

Another significant line of siting research is

embodied in the competitive location models in

which facilities are sited in a competitive market

environment with goals of capturing market share

from other retailers or manufacturers, or maximizing

profit in the presence of competitors. Two problems

are usually solved: the follower’s problem, which is to

locate facilities in such a way that the market

capture from existing competitors is maximized; and

the leader’s problem, which is to locate first in a virgin

market, anticipating possible followers that will try to

cannibalize the leader’s market share. A review of

competitive location models in continuous and

discrete space is provided by Dasci (2011).

Another line of location research involves the siting

of noxious facilities. Such facilities may be

undesirable in of themselves and should be distant

from population centers or may be required to be

distant from one another. However, they usually

cannot be too far, since operation costs can be

prohibitive, as in garbage processing plants or jails.

Several approaches have been proposed for these

facilities: maximizing their distance to population;

maximizing the minimum facility-population

distance; compensating the population that is

affected by such a facility; and expropriation.

A review of obnoxious facility location problems can

be found in Melanchrinoudis (2011). Another line of

research addresses both location of obnoxious

facilities and routing of hazardous waste (Nagy and

Salhi 2007).

A problem of increasing interest is the location of

hubs. As airlines and courier companies focus on

logistic improvements, the location of these traffic

concentration points becomes more relevant. This

line of research was started by (O’Kelly 1986) and

has grown towards several fronts. Hub problems can

be classified into the same categories as the original

location problems: hub-median, hub-location,

hub-covering and hub-center problems. They can be

solved on the plane (O’Kelly 1986), or on networks.

Campbell et al. (2002) provide a taxonomy of hub

problems. Competition and queuing effects have also

been considered when locating hubs (Marianov

and Serra 2003; Eiselt and Marianov 2009b).

Finally, the tools developed for location in

a geographical setting can be also used in very
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different spaces: to locate employees and tasks in

a skill space, finding the best measurement points in

the eye for glaucoma detection, and locating

candidates and voters in an issue space.

Concluding Remarks

The wide variety of important applications and

modeling challenges are reported in many OR/MS

journals, including Computers & Operations

Research (including Location Science); European

Journal of Operational Research, Journal of the

Operational Research Society; IIE Transactions and

Papers in Regional Science. In addition, the

proceedings of the triennial International Symposium

on Locational Decisions (ISOLDe) have appeared in

separate volumes of Annals of Operations Research,

beginning with 1984 Boston/Martha’s Vineyard

conference.

See

▶ Facility Location

▶ Integer and Combinatorial Optimization

▶Network

▶ Shortest-Route Problem

▶ Stochastic Programming
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Logic Programming

Logic programming deals with the use of symbolic

logic for problem representation and inferential

reasoning. A popular logic programming language is

Prolog (PROgrammation en LOGique), developed in

the early 1970s by the French computer scientists,

Alain Colmerauer and Philippe Roussel. Prolog has

been used to develop a man-machine communication

system in natural language.

See

▶Artificial Intelligence
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Logical Variables

In a linear-programming problem, the set of variables

that transform a set of inequalities to a set of equations

are called logical variables.

See

▶Linear Inequality

▶ Slack Variable

▶ Structural Variables

▶ Surplus Variable
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Introduction

For quite some time, logistics has accounted for

a significant percentage of the U.S. gross domestic

product (GDP). The Council of Supply Chain

Management Professionals estimated that in 2008 the

country’s logistics costs were about $1.3 trillion, or

9.4% of the $13.8 trillion GDP. Year-to-year carrying

costs decreased by 13.2% due to smaller inventories

and lower interest rates while transportation costs rose

by 2% as a result of higher fuel prices. These figures

and a number of other key economic developments

highlight logistics and supply chains as areas where

large productivity improvements have and continue

to be attained. Given the intrinsic complexity of

logistics problems in today’s global supply chains,

such improvements could not have been achieved

without the use of analytical tools, including

operations research/management science (OR/MS)

methodologies.

The mathematical difficulty of strategic, tactical, and

operational logistics decisions and the magnitude of the

potential cost savings to be achieved by utilizing OR/

MS models and algorithms have attracted researchers

since the early days of the field. Witness to this are the

pioneering efforts of researchers in 1950s, 1960s, and

1970s. Most of the methods developed made extensive

use of network models and algorithms coupled with

different types of inventory techniques.

Over the last twenty five years, fueled by major

developments in modeling and algorithmic

methodology, constant breakthroughs in computer

technology, and web-based applications, operations

researchers have found logistics to be a very fertile

design and implementation area. They addressed an

ever increasing variety of problems with escalating

complexity and size. The body of supply chain

applications of OR/MS techniques also expanded at

a progressively swifter pace. In what follows, the focus

will be on some of the more important areas in logistics

and supply chain management and, where possible, on

OR/MS applications in large-scale logistics systems.

Networking and Routing

Network design and freight routing have been

addressed by Braklow et al. (1992) in the context of

less-than-truckload (LTL) transportation. The authors

formulate the problem as a nonlinear, multicommodity

network design problem. Its solution is based on

a hierarchical decomposition of the overall problems

into a series of optimization subproblems. The

network design problem is solved using interactive

optimization, where the user guides the search

performed by a local improvement heuristic which

adds (drops) links to (from) the load planning

network. The subproblems involve the routing of the

LTL shipments, of truckload shipments and of

empty trailers. The former two problems are solved

using shortest path algorithms, while the latter

problem involves the solution of a classical linear

transhipment problem. They must be reoptimized

every time a change is made in the load planning

network. This is performed sufficiently fast to make

interactive optimization possible. The model has been

used as a tactical decision tool for load planning by one

of the largest LTL motor carriers. It has also been used

at the strategic level to determine the location and size

of new terminals.

The research of Simão et al. (2010) is illustrative

of the evolution of the OR/MS methodology which

had to match the increasing complexity of real-world

problems due to their size and dynamism. The authors

address the problem faced by a major transportation

company that wanted the ability to significantly

improve how it managed the dynamics of its fleet of

over 6,000 long haul drivers. The issues under

consideration were how to handle hiring, changes in

work rules, and examine scenarios permitting the

drivers to spend more time at home. Simão et al. used

approximate dynamic programming (ADP) to solve

this problem. ADP is a simulation-based algorithm

that optimizes complex stochastic problems through

iterative learning. This approach was capable to deal

with both complex dynamics and multiple forms of

uncertainty regarding drivers and loads and to

anticipate the future impact of decisions. The model

allowed the company to avoid costs and achieve

savings in the millions of dollars and, at the same

time, substantially improve its customer service.

While logistics encompasses a broad set of

activities, two key elements are transportation
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and storage. Generally, very intricate trade-offs occur

between these two areas. The first focus will be on

transportation issues and then address inventory

matters. Transportation is in fact the most costly

component of many logistics systems and supply

chains. A very important segment of transportation

management is the routing and scheduling of

vehicles. This facet is of significant importance

across land, air, and water transportation. Similar

problems are also encountered in a variety of

manufacturing, warehousing and service sector

environments.

This area has been reviewed in several insightful

surveys, including that written by Laporte (2009).

The author highlights the major developments in

the OR/MS methodology for the vehicle routing

problem (VRP) over the last fifty years. He reviews

successful exact algorithms and heuristics introduced

in the literature ranging from extremely sophisticated

optimal decomposition algorithms to powerful

metaheuristics. His work is complemented by the

books edited by Toth and Vigo (2002) and Golden

et al. (2008) who put together articles spanning

a multitude of VRP variants. All these sources also

provide a wealth of references to research conducted

over the years in the ever increasing universe of VRP

problems.

While Laporte highlights the outstanding progress

made by optimal algorithms, he also notes that such

methods have their limitations with respect to

increasing larger problems. Certainly, they can be

transformed into optimization-based heuristics which

can solve larger problems. However, when it comes to

huge instances, heuristics are still the answer. Laporte

also observed that over time the research community

has designed metaheuristics that have become more

and more over-engineered at the expense of

computation time. He suggests researchers should

consider producing simpler and more flexible

algorithms capable of faster handling of a broader

variety of constraints, even if they cause a slight

decrease algorithmic effectiveness.

The application of OR/MS methods in this area has

lead to significant achievements in practice. Kant et al.

(2008) report on a very successful implementation

undertaken by Coca-Cola Enterprises (CCE), the

world’s largest bottler and distributor of Coca-Cola

products. The CCE fleet in the U.S. is only surpassed

in size by that of the U.S. Postal Service. The software

developed is very flexible and handles a variety of

practical constraints in determining the truck routes

from each distribution center to the retail outlets.

Hundreds of dispatchers use this software daily to

plan the routes for tens of thousands of trucks. The

deployment of the software has resulted in annual cost

savings of tens of millions of dollars. In addition, CCE

has experienced fewer missed deliveries and gained

the ability to deal with tighter time windows,

thereby substantially enhancing its customer service.

Given the success of the software, Coca-Cola decided

to roll it out in other parts of its business.

A variety of routing settings also involve the

temporal aspect in the form of customer imposed

time windows. A unified framework for all time

constrained vehicle routing and crew scheduling

problems was developed by Desaulniers et al. (1998).

This paper presents a more general model than

previously considered which integrates all the

different time constrained vehicle routing and crew

scheduling problem types examined up that point in

the literature. The model extends well-known generic

formulations to allow the modeling of all real-world

circumstances encountered to date in this environment.

This enables the reader to understand the common

structure of these problems. It also allows one to

perceive the relations between the various problems,

the different forms of the model used previously in the

literature, and assorted applications across a unified

formulation. This also permits the reader to note the

diversity of specialized algorithms that have been

designed to solve them, and to comprehend the

difficulties inherent in certain modeling aspects.

The common structure of these problems is a

multi-commodity network flow model with additional

resource constraints. Time is one example of

a resource. Resource variables help manage complex

nonlinear cost functions and difficult local constraints

(e.g., time windows, vehicle capacity, and union rules).

To solve the nonlinear multi-commodity problems in

this class, the paper presents a branch-and-bound

framework. It shows that a variety of strategies and

algorithms can be utilized for the computation of lower

bounds and for devising branching schemes. The lower

bounds are derived by using a decomposition

approach. In their paper, Desaulniers et al. focus on

an extension of the Dantzig-Wolfe decomposition

principle and establish that this is valid even for

nonlinear objective functions and constraints.
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They also illustrate that it embeds the column

generation-based methods using set partitioning

formulations previously suggested in the literature as

special cases. The branching module used to obtain

integer solutions compatible with column generation is

more general, but yet simpler than other prior

strategies. Branching decisions and cuts appear either

in the master problem or in the subproblem structures.

Finally, the authors examine the constrained

shortest path problems that appear at the subproblem

level of the decomposition. The paper displays the

variety of specialized dynamic programming

algorithms that have been developed to solve

these and more general single commodity problems

and the aspects which have not yet received attention.

Optimal algorithms stemming from the above

framework have emerged as the most preferred

solution methodologies. These branch, price, and cut

algorithms have been widely applied not only in

a variety of routing and scheduling transportation

contexts, but also in crew scheduling, network

design, production, and telecommunications, as well

as other areas. These algorithms have become even

more powerful due to different classes of strong

cutting planes that have been proposed to tighten the

lower bounds. Significant improvements in the quality

of the lower bounds computed in the search tree

have also resulted from utilizing the elementary

shortest path problem with resource constraints at the

subproblem level.

Crew Scheduling

Two notable application areas of the above framework

are the urban transit crew scheduling problem and the

airline crew scheduling problem. Blais et al. (1990)

describe a software package to handle the former

problem. It consists of several modules. The first

uses standard network flow methodology to solve the

bus scheduling problem. Next, crew scheduling is

handled in two steps. In the first, several

approximations are used to permit the fast derivation

of a linear- programming solution. Using this solution,

specific driver assignments are then obtained in

step two by means of solving a quadratic-integer

program heuristically and using an optimal matching

algorithm. Finally, a shortest path algorithm utilizing

the marginal costs from the matching problem is used

to improve the solution. The software has been

successfully implemented in a number of cities

worldwide.

With respect to exact algorithms, very large

multiple-depot vehicle scheduling problems can

be solved to optimality in reasonable times. The same

holds true for practical crew scheduling problems

encountered in urban mass transit and in air

transportation. However, the joint consideration of

these two problems proved to be much more

challenging. Haase et al. (2001) address this

simultaneous vehicle and crew scheduling problem in

urban mass transit systems. They propose an

optimization algorithm based on the above

Dantzig-Wolfe column-generation framework for the

problem variant involving a single depot case and a

homogeneous vehicle fleet. The authors take a

crew-first, vehicle-second approach where decision

variables are defined only for the scheduling of

drivers. The bus routes are handled within

constraints. These constraints ensure that optimal bus

itineraries can be obtained in polynomial time once the

crews have been scheduled. The authors provide

computational results that indicate that this technique

was capable to optimally solve larger problems than

previously reported in the literature. An easily

achieved optimization-based heuristic version of the

method is was able to solve even larger instances.

The evolution in airline crew scheduling from

the manual methods of the early 1970s to the

powerful OR/MS based software now in use mirrors

the developments that have occurred in many other

logistics areas. In addition, research in crew

scheduling is part of the stream of research

spearheading the development of optimization

methods capable of handling practical size problems.

This new generation of optimal algorithms discussed

above blends the effectiveness of advanced

optimization methods, designed to take advantage of

special problem structures, with the efficiency of

sophisticated computer science techniques, and the

computing power of workstations.

Air transport carriers use a five-phase tactical

planning and scheduling process. The schedule

planning phase first determines all flight segments, or

legs, to be flown during a given period, according to

the forecasted demand, the time slots that the company

owns at different airports, and the competition. The

next phase is fleeting, where each equipment type or
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fleet is assigned to individual legs. The fleeting

solution provides a decomposition for the problems

to be considered in the next three phases. For each

fleet, the flight legs with their corresponding

scheduled departure and arrival times become inputs

to the aircraft routing phase. At this stage, for each type

of aircraft, routes are build that must encompass all

legs to be flown and satisfy maintenance requirements.

The fourth phase builds valid crew pairings, also

known as crew rotations, to minimize crew cost.

A pairing is a detailed schedule of activities, such as

flight legs, deadhead legs (crew members fly as

passengers), briefings and debriefings, breaks and

nighttime rests that start and end at the same crew

base. In the fifth phase, employees are assigned to

monthly blocks where each block describes the

activities of a crew member during the month. When

this process accounts for employee preferences it is

called rostering. When blocks are built without regard

to crew members’ desires, the process is called

bidding, in which case, crew members choose blocks

according to seniority.

Butchers et al. (2001) provide a historical account

and discuss the OR/MS techniques developed for crew

scheduling and rostering at a major airline over

a fifteen year period. It highlights the fact that the use

of such methodologies created major savings for the

company, while at the same time providing rosters that

benefited the crew members. The account is also

illustrative of the advantages to be derived from close

collaborations between industry and academia.

Nevertheless, the airline planning process phases

considered had to be treated sequentially due to the

size of the problems involved. The fact that in this

planning process the output of an earlier phase

provides the input to the next later phase generally

leads to suboptimal policies.

Researchers have started to solve selected subsets

of planning problems such as fleeting and aircraft

routing and aircraft routing and crew pairing

simultaneously. Representative of this line of work is

that of Sandhu and Klabjan (2007) that addresses the

fleeting, aircraft routing, and crew pairing phases in an

integrated fashion. The maintenance requirements

that must be satisfied in the aircraft routing phase are,

however, not considered. The authors propose two

optimal algorithms, one using a Benders

decomposition approach and the other involving

a combination of Lagrangian relaxation and column

generation. Based on computational experiments

conducted using data from a major carrier, they

conclude that if improvements are sought in a short

amount of time, the former method should be used.

However, if sufficient computing time is available,

the usual case in this planning environment, then

the latter technique should be utilized. In addition,

the authors found the Lagrangian relaxation/column

generation approach more robust and practical.

Real-Time Logistics

While the size of problems solved by optimization

algorithms increases constantly, heuristics remain

a viable tool for very large-scale and/or very complex

problems. Dispatching, an intricate activity given the

need for a solution in real-time to large-scale problems,

lends itself naturally to heuristic solutions. The use of

fast route construction/route improvement heuristics

to deal with the practical complexities of the problem

typifies the kind of research conducted in the 1980s. The

highly dynamic character of dispatching is also apparent

in truckload transportation. In this environment

characterized by high demand uncertainty, a motor

carrier must continuously manage the assignment of

drivers to loads across the country. Stochastic network

optimization models exemplify the type of

methodology developed to solve this dynamic vehicle

allocation problem. Powell et al. (1995) provide an

extensive survey of this problem area.

When shipments could not be forecasted with

accuracy, Moore et al. (1991) report having built

mixed-integer programming (MIP) and simulation

models. The use of these techniques for operational

purposes has stemmed from the successful solution

of a strategic decision through similar methods. This

decision involved the significant reduction in the

number of carriers used and the creation of

partnerships with them. To solve the carrier selection

problem for a global, integrated aluminum company,

the authors developed an MIP and further analyzed

its results using simulation. This problem represented

an important part of a redesign effort aimed at

centralizing previously decentralized transportation

and purchasing decisions. In particular, by creating

a central dispatch center and supporting decisions

with OR/MS methodologies, the company improved

on time delivery and reduced annual freight costs by
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millions of dollars. Overall, this implementation was

a reflection of the lean manufacturing philosophy

extended to logistics. Furthermore, as logistics has

evolved into an information technology centric

environment, partnerships with carriers now involve

electronic data interchange and web based information

sharing.

Supply chains have become a competitive weapon

in the global economy. The remarkable advances in

telecommunications and information technology

have enabled companies to focus on velocity and

timeliness throughout the supply chain. To achieve

these competitive advantages, they must be able to

make effective use of the vast amount of real-time

information now available to them. The Dynamic

Vehicle Routing Problem (DVRP) is a prime

example of a distribution context where intelligent

use of real-time information can differentiate one

company from another by means of superior on-time

service. The DVRP is the dynamic counterpart of the

VRP. In the latter problem, the objective is generally to

minimize the travel cost for several vehicles that must

visit and service a number of customers. Constraints

specifying capacity restrictions, time windows within

which to start service at customers, and additional

requirements on the drivers and vehicles restrict

the optimization space. In the VRP all routing and

demand information is known with certainty prior to

the day of operations, so routes can be planned ahead.

In contrast, in the DVRP part or all of the necessary

information becomes available only during the day of

operation. In other words, not all information relevant

to the planning of the routes is known by the planner

when the routing process begins and information can

change after the initial routes have been constructed.

The practical significance of the DVRP is highlighted

by the variety of environments it can model. An

important application is the pickup and delivery of

overnight mail. Other scenarios include the distribution

of heating oil or liquid gas to private households,

residential utility repair services, such as cable and

telephone, and appliance repair. Additional settings are

the transportation of the elderly and physically disabled,

taxi cab services, and emergency services, such as

police, fire, and ambulance dispatching.

Gendreau and Potvin (2004) have edited a special

issue of Transportation Science dealing with many

issues in real-time fleet management. These were

created by the consideration of transportation and fleet

management activities as an integral part of the supply

chain, their coordination with other aspects of the

supply chain, and the explosive growth of web-based

logistics services. The paper by Larsen et al. (2004) is

illustrative of this type of research. The authors examine

the traveling salesman problem with time windows for

various degrees of dynamism. The objective is to

minimize lateness and examine the impact of this

criterion choice on the distance traveled. The focus on

lateness is motivated by the problem faced by overnight

mail service providers. A real-time solution method is

proposed that requires the vehicle, when idle, to wait at

the current customer location until it can service another

customer without being early. In addition, the authors

develop several enhanced versions of this method

that may reposition the vehicle at a location different

from that of the current customer based on a priori

information on future requests. The results obtained on

both randomly generated data and on a real-world case

study indicate that all policies proved capable of

significantly reducing lateness. The results also show

that this can be accomplished with only small distance

increases.

Another important setting for the application of

OR/MS methodologies to support real-time decisions

is in the airline industry. Airlines must build aircraft

routes and crew rotations to provide scheduled service

while maximizing profits. This objective must be

achieved in an environment that is difficult to predict.

Hence, planning decisions– made in advance– may

have to be altered by real-time decisions when

perturbations occur in order to minimize customer

inconvenience and costs to the airline. Changes made

on the day of operations result from bad weather

conditions, headwinds on route, technical difficulties

with aircraft, crew and passenger delays, and

peak-hour congestion at airports. This challenging

problem is very important in practice since

perturbations are costly in terms of rescheduling issues

and especially in terms of loss of traveler goodwill. This

is because they can lead to delaying or canceling flights,

swapping aircraft among flights or using spare aircraft

(if any exist), which in turn affect future deployment of

aircraft and crews. Dispatchers usually adjust the planed

schedules as soon as a perturbation occurs. They have

little time to analyze cost-effective scheduling

alternatives. Therefore, it is important to find a good

balance between the optimality of a proposed solution

and the speed with which it is obtained.
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Historically, the day of operations solutions

have relied mainly on management information

systems and graphical user interfaces, and on simple

heuristics to support the decision process. Exact

algorithms also have been deployed in practice to

provide optimal or near-optimal solutions. Yu et al.

(2003) present an optimization based decision support

system developed for a large air carrier that provides

crew-recovery solutions. The software proved capable

of handling major disruptions and in turn it allowed

the airline to recover quickly and derive benefits in

the millions of dollars.

Inventory in the Supply Chain

The fundamental and often complex trade-offs

between transportation and inventory costs are

a central issue in supply chain management.

Blumenfeld et al. (1987) present an ingenious

analysis of the production network of a manufacturer

of vehicle components. Their bottom-up approach

begins with the analysis of the trade-offs on a single

link. These are obtained using a standard economic

order quantity (EOQ) model. Using several realistic

approximations, the authors are then able to

extend their analysis to much more complex

networks. In particular, one approximation allows the

decomposition of a large network into a number of

small independent subnetworks, where shipment

sizes can be computed using the single link model.

This work involving simple, easy to understand

models, supplemented by insightful graphical

information, is representative of a line of research

complementary to combinatorial optimization.

In light of intense global competitive pressures,

many companies have tried to decrease their

inventory investment while maintaining or improving

customer service in their vital business processes. Yet,

the implementation of lean manufacturing has lead to

significant increases in product variety. In turn, this has

augmented the complexity of the after-sales service

logistics networks. Cohen et al. (1990) describe the

design of a spare parts inventory control system

capable of supporting multiple service levels.

The building block of their approach is a periodic

review, stochastic model for the one-part,

one-location case. This model is then extended to

a multi-product, one-location case, called the service

allocation problem. This is solved using a greedy

heuristic. A decomposition approach is utilized for

the overall multi-product, multi-echelon problem. It

involves a bottom-up procedure which begins by

solving the service allocation problems at the lowest

echelon. The solutions are then used to deal with the

next higher echelon. The algorithm proceeds in this

fashion, level-by-level up to the highest echelon.

The model has been implemented by a global

computer manufacturer. It has found applicability

both as a strategic network redesign tool and as

a weekly operational device.

Inventory investment becomes progressively more

substantive with increases in the size of companies

holding it. While enterprise resource planning

software has provided much needed inventory

visibility in the supply chain, these systems do not

optimize inventory levels. OR/MS methods do, but as

they have become increasingly sophisticated over

time, the scale and complexity of supply chains has

also augmented. The paper by Farasyn et al. (2011) is

representative of these issues. It discusses the

implementation of various inventory management

solutions at Procter and Gamble (P&G). Given the

company has 500 different supply chains, it chose

a two pronged approach to realize improvements in

inventory levels. P&G first focused on the

wide-ranging use of spreadsheet-based inventory

models throughout its supply chains. This part of the

implementation involved four methods that can locally

optimize different parts of the supply chains. The

next step dealt with the deployment of integrated

multi-echelon inventory software in the company’s

more complex supply chains. The use of OR/MS

technologies led to savings of $1.5 billion in 2009,

while service levels were maintained or increased.

The authors also highlight the fact that this

successful implementation did not rely on tools

alone. A buy-in from the various entities involved

was of equal importance and so was the fit between

the necessities of a business unit and the inventory

techniques it will use.

Supply Chain Management

Corporations have evolved from the vertical

management of separate individual functions to the

horizontal management across all functions. Many of
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the old conflicts among business units, including

transportation versus inventory have given way to the

concept of the total logistics cost. Supply chain

management is the natural progression of applying

these concepts throughout distribution channels by

means of pipeline inventory management and

information sharing by all involved parties.

The implementation of a comprehensive set of

OR/MS tools in a variety of business areas of a large

oil company is discussed in Klingman et al. (1987). It is

not surprising to see that this industry was at the leading

edge of computer integrated horizontal management

across functional areas. OR/MS techniques such as

linear programming have been utilized in the oil

industry since the 1950s. The work of the above

authors included such tools as mathematical

programming, statistics, forecasting, expert systems,

artificial intelligence, organizational theory, cognitive

psychology and information systems. A core element

was the optimization-based integrated system for

supply, distribution, and marketing. This strategic tool

is used to make a number of decisions including how

much product to buy or trade, how much to hold in

inventory, and how much to ship by each mode of

transportation. The system is based on the minimum-

cost flow network model.

Since then, supply-chain management has

become a key application area for OR/MS

methodologies, with an explosive growth in the

development of models and algorithms and their

implementation. Some researchers took an economics

perspective, including game theory and information

management approaches, while others examined

inventory models. Supply chain configuration has

also been at the forefront of research in this area.

Researchers have examined the integration and

coordination between production and distribution,

location and routing, routing and inventory, and

routing and crew scheduling. They have proposed

a vast assortment of heuristic and optimal methods

for these aspects of supply chains and a variety

of single and multi-objective decision support

systems for the overall system design, (Simchi-Levi

et al. 2004).

Sophisticated OR/MS models and algorithms are

only part of successful implementations. Ulstein et al.

(2006) drive home the idea of the collaboration between

business and academia, and business and the

community as additional necessary ingredients. Their

work was conducted for Elkem’s silicon division which

is the largest supplier of silicon metal and ferrosilicon in

the world. With the slowdown in the global economy

that started in 2000, the corporation realized the need to

improve the efficiency of its supply chain network and

evaluate its product portfolio. To help the division to

manage this process, the authors developed a strategic

planning model. This mathematical-programming

model addresses decisions pertaining to future plant

structure, including possible closures, new plant

acquisitions, and investments in production equipment.

The silicon division has used the model and its scenario

analysis capabilities extensively to obtain important

benefits. The company agreed to a restructuring

process, that included reopening a closed furnace and

investing $17million in equipment conversion. Overall,

as a result of the restructuring plan, Elkem has achieved

significant and sustained improvements in yearly

revenue for the silicon division. Many companies face

supply-chain design problems with a similar level of

complexity. They can benefit from following the close

collaborative process described in this paper and from

using optimization tools to solve their decision

problems.

Sustainability issues are becoming a requisite part of

a supply chain studies. For example, Nagurney and

Nagurney (2010) consider a company’s multicriteria

decision problem that attempts to minimize the

total costs associated with its supply chain activities,

along with the emissions generated by its

manufacturing, storage and distribution facets. The

business incurs both capital and operational costs. The

authors propose a network optimization framework

and illustrate an algorithm applied to a number of

sustainable supply chain examples. Carter and

Easton (2011) trace the evolution of the field from the

original research on social and environmental areas, to

issues of corporate social responsibility, and the

eventual realization that sustainability is part of the

bottom line. They provide a comprehensive review of

the sustainable supply-chain management literature.

One of the salient features of the paper is the

relationship between supply chain risk management

and contingency planning and sustainable supply

chains.
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Log-Linear Model

▶Learning Curves

▶Regression Analysis

Longest-Route Problem

In a directed network, the finding of the longest route

between two nodes is the longest-route problem. In an

acyclic network, one that represents the precedence
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relationships between activities in a project, the

longest route in the network represents the critical

path, with the value of the longest route equal to the

value of the earliest completion time of the project.

See

▶Critical Path Method (CPM)

▶ Program Evaluation and Review Technique (PERT)

Long-Tailed Distribution

▶Heavy-Tailed Distribution

Loss Function

▶Decision Analysis

▶Total Quality Management

Lottery

In utility theory and decision analysis, a lottery

consists of a finite number of alternatives of prizes

A1. . . An and a chance mechanism such that prize Ai

will be an outcome of the random experiment with

probability pi � 0, Si pi ¼ 1.

See

▶Decision Analysis

▶Utility Theory

Lower-Bounded Variables

The condition lj � xj, lj 6¼ 0, defines xj as

a lower-bounded variable. Such conditions are often

part of the constraint set of an optimization problem.

For linear programming, these conditions can be

removed explicitly by appropriate transformations,

given that the problem is feasible when xj ¼ lj for

each j.

Lowest Index Anticycling Rules

▶Bland’s Anticycling Rules

LP

▶Linear Programming

LU matrix decomposition

The decomposition of a matrix into the product of

a lower- and an upper-triangular matrix. This is

similar to an LDU decomposition in which the D and

U matrices have been combined.

See

▶LDU Matrix Decomposition
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M

Machine Learning

A term used in the artificial intelligence community to

indicate automated improvement based on experience

or empirical data in accomplishing a given task such as

optimizing an objective function.

See

▶Artificial Intelligence

MAD

Mean absolute deviation.

Maintenance

Maintenance is the support of successful system

operation during long periods of usage by means of:

(1) regular or sample check-ups; (2) planned or

preventive replacement of the system’s units; (3) failure

diagnosis; and/or (4) spare units supply. Operations

research models for a system maintenance analysis

are represented mainly by optimization models for the

improvement of system and equipment reliability.

For (1) and (2), one usually uses methods of

controlled stochastic processes. For (3), one uses

special methods based on mathematical logic, while

(4) is considered in the scope of optimal redundancy

and inventory control.

See

▶Airline Industry Operations Research

▶ Inventory Modeling
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▶ Scheduling and sequencing
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Introduction

Manpower (or, human resource) planning is concerned

with the quantitative aspects of the supply of and

demand for people in employment. At one extreme this

might include the whole working population of

a country, but it has been most successful when applied

to smaller, more homogeneous systems like individual

firms or professions. The term manpower planning

appears to date from the 1960s though many of the

ideas can be traced back much further. In recent years

terms such as Workforce Panning and Personnel

Planning have been used in the same sense. A history

of the subject up to the 1980s,from a U.K. perspective,

will be found in Smith and Bartholomew (1988). The

literature of the subject is very scattered reflecting the

diverse disciplinary origins of the practitioners, but most

of the technical material is to be found in the journals of

operations research, probability, and statistics. There

was an initial surge of publication in the late 1960s and

early 1970s and since then book length treatments

include Grinold and Marshall (1977), Vajda (1978),

and Bennison and Casson (1984). Bartholomew,

Forbes and McClean (1991) gives a thorough coverage

of the technical material and contains an extensive

bibliography. Since then there has been a period of

consolidation. The earlier theoretical work has largely

proved adequate for practical needs, though there have

been developments in closely related areas. See, for

example, Kalamatianou and McLean (2003).

The essence of manpower planning is summed up in

the aphorism that its aim is to have the right numbers of

people of the right kinds in the right places at the right

time. The basic approach is first to classify the

members of a system in relevant ways. These will

often be on the basis of such things as grade, salary

level, sex, qualifications, and job title. The state of the

system at any point in time can then be described by

the numbers in these categories, often referred to as the

stocks. Over time, changes occur as individuals join,

leave the system or move within it. The numbers

making these transitions are called the flows. The

factors giving rise to change may be predictable or

unpredictable but will include such things as

individual decisions to leave, changes in demand for

goods, management decisions on promotion or

organizational structure and so on. The operations

researcher’s role is to describe and model the system

as a basis for optimizing its performance.

Stochastic Models

The presence of uncertainty in so many aspects of the

functioning of a manpower system means that any

adequate model has to be stochastic. Two probability

processes, in particular, have proved to be both flexible

and realistic. These are the absorbing Markov chain

and the renewal process. The former is appropriate in

systems where the stocks are free to vary over time

under the impact of constant flow rates, or

probabilities. The art of successful application is to

define the classification of individuals that all those

within a category have approximately the same

probability of moving to any other category. Loss

from the system corresponds to absorption, and the

theory of Markov chains can then be used to predict

future stock numbers for various sets of transition

probabilities. Later work has extended these methods

by allowing the intervals between transitions to be

random variables in which case a semi-Markov

process or a Markov renewal process results.

When the numbers in the categories are fixed, as

they often are when the categories are grades or based

on job function, a different approach must be used.

Transitions cannot then be regarded as generated by

fixed probabilities, but arise in response to the

occurrence of vacancies. The result is a replacement,

or renewal process, where movement is driven by

wastage (or the creation of new places). It was shown

in Bartholomew, Forbes and McClean (1991) that the

flows of vacancies could be modelled by a Markov

chain in a manner very similar to that used for the

modeling of the flows of people.

If a system is relatively small or if the rules

governing its operation are complex, the only realistic

way to model it may be to use a computer-based

simulation model. The term simulation is commonly
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used in two distinct senses in this context. Primarily it

means that each individual movement is generated in

the model by a random mechanism. Secondly, it is

sometimes used of any algorithm for computing

the aggregate properties of a system treated

deterministically.

Forecasting and Control

Broadly speaking all models may be used in twomodes

for forecasting or control. In the early stages of a study

one usually wishes to forecast the future state of the

system if current trends continue. Next, it will usually

be desirable to carry out a sensitivity analysis to explore

the consequences of variations from present conditions.

This leads on to questions of control where the question

is how those parameters under management control

should be chosen to achieve some desired goal. The

distinction between forecasting and control can be

illustrated using a simple form of the Markov model.

According to this model successive vectors of expected

stocks are related by an equation of the form

n T þ 1ð Þ ¼ nðTÞPþ R

where T represents time, P is a matrix of transition

probabilities, andR is a vector of recruitment numbers.

In forecasting mode, estimated or guessed values of P

and R could be used to predict future values of n(T). In

principle, P and R could both depend on T. In control

mode, one would be asking how some or all of the

elements of P and R should be chosen to attain a given

nwithin a specified time. This gives rise to questions of

attainability (whether the problem is solvable) and

maintainability (whether an n can be maintained once

it is reached). These matters have led to an interesting

set of theoretical questions about the solvability of

such problems in deterministic or stochastic

environments. At a more practical level it has led to

the formulation of optimization problems expressed in

goal programming and/or network analysis terms

(Gass 1991; Klingman and Phillips 1984).

The wastage flow (also known as attrition or

turnover) is an important element in a manpower

system both because it is highly variable and, largely,

beyond the control of management. It has been

intensively studied mainly through the survivor

function or, equivalently, the frequency distribution of

completed length of service. In practice the analysis is

complicated by the fact that the data are usually

censored and sometimes truncated also. This work has

three main objectives: measurement, prediction, and

gaining insight into the factors determining wastage.

The demand side of the manpower equation has

proved to be less tractable. Demand for people is

equivalent to the supply of jobs and this depends on

technological, political, social, and economic factors

many of which may be specific to particular

organizations or industries. To take only one

example, the demand for qualified medical manpower

will depend on such varied things as demographic

changes, the willingness of government or users of

the service to pay, and the appearance and spread of

new diseases like AIDS. The methods used have been,

and have to be, as diverse as the fields of application.

Because of the considerable uncertainties involved it

is important to monitor constantly the changing

environment and to adjust plans accordingly.

A once-and-for-all plan has no place in manpower

planning.

See

▶Goal Programming

▶Markov Chains

▶Markov Processes

▶Network
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Manufacturing

▶ Flexible Manufacturing Systems

▶Operations Management

▶ Production Management

MAP

Markov arrival process.

See

▶Matrix-Analytic Stochastic Models

Marginal Value

The marginal value is the extra cost of producing one

extra unit of output. Similarly, marginal revenue is the

extra revenue resulting from selling an extra unit of

goods. From the economics of a firm, when marginal

revenue equals marginal costs, the firm is in an

equilibrium optimal condition in terms of maximizing

profits. Depending on the application, the dual variables

of a linear-programming problem can be interpreted as

marginal values. The economic interpretation of the

dual variables is complicated by alternate optimum

solutions (corresponding to different bases) that may

yield different values of the dual variables. Thus, there

may be two or more marginal values for the same

constraint. Such multiple values must be interpreted

with care.

See

▶Dual Linear-Programming Problem

▶Duality Theorem
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Introduction

Marketing offers a rich and unique domain for

applications of operations research (OR) methods,

models, and approaches. Not only does the marketing

area offer opportunities to develop and apply ORmodels

and methods to increasingly important decisions

affecting ALL companies, nonprofits, governments,

societies, and individuals, but also unique opportunities

to further the much needed collaboration between

academics and practitioners, and for bridging the

silos between marketing and the other management

disciplines and functions.

Since customers (individuals or groups) are at the

heart of themarketing system, ORmodeling approaches

help characterize, understand, and predict their

behaviors. For consumers and organizational buyers,

that behavior involves the search for solutions to

a want or desire, the screening or evaluation of

alternatives, the selection of a best alternative, the act

of purchase, the post-purchase feedback to the firm as

well as to other customers and learning that affects

future purchasing behavior. In fact, such applications

of OR to marketing problems have become even more

prevalent, with website morphing (Hauser et al. 2009),

Netzer’s work on optimal email campaigns, and optimal

in-store movement using the traveling salesman

paradigm (Hui et al. 2009).

Firms and other non profit organizations (such as

museums, politicians, government organizations)

capitalize on that knowledge or model of individual

behavior by focusing on such decisions as product/

service design, pricing, distribution, promotion,

advertising, personal selling, and the likely customer

responses to them. In addition, at a higher level, these
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decisions must be integrated and coordinated with the

activities of other management functions (finance,

manufacturing, R&D, etc.) and linked to other product

and market decisions of the organization, including the

critical resource allocation decisions among products,

markets, distribution options, and businesses. Such

critical decisions are evaluated based on their return

on investment (ROI) under alternative scenarios

reflecting different views of the future.

The external scenarios range from pessimistic

views of recurring financial crisis, catastrophic

natural disasters, continued terrorist activities and

political unrest around the world, through

continuation of the status quo, to optimistic scenarios

of growth and prosperity driven by the fast growing

economies of Asia and a recovery of the West. For

marketers, these scenarios lead to consideration of

strategic alternatives derived from a narrow view of

modeling, e.g., the impact of a specific marketing

activity (such as advertising expenditures) through an

integrated view of all marketing touch points and

product/service/solutions/customer experience, to the

design of full strategy integration across the various

management functions, incorporating multiple short

and long-term performance measures.

Background

TheAmericanMarketingAssociation definesmarketing

as: “. . . the process of planning and executing the

conception, pricing, promotion, and distribution of

ideas, goods, and services to create exchanges that

satisfy individual and organizational objectives.”

As a management function, marketing includes such

activities as advertising, sales and marketing research.

Or, more simply put, marketing’s organizational role is

the interface between a firm and its customers. It is also

a critical participant in cross-functional processes aimed

at developing and launching new products and services

that create customer value, i.e., products and services

that customers want.

As a philosophy, marketing views the need to

understand, anticipate and meet customer needs as

the key to organizational success. As such, the

customer is the final arbitrator of the value of any

product or service offering. Marketing philosophy

also extends the concept of customer orientation to

internal customers and other stakeholders.

Thus, marketing is concerned with anticipating and

understanding human needs and wants and translating

those needs and wants into the demand (as economists

use the term) for products and services. Those needs

and wants are satisfied with products and services that

are increasingly being developed in collaboration with

empowered consumers. Businesses that exemplify this

view include Build-a-Bear, Dell, and others offering

opportunities for customization of the products and

services, as well as firms that now scrape blogs,

discussion forums, and other user-generated content

to bring the digital voice of the customer into the

firm, and help determine the appropriate responses

(Ghose and Han 2011).

Products and services have functional as well as

image characteristics. They are made available to the

customer through a variety of channels ranging from

physical retail stores to online websites, to mail order

to social network platforms (e.g., Facebook). In order

to effect an exchange, individuals have to be aware of,

emotionally engaged, and understand the product

(through advertising or other communication media),

find the product worth their money (by comparing the

product’s total cost — its purchase price adjusted by

any promotional offerings plus the cost of maintaining,

using and disposing of the product — with the benefits

promised in terms of performance and image), and

participate in the exchange process.

While historically marketing models of behavior

saw a product’s value as consisting of the sum of the

utilities of the features and benefits of which it is

comprised (Green et al. 1973), and that is still a

significant part of marketing modeling, newer

conceptual models also take into account the

perceived value of others, the recommendation of

others, and the ability to share those experiences with

others via one’s social network (Stephen and Toubia

2010), or via the network externalities generated by

other adopters.

Exchanges have typically been aggregated to the

context of a market segment, which consists of the

customers sharing a particular and similar need and

who are willing to engage in exchange to satisfy that

need. However, it is no longer uncommon to see

exchange activities take place between the firm and

individual consumers rather than at the level of

a market segment (which represents higher level of

aggregation). In essence, technology has allowed

marketing in the 21st century to be infinitely tailored
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because of the wealth of individual-level data that is

now tractable due to the advances in the interactive

media, and consumers’ motivation and ability to

customize the offerings.

OR Marketing Model Types

OR in marketing helps decision makers by harnessing

measurement models and theoretical models and

embedding them within a decision model (or more

generally, within a decision-support system). The

corresponding models are calledmeasurement models,
stylized theoretical models, and decision-making
models, respectively (although it may be equally

helpful to interpret these categories as classification

dimensions for interpreting the multiple purposes of

models).

Measurement Models — The purpose of

measurement models is to describe and predict

a current or anticipated either an individual consumer

or the market reaction to a product or service as

a function of various independent variables. The

phrase “market reaction” here should be interpreted

broadly. It is not necessarily units demanded but

could be some other related variables. For example,

in Guadagni and Little’s (1983) model, the dependent

(reaction) variable is the probability that the individual

will purchase a given brand on a given purchase

occasion. Choice models often have several

independent variables including whether the brand

was on sale (deal) at a given purchase occasion,

regular price of the brand, deal price (if any), brand

loyalty of the individual, etc. In addition, sometimes

the focus of such models may be on certain variables

preceding the steady-state demand (e.g., awareness,

first-trial, repeat purchase). These examples suggest

that measurement models can deal with individual

(disaggregate) demand or aggregate (segment or

market-level) demand as well as transitory or

steady-state demand. Note that advances in

measurement models can be due to better data (e.g.,

scanner data) or better estimation methods and

procedures (maximum-likelihood methods for

generalized logit models, for example). In traditional

marketing problems such as customer satisfaction and

customer-defined quality, OR measurement models

have greatly enhanced the relatively simplistic

survey-based approaches to the measurement of these

constructs. Relying on advances in structural equation

modeling. as well as the new area of empirical

industrial organization, allows researchers to address

more realistic and rich problems, such as competitive

pricing behavior in markets with a large number of

products (e.g., Sudhir 2001).

Stylized Theoretical Models — The purpose of

stylized theoretical models is to explain and provide

insights into marketing phenomena: a stylized

theoretical model typically begins with a set of

assumptions that describes a particular marketing

environment. Some of these assumptions may be

purely mathematical, but are also intuitively logical

with the objective of making the analysis tractable.

Others are substantive assumptions with real

empirical grounding. Two well-known theoretical

modeling efforts are Bell, Keeney and Little (1975),

who show what functional forms of market share

models are consistent with a certain set of reasonable

criteria, and Basu et al. (1985), who show what form of

sales force compensation plan is optimal under a set of

assumptions about firm and salesperson objectives and

behavior.

Such stylized theoretical models have helped

improve the ability to design optimal product lines,

issues related to specialization versus vertical

integration (McGuire and Staelin 1983), aligning the

incentives between manufacturers and retailers

(Jeuland and Shugan 1983), designing pricing

strategies for traditional goods, and also information

goods. Stylized models have helped improve how

companies offer short-term price discounts (Raju

et al. 1990), how such short-term price discounts pass

through to the consumer, and how retailers might

improve their private label offerings. As marketing

systems evolved, especially with the advent of new

technologies, such stylized models have significantly

improved understanding of new platforms and

mechanisms for interactions between buyers and

sellers. Stylized theoretical models have also helped

in the understanding of the role brands play in

a competitive market, including the symbolic role

that brands play in social interactions, and how firms

may improve their advertising and communications

strategies (Chen et al. 2009).

While the emphasis in this work is on developing

stylized theoretical models, most work in this area also

rigorously tests the ability of these models to predict

firm and market behavior. Recent empirical work in
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the structural economics also contains stylized

theoretical models where observed outcomes are

assumed to arise from equilibrium actions taken by

agents, modulo stochastic error (Dube et al. 2010). In

this manner, joint theory and empirical work has begun

to play a larger role. Distinguishing features of stylized

theoretical models, especially the ones that use

economic modeling and game-theory as tools, are

that they explicitly recognize that companies must

make decisions in a competitive environment and

recognize that they compete with other firms who

also are capable of making sound decisions. It is

through this explicit recognition that these models are

able to provide companies with a theoretically sound

and empirically grounded means of improving

strategic marketing decisions.

Decision-Making Models — These models are

designed to directly help marketing managers make

better decisions. They incorporate measurement

models as building blocks, but go beyond

measurement models in recommending specific

actions (e.g., optimal marketing-mix decisions) for

the manager. The techniques used to derive the

optimal policies vary across applications, and include

calculus, dynamic programming, optimal control, and

calculus of variations techniques, as well as linear and

integer programming. These models have been

developed for each marketing variable and for the

entire marketing mix program (i.e., a product and

service offering including pricing, distribution, etc.).

Little’s BRANDAID is a classical example of such

a model. Lilien et al. (2011) elaborate on the impact

such models have had.

Since 2000, many enhanced decision-making

models have been developed that are embedded

inside enterprise information systems. Examples

include revenue management systems used by

airlines and hotels and recommender systems used by

web sites such as Amazon.com and netflix.com.

Table 1, adapted from Lilien and Rangaswamy

(2006), summarizes the many ways that decision

models are evolving to provide enterprises with

real-time and automated decision making capabilities.

The Emergence of Marketing Science

Bymost accounts, OR inmarketing began its growth in

the 1960s and 1970s. The literature used a variety of

OR methods to address marketing problems: those

Marketing, Table 1 The frontiers of decision models (DM)

DM frontiers today DM frontiers tomorrow

Time Scale Days and weeks, if not months Moving toward real time in data entry, data access, data analysis,
implementation, and feedback

Focus of DM Support strategic decisions Support both strategic and operational decisions

Mode of
Operation

Individual and PC-centric Organization and Network centric – support multiple employees
in multiple locations on multiple devices

Decision
Domain

Marketing Marketing and other functions, such as Supply Chain and Finance

Company
Interface

Loosely coupled to company’s IT systems Woven into IT-supported company’s operations and decision
processes

Intervention
Opportunities

Discrete, Problem-driven Continuous, Process-driven

DM Goal Support analysis and optimization Support robust and adaptive organizational decision processes

DM System
Design

As a tool to understand information and
enhance decisions

As tool to enhance productivity and success of business models

DM System
Operation

Interactive (User interacts with model) Interactive as well as autonomous (embedded)

DM Outputs Recommended actions; What if analyses Visualization of markets and their behavior (e.g., Dashboard),
Extended reality (e.g., Business model simulation), Explanation
(Why?), Automated implementation (e.g., create alerts, automate
actions)

DM
Implementation
Sequence

Intervention Opportunity! Implementation
of decisions! Integration with IT Systems

Integration with IT! Intervention Opportunity!
Implementation of decisions
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problems included product design/development

decisions, distribution system decisions, sales force

management decisions, advertising and mass

communication decisions, and promotion decisions

(Kotler 1971). The OR tools that were most prevalent

in the 1960s and earlier included mathematical

programming, simulation, stochastic processes

applied to models of consumer choice behavior,

response function analysis, and various forms of

dynamic modeling (difference and differential

equations, usually of the first order). Some uses of

game theory were reported, but most models that

included competition used decision analysis, risk

analysis, or market simulation games.

Nearly three times the number of marketing articles

appeared in the OR literature in the 1970s as appeared

in the period from 1952 though 1969. In addition to the

increase in the number of articles, reviews by Lilien

and Kotler (1983) showed that a number of new areas

had begun to emerge. These included descriptive

models of marketing decisions, the impact of and

interaction of marketing on organizational design,

subjective decision models, strategic planning

models, models for public and non-profit

organizations, organizational buying models, and the

emergence of the concept of the Marketing Decision

Support System (MDSS). In addition, while the

number of published articles rose dramatically, the

impact on organizational performance did not appear

to be equally significant, raising questions about

effective implementation. Much of the literature of

the 1970s pointed to the need to expand the domain

of application. The “limitations” sections of some of

the papers in the 1970s pointed out that many

important phenomena that were being overlooked

(such as competition, dynamics, and interactions

amongst marketing decision variables) were both

important and inherently more complex to model.

Hence, the level of model complexity and the

insightfulness of the analyses in marketing seemed

destined to escalate in the 1980s and beyond.

The 1980s saw another more-than doubling of the

number of published OR articles in marketing

compared to the earlier decade. Two of the areas that

produced much of this growth were stylized theoretical

models and process-oriented models. The shortening

of product life cycles and the impact of competitive

reactions in the market place preclude most markets

from approaching steady state or equilibrium. Areas of

special research focus in that decade included

extensive focus on consumer choice models (focusing

on the dynamics and heterogeneity of the choice

process and the implications for decision making)

and the new product area (where the moves and

countermoves of competitors keep the marketplace in

a constant state of flux).

The 1990s saw new trends in marketing science

(and in marketing in general), with the electronic

marketplace changing the locus and the nature of the

transaction. The concept of the physical marketplace is

being replaced by that of market space, and marketing

science has found new territories to develop theories

and applications. Most of this, of course, is due to the

applied nature of the marketing discipline in which

solutions to problems emanate from the data and the

problem at hand. As the physical marketplace is being

replaced by the physical in conjunction with

digital marketplace, OR methods that allow for

cross-channel optimization are being developed.

The first decade of the 21st century has seen the

marketspace/customer centricity trend continue, as

customers have gained increased influence and power

in all areas of marketing. User-generated content and

customers as co-producers and co-marketers are

increasingly accepted. Understanding and monitoring

these new market structures are central to the new

view of marketing. Markets are now made up of

customer-networks, and models for understanding

and managing such networks are being developed.

And the study of the role of the marketing manager

and the related decision support systems has

evolved from Little’s (1979) perspective to a domain

of mainstream interest both to academics and

practitioners (see Wierenga 2011).

Another important trend is the emergence of

two-sided and multi-sided platforms, wherein

a business builds a platform that enables many

distinct audiences to engage with the business as well

as interact with each other, to create economic value,

often in the presence of network externalities

(Eisenmann et al. 2006). Typically, value

appropriation occurs through cross-subsidies, wherein

the costs of acquiring one group (e.g., consumers) are

subsidized by another group (e.g., advertisers), and the

platform itself retains part of the value created. eBay

(buyers and sellers), Amazon.com (consumers and

affiliates), HMO (patients and doctors), and credit-

card payment systems (merchants and consumers) are
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often given as examples of platforms. Even many

traditional businesses are transforming into platforms

that connect players in a complex eco-system

(e.g., iPhone as a device connecting application

developers with consumers). Cross-subsidies between

audiences creates complex transaction flows that offer

opportunities for OR modelers to help in carefully

managing prices, revenues, and subsidies to optimize

business performance.

Trends of OR Use in Marketing

The OR literature in marketing is vast, as reviewed in

Lilien and Rangaswamy (2008). Models have been

used to explore most facets of marketing and the

marketplace, and increasingly marketing research is

integrated with appropriate modeling. Some key

trends include the following:

1. OR in marketing is having important impact
both on academic development in marketing
and in marketing practice. During the 1980s

two new and important journals were started that

emphasize the OR approach: Marketing Science

and the International Journal of Research in

Marketing (IJRM). Both are healthy, popular,

and extremely influential, especially among

academics. Another journal, Quantitative

Marketing and Economics was started in 2003.

Together, they reflect the developments of

marketing models.

2. Digital marketing represents vast area of
opportunity for OR. By transforming the

market place into marketspace, the revolution in

the marketplace brings a host of modeling

opportunities and challenges, such as: How are

new products and ideas generated, diffused, and

discussed in a digital environment? How can

a firm manage the natural conflict in physical and

electronic distribution channels? How can firms

offer different prices to different groups of

customers in an electronically linked world?

How and when word-of-mouth among consumers

evolves? When marketing, manufacturing and

the customer are interlinked in the digital

environment, what opportunities emerge in the

marketing-manufacturing interface? Digital

marketing has other major implications, such as

the development of newmarkets (on-line auctions,

electronic bargaining) and the possibility of

involving customers directly in the development

of information products (Dell stores, IBM Jam,

and others). More recently, it has become

feasible to model large-scale social networks

consisting of millions of nodes and billions

of links, such as for example to link in near

real-time a TV event (e.g., Super Bowl ad) with

the Twitter and Facebook feeds triggered by the

ad, to potential impact on market outcomes. These

provide opportunities to apply OR modeling for

analyzing flows of information and influence in

such networks to link those to consequences for

the firm (e.g., profit) or adverse spread of word of

mouth in the marketplace.

3. New data sources are having a major impact on
marketing modeling. One of the most influential

developments of the 1980s and 1990s has been

the impact of scanner data on the marketing

models field. Scanner data and the closely

related single source data (of communication

and consumption data) have enabled marketing

scientists to develop and test models with much

more precision than ever before. Indeed, the very

volume of new data has helped spawn tools to

help manage the flow of new information

inherent in such data. Data mining methods

applied to some of the new, massive direct-

response data bases has resulted in much more

precise customer targeting and promotion-

selection procedures. Two new data sources are

providing opportunities for OR modelers in

marketing: (1) Large integrated data warehouses

created by companies to feed enterprise systems,

such as CRM, are creating opportunities for

developing more fine-grained models that

integrate traditional demand side modeling

undertaken by marketing modelers with supply

side modeling issues such as inventory

management, multi-channel logistics, and the

like. (2) User-generated data (e.g., online

product reviews posted by consumers, social

media activities such as twitter feeds) that

provide information in real-time about market

sentiments offer opportunities for modelers to

develop new tools for supporting marketing

decision makers. New models for text analysis

and synthesis (e.g., to convert reviews into

numeric scores representing valence and volume
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of sentiments) developed by computer scientists

represent a start, but many new opportunities

exist in this nascent area to translate huge

volumes of raw data into insights for action.

Traditional quantitative data sources have been

employed by marketing modelers extensively,

but more and more attention is now being given

to analyzing qualitative and textual data through

data and text mining as well as sentiment analysis

software packages developed in computer

sciences. While the 1990s presented the land of

promise for these methods, the 2000s saw it

materialize. Thus, the number of people in the

information systems area working on traditional

marketing problems has increased dramatically,

blurring the lines between these related

disciplines.

4. Stylized theoretical modeling is still
a mainstream research tradition in marketing.
Stylized models allow researchers to state

explicitly as set of assumptions or axioms and

then derive theoretical propositions with respect

to the phenomena being considered. Such

propositions provide valuable managerial insights.

5. Competition and interaction are major thrusts
of marketing models today. The saturation of

markets and the economic fights for survival has

changed the focus of interest in marketing models,

probably forever. A key-word search of past

volumes of Marketing Science, Journal of

Marketing Research, and Management Science

(marketing articles only) reveals multiple

entries for “competition,” “competitive strategy,”

“non-cooperative games,” “competitive entry,”

“late entry,” and “market structure.” These terms

are largely missing in a comparable search in the

1960s and early 1970s.

6. Marketing research and modeling are facing
new challenges. Both marketing research and

modeling, especially as applied to new product

development, have to be reformed to address

such issues as global scope, electronically

interconnected product development sites, the

potential for mass customization and

rapid prototyping/testing. These issues drive

the development of models that incorporate

nontraditional customer information, including

trade show-participant feedback, user

co-development, lead user methods, data and text

mining, and Internet panels. Similarly, advertising

and marketing mix modeling face comparable

challenges, which have led to numerous efforts to

develop single source data, related modeling,

experiments, and dashboards. Another challenge

is to develop models, beyond those developed for

the consumer package good industry, that

capture adequately various idiosyncratic

characteristics of industries such as financial

services, entertainment, life sciences, and B2B

industries.

7. Beyond Marketing Analytics—Marketing
Engineering. Marketing analytics, a term that

refers to any systematic analysis of marketplace

behavior and transactions is giving way to advance

marketing analytics or marketing engineering,

a term Lilien and Rangaswamy (2006) have

popularized to refer to the use of decision models

for making marketing decisions. Many of these

decisions are now being automated, with

decision models making routine pricing and

promotion decisions in low-risk stable

environments. But the confluence of new data

sources, theories, hardware and software, and

computer networks has now put these decision

models on the desktop of marketing executives

everywhere. The use of OR in marketing through

marketing engineering is accelerating because of

at least six trends (Lilien and Rangaswamy 2008):

• Investments in infrastructure firms need to

maintain extensive, integrated corporate

information warehouses (also called data

warehouses).

• The use of On-Line Analytic Processing

(OLAP — or just-in-time OR!) to integrate

modeling capabilities with data bases.

• Deploying intelligent systems to automate

many modeling tasks.

• Developing computer simulations for decision

training and for exploring multiple options.

• Installing groupware systems to support group

decision making.

• Enhancing user interfaces to make the use of

even complex modeling systems accessible to

a wide range of users.

8. Marketing Management Support Systems and
Artificial Intelligence. A marketing management

support systems (MMSS) is defined as any device,

combining information technology, analytical
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capabilities, marketing data, and marketing

knowledge, made available to marketing decision

makers with the objective to improve the quality of

marketingmanagement (Wierenga andVanBruggen

2000). Marketing models, with their origin in OR

constitute the analytical part of MMSS. However,

in marketing there are also many weakly-structured

problem areas, where qualitative considerations and

judgment are more important. Here, the knowledge

and the expertise of the marketer are key resources.

Therefore, marketing management support systems

not only include the primarily quantitative, data-

driven decision-support systems, but also support

technologies that are aimed at supporting marketing

decision making in weakly structured areas.

9. Expert Systems. Marketing expert systems have

been developed for many domains of marketing,

e.g., (i) to find the most suitable type of sales

promotion; (ii) to recommend the execution of

advertisements (positioning, message, presenter)

(Burke et al. 1990); (iii) to screen new product

ideas, and (iv) to automate the interpretation of

scanner data, including writing reports. For an

overview, see Wierenga and Van Bruggen (2000,

Chapter 5). An example of a system especially

developed for supporting a particular marketing

function is BRANDFRAME. This system

supports the decision making of a product or

brand manager, which is a typical marketing job.

More recently, expert systems in marketing are

less often stand-alone systems, but are woven

into the company’s overall IT systems (Lilien

and Rangaswamy 2008).

10. Neural Networks and Predictive Modeling. As
mentioned earlier, in marketing companies can

work more and more with data about individual

customers. As a consequence of this development,

customer relationship management systems

(CRM) became important. An essential element

of CRM is the customer database that contains

information about each individual customer. This

information may refer to socio-economic

characteristics (age, gender, education, income),

earlier interactions with the customer (e.g., offers

made and responses to these offers, complaints,

service), and information about the purchase

history of the customer (i.e., how much

purchased and when). This data can be used to

predict the response of customers to a new offer

or to predict customer retention/churn. Such

predictions are very useful, for example, for

selecting the most promising prospects for

a mailing or for selecting customers in need of

special attention because they have a high

likelihood of leaving the company (campaign

optimization). A large set of techniques is

available for this kind of predictive modeling.

Prominent examples are neural networks and

classification and regression trees. Both

techniques are rooted in artificial intelligence.

CRM is a quickly growing area of marketing.

Companies want to achieve maximum return on

their often large investments in customer

databases. (Van Bruggen and Wierenga 2010).

11. Analogical Reasoning and Case-Based
Reasoning (CBR). Analogical reasoning plays an

important role in human perception and decision

making. When confronted with a new problem,

people seek similarities with earlier situations and

use previous solutions as the starting point for

dealing with the problem at hand. Analogical

reasoning is also the principle behind the field of

case-based reasoning (CBR) in Artificial

Intelligence. A CBR system comprises a set of

previous cases from the domain under study and

a set of search criteria for retrieving cases for

situations that are similar (or analogous) to the

target problem. Applications of CBR can be found

in weakly-structured domains such as architecture,

engineering, law, and medicine. By their nature,

many marketing problems have a good fit with

CBR. A recent application uses CBR as

a decision-support technology for designing

creative sales promotion campaigns (Van Bruggen

and Wierenga 2010).

12. Adaptive Experimentation. While OR

applications in marketing have been focused on

models, given the increased uncertainty,

complexity and speed of change of the business

environment, it is unlikely that one can model

optimal strategies. The alternative to the search for

a silver bullet is the adoption of an adaptive

experimentation philosophy (Wind 2007) that

allows experimentation with a number of

innovative strategies, facilitates learning, helps

create an innovative organizational culture that

reduces the pressures for risk averse decisions,

encourages relevant measurement and provides
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a competitive advantage. As sophisticated firms such

as Google and most direct response companies

Increasingly engage in adaptive experimentation,

a new role for many of the OR marketing models

(including marketing mix models) is in suggesting

hypotheses that guide the experimental variables and

design. Adaptive experimentation is consistent with

the philosophy of OR and should be considered in

any portfolio of approaches to aid decisionmakers in

making better decisions.

13. Documentation of the Impact of ORMarketing
Models on the Organization is Now
Mainstream. The emergence of the INFORMS

Society for Marketing Science Practice Prize and

work by Lilien (2011) and Wierenga (2011) have

underscored the need to study how marketing

integrated with the concepts of OR can become

a mainstream research domain for marketing

academics while having a greater impact on the

operations of firms. According to a Business Week

article in 2010, the Fortune 1,000 companies

spend over $1 trillion in marketing annually.

Yet, according to a McKinsey report (2009),

most of these companies do not use marketing

models to improve their marketing investment

related decision making, even though the

small percentage of companies that do (17% of

B2C and 7% of B2B) seem to realize considerable

benefits from their use. In a controlled experimental

study, Lilien shows that the managers using

decision models realize measurable

improvements in decision performance when

compared to managers who have access to the

same data, but without a decision-support model

to optimally interpret the data. Research is

ongoing on what factors influence companies to

deploy marketing models, under what conditions

their impact is maximized, and how decision tools

should be designed to enhance their usability and

impact.

Concluding Remarks

OR/marketing models and approaches have had

significant impact on academic research and practice.

Marketing science has also been used to address

important societal problems, e.g., Bradlow (2009)

discusses the use of marketing science to aid in

creatively solving problems related to the financial

crisis. Developments in constructing, testing and

applying new marketing science models will continue

to benefit management and society.

See

▶Advertising

▶Data Mining

▶Decision Analysis

▶Electronic Commerce

▶Game Theory

▶Linear Programming

▶Operations Management

▶Retailing
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Markov Chain Equations
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Introduction

For a continuous-time Markov chain, the probability

distribution at any time t, p(t), is calculated from the

Chapman-Kolmogorov differential equation,

dpðtÞ
dt
¼ pðtÞQ: (1)

where the vector p(t) is of length n, the number of

possible states in the Markov chain, and its ith

component, pi(t), expresses the probability that

the Markov chain is in state i at time t, and Q is the

infinitesimal generator or transition rate matrix,

a square matrix of order n whose elements satisfy

qij � 0; i 6¼ j;

qii ¼
Xn

j¼1; j6¼i

qij; for all i ¼ 1; 2; . . . ; n:

When the number of states in the Markov chain is

relatively small (e.g., less than a thousand), computing

numerical solutions of the chain equations is generally

easy, and (1) can be solved readily by software such

as MATLAB. But two difficulties arise when the

number of states is large: The first is the sheer size

of the matrices involved; the second is how

well-conditioned or how ill-conditioned the equations

are. These difficulties exist even in the simpler setting

considered here when all that is required is the

stationary solution of the Markov chain obtained by

setting the left-hand side of (1) to zero and solving the

linear system of equations that results.

It is not unusual for the number of states in

a Markov chain model to exceed the millions. Such

size impacts both the storage of the matrix and the

number of vectors needed to compute the solution.

Very large matrices cannot be stored in the usual

two-dimensional array format; there is simply not

enough storage space available. In addition, this

would be very wasteful, since most of the matrix

elements are zero. In general, each state

communicates directly with only a small number of

states and so the number of nonzero elements in the

matrix is usually equal to a small multiple of the

number of states. If the states can be ordered

sequentially so that each communicates only with its

closest neighbors, then the nonzero elements of Q lie

close to the diagonal and a banded storage technique can

be used. Otherwise, it is usual to store only the nonzero

elements in a double-precision one-dimensional array

and use two integer one-dimensional arrays to indicate

the position of each nonzero element in the matrix.

In addition to storing the transition matrix, a certain
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number of double-precision vectors, of size equal to the

number of states, is also needed. In the simplest

numerical methods, two such vectors suffice. In other

more sophisticated methods, many more (possibly in

excess of 50) may be needed.

A second difficulty in solving Markov chains

numerically is that of the degree of ill-conditioning

of Q. In certain models, the difference in the rates at

which events can occur may be many orders of

magnitude, as is the case when a model allows for

both human interaction and electronic transactions.

These differences in magnitude may lead to

ill-conditioned systems, that is to say, a small change

in one of the parameters can result in a large change in

the solution. It is appropriate to distinguish between

numerical conditioning and numerical stability; the

first has already been described and is a function of

the problem itself; the second describes the behavior of

an algorithm in attempting to compute solutions.

A stable algorithm will not allow the error to grow

out of proportion to the degree of ill-conditioning of

the problem. In other words, a stable algorithm will

give as good a solution as can be expected for the

particular problem to be solved. A further effect

of large differences in transitions rates is that they

can create convergence problems for iterative

solution methods.

Numerical Methods for Computing
Stationary Distributions

The goal is to solve the matrix equation

pQ ¼ 0: (2)

By setting P ¼ QDt + I, where Dt � (maxi jqiij)
�1,

this equation may be written as

pP ¼ p: (3)

In carrying out this operation, the continuous-time

system represented by the transition rate matrix, Q, is

essentially converted to a discrete-time system

represented by the stochastic transition probability

matrix, P. In the discrete-time system, transitions

take place at intervals of time Dt, this parameter

being chosen so that the probability of two transitions

taking place in time Dt is negligible. The stationary

distribution p may be computed from either of these

equations.

Direct Methods — Since Eq. (2) is a homogeneous

system of linear equations, one may use standard linear

solution methods based on Gaussian elimination.

Assume that the Markov chain is ergodic. In this

case, the fact that the system of equations is

homogeneous does not create any problems, because

any of the n equations can be replaced by the n

normalizing equation,
Pn

j¼1 pj ¼ 1, and thereby

convert it into a nonhomogeneous system with

nonsingular coefficient matrix and nonzero right hand

side. The solution in this case is well defined. It turns

out that replacing an equation with the normalizing

equation is not really necessary.

The usual approach taken is to construct an LU

decomposition of Q and replace the final zero

diagonal element of U with an arbitrary value. The

solution computed by back substitution on U must

then be normalized. Furthermore, since the diagonal

elements are equal to the negated sum of the

off-diagonal elements (Q is, in a restricted sense,

diagonally dominant), it is not necessary to perform

pivoting while computing the LU decomposition. This

simplifies the algorithm considerably.

The problems of the size and nonzero structure

(the placement of the nonzero elements within the

matrix) still remain. Obviously this method works

well when the number of states is small. It will also

work well when the nonzero structure of Q fits into

a narrow band along the diagonal. In these cases,

a very stable variant, referred to as the GTH

(Grassmann, Taskar, and Heyman) algorithm, may

be used. In this variant, all subtraction is avoided by

computing diagonal elements as the sum of off-

diagonal elements. This is possible since the zero-

row-sum property of an infinitesimal generator is

invariant under the basic operation of Gaussian

elimination, namely adding a multiple of one row

into another. For an efficient implementation, the

GTH variant requires convenient access to both the

rows and the columns of the matrix. This is the case

when a banded structure is used to store Q, but is

generally not the case with other compact storage

procedures. When the number of states becomes

large and the structure in not banded, the direct

approach loses its appeal and one must resort to

other methods.
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Iterative Methods—For iterative methods, the first

approach is to solve Eq. (3) in which P is a matrix of

transitions probabilities. Let the initial probability

distribution vector be given by p(0). After the first

transition, the probability vector is given by

p(1) ¼ p(0)P; after k transitions it is given by

p(k) ¼ p(k�1)P ¼ p(0)Pk. If the Markov chain is

ergodic, then limk!1p(k) ¼ p. This method of

determining the stationary probability vector, by

successively multiplying some initial probability

distribution vector by the matrix of transition

probabilities, is called the Power method. Observe

that all that is required is a vector–matrix

multiplication operation. This may be conveniently

performed on sparse matrices that are stored in

compact form. Because of its simplicity, this method

is widely used, even though it often takes a very long

time to converge. Its rate of convergence is a function

of how close the subdominant eigenvalue of P is to its

dominant unit eigenvalue. In models in which there are

large differences in the magnitudes of transition rates,

the subdominant eigenvalue can be pathologically

close to one, so that for all intensive purposes the

Power method fails to converge.

It is also possible to apply iterative equation solving

techniques to the system of equations given by (2). The

well-known Jacobi method is closely related to the

Power method, and it also frequently takes very long

to converge. A better iterative method is Gauss-Seidel.

Unlike the previous two methods, in which the

equations are only updated after each completed

iteration, the Gauss-Seidel method uses the most

recently computed values of the variables as soon as

they become available and, as a result, almost always

converges faster than Jacobi or the Power method. All

three methods can be written so that the only numerical

operation is that of forming the product of a sparse

matrix and a probability vector, so all are equal from

a computation per iteration point of view.

Block Methods — In Markov chain models, it is

frequently the case that the state space can be

meaningfully partitioned into subsets. Perhaps the

states of a subset interact only infrequently with the

states of other subsets, or perhaps the states possess

some property that merits special consideration. In

these cases, it is possible to partition the transition

rate matrix accordingly and to develop iterative

methods based on this partition. In general, such

block iterative methods require more computation per

iteration, but this is offset by a faster rate of

convergence.

If the state space of the Markov chain is partitioned

into N subsets of size n1, n2,. . ., nN with
PN

i¼1 ni ¼ n,

then block iterative methods essentially involve the

solution of N systems of equations of size ni,

i ¼ 1,2,. . ., N, within a global iterative structure, such

as Gauss-Seidel, for instance: thus the Block

Gauss-Seidel method. Furthermore, these n systems

of equations are nonhomogeneous and have

nonsingular coefficient matrices and either direct or

iterative methods may be used to solve them. It is not

required that the same method be used to solve all the

diagonal blocks, so that it is possible to tailor methods

to the particular block structures.

If a direct method is used, then a decomposition of

the diagonal block may be formed once and for all

before initializing the global iteration process. In

each subsequent global iteration, solving for that

block then reduces to a forward and backward

substitution operation. The nonzero structure of the

blocks may be such that this is a particularly

attractive approach. For example, if the diagonal

blocks are themselves diagonal matrices, or if they

are upper or lower triangular matrices or even

tridiagonal matrices, then it is very easy to obtain

their LU decomposition, and a block iterative method

becomes very attractive.

If the diagonal blocks do not possess such a structure,

and when they are of large dimension, it may be

appropriate to use an iterative method to solve each of

the block systems. In this case, there are many inner

iterative methods (one per block) within an outer (or

global) iteration. A number of tricks may be used to

speed up this process. First, the solution computed for

any block at global iteration k should be used as the

initial approximation to the solution of this same block at

iteration k + 1. Second, it is hardlyworthwhile computing

a highly accurate solution in early (outer) iterations. Only

a small number of digits of accuracy should be required

until the global process begins to converge. One

convenient way to achieve this is to carry out only a fixed

small number of iterations for each inner solution.

Iterative Aggregation/Disaggregation Methods —

Related to block iterative methods, these methods are

particularly powerful when the Markov chain is nearly

completely decomposable, as the partitions are chosen

based on how strongly the states of the Markov chain

interact with one another.
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Projection Methods — An idea that is basic to

sparse-linear systems and eigenvalue problems is that

of projection processes. Whereas iterative methods

begin with an approximate solution vector that is

modified at each iteration and which (supposedly)

converges to a solution, projection methods create

vector subspaces and search for the best possible

approximation to the solution that can be obtained

from that subspace. With a given subspace, for

example, it is possible to extract a vector p̂ that is

a linear combination of a set of basis vector for that

space and which minimizes jp̂Qj in some vector norm.

This vector p̂may then be taken as an approximation to

the solution of pQ ¼ 0. This is the basis for the

Generalized Minimal Residual (GMRES) algorithm.

Another popular projection method is the method of

Arnoldi. The subspace most often used is the

Krylov subspace, Km ¼ span{v1, v1Q,. . ., v1Q
m�1},

constructed from a starting vector v1 and successive

iterates of the power method. The computed vectors

are then orthogonalized with respect to one another.

It is also possible to construct iterative variants of these

methods. When the subspace reaches some maximum

size, the best approximation is chosen from this

subspace and a new subspace generated using

this approximation as the initial starting point.

Preconditioning techniques are frequently used to

improve the convergence rate of iterative Arnoldi and

GMRES. This typically amounts to replacing the

original system pQ ¼ 0 by pQM�1 ¼ 0, where M is

a matrix whose inverse is easy to compute. The

objective of preconditioning is to modify the system

of equations to obtain a coefficient matrix with a fast

rate of convergence. It is worthwhile pointing out that

preconditioning may also be used with the basic power

method to improve its rate of convergence. The inverse

of the matrix M is generally computed from an

incomplete LU factorization of the matrix Q.

Stochastic Automata Networks

Stochastic Automata Networks (SANs) provide

a means of performing Markov chain modeling

without the problem of having to store huge

transition matrices. A SAN consists of a number of

individual stochastic automata that operate more or

less independently of each other. Each individual

automaton is represented by a number of states and

rules that govern the manner in which it moves from

one state to the next. The state of an automaton at any

time t is just the state it occupies at time t, and the

state of the SAN at time t is given by the state of each

of its constituent automata. An automaton may be

thought of as a component in a Markov chain state

descriptor.

The use of SANs is important in the performance

modeling of parallel and distributed systems, since

such systems are often viewed as collections of

components that operate more or less independently,

requiring only infrequent interaction such as

synchronizing their actions or operating at different

rates depending on the state of parts of the overall

system. This is exactly the viewpoint adopted by

SANs. Furthermore, the state space explosion

problem associated with Markov chain models

is mitigated by the fact that the state transition matrix

is not stored, nor even generated. Instead, it is

represented by a number of much smaller matrices,

one for each of the stochastic automata that constitute

the system, and from these all relevant information

may be determined without explicitly forming the

global matrix. A considerable saving in memory is

realized by storing the matrix in this fashion.

The compact form in which the transition matrix

that characterizes the model is kept (called the SAN

Descriptor) is written as

XNþ2E

j¼1

�N
i¼1Q

ðiÞ
j ;

where N is the number of automata in the SAN, E is the

number of synchronizing events and Q
ðiÞ
j is a square

matrix of low dimension. In order to benefit from this

compact form, the descriptor is never expanded into

a single large matrix. Consequently, all subsequent

operations must necessarily work with the model in its

descriptor form, and hence, numerical operations on the

underlyingMarkov chain infinitesimal generator become

more costly. Research efforts directed at reducing these

costs include the development of a generalized tensor

algebra to permit functional transitions to be handled at

the same low costs as constant transitions, design of

algorithms to reduce the amount of computation

involved in forming the product of a vector and a SAN

descriptor, and finding suitable preconditioners with

which to speed up iterative methods.
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Introduction

Markov chain Monte Carlo (MCMC) methods

numerically approximate the integral or expectation,

E gðYÞ½ � ¼
Ð
gðyÞf yjYð Þdy, where Y is a random

variable with distribution f ðyjYÞ, which is

parameterized by Y, and gðYÞ is an integrable

function of Y, where the integral is with respect to

either Lebesgue measure for continuous random

variables or counting measure for discrete ones.

A simple way to compute E gðYÞ½ � is through Monte

Carlo (MC) simulation, which approximates the

integral as an average of gðYÞ across a random

sample from f ðyjYÞ: gðYÞ ¼ 1
n

Pn
i¼1 gðyiÞ. The

estimation variance is proportional to n�1, regardless

of the dimension of Y, and the estimator can be made

arbitrarily accurate by letting the size of the sample

n ! 1 by the strong law of large numbers. MCMC

addresses settings where random variates for f yjYð Þ
cannot be generated easily, e.g., through the inverse

transform method, the acceptance-rejection method

(also called rejection sampling), or importance

sampling. These methods generally rely on

independent and identically distributed (i.i.d.)

random draws to approximate the integral.

MCMC methods relax this independence

assumption to construct a Markov chain of draws

fyi; i ¼ 1; . . . ; ng, with a stationary distribution

equal to. f yjYð Þ. MCMC uses recursive simulation

where the random number generator for Yi depends

on the previous draw yi�1, hence the name Markov

chain Monte Carlo. MCMC’s range of applications

is astonishing, and continues to expand. A large part

of these applications have been in Bayesian

statistics, but MCMC originated in image

processing and physics and continues to be used in

these fields, as well as in biology, engineering,

demography, finance and marketing. MCMC was

started by the work of Metropolis et al. (1953) and

Hastings (1970). Gibbs sampling as a special case

developed through the work of Besag (1974), Geman

and Geman (1984), and Gelfand and Smith (1990).

Important extensions were developed by Albert and

Chib (1993), Green (1995), Richardson and Green

(1997) and Neal (2003). Texts include Gill (2008),

Press (2003), Gelman et al. (2003), and Zellner

(1971). Essential MCMC methods are reviewed

here, while details can be found in the references

above.

Discussion

Metropolis-Hastings Sampler: The Metropolis-

Hastings (MH) sampler is very general and sparked

the MCMC revolution. For i ¼ 1; . . . ; n, it generates

a candidate sample yi from a proposal distribution

h yjyi�1;Fð Þ and transforms it to make it behave as if

it came from f yjYð Þ (The support of h is a subset of that
of f ). If the proposal distribution h depends on the

previous value yi�1, the algorithm is called Random

Walk Metropolis-Hastings (rMH), while if it does not

depend on previous values, it is called Independence

Metropolis-Hastings (iMH). The algorithm works as

follows, for i ¼ 1; 2; . . . ; n
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1. Initialize the chain at y0 that is in the support of f .

2. Given that a prior value yi�1 has been obtained,

sample a candidate value y� � h yjyi�1;Fð Þ and

sample ui � Uð0; 1Þ.
3. Calculate aðyi�1; y

�Þ ¼ f y�jYð Þ
f yi�1jYð Þ 	

hðyi�1jy�;FÞ
hðy�jyi�1;FÞ .

4. Accept the candidate yi ¼ y�, if aðyi�1; y
�Þ > ui,

otherwise set yi ¼ yi�1.

The normalizing constants for f and h

cancel in Step 3, so that they only need to be

known up to such constants. The MH algorithm

creates a Markov chain with transition

function qðyi�1; yiÞ ¼ h yijyi�1;Fð Þtðyi�1; yiÞ where

tðyi�1; y
�Þ ¼ min aðyi�1; y

�Þ; 1½ � is the acceptance

probability from Step 4. The chain is reversible

because f yi�1jYð Þqðyi�1; yiÞ ¼ f yijYð Þqðyi; yi�1Þ, and
is therefore ergodic with stationary distribution f . This

has the crucial implication that regardless of the initial

value in Step 1, the draws from the Markov chain will

eventually be from f . Monte Carlo is a special case if

the candidate distribution h is equal to f : then

aðyi�1; y
�Þ ¼ 1. If h yjyi�1;Fð Þ is symmetric in

(y� yi�1), e.g. a normal distribution with mean yi�1,

then the ratio in h cancels in Step 3.

The performance of MH depends on the proposal

distribution. In rMH if the proposal distribution is too

tight around the last value of the chain, then the

candidate is highly likely to be accepted, and the

Markov chain will tour the support of f very slowly,

so n will have to be quite large to obtain reliable

MCMC estimates. Conversely, if the variance of the

proposals is too large, the MCMC algorithm will reject

most of the candidate values, and the chain will hardly

budge. For the estimator to be valid, the chain needs to

visit areas of the support of f with non-negligible

probabilities.

Convergence: Starting from an arbitrary y0, the

chain passes through a transitory period, say

i ¼ 1; . . . ; l for l < n, where the draws are not from

f . These initial draws are not used in the MCMC

approximation of E gðYÞ½ � : gðYÞ ¼ 1
n�l

Pn

i¼lþ1

gðyiÞ. In

theory, under very general conditions the rate of

convergence is geometric in the second eigen value

of the transition function. Problems can occur if the

target distribution is multimodal, and f is zero between

modes, so that subsets of the support do not

communicate with each other. Then the chain can

become stuck in isolated regions of the support

unless the proposal distribution h is sufficiently broad

to bridge the gaps. In practice, it may be difficult to

conclusively determine l. One procedure for

monitoring convergence is to run multiple chains

from different initial values and to compute multiple

estimates. If the between-chain variance of the

estimators is small relative to the within-chain

variance, then the chain has likely converged. A host

of other diagnostic measures are available, that may

help identify likely convergence of the chain.

Blocked MH Sampler: Depending on the structure
of f , it may be convenient to block Y into sub-vectors

Ys for s ¼ 1; 2; . . . ; S. The distribution of each

sub-vector is conditioned on all others to obtain the

full conditional distributions: f ysjy�s;Yð Þ, with y�s

denoting y with ys omitted hsðysjy�s;FÞ is the

proposal distribution for Ys. This leads to

the following algorithm for i ¼ 1; 2; . . . ; n and

s ¼ 1; 2; . . . ; S:

1. Initialize y0 in the support of f .

2. Sample a candidate value y�s � hs ysjy�s;i�1;F
� �

and

ui � Uð0; 1Þ.
3. Calculate as;i ¼ f y�jYð Þ

f yi�1jYð Þ 	
hsðys;i�1jy�;FÞ
hsðy�s jys;i�1;FÞ , where y� is

identical to yi�1, except for sub-vector s, which

equals y�s .

4. Accept the candidate ys;i ¼ y�s , if as;i > ui,

otherwise keep ys;i�1.

This algorithm cycles through the s sub-vectors

(in arbitrary order, systematically or randomly) and

updates them separately though MH-steps. Not every

sub-vector needs to be updated at every iteration i.

Gibbs Sampler: In many applications, some or

even all of the full conditional target distributions

f ysjy�s;Yð Þ can be sampled directly, which greatly

simplifies the Blocked MH algorithm. This can be

seen by substituting the full conditional distributions

for the proposal distributions in Step 3 of the

Blocked MH: as;i ¼ f y�jYð Þ
f yi�1jYð Þ 	

f ðys;i�1jy�;YÞ
f ðy�s jys;i�1;YÞ . Because

f yjYð Þ ¼ f ys; y�sjYð Þ, and y��s ¼ y�s;i�1, it holds that

as;i ¼
f y�s;i�1jYð Þ
f y�s;i�1jYð Þ ¼ 1. The algorithm for the Gibbs

sampler modifies the Blocked MH by replacing

Step 2 with directly drawing ys;i � f ys;ijy�s;i;Y
� �

and

skipping Steps 3 and 4 for these blocks.

Modifications of the Gibbs sampler have been

proposed to speed up convergence and provide the

chains with better properties. For three sub-vectors

y1; y2; y3, for example, the Collapsed Gibbs Sampler
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draws from the unconditional joint distribution

y1:2;i � f y1; y2jFð Þ, and the full conditional

distribution y3;i � f ðy3jy1;i; y2;i;FÞ. The Grouped

Gibbs Sampler on the other hand, groups two

sub-vectors and draws from the full conditionals

y1:2;i � f y1; y2jy3;i�1;F
� �

and y3;i � f ðy3jy1;i; y2;i;FÞ.
The relative simplicity of the Gibbs sampling

algorithms has contributed to their popularity, and

many extensions, three important ones being the

Auxiliary Variable, Slice and Reversible Jump Samplers.

Auxiliary Variable Sampler: Introducing an

auxiliary random variable Z can simplify MCMC if

there is a joint distribution h y; zjy;Cð Þ such that

f yjYð Þ ¼
Ð

h y; zjy;Cð Þdz, and both h yjz;Y;Cð Þ and
h zjy;Y;Cð Þ are easy to sample. Using these two full

conditional distributions, it is then straightforward to

sample from h y; zjy;Cð Þ, using Gibbs sampling. The

Auxiliary Variable Gibbs Sampler is then, for

i ¼ 1; 2; . . . ; n:

1. Sample yi � h yjzi�1;Y;Cð Þ.
2. Sample zi � h zjyi;Y;Cð Þ.

An additional advantage is that the introduction of

the augmented variable helps mixing.

Slice Sampler: A special case of the Auxiliary

Variable Sampler arises if f yjYð Þ an be factored as

f yjYð Þ / k yjYð Þ 	 hðyjYÞ. The auxiliary variable Z in

this case is chosen such that the joint density

f ðy; zÞ / I 0 < z < k yjYð Þ½ � 	 h yjYð Þ. The resulting

sampler is called the Slice Sampler and iterates

between the following full conditional distributions,

for i ¼ 1; 2; . . . ; n:

1. Sample zi � U 0; k yi�1jYð Þð Þ, from a uniform

distribution on 0 and k yi�1jYð Þ.
2. Sample yi � h yjYð ÞI 0 < zi < k yjYð Þ½ �, from the

distribution h yjYð Þ truncated on the set

y : zi < k yjYð Þf g.
Slice sampling is applicable in cases where

k�1 yjYð Þ can be analytically obtained, and the

truncated distribution h yjYð ÞI 0 < zi < k yjYð Þ½ � can

be sampled from, often by using the inverse

transform method. The extension to distributions

that factor as f yjYð Þ / hðyjYÞ 	
Q

t

kt yjYð Þ is

straightforward if all k�1
t yjYð Þ an be obtained,

now by sampling multiple zi;t � U 0; kt yi�1jYð Þð Þ.
Reversible Jump Sampler: The above algorithms

assume that the dimension of Y is constant.

The Reversible Jump (RJ) sampler is an extension of

MH that constructs a Markov chain that transverses

spaces of different dimensions. The spaces are labeled

m, and YðmÞ is the random variable Y restricted to space

m. The dimension of YðmÞ or dim YðmÞ� �

depends on m

(In Bayesian statistics – details below – RJ is used to

transverse different models where m indicates the

model, and then simulate YðmÞ given model m). The

state space for theMarkov chain is M; YðMÞ� �

with joint

distribution f m; yðmÞjY
� �

¼ f yðmÞjm;Yy

� �

f mjYmð Þ
where PðM ¼ mÞ ¼ f mjYmð Þ is a discrete

distribution, and f yðmÞjm;Yy

� �

is the distribution of

Y restricted to space m. RJ is a strategy to simulate

M; YðMÞ� �

when a convenient random number

generator for f m; yðmÞjY
� �

does not exist.

As with MH, the goal is to construct a reversible

Markov chain with stationary distribution f m; yðmÞjY
� �

.

Reversible moves between any m; yðmÞ
� �

and

m0; yðm
0 Þ

� �

require a bijective mapping, which does

not exist when the spaces have different dimensions.

The trick is to augment yðmÞ with a random variable

uðmÞ so that dim yðmÞ
� �

þ dim uðmÞ
� �

is constant across

allm: dim yðmÞ
� �

þ dim uðmÞ
� �

¼ dim yðm
0Þ� �

þ dim uðm
0Þ� �

.

RJ requires a bijective, differentiable function

yðm
0Þ; uðm

0Þ� �

¼ Tm;m0 yðmÞ; uðmÞ
� �

that uniquely maps

yðmÞ; uðmÞ
� �

to yðm
0Þ; uðm

0Þ� �

with reverse mapping

Tm0;m ¼ T�1
m;m0 . Given the current state m; yðmÞ

� �

of the

Markov chain, candidate values are generated by:

(1) selecting a new value m0 according to the

proposal distribution q m
0 jm;C

� �

; (2) generating uðmÞ

from hm;m0 uðmÞjyðmÞ;F
� �

; and (3) computing the

candidate yðm
0Þ; uðm

0Þ� �

¼ Tm;m0 yðmÞ; uðmÞ
� �

. For the

Markov chain to be reversible, the implied

distribution of uðm
0Þ; hm0;m uðm

0Þjyðm0Þ;F
� �

, is required

to move from yðm
0Þ; uðm

0Þ� �

to yðmÞ; uðmÞ
� �

using the

reverse mapping Tm0;m. Implementation details of the

RJ are as much art as science, because the construction

of Tm;m0
� �

for allm andm0 and the selection of proposal
distributions are tailored specifically for each

application. The RJ algorithm for i ¼ 1; 2; . . . ; n is:

1. Initialize the chain at m0; y
m0

0

� �

in the support of f .

2. Given mi�1 and y
ðmi�1Þ
i�1 are obtained, set m ¼ mi�1

and y ¼ y
ðmi�1Þ
i�1 and

a. Sample m0 � q m0jm;Cð Þ;
b. Sample u 
 uðmÞ � hm;m0 u

ðmÞjy;F
� �

;

c. Compute proposal y0 
 yðm
0Þ from

ðy0; u0Þ ¼ Tm;m0ðy; uÞ.
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3. Calculate

aðy;y0Þ ¼ f m
0
;y
0 jYð Þ

f m;yjYð Þ 	
h
m
0
;m

u
0 jy0 ;Fð Þ

h
m;m

0 ujy;Fð Þ 	 qðmjm
0
;CÞ

qðm0 jm;CÞ 	
@T

m;m
0 ðy;uÞ

@y@u

�

�

�

�

�

�.

4. Sample vi � Uð0; 1Þ and accept the candidate

mi; y
ðmiÞ
i

� �

¼ ðm0 ; y0Þ if aðy; y0Þ > vi, otherwise set

mi; y
ðmiÞ
i

� �

¼ mi�1; y
ðmi�1Þ
i�1

� �

.

In step 3,
@T

m;m
0 ðy;uÞ

@y@u

�

�

�

�

�

� is the Jacobian of the

transformation Tm;m0 , which is needed because it is a

deterministic function for the change in variables from

yðmÞ; uðmÞ
� �

to yðm
0 Þ; uðm

0 Þ
� �

. As in the MH algorithm,

the distributions f m; yðmÞjY
� �

, q m
0 jm;C

� �

, and

hm;m0 uðmÞjy;F
� �

only need to be known up to

normalizing constants which cancel in step 3. It should

be noted that while aðy; y0Þ in its general form provided

in step 3 is somewhat complex, in a wide range of

practical applications it simplifies considerably, for

example when the proposal distributions are symmetric

(see above), when dim yðm
0 Þ

� �

> dim yðmÞ
� �

, in

which case the mapping reduces to

yðm
0 Þ

� �

¼ T yðmÞ; uðmÞ
� �

, and when moves are limited

to m0 2 ðmi�1 � 1Þ;mi�1; ðmi�1 þ 1Þf g.

Example: In Bayesian statistics the parameters of

a model are considered random variables, reflecting

a priori uncertainty on the part of the researcher that

is reduced a posteriori after the data are observed.

Inference focuses on their posterior distribution,

which summarizes all information about the

parameters. According to Bayes Theorem, the

posterior distribution is proportional to the prior

distribution of the parameters times the distribution

of the data given the parameters. Bayesian estimation

and inference has gained great popularity in business,

in particular in marketing and finance, because

even without strictly accepting the (attractive)

fundamental properties of Bayesian inference,

pragmatic Bayesians have found great value

in MCMC algorithms to estimate complex models,

especially as uninformative prior distributions can be

used. Simpler illustrative examples follow.

Example 1: The Weibull distribution is used in

duration analysis applications to bankruptcy in

finance, and in customer relationship management

(CRM) in marketing. The observations fxjg for

j ¼ 1; . . . ; J are a random sample of durations from

a Weibull distribution: f xjy; dð Þ ¼ ydxd�1 expð�yxdÞ
for x > 0. The prior distributions of the parameters are

Gamma distributions: pðyÞ ¼ s
r0

0

Gðr0Þ y
r0�1 expð�s0yÞ and

pðdÞ ¼ a
b0

0

Gðb0Þ d
a0�1 expð�b0dÞ. The joint

posterior distribution of the parameters is:

p y; djfxjg
� �

/ pðyÞpðdÞQ
J

j¼1

f xjjy; d
� �

, which does not

have a convenient random number generator

and can be sampled with MH within Gibbs.

The full conditional distribution of y given the data

and di�1 is also a Gamma distribution: p yjdi�1; fxjg
� �

/ yr0þn�1 exp �y s0 þ
PJ

j¼1 x
di�1

j

h i� �

. The full

conditional distribution of d given the data and yi
does not have a known distributional form:

p djyi;fxjg
� �

/ da0þn�1 Q
J

j¼1

xd�1
j

" #

exp �b0d�yi
P

J

j¼1

xdj

 !

.

Thus, rMN can be used to generate the candidate d�.

The MCMC algorithm to approximate the posterior

distribution of the parameters is, for i¼ 1;2; . . . ;n:

1. Initialize the chain at ðy0; d0Þ.
2. Draw yi from a Gamma distribution

yi ¼ G r0 þ n; s0 þ
P

J

j¼1

xdi�1

j

 !

.

3. Sample ui � Uð0; 1Þ, and generate a candidate

d� from a log-normal distribution:

g d�jdi�1; sð Þ / 1
d�
exp � 1

2s2
lnðd�Þ � lnðdi�1Þð Þ2

h i

.

4. Compute aðdi�1; d
�Þ ¼

p d�jyi;fxjgð Þdi�1

p dijyi;fxjgð Þd� .

5. Accept di ¼ d� if aðdi�1; d
�Þ > ui, otherwise set

di�1 ¼ di�1.

Extensions involve the parameterization of y in

terms of predictor variables yj ¼ wjb, and the case

where the durations are censored by the observation

time; the estimations of the models in question involve

extensions of the algorithms above.

Example 2: Change-point regression models are

popular in finance to describe financial time series

data with a structural change, and used in marketing

in models of stochastic preference and market

shares. Here, the data fxtg are observed for time

points t ¼ 1; . . . ; T, and assumed to follow

a binomial distribution: f xtjptð Þ ¼ pxtt ð1� ptÞ1�xt ;

for xt 2 f0; 1g. Two regression functions are
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separated in time by an unknown switch-point

t : pt ¼ F w
0
tbk

� �

, with bk ¼ b1for t � t, and bk ¼ b2
for t > t. F is the Normal CDF used as an inverse

link function, wt is a vector of regressors, and

bk � Nðb0;B0Þ the prior distributions of its

coefficients. The ‘switch-point’ has a uniform

discrete prior on a subset of the observed

timepoints: t � Uðc; dÞ. The MCMC algorithm

simplifies through the introduction of an auxiliary

variable zt � N w
0
tbk; 1

� �

, with, xt ¼ Iðzt > 0Þ, and Ið	Þ
the indicator function. The MCMC algorithm to

approximate the posterior distribution of the

parameters is, for i ¼ 1; 2; . . . ; n:

1. Sample for: k ¼ 1; 2 : bk;i � Nðbk;i;Bk;iÞ, with bk,i =

Bk;i B�1
0 b0þ

P

t¼Uk;i

t¼Lk;i

w
0
tzt;i

 !

, Bk;i ¼ B�1
0 þ P

t¼Uk;i

t¼Lk;i

wtw
0
t

 !

,

and Lk;i ¼ 1 þðk� 1Þti, Uk;i ¼ tþðk� 1ÞðT� tiÞ:
2. Sample, for Lk;i < t < Uk;i:

zt;i � N w
0
tbk;i; 1

� �

Iðzt;i < 0Þ if xt ¼ 0, and

zt;i � N w
0
tbk;i; 1

� �

Iðzt;i > 0Þ if xt ¼ 1.

3. Sample ti using Prðti ¼ rÞ

¼
Q

t�r f xtjw
0
tb1;ið ÞQ

t>r
f xtjw

0
tb2;ið Þ

Pd

s¼c

Q

t�s f xtjw0tb1;ið ÞQ
t>s

f xtjw0tb2;ið Þ .

Extensions of this MCMC procedure for

multiples witch points are available, and extensions

to an unknown number of switch points require

RJMCMC.

Example 3: Mixture models are used in finance to

describe financial returns during different economic

regimes, and are popular in marketing to identify

unobserved heterogeneity in response-based market

segmentation. The data fxjg are observed for

individuals j ¼ 1; . . . ; J, and assumed to follow

a mixture Normal distribution with K classes

and probabilities dk for which 0 < dk < 1 and
Pm

k¼1 dk ¼ 1. Thus, xj �
Pm

k¼1 dkN w
0
jbk; s

2
k

� �

. Here,

bk are class-specific regression coefficients associated

with the vector of regressors wt, with prior

distributions bk � Nðb0;B0Þ. Further Inverse Gamma

and Dirichlet priors are specified for:

s2k � IG a0
2
; A0

2

� �

and d1:m � Dðc0; . . . ; c0Þ. The MCMC

algorithm simplifies by introducing an auxiliary

variable with a multinomial prior distribution:

zj � Mðd1:mÞ that indicates the membership of

individual j in class k, that is zj ¼ 1; . . . ;m. The

MCMC algorithm is, for i ¼ 1; 2; . . . ; n:

1. Sample, for k ¼ 1; . . . ;m : bk;i � Nðbk;i;Bk;iÞ,

with bk;i ¼ Bk;i B�1
0 b0 þ

P

fj:zj¼kg
w

0
jxj

 !

; and

Bk;i ¼ B�1
0 þ P

fj:zj¼kg
wjw

0
j

 !

.

2. Sample, for k ¼ 1; . . . ;m :

s2k;i � IG

	

a0þnk
2

;
A0þ
P

fj:zj¼kg
xj�w

0
jbk;ið Þ2

2




, with

nk ¼
P

fj:zj¼kg
1.

3. Sample d1:m � Dðc0 þ n1; . . . ; c0 þ nmÞ.
4. Sample zj using Prðzj ¼ kÞ ¼ dk f xjjw

0
tbk;i;s

2
k;ið Þ

P

s
dsf xjjw0tbs;i;s2s;ið Þ .

This sampler, like that for many mixture models,

suffers from “label switching,” a problem in which the

class parameters switch across the class labels during

the iterations. Several solutions are available,

including ordering the mixture probabilities or

post-processing of the draws.

Furthermore, the above algorithm can be extended

to include the number of classes m ¼ 1; . . . ;mmax,

using RJMCMC. A step is added to the algorithm in

which two randomly chosen classes (k1 and k2) are

merged (k�), or one randomly chosen class is split.

A splitting decision is usually made with probability

�m ¼ 0:5, a merging decision with ð1� �mÞ, for,

m ¼ 2; . . . ; ðmmax � 1Þ, and �1 ¼ 0 and �mmax
¼ 1.

The merge move involves matching of moments of

the class-distributions, involving the computation of

bk� such that the mean mk� ¼ w
0
bk� of the new class

matches that of k1 and k2, as does the variance s
2
k�
:

M1. Randomly select k1 / 1=m and find k2 ‘most

similar’ to k1.

M2. Compute dk� ¼ dk1 þ dk2 .

M3. Match mk� ¼
dk1
dk�

mk1 þ
dk2
dk�

mk2 .

M4. Compute s2k� ¼
dk1
dk�

m2k1 þ s2k1

� �

þ
dk2
dk�

m2k2 þ s2k2

� �

� m2k� .

M5. Recompute zj using step 4 above.

The split move operates as follows, and again

involves matching of the first two moments of the

class-distributions, of the old and new classes:

S1. Randomly select k� / 1=m, and draw the auxiliary

variables u1:3 � Betaða; bÞ.
S2. Compute dk1 ¼ u1dk� , and dk2 ¼ ð1� u1Þdk� .
S3. Match mk1 ¼ mk� � u2sk�

ffiffiffiffiffi

dk2
dk1

q

, and mk2 ¼ mk�þ

u2sk�

ffiffiffiffiffi

dk1
dk2

q

.
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S4. Compute s2k1 ¼ u3 1 � u22
� �

s2k�
dk�
dk1

, and s2k2 ¼

ð1 � u3Þ 1 � u22
� �

s2k�
dk�
dk2

.

S5. Recompute zj using step 4 above.

The split/merge proposal is accepted with

probability min aðy; y0Þ; 1ð Þ, computed as outlined

in the RJ algorithm above (and the split is rejected

if k2 is not ‘most similar’ to k1 to ensure

reversibility). Here hm uðmÞjy;F
� �

¼ Beta ða; bÞ, and

q m
0
jm;C

� �

¼ P m
0
jmi�1

� �

¼ 0:5 in the RJ algorithm

described above. The split/merge moves are

reversible, as Tm;m0 is defined in S2-S4, and T�1
m;m0 in

M2-M3. The split/merge moves may be combined

with “birth/death” moves, randomly chosen with

probabilities 0.5/0.5. In a birth move the parameters

of a new class are drawn at random from proposal

distributions on the appropriate support

(e.g., dk� � Beta; bk � MVN; s�2
k � Gamma), and the

weights are rescaled so that they sum to one. In a death

move an empty class is deleted, and the remaining

weights are rescaled (Richardson and Green 1997).

See

▶Acceptance-Rejection Method

▶ Importance Sampling

▶ Inverse Transform Method

▶Markov Chains

▶Monte Carlo Simulation

▶Reversible Markov Chain/Process

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization

▶Variance Reduction Techniques in Monte Carlo

Methods
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Markov Chains

Carl M. Harris

George Mason University, Fairfax, VA, USA

Introduction

A Markov chain is a Markov process XðtÞ; t 2 Tf g
whose state space S is discrete, while its time domain

T may be either continuous or discrete. Only

considered here is the countable state-space problem.

Classic texts treating Markov chains include Breiman

(1986), Çinlar (1975), Chung (1967), Feller (1968),

Heyman and Sobel (2004), Isaacson and Madsen

(1976), Iosifescu (1980), Karlin and Taylor (1975),

Kemeny and Snell (1976), Kemeny, Snell and

Knapp (1976), and Meyn and Tweedie (2009).

As a stochastic process of the Markov type, chains

possess the Markov or lack-of-memory (memoryless)

property, which means that the probabilities of future

events are completely determined by the present state

of the process and the probabilities of its behavior from

the present point on. In other words, the past behavior

of the process provides no additional information in
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determining the probabilities of future events if the

current state of the process is known. Thus, the

discrete process XðtÞ; t 2 Tf g is a Markov chain if,

for any n > 0, any t1 < t2 < . . . < tn < tn+1 in the

time domain T, any states i1, i2,. . ., in and any state j in

the state space S,

Pr Xðtnþ1Þ ¼ jjXðt1Þ ¼ i1; . . . ;XðtnÞ ¼ inf g
¼ Pr Xðtnþ1Þ ¼ jjXðtnÞ ¼ inf g:

The conditional transition probabilities on the

right-hand side of this equation can be simplified by

mapping the n time points directly into the nonnegative

integers and renaming state in as i. Then the

probabilities are only a function of the pair (i, j) and

the transition number n. Oftentimes, it is assumed that

the transition probabilities are stationary, i.e., time

invariant, resulting in a square (possibly infinite)

matrix P ¼ [pij] (viz., the single-step transition

matrix), which gives all conditional probabilities of

moving to state j in a transition, given that the chain

is currently in state i. (Any matrix with the property

that its rows are nonnegative numbers summing to one

is called a stochastic matrix, whether or not it is

associated with a particular Markov chain).

Examples of Markov Chains

1. RandomWalk. In its simplest form, an object moves

to the left one space at each transition time with

probability p or to the right with probability 1 � p.

The problem can be kept finite by requiring

reflecting barriers at fixed left-and right-hand

points, say M and N, such that the transition

probabilities send the chain back to states M + 1

and N � 1, respectively, whenever it reaches M or

N. One important variation on this problem allows

the object to stay put with non-zero probability.

2. Gambler’s Ruin. A gambler makes repeated

independent bets and wins $1 on each bet with

probability p or loses $1 with probability 1 � p.

The gambler starts with an initial stake and will play

repeatedly until all money is lost or until the fortune

increases to $M. Let Xn equal the gambler’s wealth

after n plays. The stochastic process {Xn, n ¼ 0, 1,

2,. . .} is a Markov chain with state space {0, 1,

2,. . ., M}. The Markov property follows from the

assumption that outcomes of successive bets are

independent events. The Markov model can be

used to derive performance measures of interest

for this situation, such as the probability of losing

all the money, the probability of reaching the goal

of $M, and the expected number of bets before the

game terminates. All these performance measures

are functions of the gambler’s initial state x0,

probability p and goal $M. (The gambler’s fortune

is thus a random walk with absorbing boundaries

0 and M). The gambler’s ruin problem is

a simplification of more complex systems that

experience random rewards, risk, and possible

ruin, such as insurance companies.

3. Coin Toss Sequence. Consider a series of

independent tosses of a fair coin. One Markov chain

is obtained by associating state 1, 2, 3 or 4 at time n

depending on whether the outcomes of tosses n � 1

and n are (H,H), (H,T), (T,H) or (T,T), respectively.

Define the n-step transition probability p
ðnÞ
ij as the

probability that the chain moves from state i to

state j in n steps, and write

P
ðnÞ
ij ¼ Pr Xmþn ¼ jjXm ¼ if g for all m � 0 n > 0:

Then it follows that the n-step transition

probabilities can be computed using the

Chapman-Kolmogorov equations

P
ðnþmÞ
ij ¼

X1

k¼0

p
ðnÞ
ik p

ðmÞ
kj for all n;m; i; j � 0:

In particular, for m ¼ 0,

P
ðnÞ
ij ¼

X1

k¼0

p
ðn�1Þ
ik pkj

¼
X1

k¼0

pikp
ðn�1Þ
kj ; n ¼ 2; 3; . . . ; i; j � 0:

Denoting the matrix of n-step probabilities by P(n),

it follows that P(n) ¼ P(n�k) P(k) ¼ P(n�1) P and that

P(n) can be calculated as the nth power of the original

single-step transition matrix P.

To calculate the unconditional distribution of the

state at time n requires specifying the initial probability

distribution of the state, namely, Pr{X0¼ i}¼ pi, i� 0.

Then the unconditional distribution of Xn is given by
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PrfXn ¼ jg ¼
X1

i¼0
Pr Xn ¼ jjX0 ¼ if g PrfX0 ¼ ig

¼
X1

i¼0
pip
ðnÞ
ij

which is equivalent to multiplying the row vector p by

the jth column of P.

Properties of a Chain

The ultimate long-run behavior of a chain is fully

determined by the location and relative size of the

entries in the single-step transition matrix. These

probabilities determine which states can be reached

from which other ones and how long it takes on average

to make those transitions. More formally, state j is said to

be reachable from state i, written i! j, if it is possible for

the chain to proceed from i to j in a finite number of

transitions, i.e., if p(n)> 0 for some n� 0. If, in addition,

j ! i, then the two states are said to communicate with

each other, written as i ↔ j. If every state is reachable

from every other state in the chain, the chain is said to be

irreducible, i.e., the chain is not reducible into subclasses

of states that do not communicate with each other.

Furthermore, the period of state i is defined as the

greatest common divisor, d(i), of the set of positive

integers n such that p
ðnÞ
ii > 0 (with d(i) 
 0 when

p
ðnÞ
ii ¼ 0 for all n � 1). If d(i) ¼ 1, then i is said to be

aperiodic; otherwise, it is periodic with period d(i).

Clearly, any state with p
ðnÞ
ii � 0 is an aperiodic state.

All states in a single communicating class must have

the same period, and the full Markov chain is said to be

aperiodic if all of its states have period 1.

For each pair of states (i, j) of a Markov chain,

define f
ðnÞ
ij as the probability that a first return from i

to j occurs in n transitions and fij as the probability of

ever returning to j from i. If fij ¼ 1, the expectation mij

of this distribution is called the mean first passage time

from i to j. When j ¼ i, write the respective

probabilities as f
ðnÞ
i and fi, and the expectation as mi,

which is called the mean recurrence time of i. If fi ¼ 1

and mi < 1, state i is said to be positive recurrent or

nonnull recurrent; if fi¼ 1 andmi¼1, state i is said to

be null recurrent; if fi < 1, state i is said to be transient.

A major result that follows from the above is that if

i↔ j and i is recurrent, then so is j. Furthermore, if the

chain is finite, then all states cannot be transient and at

least one must be recurrent; if all the states in the finite

chain are recurrent, then they are all positive recurrent.

More generally, all the states of an irreducible chain

are either positive recurrent, null recurrent, or

transient.

Example: Reflecting Random Walk

Consider such a chain with movement between its four

states governed by the single-step transition matrix

P ¼
0 1 0 0

1=3 1=3 1=3 0

0 2=3 0 1=3
0 0 1 0

2

664

3

775: (1)

All the states communicate since there exists a path

with non-zero probability from state 1 back to state 1

hitting all the other states in the interim. All the states

are recurrent and aperiodic, as well.

If the randomwalk were infinite instead and without

reflecting barriers (on either side), then the chain

would be recurrent if and only if it is equally

probable to go from right to left from each state; for

otherwise the system would drift to + 1 or � 1
without returning to any finite starting point.

Limiting Behavior

The major characterizations of the stochastic behavior

of a chain are typically stated in terms of its long-run or

limiting behavior. Define the probability that the chain

is in state j at the nth transition as p
ðnÞ
j , with the initial

distribution written as p
ð0Þ
j . A discrete Markov chain is

said to have a stationary distributionp¼ (p0,p1, . . .) if

these (legitimate) probabilities satisfy the vector–matrix

equation p ¼ pP. When written out in simultaneous

equation form, the problem is equivalent to solving

pj ¼
X

i

pipij; j ¼ 0; 1; 2; . . . ; with

X

i

pi ¼ 1:

The chain is said to have a long-run, limiting,

equilibrium, or steady-state probability distribution

p ¼ (p0, p1,. . .) if
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lim
n!1

p
ðnÞ
j ¼ lim

n!1
PrfXn ¼ jg ¼ pj; j ¼ 0; 1; 2; . . .

A Markov chain that is irreducible, aperiodic and

positive recurrent is said to be ergodic, and the

following theorem relates these properties to the

existence of stationary and/or limiting distributions.

Theorem: If {Xn} is an irreducible, aperiodic,

time-homogeneous Markov chain, then limiting

probabilities

pj ¼ lim
n!1

PrfXn ¼ jg; j ¼ 0; 1; 2; . . .

always exist and are independent of the initial state

probability distribution. If all the states are either null

recurrent or transient, then pj ¼ 0 for all j and no

stationary distribution exits; if all the states are

instead positive recurrent (thus the chain is ergodic),

then pj > 0 for all j the set {pj} also forms a stationary

distribution, with pj ¼ 1/mj.

It is important to observe that the existence of

a stationary distribution does not imply that a limiting

distribution exists. An example is the simple Markov

chain

P ¼ 0 1

1 0

� 

:

For this chain, it is easy to show that the vector

p ¼ (1/2, 1/2) solves the stationary equation.

However, since the chain is oscillating between states

1 and 2, there will be no limiting distribution. The

chain clearly has period 2, which violates the

sufficient conditions for the above ergodic theorem.

Combined with the earlier discussion, this implies

that an irreducible finite-state chain needs to be

aperiodic to be ergodic. Note that the stationary

distribution (1/2, 1/2) still has meaning because it

gives the fraction of time the chain spends in each

state in the limit, even though there is periodic

oscillation.

More on the Reflecting Random Walk

The example Markov chain with single-step transition

matrix given by (1) is ergodic, so its steady-state

probabilities are found by solving p ¼ pP, written

out as the simultaneous system

p1 ¼
1

3
p2

p2 ¼ p1 þ
1

3
p2 þ

1

3
p3

p3 ¼
1

3
p2 þ p4

p4 ¼
2

3
p3:

When these equations are solved and normalized (to

sum to 1), a unique solution is found p ¼ (1/9, 3/9, 3/9,

2/9). Furthermore, the limiting n-stepmatrix, limn!1 P
n,

would have identical rows all equal to the vector p.

More on the Gambler’s Ruin Problem

For the Gambler’s Ruin, there are three classes of

states, {0}, {1, 2,. . ., M � 1}, and {M}. After

a finite time, the gambler will either reach the goal

of M units or lose all the money. Of particular

interest is the probability that the gambler’s

fortune will grow to M before all the resources are

lost, denoted here by pi, i ¼ 0, 1,. . ., M. It is not too

difficult to show that

pi ¼
1� ½ð1� pÞ=p�i

1� ½ð1� pÞ=p�M
if p 6¼

1

2

i

M
if p ¼

1

2
:

8

>

>

<

>

>

:

More on the Coin Toss Sequence Problem

For the coin toss sequence example, the single-step

transition matrix is given by

P ¼

1=2 1=2 0 0

0 0 1=2 1=2
1=2 1=2 0 0

0 0 1=2 1=2

2

6

6

4

3

7

7

5

:

This particular matrix is very special since its

columns also add up to 1; such a matrix is said to be

doubly stochastic. It can be shown that any doubly

stochastic transition matrix coming from a recurrent

and aperiodic finite chain has the discrete uniform

stationary probabilities pj ¼ 1/M.
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Concluding Remarks

For continuous-time Markov chains, the analog for the

single-step transition matrix is the transition rate matrix

(infinitesimal generator), where the matrix entries of

probabilities are replaced by rates of exponentially

distributed random variables. The holding time

in a state in a continuous-time Markov chain is

exponentially distributed, the analog to the geometric

holding time in a state of a discrete-time Markov chain.

Well-known examples of continuous-time Markov

chains include birth-death processes (analog to random

walk), the Poisson process, and many queueing systems

with exponentially distributed interarrival and service

times, e.g., Jackson queueing networks.

See

▶Birth-Death Process

▶Markov Processes

▶Matrix-Analytic Stochastic Models

▶Networks of Queues

▶ Poisson Process

▶Queueing Theory

▶ Stochastic Process
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Introduction

The finite-state, finite-action Markov decision process

(MDP) is a model of sequential decision making under

uncertainty. MDPs have been applied in such diverse

fields as health care, highway maintenance, inventory,

machine maintenance, cash-flow management, and

regulation of water reservoir capacity (Derman 1970;

Hernandez-Lermer 1989; Ross 1995; White 1969).

After defining an MDP and providing a simple

illustrative example, various solution procedures for

several different types of MDPs are presented, all of

which are based on dynamic programming (Bertsekas

2007; Howard 1971; Puterman 2005; Sennott 1999).

Problem Formulation

Let k 2 0; 1; . . . ; K � 1f g represent the kth stage or

decision epoch, i.e., when the kth decision must be

selected; K < 1 represents the planning horizon of

the Markov decision process. Let sk be the state of the

system to be controlled at stage k. This state must be

a member of a finite set S, called the state space, where

sk 2 S, k ¼ 0, 1,. . ., K. The state process {sk, k ¼ 0,

1,. . .,K} makes transitions according to the conditional

probabilities

pijðaÞ ¼ Pr skþ1 ¼ jjsk ¼ i; ak ¼ af g;

where ak is the action selected at stage k. The action

selected must be a member of the finite action space A,

which is allowed to depend on the current state value,

i.e., ak 2 A(i) when sk ¼ i, thus allowing ak to be

selected on the basis of the current state sk for all k. Let

dk be a mapping from the state space into the action

space satisfying dk(sk) 2 A(sk). Then dk is called

a policy and a sequence of policies p ¼ {d0,. . ., dK�1}

is known as a strategy.

Let r(i, a) be the one-stage reward accrued at stage

k¼ 0, 1,. . .,K� 1, if sk¼ i and ak¼ a. Assume �r (i) is the

terminal reward accrued at stage K (assuming K<1) if
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sk ¼ i. The total discounted reward over the planning

horizon accrued by strategy p ¼ {d0,. . ., dK�1} is then

given by

XK�1

k¼0

bkr sk; akð Þ þ bK�r skð Þ

where ak ¼ dk(sk), k ¼ 0, 1,. . ., K � 1, where b is the

nonnegative real-valued discount factor. The problem

objective is to select a strategy that maximizes the

expected value of the total discounted reward, with

respect to the set of all strategies. Any such strategy

is called an optimal strategy.

Example — An inspector must decide at each stage,

on the basis of a machine’s current state of

deterioration, whether to replace the machine, repair

it, or do nothing. Assume that the machine can be in

one of M states, i.e., the state space is S ¼ {1,. . ., M},

where 1 represents the perfect machine state, M

represents the failed machine state, and 1 < m < M

represents an imperfect but functioning state of the

machine. Each week the machine inspector can

choose to let the machine produce (the do-nothing

decision a ¼ 1), completely replace the machine (the

replace decision a ¼ R), or perform some sort of

maintenance on the machine, 1 < a < R. Thus, the

action space is A ¼ {1,. . ., R}. Generally, these

problems are expressed in terms of costs rather than

rewards, which can be formulated as r(i, a) ¼ -c(i, a),

where c(i, a) be the cost accrued over the following

week if at the beginning of the week the machine is in

state i and the machine inspector selects action a. Let b

be the current value of a dollar to be received next

week. Assume the transition probabilities pij(a) are

known for all i, j 2 S, a 2 A, where generally

pi1(R) ¼ 1 and pij (1) ¼ 0 if j < i.

Dynamic Programming Formulation (Finite
Stage Case)

To formulate the MDP as a dynamic program for the

finite planning horizon case, let fk(i) be the optimal

expected total discounted reward accrued from stage

k through the terminal stage K, assuming sk ¼ i. Note

that fk(i) should differ from fk+1(sk+1) only by the

reward accrued at stage k. In fact, it is easily shown

that fk and fk+1 are related by the dynamic programming

optimality equation

fkðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X

j2S
pijðaÞfkþ1ðjÞ

( )

;

which has boundary condition fK(i) ¼ �r (i). Note also

that an optimal strategy p∗ ¼ {d�0,. . ., d�K�1}

necessarily and sufficiently satisfies

fkðiÞ ¼ r½i; d�kðiÞ� þ b
X

j

pij½d
�
kðiÞ�fkþ1ðjÞ

for all k ¼ 0, 1,. . ., K � 1. Thus, the action that should

be taken at stage k, given sk ¼ i, is any action that

achieves the maximum in

max
a2AðiÞ

rði; aÞ þ b
X

j

pijðaÞfkþ1ðjÞ
( )

:

The Infinite Horizon Discounted
Reward Case

For the infinite horizon setting where K ¼ 1, there

may exist strategies that could generate an infinite

reward. However, if the discount factor b is strictly

less than 1, no such strategy exists, which can be

verified by noting that

X1

k¼0

bkrðsk; akÞ �
X1

k¼0

bk max
ði;aÞ
jrði; aÞj ¼

max
ði;aÞ
jrði; aÞj

1� b
:

Not surprisingly, the dynamic program for the

infinite horizon case can be related to the dynamic

program for the finite horizon case. Defining m as

the number of stages to go until the terminal

stage of the finite horizon case, the dynamic

program for the finite horizon problem can then

be rewritten as

gmþ1ðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X

j

pijðaÞgmðjÞ
( )

where fk(i) ¼ gK�k (i). Now the optimal expected total

discounted reward should be g(i) ¼ limm!1 g(i) for

initial state i, which should satisfy
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gðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X

j

pijðaÞgðiÞ
( )

(1)

if the limit and maximization operators can be

interchanged. It so happens that this interchange is

possible under the conditions considered here, and

hence the optimal expected total discounted reward

uniquely satisfies (1). It can also be shown that an

optimal strategy exists that is stage invariant and that

this strategy, or equivalently, policy, satisfies

gðiÞ ¼ r½i; d�ðiÞ� þ b
X

j

pij½d
��gðjÞ (1a)

for all i 2 S.

Solution Procedures

Three different computational approaches for

determining g and d∗ in (1) are presented.

Linear Programming — The following linear

program can solve the infinite-horizon discounted

MDP:

minimize
X

i2S

gðiÞ

subject to gðiÞ � b
X

j

pijðaÞgðjÞ � rði; aÞ

where the constraint inequality must be satisfied for all

i 2 S and a 2 A(i), i 2 S.

Successive Approximations — This procedure, in

its simplest form, involves determining gm (i) for large

m, using the iteration equation

gmðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X

j

pijðaÞgm�1ðjÞ
( )

;

where g0(i) can be arbitrarily selected; however, it

is generally beneficial to select g0 as close to g as

possible if there is some way of estimating g

a priori.

Policy Iteration — This computational procedure

involves the following iterative approach:

Step 0: Select d

Step 1: Determine gd where gd, satisfy

gdðiÞ ¼ r½i; dðiÞ� þ b
X

j

pij½dðiÞ�gdðjÞ:

Note that

gd ¼ I � bPdð Þ�1
rd

where Pd ¼ {p ij [d(i)]}, gd ¼ {gd (i)}, rd ¼ {r[i, d(i)]},

I is the identity matrix, and the inverse is guaranteed to

exist since b < 1.

Step 2: Determine d´ that satisfies

r½i; d0ðiÞ� þ b
X

j

pij½d
0ðiÞ�gdðjÞ

¼ max
a2AðiÞ

rði; aÞ þ b
X

j

pijðaÞgdðjÞ

( )

:

Step 3: Set d ¼ d0 and return to Step 1 until gd and gd 0

are sufficiently close.

Note that each of the above solution procedures is

far more efficient than exhaustive enumeration.

Combining policy iteration and successive

approximations can lead to efficient computational

procedures for large-scale infinite-horizon

discounted MDPs.

Markov Decision Processes without
Discounting (The Average Reward Case)

Assume that the criterion is

lim
K!1

1

K þ 1

	 


E
X

K

k¼0

rðSk; akÞ

( )

which is the expected average reward criterion. When

the system operates under stationary policy d, it can be

shown that there exist values vd (i), i 2 S, and a state

independent gain gd, which satisfy

gd þ vdðiÞ ¼ r½i; dðiÞ� þ
X

j

pij½dðiÞ�vdðiÞ (2)

if Pd is ergodic. Let g
∗, d∗ and v be such that

g� þ vðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X

j

pijvðjÞ

( )

¼ r½i; d�ðiÞ� þ
X

j

pij½d
�ðiÞ�vðjÞ
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where Pd is assumed ergodic for all d. Then, g∗ is the

value of the criterion generated by an optimal strategy

and d∗ is an optimal strategy. The following is a policy

iteration procedure for determining g∗, d∗ and v, where

it is necessary only to know v up to a positive constant

due to the sum-to-one characteristic of the probabilities.

Algorithm. Step 0: Choose d.

Step 1: Solve equation (2) for vd and gd, where for

some i, vd(i) ¼ 0.

Step 2: Determine a policy d´ that achieves the

maximum in

max
a2AðiÞ

rði; aÞ þ
X

j

pijvdðiÞ
( )

:

Step 3: Set d¼ d0 and go to Step 1 until gd and gd 0 are
sufficiently close.

Concluding Remarks

The discussion has focused on theMDP settingwhere the

state and action spaces are finite; the reward is separable

with respect to stage; all rewards, the discount factor, and

all transition probabilities are known precisely and the

current state can be accurately made available to the

decision maker before selection of the current

alternative. The references treat more general settings.

Much research effort is devoted to improving the

computational tractability of large-scale MDPs so as to

improve both the validity and tractability of this

modeling tool. One such approach is approximate

dynamic programming, which is treated in detail in

Volume II of Bertsekas (2007).

See

▶Approximate Dynamic Programming

▶Dynamic Programming

▶Markov Chains

▶Markov Processes
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Introduction

AMarkov process is a stochastic process {X(t), t 2 T}

with state space S and time domain T that satisfies the

Markov property, which is also known as lack of

memory. In general, probabilities of behavior of

a stochastic process at future times usually depend on

the behavior of the process at times in the past. The

Markov property means that probabilities of future

events are completely determined by the present state

of the process: if the current state of the process is

known, then the past behavior of the process provides

no additional information in determining the

probabilities of future events. Mathematically, the

process {X(t), t 2 T} is Markov if, for any n > 0, any

t1 < t2 < . . ., < tn < tn+1 in the time domain T, and any

states x1, x2,. . ., xn and any set A in the state space S,

PrfXðtnþ1Þ 2 AjXðt1Þ ¼ x1; . . . ;XðtnÞ ¼ xng
¼ PrfXðtnþ1Þ 2 AjXðtnÞ ¼ xng:

The conditional probabilities on the right-hand side

of this equation are the transition probabilities of the

Markov process; they play a key role in the study

of Markov processes. The transition probabilities

of the process are presented as a transition function

p(s, x; t, A)¼ Pr{X(t) 2 A | X(s)¼ x}, s< t, for s, t 2
T, x 2 S, and A � S. The initial distribution of the
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process is q(A) ¼ Pr{X(0) 2 A}, for A � S. The

distribution of a Markov process is uniquely

determined by an initial distribution q(·) and

a transition function p(·,. . .,·): for 0 ¼ t0 < t1 < . . . < tn
in the time domain, and subsets A1, A2,. . ., An of the

state space S,

Pr Xðt1Þ 2 A1; . . . ;XðtnÞ 2 Anf g

¼
Z

x02S
qðdx0Þ

Z

x12A1

pðt0; x0; t1; dx1Þ 	 	 	
Z

xn�12An�1

pðtn�2; xn�2; tn�1; dxn�1Þpðtn�1; xn�1; tn;AnÞ:

An equivalent interpretation of theMarkov property

is that the past behavior and the future behavior of

the process are conditionally independent given the

present state of the process: for any m > 0, any n > 0,

any t�m < . . ., < t�1 < t0 < t1 < . . ., < tn in the time

domain, and any state x0 and any sets A1, A2,. . ., Am and

B1, B2,. . ., Bn in the state space S,

PrfXðt�mÞ 2 Am; . . . ;Xðt�1Þ 2 A1;Xðt1Þ2 B1;

. . . ;XðtnÞ 2 BnjXðt0Þ ¼ x0g
¼ PrfXðt�mÞ 2 Am; . . . ;Xðt�1Þ 2 A1jXðt0Þ ¼ x0g

	 PrfXðt1Þ 2 B1; . . . ;XðtnÞ 2 BnjXðt0Þ ¼ x0g:

A Markov process has stationary transition

probabilities if the transition probabilities are time

invariant, i.e., for s, t > 0, Pr{X(s + t) 2 A |

X(s) ¼ x} ¼ Pr{X(t) 2 A|X(0) ¼ x}. In this case the

transition function takes the simplified form

pt (x, A) ¼ Pr{X(t) 2 A | X(0) ¼ x}. Most Markov

process models assume stationary transition

probabilities.

Classification of Markov Processes

There is a natural classification of Markov processes

according to whether the time domain T and the state

space S are denumerable or non-denumerable. This

yields four general classes. Denumerable time

domains are usually modeled as the integers or

non-negative integers. Non-denumerable time

domains are usually modeled as the continuum

(R or [0, 1]). Denumerable state spaces can be

modeled as the integers, but it is often useful to

retain other descriptions of the states rather than

simply enumerating them. Non-denumerable state

spaces are usually modeled as a one or higher

dimensional continuum. Roughly speaking, discrete

is equivalent to denumerable and continuous is

equivalent to non-denumerable. In 1907, Markov

considered a discrete time domain and a finite state

space; he used the word “chain” to denote the

dependence over time, hence the term Markov chain

for Markov processes with discrete time and

denumerable states. See Maistrov (1974) for some

historical discussion and see Appendix B of Howard

(1971) for a reprint of one of Markov’s 1907 papers.

There is no universal convention for the scope of

definition of Markov chain. Chung (1967) and most

elementary operations research/management science

textbooks (e.g., Hillier and Lieberman 2009) define

Markov processes with denumerable state spaces to

beMarkov chains. Iosifescu (1980) and the Romanian

school use the convention that Markov chain applies

to discrete time and any state space, while Markov

process applies to continuous time and any state

space. The terminology varies in popular texts:

Karlin and Taylor (1975, 1981) and Ross (1995)

agree with Chung; Breiman (1968) and Çinlar

(1975) agree with the Romanians. The terms

discrete-time Markov chain (DTMC) and

continuous-time Markov chain (CTMC) are sometimes

used to clarify the situation.

Here are four examples of Markov processes

representing the four classes with respect to discrete

or continuous time and denumerable or continuous

state space.

(a) Gambler’s Ruin (discrete time/denumerable

states). A gambler makes repeated bets. On each

bet he wins $1 with probability p or loses $1 with

probability 1� p. Outcomes of successive bets are

independent events. He starts with a certain initial

stake and will play repeatedly until he loses all his

money or until he increases his fortune to $M. Let

Xn equal the gambler’s wealth after n plays. The

stochastic process {Xn, n¼ 0, 1, 2,. . .} is a discrete

time Markov chain (DTMC) with state space {0, 1,

2, . . ., M}. The Markov property follows from the

assumption that outcomes of successive bets are

independent events. The Markov model can be

used to derive performance measures of interest

for this situation: for example, the probability he

loses all his money, the probability he reaches his

goal of $M, and the expected number of times he

makes a bet. All these performance measures are
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functions of his initial stake x0, probability p and

goal M. (The gambler’s fortune is a random walk

with absorbing boundaries 0 and M.) The

gambler’s ruin is a simplification of more

complex systems that experience random

rewards, risk, and possible ruin; for example,

insurance companies.

(b) A Maintenance System (continuous time/

denumerable states). A system consists of two

machines and one repairman. Each machine

operates until it breaks down. The machine is

then repaired and put back into operation. If the

repairman is busy with the other machine, the just

broken machine waits its turn for repair. So, each

machine cycles through the states: operating (O),

waiting (W), and repairing (R). Labeling the

machines as “1” and “2” and using the

corresponding subscripts, the states of the system

are (O1,O2), (O1,R2), (R1,O2), (W1,R2) and

(R1,W2). Assume that all breakdown instances

and repairs are independent of each other and

that the operating times until breakdown and

the repair times are random with exponential

distributions. The mean operating times for the

machines are 1/a1 and 1/a2, respectively (so the

machines break down at rates a1 and a2).

The mean repair times for the machines are 1/b1
and 1/b2, respectively (so the machines are

repaired at rates b1 and b2). Letting Xi(t) equal

the state of machine i at time t, the stochastic

process {(X1(t), X2(t)), 0�t} is a continuous time

Markov chain (CTMC) on a state space consisting

of five states. The Markov property follows from

the assumption about independent exponential

operating times and repair times. (The exponential

distribution is the only continuous distribution with

lack-of-memory.) For this type of system there are

several performance measures of interest: for

example, the long-run proportion of time both

machines are broken or the long-run average

number of working machines. This maintained

system is a simplified example of more complex

maintained systems.

(c) Quality Control System (discrete time/continuous

states). A manufacturing system produces

a physical part that has a particularly critical

length along one dimension. The specified value

for the length is a. However, the manufacturing

equipment is imprecise. Successive parts produced

by this equipment vary randomly from the desired

value, a. Let Xn equal the size of the nth part

produced. The noise added to the system at each

step is modeled asDn�Normal(0, d2). The system

can be controlled by attempting to correct the size

of the (n + 1)st part by adding cn ¼ �b (xn � a) to

the current manufacturing setting after observing

the size xn of the nth part; however,

there is also noise in the control so that, in fact,

Cn � Normal (cn,(gcn)
2) is added to the current

setting. This gives Xn+1 ¼ Xn + Cn + Dn. The

process {Xn, n ¼ 0, 1, 2,. . .} is a discrete-time

Markov process on a continuous state space. The

Markov property will follow if all the noise

random variables {Dn} are independent and the

control random variables {Cn} depend only on

the current setting (Xn) of the system.

Performance measures of interest for this system

include the long-run distribution of lengths

produced (if the system is stable over the long-

run). There is also a question of determining the

values of b for which the system is stable and then

finding the optimal value of b.

(d) Brownian Motion (continuous time/continuous

states). In 1828, English botanist Robert Brown

observed random movement of pollen grains on

the surface of water. The motion is caused by

collisions with water molecules. The

displacement of a pollen grain as a function of

time is a two-dimensional Brownian motion.

A one-dimensional Brownian motion can be

obtained by scaling a random walk: Consider a

sequence of independent, identically-distributed

random variables, Zi, with Pr{Zi ¼ +1} ¼ Pr

{Zi ¼ �1} ¼ 1/2, i ¼ 1, 2,.... Let Sn ¼
Pn

i¼1 Zi,

n ¼ 0, 1, 2,.... Then, let Xn (t) ¼ n �1/2 S[nt ],0 � t

� 1, n ¼ 1, 2,. . ., where [nt] is the greatest integer

� nt. As n!1, the sequence of processes {Xn(t),

0� t� 1} converges to {W(t), 0� t� 1}, standard

Brownian motion or the Wiener process; see

Billingsley (1968). The Wiener process is

a continuous-time, continuous-state Markov

process. The sample paths of the Wiener process

are continuous. Diffusions are the general class of

continuous-time, continuous-state Markov

processes with continuous sample paths.

Diffusion models are useful approximations to

discrete processes analogous to how the Wiener

process is an approximation to the above random
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walk process {Sn, n ¼ 0, 1, 2,. . .}; see Glynn

(1990). Geometric Brownian motion {Y(t), 0 � t}

is defined as Y(t) ¼ exp(sW(t)), 0 � t; it is

a diffusion. Geometric Brownian motion has

been suggested as a model for stock price

fluctuations; see Karlin and Taylor (1975).

A performance measure of interest is the

distribution of the maximum value of the process

over a finite time interval.

There are various performance measures that can be

derived for Markov process models. Some specific

performance measures were mentioned for the above

examples. Some general behavioral properties and

performance measures are now described. The

descriptions are for a discrete-time Markov chain

{Xn, n ¼ 0, 1, 2,. . .} but similar concepts apply to

other classes of Markov processes. A Markov chain

is strongly ergodic if Xn converges in distribution as

n!1, independent of the initial state x0. A Markov

chain is weakly ergodic if n�1Pn
i¼1 Xi converges to

a constant as n!1, independent of the initial state x0.

Also as n ! 1, under certain conditions and for

real-valued functions f: S ! , f(Xn) converges in

distribution, n�1Pn
i¼1 f Xið Þ converges to a constant,

and n�1/2Pn
i¼1 f Xið Þ � Ef Xið Þ½ � is asymptotically

normal. Markov process theory identifies conditions

for ergodicity, conditions for the existence of limits,

and provides methods for evaluation of limits when

they exist. For example, in the above maintained

system example, f(·) might be a cost function and the

performance measure of interest is long-run average

cost. The above performance is long-run

(or infinite-horizon, or steady-state, or asymptotic)

behavior. Short-run (or finite-horizon, or transient)

behavior and performance is also of interest. For

a subset A of the state space S, the first passage time TA
is the time of the first visit of the process to

A: TA ¼ min{n: Xn 2 A}. The hitting probability

Pr{TA < 1}, the distribution of TA, and E(TA) are of

interest. In the gambler’s ruin example, the gambler

wants to know the hitting probabilities for sets {0} and

{M}. Transient analysis of Markov processes

investigates these and other transient performance

measures. The analysis of performance measures takes

on different forms for the four different classes of

Markov processes.

Evaluation of performance measures for Markov

process models of complex systems may be difficult.

Standard numerical analysis algorithms are sometimes

useful, and specialized algorithms have been developed

for Markov models; for example, see Grassmann

(1990). Workers in the field of computational

probability have developed and evaluated numerical

solution techniques for Markov models by exploiting

special structure and probabilistic behavior of the

system or by using insights gained from theoretical

probability analysis. In this spirit, Neuts (1981) has

developed algorithms for a general class of Markov

chains. A structural property of Markov chains called

reversibility leads to efficient numerical methods of

performance evaluation; see Keilson (1979), Kelly

(1979), and Whittle (1986). There is a relationship

between discrete-time and continuous-time Markov

chains called uniformization or randomization that can

be used to calculate performance measures of

continuous-time Markov chains; see Keilson (1979)

and Gross and Miller (1984). For Markov chains with

huge state spaces, Monte Carlo simulation can be used

as an efficient numerical method for performance

evaluation; see, for example, Hordijk, Iglehart and

Schassberger (1976) and Fox (1990).

There are classes of stochastic processes related to

Markov processes. There are stochastic processes that

exhibit some lack of memory but are not Markovian.

Regenerative processes have lack of memory at special

points (regeneration points) but at other times the

process has a memory; see Çinlar (1975).

A semi-Markov process is a discrete-state continuous-

time process that makes transitions according to

a DTMC but may have general distributions of

holding times between transitions; see Çinlar (1975). It

is sometimes possible to convert a non-Markovian

stochastic process into a Markov process by expanding

the state description with supplementary variables; that

is, {X(t), 0� t} may be non-Markovian but {(X(t), Y(t)),

0� t} is Markovian. Supplementary variables are often

elapsed times for phenomena with memory; in this way

very general discrete state stochastic systems can be

modeled as Markov processes with huge state spaces.

The general model for discrete-event dynamic systems

is the generalized semi-Markov process (GSMP); see

Whitt (1980) and Cassandras and Lafortune (2008).

The index set T of a stochastic process {X(t), t 2 T}

may represent “time” or “space” or both, leading

to temporal processes, spatial processes, or

spatial-temporal processes when the index set is time,

space, or space-time, respectively. Stochastic processes

with multi-dimensional index sets are called random
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fields. The Markov property can be generalized to the

context of multi-dimensional index sets resulting in

Markov random fields; see Kelly (1979), Kindermann

and Snell (1980) and Whittle (1986). Markov random

fields have many applications. They are models for

statistical mechanical systems (interacting particle

systems). They are useful in texture analysis and

image analysis; see Chellappa and Jain (1993).

See

▶Hidden Markov Models

▶Markov Chain Monte Carlo

▶Markov Chains

▶Markov Decision Processes

▶Markov Random Field

▶Monte Carlo Simulation

▶Regenerative Process

▶Regenerative Simulation

▶Reversible Markov Chain/Process
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Markov Property

When the behavior of a stochastic process {X(t), t 2 T}

at times in the future depends only on the present state of

the process (past behavior of the process affects the

future behavior only through the present state of

the process); viz., for any n > 0, any set of time points

t1 < t2 < . . . < tn < tn+1 in the time domain T, and any
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states x1, x2,. . ., xn and any set A in the same space,

Pr{X(tn+1) 2 A|X(t1) ¼ x1,. . ., X(tn) ¼ xn} ¼
Pr{X(tn+1) 2 A|X(tn) ¼ xn}.

See

▶Markov Chains

▶Markov Processes

Markov Random Field

A random field that satisfies a generalization of the

Markov property.

See

▶Markov Processes

▶Random Field

Markov Renewal Process

When the times between successive transitions of

a Markov chain are independent random variables

indexed on the to and from states of the chain.

See

▶Markov Chains

▶Markov Processes

▶Networks of Queues

▶Renewal Process

Markov Routing

The process of assigning customers to nodes in

a queueing network according to a Markov chain

over the set of nodes, where p(j, k) is the

probability that a customer exiting node j proceeds

next to node k, with 1 � P
p(j, k) being the

probability a customer leaves the network from

node j (the sum is over all nodes of the network,

including leaving the network altogether).

See

▶Networks of Queues

Markovian Arrival Process (MAP)

▶Matrix-Analytic Stochastic Models

Marriage Problem

Given a group of m men and m women, the marriage

problem is to couple the men and women such that the

total happiness of the group is maximized when the

assigned couples marry. The women and the men

determine an m � m table of happiness coefficients,

where the coefficient aij represents the happiness rating

for the couple formed by woman i and man j if they

marry. The larger the aij, the higher the happiness. The

problem can be formulated as an assignment problem

whose solution matches each woman to one man. This

result, which is due to the fact that the assignment

problem has a solution in which the variables can

take on only the values of 0 or 1, is sometimes used

to prove that monogomy is the best form of marriage.

See

▶Assignment Problem

Martingale

A stochastic process (with finite expectation) for which

the conditional expectation of future values is equal to

the present value. For example, for a discrete-time

process {X0, X1, X2,. . .},

E Xnþ1½ jX0;X1; . . .Xn� ¼ Xn:
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Master Problem

The transformed extreme-point problem that results

when applying the Dantzig-Wolfe decomposition

algorithm.

See

▶Dantzig-Wolfe Decomposition Algorithm

Matching

Richard W. Eglese

Lancaster University, Lancaster, UK

Introduction

Matching problems form an important branch of graph

theory. They are of particular interest because of their

application to problems found in Operations Research.

Matching problems also form a class of integer-linear

programming problems which can be solved in

polynomial time. A good description of the historical

development of matching problems and their solutions is

contained in the preface of Lovasz and Plummer (2009).

Given a simple non-directed graphG ¼ [V,E] (where

V is a set of vertices and E is a set of edges), then

a matching is defined as a subset of edges M such that

no twoedges ofM are adjacent.Amatching is said to span

a set of verticesX inG if every vertex inX is incidentwith

an edgeof thematching.Aperfectmatching is amatching

which spans V. A maximum matching is a matching of

maximum cardinality, i.e. a matching with the maximum

number of members in the set.

A graph is called a bipartite graph if the set of

vertices V is the disjoint union of sets V1 and V2 and

every edge in E has the form (v1, v2) where v1 is

a member of V1 and v2 is a member of V2.

Matching on Bipartite Graphs

The first type of matching problems consists of those

which can be formulated as matching problems on

a bipartite graph. For example, suppose V1 represents

a set of workers and V2 represents a set of tasks to be

performed. If each worker is able to perform a subset

of the tasks and each task may be performed by some

subset of the workers, the situation may be modeled

by constructing a bipartite graph G, where there is an

edge between v1 in V1 and v2 in V2 if and only if

worker v1 can perform task v2. If it is assumed that

each worker may only be assigned one task and each

task may only be assigned to be carried out by one

worker, the problem is an assignment problem.

To find the maximum number of tasks which can

be performed, the maximum matching on G must be

found. If a measure of effectiveness can be associated

with assigning a worker to a task, then the question

may be asked as to how the workers should be

assigned to tasks to maximize the total

effectiveness. This is a maximum weighted

matching problem. If costs are given in place of

measures of effectiveness, the minimum cost

assignment problem can be solved as a maximum

weighted matching problem after replacing each

cost by the difference between it and the maximum

individual cost. This assumes all workers or all tasks

must be assigned.

Both forms of assignment problem can be solved

by a variety of algorithms. For example, a maximum

matching on a bipartite graph can be found by

modeling the problem as a network flow problem

and finding a maximum flow on the model network.

A more efficient algorithm is due to Hopcraft and

Karp (1973). A well-known algorithm for solving

the maximum weighted matching problem (for

which the maximum matching problem can be

considered a special case) on a bipartite graph is

often referred to as the Hungarian method and was

introduced by Kuhn (1955, 1956). Kuhn casts the

procedure in terms of a primal-dual linear program.

The algorithm can be implemented so as to produce

an optimal matching in O(m 2 n) steps, where n is the

number of vertices andm is the number of edges in the

graph. The details are given in Lawler (1976).

Although this is an efficient algorithm, it may be

necessary to find faster implementations for

problems of large size or when the algorithm is used

repeatedly as part of a more complex procedure.

Various methods have been proposed including

those due to Jonker and Volgenant (1986) and

Wright (1990).
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Job Scheduling

Another example of a problem which can be modeled

as a matching problem arises from job scheduling

(Coffman and Graham 1972). Suppose n jobs are to

be processed and there are two machines available. All

jobs require an equal amount of time to complete and

can be processed on either machine. However there are

precedence constraints which mean that some jobs

must be completed before others are started. What is

the shortest time required to process all n jobs?

This example can be modeled by constructing

a graph G with n vertices representing the n jobs and

where an edge joins two vertices if and only if they can

be run simultaneously. An optimum schedule

corresponds to one where the two machines are used

simultaneously as often as possible. Therefore the

problem becomes one of finding the maximum

matching on G, from which the shortest time can be

derived. In this case though, the graph G is no longer

bipartite and so an algorithm for solving the maximum

matching problem on a general graph is required.

The first efficient algorithm to find a maximum

matching in a graph was developed by Edmonds

(1965a). Most successful algorithms to find

a maximum matching have been based on Edmonds’

ideas. Gabow (1976) and Lawler (1976) show how to

implement the algorithm in a time of O(n3). It is

possible to modify the algorithm for more efficient

performance on large problems. For example, Even

and Kariv (1975) present an algorithm running in

a time of O(n5/2) and Micali and Vazirani (1980)

describe an algorithm with running time of O(mn1/2).

Arc Routing

There is a close connection between arc routing

problems and matching. Suppose a person must

deliver mail along all streets of a town. What route

will traverse each street and return to the starting point

in minimum total distance? This problem is known as

the Chinese Postman Problem as it was first raised by

the Chinese mathematicianMeigu Guan (1962). It may

be formulated as finding the minimum length tour on

a non-directed graph G whose edges represent the

streets in the town and whose vertices represent the

junctions, where each edge must be included at least

once. Edmonds and Johnson (1973) showed that this

problem is equivalent to finding a minimum weighted

matching on a graph whose vertices represent the set of

odd nodes in G and whose edges represent the shortest

distances in G between the odd nodes. Odd nodes are

vertices where an odd number of edges meet. This

minimum weighted matching problem can be solved

efficiently by the algorithm introduced by Edmonds

(1965b) for maximum weighted matching problems

where the weights on each edge are the distances

multiplied by minus one. The Chinese Postman

Problem is therefore easier to solve than the

Traveling Salesman Problem where a polynomially

bounded algorithm has not yet been established.

For large problems, faster versions of the weighted

matching algorithm have been developed by Galil,

Micali and Gabow (1982) and Ball and Derigs (1983)

which require O(mn log n) steps. A starting procedure

which significantly reduces the computing time for the

maximum matching problem is described by Derigs

and Metz (1986) and involves solving the assignment

problem in a related bipartite graph.

b-Matchings

Given an integer bi for each vertex vi of V,

a b-matching of G is defined as a subset M of edges,

such that at each vertex vi, the number of edges of M

incident on vi is less than or equal to bi. A matching is

therefore a special case of a b-matching where bi ¼ 1

for all i. Efficient algorithms for b-matching problems

are described in Gerards (1995), which also provides

a good survey of matching in general.

Lower bounds for Vehicle Routing problems can be

obtained by relaxing the subtour elimination

and vehicle capacity constraints to give a perfect

b-matching problem. Miller (1995) shows that this

approach can be used in a branch-and-bound

frame-work for this application.

See

▶Assignment Problem

▶Branch and Bound

▶Chinese Postman Problem

▶Dual Linear-Programming Problem

▶Graph Theory

▶Hungarian Method
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▶ Integer and Combinatorial Optimization

▶Maximum-Flow Network Problem

▶Network

▶Transportation Problem

▶Traveling Salesman Problem

▶Vehicle Routing
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Material Handling

Meir J. Rosenblatt

Washington University in St. Louis, St. Louis,

MO, USA

Technion – Israel Institute of Technology, Haifa, Israel

Introduction

Material handling is concerned with moving raw

materials, work-in-process, and finished goods into

the plant, within the plant, and out of the plant to

warehouses, distribution networks, or directly to the

customers. The basic objective is to move the right

combination of tools and materials (raw materials,

parts and finished products) at the right time, to the

right place, in the right form, and in the right

orientation. And to do it with the minimum total cost.

It is estimated that 20% to 50% of the total operating

expenses within manufacturing are attributed to

material handling (Tompkins et al. 1996). Material

handling activities may account for 80% to 95% of

total overall time spent between receiving a customer

order and shipping the requested items (Rosaler and

Rice 1994). This indicates that improved efficiencies

in material handling activities can lead to substantial

reductions in product cost and production lead-time;

better space and equipment utilization, improved

working conditions and safety, improvements in

customer service; and, eventually to higher profits and

larger market share. Material handling adds to the

product cost but contributes nothing to the value added

of the products.
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Design of material handling systems play a critical

role in just-in-time (JIT) manufacturing. Under JIT,

production is done in small lots so that production

lead-times are reduced and inventory holding costs

are minimized, requiring the frequent conveyance of

material. Thus, successful implementation of JIT

needs a fast and reliable material handling system as

a prerequisite. A major, related development with

great impact on the material handling process has

been the extensive implementation of Total Quality

Management (TQM) plans.

Production lot-sizing decisions have a direct impact

on the assignment of storage space to different items

(products) and consequently on the material handling

costs. Therefore, lot sizing decisions must take into

account not only setup and inventory carrying costs

but also warehouse and material handling costs. In

other words, production lot sizing, warehouse storage

assignment, and material handling equipment

decisions must be made simultaneously.

Also, in a flexible manufacturing environment, where

batches of productsmay have several possible alternative

routes, the choice of routing-mix can have a significant

effect on shop throughput and work-in-process

inventory. However, for such a system to be efficient,

an appropriate material handling system needs to be

designed. This design issue is especially important

when expensive machines are being used. Major waste

can be caused by a material handling system that is

inappropriate and becomes a bottleneck.

Finally, it should be recognized that

(computer-aided) facility layout determines the

overall pattern of material flow within the plant and,

therefore, has a significant impact on the material

handling activities and costs. It is estimated that

effective facilities planning and layout can reduce

material handling costs by at least 10% to 30%

(Tompkins et al. 1996). However, an effective layout

requires an effective material handling system.

Therefore, it is critical that these decisions are made

simultaneously.

Material Handling Equipment

There are several ways of classifyingmaterial handling

equipment: (1) type of control (operator controlled vs.

automated); (2) where the equipment works (on

the floor vs. suspended overhead); (3) travel path

(fixed vs. flexible). The fixed vs. flexible travel path

classification is used here as in Barger (1987). Flexible

path equipment can be moved along any route and in

general is operator-controlled. Trucks are a common

mode of operations. There are several types of trucks

depending on the type of handling that is needed, and

the following are the most common:

Counterbalanced fork trucks — used both for

storage at heights of 20 feet or more, as well as for

fast transportation);

Narrow-aisle trucks — mainly used for storage

applications;

Walkie Pallet trucks — mainly used for

transportation over short hauls; and

Manual trucks — mainly used for short hauls and

auxiliary services.

There are three important types of fixed-path

equipment:

Conveyors — Conveyors are one of the largest

families of material handling equipment. They can

be classified based on the load-carrying surface

involved: roller, belt, wheel, slat, carrier chain; or

on the position of the conveyor: on-floor or

overhead;

Automatic Guided Vehicles (AGVs) — these are

electric vehicles with on-board sensors that enable

them to automatically track along a guide path

which can be an electrified guide wire or a strip of

(reflective) paint or tape on the floor. The AGVs

follow their designated path using their sensors to

detect the electromagnetic field generated by the

electric wire or to optically detect the path marked

on the floor. AGVs can transport materials

between any two points connected by a guide

path — without human intervention. Most of

today’s AGVs are capable of loading and

unloading materials automatically. Most

applications of AGVs are for load transportation,

however, they could also be used in flexible

assembly operations to carry the product being

assembled through the various stages of assembly.

While AGVs have traditionally been fixed path

vehicles, advances in technology permit them to

make short deviations from their guide path. Such

flexibility may considerably increase their

usefulness; and

Hoists, Monorails, and Cranes — Hoists are a basic

type of overhead lifting equipment and can be

suspended from a rail, track, crane bridge or beam.
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A hoist consists of a hook, a rope or chain used for

lifting, and a container for the rope/chain.

Monorails consist of individual wheeled trolleys

that can move along an overhead track. The

trolleys may be either powered or non-powered.

Cranes have traditionally found wide application

in overhead handling of materials, especially

where the loads are heavy. Besides the overhead

type, there are types of cranes that are wall or floor

mounted, portable ones and so on. Types such as

stacker cranes are useful in warehouse operations.

Interaction with Automated Storage and
Retrieval Systems (AS/RS)

AS/RS consist of high-density storage spaces,

computer-controlled handling and storage

equipment (operated with minimal human

assistance) and may be connected to the rest of the

material handling system via some conveying

devices such as conveyors and AGVs. Several types

of AS/RS are available including: Unit Load,

Miniload, Man-On-Board, Deep Lane and

Carousels. The AS/RS systems help achieve very

efficient placement and retrieval of materials, better

inventory control, improved floor space utilization,

and production scheduling efficiency. They also

provide greater inventory accountability and reduce

supervision requirements. Normally, stacker cranes

that can move both horizontally and vertically at the

same time are used for material handling. Typically,

a crane operates in a single aisle, but can be moved

between aisles (Rosenblatt et al. 1993). Items to be

stored or retrieved are brought to/picked from the

AS/RS by a conveyor or an AGV. Such integration

can be used to automate material handling

throughout the plant and warehouse. A great deal of

research has been done on scheduling jobs and

assigning storage space in the AS/RS (Hausman

et al. 1976).

Issues in Material Handling System Design

Unit load concept — Traditional wisdom is that

materials should be handled in the most efficient,

maximum size using mechanical means to reduce the

number of moves needed for a given amount of

material. While reducing the number of trips required

is a good objective, the drawback of this approach is

that it tends to encourage the acceptance of large

production lots, large material handling equipment,

and large space requirements. Small unit loads allow

for more responsive, less expensive, and less

consuming material handling systems. Also, the trend

toward continuous manufacturing flow processes and

the strong drive for automation necessitate the use of

smaller unit loads (Apple and Rickles 1987).

Container size and standardization — This is an

issue related to the unit load concept. Container size

has an obvious correlation with the size of unit load.

Hence, not surprisingly, the current trend is to employ

smaller containers. The benefits of smaller containers

include compact and more efficient workstations,

improved scheduling flexibility due to smaller

transfer batch size, smaller staging areas, and lighter

duty handling systems. Another consideration that

strongly influences the optimal container size is the

range of items served by one container. In warehouse

operations, unless items vary widely in their physical

characteristics, the cost of employing two or more

container sizes is almost always higher than in the

one-size case (Roll et al. 1989). Use of standard

containers eliminates the need for container

exchanges between operation sites.

Capacity of the system or number of pieces of
equipment — The margins in the design of material

handling system require a careful examination of the

relative costs of acquiring and maintaining of work

centers and handling equipment. In the design of the

material handling system for an expensive job shop,

enough excess capacity should be provided so that the

handling system never becomes the bottleneck.

OR Models in Material Handling

Operations Research (OR) tools have been applied to

model and study a variety of problems in the area of

material handling. One example, dealing with the

initial design phase of material handling, used

a graph-theoretic modeling framework (Kouvelis and

Lee 1990). Other examples include conveyor systems

problems using queueing theory, and transfer lines

where dynamic programming techniques were

applied. Most of the theoretical work has focused on

AGVs and AS/RS. The design and control of AGVs are
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extremely complex tasks. The design decisions include

determining the optimal number of AGVs (Maxwell

and Muckstadt 1982), as well as determining the

optimal flow paths (Kim and Tanchoco 1993).

Factors to be considered in the design decisions

include hardware considerations, impacts on facilities

layout, material procurement policy, and production

policy. Resulting problems tend to be intractable for

any realistic scenario, and hence, heuristics and

simulation are the most used techniques in addressing

design issues. Control problems including dispatching

and routing tasks require real time decisions, making it

difficult to obtain optimal solutions. Researchers have

attempted to solve simplified problems, for example,

by examining static versions instead of dynamic

systems (Han and McGinnis 1989), and using simple

single-loop layouts (Egbelu 1993).

In the study of warehousing in general, and AS/RS

in particular, many different measures of effectiveness

of warehouse designs have been considered. The most

common ones are throughput as measured by the

number of orders handled per day, average travel

time of a crane per single/dual command, and

average waiting time per customer/order (Hausman

et al. 1976). Researchers have considered either

simulation or optimization models, usually of the

nonlinear integer form, to solve these problems. Yet

others have combined optimization and simulation

techniques to obtain solutions that are both cost

effective and operationally feasible (reasonable

service time) (Rosenblatt et al. 1993).

Since factories are increasingly automated,

numerical control of machine tools and flexible

manufacturing systems is common. Material handling

systems frequently involve the use of robots. In the

absence of an effective material handling system, an

automated factory would be reduced to a set of islands

of automation. In the integrated and fiercely

competitive global economy, material handling

systems play a crucial role in the battle to cut costs

and improve productivity and service levels.

See

▶ Facilities Layout

▶ Flexible Manufacturing Systems

▶ Integer and Combinatorial Optimization

▶ Inventory Modeling

▶ Job Shop Scheduling

▶ Just-in-Time (JIT) Manufacturing

▶ Simulation of Stochastic Discrete-Event Systems

▶Total Quality Management

References

Apple, J. M., & Rickles, H. M. (1987). Material handling and
storage. In J. A. White (Ed.), Production handbook.
New York: Wiley.

Barger, B. F. (1987). Materials handling equipment. In
J. A. White (Ed.), Production handbook. New York: Wiley.

Egbelu, P. J. (1993). Positioning of automated guided vehicles in
a loop layout to improve response time. European Journal of
Operational Research, 71, 32–44.

Han, M. H., & McGinnis, L. F. (1989). Control of material
handling transporter in automated manufacturing. IIE

Transactions, 21, 184–190.
Hausman, W. H., Schwarz, L. B., & Graves, S. C. (1976).

Optimal assignment in automatic warehousing systems.
Management Science, 22, 629–638.

Kim, K. H., & Tanchoco, J. M. A. (1993). Economical design of
material flow paths. International Journal of Production

Research, 31, 1387–1407.
Kouvelis, P., & Lee, H. L. (1990). Thematerial handling systems

design of integrated manufacturing system. Annals of

Operations Research, 26, 379–396.
Maxwell, W. L., &Muckstadt, J. A. (1982). Design of automated

guided vehicle systems. IIE Transactions, 14, 114–124.
Mulcahy, D. (1999). Materials handling handbook. New York:

McGraw-Hill.
Roll, Y., Rosenblatt, M. J., & Kadosh, D. (1989). Determining

the size of a warehouse container. International Journal of
Production Research, 27, 1693–1704.

Rosaler, R. C., & Rice, J. O. (Eds.). (1994). Standard handbook

of plant engineering (2nd ed.). New York: McGraw-Hill.
Rosenblatt, M. J., Roll, Y., & Zyser, V. (1993). A combined

optimization and simulation approach to designing automated
storage/retrieval systems. IIE Transactions, 25, 40–50.

Tompkins, J. A., White, J. A., Bozer, Y. A., Frazelle, E. H.,
Tanchoco, J. M. A., & Trevino, J. (1996). Facilities planning
(2nd ed.). New York: Wiley.

Material Requirements Planning

A material requirements planning (MRP) system is

a collection of logical procedures for managing, at

the most detailed level, inventories of component

assemblies, subassemblies, parts and raw materials in

a manufacturing environment. It is an information

system and simulation tool that generates proposals

for production schedules that managers can evaluate

in terms of their feasibility and cost effectiveness.
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See

▶Hierarchical Production Planning

▶ Production Management

Mathematical Model

A mathematical description of (usually) a real-world

problem. In operations research/management

science, mathematical models take on varied forms

(e.g., linear programming, queueing, Markovian

systems), many of which can be applied across

application areas. The basic OR/MS mathematical

model can be described as the decision problem of

finding the maximum (or minimum) of a measure of

effectiveness (objective function) E ¼ F(X, Y), where

X represents the set of possible solutions (alternative

decisions) and Y the given conditions of the problem.

Although a rather simple model in its concept,

especially since it involves the optimization of

a single objective, this mathematical decision model

underlies most of the problems that have been

successfully formulated and solved by OR/MS

methodologies.

See

▶Decision Problem

▶Deterministic Model

▶ Stochastic Model

Mathematical Optimization Society

The Mathematical Optimization Society (MOS) is an

international organization dedicated to the support and

development of the application, computational methods,

and theory of mathematical optimization. The society

sponsors the triennial International Symposium on

Mathematical Optimization and other meetings

throughout the world. Until 2010, its name was the

Mathematical Programming Society (MPS), which was

founded in 1973.

Mathematical Programming

Mathematical programming is a major discipline in

operations research/management science and, in

general, is the study of how one optimizes the use

and allocation of limited resources. Here the

programming refers to the development of a plan or

procedure for dealing with the problem. It is

considered a branch of applied mathematics as it

deals with the theoretical and computational aspects

of finding the maximum (minimum) of a function f(x)

subject to a set of constraints of the form gi(x) � bi.

The linear-programming model is the prime example

of such a problem.

Mathematical-Programming Problem

A constrained optimization problem usually stated as

Minimize (Maximize) f(x) subject to gi(x) � 0,

i ¼ 1,. . ., m. Depending on the form of the objective

function f(x) and the constraints gi(x) the problem will

have special properties and associated algorithms.

See

▶Convex-Programming Problem

▶ Fractional Programming

▶Geometric Programming

▶ Integer and Combinatorial Optimization

▶ Integer-Programming Problem

▶Linear Programming

▶Nonlinear Programming

▶Quadratic Programming

▶ Separable-Programming Problem

Mathematical-Programming
System (MPS)

An integrated set of computer programs that are designed

to solve a range of mathematical-programming problems

is often referred to as a mathematical-programming

system (MPS). Such systems solve linear programs,

usually by some form of the simplex method, and often
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have the capability to handle integer-variable

problems and other nonlinear problems such as

quadratic-programming problems. To be effective, an

MPS must have procedures for input data handling,

matrix generation of the constraints, reliable

optimization, user and automated control of the

computation, sensitivity analysis of the solution,

solution restart, and output reports.

Matrices and Matrix Algebra

Alan Tucker

The State University of New York at Stony Brook,

Stony Brook, NY, USA

Introduction

A matrix is an m � n array of numbers, typically

displayed as

A ¼
4 3 8

1 2 3

4 5 6

2

64

3

75;

where the entry in row i and column j is denoted as aij.

Symbolically,A¼ (aij), for i¼ 1,. . .,m and j¼ 1,. . ., n.

A vector is a one-dimensional array, either a row or

a column. A column vector is an m � 1 matrix, while

a row vector is a 1 � n matrix. For a matrix A, its ith

row vector is usually denoted by a0i and its jth column

by aj. Thus an m � n matrix can be decomposed into

a set ofm row n-vectors or a set of n columnm-vectors.

Matrices are a natural generalization of single

numbers, or scalars. They arise directly or indirectly

in most problems in operations research and

management science.

The word matrix in Latin means womb. The term

was introduced by J.J. Sylvester in 1848 to describe an

array of numbers that could be used to generate (give

birth to) a variety of determinants. A few years later,

Cayley introduced matrix multiplication and the basic

theory of matrix algebra quickly followed. A more

general theory of linear algebra and linear

transformations pushed matrices into the background

until the 1940s and the advent of digital computers.

During the 1940s, Alan Turing, father of computer

science, introduced the LU decomposition and John

von Neumann, father of the digital computer, working

with Herman Goldstine, started the development of

numerical matrix algebra and introduced the condition

number of a matrix. Curiously, at the same time Cayley

and Sylvester were developing matrix algebra, another

Englishman, Charles Babbage, was building his

analytical engine, the forerunner of digital computers,

which are critical to the use of modern matrix models.

Basic Operations and Laws of Matrix Algebra

The language for manipulating matrices is matrix

algebra. Matrix algebra is a multivariable extension

of single-variable algebra. The basic building block

for matrix algebra is the scalar product. The scalar

product a · b of a and b is a single number (a scalar)

equal to the sum of the products ai bi, i.e.,

a 	 b ¼
Pn

i¼1 aibi, where both vectors have the same

dimension n. Observe that the scalar product is a linear

combination of the entries in vector a and also a linear

combination of the entries of vector b.

The product of an m � n matrix A and a column

n-vector b is a column vector of scalar products a0i 	 b,
of the rows a0i of A with b. For example, if

A ¼
a11 a12 a13

a21 a22 a23

" #

is a 2 � 3 matrix and

b ¼
b1

b2

b3

2

64

3

75

is a column 3-vector, then

Ab ¼
a01 	 b
a02 	 b

" #

¼
a11b1 þ a12b2 þ a13b3

a21b1 þ a22b2 þ a23b3

" #

;

so that Ab is a linear combination of A. Moreover, for

any scalar numbers r, q, any m � n matrix A, and any

column n-vectors b, c:
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Aðrbþ qcÞ ¼ rAbþ qAc:

The product of a row m-vector c and an m � n

matrix A is a row vector of scalar products c · aj, of c

with the columns aj of A. For example, if

A ¼ a11 a12 a13

a21 a22 a23

" #

;

is a 2� 3 matrix and c¼ [c1, c2] is a row 2-vector, then

cA ¼ ½c 	 a1; c 	 a2; c 	 a3�
¼ ½a11c1 þ a21c2; a12c1 þ a22c2; a13c1 þ a23c2�:

If A is an m� rmatrix and B is an r� nmatrix, then

the matrix product AB is an m � n matrix obtained by

forming the scalar product of each row a0i in A with each

column bj in B. That is, the (i, j)th entry in AB is a0i 	 bj.
Column j of AB is the matrix–vector product Abj and

each column of AB is a linear combination of the

columns of A. Row i of AB is vector–matrix product

a0i B and each row of AB is a linear combination of the

rows ofB.Thematrix–vector productAb is a special case

of the matrix-matrix product in which the second matrix

has just one column; the analogous statement holds for

the vector–matrix product bA.

Matrix multiplication is not normally commutative.

Otherwise it obeys all the standard laws of scalar

multiplication.

Associative Law.Matrix addition andmultiplication

are associative:(A + B) + C ¼ A + (B + C) and (AB)

C ¼ A(BC).

Commutative Law. Matrix addition is

commutative: A + B ¼ B + A. Matrix multiplication

is not commutative (except in special cases):AB 6¼BA.

Distributive Law.A(B +C)¼AB +AC and (B +C)

A ¼ BA + CA.

Law of Scalar Factoring. r(AB)¼ (rA)B¼A(rB).

For n � n matrices A, there is an identity matrix I

with ones on the main diagonal and zeros elsewhere,

with the property that AI ¼ IA ¼ A. Furthermore,

the transpose of an m � n matrix A, denoted by AT, is

an n � m matrix such that the rows of A are the

columns of AT.

If matrices are partitioned into submatrices in

a regular fashion, say, a 4 � 4 matrix A is partitioned

into four 2 � 2 submatrices,

A ¼
A11 A12

A21 A22

" #

;

and a 4 � 4 matrix B is similarly partitioned, then the

matrix product AB can be computed in terms of the

partitioned submatrices:

AB ¼
A11B11 þ A12B21 A11B12 þ A12B22

A21B11 þ A22B21 A21B12 þ A22B22

" #

:

Solving Systems of Linear Equations

Matrices are intimately tied to linear systems of

equations. For example, the system of linear equations

4x1 þ 2x2 þ 2x3 ¼ 100

2x1 þ 5x2 þ 2x3 ¼ 200

1x1 þ 3x2 þ 5x3 ¼ 300

(1)

can be written as

Ax ¼ b; where

A ¼
4 2 2

2 5 2

1 3 5

2

664

3

775; x ¼
x1

x2

x3

2

664

3

775; b ¼
100

200

300

2

664

3

775:
(2)

Essentially, the only way to solve an algebraic

system with more than one variable is by solving

a system of linear equations. For example, nonlinear

systems must be recast as linear systems to be

numerically solved. Since operations research and

management science is concerned with complex

problems involving large numbers of variables,

matrix systems are pervasive in OR/MS.

Observe that the system of equations given by (1)

can be approached from the row point of view as a set

of simultaneous linear equations and solved by row

operations using Gaussian elimination or Gauss-

Jordan elimination. The result of elimination

will be either no solution, a unique solution or an

infinite number of solutions. In linear programming,

one typically wants to find a vector x maximizing or
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minimizing a linear objective function c · x subject to

a system Ax ¼ b of linear constraints. The simplex

method finds an optimal solution by a sequence of

pivots on the augmented matrix [Ab]. A pivot on

non-zero entry (i, j) consists of a collection of row

operations (multiplying a row by a scalar or

subtracting a multiple of one row from another

row) producing a transformed augmented matrix

[A0 b0] in which entry (i, j) equals 1 and all other

entries in the jth column are 0. The pivot step can be

accomplished by premultiplying A by a pivot matrix

P, which is an identity matrix with a modified ith

column.

The system of equations given by (1) can also be

approached from the column point of view as the

following vector equation:

x1

4

2

1

2

64

3

75þ x2

2

5

3

2

64

3

75þ x3

2

2

5

2

64

3

75 ¼
100

200

300

2

64

3

75: (3)

Writing the system as (3) raises questions such

as which right-hand side vectors b are expressible

as linear combinations of the columns of A? The set

of such b vectors is called the range of the matrix

A. For a square matrix, the system Ax ¼ b will have

a unique solution if and only if no column vector of

A can be written as a linear combination of other

columns of A, or equivalently, if and only if x ¼ 0
is the only solution to Ax ¼ 0, where 0 denotes

a vector of all zeroes. When this condition holds,

the columns are said to be linearly independent.

When Ax ¼ 0 has non-zero solutions (whether A

is square or not), the set of such nonzero solutions

is called the kernel of A. Kernels, ranges and linear

independence are the building blocks of the theory

of linear algebra. This theory plays an important

role in the uses of matrices in OR/MS. For

example, if x∗ is a solution to Ax ¼ b and xo is in

the kernel of A (i.e., Axo ¼ 0), then x∗ + xo is also

a solution of Ax + b, since A(x∗ + x
o) ¼ Ax

∗ +

Axo ¼ b + 0 ¼ b, and one can show that all

solutions to Ax ¼ b can be written in the form of

a particular solution x
∗ plus some kernel vector xo.

In a linear program to maximize or minimize c · x

subject to Ax ¼ b, once one finds one solution x∗ to

Ax ¼ b, improved solutions will be obtained by

adding appropriate kernel vectors to x∗.

Matrix Inverse

The inverse A�1 of a square matrix A has the property

that A�1A ¼ AA�1 ¼ I. The inverse can be used to

solve Ax¼ b as follows: Ax ¼ b ) A�1ðAxÞ ¼ A�1b,

but A�1(Ax) ¼ (A�1A)x ¼ (I)x ¼ x. Thus x ¼ A�1 b.

The square matrix A has an inverse if any of the

following equivalent statements hold:

1. For all b, Ax ¼ b has a unique solution;

2. The columns of A are linearly independent;

3. The rows of A are linearly independent.

The matrix A�1 is found by solving a system of

equations as follows. The product AA�1 ¼ I implies

that if xj is the jth column ofA�1 and ij is the jth column

of I (ij has 1 in the jth entry and zeroes elsewhere), then

xj is the solution to the matrix system Axj ¼ ij. An

impressive aspect of matrix algebra is that even when

a matrix system Ax ¼ b has no solution, i.e., in (3) no

linear combination of the columns of A equals b, there

is still a “solution” y in the sense of a linear

combination Ay of the columns of A that is as close

as possible to b, i.e., the Euclidean distance in n-

dimensional space between the vectors Ay and b is

minimized. There is even an inverse-like matrix A∗,

called the pseudoinverse or generalized inverse, such

that y ¼ A∗b. The matrix A∗ is given by the matrix

formula A∗¼ (ATA)�1AT, where AT is the transpose of

A, obtained by interchanging rows and columns.

Eigenvalues and Eigenvectors

A standard form of a dynamic linear model is p0 ¼ Ap,

where A is an n � n matrix and p is a n-column vector

of populations or probabilities (in the case of

probabilities, it is the convention to use row vectors:

p0 ¼ pA). For some special vectors e, called

eigenvectors, Ae ¼ le, where l is a scalar called an

eigenvalue. That is, premultiplying e by A has the

effect of multiplying e by a scalar. It follows that

Ane ¼ lne. This special situation is very valuable

because it is obviously much easier to compute lne

than Ane.

Most n � n matrices have n different (linearly

independent) eigenvectors. If the vector p as a linear

combination p¼ a e1 + b e2 of, say, two eigenvectors e1
and e2, with associated eigenvalues l1, l2, then by the

linearity of matrix–vector products,Ap andA2 p can be

calculated as

M 952 Matrices and Matrix Algebra



Ap ¼ Aðae1 þ be2Þ ¼ aAe1 þ bAe2 ¼ al1e1 þ bl2e2

and

A2p ¼ A2ðae1 þ be2Þ ¼ aA2e1 þ bA2e2

¼ al21e1 þ bl22e2:

More generally,

Akp ¼ Akðae1 þ be2Þ ¼ aAke1 þ bAke2

¼ alk1e1 þ blk2e2:

If jl1j > jlij, for i � 2, then for large k, lk1

will become much larger in absolute value than the

other lkj , and so Akp approaches a multiple of the

eigenvector associated with the eigenvalue of largest

absolute value. For ergodic Markov chains, this largest

eigenvalue is 1 and the Markov chain converges to

a steady-state probability p∗ such that p∗ ¼ p∗A.

Matrix Norms

The norm |v| of a vector v is a scalar value that is

nonnegative, satisfies scalar factoring, i.e., |r v| ¼ r |v|,

and the triangle inequality, i.e., |u + v| � |u| + |v|.

There are three common norms used for vectors:

1. The Euclidean, or l2, norm of v ¼ [v1, v2,. . ., vn] is

defined as jvje ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v22 þ 	 	 	 þ v2n:
p

2. The sum, or l 1, norm of v¼ [v1, v2,. . ., vn] is defined

jvjs ¼ jv1j þ jv2j þ 	 	 	 þ jvnj:
3. The max, or l1, norm of v ¼ [v1, v2,. . ., vn] is

jvjm ¼ max jv1j; jv2j; . . . ; jvnjf g:
The matrix norm ||A|| is the (smallest) bound such

that |Ax| � ||A|| |x|, for all x. Thus

jjAjj ¼ max
x6¼0

jAxj

jxj
: (4)

It follows that |Akx| � ||A||k |x|.

The Euclidean, sum, and max norms of the matrix

are defined by using the Euclidean, sum, and max

vector norms, respectively, in (4). When A is

a square, symmetric matrix (aij ¼ aji), the

Euclidean norm ||A||e equals the absolute value of

the largest eigenvalue of A. When A is not

symmetric, ||A||e equals the positive square root of

the largest eigenvalue of A
T
A. The sum and max

norms of A are very simple to find and for this

reason are often preferred over the Euclidean norm:

jjAjjs ¼ maxj jAjjs
� �

and jjAjjm ¼ maxi jA
0
ijs

� �

,

where Aj denotes the jth column of A and A0i
denotes the ith row of A. In words, the sum norm of

A is the largest column sum (summing absolute

values), and the max norm of A is the largest row

sum.

Norms have many uses. For example, in a linear

growth model p0 ¼ Ap, the kth iterate p(k) ¼ Akp is

bounded in norm by | p(k) | � ||A||k |p|. One can show

that if the system of linear equations Ax ¼ b is

perturbed by adding a matrix E of errors to A, and if

x∗ is the solution to the original system Ax ¼ b while

x∗ + e is the solution to (A + E)x¼ b, then the relative

error |e|/| x∗ + e| is bounded by a constant c(A) times the

relative error ||E||/||A||, i.e., |e|/|x∗ + e| � c(A) ||E||/||A||.

The constant c(A) ¼ ||A|| ||A�1|| and is called the

condition number of A.

A famous linear input–output model due to Leontief

has the form x ¼ Ax + b. Here x is a vector of

production of various industrial activities, b is

a vector of consumer demands for these activities,

and A is an inter-industry demand matrix in which

entry aij tells how much of activity i is needed to

produce one unit of activity j. Here, Ax is a vector of

the input for the different activities needed to produce

the output vector x. The model x ¼ Ax + b can be

shown to have a solution if ||A||s< 1, i.e., if the columns

sums are all less than one. This condition has the

natural economic interpretation that all activities

must be profitable, i.e., the value of the inputs to

produce a dollar’s worth of any activity must be less

than one dollar.

Algebraically, x ¼ Ax + b is solved as follows:

x ¼Axþ b ! x� AX ¼ b ! ðI � AÞx
¼ b ! x ¼ ðI � AÞ�1

b:

When ||A|| � 1, the geometric series I + A + A
2 +

A3 + . . ., converges to (I � A)�1, guaranteeing not

only the existence of a solution to x ¼ Ax + b but also

a solution with nonnegative entries, since when A has

nonnegative entries, then all the powers ofAwill have

nonnegative entries implying that (I � A)�1 has

nonnegative entries and hence so does

x ¼ (I � A)�1b.
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See

▶Analytic Hierarchy Process

▶Gaussian Elimination

▶Gauss-Jordan Elimination Method

▶Linear Programming

▶LU Matrix Decomposition

▶Markov Chains

▶ Simplex Method (Algorithm)
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Matrix Game

▶Game Theory

Matrix Geometric

When the solution to a stochastic model is (vector)

proportional to a geometric distribution whose

parameter is a matrix instead of the usual scalar.

See

▶Matrix-Analytic Stochastic Models

Matrix-Analytic Stochastic Models

Marcel F. Neuts

The University of Arizona, Tucson, AZ, USA

Introduction

A rich class of models for queues, dams, inventories,

and other stochastic processes has arisen out of matrix/

vector generalizations of classical approaches. Three

specific examples are presented: matrix-analytic

solutions for M/G/1-type queueing problems,

matrix-geometric solutions to GI/M/1-type queueing

problems, and the Markov arrival process (MAP)

generalization of the renewal point process.

Matrix-Analytic M/G/1-Type Queues

The unifying structure that underlies these models is an

imbedded Markov renewal process whose transition

probability matrix is of the form:

~QðxÞ ¼

B0ðxÞ B1ðxÞ B2ðxÞ B3ðxÞ B4ðxÞ 	 	 	
C0ðxÞ A1ðxÞ A2ðxÞ A3ðxÞ A4ðxÞ 	 	 	
0 A0ðxÞ A1ðxÞ A2ðxÞ A3ðxÞ 	 	 	
0 0 A0ðxÞ A1ðxÞ A2ðxÞ 	 	 	
: : : : : . . .

2

66664

3

77775

where the elements are themselves matrices of

probability mass functions. If the matrix

A ¼
X1

k¼0

Akð1Þ

is irreducible and has the invariant probability vector

p, then the Markov renewal process is positive

recurrent if and only if some natural moment

conditions hold for the coefficient matrices and if

r ¼p
X1

k¼1

kAke < 1 for e ¼ ð1; . . . ; 1ÞT :

The quantity r is the generalized form of the traffic

intensity for the elementary queueing models.

The state space is partitioned in levels i, which are

the sets of m states (i, j), 1� j� m. The crucial object

in studying the behavior of the Markov renewal

process away from the boundary states in the level

0 is the fundamental period, the first passage time

from a state in i + 1 to a state in i. The joint

transform matrix ~G(z; s) of that first passage time,

measured in the number of transitions to lower levels

(completed services in queueing applications) and in

real time, satisfies a nonlinear matrix equation of the

form
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~Gðz; sÞ ¼ z
X1

k¼0
~AðsÞ ~Gðz; sÞ

� �k
:

This equation can be analyzed by methods of

functional analysis, which leads to many explicit

matrix formulas for moments. In terms of the matrix
~G(z; s), the boundary behavior of the Markov renewal

process can be studied in an elementary manner. In

queueing applications, the analysis leads to equations

for the busy period and the busy cycle. Waiting-time

distributions under the first-come, first-served

discipline are obtained as first passage time

distributions. Extensive generalizations of the

Pollaczek-Khinchin integral equation for the

classical M/G/1 queue have been obtained (see

Neuts 1986b).

Applications of Markov renewal theory lead to

a matrix formula for the steady-state probability vector

x0 for the states in level 0 in the imbeddedMarkov chain.

Next, a stable numerical recurrence due to Ramaswami

(1988) permits computation of the steady-state

probability vector xi of the other levels i, i � 1.

There is an interesting duality between the random

walks on the infinite strip of states (i, j),�1< i<1,

1� j� m, that underlie the Markov renewal processes

of M/G/1 type and those of GI/M/1-type (which lead to

matrix-geometric solutions). That duality is

investigated in Asmussen and Ramaswami (1990)

and Ramaswami (1990a).

The class of models with an imbedded Markov

renewal process of M/G/1-type is very rich. It is

useful in the analysis of many queueing models in

continuous or discrete time that arise in

communications engineering and other applications.

In queueing theory, results for a variety of classical

models have been extended to versatile input processes

and to semi-Markovian services. These generalizations

often lead to natural matrix generalizations of familiar

formulas. For a discussion of what happens to the

M/G/1 model when the input is changed to

a Markovian arrival process (MAP — as more

precisely presented in a subsequent section), see

Lucantoni (1993). A treatment of cycle maxima for

the MAP/G/1 queue is found in Asmussen and Perry

(1992). A mathematically rigorous discussion of the

complex analysis aspects of the models of M/G/1-type

is found in Gail, Hantler, and Taylor (1994).

Asymptotic results on the tail probabilities of queue

length and waiting time distributions are discussed

in Abate, Choudhury and Whitt (1994), and

Falkenberg (1994).

Matrix-Geometric Solutions

Under ergodicity conditions, discrete-time Markov

chains with transition probability matrix P of the

form

P ¼

B0 A0 0 0 0 	 	 	
B1 A1 A0 0 0 	 	 	
B2 A2 A1 A0 0 	 	 	
B3 A3 A2 A1 A0 	 	 	
: : : : : 	 	 	

2

66664

3

77775
;

where the Ak are m � m nonnegative matrices

summing to a stochastic matrix A, and the Bk are

nonnegative matrices such that the row sums of P are

one, have an invariant probability vector x of

a matrix-geometric form. That is, the unique

probability vector x which satisfies xP ¼ x, can be

partitioned into row vectors xi, i � 0, which satisfy

xi¼ x0R
i. The matrix R is the unique minimal solution

to the equation

R ¼
X1

k¼0

RkAk;

in the set of nonnegative matrices. All eigenvalues ofR

lie inside the unit disk. The matrix,

B½R� ¼
X1

k¼0

RkBk;

is an irreducible stochastic matrix. The vector x0 is

determined as the unique solution to the equations

x0 ¼ x0B½R�
1 ¼ x0ð1� RÞ�1

e

�

where e is the column m-vector with all components

equal to one. If the matrix A is irreducible and has the

invariant probability vector p, the Markov chain is

positive recurrent if and only if
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p
X1

k¼1
kAke>1:

Analogous forms of the matrix-geometric theorem

hold for Markov chains with a more complicated

behavior at the boundary states and for continuous

Markov chains with a generator Q of the same

structural form. A comprehensive treatment of the

basic properties of such Markov chains and a variety

of applications is given in Neuts (1981).

This result has found many applications in queueing

theory. The subclass where the matrixP or the generator

Q are block-tridiagonal are called quasi-birth and death

(QBD) processes. These arise naturally as models for

many problems in communications engineering and

computer performance. The matrix-geometric form of

the steady-state probability vector of a suitable

imbedded Markov chain leads to explicit matrix

formulas for other descriptors of queues, such as the

steady-state distributions of waiting times, the

distribution of the busy period and others.

In addition to its immediate applications, this

construct has also generated much theoretical

interest. Its generalization to the operator case was

established in Tweedie (1982).

The largest eigenvalue � of the matrix R is

important in various asymptotic results. Graphs of �

as a function of a parameter of the queue are caudal

characteristic curves. Some interesting behavioral

features of the queues can be inferred from them

(Neuts and Takahashi 1981; Neuts 1986a; Asmussen

and Perry 1992). A matrix-exponential form for

waiting-time distributions in queueing models was

obtained in Sengupta (1989). Its relation to the

matrix-geometric theorem was discussed in

Ramaswami (1990b). A matrix-analytic treatment,

covering all cases of reducibility, of the equation for

R, is given in Gail, Hantler and Taylor (1994).

The matrix R, which is crucial to all applications of

the theorem, must be computed by an iterative

numerical solution of the nonlinear matrix equation

R ¼
X1

k¼0
RkAk

A major survey and comparisons of various

computational methods is found in Latouche (1993).

For the block tri-diagonal case (QBD-processes),

a particularly efficient algorithm was developed by

Latouche and Ramaswami (1993).

Markovian Arrival Processes

The analytic tractability of models with Poisson or

Bernoulli input is due to the lack-of-memory

property, an extreme case of Markovian

simplification. At the expense of performing matrix

calculations, more versatile arrival processes can be

used in a variety of models. The Markovian arrival

process (MAP) is a point process model in which

only one of a finite number of phases must be

remembered to preserve many of the simplifying

Markovian properties. It can be incorporated in many

models which remain highly tractable by

matrix-analytic methods. The MAP has found many

applications in queueing and tele-traffic models to

represent bursty arrival streams. Many queueing

models for which traditionally Poisson arrivals were

assumed are also amenable to analysis with

MAP input.

It was first introduced in Neuts (1979), but

a more appropriate notation was proposed by

David Lucantoni in conjunction with the queueing

model discussed in Lucantoni, Meier-Hellstern, and

Neuts (1990). Although discrete-time versions of

the MAP, as well as processes with group arrivals

have been defined, their discussion requires only

more elaborate notation than the single-arrival

MAP in continuous time described here.

Expositions of the basic properties and many

examples of the MAP are found in Neuts (1989,

1992) and Lucantoni (1991).

Consider an irreducible infinitesimal generator D

of dimension m with stationary probability vector y.

Write D as the sum of matrices D0 and D1, where

D1 is nonnegative and D0 has nonnegative off-

diagonal elements. The diagonal elements of D0

are strictly negative and D0 is nonsingular.

Consider an m-state Markov renewal process {(Jn,

Xn), n � 0} in which each transition epoch has an

associated arrival. Its transition probability matrix

F(·) is given by

FðxÞ ¼
ðx

0

expðD0uÞduD1; for x � 0:
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The most familiar MAPs are the PH-renewal

process and the Markov-modulated Poisson Process

(MMPP). These, respectively, have the pairs of

parameter matrices D0 ¼ T, D1 ¼ Toa, where (a, T)

is the (irreducible) representation of a phase-type

distribution and the column vector To ¼ �Te, and

D0 ¼ D � L, D1 ¼ L, where L is a diagonal matrix

and e is the column m-vector with all components

equal to one.

The matrix-analytic tractability of the MAP is

a consequence of the matrix-exponential form of the

transition probability matrix F(·). It, in turn, follows

from the Markov property of the underlying chain with

generator D, in which certain transitions are labeled as

arrivals. A detailed description of that construction is

found in Lucantoni (1991).

The initial conditions of the MAP are specified by

the initial probability vector g of the underlying

Markov chain with generator D. Taking g ¼ u, the

stationary probability vector of D, leads to

the stationary version of the MAP. The rate g∗ of the

stationary process is given by g∗¼ uD1 e.By choosing

g ¼ (g∗)�1uD1 ¼ yarr, the time origin is an arbitrary

arrival epoch.

Computationally tractable matrix expressions are

available for various moments of the MAP. These

require little more than the computation of the matrix

exp(Dt). A comprehensive discussion of these

formulas is found in Neuts and Narayana (1992). For

example, the Palm measure, H(t) ¼ E[N(t) | arrival at

t ¼ 0], the expected number of arrivals in an interval

(0, t] starting from an arbitrary arrival epoch, is

given by

HðtÞ ¼ l � tþ yarr I � expðDtÞ½ �ðeu� DÞ�1
D1e:

Other MAPs are constructed by considering

selected transitions in Markov chains, by certain

random time transformations or random thinning of a

given MAP, and by superposition of independent

MAPs. Statements and examples of these

constructions are found in Neuts (1989, 1992).

Specifically, the superposition of two (or more)

independent MAPs is again an MAP. If two

continuous-time MAPs have the parameter matrices

{Dk(i)} for i ¼ 1, 2, the parameter matrices for their

superposition are given by Dk ¼ Dk(1)
N

I +

I
N

Dk(2) ¼ Dk(1)
N

Dk(2), for k � 1, 2, where
N

is the Kronecker pairwise matrix product.

See

▶Markov Chains

▶Markov Processes

▶Matrices and Matrix Algebra

▶ Phase-Type Probability Distributions

▶Queueing Theory
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MAUT

▶Multi-Attribute Utility Theory

Max-Flow Min-Cut Theorem

For a maximum-flow network problem, it can be

shown that the maximum flow through the network is

equal to the minimum capacity of all the cuts that

separate the source (origin) and the sink (destination)

nodes, where the capacity of a cut is the sum of the

capacities of the arcs in the cut.

See

▶Maximum-Flow Network Problem
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Maximum

A function f(x) is said to have a maximum on a set S

when the least upper bound of f(x) on S is assumed by

f(x) for some x0 in S. Thus, f(x0) � f(x) for all x in S.

See

▶Global Maximum (Minimum)

Maximum Feasible Solution

▶Minimum (Maximum) Feasible Solution

Maximum Matching Problem

Involves finding in a graph a maximal set of links

which meet each node at most once.

See

▶Matching

Maximum-Flow Network Problem

For a directed, capacitated network with source and

sink nodes, the problem is to find the maximum

amount of goods (flow) that can be sent from the

source to the sink.

See

▶Network Optimization
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MCDM

▶Multiple Criteria Decision Making

Measure of Effectiveness (MOE)

In a decision problem, the single objective that is to be

optimized is called the measure of effectiveness

(MOE). In a linear-programming problem, the MOE

is the objective function. In a queueing-theory

problem, frequently used MOEs include the

expected steady-state queue length and the mean

delay in queue.

See

▶Mathematical Model

Measure-Valued Differentiation

▶Weak Derivatives

Memetic Algorithms

Hybrid metaheuristic evolutionary algorithms (EAs)

that combine population-based approaches such as

genetic algorithms with local search improvement

procedures or individual learning. Also known as

Baldwinian EAs, Lamarckian EAs, cultural

algorithms or genetic local search. Derived from the

word “meme” that was coined by the British scientist

Richard Dawkins in his book, The Selfish Gene (1976),

to represent an evolutionary unit for cultural

transmission analagous to a gene in biological

evolution.

See

▶Evolutionary Algorithms

▶Genetic Algorithms

▶Metaheuristics
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Memoryless Property

For stochastic processes, lack-of-memory is

synonymous with the Markov property. For a positive

random variable T that models the duration of some

phenomenon, lack-of-memory means that the time

remaining is independent of the time already passed,

i.e., Pr{T > t + s | T > s} ¼ Pr{T > t} for s, t > 0. The

exponential distribution is the only continuous

distribution with lack-of-memory, while the

geometric distribution is the only discrete distribution

with lack-of-memory.

See

▶Exponential Arrivals

▶Markov Processes

▶Markov Property

▶ Poisson Arrivals

▶ Poisson Process

▶Queueing Theory

Menu Planning

A diet problem in which the variables represent

complete menu items such as appetizers and entrees,

instead of individual foods. The problem is

formulated as an integer-programming problem in

which the integer binary variables represent the

decision of selecting or not selecting a complete

menu item.
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Metagame Analysis

A problem structuring method that addresses situations

of conflict and cooperation between independent

actors. Based on game-theoretic concepts, it identifies

explicit and implicit threats and promises between the

actors to analyze the stability of alternative scenarios.

Metaheuristics

Kenneth Sörensen1 and Fred W. Glover2,3

1University of Antwerp, Antwerp, Belgium
2OptTek Systems, Inc., Boulder, CO, USA
3University of Colorado Boulder, Boulder, CO, USA

Introduction

A metaheuristic is a high-level problem-independent

algorithmic framework that provides a set of

guidelines or strategies to develop heuristic

optimization algorithms. The term is also used to

refer to a problem-specific implementation of

a heuristic optimization algorithm according to the

guidelines expressed in such a framework. It

combines the Greek prefix meta- (metά, beyond in

the sense of high-level) with heuristic (from the

Greek heuriskein or EuriswEin; to search) and was

coined by Fred Glover in 1986.

Most metaheuristic frameworks have their origin in

the 1980s (although in some cases roots can be traced

to the mid 1960s and 1970s) and were proposed as an

alternative to classic methods of optimization such as

branch-and-bound and dynamic programming. As

a means for solving difficult optimization problems,

metaheuristics have enjoyed a steady rise in both use

and popularity since the early 1980s. EU/ME – the

metaheuristics community – is the EURO-sponsored

working group on metaheuristics and the largest

platform for communication among metaheuristics

researchers worldwide. Conferences and journals

devoted to metaheuristics, along with some software,

are described at the end of this article.

Different metaheuristics can vary significantly

in their underlying foundations. Some metaheuristics

mimick a process seemingly unrelated to optimization,

such as natural evolution, the cooling of a crystalline

solid, or the behavior of animal swarms. Attending

such variation is also a striking similarity among

some methods that rely on a common foundation.

For example, many methods have been proposed

(and given different names) that differ in

not much more than the metaphor underlying them,

which is often a close variant of an original

method’s metaphor. In this manner, the metaheuristic

framework of ant colony optimization, for instance,

has spawned a steady stream of different social

insect-based methods (using bees, flies, termites, etc.).

Most metaheuristic frameworks advise the

use of randomness, although some propose completely

deterministic strategies. In optimization, metaheuristics

are most often used to solve combinatorial optimization

problems, although metaheuristics for other problems

exist (see below).

One of the defining characteristics of

a metaheuristic framework is that the resulting

methods are — as the name suggests — always

heuristic in nature. Exact methods for combinatorial

optimization, such as branch-and-bound or dynamic

programming, are subject to combinatorial explosion,

i.e., for NP-hard problems the computing time required

by such methods increases as an exponential function

of the problem size. By relaxing the demand that the

optimal solution should be found in a finite (but often

prohibitively large) amount of time, optimization

methods can be built that attempt to find a solution

that is good enough in a computing time that is small

enough. However, there are important aspects of

metaheuristics that link them more closely with exact

methods and that give rise to a number of hybrids that

unite these two types of methods. These aspects will be

discussed later.

The required quality of a solution and the maximum

allowable computing time can, of course, vary greatly

across optimization problems and situations.

Metaheuristic frameworks, being defined in very

general terms, can be adapted to fit the needs of most

real-life optimization problems, from the smallest and

simplest to the largest andmost complex. Additionally,

metaheuristics do not put any demands on the

formulation of the optimization problem (like

requiring constraints or objective functions to be

expressed as linear functions of the decision

variables), in contrast, for example, to methods for

mixed-integer programming. As a result, several

M 960 Metagame Analysis



commercial software vendors have implemented

metaheuristics as their primary optimization engines,

both in specialized software packages for production

scheduling, vehicle routing (Sörensen et al. 2008) and

nurse rostering (Burke et al. 2004), as well as in

general-purpose simulation packages (April et al.

2003; Fu 2002; Glover et al. 1999).

However, the research field of metaheuristics is not

without its critics, most of whom attack the perceived

lack of a universally applicable design methodology

for metaheuristics and the lack of scientific rigor in

testing and comparing different implementations. The

no free lunch theorems (Wolpert and Macready 1997)

state that, when averaged over all problems, all

optimization methods perform equally well. This

suggests that no single metaheuristic can be

considered as a panacea for combinatorial

optimization problems, but rather that a lot of

problem-specific tuning is necessary to achieve

acceptable performance. Moreover, metaheuristics

often have a large number of parameters and tuning

them is a notoriously difficult process. Consequently,

computational testing to compare different

metaheuristics is very difficult and often done in an

ad-hoc way, rather than by established scientific

standards (Barr et al. 1995; Hooker 1995; Rardin and

Uzsoy 2001) This has motivated work on self-adaptive

metaheuristics that automatically tune their parameters

(Cotta et al. 2008; Kramer 2008; Nonobe and Ibaraki

2001, 2002) From an alternative perspective, if

a research study identifies parameter values that work

well for a selected class of applications — as most

studies attempt to do — then for practical purposes

other researchers can consider these parameters as

being constants (Of course, this doesn’t prevent

future experimentation from seeking better parameter

values.)

Another criticism sometimes levied at

metaheuristics concerns the occasional tendency to

create overly intricate methods (Michalewicz and

Fogel 2004) with many different operators, where the

contribution of these operators to the final quality of

the solutions found may be poorly understood (Watson

et al. 2006). Despite some theoretical results, such as

proofs for the convergence of some metaheuristics

under special assumptions – usually infinite running

time (Eiben et al. 1991; Mitra et al. 1985) – or attempts

to explain why genetic algorithms work (such as the

heavily criticized Wright et al. (2003) building block

hypothesis (Holland 1975)), research papers that

attempt to capture the fundamental reasons why

metaheuristics work are still few and far between.

Despite these criticisms, the ability to obtain good

solutions where other methods fail has made

metaheuristics the method of choice for solving

a majority of large real-life optimization problems,

both in academic research and in practical

applications.

Metaheuristic Concepts

Like all optimization methods, metaheuristics attempt

to find the best (feasible) solution out of all possible

solutions of an optimization problem. In order to do

this, they examine various solutions and perform

a series of operations on them in order to find

different, better solutions.

Metaheuristics operate on a representation or

encoding of a solution, an object that can be stored in

computer memory and can be conveniently

manipulated by the different operators employed by

the metaheuristic. Since metaheuristics are most often

used to solve combinatorial optimization problems,

representations too are generally combinatorial in

nature (i.e., they are able to represent only

a finite number of solutions). Representations used in

the metaheuristics literature are quite diverse (see, e.g.,

Talbi (2009) for an overview) and range from vector-

representations (binary, integer) over permutations to

more complex representations such as trees and other

graphs. Many metaheuristic algorithms use

a combination of different representation types, such

as a vector of permutations. Contrary to exact

algorithms, metaheuristics do not require the

encoding of solutions to be a bijection, i.e., several

solutions may share the same encoding and a single

solution may be encoded in different ways. Often, an

encoding is chosen on the grounds of being convenient

to manipulate, although sometimes a time-consuming

decoding procedure may be required to obtain the

actual solution (such as the encoding used in Prins

(2004)).

Although many different metaheuristics have been

proposed, their mechanisms for obtaining good

solutions primarily operate by manipulating solutions

in three ways: by iteratively making small changes to

a current solution (local search metaheuristics), by
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constructing solutions from their constituting parts

(constructive metaheuristics), and by iteratively

combining solutions into new ones (population-based

metaheuristics). Each of these manipulation

mechanisms gives rise to a class of metaheuristic

frameworks that are discussed separately below. It is

important to note that these classes are not mutually

exclusive, and many metaheuristic algorithms

combine ideas from each of them. Also, in some

instances the transitions from one solution to another

are achieved by solving specially generated

subproblems.

Local Search Metaheuristics

Local search metaheuristics find good solutions by

iteratively making small changes, called moves, to

a single solution, called the current solution. The set

of solutions that can be obtained by applying a single

move to a given solution is called the neighborhood of

that solution. In each iteration, a solution from the

neighborhood of the current solution is selected to

become the new current solution. The sequence of

moves defines a trajectory through the search space.

Hence, local search metaheuristics are also known

under the names of neighborhood search methods or

trajectory methods.

For almost all problem representations, different

move types can be defined, resulting in different

neighborhood structures. The rule used to select the

new current solution is called the move strategy or

search strategy and determines the aggressiveness of

the search. Metaheuristics that use the steepest descent

or steepest ascent strategy select the best move from

the neighborhood and are often called hill-climbers.

Other move strategies include selecting the first move

that improves upon the current solution (called the

mildest ascent/descent or first-improving strategy), as

well as selecting a random improving solution.

In general, the set of allowable moves is restricted

to those that result in solutions that are both feasible

and improve upon the current solution. Some

metaheuristics allow infeasible moves in a strategy

that is called strategic oscillation. In this strategy, the

search is usually only allowed to temporarily remain in

the infeasible region of the search space. A striking

example of the utility of this strategy is shown in

Glover and Hao (2010).

A solution whose neighborhood does not contain

any better solutions is called a local optimum

(as opposed to a global optimum, i.e., a best possible

solution to the optimization problem). When the

current solution is a local optimum, the metaheuristic

utilizes a strategy to escape to other regions of the

search space. It is this strategy that distinguishes

metaheuristics from simple heuristics and from each

other. The metaheuristic’s name therefore usually

refers to the strategy to prevent the search from

becoming ensnared within regions whose local

optima may be substantially inferior to a global

optimum.

The simplest strategy to escape to potentially more

fertile regions is to either start the search again from

a new, usually random, solution or to make a relatively

large change (called a perturbation) to the current

solution. These strategies are respectively called

multi-start local search (MLS) and iterated local

search (ILS) (Lourenco et al. 2003).

A number of metaheuristics define different move

types and change the move type used once a local

optimum has been reached. The rationale for this

strategy is that a local optimum relative to a specific

move type can often be improved by performing local

search with a different move type. The global optimum

on the other hand is a local optimum with respect to

every possible move type. Metaheuristics that use this

strategy are commonly called variable neighborhood

search (VNS) (Mladenović and Hansen 1997)

algorithms, but using more than one neighborhood is

far more common in the metaheuristics literature and

not restricted to algorithms labeled VNS (Sörensen

et al. 2008).

Using memory structures is a third commonly

encountered way for metaheuristics to avoid

remaining trapped in a local optimum and to guide

the search in general so as to find good

solutions more quickly. Algorithms that use memory

structures are commonly grouped under the umbrella

term tabu search (Glover 1989, 1990, 1996)

algorithms (sometimes also called adaptive memory

programming algorithms). Different memory

structures may be used to explicitly remember

different aspects about the trajectory through the

search space that the algorithm has previously

undertaken and different strategies may be devised to

use this information to direct the search (Glover and

Laguna 1993) to promising areas of the search space.

Often-used memory structures include the tabu list

(from which the name of the metaheuristic
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framework derives) that records the last encountered

solutions (or some attributes of them) and forbids these

solutions (or attributes) from being visited again as

long as they are on the list. Some variants record

move attributes rather than solution attributes on the

tabu list, for the purpose of preventing moves from

being reversed. The tabu list is usually organized in

a first-in, first-out (FIFO) fashion, i.e., the current

solution replaces the oldest one on the list. The length

of the tabu list is called the tabu tenure. Frequency

memory records how often certain attributes have been

encountered in solutions on the search trajectory,

which allows the search to avoid visiting solutions

that display the most often encountered attributes or

to visit solutions with attributes seldom encountered.

Such memory can also include an evaluative

component that allows moves to be influenced by the

quality of solutions previously encountered that

contain various attributes or attribute combinations.

Other memory structures such as an elite set of the

best solutions encountered so far are also common.

Another example of the use of memory can be found

in a metaheuristic called guided local search (GLS)

(Voudouris and Tsang 1999). GLS introduces an

augmented objective function that includes a penalty

factor for each potential element. When trapped in

a local optimum, GLS increases the penalty factor for

all elements of the current solution, making other

elements (and therefore other moves) more attractive

and allowing the search to escape from the local

optimum. Similarly, some variants of tabu search use

penalties to determine the tabu status of moves, though

drawing more strongly on memory.

Contrary to most other local search metaheuristics,

simulated annealing uses a random move strategy,

emulating the annealing process of a crystalline solid.

At each iteration, this strategy selects a random

solution x0 from the neighborhood of the current

solution x and accepts x0 as the new current solution

with probability e�½f ðx0Þ�f ðxÞ�=T , where f ð	Þ is the

objective function value (to be maximized) of

the solution and T is an endogenous parameter called

the temperature. The acceptance probability increases

as the increase in solution quality is higher (or the

decrease is lower). The temperature is initially set to

a high value, which leads to higher acceptance

probabilities, and then gradually lowered as the

search progresses (although it may be increases again

at certain moments during the search). The function

that describes the evolution of T throughout the

different iterations is called the cooling schedule.

Simulated annealing was first described in

Kirkpatrick et al. (1983), based upon an algorithm by

Metropolis et al. (1953).

Relaxation induced local search (RINS) (Danna

et al. 2005) is a metaheuristic that constructs

a promising neighborhood using information

contained in the continuous relaxation of the mixed

integer programming (MIP) model of the optimization

problem. Because it does not need problem-specific

information to construct its neighborhood, RINS can

be more easily built into general-purpose MIP solvers

[11] and is currently available in the latest versions of

LINDO/LINGO and CPLEX. Contrary to other

metaheuristics, RINS requires the problem to be

formulated as a MIP which makes it less general than

other metaheuristics.

Constructive Metaheuristics

Constructive metaheuristics constitute a separate class

from local search metaheuristics in that they do not

operate on complete solutions, but rather construct

solutions from their constituent elements, starting

from an empty set and adding one element during

each iteration, an operation that is also called

a move. After each iteration except the last, the

algorithm therefore operates on a partial solution

(e.g., a traveling salesperson tour that does not visit

all cities), of which it may not be possible to determine

the objective function value or the feasibility status.

Constructive metaheuristics are often adaptations of

greedy algorithms, i.e., algorithms that add the best

possible element at each iteration, a myopic strategy

that may result in suboptimal solutions.

GRASP, the acronym for greedy randomized

adaptive search procedure (Feo and Resende 1995),

uses randomization to overcome this drawback of

purely greedy algorithms by adding some

randomness to the selection process. Several variants

of GRASP have been proposed, founded on the

following basic idea. At each iteration, a restricted

candidate list, which contains the a best elements that

can be added, is updated. From the restricted candidate

list, a random element is selected for addition to the

partial solution, after which the list is updated to reflect

the new situation. The parameter a determines the

greediness of the search: if a equals 1, the search

is completely greedy, whereas if a is equal to the
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number of elements that can be added, the search is

completely random. A particularly useful advance in

GRASP algorithms has occurred by blending them

with the path relinking strategy of tabu search.

Notable examples of this approach include

Commander et al. (2008); Nascimento et al. (2010);

Resende et al. (2010).

Rather that using randomness to outperform

a greedy heuristic, more strategic ways of performing

constructive (or destructive) moves, once again

making use of memory, are examined in Fleurent and

Glover (1999); Glover et al. (2000). Another approach

is embodied in a look-ahead strategy (Pearl 1984),

which evaluates the elements that can be added by

considering not only the next move, but several

moves into the future. The pilot method (Duin and

Voß 1999), for example, uses a (usually greedy)

constructive heuristic to determine a pilot solution for

each potential move, i.e., the value of a potential

element is evaluated by determining the objective

function value of the solution that results from

applying the heuristic to generate a complete solution

from the current partial solution with this element

added. The idea of looking ahead has a long history,

having been proposed in probing strategies for integer

programming in (Lemke and Spielberg 1967).

Ant colony optimization (ACO) (Dorigo et al. 1996,

2006) is an umbrella term for a set of related

constructive metaheuristics that build solutions by

imitating the foraging behavior of ants. Perhaps

because of the appeal of its imagery, this class of

approaches has received and continues to

receive widespread attention in the popular press

(e.g., Anonymous 2010). Ant colony optimization

introduces an external parameter for each potential

element called the pheromone level (a pheromone is

a chemical factor that triggers a social response in the

same species), initially set to zero for all elements. The

metaheuristic uses multiple parallel artificial agents

(called ants) that each construct a solution by an

iterative constructive process in which elements are

selected based on a combination of the value of that

element and its pheromone level. Once all ants have

constructed a solution, the pheromone level of all

elements is updated in a way that reflects the quality

of the solution found by that ant (the elements of better

solutions receive more pheromone). Each ant then

constructs a new solution, but elements that were

present in high-quality solutions will now receive

a higher probability of being selected by the ants.

Periodically, the pheromone level of all elements is

reduced to reflect evaporation. The process of

constructing solutions in the way described above

is repeated, and the best solution found is reported at

the end.

To improve the quality of the final solutions, most

constructive metaheuristics include a local search

phase after the construction phase.

Population-Based Metaheuristics

The main mechanism that allows population-based

metaheuristics to find good solutions is the

combination of existing solutions from a set, usually

called the population. The fundamental reasoning

behind this class of metaheuristics is that good

solutions can be found by exchanging solution

attributes between two or more (usually high-quality)

solutions. The most important members of this class

are called evolutionary algorithms because they mimic

the principles of natural evolution. Following

Michalewicz and Fogel (2004), here the term

evolutionary algorithms is used as an umbrella term

to encompass the wide range names given to

metaheuristics based on evolution. This includes

genetic algorithms (Goldberg et al. 1989; Holland

1975), genetic/evolutionary programming (Koza

1992), evolutionary computation (Fogel 2006),

evolution strategies (Beyer and Schwefel 2002), and

many others. The literature on evolutionary algorithms

is larger than that on other metaheuristics, and this field

has spawned several dedicated journals and

conferences.

Typical of the field of evolutionary algorithms is

that its researchers tend to adopt the vocabulary of the

metaphor on which the algorithms are based. The

descriptions of these algorithms therefore are stated

in terms of chromosomes (instead of solutions),

fitness (instead of objective function value), genotype

(instead of encoding), etc. The driving force behind

most evolutionary algorithms is selection and

recombination. Selection ensures that predominantly

high-quality solutions in the population are selected for

recombination, usually by biasing the probability of

each solution in the population to be selected towards

its objective function value. Recombination utilizes

specialized operators to combine the attributes of two

or more solutions into new ones. The new solutions

are then added to the population by a process called
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reinsertion, possibly subject to feasibility or minimum

quality demands, to replace (usually low-quality)

solutions. In a large majority of cases, all operators

(selection, recombination and reinsertion) make heavy

use of randomness. A large number of evolutionary

algorithms additionally include a mutation operator

that (again, randomly) changes a solution after it has

been recombined.Most evolutionary algorithms iterate

the selection, recombination, mutation, and reinsertion

phases a number of times, and report the best solution

in the population.

Scatter search and path relinking (Glover et al.

2000, 2003) are both population-based metaheuristics

for continuous (or mixed-integer) and combinatorial

optimization respectively, proposed as a deterministic

alternative for the highly stochastic evolutionary

algorithms. Scatter search encodes solutions as

real-valued vectors (or rounded real-valued vectors

for integer values) and generates new solutions by

considering convex or concave linear combinations

of these vectors. Path relinking, on the other hand,

generalizes this idea, making it applicable to

combinatorial optimization problems, by generating

paths between high-quality solutions. Paths consist of

elementary moves such as the ones used in local search

metaheuristics and essentially link one solution (called

the initiating solution) to a second solution (called the

guiding solution) in the solution space. Contrary to

local search metaheuristics, path relinking uses

a move strategy that chooses the move to execute

based on the fact that this move will bring the

solution closer to the guiding solution. In both scatter

search and path relinking, the selection of both

initiating and guiding solution from a population

(called the reference set) is done in a deterministic

way, as are the mechanisms for updating the

reference set once new solutions have been generated.

Hybrid Metaheuristics

Metaheuristics that combine aspects or operators from

different metaheuristics paradigms are called hybrid

metaheurstics. The term has lost much of its

discriminatory power, however, since such

combinations of operators from different

metaheuristic frameworks have become the norm

rather than the exception. Indeed, there is a tendency

in the metaheuristics research field to look at

metaheuristics frameworks as providing general ideas

or components to build optimization algorithms, rather

than to consider them as recipes that should be closely

followed (Michalewicz and Fogel 2004). In this spirit,

many metaheuristics use specialized heuristics to

efficiently solve subproblems produced by the

metaheuristic method (e.g., Gendreau et al. 1994).

Also, a large number of local search metaheuristics

use a construction phase to find an initial solution

(or a set of initial solutions) from which to start the

neighborhood search. In fact the original description of

the GRASP metaheuristic (Feo and Resende 1995)

prescribes a local search phase to follow the greedy

randomized construction phase.

Memetic algorithms (Moscato 1989) are the only

class of hybrid metaheuristics that has been given

a specific name. Metaheuristics belonging to this

class combine recombination operators from the class

of evolutionary algorithms with local search (meta)

heuristics. Although the name is commonly used,

many evolutionary algorithms either replace or

complement their mutation operator with a local

search phase and can also be considered memetic.

Metaheuristics and Exact Methods

A more recent development has been a special focus

on combining ideas from different metaheuristics,

usually local search, with exact methods such as

branch-and-bound or branch-and-cut. Sometimes

called matheuristics, the resulting method usually

integrates existing exact procedures to solve

subproblems and guide the higher-level heuristic

(Dumitrescu and St€utzle 2009; Raidl and Puchinger

2008). In a similar way, ideas and operators from

constraint programming techniques are integrated with

metaheuristics (Van Hentenryck andMichel 2009). The

links between metaheuristics and exact methods

provide examples of additional forms of combinations:

1. There exist exact methods for solving various

special classes of optimization problems, such as

linear programming and certain graph (or matroid)

problems, that can be incorporated to solve

subproblems produced by a metaheuristic method.

Such subproblems can be generated by

a decomposition strategy, a restriction strategy or

a relaxation strategy (see Glover and Klingman

(1988); Rego (2005)).

2. Exact methods for more complex problems can

sometimes solve small instances of these problems

effectively. A metaheuristic may operate by

constructing collections of such small instances as
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a strategy for generating structured moves

that transition from a given solution to a new one

(see, e.g., Glover (2005)).

3. An exact method can be run for a very long time to

obtain optimal solutions (to at least some instances

of a problem class), and these optimal solutions can

be used in the learning approach called target

analysis (Glover 1990; Glover and Laguna 1997)

as a way to produce improved decision rules for

both metaheuristics and exact methods.

4. Metaheuristics can be integrated with exact

methods to improve the performance of the exact

methods (Friden et al. 1989; Glover 1990;

Puchinger et al. 2009).

5. By not demanding that the optimal solution be

found, metaheuristics can, for example, employ

a truncated optimization method in place of (or in

conjunction with) generating subproblems that are

structured to be easier to solve.

Metaheuristics for Different Optimization
Problems

Continuous Optimization

Although metaheuristics are predominantly used

for combinatorial optimization, many of them have

been adapted for continuous optimization. Some

metaheuristics are very naturally defined over

continuous search spaces. Notable examples include

scatter search (Glover et al. 2000), particle swarm

optimization (Kennedy et al. 1995) and an

evolutionary approach called differential evolution

(Storn and Price 1997). Other, especially constructive

and local search approaches, require a considerable

adaptation from their original formulation.

Nonetheless, algorithms for continuous optimization

based on tabu search (Chelouah and Siarry 2000;

Glover 1994), GRASP (Hirsch et al. 2007), variable

neighborhood search (Liberti and Drazič 2005), and

others, have been proposed.

Multi-objective Optimization

Many real-life problems have multiple objectives, for

which the notion of optimality is generally replaced

with the notion of dominance. A solution is said

to dominate another solution if its quality is at least

as good on every objective and better on atleast one. In

multi-objective optimization, the set of non-dominated

solutions is called the Pareto set and the projection

of this set onto the objective function space is

called the Pareto front or Pareto frontier. The aim

of multi-objective metaheuristics, i.e., metaheuristics

specifically designed to solve multi-objective

optimization problems, is to approximate the Pareto

front as closely as possible (Zitzler et al. 2004).

The outcome of any multi-objective algorithm is

therefore generally a set of mutually non-dominated

solutions, the Pareto set approximation. To measure

the quality of such an approximation, many different

measures exist (Jaszkiewicz 2004). Although

adaptations to the multi-objective paradigm of both

tabu search and simulated annealing exist (Czyżak

et al. 1998; Hansen 1997), most multi-objective

metaheuristics are of the evolutionary type (Jones

et al. 2002), a fact generally attributed to the

observation that these algorithms naturally operate on

a set of solutions. Evolutionary multi-objective

metaheuristics include the vector evaluated genetic

algorithm (VEGA) (Schaffer 1985), the non-

dominated sorting algorithm (NDSA) (Srinivas and

Deb 1994), the multi-objective genetic algorithm

(MOGA) (Fonseca and Fleming 1993) and the

improved strength pareto evolutionary algorithm

(SPEA2) (Zitzler and Thiele 1999).

Stochastic Optimization

Stochastic combinatorial optimization problems

include uncertain, stochastic or dynamic information

in their parameters. Metaheuristics for such problems

therefore need to take into account that the objective

function value is a random variable and that the

constraints are violated with some probability.

Evaluating a solution’s objective function

value and/or its feasibility can be done either exactly

(if a closed-form expression is available), by

approximation or by Monte Carlo simulation.

Metaheuristicsusing each of these possibilities have

been proposed to solve different stochastic problems

(Bianchi et al. 2009; Ribeiro and Resende 2010).

Research in Metaheuristics

Conferences

The premier conference on metaheuristics is MIC,

the Metaheuristics International Conference.

M 966 Metaheuristics



Other conferences on metaheuristics include the yearly

EU/ME meeting on a specific metaheuristics-related

topic, organized by EU/ME in collaboration with

a local research group, and the Hybrid Metaheuristics

conference series that focuses on combinations of

different metaheuristics and the integration of AI/OR

techniques. The Learning and Intelligent Optimization

conferences aim at exploring the boundaries between

machine learning, artificial intelligent, mathematical

programming and algorithms for optimization.

A large number of conferences focus exclusively

on evolutionary algorithms, including Parallel

Problem Solving From Nature (PPSN), the Genetic and

Evolutionary Computation Conference (GECCO),

EvoStar (a multi-conference comprising EuroGP,

EvoCOP, EvoBIO,and EvoApplications), Evolutionary

Multi-Criterion Optimization (EMO), and the IEEE

Congress on Evolutionary Computation (CEC).

The Ants conference series is dedicated to research

in swarm intelligence methods.

Journals

The field of metaheuristics has several dedicated

journals: the well-established Journal of Heuristics

and the newer International Journal of

Metaheuristics and International Journal of Applied

Metaheuristic Computing (IJAMC). However, a large

majority of articles on metaheuristics are published in

general OR/MS journals.

Several journals are devoted exclusively to

evolutionary algorithms: Evolutionary Computation,

IEEE Transactions on Evolutionary Computation,

Genetic Programming and Evolvable Machines, and

the Journal of Artificial Evolution and Applications.

The journal Swarm Intelligence is currently the main

journal for advances in the swarm intelligence area.

Metaheuristics Software

Several vendors of commercial optimization

software have included (albeit to a limited extent)

metaheuristics in their packages. Frontline Systems’

Risk Solver Platform and its derivatives,

an extension of the Microsoft Excel Solver,

include a hybrid evolutionary solver. Tomlab/GENO

is a package for static or dynamic, single- or

multi-objective optimization based on a real-coded

genetic algorithm. Both LINDO/LINGO and CPLEX

include the relaxation induced neighborhood search

(RINS) metaheuristic.

Open source metaheuristics software frameworks

have recently appeared in the COIN-OR library.

These include METSlib, an object oriented

metaheuristics optimization framework, and Open

Tabu Search (OTS), a framework for constructing

tabu search algorithms.

Besides these solvers for combinatorial

optimization, most commercial (stochastic)

simulation packages today include an optimization

tool (Fu 2002). Autostat, included in AutoMod, and

Simrunner, included in ProModel, both use

evolutionary algorithms. A variety of companies in

the simulation industry, as well as general

management service and consulting firms like

Rockwell Software, Dassault Systemes, Flextronics,

Halliburton, HP, Planview and CACI, employ

OptQuest, which uses tabu search and scatter search.

See

▶Artificial Intelligence

▶COIN-OR Computational Infrastructure for

Operations Research

▶Heuristics

▶ Integer and Combinatorial Optimization

▶Multi-attribute Utility Theory

▶Neural Networks

▶ Simulated Annealing

▶ Simulation Optimization

▶Tabu Search
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Metamodeling

For simulation models, the objective is to provide

an explicit input-output relationship through a fitted

mathematical function, e.g., using statistical

regression, splines, neural networks, or kriging.

Differs from the use of the term in computer

science.

See

▶Response Surface Methodology

▶ Simulation Metamodeling

Method of Stages

An analysismethod that extends the birth-and-death-type

analysis to queueing systems with Erlangian service or

interarrival times. Since an Erlang random variable can

be represented as the sum of independent and identically

distributed exponential random variables, the method of

stages increases the state space to coincide with the

underlying exponential random variables and the

resulting system of equations is generally solved using

generating functions.

See

▶Queueing Theory

Military Operations Other Than War

Dean S. Hartley III

Oak Ridge National Laboratory, Oak Ridge, TN, USA

Introduction

Operations Other Than War (OOTW) suffer from an

identity crisis. Sometimes called Military

Operations Other Than War (MOOTW), sometimes

known as Low Intensity Conflict (LIC), sometimes

called Stability Support Operations (SSO), and

sometimes designated as Small Scale

Contingencies (SSC), these operations have caused

both theoretical and practical problems for the

military.

• These operations range in size from airlifting

several fire trucks from Tennessee to Florida to

fighting the 1998 Summer fires to the Bosnia

Peacekeeping operation involving tens of

thousands of U.S. military personnel and tens of

thousands of other nations’ military personnel,

hardly a small-scale contingency.

• They include operations to provide stability to

foreign countries, such as Haiti; however, they

also include support to insurgencies, a “stability

support operation” only in the negative.

• They include Non-combatant Evacuation

Operations (NEOs) in which armed force may be

needed to support the evacuation; they include

operations such as Somalia that result in a number

of U.S. military deaths in combat, low intensity

conflict providing cold comfort to families of the

dead; and they include operations such as

fire-fighting that can be defined as conflict only by

stretching the definition.

These operations cannot even be distinguished

from other operations by time frame or geographic

impact:

• Their time span ranges from the one-day cruise

missile strike against Iraq to the 17-year

peacekeeping operation in the Sinai (or the

45-year peacekeeping operation in Korea).

• Their geographic impact ranges from the purely

local issues of disaster relief in Hawaii for

Typhoon Iniki to the global geopolitical concerns

stirred by peacekeeping in Bosnia.
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Clumsy as the OOTW designation may be, it is

accurate: operations (as opposed to training

activities) that are not war are included and

operations that are part of a war are not included.

Strictly speaking, the people who are using the

designation are Department of Defense people and

the operations so designated are military operations,

leading to a preference for the term MOOTW;

however, henceforth the shorter term OOTW will be

used, because most of these operations are not led by

the military, but by the State Department or some

other agency. Figure 1 organizes OOTWs into

categories.

The discussion of OOTWs suffering from an

identity crisis is more than just a pleasant exercise in

rhetoric. The underlying diversity of activities

subsumed in the category creates a problem in

defining standing operating procedures (SOPs) for

dealing with them. The subordinate role of the

military creates problems in planning for and

executing them. The variability of participation of

other federal agencies, other governments, the United

Nations, non-governmental organizations (NGOs),

and private volunteer organizations (PVOs)

exacerbates the problem. Their ad hoc nature means

that they are not included in the military’s budget; the

accounting systems are not designed to capture

the costs; and recovering the resulting costs is

problematic. These problems would be less

troublesome if OOTWs were infrequent; however,

since 1990 they have been undertaken at a rate of

20–35 per year! Over the past several years, there has

been an increasing recognition of the need for analysis

tools to support military planning and execution of

OOTWs. Analysis tools to support decision making

for large-scale military combat operations (such as

major regional contingencies) are relatively mature

(Battle Modeling). In contrast, OOTW analysis tools

are embryonic or non-existent. The increasing

U.S. military involvement in OOTWs during the

post-Cold-War era has led to the need to develop

OOTW analysis tools.

Questions

The analytical requirements are characterized by the

questions that must be answered. The questions fall

into five groups:

• Those that are non-mission-related (e.g., what force

structure, equipment and plans are needed for the

future?).

• Those that support a decision to engage (or not to

engage) in a mission (e.g., what impacts will an

OOTW have on other operations and how much

will it cost?).

Peacekeeping Operations (PK)

Humanitarian Assistance

Disaster Relief

Disaster Control
Consequence Management

Enforcement of Sanctions/Maritime Intercept
Operations (MIO)/Quarantines

Enforcing Exclusion Zones

Protection of Shipping
Show of Force Operations
Strikes or Attacks
Raids
Recovery Operations/Search and Rescue (SAR)
Relocation of Refugees/Illegal Immigrants/Illegal

Emigrants
Noncombatant Evacution Operations (NEO)
Support to Insurgency

Ensuring Freedom of Navigation (FON) and Overflight

Disaster Relief Domestic
Disaster Relief International

Humanitarian and Civic Assistance

Observer Missions
UN Chapter VI
Preventive Diplomacy
Preventive Deployment
Delegatory Peacekeeping

Military Support to Civil Authorities (MSCA)
Peace Enforcement Operations (PE)

Aggravated Peace Support Operation (APSO)

UN Chapter VII

UN Chapter VI 1/2

Peace Imposition

Pre-Conflict Peace Building
Post-Conflict Peace Building
Arms Control
Deterrence
Disarmament
Counterproliferation

Counterdrug (CD) Operations
Combatting Terrorism (CT)

Antiterrorism
Counterterrorism

Counterinsurgency (CI)
Nation Assistance (NA) or Nation Building

Security Assistance
Foreign Intemal Defense (FID)

Peacemaking

Peace Operations (PO)

Humanitarian Assistance (HA)/
Disaster Relief (DR) Operations

Military Contingency Operations

National Integrity Operations

Military Operations Other

Than War, Fig. 1 Types of
OOTW
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• Those needed to plan a mission (e.g., what is the

right force structure and what transport support will

we provide to reporters, NGO/PVOs, etc.?).

• Those that occur during a mission (e.g., which

course of action will most quickly accomplish the

mission?).

• Those related to the termination of a mission

(e.g., how do we define success and what are its

Measures of Effectiveness (MOEs)?).

The question groups are identical to the question

groups for combat analysis. Most of the individual

questions are also identical. In general, the analysis

techniques required to answer the questions are the

same. The problem lies in the application: standard

applications make assumptions that are valid for

combat analysis and invalid for OOTW analysis.

The question of force structure for a mission

provides a simple example of the difference between

combat analysis and OOTW analysis. For a combat

mission, combat troops and equipment are determined

first and the balance of the force structure is composed

of the troops and materiel required to support them.

Analysis procedures and tools are structured to

support this situation. For an OOTW, however, the

primary forces may be engineers for disaster

reconstruction, medical personnel for disease

control, some other support function, or combat

troops, depending on the particulars of the mission.

The implied force structure consists of the troops and

materiel to support these forces and may (or may not)

include combat troops to protect them. Not only are

combat analysis procedures and tools set up

backwards for OOTW analysis, but also OOTW

analysis involves multiple possible permutations,

requiring significantly more flexibility.

Nature of The Analysis Tools

Generally, the desirable tools are decision support

tools, are simple (e.g., menu driven, point and click),

are deployable, are joint (multi-service), are rigorous,

use non-parochial data, have available data, and are

capable of rapid turnaround. Analysis tools range from

complex simulations of political, economic,

sociological, military interactions to database tools,

to spreadsheets, to checklists, with the emphasis on

small tools. Figure 2 shows the categories of OOTW

analysis tools.

Warnings and Impact Analysis Tools

These tools are among themost difficult (scientifically)

to create, but are essential to the analysis of OOTWs.

Three tools are included in this group.

• The real-time indicators and warnings tool serves to

filter and interpret world news in the light of
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possible future OOTWs: there are several attempts

being made to create such a tool, such as the

Protocol for the Assessment of Nonviolent Direct

Action (PANDA) (Bond and Vogele 1995).

• The impact simulation models the significant

relationships included in and surrounding

an OOTW to permit prediction of the results

of actions, whether human or environmental:

the commercial computer game, Sim CityTM, is an

example of an impact simulation. Unfortunately, the

nature of social interactions is amatter for debate and

consequently the proper mathematical expressions

of these interactions and the best methods for

modeling them are undecided. While at least two

candidate simulations exist, Spectrum (National

Simulation Center 1996) and the Deployable

Exercise Support system/Civil Affairs Module

(DEXES/CAM) (Woodcock 1996), these are

regarded with some misgivings by working

analysts, apparently because of lack of transparency

or because they are used for training. The Situational

Influence Assessment Module (SIAM) uses another

technique to address social interactions. It is an

influence diagram-based model, not a simulation

model, but may be useful in this category.

• The resource simulation models the changes in

resource consumption and sequestration over the

course of an OOTW: this need may well be

satisfied by the Joint Warfare Simulation (JWARS).

Integrated Mission Planning Tool

The five separate tools that comprise this group

should ultimately be seamlessly integrated,

although the initial integration may be loose. Each

tool feeds its successor, while permitting reentry for

iterative planning. These tools are relatively simple

(scientifically); however, to be useful in an OOTW

context, they require careful definition with respect

to applicability to joint, coalition (multi-country) and

non-military component analysis. The tools are

a mission definition tool, a task analysis tool,

a force design tool, a logistics tool, and

a transportation tool.

• The mission definition tool should provide a reality

check to ensure that the complete implications of

the mission are fully understood. The Conceptual

Model of Peace Operations (CMPO), a peace

operations influence diagram-based checklist, is an

example (Davis 1996).

• The object of the task analysis tool is to support an

accurate and complete analysis of the mission tasks.

The tool needed is a decision support tool that

connects missions to strategies to tasks, both

explicit and implied, in the OOTW domain.

It should identify both those tasks that are central

to the mission and any contingent tasks that might

be implied by reasonable shifts in mission

definition. It should also support replanning as the

situation changes. Lidy (1998) has produced

the data to support such a tool.

• The object of the force design tool is to support the

designation of U.S. forces required for an

operation in an OOTW context. The tool needed

is a decision support tool that connects the tasks to

generic resources and connects generic resources

to actual available resources, including U.S.

military, U.S. non-military, foreign government,

NGO/PVO, and contractor resources. Data

requirements include task capability for all

resources (or the facility for user input of unique

resources) and availability data (based on reserve

commitments, etc.). It should provide for

restrictions on choices based on cultural issues.

Processing should include selection of military

resources and substitution of other resources. The

tool should also support replanning as the situation

changes.

• The object of the logistics analysis tool is to

support the logistics analysis of the mission in an

OOTW context. The tool needed is a decision

support tool that derives the logistics

requirements from the total force structure. It

should allow for supply from outside sources and

provide for supply of non-military personnel. It

should support replanning as the situation

changes. Recent work has investigated the

availability and utility of existing tools of this

type (Brundage et al. 1998).

• The object of the transport analysis tool is to

support the transportation analysis for mission

arrival, sustainment, and departure in an OOTW

context. The tool needed is a decision support tool

that plans the transport requirements, based on all

appropriate constraints. It must support

replanning when the situation changes after

some transport has been accomplished. The Joint

Military Operations Other Than War 973 M

M



Flow and Analysis System for Transportation

(JFAST) and the Model for Intertheater

Deployment by Air and Sea (MIDAS) are

examples of this type tool.

Support Tools

This group contains three specific tools and a cluster of

several tools related by type. The COA comparitor

permits the development of courses of action

(COAs) through several levels of alternatives: an

influence diagram/decision tree methodology would

support this type analysis. The MOE calculator

supports the calculation and tracking of MOE values.

The communications tool supports planning the

communications system within the complex context

of OOTWs. The cluster of disaster impact

tools (e.g., hurricanes, volcanoes, earthquakes,

fires, and nuclear accident) supports the estimate of

the situation in several technical areas, such as

engineering and health. The Consequence

Assessment Tool Set (CATS) supports some of these

functions.

Cost Models

Seven tools make up this group. Their object is to

calculate the cost information for various aspects of

OOTWs: incremental costs of notional OOTWs, to

support long-term analysis; probable incremental

costs, to support the decision on engaging in

a particular OOTW; relative (full) costs, to support

the selection of the mission plan; costs incurred, to

support cost recovery from other U.S. agencies and

from foreign organizations and governments;

incremental costs of a particular OOTW, to support

the Congressional Budget process; costs of

a particular OOTW, including equipment

depreciation, readiness losses, increased reserve

recruitment and training costs, and perhaps other

costs, to support future acquisition, budgeting and

training decisions; and actual costs of a completed

OOTW, to support improved estimates of future

operations and reports to Congress on actual costs.

Work is underway to address analysis tools (Institute

for Defense Analyses 1998; Hartley and Packard

1998b).

Information Tools

There are two tools in this category. The situation

display presents the information concerning the

situation in a manner designed to maximize

understanding: the Virtual Information Center

(VIC) project represents a first attempt at creating

this type tool (Sovereign 1998). The data

warehouse either stores or provides links to (as

appropriate) all pertinent data. The data and their

useability are critical to good analysis in the

OOTW domain, as well as in the combat domain.

However, the data required for OOTW analysis and

the display requirements are in an embryonic state

when compared to the state of affairs of combat

analysis.

Tool Definition Process

Analysis of OOTWs is a new field and is in a state of

flux. The first concerted effort to address the need

for analytic tools is documented in Hartley (1996).

Follow-on efforts are documented in Staniec

(1998), Hartley and Packard (1998a), Brundage

et al. (1998), Lidy (1998), Sovereign (1998), Hartley

and Packard (1998b), and Hartley and Packard

(1999).

See

▶Analytic Hierarchy Process

▶Battle Modeling

▶Cost Analysis

▶Crime and Justice

▶Econometrics

▶Economics and Operations Research

▶Global Models

▶Health Care Management

▶ Influence Diagrams

▶Logistics and Supply Chain Management

▶Military Operations Research

▶Operations Management

▶ Production Management

▶ Public Policy Analysis

▶ Simulation of Stochastic Discrete-Event Systems

▶ Supply Chain Management

▶ System Dynamics
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Introduction

To say that Military Operations Research (MOR) is the

application to military operations of the methods of

operations research (OR) is strictly correct, but gives

only one clue to understanding the subject. The MOR

accomplishments in World War II, sketched below,

pioneered and greatly influenced the early

development and institutionalization of operations

research generally. Also, they led to the continuation

of MOR after the war, in the governments of World

War II participants, in academia, in industry, in

not-for-profit think tanks, and its adoption in similar

institutions of other nations. The emphasis in this

article is on practice and trends in the United States,

with particular emphasis on the Army.

The general methods of OR apply in particular to

many aspects of military applications. Such

differences as exist pertain mainly to the needs of

military security and classification procedures, the

nature of military operations and equipment, and the

concerns of strategy, operational art, and tactics that

relate to the use of military forces as instruments of

national policy.

Current developments in the field are described in

the quarterly bulletin Phalanx and the journalMilitary

Operations Research published by the Military

Operations Research Society (MORS) and the

Military Applications Society (MAS) of INFORMS.

MORS also conducts annual classified symposia, as

well as smaller mini-symposia and workshops

(some unclassified), from which they publish

proceedings and monographs.

World War II MOR Accomplishments

Although there were individual contributions to the

scientific study of military operations, ranging from

Archimedes to the work of Thomas A. Edison in

World War I, it was in World War II that MOR

became widespread and institutionalized. Solandt

(1955) recalled that MOR began in the services in

England as operational research in the early days of

the war. The British work centered about different

subjects depending on the service: in the Air Force it

was the problem of how to use radar, in the Navy it was

the problem of anti-submarine warfare, and in the

Army it was first limited to anti-aircraft problems and

again centered around radar. Professor Blackett is

sometimes said to have started the work in all three

services, and his account in Blackett (1962) drew on

earlier papers to describe both results and methods.
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Schrader (2006) describes the organization and use of

OR by the U.S. Army from WWII until 1995. His

detailed account of how and where OR was used

represents a definitive study of the U.S. Army’s use

of OR in peace and war, and much of what is

summarized here is based on his writings.

Cooperation between the United States and Britain

over the use of OR did not begin immediately during

WW II. British liaison teams visited the U.S., but it was

not until late in 1940, just after the fall of France, that

President Roosevelt authorized the creation of the

National Defense Research Committee (NRDC) and

subsequently, the Office of Scientific Research and

Development (OSRD) under Professor Vannevar

Bush. This office helped recruit, manage and

organize the military OR effort in the U.S defense

establishment during the war.

While Britain fielded OR teams and detachments

with its Army and Navy during the war, only the U.S.

Navy and the U.S. Army Air Force (AAF) took full

advantage of the new discipline after Pearl Harbor. OR

teams of scientists and businessmen, recruited and

organized through the OSRD, formed the initial

groups. Small detachments were sent to AAF to

conduct bombing accuracy studies and assessments of

tactics. A useful account of World War II MOR,

centering about the AAF, is Brothers (1954). In

addition to illuminating examples such as aerial

bombing accuracy improvement, it gives valuable

guidance on the organization of MOR groups and

operating procedures. In World War II, most of the

MOR practitioners were civilians (though sometimes

in uniform), and they had to earn the trust of military

operators over time through useful work. This, of

course, is by nomeans unique toMOR inWorldWar II.

The U.S. Army’s Technical Services – the scientific

branches (Ordnance Department, the Medical

Services, Signal Corps and Chemical Warfare

Service) took advantage of the expertise offered by

the new multi-disciplinary teams and detachments

were deployed in Europe and in the U.S. The Army

ground forces, on the other hand, were reluctant to

begin using operational analysts (or “Op Annies” as

they were called) until 1944. Teams were primarily

used to support anti-aircraft weapons development and

support to U.S. Army forces in the Pacific area.

The AAF was quick to emulate its British comrades

and OR teams were soon supporting the various

major Air Force operations in Europe and elsewhere.

The Army’s technical services were slower, but before

the end of the war, studies in support of radar training,

development, and organization, signal work load in

message centers, transportation scheduling, loading,

and handling, as well as some operational studies

involving introduction of new equipment and

technology to units were undertaken. The ground

forces lagged well behind until late in 1944 when OR

teams were sent to the Pacific.

At the end of the war, the rapid demobilization of

the U.S. Army dissolved its existing teams and

organizations as civilian scientists quickly returned to

their academic or business careers. The national

offices, NRDC and OSRD, were also demobilized,

but the newly organized Department of Defense

(DoD) created the Weapon Systems Evaluation

Group (WSEG) to carry on work begun earlier. The

limited use of OR in the Army’s decision-making

process during the war lagged well behind the other

services. In the postwar period, the civilian leadership

recognized the benefit provided by the studies and

analysis of weapon systems and their development.

The ground Army quickly closed the gap in the

postwar period.

Early in the post-war period, Morse and Kimball

(1946) drew on the work of many early MOR analysts

of the Operations Research Group, U.S. Navy, to give

results and methods. That work, once it was

declassified and slightly modified, was republished in

1951 and was very influential, not only in introducing

MOR to future analysts, but also in introducing the

potential applications of OR generally to a wider

audience. This Morse and Kimball classic was

republished by MORS in 1998.

The above work quotes a letter from Admiral King

that enumerated helpful MOR applications (suggestive

also of the work in other services):

(a) The evaluation of new equipment to meet military

requirements.

(b) The evaluation of specific phases of operations

(e.g., gun support, anti-aircraft fire) from studies

of action reports.

(c) The evaluation and analysis of tactical problems to

measure the operational behavior of new material.

(d) The development of new tactical doctrine to meet

specific requirements.

(e) The technical aspects of strategic planning.

(f) The liaison for the fleet with the development and

research laboratories, naval and extra-naval.
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Morse and Kimball also gave some reasons for the

emergence inWorldWar II of the practical value of the

methods of MOR. As opposed to earlier wars there

were the following:

(i) more repetitive operations susceptible to

analysis — strategic bombing, submarine attacks

on shipping, landing operations, etc.;

(ii) increased mechanization of warfare, in that “. . . a

men-plus-machines operation can be studied

statistically, experimented with, analyzed, and

predicted by the use of known scientific

techniques just as a machine operation can be.”

(iii) increasing tempo of obsolescence in military

equipment . . . When we can no longer have the

time to learn by lengthy trial and error on the

battlefield, the advantages of quantitative

appraisal and planning become more apparent.”

Post-War MOR Developments

After World War II ended, a majority of the MOR

practitioners returned to non-military pursuits:

universities, laboratories, industry, etc. The military

services wondered how much MOR would be needed

in peacetime. Each decided to institutionalize its use of

MOR. An early chapter of Tidman (1984) gives an

interesting account of how the Navy chose to

continue MOR by establishing the Center for Naval

Analysis (CNA) after World War II and by 1948, each

service had a different choice or mix of civil service

groups, not-for-profit groups, use of industry, etc., and

their emphases varied over time. The newly organized

U.S. Air Force soon created Project RAND (later

RAND Corporation) in 1948 to support its research

and development efforts. The newly formed DoD

followed suit with establishment of WSEG. Fairly

soon, as the Cold War emerged, there was general

recognition that it would be necessary to increase the

use of MOR. Both Tidman and Schrader appropriately

addressed this topic as periods of consolidation and

growth in their respective histories.

The Army rapidly demobilized after the war, as

stated above, the civilian scientists quickly returned

to their jobs and homes. While the Army ground forces

quickly inactivated its MOR organizations, the

technical services (Ordnance and Signal) retained

theirs. By 1948, the Army’s leadership created

a relationship with John Hopkins University under

Dr. Ellis Johnson to form the Operations Research

Office (ORO), a relationship that was to last for

13 years. World War II had seen the introduction of

radar, atomic weapons, cruise missiles, and ballistic

missiles, but each type was still improving rapidly at

war’s end. Their implications for, and fuller integration

into, military forces needed more thought. The Cold

War climate also provided a sense of urgency, and

MOR offices took on these problems as important

foci of effort. The growing Cold War with the Soviet

Union forced the Army to address more than just

weapons design and tactical doctrine. ORO soon

began addressing areas well beyond weapons

development – entering international politics,

economics, national policy and global strategy while

the technical services and newly organized field force

boards maintained their focus on weapons

development. Several key MOR organizations were

created – ORO, Combat Operations Research Group

(CORG), the Human Resources Research

Organization (HumRRO), and Special Operations

Research Office (SORO) dealing with psychological

operations. Computer modeling of complex systems

met increased need to process large quantities of data.

At Headquarters, Department of the Army (HQ DA),

the Strategic Tactics and Analysis Group (STAG) was

formed to study force structure and future forces

capability through gaming and simulation. The

increasing use of MOR in the combat development

process fostered a need for increased numbers of

military officers with MOR training and a formal

Operations Research/Systems Analysis (ORSA)

specialty program was created in 1967 to satisfy the

growing need to form in-house MOR capabilities as

the Army moved toward a competitive contractual

arrangement with various commercial and academic

analytic groups. The Research Analysis Corporation

(RAC) took over as the primary research arm of the

Army staff in 1963 while primary research efforts were

funneled into academia through the Army Research

Office (ARO) at Duke University.

Some of the postwar applications of MOR

resembled wartime MOR, with combat operations

replaced by tests or exercises. With the rise of the

Continental Army Command (CONARC), MOR

organizations began efforts involving war gaming

and field experimentation. As technology increased

and problems became more complex,

recommendations soon increased the amount of field
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experimentation and testing, and by 1956, the first

combat development and testing command was

created. However, some of the OR (or operations

analysis or operations evaluation, as it was often

termed) remained devoted to operations of supply,

logistics, recruiting, and training. Moreover, much of

the post-war efforts went into thinking through the

implications of new weapons for new types of

combat operations. It fostered an atmosphere that led

to increased use of digital computing capabilities in

war gaming and simulation to help solve increasingly

more sophisticated and complex problems.

The Emergence of Systems Analysis

MOR also took on problems at a level higher than that

of individual weapon systems or engagements between

two opposing weapon systems. Even in a Cold War

climate, there were significant limits on national

expenditures for armed forces. It was necessary for

government to decide “how much is enough” and

MOR sought to aid this decision.

Applications of OR at this high level, often termed

systems analysis, face difficulties far greater than the

difficulties of World War II MOR, significant as the

latter were. Wartime combat analysis, sometimes

without recognizing it, had already faced criterion

problems of sub-optimization, as Hitch (1953) points

out. These become still more significant when

structuring forces for the future, seeking to be

prepared to deal with contingencies still beset with

great uncertainty.

Hitch (1955) gives an understanding of the relative

difficulty of systems analysis by comparing the World

War II problem of improving bomber accuracy with

the postwar problems of weapon system development

and force composition. In the former problem, difficult

as it seemed at the time, known were the types of

aircraft involved, how many there were, much about

their characteristics, the kind of bombs available, and

much about enemy targets and their defenses. These

become variables when considering an uncertain

future that may sometimes hold a multiplicity of

potential opposing forces.

The difficulties are in the problems, as Hitch went

on to point out. Despite these difficulties, governments

must make decisions and systems analysis, with all of

its limitations, has much to offer. MOR analysts

developed judgment in cutting problems down to

size, and Quade (1954) collected some of the helpful

approaches in an influential volume. Quade and

Boucher (1968) and Miser and Quade (1988) give

refinements and extensions to non-defense analysis.

The Institutionalization and Impact of
Systems Analysis

Hitch and McKean (1960) did much to introduce

cost-effectiveness studies as instruments of defense

systems analysis. In the Kennedy administration in

1961, Secretary of Defense McNamara brought

Hitch into the Office of the Secretary of Defense

(OSD) as Comptroller to install a system of planning-

programming-budgeting (PPB), and Enthoven, as

Hitch’s assistant, started an office of systems analysis.

Although the titles and organizational placement have

changed over the years, OSD has continued both PPB

and systems analysis.

These new offices had great impact. The

government sought to create similar offices in other

departments (Bureau of the Budget 1965). Within the

DoD, the new OSD offices played an important role in

departmental decisions. As its emphasis on, and

requests for, quantitative analysis increased, the

military services organized and enlarged their MOR

offices to meet the demand.

The above developments came at a time when

computer capabilities were rapidly increasing. Many

MOR offices sought to use the new capabilities in

producing cost-effectiveness studies required for

systems analysis. Computer simulation models began

to proliferate in the effort to understand what new or

proposed weapon systems would contribute to the

future battlefields. Because this effort contributed to

studies with great impact on weapon systems

acquisition, it has continued to grow.

Wartime Combat OR in Korea and Vietnam

Although its successes in World War II led service

leadership to gradually incorporate MOR into its

decision-making process, MOR efforts came to

emphasize future weapon system acquisition as

described above. For more details of what is

summarized here, see Schrader (2008).
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KOREA: Right from the beginning, the Army

leadership was admonished to deploy MOR teams to

Japan and Korea. As in WWII, the analysis of current

operations, organizations and tactics were

prominent. Increased interest in new organizations,

counter-measures, winter operations, clothing,

airborne operations, and psychological warfare were

undertaken. By the end of 1953, the efforts of the

deployed MOR teams had validated WWII

experience and demonstrated that MOR could be

successfully applied to land warfare. Between Korea

and Vietnam, multiple MOR organizations provided

analyses and supported the combat development

process. Major war gaming and simulation centers

were created to study the impact of new weapons,

organizations, and future force structure and tactics.

Centers grew within The U.S. Army Training and

Doctrine Command (TRADOC) at Fort Leavenworth

and White Sands to assist in defining new

organizations, doctrine and tactics while HQ DA

continued to rely upon the successor to STAG, the

Concepts Analysis Agency (CAA), to evaluate future

force structures. Individual weapons research and

evaluation continued to expand at Aberdeen Proving

Grounds where the Ballistics Research laboratory

(BRL) studied, evaluated, assessed and developed

new, improved weapons.

VIETNAM: While a shooting war was underway in

Southeast Asia (SEA), the rise of PPB at the Pentagon

split Army MOR activities. It developed additional

in-house capability to support the centralization of

decision-making begun under Secretary McNamara

and the Office, Secretary of the Army (OSA). More

MOR trained personnel were needed to support the

PPB System (PPBS) and a formal specialty program

was created in 1967 for military officers. This was

coupled with use of civilian contractors and Federally

Funded Research and Development Centers

(FFRDCs). That is not to say that MOR activities

were totally devoted to PPBS. Of particular interest

was the lengthy analysis and assessment of the air

mobility concept and organization of the air assault

division prior to the war in SEA. Multiple

organizations, field boards and MOR offices

significantly supported the vast testing and

experimentation of the air mobility concept.

The war in SEA renewed interest in the study of

current operations, battlefield performance of

weapons, equipment, organizations and tactics. RAC,

the successor to ORO, deployed teams to to collect

data along with HumRRO, SORO and Combat

Development Command (CDC). HQ Military

Assistance Command, Vietnam (MACV) established

an in-theater analysis and assessment capability.

Quantitative methods were employed extensively at

Field Force and Division level. Manually assisted war

games were run to help develop alternate strategies and

think through potential issues. Efforts were focused

upon counter-insurgency operations and suffered

from lack of large amounts of quantitative data

needed to adequately analyze it. Still, as one division

commander noted, the “judicious use of operational

analysis and analytic techniques when melded with

military judgment were quite effective in improving

performance of many activities.”

In Chapter I of Hughes (1989), Thomas observed

that combat OR both in Korea and later in Vietnamwas

very similar to that of World War II. Despite the

postwar increase in modeling and computer

capabilities, it did not make nearly as much

contribution in Korea or Vietnam as might have been

expected. “Though the menu of available techniques

increased with time, much that had been learned in

World War II was forgotten and relearned in later

conflicts.” The 1960s and 1970s were a time of great

growth in the analytic community. MOR efforts

greatly expanded force planning and management

with a commensurate need to expand the number of

MOR-trained officer personnel. A whole new set

of challenges faced the Army after Vietnam as the

MOR community assisted in helping the Army

reorganize, revitalize, and reorient itself prior to the

First Gulf War.

Contributions After Vietnam and the
Gulf War

The period after Vietnam was a time of recovery and

reorganization for the U.S. Army (see Schrader 2009

for more details). The multi-year conflict had severely

damaged the Army’s equipment modernization

process and MOR efforts concentrated upon

providing the analytic underpinning for major

changes in weapon systems, equipment,

organizations, doctrine and training. In light of two

major studies affecting MOR organizations,

competitive contracting was more formalized
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(RAC was disestablished) and MOR assets became

more concentrated into fewer organizations – CAA,

TRADOC Analysis Command (TRAC), the

Operational Test and Evaluation Command (OPTEC)

and the Army’s Material Systems Analysis Agency

(AMSAA) ultimately concentrated the efforts of the

majority of civilian and military MOR specialists and

performed the majority of all studies. MOR became

more integrated into the Army’s decision-making

process as new technology, better weapon systems,

and improved organizations were developed.

A pyramid of responsibility was formed with CAA at

the apex studying force structure and strategy, TRAC

focused on battalion to Corps level studies, and

AMSAA dealing with individual weapon system

analysis.

The end of the Cold War in 1989 presented the

Army and the MOR community with entirely new

issues – much more complex and demanding that

ever before – and MOR support to the material

acquisition process became more important. The

ever-increasing improvements in technology and

computing power brought with it an expanding use

of models and simulations to solve the issues facing

the Army. This expansion also created issues in

validation, verification and accreditation of the

analytic tools used to support the decision making

process.

During the First Gulf War in 1991, the efforts of

20 years of MOR involvement in conjunction with

new organizations, new equipment and weapon

systems, new doctrinal, and training improvements,

fielded the finest fighting force in the history of the

United States. Each of the major organizations

actively supported the collection of data. CAA was

intimately involved in the evaluation of the forces

involved during the planning phase of the operation.

War games and separate assessments assisted Army

planners and major headquarters in preparing for the

deployment and employment of forces. Multiple

rapid response assessments – some as short as

12 h – were provided during Operation Desert

Shield. Ultimately, a small MOR cell was deployed

to support HQ Central Command (CENTCOM), but

most MOR efforts were conducted in the continental

U.S. (CONUS). The successful military outcome

underscored the need for rapid and flexible support

to deployed forces with a full range of theater level

analysis capabilities.

MOR Lessons from Desert Shield/Desert
Storm

The new computer and modeling capabilities seemed

to have more impact in MOR for the Gulf War combat

of 1991. Vandiver et al. (1992) concluded that while

some of its analytic lessons were reminiscent of World

War II, and some lessons were probably peculiar to

wars like the Gulf War, there were trends indicative of

future combat analysis:

– Computer influence on analysis is increasingly

varied and pervasive.

– Software analytical tools are increasingly available

to all - including non-analysts.

– The demand for good databases is growing more

rapidly than the supply.

– There is growing need for coalition and joint service

analysis.

– There is increasing analytical interest in operational

art and campaign focus.

– There is a need to have MOR teams ready to join,

and planning models and simulations in place with

deployed forces.

– Teams must be ready to improvise quickly to

support ongoing and planned operations in the

field.

– There is less danger of central misuse of field

analysis and data than formerly. The lessons of

better methods of data collection and selection of

more accurate measures of effectiveness learned in

earlier conflicts have been absorbed by the MOR

community.

Concluding Remarks

Although MOR has been a flourishing enterprise with

an expanding technological menu, there are still issues

to resolve, some long standing. While it is clear that

MOR tools and techniques improved the material

acquisition process and the PPBS, a significant

fraction of the issues relate to modeling and

simulation, or are frequently so characterized. Some

of the more serious concerns address scientific

foundations (including verification and validation);

DoD organization and management (including that

for MOR); management; filling a perceived need;

and taking suitable advantage of technological

opportunities.
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See

▶Air Force Operations Research

▶Battle Modeling

▶Center for Naval Analyses

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Exploratory Modeling and Analysis

▶Military Operations Other Than War

▶Operations Research Office and Research Analysis

Corporation

▶RAND Corporation

▶ Simulation of Stochastic Discrete-Event Systems

▶ Systems Analysis

▶War Game
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MIMD

Multiple instruction, multiple data. A class of parallel

computer architectures in which each processing

element fetches and decodes its own stream of

instructions, possibly different from the instruction

streams for other processors.

Minimum

A real-valued function f(x) is said to have a minimum

on a set S when the greatest lower bound of f(x) on S is

assumed by f(x) for some x0 in S. Thus, f(x0) � f(x) for

all x in S.

See

▶Global Maximum (Minimum)

Minimum (Maximum) Feasible Solution

In a mathematical-programming problem, the solution

that both satisfies the constraints of the problem and

minimizes (maximizes) the objective function is

a minimum (maximum) feasible solution. Such

solutions may not be unique.

Minimum Spanning Tree Problem

Given a connected network with n nodes and

individual costs associated with all edges, the

problem is to find the least-cost spanning trees.
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See

▶Network Optimization

▶ Spanning Tree

Minimum-Cost Network-Flow Problem

In a directed, capacitated network with supply and

demand nodes, the problem is to determine the flows

of a single, homogeneous commodity from the supply

nodes to the demand nodes that minimize a linear cost

function. In its general form, when the network

contains transshipment or intermediate nodes – nodes

that are neither supply nor demand nodes – the

problem is called the transshipment problem.

Conservation of flow through each node is assumed.

Due to its special mathematical structure, this problem

has a solution in integer flows, given that the data that

define the network are integers. It is a linear-

programming problem whose major constraints form

a node-arc incidence matrix.

See

▶Conservation of Flow

▶Maximum-Flow Network Problem

▶Network Optimization

MIP

▶Mixed-Integer Programming Problem (MIP)

MIS

Management information systems.

See

▶ Information Systems and Database Design in

OR/MS

Mixed Network

A queueing network in which some customers can

enter and leave the network while others neither enter

nor leave but cycle through the nodes endlessly.

A queueing network in which the routing process

contains at least one closed set of states for some

types of customers but not others.

See

▶Closed Network

▶Networks of Queues

▶Open Network

▶Queueing Theory

Mixed-Integer Programming Problem
(MIP)

A mathematical-programming problem in which the

constraints and objective function are linear, but some

of the variables are constrained to be integer valued.

The integer variables can either be binary or take on

general integer values.

See

▶Binary Variable

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Mathematical Programming

Model

An idealized — abstract and simplified —

representation of a real-world situation that is to be

studied and/or analyzed. Models can be classified in

many ways. A mental model is an individual’s

conceptual, unstated, view of the situation under

review; a verbal or written model is a description of

one’s mental model; an iconic model looks like what it

is supposed to represent (e.g., an architectural model of
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a building); an analogue model relates the properties of

the entity being studied with other properties that are

both descriptive and meaningful (e.g., the concept of

time as described by the hands and markings of

a clock); a symbolic or mathematical model

represents a symbolic representation of the process

under investigation, e.g., Einstein’s equation

E ¼ mc2, a linear-programming model, or a computer

simulation model.

See

▶Descriptive Model

▶Deterministic Model

▶Linear Programming

▶Mathematical Model

▶Normative Model

▶ Predictive Model

▶ Prescriptive Model

▶ Simulation of Stochastic Discrete-Event Systems

▶ Stochastic Model

Model Accreditation

Saul I. Gass

University of Maryland, College Park, MD, USA

Model accreditation is an official determination that

a model is acceptable for a specific purpose (Williams

and Sikora 1991; Ritchie 1992). Accreditation certifies

that the element being accredited meets given

standards. For a model, accreditation must be done

with respect to the model’s explicit specifications and

the demonstration that the computer-based model does

or does not meet the specifications. This demonstration

is the responsibility of the model developers, who must

show that their work passes agreed-to user and

developer acceptance tests. If the modeling process

was done properly and was accompanied by

appropriate documentation, accreditation of the

model for its specified uses should follow.

Accreditation of a model must rely on a review and

evaluation of its available documentation. Such an

evaluation, usually done by an independent

third-party, is made against various criteria to

determine the levels of accomplishment of the

criteria, in particular those of verification and

validation. The review is made with a specific user

and uses in mind. The review should produce a report

that gives guidance to the user on whether or not the

model in question can be used with confidence for the

designated uses, that is, the model is or is not

accredited for specific uses (Gass 1993).

The ideas, if not the general process behind model

accreditation, have been accepted by modeling

agencies within government and private industry,

most notably by the U.S. Department of Defense

(2009) in the context of modeling and simulation

(see also Sargent 2005).

See

▶Model Evaluation

▶Model Management

▶ Practice of Operations Research and Management

Science

▶Validation

▶Verification

▶Verification, Validation, and Testing of Models
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Model Builder’s Risk

Probability of rejecting the credibility of a model when

in fact the model is sufficiently credible.
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See

▶Verification, Validation, and Testing of Models

Model Evaluation

Saul I. Gass

University of Maryland, College Park, MD, USA

Model evaluation or assessment is a process by which

interested parties, who were not involved in a model’s

origins, development and implementation, can assess

the model’s results in terms of its structure and data

inputs so as to determine, with some level of

confidence, whether or not the results can be used in

decision making. Model evaluation encompasses:

(1) verification, validation, and quality control of the

usability of the model and its readiness for use, and

(2) investigations into the assumptions and limitations

of the model, its appropriate uses, and why it produces

the results it does.

There are three reasons for advocating evaluation of

models: (1) for many models, the ultimate decision

maker is far removed from the modeling process and

a basis for accepting the model’s results by such

a decision maker needs to be established; (2) for

complex models, it is difficult to assess and to

comprehend fully the interactions and impact of

a model’s assumptions, data availability, and other

elements on the model structure and results without

a formal, independent evaluation; and (3) users of

a complex model that was developed for others must

be able to obtain a clear statement of the applicability

of the model to the new user problem area

(Gass 1977a).

All procedures for evaluating a model are

basically information gathering activities, with the

detail and level of information being a function of

the purposes of the assessment and the skills of

the assessors. Specific evaluation approaches are

given in Gass (1977a, b), Gass (1980), U.S GAO

(1979), with an evaluation case study given in

Fossett et al. (1991).

A model evaluation procedure and its objectives

should be tailored to the scope and purposes of the

model and will vary with the model, model developers,

assessors, users, and available resources. Model

assessment is an expensive and involved undertaking;

all models need not be assessed. Model developers and

users should recognize that by applying proper

modeling management procedures, the burdens that

evaluators of models have to contend with are

alleviated greatly (Gass 1987).

See

▶Model Accreditation

▶Model Management

▶ Practice of Operations Research and Management

Science

▶ Project Management

▶Verification, Validation, and Testing of Models
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Introduction

The term model management was coined in the

mid-1970s in the context of work on decision support

systems (DSS) (Sprague andWatson 1975;Will 1975).

An important objective of the DSS concept was to

provide an environment in which decision makers

could gain materially useful insights by interactively

exercising OR/MS models. However, developing such

an environment required principled solutions to

problems of specifying, representing and interacting

with models. This focus on models, and in turn on

modeling, led to the study of model management,

defined broadly to encompass the study of model

representation, the set of operations facilitated by

such representation at various stages of the modeling

life cycle, and computer-based environments that

facilitate modeling.

What follows is a brief review of work in two areas

that have been actively studied in model management.

First, work on languages to specify models, and on the

development of techniques to facilitate operations

that support modelers in both the pre-solution and post-

solution phases of the modeling life cycle. Second, work

on the representation of a collection of models (e.g., a

model library) and the development of techniques to

enable model selection and configuration. As with other

information technology-based fields,modelmanagement

has benefitted from the growth of Internet technologies.

A detailed review of the implications for model

management of the growth in Internet, and in particular

the World Wide Web technologies, is in Bhargava and

Krishnan (1998), and Bhargava, Power, and Sun (2007).

Model Management-I

Modeling languages—The need to represent a model

in a notation that is easy to validate, verify, debug,

maintain and communicate motivated the development

of modeling languages (Fourer 1983). Prior to

their development, the only computer-executable

representation of a model was in an arcane format

optimized for efficient solution (e.g., the

Mathematical Programming System MPS format).

Current modeling languages provide a high-level

symbolic notation to specify models. Solution

operations can also be declared and all the required

details of binding the model instance to the data

structures required by solver done transparently.

Further, this has greatly increased the productivity of

model-based work.

Four principles have been articulated as essential to

modeling language design (Bhargava and Kimbrough

1993; Fourer 1983; Geoffrion 1992a; Krishnan and

Chari 2000). These are:

• Model data independence: requires the

mathematical structure of the model to be

independent of the data used to instantiate it. This

permits model data to be modified in format,

dimension, units or values without any

modification to the model representation.

• Model solver independence: requires the model

representation to be independent of the

representation required by the solver. This permits

more than one solver to be used with a given model.

Further, it recognizes the fundamental differences

in the requirements placed on model

representations and representations required by the

solver.

• Model paradigm independence: requires that the

modeling language allow the representation of

models drawn from different paradigms (e.g.,

mathematical programming and discrete event

simulation).

• Meta level representation and reasoning: requires

that the modeling language represent information

aboutmodel components and models, in addition to

their mathematical structure in order to enable

semantic consistency checking.

Modeling languages incorporate these principles to

varying degrees. Examples of modeling languages

include spreadsheet-based languages such as IFPS

(Gray 1987), algebraic modeling languages such as

GAMS (Bischop and Meeraus 1982), AMPL (Fourer

et al. 1990), and MODLER (Greenberg 1992),
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relational modeling languages such as SQLMP

(Choobineh 1991), graphical modeling languages

such as NETWORKS (Jones 1991), and Model

Graphs (Chari and Sen 1997), typed modeling

languages such as ASCEND (Piela et al. 1992), and

XML-based languages such as OptML, SNOML,

FML, and MathML. A survey of XML-based

representations can be found in Valente and Mitra

(2007). New developments in algebraic modeling

languages include extensions for constraint

programming (Fourer and Gay 2002), and extensions

for stochastic programming (Valente et al. 2009). The

formal analysis of the semantics of typed modeling

languages is in Bhargava, Krishnan, and Piela (1997).

There is also an active market in commercial modeling

languages and systems. A survey of these systems can

be found in Sharda and Rampal (1995).

Two developments have had a significant impact on

modeling languages. One is the seminal work on

Structured Modeling (SM) (Geoffrion 1987).

Developments and research directions are described

in a survey of structured modeling (Geoffrion 1999a),

and an annotated bibliography is given in Geoffrion

(1999b). While previous work on modeling languages

had sought to provide a computer executable

representation of the notation traditionally used by

modelers, SM defines a theory that treats models as

hierarchical collections of definitional dependencies.

This enables structured modeling languages to

satisfy all the four design principles discussed above.

While several languages have implemented SM, the

most completely developed of these is SML (Geoffrion

1992a, b). The other important development is the

embedded languages technique, which can be used to

define an architecture of considerable generality for

modeling environments. This technique is used to

specify modeling languages, as well as information

about the terms and expressions stated in these

languages. The TEFA modeling environment

(Bhargava and Kimbrough 1993) has been implemented

using this technique.

Operations — The early work on model

management focused on model solution. The

objective was to transparently bind solution

algorithms to model instances. As noted above,

modeling languages have realized this objective.

Model management research has since focused on

operations required to support both pre-solution and

post-solution phases of the modeling life cycle. Next,

research related to a pre-solution phase, model

formulation, and a post-solution phase, model

interpretation, are described.

Model Formulation — Model formulation is the

task of converting a precise problem description into

a mathematical model (Krishnan and Chari 2000). It is

a complex task requiring diverse types of knowledge.

The appropriateness of a model depends on a variety

of factors such as accuracy, tractability, availability of

relevant data, and understandability. Model formulation

research has primarily focused on the development of

theory, tools and techniques to support the formulation

of deterministic mathematical programming models.

Work by Gassmann and Ireland (1996) has studied the

formulation of stochastic mathematical programming

models.

Using protocol analysis, detailed studies of the expert

modeling process have been conducted and process

models have been developed (Krishnan et al. 1992;

Raghunathan et al. 1994). Domain-independent and

domain-specific model formulation strategies have

been implemented in model formulation support

systems (Krishnan 1990; Ma et al. 1989; Raghunathan

et al. 1994) and a variety of representation and

(deductive) reasoning schemes have been investigated.

Liang and Konsynski (1993) have also investigated

alternative approaches such as analogical reasoning

and case-based reasoning to implement model

formulation systems. A principled approach to

formulating mathematical programming models is in

Murphy, Stohr, and Asthana (1992). A survey of this

research is given in Bhargava and Krishnan (1993).

Model Interpretation — Model interpretation

consists of a variety of techniques to help a modeler

comprehend a model. These include parametric

analysis, structural analysis, and structure inspection.

Parametric analysis has long been supported in

model management systems. Spreadsheets routinely

support what-if analysis and goal seeking. Modeling

languages for mathematical programming implement

the theory of sensitivity analysis.

The pioneering work on structural analysis is due to

Greenberg on the ANALYZE system (Greenberg

1987). ANALYZE extracts model structures that

cause exceptions such as redundancy and infeasibility

in linear programming models. The stream of work

begun with ANALYZE has been considerably

extended. Guieu and Chinneck (1999) described

work and a toolkit called Mprobe that analyzes
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infeasibility in mixed integer and integer linear

programming models. Sharda and Steiger (1996)

presented work on applying inductive learning

techniques to facilitate model analysis. Kimbrough

and Oliver (1994) examined the issue of post-solution

analysis for models other than linear programs and

have at-tempted to fashion a solution along the lines

of ANALYZE. An important feature of their approach

is the analysis of the impact on the solution to a model

when changes are made to the parameters of

a surrogate model.

Piela et al. (1992) described the use of a browser to

inspect the structure of a model. Dhar and Jarke (1993)

and Raghunathan et al. (1995) examined the usefulness

of recording the rationale underlying a model. The

documented rationale is used to aid comprehension as

well as to correctly and consistently propagate the

changes made to the structure of a model. Work on

analyzing assumptions associated with models and

visualizing the structure as a graph is reported in

Basu and Blanning (1998). More recently, model

ontology and model schema developed using OWL,

a web ontology language based on XML, has been

used for model representation and interpretation

(Bhrammanee and Wuwongse 2008).

Model Management-II

Model libraries —In contrast to the work reviewed in

the previous section, the focus of this stream of

research assumes the existence of a library of

debugged and validated models. This has led to the

study of issues such as the representation of model

libraries and operations such as model selection and

configuration.

Model Representation — Predominantly, models

are abstractly represented as black boxes, i.e., as a set

of named inputs and outputs. This is in contrast to the

detailed representation of the structure of the model in

the previous section. A variety of representations,

including virtual relations (Blanning 1982) and

predicate logic (Bonczek et al. 1978) have been used

to represent models. Additional structure has been

imposed on these representations. Mannino,

Greenberg, and Hong (1990) proposed the use of

categories such as model type, model template, and

model instance to organize the collection of models in

a library. A model type is a general description of

a model class such as linear programming. A model

template is a refinement of a model type such as

a production planning LP model, and a model

instance is an instance of a model template in which

the source of values for each parameter has been

declared. Model templates have been represented

using key-value pairs and filter lists in (Chari 2002),

as Web Services Description Language (WSDL)

service descriptors (Madhusudan 2007), and as OWL

(XML-based) model profiles (Bhrammanee and

Wuwongse 2008). Metagraphs (Basu and Blanning

1994a; Basu et al. 1997), a specialized type of graph

structure, has been the significant development in this

area.

Model Selection — Model selection leverages the

existence of previously developed models to create

a model for a new problem. In addition to the set of

inputs and outputs associated with a model, additional

information such as model assumptions need to be

represented. Mannino et al. (1990) described model

selection operators that match, either exactly or

fuzzily, the assumptions associated with a model and

those that are part of a problem statement. Work by

Banerjee and Basu (1993) adopted the same

framework as Mannino et al. (1990) but differed in

its use of structuring technique called the Box

Structure method (Mills et al. 1986), borrowed from

the domain of systems analysis and design to develop

its taxonomy of model types. Later, Guenther, Muller,

Schmidt, Bhargava, and Krishnan (1997) studied the

problem of selecting models and methods from web-

based electronic catalogs. Chari (2002), implemented

an approach based on matching filter spaces in

selecting models. More recently, the work by

Guntzer, Muller, Muller, and Schimkat (2007) have

used a graph-matching procedure for selecting

structured models represented as graphs. The

problem of selecting and composing appropriate data

mining models from a model library is now gaining

attention (Liu and Tuzhilin 2008).

Model Configuration — Model configuration

leverages previously developed models by either

linking them together (referred to as model

composition) or by integrating them (referred to as

model integration). Model composition links together

independent models such that the output of one model

becomes an input to another. Model composition is

often used in conjunction with model selection when

no one model meets the requirements of a problem.
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An example of model composition is the linking

together of a demand forecasting model and

a production scheduling model.

While the early work only permitted links between

variables with the same name, later work of Muhanna

(1992) and Krishnan, Piela, and Westerberg (1993)

permitted linkages between objects (variables, arrays,

instances of types, etc.) as long as certain semantic

constraints are met. Muhanna (1992) also proposed

methods that determine the order in which

a collection of linked models should be solved.

Representation methods and algorithms that can

determine the set of models that need to be composed

in order to obtain a set of outputs from a given set of

inputs have been a major focus of model composition

research. While the early work was based on virtual

relations (Blanning 1982) and predicate logic

(Bonczek et al. 1978), later work based on a construct

called metagraphs (Basu and Blanning 1994a) has

shown considerable promise. In addition to model

composition (Basu and Blanning 1994b), the

metagraph construct enables the representation of and

reasoning with metadata such as assumptions

associated with models (Basu, Blanning and Shtub,

1998). Work within the last ten years has focused on

automating model composition and execution process,

and combining partial solutions from multiple

composite models and databases as in Chari (2002),

leveraging XML in model composition (Bhrammanee

and Wuwongse 2008) and implementing model

composition through a sequence of web service

invocations as in the WEBOPT project (Valente and

Mitra 2007), and in (Madhusudan 2007).

Model integration differs from model composition

in allowing modifications to be made to the models

being integrated. Model integration involves both

schema integration and solver integration (Dolk and

Kotteman 1993). Schema integration is the task of

merging the internal structure of two or more models

to create a new model, while process integration is the

task of interweaving associated solution processes in

order to solve the integrated model.

Support for conflict resolution is a major focus of

research in schema integration. This has involved the

development of a variety of typing schemes that seek

to integrate data typing (Muhanna 1992), and concepts

such as quiddity and dimensions (Bhargava et al.

1991).

Detailed procedures for integrating models

specified in the Structured Modeling Language

(SML) (Geoffrion 1992a, b) have been proposed

(Geoffrion 1989) and extended (Tsai 1998). The

method uses to advantage the ability of structured

modeling to trace the effects of changes and the

formal definition of what constitutes a structured

model. An update to structured modeling research is

given in Geoffrion (1999a).

The pioneering work on solver integration is the

work of Dolk and Kotteman (1993). They used the

theory of communicating sequential processes (Hoare

1985) to address the problem of solver integration.

A simplified version of the problem was addressed by

Muhanna (1992) in the SYMMS system. As software

components have emerged as a viable technology for

web-based deployment of solvers on the Web, recent

work has studied integration of solvers/methods on the

Web (Guenther et al. 1997). Technology has made it

possible to wrap a solver with a software layer that

exposes standard interfaces thereby enabling multiple

solvers to be invoked in a standard manner as in the

case of Open Solver Interface (OSI) in the COIN-OR

repository (Saltzman 2002).

Concluding Remarks

Research in the general area of model management

since 2000 has contributed to (1) the extension of

modeling languages to represent a variety of models;

(2) the development of distributed model management

systems using web technologies to support models

as services; (3) the automation of model composition

process; and (4) the integration of modeling languages

and systems with databases. Among the numerous

surveys that have been published on the subject, the

model management chapter in the book on

information systems and decision processes (Stohr and

Konsynski 1992), the special issue of Decision Support

Systems edited byBlanning (1993), and the special issue

of the Annals of Operations Research edited by Shetty

(1992) deserve special mention for their broad coverage

of issues and their quality of exposition. A survey of the

model management literature may be found in Krishnan

and Chari (2000). A survey of model management

issues pertaining to data mining models can be found

in Liu and Tuzhilin (2008).

M 988 Model Management



See

▶Algebraic Modeling Languages for Optimization

▶Decision Support Systems (DSS)

▶ Structured Modeling

▶Verification, Validation, and Testing of Models
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Model Testing

Investigating whether inaccuracies or errors exist in

a model.

See

▶Validation

▶Verification

▶Verification, Validation, and Testing of Models

Model User’s Risk

Probability of accepting the credibility of a model

when in fact the model is not sufficiently credible.
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Model Validation

▶Validation

▶Verification

▶Verification, Validation, and Testing of Models

Model Verification

▶Validation

▶Verification

▶Verification, Validation, and Testing of Models

Model-based Search Methods

A class of global optimization methods that uses

a probability distribution to generate candidate solutions,

where in each iteration of the algorithm, the probability

distribution is updated according to the performance of the

population of candidate solutions. Examples include

estimation of distribution algorithms, the cross-entropy

method, and model reference adaptive search.

See

▶Cross-Entropy Method
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MODI

Modified Distribution Method. A procedure for

organizing the hand computations when solving

a transportation problem using the transportation

simplex method.

See

▶Transportation Simplex (Primal-Dual) Method

MOIP

Multi-objective integer programming.

See

▶Multiple Criteria Decision Making

MOLP

Multi-objective linear programming.

See

▶Multiobjective Programming

Moment Generating Function

For a random variable X, the moment generating

function is given by MXðtÞ ¼ E½etX�, assuming the

expectation exists. For non-negative continuous

random variables, it is basically identical to the

Laplace transform for the corresponding probability

density function.

Monte Carlo Methods

General term used to refer to the use of random

numbers in a particular methodology, e.g., evaluating

a high-dimensional deterministic integral or carrying

out a randomized algorithm or simulation of

a stochastic system, all based on statistical sampling

techniques. The term “Monte Carlo” signifies the

random or uncertain component that characterizes the
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method and was coined in the 1940s by physicists

working on the Manhattan nuclear weapons project,

an allusion to gambling inMonte Carlo casinos. One of

the strengths of the Monte Carlo method is that in

many applications its computational burden grows

only linearly in the dimension of problems where

other methods suffer from an exponential (geometric)

growth in computation.

See

▶Las Vegas Algorithm

▶Monte Carlo Simulation

▶Randomized Algorithm

▶ Simulation of Stochastic Discrete-Event Systems
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Monte Carlo Simulation

Simulation of systems modeled using random variables

and/or stochastic processes. The underlying inputs are

generally random numbers, sequences of independent

and identically distributed random variables uniformly

distributed on the unit interval. Sometimes called the

Monte Carlo method, where the term “Monte Carlo”

signifies the random or uncertain component that

characterizes the method and was coined in the 1940s

by physicists working on theManhattan nuclear weapons

project, an allusion to gambling in Monte Carlo casinos.

Monte Carlo simulation is one of the most widely used

tools in operations research and management science

(OR/MS) and can be used to provide detailed models

of complex systems arising in various OR/MS fields

from manufacturing to transportation to computer/

communications networks to financial engineering. One

of the strengths of theMonteCarlomethod is that inmany

applications its computational burden grows only linearly

in the dimension of problemswhere other methods suffer

from an exponential (geometric) growth in computation.

See

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization

▶Variance Reduction Techniques in Monte Carlo

Methods
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MOR

Military operations research; also used as an abbreviation

for the journalMathematics of Operations Research.

See

▶Military Operations Research

Moral Hazard

A term in economics describing a situation in which

a decision maker’s actions are taken without bearing

full risk, responsibility, or consequences for the

potential outcomes. For example, having a valuable

item with full insurance coverage against theft might

make the owner more lax in safeguarding it.

Economist Paul Krugman described moral hazard

as: “. . .any situation in which one person makes the

decision about how much risk to take, while someone

else bears the cost if things go badly.”
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MORS

Military Operations Research Society.

See

▶Military Operations Research

MPS

▶Mathematical-Programming System (MPS)

MRP

▶Material Requirements Planning

MS

Management Science

MSE

Mean square error.

Multicommodity Network Flows

Bala Shetty

Texas A&M University, College Station, TX, USA

Introduction

The multicommodity minimal cost network flow

problem may be described in terms of a distribution

problem over a network [V, E], where V is the node set

with order n and E is the arc set with order m. The

decision variable xjk denotes the flow of commodity k

through arc j, and the vector of all flows of commodity k

is denoted by xk¼ [x1k,. . ., xmk]. The unit cost of flow of

commodity k through arc j is denoted by cjk and the

corresponding vector of costs by ck¼ [c1k,. . ., cmk]. The

total capacity of arc j is denoted by bj

with corresponding vector b ¼ [b1,. . ., bm].

Mathematically, the multicommodity minimal cost

network flow problem may be defined as follows:

Minimize
X

k

ckxk

s:t:

Axk ¼ rk; k ¼ 1; . . . ; K
X

k

xk � b

0 � xk � uk; for all k;

where K denotes the number of commodities, A is

a node-arc incidence matrix for [V, E], rk is

the requirements vector for commodity k, and uk

is the vector of upper bounds for decision

variable xk.

Multicommodity network flow problems are

extensively studied because of their numerous

applications and because of the intriguing network

structure exhibited by these problems (Ahuja et al.

1993; Ali et al. 1984; Assad 1978; Castro and

Nabona 1996; Kennington 1978; McBride 1998).

Multicommodity models have been proposed for

planning studies involving urban traffic systems

(Chen and Meyer 1988; LeBlanc 1973; Potts and

Oliver 1972) and communications systems (LeBlanc

1973; Naniwada 1969). Models for solving scheduling

and routing problems have been proposed by

Bellmore et al. (1971) and by Swoveland (1971).

A multicommodity model for assigning students to

achieve a desired ethnic composition was suggested

by Clark and Surkis (1968). Multicommodity models

have also been used for casualty evacuation of war

time casualties, grain transportation, and aircraft

routing for the USAF. A discussion of these

applications can be found in Ali et al. (1984).

Additional applications of multicommodity flows are

given in Gautier and Granot (1995), and Popken

(1994).
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Solution Techniques

There are two basic approaches which have been

employed to develop specialized techniques for

multicommodity network flow problems:

decomposition and partitioning. Decomposition

approaches may be further characterized as

price-directive or resource directive. A price-directive

decomposition procedure directs the coordination

between a master program and each of several

subprograms by the changing the objective functions

(prices) of the subprograms. The objective is to obtain

a set of prices (dual variables) such that the combined

solution for all subproblems yields an optimum for the

original problem. A resource-directive decomposition

procedure (Held et al. 1974; Kennington and Shalaby

1977), when applied to a multicommodity problem

having K commodities, is to distribute the arc capacity

among the individual commodities in such a way that

solving K sub-programs yields an optimal flow for the

coupled problem. At each iteration, an allocation is

made and K single commodity flow problems are

solved. The sum of capacities allocated to an arc over

all commodities is equal to the arc capacity in the

original problem. Hence, the combined flow from the

solutions of the subproblems provides a feasible flow

for the original problem. Optimality is tested and

the procedure either terminates or a new arc capacity

allocation is developed. Partitioning approaches are

specializations of the simplex method where the

current basis is partitioned to exploit its special

structure. These techniques are specializations of

primal, dual, or primal-dual simplex method. The

papers of Hartman and Lasdon (1972), and Graves and

McBride (1976) are primal techniques, while the work

of Grigoriadis andWhite (1972) is a dual technique. An

extensive discussion of these techniques can be found in

Ahuja et al. (1993) and Kennington and Helgason

(1980).

Several researchers have suggested algorithms

for the multicommodity flow problem: Gersht and

Shulman (1987), Barnhart (1993), Farvolden and

Powell (1990), Farvolden et al. (1993), Liu (1997),

and Schneur and Orlin (1998) all present alternative

approaches for the multicommodity model. Parallel

optimization has also been applied for the solution of

multicommodity networks. Pinar and Zenios (1990)

present a parallel decomposition algorithm for the

multicommodity model using penalty functions.

Shetty and Muthukrishnan (1990) develop

a parallel projection which can be applied to

resource-directive decomposition. Chen and Meyer

(1988) decompose a nonlinear multicommodity

problem arising in traffic assignment into single

commodity network components that are

independent by commodity. The difficulty of

solving a multicommodity problem explodes when

the decision variables are restricted to be integers.

Very little work is available in the literature for the

integer problem (Evans 1978; Evans and Jarvis

1978; Gendron and Crainic 1997).

Several computational studies involving

multicommodity models have been reported in

the literature. Ali et al. (1980) present

a computational experience using the price-directive

decomposition procedure (PPD), the resource

directive-decomposition procedure (RDD), and the

primal partitioning procedure (PP). They find the

primal partitioning and price directive decomposition

methods take approximately the same amount of

computing time, while the resource directive

decomposition runs in approximately one-half the

time of the other two methods. Convergence to the

optimal solution is guaranteed for PPD and PP,

whereas RDD may experience convergence

problems. Ali et al. (1984) present a comparison

of the primal partitioning algorithm for solving

the multicommodity model with a general purpose

LP code. On a set of test problems, they find that

the primal partitioning technique runs in

approximately one-half the time required by the

LP code. Farvolden et al. (1993) report very

promising computational results for a class of

multicommodity network problems using a primal

partitioning code (PPLP). On these problems, they

find PPLP to be two orders of magnitude faster than

MINOS and about 50 times faster than OB1,

a state-of-the-art LP solver.

Linear, nonlinear, and integer multicommodity

models have numerous important applications

in scheduling, routing, transportation, and

communications. Real-world multicommodity models

tend to be very large and there is a need for faster and

more efficient algorithms for solving these models.
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Thus, multicommodity models present unlimited

opportunities for future research in large-scale

optimization.

See

▶Large-Scale Systems

▶Linear Programming

▶Logistics and Supply Chain Management

▶Minimum-Cost Network-Flow Problem

▶Network Optimization

▶Transportation Problem
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Multicommodity Network-Flow Problem

Aminimum-cost network flow problem in which more

than one commodity simultaneously flows from the

supply nodes to the demand nodes. Unlike the single

commodity problem, an optimal solution is not

guaranteed to have integer flows. The problem takes

on the block-angular matrix form that is suitable

for solution by Dantzig-Wolfe decomposition.

Applications areas include communications, traffic

and logistics.

See

▶Dantzig-Wolfe Decomposition Algorithm

▶Minimum-Cost Network-Flow Problem

▶Multicommodity Network Flows

▶Network Optimization

Multidimensional Transportation
Problem

Usually a transportation problem with a third index

that refers to a product type available at the origins

and demanded at the destinations. The variables xijk
represent the amount of the kth product type shipped

from the ith origin to the jth destination. The

constraint set is a set of linear balance equations,

with the usual linear cost objective function. It is

also a special form of the multicommodity

network-flow problem. Unlike the transportation

problem, its optimal solution may not be integer-

valued even if the network data are given as

integers. The problem can also be defined with

more than three indices.

See

▶Multicommodity Network Flows

▶Transportation Problem

Multiobjective Linear-Programming
Problem

This problem has the usual set of linear-programming

constraints (Ax ¼ b, x �; 0) but requires the

simultaneous optimization of more than one linear

objective function, say p of them. It can be written as

“Maximize” Cx subject to Ax ¼ b, x � 0, where C is

a p � n matrix whose rows are the coefficients defined

by the p objectives. Here “Maximize” represents the

fact that it is usually impossible to find a solution to

Ax ¼ b, x � 0, that simultaneously optimizes

all the objectives. If there is such an (extreme)

point, the problem is thus readily solved. Special

multiobjective computational procedures are required

to select a solution that is in effect a compromise

solution between the extreme point solutions that

optimize individual objective functions. The possible

compromise solutions are taken from the set of

efficient (nondominated) solutions. This problem is

also called the vector optimization problem.

See

▶Efficient Solution

▶Multiobjective Programming

▶ Pareto-Optimal Solution

Multiobjective Programming

Ralph E. Steuer

University of Georgia, Athens, GA, USA

Introduction

Related to linear, integer, and nonlinear programming,

multiobjective programming addresses the extensions

to theory and practice of mathematical programming
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problems with more than one objective function.

Single objective programming must settle on a single

objective such as to maximize profit or minimize cost.

However, many if not most real-world problems are

in an environment of multiple conflicting criteria.

A sample of problems modeled with multiple

objectives:

Oil Refinery Scheduling

min {cost}

min {imported crude}

min {high sulfur crude}

min {deviations from demand slate}

Production Planning

max {total net revenue}

max {minimum net revenue in any period}

min {backorders}

min {overtime}

min {finished goods inventory}

Forest Management

max {timber production}

max {visitor days of recreation}

max {wildlife habitat}

min {overdeviations from budget}

Emerging as a new topic in the 1970s,

multiobjective programming has grown to the

extent that numerous books have been written on the

subject (e.g., Zeleny 1982; Yu 1985; Steuer 1986;

Miettinen 1999; Ehrgott 2005) and applications of

multiobjective programming can now be found in

virtually all areas of operational research.

Terminology

A multiobjective programming problem is the

following:

maximize f1ðxÞ ¼ z1f g
..
.

maximize fkðxÞ ¼ zkf g
subject to x 2 S

where k is the number of objectives, the zi are

criterion values, and S is the feasible region in

decision space. Let Z � Rk be the feasible region in

criterion space where z∈ Z if and only if there exists an

x∈ S such that z¼ (f1(x),. . ., fk (x)). LetK¼ {1,. . ., k}.

Criterion vector z 2 Z is nondominated if and only if

there does not exist another z ∈ Z such that zi � zi for

all i ∈ K and zi > zi for at least one i ∈ K. The set of

all nondominated criterion vectors is designated N and

is called the nondominated set. A point x 2 S is

efficient if and only if its criterion vector

z ¼ f1 xð Þ; . . . ; fk xð Þð is nondominated. The set of all

efficient points is designated E and is called the

efficient set.

LetU: Rk! R be the utility function of the decision

maker (DM). A z ∈ Z that maximizes U over Z is

an optimal criterion vector and any x ∈ S such that

(f1(x
),. . ., fk (x

)) ¼ z is an optimal solution of the

multiobjective program. The interest in the efficient

set E and the nondominated set N stems from the

fact that if U is coordinatewise increasing (i.e., more

is always better than less of each objective), x ∈ E and

z ∈ N. In this way, a multiobjective program

can be solved by finding the most preferred criterion

vector in N.

One might think that the best way to solve a

multiobjective program would be to assess the DM’s

utility function and then solve

maximize U z1; . . . ; zkð Þf g
subject to fiðxÞ ¼ zi; i 2 K; x 2 S

because any solution that solves this program is an

optimal solution of the multiobjective program.

However, multiobjective programs are usually not

solved in this way because (1) of the difficulty in

assessing an accurate enough U, (2) U would

almost certainly be nonlinear, and (3) the DM

would not likely see other candidate solutions

during the solution process from which to gain an

appreciation of the tradeoffs inherent in the

problem.

Consequently, multiobjective programming

employs mostly interactive procedures that only

require implicit, as opposed to explicit, knowledge

about the DM’s utility function. In interactive

procedures, the goal is to search the nondominated

set for the DM’s most preferred criterion vector.

Unfortunately, because of the size of N, finding the

best criterion vector in N is not a trivial task. As

a result, interactive procedures are carefully crafted

and can generally only be expected to conclude

with what is called a final solution, a solution that is

either optimal or close enough to being optimal

to satisfactorily terminate the decision process.
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Background Concepts

Along with the basics of conventional mathematical

programming, multiobjective programming requires

additional concepts not widely employed elsewhere

in operations research. The key ones are as follows.

1. Decision Space vs. Criterion Space. Whereas single

objective programming is typically studied in

decision space, multiobjective programming is

mostly studied in criterion space. To illustrate,

consider

maximize x1 � 1 2= x2 ¼ z1f g
maximize x2 ¼ z2f g
subject to x 2 S

where S in decision space is in Fig. 1, and Z in

criterion space is in Fig. 2. For instance z4, which

is the image of x4 ¼ (3, 4), is obtained by plugging

the point (3, 4) into the objective functions to

generate z4 ¼ (1, 4). In Fig. 2, the nondominated

set N is the set of boundary criterion vectors z
3

through z4 to z5 to z6, inclusive. In Fig. 1, the

efficient set E is the set of inverse images of the

criterion vectors in N, namely the set of boundary

points x3 through x4 to x5 to x6, inclusive. Note that

Z is not necessarily confined to the nonnegative

orthant.

2. Unsupported Nondominated Criterion Vectors.

A z ∈ N is unsupported if and only if it is possible

to dominate it by a convex combination of other

nondominated criterion vectors. In Fig. 2, the set of

unsupported nondominated criterion vectors is

the set of criterion vectors from z3 through z4 to z5,

exclusive of z3 and z5. The set of supported

nondominated criterion vectors is the set that

consists of z3 plus the line segment z5 to z6,

inclusive. Unsupported nondominated criterion

vectors can only occur in problems that possess

non-convex feasible regions; hence, they can

easily be present in integer and nonlinear

multiobjective programs.

3. Identifying Nondominated Criterion Vectors. To

graphically determine whether a z 2 Z is

non-dominated or not, visualize the nonnegative

orthant in Rk translated so that its origin is at z.

Note that, apart from z, a vector dominates z if and

only if the vector is in the translated nonnegative

orthant. In other words, z is nondominated if and

only if the translated nonnegative orthant is empty

of feasible criterion vectors other than for z.

Visualizing in Fig. 2 the nonnegative orthant

translated to z4, it can be seen that z4 is

nondominated. Visualizing the nonnegative

orthant translated to z
2, it can be seen that z2 is

dominated.

z4

z3

z2

z1

Z
z5

z1

z2

Multiobjective Programming, Fig. 2 Representation in
criterion space

x4

S

x3

x2

x1
x6

x5

x2

x1

Multiobjective Programming, Fig. 1 Representation in
decision space
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4. Payoff Tables. Assuming that each objective is

bounded over the feasible region, a payoff table is

of the form

1

21

k1

1k

2k

k2

121

k

∗

2
∗

∗1

2

k

2 k

where the rows are criterion vectors resulting from

individually maximizing the objectives. For

instance, z12 is the value of the second objective

function at the point that maximizes the first

objective. The z∗i entries along the main diagonal of

the payoff table are the maximum criterion values of

the different objectives over the nondominated set.

The minimum value in the ith column of the payoff

table is often used as an estimate of the minimum

criterion value of the ith objective overN because the

true minimum criterion values over N (called nadir

values) are typically difficult to obtain (Isermann and

Steuer 1988; Alves and Costa 2009)

5. z∗∗ Reference Criterion Vectors. A z∗∗ ∈ Rk

reference criterion vector is a criterion vector that

is suspended above the nondominated set. Its

components are given by

z��i ¼ z�i þ 2i

where the ∊i are small computationally significant

positive values.

6. Weighting Vector Space. Without loss of generality,

let

L ¼ l 2 Rkjli 2 0; 1ð Þ;
X

i2 k

li ¼ 1

( )

be weighting vector space. In an interactive

environment, subsets of L called interval defined

subsets are of the form

LðhÞ ¼ l 2 Rkjli 2 ‘
ðhÞ
i ; m

ðhÞ
i

� �

;
X

i2 k

li ¼ 1

( )

where h is the iteration number and

0 � l
ðhÞ
i � m

ðhÞ
i � 1 i 2 K

m
ðhÞ
i � l

ðhÞ
i ¼ m

ðhÞ
j � l

ðhÞ
j for all i 6¼ j

Sequences of successively smaller interval subsets

can be defined by reducing the m
ðhÞ
i � l

ðhÞ
i interval

widths at each iteration.

7. Sampling Programs. The weighted-sums program

max
X

i2K
li fiðxÞjx 2 S

( )

can be used to sample the nondominated

set because, as long as l ∈ L, the program

returns an efficient point. A disadvantage of the

weighted-sums program is that it cannot generate

unsupported points.

To make downward probes of the nondominated

set from a z∗∗ as required in many of

the interactive procedures of multiobjective

programming, the augmented Tchebycheff

program is employed

minimize a� r
X

i2K
zi

( )

subject to

a � li z
��
i � zi

� �

i 2 K

fiðxÞ ¼ zi i 2 K

x 2 S

z 2 Rk unrestricted

where a ∈ R, l ∈ L, and r is a small

computationally significant positive number.

A disadvantage of the augmented Tchebycheff

program is that, regardless of the value of r, there

may still remain unsupported members of the

nondominated set that the program is unable to

compute (Steuer 1986).

A program that has better mathematical

properties, although somewhat more difficult to

implement, is the lexicographic Tchebycheff

program
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lex min a,�
X

i2K
zi

( )

subject to

a � li z
��
i � zi

� �

i 2 K

fiðxÞ ¼ zi i 2 K

x 2 S

z 2 Rk unrestricted

where l ∈ L. At the first lexicographic level it is

solved to minimize a. At the second lexicographic

level, subject to only those solutions that minimize

a, �Pi2K zi is minimized. Not only does the

lexicographic Tchebycheff program always

return a nondominated criterion vector, but if z is

nondominated, there then exists a l 2 L such that z

uniquely solves the program (Steuer 1986).

8. Aspiration Criterion Vectors. An aspiration

criterion vector q ∈ Rk is a criterion vector

specified by a DM to reflect his or her hopes or

expectations from a problem. An aspiration

criterion vector, when specified, is typically

projected onto N by an augmented or

lexicographic Tchebycheff program in order

to find the nondominated criterion vector closest

to the aspiration criterion vector.

9. T-vertexl-vectorDefined by q and z∗∗. TheT-vertex

(Tchebycheff-vertex) l-vector defined by q and z∗∗

is the l∈ L whose components are given by

li ¼
1

z��i � qi
� �

X

i2K

1

z��j � qj

� �

2

4

3

5

�1

TheT-vertexl-vector,when installed inanaugmented

or lexicographic Tchebycheff program, causes the

program to probe the nondominated set along a line

that goes through both z∗∗ and q in the direction

� 1

l1
; . . . ;

1

lk

	 


Vector-Maximum Algorithms

In the linear case, a multiple objective linear program

(MOLP) is sometimes written in vector-maximum form

‘‘max ’’ , Cx ¼ zjx 2 Sf g

where C is the k � n matrix whose rows are the

coefficient vectors of the k objectives. A point is

a solution to a vector-maximum problem if and

only if it is efficient. Algorithms for characterizing

the efficient set E of an MOLP are called

vector-maximum algorithms. In the 1970s,

considerable effort was spent on the development of

vector-maximum codes to compute all efficient

extreme points. The thought was that, by reviewing

the list of nondominated criterion vectors associated

with the efficient extreme points, a DM would be

able to identify his or her efficient extreme point of

greatest utility in hopes of satisfactorily terminating

the decision process.

Unfortunately, MOLPs have many efficient

extreme points as indicted in Table 1 (sample size of

ten for each problems size). Whereas the number of

variables and the number of constraints play a role,

the factor most dramatically affecting the number

of efficient extreme points is the dimensionality of

the criterion cone, the convex cone generated by the

gradients of the k objective functions.

With nondominated sets of sizes indicated in

Table 1, other approaches have been attempted

such as by Klamroth, Tind and Wiecek 2002, but

mostly, the figures have led to interactive procedures

moving to the forefront of multiobjective

programming.

Interactive Procedures

In interactive multiobjective programming, an

exploration over the feasible region for the best point

in the non-dominated set is conducted. Interactive

Multiobjective Programming, Table 1 Average numbers of
MOLP efficient extreme points

MOLP size k� m� n

Efficient extreme
points

Approximate times
in seconds

3 � 50 � 75 1,798 2

3 � 100 � 150 11,897 40

3 � 200 � 300 128,237 1,600

4 � 50 � 75 9,921 30

4 � 100 � 150 682,920 3,500

5 � 50 � 75 141,444 300
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procedures are characterized by phases of decision

making alternating with phases of computation.

A pattern is generally established and kept repeating

it until termination. At each iteration, a solution,

or a group of solutions, is generated for examination.

As a result of the examination, the DM inputs updated

preference information to the solution procedure in

the form of values of the controlling parameters

(preference weights, aspiration criterion vectors,

l-vector interval widths, criterion vector components

to be increased/decreased/held fixed, criterion vector

lower bounds, etc., depending upon the particular

interactive procedure).

While many interactive procedures have been

proposed, virtually all of them more or less follow

the same general algorithmic outline. As portrayed

in Fig. 3, the general algorithmic outline includes:

• an initial setting of the controlling parameters;

• optimization of one or more mathematical

programming problems to probe (i.e., sample)

the nondominated set;

• examination of the criterion vector results; and

• a resetting of the controlling parameters for the

next iteration in the light of what was learned on

the current iteration

With the consensus being that a range of interactive

procedures is necessary because the most appropriate

one to use is often application or user decision-making

style dependent, ten of the most prominent interactive

procedures, along with the dates of their original

articles, are as follows:

1. ECON: e-Constraint Method, Traditional method

2. STEM: (Benayoun et al. 1971)

3. GDF: Geoffrion-Dyer-Feinberg Procedure (1972)

4. ZW: Zionts-Wallenius Procedure (1976)

5. IGP: Interactive Goal Programming (Spronk 1981)

6. WIERZ:Wierzbicki’s Aspiration Criterion Vector

Method (1982, 1986)

7. TCH: Tchebycheff Method (Steuer and

Choo 1983)

8. RACE: Pareto Race (Korhonen and Laakso 1986;

Korhonen and Wallenius 1988)

9. NIMBUS: (Miettinen 1999)

10. MICA: Modified Interactive Chebychev

Algorithm (Luque et al. 2010)

Other interactive multiobjective programming

procedures include those by Nakayama and Sawaragi

(1984), Climaco and Antunes (1987), and Koksalan

and Karasakal (2006).

Selected Interactive Procedures

The Aspiration Criterion Vector Method (WIERZ)

begins by asking the DM to specify an aspiration

criterion vector q(1) < z∗∗. Using the T-vertex

l-vector defined by q(1) and z∗∗, the augmented

Tchebycheff program is solved, thus projecting q(1)

onto N in order to produce z(1). In the light of z(1),

the DM specifies a new aspiration criterion vector

q(2). Using the T-vertex l-vector defined by q(2) and

z∗∗, the augmented Tchebycheff program is solved,

thus projecting q(2) onto N in order to produce z(2). In

the light of z(2), the DM specifies a third aspiration

criterion vector q(3), and so forth. Algorithmically,

the steps are as follows:

Step 1. h ¼ 0. Construct a payoff table, form a z∗∗

reference criterion vector, and specify r > 0 for

use in the augmented Tchebycheff program. The

DM specifies aspiration criterion vector q(1).

Step 2. h ¼ h + 1. Compute T-vertex l-vector defined

by q(h) and z∗∗.

Start

Set controlling parameters

for the first iteration

Further preparations

(if necessary)

Solve sampling

program(s)

Done?
Y

N

Stop

Reset controlling parameters

for the next iteration

Examine criterion

vector results

Multiobjective Programming, Fig. 3 General algorithmic
outline
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Step 3. Using the T-vertex l-vector, solve the

augmented Tchebycheff program for z(h).

Step 4. In the light of what the DM has been able to

learn about the problem so far, the DM

contemplates z(h).

Step 5. If the DM wishes to cease iterating, stop with

(z(h), x(h)) as the final solution. Otherwise, continue

on to Step 6.

Step 6. The DM specifies another aspiration criterion

vector, designated q(h�1). Go to Step 2.

Consider Fig. 4 in which N is the set of boundary

criterion vectors z1 through z(h) to z2, inclusive. In the

figure, it can be seen the way aspiration criterion vector

q(h) is projected onto the nondominated set by means of

the augmented Tchebycheff program. Note that the

direction of the arrow emanating from z∗∗ and going

through q(h) is given by

� 1

l1
; . . . ;

1

lk

	 


where the li are the components of the T-vertex

l-vector defined by q(h) and z∗∗. Thus changing q(h)

changes the z(h) generated by the sampling program.

Instead of generating only one solution at each

iteration, the Tchebycheff Method (TCH) generates

groups of solutions by making multiple probes of

each subset in a sequence of progressively smaller

subsets of N. Letting P be the number of solutions to

be presented to the DM at each iteration, TCH begins

by generating P well-spaced l-vectors from L(1) ¼ L.

Then the lexicographic Tchebycheff program is solved

for each of the l-vectors. From the P resulting

nondominated criterion vectors, the DM selects his or

her most preferred, designating it z(1). At this point, the

interval widths of L(1) are reduced and centered

about the T-vertex l-vector defined by z(1) and z∗∗ to

form an interval defined subset L(2). Then P

well-spaced l-vectors are generated from L(2) and

the lexicographic Tchebycheff program is solved for

each of the l-vectors. From the P resulting

non-dominated criterion vectors, the DM selects

the most preferred, designating it z(2). Now the

interval widths of L(2) are reduced and centered

about the T-vertex l-vector defined by z(2) and z∗∗ to

form an interval defined subset L(3). Then P

well-spaced l-vectors are generated from L(3) and

the lexicographic Tchebycheff program is solved for

each of them, and so forth.

Another procedure that also generates

multiple solutions at each iteration, but

employs the weighted-sums program, is the

Geoffrion-Dyer-Feinberg (GDF) procedure. GDF

begins with the specification of an initial feasible

criterion vector z(0). Then the DM specifies a l-vector

that is to be reflective of the local marginal

tradeoffs at z(0). Using this l-vector, the weighted-sums

program is solved for criterion vector y(1). Then the line

through the feasible region in criterion space Z that starts

at z(0) and ends at y(1) is divided into segments so as to

create P equally spaced criterion vectors. The most

preferred of the equally spaced criterion vectors

becomes z(1). Then the DM specifies a new l-vector

that is to be reflective of the local marginal tradeoffs at

z(1). Using this l-vector, the weighted-sums program is

solved for criterion vector y(2). Then the line segment

through Z that starts at z(1) and ends at y(2) is divided into

segments so as to create P new equally spaced criterion

vectors. The most preferred of the new equally spaced

criterion vectors becomes z(2), and so forth.

Features from different procedures can easily be

combined. For instance, drawing from STEM, WIERZ

and NIMBUS, one could have the following. After

forming a z∗∗ reference criterion vector, an initial

aspiration criterion vector q(1) specified. Then one of

the Tchebycheff programs is solved using the T-vertex

l-vector defined by q(1) and z∗∗ to produce z(1). TheDM

then specifies the components of z(1) that are to be

z (h)

q (h)

z2

z1

z2

z

z1

z **

Multiobjective Programming, Fig. 4 Projection of q(h) onto
the nondominated set
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increased, the amounts of each increase, the components

that are to be relaxed, and the amounts of each relaxation

in order to form a second aspiration criterion vector q(2).

Using the T-vertex l-vector defined by q(2) and z∗∗, one

of the Tchebycheff programs is solved to produce z(2).

The DM then specifies which components of z(2) are to

be increased, the amounts of each increase, the

components that are to be relaxed, and the amounts of

each relaxation in order to form q(3). Using the T-vertex

l-vector defined by q(3) and z∗∗, one of the Tchebycheff

programs is solved to produce z(3), and so forth.

Concluding Remarks

Because the weighted-sums, augmented Tchebycheff,

and other variants of these programs that are used to

sample the nondominated set are single criterion

optimization problems, conventional mathematical

programming software can in most cases be

employed (Gardiner and Steuer 1994). In this way,

interactive procedures can address multiobjective

programming problems with as many constraints and

variables as in single objective programming.

Unfortunately, in multiobjective programming,

there are limitations with regard to the number of

objectives. Problems with up to about five objectives

can generally be accommodated, but above this

number, difficulties can arise because of the rate at

which the nondominated set grows as the number of

objectives increases.

See

▶Decision Analysis

▶Goal Programming

▶Linear Programming

▶Multiple Criteria Decision Making

▶Utility Theory
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Multi-armed Bandit Problem

Sequential decision-making problem under

uncertainty involving a set of machines (arms) each

offering random unknown rewards, in which the

decision maker must decide each period which

machine (arm) to play (pull), with the objective of

maximizing the total reward received. The problem is

analogous to playing slot machines in a gambling

casino, but has many practical OR/MS applications

involving dynamic stochastic resource allocation.

One of the basic trade-offs in these types of problems

is between exploitation (e.g., playing the machine that

has given the best mean reward thus far) versus

exploration (playing a machine that has not been tried

or one that has been tried infrequently with highly

variable rewards).

Multi-attribute Utility Theory

Rakesh K. Sarin

University of California, Los Angeles, CA, USA

Consider a decision problem such as selection

of a job, choice of an automobile, or resource

allocation in a public program (education, health,

criminal justice, etc.). These problems share a common

feature—decision alternatives impact multiple

attributes. The attractiveness of an alternative therefore

depends on how well it scores on each attribute of

interest and the relative importance of these attributes.

Multi-attribute utility theory (MAUT) is useful in

quantifying relative attractiveness of multi-attribute

alternatives.

The following notation will be used:

Xi the set of outcomes (scores, consequences) on the ith

attribute

xi a specific outcome in Xi

X X1 � X2 � . . .� Xn (Cartesian product)

ui a single attribute utility function ui : Xi! ℝ

u the overall utility function, u: X! ℝ

≳ “is preferred to”

A decision maker uses the overall utility function, u,

to choose among available alternatives. The major

emphasis of the work on multi-attribute utility theory

has been on questions involving u: on conditions for its

decomposition into simple polynomials, on methods

for its assessment, and on methods for obtaining

sufficient information regarding u so that the

evaluation can proceed without its explicit

identification with full precision.

The primitive in the theory is the preference

relation ≳ defined over X. Luce et al. (1965) and

Fishburn (1964) provide conditions on a decision

maker’s preferences that guarantee the existence of

a utility function u such that

x1; . . . ; xnð Þ≳ y1; . . . ; ynð Þ;
xi; yi 2 Xi; i ¼ 1; . . . n

if and only if

u x1; . . . ; xnð Þ � u y1; . . . ynð Þ

(1)

Additional conditions are needed to decompose

the multi-attribute utility function u into simple parts.

The most common approach for evaluating

multi-attribute alternatives is to use an additive

representation. For simplicity, assume that there exist

the most preferred outcome x�i and the least preferred

outcome x0i on each attribute i ¼ 1 to n. In the additive

representation, a real value u is assigned to each

outcome (x1,. . ., xn) by

u x{; . . . ; xnð Þ ¼
Xn

i¼{

wiui xið Þ (2)

where the {ui} are single attribute utility functions over

Xi that are scaled from 0 to 1, i.e., ui (x
�
i )¼ 1, ui (x

0
i )¼ 0

for i ¼ 1 to n, and the {wi} are positive scaling

constants reflecting relative importance of the

attributes with
Pn

j¼1 wj ¼ 1.

If the interest is in simply rank-ordering

the available alternatives, then the key condition for

the additive form in (2) is mutual preferential

independence. The resulting utility function is called

an ordinal value function. Attributes Xi and Xj are

preferentially independent if the tradeoffs

(substitution rates) between Xi and Xj are independent

of all other attributes. Mutual preferential

independence requires that preference independence

holds for all pairs Xi and Xj. Essentially, mutual

preferential independence implies that the

indifference curves for any pair of attributes are

unaffected by the fixed levels of the remaining
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attributes. Debreu (1960), Luce and Tukey (1964), and

Gorman (1968) provide axiom systems and analysis

for the additive form (2).

If, in addition to rank order, one is also interested

in the strength of preference between pairs of

alternatives, then additional conditions are needed.

The resulting utility function is called a measurable

value function, and it may be used to order the

preference differences between the alternatives.

The key condition for an additive measurable value

function is difference independence (see Dyer

and Sarin 1979). This condition asserts that the

preference difference between two alternatives that

differ only in terms of one attribute does not depend

on the common outcomes on the other n� 1 attributes.

Finally, perhaps the most researched topic is the

case of decisions under risk where the outcome of

an alternative is characterized by a probability

distribution over X. Denote ~X as the set of all simple

probability distributions over X. Assume that for any

p 2 ~X there exists an alternative that can be identified

with p, and thus p could be termed as a risky

alternative. The outcome of an alternative p 2 ~X

might be represented by the lottery which assigns

probabilities p1; . . . ; pl;
Pl

j¼1 pj ¼ 1, to the outcomes

xl,. . ., xl ∈ X, respectively. For the choice among risky

alternatives p; q 2 ~X, von Neumann and Morgenstern

(1947) specified conditions on the decision maker’s

preference relation ≳ over ~X that imply:

p≳q

if and only if
X

x2X
pðxÞuðxÞ �

X

x2X
qðxÞuðxÞ:

(3)

Notice that the same symbol u has been used to denote

ordinal value function, measurable value function, and

now the von Neumann-Morgenstern utility function. The

context, however, makes the interpretation clear.

A majority of the applied work in multi-attribute

utility theory deals with the case when the von

Neumann-Morgenstern utility function is decomposed

into the additive form (2). Fishburn (1965a, b) derived

necessary and sufficient conditions for a utility function

to be additive. The key condition for additivity is the

marginality condition, which states that the preferences

for any lottery p ∈ X should depend only on

the marginal probability distributions over Xi and not

on their joint probability distribution. Thus, for

additivity to hold, the two lotteries below must be

indifferent:

.5

.5.5

.5

(x1, x2)∗ ∗

(x1, x2 )
0 0

(x1, x2 )
0 ∗

(x1, x2 )∗ 0

~

Notice that in either lottery, the marginal

probability of receiving the most preferred outcome

or the least preferred outcome on each attribute is

identical. A decision maker may, however, prefer the

right-hand side lottery over the left-hand side lottery if

the decision maker wishes to avoid a 0.5 chance of the

poor outcome ðx01; x02Þ on both attributes.

The assessment of single attribute utility

functions {ui} in (2) will require different methods

depending on whether the overall utility represents an

ordinal value function, a measurable value

function, or a von Neumann-Morgenstern utility

function. Keeney and Raiffa (1976) discuss methods

for assessing multi-attribute ordinal value function

and multi-attribute von Neumann-Morgenstern

utility function. Dyer and Sarin (1979) and von

Winterfeldt and Edwards (1986) discuss assessment

of multi-attribute measurable value function.

Besides the additive form (2), a multiplicative form

for the overall utility function has also found

applications in a wide variety of contexts. In the

multiplicative representation, a real value u is

assigned to each outcome (x1,. . ., xn) by

1þ ku x{; . . . ; xnð Þ ¼
Yn

i¼{

1þ kkiui xið Þ½ �

" #

where the {ui} are single attribute utility functions over

Xi that are scaled from zero to one, the {ki} are positive

scaling constants, k is an additional scaling constant

satisfying k > �1, and

1þ k ¼
Yn

i¼{

1þ kkið Þ½ �:

If u is a measurable value function, then

weak difference independence along with mutual
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preference independence provides the desired result.

An attribute is weak difference independent of the

other attributes if preference difference between pairs

of levels of that attribute do not depend on fixed levels

of any of the other attributes. Thus, for xi, yi,wi, zi∈ Xi,

the ordering of preference difference between xi and yi,

and wi and zi, remains unchanged whether one fixes the

other attributes at their most preferred levels or at their

least preferred levels.

If the overall utility function is used for ranking

lotteries as in (3), then a utility independence condition,

first introduced by Keeney (1969), is needed to provide

the multiplicative representation (4). An attribute is said

to be utility independent of the other attributes if the

decision maker’s preferences for lotteries over this

attribute do not depend on the fixed levels of the

remaining attributes. Mutual preferential independence

and one attribute being utility independent of the others

are sufficient to guarantee either the multiplicative form

(4) or the additive form (2). The additive form results if

in (4) k ¼ 0 or
Pn

j¼1 kj ¼ 1. Keeney and Raiffa (1976)

discuss methods for calibrating the additive and

multiplicative forms for the utility function. In the

literature, other independence conditions have been

identified that lead to more complex nonadditive

decompositions of the utility function. These general

conditions are reviewed in Farquhar (1977).

If utilities, importance weights, and probabilities

are incompletely specified, then the approaches of

Fishburn (1964) and Sarin (1975) can be used to

obtain a partial ranking of alternatives.

The key feature of multi-attribute utility theory is to

specify verifiable conditions on a decision maker’s

preferences. If these conditions are satisfied, then the

multi-attribute utility function can be decomposed into

simple parts. This approach of breaking the complex

value problem (objective function) into manageable

parts has found significant applications in decision

and policy analysis. In broad terms, multi-attribute

utility theory facilitates measurement of preferences

or values. The axioms of the theory have been found to

be useful in suggesting approaches for measurement of

values. In physical measurements (e.g., length), the

methods for measurement have been known for

a long time and the theory of measurement has added

little to suggesting new methods. In the measurement

of values, however, several new methods have been

developed as a direct result of the theory.

See

▶Analytic Hierarchy Process

▶Decision Analysis

▶Multiple Criteria Decision Making

▶ Preference Theory

▶Utility Theory
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Multi-Echelon Inventory Systems

Inventory systems comprised of multiple stages of

inventory control decision making, e.g., in a supply

chain, there are inventory decisions to be made at the

production facility, the distributor, and the retail outlet,

among others.

See

▶ Inventory Modeling

Multi-Echelon Logistics Systems

Logistics systems comprised of several layers of

individual logistics problems.

See

▶Logistics and Supply Chain Management

Multiple Criteria Decision Making

Ramaswamy Ramesh and Stanley Zionts

University at Buffalo, The State University of

New York, Buffalo, NY, USA

Introduction

Multiple Criteria Decision Making (MCDM) refers to

making decisions in the presence of multiple, usually

conflicting, objectives. Multiple criteria decision

problems pervade almost all decision situations

ranging from common household decisions to

complex strategic and policy level decisions in

corporations and governments. Prior to the

development of MCDM as a discipline, such

problems have been traditionally addressed as

single-criterion optimization problems by (i) deriving

a composite measure of the objectives and optimizing

it, or (ii) by choosing one of the objectives as the main

decision objective for optimization and solving the

problem by requiring an acceptable level of

achievement in each of the other objectives. MCDM

as a discipline was founded on two key concepts of

human behavior, introduced and explored in detail by

Herbert Simon in the 1950s: satisficing and bounded

rationality (Simon 1957). The two are intertwined

because satisficing involves finding solutions that

satisfy constraints rather than optimizing the

objectives, while bounded rationality involves

setting the constraints and then searching for

solutions satisfying the constraints, adjusting the

constraints, and then continuing the process until

a satisfactory solution is found. The rest of this article

overviews important aspects of MCDM, including

basic concepts, a taxonomy, modeling techniques,

and algorithms.

Basic Concepts

An MCDM problem can be broadly described as

follows. Let D ¼ {d1,. . ., dn} denote the decision

space, comprising the set of possible decision

alternatives to a problem. Let C ¼ {C1,. . ., Cp}

denote the objective space, comprising of a set of p

mutually conflicting objectives. Without loss of

generality, assume all objectives are to be

maximized. Let E: D ! C be a mapping of the

decision space on to the objective space, where E(di)

is the vector (Ci
1,. . .,C

i
p). Each element of this vector is

an assessment, or the value of the corresponding

objective provided by the decision alternative di.

A fundamental concept in MCDM is that of

dominance, defined as follows.

Definition 1 (Dominance). A decision alternative di
said to be dominated by another alternative dj if

Ci
k � C

j
k, k¼ 1,. . ., p with at least one strict inequality.

In the above definition, if all the inequalities hold as

strict inequalities, then the dominance is said to be

strong; otherwise, it is called weak. The following

concept is a logical extension of the dominance

concept.

Definition 2 (Convex Dominance). An alternative di
is said to be convex dominated by a subset D̂ � D if it
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is dominated by a convex combination of the

alternatives in D̂

The above definitions lead to a central theme of all

MCDM techniques as follows.

Definition 3 (Efficiency). An alternative dj is said to

be efficient or nondominated in D if there is no other

alternative in D that dominates it, even weakly.

The concept of efficiency can be extended

to convex dominance as well. In this case, an

efficient alternative is known as convex-efficient or

convex-nondominated. The following theorem of

Geoffrion (1968) shows how the efficiency of an

alternative can be determined. Zionts and Wallenius

(1980) introduced a different but equivalent

methodology that solves a number of problems

including that one.

Theorem 1. Consider any decision alternative di and

its mapping on the objective space (Ci
1,. . ., C

i
p). The

decision di is efficient if only if the following linear

program is unbounded:

Maximize
Xp

j¼1
wjC

i
j

subject to
Xp

j¼1
wjC

k
j � 0; k ¼ 1; . . . ; n; k 6¼ i

wj � 0; j ¼ 1; . . . ; p:

A Taxonomy of MCDM Methods

The MCDM methods proposed in the literature cover

a wide spectrum, and there are several alternative ways

of organizing them into a taxonomy. The taxonomy

described here is based on Chankong et al. (1984),

which is one of the interpretations of the world of

MCDM models. At the outset, MCDM methods

can be classified into two broad classes: vector

optimization methods and utility optimization

methods. Vector optimization is primarily concerned

with the generation of all efficient decision

alternatives. These methods do not require

intervention of a decision maker. These methods

do generate a subset of nondominated solutions.

Some of the well-known vector optimization methods

include those of Geoffrion (1968), Villarreal and

Karwan (1981), and Yu and Zeleny (1976).

The utility optimization methods can be broadly

organized according to the following dimensions

(see, for example, Zionts 1979):

1. Nature of decision space: Explicit or Implicit; and

2. Nature of decision outcomes: Stochastic or

Deterministic.

In an explicit decision space, decision alternatives

are stated explicitly. A classical example is the home

buying problem, where a decision maker/home buyer

is faced with a set of possible homes to consider

purchasing. For an implicit decision, alternatives

are stated using a set of constraints, such as in

linear or nonlinear programming where a feasible

alternative must satisfy the constraints. An implicit

decision situation can be further categorized as

continuous or discrete. The decision outcomes are

stochastic or deterministic depending on whether

the mapping function E: D ! C is stochastic or

deterministic. Table 1 classifies MCDM methods

broadly along the two dimensions. There are many

approaches in the various segments of this

classification. Here, the discussion focuses on the

best-known methods.

Methodological Approaches

Deterministic Decision Analysis — Deterministic

decision analysis is concerned with finding the most

preferred alternative in decision space by constructing

a value function representing a decision maker’s

preference structure, and then using the value

function to identify the most preferred solution.

A value function v(C1, C2,. . ., Cp) is a scalar-valued

Multiple Criteria Decision Making, Table 1 A taxonomy of
MCDM approaches

Decision
outcome

Decision space

Explicit Implicit

Deterministic Deterministic
Multiattribute
Decision Analysis

Deterministic
Multiobjective
Mathematical
Programming

Stochastic Stochastic
Multiattribute
Decision Analysis

Stochastic Multiobjective
Mathematical
Programming
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function defined with the property that v(C1, C2,. . .,

Cp) > v (C0,. . ., C0p) if and only if (C1, C2,. . ., Cp) is at

least as preferred as (C01,. . ., C
0
p) (Keeney and Raiffa

1976). The construction of the value function involves

choice decisions made by the decision maker.

Generating value functions is simplified if certain

conditions hold, in which case it is possible to

decompose the above functions into partial value

functions vk(Ck) for each value of k.

The decomposition and certain simplifications of

the value function may be carried out if certain

underlying assumptions on the decision maker’s

preference structure hold. One of these is

preferential independence, which is stated as

follows: Consider a subset of objectives denoted as

Ĉ. If the decision maker’s preferences in the space

C � Ĉ are the same for any set of arbitrarily fixed

levels of the objectives Ĉ, then Ĉ is said to be

preferentially independent of C � Ĉ. The set C is

said to be mutually preferentially independent if

every subset of C is preferentially independent of its

complement with respect to C. When mutual

preferential independence holds, an additive value

function of the form

uðdiÞ ¼
Xp

k¼1

lkuk Ci
k

� �

where lk is a scalar constant

is appropriate. There are other nonlinear forms that can

be used as well. Of course, an additive value function,

if appropriate, is highly desirable. Once the value

function has been determined, it can be used to

evaluate and rank the alternatives.

Stochastic Decision Analysis — Stochastic

decision analysis is similar to the deterministic case,

except that the outcomes are stochastic, and utility

functions are constructed instead of value functions.

The ideas are similar. There is an analogous condition

to that described for the discrete case above. It

involves utility independence. A subset of objectives

Ĉ is utility independent of its complement if the

conditional preference order for lotteries involving

changes in Ĉ does not depend on the levels at which

the objectives in Ĉ are fixed. Since utility

independence refers to lotteries and preferential

independence refers to deterministic outcomes,

utility independence implies preferential

independence, but not vice versa. Analogous to

mutual preferential independence, the set C is said

to be mutually utility independent if every subset of C

is utility independent of its complement with respect

to C. Keeney and Raiffa (1976) show that if C is

mutually utility independent, then a multiplicative

utility function is appropriate. This function is of the

form

uðdiÞ ¼
Y

p

k¼1

mkuk Ci
k

� �

;

where u(di) is the overall utility of the decision

alternative di, uk (C
i
k) is the utility of its kth objective

component, and mk is a scalar constant. A more

stringent set of assumptions must hold in order that

the utility function be additive. In the stochastic case,

not only must a utility function be estimated, but

probabilities of various outcomes must also be

estimated by the decision maker.

Multiobjective Mathematical Programming —

Considerable work has been done in the multiobjective

mathematical programming area. These include

Multiobjective Linear Programming (MOLP) and

Multiobjective Integer Programming (MOIP). Goal

programming (Lee 1972), the method of Zionts and

Wallenius (1976, 1983), the Step Method of Benayoun

et al. (1971), and themethod of Steuer (1976) are some of

the better-known MOLP methods. Goal programming

and the method of Zionts and Wallenius are now

described in more detail.

Goal programming is an extension of linear

programming and was proposed by Charnes and

Cooper in 1961. A description of this technique is as

follows. Consider the following MOLP problem:

Maximize Cx

subject to Ax � b ðMOLPÞ

x � 0

where C ¼ (ckj) is a (p � n) matrix, A is an (m � n)

matrix and x is an (n � 1) vector. Let (a1,. . ., ap)

denote the goals with respect to the desired levels

of attainment in the objectives specified by

a decision maker. Introduce over and under

attainment variables yk
+ and y�k for each objective

and add the following constraints, where ck is the

kth row of C:

ckx� yþk þ y�k ¼ ak; k � 1; . . . ; p:
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Let wk denote the penalty for the net deviation from

the goal of objective k ¼ 1,. . ., p. Then the goal

programming problem is formulated as follows:

Minimize
Xp

j¼1
wk yþk þ y�k
� �

ðGPÞ

subject to
X

n

j¼1

ckjxj � yþk þ y�k ¼ ak; k ¼ 1; . . . ; p

Ax � b

x; y � 0

The above problem minimizes a weighted sum of

deviations from the desired goals, where weights are

required from the decision maker. The goal

programming formulation is an attempt to find

a solution that is closest to the decision maker’s

desired goals, while also responding to his

differential emphasis on the nonattainment of the

various goals.

The Zionts and Wallenius method follows an

interactive approach using pairwise evaluations of

decision alternatives by a decision maker to solve

problem MOLP. The method starts by choosing an

initial set of weights l 2 Rp, and maximizing a linear

composite objective lCx. This generates a corner point

of {Ax � b, x � 0} that is efficient. Call this solution

x0. Next, the adjacent corner points of x0 that are also

efficient (and whose edges leading to them are also

efficient) are determined. Call this set S0. The decision

maker is asked to choose between x0 and a solution

from S0 until: (i) either he or she prefers x0 to all the

points in S0, or (ii) prefers some solution in S0 to x0. If

x0 is preferred to all the points in S0, then the method

stops with x0 as a “locally” best preferred corner-point

solution. Otherwise, if some solution in S 0 is preferred

to x0, then it is devoted as x0. Linear constraints of the
form l (Cx0 � Cx00) � �∊ where x0 is preferred to x00

and 2 is a small positive quantity are generated from

the decision maker’s pairwise preferences. A new set

of weights that satisfy these constraints are then

obtained. If these constraints are in conflict, then

some of them are dropped in determining the new

weights. Call the new set l00. Maximizing the

composite objective l00Cx, a new efficient corner

point is generated, and the above steps are repeated

until a corner point that is preferred to all its adjacent

efficient corner points is obtained.

Compared to MOLP, research on MOIP is rather

limited. Some of the earlier works on MOIP have been

in the domain of vector optimization. Bitran and

Rivera (1982) provided an implicit enumeration

algorithm for determining the efficient set of 0-1

MOIP problems. Pasternak and Passy (1973) studied

the vector optimization problem for two objectives.

Klein and Hannan (1982) extended Pasternak and

Passy’s work to more than two objectives. Villarreal

and Karwan (1981) generalized the classical dynamic

programming recursions to a multicriteria framework.

Ramesh et al. (1989) followed the utility optimization

approach to find the most preferred solution to an

MOIP problem.

The method of Ramesh et al. (1989) follows

a branch-and-bound search strategy using the Zionts

and Wallenius method for bounding. The decision

maker’s preference structure is assessed using

pairwise evaluations and an internal representation of

the preference structure is successively built during the

course of the branch-and-bound search. This

representation is used to deduce the decision maker’s

preferences wherever possible so that the cognitive

load arising out of the pairwise judgments can be

minimized. The internal representation is based on

the concept of convex cones as described below

(Korhonen et al. 1984).

Consider a two-dimensional objective space as

shown in Fig. 1. Let �C and Ĉ be two points in this

space such that Ĉ is preferred to �C. Assuming

a quasiconcave and nondecreasing utility function for

the decision maker, it follows that every point falling

on the ray ĈjĈ ¼ Ĉþ m ð �C� ĈÞ; m � 0
� �

is less

preferred than Ĉ and no more preferred than �C.

Consequently, every point in this ray and those

dominated by it can be eliminated from

consideration. This ray is called a convex cone, and

is illustrated in Fig. 1. Every pairwise judgment of

a decision maker yields a convex cone and the cones

are ordered into a tree structured to eliminate search

regions efficiently and minimize the need for the

decision maker’s pairwise evaluations throughout

the search procedure.

Other Explicit Decision Space Methods — Several

methods have been proposed for finding the most

preferred alternative from an explicitly stated

decision space without estimating a value function.

These techniques are methods of deterministic

decision analysis, and there is substantial interest in
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these problems. Three important methods in this

category are the Multiple Criteria Decision Making

(MCDM) Analytic Hierarchy Process (Saaty 1980),

the method of Korhonen et al. (1984), and the AIM

method (Lotfi et al. 1992).

The idea of Analytic Hierarchy Process (AHP) is

that one can structure a problem hierarchically, and

then make judgments regarding the relative

importance of various aspects of the problem. As

a result of these judgments, a ranking is produced.

A simple decision problem would have a hierarchy

that consists of three levels, from the top down: 1)

the goal; 2) the criteria involved; and 3) the

alternatives. The number of levels depends on the

nature of the problem involved. In general, consider

an n-alternative, p-criteria problem. Then the decision

maker is asked to fill in entries in p + 1 reciprocal

matrices as follows:

1. One (p � p) matrix relating each criterion to all

others; and

2. P (n� n) matrices, each relating one criterion to all

alternatives.

Each reciprocal matrix has all diagonal elements

one, and off-diagonal elements reciprocal, that

is, aij ¼ 1/aji. Accordingly, the decision maker need

only provide just less than half the entries,

more specifically, the [p(p � 1)/2] + p[n(n � 1)/2]

off-diagonal (lower or upper) entries in the matrix.

Though the amount can be reduced to as few as

(p � 1) + p(n � 1) entries (having no redundancy),

the reduction in information required increases the

cognitive load on the decision maker to provide

entries, and does not provide the redundancy and

cross checking that furnishing the complete input

provides.

In filling in the matrices, the decision maker is asked

to provide numbers between 1/9 and 9 reflecting the

relative importance between the aspects involved. One

of the matrices reflects the comparison among criteria

and the p other matrices reflect evaluations of

alternatives with respect to each criterion. AHP next

solves for the right eigenvector, or characteristic

vector, of each matrix. An eigenvector of a matrix

may be estimated by taking the geometric mean of the

elements of each row of the matrix (for a p � p matrix,

the pth root of the product of the p elements of a row),

and then normalizing the resulting vector so that the sum

of the elements is unity. The consistency of the matrix

(as differentiated from a matrix generated at random)

may be tested using a calculation on the matrix. By the

user furnishing fewer than all p(p� 1)/2 entries required

in the matrix, the test on consistency is compromised.

The scaled eigenvectors are then used to score and rank

each alternative.

Korhonen et al. (1984) presented an interactive

method employing pairwise comparisons for solving

the discrete, deterministic MCDM problem. Assuming

a quasiconcave and nondecreasing utility function,

they introduce the concept of convex cones.

Choosing an arbitrary set of positive weights wi,

i ¼ 1,. . ., p, a composite linear utility function is

initially generated. Using the composite as a proxy

for the true utility function, the decision alternative

maximizing the composite is generated. Call this

solution d0. Using the mapping E: D ! C, all

adjacent efficient decision alternatives to d0 (as in the

Zionts-Wallenius method) are determined. This is

done for the region that consists of all convex

combinations of feasible solutions. Call the set of

such solutions S0. The decision maker is asked to

choose between d0 and some solution from S0. Based

on the response, a constraint on the weights is

generated, as in the Zionts and Wallenius method

for MOLP, and a convex cone is derived. Any

solution in the set S0 dominated by the cone is

removed from S0, and the above step is repeated until

either d0 is preferred to all solutions in S0 or some

solution in S0 is preferred to d0. The constraints on

the weights and the convex cones generated at each

iteration of this step are accumulated. The set of cones

is used to deduce the decision maker’s preferences

wherever possible. This reduces the search space,

while also minimizing the number of pairwise

comparisons the decision maker has to perform.

C2

C1

C

CONVEX CONE
C

Multiple Criteria Decision Making, Fig. 1 Illustration of
convex cones
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Every solution in S0 that is less preferred than d0 is

dropped from consideration. If d 0 is preferred to all the

solutions in S0, then it is denoted as d. If some solution

in S0 is preferred to d0, then the preferred solution is

denoted as d. If d is the only efficient solution

remaining in the decision space, then the procedure

stops with d as the most preferred decision. Otherwise,

choosing a set of weights consistent with the weight

constraints (after dropping any conflicting constraints),

a new composite linear utility function is generated.

Denoting the decision alternative maximizing this

composite function as d, the decision maker chooses

between d and d. Denoting the preferred solution as d0,

the above steps are repeated.

Lotfi et al. (1992) develop an eclectic method called

the Aspiration-Level Interactive Method (AIM) for

MCDM. It involves a philosophy that aspiration

levels and feedback regarding the relative feasibility

of the aspiration levels provide a powerful tool for

decision making. The method is embodied in

a computer program called AIM. The method

provides the decision maker with various kinds of

feedback as he explores the solutions. Several

different kinds of objectives may be included:

objectives to be maximized; objectives to be

minimized; target objectives; any of the above kinds

of objectives with thresholds, or levels beyond which

the user is indifferent to further gains in the objective;

and qualitative objectives. To further explain the

idea of thresholds, suppose that in the purchase of

a house, the age of the house is an attribute to be

minimized. Suppose further that the buyer treats as

equivalent, however, any houses ten years or less in

age. In this case, there is a threshold of ten years, so

that an eight-year-old house is considered to be no

better than a ten-year-old house with respect to age.

To begin with, the decision maker has the following

basic information:

1. A current goal or aspiration level for each objective,

initially set to the median, together with the

proportion of alternatives having values of the

objective at least as good as that value.

2. Two other aspiration levels, the next better and the

next worse than the current goal occurring in

the data base.

3. The ideal and nadir solutions to the problem.

4. The proportion of alternatives that simultaneously

satisfy aspiration levels given in 1 and 2.

5. A nearest nondominated solution to the current

goal. The nearest solution is found by mapping

the current goal to a solution on the

efficient frontier or in the set of nondominated

solutions.

The current goal may be (and should be) changed by

the user, component by component, to any desired

realizable level of any objective. The intention,

however, is to keep the current goal near the efficient

frontier and therefore nearly achievable. As the user

changes the current goal, all but item(s) 3 above

change.

The user can invoke various options to help in

decision making. He or she can see which solutions,

if any, satisfy his current goal. Second, he or she can

obtain a ranking of solutions based on a function

resulting from his choice of a current goal. Third,

he or she can use a simplified version of a concept

called outranking to identify neighbor solutions that

are similar to his nearest solution. The decision maker

may also review the weights implied by the current

goal, see a quartile distribution of the problem

by objective, and identify and possibly delete

dominated solutions.

Concluding Remarks

The field of multiple criteria decision making has

been an active since the 1960s. Many interesting

approaches have been developed, explored, and

implemented in solving problems. Implementation

of MCDM methodologies include multiple criteria

decision support systems (MCDSS) and

negotiations, which may be regarded as multiple

criteria problems involving multiple decision

makers. MCDSS integrate the multiple criteria

approaches in user-friendly microcomputer systems,

such as the VIG/VIMDA system of Korhonen and

Laakso (1986), the Expert Choice software that

implements AHP, and the AIM package of Lotfi

et al. (1992) implemented on the World Wide Web

by Wang and Zionts (2005). An objective of most of

the MCDSS is to provide inexpensive stand-alone

software that is easy to use. A very useful set of

computer MCDM method software may be found on

the World Wide Web by a search on the word

decisionarium; the software is housed at the
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Helsinki University of Technology, now part of Aalto

University.

Negotiations or multiperson MCDM is a natural

extension of MCDM. Many decisions are made by

groups, and negotiation theory involves using some

of the MCDM concepts to simplify and assist

negotiations; see for example, Wang and Zionts

(2008).

In addition to the journals devoted to management

science and operations research and behavioral

science, there are two journals that contain articles

more exclusively in this area: Multi-Criteria Decision

Analysis and Group Decision and Negotiation. The

paper by Wallenius et al. (2008) explores recent

accomplishments and what lies ahead.

See

▶Analytic Hierarchy Process

▶Analytic Network Process

▶Decision Analysis

▶Decision Problem

▶Goal Programming

▶Multi-attribute Utility Theory

▶Multiobjective Programming

▶Utility Theory

▶Value Function
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Multiple Optimal Solutions

In an optimization problem, when different feasible

solutions yield the same optimal value for the

objective function, the problem has multiple optimal

solutions. If a linear-programming problem has

multiple optimal solutions, then such solutions

correspond to extreme point solutions and their

convex combinations.

See

▶Unique Solution

Multiple Pricing

When solving a linear-programming problem using the

simplex method, it is computationally efficient to

select a small number, say 5, possible candidate

vectors from which one would be chosen to enter the

basis. The candidate set consists of columns with large

(most negative or most positive) reduced costs, and the

vector in this set that yields the largest change in the

objective function is selected. Succeeding iterations

only consider candidate basis vectors from the

vectors that remain in the set that have properly

signed reduced costs. When all vectors in the set are

chosen or none can serve to change the objective

function in the proper direction, a new set is

determined.

See

▶ Partial Pricing

▶ Simplex Method (Algorithm)

Multiplier Vector

For a given feasible basis B to a linear-programming

problem, let the row vector cB be the ordered set of cost

coefficients for the vectors in B. The multiplier vector

is defined as p ¼ cB B�1. If B is an optimal basis, then

the components of p are the dual variables associated

with the corresponding primal constraints. The vector

p is also called the simplex multiplier vector, with the

components of p being the simplex multipliers.

See

▶ Simplex Method (Algorithm)

Multivariate Quality Control

Francis B. Alt1 and Scott D. Grimshaw2

1University of Maryland, College Park, MD, USA
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Introduction

A frequent quality control application in the chemical

and process industries is the simultaneous monitoring

of several correlated quality measurements. For

example, González and Sánchez (2010) apply

multivariate quality control to manufacturing the

window frame for the door of a vehicle, where the

five gaps on the window frame are measured at seven

locations on the frame. Control charts that

simultaneously evaluate all the information available

on a process are based on the foundational work of

Hotelling (1947) in a military application. While one

could create univariate control charts for each

measurement, ignoring the correlation between

measurements impacts the statistical properties in

many ways. Jackson (1956) showed that the use of

univariate control charts can be misleading even

when the measured characteristics are uncorrelated.

Alt (1985) points out that not only is it statistically

inefficient to monitor each measurement on its own

control chart because the proper out-of-control region

is elliptical, the process may exhibit frequent false

out-of-control alarms.

Multivariate quality control procedures can

be classified into two broad categories:

(1) Shewhart procedures designed to quickly detect

large out-of-control shifts from the in-control mean

vector, and (2) Multivariate EWMA procedures that

can be designed to efficiently detect persistent small
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and moderate shifts. These are discussed in turn,

followed by a discussion of other important methods

for multivariate quality control.

Shewhart Charts

At regular time intervals, observe a rational subgroup

of size n on p quality characteristics denoted by the

vector xi. When the process is in-control,

the quality characteristics will have mean m0 and

variance-covariance matrix S0.

The Shewhart w2 chart produces an out-of-control

signal when

w2 ¼ n �x� m0ð Þ0S�1
0 �x� m0ð Þ

exceeds the upper control limit. The �x is the mean of

each quality characteristic for the rational subgroup

assembled as a p� 1 vector.

The performance of a control chart is judged by

its average run length (ARL), which is the average

number of time periods taken before an

out-of-control signal is given. A control chart is

designed to have a large in-control ARL and

a small out-of-control ARL. For multivariate

Shewhart charts the upper control limit defines the

in- and out-of-control ARL. The run length of

Shewhart control charts follows a geometric

distribution since each time interval is independent

and the probability of an out-of-control signal is

identical for each time interval. If ARL0 denotes

the in-control ARL, the upper control limit (UCL)

is w2ð1=ARL0; pÞ, the 100ð1� ð1=ARL0ÞÞ%
percentile of the w2 distribution with p degrees of

freedom, if the �x is multivariate normal. The most

frequent choice is ARL0 ¼ 200, so the upper control

limit is the 95% percentile of the w2p. When the

process is out-of-control with mean m1, the

multivariate Shewhart statistic has a non-central

w2 distribution with p degrees of freedom and

non-centrality parameter

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n m1 � m0ð Þ0S�1
0 m1 � m0ð Þ

q

;

and the out-of-control ARL, denoted by ARL1, can

be computed ARL1 ¼ 1=½1� FðUCL; p; lÞ�, where

Fð	; p; lÞ is the cdf of a non-central w2.

A frequent obstacle to applying the Shewhart

w2 control chart is the need for the in-control

variance-covariance matrix S0. The Hotelling T2

distribution, a generalization of the Student’s t

distribution, allows the estimated variance-covariance

matrix S to replace S0. The Shewhart T
2 control chart

compares the statistic

T2 ¼ n �x� m0ð Þ0S�1 �x� m0ð Þ

to the upper control limit

UCL ¼ pðn� 1Þ
n� p

Fð1=ARL0; p; n� pÞ

which uses a well-known relationship between the

Hotelling T2 distribution and the F distribution.

In many applications, the in-control mean m0 and

the in-control variance-covariance matrix S0 are

unknown, but are estimated from data collected while

the process is believed to be in-control. For this Phase

I data ofm time periods of rational subgroup size n, Alt

(1982) proposed estimating m0 by the mean of the m

sample mean vectors, denoted by x, and estimating S0

by the pooled variance-covariance matrix which is the

mean of the m sample variance-covariance matrices,

denoted by Sp. Because the in-control parameters are

estimated, the upper control limit is inflated to

UCL¼ pðm�1Þðn�1Þ
mn�m�pþ1

Fð1=ARL0;p;mn�m�pþ1Þ:

If any time period in Phase I has an out-of-control

signal and an assignable cause is found, this

time period is omitted and ��x and Sp are

recomputed. This step is iterated until all m�< m time

periods are considered in-control.

At this time, the monitoring of future time periods

begins by using the statistic

T2
f ¼ n �xf � ��x

� �0
S�1
p �xf � ��x
� �

with

UCL¼ pðm�þ1Þðn�1Þ
m�n�m��pþ1

Fð1=ARL0;p;m
�n�m��pþ1Þ

where �xf is a vector of sample means based on data for

a time period after m�. It is suggested that ��x and Sp be
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updated fairly often in the beginning, as the number of

future subgroups accumulates.

A common follow-up to a large T2 statistic is to use

standardized coefficients of the discriminant function

(Rencher 2002, Chap. 5). That is, compute

a ¼ sqrt½diagðSÞ� 	 S�1ðx� m0Þ;

where sqrt is the elementwise square root of the vector

and diagðSÞ creates a diagonal matrix from

the diagonal elements of the S matrix. The absolute

values of the coefficients in a give relative

contributions of each quality measurement to T2.

Another approach to interpreting a large T2 value

is a decomposition proposed by Mason et al. (1995,

1997). The T2 can be written as p independent terms,

each of which reflects the contribution of an individual

quality characteristic. Runger et al. (1996) use

this decomposition to improve diagnostics of an

out-of-control signal.

MEWMA Charts

The multivariate exponentially weighted moving

average (MEWMA) control charts are well suited to

observing a single observation (n ¼ 1) at each time

period t and combining the information from

a window of time to make a decision. The

generalization from the univariate EWMA was

formulated by Lowry et al. (1992). A weighted

average of the observed xt is formed by

Zt ¼ lðxt � m0Þ þ ð1� lÞZt�1

where the value l is chosen in designing the control

chart to represent the amount of smoothing

(0 < l < 1) and Z0 ¼ 0. Small values of l pool

the data over a wide time interval and produce

a control chart that effectively identifies small,

persistent changes from the in-control mean, m0,

or a gradual drift from m0. Large values of l yield

a Zt with high weight on the current observation so

the control chart is sensitive to immediate large

shifts from m0.

The MEWMA chart signals a process is

out-of-control at time t when

T2
t ¼ ZtS

�1
Z Zt

exceeds an upper control limit. The variance-covariance

matrix SZ depends on l and t, and is given by

SZ ¼
l 1� 1� lð Þ2t
h i

2� l

0

@

1

AS0;

where S0 is the in-control variance-covariance matrix

of xt. For a given l, the upper control limit is chosen to

provide an ARL for a specified out-of-control mean

m1. Tables of the ARL for different p, l, and upper

control limit are given by Prabhu and Runger (1997)

for in-control ARL0 ¼ 200.

In the univariate case, the CUSUM (cumulative

sum) control charts are quite similar to the EWMA

control charts. Although a number of multivariate

CUSUM procedures have been proposed, an early

suggestion by Woodall and Ncube (1985) was to

monitor each of the p quality characteristics

simultaneously with individual CUSUM charts. The

ARL of this collection of p CUSUM control charts is

the minimum of ARL1;ARL2; . . . ;ARLp
� �

if the

quality characteristics are independent. If the quality

characteristics are correlated, reduce the p dimensional

space to the p0 < p largest principal components. An

improvement to this collection of p CUSUMs is to

update the CUSUM at each observation and shrink

toward the zero vector as described in Crosier (1988).

Control Charts for Variance-Covariance

While monitoring the mean of p correlated quality

characteristics has been well researched, less work

has been performed on control charts for the

variance-covariance matrix (the generalization from

univariate control charts on process variability). The

most common approach summarizes the pðpþ 1Þ=2
variances and covariances in S into a scalar by

defining the generalized variance jSj, which is the

determinant of S. Montgomery and Wadsworth

(1972) proposed control limits based on the

asymptotic normality of jSj, the determinant of the

sample variance-covariance matrix based on the n

observations in the rational subgroup. Control limits

for the typical Shewhart control charts were proposed

by Alt (1985) and are E jSjð Þ � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var jSjð Þ
p

where

E jSjð Þ ¼ b1jSj and Var jSjð Þ ¼ b2jSj2 with
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b1 ¼
1

ðn� 1Þp
Yp

i¼1

ðn� iÞ

and

b2 ¼
1

ðn� 1Þ2p
Yp

i¼1

ðn� iÞ
" #

�
Yp

j¼1
ðn� jþ 2Þ �

Yp

j¼1

ðn� jÞ
" #

:

Profile Monitoring

Many manufacturing processes in the chemical

process and semiconductor industries have

finite-duration processing periods under controlled

conditions which result in the final product. With

improved metrology these processes can be

monitored during the processing time. In these

applications the collection of measurements taken on

each quality characteristic during processing when

plotted over time creates a profile.

Nomikos and MacGregor (1995a) organized the

large amount of profile data as a three-dimensional

array whose n rows correspond to the different runs, t

columns correspond to the measurements taken over

processing time for a given run and the third dimension

(depth) is the p different quality characteristics. While

this is perhaps the organization of the data in

a database, multivariate statistical methods require

the expression of Y as a vector, and an ‘unfolded’

structure generates a tp vector of each quality

characteristic at each processing time. Instead of

monitoring this extremely large vector, one approach

is to reduce the dimensionality to a set of summary

scores T. Nomikos and MacGregor (1995a) use

principal components of Y to form T, and Nomikos

and MacGregor (1995b) use partial least squares to

obtain linear combinations of Y which are highly

correlated with a product’s quality measurements

taken after processing. Grimshaw et al. (1998) allow

changing inputs that affect the profile and provide

a real-time processing control chart statistic.

When there is a hypothesized relationship between

the profile and an explanatory variable, the profile can

be modeled using the parameters of the relationship.

For example, if the relationship is linear the estimated

regression coefficients are monitored using a Hotelling

T2 following Kang and Albin (2000). In a Phase II

control chart where the profile has been estimated

from historical data, Kim et al. (2003) address the

linear case. The nonlinear profile case has been

modeled by multiple regression and higher-order

polynomials in Zou et al. (2007) and Kazemzadeh

et al. (2008); nonparametric regression methods are

used in Zou et al. (2008); and nonlinear profiles for

dose–response applications are in Jensen and Birch

(2009). Colosimo et al. (2008) monitor profiles of

geometric specifications such as roundness,

cylindricity, and flatness.

See

▶Quality Control

▶Total Quality Management
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Nash Equilibrium

In (noncooperative) game theory, a set of (pure or

mixed) strategies in which no player can gain by

deviating unilaterally. In general, a game may have

a unique, multiple, or no equilibrium. John Nash, who

shared the 1994 Nobel Prize in Economic Sciences for

his work in game theory, proved that there must exist

as least one such mixed strategy equilibrium in a

finite-action game.
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Introduction

The field of natural resources covers various

related areas: agriculture, fishing, forestry, mining.

Though usually viewed separately, they share

common problems, such as ecological concerns, use

of scarce resources, and sustainability. There is also

a common thread in what has happened since 1990. On

the one hand, driven in part by population growth and

economic development, many natural resources are

beginning to reach or exceed sustainable levels of

exploitation, or in the case of non-renewable

resources there are limits on known reserves.

A second main issue is the new awareness of the

need to preserve natural habitats, protect endangered

species, provide water and air quality, and promote

biodiversity. This has often led to serious conflicts

between production goals and ecological impacts,

with increased public participation in decision

processes. A third basic issue is the emergence

of global, competitive markets with the need to

derive efficient production processes. In this context,

operations research and management science

(OR/MS) have played a significant role in managing

natural resources. It must be distinguished between

methodological proposals through case studies and

actual applications. This is an issue of importance.

Typically, these problems are often complex, involve

uncertainty and consider multiple objectives. Also,

natural resources problems are often of large size and

scope, with reliable data difficult to obtain. This partly

explains the important gap that exists in some areas

between modeling proposals shown through

representative examples and actual use in planning

and production processes. The introduction of

personal computers, new information gathering

systems, improved data processing, geographic

information systems, satellite communication and

algorithmic software plays a vital role in supporting

S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research and Management Science,
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the used of OR/MS. A wide range of problems has

been approached using typical OR/MS techniques in

each area. In some cases, their solution has led to

algorithmic developments. It is interesting to analyze

the nature of the main problems in each area and the

techniques proposed for their solutions, with linear

programming, mixed integer programming and

simulation being the techniques most commonly used

across the areas. In the last decade the issue of

integrating the supply chain has starting to emerge in

some of the areas as important to improve productivity.

Another emerging issue is the explicit introduction of

uncertainty in some areas. In the last decade, climate

change, carbon sequestration have become issues of

increased research (Matthews et al. 2002). A state of

the art in these four areas is presented in the Handbook

of Operations Research in Natural Resources

(Weintraub et al. 2007) and in Bjorndal et al. (2010).

Forestry

Most of the forestry issues are related to themanagement

of forests. Native forests, often publicly owned, are

viewed as multiple use entities, considering timber

and range production, recreation, wildlife habitat

preservation, water and soil quality. Plantations, such

as pine or eucalyptus, are usually privately owned,

sometimes integrated with pulp and sawmill processing

plants, with timber production as their main objective

within legal preservation regulations. Decisions in

forestry management go from long-range planning to

short-range operations.

Long-range planning, which, depending on the

species under consideration, can go from 40 to more

than 200 years to include up to two tree rotations,

reflects basic silvicultural and economic options

and in the case of plantations can include decisions

on high-level investments in plants. Issues like

sustainability of production, ecosystems, landscapes

viewed in a strategic way are incorporated

(Gunn 2007). A main objective is to maximize

sustained long range production compatible with

environmental preservation. Mathematical tools

have been used successfully in this area. For the

purpose of predicting tree growth under different

management alternatives, simulation models based

on regression techniques and sampling plots have

proved reasonably accurate. Decision making has

been supported mostly by linear programming

models. Timber Ram (Navon 1971) was the first

widely used LP model used for planning by the US

Forest Service. FORPLAN, a multiple output linear

programming model (Kent et al. 1991) and Spectrum

(USDA 1995) were later introduced by the US Forest

Service to incorporate increasingly environmental

issues. Other LP models have been developed by

private enterprises oriented towards managing

plantations and are used in the USA, Canada,

Europe, New Zealand, Chile, Brazil, and Australia.

Medium-range management decisions must

consider spatial decisions, such as road building to

access areas to be harvested. These decisions are the

interface between strategic and operational decisions

(Church 2007). One major spatial issue that has

emerged during the last decades is that of spatial

location of activities. Road building constitutes

a major cost to reach areas to be harvested, in

particular in native forests. Models have been

proposed to integrate harvesting decisions and road

building needed to reach harvest areas. These

problems lead to mixed-integer programming (MIP)

problems that have been successfully solved and used

by forest enterprises (Kirby et al. 1986; Andalaft et al.

2003). Another spatial issue relates to the environment.

To favor wildlife habitat or scenic beauty, adjacent

blocks should be harvested in different periods to

allow for new growth to establish itself. In this form,

areas without tree growth have a maximum size. For

example, some animals will graze only near cover

provided by mature trees. These blocks were

originally created manually by forests engineers

clustering basic cells using a geographic information

system (GIS). This problem adds considerable

combinatorial complexity to the planning problems,

particularly when combined with road building.)

In the 1990s, meta-heuristic approaches, mainly Tabu

search were used in practice. Exact approaches based

on column generation techniques adding lifting

constraints (Barahona et al. 1992), or strengthening

of the formulation via cliques proved successful

(Murray and Church 1996). In the late 1990s

developments were proposed were the forming of the

harvesting blocks were included into the problem.

This approach led to better solutions, but to even

more complex combinatorial problems. Again,

meta-heuristic techniques were developed, mostly

simulated annealing and tabu search (Murray 2007).
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Exact algorithms have been proposed which can solve

medium size problems (Goycoolea et al. 2009). Other

applications consider problems as optimally locating

wildlife habitat, selecting and locating vegetative seral

stages to enhance faunal species diversity, (Hof and

Bevers 1998). Wildlife protection can be incorporated

through considering other spatial effects, such as the

perimeter of forest areas where edge effects are

important for some species, areas of old growth that

allow wildlife to prosper, and corridors between old

growth areas to let animals move between old growth

areas. These problems lead to more difficult

combinatorial models. (Hof and Haight 2007).

Short-term operations involve problems such as

selection of units to cut, volumes to harvest, selection

of bucking patterns, log allocation, selection of

harvesting equipment and integration with

downstream operations. (Epstein et al. 2007b) and

transportation scheduling from forest sites to plants

(Epstein et al. 2007a) A variety of models and

algorithms have been proposed. Most used are linear

programming based models for harvesting and

allocation. For stem-bucking problems, dynamic

programming and heuristic algorithms have been

proposed. Scheduling of harvesting equipment such

as towers, skidders or helicopters, decisions on road

building, soil characterization and others related to

locational aspects have been increasingly been

carried out interacting with digital terrain models or

geographic information systems. A successful

application of OR/MS models to support operational

decisions in transportation, machine harvesting

scheduling and short term harvesting for Chilean

forest firms was reported in Epstein et al. (1999).

Since 2000, integrating the supply chain has started

to be analyzed. Unlike other areas where sophisticated

integration of supply chain activities has been

successfully implemented, there have only been

a few efforts in the forestry sector integrating forest

harvesting, sawmills, pulp plants and secondary

transformations such as panels (Carlsson and

Ronnqvist 2005; D’Amours et al. 2008). In general at

the operational level, OR has been most successful

with multiple reported applications. Some of these

problems are difficult to solve in exact formulations

and heuristics have been necessary. For example,

the problem of locating harvesting machinery and

building access roads is a combination of a plant

location problem and a network flow problem

with fixed costs. A successful application solved

using GIS-based data, a friendly graphical user

interface and a heuristic algorithm is reported in

Epstein et al. (2006).

Given the multiple uses of forests, it is only natural

to view forest management as a multi-objective

problem, considering diverse issues such as timber

and range production, recreation, scenic beauty,

preservation of endangered species, wildlife habitat,

water quality, costs, income, carbon emissions

and social impacts. The most common approaches to

handle these problems have been through goal

programming, or multi-objective linear programming.

Multicriteria methods (Diaz-Balteiro and Romero

2007), where preferences are elicited from decision

makers via comparisons, such as AHP have also been

proposed. However, these developments have seldom

been adopted by practitioners, mostly due to the

difficulties in implementation.

The explicit treatment of risk and uncertainty has

received increased attention of forest planners. The

main issues related to uncertainty are in future timber

markets, timber growth and yield projections and the

possibility of catastrophes such as large fires or pests.

Basic approaches proposed to handle uncertainty are :

(a) parametric or scenario analysis (b) probability-

based models such as stochastic dynamic

programming, portfolio theory, chance-constrained

linear programming, and simulation; and (c) fuzzy

models, in which a certain ambiguity is assumed for

restrictions or parameters. These efforts are still mostly

at a developmental stage with few applications reported

(Martell et al. 1998; Lohmander 2007).

Hierarchical Planning. Forestry problems range

from decisions involving spatial concerns over

20 acres to entire forests of 2,000,000 acres, from

short-term horizons of a few days or months to

long-range planning over 150 or 200 years. Decision

levels go from high-level management to operations on

the ground. At first, large-scale monolithic models

were proposed to solve global models. Given the

difficulties in running and analyzing these models,

several hierarchical decomposition approaches of

global problems have been proposed to handle in

a separate but linked way problems at different

decision levels (Martell et al. 1998; Church 2007).

Consideration of fire effects in forests started in the

1980s (Martell 1982), where OR/MS was used in

prevention of fires, fuel management, detection of
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fires, resources acquisition, initial attack dispatching,

extended attack management and training. In the last

decade the concept of managing fires as system effort

has become prevalent., with several systems in use in

the US and Canada (Martell 2007).

Agriculture

Mathematical models have been proposed extensively

to deal with agricultural problems (Hazell and Norton

1986). The main areas where quantitative approaches

have been proposed are overviewed here.

Crop Production Problems at Farm Level. These

include the determination of cropping patterns,

planning of harvesting operations, design of

harvesting equipment, and control of pests and

diseases. These interrelated decisions include

planting design, use of fertilizer, irrigation schemes

and capital investment. The main techniques

proposed to handle these problems are mainly linear

programming and simulation, and also mixed integer

programming, dynamic programming, and decision

theory.

Uncertainty in crop yields and prices has also been

introduced via portfolio theory, stochastic dominance,

stochastic dynamic programming, and games against

nature. Risk management considers how farmers

perceive risk and act on it (Huirne et al. 2007).

Another important issue is that of multiple criteria,

relevant in most areas of agricultural decisions,

handled mostly using goal programming and

compromise programming (Romero and Rehman

1989; Hayashi 2007).

These proposed models have not been applied

intensively. One main reason is the farming tradition

of using judgment based on experience, rather than

looking for technical optimality, which is also

constrained by the lack of accurate information.

Regional Planning Problems. These are oriented

toward centralized decisions such as the evaluation of

development projects, determination of tax or price

support policies, to analyze the trade-offs between

economic returns and environmental impacts (Teague

et al. 1995) or to determine and make operational the

concept of sustainable agriculture (Pandey and

Hardaker 1995). Spatial market equilibrium models

serve for analysis of domestic or international trade.

These approaches, however, have mostly had indirect

influence on practice or are of research interest only

(Campos et al. 2007).

Livestock Production. In this area, mathematical

models have been widely and successfully used.

In the classical diet and ration formulation problems,

a variety of models, mostly linear programming and

also quadratic programming, have been proposed for

different animal stocks. Simulation has been used for

modeling pasture-based livestock systems. The

problem of livestock breeding and replacement has

been approached through simulation, linear

programming, deterministic and stochastic dynamic

programming. Most applications are in the area of

evaluation of replacement policies, particularly in

large-scale dairy, egg production and poultry.

Multi-objective considerations for diet problems

include different nutrient requirements and costs

(Peña et al. 2007).

Agriculture and the Environment. Since around

2000, environmental issues have become prevalent,

as the negative aspects towards the environment due

to agriculture became more evident. Crop simulation

models as well as optimization models help quantify

the environmental effects (such as soil erosion

or pesticide use) of management practices. GIS

systems have provided important support as decision

systems integrated with OR models (Zekri and

Boughanmi 2007).

Mining

Quantitative techniques have played a significant role

in the mining industry (Lane 1988), accelerated since

the 1980s. In particular, advances in computational

power and OR software have resulted in an increased

and successful use of mainly MIP models into mine

planning (Newman et al. 2010). Mining is carried out

as open pit or underground. In some cases lately, as in

copper mines open pit and underground mining are

integrated. Some major decision problems in mining

are now described.

The optimal design of open-pit mines. The goal is to

determine the feasibility of operations and the contours

in mining extraction processes, where extraction is

viewed as a series of nested blocks in three

dimensions, so as to maximize the difference

between sale value and extraction and processing

costs within geological and mining restrictions.
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Graph theory, linear programming, and heuristic

methods have been used for this problem (Hochbaum

and Chen 2000).

Optimization techniques have been used also for

ore-body modeling and reserve estimations, optimal

production schedules, capacity planning, machine

scheduling, machine maintenance, production

planning, and transportation. (Caccetta 2007).

Underground mine planning is more complex, as

different extraction techniques are employed. The

main problems approached are on how to plan the

extraction of the mineral. MIP models have been

successfully employed (Alford et al. 2007).

The introduction of large scale MIP models has led

to increasingly consider the whole production

chain, from mine extraction to plant processing

(Caro et al. 2007).

Fishing

Fisheries Management present a different perspective

from other natural resources in that since the resource

is of free access, production is usually shared among

different enterprises, and its allocation process is

difficult and fuzzy. The long-term conservation of

fish stocks is a high-priority issue, and a set

of regulations to protect them has been developed

worldwide. Fisheries systems are concerned mainly

with two basic issues; biological analysis of fish stock

behavior and the allocation and exploitation of the

resources (Lane 1989; Bjorndal et al. 2004).

Biological issues include all aspects of population

dynamics to understand how fish stock evolves

(growth and mortality rates, reproductive properties)

and fish stock assessment, given environmental

impacts (pollution, warming or cooling trends), stock

interactions, and exploitation.

The problem of resource allocation involves

assigning and regulating fishing rights (quotas,

licenses, capture taxes, area closures). Exploitation or

management decisions include: fleet design and

harvesting operations, determination of catching

effort (the response of fishing captures to fishing

effort provides important information for stock

assessment), design of fish plants. (Arnason 2007).

Quantitative approaches have been widely

proposed for all these problems: Descriptive

mathematical modeling (in particular for the

biological aspects), mathematical programming

methods such as linear programming, nonlinear

programming, optimal control and dynamic

programming, statistical estimation and simulation.

While the range of methodological proposals is wide,

actual applications lag behind, mainly due to the lack

of reliable data. Most applications are in the areas of

exploitation and allocation. In this area there is also

growing concern about explicit incorporation of

uncertainty (Nostbakken and Conrad 2007) and

multi-criteria decision making (Lane 2007).

See

▶Agriculture and the Food Industry

▶Environmental Systems Analysis

▶ Fuzzy Sets, Systems, and Applications

▶Global Models

▶Goal Programming

▶Linear Programming

▶Metaheuristics

▶Multiobjective Programming

▶ Simulated Annealing

▶Tabu Search
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Near-Optimal Solution

For an optimization problem, a near-optimal solution

is a feasible solution with an objective function value

within a specified range from the (usually unknown)

optimal objective function value.

Neighboring Extreme Point

In a convex set of solutions to a linear-programming

problem, two extreme points are neighbors if they

are connected by an edge of the convex set. The path

of solutions determined by the simplex method is

one that moves from one neighboring extreme point

to another.

See

▶ Simplex Method (Algorithm)

Nested Partitions Method

A metaheuristic search approach for discrete

optimization that employs sampling and iterative

partitioning and recombining of the feasible solution

space.
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Network

A network is a pair of sets (N, A), where N is a set of

nodes (points, vertices) and A is a set of arcs (edges,

lines, links). If i and j are nodes, then the arc joining

them is denoted by the ordered pair (i, j). An arc may

have a cost cij that denotes the cost per unit flow across

that arc, and an upper bound flow capacity denoted by

uij. For some applications, a node may be a supply

(source) node in which goods enter the network,

a demand (sink) node in which goods leave the

network, or a transshipment node through which

goods are shipped without a gain or a loss. In most

network applications, it is assumed that the flow of

goods that enter a node is equal to the flow that

leaves the node. This is the conservation of flow

assumption. However, in some applications, the

amount of goods that enter a node can be more than

the amount that leaves the node (e.g., due to the

expansion of a liquid) or can be less than the amount

that leaves a node (e.g., due to a leak or pilferage).
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These latter situations are termed networks with gains

or losses. In most instances, network problems are

special forms of linear-programming problems.

See

▶Network Optimization

Network Design

A decision problem concerning the configuration (the

nodes and links to be included/excluded) of a logistics

network.

See

▶Network Optimization

▶Network Planning

Network Optimization

Thomas L. Magnanti

Massachusetts Institute of Technology,

Cambridge, MA, USA

Introduction

Networks are omnipresent in everyday life, e.g.,

highways, telephone lines, railways, electric power

systems, airline route maps, computer and cable

television networks. Networks also arise in other,

perhaps less visible settings: manufacturing or

distribution networks determine the flow of products

through plants or between plants, warehouses, and

retail outlets; and networks of interconnected

components in integrated semiconductor chips and

printed circuit boards provide electronic processing

capabilities in thousands of commercial products.

In these settings, two sets of network optimization

issues typically need to be addressed:

1. Operational Planning — How to use

a given (distribution, telecommunication, or

manufacturing) network as efficiently as possible?

In this setting, the underlying network structure

(topology and facilities) is known and the

objective is to find the best way to route flow on it.

For this reason, the set of optimization models for

supporting these decisions have become known as

network flow problems.

2. System Design — What is the best design of

a network, one that will offer cost efficient and yet

effective service to its users? In this setting, the

objective is to simultaneously create the network

structure and route flow on it. These models have

become generally known as network design

problems.

The OR/MS community has developed a rich

array of network models and solution methods for

operational planning and system design, applying

these techniques in thousands of applications. Indeed,

network optimization has served as one of the most

active and fertile application, modeling, and

theoretical domains within the fields of applied

mathematics, computer science, engineering, and

OR/MS.

Network Models

Figure 1 illustrates an application that contains the

basic ingredients of network optimization. In this

application context, which is typical of the

automotive, computer and many other industries,

a company produces product components in several

plants/countries and assembles the products in other

plants/countries. For convenience, any product

component will be referred to as a commodity. One

shipping option is to send all commodities directly

from each component plant to each assembly plant.

However, to achieve economies of scale, the firm

uses a set of intermediate distribution centers (or

warehouses). The distribution centers could also

hold inventory and, thereby, permit the company to

meet fluctuating demand requirements in the

assembly plants.

To formulate this problem mathematically, first

define an underlying network. In general, a network

is (i) a set N of nodes, together with (ii) a set E of

directed edges (i, j) that connect certain pairs i and j of

the nodes. The application in Fig. 1 has a special

network structure with one node corresponding to an
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input and to an output for each plant and distribution

center; the edges are of two types: those that connect

plants and distribution centers and those that connect

the input and the output node of each plant or

distribution center. Each edge (i, j) has an associated

per unit flow cost ckij for each commodity k¼ 1, 2,. . .,K,

a flow capacity ukij imposed upon commodity k, and

flow capacity uij imposed upon the total flow of all

commodities. For edges connecting plants and

distribution centers, these quantities model the flow

of commodities between the facilities. For edges

joining the input and output nodes of each

distribution center, these quantities model the

throughput costs and capacities of the distribution

center (similarly, for the plants). The use of two

nodes to model the throughput at any node is a

common modeling device for representing node costs

and capacities as edges costs and capacities.

The arrows in Fig. 1 directed into the component plant

input nodes specify the supplies of the commodities at

the component plants. This model assumes that the

production of each component in each component plant

has already been determined. To use the network

optimization model to allocate the production of each

commodity among the component plants, one could

introduce an additional component supply node sk for

each commodity k with the total supply of that

commodity as the node’s input. The flow on edges

(sk, q) connecting this node to the plants q would

allocate the total supply of that component to the

available plants (see Insert A in Fig. 1). The

introduction of additional nodes and edges like this is

another modeling device used frequently in practice.

To model a general network optimization problems

(and thus various versions of the production and

distribution planning problem), let f kij denote the flow

of commodity k from node i to node j (i.e., the flow on

edge (i, j) in the direction i to j). Also let bki denote the

net supply of commodity k at node i; this quantity is

positive at the input nodes of the network (component

plants in the example), is negative (to model demand)

at the output nodes of the network (the assembly plants

in the example), and is zero at all the other nodes.

The model has the following general form:

minimize
XK

k¼1

X

i;jð Þ2 E

ckij f
k
ijþ

X

i;jð Þ2 E

Fijyij (1)

subject to
X

j: i;jð Þ2 E

f kij�
X

j: j;ið Þ2 E

f kji ¼ bki

for all i 2 N and k ¼ 1; . . . ; K

(2)

XK

k¼1
f kij � uijyij for all i; jð Þ 2 E (3)
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system
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f kij � ukijyij for all i; jð Þ 2 E and k ¼ 1; . . . ;K (4)

f kij � 0 for all i; jð Þ 2 E and k ¼ 1; . . . ;K (5)

0 � yij � 1 and yij integer for all i; jð Þ 2 E: (6)

This model has the following interpretation. The

flow conservation equation (2) for node i states the

total flow out of that node minus the total flow into

that node must equal the node’s supply. The binary

(0 or 1) decision variables yijmodel the network design

decision, “should edge (i, j) be included in the

network (yij ¼ 1) or not (yij ¼ 0)?” (In the application

in Fig. 1, these variables model two types of decisions:

(i) whether or not to locate a plant or a distribution

center at one of the available locations and whether

the network contains the corresponding throughput

edge; and (ii) whether or not to use a particular

transportation lane joining a plant to distribution

center combination or distribution center to plant

combination). The fixed cost Fij associated with edge

(i, j) is the cost for constructing/renting/ operating that

edge (independent of its flow). The forcing constraints

(3) and (4) force the flow on edges (i, j) for each

commodity k to be zero if the network does not

contain that edge (yij ¼ 0). If yij ¼ 1, constraint (3)

states that the total flow on edge (i, j) cannot exceed the

installed capacity uij of that edge, and constraint (4)

states that the flow of commodity k on edge (i, j) cannot

exceed the flow capacity ukij for that commodity.

This model assumes that the edges are directed, i.e.,

flow on any edge goes in only one direction. But, in

some applications, the edges will be undirected. To

model these situations, impose the condition that

yij ¼ yji and replace f kij in constraints (3) and (4)

with f kij þ f kji , the total flow in both directions on

edge (i, j).

The network optimization model (1)–(6) can be

used to make facility location decisions (as in the

example) and to make routing decisions (the choice of

transportation lanes). Moreover, the model can be used

in telecommunication and other applications to design

a physical network, for example, to determine where to

locate fiber optic cables in a telecommunication system.

The model (1)–(6) is a special type of mixed integer

programming problem, i.e., it contains both continuous

and integer/binary variables. In practice, solving this

network optimization problem is a challenging (on the

surface almost daunting) task. The model has a flow

conservation equation for each node and commodity.

Since networks with thousands of nodes arise

frequently in practice, even for situations with

a single commodity, the model often has thousands

of equations. Many telecommunications and

transportation applications require the flow of a

commodity (message or freight) between every

pair of nodes in the network. Therefore, with as

few as one hundred nodes, the problem will have

100 ∗ 99 ¼ 9,900 commodities and 9,900 ∗ 100 � 1

million flow conservation equations (one for each

combination of commodity and node).

The problems become even more difficult when

they have design variables. With as few as twenty

nodes and a binary design variable yij for each of the

20 19ð Þ 2= ¼ 190 possible edges connecting these

nodes, the model has 2,190 different design

alternatives (since any design can include or exclude

each of the 190 edges). This number is as large as the

number of grains of sand needed to fill the solar

system! Therefore, solving these problems requires

considerable ingenuity. Since it is impossible to

enumerate all possible solutions, the methods must

consider them only implicitly.

Types of Models

The network optimization model (1)–(6) has many

specializations and variants, each generating

a considerable literature on its own (applications,

solution methods, and underlying theory). Tables 1

and 2 show some of these models and indicates

typical solution times for solving them (on a modern

computer workstation).

The tables separate the models into two categories:

1. Network flow models — For these models, each

binary variable yij is fixed at value 0 or 1 (and so

the network topology is fixed) and the problem

becomes a linear program. Notice that the problem

has a very special structure since each flow variable

f kij appears in exactly two flow conservation

equations, as an output of node i and an input of

node j. Researchers have been able to use this

feature to develop special purpose algorithms that

solve the problems much more efficiently

N 1028 Network Optimization



than solving them using general purpose linear-

programming software.

2. Network design problems –In these models, both

design decisions and flow decisions are relevant.

For some of these models, the flow costs are zero

and the problems become that of finding a least cost

network configuration that meets the required flow

requirements.

Figure 2 gives examples of the minimum spanning

tree and Steiner tree problems, assuming that the

cost of each edge is proportional to its length.

The underlying network in these examples is typical

of those in printer circuit board applications that

have East-west and North-south channels for making

wiring connections (therefore, all the edges are in

a rectangular pattern). Note that the minimum

spanning tree needs to connect all the nodes and the

Steiner tree needs to connect only a subset of the nodes

(so called terminal nodes), but can optionally use some

of the other nodes (so called Steiner nodes). In both

cases, the goal is to find the least cost network

configuration, as measured by the total cost of the

Network Optimization, Table 1 Network flow models (each yij is fixed at value zero or one)

Model type Problem description Solution methods

Computational experience.
Number of nodes: Solution
time

Multicommodity
flows

General flow model (1)–(6) with multiple
commodities

Linear programming,
decomposition methods

Hundreds: minutes

Minimum cost
flows

Single commodity (K ¼ 1) Specialized path flow
methods

Thousands: seconds

Maximum flows Single commodity, no flow cost; send maximum
flow between single source and destination node
pair

Specialized node labeling
(sequential search)
methods

Thousands: seconds

Shortest paths Single commodity, single origin, no flow capacities Specialized node labeling
(sequential search)
methods

Tens of thousands: seconds

Network Optimization, Table 2 Network design models

Model type Problem description Solution methods

Computational
experience. Number of
nodes: Solution time

Fixed cost
network

General model (1)–(6) Integer programming, heuristics Tens: minutes or hours

Network
loading

No flow costs, load network to meet required point-to-
point demands (yij as integers, not binary)

Integer programming, heuristics Tens: minutes or hours

Network
connectivity

Find prescribed number of edge disjoint paths between
various node pairs

Integer programming, heuristics,
and linear programming dual
ascent methods

Hundreds: minutes

Network
synthesis

Given flow requirements, determine capacities on edges
(at minimum cost) so that the network has the capability
to meet prescribed demands between various node pairs

Minimum spanning tree if
capacity on every edge costs the
same

Thousands: seconds if all
capacities have same cost

Tens to hundreds:
minutes (in general)

Minimum
spanning
trees

No flow costs, no capacities; find a network that
connects all nodes

Specialized one-pass greedy
algorithms

Thousands: seconds

Steiner trees No flow costs, no capacities; find a network that
connects prescribed set of nodes (and possibly others)

Heuristics and linear
programming dual ascent
methods

Thousands: seconds

For all network design problems, except the minimum spanning tree problem, the methods generally produce approximately optimal,
not globally optimal solutions
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chosen edges (flow costs are irrelevant). The other

network design problems also want to find optimal

network configurations, but might include flow costs

as well.

The discussion has shown that the network

optimization problem (1)–(6) has a wide range of

applications and has shown how to introduce

additional nodes and edges to enhance the model’s

ability to capture varied application features (e.g., to

allocate production at the component plants or to

represent the throughput of a node). Many other such

modeling techniques have proven to be useful in

practice. As indicated in Table 1, computer software

is available for solving large-scale network flow

problems very quickly. Except for spanning tree and

Steiner trees, capabilities for solving network design

problems is much more limited.

Solution Methods

Solving network optimization problems requires

considerable ingenuity, in developing solution

methods, implementing them efficiently on

a computer, and analyzing them to determine their

efficiency (in theory or practice). To illustrate these

issues, consider one of the easiest network flow

problems, the shortest path problem. After describing

a basic algorithm for solving this problem, it will be

shown how to organize the computations to implement

the algorithm more efficiently and then how to

improve on it even further when more is known about

the underlying data (the edge lengths).

Suppose one is given a network with nonnegative

lengths dij on the edges (i, j) and the goal is to find

the shortest path between two designated nodes,

a source node s and a terminal node t. To solve the

problem, one could use the following algorithm

(solution method). If node j is the node closest to the

source node, then the shortest path distance d(j) from

the source node to this node is the direct path on

the edge (s, j) whose distance is dsj. Next consider the

node k that is closest to node s either along the

direct edge (s, k) or on the shortest path through node

j, i.e., with the distance dsj þ djk ¼ dðjÞ þ djk. To

choose the best of these two alternatives, compute

dðrÞ ¼ min dsr; dðjÞ þ djr
� �

for each node r 6¼ s or j

and select as the next node k, a node rwith the smallest

value of d (r). It is easy to see that this choice gives the

shortest distance along any path from node s to node k.

In general, suppose that after several steps, the shortest

path distances d(j), d(k),. . ., d(p) from the source node

s to each of the nodes j, k,. . ., p have been found. Then

to find the shortest path distance to the next node q, for

all nodes r 6¼ s, j, k,. . ., p, compute

dðrÞ ¼ min dsr; dðjÞ þ djr; dðkÞ þ dkr; . . . ; dðpÞ þ dpr
� �

:

(7)

Choose node q to be a node rwith the smallest of the

values d(r). Once node t has been chosen in any of

these steps, the problem is solved, i.e., the shortest path

distance from node s to node t has been found. (See

Ahuja et al. 1993, for a proof.)

This algorithm computes the shortest path distance

to one more node at each step. If the network contains

a total of n nodes and the shortest path distance to v of

them have been found, then the computation (7)

requires v additions and comparisons for each

of n � v nodes and so v(n � v) computations.

Therefore, to find the shortest path distance to

all nodes, the algorithm requires

1 n� 1ð Þ þ 2 n� 2ð Þ þ 3 n� 3ð Þ þ � � � þ n� 1ð Þð1Þ ¼
n2 n� 1ð Þ 6= computations. Can this be improved? Yes,

by noticing that this algorithm performs many

redundant computations. For example, after the first

step, for each node r not yet chosen in one of the

previous steps, the algorithm computes the quantity

d(j) + djr. Note that after node q has been chosen, the

computation (7) becomes

Minimum Spanning Tree

a b

Minimum Steiner Tree

Terminal Node

Steiner Node

Unused Node

Network Optimization, Fig. 2 Minimum spanning tree and
Steiner tree problems
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dnewðrÞ ¼min
�

dsr; dðjÞ þ djr; dðkÞ þ dkr; . . . ; dðpÞ
þ dpr; dðqÞ þ dqr

�

:

(8)

Comparing (7) and (8) shows that dnewðrÞ  
min dðrÞ; dðqÞ þ dqr

� �

. Therefore, if the values of

d(r) from one step to another are stored and one

carries out the computation

dðrÞ  min dðrÞ; dðqÞ þ dqr
� �

; (9)

then at step v when there are n � v nodes that are

candidates to be chosen next, there are v � r

computations, and so overall the algorithm now

requires only n� 1ð Þ þ n� 2ð Þ þ � � � þ 1 ¼
n n� 1ð Þ 2= computations. As this simple example

shows, by organizing the computations intelligently,

one can often considerably reduce the computational

requirements of an algorithm. Much of the literature of

network flow algorithms involves the use of similar

ideas for designing and analyzing algorithms (though,

in general, the ideas are much more complex).

To illustrate further how researchers have used

problem structure to design efficient algorithms,

suppose that the cost structure for the shortest path

problem were even simpler, such that each distance

dij is limited to the values 1 or 2. Notice that in this

case, the shortest path distance from the source node s

to any node k is one of the integers 1, 2, . . ., 2(n � 1).

To obtain an improved algorithm, use this fact and

implement the computations (9) in a more

streamlined fashion by maintaining a collection

of 2(n � 1) buckets, storing all the nodes r whose

distance d(r) is k in the kth bucket. Then choose the

buckets one at a time from smallest to largest, starting

with bucket number 0. If the bucket is nonempty, select

a node q from it and then any edge (q, r) incident to

node r. Then use the expression (9) to update the

distance d(r) of node r and if the distance of node r

increases, move it to a new bucket. Note that this

algorithm considers each edge (i, j) only once and

must search at most 2(n � 1) buckets to see if they

are empty or not and to extract their contents.

Therefore, for a network with m edges, this

implementation of the algorithm requires m +

2(n � 1) computations (assuming one can effectively

transfer nodes between buckets, which is easy to do).

Since m is often far less than its maximum possible

value of n 2, this algorithm is typically much faster than

the implementation embodied by the previous

implementation of the computations (8). When the

edge lengths are limited within some range 0 � dij � C

for some constant C, a similar type of bucket

implementation can be very efficient and produces

some of the most effective algorithms for solving

shortest path problems.

The design and analysis of network optimization

algorithms has an enormous literature. This brief

introduction to the topic has illustrated several

important aspects of this field:

• Network algorithms often use simple computations,

such as those invoked in expressions (7) and (9), for

solving problems rather than the more sophisticated

methods needed to solve other optimization

problems such as general linear programs. Indeed,

software based upon specialized methods like these

are able to solve shortest path problems with

thousands of nodes in just a few seconds of

computational time (Table 1), even though these

problems are linear programs with thousands of

constraints (one conservation equation in the

model (1)–(6) for each node).

• In solving a particular problem, it is often just

as efficient to solve a broader class of problems

(the algorithm described here finds the shortest

paths from the source node to all other nodes, not

just the terminal node).

• Organizing computations carefully can improve an

algorithm’s efficiency. In the shortest path example,

the number of computations were reduced from

n2(n � 1)/6 to n(n � 1)/2 by merely avoiding

redundant computations (see (8) and (9)).

• The creative use of data structures (buckets in the

example) often leads to more efficient algorithms

[m + 2(n� 1) instead of n (n� 1)/2 computations in

the example].

• Often one can design algorithms to exploit the

nature of the data and not just the type of problem

being solved. Two illustrations of this: (i) the

algorithm described in the example here might not

solve a shortest path problem when some the edge

lengths are negative, so it has exploited the fact that

all the edge lengths are nonnegative; and (ii) when

the data have restricted ranges (e.g., the edge costs

are between 0 and C in the example), one can

frequently can devise more efficient algorithms.
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• The shortest path algorithm described here is

polynomial in the sense that the number of

computations is a polynomial function of the

number of nodes n and the number of edges m in

the underlying network. One of the great challenges

in network optimization is to discover polynomial

algorithms with the lowest possible degree

(or fastest running time). For most design

problems, the research community has not been

able to find polynomial algorithms (the minimal

spanning tree problem is a notable exception).

Indeed, most design problems are, in the parlance

of computer science, NP-complete, implying that it

is quite unlikely that a polynomial time algorithm

exists. Nevertheless, the community has been able

to design algorithms that are efficient in practice for

many of these problems.

Further Readings

Several books amplify on the topics described here and

introduce many other applied and theoretical aspects

of network optimization. Ford and Fulkerson (1962)

provide a seminal account of early developments

in this field. Ahuja et al. (1993) offer a modern

treatment of this subject covering both theory and

applications. Glover et al. (1992) provide valuable

insight into network modeling and applications. The

handbooks edited by Ball et al. (1995a, b) contain

comprehensive reviews by many leading researchers

in network optimization. Lawler (1976) draws

valuable connections between network flows and

a related topic in combinatorial optimization known

as matroids.

See

▶ Facility Location

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Location Analysis

▶Maximum-Flow Network Problem

▶Minimum-Cost Network-Flow Problem

▶Multicommodity Network-Flow Problem

▶ Shortest Path Problem

▶ Steiner Tree Problem
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Introduction

Network planning is a generic name for methods that

study projects as a set of interconnected activities with

the purpose of assisting in planning, scheduling and

controlling projects. These methods are based on

models describing projects as activity networks and

include well-known techniques such as the Critical

Path Method (CPM) and the Program Evaluation and

Review Technique (PERT). CPM determines the

critical path that includes the so-called critical

activities (activities deserving maximal attention as

any delay causes a delay of the project’s completion

date), whereas PERT estimates the probability

distribution of the project’s completion date.

Essentially, network planning involves a planning

phase, a scheduling phase and a project control

phase. The planning process involves the

identification of the project activities, the estimation

of time and resources, the identification of the

precedence relationship between the activities and the

identification of the schedule and resource constraints.
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Project scheduling involves the construction of

a project base plan that specifies for each activity the

precedence and resource feasible start and completion

dates, the amounts of the various resource types that

will be needed during each time period, and as a result

the project budget. Once the project starts, the project

must be monitored and controlled. Project control

involves the difficult task of measuring actual

progress and comparing it to planned progress. If this

comparison reveals that the project is likely to run

behind schedule, to overrun the budget, or to violate

the original technical specification, corrective action

must be taken to get the project back on track.

History

The need to improve planning techniques to help

control major projects was recognized in the 1950s.

CPM arose from a jointly sponsored venture of E.I. du

Pont de Nemours and Company and the Sperry-Rand

Corporation. By September 1957, an actual application

was conducted on a pilot system using the UNIVAC

I computer, and from this CPM evolved (Kelley and

Walker 1959; Kelley 1961). At the same time, the

U.S. Navy was developing a system to plan and

coordinate the Polaris missile program. From this,

PERT evolved, and was credited with helping to

advance Polaris by at least two years (Malcolm et al.

1959). Further details of these early developments can

be found in Moder et al. (1983) and Sculli (1989).

Since these early days, variations of these methods

have been developed (VERT, GERT, SCERT), and

continuing research has led to the development of

new models and techniques allowing for more

adequate procedures to deal with general types of

precedence and resource constraints, new planning

objectives, and better ways to cope with uncertainty.

Excellent texts and surveys include Elmaghraby

(1977); Slowinski and Węglarz (1989); Özdamar and

Ulusoy (1995); Herroelen et al. (1998), Brucker et al.

(1999); Klein (2000); Kolisch and Padman (2001),

Demeulemeester and Herroelen (2002), Dorndorf

(2002), Neumann et al. (2003); Herroelen and Leus

(2004); Herroelen (2005); Schwindt (2005);

Jozefowska and Węglarz (2006); Artigues et al.

(2008); Hartmann and Briskorn (2010); Węglarz

et al. (2011).

Planning

Construction of the project network — There are two

possible modes of representation of a project network:

the activity-on-arc representation (AoA), which

uses a set of arcs to represent the activities and a set

of nodes to represent events, and the mostly used

activity-on-node representation (AoN). The AoN

representation (Fondahl 1961; Roy 1964) allows

for the representation of various types of precedence

relations: finish-start precedence relations with

zero time-lag (used in PERT and CPM), start-start,

finish-start, start-finish and finish-finish relations with

minimal and maximal time-lags. A minimal time-lag

specifies that an activity can only start (finish) when its

predecessor has already started (finished) for a certain

time period, whereas a maximal time-lag specifies that

an activity should be started (finished) at the latest

a number of time periods beyond the start (finish) of

another activity.

Time estimates — Deterministic project

planning models assume that activity durations can

be estimated with certainty, typically as a single-time

estimate. It should be well understood that the use of

a single duration estimate assumes an implicit choice

of a particular execution mode for the activity

corresponding with a particular resource allocation

(single mode). Instead of working with single-time

estimates, several possible execution scenarios

(multiple execution modes) may be defined, each

mode reflecting a feasible way to combine an activity

duration and a resource allocation.

Dealing with uncertainty – The PERT approach —

The originators of PERT proposed a stochastic

approach to cope with probabilistic activity durations.

The assumption made by PERT is that activity

durations are beta-distributed. Three activity duration

estimates are used: an optimistic estimate (to), an

estimate of the most likely duration (tm), and

a pessimistic estimate (tp). An approximation to the

expected time can be found by taking a weighted

average of the three estimates (in the ratio 1:4:1),

ðto þ 4tm þ tpÞ=6, which has a standard deviation

ðtp � toÞ=6:
Resource estimates — Project activities

require resources for their execution. Different

resource categories have been defined in the literature

(Węglarz et al. 2011), the most common ones being
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renewable and non-renewable resources. Renewable

resources (manpower, machines, equipment, tools)

are available on a per-period basis; non-renewable

resources (money, raw materials, energy) are

available on a total project basis.

Generating a Feasible Baseline Schedule

The fundamental objective of network planning is the

creation of a precedence and resource-feasible baseline

schedule that establishes the planned start and finish

times of the individual activities, meeting as much as

possible the objectives set forward by project

management. One of the most common time-based

objectives is the minimization of the planned project

duration.

In many real-world situations the time-oriented

objectives may be replaced by resource-based

or financial objectives. An important example of

a resource-based objective occurs in the

resource-availability cost problem, where the

capacities of the renewable resources are to be

determined such that a given project deadline is met

and the resource availability costs are to be minimized.

Another example is the resource leveling problem,

which involves the generation of a time-feasible

schedule for which the resource profiles for the various

resources are as level as possible, without violating the

project deadline. An important financial objective is

related to the incoming and outgoing cash flows

that are generated during the execution of a project.

This results in models that aim at maximizing the net

present value of a project. It should be clear that the

construction of a baseline schedule should eventually be

done under multiple objectives, using a multi-objective

or multi-criteria approach.

Critical path analysis — Using the activity-duration

estimates, and taking into account the precedence

relations (PERT and CPM assume finish-start relations

with zero time-lag), the longest path in the project

network can be computed. This is the so-called critical

path, which determines the planned project duration.

The PERT approach has been widely criticized

on theoretical grounds (Elmaghraby 1977;

Golenko-Ginzburg 1989; Sculli 1989). In the PERT

system, the mean value for the project duration is taken

as the sum of the mean values of the durations of the

activities on the critical path. This assumption is only

correct for a project that consists of a single chain of

activities, but progressively underestimates the mean

project duration as the complexity of the network

increases. In the PERT system, the variance for the

project duration is taken as the sum of the variances

of the activities on the critical path. Again,

this assumption is only correct for a project that

consists of a single chain of (independent) activities,

but progressively underestimates the variance as

the complexity of the network increases. There have

been serious doubts expressed as to the appropriateness

of the beta distribution. The PERT approach does not

take into account the probability of completion of sub-

critical paths. This inability to take account of sub-

critical paths is the most serious criticism of PERT.

Because of this PERT typically underestimates the true

statistical project mean duration and also seriously

underestimates the probability of meeting a deadline.

Resource-constrained scheduling — The

introduction of renewable resources into the analysis

complicates matters considerably. Computing

a precedence and resource-feasible deterministic

schedule that minimizes the project duration, the

infamous resource-constrained project scheduling

problem (RCPSP), is NP-hard in the strong sense.

Both exact and suboptimal procedures have been

presented in the literature (Özdamar and Ulusoy

1995; Herroelen et al. 1998; Brucker et al. 1999;

Kolisch and Padman 2001).

Exact procedures for solving the RCPSP typically

rely on branch-and-bound (see e.g. Demeulemeester

and Herroelen 1992, 1997). At the time of writing, the

best exact results have been reported by so-called

hybrid approaches, combining for example constraint

programming and satisfiability testing. Constraint

programming techniques learn about logical

implications between variable settings, which are

used to strengthen the bounds on variables.

Satisfiability testing draws from unsatisfiable or

conflicting structures, which helps to quickly find

reasons for and excluding infeasible parts of the

search space (Schutt et al. 2009; Berthold et al. 2010).

The complexity of the RCPSP has motivated

numerous research efforts on the design of heuristic

scheduling procedures (Hartmann and Kolisch (2000)

and Kolisch and Hartmann (2006)), which have

demonstrated that the best results are obtained by

hybrid metaheuristics, yielding a 25–30% deviation

from the critical path-based lower bound.
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Robust project scheduling — The probability of

a precomputed baseline schedule being executed

exactly as planned is low: activities may take more or

less time than originally anticipated, resources may

become unavailable, material may arrive behind

schedule, new activities may have to be incorporated

or activities may have to be dropped due to changes in

the project scope, ready times and due dates may be

modified, etc.

The aim of proactive project baseline scheduling is

to generate stable baseline schedules that are protected

against the disruptions that may occur during project

execution. Most commonly this is achieved by

inserting buffers in the baseline schedule (Herroelen

and Leus 2004).

The critical chain scheduling methodology,

introduced by Goldratt (1997), uses aggressive

duration estimates and computes the critical chain in

the generated precedence and resource feasible

baseline schedule. The critical chain is the chain of

precedence and resource dependent activities that

determines the overall duration of the project. The

safety in the durations of the activities that are on the

critical chain, which was cut away by selecting

aggressive duration estimates, is shifted to the end of

the critical chain in the form of a project buffer to

protect the project due date against variability in the

critical chain activities. Feeding buffers are inserted

whenever a non-critical chain activity joins the critical

chain. The working principles of critical chain

have been evaluated by Herroelen and Leus (2001)

and Herroelen et al. (2002).

Research efforts on the development of reliable

proactive scheduling procedures include Herroelen

and Leus (2004), Herroelen (2007).

Project Control

Once the project has started, control is maintained by

a system of status reporting. Some activities will take

longer than estimated and some shorter. Sometimes

estimates for activities not yet completed require

revision. At regular intervals the network must be

updated, reanalyzed and new schedules prepared,

taking into account all this new information.

The corrective actions needed when the schedule

lags behind or the built-in protection breaks may

involve activity crashing, giving rise to the so-called

time/cost trade-off problems. The importance of

time/cost trade-offs was recognized from the very start

of CPM, when the developers of CPM recognized that

the majority of activities encountered in real-life project

settings can be performed in shorter or longer durations

by increasing or decreasing the resources available to

them. Most often the acceleration in the execution of

activities comes at a cost.

It is usually assumed that the cost/duration

relationship is linear between a normal and a crash

duration, and that any intervening duration may be

attained. The objective is, by selection of activity

durations and their corresponding costs, to minimize

total activity costs for a given project duration.

A related problem is concerned with detecting the

shortest project duration available within a given

budget. The problem may be formulated as a linear

program and solved by the simplex method, but a more

efficient network flow algorithm was developed by

Fulkerson (1961). Other approaches are described

by Ritchie (1985). In most practical cases, resources are

available in discrete units, such as number of machines,

number of workers, etc. The resulting discrete time/cost

trade-off problem is a hard nut to crack (De et al. 1995).

Computer Software Packages

A wide range of commercial project planning

software packages is available on the market (Wasil

and Assad 1988; De Wit and Herroelen 1990): among

them Microsoft Office Project is probably the best

known. The software relies on simple priority

rules for resolving resource conflicts. As far as can be

determined (the scheduling methodology incorporated

in commercial software is generally proprietary and

hence unavailable), the software computes the earliest

start schedule and checks for resource overloads,

which are resolved by delaying some of the involved

activities. In some of the packages, the user may

select one of the alternative priority rules (Maroto

and Tormos (1994).

See

▶Critical Path Method (CPM)

▶Gantt Charts

▶GERT
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▶Heuristics

▶Metaheuristics

▶Network

▶ Program Evaluation and Review Technique (PERT)

▶ Project Management

▶ SCERT

▶ Scheduling and Sequencing

▶Theory of Constraints

▶VERT
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Network Simplex Algorithm

For the minimum-cost network-flow problem,

a special adaptation of the simplex method that takes

advantage of the mathematical structure of the network

constraints to produce a computationally fast and

efficient solution algorithm. The main idea behind

this algorithm is the recognition that a basic

feasible solution to the network problem, treated

as a linear-programming problem, corresponds to

a spanning tree of the defining network.

See

▶Minimum-Cost Network-Flow Problem

▶Network Optimization

▶ Simplex Method (Algorithm)

Networks of Queues

Richard F. Serfozo

Georgia Institute of Technology, Atlanta, GA, USA

Introduction

Many important operational issues in communication

and manufacturing systems concern random

movements of discrete units called customers in

networks of service stations with queueing. Examples

of such queueing networks are:

• Computer and telecommunications networks— data

packets, read/write transactions, files, or telephone

calls move among computers, buffers, operators or

switching stations;

• Manufacturing networks — parts, orders, or

material move among workstations, inspection

points, automated guided vehicles or storage areas;

• Equipment maintenance networks — parts or

subsystems move among usage sites and repair

facilities;

• Logistics and supply-chain networks — parts,

material, personnel, trucks or equipment move

among sources, storage depots and production

facilities; and

• Parallel simulation and distributed processing

systems — messages, data packets and signals

move among buffers and processors.

Other areas in which queueing networks arise

include biology (movements of animals, fish or

diseases) and economics (movements of labor,

people, capital or shopping centers).

Common questions about a queueing network are as

follows. Where are its bottlenecks or major delays?

How does one network design compare with another?

What is a good set of rules for operating the network

(e.g., customer priorities or routings)? What is

a least-cost network (e.g., numbers of machines, tools

or workers)? Typical aims or performance objectives

include the following: the probability of a busy signal

in a telecommunications network should be less

than 1%; the expected waiting times in a computer

system should be less than certain values; the

probability of meeting manufacturing deadlines

should be above 90%.
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To address such issues requires an understanding of

the behavior of the network in terms of the equilibrium

(or stationary) probability distribution of the numbers

of customers at the queueing stations, which will usually

be referred to as the nodes of the network. These

distributions are used to evaluate a variety of

performance measures such as throughputs, expected

costs, and percentage of time a station is overloaded.

The equilibrium distribution is a basic ingredient for

constructing objective functions or constraints used

in mathematical programming algorithms to select

optimal network designs and protocols. The quality of

a network is also determined by the duration of travel

and sojourn times in it, such as the time for a customer to

travel from one sector to another or the amount of time it

takes for a customer to visit a certain set of nodes.

Equilibrium distributions are used in describing the

means or distributions of such travel times.

Many queueing network models have been

developed using the theories of multi-dimensional

Markov processes, point processes, and stationary

processes. By their nature, stochastic networks have

myriad dependencies that are analytically intractable.

There are several types of network models, however,

that have closed-form equilibrium distributions, some

of which are described in the following sections, with

pointers provided to others.

Jackson Networks

Consider an m-node network, where discrete units

called customers move among the nodes where they

are processed or served. The evolution of the network

is represented by a continuous-time Markov process

{Xt : t � 0} whose states are vectors x ¼ (x1,. . ., xm),

where xj denotes the number of customers at node j

(in service or waiting in queue). The network is

a closed Jackson network if it contains a fixed

number of customers that move as follows. Whenever

there are xj customers at node j, the time to the next

departure from that node is exponentially distributed

with rate fjðxjÞ, independent of the rest of the network.
A standard service rate is fjðxjÞ ¼ mj maxfxj; sjg,
which represents sj independent servers whose

service times are exponentially distributed with mean

1/mj. When a customer departs from node j, it moves

immediately to node k with probability pjk. In other

words, the sequence of states that each customer visits

forms a discrete-time Markov chain with transition

probabilities {pjk}. Without loss of generality,

assume this routing chain is irreducible.

Under these assumptions, whenever the network

process X is in state x, a transition is triggered by

a customer moving from some node j to another node

k, and the time to such a transition is exponentially

distributed with rate fj(xj)pjk. Thus, X is a Markov

process. It is positive recurrent because its state space

is finite and the routing chain is irreducible. Its

equilibrium distribution is

pðxÞ ¼ c
Ym

j¼1

a
xj
j

Yxj

n¼1

fjðnÞ
�1; (1)

where fajg is the stationary distribution of the

routing probabilities {pjk}. The factor c is the

normalization constant under which these terms sum

to 1, and
Qk

n¼1 an ¼ 1 when k ¼ 0.

Next, consider an open version of the network in

which customers enter certain nodes in the network

from outside (called node 0) according to independent

Poisson processes, where l0j is the arrival rate for an

entry node j. Then the probability that an arbitrary

arrival enters node j from the outside is

p0j ¼ l0j=Skl0k. Assume the service and routing is

done as above, and that there is a probability pj0 that

a customer departing from j exits the network. Assume

the Markov routing probabilities {pjk} are irreducible

on {0, 1,. . ., m}. The network is now an open Jackson

network with unlimited capacity. In this case, the

equilibrium distribution of the network process X is

pðxÞ ¼
Ym

j¼1

cja
xj
j

Yxj

n¼1

fjðnÞ
�1;

where

c�1j �
X1

k¼0

akj

Yk

n¼1

fjðnÞ�1;

which is assumed to be finite, and aj is the solution to

the traffic equations

aj ¼ l0j þ
Xm

k¼1
ajpjk; j ¼ 1; . . . ;m; (2)
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i.e., aj ¼ pj=p0, where p0, p1,. . ., pm is the stationary

distribution of the Markov routing probabilities {pjk}.

Another variation of this network is an open

Jackson network with capacity n. This network

operates like the open network described above

except that when there are n customers in the

network, the Poisson arrival streams are turned off

(arrivals are turned away) — the total number of

customers in the network may be from 0 to n. The

equilibrium distribution of this network is given

by (1), where aj is the solution to (2) and the

normalizing constant c is different.

Example: Single-Server Stations. Suppose each node

is a single-server queue with service rate fðxjÞ ¼ mj. If

the network is closed with n customers, then

pðxÞ ¼ crx11 . . . rxmm ; (3)

where rj ¼ aj=mj. In case the frjg are distinct,

c ¼ c�1n , where

cn ¼
Xm

j¼1
rnþm�1j

Y

k 6¼j
ðrj � rkÞ�1:

There is a more complicated formula for c for

non-distinct frjg. If the network is open with finite

capacity n, then the equilibrium distribution is as in (3)

with c�1 ¼ P
n

n¼0
cn for distinct frjg. If the network is

open with unlimited capacity and rj < 1 for each j,

then pðxÞ ¼ Qm
j¼1ð1� rjÞr

xj
j . This is a product of

equilibrium distributions of individual birth-death

processes with birth rates aj and death rates mj, and

thus is called a product-form solution.

One can compute various quantities of interest from

the equilibrium distribution p such as the marginal

distributions, means and variances of quantities of

customers at a node or in a sector of the network

(a subset of nodes) and expected costs associated

with network loads and movements. For closed

or finite-capacity open networks, there are algorithms

for computing these quantities (the unlimited-capacity

open network is simpler because of its underlying

product-form decomposition). Another approach is to

estimate the quantities by a Monte Carlo simulation of

a Markov chain (e.g., a Metropolis Markov chain) that

has the same equilibrium distribution as the network;

this is useful for large networks.

Important performance measures for a network are

its throughputs. The throughput from node j to node k

is the average number of network transitions per unit

time in which a customer moves from j to k. This

quantity is also the expected number of these

transitions per unit time when the system is in

equilibrium. The throughput from j to k is ljk ¼ ajpjk
when the Jackson network is open with unlimited

capacity, and it is ljk ¼ cðnÞc ðn� 1Þ�1ajpjk when the

network is closed with n customers (or open with

capacity n). Here c(n) is the normalizing constant for

a closed network with n customers (or an open

network with capacity n). The throughput of node j is

lj ¼ Sk 6¼jljk. Then lj ¼ aj in case the network is open

with unlimited capacity, and lj ¼ cðnÞc ðn� 1Þ�1aj
for the other two cases. Similarly, the throughput of

a sector J is lJ ¼ Sj2Jlj.
The main customer performance measures are

sojourn times at the nodes, when the network is in

equilibrium. The sojourn time Tj of a customer at

node j is its service time plus time waiting for

service. The expected sojourn time Wj ¼ E[Tj] is

obtained by Little’s law Lj ¼ ljWj, where Lj is the

expected number of customers at node j, which is

computed from the equilibrium distribution p.

Similarly, the expected sojourn time WJ in a sector J

can be obtained via Little’s Law applied to the sector:

LJ ¼ lJWJ . Also, in an open network with unlimited

capacity, the expected time a customer spends in

a sector (in all of its visits) is WJ ¼ LJ=Sj2Jl0j
What is known about travel times in Jackson

networks? Consider an open Jackson network with

unlimited capacity in equilibrium. A simple route in

the network is a set of nodes 1,. . ., l such that

a customer is able to traverse them in that order.

Assume this is an overtake-free route in the

sense that each node consists of a single server with

a first-come-first-serve discipline, and once a customer

is on the route, it cannot be overtaken by another

customer. Then the sojourn times T1,. . ., Tl at

the respective nodes for an arbitrary customer

that traverses the nodes in that order are independent

exponential random variables and E½Tj� ¼ ðmj � ajÞ�1
,

where mj is the service rate at node j. When the network

is closed or open with finite capacity, then T1,. . ., Tl are

dependent, but they have a known closed-form,

multi-dimensional generating function. There are no

comparable results for non-overtake-free routes.
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In addition, there are closed-form expressions for

a customer’s expected travel time on a variety of very

complicated routes. Examples include the time to

travel from one sector J to another sector K, the time

it takes to make n visits to a node j, and the time

a customer spends in an open network while avoiding

a sector J.

The preceding results for travel times are based on

the MUSTA property that a “moving unit sees a time

average.” That is, suppose the Jackson network is open

with unlimited capacity and is in equilibrium. Then at

a transition in which a customer moves from one node

to another, the probability distribution of the “other”

customers in the network is the same as the equilibrium

distribution of the network. Similarly, if the network is

closed or open with finite capacity, then when

a customer moves, the distribution of the other

customers is the same as the equilibrium distribution

of the network with one less customer. This MUSTA

property is analogous to the PASTA property that

Poisson arrivals to a single service queueing station

see a time average.

Although the flow of customers over time from one

node to another is generally not a Poisson process,

there are some exceptions. Suppose the Jackson

network is open with unlimited capacity and it is in

equilibrium. Then the flow of customers departing the

network from node j is a Poisson process with rate ajpj0
(provided the rate is positive), and these Poisson

departure processes are independent. Such a result

might be of use for production planning for

a manufacturing network, where the departures are

customers of a finished product. Some internal flows

are also Poisson processes. Suppose that customer j is

such that a departure from it can never return. Then the

flow of customers from node j to node k is a Poisson

process with rate ajpjk, and all these Poisson flows out

of j are independent. There are no Poisson flows in

closed or finite-capacity open networks, because the

total number of customers is constrained.

Other Network Models

The following is a summary of other types of

Markovian network models that have closed-form

equilibrium distributions.

Whittle Networks

These networks operate like the Jackson network

described above with the generalization that

the service rate at node j is a function fjðxÞ of the
entire network state x that satisfies a certain balance

condition. Such system-dependent service rates

are useful for modeling congestion dependent services.

Reversible Networks

Suppose the m-node network process X discussed

above is a positive recurrent Markov process with

transition rates q(x, y) from state x to state y. The
state xj at node j may contain more information than

just the quantity at the node, and the transitions can be

very general (not necessarily like the single-customer

movement in Jackson networks). The process is

reversible if there is a probability measure p that

satisfies the detailed balance equations p(x)

q(x, y) ¼ p(y) q(y, x) for each (x, y). In this case, p is

the equilibrium distribution of the process, and there

is a closed-form expression for p in terms of the

transition rates. Such reversible processes can model

dependent stations and batch movements, as well as

single-customer movements of customers, provided

the entire system is reversible.

Multi-Class Networks

Jackson, Whittle and reversible networks described

above with homogeneous customers have analogues

with multiple types of customers. In these networks,

the state is a vector with components xgj that represent

the number of customers of class g at node j. The

network dynamics are the same, but the single

subscript j is simply changed to a double subscript gj.

For instance, in a Jackson network, a transition consists

of a type g customer at node j moving to node k and

arriving there as an � customer — the rate of this

transition is f gjðxgjÞpaj;�k . These models can represent

fixed routes of customers fed by Poisson arrivals;

a customer’s type is g ¼ rs, where r is the route it is

traversing and s is the stage (or node) on the route.

Networks with Batch or Concurrent Customer

Movements

Multiple-customer movements in a network are

represented by transitions from a state x to a state

x + a � d, where a and d are vectors that are added
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and subtracted from the state x. The models described

above have analogues with certain types of multiple-

customer movements that still lead to tractable

stationary distributions.

Quasi-reversible Networks and Product-Form

Equilibrium Distributions

Loosely speaking, a service station is quasi-reversible

if its input and output processes in equilibrium are

Poisson. Such stations can be connected with certain

types of routings to produce a quasi-reversible network

process whose equilibrium distribution is a product

form p(x) ¼ cp1(x1)���pm(xm). The state xj may

contain more information than the number of

customers at node j. This product-form distribution is

a generalization of the Jackson product-form

distributions above. There are also more general

network models with product-form equilibrium

distributions, where the {pj} are equilibrium

distributions of the stations in isolation whose

parameters are linked by certain traffic equations.

Networks with String Transitions

In this type of network, a transition is determined by

a string of vectors representing multi-stage

subtractions or additions of vector quantities at

the nodes, and all of this is done instantaneously in

a transition. The strings are randomly selected from

an arbitrary family of variable-length strings.

The equilibrium distributions contain parameters, like

the fajg in the Jackson network, that are determined by

nonlinear traffic equations.

Concluding Remarks

Jackson networks and some of the other models are

discussed in Kelly (1979), Walrand (1988), Whittle

(1986), Wolff (1989), and Boucherie and van Dijk

(2011), and all of the models are discussed in Serfozo

(1999). Disney and Kiessler (1987) study traffic flows

in networks, and van Dijk (1993) discusses modeling

by a systems approach.

Topics related to networks of queues that were not

discussed include Brownian motion models for

approximating networks in heavy traffic, fluid models

of (discrete or continuous) flows in networks, polling

systems in which servers move among stations,

stochastic PERT networks, interacting particle

systems, Petri net formulations of networks,

space-time Poisson processes for modeling networks

with no queueing, and spatial queueing systems. Some

of these can be found in Boucherie and van Dijk

(2011). Another excellent source for reading about

developments in queueing networks is the journal

Queueing Systems: Theory and Applications.

For example, a special issue of the journal in 1998

reviews the state-of-the-art of Brownian queueing

network models.

See

▶ Jackson Network

▶Little’s Law

▶Markov Chains

▶Markov Processes

▶ PASTA

▶ PERT

▶ Point Stochastic Processes

▶Queueing Theory
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Introduction

A field that was started in the 1940s, when McCulloch

and Pitts (1943) designed the first neural networks

where artificial neurons are combined into a network

structure, has attracted researchers from diverse

disciplines. Inspired by biological neural networks,

artificial neural networks crudely imitate human

brains in processing information, recognizing patterns

and retrieving stored information. For simplicity,

artificial neural networks will be referred to as neural

networks.

The first learning law for neural networks was

designed by Hebb (1949), and later expanded by

McClelland and Rumelhart (1988). The field of

neural networks has gone through several stages

since its beginnings, including some quiet years in

the 1970s (Fausett 1994). A large number of neural

network paradigms have appeared in the literature,

including the Hopfield networks, multilayer

perceptrons (also known as the backpropagation

networks), self-organizing maps, adaptive resonance

theory networks, radial basis function networks and

general regression neural networks.

Neural networks are largely empirical models

whose robustness and flexibility are prime

advantages. On the debit side, neural networks

generally require substantial amounts of data, require

considerable expertise to properly construct and

validate, and offer little in the way of discernible

model structure to better understand the relationship

modeled. Neural networks have been successfully

applied to prediction, forecasting, process modeling,

financial and business applications, combinatorial

optimization, classification and control.

After describing several of the most popular

neural networks, namely, backpropagation networks,

self-organizing maps, and general regression neural

networks, recent applications of neural networks to

operations research type of problems will be

discussed in the following sections.

Neural Network Basics

An example of a network structure is shown in

Fig. 1. External information is used as inputs

(i.e., independent variables) to the network. The

interconnections (in the form of real valued, or

occasionally binary valued, weights) between the

nodes in the input layer and the nodes in the hidden

layer, and that between the hidden nodes and nodes in

the output layer, represent the knowledge acquired or

learned during the iterative training process of the

network. The training algorithm for adjusting

the connected weights is dependent on the specific

network paradigm. During the training process, the

interconnections or weights are adjusted according to

some algorithm(s). Once the network is trained, it is

then able to produce an output (or a set of outputs) for

a given input set.

If the training set contains the target information

(i.e., known values of the dependent variables),

the learning algorithm is a supervised learning

algorithm. Examples of supervised networks are

backpropagation networks, radial basis function

networks and general regression neural networks. On

the other hand, if the training set does not contain

the target information, the learning algorithm is an

unsupervised learning algorithm. Examples of

unsupervised networks are self-organizing maps and

some versions of the adaptive resonance theory

networks. Human and animal learning incorporates

both supervised and unsupervised learning but in

neural networks, a given paradigm will use one form

of learning or the other.

Building and Validating a Neural Network

The process of constructing a neural network

for an application generally involves three steps:

data-preprocessing, model design and model

validation. The first step is to determine which

variables are to be modeled and these are generally

divided into input variables and output variables. It is

usually preferred to use the minimum number of

variables that provide adequate characterization of

the relationship to be modeled. Neural networks

depend on data to establish the model. In fact, they

normally require greater amounts of data than

traditional statistical methods such as least squares
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regression or kriging. The dataset may require

investigation on the characteristics of outliers, and

may require preprocessing to extract the important

features for the problem at hand. The dataset is

normally divided into a training set and a validation

set, though there are approaches which use all data

for both training and testing (see for example,

the resampling techniques used in Twomey and

Smith (1998)).

Once the data has been pre-processed, one or

multiple networks may be selected for model

building. This step often depends on the network

modeler’s experience and the network paradigms that

have been successfully utilized for the application

considered. Designing a network includes selection

of the network paradigm, network size and structure,

learning method and parameters, and stopping criteria

for learning. A design of experiments could be used to

fine-tune the network parameters. Designing and

building a neural network is normally an artful and

iterative task. There is little in the way of useful

general guidelines and it is often difficult to choose

a priori a superior set of network structures and

parameters.

After the network has been trained using

a training-set, the trained network is usually validated

using a separate set of data (i.e., a validation set).

The performance on the validation set is often

used as an estimate of the network’s generalization

ability. Achieving a low error on the training set

but a substantially high error on the validation

set generally indicates overtraining and/or over

specification of the network model. This often

implies that the network memorizes the training

set too well, and its ability to generalize on the

validation set has significantly degraded.

After the neural network has been trained and

validated, its structure and parameters are then fixed

and it can be used for the task intended. Some neural

network paradigms have the ability to continue

learning even while in the operational state (see, for

example, the adaptive resonance theory network).

From a usage perspective, neural networks have the

disadvantage of being a “black box” technology. That

is, little useful insight can be gained by examining its

parameters. This is unlike a regression model where

intercept and slopes have a readily identifiable

interpretation. There are also few statistical properties

that can be calculated from neural networks.

Common Neural Network Paradigms

The so-called backpropagation network (the training

method is actually backpropagation and it is generally

used on the network structure termed multi-layer

perceptrons), one of the most popular network

paradigms, has been applied in many different areas

in the literature. A simple 2-2-1 network that consists

of 2 input nodes in the input layer, 2 hidden nodes in
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the hidden layer, and 1 output node in the output layer,

is shown in Fig. 2. During the training process, each

training vector is fed to the input layer. The inputs,

weighted by the connected weights wij along with the

bias are fed forward to the hidden nodes in the hidden

layer. An activation function is then applied to the

input signal to each hidden node to produce an output

(outgoing) signal to the following layer. Common

activation functions are the hyperbolic tangent and

sigmoid. The output signals, weighted by vjk along

with the bias term are fed forward to the output node

in the output layer. The received signal at the output

node undergoes a transformation, via an activation

function, to produce a network output in the output

layer. The difference between the network output and

the target output is then propagated backward to adjust

the connected weights in the network. The adjustment

is dependent on the squared error in the output layer,

and a learning factor chosen for the backpropagation

learning algorithm. The training process of the

network continues until the weight adjustments

become negligible or a predetermined number of

iterations of training have been completed. The

training process is equivalent to the determination of

optimal weights that minimize the error between the

network output and the target output. A mathematical

formulation of the backpropagation learning algorithm

is provided by Fausett (1994). These types of networks

are multi-purpose and are usually used for prediction,

classification and control.

The self-organizing map, also known as the

Kohonen’s self-organizing map, is based on a

competitive learning algorithm (Kohonen 1982,

1997). The neurons in the self-organizing map

(shown in a two-dimensional lattice in Fig. 3) are

selectively tuned or adjusted according to the input

information received during training. According to a

distance metric (e.g., Euclidean distance), the neuron

that is closest to the input vector wins the competition

and is allowed to update its connected weights to the

input nodes in the input layer. Over the course of the

training process, the neurons are topologically ordered

and their weight vectors represent an approximation of

the input space. This approximation is also known as

the feature map. One of the basic ideas of the

self-organizing map is to extract the features from the

input space and represent the features using a smaller

set of neurons in the output space. Variations on the

neighborhood structure of the neurons in the lattice

allow for the winning neuron along with its nearest

neighbors to “learn” from the input vector. The

adjustment of the weight vectors gradually

diminishes over time, which would signify that the

training of the network has been completed. These

types of networks are generally used for classification

or clustering tasks.

The general regression neural network, developed

by Specht (1991), is a probabilistic neural network.

This network requires only a fraction of the training

samples that a backpropagation network would
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normally require (Specht 1991) (Fig. 4). Each neuron

in the hidden layer uses a Gaussian probability

distribution, centered at one of the training samples.

Hence the connected weights between the input

and the hidden layers are encoded as the input

vectors (i.e., ~x) in the training set. A training set of

size n would require a total of n neurons in the hidden

layer. One of neurons in the pattern layer, the

numerator neuron, has its connected weights between

the hidden and the pattern layers encoded as the target

values of the input vectors (i.e., ~y) in the training set.

The vector ~y is a one-dimensional vector that has the

same number of elements as the size of the training

set. In the event that the original training samples

have more than one output variable, each output

variable would require a separate general regression

neural network. The other neuron in the pattern layer,

the denominator neuron, has its weights between the

hidden and the pattern layers encoded as unit weights.

The final output of the network (in the output layer) is

the ratio of the weighted sum of inputs received at the

numerator neuron in the pattern layer and the sum of

inputs received at the denominator neuron in the

pattern layer. Each hidden neuron contributes to the

final output of the network. These types of networks

are usually used for prediction and forecasting.
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Prediction Applications

Probably the preponderance of applications of neural

networks can be classified as prediction. Often

these neural networks are used when a comparable

statistical model (such as regression) proves to be too

restrictive. These applications also have the property

of ample data with which to train and validate the

network model.

Brockett et al. (1997) discuss the possible

advantages and feasibility of using neural networks to

predict insurer insolvency (inability to pay debts).

Their research examines a backpropagation network

with a goal of obtaining early warnings (early being up

to 3 years before) for both insolvency predictions, and

priority ranking of insurance firms for potential

auditing. The case study is constrained to insurance

companies only located in Texas, and also insurance

companies that only offer property and casualty

insurance (as opposed to life and health insurance).

Their model is designed having an input vector of

eight financial variables to differentiate between

healthy and weak insurers, with an output of the

solvency results. The optimal number of iterations

was based on the process of stopping the training

once peak network performance is achieved.

The results showed that the network was able to learn

patterns corresponding to financial distresses of

the companies, had a 95.45% accuracy rate in the

44 companies evaluated in determining the insolvency

rate. Their research concluded with the benefits of

using neural networks, specifically the ability to

update without training the network from the

beginning, using the current weights as a starting

point for future iterations when more data becomes

available, and the ability to adapt to changing

economic influences.

Condition based maintenance is the act of keeping

equipment maintained properly so that it does not

fail. Remaining useful life (RUL) prediction of

the equipment is instrumental in condition based

maintenance. There exists two forms of RUL

prediction: model-based (or physics-based), which

relies on calculations involving the mechanics of the

equipment, and data-based, which aims at predicting

RUL based on a model of the relationship between

RUL and equipment age, condition monitoring

data, and equipment degradation. The adaptability,

nonlinearity, and arbitrary function approximation

ability of neural networks have been considered to

be promising tools for RUL prediction. Tian et al.

(2010) propose an approach for predicting RUL of

equipment using a neural network with age and

condition monitoring data as inputs and life

percentage (1 - RUL) as the output. In this case,

condition monitoring data includes some available

failure history, as well as suspension history.

Suspension history is information about a piece of

equipment that has been suspended (removed) from

use in its respective system. It provides useful insight

into degradation of the piece of equipment and can lead

to more accurate RUL predictions. The optimal

predicted life is determined for each suspension

history. The trained network was validated by using

real-world vibration monitoring data collected from

pump bearings. Their results showed that the neural

network devised in their research can produce accurate

RUL predictions. Another neural network application

to condition-based maintenance can be found in

Smith et al. (2010). This group developed hardware

and software to estimate degradation of the door

mechanism on airport people mover vehicles using

a backpropagation neural network. This neural-based

system was field tested at an airport and resulted in

multiple patents issued.

Neural nets are known for their ability to estimate

continuous functions well but the model is of

a “black box” approach where the end-user does not

know precisely how the model came to its conclusion.

Setiono and Thong (2004) demonstrate the extraction

of the knowledge that the neural network has learned in

order to achieve better system understanding. The first

step is to estimate the hyperbolic tangent activation

function for each hidden unit of the hidden layer

from a trained and pruned neural net by means of

a three-piece linear function. Then the input region is

divided and a linear function is estimated for each

sub-region. Since the estimated linear function

obtained for each region has inputs that are weighted,

i.e., the weights from the input layer to the hidden

layer, Setiono and Thong (2004) propose optionally

the use of the C4.5 decision tree to get a set of rules

independent of the weights.

According to Ladstatter et al. (2010), organizational

research problems are seldom studied via neural

networks and burnout has never been studied with

neural networks, thus making their research

unique. If burnout could be predicted accurately
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then preventative measures could be used in an

attempt to alleviate the problem. Burnout is described

as being three dimensional, namely, emotional

exhaustion, depersonalization and lack of personal

accomplishment. The radial basis function neural

network in this case uses seven input variables

(conflictive interaction, workload, experience with

pain and death, role ambiguity, age, job status and

hardy personality) to predict the level of each of the

three dimensions of burnout. Three types of neural

networks, namely backpropagation and radial basis

function networks with traditional and hybrid training

algorithms, were constructed to see which model

was the best. A hierarchical stepwise regression

model was also developed from the same data for

comparison purposes. The results were modest in that

the radial basis function neural network, being the best

neural network in this research, slightly outperformed

the regression model in two of three dimensions

of burnout.

A backpropagation network was used to predict

internet traffic over internet-protocol (IP) networks in

Chabaa et al. (2010). Multiple learning algorithms

were implemented for comparison, namely, gradient

descent, conjugate gradient, one step secant,

Levenberg-Marquardt and resilient backpropagation.

Additionally four variants of the conjugate gradient

algorithm were used, namely, Fletcher-Reeves

updates, Polak-Ribiere updates, Powell-Beale restarts

and scaled. All conjugate gradient algorithms start

searching in the area of steepest descent followed by

combining the next (new) search direction with

previous search direction. The four conjugate

gradient variants differ in how they combine the new

with the previous search direction. The multiple

learning algorithms were then compared by using the

following statistical measures: root mean square

error, scatter index, relative error and mean absolute

percentage error. The results showed that the

Levenberg-Marquardt and resilient backpropagation

performed the best for the prediction task based on

the above statistical measures.

Forecasting Applications

Similar to prediction problems, forecasting

applications are most specific to a series of data

where the ordering is important. There have been

a number of papers in which neural networks have

been used effectively for this task. There are also

reports of applications of neural networks managing

time series data to make investment decisions (see, for

example, Evensky (1997)).

Hansen and Nelson (2003) show the use of neural

networks to improve forecasts of time-series

components that are not effectively forecasted using

classical decomposition of the forecast components

(trend, seasonality, irregularity (error or residuals)).

Traditional forecasts do not work as well when the

trend/cycle component is not linear, there is variation

in cycles, the seasonality component evolves over

time, or when the irregularity component (residuals)

does not appear to be from white noise. Hansen

and Nelson (2003) noted that it could be possible to

apply neural networks to extract information from the

seemingly noisy or irregularity component of the

forecast. Their framework was based on a “stacked

generalization” model. First classical decomposition

was conducted providing estimates for trend,

seasonality, and irregularity. Then each estimated

component was input into a separate neural network

for each of the forecast components (i.e., a trend neural

network, seasonality neural network, irregularity

neural network). The result of the stacked

generalization model is a non-linear combination/

forecast of the time-series components. Their stacked

generalization model was tested and compared to

results obtained for classical decomposition and

ARIMA models.

Tiwari and Chatterjee (2010) used bootstrap-based

neural networks to predict flooding at multiple time

intervals based on hourly water-level data taken from

five different locations. The authors used statistical

techniques to reduce the dimensionality of the data

set and then a log transformation followed by

linear scaling to achieve inputs ranging from 0 to 1.

The network design consisted of the input and output

layers defined by the problem and one hidden

layer with the number of nodes in the hidden

layer determined by cross-validation. The initial

network model showed good results in its

ability to predict water levels at different lead times

(0, 1, . . ., 10 hrs into the future). Furthermore, Tiwari

and Chatterjee (2010) also introduced a method to

incorporate confidence intervals for the output

obtained from the bootstrap ensembles which helped

reduce the model uncertainty.
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Process Modeling

Process modeling is an active area of neural network

applications. A great variety of neural network

paradigms and approaches have been used on

a variety of industrial processes.

Maksoud et al. (2003) established a system of two

backpropagation networks for monitoring and

controlling grinding operations. The first network is

used for the grinding process design to achieve

the required workplace surface roughness, with

an output of suitable values of machine variables. The

second network is used for the grinding process control,

with an output of modifying the cutting variables or

flagging for automatic dressing activation. Tests were

run to evaluate response to change variables in order

to keep the surface roughness within the desired

tolerance. It was found that the network model kept

the surface roughness within the desired tolerance, and

the model also alerted the machine when it needed to

stop the process and flag it for automatic dressing

activation. The research work could potentially be

implemented in other grinding operations with

different sets of variables.

Coit et al. (2002) developed a neural network

system for process modeling and control of a wave

soldering line in the production of printed circuit

boards. They developed a hierarchy of neural

networks each with a specialized task. The ultimate

network predicted quality of solder connection based

on both printed circuit board design characteristics and

on solder process parameters. Lam and Smith (2001)

discuss three diverse applications in manufacturing

and how systems of neural network models were

successful in improving process control. These are

ceramic casting of sanitary ware (Lam et al. 2000),

abrasive flow machining for automotive engine parts,

and chemical oxidation of cyclohexane in a reactor

(Lam et al. 2001).

Gupta (2010) devised empirical models for the

prediction of surface roughness, tool wear, and power

required using response surface methodology, neural

networks and support vector regression. Descriptive

statistics and hypothesis testing were used to compare

and evaluate the model building methods. The results

showed that neural network and support vector

regression models were superior to regression and

response surface methodology in the prediction of

surface roughness, tool wear, and power required.

Financial and Business Applications

While some of the application areas cited above can

span this sector, a good review article is followed by

sample applications specific to finance. Smith and

Gupta (2000) review neural network applications in

the business domain and indicate that they are really

a tool for the operations researcher. The authors

identify five stages of neural network research

development, with the first stage being related to

computing paradigms and the last stage being

the research of neural networks in business

applications. An overview of business application

areas (non-exhaustive) are given as marketing, retail,

banking and finance, insurance, telecommunications

and operations management. Interesting and

successful examples in each of these industry sectors

are given to show the diversity of neural network

applications.

West et al. (2005) investigated neural network

ensembles to produce better decision support

mechanism for financial decisions. The argument for

“ensembles” is that predictions from multiple experts

(models) can produce results with less error than when

only using the best fitting model. The ensemble

methods discussed include cross-validation, bootstrap

aggregation (or bagging), and adaptive boosting

(or boosting). Cross-validation is where multiple,

similar neural networks are trained on the same data.

Bagging and boosting methods involve perturbing the

training data such that the different neural networks in

the ensemble are each trained on unique training data

sets that are subsets of the original training set.

Bagging creates the training data by randomly

selecting data with replacement from the original

training data set, whereas boosting creates multiple,

unique training data sets that each contain multiple

examples of hard-to-classify examples that a single

neural network could not learn itself from the original

training data. After the ensemble member networks are

trained, the outputs are combined, or aggregated in

a single decision. The research of this paper included

creating different ensemble neural networks for three

different financial data sets and comparing the results

of the ensembles with each other and the single

“best fitting” model. The results of their research

show that cross-validation and bagging outperform

the single “best fitting” model in all three data sets

while the boosting method did not always outperform
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the “best fitting” model, most likely due to outliers and

possibly the need for better boosting algorithms. In all

cases the reduction in generalization error was modest

(	3%), but it was argued that in the case of financial

decisions in a trillion dollar annual industry can mean

significant savings.

Grznar et al. (2007) use neural networks to model

complex, organization systems where statistical

models have proved inadequate. In particular the

authors use multilayered feedforward neural

networks with backpropagation learning to model the

relationship between inter & intra team processes,

organizational context, and team size to team

effectiveness. The basic argument that statistical

procedures are not suited for this problem is due to

outliers in the data and the non-linear relationships

in complex systems. Grznar et al. (2007) created

the training data by means of a survey that included

102 different teams from different organizations. The

data was modeled by the neural network and also with

traditional and robust regression (robust regression

uses least median of squares to make the model less

susceptible to outliers) in order to compare the results.

The traditional and robust regression models each

found the intra-team processes to be significant and

the regression models had R2 values of 0.247 and

0.313, respectively, which apparently are good R2

values for organizational models. It is suspected

that low R2 values of organizational models are due

to non-linear behavior that cannot be explained with

these models. The neural network model resulted in

a R2 of 0.414, which was significantly better than

the previous models. The authors were also able

to experiment with multiple data streams on

the validated model and found some interesting

non-linear relationships. Among these relationships is

that as team size increases it initially decreases team

effectiveness but then as the team size becomes even

larger team effectiveness begins to increase again.

Classification Applications

Fisch et al. (2010) made use of radial basis

function neural networks to classify system

behaviors, in particular to detect network intrusion.

The radial basis function neural network is very

similar to that of a backpropagation network except

that the activation of the hidden neurons is calculated

by radial basis functions instead of sigmoid or

hyperbolic tangent functions. The training and test

data for this research were from a DARPA

project conducted in 1998, which contained over

300 examples of 38 different types of intrusions. This

paper used a subset of the DARPA dataset which had

a higher proportion of intrusions versus safe actions in

order to make classification easier. Fisch et al. (2010)

compared multiple methods including the two neural

networks, neuro-fuzzy, decision trees, fuzzy-k-means,

support vector machines, Bayesian networks and

k-nearest-neighbor to report on which performs the

best. The results showed that the radial basis function

neural network performed slightly better than the

k-nearest-neighbor approach but that there was no

clear winner among the classification approaches.

Zhang (2000a) compared backpropagation

networks with statistical classification and showed

the superiority of neural networks when the model is

non-linear or when the underlying distribution

function is unknown. Additionally it was shown that

with appropriate architectures one can essentially

mimic the most widely used statistical classifiers with

a neural network, which further shows their utility. The

discussion addresses learning and generalization for

future predictions and how they are related to model

bias and variance. Overall, Zhang’s paper is a good

review of backpropagation networks’ application to

classification problems.

Control and Optimization

Sensor fault detection and isolation is an integral part of

flight control systems, especially for an unmanned

aircraft. The most common solution for sensor failure

is using redundant hardware and output limit checks to

see which sensors are operating as expected. Due to high

cost and additional weight loads of redundant hardware

it is preferred to use a model based approach. The

majority of model-based senor fault detection and

isolation use linear models which obviously have

drawbacks when the system is not linear. Samy et al.

(2010) used an extended minimum resource allocation

network radial basis function neural network for sensor

fault detection and accommodation. Their neural

network was implemented in a simulated environment

and only one type of fault (pitch gyro) was considered.

The neural network model has six inputs including:
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angle of attack, normal acceleration, airspeed, altitude,

elevator angle, and throttle. There was a single output

node corresponding to pitch rate. The model had to be

able to detect eight different fault types corresponding to

the output (pitch rate) exceeding certain thresholds. The

neural network model was trained through batch

learning to find all model parameters. Once the model

was batch trained it was connected in parallel with

a simulated model of an unmanned air vehicle. Sensor

readings (six inputs) entered the unmanned air vehicle

and neural network model, which is now switched to

online learning, to obtain actual and estimated outputs,

respectively. A residual was then generated from

comparison that is used for fault detection, i.e., if this

residual exceeds a certain threshold. The results indicate

that the neural network was able to detect faults

adequately. This work has shown the potential to use

neural networks for unmanned air vehicle flight control,

although it is not expected to replace hardware

redundancy in the near future.

In optimization, neural networks were first noted as

possibilities in the seminal paper by Hopfield and Tank

(1985). Since that time there have been various

approaches made and these are summarized and

presented in the book by X. S. Zhang (2000b).

It seems that other computational methods, however,

are more well suited to optimization and the research

community has largely moved on to those, such as the

nature-based metaheuristics of genetic algorithms and

ant colonies.

See

▶Approximate Dynamic Programming

▶Control Theory

▶Metaheuristics

▶Regression Analysis

▶Response Surface Methodology

▶ Simulation Metamodeling
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Neuro Dynamic Programming

Another name for approximate dynamic programming

or reinforcement learning, where the “neuro” comes

from the fact that a neural network might be used to

approximate the value function.

See

▶Approximate Dynamic Programming

Newsboy Problem

Items, here newspapers, have to be procured at the

beginning of a time period and are discarded (or

sold at a discounted price) at the end of the time

period. The demand is assumed to be a random

variable with known distribution. The problem is to

determine how many items to stock at the beginning

of the time period to minimize expected cost. This

leads to a closed-form, single-period inventory

model with stochastic demand. The problem

statement also applies to items such as Christmas

trees, time-dependent fashions, and items that can be

stored until the next season like snow tires and

Chanukah candles.

See

▶ Inventory Modeling

Newsvendor Problem

▶ Inventory Modeling

▶Newsboy Problem

Newton’s Method

Local search method for root finding or optimization

requiring higher-order information, e.g., (inverse)

Hessian in multi-dimensional steepest descent or

ascent methods.

See

▶Convex Optimization

▶ Interior-Point Methods for Conic-Linear

Optimization

▶Nonlinear Programming

▶Quadratic Programming

▶ Stochastic Approximation

▶Unconstrained Optimization
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NLP

▶Nonlinear Programming

Node

An element of a graph or network, pairs of which are

connected by arcs or edges. Nodes are sometimes

referred to as points or vertices. In queueing

networks, a node is also called a station and

represents a simple queueing subsystem consisting of

a service center with one or more servers, a queueing

capacity (infinite or finite), and a queue discipline. In

a project network plan, a node is shown graphically as

a circle depicting the beginning or end of an activity,

and represents an instantaneous point in time at the

junction of arrows.

See

▶Graph Theory

▶Networks of Queues

▶Network Optimization

▶Network Planning

Node-Arc Incidence Matrix

For the minimum-cost network-flow problem, this is

a matrix in which the rows i correspond to the nodes

and the columns j correspond to the arcs. For an arc

(i, j), with its flow directed from i to j, the entry in

matrix location (i, j) is a + 1 and the entry in location

(j, i) is a � 1. All other entries are zero. Thus, every

column has only two nonzero entries. Such matrices

are unimodular.

See

▶Minimum-Cost Network-Flow Problem

▶Multicommodity Network Flows

▶Network Optimization

Nonactive (Nonbinding) Constraint

An inactive constraint.

See

▶Active Constraint

▶ Inactive Constraint

Nonbasic Variable

Given a feasible basis to a linear-programming

problem, a variable is nonbasic if it does not

correspond to one of the vectors in the basis.

See

▶Basic Variables

Nondegenerate Basic Feasible Solution

A feasible basis to a linear-programming problem is

nondegenerate if all basic variables are strictly

positive.

See

▶Basic Feasible Solution

▶Degeneracy

▶Degenerate Solution

Nondominated Solution

▶Efficient Solution
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Nonlinear Goal Programming

A goal programming methodology used to solve goal

programming problems that have nonlinear elements

in their model formulation.

See

▶Goal Programming

Nonlinear Programming

Anthony V. Fiacco

The George Washington University,

Washington, DC, USA

Introduction

Nonlinear programming, a term coined by Kuhn and

Tucker (Kuhn 1991), has come to mean the collection

of methodologies associated with any optimization

problem where nonlinear relationships may be present

in the objective function or the constraints. Since

maximization and minimization are mathematically

equivalent, without loss of generality the nonlinear

programming problem discussed throughout will be

the problem of finding a solution point or optimal

value of

minimize f ðxÞ subject to giðxÞ � 0 ði ¼ 1; . . . ;mÞ

and hjðxÞ ¼ 0 ðj ¼ 1; . . . ; pÞ ðPÞ

where all problem functions are real valued. The

underlying space can be more general but is here

assumed x 2 Rn. In this terminology and context,

problem (P) is a linear program (LP) if f, gi and hj are

linear (technically linear-affine, i.e., linear plus

a constant) for all i and j.

Another very important instance of problem (P) is

where the constraints gi and hj are not present or where

every point in the domain of f is feasible (i.e., satisfies

the constraints). This is called an unconstrained

problem and goes back to the very early days of

mathematics.

Simple Examples

Finding the highest point of a pyramid may be viewed

as a linear programming problem. Assuming that

equations of the planes that contain the sides and

base of the pyramid can be found, the pyramid is

essentially the feasible region, the set of points in the

volume contained by these planes, and the problem

is to find the point in the region that yields the

greatest height.

A somewhat analogous example is that of finding

the deepest point in a lake, where the shoreline is the

constraint, the surface of the water is the feasible

region, and the depth is the objective function. This

example would generally be highly nonlinear.

Another readily understandable example is that of

finding a point where the maximum or minimum

altitude is attained in a given area, e.g., find the

highest point in the state of Virginia. The constraints

are determined by the state boundaries. Lines of equal

altitude are often displayed on a map and correspond to

isovalue contours or level curves of the objective

function (altitude), in mathematical programming

terminology. Thus, the goal is to find the latitude and

longitude of a location in Virginia (the feasible region)

on a level curve of maximum value, a problem that is

(logically) equivalent to a realization of a nonlinear

problem of the form of problem (P). There are many

local maxima (i.e., hills and peaks) in this problem that

are not global, a formidable challenge to solving (P).

Mathematical Examples

Obtaining a solution to a system of equations

h1(x) ¼ 0,. . ., hp(x) ¼ 0 where x 2 Rn may

be posed as the unconstrained NLP,

P: min S
q
j¼1

hjðxÞ
2
s:t: x 2 Rn, or equivalently, P: min ||

h(x)||2, where h¼ (h1,. . ., hp)
T and the norm is the usual

Euclidian norm. Alternatively, one could choose to

solve min ||h(x)||2 or min ||h(x)|| for any suitable choice

of norm. There may be no solution to the system of

equations, but the indicated NLP problems can still be

addressed, and their solutions would yield points that

minimize the residual error, i.e., the deviation of h(x)

from 0, in the sense of the given norm. The choice Sh2j
leads to a so-called least-squares solution and is

undoubtedly the most popular, yielding a smooth (i.e.,

differentiable) problem if h is differentiable (the other
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measures usually being nonsmooth). If the solutions are

underdetermined, one could use the degrees of freedom

to seek to determine a solution having a desired quality

such as minimum norm, i.e., a solution of the

constrained NLP, min ||x|| s.t. h(x) ¼ 0.
The minimum norm-residual idea turns out to be

extremely fruitful and is a driving mechanism for

several important classes of NLP problems, including

regression, also known as parameter estimation or data

fitting and essentially a type of curve-fitting, minimum

distance problems, and eigenvalue problems. The idea

of regression is to assume a functional form, say

y ¼ Fða; xÞ þ e that relates observation y to the input

data vector x, parameter vector a, and a random

experimental error e. If yi (i ¼ 1,. . ., r) is observed,

respectively, when xi (i ¼ 1,. . ., r) occurs, then, under

suitable assumptions, a least-squares regression

problem can be formulated. The goal is to find

a parameter vector ā that solves the unconstrained

NLP, mina S
r
i¼1½yi � Fða; xiÞ�2. If F is linear, then

this is called linear regression and is well known,

heavily used, and has a rich statistical basis and

interpretation. Other norms could be used. A similar

approach, so called curve-fitting, could be used to fit

a function F to a given set of points or to approximate

another function, possibly introducing constraints on

F, for example, requiring bounds on F or its

derivatives, without necessarily being supported

by the attendant statistical rationale and utilizing

a variety of norms.

The problem of finding the minimum eigenvalue

and associated eigenvector of a real symmetric n 
 n

matrix A can be posed as that of determining the

optimal value and solution vector, respectively, of the

constrained NLP problem, min xTAx s.t. ||x||2 ¼ 1,

again a minimum-norm-type problem. The problem

of finding the shortest distance between one point and

another, or a point and a line, or a point and a set or,

more generally, between one set S1 and another set S2
takes on the rather natural NLP-constrained form, min

||x – y||2 s.t. x 2 S1 and y 2 S2. Many extensions and

ramifications of this idea can be envisioned.

Practical Applications

Hancock (1960, p. 151) stated that “by means of

Gauss’s principle all problems of mechanics may be

reduced to problems of maxima and minima.”

Principles in optics, wave mechanics, quantum

physics, astronomy, chemistry, biology, etc., can

usually be formulated in terms of extremal

(i.e., maximum or minimum) principles, for example,

a path of least resistance, minimum energy, maximum

entropy, etc.

The practical applications of nonlinear programming

are incredibly vast. Regression and curve-fitting

applications abound in mathematics and physics, the

natural and applied sciences, econometrics, and

engineering statistics. Generalizations include possible

constraints on the parameters and extensions to higher

dimensions (surface fitting), with applications in pattern

recognition, geography, agriculture and quantum

physics, for example (Hobson and Weinkam 1979). As

early as 1980, Hillier and Lieberman (1980, Ch. 1)

reported that the most widely used operations research

techniques were statistical techniques (mainly those

involving regression analysis), simulation, and linear

programming. They noted that the most important

applications of mathematical programming were those

in production management (e.g., in allocation of

resources to maximize some measure of profit, quality,

efficiency, effectiveness, etc.), followed next by

financial and investment planning, and they reported

that about 25% of all scientific computation on

computers was devoted to linear programming and

related techniques. It seems clear that these trends

have sustained. Winston (1991, p. 51) noted that 85%

of the respondents of a survey of Fortune 500 firms

report use of LP, and that about 40% of his book is

devoted to related optimization techniques.

Practically every research and textbook in NLP

discusses important current applications. Fletcher

(1987, p. 4) noted important applications in structural

design, scheduling, and blending, as well as numerical

analysis and differential equations. McCormick (1983)

analyzed problems in chemical equilibrium, inventory

control, engineering design and water pollution

control. Bazaraa and Shetty (1979) discussed

problems in discrete and continuous optimal control,

mechanical and structural design, electrical networks,

and location of facilities.

A methodology for NLP started coming together

around 1960. This was largely motivated by

applications, for example, to petroleum refinery

problems which inspired algorithmic work by Rosen

in 1960–61 and a paper-pulp manufacturing process

that led to a technique proposed by Carrol in 1959
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and 1961. A collection of case studies in such diverse

areas as bid evaluation, stratified sampling, launch

vehicle design and alkylation process optimization

was given by Bracken and McCormick (1968). The

algorithms used were based on Carrol’s interior barrier

function and Courant’s exterior quadratic penalty

function proposed in 1943, developed and extended

by Fiacco and McCormick in 1963, and implemented

via the SUMT computer program by McCormick,

Mylander and Fiacco in 1965 (Fiacco and

McCormick 1968; Fiacco and Ishizuka 1990).

Basic Theory

Problem types can be differentiated in many

ways: (i) one dimensional or many dimensional,

(ii) finite-dimensional (e.g., in Rn) or

infinite-dimensional (e.g., as in variational calculus

and optimal control), (iii) a finite number of constraints

or an infinite number (as in semi-infinite programming),

(iv) unconstrained or constrained, (v) involving

real numbers (standard NLP) or integers (integer

programming), (vi) convex or nonconvex, (vii) smooth

(i.e., differentiable) or nonsmooth (nondifferentiable),

and (viii) deterministic or stochastic.

A local minimizer of (P) is a feasible point �x

such that f ð�xÞ � f ðxÞ for all x in a feasible

neighborhood of �x. If f ð�xÞ � f ðxÞ for all feasible x,

then is called a global minimizer. If �x is a local

minimizer and f ð�xÞ < f ðxÞ for all �x 6¼ x in a feasible

neighborhood of x, then �x is called a strict local

minimizer. If �x is the only local minimizer in some

feasible neighborhood of �x, it is called an isolated local

minimizer.

A fundamental result of great importance is the fact

that a feasible global minimizer of a continuous

function f exists in the feasible region R if R is

nonempty and compact, a result attributed to

Weierstrass. If f is once continuously differentiable

and �x is a local unconstrained minimizer, then the

gradient, Hf ð�xÞ ¼ 0. If f is twice continuously

differentiable, then Hf ð�xÞ ¼ 0 and the Hessian

(matrix of second partial derivatives) Hf 2ð�xÞ ¼ 0 is

positive-semi-definite (p.s.d.) at a local minimizer �x

and Hf ð�xÞ ¼ 0 is positive definite (p.d.), then

H2f ð�xÞ ¼ 0 is an isolated (hence, also strict) local

minimizer.

The usual Lagrangian of problem P is defined as

Lðx; u;wÞ ¼ f ðxÞ �
Xm

i¼1

uigiðxÞþ
Xp

j¼1

wjhjðxÞ

where the {ui} and {wj} are the Lagrange multipliers.

John in 1948, Karush in 1939, and Kuhn and Tucker in

1951 (Fiacco and McCormick 1968; Fiacco and

Ishizuka 1990) independently generalized and

extended the classical Lagrange multiplier rule

(Lagrange 1762) for equalities to include inequalities,

arriving at the following first-order conditions called

the Karush-Kuhn-Tucker conditions and abbreviated

as KKT ð�x; �u; �wÞ: there exist �ui � 0 ði ¼ 1; . . . ;mÞ
and �wjðj ¼ 1; . . . ; pÞ such that HxLð�x; �u; �wÞ ¼ 0 and

�uigið�xÞ ¼ 0 ði ¼ 1; . . . ;mÞ, for �x feasible. If a suitable
constraint qualification (CQ) holds at a local

minimizer �x, then KKT ð�x; �u; �wÞ holds. Though

a more general CQ was given in Kuhn and Tucker

(1951), it turns out that this holds if the binding

constraint gradients are linearly independent, i.e., if

fHgið�xÞ; i 2 Bð�xÞ; Hhjð�xÞ; j ¼ 1; . . . ; pg are linearly

independent, where B ¼ fi : gið�xÞ ¼ 0g. Denote this

CQ by LI ð�xÞ. The KKT ð�x; �u; �wÞ are sufficient for �x to
be a minimizer if (P) is a convex program, i.e., if f is

convex, the {gi} concave and the {hj} affine. Convex

programs have additional attributes: local solutions

are global, they have associated with them a rich

duality theory, and they are among the easiest to

analyze and solve. Second-order optimality

conditions are now also well known and heavily used.

When P is convex, a dual problem is the following:

max
ðx;u;wÞ

Lðx; u;wÞ s:t: HxLðx; u;wÞ ¼ 0; u � 0; ðDÞ

where u ¼ (u1,. . ., um) and u � 0 means that ui � 0 for

all i ¼ 1,. . ., m. This simple but remarkably useful

formulation was first proposed and developed by

Wolfe in 1961 (Fiacco and McCormick 1968; Fiacco

and Ishizuka 1990). It turns out that the optimal value

of P is bounded below by the optimal value of D.
Further, if Lð�xÞ holds, or one of several other well

known CQs, then if ð�xÞ solves P, it follows that

KKT ð�x; �u; �wÞ holds, ð�x; �u; �wÞ solves the dual D,
and f ð�xÞ ¼ ð�x; �u; �wÞ. Duality has significant

computational applications; for example, algorithms

that generate dual-feasible points also yield lower

bounds on the primal optimal value.
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Other duals have been developed, most notably the

Fenchel Dual, significantly extended and utilized by

Rockafellar (1970) and others. Not surprisingly,

a rich and finely tuned duality theory has been

developed for LP.

Algorithms

An algorithm is a numerical procedure that starting

with given initial conditions, calculates a sequence of

steps or iterations until some stopping rule is satisfied.

Up until the emergence of interior-point methods, the

uncontested winner for LP has been some version of

Dantzig’s Simplex Method, a technique based on the

idea of moving from one vertex of the feasible region

to an adjacent vertex while reducing the objective

function with each move. The elegance of the

mathematics, industrialization and economic

planning needs, and the advent of the electronic

digital computer in the 1940s, and a host of important

practical applications that followed, all resulted in

making LP widely accepted and heavily utilized.

The same forces that stimulated the development of

LP in the latter 1940s were encouraging research on

theory and algorithms for NLP. The 1930s and 1940s

saw a flurry of theoretical activity in variational

calculus and optimization at the University of

Chicago and other mathematical centers by

mathematicians like Valentine, Reid, McShane,

Karush, Bliss, Graves, Hestenes, Courant, John and

others. The early 1950s brought a sharper focus to

first-order and second-order optimality conditions for

inequality constrained NLP by Kuhn and Tucker in

1951 and Pennisi in 1953, respectively, and others.

As early as 1951, for example, a paper by Arrow in

1951 on a gradient method for solving constrained

saddle-point problems, there is evidence of serious

algorithmic work. Two key results during this period

were the conjugate direction method, an iterative

procedure for solving a system of linear equations, by

Hestenes and Stiefel in 1952, and a variable-metric

method (a quasi-Newton algorithm wherein the

required Hessian inverse is calculated iteratively) by

Davidon in 1959. Such developments significantly

enhanced the steepest-descent and Newton tools for

solving equations, the heart of solving NLP problems,

and were followed by an intense period of activity in

the 1960s, with a rapid solidification of the theory and

computational and methodological breakthroughs

such as cutting plane algorithms by Kelley in 1960,

methods of feasible directions by Zoutendijk in 1960,

gradient projection methods by Rosen in 1960–61, and

SUMT by Fiacco and McCormick in 1963 (Fiacco and

McCormick 1968; Fiacco and Ishizuka 1990).

Many algorithms were subsequently developed for

both unconstrained and constrained problems. The

most popular prototype starts with a merit function

(e.g., the objective function) and initial conditions,

determines a search direction vector, then calculates

a step in the given direction based on a line search,

some one-dimensional curve fitting scheme aimed at

both reducing the value of the merit function and

maintaining feasibility. The process is repeated until

some convergence criteria are satisfied. An algorithm

for a well-posed problem generally attempts to satisfy

first-order necessary optimality conditions for a local

minimizer. More sophisticated algorithms satisfy

second-order necessary conditions and others even

seek out global minimizers, though techniques for the

latter continue to be under intense development.

Algorithms may be deterministic or stochastic,

continuous or discrete-step, accumulate information

or not, etc. A host of special-purpose algorithms have

been developed for one-dimensional optimization, for

example, variations of successive bisection, Newton’s

method, the secant method, false position, Fibonacci

search and golden section (McCormick 1983).

Some of the most effective contemporary

algorithms for smooth unconstrained problems are

generally some variant or mixture of a quasi-Newton

(approximate Newton) or conjugate direction

algorithm. The survivors in the competition must fare

well overall in meeting several demanding and

sometimes opposing criteria: computational effort,

speed of convergence, accuracy, robustness, ease of

implementation, accessibility, and so on. Developing

rigorous computational and theoretical standards for

measuring these attributes are important, e.g., a rate of

convergence theory is in place that establishes that

steepest descent converges at least at a linear rate

(as in a geometric series) and Newton’s method at

a quadratic rate (exponentially, at least quadratic),

under rather ideal circumstances. Hybrid methods,

conjugate directions and variable metric methods, are

thought to perform adequately when they converge

superlinearly (more or less, the best linear rate

possible, a compromise between linear and quadratic).

N 1056 Nonlinear Programming



Another important criterion is that an unconstrained

algorithm be able to calculate the minimizer of

a positive definite quadratic form in n variables, in at

most n iterations. A key driving principle is exploitation

of problem structure.

Some important algorithms for constrained problems

are sequential linear programming (SLP), e.g.,

separating or cutting plane algorithms; sequential

quadratic programming (SQP), e.g., constrained

Newton approaches; generalized reduced gradient

(GRG) methods, essentially, variable elimination

simplex-type algorithms; feasible direction

(constrained steepest descent) methods; projected

gradient methods; and auxiliary function methods,

e.g., augmented Lagrangian function (i.e., Lagrangian

plus penalty term) techniques, penalty function

(objective function plus constraint violation cost) and

barrier function (objective function plus feasibility

enforcing) methods. Algorithms and software are

given in the references.

Additional important topics and suggested

references are the following: global optimization,

(Kan et al. 1989); parametric programming, sensitivity

and stability analysis (Fiacco 1983; Fiacco 1990),

discussed next; stochastic programming (Wets 1989);

semi-infinite programming (SIP) (Fiacco and Kortanek

1983); multi-objective programming (Sawaragi

et al. 1985); multi-level programming (Anandalingam

1992); control theory (Hocking 1991); numerical

methods and implementation (Gill et al. 1981);

software evaluation and comparison of algorithms

(Waren et al. 1987) and (Moré and Wright 1993);

parallel and large-scale programming (Rosen 1990);

integer programming (Schrijver 1986); basic barrier

and penalty function methodology (Fiacco and

McCormick 1968; Fiacco and Ishizuka 1990); and

nonsmooth optimization (Neittaanmaki 1992).

Intense activity in devising polynomial-complexity

interior point methods for LP and NLP was

sparked by a theoretical breakthrough with

Khachian’s ellipsoid method (Khachian 1979) and

a theoretical-computational breakthrough with

Karmarker’s potential method (Karmakar 1984). The

reader is referred to the excellent surveys by Gonzaga

(1992) and Wright (1992) for a good introduction to

this important development and for many good

references, and to the books of Megiddo (1989) and

Nesterov and Nemirovski (1993) for technical

advances.

Software exists to implement variations of all the

methods described here. As to computational

capability, problems in thousand of variables and

constraints can now be solved on a PC. Large

problems may require parallel processors. However,

a meaningful measure of computational difficulty is

elusive in NLP. For example, consider that

a high-degree polynomial in one variable may have

many local minima and may be much more difficult to

solve globally than a large convex program with

hundreds of variables and constraints.

Sensitivity Analysis

The question motivating this topic can be raised in

connection with almost any method of inquiry that

results in a conclusion: How does the answer change

when the assumptions change? The assumptions can

be any conditions or data that are given and the

changes can be qualitative or quantitative, controlled

or uncontrolled, deterministic or stochastic, small or

large, known or estimated, immediate or staged over

time. The issue is inevitable and universal, since there

are ever-present errors and ranges in approximation

and interpretation, whether it be in carrying on

a conversation, steering a car, hitting a tennis ball, or

calculating expected return on investment.

In the early days of mathematics and physics,

a related issue was apparently frequently raised:

When is a problem well posed, i.e., when does

a solution change continuously with continuous

changes in the problem data? Variations on this

theme must have quickly followed: When are the

solution changes well behaved in some sense, e.g.,

when are they finite or bounded or smooth, and when

are they not? Can the solution be calculated in closed

form as a function of the changes in the data, or can at

least bounds on the changes or rate of growth of the

changes be calculated? Can any useful properties of

perturbed solutions be identified or measured, e.g.,

whether a unique solution remains unique, whether

a solution function or set is convex as a function of

the changes, if a solution trajectory is differentiable,

whether an assumption persists under given

perturbations, etc.? At a slightly more sophisticated

level, can some of these properties be calculated from

information available at a solution . . . without

resolving the problem with new data?
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A brief summary of a collection of such results is

presented in the context of nonlinear programming

(NLP) where there are parameters (e.g., data) present

that are subject to perturbations. Here, the focus is on

characterizations involving small specified changes in

the parameters, the study of which is termed sensitivity

analysis.

Very simple problems can be stable or unstable, for

different parameter values. Consider the linear

problem, minimize x1 s.t. x1 � �1, x2 � e x1, and

x2 � 0, where x 2 R2 and e � 0. If e > 0, then the

solution is xðeÞ ¼ ð0; 0Þ and does not change with

small enough changes in e. However, if e ¼ 0, then

the solution is x(0) ¼ (�1, 0) and this changes to

xðeÞ ¼ ð0; 0Þ for arbitrarily small positive changes of

e, an extremely erratic change. The desire is to

understand the causes and implications associated

with such stability or instability.

Preliminaries — The parametric NLP is defined as

minimize f ðx; eÞ subject to

fx 2 En : giðx; eÞ � 0; i ¼ 1; . . . ;m; PðeÞ

hjðx; eÞ ¼ 0; j ¼ 1; . . . ; pÞg

where x 2 Rn and e is a perturbation parameter in T,

a nonempty subset of Rk. If e is held constant, then

problem PðeÞ is simply a realization of a standard

NLP problem of the form P that was discussed at the

outset. The Lagrangian associated with PðeÞ is

defined as Lðx; u;w; eÞ ¼ f ðx; eÞ � Sm
i¼1uigiðx; eÞ

þSp
j¼1wjhjðx; eÞ. The optimal-value function f � and

the optimal-solution map S if PðeÞ are defined as

f �ðeÞ ¼
infRðeÞf ðx; eÞ ðif RðeÞ 6¼ �Þ
þ1 ðif RðeÞ ¼ �Þ

(

and SðeÞ ¼ fx e RðeÞ : f ðx; eÞ ¼ f �ðeÞg. The set of

optimal Lagrange multipliers for a given solution

x 2 SðeÞ is the set {(u, w): KKT(x, u, w) holds}.
The directional derivative of the function f � at the

point e in the direction z is defined as

Dzf
�ðeÞ ¼ lim

a!0þ

f �ðeþ azÞ � f �ðeÞ
a

if the limit exits.

The problem PðeÞ is said to be convex in x if f and

the � gi are convex in x and the hj are affine in x for

each fixed e 2 T, and jointly convex if these functions

have the respective properties in ðx; eÞ and T is

a convex set. Assume that the functions defining

problem PðeÞ are continuous jointly in ðx; eÞ in

the sequel.

Some Basic Theoretical Results — The following

conditions are used, which may hold at a feasible point

x for some parameter value e. Differentiability is

assumed as needed, at ðx; eÞ.
(a) The Karush-Kuhn-Tucker conditions, as before,

designated KKT(x, u, w): there exist ui � 0

(i ¼ 1,. . ., m) and wj (j ¼ 1,. . ., p) such that

HxLðx; u;w; eÞ ¼ 0, uigiðx; eÞ ¼ 0ði ¼ 1; . . . ;mÞ,
and hjðx; eÞ ¼ 0ðj ¼ 1; . . . ; pÞ;

(b) Linear Independence, as before, designated LI xð Þ :
Hxgiðx; eÞði 2 Bðx; eÞÞ, Hxhjðx; eÞ ðj ¼ 1; . . . ; pÞ

are linearly independent, where Bðx; eÞ ¼
fi : gjðx; eÞ ¼ 0g;

(c) Strict Complementary Slackness, designated

SCSðxÞ : ui > 0ði 2 Bðx; eÞÞ;
(d) The Mangasarian-Fromovitz Constraint

Qualification, designated MFCQðxÞ :
(i) Hxhjðx; eÞðj ¼ 1; . . . ; pÞ are linearly

independent and there exists z such

that Hxgiðx; eÞz > 0ði 2 Bðx; eÞÞ and

Hxhjðx; eÞz ¼ 0ðj ¼ 1; . . . ; pÞ;

(e) The Second-Order Sufficient Condition, designated

SOSCðx; u;wÞ : zTHx2Lðx; u;w; eÞz > 0 for all

z 6¼ 0 such that Hxgiðx; eÞz � 0 ði 2 B

ðx; eÞÞ;Hxgiðx; eÞz ¼ 0ði 2 D ðx; eÞ¼fi 2 Bðx; eÞ :
ui > 0gÞ, and Hxhjðx; eÞz ¼ 0ðj ¼ 1; . . . ; pÞ, for

some (u, w) such that KKT(x, u, w) holds;

Known facts relevant to this brief overview are the

following. The SOSC ð�x; �u; �wÞ implies that �x is a strict

local minimizer (i.e., the unique global minimizer in

some feasible neighborhood of �x) of P with optimal

Lagrange multipliers ð�u; �wÞ. The condition MFCQ(�x)

holds at a local solution �x if and only if the set of (u, w)

satisfying KKT ð�x; u;wÞ is nonempty, compact and

convex. If LIð�xÞ holds at a local solution �x, then there

exists a unique ð�u; �wÞ satisfying KKT ð�x; �u; �wÞ.
Using these and other well-known facts, some of the

important results that hold for problem PðeÞ:
(i) If all f, gi, hj are once differentiable in ðx; eÞ,

Rð�eÞ 6¼ ;; RðeÞ is contained in a compact set for e
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near �e, and MFCQð�xÞ holds for some �x 2 Sð�eÞ,
then f � ∈ C it e ¼ �e.

(ii) If problem PðeÞ is jointly convex, then f � is convex
on T. If f is concave in e and R does not depend on

e, then f �> is concave on T. Global parametric

optimal value bounds can readily be calculated at

a solution point when f � is convex or concave and

optimal Lagrange multipliers exist and are known.

Also, when f � is convex or concave, it follows

from well-known results that f � is continuous in

the interior of T.

(iii) If RðeÞ 6¼ ; and is compact and independent of e

and f and He f are jointly continuous in ðx; eÞ, then
Dz f

�ðeÞ ¼ minHe f ðx; eÞz s: t: x 2 SðeÞ.
(iv) If f, gi, hj are twice continuously differentiable in

ðx; eÞ and KKT, SOSC ð�x; �u; �wÞ, LIðxÞ and

SCSð�xÞ hold at e ¼ �e, then (x, u, w) is locally

unique and once continuously differentiable as

a function of e, such that the assumptions

persist to hold at ðxðeÞ; uðeÞ;wðeÞÞ,
near �e; f � is twice continuously differentiable

where f �ðeÞ ¼ f ½xðeÞ; e� and =e f
�ðeÞ ¼

HeL½xðeÞ; uðeÞ;wðeÞ; e� near e ¼ �e. Thus, xðeÞ is

an isolated (i.e., locally unique) and hence also

strict local minimizer and ½uðeÞ;wðeÞ� is unique.
Strengthening SOSC by relaxing the restriction

that Hxgiðx; eÞz � 0ði 2 Bðx; eÞÞ and dropping

SCS, xðeÞ is an isolated local minimizer with

unique ½uðeÞ;wðeÞ� since the assumptions again

persist near e ¼ �e at ½xðeÞ; uðeÞ;wðeÞ� locally

unique, but now (x, u, w) is not once

continuously differentiable in e but only

directionally differentiable, with f � once

continuously differentiable and He f
� ¼ HeL is

before. Relaxing LI to MFCQ and further

strengthening SOSC as above and assuming this

holds for all (u, w) in the set of optimal

multipliers, the assumptions again locally

persist, although now the Lagrange multipliers

are not unique but are known to form

a nonempty compact convex set, xðeÞ is a locally
isolated minimizer as before and is known to be at

least continuous and f � is only directionally

differentiable. It may also interest the reader to

know that KKT, SOSC, LI and SCS are satisfied at

the (unique vertex) solution of a nondegenerate

LP problem.

Extensions and Future Research—With additional

problem structure, more analytic results follow. For

example, a fairly highly developed post-optimality

sensitivity analysis is known and extensively used in

linear programming, including parametric expressions

for local solution changes and error bounds.

Likewise, more can be said about unconstrained

minimization, right-hand-side perturbations in

the constraints, separable programs, geometric

programs, etc. Closed-form formulas or detailed

characterizations have been given for optimal value,

solution point and Lagrange multiplier parameter

derivatives or directional derivatives when these

exist, in addition to those noted in the last section.

Extensions of the kind of results indicated have

been developed for problems in more general spaces

or with less structure, for example, utilizing weaker

constraint qualifications, involving an infinite number

of variables or constraints such as in control theory

and semi-infinite programming, multiobjective

optimization, integer programming, and stochastic

programming. Further generalization of structure

leads to variational inequalities, equilibrium

problems and, at a more abstract level, generalized

equations, for which a sophisticated parameter

perturbation theory exists, specializations of which

yield deep results for NLP. Qualitative extensions

include significant additional more general convexity

and concavity characterizations of the optimal value

function for generalized convexity or concavity

assumptions on the problem functions, more general

optimal value derivative measures such as the Clarke

generalized derivative, and other solution continuity

concepts such as Holder continuity. Other significant

extensions are those involving other (than parametric)

classes of perturbations, for example, functional

perturbations or abstract set-theoretic perturbations.

A considerable literature exists on variations of all

these ideas.

Two more research directions must be mentioned:

the approximation of sensitivity information from

information available as an algorithm makes progress

towards a solution; and measurement of the effect of

perturbations on the convergence and rate of

convergence of solution algorithms. A solid basis for

algorithmic approximation, the first topic, has been

developed for barrier and penalty methods, but little
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else. Some results on the latter topic are known for

a few standard algorithms.

Applications — All the results mentioned have

significant theoretical and practical applications.

Perhaps one of the most obvious is in extrapolating

from a solution with given data to a solution with

perturbed data. Another is the approximation of

the change in the optimal value resulting from

perturbations of the constraints, a measure directly

related to the associated optimal Lagrange multipliers

(shadow prices in linear programming) which in turn

are involved in duality relationships. Applications

exist in decomposition, min-max problems,

bilevel and multilevel programming, semi-infinite

programming, implicit function optimization and

other areas where optimal value functions of

subproblems are encountered and certain variables

are viewed as a function of others that are treated as

parameters during a given iteration. Sensitivity

analysis results provide valuable inputs to parametric

programming, where one endeavors to approximate

a solution over a finite range or given set of

parameter values.

Post-optimality sensitivity analysis for linear

programming is a standard option in many

commercial packages and is heavily used in practice.

The potential applications of NLP sensitivity

analysis are even more vast. NLP computational

implementations on practical problems have

been extremely limited, sporadic and ad hoc,

largely experimental, and applied only to a few

well-structured models. A number of experiments

have been conducted on geometric programs, for

example. Some of the other models and parameters

for which a variety of sensitivity results have been

generated are stream water pollution with maximum

allowable dissolved oxygen deficit and on the order of

70 other parameters perturbed, a continuous review

multi-item inventory model with several parameters

such as item unit cost and the standard deviation of

the lead-time demand, the structural design of

a vertically corrugated transverse bulkhead of an oil

tanker with many design parameters, portfolio analysis

with parameters affecting risk and expected return on

investments, and a power system energy model

requiring the development of a turbine exhaust

annulus and condenser system design with objective

and constraint function parameter changes. Sensitivity

information was calculated by SENSUMT, a computer

code developed in 1973 by Fiacco, Armacost and

Mylander (see Fiacco 1983), using barrier function

approximations. SENSUMT is apparently the

first code to offer sensitivity analysis for NLP as

a user option.

Notes and Literature — Most of the theoretical

results presented here on SA can be found in

Fiacco (1983), particularly in the survey given in

Chapter 2. Much has been done elsewhere and

since 1983, but the focus here has been on a nucleus

of early basic results that provides a good profile of the

variety of qualitative and quantitative sensitivity

measurements. Other directly relevant surveys are

Fiacco and Hutzler (1982), Fiacco and Kyparisis

(1992), and Fiacco and Ishizuka (1990). For

a compendium on the state of the art of sensitivity

and stability analysis in variational inequalities, and

stochastic, semi-infinite, integer, non-linear,

geometric, linear and multi-objective programming

with parameters, including results on continuity,

differentiability, bounds, algorithmic perturbation

results and continuation and parametric methods, the

reader is referred to the collection of tutorials

edited by Fiacco (1990). Hundreds of references are

given to significant current work, including numerous

references to other important areas such as generalized

equations, curve-following techniques, multi-level

programming and other topics mentioned in this

article and beyond. Recent books in sensitivity

analysis and related topics are those by Jongen et al.

(1986) on parametric results; Brosowski (1982) on

semi-infinite optimization; Brosowski and Deutsch

(1985) on approximation; Guddat et al. (1987) on

parametric optimization; Fiacco (1984) on a wide

variety of topics; Bank et al. (1982) on continuity

results in particular and nonlinear parametric

optimization in general; Dontchev and Zolezzi (1993)

on well-posed optimization; and Levitin (1993) for

a unified general perturbation theory.

See

▶Barrier Functions and their Modifications

▶Convex Optimization

▶ Integer and Combinatorial Optimization

▶ Interior-Point Methods for Conic-Linear

Optimization

▶Linear Programming
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▶ Parametric Programming

▶Regression Analysis

▶Unconstrained Optimization
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Nonnegative Solution

A solution to a problem in which all variables xj � 0.

Nonnegativity Conditions

A restriction that limits a variable or a set of

variables to be either zero or positive. The set of

conditions xj � 0 (j ¼ 1,. . ., n) are the usual

nonnegativity conditions that apply to the variables of

a linear-programming problem.

Nonsingular Matrix

A square matrix that has an inverse. A nonsingular

matrix has a nonzero value for its determinant.

See

▶Matrices and Matrix Algebra

Nontrivial Solution

For the set of homogeneous linear equations Ax ¼ 0,
a solution x 6¼ 0.

See

▶Null Space

▶Trivial Solution

Nonzero-Sum Game

A game in which the payoffs pi to the players do not

sum to zero. Here the payoff to player i is positive if it

is a win and negative if it is a loss.

See

▶Game Theory

▶ Payoff Matrix

▶Zero-Sum Game

Non-Archimedean Number

A number that does not satisfy the Archimedean

axiom. Such numbers arise in setting preemptive

(lexicographic) priorities in goal programming, the

“Big M” for finding a feasible basis to

a linear-programming problem, and in selecting an

infintesimal in data envelopment analysis.

See

▶Archimedean Axiom

▶Big M Method

▶Data Envelopment Analysis

▶Goal Programming

Non-Compensatory Choice Strategies

Not employing trade-offs between the dimensions of

choice alternatives but, using thresholds (or cutoffs)

that need to be achieved for choice of an alternative.

See

▶Choice Theory

Non-Preemptive

Concept having to do with how priorities are treated. In

queueing models, it refers to a queue discipline that

does not allow a customer who has already started

N 1062 Nonnegative Solution

http://dx.doi.org/10.1007/978-1-4419-1153-7_597
http://dx.doi.org/10.1007/978-1-4419-1153-7_200535
http://dx.doi.org/10.1007/978-1-4419-1153-7_200873
http://dx.doi.org/10.1007/978-1-4419-1153-7_372
http://dx.doi.org/10.1007/978-1-4419-1153-7_200585
http://dx.doi.org/10.1007/978-1-4419-1153-7_200931
http://dx.doi.org/10.1007/978-1-4419-1153-7_200960
http://dx.doi.org/10.1007/978-1-4419-1153-7_200984
http://dx.doi.org/10.1007/978-1-4419-1153-7_212
http://dx.doi.org/10.1007/978-1-4419-1153-7_393
http://dx.doi.org/10.1007/978-1-4419-1153-7_112


service to be interrupted (preempted) when a customer

with higher priority arrives. In goal programming, it has

to do with a priority ranking that orders the systematic

optimization of the deviation variables.

See

▶Goal Programming

▶Queueing Theory

Non-uniform Random Variates

▶Random Number Generators

▶Random Variates

▶ Simulation of Stochastic Discrete-Event Systems

▶Variance Reduction Techniques in Monte Carlo

Methods

Normative Model

A model that attempts to describe standards of

behavior of a man/machine system; the “what ought

to be.” Normative models identify feasible and

desirable configurations of the system to serve as

goals or norms. For a decision problem, such a model

specifies logically consistent decision procedures that

indicate how an individual should decide. Normative

models are often based on an axiomatic foundation.

See

▶Decision Problem

▶Descriptive Model

▶Mathematical Model

▶ Prescriptive Model

Northwest-Corner Solution

A procedure for finding a basic feasible solution to

a transportation problem. For a problem with m

origins and n destinations, the approach is to

form a matrix with m rows and n columns, where

a cell (i, j) of the matrix represents the shipment of

goods from origin i to destination j. The algorithm

starts with all shipments zero and first assigns the

maximum shipment possible to the most northwest

cell (i ¼ 1, j ¼ 1). Each time an allocation is made,

either a row or column of the matrix is crossed out. The

algorithm continues to make the maximum possible

shipments in the northwest corners of the reduced

matrices, until the shipment is made in cell i ¼ m and

j ¼ n. The resulting shipments form a basic feasible

solution to the underlying linear-programming

problem. A degeneracy-avoiding procedure may have

to be used in determining whether a row or column is to

be crossed out in the intermediate steps.

See

▶Transportation Problem

NP, NP-Complete, NP-Hard

▶Computational Complexity

Null Matrix

A matrix with all entries equal to zero.

See

▶Matrices and Matrix Algebra

Null Space

The set of solutions to the equations Ax ¼ 0 is called

the null space of A.

See

▶Trivial Solution
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Introduction

Numerical analysis uses computation as a tool to

investigate mathematical models. At its most basic,

this might mean computing an answer, such as the

optimal value of a linear program. Beyond this,

one might want error estimates (how accurate is the

optimal value computed by the algorithm) or

sensitivity information (how sensitive is the optimal

value to changes in the data). It might be desirable to

visualize the results of the computation as a static

image or – in the case of a dynamic model – as an

animation. One might even wish to analyze the effects

of randomness in the data. Numerical analysis can also

be used as an experimental tool to reveal properties of

models that may be inaccessible by analytic means.

The techniques of numerical analysis have been

widely adopted. It is rare for someone to solve

a linear program by hand — except perhaps in a

classroom. Large-scale simulations would be all but

impossible without the aid of a computer. For many

people, numerical techniques have superseded analytic

techniques as a tool for solving mathematical

problems. There are many cases (such as when

optimizing nonlinear models or solving differential

equations) where no closed form analytic solution

exists, but where a numerical solution is reasonable

to compute. There are also cases where, even when

an analytic solution is available, it is preferable to

use a numerical method because it can compute the

solution more efficiently and more accurately. In

many areas of application, numerical analysis offers a

routine, reliable, and often automated way of solving

mathematical problems.

It is possible to solve many problems on standard

computers, but the most challenging computational

problems require high-performance computing. In

moving to such highly parallel machines, it is typically

necessary to use specially-adapted algorithms and

software. This effort may be worthwhile in cases

where no other approach is feasible.

The Impact of Computers

It makes sense to speak of numerical analysis together

with the computer. Numerical analysis only developed

as a separate discipline after the invention of the

computer. Although computation was an important

subject at earlier times, it is only with the invention

of the computer that the full range of numerical

analysis techniques becomes necessary. Pencil and

paper calculations tend to be small scale, and are

carefully supervised. There is less opportunity for

accumulation of error. In addition, the precision of

the calculations can be adjusted during a calculation,

if that becomes necessary. On a computer, however, it

is easy to perform a sequence of millions of

calculations. These calculations will normally be

performed at a fixed precision, without supervision.

Further, algorithms that are satisfactory for small

problems may not scale well to larger problems.

Automatic computation carries with it both

opportunities and risks. The techniques of numerical

analysis attempt to exploit these opportunities while

understanding and minimizing the risks involved.

There are some central questions in the study of

numerical analysis. Is there an efficient algorithm to

solve the given mathematical problem? How sensitive

is the solution of the problem to errors in the data? How

accurate is the computed solution? Can the algorithm

provide an error estimate?

The most important and immediate question is

whether there exists any algorithm to solve

a particular problem. Currently a wide variety of

numerical software is available, so for many classes

of problems good methods are available. (Some

sources are listed in the references.) These methods

are capable of solving a great many problems that lack

closed-form solutions. Even when closed-form

solutions exist, the methods used in the software may

be unrelated, for reasons of efficiency and accuracy.

For example, the eigenvalues of a matrix will generally

be calculated without forming the characteristic

polynomial.

Good numerical methods, together with powerful

modern computers, have made possible the routine

solution of many large and difficult computational

problems. Linear programs with thousands of

variables pose no great challenge, for example.

Although there still exist problems that strain the
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most powerful computers (such as optimization

models constrained by complicated partial

differential equations), off-the-shelf software and

desk-top computers are capable of serving many

people’s needs.

As software and computers have improved, the

expectations of numerical software have expanded.

Models have become more elaborate, and visualization

of results is expected. More and more, modelers would

like to incorporate uncertainty in their models. Doing

this requires more sophisticated software and more

powerful computers. It is now routine for computers

to have multiple processors, and if software is to

exploit the full capabilities of the computer, some

degree of parallelism must be incorporated. In the

realm of high-performance computing, computers may

have more than 100,000 processors. There are

significant research challenges in using these powerful

machines, but theymake it possible to simulate complex

real-world phenomena with high fidelity.

Linear Equations

The ideas of numerical analysis are perhaps most

clearly expressed in the context of solving systems of

linear equations. Such a system can be written as

Ax ¼ b, where A is an n 
 n invertible matrix and b

is the vector of right-hand side coefficients.

Methods for solving linear equations are central

to numerical analysis. In particular, they form an

essential component of algorithms for linear

programming and other optimization problems.

The most commonly used technique for solving

linear equations is Gaussian elimination. Gaussian

elimination requires about n3 arithmetic operations to

solve a linear system, where n is the number of

variables. On many current computers, a linear

system with a few thousand variables can be solved

in several seconds, and high-performance computers

can solve problems with a million variables in well

under a second. If the number of variables doubles, the

number of arithmetic operations increases by a factor

of eight.

Gaussian elimination does not compute A�1, and in

fact there are a number of reasons why computing A�1

is undesirable in many circumstances (Golub and Van

Loan 1996). This is especially true for large sparse

problems, problems where many of the entries in

the matrix A are 0. Gaussian elimination can take

advantage of the presence of these zeros. Often

the number of arithmetic operations required to solve

such a system will be proportional to the number of

nonzeros in the matrix, which in turn will often be

proportional to the number of variables n. In contrast,

A�1may have virtually no zero entries, even when A is

sparse, and computing and applying the inverse will

require between O(n2) and O(n3) operations. This is

one case, among many, where the mathematical

solution x ¼ A�1b and the computer solution are

calculated in different ways.

Gaussian elimination is not the only algorithm

available for solving linear equations. There exist

algorithms with costs proportional to na with a < 3,

but these are not widely used. There are also

techniques called iterative methods that are especially

effective on large sparse problems (Golub and Van

Loan 1996).

Error Analysis

Suppose that one of these algorithms is applied to

a system of linear equations. How accurately can the

solution x be computed? It is useful to phrase this

question in another way: How sensitive is the

solution x to errors in the data A and b? It is

worrisome if small errors in the data are magnified

into large errors in the solution. Such magnification

can occur for two reasons. It may be because of a “bad”

problem (the solution is poorly determined by the data)

or because of a “bad” algorithm (an algorithm that

magnifies errors in the data). If the problem is bad, it

is called ill conditioned; if the algorithm is bad, it is

called unstable.

If the data – either the matrix A or the right-hand

side b – are subject to errors of order e, then the relative

errors in the solution x will in general be proportional

to cond (A) e, where cond (A), the condition number of

A, is a measure of how close A is to being singular.

These errors in the solution are due solely to the errors

in the data; for now it is assumed that the system

of equations is solved exactly. If A is singular, then

cond (A) ¼ 1; otherwise,

condðAÞ ¼ Ak k � A�1
�

�

�

�
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in terms of some matrix norm k�k. If, say, the

Euclidean norm is used, then cond(A) � 1 for all

matrices A. To illustrate this result, suppose that the

data were accurate to e¼ 10�6 and that cond (A)¼ 104;

then it is expected that the relative errors in x to be

proportional to 10�2, that is, x would be accurate to

two decimal digits. Thus, the condition number can be

used as a quantitative tool to predict the accuracy of the

solution to a linear system.

Even though A�1 is not computed by Gaussian

elimination, it is still possible to estimate cond (A) as

a byproduct of the algorithm. Some additional

calculations are required (about n2 arithmetic

operations), but this is much less than the n3

operations required to solve the linear system. Thus,

not only can the solution be computed, but an error

estimate can be provided as well.

For most computational problems it will be possible

to determine the sensitivity of the solution to

errors in the data. This sensitivity can be considered

as a “condition number” for that problem. If this

condition number is large, it can be expected that the

errors in the solution will be large, regardless of what

algorithm is used to solve the problem. Of course,

it will be desirable to use an algorithm that does not

further magnify errors.

Computers only store numbers to a finite number of

digits, often using binary arithmetic, so that just storing

numbers in a computer can introduce errors in the data.

For example, 1/3 ¼ 0.333 . . . cannot be represented

exactly with a finite number of binary digits. The

precision of computer arithmetic – referred to as

machine epsilon emach or unit round-off – limits the

accuracy of computer calculations. Even if the data in

a linear system are otherwise known exactly, when

they are stored in the computer and computer

arithmetic is use, the solution of the linear system can

be expected to have errors proportional to emach times

cond (A). If cond (A) � 1/emach then, from the point of

view of computer arithmetic, the matrix might as well

be singular.

Mathematically, a matrix is either singular or

non-singular, and there are sharp differences between

the two cases. Computationally it makes more sense to

refer to the condition number of a matrix, and use this

to measure how close a matrix is to being singular.

Whether a matrix is sufficiently nonsingular to be

useful will depend on the accuracy of the data and the

desired accuracy of the solution. For many sorts of

computational problems, the meaning of singularity

or degeneracy will be blurred, with the accuracy of

the solution deteriorating as the problem becomes

closer to being degenerate.

So far, only errors arising from the data in the

problem have been considered. The algorithm used to

solve the linear system will also introduce errors.

Assume that Gaussian elimination is used to solve the

linear system. Gaussian elimination is unstable in its

raw form, and can fail even when A is nonsingular.

With minor modifications (such as the use of partial

pivoting) it becomes a stable algorithm that can be

applied to any nonsingular system. It can be proved

that Gaussian elimination with partial pivoting

computes the exact solution to a perturbed system of

the form (A + E)x ¼ b, where kEk is proportional to

machine epsilon times kAk. Thus (A + E) can be

interpreted as a perturbation of A where the relative

errors are proportional to machine epsilon. As has been

mentioned, just storing A in the computer can

introduce relative errors of this magnitude. Thus the

errors introduced by Gaussian elimination are

comparable to the errors introduced by storing the

problem on the computer. Thus Gaussian elimination

is considered to be a benign algorithm.

Saying that the computed solution from Gaussian

elimination is the exact solution to a perturbed problem

(A + E)x ¼ b represents the adoption of a distinctive

point of view. For many, it will be more common to ask

about the error in the computed solution. Instead the

concern is how much Gaussian elimination distorts

the original problem. This is a property of the

algorithm. The error in the solution (or the amount by

which this distortion is magnified in the solution) is

a property of the data, and depends on the condition

number of the matrix. This point of view isolates the

effect of the algorithm on the accuracy of the solution.

In this case, it shows that Gaussian elimination

computes the exact solution to a “nearby” problem.

This point of view is referred to as a backward

error analysis.

The error analysis for linear systems is particularly

elegant. For other computational problems the error

analysis may not be so favorable (the computed

solution may exactly solve a perturbed problem

where the perturbations are large), or a backward

error analysis may not be possible. In the latter case,

other techniques must be used to assess the stability of

an algorithm.
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Concluding Remarks

The above comments illustrate some of the major

questions of numerical analysis. In some settings

additional questions arise. For example, the linear

system might be obtained by discretizing a differential

equation, i.e., by approximating a continuous function

using its values at finitelymany points. Then it is natural

to ask how accurately the solution of the linear system

approximates the solution of the original continuous

problem. In addition, it is desirable that the discrete

solution converge to the continuous solution as the

size of the finite-dimensional problem increases.

When implementing an algorithm in software, the

ultimate goal is to try to produce software that can

efficiently compute a solution to full accuracy

whenever the data and the solution consist of

numbers that can be stored on the computer, and to

design the software so that it works reliably on as large

a collection of computers as possible. This goal can be

difficult to achieve. Even seemingly innocuous tasks,

such as computing the Euclidean norm of a vector, can

require great care when the components of the vector

are pathologically large or small, near the limits of

computer arithmetic.

Numerical analysts continually try to solve ever

larger and more difficult computational problems.

This has often meant turning to parallel computers,

computers capable of carrying on multiple

computations simultaneously. This has led to further

questions. Can an efficient parallel algorithm be found

to solve the problem? Is the algorithm scalable, i.e., does

it continue to perform well as the problem size and the

number of processors increase? How does the parallel

algorithm compare to the best scalar, or non-parallel,

algorithm? Because of the variety of parallel computers

available, the answers to these questions can vary from

machine to machine, making it ever more difficult to

design effective algorithms and software.

There is a vast literature on numerical analysis.

General introductions to the topic can be found in

Heath (2002); O’Leary (2009); Press et al. (2007),

and Sauer (2006). An extensive discussion of

numerical linear algebra is given in Golub and Van

Loan (1996). A large online collection of software is

described in Grosse (1994), the repository is available

online at the Netliib Web site. Reviews of software for

operations research are regularly published in OR/MS

Today; the latest reviews are available online at the

INFORMS Web site. The issues involved in

developing software for linear algebra computations

are mentioned in Anderson et al. (1999). An extensive

discussion of parallel computing can be found in

Dongarra et al. (2003). Examples of projects that

use high-performance computing can be found, for

example, at the Web site for the National Center

for Supercomputer Applications.

See

▶Gaussian Elimination

▶Linear Programming

▶Matrices and Matrix Algebra
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O

O, o Notation

O means “order of” and o means “of lower order

than.” If {un} and {vn} are two sequences such that

|un/vn| < K for sufficiently large n, where K is

a constant independent of n, then un ¼ O(vn); for

example, (2n � 1)/(n 2 + 1) ¼ O(1/ n). The symbol

O (colloquially called “big O”) also extends to the

case of functions of a continuous variable; for

example, (x + 1) ¼ O(x). O(1) denotes any function

that is defined for all values of x sufficiently large, and

which either has a finite limit as x tends to infinity, or

at least for all sufficiently large values of x remains

less in absolute value than some fixed bound; for

example, sin x ¼ O(1).

If limn�>1un /vn¼ 0, then un¼ o(vn) (colloquially

called “little o”); for example, log n ¼ o(n), where

again the notation extends to functions of

a continuous variable; for example, sin x ¼ o(x).

Furthermore, un ¼ o(1) means that un tends to 0 as n

tends to infinity; for example, (log n)/n ¼ o(1). In

probability modeling (e.g., Markov chains and

queueing theory), it is common to see o(Dt) used to

represent functions going to 0 faster than a small

increment of time Dt, i.e., limDt�>0[o(Dt)/Dt] ¼ 0.

Objective Function

The mathematical expression that is to be optimized

(maximized or minimized) in an optimization

problem.

See

▶Measure of Effectiveness (MOE)

▶Optimality Criteria

Object-Oriented Database

▶ Information Systems and Database Design in

OR/MS

OEG

Operations Evaluation Group.

See

▶Center for Naval Analyses

Offered Load

The ratio of mean service time to mean interarrival

time; the rate at which work is brought to a queueing

system.

See

▶Erlang

▶Queueing Theory
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Open Network

A queueing network in which all customers enter and

eventually leave the network, i.e., the routing process

contains no closed subsets of states for any type of

customer.

See

▶Closed Network

▶Mixed Network

▶Networks of Queues

▶Queueing Theory

Open-Source Software and the
Computational Infrastructure for
Operations Research (COIN-OR)

Matthew J. Saltzman

Clemson University, Clemson, SC, USA

The COIN–OR Foundation, Inc., Towson, MD, USA

Introduction

Algorithms are methods developed by

mathematicians, scientists, and engineers for

manipulating data to provide insight and solutions to

problems in theoretical and applied fields. Computer

software is a vehicle for realizing algorithmic ideas.

Open-source software is a vehicle for sharing those

ideas that complements archival journal publications

and other means of knowledge transfer.

This article explains the ideas and principles behind

open-source software, how it works in practice, and

its benefits and costs. It also describes a number of

open-source tools and resources available for

operations research and management science

researchers and practitioners. The premier publisher

of open-source software for operations research is

the COIN-OR initiative. This article describes the

COIN-OR initiative, its history, and the impact of

open-source software and COIN-OR on the field

of operations research.

Section “Open Source: What and Why” describes

the concept of open-source software, how it started,

and how its impact has grown. It also discusses the

relationship between open-source software and

academic research. Section “How Open Source

Works” describes open source licenses and the legal

framework that supports them. The broad classes of

open source licenses are described along with features

of licenses that are common in operations research

software. Section “Open Source in Operations

Research” lists a wide variety of open-source tools

available for operations researchers. The largest

collection is the Computational Infrastructure for

Operations Research (COIN-OR). The COIN-OR

initiative is described and the available projects are

enumerated. In addition, several other open-source

resources for OR are listed.

A note on references. Several of the documents

and resources referred to in this article are available

only on the World Wide Web. The associated URLs

are not cited in the Encyclopedia of ORMS because

they are subject to uncontrolled change. The URLs can

be located via most Internet search engines by

searching on relevant terms, such as author, title,

organization, or keywords.

Open Source: What and Why

Computers and software are indispensable tools for

operations researchers, whether in academia,

government, the military, or industry. Aside from

standard software such as operating systems, office

tools, and business management tools, OR

practitioners need software to run simulations, solve

optimization problems, and manage and analyze data.

The technology inside those tools is developed by

those same practitioners, by industrial software

houses, and by academic researchers. Those

developers need tools to create and manage their

software libraries.

Proprietary software to fill these needs may be of

high quality, but it is often costly to industrial

customers and may come with restrictions on its use

and redistribution that can be problematic. For

researchers and developers, software created in the

course of research may be abandoned after the

project is completed. Researchers trying to follow up

on computational work by others may have to redo the
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earlier work from scratch, based only on sketchy

descriptions of implementation details in articles or

monographs. A principal tenet of scientific

research—reproducibility of results—is undermined

and extension of results of computational research is

impeded by lack of access to the original source code.

The concepts of free and open-source software bear

on these concerns. Free and open-source software

leverages intellectual property law to support:

• software source code as a publication medium for

algorithmic ideas,

• an environment for collaborative research and

development of software, and

• a cooperative community of developers and users of

software.

Users and developers of open-source software are

guaranteed access to the source code. They are granted

the right to read the code, modify it, and distribute

their modifications. As a result, user and developer

communities often grow around open-source

packages, improving and extending them to better

meet the communities’ needs.

In the Beginning

The advent of commercially available digital

computers in the 1950s began a fundamental

transformation of the way research and business are

done. Data collection and manipulation that was

previously impossible to accomplish by hand became

routine. As a result, the sophistication of simulations,

data analyses, and decision making increased

markedly. Computing power has increased and cost

decreased exponentially over the intervening decades.

The availability of these machines sparked a strong

interest in the development of algorithms that could

efficiently carry out the needed analyses and software

systems (including programming languages) that

could express those algorithms precisely and translate

them into instructions that the machines could carry

out. Significant parts of computer science and

operations research are devoted principally to

developing new, more efficient, more powerful

algorithms that take advantage of high-powered

computing systems.

It is a part of folk history that, in the early days of

computing, the knowledge being developed was

widely and freely shared, both in literature and in

code. Sharing helped to advance rapidly the limits of

knowledge in the field. But as the commercial

computing industry grew, vendors saw value in

keeping their software proprietary and began selling

it as add-ons to the computer systems they

were marketing. An open letter to members of

the microcomputer programming community

(then primarily the province of hobbyists) by

Microsoft founder Bill Gates 1976 famously

criticized the culture of sharing that had dominated

the computing community up to that point. Over

time, the industry transitioned to the model familiar

to those who lived and worked through the early days

of the personal computer, where operating systems,

compilers, office tools, and other software were

primarily available only at a (sometimes significant)

cost. Vendors of large systems and peripheral devices

adopted the same proprietary conventions.

In the meantime, the academic research culture in

operations research and computer science evolved into

the familiar culture of today, where the primary means

of disseminating knowledge are archival journal

articles, peer-reviewed conference proceedings, and

research monographs.

GNU and Linux

In the mid-1980s, Richard Stallman, a researcher at

MIT’s Lincoln Laboratories, became frustrated with

one vendor’s lack of response to a bug in a printer

driver and the vendor’s restrictions on access to the

software. His response was to launch an effort to create

software that could be freely shared and rules for

distributing the software that would ensure that

recipients of the shared code could not lock up the

code in proprietary systems. The result of Stallman’s

efforts was the Free Software Foundation and the GNU

(GNU’s Not Unix) project to create a freely sharable

version of the Unix operating system and

accompanying software development toolchain.

Stallman referred to code distributed under these

rules as “free software.” He was careful, however,

to distinguish the idea of “freely sharable” from

“free of charge.” (Stallman describes the distinction

as, “free as in ‘free speech,’ not as in ‘free beer’

(Stallman and Gay 2002).”) The distinction between

“free” and “open source” is addressed in

Section “Open Source: What and Why.”

The GNU project’s efforts through the 1980s

resulted in a software development toolchain

including the Emacs editor, the GCC compiler suite,

and most of the utilities associated with the Unix
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operating system, all of which were distributed under

rules that kept them open and sharable. In 1991, Linus

Torvalds began the Linux project to implement an

operating system kernel (the layer of the OS that

communicates with the hardware and manages the

scheduling of software tasks) for personal computers

using the Intel 80386 CPU. The Linux kernel was

distributed under the same rules as the GNU software.

The Spread of Free and Open Source Software

An important consequence of the GNU and Linux

efforts was that they attracted large numbers of

independent programmers to work on them. The

developer communities came to include hobbyists,

academics, and professionals, distributed over many

countries around the world. Contributors to the Linux

kernel now number in the tens of thousands. Individuals

and academic, government, and commercial

organizations devote significant resources to open

source development. Currently, one can find multiple

open-source operating systems, office tools, Web

browsers, database systems, games, and all manner of

specialized tools and systems.

Several factors are key to the spread of open source,

including:

• Participatory communities. The open source model

encourages the evolution of participatory

communities of users and developers. The Linux

kernel effort boasts contributions by tens of

thousands of programmers distributed all over the

world. Other projects have smaller but similarly

diverse communities. The contrast between this

development model and the common, centralized

development model of proprietary software is

outlined by Raymond (2001a).

• Rapid evolution. A consequence of this

“community development” model and a “release

early, release often” strategy common in open

source projects is that bugs are found and fixed

and features are added quickly. Users are

encouraged to interact with developers to report

bugs and test fixes, and users with programming

skills can fix the bugs they find and submit their

patches back to the authors for incorporation into

the official releases. “Given enough eyeballs, all

bugs are shallow (Raymond 2001a).”

• Low cost.Open-source software is often available at

little or no cost. Because recipients are free to

redistribute copies without paying royalties, the

price of copies tends to fall toward the marginal

cost of distributing them.

• Associated business models. Perhaps

counterintuitively, there are viable business

models built around open-source software

(see, for example, Raymond 2001b; Young and

Rohm 1999). Device manufacturers distribute

open-source drivers or use open-source operating

systems. Experts train or consult with users of

systems and packages. Companies sell systems

built around open-source tools or support contracts

for those tools. Companies distribute code under

dual licenses, selling a proprietary license for

incorporation in proprietary products and giving

away a version that cannot be made proprietary.

Open Source and Academic Research

The essential mission of the university is to create and

disseminate knowledge. Traditional vehicles for

dissemination are journal articles and research

monographs, as well as integration of knowledge into

courses and textbooks. But articles and monographs

have significant drawbacks as outlets for

computational research, because they do not

generally include the code that the authors used to

generate their results. The verbal descriptions of

algorithms in articles cannot include all the details

necessary for another developer to exactly

reproduce the original implementation. As a result

(Lougee-Hiemer 2003):

• Results are irreproducible. Without access to the

original code, other researchers cannot reproduce or

verify reported results of computational experiments.

• Comparisons are unfair. When investigators

engaged in follow-on research attempt to compare

their results to earlier work, they must re-implement

the earlier work. Their re-implementations can

(however unintentionally) be biased in favor of the

new work.

• Models and implementations are lost. As

researchers move on to new projects, they may

neglect or even discard the codes they developed

for their earlier work.

• Evolution is stunted. Important and useful

implementation techniques are unavailable to

subsequent developers without access to the

original code.
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• Wheels are reinvented. Subsequent developers

must rediscover important implementation

techniques on their own.

• Knowledge transfer is limited. Implementation

techniques hidden in unpublished code cannot be

transferred to other problem domains.

• Collaboration is inhibited. Unavailability of

reference implementations mean that there is no

final arbiter of interpretations of standards. For

example, problem instance data files can be

interpreted differently by different readers. Also,

commercial solver library interfaces all differ,

creating vendor lock-in for embedded solvers

and inhibiting sharing of code that calls those

libraries.

Open-source software is a highly effective vehicle

for technology transfer because it reduces to practice

every detail of computational research results. It

addresses the above problems by providing a path to

publishing source code that mirrors the open

literature for theory in important ways, such

as providing a vehicle for peer review. It also

addresses publication issues that are peculiar to

software—particularly the need for a living document

that can be updated and incorporated into new research

that builds on the original code.

Software publishing as a scholarly activity is still

not widely recognized in academic circles because

publication venues are not well established and the

mechanisms for peer review are different from those

of archival journals, conference proceedings, and

monographs. Hafer and Kirkpatrick (2009) propose

ways to integrate software publication into the

academic promotion and tenure review process. If

reviewers would heed their recommendations, that

would encourage scholars to engage in this important

endeavor.

How Open Source Works

Companies often find working with open source

challenging due to the vast array of licenses that

accompany open-source software and the

unfamiliarity of users and corporate legal

departments with the principles of open source and

the details of the various licenses. This section

examines those principles and discusses some issues

related to some particular popular licenses. The

information presented here does not constitute legal

advice. The final arbiters of legal issues are the courts,

and readers with legal concerns relating to open

source should consult their legal advisers.

Intellectual Property

Intellectual property (IP) is protected by two bodies

of law: copyright law and patent law. These two legal

concepts protect different kinds of intellectual

property and provide different kinds of recourse to

IP holders.

Copyright law protects creative expressions, such

as writings, visual arts, musical compositions, and

recorded performances. The protections include

reserving to the creator or the owner of a copyrighted

work the right to make and distribute copies and to

create derivative works. A computer program is an

expression of an algorithm in a particular computer

language, authored by a particular programmer

(or more than one) and owned by the author or the

author’s employer. Such creations are automatically

protected with no action necessary on the author’s

part, although filing a claim can support legal actions

for violation. Copyright protection is the primary legal

underpinning of open source licenses.

Patent law protects ideas. The protections include

reserving to the inventor or patent holder the right to

prevent others from using the idea or derivative ideas

in products or other inventions. In recent decades,

courts have ruled that software can be patented.

Software patents are controversial—particularly

within the open source community—but they are

a side issue with respect to the legal structure of

open source licenses. Some open source licenses

attach patent licenses for patented ideas that appear

in the code or derived works, sometimes with

conditions on licensees’ enforcement of their own

patent rights. The penalties for violating the

restrictions are generally limited to revocation of the

license to the code.

Open Source and Copyright

Open-source software licenses work legally the same

way licenses for any software work. The authors or

owners of the intellectual property have rights reserved

to them under copyright law to specify the conditions

under which the software is distributed to users.
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Proprietary licenses generally specify that users must

pay license fees, refrain from redistributing the

software, limit the number of copies they make,

refrain from reverse engineering, restrict usage to

certain computers or individuals, and meet other

restrictive conditions in order to receive permission

to use the software.

Open source licenses use copyright law in the same

way: the authors or owners reserve their rights under

copyright law to determine the conditions under which

users can obtain the software. However, with open

source, the conditions explicitly grant users the

right to use the software, to obtain the source code in

human-readable and -modifiable form, to create

derived works, and to redistribute those works.

Redistributors and distributors of derived works may

also be required by the license to distribute the

works under the same license terms and to make

source code available.

Open source is not the same as the public domain.

Works placed in the public domain (either

intentionally by the creator or owner or due to

expiration of copyright or patent protection) are free

to be used in any fashion by recipients. Open source is

protected by copyright law and recipients are required

to abide by the terms of the license under which they

received the software. There are subtle legal issues

associated with placing intellectual property in the

public domain and using public-domain works, so if

the intention is to make a software package available

with no restrictions, it is best to distribute it with an

explicit declaration or under a license that specifies

that criterion explicitly [see, for example, Lindberg

2008, pp. 299–300].

A key to understanding open source licenses is the

notion of a derived work. According to US copyright

law [as cited by Rosen 2005], a derived work is

“[a] work based upon one or more preexisting works,

such as a translation. . .or any other form in

which a work may be recast, transformed, or adapted

(17 U.S.C. }101).” In software, derived works are

usually created by making changes to the source code

to fix bugs, add features, improve interoperability,

etc. However, interpretation of the term is critical to

the understanding of how different licenses work. As

with legal concepts in general, the exact interpretation

is a matter of case law. Open source licenses have, to

date, faced limited scrutiny in court, so the concepts

are not yet well settled.

Open Source Licenses

There are a wide variety of open source licenses. They

vary in overall structure and in details. This section

explains the basic principles of open source licensing,

describes classes of licenses, and examines some of the

ones that are common in the operations research

community.

The Open Source Initiative

In the mid-1990s, some members of the open source

community took on the challenge of advocating the use

of open source in the business community. The result

was the Open Source Initiative (OSI), which their Web

site describes as “a non-profit corporation formed to

educate about and advocate for the benefits of open

source and to build bridges among different

constituencies in the open-source community.”

The Initiative published the Open Source Definition

(OSD), a set of voluntary standards that licenses must

comply with in order to receive OSI approval

[reprinted in summary form in Rosen (2005),

annotated version available online from the OSI].

The wording of some of the ten points in the OSD is

somewhat unclear, but Rosen (2005) summarizes the

main ideas in the standards as follows:

• Licensees are free to use open-source software for

any purpose whatsoever.

• Licensees are free to make copies of open-source

software and to distribute them without payment of

royalties to the licensor.

• Licensees are free to create derivative works of

open-source software and to distribute them

without payment of royalties to the licensor.

• Licensees are free to access and use the source code

of open-source software.

• Licensees are free to combine open-source and

other software.

The licensor can require that copies and derived

works be distributed under the same license that they

were received under. Licenses with this provision

are called “reciprocal licenses” and are discussed

in Section “Reciprocal Licenses.” Licenses without

this requirement are “academic licenses” and are

discussed in Section “Academic Licenses.”

Broad Classes of Licenses

The variety of open source licenses can be

bewildering. The OSI lists 67 approved licenses

(as of this writing), although many are one-off
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licenses created for particular individual products. The

bulk of open source projects use a relatively small

selection of these licenses. Unfortunately, even those

licenses can have significantly different conditions,

which may conflict if users try to redistribute code

combined from multiple sources.

Notwithstanding the proliferation of licenses, they

can be mapped to a few categories with broadly similar

properties. Rosen (2005) identifies academic licenses

and reciprocal licenses as the main categories of open

source licenses applying to software. These categories

are described in more detail below. He also identifies

standards licenses—intended to enforce openness of

standard protocols and reference implementations, and

content licenses—which apply to non-software

creations such as music, literature, and video.

The text of licenses not accompanied by citations in

the discussion below can be found at the Web site of

the Open Source Initiative.

Academic Licenses

“[S]uch licenses were originally created by academic

institutions to distribute their software to the public,

allow the software to be used for any purpose

whatsoever with no obligation on the part of the

licensee to distribute the source code of derivative

works. . . Academic licenses create a public commons

of free software, and anyone can take such software for

any purpose—including for creating proprietary

collective and derivative works—without having to

add anything back to that commons (Rosen 2005).”

The best known example of this type of license is

the Berkeley Software Distribution (BSD) license

[reprinted in Rosen 2005, pp. 316–317], which allows

“[r]edistribution and use in source and binary forms,

with or without modification,” subject to the

requirement that the copyright notice be preserved

and that the owner’s name not be used without

permission in an endorsement or promotion of

a derived work. The license also includes disclaimers

of warranty and liability.

Licenses in this class are easy to use. They are

generally compatible with each other and with other

licenses, and place few conditions on redistribution.

(No open source license restricts use of the code if it is

not redistributed.) While the BSD License is probably

the most widely used in this class, other academic

licenses in use for widely deployed software include

the MIT License [reprinted in Rosen 2005, p. 319] and

the Apache Licenses [reprinted in Rosen 2005,

pp. 320–323].

Reciprocal Licenses

Reciprocal licenses “also allow software to be used for

any purpose whatsoever, but they require the

distributors of derivative works to distribute those

works under the same license, including the

requirement that the source code of those derivative

works be published. . . Anyone who creates and

distributes a derivative work of a work licensed under

a reciprocal license must, in turn, license that

derivative work under the same license. Reciprocal

licenses, like academic licenses, contribute software

into a public commons of free software, but they

mandate that derivative works also be placed in that

same commons (Rosen 2005).”

Reciprocal licenses are the major legal innovation

of the free and open-source software movement. While

they are effective at extending the body of work in the

public commons, they are also controversial and the

interactions of different licenses are complicated.

The GNU General Public Licenses. The GNU

General Public License (GPL) is the original “free

software” license, developed by Richard Stallman.

Versions of the GPL (there are two in wide use, plus

some variations) are the most common reciprocal

licenses for free and open-source software.

The GPL version 2.0 (GPLv2) [reprinted in

Lindberg 2008, pp. 333–340] dates from 1991. The

most recent version, version 3.0 (GPLv3) [reprinted

in Lindberg 2008, pp. 341–354] was released in 2007.

The GNU Library (or “Lesser”) General Public

License (LGPL) version 2.1 (LGPLv2.1) [reprinted in

Lindberg 2008, pp. 319–328] dates from 1999, and

version 3.0 (LGPLv3) [reprinted in Lindberg 2008,

pp. 329–332] is also from 2007. The GNU Affero

Public License version 3 dates from 2007 as well.

The distinctions are addressed below.

The most controversial aspect of the GPL is the

scope of the reciprocity requirement. The GPL states

that its terms apply to a covered Program

(a “program or other work”) and to “work[s] based

on the Program.” The definition of a “work based on

the Program” broadens the definition of “derived

work” in copyright law to include “a work containing

the Program or a portion of it, either verbatim or with

modifications.” The common understanding of this

principle is that it is intended to extend the coverage
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of the GPL from a library of subroutines and functions

covered by the GPL to programs that call subroutines

or functions in the library. Thus, except under certain

conditions, if a program incorporates a GPL library in

such a manner, the program is considered a work based

on the library and must in turn be distributed under the

GPL. The legality of this interpretation has not been

settled in case law and remains a point of controversy.

The LGPL differs from the GPL by explicitly

exempting the calling program of a GPL library from

the requirement that it also be distributed under the

GPL. Version 3.0 of both licenses differ from their

predecessors in their treatment of embedded

programs that are incorporated into hardware devices

and in their treatment of patents. The Affero license

applies to programs that are accessed over a network,

as contrasted with libraries that run on the same

computer as their calling programs.

The Mozilla Public License. The Mozilla Public

License [reprinted in Rosen 2005, pp. 351–367] is the

license under which the Mozilla and Firefox Web

browsers and associated software are distributed. It is

a popular reciprocal license and Rosen considers it to

be well thought out and constructed. While its history

may be familiar to those who remember the “browser

wars” of the late 1990s, it does not seem to be

a common choice in the operations research

community.

The IBM, Common, and Eclipse Public Licenses.
Due to the influence of IBM and the COIN-OR

initiative on operations research software, this family

of licenses is fairly common in the OR community.

The IBM Public License (IPL) was the first license in

this family. The Common Public License (CPL)

[reprinted in Rosen 2005, pp. 358–376] was created

by IBM from the IPL so that developers other than

IBM could release software under its terms.

The Eclipse Public License (EPL) was adapted

from the CPL by the Eclipse Foundation,

a consortium of companies involved in development

of the Eclipse programmer’s development

environment. It is essentially the same as the CPL,

except for the elimination of a “patent retaliation

clause,” which revoked license of any patents in the

code under license for any user who sues a contributor

for infringement of a software patent not related to that

code. Recently, the CPL and EPL license stewards

agreed to replace the CPL with the EPL, so

developers and contributors to CPL projects

are encouraged by the stewards of the two licenses

(IBM and the Eclipse Foundation) to upgrade them to

the EPL.

Open Source in Operations Research

The Computational Infrastructure for Operations

Research (COIN-OR)

The COIN-OR initiative supports the development and

publication of open-source software for the benefit of

the operations research community. The project began

as the Common Optimization INterface for Operations

Research at IBM Research in 2000 (Lougee-Hiemer

2003; Saltzman 2002), a collection of four related

projects (the Open Solver Interface, the Volume

Algorithm, the Cut Generator Library, and the

Branch-Cut-Price Framework) and two independent

projects (Derivative-Free Optimization and Open

Tabu Search). In 2004, the initiative was turned over

to the COIN-OR Foundation, an organization created

for the purpose of supporting the project independent

of IBM, and the name was changed to the

COmputational INfrastructure for Operations

Research to better reflect its expanded mission

(while keeping the acronym the same).

Since its inception, the COIN-OR repository has

grown to house over 50 separate projects in a variety

of areas of computational operations research,

including LP solvers, branch-and-cut frameworks and

mixed-integer solvers, continuous and discrete

nonlinear solvers, algorithmic differentiation tools,

modeling tools, and others. The current projects are

mostly optimization related, although the COIN-OR

Foundation welcomes contributions in other areas

(such as stochastic processes, statistics, and

simulation) as well.

Development and Dissemination

The COIN-OR initiative provides an infrastructure to

support the distributed community development model

common to many open source projects and to provide

a central forum for publishing software in the

operations research field.

The developer infrastructure includes aWeb server,

a source-code version control system, a mailing list

server, a bug tracker and Wiki, and related tools. In

addition, Foundation volunteers support a collection of

tools to ease the process of compiling and installing
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projects that conform to the tool’s configuration

requirements.

There are several open source infrastructure

projects—the largest being SourceForge—which

provide similar tools to COIN-OR. Any such

centralized service provides advantages over self

management: developers need not provide their own

repositories or support tools; and Users know where to

look for packages and know that the packages and

support services work the same way for all projects in

the repository.

COIN-OR offers some additional advantages over

these generic hosting services for operations

researchers:

• One-stop resource. Because the initiative is focused

on operations research, it serves as a one-stop

resource for potential users and developers in the

field. SourceForge, by contrast, hosts thousands of

open-source projects and does not even list

a category for science or engineering applications.

• OR-focused support. Because the volunteers on the

support staff are operations researchers, they

understand the needs of OR users and developers,

and they can provide support appropriate to that

environment. Developers whose projects meet the

requirements of the BuildTools project, for

example, don’t need to be experts in building and

packaging software in order to package and

distribute their programs.

A goal of the COIN-OR Foundation is to serve as

a peer-reviewed publication venue for operations

research software. While the practice of assessing the

quality of a journal article is well established, it is an

open question how best to evaluate the quality of

published source code. Informal, indirect

assessment of quality may be based on reputation,

penetration, support from the developer community,

and other measures of community acceptance

(Hafer and Kirkpatrick 2009). The COIN-OR

Foundation does review contributed projects for

certain features, including:

• Legal provenance. The project must satisfy

reporting requirements regarding legal

documentation. At a minimum, contributors must

certify that they understand and have met basic

legal requirements to ensure that they have the

right to license their contributions. Beyond that

minimum, contributors can provide documentation

from the owner of the intellectual property

certifying that they own the code and license it.

The level of certification of each contribution is

documented in the project’s index entry and is the

responsibility of the project manager.

• Documentation. The project must include certain

documentation, including acknowledgment of

contributors, a copy of the license, and

instructions for building and installing the software.

• Functionality. The projects are also required to

“work.” That is, an independent reviewer,

following the instructions, must be able to

successfully build and install the software and run

a unit test provided by the contributor.

Providing support for more sophisticated peer

review is a long term goal of the foundation.

Using COIN-OR Software

Martin (2010) gives a tutorial on using COIN-OR

software. He describes applications in industry,

education, and research, and describes how to obtain

and use COIN-OR tools.

COIN-OR users fall into two broad categories:

users who need a prepackaged tool to solve

a particular problem and developers interested in

incorporating COIN-OR code into programs that they

write themselves. The former group can obtain

precompiled binary packages of COIN-OR libraries

and programs and use them just as they would other

self-contained software products. Developers can

check out the source code to the latest versions of

COIN-OR programs and either incorporate the code

as callable libraries or integrate the source code

directly into their own program source. Martin

explains both uses.

COIN-OR Projects

The complete collection of COIN-OR projects as of

this writing is listed here, by category. The current list

is maintained at the COIN-ORWeb site. Project URLs

can be found by entering the project name and

keywords from the description in your favorite

WWW search engine. Some projects appear in

multiple categories.

Developer Tools

BuildTools COIN-OR Unix developer tools and

documentation, tools for managing configuration

and compilation of various COIN-OR projects

under Linux, Unix, and Cygwin.
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CoinBazaar The COIN-OR Bazaar, small examples

and extensions of COIN-OR projects.

CoinBinary COIN-OR Binary Distributions,

pre-compiled binary distributions of COIN-OR

projects.

CoinWeb COIN-OR Web Services, COIN-OR Web

pages, Subversion, Trac, etc.

Coopr A COmmon Optimization Python Repository,

the Coopr software project integrates a variety of

optimization-related Python packages. Coopr

supports a diverse set of optimization capabilities

that can be used formulate and analyze optimization

applications.

TestTools TestTools, Python scripts to automatically

download, configure, build, test, and install

COIN-OR projects.

Documentation

CoinEasy New user information and support.

Graphs

CGC COIN-OR Graph Classes, a collection of

network representations and algorithms.

LEMON Library of Efficient Models and

Optimization in Networks, a C++ template library

aimed at combinatorial optimization tasks,

especially those working with graphs and networks.

Interfaces

AIMMSlinks AIMMS/COIN-OR Links, links

between the modeling language AIMMS and

solvers that are hosted at COIN-OR.

CMPL Coliop/CoinMathematical Programming

Language, a mathematical programming language

and a system for modeling.

CoinMP CoinMP, a lightweight API and DLL for

CLP, CBC, and CGL.

GAMSlinks GAMS/COIN-OR Links, links between

GAMS (General Algebraic Modeling System) and

solvers that are hosted at COIN-OR.

NLPAPI Nonlinear Programming API, a subroutine

interface for defining and solving nonlinear

programming problems.

OS Optimization Services, standards for

representing optimization instances, results,

solver options, and communication between

clients and solvers in a distributed environment

using Web Services.

OSI Open Solver Interface, a uniform API for calling

embedded linear and mixed-integer programming

solvers.

PuLP Python library for modeling linear and integer

programs.

SMI Stochastic Modeling Interface, for optimization

under uncertainty.

Metaheuristics

Djinni A templatized C++ framework with Python

bindings for heuristic search.

METSlib An object oriented metaheuristics

optimization framework and toolkit in C++.

OTS Open Tabu Search, a framework for constructing

tabu search algorithms.

Modeling Systems

AIMMSlinks AIMMS/COIN-OR Links, links

between the modeling language AIMMS and

solvers that are hosted at COIN-OR.

CMPL Coliop/CoinMathematical Programming

Language, a mathematical programming language

and a system for modeling.

Coopr A COmmon Optimization Python Repository,

the Coopr software project integrates a variety of

Python. optimization-related packages. Coopr

supports a diverse set of optimization capabilities

that can be used formulate and analyze optimization

applications.

FLOPC++ An algebraic modeling language

embedded in C++.

GAMSlinks GAMS/COIN-OR Links, links between

GAMS (General Algebraic Modeling System) and

solvers that are hosted at COIN-OR.

OS Optimization Services, standards for representing

optimization instances, results, solver options, and

communication between clients and solvers in

a distributed environment using Web Services.

PuLP Python library for modeling linear and integer

programs, Python library for modeling linear and

integer programs.

ROSE Reformulation-Optimization Software Engine,

software for performing symbolic reformulations

to Mathematical Programs (MP).

Optimization Convex Non-differentiable

OBOE Oracle Based Optimization Engine,

optimization of convex problems with
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user-supplied methods delivering key first order

information (like support to the feasible set,

support to the objective function).

Optimization Deterministic Linear Continuous

CLP COIN-OR LP, a simplex solver.

CoinMP CoinMP, a lightweight API and DLL for

CLP, CBC, and CGL.

DyLPDynamic LP, an implementation of the dynamic

simplex method.

FLOPC++ An algebraic modeling language

embedded in C++.

OSI Open Solver Interface, a uniform API for calling

embedded linear and mixed-integer programming

solvers.

VOL Volume Algorithm, a subgradient algorithm that

also computes approximate primal solutions.

Optimization Deterministic Linear Discrete

ABACUS A Branch-And-CUt System, an LP-based

branch-and-cut framework.

BCP Branch-Cut-Price Framework, a framework for

constructing parallel branch-cut-price algorithms

for mixed-integer linear programs.

CBC COIN-OR Branch and Cut, an LP-based

branch-and-cut library.

CGL Cut Generator Library, a library of cutting-plane

generators.

CHiPPS COIN-OR High Performance Parallel Search

Framework, a framework for constructing parallel

tree search algorithms (includes an LP-based

branch-cut-price implementation).

DIP Decomposition in Integer Programming,

a framework for implementing a variety of

decomposition-based branch-and-bound algorithms

for solving mixed integer linear programs.

KSP K Shortest Paths, algorithms for K shortest paths.

SYMPHONY Single- or Multi-Process Optimization

over Networks, a callable library for solving

mixed-integer linear programs.

VRPH Vehicle Routing Problem Heuristics, a library

of heuristics for generating solutions to variants of

the vehicle routing problem.

Optimization Deterministic Nonlinear

DFO Derivative-Free Optimization, a package for

solving general nonlinear optimization problems

when derivatives are unavailable.

filterSD Subroutines for nonlinear optimization, a

library for nonlinear optimization written in Fortran.

Ipopt Interior-Point Optimizer, for general large-scale

nonlinear optimization.

MOCHA Matroid Optimization. Combinatorial

Heuristics and Algorithms, heuristics and

algorithms for multicriteria matroid optimization.

NLPAPI Nonlinear Programming API, a subroutine

interface for defining and solving nonlinear

programming problems.

OptiML Optimization for Machine Learning, interior

point, active set method and parametric solvers for

support vector machines, solver for the sparse

inverse covariance problem.

Optimization Deterministic Nonlinear Discrete

Bonmin Basic Open-source Nonlinear Mixed INteger

programming, an experimental open-source C++

code for solving general MINLP (Mixed Integer

NonLinear Programming) problems.

Couenne Convex Over and Under ENvelopes for

Nonlinear Estimation, a branch-and-bound

algorithm for mixed integer nonlinear

programming problems.

LaGO Lagrangian Global Optimizer, for the global

optimization of nonconvex mixed-integer

nonlinear programs.

Optimization Deterministic Semidefinite Continuous

CSDP C Library for Semidefinite Programming, an

interior-point method for semidefinite

programming.

Optimization Stochastic

Coopr A COmmon Optimization Python Repository,

the Coopr software project integrates a variety of

Python. optimization-related packages. Coopr

supports a diverse set of optimization capabilities

that can be used formulate and analyze optimization

applications.

SMI Stochastic Modeling Interface, for optimization

under uncertainty.

Optimization Utility

ADOL-C Package for the automatic differentiation of

C and C++ programs.

CHiPPS COIN-OR High Performance Parallel Search

Framework, a framework for constructing parallel
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tree search algorithms (includes an LP-based

branch-cut-price implementation).

CoinBazaar The COIN-OR Bazaar, small examples

and extensions of COIN-OR projects.

CoinUtils COIN-OR utilities, utilities, data structures,

and linear algebra methods for COIN-OR projects.

Coopr A COmmon Optimization Python Repository,

the Coopr software project integrates a variety of

Python optimization-related packages. Coopr

supports a diverse set of optimization capabilities

that can be used formulate and analyze optimization

applications.

CppAD CppAD, a tool for differentiation of C++

functions.

LEMON Library of Efficient Models and

Optimization in Networks, a C++ template library

aimed at combinatorial optimization tasks,

especially those working with graphs and networks.

OS Optimization Services, standards for representing

optimization instances, results, solver options, and

communication between clients and solvers in

a distributed environment using Web Services.

PFunc Parallel Functions, a lightweight and portable

library that provides C and C++ APIs to express

task parallelism.

Web Services

OS Optimization Services, standards for representing

optimization instances, results, solver options, and

communication between clients and solvers in

a distributed environment using Web Services.

Other Open-Source OR Software

COIN-OR is not the only source of open-source code

for OR. Many authors do offer their experimental

codes or even production-quality codes individually.

Some may be available at SourceForge, GitHub, the

GNU project, or other general-purpose repositories;

many are offered only on the authors’ Web pages.

But there is no other centralized location where an

operations researcher can go to find those codes.

Below is a list of several OR-related codes that are

not part of COIN-OR, of which this author is aware.

The list appears on the COIN-OR Web site. URLs can

be located through Internet search engines. If you

know of other relevant projects, please send this

author a link.

cdd The double description method for constructing

representations of polyhedra.

Cliquer For finding cliques in graphs.

GLPK The GNU Linear Programming Kit.

Gnumeric Spreadsheet with solvers.

GSL The GNU Scientific Library: C library for

mathematical functions, including random

variables, statistics, linear algebra, and lots more.

GOBLIN Graph optimization library.

lrs The reverse search algorithm for finding vertices of

polyhedra.

Maxima Computer algebra, similar to Mathematica or

Maple.

MCFClass Interface for Minimum Cost Flow

problems (mix of open-source and other software).

mexclp A MATLAB interface to the COIN-OR LP

solver (CLP).

MINLP CMU-IBM Cyber-Infrastructure for MINLP.

MUMPS A MUltifrontal Massively Parallel sparse

direct linear system solver.

Octave Matrix based mathematics, similar to and

mostly compatible with Matlab.

OpenOffice open-source office suite with spreadsheet

optimization using COIN-OR solvers.

OpenSolver Excel plugin for optimization.

OpenForecast The name says it all.

QtsPlus4Calc A collection of OpenOffice

spreadsheets that solve a variety of problems

related to queuing theory.

R Statistics, graphics, and more. Similar to S-plus

(both are based on the language S).

Sage Flexible, extensible system for symbolic and

numerical mathematics.

Shogun A large-scale machine learning toolbox.

SolverStudio Cloud-based optimization plugin for

Excel.

swIMP SWIG-based interfaces for Mathematical

Programming.

Zimpl Translate LP/MIP models into MPS or LP

formats.

Concluding Remarks

Open-source software is an important resource for

researchers and practitioners of computational

operations research. This article reviewed the benefits

of open source for academic researchers and

practitioners and outlined the legal mechanics of

working with open source. The COIN-OR Foundation

provides to computational operations researchers an
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infrastructure for supporting open source development

and a publication forum for open-source software.

COIN-OR is the largest repository of open-source

software for operations research, comprising more

than 50 projects and growing. Other OR-related

open-source tools are available, but they are not

available from any central source.
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Operational Research Society (ORS)

The United Kingdom’s Operational Research Society

(ORS) had its origins in an informal OR Club, founded

in 1948, for “people who are working in or are

concerned with problems associated with Operational

Research” (Anon 1950b). Membership was limited to

one member per industry or organization. In 1950, the

Club established a specialist journal, the Operational

Research Quarterly, that would “assemble in one place

as much as possible of the information that operational

research workers now find (or fail to find) scattered

widely over the very large body of scientific and

technical literature” (Anon 1950a). The journal was

renamed the Journal of the Operational Research

Society in 1978.

The Club was reconstituted as a Society in 1953,

with no numerical limit on membership. The aims

were defined in the Constitution as “the advancement

of education through the provision of training in and the

promotion and adoption of operational research.”

Cooperation with the American and French societies,

following the first international conference at Oxford in

1957, led to the creation of the International Federation

of Operational Research Societies (IFORS) in 1959.

Another outcome of the conference in Oxford was the

first U.K. national conference in 1958.

See

▶ International Federation of Operational Research

Societies (IFORS)
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Introduction

Organizations exist to meet the needs of society that

people working alone cannot. Operations are part of an

organization and they are responsible for producing the

tremendous array of products in the quantities
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consumed each day. Operations are the processes

which transform inputs (labor, capital, materials, and

energy) into outputs (services and goods) consumed by

the public. Operations employ people, build facilities,

purchase equipment in order to change materials into

finished goods such as computer hardware and/or to

provide services such as computer software

development.

Services are intangible products and goods are

physical products. According to the classification

scheme used by the U.S. Department of Commerce

and Labor, services include transportation, utilities,

lodging, entertainment, health care, legal services,

education, communications, wholesale and retail trade,

banking and finance, public administration, insurance,

real estate, and other miscellaneous services. Goods are

described as articles of trade, merchandise, or wares.

Manufacturing is a specific term referring to the

production of goods. Here, the term product will be

used to refer to both goods and services.

Whether an organization is producing services or

goods as part of the for-profit private sector or the

not-for-profit public sector, the output from

operations should be worth more to customers than

the total cost of its inputs. As a result, an organization

creates wealth for society through decisions and

actions made in managing operations.

Operations management is a multi-disciplinary

sub-field of management with particular focus on the

production or operations function of the firm. Its scope

includes decision making involving the design,

planning, and management of the many factors that

affect operations. Decisions include: what products to

produce, how large a facility to build, how many

people to hire, and what methods to use to increase

product quality. Operations managers apply ideas and

technologies to reduce leadtime dramatically, increase

productivity and reduce costs, improve flexibility to

meet rapidly changing customer needs, enhance

quality, and improve customer service.

Organizations can use operations as an important

way to gain an advantage on the competition. Synergy

results when operations are linked to the overall

strategy of the organization (including engineering,

financial, marketing, and information system

planning). Operations become a positive factor when

facilities, equipment, and employee training are

viewed as a means to achieve organizational rather

than suboptimal departmental goals.

Increasing demand for product variety and shorter

product life cycles are forcing operations to respond

more frequently and more quickly to customer needs.

Competition is no longer based only on price or price

and quality. Competition is becoming time-based, with

customers expecting high-quality, low-cost and

innovative products that are designed and produced

quickly to meet specific customer requirements.

When flexibility is designed into operations, an

organization is able to rapidly and inexpensively

respond to changing customer needs. Organizations

can use computers and information technology to

become more flexible. Improvements in productivity

and product quality provide the basis for competing in

global markets.

To be successful, an organization should consider

issues related to: designing a system that will be

capable of producing the appropriate services and

goods in the needed quantities; planning how to use

the system effectively; and managing key elements of

the operations. Each of these topics are described

briefly in the following sections.

Designing the System

Designing the system includes all the decisions

necessary to determine the characteristics and

features of the goods and services to be produced. It

also establishes the facilities and information systems

required to produce them. When designing a system

which is capable of producing services and/or goods

several questions arise.

• What products will the organization produce

(product development and design)?

• What equipment and/or methods will be used

(process design)?

• How much capacity will an organization acquire?

• Where will the facility be located?

• How will the facility be laid out?

• How will individual jobs and tasks be designed?

Product Development is a process for (1) assessing

customer needs, (2) describing how products

(both services and goods) can be designed to meet

those needs, (3) determining how processes can be

designed to make quality products efficiently and

reliably, and (4) developing marketing, financial, and

operating plans to successfully launch those products.

Product development is a cross-functional decision
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process that requires teamwork. It is a key factor for

success because it shapes how the organization

competes.

Product Design is the determination of the

characteristics and features of the product, i.e., how

the product functions. Product design determines

a product’s cost and quality as well as its features and

performance, and these are the primary criteria on

which customers make the decision to purchase.

Techniques such as Design for Manufacturing and

Assembly (DFMA) are being implemented with very

successful results. The objective is to improve product

quality and lower product costs by focusing on

manufacturing issues during product design. DFMA

is implemented through computer software that

points designers towards designs that would be easy

to build by focusing on the economic and quality

implications of design decisions. This is often critical

because even though design may be a small part of the

overall cost of a product, the design decision may fix

70-90% of the manufacturing costs. Quality Functional

Deployment is also being used. It is a set of planning

and communication routines that focuses and

coordinates actions. The foundation is the belief that

a product should be designed to reflect customers’

desires and tastes.

Process Design describes how the product will be

made. The process design decision has two major

components; a technical or engineering component

and a scale economy or business component. The

technical side requires that decisions be made

regarding the technology to be used. For example,

a fast food restaurant should decide whether its

hamburgers will be flame broiled or fried. Decisions

must also be made about the sequence of operations.

For example, should a car rental agency inspect a car

that has been returned by the customer first or send it to

be cleaned and washed? Decisions need to be made

regarding the type of equipment to be used in making

the good or providing the service. In addition, the

methods and procedures used in performing the

operations must also be determined.

The scale economy or business component involves

applying the proper amount of mechanization

(tools and equipment) to leverage the organization’s

work force to make it more productive. This involves

determining whether the demand for a product is large

enough to justify mass production; if there is sufficient

variety in customer demand so that flexible production

systems are required; or if demand is so small that it

cannot support a dedicated production facility.

Capacity is a measure of an organization’s ability to

provide the demanded services or goods in the amount

requested and in a timely manner. More specifically,

capacity is the maximum rate of production that can be

sustained over a long period of time. Capacity planning

involves estimating demand, determining the capacity

of facilities, and deciding how to change the

organization’s capacity to respond to demand.

Facility Location is the placement of a facility with

respect to its customers, suppliers, and other facilities

with which it interacts. Normally, facility location is

a strategic decision because it is a long-term

commitment of resources which cannot easily

or inexpensively be changed. When evaluating

a location, management should consider: customer

convenience, initial investment for land and facilities,

operating costs, transportation costs, and government

incentives. In addition, qualitative factors, such as

availability of financial service, cultural activities for

employees, and university research programs that

relate to the needs of the firm, should be considered.

As world economies become closely linked, the

location decision takes on global dimensions.

Facility Layout is the arrangement of the work

space within a facility. At it highest level, it considers

which departments or work areas should be adjacent so

that the flow of product, information, and people can

move quickly and efficiently through the production

system. Next, within the department or work area,

where should people be located with respect to

equipment and storage? How large should the

department be? Finally, how should each work area

within a department be arranged?

Job Design specifies the tasks, responsibilities,

and methods used in performing a job. For example,

a job design for x-ray technicians would describe

what equipment they would use and explain the

standard operating procedures including the safety

requirement that should be followed.

Planning the System

A plan is a list of actions management expects to take

to deal with opportunities and problems present in the

environment. Production planning is howmanagement

expects to utilize the resource base created when the

Operations Management 1083 O

O



production system was designed. One of the outcomes

may be to change the design such as increasing or

decreasing capacity and rearranging layout to

enhance efficiency.

Production planning decisions depend upon the

planning time horizon. Long-range decisions include

how many facilities to add to match capacity with

forecasted demand and how technological change

might affect techniques used to manufacture goods and

provide services. The time horizon for long-term

planning varies with the industry and depends on how

long it would take an organization to build new facilities.

For example, in electric power generation it often takes

ten or more years to build a new plant. So electrical

utilities must plan at least that far into the future.

In medium-range production planning, which is

normally about one year, organizations find it

difficult to make substantial changes in facilities.

In this case, production planning involves

determining work force size and developing training

programs, working with suppliers to improve product

quality and improve delivery, and determining how

much material to order on an aggregate basis.

Scheduling has the shortest planning horizon. As

production planning proceeds from long-range

planning to short-range scheduling, the decisions

become more detailed. In scheduling, management

must decide what product or products will be made;

who will do the work; what equipment will be used;

which materials will be consumed; when the work will

begin; and what will happen to the product when the

work is complete. All aspects of production come

together to make the product a reality.

Some techniques used in production planning

require special mention. Aggregate planning, material

requirements planning, just-in-time, and the critical

path method are important techniques that can be

useful in production planning.

Managing the System

The impact of people, information, materials,

and quality on operations is growing. As a result,

managing these areas is a key factor for

organizational success. Participative management and

teamwork are becoming an essential part of successful

operations. Motivation, leadership, and training are

receiving new impetus.

Information systems are mechanisms for gathering,

classifying, organizing, storing, analyzing, and

disseminating information. Information requirements

in some operations are extensive. From product

development through job design and from long-range

planning to scheduling, timely information is required

to make better decisions.

Material management includes decisions regarding

the procurement, control, handling, storage, and

distribution of materials. Materials and material

management are becoming more and more important

because in many operations purchased material costs

are over 50% of the total product cost. How much

material should be ordered, when should it be

ordered, and which supplier should it be ordered from

are some of the important questions.

Producing high-quality products is a minimum

requirement for a customer to consider buying an

organization’s product. Quality is increasingly

becoming customer-driven with emphasis put on

obtaining a product design that builds quality into the

product. Then, the process is designed to transform

the product design into a quality product and the

employees are trained to execute it. The role of

inspection is not to enhance quality but to determine

if the designs are effective.

Over time, operations management has grown in

scope. It has elements that are strategic; it relies on

behavioral and engineering concepts; and it utilizes

management science/operations research tools and

techniques for systematic decision making and

problem solving. It also interacts with other functional

specialties such as research and development,marketing,

engineering, and finance to develop integrated answers

to complex interdisciplinary problems.

See

▶ Facility Location

▶ Flexible Manufacturing Systems

▶ Information Systems and Database Design in

OR/MS

▶ Inventory Modeling

▶ Job Shop Scheduling

▶ Production Management

▶Quality Control

▶ Scheduling and Sequencing

▶Total Quality Management
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Introduction

In discussing the early days of operations research in

the United Kingdom, Blackett (1962) notes:

The Armed Services have for many decades made use of
civilian scientists for the production of new weapons and
vehicles of war, whereas the tactical and strategical use of
these weapons and vehicles has been until recently almost
exclusively a matter for the uniformed Service personnel.
During the first years of the Second World War
circumstances arose in which it was found that civilian

scientists could sometimes play an important role in the
study of tactics and strategy. The essential feature of these
new circumstances was the very rapid introduction of
new weapons and devices, preeminently radar, into the
Services at a time both of great military difficulty and of
such rapid expansion that the specialist officers of the
Armed Services, who in less strenuous times can and do
adequately compete with the problems raised, found
themselves often quite unable to do so. I will attempt to
describe . . . how it was that civilian scientists, with
initially little or no detailed knowledge of tactics or
strategy, came to play a sometimes vital role in these
affairs, and how there grew up a virtually new branch of
military science – later to be dignified in the United
Kingdom by the name ‘Operational Research,’ or
‘Operations Analysis’ in the United States. By the end
of the war, all three Services had operational research
groups of mainly civilian scientists either at headquarters
or attached to the major independent Commands. These
groups were, in varying degrees, in close touch with all
the main activities of the Service operational staffs and
were thus in a position to study the facts of operations in
progress, to analyze them scientifically, and, when
opportunities arose, to advise the staffs on how to
improve the operational direction of the war....

While British military operational analysis was in

place in all three uniformed services during World

War II, U.S. military operations research during the

war was carried out primarily in the Army Air Corps

(later the Army Air Force) and the Navy. There was

no single U.S. Army group comparable to the

British Army Operational Research Group. There was

a scattering of small groups doing operational analyses

in various parts of the Army. The Signal Corps set up an

Operational Research Division to prepare instruction

manuals for radio communications by using operational

experience data. The Office of Field Service, a major

subdivision of the Office of Scientific Research and

Development, provided civilian scientists, initially to

conduct operational analyses, to Army units in the

Pacific Theater. However, the scientists were often

called upon to carry out work other than operational

analysis. Only the Navy and Army Air Force groups

were dedicated to operational analyses. By war’s end,

the U.S. Army Air Force had 26 Operations Analysis

sections assigned to the numbered Air Forces,

Commands, Areas, Wings, Boards, and Schools.

Approximately 250 analysts served in those sections.

A wide range of professions were involved: typically

50 engineers, 40 educators and trainers,

35 mathematicians, 25 lawyers, and 21 physicists.

Other professions represented included architects,

meteorologists, physiologists, a historian, agriculturists,
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investment analysts and stock brokers, an astronomer,

biologists, and many others – true adherence to the

mixed team concept introduced by the British founders.

Some analyses conducted at the Army’s Aberdeen

Proving Ground in its recently formed Ballistic

Research Laboratory (BRL) can certainly be

considered Army operations analysis, even though

those words were not recognized there. A variety of

survivability and vulnerability studies, particularly on

Army aircraft, were carried out at BRL, as were many

weapons effectiveness and bombing pattern analyses.

However, there was no central overall Army operations

research group, so identified, other than those working

with the Air Forces, during World War II.

Post-World War II Activities

After the war, the British and United States wartime

groups, in one form or another, continued to conduct

operations research and analysis for their respective

services. In the U.S., it was clear, due to the

demonstrated relevance and importance of military

operations research, that operations analysis

organizations were needed in all the services.

Thus, within a few years after the end of World

War II, the Navy’s Operations Evaluation Group

(OEG) [later to become the Center for Naval

Analyses (CNA)], the Air Force’s Operations

Analysis Division and Project RAND, and the

Army’s Operations Research Office (ORO) were

formed. Each has played an important role in the

history and development of OR/MS. The Operations

Research Office of The Johns Hopkins University

(JHU) was founded in 1948 (by the U.S. Army) to

serve as the Army’s civilian run organization for

operations research analysis and studies, with offices

in the Washington, DC area. ORO was managed by

the trustees of JHU and had offices in the Washington,

DC area. ORO had the major goal of providing

independent, objective, and scientifically sound

studies of national security and defense issues.

The ORO Director

The history of ORO is one with the history of Ellis A.

Johnson, its founder and only Director. After earning

his M.S. and D.Sc. degrees at the Massachusetts

Institute of Technology, Johnson went to Washington

in 1934 to work on magnetic instruments at the U.S.

Coast and Geodetic Survey. In 1935, he joined the

Department of Terrestrial Magnetism, Carnegie

Institution as a geophysicist. Early in 1940 he moved

to the Naval Ordnance Laboratory (NOL), first as

a consultant, then as Associate Director of Research,

where he worked on degaussing as a countermine

tactic, among other things. He quickly became

interested in the operational offensive use of mines

and countermeasures to mines. Even during the early

days of the minecountermine analysis, Johnson

believed that analysts and researchers had to maintain

a close association with those who had the ultimate

responsibility for military operations – the very

essence of operations research. Thus, from the outset,

ORO reflected Johnson’s wartime experiences and the

philosophy of analysis. Much of what follows here,

particularly in relation to Johnson, draws heavily on

the tribute to him published by the Operations

Research Society of America following his death

(Page et al. 1974). With respect to the start-up of

ORO, Page et al. (1974) noted:

Thus, as ORO began its work, there was a working
assumption that something called operations research
was in being, and the Army anticipated its value
enough to be willing to try to use it. But for the Army,
this did not mean that it was clearly defined. Ground
warfare was recognized as a more difficult field for
operations research than air and sea warfare; on the
one hand, ground warfare could not be affected so
much by one new technical factor as air warfare was
by radar, while, on the other, the analysis of the
convenient geometry of the open space in the air or on
the sea was quite inapplicable for troop movement on
terrain. So, if OR was to play a significant role in support
of Army planning, it would have to learn how to
structure the problems, identify the elements amenable
to analysis, and find methods of analysis by adaptation
or invention. There were almost no direct precedents as
to what could be expected....

ORO Activities and Projects

The organizational principles that quickly evolved

included: a wide breadth of study topics; control and

management of analysis in the hands of the researchers

conducting the analyses; and close involvement with

the operational elements of the Army, including access

to real and often raw operational data representing

performance of organizations and systems. Research

leaders at ORO were also expected to conduct research
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themselves, to maintain a connection with the reality

of research management.

The first 2 years of ORO included assignments from

the Army covering a major study of military aid to

other nations, a study of the causation of artillery firing

errors, and armored force operations. During this time

the staff was brought to the level of about 40 full-time

analysts, and a pool of more than 100 consultants was

established, with ORO linkages to a number of research

and analytic companies to provide additional, on-call

support. Arrangements were concluded with the Army

to establish a broad program of continuing research on

nuclear weapons, tactics, logistics, military costing,

psychological warfare, guerrilla warfare, and air

defense. A core set of 15 projects was authorized and

funded, thus providing a formative and formidable base

from which to proceed.

When the KoreanWar broke out in June 1950, ORO

was a functioning institution with a developing

reputation for sound and practical analysis on behalf

of the operational Army. Johnson quickly recognized

a need and an opportunity in the war. He made an early

visit to Korea to establish a modus operandus for field

analysis teams in the theater of operations. By the fall,

ORO had 40 analysts in the field (as many as the full

staff only a few months earlier). At the end of the war,

over 50% of the professional staff had spent time in the

combat theater. Many hundreds of reports were

written, with considerable impact on military

operations. ORO’s influence was felt in the UK and

Canada, and operations analysts from those two UN

participating countries joined their respective

countries’ military units operating in Korea.

A small ORO field team was organized at the

Continental Army Command Headquarters, Fortress

(now Fort) Monroe, Virginia. At that time, CONARC,

as the Command was known, was responsible for the

development of operational doctrine for the Army and

for training related to that doctrine. It was Johnson’s

view that operations research could make important

contributions to the development of doctrine,

particularly considering the need for combat formations

to adapt to the new considerations of ground combat

under conditions of the potential use of atomic (later

nuclear) weapons on the battlefield. ORO help design

formations, assisting in the structure and doctrine for the

Pentomic Division and the Pentagonal (for five combat

commands) Division. Other studies looked at the

vulnerability of armored formations to tactical nuclear

weapons and at the potential for the offensive use of low-

yield nuclear weapons. Much attention was paid to

tactical operations and logistics in the early days. Later,

there were studies related to strategic matters, the most

demanding and significant of which was a large study

devoted to defense of the U.S. mainland from manned

bomber attack involving nuclear weapons.

A field office of the ORO was also established at

the headquarters of the U.S. Army Europe in

Heidelberg, Federal Republic of Germany, where

major contributions to the defense of Europe and

NATO operations were made. Heavy use was made

of war gaming and exercises for European operations

at the Heidelberg office.

ORO was a continuing and positive force in

advancing military OR and OR in general.

It conducted a series of conferences designed to

evaluate the Army’s proposed research and

development budget to help the Army understand the

potential effects of R&D investments and improve the

allocation of funds to the many R&D projects

competing for support. The PISGAH (named for the

mountain from which Moses saw the promised land)

conferences brought uniformed officers, operations

analysts, industrial scientists, and academics together

to examine the Army’s future needs. Seminars and

colloquia were regular weekly events; the former

related to planned or on-going research or outside

speakers of note, while the latter focused on more

abstruse mathematical analysis topics. ORO

conducted experiments to test the capability of bright

high-school students to conduct (relatively)

independent analyses, under the guidance of senior

ORO analysts. Through the years, studies by student

teams were done on a wide range of topics, including,

for example, the characteristics of effective air raid

warning systems for civilians, and deep-thrust armored

operations in difficult terrain. During the 5 years of

the program, 75 students spent at least one summer at

ORO, and a number joined the regular staff after

completing college.

During the 13 years of ORO activity, a full range

of Army study topics was addressed: air

operations and air defense; guerrilla, urban and

unconventional warfare; tactical, intra-theater and

strategic mobility and logistics; weapons systems;

civil defense; intelligence, psychological warfare and

civil affairs; and, overall, Army readiness for

operations in a complex national security world
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(Operations Research Office 1961). Two examples are

cited next to demonstrate the wide-ranging impact of

ORO studies.

In the arena of tactical operations, ORO examined

ways to improve the casualty producing capability of

small arms fire. Two unique ideas were introduced and

assessed. One was a salvo concept, developed from

a patent taken out in the nineteenth century by

a serving Army officer. The concept consisted of

a system of two projectiles of rifle ammunition, one

nested behind the other, with a single cartridge casing

and propellant. With one trigger pull, the two rounds

came out of the weapon in tandem. ORO analysts

predicted, using probability theory, that the natural

spread of the two projectiles would greatly increase

the hit probability on a man-sized target at operational

combat ranges. An ORO analyst, returning to an earlier

principle of operations analysis as an experimental

science, cast a few bullets in the salvo mode, loaded

them with his hand-loading equipment, and fired them

on his backyard range. The crude experimental results

confirmed the statistical analysis. The Army accepted

the results and standardized a two-round salvo

projectile for the M14.30 caliber rifle.

The second concept concerning improved

effectiveness of small arms fire focused on infantry

rifle training. The ORO analysts developed and tested

a simulated infantry battlefield target array as an

alternative to the known-distance range traditionally

used to train infantry. Sets of man-sized targets were

scattered over the battlefield and linked with electronic

controls that caused the targets to pop-up to vertical

positions simulating enemy shooters. The concept was

adopted by the Army as the TRAIN-FIRE system.

The second example is a study that ORO did on the

use of black soldiers in Korea and the extension of the

study to the broader issue of full integration of black

troops throughout the Army (Hausrath 1954). From the

Revolutionary War to the Korean War, it was

traditional for the U.S. military services not to

integrate its forces. President Truman’s 1948

Presidential Executive Orders, directing equal

opportunity in the Executive Branch and the Armed

Forces, plus the growing post-World War II economy

and major demographic changes, gave impetus for the

study requested of ORO by the Army. The study used

a wide range of tools: demographic analysis, opinion

and attitude surveys, content analysis, critical incident

technique, statistical analysis, and community surveys.

The project’s summary from Hausrath (1954) notes

the following:

. . . this study provided policy-makers in the U.S. Army
with objective evidence in support of integrated units of
Negro and white soldiers. This evidence indicated: first,
that integrated units allow more effective use of the
manpower available through a more even distribution of
aptitudes than is possible in segregated units; second, that
performance of integrated units is satisfactory; and, third,
that the resistance to integration is greatly reduced as
experience is gained. The limit, if any, on the level of
integration was shown to be above 20% Negroes, and
difficulties in extending integration to all parts of the
Army were identified and arranged in a sequential order
so that a program leading to Army-wide integration could
be formulated.

TheOROfindings, conclusions and recommendations

supported the Army process and success in integration

during the 1950s.

End of ORO

In 1961, The Johns Hopkins University, following

a disagreement with the Army over management

issues, withdrew from the contractual relationship.

At midnight on August 31, 1961, the Johns Hopkins

University Operations Research Office ceased to exist.

Its activities were transferred to the newly formed

Research Analysis Corporation (RAC), a Federal

Contract Research Center (FCRC).

This brief history of ORO is closed with a statement

from the late Ellis A. Johnson, written in the summer of

1961 (Operations Research Office 1961):

During the last 13 years ORO’s accomplishments have
indeed been noteworthy. ORO published 648 studies
containing thousands of conclusions and
recommendations. A majority of these have been
adopted and acted on. This survey was written to
summarize ORO accomplishments so that these could
be considered in perspective and with satisfaction by
those responsible for the accomplishments – the entire
ORO staff: research staff, support staff, and
administrative staff.

We can all be proud of this record.

Transition to RAC

Although the great bulk of RAC’s work would be done

for defense agencies, RAC sought to diversify its

capabilities and its clients. As a result, RAC’s

activities were expanded to include the White House
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and the National Security Council; the Department of

Defense; nine other governmental agencies with

national security interests; some 40 other

governmental agencies of all levels; and private

foundations whose primary interests lie outside the

field of national security. This range of clients, and

their varying interests and requirements for research

support, broadened RAC’s resources of data and

knowledge, analytic capability and interpretative

skills. Work done on foreign aid and development

further enriched RAC’s capabilities to deal with the

Army’s problems, as did its work for urban clients on

problems of crime and delinquency.

Throughout its existence, RAC viewed its major

mission to be service to the public interest, chiefly by

providing the Army with services, studies, research,

and counsel based on operations research and systems

analysis. RAC’s Army work concentrated on force

structure analysis and planning, logistics, military

manpower, resource analysis, cost studies, and

military gaming. These studies encompassed

problems of operations, planning, intelligence, and

research and development. In addition, RAC made

studies of the nature and purposes of insurgency,

counterinsurgency, and operations undertaken to

stabilize societies under threat. RAC examined the

politico-military aspects of these regions where U.S.

land forces were already operating or providing advice

and training, or might be called on to do so. These

studies considered both current and projected

environments. As ORO did, RAC set up field offices

to study problems on the scene and to provide analytic

support in direct conjunction with local tests and local

operations.

RAC’s Project Portfolio

Some of the largest projects RAC undertook involved

very complex, worldwide logistical and transportation

systems. RAC’s studies of air mobility for army forces

(in both wartime and peacetime) led to specific

evaluations later on, after such systems were built,

deployed, and put to work, thus creating bodies of

hard data suitable for operations analysis.

There was also the continuation of ORO’s emphasis

on the assessment of weapons requirements and of the

comparative effectiveness of competing weapons

systems. RAC engineers and scientists also sought

ways to improve the management of military research

and development, seeking more efficient ways of

allocating uncommitted resources to research and

development projects. RAC analysts also dealt with

communications, proposing new ways to allocate

radio frequencies to military users and to improve the

dependability of communication nets, early

forerunners of today’s highly sophisticated command,

control and communications systems.

RAC inherited an especially strong program from

ORO of basic research into quantitative methods for

analyzing a wide variety of OR problems, particularly

in the areas of mathematical programming and

decision analysis. The term “think tank” was most

appropriately applied to RAC at the time.

RAC’s work also included economic, political and

social science studies of problems arising outside

formal military institutions. Most prominent were

studies of public safety problems, the administration

of justice and control of crime and delinquency, and

economic and social development at home and abroad.

These grew logically out of RAC’s work for defense

clients. Also prominent in RAC’s work on military

subjects were manpower and personnel. Problems in

these areas took on new dimensions in the 1960s, under

the impact of Vietnam, the draft, and the later shift to

an all-volunteer army.

ORO had pioneered the study of military costs and

cost analysis, war gaming and simulations, and

strategic and limited war. RAC continued these

efforts, improving methods and exploring further the

possibilities for applying more sophisticated and

powerful analytic procedures to the unfolding

problems of the 1960s. RAC also conducted studies

in arms control and disarmament. It inaugurated

a broad range of politico-military analyses relevant to

the needs not only of military planners, but also of

those concerned with broader questions of national

security.

When RAC took over from ORO, a program of

advanced research studies was well under way and

maintained momentum throughout most of RAC’s

existence. This continuation was not without conflict,

both within the Army and within RAC, since there

were serious differences of opinion about how much

effort (if any) should be devoted to basic research, as

opposed to applications of existing techniques that

would be directly useful to the Army in the short run.

At the outset, top Army officials decided that such

a program was needed and suggested that it form

about 10% of the total effort under the RAC-Army
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contract. They felt it was necessary to explore ways in

which advances in basic methodology might be used to

deal with short-run problems. RAC’s Advanced

Research Group devoted considerable attention to

applications, while it continued to make advances

primarily in mathematical programming and decision

analysis. Fiacco and McCormick’s 1968 seminal book

on nonlinear programming was a product of the

Advanced Research Group.

RAC also conducted a number of studies in the areas

of decision, utility, and cognitive theory. In total, these

studies were aimed at a comprehensive understanding

and theory of decision making at its various levels. In

addition to client research applications, this work

provided guidance for the establishment of a problem

solving rationale within RAC.

In 1972, the General Research Corporation (GRC),

a for-profit organization, bought RAC and partly took

over its staff, physical assets, and contract

relationships with the Army and other RAC clients.

Concluding Remarks

ORO and RAC were important elements of OR/MS

history. It would probably be fair to say that their

combined contributions played a major role in

establishing operations research as a paradigm for

rational decision making.

See

▶Air Force Operations Analysis

▶Battle Modeling

▶Center for Naval Analyses

▶Military Operations Research

▶RAND Corporation
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Operations Research Society of
America (ORSA)

Founded in 1952, the Operations Research Society of

America was the major U.S. society for operations

researchers. It was merged with The Institute of

Management Sciences (TIMS) into the Institute

for Operations Research and the Management

Sciences (INFORMS) effective January 1, 1995.

The purposes of ORSA were (1) the advancement

of operations research through the exchange of

information, (2) the establishment and maintenance of

professional standards of competence for work known

as operations research, (3) the improvement of the

methods and techniques of operations research, (4) the

encouragement and development of students of

operations research, and (5) the useful applications of

operations research. During the period of its

independent existence, ORSA published the journal

Operations Research (in 42 volumes), as well as other

journals (some jointly with TIMS). In addition, ORSA

sponsored national meetings (jointly with TIMS), and

other meetings organized by its technical sections and

geographic chapters. It was the U.S. representative to

International Federation of Operational Research

Societies (IFORS).

See

▶ Institute for Operations Research and the

Management Sciences (INFORMS)

▶The Institute of Management Sciences (TIMS)
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Opportunity Cost

The cost associated with forgoing an opportunity; the

money or other value sacrificed by choosing a

nonoptimal course of action. In linear programming,

the opportunity cost is the reduced cost of a variable

not in the optimal basic solution. If a unit of a nonbasic

variable is introduced into the solution, the optimal

value of the objective function would decrease by an

amount equal to the associated reduced cost.

See

▶Linear Programming

▶ Prices

▶ Simplex Method (Algorithm)

Optimal Computing Budget Allocation

A statistical ranking and selection framework for

choosing the best system design among a finite set of

alternatives whose performance must be estimated,

usually via simulation, with the objective of

maximizing the probability of correct selection.

See

▶ Statistical Ranking and Selection
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Optimal Control

Branch of engineering and applied mathematics

dealing with optimization of a dynamical system in

continuous time. Similar to dynamic programming,

the (optimal) value function satisfies an optimality

condition, the Hamilton-Jacobi-Bellman equation.

For the special case of a linear time-invariant

dynamical system with quadratic cost, an explicit

solution for the optimal feedback control policy can

be found by solving the Riccati equation.

See

▶Control Theory

▶Dynamic Programming

▶Hamilton-Jacobi-Bellman Equation
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Optimal Feasible Solution

For an optimization problem, an optimal feasible

solution is a solution that satisfies all the constraints

of the problem and optimizes the objective function.

Optimal Solution

▶Optimal Feasible Solution

Optimal Stopping

Sequential decision-making problem under

uncertainty in which a decision maker must decide

when to stop observing a stochastic process, with the

usual objective being to maximize a terminal reward

(or minimize cost). Many practical OR/MS

applications can be formulated as optimal stopping

problems. A well-known example is the so-called

secretary problem, in which an employer interviews

potential candidates in succession and must decide

when to stop the interviewing process and select one
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to hire. In finance, the pricing of American options

is a well-known class of optimal stopping problems.

In discrete time, optimal stopping problems can

be formulated as Markov decision problems, in

principle solvable by dynamic programming.

Optimal Value

The best value that can be realized or attained; for

a mathematical programming problem, the minimum

or maximum value of the objective function over the

feasible region.

Optimal Value Function

The optimal value of a mathematical programming

problem as a function of problem parameters, such as

objective function coefficients. Also the name given to

the function satisfying the Bellman optimality

equation in a Markov decision process or dynamic

program, especially in a revenue/profit maximization

problem; otherwise sometimes known as the optimal

cost-to-go function for a cost minimization problem.

See

▶Approximate Dynamic Programming

▶Bellman Optimality Equation

▶Markov Decision Processes

▶Optimal Value

Optimality Criteria

Mathematical conditions used to test whether or not

a given feasible solution is optimal in an optimization

problem. Examples include the Karush-Kuhn-Tucker

conditions for some nonlinear-programming problems;

the simplex algorithm test applied to the reduced

costs of the nonbasic variables for linear-programming

problems; the Bellman optimality equation for dynamic

programming, and the Hamilton-Jacobi-Bellman

equation for optimal control.

See

▶Bellman Optimality Equation

▶Hamilton-Jacobi-Bellman Equation

▶Karush-Kuhn-Tucker (KKT) Conditions

▶Linear Programming

▶Nonlinear Programming

▶ Simplex Method (Algorithm)

Optimization

The process of searching for the best value that can be

realized or attained. In mathematical programming,

this is the minimum or maximum value of the

objective over the feasible region. Optimization

without constraints is called unconstrained

optimization.

See

▶Mathematical Programming

▶Nonlinear Programming

▶Unconstrained Optimization

Optimization of Queues

The process of determining the optimal

setting of a particular queueing system parameter.

The optimization refers to the minimization or

maximization of a cost function where the parameter

(or parameters) of interest appear as variables.

See

▶Queueing Theory

Option Pricing

In finance, finding the value of an option, a type of

financial derivative.

See

▶ Financial Engineering
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OR

Operations research or operational research.

OR/MS

Operations research and management science.

Ordinal Optimization

In the simulation optimization setting, an approach that

exploits the property that it is easier to select the

correct order among noisy measurements than to

obtain precise estimates, i.e., ordering converges

faster (exponentially) than estimation.

See

▶Large Deviations

▶ Simulation Optimization
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Introduction

Organization studies encompass two areas: organization

theory as a positive science to explain and understand

the structure, behavior, and effectiveness of an

organization; and organizational design as a normative

science to recommend better designs for increased

effectiveness and efficiency. Organization theory

attempts to understand and explain; organizational

design creates and constructs an organization.

Organizing behavior is evident in history from

the earliest of recorded time. Ancient China was

a highly organized society, a meritocracy with labor

specialization. The Roman Empire, and in particular

the Roman army, was efficiently designed. Themodern

organization is part and parcel to civilization,

and its understanding fundamental to modern life.

Not only is organization both timely and timeless, its

study is basic inmanagement science, political science,

economics, sociology, business, and military science,

to name a few. Organization study is interdisciplinary

and central to all of social science. Scott and Davis’s

book (2006) is an extraordinarily comprehensive and

lucid integrating review of the sociological approach to

organization theory. It is a positive science review

and considers organizational design only implicitly.

The great insight that management science

brought to understanding organization is that the

basic work of organization is information processing.

The information processing perspective permits one

to move easily from the positive view of organization

to a normative view of what should be; that is, the way

the organization deals with information can be

modified. In a rough analogy, the nerve system,

which channels information even more than the blood

(energy carrier) or the skeleton (structure), provides

the fundamental basis for understanding organization

in modern life. Despite centuries of organization

study, the organization as an information processor is

a new insight of the twentieth century— even the latter

half of the twentieth century. To study organization

without information is analogous to studying the

human body but ignoring the nervous system; it can

be done, but much is lost, or ignored.

In this brief essay, the focus lies on the

contribution of management science and operations

research to the study of organization. A more formal

description and definition of an organization will be

given. Then, a number of management science

theories, models, and methods are considered one.

Finally, some alternative approaches to organization

are briefly mentioned and what the future holds.

Throughout, the management science literature

is referenced which will provide a beginning point

to pursue the issue in greater detail.
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Organization as Information Processing

What is an organization? Definitions abound. All

have certain elements in common. An organization is

a created social entity which is composed of

individuals (and machines) who must be coordinated

to achieve its purpose. March and Simon (1958), in an

early and perhaps the most influential book in modern

organization studies, wrote (p. 4):

A biological analogy is apt here, if we do not take it
literally or too seriously. Organizations are assemblages
of interacting human beings and they are the largest
assemblages in our society that have anything
resembling a central coordinative system. Let us grant
that these coordinative systems are not developed nearly
to the extent of the central nervous system in higher
biological organism — that organizations are more
earthworm than ape. Nevertheless, the high
specificity of structure and coordination within
organizations — as contrasted with the diffuse and
variable rations among organizations and among
unorganized individuals — marks off the individual
organization as a sociological unit comparable in
significance to the individual organism in biology.

March and Simon’s organization examined

attitudes, values, and goals and developed

propositions about decision makers and problem

solvers — a new organizational vocabulary to replace

authority, responsibility, and span of control as

organizing principles. They provided a new basis

for thinking about organizing — the principle of

bounded rationality (pp. 140–141):

Most human decision-making whether individual or
organizational, is concerned with the discovery and
selection of satisfactory alternatives; only in exceptional
cases it is concerned with the discovery and selection of
optimal alternatives.

This is in contrast to the rational economic man

whomakes optimal decisions in well-defined

environments. The information processing model is

a powerful metaphor of an organization which

processes information to obtain coordination:

– Reads information, or observes the world,

– Stores information, or remembers facts and

programs,

– Transmits information, or communicates among the

members,

– Transposes information, or makes decisions.

These are the work tasks of the organization.

Information processing includes choosing, decision

making, and problem solving. At a very basic level,

the work of an organization is symbol manipulation.

Whether human or machine, the organization is

rational only in a bounded sense, reaching less than

optimal decisions with the less than perfect

information available to it.

Coordination of decisions and their implementation

is the fundamental problem. Team theory models

(Marschak and Radner 1972) of organization were

explicit mathematical models of multi-person

organizations who had to make multiple decisions in

the face of uncertainty — both uncertainty about the

true state of nature and about the information and

decisions of other team members. Better prediction,

communications, and decision rules reduce the level of

uncertainty and obtain more nearly optimal decisions.

The team theory models explicitly incorporated

information: reading, storing, communicating, and

calculating. The best information scheme, or

organizational design, balances the returns from nearly

optimal coordinated actions and the costs of organizing.

The ship builder’s problem is deceptively simple,

yet fundamental (p. 132):

Let a firm have two sales managers, each specializing in
a different market for its product. Let it have two
production facilities, one producing at low cost and
another, more costly, to be used as a standby. This
second facility can be visualized as a separate plant or
as the use of the same plant at “overtime” periods, which
involves higher wages. A conveniently simple case is
offered by a shipyard firm with two docks (a new one
and an old, less efficient one) and two markets (“East”
and “West”). Each sales manager is offered a price for
a ship to be delivered in his market. The prices offered in
each of the two markets are the two state variables. (That
is, the market prices have a priori known probabilities of
high or low.) There are two decision variables, each
of them taking one of two values: either accept or reject
the order.

There are nine possible organizational designs

about reading and communicating. For each case,

there are decision rules which maximize the expected

returns. Here are four of the possible designs:

1. No market information is gathered or

communicated;

2. Both market prices are observed and communicated

to a central headquarters;
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3. Each market price is observed and a decision is

made to accept the offer, or not; and

4. The market price is obtained in one market and sent

to a central headquarters, but not in the other.

The best design depends upon the returns from

better information and cost of observing,

communicating, and choosing. The costlier the

observations, the fewer the observations. The costlier

communications are, the more decentralized

the organization. The decision rules depend upon the

information available.

Information processing is a core issue. March

and Simon begin with the boundedly rational

individual and build implications for the

organization. Marschak and Radner take a number of

perfectly rational individuals who are bounded

rationally as a team because of the limited and costly

information available, that is, imperfect information

at the right time for the right person.

Focusing directly on organizational design,

Galbraith (1974) assertively conjectured that the

principal managerial task is to reduce uncertainty by

processing information: “A basic proposition is that

the greater the uncertainty of the task, the greater

the amount of information that has to be processed

between decision makers during the execution of the

task” (p. 28).

Following March and Simon, Galbraith (p. 29)

offered three mechanisms to obtain greater

coordination among the decision makers:

1. If coordination by rules or programs: operational

contingent rules can be stated in “if-then” terms; for

example, if the inventory stock is less than four,

then reorder ten items. Programs are compositions

of large numbers of rules;

2. Hierarchy: with greater uncertainty and no rules,

exceptions and new situations are referred up

the hierarchy for resolution. (This is a rule itself; if

there is great uncertainty and no rule about what

to do, then refer the issue up the hierarchy.); and

3. If coordination by targets or goals: here the rules

may be largely unspecified but the desired ends

or goals can be stated. Subgoals are developed to

obtain coordination among the units.

Adding to these organizational design alternatives,

Galbraith (p. 30) then offered four information

processing strategies. The first two reduce the need

for information processing by creating slack

resources (for example, excess personnel to

complete a task) and self-contained units; that is,

small quasi-independent units. Alternatively,

increased information processing capacity can be

obtained by investing in vertical information systems,

for example, MIS; or by creating lateral relations; that

is, the genesis of the matrix organization (Galbraith

1995). Each organizational design alternative is

developed and its appropriateness rationalized on

the need for information to coordinate activities in

the face of uncertainty.

Building upon these ideas, Burton and Obel (1980,

1984) formally modeled a hierarchical, decentralized

organization using a Dantzig-Wolfe decomposed

linear program – a model of who does what

based upon what information. It is an explicit

multi-agent information processing model for

observing, storing, transferring, and decision

making – based upon bounded rationality and

localized information among the agents. Divisional

units pass up local planning information to the

headquarters unit, which evaluates these plans and

sends revised guidance on limited resource costs to

the units. To replicate actual planning systems, only

a very few iterations are permitted prior to

implementation. Research questions focus on which

organizational design – that is, information and

decision making system in the spirit of team

theory – would yield the best performance in the

face of uncertainty. The empirical results verify

Williamson’s M-form hypothesis that a divisional

organization yields better performance than

a functional organization – without invoking

opportunism or information misrepresentaion by

the divisional agents. The power of this approach is

to test alternative organizational designs and the

way information is handled in an organization to

assess which alternative is more efficient. In

a second experiment, these mathematical computer

simulations were modified for laboratory

experiments (Burton and Obel 1988) to investigate

the importance of opportunism; that is, whether

individuals give misleading information to better

their own situation at the expense of others and

the organization as a whole. Indeed, some will

behave opportunistically, but the M-form suffered

less due to opportunism than the functional U-form.

These computational and laboratory studies are
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controlled experiments to investigate basic hypotheses

in organizational design. The models are explicitly

information processing where the individuals in the

models face an uncertain environment, are bounded

rationally, have limited information, and can behave

opportunistically. The first model confirmed the

M-form hypothesis without invoking opportunism;

the second laboratory study again confirmed the

hypothesis invoking opportunism.

More recently, Mihm et al. (2010) modeled

hierarchy using an NK approach (where N is the

number of variables and K is the degree of

dependency among the variables), finding that:

assigning a lead function speeds up the problem

solving; local search should be delegated to

the lowest level; and structure matters less in the

middle than the front line, which should be kept small.

These later studies provide a transition to

computational modeling of organizations – their

decision-making and information processes.

Computational Organization Theory

Computational approaches or simulation offers a

complementary approach to the study of organization.

In launching a new journal, Computational and

Mathematical Organization Theory, Carley (1995)

outlined how computational methods can be applied to

better understand organizations – to develop theory and

improve practice. Computational models are frequently

complicated but mathematically ill-formulated, and

hence do not lend themselves to analytical closed-form

solutions. As such, simulation is a very powerful

approach to investigate complex phenomenon without

the need for inappropriately simplifying assumptions.

Computational models are usually explicit in their

modeling of organization as an information processing

task. On the other hand, computational models can be

made too complicated, beyond the purpose or the

question at hand. Burton and Obel (1995) argue

that a good computational model is a parsimonious

balance of the purpose, the model, and the experiment.

They outline the role of computational modeling in

theory development, suggesting and testing

simple mechanisms, testing limits and boundary

conditions, developing alternative explanations, and

more generally exploring with what-might-be

models to develop insight and develop a better

understanding of organizations and organizing. In the

discussion below, a number of computational

models are commented on which are parsimonious and

balance complexity and simply of purpose. These

applications are varied in nature – ranging from the

behavioral theory of the firm to organizational design

in NASA.

Computational organization models were

pioneered by Cyert and March (1963) and related

studies which helped in the development of the

behavioral theory of the firm. The store-buyer model

and oligopoly model were early applications which

confirmed the idea that simulation models could be

used both for real-world application and theory

development. In short, computational models are

laboratories (Burton and Obel 2011) for studying

organizations and how they work.

Cohen et al. (1972) developed a “garbage can

model” of organizational choice. They, too, began

with observing how organizations (here, educational

institutions) choose, or make decisions. Their

discovery was a process in marked contrast to the

normal scientific method which gathers data, defines

the problem, lists the alternatives, chooses the best one,

and then implements it. Rather, the organization

was a garbage can of an unordered set of choices

looking for problems; issues and feelings seeking

forums for airing; solutions looking for issues; and

decision makers looking for work. They translated

these observations into an explicit computer

simulation model and were able to verify and explain

a number of observations. Can such an organization or

super-bounded rationality ever accomplish anything?

Perhaps surprisingly, yes! One conclusion is that

“important problems are more likely to be solved

than unimportant ones” (p. 10). This much is

reassuring – indeed, such organizations can and do

function and can be quite effective. Information is

used in very complex ways. Their simulation model

was devised to explain and understand these very

complex organizational processes; nonetheless, the

model itself is parsimonious.

Individuals or organizations learn how to update

these routines through experience, including

sampling experience, which can be biased. March

(1991) introduced two contrasting learning strategies:

explore and exploit. He demonstrates that exploitation

is more likely to be beneficial in the short run, but

self-destructive in the long run. Exploration is not as
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beneficial in the short run, but can yield strategies

that are viable for the longer run. Each strategy has

benefits and risks for the learner. The concept of a slow

learner (one that adapts gradually to the code) and the

result that a slow learner can yield better outcomes

for exploration is perhaps counterintuitive. The fast

learner adapts too quickly to realize exploratory

behavior and thus puts the organization at risk. These

notions have inspired extensive research in

organizational learning and strategy – both related

computational models and empirical studies. With

these computational models, the theory of

organizational learning is advanced.

Carley and Prietula (1993) have utilized

computational organization theory as a complement

to deductive analytical modeling and field-based

empirical study, again an information processing

perspective. Carley et al. (1992) generalized the

SOAR model. SOAR models simulate goal-driven

search behavior through problem spaces. SOAR acts

through a series of decision cycles which include

working memory, permanent memory of if-then

production rules, and a preference memory. The task

is the retrieval of requested warehouse items involving

multiple agents. Carley and Lin (1995) investigated

information distortion effects in the SOAR

environment. More recently, Carley and Prietula

(1998) introduced the concept of a WebBot – a critter

which does information work, but can also display

more human characteristics, such as trust.

Burton and Obel (2004) and Baligh et al. (1996)

have devised the Organizational Consultant. It is

a knowledge-based expert system which uses what

is known from organization theory and executive

experience. The Organizational Consultant then

asks questions about the specific organization and,

utilizing the knowledge base, diagnoses the

organization and offers design recommendations. The

Organizational Consultant is a computational model

in that data or situational facts are analyzed in order

to make specific recommendations or a solution. It is

not a numerical calculation; the model is a set of

some 300 if-then statements which examine the data

in order to develop the design recommendation.

A broad range of organizations and case studies

have been devised to validate the approach. It is

an explicit normative model of organizational

design. In the spirit of computational modeling,

Baligh (2005) developed a process of design that is

systematic; it uses the algebra of decision rules.

He defines an organization structure as a set of

people connected by decision rules. These are

mappings of which an element is of the form (If A,

choose (do) one of the elements of B), where

A represents a circumstance and B a set of possible

decisions. Each rule has a set of makers and a set of

users. Different rules and different sets of rules

describe many different structures, including all

those mentioned above. Decision rules identify their

own information needs, and design decisions must

consider the returns to decision rules and the costs

of the information they require.

Levitt et al. (1994) built a multi-agent network

model (SimVision) of a project organization. One

purpose is to predict the duration of the project.

A second more important purpose is to bring

understanding and insight into the management

process itself. Managerial bottlenecks become

evident in the model before they are realized on the

job. The model is an information-processing model of

an organization: tasks, agents, communications, tools,

and structure. The agents are boundedly rational.

Each agent manages in an information-rich

environment. The computer processes the set of

tasks for a network project – a 3-year petroleum

refinery design project. Their experiment compares

the decentralized and centralized organizations, and

voice mail and no voice mail. Decentralization

reduces the total work-days, and voice mail reduces

the total effort. The more general purpose and

application is to predict managerial problems for the

organization and then to devise means to prevent

the difficulties rather than create and realize difficult

and costly situations for the organization. Jin and

Levitt (1996) elaborated on the model’s relation to

contingency theory and the model’s validation.

In a related real-world application, NASA began

with a clear purpose to design a high-level

multi-location project organization (Carroll et al.

2006). The goal was to determine what should be the

project design, with the stipulation that it must be

closely related to the current practice and an

examination of other what-might-be alternatives.

They utilized three different simulation tools to

help them develop alternative organizational designs

and assess their projected performance. In their

triangulation approach, the NASA design team began

with DSM (design structure matrix) to map the
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information processing or communications and

coordination structure of existing and proposed

organizations to gain insights about the issues and

challenges. Then, applying the OrgCon, an expert

system of design rules, and using a top-down

approach, the design team examined a large number

of what-might-be alternative design tradeoffs and their

projected consequences. Finally, using a micro

bottoms-up approach for the project and the

requirements, they developed a what-should-be

SimVision model of the proposed organization.

The triangulation of the three approaches served

multiple practical purposes for NASA. They had

multiple views of the problem, which gave them

greater understanding. They also had greater

confidence in the recommended design, as it was

embedded in current practice and the examination

of several alternatives and their implications.

Using an NK agent-based model, Siggelkow and

Levinthal (2003) examine performance when

the competitive landscape shifts. A temporary

decentralization – a form not found in the literature –

performs best. As interactions across and within

divisions increase, the optimal length of decentralized

exploration tends to grow. It is a deeper examination of

dynamic relations of a what-might-be situation in order

to generate a more nuanced theory. Siggelkow and

Rivkin (2005) demonstrate that ample processing

power at the bottom of the firm can slow down

improvement and narrow overall search by the firm –

initially a counterintuitive result. The results are

stated as hypotheses that can be tested in

other settings. Ethiraj and Levinthal (2009) found that

incomplete guides to action prove more effective at

directing and coordinating behavior than more

complete representations. Fewer goals provide

clarity and focus for boundedly rational actors.

In these what-might-be studies, insights and some

counterintuitive results are found that extend

understanding.

The Future

The management science information perspective

described above remains a base for the future – after

all, information processing is fundamental to what an

organization does. Daft and Lewin (1990), in

launching a new journal, Organization Science,

began with a provocative question: “Is the field of

organization studies irrelevant?” Where is the

audience in business and government? What does it

mean to be “relevant?” Perhaps relevancy is

developing a better understanding of the future, but

not necessarily predicting what will happen.

What-might-be studies which explore new ideas and

possibilities, investigate mechanisms, alternative

plausible explanations, boundaries, limits of

explanations are the future. Knowledge from diverse

sources and multiple perspectives should be

encouraged, given the complexity of organization.

No one method or approach can reveal complete

understanding – it takes multiple views.

Computational modeling can be a very important

approach. Organizational design includes the

organization processes of culture, decision making,

information processing, CEO values, and style, at

least. They conclude with a challenge for a new era

in organization studies which upholds the rigor of

scientific inquiry and embrace multiple perspectives

and approaches. In a very short life, Organization

Science has answered the challenge.

The focus here has been on the information

processing view of organization studies, i.e., the nerve

system and brain functions of organization. Other

perspectives can be found in the journals Management

Science, Organization Science, and Computational &

Mathematical Organization Theory, among others.

See

▶Computational Organization Theory

▶Decision Making and Decision Analysis

▶Economics and Operations Research
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Origin Node

A node in a network through which goods can

enter the network. It is sometimes useful to define

a special origin node through which all goods enter

the network.

ORO

▶Operations Research Office and Research Analysis

Corporation
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ORS

▶Operational Research Society (ORS)

ORSA

▶Operations Research Society of America (ORSA)

Out-of-Kilter Algorithm

A special primal-dual algorithm for solving

minimum-cost network-flow problem.

See

▶Minimum-Cost Network-Flow Problem

Output Process

The stochastic point or marked point process whereby

the marks represent some aspect of the queueing

customers or the state of the service stage or node

and the points represent the times of customers

leaving the server. This is contrasted with the

departure process, which requires that the customers

leave the entire queueing system for good. For

example, in queues with feedback, the output process

includes both the departure and feedback processes.

See

▶Departure Process

▶Networks of Queues

▶Queueing Theory

Outside Observer Distribution

The probability distribution of the state of a queueing

system at an arbitrarily chosen point in time, as opposed

to what it would be at arrival or service-completion

epochs. For queueing systems with a Poisson arrival

process and exponentially distributed service times, all

these steady-state distributions are the same.

See

▶ PASTA

▶Queueing Theory

Overachievement Variable

A nonnegative variable in a goal-programming

problem constraint that measures how much the

left-hand side of the constraint is greater than the

right-hand side.

See

▶Goal Programming

Overflow Process

The stochastic marked point or point process of

customers arriving to a queueing service center or

node but not receiving service there. For example, the

arrival process is composed of two stochastic

processes, those gaining access to the server (i.e., the

input process) and the overflow process of those not

gaining access to the server. These distinctions are

needed to model finite capacity-nodes.

See

▶Arrival Process

▶ Input Process

▶Queueing Theory
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Overtaking

In queueing networks with alternate paths, the ability

of customers leaving a node to use arcs to move

ahead of customers not taking those arcs so as to

arrive at a subsequent node ahead of customers they

were previously behind. This can also occur for

customers on the same path if a visited node has

multiple servers, since a customer who started

service later than other customers there could be

served more quickly and thus pass some of those

other customers.

See

▶Networks of Queues
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P

P4

Partitioned preassigned pivot procedure. A procedure

for arranging the basis matrix of a linear-programming

problem into as near a lower triangular form as

possible. Such an arrangement helps in maintaining

a sparse inverse, given that the original data set for

the associated linear-programming problem is sparse.

See

▶Linear Programming

▶Revised Simplex Method

Packing Problem

The integer-programming problem defined as follows:

Maximize cTx

subject to Ex � e

where the components of E are either 1 or 0, the

components of the column vector e are all ones, and

the variables are restricted to be either 0 or 1. The idea

of the problem is to choose among items or

combinations of items that can be packed into

a container and to do so in the most effective way.

See

▶Bin-Packing

▶ Set-covering Problem

▶ Set-partitioning Problem

Palm Measure

▶Markovian Arrival Process (MAP)
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Introduction

Parallel computing is the use of a computer system that

contains multiple, replicated arithmetic-logical units

(ALUs), programmable to cooperate concurrently on

a single task. Between 2000 and 2010, parallel

computing underwent a sea change. Prior to this

decade, the speed of single-processor computers

advanced steadily, and parallel computing was

generally employed only for applications requiring

more computing power than a standard PC processor

chip could deliver. Taking advantage of Moore’s Law

(Moore 1965), which predicts the steady increase in the

number of transistors that can be packed into a given

chip area, microprocessor manufacturers built

processors that could execute a single stream of

calculations at steadily increasing speeds. In the

2000–2010 decade, Moore’s law continued to hold, but

the way that chip builders used the ever-increasing

number of transistors began to change. Applying ever-

larger number of transistors to a single sequential stream

of instructions began to encounter diminishing returns,

and while smaller transistors enabled increasing clock
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speeds, clock speeds are limited by energy consumption

and heat dissipation issues. To use the ever-increasing

number of available transistors, processor designers

began placing multiple processor cores, essentially

multiple processors, on each CPU chip. In the laptop

and desktop markets, processors with four cores are now

common, and CPU chips with only a single processing

core are now rare. Thus, parallel processing is no longer

only an effort to advance over the power available from

mainstream computing platforms such as desktop and

laptop computers; it has now become an integral part of

such mainstream platforms.

Kinds of Parallel Computers

The taxonomy of Flynn (1972) classifies parallel

computers as either SIMD (Single Instruction,

Multiple Data) or MIMD (Multiple Instruction,

Multiple Data). In SIMD architectures, a single

instruction stream controls all the ALUs in

a synchronous manner. In MIMD architectures, each

ALU has its own instruction stream and its own

instruction decoding hardware. The two approaches

are not mutually exclusive: an approach sometimes

called MSIMD (Multiple SIMD) combines multiple

blocks of SIMD processors, with each block having

its own instruction stream. There was active

competition between SIMD and MIMD through the

1980s, but MIMD emerged as the clear winner in the

1990s. SIMD, however, has been staging a quiet

resurgence in the form of GPUs (Graphics Processing

Units), which typically have an MSIMD organization,

as discussed below. Some confusion surrounds the

term SIMD, as processor manufacturers also apply it

to certain graphics-oriented special machine

instructions that process blocks of data. These

instructions are not necessarily completely parallel in

the classic sense, but instead may simply take

advantage of pipelining techniques to achieve higher

utilization of ALU hardware than for standard

scalar-operand instructions.

Another important distinction is between local and

shared memory. In pure local-memory architectures,

each processor has its own memory bank, and

information may be moved between different

processors only by messages passed through

a communication network. On the other end of the

spectrum are pure shared-memory designs, also

called SMPs (Symmetric MultiProcessors), in which

there is a single global memory bank that is equally

accessible to all processors. Such designs provide

performance and ease of programming for small

numbers of processors, and are currently the most

common, since they are used in desktop- and

laptop-level multicore processor chips. In a more

powerful server or workstation, two or more

processor chips, each with four to six processor cores,

share a single global memory. As with MIMD and

SIMD, it is also possible to blend global and local

memory approaches. For example, a system might be

composed of dozens or hundreds of processing nodes,

each node consisting of two to twelve processor cores

sharing a single memory bank.

In large-scale systems without global memory, it is

not generally practical to provide a dedicated

connection between every pair of processors. Popular

interconnection patterns include rings, grids, meshes,

toroids, butterflies, and hypercubes. In academic

circles, there has been an extensive debate on the

merits of various interconnection topologies.

However, the details of the interconnection pattern

may not be critical for the kinds of parallel computers

that currently exist, which generally range in size from

a few processing nodes to thousands of nodes. At such

scales, the critical considerations are the speed of the

interconnection links, the overhead and latency

associated with communication, and elementary

non-interference properties. Non-interference means

that sending a message from processor A to processor

B should generally not interfere with processor C

sending to processor D.

One way to construct a parallel computing system is

simply to combine standard desktop or workstation

computers, an approach known as a cluster or CoW

(Cluster of Workstations). However, the local-area

networks that usually connect such systems may

significantly limit performance for some applications.

Faster, special-purpose communication networks such

as Myrinet or Infiniband may be used to improve the

performance of dedicated cluster systems. Cooling and

energy consumption can become significant limiting

factors in constructing large CoW systems, and are

also important design considerations in building

higher-performance parallel supercomputers.

Another approach is to assemble ad hoc parallel

systems from the background or off-hour capacity of

collections of desktop computers, an approach known
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as grid computing, a term meant to invoke an

infrastructure of computing resources resembling the

electric power grid. This approach requires no special

hardware, but does need specialized software such as

the Condor scheduling system (Litzkow et al. 1988).

Communication between instruction streams can be

particularly slow in such environments, however, and

algorithms must be fault tolerant, i.e., resilient to

processors unpredictably disappearing from the

available pool, possibly in mid-computation.

A nascent trend is GPU computing (Owens

et al. 2008). The demands of ever-more sophisticated

animation, driven mainly from the personal computer

gaming industry, have led graphics adaptors to evolve

into special-purpose parallel computing engines, often

far more powerful in terms of floating point operations

per second (flops) than their host processors. Modern

graphic processors typically have an MSIMD

structure, consisting of independent blocks of SIMD

processing units. Consumer level GPUs typically

contain hundreds of ALUs, at a cost of a few dollars

each. In GPU computing, one uses GPU hardware for

other purposes than graphics processing. Graphics

processors typically have a global memory with

a high bandwidth connection to their processors, but

this memory is often distinct from main CPU memory.

Programming Models

The primary distinction among styles of parallel

computer programming is between data-parallel and

control-parallel specification of concurrency. In the

data-parallel model, also called SPMD (Single

Program Multiple Data), the program essentially

specifies a single thread of control, but individual

statements may manipulate large arrays of data in an

implicitly parallel way. For example, if A, B, and C

are arrays of the same size of shape, the statement

A ¼ B + C might replace each element of A by the

sum of the corresponding elements of B and C.

Responsibility for portions of each array is typically

partitioned betweenmultiple processors, so they divide

the work and perform it concurrently. Communication

in data-parallel programs is typically invoked through

certain standard intrinsic functions. For instance, the

expression SUM(A) might represent the sum, across all

processors, of all A’s elements, computed by whatever

algorithm is optimal for the current hardware.

Data-parallel languages were originally developed

for SIMD architectures, but data-parallel and SIMD

are not synonymous. MIMD systems may be

programmed in a data-parallel manner when it

suits the application at hand. Currently, the most

prevalent data-parallel programming language is

High Performance FORTRAN, or HPF (Koelbel

et al. 1993). HPF has its roots in FORTRAN 90

(Metcalf and Reid 1990).

In control-parallel programming, the programmer

specifies a distinct thread of control for each

processing unit capable of one. Often, each

processing unit has the same program, but takes

a completely different path through it. If shared

memory is available, threads may communicate via

memory, using mechanisms called locks or critical

sections to prevent simultaneous or inconsistent

writes to the same location. Otherwise, threads must

communicate by sending and receiving messages,

a style called message passing. Note that

shared-memory systems may also be programmed in

a message-passing style, allowing for relatively

straightforward migration to larger, non-shared-

memory systems. Control parallel programs are

typically written in standard sequential programming

languages such as C, C++, or FORTRAN, handling

messages and memory interlocks via special

subroutine libraries. For message passing, the

principle standardized, portable subroutine libraries

are based on the MPI standard (Snir et al. 1996). At

least three open-source implementations of MPI are

available, and system manufacturers and integrators

often provide their own optimized implementations.

For shared-memory programming, common

standards include Posix threads (Butenhof 1997), in

which a process spawns new threads by calling special

operating system routines, and OpenMP (Dagum and

Menon 1998), in which parallelism is specified by

special compiler directives intermixed with standard

code from the underlying C, C++, or FORTRAN

language. Another alternative is Cilk (Blumofe et al.

1995; Leiserson 2009), which extends the

standard C and C++ languages with new parallelism-

specifying syntax.

It is generally accepted that control-parallel

programs are harder to analyze, understand, develop,

and debug than data-parallel programs, due to

complicated race and deadlock conditions that can

easily develop between threads. On the other hand,
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the data-parallel programmer must sacrifice

significant flexibility. Data parallelism is most readily

applied to problems that require large, extremely

regular array data structures. Irregular, sparse data

structures are more the norm in operations research,

and hence most of the field’s successful applications

of parallel computing have employed control

parallelism.

Control-parallel programs can also exhibit

nondeterminism: run twice on the same data, they

may obtain different solutions or exhibit very

different run times. Such effects occur because small

differences in the timing of events may cause

control-parallel programs to take complete different

execution paths (serial programs that base branching

decisions on measurements of clocks or timers may

exhibit similar behavior). Such nondeterminism can

typically be controlled and essentially eliminated, but

sometimes at significant cost in performance.

Speedup, Efficiency and Scalability

If Tp is the time to solve a give problem using p

processors, and T1 is the time to solve the same

problem with a single processor (using the best

sequential algorithm, if it can be defined), then

a key concept is speedup, defined to be Sp ¼ T1/Tp.

Efficiency is then defined to be Sp/p, or, roughly

speaking, the effectively used fraction of the raw

computing power available. The main goal of parallel

algorithm designers is to obtain linear speedups that

grow roughly linearly with p, or, equivalently,

efficiencies that do not approach 0 as p increases. In

principle, speedups cannot be above linear and

efficiencies cannot exceed 1; in practice, such effects

can sometimes occur for specific problem instance

because the “best” sequential algorithm for a particular

problem is not always easily defined. In a search

problem, for example, a run of a parallel algorithm

might explore early in its history a portion of the

search space that a standard serial implementation

might not encounter until the later portions of its

execution. If this portion of the search space contains

the problem solution, an apparently superlinear speedup

may result.

A key motivation for using parallel computing is to

solve ever-larger problems. Thus, rather than

concerning oneself with obtaining very large

speedups for a fixed-size problem, it may be more

important to study the effect on total solution time as

the problem data and number of processors grow in

some proportional or related way. This concept is

called scalability (Kumar and Gupta 1994).

Applications in Operations Research

Parallel computing is taking an increasing role in

operations research, but it has not had nearly the

effect on the practice of the field as it has, for

example, in computational fluid dynamics. This

phenomenon is due largely to the lack of efficient

parallel methods for factoring and related operations

on irregularly structured sparse matrices. Such

operations are essential to the sparse active set and

Newton methods that form the core of operations

research’s numerical optimization algorithms.

However, successes have been reported for specially

structured problems amenable to decomposition

methods, including stochastic programming — see

for example Gondzio and Grothey (2007) — and on

dense problems. Parallelism has also proved very

useful in branch-and-bound and related search

algorithms, and in a variety of randomized algorithms.

Currently, the leading vendors of linear/

integer-programming software all offer some form of

parallel branch-and-cut implementation for solving

mixed integer programs; such implementations are

typically for shared-memory systems; some are

deterministic, others nondeterministic, and some offer

the option of either a deterministic or nondeterministic

mode. Some software vendors also offer parallel interior

point linear-programming software, although speedups

in pure linear programming are less dependable than for

branch and bound.

Parallel open-source software for operations

research operations research is becoming increasingly

available. Several projects in the COIN-OR collection

(Lougee-Heimer 2003) are aimed at parallel

computing (typically through MPI), and several

others offer the option of parallel execution.

Simulation applications with many independent

trials or scenarios are also natural applications for

parallel computing. A general principle seems to be

that one should take advantage of problem structure to

localize troublesome operations, most typically sparse

matrix factorization, onto individual processors.
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Another approach is to try radically new algorithms

that avoid such operations completely, and are

highly parallelizable. One should remember,

however, that parallelism is not a panacea that can

easily make inappropriate or “brute force” methods

competitive.

Early references on the relationships between

parallel computing and OR/MS include Barr and

Hickman (1993) and Eckstein (1993).

See

▶ Integer and Combinatorial Optimization

▶ Simulation of Stochastic Discrete-Event Systems

▶ Stochastic Programming
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Parameter

A quantity appearing in a mathematical model that is

subject to controls beyond those affecting the decision

variables.

Parameter-Homogeneous Stochastic
Process

A stochastic process in which distribution properties

between the two index parameter points t1 and t2,

t1 � t2, depend only on the difference t2 � t1, and not

on the specific values of t1 and t2. In the many

applications where the parameter set is time, whether

discrete or continuous, it is called a time-homogeneous

stochastic process.

Parametric Bound

An optimal value function or solution point bound as

a function of problem parameters.
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Parametric Linear Programming

In the general linear-programming problem of

Minimize cTx

subject to Ax ¼ b

x � 0

it is often appropriate to study how the optimal solution

changes when some of the data are functions of a

single parameter l. Most mathematical programming

systems allow parametric analysis of the cost

coefficients (PAROBJ), the right-hand-side elements

(PARARHS), joint analysis of the objective function

and right-hand-side elements (PARARIM), and the

parametric analysis of the data in a row (PARAROW).

Parametric Programming

Tomas Gal

Fern Universit€at in Hagen, Hagen, Germany

Introduction

The meaning of a parameter as used here is best

explained by a simple example. Recall that a parabola

can be expressed as follows: y ¼ ax2, a 6¼ 0. Setting

a ¼ 1, a parabola is obtained that has a different shape

from the parabola when setting, for example, a ¼ 5. In

both cases, however, there are parabolas that obey

specific relationships; only the shapes are different.

Hence, the parabola y ¼ ax2 describes a family of

parabolas and the parameter a specifies the shape.

Consider the general mathematical-programming

problem:

Max z ¼ f ðxÞ (1)

subject to gðxÞ � 0 (2)

Introducing one or more parameters into f or g, the

model stays the same, but for each value of the

parameter(s) one obtains a specific problem.

In setting up a mathematical optimization model,

one of the first tasks is to collect data. The collected

data might, however, be inaccurate, be of a stochastic

character, be uncertain or be deficient in other ways.

Therefore, it is appropriate to introduce parameters

that enable to analyze the influence of specific data

elements on the optimal solution. This can be done by:

1. Introducing the parameter(s) at the beginning when

setting up the model, or

2. Introducing the parameter(s) after an optimal

solution has been found.

The latter case is called postoptimal analysis (POA)

and is applied much more frequently than the first case.

Postoptimal analysis is a very important tool that

should be used in the framework of a good report

generator (Gal 1993). The corresponding decision

maker (DM) would then have information with

which the DM can select a firm optimum. POA

consists of several analyses, the most important of

which is sensitivity analysis (SA). A sort of extended

SA is parametric programming (PP). In nonlinear

programming, SA corresponds to perturbation

analysis, in which, after having found an optimal

solution, some of the initial data are perturbed and

the influence of the perturbation on the outcome is

analyzed (Drud and Lasdon 1997).

Historical Sketch

Advanced methods for SA and PP for linear

programming have been developed. In the 1950s,

Orchard-Hays (in his master’s thesis), Manne (1953),

Saaty and Gass (1954), Gass and Saaty (1955)

published the first works on parametric programming.

By the end of the 1960s, the first monograph on

parametric programming appeared (Dinkelbach

1969), followed by the monograph and book by Gal

(1973, 1979). In 1979, the first Symposium on Data

Perturbation and Parametric Programming was

organized by A.V. Fiacco in Washington, D.C., with

such a symposium being held every year since. (From

1999, Adi Ben Israel has been the organizer). Several

monographs (Bank et al. 1982; Guddat et al. 1991) and

special journal issues have been published in the 1970s

and 1980s. More details on the history of PP are given

in Gal (1980, 1983). A bibliography with over 1,000

items is given in Gal (1994b); see also Gal and

Greenberg (1997).
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Postoptimal Analysis

Assume that the mathematical optimization model

under consideration is a linear program of the form:

Max z ¼ cTx (3)

subject to Ax ¼ b; x � 0 (4)

where c is an n-vector of objective function

coefficients (OFC) cj, x is an n-vector of the decision

variables xj, A is an m � n matrix of the technological

coefficients aij, m < n, b is an m vector of the

right-hand-side (RHS) elements bi. All vectors are

column vectors.

Suppose that the problem defined by (3) and (4) has

an optimal basic feasible solution xB ¼ B�1 b, where

B�1 is the inverse of the m � m basic matrix B (the

basis) consisting of m linearly independent columns of

A. Here, xB is an m-dimensional solution vector. This

means that the following solution elements and

simplex method elements are determined:

1. The maximal value of the objective function (OF),

zmax,

2. The values of the basic variables xi, i¼ 1,. . .,m, and

3. The reduced costs dj ¼ zj � cj, j ¼ 1,. . ., n.

In the framework of POA, an evaluation of the

above solution elements is to be performed. This

means that the DM is provided with information

about the meaning of the values of the basic

variables, the DM is told which resources are used

and are critical (values of slack variables), and

interpret the values of the opportunity costs and

shadow prices. It is also possible to carry out

a suboptimal analysis, that is, show the DM what

happens if one or several nonbasic variables were

introduced into the solution at a positive level.

Sensitivity Analysis

The POA would continue by performing a SA with

respect to the OF and the RHS. This analysis is

usually a part of the solution output for just about all

linear-programming software. It is called OFC-ranging

and RHS-ranging, respectively. Behind such analyses is

the introduction of a scalar parameter, t or l, in the form

cjðtÞ ¼ cj þ t; j fixed (5)

or

biðlÞ ¼ b i þ l; i fixed (6)

SA finds a critical interval Tj or Li, such that for all

t ∈ Tj or l ∈ Li, respectively, the (found) optimal

basis B remains the same (so called optimal basis

invariancy. For other kinds of invariancies see, e.g.,

Hladik 2010; Hadigheh et al. 2007). The critical

values, that is, the upper and lower bounds of the

critical interval can be easily determined by certain

formulas (Gass 1985). A change in a RHS element bi
causes, in general, the values of the basic variables

and the value of zmax to change, while a change in an

OFC cj causes, in general, the values of the reduced

costs and the value of zmax to change. Such

information is of great value to the DM. An

assumption of this type of SA is that to investigate

how the optimal solution would vary with respect to

a change in one data element, while holding all other

data fixed. Analysis of multiple changes can be done in

a limited manner by the techniques of the hundred

percent rule (Bradley et al. 1977) and tolerance

analysis (Ashram 2007; Filippi 2005; Hladik 2008a, b;

Wendell 1985, 2004).

Parametric Analysis

For an element bi of the RHS, the question is asked: for

what range of values of the parameter l in (6) does

there exist an optimal solution to (3) and (4)? Given

such values, one can move from the original optimal

basis and generate a sequence of optimal bases, with

each basis associated with a critical interval of the

parameter. Such an analysis provides the DM with

a full range of possible solutions from which a subset

of optimal solutions appropriate for the given problem

can be selected. The DM then chooses a certain value

of the parameter and, thus, a corresponding optimal

solution for the parametric range of bi (l).

Note that a similar analysis can be performed with

respect to the parametric OFC, as given by (5).

Moreover, taking into account the possibility that

a parameter introduced in the RHS may influence

some (or several) OFC or vice versa, it is possible to

perform a RIM parametric analysis, that is, find

a sequence of optimal bases to each of which a critical

interval for the RHS-and for the OFC-parameters are
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associated simultaneously. Standard RHS, OFC and

RIM parametric analysis procedures are usually

included in linear-programming software.

It is also possible to perform a sensitivity or

parametric analysis with respect to the elements aij of

the matrix A. The corresponding procedures are,

unfortunately, not incorporated into linear-

programming software as the underlying formulas

are a bit too complex. However, some software

enables one to compute a series of linear programs in

each of which slightly changed values of the {aij} are

chosen.

Up to now, the simplest parametric case having one

parameter with a coefficient equal to 1 has been

discussed. The above cases can, however, also be

carried out when:

(i) A scalar parameter is introduced into several

elements of the RHS and/or OFC with coefficients

which differ from 1, and

(ii) A parameter-vector (vector of parameters) is

introduced into several elements of the RHS and/

or OFC with their respective coefficients different

from 1.

As far as case (i) is concerned, to each optimal basis

a critical interval is associated. In case (ii), each

optimal basis is associated with a higher dimensional

convex polyhedral set of parameters. In the RIM case,

each optimal basis is associated with a higher

dimensional interval, a box, provided that the

parameters in the RHS and OFC are independent

from each other. The larger the number of parameters

in the parameter-vector, the more difficult it is to

interpret the results and for the DM to find an

appropriate optimal basis. In such cases, an

interactive approach is recommended in which the

parametric specialist helps the DM to select an

appropriate solution.

Applications

There are two kinds of uses of PP:

1. Introducing parameters into various classes of

mathematical-programming problems for solving

these problems via parameterization; and

2. Practical applications.

As to (1), the introduction of parameters helps to

solve problems from the areas of nonconcave

mathematical programming, decomposition,

approximation, and integer programming. Also, note

that by replacing the OFC in (3) and (4) with a matrixC

times a parameter-vector t the following problem is

obtained

Max z ¼ ðCT tÞx,
subject to Ax ¼ b; x � 0

which is a scalarized version of a linear

multiobjective-programming problem (Steuer 1986).

Methods for solving the corresponding homogeneous

multi-parameter-programming problem provide

a procedure to determine the set of all efficient

solutions of the corresponding multiobjective

problem (Gal 1994b).

As to (2), SA and/or PP has been used in the

pipeline industry, in capital budgeting, for farm

decision making, refinery operations, for return

maximization in an enterprise, and a number of other

applications (Gal 1994b).

SA and PP in Other Fields

Theoretical and methodological works have been

published about SA and/or PP in linear and

nonlinear complementarity problems, control of

dynamic systems, fractional programming, geometric

programming, integer and quadratic programming

problems, transportation problems. A more detailed

survey with corresponding references is given in Gal

(1994b) (1988), see also, e.g., Ravi and Wendell

(1988), Hladik (2008b), Dawande and Hooker

(2000), Faisca et al. (2009), Kheirfam (2010).

Degeneracy

Recall that a basic feasible solution to

a linear-programming problem is called primal

degenerate when at least one element of this solution

equals zero. The corresponding extreme point of the

feasible set, that is, of the convex polyhedron, is then

also called degenerate. Degeneracy causes various

kinds of efficiency and convergence problems and

special precautions must be taken when performing

SA for a degenerate extreme point. Degeneracy

influences even POA, especially the determination of
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opportunity costs and shadow prices. When

performing SA, the main rule – determining the

critical interval such that the original optimal basis

does not change – is no longer valid because for

a degenerate solution many bases are associated with

it. A theoretical discussion of this problem is given in

Kruse (1986), a bibliography is found in Gal (1994a).

Note that standard software analysis for RHS-or

OFC-ranging yield false results when degeneracy is

involved.

Concluding Remarks

For linear programming and related mathematical

areas, SA and PP have become important tools for

analyzing variations in initial data, for obtaining

better insight into and gaining more information

about the related mathematical model, for

improving understanding of model building in

general, and as aids in solving a wide range of

mathematical problems.

See

▶Degeneracy

▶Degeneracy Graphs

▶Linear Programming

▶Multiobjective Programming

▶ Perturbation Methods

▶ Sensitivity Analysis
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Parametric Solution

A solution expressed as a function of problem

parameters.

Pareto-Optimal Solution

If a feasible deviation from a solution to

a multiobjective problem causes one of the objectives

to improve while some other objective degrades, the

solution is termed a Pareto-optimal. Such a solution is

also called an efficient or nondominated solution.

See

▶Efficient Solution

Partial Balance Equations

In Markov chain models of queueing networks,

a subset of the global balance equations that may be

satisfied at a node (station), i.e., a balance of mean flow

rates or probability flux. Also known as local balance

equations, falling between global balance equations

and detailed balance equations.

See

▶Detailed Balance Equations

▶Global Balance Equations

▶Markov Chains

▶Networks of Queues

▶Queueing Theory

Partial Pricing

When determining a new variable to enter the basis by

the simplex method, it is somewhat computationally

inefficient to price out all nonbasic columns, as is the

way of the standard simplex algorithm or its multiple

pricing refinement. The scheme of partial pricing starts

by searching the nonbasic variables in index order until

a set of candidate vectors has been found. These vectors

are then used as possible vectors to enter the basis, as is

done in multiple pricing. After the candidate set is

depleted, another set is found by searching the nonbasic

vectors from the point where the first set stopped its

search. The process continues in this manner by

searching and selecting candidate sets until the optimal

solution is found. Although the total number of iterations

to solve a problem usually increases, computational time

is saved by this type of pricing strategy.

See

▶ Simplex Method (Algorithm)

Partially Observed Markov Decision
Processes

A Markov decision process (MDP) in which the state

of the system cannot be fully or precisely observed,

e.g., only part of the state is known and/or the state

observation has some error. In principle, such a model

can be converted to a fully observed MDP by

introducing an “information” or “belief” state that

may be infinite dimensional, corresponding to

a probability distribution over the original state.

See

▶Dynamic Programming

▶Markov Decision Processes
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Particle Swarm Optimization

A population-based search approach for global

optimization based on ideas from animal flocking.

See

▶Ant Colony Optimization

▶Metaheuristics

▶ Swarm Intelligence
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PASTA

Poisson Arrivals See Time Averages.

For a Poisson arrival process, the (limiting) fraction

of arrivals that find (see) a process in some state equals

the (limiting) overall fraction of time that the process is

in that state (Wolff 1982, 1990).

See

▶ Poisson Arrivals

References

Wolff, R. W. (1982). Poisson arrivals see time averages.
Operations Research, 30, 223–231.

Wolff, R. W. (1990). A note on PASTA and anti-PASTA for
continuous-time Markov chains. Operations Research, 38,
176–177.

Path

A path in a network is a sequence of nodes and arcs that

connect a designated initial node to a designated

terminal node.

See

▶Chain

▶Cycle

Payoff Function

In a game, the mapping from the players’ strategies

(decisions, actions) to the gains and losses they

receive. In a two-person finite action game, the

payoff function is often depicted in the form of

a matrix, with a single number for each matrix

element in a zero-sum game.

In financial engineering, the mapping from the

underlying asset(s) to the payout of a contingent

claim or financial derivative.

See

▶ Financial Engineering

▶Game Theory

Payoff Matrix

For a zero-sum, two-person game, the payoff matrix is

an m � n matrix of real numbers with the entry aij
representing the payoff to the maximizing player if the

maximizing player plays strategy i and the minimizing

player plays strategy j.

See

▶Game Theory

PDA

Parametric decomposition approach.

See

▶ Production Management
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PDF

Probability density function.

PDSA

Plan, do, study, act.

See

▶Total Quality Management

Periodic Review

A type of inventory control policy in which the

inventory position is assessed at the end of each of

a prescribed number of discrete time periods, in

contrast with continuous review, where the inventory

position is monitored continuously so that orders can

be placed at any time.

See

▶ Inventory Modeling

PERT

Program evaluation and review technique; an

event-oriented, project-network diagramming

technique used for planning and scheduling.

See

▶Network Planning

▶ Program Evaluation and Review Technique (PERT)

▶ Project Management

▶Research and Development

Perturbation

A change in a parameter, function or set.

Perturbation Analysis

Michael C. Fu

University of Maryland, College Park, MD, USA

Introduction

Perturbation analysis (PA) is a sample path technique

for analyzing changes in performance measures of

stochastic systems due to changes in system

parameters. In terms of stochastic simulation, which

is the main setting for PA, the objective is to estimate

sensitivities of the performance measures of interest

with respect to system parameters, preferably without

the need for additional simulation runs over what is

required to estimate the system performance itself.

The primary application is gradient estimation

during the simulation of discrete-event systems,

e.g., queueing and inventory systems. Besides their

importance in sensitivity analysis, these gradient

estimators are a critical component in gradient-based

simulation optimization methods.

Let l(y) be a performance measure of interest with

parameter (possibly vector) of interest y, focusing on

those systems where l(y) cannot be easily obtained

through analytical means and therefore must be

estimated from sample paths, e.g., via stochastic

simulation. Denote by L y;oð Þ the sample

performance obtained from a sample path realization

o such that l yð Þ ¼ E L y;oð Þ½ �. Although the

assumption here is that the performance measure is

an expectation, PA has also been applied more

recently to quantiles (Hong 2009; Fu et al. 2009). The

goal of PA is to efficiently estimate the effects on l of

a perturbation y ! yþ Dy, using information from

a sample path o at y. PA addresses two different

types of problems:

• Dy ! 0: estimating the gradient HlðyÞ; when l is

differentiable in y.

• Dy 6¼ 0: estimating changes due to a finite

perturbation, i.e., lðyþ DyÞ:
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In the former case, no perturbation is ever actually

introduced into the system (or simulation), although

the idea of a perturbation may be employed as

a heuristic tool in preliminary analysis.

Brief Taxonomy

To sort out the abundance of acronyms in the PA field,

a brief definition of each corresponding approach is

provided here, accompanied with at least one

reference. Among gradient estimation techniques, the

most well-known is infinitesimal perturbation analysis

(IPA), which simply uses the sample derivative dL/dy

to estimate dl/dy. It is straightforward to implement

and very computationally efficient; however, as shall

be discussed shortly in more detail, its applicability is

not universal. The books by Ho and Cao (1991),

Glasserman (1991), and Cao (1994) cover IPA in

detail. A very general and well-developed extension

of IPA is smoothed perturbation analysis (SPA), based

on the ideas of conditional expectation (Gong and Ho

1987) Although its applicability is quite broad, its

implementation is usually very problem dependent.

The book by Fu and Hu (1997) covers this method in

full generality. Other gradient estimation techniques

include rare perturbation analysis (RPA), originally

based on the thinning of point processes (Brémaud

and Vázquez-Abad 1992); structural IPA (SIPA),

dealing specifically with structural parameters

(Dai and Ho 1995); discontinuous perturbation

analysis (DPA), based on the use of generalized

functions (the Dirac-delta function) to model

discontinuities in the sample performance function

(Shi 1996); and augmented IPA (APA),

another extension of IPA different from SPA

(Gaivoronski et al. 1992). Techniques to estimate

the effect of a finite perturbation in the parameter

include finite perturbation analysis (FPA) – Ho

et al. (1983); extended perturbation analysis (EPA) –

Ho and Li (1988); and the augmented chain

method�Cassandras and Strickland (1989). A related

technique is the standard clock (SC) method, based on

the uniformization of Markov chains (Vakili 1991).

The books by Ho and Cao (1991) and Cassandras and

Lafortune (2008) provide further references. This entry

focuses on the gradient estimation techniques IPA and

SPA, the most well-known and developed of the PA

techniques.

Infinitesimal Perturbation Analysis

The applicability of IPA is illustrated through the use

of some simple examples, at the same time contrasting

the approach with the likelihood ratio/score function

(LR/SF) and weak derivative (WD) estimators.

Consider first the expectation of a single positive

random variable X, written in two forms:

E X½ � ¼

Z 1

0

xf x; yð Þdx

¼

Z 1

0

X y; uð Þdu;

where f is the PDF of X. In the first interpretation, the

parameter appears inside the density, whereas in

the second interpretation it appears inside the random

variable defined on an underlying U(0,1) random

number. For example, the latter could be the inverse

transform X ¼ F�1, where F is the CDF of X.

Differentiating E[X], assuming the interchange of

expectation and differentiation is permissible (via the

dominated convergence theorem),

dE X½ �

dy
¼

Z 1

0

x
df x; yð Þ

dy
dx (1)

¼

Z 1

0

dX y; uð Þ

dy
du: (2)

Notice, however, that the conditions for the

exchange will be quite different for the two

interpretations. In the first interpretation,

corresponding to the LR/SF and WD estimators, the

conditions will be placed on the underlying density; in

the case of discrete-event stochastic simulation, this

means the input distributions. Since the input

distributions must be known in order to perform the

simulation, it is relatively easy to check the conditions.

In the second interpretation, corresponding to PA

estimators, the conditions will be placed on the

sample performance function that is usually defined

on an output stochastic process of the system.

As an example, consider an exponential random

variable X with mean y. Then E X½ � ¼ y and

dE X½ �=dy ¼ 1. The respective PDF and one random

variable representation are given by

f x; yð Þ ¼
1

y
e�x=y1 x > 0f g;

X y; uð Þ ¼ �y ln u;
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where 1{�} denotes the indicator function.

Differentiating,

df x; yð Þ
dy

¼ x

y2
1

y
e�x=y � 1

y2
e�x=y

� �

1 x > 0f g

¼ f x; yð Þ x

y2
� 1

y

� �

¼ 1

ye

e

y
1� x

y

� �

e�x=y1 0 < x � yf g
h

� e

y

x

y
� 1

� �

e�x=y1 x > yf g
i

;

dX y; uð Þ
dy

¼ � ln u ¼ X y; uð Þ
y

:

The last expression for the derivative of the density

(which is itself not a density) expresses the quantity

as the difference of two densities multiplied

by a constant, known as a weak derivative

representation; Fu (2006, 2008) for references.

Substituting each of the three expressions into the

corresponding equations (1) or (2), yields three

unbiased derivative estimators:

LR=SF :
X

y

X

y
� 1

� �

;

WD :
1

ye
Xð2Þ � Xð1Þ
h i

;

IPA :
X

y
;

where X(1) and X(2) are random variables with PDFs
e
y

x
y
� 1

� 	

e�x=y; x > y; and e
y
1� x

y

� 	

e�x=y; 0 < x � y,

respectively.

Extending to a function of the underlying random

variable,

dE LðXÞ½ �

dy
¼

Z 1

0

LðxÞ
df ðx; yÞ

dy
dx

¼

Z 1

0

dL

dX

dX y; uð Þ

dy
du:

The conditions for interchanging expectation and

differentiation are unaltered when differentiating the

underlying density, since that portion remains

unchanged, whereas they are more involved for the

sample path derivative. Basically, for the chain rule

to be applicable requires some sort of continuity

to hold for the sample performance function with

respect to the underlying random variable. This

translates into requirements on the form of

the performance measure and on the dynamics of the

underlying stochastic system such that the interchange

dE L½ �

dy
¼ E

dL

dy

� �

(3)

holds. Roughly speaking, sample pathwise continuity

of L with respect to y will result in the interchange

being valid. An important structural condition for

determining the applicability of IPA for general

discrete-event systems modeled as generalized

semi-Markov processes is the commuting condition

(Glasserman 1991).

Smoothed Perturbation Analysis

The main idea of smoothed perturbation analysis

(SPA) is to use conditional expectation to smooth out

discontinuities in L that cause IPA to fail. This is

achieved by selecting a set of sample path quantities

Z, called the characterization, such that E[L|Z] – as

opposed to L itself – will satisfy the interchange in (3):

dE E LjZ½ �½ �

dy
¼ E

dE LjZ½ �

dy

� �

:

Applying SPA is analogous to the variance

reduction technique of conditional Monte Carlo,

consisting of two main steps: choosing an appropriate

Z and calculating dE LjZ½ �=dy. For generalized

semi-Markov processes, as well as for other

stochastic systems, this is fully explored in Fu and

Hu (1997).

Queueing Example

IPA and SPA estimators are illustrated for

a single-server, first come, first-served (FCFS) queue.

Let An be the interarrival time between the (n � 1)th

and nth customer (i.i.d. with PDF f1 and CDF F1), Xn

the service time of the nth customer (i.i.d. with PDF f2
and CDF F2), and Tn the system time (in queue plus in

service) of the nth customer. Consider the case where y

is a parameter in the service time distribution, and the
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sample performance of interest is the average system

time over the first N customers TN ¼ 1
N

PN
n¼1 Tn. The

system time of a customer for a FCFS single-server

queue satisfies the well-known recursive Lindley

equation:

Tnþ1 ¼ Xnþ1 þ ðTn � Anþ1Þþ: (4)

The IPA estimator is obtained by differentiating (4):

dTnþ1

dy
¼ dXnþ1

dy
þ dTn

dy
1 Tn � Anþ1f g; (5)

where

dX

dy
¼ � dF2 X; yð Þ=dy

dF2 X; yð Þ=dX :

For example, for scale parameters, such as if y is the

mean of an exponential distribution, dX=dy ¼ X=y.

Using the above recursion, the IPA estimator for the

derivative of average system time is given by

dTN

dy
¼ 1

N

XN

n¼1

dTn

dy

¼ 1

N

XM

m¼1

Xnm

i¼nm�1þ1

Xi

j¼nm�1þ1

dXj

dy
;

(6)

where M is the number of busy periods observed and

nm is the index of the last customer served in the mth

busy period (n0 ¼ 0). Implementation of the estimator

involves keeping track of two running quantities, one

for (5) and another for the summation in (6); thus, the

additional computational overhead is minimal, and no

alteration of the underlying simulation is required.

IPA is also applicable to multi-server queues and

Jackson-like queueing networks (Jackson networks

without the exponential distribution assumptions).

The implicit assumption used in deriving an IPA

estimator is that small changes in the parameter will

result in small changes in the sample performance. For

example, small changes in the interarrival and service

times lead to small changes in system times, as can be

seen by the Lindley equation (4), but can lead to large

changes in the derivative given by (5), due to the

indicator function. In general, the interchange (3) will

hold if the sample performance is continuous with

respect to the parameter. For the Lindley equation,

although Tn+1 in (4) has a kink at Tn ¼ Anþ1, it is still

continuous at that point, which explains why IPA

works. Unfortunately, the kink means that the

derivative given by (5) has a discontinuity at

Tn ¼ Anþ1, so that IPA will fail for the second

derivative.

For the FCFS single-server queue, SPA can be used

to derive the following estimator for the second

derivative of mean system time:

d2TN

dy2

� �

SPA

¼ 1

N

X

M

m¼1

X

nm

i¼nm�1þ1

X

i

j¼nm�1þ1

d2Xj

dy2

þ 1

M

X

M

m¼1

f1 Tnmð Þ
1� F1ðTnmÞ

X

nm

i¼nm�1þ1

dXi

dy

 !2

;

where d2X=dy2 is well-defined when F2 X; yð Þ is twice
differentiable.

Inventory Example

IPA and SPA estimators are illustrated for

a single-item periodic review (s, S) inventory system,

in which once every period the inventory level is

reviewed and, if necessary, orders are placed to

replenish depleted inventory. An (s, S) ordering

policy specifies that an order be placed when the

level of inventory on hand plus that on order (known

as inventory position) falls below the level s, and that

the amount of the order be the difference between

S and the present inventory position, i.e., order

amounts are placed “up to S.” For average inventory

as the performance measure of interest, derivative

estimators with respect to the policy parameters

s and q ¼ S� s are provided. Note that the

parameters in this example are structural, as opposed

to distributional in the previous queueing example.

In the model considered, all excess demand is

backlogged and eventually filled, and orders are

immediately received (zero lead time), so that.

inventory level and inventory position coincide. At

the end of a period, demand is satisfied before the

order placement decision is made. Let Dn be the

demand in period n (i.i.d. with PDF f and CDF F),

and Vn be the inventory level in period n after demand

Perturbation Analysis 1117 P

P



satisfaction. This quantity satisfies a recursive equation

somewhat analogous to the Lindley equation:

Vnþ1 ¼ Vn � Dnþ1 if Vn � s;
S� Dnþ1 if Vn < s:



(7)

The sample performance is the average inventory

level over N periods given by VN ¼ 1
N

PN
n¼1 Vn:

From a sample path point of view, the key discrete

event in the system is the ordering decision each

period. A change in s, with q held fixed, has no effect

on these decisions, so infinitesimal perturbations in s

result in infinitesimal changes in the inventory level,

and hence in the sample performance function VN . In

particular, for a perturbation of sizeDs (of any size, not

necessarily infinitesimal), Vnðsþ DsÞ ¼ VnðsÞ þ Ds,

and hence @ VN =@s ¼ 1 is an unbiased estimator for

@E VN

� �

=@s. Intuitively, the shape of sample paths are

unaltered by changes in s if q is held constant; the

entire sample path is merely shifted by the size of the

change. The IPA estimator can also be obtained by

simply differentiating the recursive relationship (7),

noting that Dn does not depend on s or q:

dVnþ1

dy
¼

dVn

dy
if Vn � s;

1 if Vn < s:




for either y ¼ s or y ¼ q. Taking V0 ¼ S ¼ sþ q, the

expression reduces to 1 for all n, which is in accord

with the sample path analysis.

On the other hand, a change in q with s held fixed

may cause a change in the set of ordering decisions,

resulting in radical changes in the sample path and

hence in the sample performance function VN . Thus,

SPA is required to derive an unbiased derivative

estimator with respect to y ¼ q. An SPA estimator for

@E VN

� �

=@s that can be easily and efficiently estimated

from the original sample path is given by

1þ
1

N

X

n�N:Vn<s

f Vn þ Dn � sð Þ
1� F Vn þ Dn � sð Þ s� E D½ � � VN

� �

:

Real-World Application Example

In the October 30, 2000 issue of Fortunemagazine, an

article entitled, “New Victories in the Supply-Chain

Revolution” (Siekman 2000) describes “a classic

distribution challenge: how to avoid lost sales

without incurring the cost of carrying extra

inventory” when Caterpillar, the “world’s largest

builder of construction equipment . . . posed daunting

supply chain questions” regarding the distribution of

a new line of compact construction machines,

specifically related to determining appropriate

inventory levels for the U.S. market. “Among

the techniques . . . used to attack this complex (supply

chain inventory control) problem was . . . infinitesimal

perturbation analysis, for which no complete

explanation is possible for the faint-hearted or

mathematically disadvantaged.”

Historical Notes

PA was developed by Ho et al. (1979) when the first

author was consulting on a real-world buffer design

problem for a Fiat Motor Company serial production

line. The single-server queue example was first

considered in Suri and Zazanis (1988), and the

inventory example in Fu (1994). The other area in

which PA has been most widely used after queueing

and inventory is financial engineering, where IPA is

called the pathwise method in Glasserman (2004);

see also Fu and Hu (1995). Other applications

include PERT networks, dams, insurance, preventive

maintenance, statistical process control, and traffic

light signal control; see Ho and Cao (1991), Fu and

Hu (1997), and Fu (2006) for examples and references.

See

▶ Inverse Transform Method

▶ Score Functions

▶ Sensitivity Analysis

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization

▶Variance Reduction Techniques in Monte Carlo

Methods
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Perturbation Methods

Procedures that modify the constraints of

a linear-programming problem so that all basic

feasible solutions will be nondegenerate, thus

removing the possibility of cycling in the simplex

method. The modification can be either explicitly

done by adding small quantities to the right-hand

sides or implicitly by using lexicographic procedures.

See

▶Cycling

▶Degeneracy

▶Lexicographic Ordering

Petroleum Refining

David S. Hirshfeld

MathPro Inc., Bethesda, MD, USA

Introduction

By many financial and physical measures, the

petroleum industry is the world’s largest industry.

The industry’s operations comprise a global supply

chain that produces, transports, refines, and distributes

more than 85 million barrels of oil per day – nearly 5

billion tons per year.

Because of its scale, global scope, and huge capital

requirements, the petroleum industry is populated

with many large, vertically-integrated companies

(many of them national oil companies) with global

operations. The industry is highly competitive

because it has many participants and because it

produces basic commodities (e.g., gasoline, diesel

fuel, petrochemical feedstocks, etc.) that are difficult

to differentiate by brand. The industry’s huge volume

and low margins mean that even small changes in

operating costs have important effects on operating

results. The petroleum industry is a leader in the

development and application of new technology; it

develops and applies advanced technologies in every

phase of operations. Consequently, the industry
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employs large numbers of scientists, engineers,

and applied mathematicians, many with advanced

degrees.

For these and other reasons, the petroleum industry

has been a pioneer in the application of OR/MS across

all of its primary operations and has successfully

applied virtually every OR/MS tool in these

operations. During the 1960s and 1970s, most large

integrated oil companies had strong OR/MS groups or

departments with concentrations of expertise in linear

programming, simulation, and statistical analysis

(Baker, 2000). These groups consistently stretched

the limits of OR/MS tools and methods, and they

provided the impetus and the financial support for

many advances in OR/MS software tools and

analytical methods. Most of these groups no longer

exist. But even so, OR/MS applications in the

petroleum industry are ubiquitous and fully

embedded in the various business functions that use

them. Nowhere is this more evident than in the

petroleum refining sector.

OR/MS and Petroleum Refining

Petroleum refining is a unique and critical link in the

petroleum supply chain. The other links add value

mainly by performing spatial transformations on

petroleum (e.g., lifting crude oil to the surface;

moving crude oil from oil fields to storage facilities

and then to refineries; moving refined products from

refinery to terminals and end-use locations, etc.).

Refining adds value by performing chemical

transformations and blending operations on

petroleum – converting crude oil (which in itself has

little end-use value) into a broad spectrum of valuable

refined products. The primary economic objective in

refining is to maximize that added value.

Petroleum refineries are large, continuous-flow

process plants with extremely complex processing

schemes for processing multiple crude oils and other

input streams into a large number of refined (co-)

products, most notably LPG, gasoline, jet fuel, diesel

fuel, petrochemical feedstocks, home heating oil, fuel

oil, and asphalt. Each refinery has a unique

configuration and operating characteristics,

determined primarily by its location, vintage,

preferred crude oil slate, and market requirements

for refined products. More than 660 refineries, in

116 countries, are currently in operation; virtually

every one has OR/MS tools, including optimization

models, embedded in its operations.

Since the earliest days of OR/MS and continuing to

the present, refining has been a particularly rewarding

domain for applying OR/MS methods in general, and

linear programming (LP) and its extensions in

particular (mixed integer programming (MIP),

special ordered sets (SOS1 and SOS2), and

successive linear programming (SLP), etc.).

OR/MS Applications in Petroleum Refining

Baker (2000) reports, “The refining industry began using

linear programming (LP) shortly after its invention

(Bodington and Baker 1990). In the early 1950s, many

major oil companies began using LP-based product

blending models (Charnes et al. 1952) which severely

tested the available computational capabilities of that

time. As computer capabilities expanded, so did the

scope of LP models, encompassing whole refineries

(Symonds 1955) and the US refining industry

(Manne 1958).”

“The nonlinear nature of petroleum and chemical

processes was first incorporated by Shell Oil via

successive linear programming (SLP), a straightforward

technique based on the iterative solution of linearized

models (Griffith and Stewart 1961). SLP... was applied

by most major companies in the 1960s (Baker and

Lasdon 1985). Distributed recursion (DR), a

specific form of SLP dealing with the distribution of

nonlinear error terms across [multiple] blended pools, is

widely used in contemporary models of petroleum

refining.”

“Literally. . . every other form of nonlinear

optimization has been applied in the [refining]

industry. Lasdon and Waren (1980) provided

a comprehensive survey of applications. Production

planning and scheduling has seen a wide variety

of hybrid approaches combining mathematical

programming, expert systems, decision support

systems, forecasting techniques and simulation.

Klingman et al. (1987) describes the integrated

logistics system developed at Citgo. A combination

of network flow algorithms, mixed-integer

programming, and decision support were applied to

ship scheduling at Ethyl Corporation (Miller, 1987).

Brown et al. (1987) reports on a vehicle loading and
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routing system developed for Mobil Oil. The design

and development of integrated systems for planning

and scheduling is an area of active interest both in

academic and industrial settings (Baker 1994).”

Today, mathematical programming and other

OR/MS techniques are embedded in numerous

refining sector functions, including (in roughly

decreasing order of time horizon):

• Capital investment planning

– Economic evaluation of alternative designs for

new refineries

– Evaluation of alternative configurations for

refinery upgrading projects

• Process design

• Tactical planning

– Evaluation of inter-company product exchanges

and processing agreements

– Optimization of multi-period operations of

multi-refinery, multi-terminal logistics systems

– Evaluation of new processes and technologies

– Regulatory compliance

• Operations planning

– Crude oil valuation and supply planning

– Crude oil cargo selection (Pawde and Singh

2010)

– Development of quarterly and monthly refinery

operating plans

– Integration of refinery operations and refined

product distribution (Guyonnet et al. 2009)

– Concurrent multi-product blending

• Operations scheduling

– Process sequencing

– Inventory (tankage) management

– Batch blending of refined products

• Process control

The planning and design applications have time

horizons measured in years or months, are forecast-

driven, and can return solutions in which multiple

operations or operating modes employing the same

resources or facilities are executed in the given time

period. Scheduling applications, on the other hand,

have much shorter time horizons (weeks or days), are

order- or sequence-driven, and recognize operating

policies or physical constraints on the utilization of

specific facilities – e.g., only one activity or operation

at a time can be performed in a particular facility. Plans

returned by planning models may not be physically

implementable without being subjected to a detailed

scheduling analysis.

Refining organizations use their refining

optimization models across many planning horizons:

• Long-term (3+ years): capital investment planning,

regulatory compliance, restructuring

• Annual: annual budgeting, evaluation of term

contracts for crude supply and product sales,

maintenance and turn-around planning

• Quarterly/monthly: operations planning to meet

product demands and seasonal transitions in

product specifications, evaluation of spot

transactions for crude purchases and product sales,

estimation of dispatches to product pipelines and

tankers

• Weekly: scheduling operations and batch blending

to make optimal use of crudes on hand and available

processes

Refinery planning applications are practiced not

only by refinery organizations but also by other

organizations having interest in the refining sector,

such as engineering firms, independent technology

providers (e.g., process licensors), catalyst and

chemical manufacturers, and consulting firms.

Government agencies also apply LP to analyze

refining operations, for various purposes – for

example, the U.S. Environmental Protection Agency

in estimating the costs of new regulatory standards for

transportation fuels, and the U.S. Energy Information

Administration in producing its annual projections of

U.S. energy supply and demand).

Refining Operations and the Driving Forces
for Refinery Modeling

Understanding the rationale for and benefits of OR/MS

methods in refining industry requires some

understanding of refining itself (The National

Petroleum Council (2000) Web site includes an

excellent tutorial on the fundamentals of refinery

operations).

Figure 1 is a highly simplified flow chart of

a notional complex refinery, illustrating a typical

pattern of oil flow through the refinery – from the

crude oil distillation unit that separates crude oil into

various boiling range fractions, or cuts, through the

various downstream processing units that chemically

transform these fractions into blendstocks (the refinery

streams that are the constituents of blended products)

and ultimately to product blending. For purposes of
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this discussion, the importance of Fig. 1 is not in its

details, but in the overall picture it conveys of the

complexity of refining operations in general.

Several broad aspects of refining operations

suggested by Fig. 1 merit comment in the context of

refinery modeling applications.

• Refinery operations are extremely complex.

Figure 1 only hints at the actual complexity of

refinery operations – with respect to the physical

facilities of the refinery, the interaction of these

facilities with one another, and the range of

operations of which they are capable. The complexity

is such that refinery operations can be fully understood

only with formal, refinery-wide models and can be

optimized, in an economic sense, only through the

use of mathematical programming.

Refiners can change the operations of their

refineries to respond to the continual changes in

crude oil and product markets, but only within

physical limits defined by the performance

characteristics of their refineries and the properties of

the crude oils they process. Mathematical

programming models of refinery operations that

express these physical constraints are the only

reliable means of generating achievable (i.e.,

feasible) and economic (i.e., optimal) responses to

changes in market environment.

• Refineries produce a wide range (or slate) of

products – actually co-products.

Refineries produce a range of co-products not only

because of market demand for the various products but

also because of the constraints imposed by the refining

facilities themselves. Refiners need to know the

marginal cost of production for each refined product,

because these marginal costs are the primary

determinants of the products’ spot prices – the prices

at which products change hands at the refinery gate.

Mathematical programming models of refinery

operations routinely produce rigorous estimates of

marginal production costs that are well grounded in

theory, for every co-product produced (The solution

values for certain of the dual variables in a refinery
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model are precisely the marginal values in question).

Indeed, mathematical programming is essentially the

only practical and useful tool for computing the

marginal costs of refined products.

All of this was readily apparent to the engineers and

applied mathematicians working in the refining sector

in the 1950s and provided the impetus for the early

adoption of linear and mathematical programming

throughout the refining industry.

Refinery Processes and Operations

Complex, world-class refineries (including virtually all

U.S. refineries) comprise as many as fifty or more

distinct refining processes, which carry out multiple

physical and chemical transformations to convert

crude oil into a broad slate of refined products.

Despite their number and diversity, refining processes

can be thought of in terms of a few broad classes based

on their functions, as shown in Table 1.

Crude Oil and the Crude Oil Distillation
Process

Crude oil distillation, the process at the front end of

every refinery, regardless of size or overall

configuration, has a unique function that affects all of

the processes downstream of it. In a refinery model, the

representation of crude oil properties and of the crude

distillation process in a refinery model influences all of

the other process representations in the model.

Crude oil comprises tens of thousands of chemical

compounds (primarily hydrocarbons). These

compounds range from the very light – low

molecular weight, simple structure, low density, low

boiling point (<60o F) – to the very heavy – high

molecular weight, complex structure, high density,

high boiling point (>1000o F).

Each of the more than 1,500 crude oils in commerce

has its own unique signature, with respect to

composition, proportions of light and heavy

components, and physical properties. The unique

composition and properties of a crude oil largely

determine its value as a refinery input and the range

of refined products that a given refinery can produce

from it.

The crude distillation unit in a refinery accepts

a combination of different crude oils and separates it

into a number of streams (known as crude fractions or

cuts). Each fraction leaving the crude distillation unit

(1) is defined by a unique boiling point range (e.g.,

180o–250o F, 250o–350o F, etc.), (2) contains material

from each crude oil fed to the crude distillation unit,

and (3) is made up of hundreds of distinct hydrocarbon

compounds, all of which have boiling points within the

cut range. An essential simplifying assumption in

the analysis of refining operations is that the crude

distillation unit makes “sharp” cuts – that is, any

Petroleum Refining, Table 1 Classification of Refining Processes

Primary Classes of Refining Processes in Complex Refineries

Class Function Examples

Crude distillation Separate crude oil charge into boiling range Atmospheric distillation

fractions for further processing Vacuum distillation

Conversion Break down (“crack”) heavy crude fractions into lighter, Fluid cat cracking

higher-valued streams for further processing Coking, Hydrocracking

Upgrading Enhance the blending properties (e.g., octane) and value Reforming

of gasoline and diesel blendstocks Alkylation, Isomerization

Treating Remove hetero-atom impurities from refinery streams Hydrotreating

and blendstocks Caustic treating

Separation Separate, by physical or chemical means, constituents Fractionation

of refinery streams for further processing Extraction

Blending Combine blendstocks to produce finished products that

meet product specifications and environmental standards

Utilities Supply refinery fuel, power, steam, oil movements, Power generation

storage, emissions control, etc. Sulfur recovery
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given hydrocarbon species in the crude oil mixture is

present in one and only one cut (i.e., there is no

“overlap” between the crude fractions leaving the

crude distillation unit).

Each crude fraction leaving the crude distillation

goes to a different refinery process for further

processing (Fig. 1). The highest boiling fractions of the

crude, collectively known as the heavy ends, have

relatively little economic value – indeed lower value

than the crude oil from which they come. Refineries

must convert, or upgrade, these heavy ends into more

valuable light products (gasoline, jet fuel, diesel fuel, etc.).

Stream Properties and Refining Processes

In a refinery model, the specification of the

temperature ranges of the cuts and the representation

of the various properties of the crude fractions exerts

a strong influence on the representations of all of

refining processes downstream of the crude

distillation and on the results returned by the model.

In general, each refining process handles multiple

feed streams and produces multiple outputs

(co-products). The yields of the co-products, their

physical and chemical properties, and the direct

operating costs of each process depend on the

properties of the input streams (which in turn depend

on the mixture of crude oils processed and the

temperature ranges of the crude cuts). Consequently,

analyzing refinery operations requires keeping track of

not only the various streams flowing through the

refinery but also numerous properties associated with

each stream.

Tracking stream properties is essential in analyzing

the blending operations at the back end of every

refinery. Refineries produce a diverse set of

co-products (e.g., gasolines, jet fuel, diesel fuels,

petrochemical feedstocks, etc.); large, complex

refineries may produce as many as forty distinct

products. Most of these products are blends of

various streams produced in crude distillation or in

the downstream processes (usually five to ten refinery

streams per product). Each product is blended to meet

a vector of specifications on the products’ properties

(e.g., density, sulfur content) and performance

characteristics (e.g., octane, emissions from vehicle

tailpipes, etc.). These specifications represent

industry standards and government regulations.

The Content of Refinery LP/MP Models

Structure

An LP orMPmodel of a single refinery in a single time

period is essentially an assembly of

• Equations and inequalities representing

– Volume balances on refinery inputs,

refinery-produced streams, and refinery outputs

(volume supplied + volume produced ¼ volume

consumed + volume blended or sold)

– Mass balances and energy balances

(conservation of mass and energy)

– Blending property balances linking individual

refinery streams and their blending properties

to specification-blended product pools

– Accounting identities to capture refinery-wide

operating costs, consumption of energy and

utilities, and generation of effluents (including

CO2)

– Upper limits on the through-put capacity of the

various refining processes

– Special constraints reflecting internal technical

restrictions or limitations

– Special constraints reflecting external

requirements

– Regulatory standards (such as the federal and

California standards for reformulated gasoline).

• Variables representing

– Volumes of refinery inputs, such as crude oil

purchases

– Volumes of refinery streams flowing into or out

of each process unit (such as those shown in

Fig. 1) at specified operating conditions

– Volumes of produced refinery streams going to

each blended product pools

– Volumes of finished products leaving the refinery

– Amounts of new refinery process capacity (if

any) added through capital investment

Multi-time-period models contain, in addition to the

above elements, equations and variables representing

inventory transfers from one time to the next of crude

oils, other refinery inputs, certain intermediate refinery

streams, and finished products.

Multi-refinery models contain, in addition to the

above elements, equations and variables representing

the transport of refined products from the refineries to

individual destinations (product terminals, end-use

sites, etc.) or destination regions, through various

capacitated transportation modes.
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In all of these variants, the objective function

usually represents gross profit or, as it sometimes

called, profit contribution:

Refinery netback minus (the sum of direct
operating costs + capital recovery charges)

where

• Refinery netback is the net revenues

(price*quantity) received by the refinery from the

sale of all refined products

• Direct operating costs include the total purchase

costs (price*quantity) of crude oil and other refinery

inputs, purchased utilities, and catalyst and

chemicals consumption; inventory carrying costs

(in multi-period models); transportation costs

for product movements to demand sites

(in multi-refinery models), and regulatory

compliance costs

• Capital recovery charges denote return on

un-depreciated refinery investment, per unit of

throughput.

In multi-period models, the profit contribution

terms for future time periods can be discounted

by multiplying them by a discount rate factor:

(1+ discount rate)-t, where t is the time-period index.

Models of refinery operations contain distinct

representations of each of the refining processes that

have a significant effect on the refinery’s economics.

A complex refinery can comprise forty or more such

processes. Each process (or process/refinery

combination, in a multi-refinery model) is

represented in a discrete sub-matrix of the overall

model. Each process sub-matrix consists of one or

more operating mode or input/output variables, any

number of which can be active in a given solution.

Each operating mode variable intersects certain

equations representing volume balances on the

streams flowing into and out of the process, energy

balances, and accounting relationships. The vector of

input/output coefficients associated with each

operating mode variable denote the quantities of

individual inputs (refinery streams, utilities, capacity,

costs) and outputs (different refinery streams) per unit

of process throughput in a particular operating mode,

as well as the relevant properties of the output streams.

Depending on the number of processes and

refinery streams represented, a typical single-refinery,

single-time-period LP model contains about

1,500–5,000 constraints, and 5,000–15,000 variables.

Refinery models have highly structured matrices,

composed of the various process and blending

sub-matrices, linked by the volume balance and

property balance constraints. The matrices are

relatively dense, but have low super-sparsity (because

the input/output coefficients in the process

representations tend to be unique).

Coefficients

The coefficients for the crude oil distillation

sub-matrix usually are drawn from crude oil assays.

A crude oil assay is an assembly of data on the

composition and property of a whole crude oil and of

15–20 boiling range fractions of that of that crude,

developed through laboratory testing.

Crude assays exist for all crude oils in commerce;

many, but not all, of these assays are in the public

domain.

Commercial software products called crude oil

assay managers with associated assay libraries are

widely used to generate the coefficients for

representing the crude oil distillation process in

a refinery model, with user-specified boiling ranges

for the crude fractions.

The coefficients for the sub-matrices representing the

refining processes are refinery-specific in most models

and are derived, directly or indirectly, from experimental

data. Depending on the process, the data may come from

laboratory testing, pilot plant operations, refinery-level

plant testing, refinery accounting systems, and process

simulators (detailed engineering models of individual

refining processes). In general, all of these sources of

refinery data are proprietary.

Some non-proprietary, generalized correlations and

data for characterizing refining processes are available

in the open literature, primarily in a few textbooks

(e.g., Maples (2000), Gary et al. (2000)) and articles

in refining industry trade journals.

Populating a refinery optimization model with

realistic input/output coefficients is a highly

specialized undertaking, requiring considerable

knowledge of refinery operations and refining

technology – subjects that are at some remove from

operations research.

Nonlinearities in Refinery Models

To this point, this overview of refinery optimization

models seems to imply that refining operations are
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linear in nature and therefore can be suitably

represented as linear programming models.

Refining operations are subject to mass balance,

energy balance, and volume balance constraints, all

of which are linear, as are the constraints that

govern multi-ingredient blending to meet

product specifications (as long as the blending is

simply physical mixing with no chemical interactions

between ingredients). Consequently, refinery

optimization was a natural pioneering application for

linear programming. And even today, LP remains the

optimization method of choice for many refinery

modeling applications.

However, refinery operations actually embody

many nonlinear phenomena, some of which can have

a strong influence on refining operations and

economics. Almost from the beginning, a steadily

increasing number of refining organizations have

sought to enhance their capabilities to capture these

nonlinearities in their refinery optimization models and

thereby more accurately represent the true capabilities

and limitations of their refining facilities.

Some of the nonlinearities of interest are economic in

nature and bear on the objective function; others involve

underlying physical processes and relationships and bear

on the constraint set. Many of these nonlinearities,

including the five discussed below, are incorporated

readily in refinery models, facilitated in many instances

by the capabilities of commercial solvers.

Investments in New Refining Capacity

Existing refineries often invest in additional processing

capacity – either new process units or expansion of

existing ones – in order to increase total production

capacity, produce new products, upgrade the value of

existing products, or comply with new regulatory

standards bearing on product quality or performance

characteristics.

Often, the capacity added for a given process

is represented by a continuous variable (whose value is

expressed in a capacity measure, such as K barrels/day),

and the corresponding investment is approximated by

multiplying this variable by a constant investment rate

coefficient (whose value is in $/(barrel/day)).

I ¼ a�Q (1)

where I is the investment (in K$), Q is the capacity

added (in $/barrel/day), and a is the investment rate

factor ($/(barrel/day)). The value of the investment

rate factor depends on the refining process and the

refinery’s location.

However, the capital investment required to add

new refining capacity enjoys economies of scale; that

is, the investment per unit of added capacity is not

a constant, but decreases with increasing total amount

of added capacity. The standard relationship between

the amount of new capacity added and the required

capital investment is

I ¼ b�Qb (2)

where I is the investment (in K $), Q is the capacity

added (in K barrels/day), b is a constant whose value

depends on the refinery’s location, and b is an

exponent whose value depends on the refining

process in question. Most refining processes have a b

value in the range of 0.6–0.7.

Equation (2) is a non-convex function. It can be

represented in a refinery MP model in one of several

ways.

One approach is to (1) assign a set of binary (0–1)

variables to each of three or four standard levels of new

capacity addition (e.g., 10 K barrels/day, 20 K barrels/

day, etc.) for each refining process that is a candidate

for investment and (2) for each such set, add

a constraint specifying that at most one of the

variables in the set can take on the value 1 in an

optimal solution (or, equivalently, define the set of

binary variables for each refining process as a Special

Ordered Set Type 1 (SOS1)). Each of the binary

variables carries a coefficient denoting the capital

investment for the capacity addition it represents,

obtained from the (2) for each process.

Another approach is to represent (2) for each

process that is a candidate for investment as

a piecewise linear function by means of a Special

Ordered Set Type 2 (SOS2) for each such process.

Semi-Continuous Quantities

In many situations, restrictions exist on the minimum

and maximum volume of a particular flow or the

minimum and maximum extents to which

a particular operation can be performed. For example,

pipeline off-takes from a refinery are subject to the

pipeline’s regulations on the minimum and

maximum size shipments that it will accept.

Similarly, purchases of tanker-borne crude oil are
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subject to volume to volume limits determined by the

size of the tanker and its cargo compartments.

These and similar constraints can be represented in

refinery models by means of semi-continuous

variables: variables that can be either zero or

continuous within a range defined by a strictly non-

zero lower bound and (optionally) an upper bound.

Semi-continuous variable capability is available in

most commercial having mixed-integer-programming

(MIP) capability.

Quality Blending

In the canonical product blending problem, the

ingredients blend linearly with respect to the blend

properties that are subject to limits (specifications).

That is, the properties of the blended product

requirements are the weighted averages of the

corresponding properties of the various ingredients.

This is linear blending.

Many refinery models represent the blending of

refined products to specifications just that way.

However, there is more to the specification blending

of refined products than simple linear blending. Some

of the specifications to which refined products are

blended pertain to purely physical properties

(e.g., sulfur content, density); other to chemical

properties (e.g., octane, volatility, etc.). Blending to

specifications on physical properties is indeed linear,

as defined above. However, blending of chemical

properties often is not linear, because of the

interactions among different chemical interactions

that occur when individual ingredients (blendstocks

in refining parlance) are blended together. For

example, consider two gasoline blendstocks, one

having 90 octane, the other 70 octane. A 50/50 blend

of the two might yield a blend octane of, say, 82 or 77

(not 80), depending on the chemical interactions

involved. Moreover, the blend octane may vary with

the relative amounts of the two blendstocks. This is

nonlinear blending.

Several techniques are available for representing

nonlinear blending. The most widely used one

involves the use of blending indices in place of

blendstock properties. A blending index for a given

nonlinear property is an empirically determined

function of that property such that the function blends

linearly, even though the property itself does not. For

example, consider the property Reid Vapor Pressure

(RVP), a standard measure of gasoline volatility. RVP

blends nonlinearly, but the RVP Index, defined here,

blends linearly.

RVP Index ¼ RVPr (3)

where the value of the exponent r is about 1.17

(Different refiners may use slightly different values

for r).

Some blending indices involve more complicated

functions of the underlying property. For example,

Pour Point (PP), a measure of diesel fuel’s ability to

flow at low temperature, has a Pour Point Index

given by:

PP Index ¼ EXP 1:85þ 0:042� PPð Þ½ � (4)

Many gasoline and diesel fuel blending properties

are represented by such blending indices in refinery

models.

Gasoline octane blending is a special instance of

nonlinear blending for two reasons. First, octane has

a relatively high marginal refining cost; refiners do not

wish to “give away” octane in the course of meeting

the octane standards. Second, the blending octane of

a gasoline blendstock (i.e., the apparent octane

contribution of the blendstock to the finished blend)

is a function not only of the blendstock’s native octane

but also the composition of the finished blend.

The refining industry has developed special methods,

based on laboratory data, to estimate blend octanes

over a range of compositions. These methods,

outlined by Maples (2000), are beyond the scope of

this article.

Pooling

Pooling is the mixing or commingling of multiple

streams (crude fractions or refinery streams)

into a new stream (the pool), whose

properties (e.g., density, sulfur content, etc.) are the

volume-weighted averages of the properties of the

individual streams entering the pool:

QjV ¼ SiqijVi ) Qj ¼ SiqijVi = SiVi (5)

where V is the volume of the pool stream, Qj is the j
th

property (e.g., density) of the pooled stream, Vi is the

volume of the ith stream making up the pool, and qij is

the jth property of that stream.
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The qij are constant coefficients, but V and the Vi

are variables, whose values are known only when the

model returns a solution. Thus, the properties (Qj) of

the pooled stream are nonlinear function of model

variables and can be determined only after a solution

is in hand.

Consequently, it is not possible to define exact

representations of those effects on downstream

refining operations that depend on the properties of

the pooled stream. These effects reside in the refining

process and specification blending sub-matrices. Thus,

not only do the optimal volumes of the pooled stream,

V, and the streams making up the pool, Vi, depend on

the properties of the pool stream, but also the economic

value of the pool stream V.
The original, or traditional, approach to formulating

refinery models does not address pooling at all – not

because the problem was not recognized but because

the analytical tools needed to address it were not then

at hand. In the traditional approach (still widely used),

crude distillation and each of the downstream refining

processes are represented in discrete sub-matrices. In

the crude distillation sub-matrix, each crude oil is

represented by its own input/output vector, in which

the output coefficients are the volumetric yields of the

various cuts. This representation implies that (1) the

various crude oils, each with their own properties and

yield patterns, are segregated from one another as they

go through the crude distillation unit and (2) the

boiling range cuts from the various crude oils are

likewise segregated from one another as they move to

the downstream processes. In the downstream process

sub-matrices, each feed is attributable to a particular

crude oil and each is represented by its own input/out

vector. This scheme represents each process operating

as if it were processing a group of segregated feed

streams, each with its own operating mode, rather

than one pool stream.

Refinery models formulated in this way tend to

contain many more stream flow variables, and many

more blendstock variables and blending options, than

there are in the “real” refinery. This can lead, in certain

situations, to over-optimization – the model’s

returning solutions indicating better refining

economics than the real refinery can achieve.

Explicit representation of the stream pooling that

occurs in real refineries calls for special model

formulation and solution techniques. The most

widely used modeling technique is called Distributive

Recursion (DR), a variant of SLP developed expressly

to deal with the pooling problem in models of refining

and other process flow industries. First developed in

the late 1970s, DR has come into increasingly wide use

as the required software tools have become more

widely available.

In DR, the model user provides initial estimates of

the Qi for all of the pool streams. The procedure uses

these estimates to conduct an initial solution pass,

which returns (1) the downstream dispositions and

marginal value of each pool and (2) the volumes, Vi,

of each stream entering each pool. Using the new set of

Vi values, the DR procedure re-estimates the various

pool qualities. The difference between the nth and

n + 1st estimates for a given pool is called its quality

error. DR distributes each quality error across the

various downstream dispositions of each pool and

initiates a new solution pass incorporating the new

estimates of pool qualities and quality errors. DR

conducts a series of such solution passes that seek to

converge to an optimal solution in which the quality

errors are driven to zero (to within a user-specified

tolerance).

Performance of Refining Processes

In the original, or traditional, approach to formulating

refinery models, each downstream process is

represented in a discrete sub-matrix. Each process

sub-matrix comprises a set of variables (vectors),

each denoting a unique combination of

(1) a segregated (not pooled) feed stream to the

process and (2) a particular operating mode for the

process (defined by physical operating conditions,

such as temperature). Each such variable has a unique

set of input/out coefficients, defining the operation of

the process. This representation implies that

(1) processes behave linearly, independent of the

composition and properties of their feeds and

(2) each (notionally) segregated stream can be

processed at its own set of operating conditions as it

flows through the process. In reality, process

performance depends on the properties of the pooled

feed to the process.

With the advent of DR, some refining companies

sought a more rigorous representation of refining

processes that used pooled input streams and

captured the effects of input stream properties on the
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yields and properties of the output streams. This effort

led to the base-delta (B-D) approach to

representing refining processes in optimization

models (Bodington 1995).

In the B-D approach, each downstream process is

represented in a discrete sub-matrix, comprising:

• One or more base vectors, each denoting operation

of the process with a typical, or base, feed and

a standard, or base, operating mode.

The input coefficients on the base vector(s) denote

those properties of the pooled feed that affect the

yields and properties of the process outputs. The

output coefficients denote the yields and properties

of the various outputs, when the process is operating

at base conditions.

• A set of delta vectors for each base vector. The

solution values taken on by the various delta

vectors are determined as part of the overall model

solution obtained via DR.

The coefficients on each delta vector denote the

effects of a small change in one pooled feed

property (relative to the base property) on the

yields and properties of the various outputs. Each

delta vector coefficient is, in effect, the partial first

derivative of a particular process output property

with respect to an input property. The set of all delta

vector coefficients for a process is equivalent to

a Jacobian matrix for the process.

Both the base yield coefficients and the delta vector

coefficients usually are generated by means of detailed

engineering models (called process simulators) of the

various processes, or (less likely) by generalized

correlations or plant testing. Modern refinery

modeling systems that offer DR now provide

interfaces to process simulators. These interfaces link

the process simulators directly to a refinery

optimization model and allow them to be invoked at

each DR solution pass to dynamically update the some

or all of the delta coefficients in response to the current

DR solution. Use of this facility increases the

likelihood of reaching a local optimum.

Finally, the traditional representation of crude

distillation, the refinery’s front-end process, treats the

cut point temperatures of the various crude fractions

(e.g., 160o–250o F for a light naphtha stream) as

constants. The advent of DR allows the cut points

themselves to be recursed variables, an option that is

now widely used.

Comments on Distributed Recursion (DR)

As with any non-linear technique, DR can – and often

does – return solutions that are only locally optimal. In

particular, the DR procedure requires initial estimates

of the properties of each pool and the fractional

distributions of each pool to its various downstream

dispositions. The specific values of these estimates

determine whether the DR procedure converges to

a global optimum or to a local optimum. The more

pooled streams and the greater the number of pool

dispositions in the model, the more likely that the

model will return a local optimum.

Capturing the analytical benefits of DR requires

considerable software and intellectual resources,

including:

• Some means – whether process simulators or sets of

correlations – of dynamically representing the

effects of process input properties on process

output yields and properties;

• An array of special software, including a crude oil

assay manager, process simulators (or their

functional equivalent), and facilities to execute

and control the recursive solution process; and

• Sound model formulation practices, careful

estimation of the initial values of stream properties

and distributions, and proper settings for the

DR procedure’s control parameters and tolerances.

Only analysts with access to the necessary system

resources and with extensive experience in refinery

modeling in general and DR in particular are likely to

obtain useful and timely results with DR.

However, many refinery modeling applications do

not require the degree of precision that DR is intended

to provide in representing the capabilities and

limitations of refining facilities. In particular, high

accuracy in representing refining facilities may not be

warranted in applications, such as tactical and strategic

planning, that have planning horizons measured in

years, rather than months or weeks. Long planning

horizons involve substantial uncertainty regarding

crude oil prices, product demands, and other

economic factors. These applications place

a premium on the ability to rapidly analyze and

compare many different model instances, each

representing a future economic scenario – as opposed

to analyzing a few model instances with greater

precision in the representation of refining facilities.
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In these situations, the conventional refinery modeling

approach, not the DR approach, is usually the method

of choice.

Model Management for Refinery Models

Model management is “the care and feeding” of large

scale modeling applications. It is a complex of

information processing functions that includes model

formulation (in an electronic format), data up-dating,

case management, matrix generation, optimizer

control, solution reporting, model and solution

analysis, and model maintenance. All operational use

of large scale optimization models involves the

performance of these and other functions – whether

manually, with an ad hoc collection of software tools,

or with a purpose-built software system.

As the size and scope of refinery optimization

models increased, the burdens of model management

became apparent. The first software tools designed

specifically to address elements of model

management (as opposed to model solution) were the

matrix generation languages fielded in the late 1950s

and early 1960s (e.g., Haverly System’s MaGen™ and

(later) OMNI™; Bonner & Moore’s MARVEL™ and

(later) GAMMA™). These were procedural

programming languages with special functionality

and features for generating refinery LP models in

optimizer input format and generating output reports

on model solutions. The matrix generation languages

were a large step forward, but they did not provide

a full range of model management functionality.

Somewhat later, a new set of software tools for

matrix generation and reporting entered commercial

use: the algebraic modeling languages: (e.g.,

GAMS™, AMPL™, MPL™, MODELER™, and

AIMMS™). These are symbolic modeling languages,

in which the model formulator expresses the model’s

constraints and variables symbolically, in an

algebra-like syntax. They also provide facilities for

model up-dating and report generation.

Starting in the 1950s, many of the major refining

companies undertook development of their own

comprehensive refinery modeling systems, some

using commercial matrix generation languages,

others using standard programming languages of the

times. Beale (1978) describes British Petroleum’s

approach to model management. Palmer et al. (1984)

describes the conceptual and design foundations for

Exxon’s PLATOFORM™ model management system.

At one time, PLATOFORM routinely handled more

than one hundred mathematical programming

applications in Exxon. Bodington and Baker (1990)

reference other companies’ efforts in model

management system development.

As a consequence of the waves of consolidation and

down-sizing that swept through the petroleum industry

starting in the 1980s, most refining companies

curtailed or abandoned their efforts to develop and

maintain their own model management systems.

A few companies still maintain their in-house model

management systems. But most refining companies

have now supplanted their in-house systems with

one of the generalized refinery modeling systems

brought into commerce by independent developers

(e.g., PIMS™ (AspenTech), GRTMPS™ (Haverly

Systems), and RPMS™ (Honeywell Hi-Spec

Solutions)).

Commercially available modeling systems must be

instantiated with data specific to the refinery of

interest: crude oil assays, process capacities and

performance characteristics, stream properties, and

product specifications. Once instantiated, the

generalized refinery modeling systems offer

extensive functionality for refinery modeling,

including DR (as an option), comprehensive model

management functionality, and compatibility with

crude oil assay managers, process simulators,

spreadsheets, relational databases, and a number of

standard commercial solvers.

Concluding Remarks

The petroleum industry pioneered the application of

OR/MS across all of its primary operations, and has

provided the impetus and the financial support for

many advances in OR/MS software tools and

analytical methods. This symbiotic relationship is

particularly strong in the petroleum refining sector.

Since the earliest days of OR/MS, refining has been

a particularly rewarding domain for applying OR/MS

methods in general, and especially linear programming

(LP) and its extensions (in particular, mixed

integer programming (MIP), special ordered sets
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(SOS1 and SOS2), and successive linear programming

(SLP)). As a result, OR/MS applications – especially

linear and mathematical programming applications – are

ubiquitous and fully embedded in refining operations.

Although petroleum refining is a mature area of

application for OR/MS, the tools and methods

available to refining industry practitioners continue to

improve in terms of speed and functionality. Further

advances are likely to come in the realm of model

management.

Development and application of optimization

models in the refining sector requires deep

knowledge of refining technology and economics.

Knowledge of optimization algorithms and software

tools is necessary but not sufficient for successful

application of OR/MS in the refining sector.

See

▶Linear Programming

▶Mathematical Programming

▶Model Management

▶Nonlinear Programming

▶ Special-Ordered Sets (SOS)
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PFI

▶ Product Form of the Inverse (PFI)

Phase I Procedure

That part of the simplex method directed towards

finding a first basic feasible solution.

See

▶Artificial Variables

▶Linear Programming

▶ Phase II Procedure

▶ Simplex Method (Algorithm)

Phase II Procedure

The part of the simplex algorithm that finds an optimal

basic feasible solution, starting with Phase I basic

feasible solution or an initial basic feasible solution.

See

▶Linear Programming

▶ Phase I Procedure

▶ Simplex Method (Algorithm)

Phase-type Distribution

▶ Phase-type Probability Distributions

Phase-type Probability Distributions

Marcel F. Neuts

The University of Arizona, Tucson, AZ, USA

The probability distributions of phase-type, or

PH-distributions, form a useful general class for the

representation of nonnegative random variables.

A comprehensive discussion of their basic properties

is given in Neuts (1981). There are parallel definitions

and properties of discrete and continuous

PH-distributions, but the discussion here emphasizes

the continuous case.

The simplest example is the Erlang random

variable, which can be expressed as the sum of

independent exponentially distributed random

variables. As a result, one can construct a realization

of an Erlang random variable by going through a series

of phases, one for each exponential random variable;

hence, the Erlang distribution is a phase-type

distribution. Generalizing this phase-type idea

governs the movement through the phases by

a Markov chain that permits movement back and

forth between the interior phases, with the final stage

being an absorbing barrier.

More specifically, a probability distribution F(�) on
[0,1) is of phase type if it can arise as the absorption

time distribution of an (m + 1)-state Markov chain with

m transient states 1,. . .,m and an absorbing state 0. The

generator Q of such a Markov chain is written as

Q ¼ T T0

0 0

� �

;

where T is a nonsingular m � m matrix with negative

diagonal elements and nonnegative off-diagonal

elements. If e denotes a column vector with all

components equal to one, then the vector T0 satisfies

T0¼�Te. The initial probability vector of the Markov

chain is specified as ða; a0Þ. Without loss of generality,

it may be assumed that the generator,

Q� ¼ T þ ð1� a0Þ
�1
T0a, is irreducible.

The general formula for the PH-distribution F(�) is
then

FðxÞ ¼ 1� a exp ðTxÞe; for x � 0:

The pair ða; TÞ is called a representation of F(�).
The PH-distribution F(�) has a point mass a0 at 0 and

a density F0ðxÞ ¼ � exp ðTxÞTe ¼ a exp ðTxÞT0
, on

(0, 1). The Laplace-Stieltjes transform f(s) of F(�) is

f ðsÞ ¼ amþ1 þ aðsI � TÞ�1
T0; for Re s � 0:

Its moments ln; n � 1, are all finite and given by

ln ¼ ð�1Þn n ! aT�n e. Some special classes of
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PH-distributions are the hyperexponential

distributions

FðxÞ ¼
Xm

v¼1
av 1� e�lvx
� 	

;

which may be represented by a ¼ ða1; . . . ; amÞ;
amþ1 ¼ 0, and T ¼ �diagðl1; . . . ; lmÞ, and the

(mixed) Erlang distributions

FðxÞ ¼
X

m

v¼1

pvEvðl; xÞ;

which are represented by

a ¼ ðpm; pm�1 ; . . . ; p1Þ; amþ1 ¼ 0, and

T ¼

�l l 0 � � � 0 0 0

0 �l l � � � 0 0 0

� � � � � �
0 0 0 � � � 0 �l l

0 0 0 � � � 0 0 �l

2

6

6

6

6

4

3

7

7

7

7

5

Uses of Phase-type Distributions

The utility of PH-distributions is due to their closure

properties, which allow standard operations such as

convolution and mixing to be represented by matrix

operations. Many classical simplifying properties of

the exponential distribution have analogs in the

matrix formalism for PH-distributions. In the analysis

of probability models, PH-distributions often lead to

tractable results without the severe restriction of

exponential assumptions. Integrals involving

PH-distributions also can usually be evaluated by

stable recurrence relations or differential equations.

Moreover, the phase-type distributions form a dense

subset of the probability distributions on [0,1), in that

any such distribution can in principle be uniformly

approximated by a sequence of PH-distributions.

Examples of closure properties are:

(a) If F(�) is a PH-distribution with representation

ða;TÞ and mean l
0

1, the corresponding delay

distribution F ∗(�) with density ðl01Þ
�1½1� FðxÞ�

is PH with representation (p, T) where

p ¼ ðl
0

1Þ
�1
að�TÞ�1

.

(b) If F(�) ðwith a0 ¼ 0Þ is the service time

distribution of a stable M/G/1 queue with arrival

rate y and service time distribution H(�) of mean

m
0
1, such that r ¼ ym

0
1 < 1, the (steady-state)

distribution W(�) of the waiting time is PH. Its

representation is given by (g, L), where g ¼ rp,

L ¼ T + rT0p. For the M/PH/1 queue, the

distribution W(�) may therefore be computed by

integrating a system of linear differential

equations, rather than by solving the

Pollaczek-Khinchin integral equation.

The fact that any probability distribution on [0,1)

can be approximated by PH-distributions is of

somewhat limited practical application, although very

good PH-approximations to classes such as the

Weibull distributions have been obtained. Because of

the following general result, that denseness property is,

however, of considerable theoretical utility.

Suppose that a stochastic model involves

one or more general probability distributions Fj(�),
1 � j � N, on [0, 1), requiring evaluation of

a continuous functional F[F1(�),. . ., FN(�)]. If an

expression for F(�) can be found for the case where

F1(�),. . ., FN(�) are PH-distributions and if that

expression does not explicitly depend on the

formalism of PH-distributions, then it is also valid for

arbitrary distributions F1(�),. . ., FN(�). This result has
been used to establish various moment and other

formulas in the theory of queues.

There is an extensive literature on phase-type

distributions and their applications, including topics

such as the structural geometric properties of families

of PH-distributions, the approximation of other

families of distributions by those of phase-type, and

the fitting of PH-distributions to data. An important

characterization of PH-distributions was proved in

O’Cinneide (1990). Procedures for the approximation

by PH-distributions are discussed in Asmussen et al.

(1992), Johnson (1993) and Schmickler (1992). The

appearance of phase-type distributions in some

unexpected places in queueing theory was noted in

Asmussen (1992).

See

▶Erlang Distribution

▶Hyperexponential Distribution
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▶Markov Chains

▶Markov Processes

▶Queueing Theory
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Piecewise Linear Function

A function that is formed by linear segments or one

that approximates a nonlinear function by linear

segments.

Pivot Column

The column vector of coefficients associated with the

entering basis variable in a simplex method iteration.

Also, more generally, the column that contains the

pivot element of a Gaussian elimination step or

similar process.

See

▶Eta Vector

▶Gaussian Elimination

▶Matrices and Matrix Algebra

▶ Pivot Element

▶ Pivot Row

▶ Simplex Method (Algorithm)

Pivot Element

In the simplex method, the coefficient of the pivot

column whose row index corresponds to the basic

variable that is to be dropped from the basis. Also,

the element of the pivot column in a Gaussian

elimination step that is selected to be on the diagonal

of the associated upper triangular matrix.

See

▶Eta Vector

▶Gaussian Elimination

▶Matrices and Matrix Algebra

▶ Pivot Column

▶ Pivot Row

▶ Simplex Method (Algorithm)

Pivot Row

The row corresponding to the position of the basic

variable that is to be dropped from the basis in

a simplex method iteration. In general, the row

correspoding to the row position of a pivot element in

a Gaussian elimination step.

See

▶Eta Vector

▶Gaussian Elimination

▶Matrices and Matrix Algebra

▶ Pivot Column

▶ Pivot Element

▶ Simplex Method (Algorithm)
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Pivot-Selection Rules

In the simplex method, the pivot selection rules

determine which variable is to enter the basic solution

and which variable is to be dropped. Depending on the

solution at hand, the rules are designed to preserve

feasibility (nonnegativity) of the solution (primal-

simplex method), or to preserve the optimality

conditions (dual-simplex method). In either case, the

rules attempt to select an entering variable that would

cause and improvement in the objective function. These

rules are often augmented with anti-degeneracy or

anticycling rules, and procedures for maintaining

sparsity and numerical accuracy.

See

▶Bland’s Anticycling Rules

▶Density

▶Devex Pricing

▶Linear Programming

▶Matrices and Matrix Algebra

▶ Perturbation Methods

▶ Simplex Method (Algorithm)

PMF

Probability mass function.

PO

▶ Postoptimal Analysis

Point Stochastic Processes

Igor Ushakov

Qualcomm Inc., San Diego, CA, USA

Introduction

A point process is a stochastic process {N(t), t � 0},

where N(t) ¼ number of occurrences by time t, which

describes the appearance of a sequence of instant

random events in time. Usually (though not always)

intervals between two neighboring events are

considered to be independently distributed. A process

of this type is called a point process with restricted

memory. If times between occurrences are

a sequence of independent and identically distributed

(i.i.d.) random variables, the point process is

called a renewal or recurrent point process. The

Poisson process represents a particular case of

a renewal process in which the intervals between

occurrences are exponentially distributed (Cox and

Isham, 1980; Daley and Vere-Jones, 2002, 2007;

Franken et al. 1981).

A special type of point process can be formed

by two independent subsequences of random

variables that alternate, as in the sequence X1, Y1, X2,

Y2,.... Such a process is called an alternating point

process, and more specifically, an alternating renewal

process if the X and Y subsequences are themselves

ordinary renewal processes.

Thinning of a Point Process

In some cases, events are excluded from the point

process with a specified probability. For instance,

a unit failure leads to a system failure only if

several additional random circumstances happen. This

exclusion of events is called a thinning procedure. If the

thinning procedure results in the (normalized)

probability of the event exclusion going to 1, the

resulting point process converges to a Poisson process.

This statement is reflected in strong terms in Renyi’s

Limit Theorem and in its generalization made byYu. K.

Belyaev (see Gnedenko et al. 1969). For practical

purposes, the result means that if the mean time

between neighboring events in the initial recurrent

process equals T, and each event is excluded from this

process with the probability p close to 1, the resulting

process will be a Poisson process with parameter

l ¼
1� p

T
:

The Superposition of Point Processes

The next important statement concerns the

superposition of point processes, which is formulated
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in the Khinchine-Osokov Limit Theorem (Khinchine

1960; Osokov 1956) and later generalized in the

Grigelionis-Pogozhev Limit Theorem (Grigelionis

1964; Pogozhev 1964). On a qualitative level, the

theorem states that a limiting point process, which is

formed by the superposition of independent

“infinitesimally rare” point processes, converges to

a Poisson process. For instance, if a piece of

equipment consists of a large number of blocks and

modules, the flow of its failures may well

be considered to form a Poisson process. The

parameter of this resulting process is expressed as

a sum of the parameters of the initial processes,

that is, if there are n recurrent processes (n >> 1),

each of them with mean Ti, then the resulting process

will be close to a Poisson process with parameter

l ¼
X

1�i�n

1

Ti
:

As a consequence of these results, the Poisson

process plays a role in the theory of stochastic

processes that is analogous to that of the normal

distribution in general probability and statistical

theory.

See

▶ Poisson Process

▶Queueing Theory

▶Renewal Process

▶ Stochastic Model
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Point-to-Set Map

A function that maps a point of one space into a subset

of another.

Poisson Arrivals

Term used when customers coming to a queueing

system follow a Poisson process; this also implies

that the time between customer arrivals are

independent and identical distributed random

variables following an exponential distribution with

mean equal to the inverse of the Poisson arrival rate.

See

▶Exponential Arrivals

▶ Poisson Process

▶Queueing Theory

Poisson Process

A stochastic, renewal-counting point process

beginning from time t ¼ 0 with N(0) ¼ 0 that

satisfies the following assumptions is called a Poisson

process with rate l: (1) the probability of one event

happening in the interval (t, t + h] is lh + o(h),

where o(h) is a function which goes to zero faster

than h; (2) the probability of more than one event
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happening in (t, t + h] is o(h); and (3) events happening

in non-overlapping intervals are statistically

independent. (Either (1) or (2) can be replaced

by: the probability of no event happening in the

interval (t, t + h] is 1 � lh + o(h)). For such

a Poisson process, the times between events

(renewals) are independent and identically

exponentially distributed with mean 1/l. In Kendall’s

queueing notation, arrivals following a Poisson

process would be represented by “M” as in an M/G/1

queue. An important property of Poisson arrival

processes in queueing theory is PASTA (Poisson

arrivals see time averages).

See

▶Kendall’s Notation

▶Markov Chains

▶Markov Processes

▶ PASTA

▶Queueing Theory
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Introduction

Applications of OR/MS to the representation and

electoral processes are considered here. The narrower

definition of politics is followed, denoting the theory

and practice of managing political affairs in

a party sense (Webster’s New Collegiate Dictionary

1951). In particular, applications to the following are

considered:

• Apportionment

• Districting

• Voting methods and logistics, and

• Election analysis

Apportionment

This is the process of equitably assigning a fixed

number of legislators to a lesser number of political

subdivisions. In the United States, 435 congressional

districts must be apportioned to 50 states with each

state receiving at least one district. The method of

rounding to an integer solution influences the

political result.

Balinski and Young (1982) have provided an

exceptional mathematical analysis of the issue along

with an historical, nontechnical exposition. In 1791,

following the first U.S. census, Jefferson and Hamilton

proposed alternative methods for apportionment, the

method of greatest divisors (take the ratio of every

state’s population and the largest divisor such that the

integer portions of the ratios add up to the number of

representatives to allocate,) and the method of greatest

remainders (take the population in a political unit,

divide by the total population and multiply by the

number of seats, allocate the integer portion, allocate

the remaining seats in order of the size of the

remainders until there are none left). Washington

exercised the first presidential veto when he

disagreed with Congress’ support of Hamilton’s

method.

Most methods are biased; for example Jefferson’s

favors the more populated states while the method used

in the United States since 1941, the “method of equal

proportions” (also known as the Hill or Huntington

method) discriminates against them. In this method

a multiplier for adding the nth congressperson

to a state is constructed by taking the square root of

1/[n(n � 1)], n > 1. The product of the multipliers and

the states’ populations are sorted from highest to

lowest for all states together. After each state is given

one seat, the remaining seats are given to the 385

highest products of the populations and the

multipliers. Other methods exhibit the paradox of

a state’s apportioned number of seats declining as the

total number of representatives increases even when all

states’ populations are unchanged!

Balinski and Young (1982) conclude that there can

be no perfect method. However, Senator Daniel

Webster promoted a method called “major fractions”

(frequently used between 1842 and 1932), which has

been felt by many to be preferable. It is simple, and

exhibits neither bias nor the population paradox.

Politics 1137 P

P

http://dx.doi.org/10.1007/978-1-4419-1153-7_200360
http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
http://dx.doi.org/10.1007/978-1-4419-1153-7_200582
http://dx.doi.org/10.1007/978-1-4419-1153-7_847


Furthermore, Webster’s method (find a divisor for the

populations of each political unit such that the rounded

quotients sum to the total number of legislators to be

allocated), is more likely than the other methods to

give each state its proportional number of seats,

either rounded up or rounded down (Ernst 1994).

See Apportionment Politics for detailed descriptions

of apportionment methods and examples of the

paradoxes that result from the different apportionment

methods.

In most countries once the districts are established

the candidate with the most votes wins. In Switzerland

an alternative approach is taken to ensure that smaller

parties are represented, Beroggi (2010). First, seats are

allocated to states using major fractions. Second, seats

are allocated to parties at the national level using the

samemethod. With these allocations as constraints, the

seats in every district are allocated to parties,

minimizing the deviations between the real-valued

allocation and integer number of seats ultimately

given to each party in each district.

Redistricting

This is the process of defining geographic boundaries

for the representatives in a political unit such as a city,

state, province, or country. Historically, the party

controlling the legislature draws districting maps to

protect incumbents and increase their party’s chances

of maintaining control.

In 1962, the Supreme Court required population

equality among districts, demanding more careful

mapping than the usual prior political process (Baker

v. Carr 1962). A variety of techniques to computerize

the mapping process appeared. Most approaches

incorporated population equality with the additional

criteria that each district be:

– Contiguous, a single land parcel,

– Compact, consolidated rather than spread out, and

– Designed without political consideration.

Hess et al. (1965) solved a sequence of transportation

linear programs. In each LP, equal population was

allocated to trial district centers to minimize total cost.

The measure of cost was compactness defined as the

second moment of population about its district center.

Centroids of the resultant districts became new centers

for repeating the linear program. Successive solution of

the transportation problems trended to more

compactness while maintaining near population

equality. Their heuristic handled problems as large as

350 population units by 19 districts. Larger problems

were apportioned into smaller ones. This Ford

Foundation-supported program was used for

districting in at least seven states.

Hojati (1996) used Lagrangian relaxation to

determine the center of districts and then the

transportation model to assign population units to

districts, followed by a capacitated transportation

model to rejoin split population units. George et al.

(1997) have generalized the transportation LP into

a minimum-cost network-flow formulation that

permits more flexible objective functions. They

demonstrate objective (cost) functions that include

penalties for:

– District populations deviating from the average or

exceeding some maximum deviation,

– Districts crossing geographic barriers, and

– Changes from prior district boundaries.

The procedure has been applied in preparing

New Zealand legislative-district boundaries involving

assignment of 35,000 geographic units to 95

Parliamentary districts.

Garfinkel and Nemhauser (1969) developed a tree

search algorithm that minimizes compactness while

constraining maximum allowable population

deviation. Their measure of district compactness is

the diameter squared divided by area. Computation

speed and capacity limited the problem size to about

50 population units by seven districts.

Nygreen (1988) redistricted Wales by three

different solution methods: solving the integer

programming formulation directly, using set

partitioning (a variant of Garfinkel and Nemhauser’s

technique), and using implicit enumeration to structure

the search of the tree of solutions. Although his

example was small, he concluded that the integer

programming technique was inferior. He felt

problems to about 500 population units by

60 districts could be solved efficiently by set

partitioning. Twenty years of computer improvement

permit a tenfold larger problem!

All these redistricting techniques require

apportioning a problem too large for solution into

many smaller and solvable ones. Apportioning first

has added benefits: small political subdivisions are

more likely to remain intact and district boundaries

will more often coincide with political boundaries.
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Hess (1971) showed how first apportioning New York

legislative seats to groups of counties minimizes the

number of counties that must be in more than one

district.

Mehrotra et al. (1998) model the problem as

a constrained graph-partitioning problem as in

Garfinkel and Nemhauser (1969) and develop

a specialized branch-and-price based solution

methodology rather than use implicit enumeration.

Their reason for generating districts and solving the

partitioning problem is to guarantee contiguous districts.

They did not work directly with the facility location/

p median problem because ensuring contiguity would

require an exponential number of constraints as with

sub-tour elimination in the traveling salesman problem.

Bozkaya et al. (2003) developed a tabu search approach

to solving the problem while restricting the search to

contiguous districts, again, not representing contiguity

directly because of the perceived difficulty of capturing

contiguity.

For such a heavily researched problem with so

many successful researchers working on it over

decades one would not expect an important

breakthrough on a problem as difficult as the

contiguity problem. However, two approaches

represent contiguity directly in a model without any

combinatorial explosion. Williams (2002) shows how

to enforce contiguity using constraints on trees defined

over the primal and dual planar graphs of the districts.

Shirabe (2009), building on work by Zoltners and

Sinha (1983), imposes contiguity by modeling trees

with constraints that require the adjacent nodes

connected by a positive flow be in the same district

and the root node have an inflow that matches the

number of geographic units assigned to the district.

Thus, there has been substantial analytic progress in

developing usable models for doing districting using

integer programming formulations.

Meanwhile, the courts and legislatures have been

slow to articulate permissible or required criteria for

districting. A multitude of definitions or measures of

compactness are available for Court selection, but all

suffer from one flaw or another (Young 1988).

In the United States “one man, one vote” is still the

law of the land. The 1982 Voting Rights Act requires

states with histories of racial discrimination to provide

a reasonable chance of minority elections (Van Biema

1993). However, the Supreme Court (Shaw v. Hunt

1996) ruled that racial considerations cannot alone

justify bizarre shaped districts. While the courts

scrutinize the results of districting, they have not yet

challenged the process (Browdy 1990), let alone find

political gerrymandering to be unconstitutional.

Associate Supreme Court Justice Breyer has regretted

that the Court failed to take a stand (King 2010).

Political parties have been free to use proprietary

software to generate districting plans that would make

Governor Gerry blush. Computer services generated

over 1,000 plans for Florida alone, making it difficult

for the press and public to criticize gerrymandering

(Miniter 1992). It is possible to predict when

gerrymandering will happen: if only one political

party controls the legislature and the politicians

control the process without an independent oversight

board, the districts will be drawn to the advantage of

that party. That is, the process is important in

determining the outcome.

The problem with gerrymandered districts after

they are drawn is, like pornography, we know it when

we see it. However, it is very difficult to define what

gerrymandering is in advance. Consequently, any

effort to reduce the degree of gerrymandering has to

include not only good analytical models but also good

governance processes.

Should the courts order an open districting process

or bipartisanship necessitate, optimization models and

algorithms could provide a viable approach to aid in

redrawing representative boundaries (Browdy 1990).

Given the unwillingness of politicians to give up the

advantages that come from manipulating district

boundaries, the likely eventual outcome will be a mix

with optimization modeling establishing baselines and

politicians making limited adjustments. Designing

such a process will be an interesting challenge.

Voting Methods and Logistics

The application of approval voting was pioneered in

the election processes of The Institute of Management

Sciences (Fishburn and Little 1988). Here, a voter

checks off (approves) any number of the candidates

on a ballot, from a single one to potentially every one,

with the person having the most checks being declared

the winner. Regenwetter, and Grofman (1998) confirm

the value of approval voting by examining the

outcomes of seven elections, one of them being an

INFORMS election.
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Savas et al. (1972) reduced the number of New

York City election districts by locating multiple

voting machines at polling places. The City achieved

significant cost savings and increased the probability

voters would find functioning machines, without

a significant increase in voter distance to the polls.

Election Analysis

The literature on OR in elections is sparse. The main

roles seem to be in forecasting and game-theoretic

analyses of policies. Barkan and Bruno (1972) used

allocation techniques and statistical analysis to aid the

1970 California election campaign of Senator Tunney.

Their analyses targeted precincts for voter registration

and get-out-the-vote efforts. The key to their success

was the ability to identify swing precincts by

estimating party loyalty. Soberman and Sadoulet

(2007) provide a game-theoretic analysis of rules to

limit campaign spending.

A great deal of effort has been put into forecasting

the outcome of elections. Campbell and Lewis-Beck

(2008) survey past work in forecasting U.S.

presidential elections and Lewis-Beck (2010) covers

European election forecasting. Both of these articles

are introductions to special issues on election

forecasting, covering the broadly defined approaches

of surveys, econometric analyses, and crowd sourcing

such as the Iowa Electronic Market where people bet

on the outcome and the prices and odds are set as in

pari-mutuel betting. See also Kaplan and Barnett

(2003).

See

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Location Analysis

▶Transportation Problem
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Pollaczek-Khintchine Formula

For the M/G/1 queueing system, with L defined

as the steady-state expected number of customers

in the system, l the customer arrival rate, 1/m the

mean service time and s2 the variance of

the service distribution, the Pollaczek-Khintchine

(P-K) (mean-value) formula gives

L ¼ rþ r2 þ l2s2
� 	

=½2ð1� rÞ�

where r ¼ l=m. Sometimes, the formulas for mean

queue size, Lq, mean line delay, Wq, and mean

system waiting time, W, which can be easily derived

from L using Little’s formula, are also called the

P-K formulas. More generally, there are associated

transform relationships giving the generating function

of the steady-state number in system (or queue length)

and the Laplace transform of the steady-state

delay/waiting times in terms of the Laplace transform

of the service time distribution, which are referred to as

Pollaczek-Khintchine (P-K) transform formulas.

See

▶Queueing Theory

Polling System

Where a single server visits each group of customers

(queue) in cyclic order and then polls to see if there

is anyone present. If yes, the service facility

serves those customers under such rules as gated

(serve only those present when polled) or exhaustive

(serve until no customers are left at the location).

See

▶Networks of Queues

▶Queueing Theory

Polyhedron

The solution space defined by the intersection of

a finite number of linear constraints, an example of

which is the solution space of a linear-programming

problem. Such a space is convex.

See

▶Convex Set

▶Linear Programming

Polynomial Hierarchy

A general term used to refer to all of the various

computational complexity classes.

See

▶Computational Complexity

Polynomially Bounded (�Time)
Algorithm (Polynomial Algorithm)

An algorithm for which it can be shown that the

number of steps required to find a solution to

a problem is bounded by a polynomial function of the

problem’s data.
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See

▶Computational Complexity

▶Exponential-Bounded (–Time) Algorithm

Polynomial-Time

▶Computational Complexity

Polynomial-Time Reductions and
Transformations

▶Computational Complexity

POMDP

▶ Partially Observed Markov Decision Processes

Population-based Search Methods

Optimization search methods that propagate

a population of solutions from iteration to iteration of

the algorithm, generally using evolutionary operators.

Examples include genetic algorithms, ant colony

optimization, and particle swarm optimization.

See

▶Evolutionary Algorithms

▶Genetic Algorithms

▶ Particle Swarm Optimization

▶ Swarm Intelligence

Portfolio Analysis

▶ Financial Engineering

▶ Portfolio Theory: Mean-Variance Model

Portfolio Theory: Mean-Variance Model

John L. G. Board1, Charles M. S. Sutcliffe2 and

William T. Ziemba3,4

1Henley Business School, University of Reading,

Reading, UK
2University of Reading, Reading, UK
3University of British Columbia, Vancouver,

British Columbia, Canada
4Oxford University, Oxford, UK

Introduction

The heart of the portfolio problem is the selection of

an optimal set of investment assets by rational economic

agents. Although elements of portfolio problems

were discussed in the 1930s and 1950s by Allais, De

Finetti, Hicks, Marschak and others, the first formal

specification of such a selection model was by

Markowitz (1952, 1959), who defined a mean-variance

model for calculating optimal portfolios. Following

Tobin (1958, 1965), Sharpe (1970) and Roll (1972),

this portfolio selection model may be stated as

Minimize x0Vx

subject to x0r ¼ rp

x0e ¼ 1

(1)

where x is a column vector of investment proportions

in each of the risky assets, V is a positive semi-definite

variance-covariance matrix of asset returns, r is

a column vector of expected asset returns, rp is the

investor’s target rate of return and e is a column

unit vector. An explicit solution for the problem can

be found using the procedures described in Merton

(1972), Ziemba and Vickson (1975), or Roll (1972).

Restrictions on short selling can be modeled by

augmenting (1) by the constraints

x � 0 (2)

where 0 is a column vector of zeros. The problem

now becomes a classic example of quadratic

mathematical programming; indeed, the development

of the portfolio problem coincided with early

developments in nonlinear programming. Formal

investigations of the properties of both formulations,
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and variants, appear in Szegö (1980), Huang and

Litzenberger (1988), and the references above.

The Use of Mean and Variance

The economic justification for this model is based

on the von Neumann-Morgenstern expected utility

results, discussed in this context by Markowitz (1959).

The model can also be viewed in terms of consumer

choice theory together with the characteristics model

developed by Lancaster (1971). His argument is that

goods purchased by consumers seldom yield a single,

well-defined service; instead, each good may be viewed

as a collection of attributes, each of which gives the

consumer some benefit (or disbenefit). Thus, preference

is defined over those characteristics embodied in a good

rather than over the good itself. The analysis focuses

attention on the attributes of assets rather than on

the assets per se. This requires the assumption that

utility depends only on the characteristics. With k

characteristics, Ck,

U ¼ f ðWÞ ¼ g Cl; . . . ;Ckð Þ

where U andW represent utility and wealth. Modeling

too few characteristics will yield apparently

false empirical results. Clearly, the benefits of

this approach increase as the number of assets rises

relative to the number of characteristics. The objects

of choice are the characteristics C1,. . ., Ck.

In portfolio theory, these are taken to be payoff

(return) and risk.

At Markowitz’s suggestion, when dealing

with choice among risky assets, payoff is measured

as the expected return of the distribution of returns,

and risk by the standard deviation of returns. Apart

from minor exceptions (Ziemba and Vickson 1975),

this pair of characteristics form a complete description

of assets which is consistent with expected utility

theory in only two cases: assets have normal

distributions, or investors have quadratic utility of

wealth functions. The adequacy of these assumptions

has been investigated by a number of authors

(e.g., Borch 1969; Feldstein 1969; Tsiang 1972).

Although returns have been found to be non-normal

and the quadratic utility has a number of objectionable

features (not least diminishing marginal utility

of wealth for high wealth), several authors

demonstrate approximation results that are sufficient

for mean-variance analysis (Samuelson 1970; Ohlson

1975; Levy and Markowitz 1979).

A number of authors, including Markowitz (1959),

consider alternatives to the variance and suggest the use

of the semi-variance. This suggestion has been extended

into workable portfolio selection rules. Fama (1971)

and Tsiang (1973) have argued the usefulness of the

semi-interquartile range as a measure of risk. Kraus

and Litzenberger (1976) and others have examined

the effect of preferences defined in terms of the third

moment, which allows investor choice in terms of

skewness. Kallberg and Ziemba (1979, 1983) show

that risk aversion preferences are sufficient to

determine optimal portfolio choice if assets have

normally distributed returns whatever the form of the

assumed, concave, utility function.

Solution of Portfolio Selection Model

In the absence of short sales restrictions, (1) can be

rewritten as

Minimize L ¼ 1
2
x0Vx� l1 x0r � rp

� 	

� l2 x0e� 1ð Þ (3)

The first-order conditions are

Vx ¼ l1r þ l2e

which shows that, for any efficient x, there is a linear

relation between expected returns r and their

covariances, Vx.

Solving for x:

x ¼ l1V
�1r þ l2V

�1e ¼ V�1 r e½ �A�1 rp1
� �0

(4)

where

A ¼
a b

b c

� �

¼
r0V�1r r0V�1e

r0V�1e e0V�1e

� �

Substituting (4) into the definition of portfolio

variance, x0Vx, yields

Vp ¼ rp1
� �

A�1 rp1
� �0

; and

Sp ¼
cr2p � 2brp þ a

ac� b2

" #1 2=
(5)
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where Vp and Sp represent portfolio variance and

standard deviation, respectively. This defines

the efficient set, which is a hyperbola in

mean/standard-deviation space (or a parabola

in mean/variance space). The minimum risk is at

Smin ¼ c1 2= and rmin ¼ b c= (both strictly positive).

Rational risk averse investors will hold portfolios

lying on this boundary with r � rmin.

Each efficient portfolio, p, has an orthogonal

portfolio z (i.e., such that Cov(rp, rz) ¼ 0) with return

rz ¼ a� brp
� 	

b� crp
� 	

Using this, the efficient set degenerates into the

straight line tangent to the hyperbola at p which has

intercept rz,

r ¼ rz þ ls (6)

where r and s represent vectors of the expected return

and risks of efficient portfolios, and l ¼ rp � rz
� 	

Sp


can be interpreted as the additional expected return per

unit of risk. This is known as the Sharpe ratio

(Sharpe 1966, 1994). Equation (6) shows a two-fund

separation theorem, such that linear combinations of

only two portfolios are sufficient to describe the

entire efficient set.

Under the additional assumptions of homogeneous

beliefs (so that all investors perceive the same

parameters) and equilibrium, (6) becomes the Capital

Market Line. The Security Market Line (i.e.,

the relationship between expected returns and

systematic risk or b), which is the outcome of the

Capital Asset Pricing Model (CAPM), can be derived

by pre-multiplying (4) by V and simplifying using the

definitions of Vp and rz:

r ¼ rzeþ rp � rz
� 	

b (7)

where b ¼ Vx Vp



. If it exists, the risk-free rate of

interest may be substituted for rz (definitionally,

the risk-free return will be uncorrelated with the

return on all risky assets). Equation (7) then becomes

the original CAPM in which expected return is

calculated as the risk-free rate plus a risk premium

(measured in terms of an asset’s covariance with the

market portfolio). The CAPM forms one of

the cornerstones of modern finance theory and is not

appropriately addressed here. Discussion of the CAPM

can be found in Huang and Litzenberger (1988)

and Ferson (1995), while systematic fundamental and

seasonal violations of the theory are presented in

Ziemba (1994) and Keim and Ziemba (1999).

Short Selling

The assumption that assets may be sold short

(i.e., xi < 0) is justified when the model is used to

derive analytical results for the portfolio problem.

Also, when considering equilibrium (e.g., the

CAPM), none of the short selling constraints

should be binding (because in aggregate, short selling

must net out to zero). However, significant short

selling restrictions do face investors in most real

markets. These restrictions may be in the form of

absolute prohibition, the extra cost of deposits to

back short selling or self imposed controls designed

to limit potential losses.

The set of quadratic programming problems to

find the efficient frontier when short sales are ruled

out can be formulated as either minimizing

the portfolio risk for a specified sequence of portfolio

returns (rp) by repeatedly solving (1) and (2), or

maximizing the weighted sum of portfolio risk and

return for a chosen range of risk-return tradeoff

parameters (m) by repeatedly solving (8) as below.

This latter approach has the advantages of locating

only points on the efficient frontier and, for

evenly spaced increments in m, locating more points

on the efficient frontier where its curvature is greatest:

Maximize a ¼ x0Vx� m x0r � rp
� 	

Subject to x � 0

x0e ¼ 1
(8)

When short sales are permitted, a position (long or

short) is taken in every asset, while when short

selling is ruled out, the solution involves long

positions in only about 10% of the available assets.

When short selling is permitted, about half the assets

are required to be sold short, often in large amounts,

and sometimes in amounts exceeding the initial

value of the investment portfolio. Indeed, this is the

main activity of ‘short seller’ funds.

In contrast, most models based on portfolio theory,

in particular the CAPM, ignore short selling
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constraints (Markowitz 1983, 1987). This change is

consistent with the development of equilibrium

models for which institutional restrictions are

inappropriate (and if imposed would not be binding).

However, when short selling is permitted, the number

of asset return observations is required to exceed

the number of assets, while complementary slackness

means that this condition need not be met when

short selling is ruled out. Computational procedures

to solve mean-variance models with various types of

constraints, and the optimal combination of safe and

risky assets for various utility functions are discussed

by Ziemba et al. (1974).

Estimation Problems

The model (1) requires estimates of r and V for

the period during which the portfolio is to be held.

This estimation problem has been given

relatively little attention, and many authors, both

practitioners and academics, have used historical

values as if they were precise estimates of future

values. However, Hodges and Brealey (1973), among

others, demonstrate the benefits obtained from

even slight improvements on historical data.

Estimation risk can be allowed for either by

using different methods to forecast asset returns,

variances and covariances, which are then used in

place of the historical values in the portfolio model,

or by using the historical values in a modified

portfolio selection technique (Bawa et al. 1979).

Since the portfolio selection model of Markowitz

takes these estimates as parametric, there is no

theoretical guidance on the estimation method and

a variety of methods have been proposed to provide

the estimates. The single index market model of

Sharpe (1963) has been widely applied in the

literature to forecast the covariance matrix.

Originally proposed to reduce the computation

required by the full model, it assumes a linear

relation between stock returns and some measure of

the market, r ¼ aþ b0m ¼ « (for market indexm and

residuals «). This uses historical estimates of the

means and variances. However, the implied

covariance matrix is V1 ¼ umbb
0 þ V, where um is

the variance of the index, b is a column vector of

slope coefficients from regressing each asset on

the market index and V is a diagonal matrix of the

variances of the residuals from each of these

regressions. A number of studies have found

that models based on the single index model

outperform those based on the full historical

method (e.g., Board and Sutcliffe 1994).

The overall mean method, first proposed by

Elton and Gruber (1973), is based on the finding

that, although historical estimates of means are

satisfactory, data are typically not stable enough to

allow accurate estimation of the N N � 1ð Þ 2=
covariance terms. The crudest solution is to assume

that the correlations between all pairs of assets

expected in the next period are equal to the mean of

all the historic correlations. An estimate of V can then

be derived from this. Elton et al. (1978) compared the

overall mean method of forecasting the covariance

matrix with forecasts made using historical values,

and four alternative versions of the single index

model. They concluded that the overall mean model

was clearly superior. A simplified procedure for

estimating the overall mean correlation appears in

Aneja et al. (1989).

Statisticians have shown increasing interest in

Bayesian methods (Hodges 1976) and particularly

James-Stein estimators (Efron and Morris 1975,

1977; Judge and Bock 1978; Morris 1983). The

intuition behind this approach is that returns that

are far from the norm have a higher chance of

containing measurement error than those close to it.

Thus, estimates of returns, based on individual share

data, are cross-sectionally ‘shrunk’ towards a global

estimate of expected returns which is based on

all the data. Although these estimators have unusual

properties, they are generally expected to perform well

in large samples.

Jorion (1985, 1986) examined the performance

of Bayes-Stein estimation using both simulated

and small real data sets and concluded that the

Bayes-Stein approach outperformed the use of

historical estimates of returns and the covariance

matrix. However, Jorion (1991) found that the index

model outperformed Stein and historical models.

Board and Sutcliffe (1994) applied these and other

methods to large data sets. They found that, in contrast

to earlier studies, the relative performance of Bayes-

Stein was mixed. While it produced reasonable

estimates of the mean returns vector, there

were superior methods (e.g., use of the overall mean)

for estimating the covariance matrix when short sales
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were permitted. They also found that, when

short sales were prohibited, actual portfolio

performance was clearly improved, although there was

little to choose between the various estimationmethods.

An alternative approach is to try to control for errors

in the parameter estimates by imposing

additional constraints on (1). Clearly, ex-ante

the solution to such a model cannot dominate (1),

however, ex-post, dominance might emerge (i.e.,

what seems, in advance, to be an inferior portfolio

might actually perform better than others).

The argument is that adding constraints to (1) to

impose lower bounds (i.e., prohibiting short sales)

and/or upper bounds (forcing diversification) can be

used as an ad hoc method of avoiding the worst

effects of estimation risk. Of course, extreme,

but possibly desirable, corner solutions will also

be excluded by this technique. Cohen and Pogue

(1967) imposed upper bounds of 2.5% on any

asset. Board and Sutcliffe (1988) studied the

effects of placing upper bounds on the investment

proportions, which may be interpreted as a response

to estimation risk. Using historical forecasts of

returns and the covariance matrix, and with short

sales excluded, they found that forcing diversification

leads to improved actual performance over the

unconstrained model. Hensel and Turner (1998) have

also studied adjusting the inputs and outputs to

improve portfolio performance.

Chopra and Ziemba (1993), following the work of

Kallberg and Ziemba (1984), showed that errors in

the mean values have a much greater effect than

errors in the variances, which are in turn more

important than errors in the covariances. Their

simulations show errors of the order of 20 to 2 to 1.

This quantifies the earlier findings and stresses the

importance of having good estimates of the asset

means.

Another approach is to use fundamental analysis

to provide external information to modify the

estimates (Hodges and Brealey 1973). Clearly,

among the simplest external data to add are the

seasonal (e.g., turn of the year, and month and

weekend) effects that have been found in most stock

markets around the world. Incorporation of these

into the parameter estimates can substantially

improve the performance of the model. Ziemba

(1994) demonstrated the benefits of factor models to

estimate the mean returns.

Concluding Remarks

Only the single period mean-variance portfolio

theory model has been considered here. Most of

the extensions to multi-period models assume

frictionless capital markets, which require the solution

of a sequence of instantaneous mean-variancemodels in

which the existence of transactions costs adds

enormously to the complexity of the problem. Surveys

covering dynamic portfolio theory appear in

Constantinides and Malliaris (1995), Ziemba

and Vickson (1975), Huang and Litzenberger (1988),

and Ingersoll (1987); see also Ziemba and

Mulvey (1998).

See

▶Banking

▶ Financial Engineering

▶ Financial Markets

▶Linear Programming

▶Nonlinear Programming

▶Quadratic Programming
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Point of sale.

See

▶Retailing

Postoptimal Analysis

The study of how a solution changes with respect to

(usually) small changes in the problem’s data. In

particular, this term is applied to the sensitivity

analysis and parametric analysis of a solution to

a linear-programming problem.

See

▶Linear Programming

▶ Parametric Programming

▶ Sensitivity Analysis

Posynomial Programming

▶Geometric Programming

Power Model

▶Learning Curves

PP

▶ Parametric Programming

PPB(S)

Planning-programming-budgeting (system).

See
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▶Military Operations Research

Practice of Operations Research and
Management Science

Hugh J. Miser

Farmington, CT, USA

Introduction

The practice of OR/MS here will mean using the

appropriate models, tools, techniques, and craft

skills of these sciences to understand the problems of

people/machine/nature systems with a view toward

ameliorating these problems, possibly by new

understandings, new decisions, new procedures, new

structures, or new policies. Such practice calls for

a suitable form of professionalism in dealing not only

with the phenomena of the problem situation but also

with the persons with relevant responsibilities, as well

as other parties at interest.

OR/MS as a Science

Following Ravetz (1971), science in general may be

described as “craft work operating on intellectually

constructed objects,” each object defining a class.

Scientific work is thus aimed at establishing new

properties of these objects and verifying that they

reflect the reality of the classes of phenomena that
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they represent (Miser 1993). This description has four

implications:

1. The intellectual objects – that OR/MS workers

usually call models – are created by the

imagination, informed by earlier knowledge of the

phenomena and objects that have described them

successfully, as well as innovative ideas or new

evidence from reality.

2. There is a continuing reference to the phenomena of

reality.

3. Scientific inquiry then becomes the search for new

properties of the classes both by manipulating the

objects and seeking new evidence from reality as

a basis for revising them.

4. The new properties deduced from the objects – or

models – must then be compared with the

appropriate aspects of the phenomena of reality.

It is essential to observe that the different

sciences – such as physics, biology, or OR/MS – are

distinguished, not by their methods, techniques, or

models (many of which are widely shared among the

sciences), but by the portions of reality in which they

are undertaking to understand, explain, and solve

problems (Kemeny 1959).

Within the framework established by this

conception, it is convenient to distinguish three

classes of problems, depending on their goals:

to paraphrase Ravetz (1971), scientific problems

(where the goal of the work is to establish new

properties of the objects of inquiry, and the ultimate

function is to achieve knowledge in its field); technical

problems (those where the function to be performed

specifies the problem); and practical problems

(where the goal of the task is to serve or achieve

some human purpose and the problem is brought into

being by recognizing a problem situation in which

some aspect of human welfare should be improved).

Against this background, practice can be recognized

as the activity centered on practical problems, even

while noting that to solve a practical problem often

involves solving technical problems, and, when the

basic phenomena underlying a problem situation are

not understood, solving scientific problems in order to

have the models needed for understanding the practical

problem. It is also important to note that this view of

science includes work on all three classes of problems

within the conception of science as a whole. (For a more

extended summary of Ravetz’s view of science, see

Miser and Quade 1988).

The Context of OR/MS

Since sciences are distinguished by their fields of

inquiry, it is important to describe this context for

OR/MS if it is to be differentiated from other

sciences. In this endeavor the OR/MS community has

not reached any sort of brief consensus, so what is said

here must be regarded as a personal view, based in part

on the literature and in part on personal experience.

While OR/MS deals with systems involving people,

elements of nature, and machines (where this last term

is intended to include not only artifacts but also laws,

standard procedures, common behaviors, and social

structures and customs), attempts to take the concept

of system beyond this primitive statement as the basis

for describing the context of OR/MS have, however,

not proved fruitful.

The concept of an action program (Boothroyd 1978)

is more useful: a function, operation, or response that is

related to and given coherence by a human objective,

need, or problem, together with the system of people,

equipment, portion of nature, organizational elements,

and management or social structure involved.

It is easy to see that an element in an action program

may also have membership in other action programs; for

example, an executive in one may also play a role in

many others, as may also be the case for a major facility

or organization, such as a large corporation or a

government. Too, an action program may produce

effects on other action programs, both through the cross

memberships of elements and by the direct impacts of

what it does. (For a more extended summary of

Boothroyd’s concept, see Miser and Quade 1988).

The practice of OR/MS can then be described as

the activity that brings the knowledge and skills of

the science of OR/MS to bear on the problems of

action programs (Miser 1997). While this

brief description will suffice as a basis for the

argument here, the reader should be aware of the facts

that, while it is quite general and covers most of what

OR/MS does in practice now, it not only may not cover

all of today’s activities of practice but also may become

even more incomplete with the passage of time.

The Situations of Practice

While each situation in practice may properly be seen

as unique, it is nevertheless possible to describe one
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that contains elements central to most – if not all – of

practice, as follows.

An OR/MS analyst is often consulted when

someone with a suitable responsibility in an action

program discerns a problem situation that needs

improvement. While this responsible person may

have diagnosed the problem and even may have

a notion about a possible solution, it is commonly the

case that the forces actually yielding the source of

dissatisfaction lie buried deeply enough to make such

a diagnosis questionable, and the preconceived fix

inappropriate. Thus, typically it is best for the

analyst – or the team of analysts if the problem

situation is complex – to approach it with an open

mind, and aim to explore it thoroughly before

deducing its properties and using them to devise

a scheme for ameliorating its undesirable properties.

The analysts may be drawn from two sources:

1. There may be an analysis group inside the

organization or action program with which

the responsible problem-situation identifier – or

client – is associated.

2. Analysts may have to be drawn from outside this

organization or action program. In either case, there

is abundant experience to support the conclusion

that a successful outcome of the practice

engagement calls for creating a constructive

partnership between the analysis team and the

parties at interest in the problem situation, as will

be discussed in more detail later.

The Processes of Practice

Figure 1 offers a synoptic view of the elements that

may be included in a practice engagement that

proceeds from the general unease of a problem

situation to the implementation of some policy or

course of action and evaluates its effects. Since each

situation has its own unique properties, few OR/MS

practice engagements follow such a procedure exactly,

but it is a common experience for many – if not

most – of these elements to occur at some stage of

the work.

Formulation – The work begins with a thorough

exploration of the problem situation in which the

client and his/her action program cooperate.

The purpose is to formulate the problem to be

addressed, which commonly is quite different from

the one originally conceived by the client. Once this

is done, and the client has agreed with the analysis

team on the problem, it is possible to plan the work to

be done. This early work also identifies the values and

criteria that should inform the choice of what

eventually will be done to ameliorate the client’s

concerns, sets up the objectives to be sought by the

solution, and agrees with the client on the boundaries

and constraints that must be observed in devising it.

Usually this problem formulation step is one in

which the analysts take the lead and work through it

in informal cooperation with the client’s staff.

On occasion, however, it is best for a group

consisting of both analysts and members of the

client’s staff to work together somewhat more

formally toward a problem structure. To this end,

there are various types of methods (Rosenhead 1996)

that can be adapted to these situations. While the

results of such a problem-structuring activity are

usually a prelude to a more detailed analysis to

follow, it sometimes happens that the insights from

the group activity shared between the analysts and

the client’s staff are adequate to show what should be

done to ameliorate the problem situation.

Research – This stage extends the information-and

data-gathering that began in the formulation stage. The

findings that emerge from processing these results

allow the analysis team to identify, design, and

screen possible alternatives that may help with the

problem. Against this background, the analysis team

can build models capable of deducing the

consequences of adopting each of the alternatives

chosen for further investigation within the contexts of

possible future conditions.

Evaluation and Presentation –With estimates of the

consequences in hand, the analysts may compare – and

possibly rank – the alternatives against the criteria

chosen earlier in the analysis, plus any new ones that

may have emerged during the work. These findings

must then be presented to the client and other parties

at interest in a way that enables them not only to

appreciate the results but also have at least a broad

overview of the logic that produced them. These

understandings may then enable the client to adopt

a suitable policy or course of action.

Although the client, and not the analysts, must

decide on what to do and how to carry it out

effectively, experience shows that it is very important

for the analysis team, or at least analysts who
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understand and appreciate what was done, to work

cooperatively throughout the implementation stage,

as discussed later.

Variations

While it is possible to specify a core diagram of the

principal elements of OR/MS practice, it must

be admitted immediately that few, if any, such

engagements follow this outline exactly. Rather,

since each problem situation is different, the analysis

activity must be adapted to it. Thus, in studying a series

of cases, one sees variations like these:

– Instead of proceeding linearly from the top to the

bottom of Fig. 1, the work cycles from intermediate

stages back to earlier ones as the progress brings

new insights and fresh intermediate results that

may prompt reconsideration of the beginning

foundations of the work.

– Some work may be aimed more at fleshing out the

client’s understanding of his situation than

prompting him/her to change it significantly, so it

may stop at one of the intermediate stages.

– The relative effort expended in the various

stages may vary tremendously from case to

case: one case may have to expend its major

effort in just the information-and data-gathering

stage, after which what needs to be done may be

fairly apparent without much further analysis.

Another case may proceed fairly expeditiously

through the outline of Fig. 1 and then have

a very long and complicated period of work to

achieve what may appear to the outsider to be the

implementation of a relatively simple set of

proposals.

Initiation

Formulating the problem

Formulation

Values and

criteria

Objectives Boundaries and

constraints

Alternatives

Identifying, designing, and

screening the alternatives

Consequences

Building and using models

for predicting consequences

Forecasting

future

contexts

Comparing and ranking

alternatives

Communicating results

Evaluating the analysis

Decision and implementation

Evaluating the outcome

Research

Evaluation

and

presentation

Practice of Operations

Research and Management
Science, Fig. 1 Important
elements in an OR/MS
practice engagement that runs
from problem formulation
through research and
implementation to evaluating
the outcome (Source: Miser
and Quade (1988), p. 23;
reproduced by permission.)
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– In some cases an intermediate stage may dominate

the work, owing to such factors as technical

difficulty in devising proper models, major

uncertainties in forecasting future contexts,

complexities of the underlying situation, and so on.

In any case, the procedure specified here as the basis

for discussion must be regarded as one that has stitched

together the key elements that may enter OR/MS

practice to varying extents depending on the

peculiarities of the situation being studied.

The Importance of Following Through

The interest of the OR/MS professional, particularly if

academically oriented, may flag after the research

stage is completed and its results obtained. However,

experience shows strongly that to stop there is almost

always to waste the earlier effort. Two essential steps

must follow: effective communication of the results,

and cooperative aid in the implementation process.

Communication – This process, which may not be

as appealing to the analyst as the research that

preceded it, is nevertheless equally important and

deserves great care, since communicating the findings

inadequately can vitiate their potential effect, and thus

waste the earlier effort. In view of the importance of

this step in the OR/MS process, it is surprising that

there is no systematic literature describing the skills

needed and setting forth how they are best used

(for a brief exception see Miser 1985). The

discussion will be restricted to these points:

– Few clients will devote a large block of time to such

communications, so it is very important to work

very hard to condense the principal ideas and

findings into as economical a space as possible,

whether the form used is oral or written. For

example, a top executive may want the key

findings presented to him or her in a two-page

memorandum or a 20-min briefing. It is perhaps

surprising to the uninitiated to see how much

important information can be condensed into so

small a space, but only if great care is taken to

make the best use of it. Graphs and charts

accompanying the words can do much to aid this

condensation.

– To communicate effectively, the client’s

vocabulary must be used, with as few technical

terms introduced as possible.

– The whole must be focused on the interests of the

client or the audience; after a major study many

different groups may have to be addressed, and

when this is the case the communication

instruments must in each case be tailored to the

group in view.

– The analysts must be prepared to stand behind their

work and to discuss its implications, even those that

may go beyond what was done as part of the

analysis.

Implementation – It is clear that, if the findings of an

OR/MS practice engagement do not find their way into

some sort of changed reality, the work is ineffective.

Therefore, it is obviously important for the analysis to

consider the issue of eventual implementation

throughout the work, keeping these points in mind:

1. Since the setting in which the work is being done

has properties that will affect how change can

be achieved, it is important for the peculiarities of

this setting to be kept in mind from the beginning

of the analysis. For example, can possible

prospective changes be accommodated easily

within the existing structure, or will it need to be

changed significantly?

2. Since the settings in which OR/MS work is done are

so various, it is impossible to stipulate a standard

pattern for implementation work. This implies that

the findings of the analysis may have to include

a prospective implementation structure and

program for the decision makers to consider as

part of their judgment about the worth of the

findings.

3. If the analysis considers different programs of

action, the comparisons leading to a preferred

choice should consider the relative difficulties of

implementation as part of the analysis.

4. The history of analysis records that many well

developed and clearly desirable program proposals

failed to be implemented because the needed

resources either did not exist or could not be

made available. Therefore, in conceiving an

implementation program as part of the findings of

an OR/MS study, it is important to consider its

resource requirements, as they will almost surely

be an important issue to consider in whether or not

to adopt the findings and translate them into action.

No matter how thoroughly the client – or members

of his or her staff who participated in the

analysis – understand what was found and its
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prospective implementation, it is a common

experience that the implementation process demands

the continuing interest and cooperation of the analysis

team, or at least some member of it who is able to

follow through. The process of change invariably

brings up new problems and issues that, wrongly

handled, can vitiate the effects of what the original

implementation set out to do. Too, these new

problems may call for additional complementary

analysis that must take account of what was

done earlier.

This continuing involvement by analysts in the

implementation process may take a variety of forms,

ranging from occasional consultation to a continuing

direct involvement of a substantial effort over such

a long period of time as to make the implementation

involvement a more ambitious enterprise than the

original analysis (for an example illustrating this last

point, see, Mechling 1995).

The roles of the analysts during implementation

may include such activities as these:

1. Conducting supplementary analyses when

situations arise calling for such work.

2. Helping all concerned keep the goals of the

implementation program in sight. (It is all too easy

for staff members involved, all of whom have

personal in institutional goals in mind, to corrupt

what is being done sufficiently that the original

goals emerging from the analysis are vitiated.)

3. Proposing changes in the implementation strategy

when they are called for by changing circumstance

or the appearance of difficulties not foreseen in the

beginning.

4. Acting as an on-site agent of persuasion when those

directly involved in the implementation program

need to have its goals clarified.

In sum, since an effective implementation phase is

essential to the success of an OR/MS engagement,

analysts should give it as much analytic and

administrative importance and support as the analysis

phase itself. For further elaboration of these points

about implementation, see Tomlinson et al. (1985).

Outcome evaluation – It not infrequently happens

that the outcomes of implementations are sufficiently

clear to satisfy all concerned. Sometimes, however, in

situations complex enough to make the outcomes

unclear, it is necessary to conduct additional analysis

to estimate the effectiveness of the implemented

program or policy. The familiarity of the analysis

team with the situation gives it an advantage in

conducting such an analysis. However, to eliminate

what may appear to be the original analysis team’s

bias in favor of a good outcome, clients may prefer to

call in a new group to conduct such an outcome

evaluation.

The Relation Between Analyst and Client

Emerging from a close scrutiny of the relations

that should exist between analyst and client for

effective cooperation, Schön (1983) advocates

a “reflective contract” that works in this way:

“. . . in a reflective contract between practitioner and

client, the client does not agree to accept the

practitioner’s authority but to suspend disbelief in it.

He agrees to join the practitioner in inquiring into the

situation for which the client seeks help; to try to

understand what he is experiencing and to make that

understanding accessible to the practitioner; to confront

the practitionerwhen he does not understand or agree; to

test the practitioner’s competence by observing his

effectiveness and to make public his questions over

what should be counted as effectiveness; to pay for

services rendered and to appreciate competence

demonstrated. The practitioner agrees to deliver

competent performance to the limits of his capacity; to

help the client understand the meaning of the

professional’s advice and the rationale for his actions,

while at the same time he tries to learn the meanings his

actions have for the client; and to reflect on his own tacit

understanding when he needs to do so in order to play

his part in fulfilling the contract.”

Under this concept for OR/MS work, the client’s

obligation to share his experience and understanding of

the problem situation is often discharged by assigning

a member of his staff to work with the analysis team,

an arrangement that has many benefits, among which

these may be listed: it helps the analysis team identify

and gather the information that it needs as

a background and basis for its work; it helps the

analysts avoid foolish mistakes related to the client’s

operations; and it acts to keep the client informed of

what is emerging from the analysis, which often helps

to pre-sell the findings that eventually merge.

Since OR/MS practice may be viewed as a dialogue

between analyst and client related to the problem

situation and the problem from it that is eventually
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chosen for analysis, this arrangement serves as a useful

continuing conduit for this dialogue, beyond what can

be achieved with periodic progress meetings with the

client (Miser 1994).

Other practical arrangements between the analysis

team and the client to implement Schön’s concept of

a reflective contract must, of necessity, be evolved in

the light of the circumstances peculiar to each

engagement. An inhouse analysis group that has been

able to achieve a reflective contract with the

organization of which it is a part has a special

opportunity: it can often identify problem situations

that may not yet have been observed by executives in

the organization, and thus set to work on them before

they grow in size and importance.

How to Learn the Skills of Practice

The OR/MS community has, unfortunately, not

evolved a comprehensive epistemology of practice

and set it down in easily accessible literature that can

be used widely in training courses. Some first steps in

this direction for systems analysis, the large-scale

efforts that can be thought of as part of OR/MS

practice, are taken in Miser and Quade (1985,1988)

and Miser (1995); much of what they say can apply

equally to OR/MS as a whole. Thus, to learn the

needed scientific and craft skills, someone aiming for

an OR/MS career must pursue a tripartite program

assembled from a variety of sources.

The intellectual basis – The foundation of effective

OR/MS practice must be a thorough education in

mathematics, with special attention to probability and

statistics. Since by now certain models have become

associated with OR/MS (as any introductory college

textbook makes clear), these should be mastered as

well. And a broad view of science with knowledge of

other branches is also sure to be helpful.

Beyond a good mathematical and scientific

education, however, the potential practitioner must

not only be willing but also eager to learn from the

problem situation, from the people in it, and from the

representatives of other specialties, both practical and

intellectual, that may have to be called on to help. As

Schön’s concept makes clear, to undertake an

engagement in practice is to enter a multipartite

partnership, and the flow of information must reflect

this if the work is to be effective.

Since the action programs that OR/MS

practice deals with contain people as essential

elements, the analysts must know how to deal

effectively and sympathetically with them, since they

will enter the problem situation at many levels. In

sum, interpersonal skills are an important requisite of

good practice.

Familiarity with successful cases – There are by

now a great many published accounts of successful

cases of OR/MS practice. The journal Interfaces

specializes in presenting them, and since 1975

has been a treasure-house of such accounts, as well as

proven advice about the arts of practice. Assad et al.

(1992) accompany a selection of these cases with

valuable commentary. For a much wider view, one

can consult the “Applications Oriented” section of

the International Abstracts in Operations Research,

the comprehensive abstract journal that has been

published since 1961; it will not only exhibit the

wide variety of practice being undertaken throughout

the world but also identify the many journals and books

in which cases appear. Rivett (1994) offers a broad

introduction to successful practice based on a lifetime

of varied experience.

Apprenticeship – Since the OR/MS community has

yet to achieve a widely agreed and centrally

documented view of its epistemology of practice, the

best way for a person to observe and learn the myriad

craft skills of practice is to work with an accomplished

and skillful analysis team – in sum, to serve an

apprenticeship (Miser and Quade 1985, 1988, offer

a substantial body of additional information relating

to the craft skills needed for effective OR/MS).

Examples of Good Practice

Since 1975, Interfaces has published the finalist papers

in the Franz Edelman competition for the best papers

on practice each year; there are five or more finalists in

each competition. These accounts are an excellent

central source of examples of good practice; in recent

years tapes of the finalist presentations have also been

made available.

There are many other sources of such work – too

many to list here; however, both Operations Research

and the Journal of the Operational Research Society

contain one or more examples of good practice in each

issue, as do the sources mentioned earlier.
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See

▶Decision Making and Decision Analysis

▶Ethics in the Practice of Operations Research

▶ Field Analysis

▶ Implementation of OR/MS in the Public Sector

▶ Problem Structuring Methods

▶ Systems Analysis
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Precedence Diagramming

A graphic analysis of a project plan in which the

nodes are the work activities (or tasks) and are

connected by arrows. Relationships among tasks

are designated as start-to-start, start-to-finish, and

finish-to-finish, which eliminates the use of dummy

arrows.

See

▶Network Planning

Predictive Model

Amodel used to predict the future course of events and

as an aid to decision making.

See

▶Decision Problem

▶Descriptive Model

▶Mathematical Model

▶Model

▶Normative Model

▶ Prescriptive Model

Preemption

Concept having to do with how priorities are treated.

In queueing theory, this means that an arriving higher

priority customer pushes a lower one out of service

because the newcomer has higher priority; service of

the preempted customer later can either continue from

the point of its interruption (preemptive resume queue

discipline) or start totally anew. In goal programming

problem, it is a statement that stipulates the ordering of

the goals, so that a solution that satisfies the priority

k goal is always to be preferred to solutions that satisfy

the lower priority goals k + 1,....
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Introduction

Preference theory studies the fundamental aspects of

individual choice behavior, such as how to identify and

quantify an individual’s preferences over a set of

alternatives and how to construct appropriate

preference representation functions for decision

making. An important feature of preference theory is

that it is based on rigorous axioms which characterize

individual’s choice behavior. These preference axioms

are essential for establishing preference representation

functions, and provide the rationale for the quantitative

analysis of preference. Preference theory provides the

foundation for economics and the decision sciences.

A basic topic of microeconomics is the study of

consumer preferences and choices (Kreps 1990). In

decision analysis and operations research, knowledge

about the decision maker’s preference is necessary to

establish objective (or preference) functions that are

used for evaluating alternatives. Different decision

makers usually have different preference structures,

which may imply different objective functions for

them. Preference studies can also provide insights

into complex decision situations and guidance for

simplifying decision problems. The basic categories

of preference studies can be divided into

characterizations of preferences under conditions of

certainty or risk and over alternatives described by

a single attribute or by multiple attributes. This

article begins with the introduction of basic

preference relations and then discusses preference

representation under certainty and under risk.

A preference representation function under certainty

will be referred to as a value function, where as

a preference representation function under risk will

be referred to as a utility function.

Basic Preference Relations

Preference theory is primarily concerned with

properties of a binary preference relation >p on

a choice set X, where X could be a set of commodity

bundles, decision alternatives, or monetary gambles.

For example, an individual might be presented with

a pair of alternatives, say x and y (e.g., two cars), and

asked how they compare (e.g., do you prefer x or y?).

If the individual says that x is preferred to y, then write

x >p y, where >p means strict preference. If the

individual states that he or she is indifferent between

x and y, then this preference is represented as x 	p y.

Alternatively, define 	p as the absence of strict

preference, i.e., not x >p y and not y >p x. If

it is not the case that y >p x, then write x � p y,

where � p represents a weak preference

(or preference-indifference) relation. Also define

�p as the union of strict preference >p and

indifference 	p i.e., both x >p y and x 	p y.

Preference studies begin with some basic

assumptions (or axioms) of individual choice

behavior. First, it seems reasonable to assume that an

individual can state preference over a pair of

alternatives without contradiction, i.e., the individual

cannot strictly prefer x to y and y to x simultaneously.

This leads to the following definition for preference

asymmetry: preference is asymmetric if there is no pair

x and y in X such that x >p y and y >p x.

Asymmetry can be viewed as a criterion of

preference consistency. Furthermore, if’ an individual

makes the judgment that x is preferred to y, then he or

she should be able to place any other alternative z

somewhere on the ordinal scale determined by the

following: either better than y, or worse than x, or

both. Formally, define negative transitivity by

saying that preferences are negatively transitive if
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given x >p y in X and any third element z in X, it

follows that either x >p z or z >p y, or both.

If the preference relation >p is asymmetric and

negatively transitive, then it is called a weak order.

The weak order assumption implies some desirable

properties of a preference ordering, and is a basic

assumption in many preference studies. If the

preference relation >p is a weak order, then the

associated indifference and weak preference

relationships are well behaved. The following results

summarize some of these.

If strict preference >p is a weak order, then

1. strict preference>p is transitive (if x>p y and y>p z,

then x >p z);

2. indifference	 p is transitive, reflexive (x	p x for all

x), and symmetric (x 	p y implies y 	p x);

3. exactly one of x >p y, y >p x, x 	p y holds for each

pair x and y; and

4. weak preference �p is transitive and complete (for

a pair x and y, either x �p y or y �p x).

Thus, an individual whose preferences can be

represented by a weak order can rank all alternatives

considered in a unique order. Further discussions of the

properties of binary preference relations are presented

in Fishburn (1970, Chapter 2) and Kreps (1990,

Chapter 2).

Preference Representation Under Certainty

If strict preference >p on X is a weak order, then there

exists a numeric representation of preference,

a real-valued function v on X such that

x >p y if and only if vðxÞ > vðyÞ;

for all x and y in X (Fishburn 1970). A preference

representation function v under certainty is often

called a value function (Keeney and Raiffa 1976).

A value function is said to be order-preserving since

the values v(x), v(y), . . . ordered by > are consistent

with the preference order of x, y, . . ., under >p. Thus,

any monotonic transformations of v will be

order-preserving. As a result, the units of v have no

particular meaning.

It may be desirable to consider a “strength of

preference” notion that involves comparisons of

preference differences between pairs of alternatives.

To do so requires more restrictive preference

assumptions, including that of a weak order over

preferences between exchanges of pairs of

alternatives (Krantz et al. 1971, Chapter 4). These

axioms imply the existence of a real-valued function

v on x such that, for allw, x, y, and z inX, the difference

in the strength of preference between w and x exceeds

the difference between y and z if and only if

vðwÞ � vðxÞ > vðyÞ � vðzÞ:

Furthermore, v is unique up to a positive linear

transformation, i.e., if v’ also satisfies the above

difference inequality, then it must follow that

v’(x) ¼ a v(x) + b, where a (>0) and b are constants.

This means that v provides an interval scale of

measurement, such that v is often called a measurable

value function to distinguish it from an

order-preserving value function.

For multi-attribute decision problems,

X ¼ X1;X2 . . . ;Xn, where n is the number of attributes

and an element x ¼ x1; x2; . . . ; xnð Þ in X represents an

alternative. A multi-attribute value function can be

written as v(x1; x2; . . . ; xn). Using some preference

independence conditions, the multi-attribute value

model can be simplified.

The subset Y of attributes in X is said to be

preferentially independent of its complementary set �Y

if preferences for levels of these attributes Y do not

depend on the fixed levels of the complementary

attributes �Y. Attributes X1;X2; . . . ;Xn, are mutually

preferentially independent if every subset of these

attributes is preferentially independent of its

complementary set.

A multi-attribute value function v(x1; x2; . . . ; xn)

n � 3, has the following additive form

vðx1; x2; . . . ; xnÞ ¼
Xn

i¼1

viðxiÞ; (1)

where vi is a value function over Xi if and only if the

attributes are mutually preferentially independent

(Keeney and Raiffa 1976; Krantz et al. 1971). When

v is bounded, it may be more convenient to scale V

such that each of the single-attribute value functions

ranges from zero to one, leading to the following form

of the additive value function:

vðx1; x2; . . . ; xnÞ ¼
Xn

i¼1

wiviðxiÞ; (2)

Preference Theory 1157 P

P



where v and vi are scaled from zero to one, and the wi

are positive scaling constants (usually called weights)

summing to one. The assessment of models (1) and (2)

are discussed in Keeney and Raiffa (1976, Chapter 3).

Dyer and Sarin (1979) proposed multi-attribute

measurable value functions based on the concept of

preference differences between alternatives that are

much easier to assess than the additive form based on

preferential independence. In addition to preferential

independence, they considered some additional

conditions that, loosely speaking, require that

the decision maker’s comparisons of preference

differences between pairs of alternatives that differ in

the levels of only a subset of the attributes do not

depend on the fixed levels of the other attributes.

These conditions allow the decomposition of

a multi-attribute value model into additive and

multiplicative forms. This development also provides

a link between the additive value function and the

multi-attribute utility model.

Preference Representation Under Risk

Perhaps the most significant contribution to the area of

preference representation for risky options (i.e., lotteries

or gambles) was the formalization of expected utility

theory by von Neumann and Morgenstern (1947). This

development has been refined by a number of

researchers and is most commonly presented in terms

of three basic axioms (Fishburn 1970).

Let P be a convex set of simple probability

distributions or lotteries {X, Y, Z, . . .} on a nonempty

set X of outcomes. (X, Y and Z will be used to refer to

probability distributions and random variables

interchangeably.) For lotteries X, Y, Z in P and all

l, 0 < l < 1, the expected utility axioms are:

A1. (Ordering) > p is a weak order;

A2. (Independence) If X >p Y; then lX þ ð1� lÞ
Z >p lY þ ð1� lÞZ for all Z in P;

A3. (Continuity) If X >p Y>p Z; then there exist some

0 < a < 1 and 0 < b < 1 such that aXþ
ð1� aÞZ >p Y>p bX þ ð1� bÞZ.
The von Neumann-Morgenstern expected utility

theory asserts that the above axioms hold if and only

if there exists a real-valued function u such that for all

X, Y in P,

X >p Y; if and only if E u Xð Þ½ � > E u Yð Þ½ �;

where the expectation is taken over the probability

distribution of a lottery. Moreover, such a u is unique

up to a positive linear transformation.

The expected utility model can also be used to

characterize an individual’s risk attitude (Keeney and

Raiffa 1976, Chapter 4). If an individual’s utility

function is concave, linear, or convex, then the

individual is risk averse, risk neutral, or risk seeking,

respectively. The von Neumann-Morgenstern theory

of risky choice presumes that the probabilities of the

outcomes of lotteries are provided to the decision

maker. Savage (1954) extended the theory of risk

choice to allow for the simultaneous development of

subjective probabilities for outcomes and for a utility

function u defined over those outcomes.

As a normative theory, the expected utility model has

played a major role in the prescriptive analysis of

decision problems. However, for descriptive purposes,

the assumptions of this theory have been challenged by

empirical studies (Kahneman and Tversky 1979). Some

of these empirical studies demonstrate that subjects may

choose alternatives that imply a violation of the

independence axiom (A2). Prospect theory (Kahneman

and Tversky 1979; Wakker 2010) attempts to explain

these discrepancies. One implication of A2 is that the

expected utility model is linear in probabilities.

A number of contributions have been made by

relaxing the independence axiom and developing some

nonlinear utility models to accommodate actual

decision behavior (Fishburn 1988).

For the case of multi-attribute decisions

under risk, when X ¼ X1 � X2 � . . .� Xn in a von

Neumann-Morgenstern utility model and the

decision maker’s preferences are consistent with

some additional independence conditions, then

uðx1; x2; . . . ; xnÞ; can be decomposed into additive,

multiplicative, and other well-structured forms that

simplify assessment.

The attributes X1;X2; . . . ;Xn are said to be additive

independent if preferences over lotteries on

X1;X2; . . . ;Xn depend only on the marginal

probabilities assigned to individual attribute levels,

but not on the joint probabilities assigned to two or

more attribute levels.

A multi-attribute utility function uðx1; x2; . . . ; xnÞ;
can be decomposed as

uðx1; x2; . . . ; xnÞ ¼
Xn

i¼1

wiuiðxiÞ; (3)
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if and only if the additive independence condition

holds, where ui is a single-attribute function over Xi

scaled from 0 to 1, and the wi are positive scaling

constants (or weights) summing to one. The additive

model (3) has been widely used in practice.

If the decision maker’s preferences are not

consistent with the additive independence condition,

a weaker independence condition that leads to

a multiplicative preference representation may be

satisfied.

An attribute Xi is said to be utility independent of its

complementary attributes if preferences over lotteries

with different levels of Xi do not depend on the fixed

levels of the remaining attributes. Attributes

X1;X2; . . . ;Xn are mutually utility independent if all

proper subsets of these attributes are utility

independent of their complementary subsets.

A multi-attribute utility function uðx1; x2; . . . ; xnÞ
can have the multiplicative form

1þ kuðx1; x2; . . . ; xnÞ ¼
Yn

i¼1
1þ kkiuiðxiÞ½ �; (4)

if and only if the attributes X1;X2; . . . ;Xn are mutually

utility independent, where ui is a single-attribute

function over Xi scaled from 0 to 1, the ki are positive

scaling constants, and k is an additional scaling

constant. For approaches to the assessment of model

(4) and other extensions of multi-attribute utility

theory, see Keeney and Raiffa (1976).

The research of multi-attribute utility theory has been

advanced from both theoretical and behavioral

considerations. In particular, the effort of behavioral

research tries to improve the descriptive power of multi-

attribute utility models by incorporating psychological

factors, such as aspiration level, goal and reference

effect, and loss aversion (Tversky and Kahneman

1991). Various decision support systems have also been

developed for multi-attribute decision making in the

past decades, and applications of the theory and models

have been expended to many new areas, including

e-commence, public policy and environmental

decisions, geographic information systems, and

engineering (Dyer et al. 1992; Wallenius et al. 2008).

See

▶Choice Theory

▶Decision Analysis

▶Multi-attribute Utility Theory

▶ Prospect Theory

▶Utility Theory
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Prescriptive Model

A model that attempts to describe the best or optimal

solution of a man/machine system. For a decision

problem, such a model is used as an aid in selecting

the best alternative solution.

See

▶Decision Problem

▶Descriptive Model

▶Mathematical Model

▶Normative Model

Prescriptive Model 1159 P

P

http://dx.doi.org/10.1007/978-1-4419-1153-7_112
http://dx.doi.org/10.1007/978-1-4419-1153-7_215
http://dx.doi.org/10.1007/978-1-4419-1153-7_644
http://dx.doi.org/10.1007/978-1-4419-1153-7_200657
http://dx.doi.org/10.1007/978-1-4419-1153-7_1096
http://dx.doi.org/10.1007/978-1-4419-1153-7_200123
http://dx.doi.org/10.1007/978-1-4419-1153-7_200134
http://dx.doi.org/10.1007/978-1-4419-1153-7_200442
http://dx.doi.org/10.1007/978-1-4419-1153-7_200531


Prices

In the simplex method, for a nonbasic variable xj, the

price is defined as dj¼ cj� zj or dj¼ zj� cj, where cj is

the variable’s original cost coefficient and zj ¼ pAj,

with Aj the variable’s original column of coefficients

and p the multiplier (pricing) vector of the current

basis. The dj is termed the reduced or relative cost. It

is the difference between the direct cost cj and indirect

cost zj. The dj indicates how much the objective

function would change per unit change in the value

of xj. The dj for the variables in the basic feasible

solution are equal to zero.

See

▶Devex Pricing

▶Opportunity Cost

▶ Simplex Method (Algorithm)

Pricing Multipliers

▶Multiplier Vector

Pricing Out

In the simplex method, the calculation of the prices

associated with the current basic solution.

See

▶ Prices

▶ Simplex Method (Algorithm)

Pricing Vector

▶Multiplier Vector

▶ Prices

▶ Simplex Method (Algorithm)

Prim’s Algorithm

A procedure for finding a minimum spanning tree in

a network. The method starts from any node and

connects it to the node nearest to it. Then, for those

nodes that are now connected, the unconnected

node that is closest to one of the nodes in the

connected set is found and connected to these closest

nodes. The process continues until all nodes are

connected. Ties are broken arbitrarily.

See

▶Greedy Algorithm

▶Kruskal’s Algorithm

▶Minimum Spanning Tree Problem

Primal Problem

The primal problem is usually taken to be the original

linear-programming problem under investigation.

See

▶Dual Linear-Programming Problem

Primal-Dual Algorithm

An adaptation of the simplex method that starts with

a solution to the dual problem and systematically

solves a restricted portion of the primal problem

while improving the solution to the dual. At each

step, a new restricted primal is defined and the

process continues until solutions to the original

primal and dual problems are obtained.

See

▶ Simplex Method (Algorithm)
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Primal-Dual Linear-Programming
Problems

▶Dual Linear-Programming Problem

▶Linear Programming

Principle of Optimality

Condition that Richard Bellman derived for dynamic

programming: “An optimal policy has the property that

whatever the initial state and initial decision are, the

remaining decisions must constitute an optimal policy

with regard to the state resulting from the first

decision.” (Bellman 1957, Chap. III.3)

See

▶Bellman Optimality Equation

▶Dynamic Programming
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Prisoner’s Dilemma

A two-person game where neither player knows the

other’s play (action or decision) a priori. Imagine

a situation where two criminals are isolated from

each other and the police interrogator offers each

the following deal: if the prisoner confesses and the

confession leads to the conviction of the other prisoner,

he goes free and the other prisoner gets 10 years in

prison. However, if both confess, they each get 5 years.

If neither confesses, there is enough evidence to

convict both on a lesser offense and they both get one

year. If there is no trust, then both will confess,

whereas if there is complete trust, neither will. Since

complete trust is rare, when the game is played one

time, players almost always defect. When the game is

played repeatedly and there is a chance for a long-term

reward, wary cooperation with a willingness to punish

defection is the best strategy. This game illustrates

many social and business contracts and is important

for understanding group behavior, both cheating and

cooperation. It has also been used in studying political

and military strategies.

See

▶Game Theory
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Probabilistic Algorithm

An algorithm that employs probabilistic elements

(as opposed to a deterministic algorithm).

See

▶Genetic Algorithms

▶Randomized Algorithm

Probabilistic Programming

A mathematical programming problem in which some

or all of the data are random variables.

See

▶Chance-Constrained Programming

▶ Stochastic Programming

Probability Density Function (PDF)

When the derivative f(x) of a cumulative probability

distribution function F(x) exists, it is called the density

or probability density function.

Probability Density Function (PDF) 1161 P

P

http://dx.doi.org/10.1007/978-1-4419-1153-7_200158
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_200007
http://dx.doi.org/10.1007/978-1-4419-1153-7_264
http://dx.doi.org/10.1007/978-1-4419-1153-7_372
http://dx.doi.org/10.1007/978-1-4419-1153-7_200261
http://dx.doi.org/10.1007/978-1-4419-1153-7_200994
http://dx.doi.org/10.1007/978-1-4419-1153-7_200034
http://dx.doi.org/10.1007/978-1-4419-1153-7_1005


Probability Distribution

Term used (loosely) to refer to a function describing the

probabilistic behavior of a random variable; could refer

to the probability measure, the cumulative distribution

function (CDF), the probability mass function

(PMF) for discrete random variables, or the probability

density function (PDF) for continuous-valued random

variables.

Probability Generating Function

For a non-negative integer-valued random variableXwith

probability mass function pj ¼ Pr{X ¼ j}, the

probability generating function (often just called

the generating function, and known in other fields as

the z-transform) is given by PðzÞ ¼ E½zX� ¼P
1

j¼0

zjpj:

The definition can be extended to the setting where

X can take all integer values (i.e., including all

negative values).

Probability Integral Transformation
Method

One of the primary methods for generating random

variates for Monte Carlo or discrete-event simulation,

using the cumulative distribution function (CDF)

commonly known as the inverse transform method.

See

▶ Inverse Transform Method

▶Random Number Generators

▶Random Variates

▶ Simulation of Stochastic Discrete-Event Systems

Probability Mass Function (PMF)

Function giving the probability of taking on each of the

possible discrete values.

Problem Solving

The process of deciding on actions aimed at achieving

a goal. Initially, the goal is defined to represent a

solution to a problem. During the reasoning process,

subgoals are formed, and problem solving becomes

recursive.

See

▶Artificial Intelligence

▶Decision Analysis

▶Decision Making and Decision Analysis

▶Decision Support Systems (DSS)

▶Expert Systems

Problem Structuring Methods

Jonathan Rosenhead

The London School of Economics and Political

Science, London, UK

Introduction

Problem structuring methods (PSMs) are a broad

group of model-based problem handling approaches

whose purpose is to assist in the structuring of

problems rather than directly to derive a solution.

They are participative and interactive in character,

and normally operate with groups rather than

individual clients. In principle they offer OR/MS

access to a range of problem situations for

which more classical OR techniques have limited

applicability. The most widely adopted of these

methods are Soft Systems Methodology, the Strategic

Choice Approach, and Strategic Options Development

and Analysis (SODA).

PSMs developed out of, or at least intertwined with,

a critique of the restricted scope of traditional OR

techniques. From the 1970s there developed an active

debate over claims for the objectivity of OR/MS

models, and about the limitations imposed on OR/MS

practice by its concentration on well-defined problems.

Significant critical contributions were made by
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Rittel and Webber (1973), Ackoff (1979), Checkland

(1981), Rosenhead and Thunhurst (1982), Eden

(1982), Rosenhead (1986), Jackson (1987), Flood and

Jackson (1991), Mingers (1992). The general thrust

was that standard OR techniques assume that relevant

factors, constraints, and objective function are both

established in advance and consensual; commonly

the function of the technique is to determine

an optimal setting of the controllable variables.

Consistently with this, standard formulations of

OR methodology were seen to assume a single

uncontested representation of the problematic

situation under consideration.

Critics have recognized that OR’s practice has been

considerably more diverse than this, and in particular is

far from dominated by considerations of optimality;

however, the available tools were held to offer little

appropriate assistance outside this area. The

methodological framework on offer was equally seen

as giving scant guidance to analysts confronting less

well-behaved circumstances. There are situations in

which intangibles, uncertainty, and value diversity as

well as complexity are crucial presences. Skilled

operational researchers have been able to make

progress in such situations, but only by using tacit

skills which are not part of the OR/MS canon. Yet the

more socially important the decision situation, the

more likely it is that such features will come to

dominate.

Out of this critique of the shortcomings of

traditional OR/MS a family of alternative methods

was developed, with both common features and also

differences of focus. When their similarities were

recognized the label used to describe them as a group

was Problem Structuring Methods (though other

names such as Soft OR are also in currency). The

over-arching emphasis which the methods share is on

helping groups of decision-makers to identify what

problem they could usefully work on together, and to

assist them in making progress with that task. There is

no assumption that the decision-makers share

a common perspective, so that they are perhaps

more accurately described as stakeholders. Nor are

these methods to any significant degree quantitative.

This is because the approaches are all based on

the participation of those who have the problem.

If mathematics were to be the language of the

discourse, some (perhaps many) of the participants

would be disempowered, or at least prevented from

enunciating perceptions important to them which

could not be expressed in that format, or only by

a distortion which changed their content.

Each of the methods within the PSM family consists

of a number of technical procedures linked together

through social processes. i.e., unlike the algorithmic

approaches that have tended to dominate OR/MS, the

consultant does not identify and then input some

starting conditions from which the ‘answer’ will be

produced without further human intervention. What

happens is that at various points the groups discuss

the implications of the analysis to date, and on that

basis (and aided by a facilitator) decide how to proceed

further, or maybe whether enough progress has been

made that the stakeholders can proceed without further

analytic assistance. For clarity one should perhaps

describe PSMs as ‘methodologies’ rather than

‘methods’, taking a methodology as an assembly of

technical and process elements.

In short these methods bear very little resemblance

to those developed within traditional OR/MS.

The one key unifying element is the central use

of cause-effect models. Each of them uses formal

models to represent the problematic situation

perceived by the decision-making group, in order

to summarise, coordinate and advance their

understanding of the situation they confront. The

types of model used are specific to each method, but

none of them are ‘computable’. Indeed quantification

has little if any role in any of them. The concepts that

are in play are more usually verbal, and the operations

on them are mostly performed by the group,

who through discussion transform the models based

on their changing understanding. The outcomes of

a successful application of a PSM will be a group of

decision-makers confident enough to take action;

a group of decision-makers who have gained a deeper

insight into their problem area; and a group of

decision-makers whose shared experience has led to

improved relations with each other.

Types of Problem

Before going on to outline the PSM field, it should be

helpful to address the apparent paradox of two very

different types of methodology, sometimes called

‘hard’ (i.e., traditional) and ‘soft’ (PSMs), each

addressing problems of complexity in an analytic

Problem Structuring Methods 1163 P

P



manner. One simple explanation lies in the quite wide

recognition of two substantially different types of

problem situation. Rittel and Webber’s (1973)

characterization of them as tame vs. wicked has

achieved wide currency, as has Schon’s (1987)

extended metaphor of problems of the swamp

contrasted with those of the high ground. Tame

problems (on the high ground) have precise,

unproblematic formulations permitting powerful

analyses of great technical sophistication. Wicked

problems (in the swamp) have multiple stakeholders,

intangible objectives, key uncertainties, contested or

doubtful formulations, etc. In the latter there is

no unified representation of the issue or issues that

can be established ahead of analysis. Rather,

a representation or representations of the problematic

situation which participants find helpful may be

a major product of the analysis.

It follows from this diagnosis that methods that are

designed to be effective in handling tame problems

are likely to be largely irrelevant for wicked ones.

(And vice versa of course.) For the latter type of

problem situation, methods that assist argumentation,

promote negotiation or generate mutual understanding

are needed, rather than those that reliably and

efficiently identify an optimum. Methods that can

only start once there is an agreed problem (but have

no methods for reaching that agreement) are liable to

ignore or dismiss alternative perspectives and their

contrary formulations.

The much remarked difficulty which OR/MS

encountered from the late 1960s in securing access to

more strategic levels of decision-making may be

attributed at least in part to this factor. As Schon

observed, problems of major social importance are

commonly located in “swamp” conditions. Attempts

to address these “messes” using techniques and

methodology developed for handling well-structured

problems constituted inappropriate technology

transfer. Where solutions based on these methods

were adopted they were vulnerable to being savaged

in practice by the ‘wicked’ parts of the problem

situation that had been excluded. More commonly

however such representations were recognised

as an overly thin representation of the rich and

complex world that managers and decision-makers

inhabit – with the result that OR/MS was confined to

the tame (less strategic, more repetitive, operational)

aspects of organisational life.

Characteristics of Alternative Methods

Problem structuring methods constitute a family

of approaches offering appropriate support to decision-

making under these less pacified circumstances. They

were developed separately by individual innovators or

teams of innovators, and each emphasizes or is

organized around particular aspects of the wicked

problem environment. Indeed each had been

independently developed before a recognition arose of

their family resemblance. (Subsequent to that

recognition, however, many of the principal

originators entered into a constructive dialogue with

each other, in which a certain amount of mutual

borrowing of particular elements took place.: For

example, distinctive post-it ‘Ovals’, originated for use

within SODA, became widely used by other methods.)

In other words the new methods grew out of practice.

However their similarities are by nomeans coincidental.

Many leading developers of PSMs had been active

participants in the critique of traditional methods, and

their innovations were designed to remedy particular

inadequacies of the conventional repertoire in handling

wicked problems. So at that fundamental level therewas

a common theoretical base.

PSM methods have differing rationales, purposes,

technical apparatus, etc. Some of these distinctive

attributes will be indicated below. However it will be

useful, first, to identify the features which they hold in

common.

Rosenhead (1989) has provided one formulation,

based on inverting the characteristics of the

conventional OR/MS paradigm.

PSMs

• Seek solutions which satisfice on separate

dimensions (rather than trade-off onto a single

dimension to facilitate optimization);

• Integrate hard and soft data with social judgments

(reducing data greed with its problems of quality

and distortion);

• Produce transparent models which clarify

any conflicts (rather than basing a scientific

depoliticization on an assumed consensus);

• Treat people as subjects actively engaged in the

decision-making process (rather than as passive

objects to be modelled or disregarded);

• Facilitate planning from the bottom-up (and not as

a process driven by the abstract objectives of

a hierarchically located decision-maker); and
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• Accept that some uncertainty is irreducible and aim

to preserve options (rather than base current and

future decisions on a notionally certain future).

The methods clearly assume a decision-making

quite different from that of conventional OR/MS

applications, and this environment places particular

requirements on the interface with the client group.

Where consensual values cannot be assumed,

there will be a need to achieve agreement among

a range of stakeholders representing different

interests and/or holding different perspectives. It

follows from this that a PSM should be able to

accommodate multiple alternative perspectives,

often in a group situation in which holders of those

viewpoints are present and participating. From

this it follows that for a method to be helpful it must

operate iteratively and interactively; as participants

internalize and adjust to each others’ contributions,

new formulations of the problematic situation will

emerge which in turn feed new modelling and

structuring activity. And since participants have

different though overlapping organizational

agendas, and also because of the prevalence of

uncertainty, any resulting consensus on action is

likely to constitute a partial rather than

a comprehensive solution to the problems present

within the situation under discussion.

These social requirements on a PSM have

implications for the technical repertoire that it can

deploy. Its handling of complexity must not obstruct

lay participation — which points to graphical

(rather than, for example, algebraic) representations.

The existence of multiple perspectives invalidates the

search for an optimum; the need is rather for

systematic exploration of the solution space. To elicit

meaningful judgments from lay participants, abstract

continuous variables need to be eschewed in favour of

discrete concrete alternatives that can be compared.

And, given the need to avoid illusions of precision

when confronting uncertainties, possibilities will be

more helpful than probabilities, and alternative

scenarios will enrich discussion that forecasts might

close down.

These outline specifications for a more appropriate

decision-aiding technology eliminate much of the

scope for advanced mathematics, probability theory,

complex algorithms. They identify, rather, an

alternative approach employing representation of

relationships, symbolic manipulation, and limited

quantification within a systematic framework. These

are decidedly low-tech methods: some of them have no

software support, and even those that do can be

operated in manual mode. The lack of mathematics

should not however be taken for lack of rigour. These

are methods with their own rigour, which is qualitative

in nature.

The Methods

There is no definitive list of problem structuring

methods. However to give identity to the field it is

appropriate to provide some demarcation criteria.

PSMs

• Can be distinguished from traditional OR methods

by the six criteria listed in the previous section.

• Can be distinguished from non-OR modes of

working with groups, such as Organizational

Development, by the core element of an explicit

modelling of cause-effect relationships.

• Can be demarcated from other OR approaches

which purport to tackle messy, ambitious

problems (e.g., the Analytic Hierarchy Process) by

PSMs’ transparency of method, restricted

mathematization, and focus on supporting

judgment rather than representing it.

These limits are imprecise and arguable; and there

is scope for approaches developed for other or broader

purposes (e.g., spreadsheet models) to be used in

a similar spirit. Ackoff’s Interactive Planning is close

in both spirit and intent (see Ackoff 1999) but

nevertheless has never been regarded as falling

within PSMs. (Rather than changing this de facto if

not de jure circumstance, it will not be discussed

further.) Methods that have some degree of similarity

to PSMs but also significant differences are

(for coherence) best regarded as falling outside the

category. These include multi-criteria decision

methods, outranking methods such as PROMETHEE

and ELECTRE, decision conferencing, scenario

planning, system dynamics (in some of its versions)

and Viable System Diagnosis. Other parts of the PSM

perimeter are bordered by the focus group approach,

and by Rapid Rural Appraisal and other participative

third world development approaches (for which see

Rosenhead and Mingers 2001, pp. 345-7).

A brief introduction to the better established PSMs

follows (Rosenhead and Mingers 2001):
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Strategic Options Development and

Analysis (SODA)

This method is described fully in Eden and

Ackermann (1998). It is a general purpose problem

identification method that uses cognitive mapping as

a modelling device. The concepts that individuals use

to make sense of their problematic situation, and the

causal links thought to exist between those concepts,

are elicited in individual interviews and recorded in

map form. The maps drawn from separate interviews

with stakeholders are subsequently merged into

a single ‘strategic map’ through pinning together

concepts common to more than one of them. The

strategic map, commonly structured into clusters,

provides the framework for discussion in a workshop

of the group of map ‘owners’, at which a facilitator

uses the map to guide participants towards

commitment to a portfolio of actions. An alternative

and more rapid version known as the Oval Mapping

Technique operates in workshopmode throughout, and

can in principle achieve results in a 1 day session. The

participants commit their concepts to ‘Ovals’

(specially designed PostIt notes), which the facilitator

with the participation of workshop members organises

into an agreed structure. This then serves as the

strategic map for the discussion that follows.

Soft Systems Methodology (SSM)

Soft Systems Methodology is a general method for

system design or redesign, which aims to generate

debate about alternative system modifications. It

adopts a systems theoretic framework for exploring

the nature of problem situations, and how purposeful

action to change them might be agreed when there are

different perceptions of the situation based on

contrasting world views. A systematic exploration

of the world views of stakeholders leads to the

generation of definitions of alternative systems, the

investigation of which is expected to be of interest

from at least one of those world views. Each of these

abstract ‘root definitions’ is expanded into the

component activities which would be necessary for

it to operate successfully. This generates a range of

contrasting alternatives for the modification of the

system, which are used to generate debate about

which changes are both culturally feasible and

systemically desirable. Full descriptions of the

method are available in Checkland (1981, 2006,

1990).

Strategic Choice Approach (SCA)

Strategic Choice is a planning approach centred on the

management of uncertainty and commitment in

strategic situations. Typically a Strategic Choice

engagement takes place entirely in workshop format,

with no backroom work by the consultants. There are

four modes of analysis:

• Shaping – in which different areas for choice are

elicited from workshop members. A subset of these

is selected as a problem focus by reference to their

urgency, importance and inter-connectedness

• Designing – here the options for action for each of

the decision areas within the problem focus are

identified, as well as any incompatibilities

between option selections in different decision

areas. The feasible decision schemes (consisting

of one option choice within each decision area)

are derived

• Comparing – criteria for choice, often

non-quantitative, are agreed by the group. These

are used first in satisficing mode to establish

a working shortlist of schemes; pairwise

comparisons of shortlisted schemes are made,

establishing on each criterion a range of relative

advantage between the two schemes. This may be

repeated for different pairs. Commonly significant

uncertainties are revealed by this process. Other

uncertainties will usually have been identified in

previous modes

• Choosing – bearing in mind the surfaced

uncertainties, a ‘progress package’ is agreed

consisting of partial commitments to be made at

this stage, explorations to be launched to reduce

key uncertainties, contingency plans, and

a timetable for later choices.

Facilitators assist with the deployment of the

transparent tools available within the method, and in

guiding the, possibly recursive, switching between

modes. A detailed account of the method is available

in Friend and Hickling (2004).

Robustness Analysis

Robustness Analysis is another approach for use where

uncertainty is an important issue. It focuses on one

specific strategy for managing that uncertainty - that

of maintaining useful flexibility. The focus of

the approach is on initial commitments rather than on

future plans for the system. The flexibility of an initial

commitment relates to its compatibility with a range of
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acceptable or desirable future states of the system. It is

this flexibility left by an initial commitment that is

operationalised as a decision-making criterion by the

concept of the robustness. This is defined as a ratio

where the denominator is the number of states whose

performance at the planning horizon is ‘good enough’;

the numerator is the number of those states

which would remain accessible if the commitment

under consideration were to be made. Robustness

analysis can be conducted with either a single or

multiple futures employed to estimate system

performance; and it can be used in conventional

or interactive mode. In the latter, participants and

analysts assess both the compatibility of initial

commitments with possible future configurations

of the system, and the performance of each

configuration in feasible future environments. This

enables them to compare the flexibility maintained by

alternative initial commitments. It is in this latter mode

that Robustness Analysis qualifies as a PSM, though

even when used in non-participatory mode it maintains

an accessible transparency. For more detail, see

Rosenhead and Mingers (2001).

Drama theory

Drama Theory draws on two earlier approaches,

metagames and hypergames. It is an interactive

method of analysing co-operation and conflict among

multiple actors. A model is built from perceptions of

the options available to the various actors, and how

they are rated. Drama theory looks for the ‘dilemmas’

presented to the actors within this model of the

situation. Each dilemma is a change point, tending to

cause an actor to feel specific emotions and to produce

rational arguments by which the model itself is

redefined. When and only when such successive

redefinitions have eliminated all dilemmas is the

actors’ joint problem fully resolved. Analysts

commonly work with one of the parties, helping it

to be more effective in the rational-emotional

process of dramatic resolution. For more detail, see

Howard (1999).

Applications of PSMs

As can be inferred from their remit to structure wicked

problems, the problem situations to which PSMs have

been applied have a wide variety. A good source for

practical applications of the SCA is Chapter 13 of

Friend and Hickling 2004, pp. 298-360. An overview

of applications across the range of PSMs is provided

byMingers and Rosenhead (2004), which is the review

article for a special issue of the European Journal

of Operational Research on applications of PSMs

(Vidal 2004).

A diverse record of successful applications is an

indicator of wide relevance, but a disadvantage

when it comes to providing a coherent summary.

A literature survey covering the period up to

1998 (summarized in Mingers and Rosenhead 2004)

categorises 51 reported applications under the

headings general organizational/information systems/

technology, resources, planning/health services/

general research. Two comments seem appropriate:

(i) it is plausible to assume that reported cases are the

tip of the iceberg; and (ii) 1998 was relatively early in

the development of interest in PSMs.

The categories supplied in the previous paragraph

are so broad as to give little flavour of the reality of

PSM practice. To provide that, some short summaries

of projects using PSMs that are described in Mingers

and Rosenhead (2004) may be of assistance

• Organisational restructuring at Shell. SSM used to

provide the basis of a reconfiguration of a central

department of Shell International, in a series of

workshops with senior managers

• Models to support a claim for damages. SODA

(as well as System Dynamics) used to support

a legal case by the Canadian-based multinational

Bombardier against Trans Manche Link, for

damages resulting from delays in processing

designs for the Channel Tunnel shuttle wagons

• Supporting a tenants cooperative. This was an

engagement over several years to help

a cooperative of residents of an ex-mining village

to manage their own housing. Elements of various

PSMs, as well as other methods (e.g., spreadsheet

financial models) were used to support

strategic decisions, and help the cooperative gain

confidence

• IT strategy for a supermarket chain. This study

reported to the joint chief executives of the

leading British supermarket chain Sainsbury’s,

and worked with a 16-strong senior management

task force. SODA, SSM and SCA were all used at

different stages, to identify IT systems that would

support business objectives
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• Planning for a street festival. The largest European

street festival (Notting Hill Carnival) was a victim

of its own success, with issues of security,

congestion, cultural integrity etc. Working

with representatives of the carnivalists, local

government, transport and emergency services,

and arts organisations, SSM and SCA were used to

devise escape strategies

• National level planning in Venezuela. A version

of SCA has been used at various levels of the

state service in Venezuela, up to and including

the Cabinet, to agree on strategic decisions in

a range of areas

• Local pediatric care strategy. Health care managers

and specialists in an Inner London area with some

500,000 population needed to reduce the number of

inpatient paediatric care units. SCA was used in

a series of workshops to produce agreement

between representatives of all stakeholders on

(i) how many units should remain (ii) where they

should be; and (iii) what consequential changes

were needed to other aspects of the health service.

This list indicates the reach of these methods, from

grass-roots community groups through senior

corporate management issues to the highest levels of

national government. The content of many if not all

of the projects would have rendered them inaccessible

to conventional OR.

Using PSMs

Working with Clients

PSM practitioners have to be able to manage not

only the complexity of substantive subject matter but

also the dynamics of interaction among workshop

participants. The dual roles of analyst and of

facilitator of group process place heavy demands on

the consultant, who is called upon to deploy a wider

range of skills than in conventional operational

research practice. When operating as facilitator she

has the responsibilities of ensuring that all voices are

heard (not suppressed by psychological or hierarchical

effects); that apparent agreement is not based on

mutual misunderstanding of key terms; and that the

precious (and usually expensive) opportunity

presented by the gathering of key stakeholders

is exploited in a timely and effective manner.

(This experience is hard to simulate ‘off line’, and

training should, if possible, include at least a brief

experience of practical apprenticeship.) It is useful to

have two facilitators with differentiated roles. One of

them is likely to be heavily engaged, at times leading

the discussion, at others concentrating acutely on the

content of the discourse and also on the interpersonal

issues that it reveals. The second facilitator can be

principally involved with keeping a record, perhaps

by direct computer input, of the evolving model. But

he will also be able to intervene with insights that his

colleague might otherwise miss through following the

scent too closely.

PSMs are based on the working assumption that the

client is not a sole decision-maker but a client system.

Organisational politics is thus an integral aspect of

project process, to which the consultants must be

sensitive if they are not to be derailed. In order to

achieve an effective process and worthwhile outcome

it is important that all relevant stakeholders are

represented. This requirement may bump up against

numerical constraints – most practitioners cite a group

size in the range 6–10 as desirable, and 12 should be

the absolute maximum for a coherent group

conversation to take place. There may be pressures to

add people beyond this number for reasons of

organisational politics, or to exclude certain clearly

relevant stakeholders. These issues of the design of

the group are ones that the consultant must address.

To guide the workshop with the consent and indeed

respect of the group, the consultant must be, and be

seen to be, disinterested – that is, not operating on

behalf of any sectional interest. Where political

tensions are active, this can require both sensitivity

and agility from the facilitator. In inter-organisational

working (for which the multi-perspective approach of

PSMs makes them particularly appropriate), the

question of access to the problem domain potentially

acquires an additional twist. Initial contacts with one of

the organisational actors will be necessary to gain

entry to the problem forum - but that entry route may

itself occasion doubts among other stakeholders as to

the impartiality of the facilitation that follows.

Selecting Methods

There is no established process for the selection of

method or methods to use in a particular engagement.

This is often done on an intuitive basis – where

uncertainties are seen as particularly salient in the

problematic situation, Strategic Choice or Robustness
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Analysis are plausible candidate methods; an evident

conflict situation may suggest drama theory; and so on.

There is of course also a choice to be made between

using a traditional method or a PSM of any kind.

The most widely cited and discussed framework for

this higher-level choice is due to Jackson and Keys

(1984). Their ‘system of systems methodologies’

proposed two dimensions on which to describe the

context of a problem. These were the degree of

agreement among participants – which can be unitary

(consensus), pluralistic (several viewpoints but

agreement possible), or coercive (disagreements

resolved through exercise of power); and the nature

of the problem - simple or complex. This yielded six

cells into which OR/systems methods were placed.

For example, traditional hard OR was most suitable

for simple–unitary contexts, System Dynamics for

complex–unitary contexts, and Problem Structuring

Methods for complex–pluralistic contexts.

However the criticism has been advanced that this

framework makes the (unwarranted) assumption that

the nature of the problem context can unerringly be

identified in advance. Commonly, however, this will

not be the case in the messy situations that PSMs are

appropriate for. It may well be that only after the

investigation is underway will the view to be taken of

the problem context become clear. Furthermore, since

the use of PSMs is a form of organised finding out, it is

quite possible that this process will change the initial

understanding of the problem context. For example,

what was initially perceived by the relevant actors to

be pluralist in character may, as a result of the

intervention be reperceived as falling elsewhere on

the spectrum of degree of agreement.

Mixing Methods

Another feature undermining the simplicity of the

Jackson and Keys scheme is the fact that many PSMs

consist of a loosely articulated set of processes

(part technical, part social), with considerable

freedom to switch phase or to recycle. They therefore

lend themselves to creative re-assembly, in which

different methods or parts of different methods are

used in conjunction. Before theoretical discussion of

this potential took off in the 1990’s it was already a de

facto reality in practice. The most high profile of many

applications was the Sainsbury’s case study (Ormerod

1996) already mentioned above, in which SODA, SSM

and SCA were employed on a single engagement.

In fact several of the cases summarised in the

Applications section of this article involved the use

of parts or wholes of PSMs in combination, or indeed

the joint use of a PSM with a more conventional OR

technique.

This ongoing practice was systematised and given

a theoretical base by multimethodology (Mingers

and Gill 1997). This advocates seeking to combine

together a range of methods, perhaps across the

hard/soft divide, in order to deal effectively and

appropriately with the qualitatively different analytic

challenges which a single problem situation may pose.

Based on the work of Habermas (1984, 1987), any

real-world problem situation can be seen as

a complex mix of the material, the social, and the

personal. Different methods are appropriate for

analysing and making progress in these different

strata. Thus material or physical characteristics can

be modelled using traditional OR techniques, but

social conventions, politics and power, and personal

beliefs and values need quite different, qualitative

approaches.

Any practical project goes through several

stages - understanding and appreciating the situation,

analysing information, assessing different options, and

acting to bring about change. Moving from one phase

to another offers an opportunity to transfer, based on

the understanding achieved up to that point, to

a different level (say from the material to the social)

and to a corresponding type of analysis. The

appropriate use of varied methods allows the project

to evolve creatively, rather than pursuing the

methodology adopted at its start, regardless of the

understanding which is progressively developed.

These are complementary arguments for combining

together different PSMs, and indeed PSMs with other

methods. Multimethodology facilitates a more varied

palette, to match the developing richness of problem

understanding.

Software and Other Technology

Several established PSMs have associated software:

examples include STRAD (for Strategic Choice) and

Decision Explorer (for SODA). These packages

perform a variety of functions. They may display and

re-organize concepts and their inter-relationships;

identify a feasible range of options for action; elicit

preferences using paired comparisons; compute simple

quantitative attributes of options derived from the
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current problem structure, and so on. They may also

perform a variety of roles in the project, from technical

assistance to the facilitator between group sessions,

through enabling individual participants to pursue

solo investigations, to the provision of an online

Group Decision Support System. The use of the

software during group sessions undoubtedly has an

effect on group dynamics, focusing attention and

giving a degree of control to whoever is in charge of

inputting data or of changing the visual display. For

this reason some leading practitioners prefer not to

employ computers during the actual workshop

sessions. In SODA, however, the computer display of

sections of strategic maps is used deliberately in order

to influence the group conversation. The computer

model (i.e., map) is deployed as a ‘facilitative

device’, so that group members will more easily

accept and absorb concepts that are new to them.

A concept that is advanced by another group member

might provoke resistance – but one which whose

presentation is neutrally framed by the computer may

be easier to accommodate to.

The distinctive technology of PSMs is low- rather

than high-tech. Ongoing models and other notes

on deliberations are recoded on A1 flipchart sheets on

the meeting room walls. Oval ‘postit’ notes are used to

capture concepts in a way which facilitates

re-structuring of model relationships during the

session. At the end of a workshop it is normal for

these traces to be photographed, and then emailed to

participants. This visual record is a vivid reminder not

only of the outcome of a workshop, but also of the

process by which it was reached.

Implementation

A PSM workshop should leave time at the end for the

group to agree an implementation strategy. If it is an

intermediate workshop with others to follow, this

process will constitute the allocation of

responsibilities to group members (including the

facilitators) to pursue clarification or uncertainty

reduction activities that have been revealed as

advantageous, so that the following meeting can take

off from an improved position. With some PSMs the

intervening work may consist of model development

by the consultants – e.g., producing revised SSM ‘root

definitions’; in SODA reflecting the discussion in

redrawn maps; and in SCA carrying out explorations

to reduce relevant uncertainties. At what is expected to

be a final workshop, where some conclusions have

been agreed, the implementation strategy needs to be

articulated and bought into by the key players. This

will require a thorough discussion to identify the tasks

(including for example a dissemination strategy)

necessary for sustainable action to take place, and to

specify responsibilities for these.

The experience within a PSM workshop, when it is

working well, is frequently intense and the sense of

release and satisfaction when a breakthrough is made

can be palpable. Negotiated accommodations arrived

at in this way can be creative escapes from apparently

irresolvable tangles. However this almost cathartic

experience is not transferable to non-participants.

Generally only a part of the client system will be

present at the workshop, and those not present may

be reluctant to take its outputs on trust. Indeed it is

more likely than not that those who can actually set

the wheels in motion have not been members of

the workshop. A report in conventional form

which presents the case for the decisions arrived

at in linear fashion the may be needed. For work

within a single hierarchically structured organisation,

top-down authority may carry the outputs of

a PSM-based process towards implementation. In the

case of inter-organisational work the situation is more

complex, and the generation of acceptance among

the various organisational constituencies can be

problematic. It is clearly advisable for these problems

of multiple acceptance to be discussed by the group,

and to inform the implementation strategy.

Concluding Remarks

The progress of Problem Structuring Methods - in

development and sophistication of methods, in

applications, and in geographic spread - since they

were recognised as a category with strong family

resemblances has been fairly uninterrupted. There is

one exception: the United States. The development of

PSMs has been virtually ignored by the US OR/MS

community. This was pointed out in an unprecedented

letter to ORMS Today (Ackerman et al. 2009) signed

by 45 academics from 11 countries and four

continents. They cited as a strong contributory factor

the systematic exclusion of papers on this topic from
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US-based academic journals. An article in the same

issue (Mingers 2009) explored the phenomenon in

greater depth. For a further analysis of the difference

in treatment of PSMs between the U.S. and the U.K.,

see Paucar-Caceres (2011).

In much of the rest of the world, PSMs have effected

a breakout from the well developed but relatively

confined arena of technocratic solutions to

consensually defined problems occupied by OR’s

traditional methods. This outward movement has

brought decision-support modelling in touch with

a range of other methods and practices designed to

help groups make progress with their problems. It has

been suggested elsewhere (Rosenhead and Mingers

2001) that large group methods, development

planning methods and community operational

research are among the areas from which PSMs can

learn, and to which PSMs can contribute.

The presence of Community OR (Midgley and

Ochoa-Arias 2004) in this list is due to its natural fit

with PSMs. Community OR is an analytic practice

aimed at extending the customers of OR to include

disadvantaged and non-hierarchical groups. With few

resources, many of traditional OR’s resource

allocation tools are irrelevant. Furthermore the

weak are perhaps disproportionately confronted with

‘wicked’, less well-structured problems; and the

bottom-up nature of the PSM approach seems

appropriate for the defined clientele. Its transparent

modelling approach and group orientation does not

present as many obstacles to engagement as would

traditional OR’s more mathematical approaches. No

doubt these are among the reasons for the relatively

high penetration of PSMs in this area.

There is now a substantial record of achievement for

PSMs. There have been a wide variety of different types

of use, both in context and in content. Surveys have

shown there to be a good measure of user satisfaction.

And there is an exciting range of possible further

developments which appear to be reachable from the

base that has already been achieved.

See

▶Community OR

▶ Practice of Operations Research and

Management Science

▶Robustness Analysis

▶ Soft Systems Methodology

▶ Strategic Choice Approach (SCA)

▶ Strategic Options Development and Analysis

(SODA)

▶ System Dynamics

▶Wicked Problems

References

Ackerman, F., Bawden, R., et al. (2009). The case for soft or
letter to the editor. ORMS Today, 36, 20–21.

Ackoff, R. L. (1979). The future of operational research
is past. Journal of the Operational Research Society,

30, 93–104.
Ackoff, R. L. (1981). The art and science of mess management.

Interfaces, 11, 20–26.
Ackoff, R. L. (1999). Re-creating the corporation: A design of

organization for the 21st century. New York: Oxford
University Press.

Checkland, P. B. (1981). Systems thinking systems practice.
Chichester: Wiley.

Checkland, P., & Poulter, J. (2006). Learning for action:

A short definitive account of soft systems methodology, and

its use for practitioners teachers and students. Chichester:
Wiley.

Checkland, P., & Scholes, J. (1990). Soft systems methodology in
practice. Chichester: Wiley.

Eden, C. (1982). Problem construction and the influence of OR.
Interfaces, 12, 50–60.

Eden, C., & Ackermann, F. (1998). Making strategy: The

journey of strategic management. London: Sage.
Flood, R. L., & Jackson,M. C. (1991).Creative problem solving:

Total systems intervention. Chichester: Wiley.
Friend, J., & Hickling, A. (2004). Planning under pressure: The

strategic choice approach (3rd ed.). Oxford: Elsevier.
Habermas, J. (1984). The theory of communicative action.

Vol. 1: Reason and the rationalization of society. London:
Heinemann.

Habermas, J. (1987). The theory of communicative action.

Vol. 2: Lifeworld and system: A critique of functionalist

reason. London: Heinemann.
Howard, N. (1999). Confrontation analysis: How to win

operations other than war, CCRP. Washington, DC:
Department of Defense.

Jackson, M. C. (1987). Present positions and future prospects in
management science. Omega, 15, 455–466.

Jackson, M. C., & Keys, P. (1984). Towards a system of systems
methodologies. Journal of the Operational Research Society,
35, 473–486.

Midgley, G., & Ochoa-Arias, A. E. (Eds.). (2004). Community
operational research: OR and systems thinking for

community development. New York: Kluwer.
Mingers, J. (1992). Recent developments in critical management

science. Journal of the Operational Research Society, 43,
1–10.

Problem Structuring Methods 1171 P

P

http://dx.doi.org/10.1007/978-1-4419-1153-7_1177
http://dx.doi.org/10.1007/978-1-4419-1153-7_782
http://dx.doi.org/10.1007/978-1-4419-1153-7_782
http://dx.doi.org/10.1007/978-1-4419-1153-7_200722
http://dx.doi.org/10.1007/978-1-4419-1153-7_971
http://dx.doi.org/10.1007/978-1-4419-1153-7_200816
http://dx.doi.org/10.1007/978-1-4419-1153-7_200817
http://dx.doi.org/10.1007/978-1-4419-1153-7_200817
http://dx.doi.org/10.1007/978-1-4419-1153-7_1030
http://dx.doi.org/10.1007/978-1-4419-1153-7_200919


Mingers, J. (2009). Taming hard problems with soft O.R. – ‘Soft’
methodologies tackle messy problems that traditional O.R.
can’t touch, so why isn’t it promoted in the U.S.? ORMS

Today, 36, 48–53.
Mingers, J., & Gill, A. (Eds.). (1997). Multimethodology: The

theory and practice of combining management science

methodologies. Chichester: Wiley.
Mingers, J., & Rosenhead, J. (2004). Problem structuring

methods in action. European Journal Operational

Research, 152, 530–554.
Ormerod, R. J. (1996). Information systems strategy

development at sainsbury’s supermarkets using “Soft”
ORC. Interfaces, 26, 102–130.

Paucar-Caceres, A. (2011). The development of management
sciences/operational research discourses: surveying the
trends in the US and UK. Journal of the Operational

Research Society, 62, 1452–1470.
Rittel, H.W. J., &Webber, M.M. (1973). Dilemmas in a general

theory of planning. Policy Science, 4, 155–169.
Rosenhead, J. (1986). Custom and practice. Journal of the

Operational Research Society, 37, 335–343.
Rosenhead, J. (Ed.). (1989). Rational analysis for a problematic

world: Problem structuring methods for complexity,

uncertainty and conflict. Chichester: Wiley.
Rosenhead, J., & Mingers, J. (Eds.). (2001). Rational analysis

for a problematic world revisited: Problem structuring

methods for complexity, uncertainty and conflict.
Chichester: Wiley.

Rosenhead, J., & Thunhurst, C. (1982). A materialist analysis of
operational research. Journal of the Operational Research

Society, 33, 122–133.
Schon, D. A. (1987). Educating the reflective practitioner:

Toward a new design for teaching and learning in the

professions. San Francisco: Jossey-Bass.
Vidal, R. V. V. (2004). Special issue on applications of problem

structuring methods. European Journal Operational

Research, 152, 631–640.

Processor Sharing

A queueing discipline whereby the server shares its

effort over all customers present.

See

▶Queueing Theory

Product Form

▶ Product-Form Solution

Product Form of the Inverse (PFI)

The inverse of a matrix expressed as the product of

sequence of matrices. The matrices in the product are

elementary elimination matrices.

See

▶Eta File

▶ Simplex Method (Algorithm)

Product-Form Solution

When the steady-state joint probability of the number

of customers at each node (station) in a queueing

network is the product of the individual probabilities

times a multiplicative constant, as in Pr{N1 ¼ n1,

N2 ¼ n2,. . ., NJ ¼ nJ} ¼ Kp(n1)p(n2). . .p(nJ), the

network is said to have a product-form solution.

Sometimes the designation of a product-form solution

requires that the multiplicative constant K also

decompose into separate factors for each node, as

holds for open Jackson networks but not for closed

Jackson networks. Variants of such product-form

solutions also occur in some non-network queues,

such as those with vacations.

See

▶Networks of Queues

▶Queueing Theory

Product-Mix Problem

▶Activity-Analysis Problem

▶Blending Problem

Production Function

▶Economics and Operations Research
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Introduction

Some of the important objectives of a manufacturing

system are to produce in a timely manner products that

conform to specifications, while minimizing costs. The

strategic measures of performance of a manufacturing

system are cost, quality, flexibility, and delivery. Often

hundreds of products are produced by a facility, and

the entire production process may span several

facilities that are geographically dispersed. In many

industries the production network consists of plants

that are located in different countries.

Productionmanagement entails many decisions that

are made at all levels of the managerial hierarchy.

Manufacturing processes involve a large number

of people in many different departments and

organizations, and utilize a variety of resources. In

addition to the quality of human resources employed,

operational efficiency depends upon the location and

capacity of the plants, choice of technology,

organization of the production system, and planning

and control systems used for coordinating the

day-to-day activities. The complexity of the problems

associated with effectively and efficiently utilizing

all the resources — manpower, machines,

materials — needed for producing goods often

necessitates the development of mathematical models

to aid decision making.

Manufacturing decisions can be classified into three

categories: strategic, tactical and operational. Strategic

decisions pertain to decisions such as degree of vertical

integration, items to produced inhouse, size and

location of facilities, choice of technology, nature of

equipment (general versus special purpose), long-term

raw material and energy contacts, skills of employees,

organization design, and so forth, that have long-term

consequences and can not be easily reversed. Tactical

decisions have shorter horizons of 6 month to 2 years.

They include decisions such as aggregate production

planning (levels of production and inventory, work

force, and subcontracting), facility layout, and

incremental capacity expansion. Operational

decisions pertaining to issues such as order

processing, detailed production scheduling, follow

up, maintenance routines, and inventory control rules,

drive the day to day activities.

The nature of the problems faced by a production

manager depends on the characteristics of the market

that the facility is competing in. For this reason it is

useful to distinguish between different types of

manufacturing systems. The variety and volume of

products produced are critical for determining the

type of the manufacturing system. Manufacturing

systems have been classified into job shops, batch

shops, flow lines and continuous processes on the

basis of the volume and variety of the product mix.

Job shops produce many different products in small

quantities, each with different processing

requirements. Typically the products are customized

and are made only after receiving an order. At the other

end of the spectrum are flow lines and continuous

processes that produce a limited number of products

in very high volumes. Demand is met from finished

goods inventories. Batch shops lie in between these

two extremes. Models for aggregate production

planning are described first, followed by the models

for job shops, batch shops, flow lines and continuous

processes. Hopp and Spearman (2000) provide

a detailed coverage of these and related topics.

Aggregate Production Planning is concerned

with determination of the levels of production,

inventory, work force, and subcontracting to respond

to fluctuating demand. With a stable work force, the

level of production can be changed by using over-time

or undertime. The size of work force can be varied by

hiring and layoff. Fluctuating demand can also be met

by accumulating seasonal inventory. An organization

may also have the option of backordering or losing

sales. The relevant costs are for: (1) regular payroll

and overtime; (2) carrying inventory; (3) backordering

or lost sales (including the possible loss of customer

goodwill, lost revenue, and penalties for late delivery):

and (4) hiring (including training and learning) and

layoff.

Real-world production planning may involve as

many as 10,000 products (Hax and Candea 1984).

With 10 decision periods, this can mean more than

Production Management 1173 P

P



100,000 variables. If the number of units sold is also

a decision variable, the problem may involve more

than 200,000 variables. Here quadratic and linear cost

models are described. Hwang and Cha (1995), Nam

and Logendran (1992), Silver et al. (1997), Thomas

and McClain (1993), and Venkataraman and

Smith (1996) have discussed other models and

methodologies. Penlesky and Srivastava (1994)

described the use of spreadsheets for production

planning.

Quadratic cost models — Models with quadratic

costs have several major advantages. They allow for

a realistic cost structure in the planning process. They

also allow uncertainties to be handled directly since

they minimize the expected cost if unbiased expected

demand forecasts are given (Hax and Candea 1984,

p. 88; Simon 1956). The resulting solution is fairly

insensitive to large errors in estimating cost

parameters (Hax and Candea 1984). Hax and Candea

also pointed out that this is an attractive property

because of the difficulty in providing accurate cost.

The production and work force smoothing model

developed by Holt et al. (1960) consists of a quadratic

cost function constrained by linear equations to

balance production, inventory, and sales. It selects

production and work force levels in each of T periods

so as to satisfy demand forecast while minimizing the

sum of the costs over the T periods. LetPt,Wt, It, andDt

represent production volume, work force level, end of

period inventory, and demand forecast for period t,

where the initial inventory and work force are given.

The cost in period t consists of the following

components:

Regular payroll costs : C1Wt

Hiring and layoff costs : C2ðWt �Wt�1 � C11Þ2
Overtime costs : C3ðPt � C4WtÞ2 þ C5Pt�

C6Wt þ C12PtWt

Inventory related costs : C7ðIt � C8 � C9DtÞ2

The model may be formulated as:

Minimize Z ¼
XT

t¼1

½ðC1�C6ÞWt þ C2ðWt � Wt�1�C11Þ2

þC3ðPt � C4WtÞ2þC5Pt

þC12PtWt þ C7ðIt � C8 � C9DtÞ2�
(1)

subject to:

Pt � Dt ¼ It � It�1 (2)

Holt et al. focused on an infinite planning horizon

with stationary costs and derived the following two

linear decision rules for the first period:

P1 ¼ y1 þ y2I0 þ y3W0 þ
XT

t¼1

ftDt

and W1 ¼ y4 þ y5I0 þ y6W0 þ
XT

t¼1

mtDt;

where y1, y2, y3, y4, y5, y6, yt, and mt (t¼ 1, 2,. . ., T) are

functions of the cost coefficients. The infinite series

can be truncated after an appropriate number of

periods T.

Singhal and Singhal (1996) developed simple

computational procedures for finite horizon cases.

These can be used for arbitrary time-varying cost

coefficients. The complexity of the procedures grows

only linearly with T. They generate the values of

production, work force, and inventory levels for each

period in the planning horizon. Finally, the procedures

lend themselves to sensitivity analysis with respect to

terminal values and to generate alternate plans.

It is beneficial to generate a collection of alternate

plans on the basis of alternative terminal conditions

and evaluate them more precisely according to the

actual cost structure. This is usually more complex

than the quadratic cost function used in the Holt et al.

model. Sensitivity analysis can also be used to

eliminate plans that may include negative values of

Pt,Wt, or It. If only IT is specified, one can compute Z as

a simple quadratic function of WT : Z ¼ h + kWT +

mW 2
T where h, k, and m are functions of the cost

coefficients, ending inventory, and demand forecasts.

The optimum value of WT is then easily computed as

WT ¼ �k/2m. If WT, rather than IT, is specified, then Z

can be obtained as a quadratic function of IT. If the

terminal condition is not specified for any variable, one

can obtain Z as a quadratic function of both WT and IT
(or PT).

One can compute optimal plans for a menu of

combinations of terminal values (IT, WT) so as to
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create a menu of alternative plans which can be

evaluated in more detail with respect to alternative

cost structures, constraints, and objectives. The

alternate plans provide considerable flexibility to the

decision maker because they can be evaluated in

the context of (a) constraints not included in the

model, (b) actual costs, and (c) implications beyond

the planning horizon.

Constraints not included in the model— The model

does not specify that Pt,Wt, or It be non-negative. The

solution approaches developed by Holt et al. (1960) or

Singhal and Singhal (1996) do not guarantee it either.

However, the values of y1, y2, y3, y4, y5, y6, yt, and mt
(t ¼ 1, 2,. . ., T) in the decision rules for an actual

problem (Holt et al. 1960) indicate that for most

problems, they will be nonnegative. For cases where

a solution may include negative values of Pt, Wt, or It,

sensitivity analysis can be used to determine the ranges

of the terminal boundary conditions for which

all values of Pt, Wt, and It are non-negative.

If implementation of the optimal solution is difficult

because of extremely low or extremely high levels of

inventory, production, or work force in some periods,

trade-offs can be made between the additional cost and

the ease of implementation of alternate plans that are

within the constraints on inventory, production, and

work force.

Actual costs — The costs of various plans,

including the optimal plan refer to the costs

approximated by the linear quadratic model, not to

the actual costs. In testing the model for a real-world

problem, one may obtain actual costs for one or more

alternate plans that are lower than those of the optimal

plan.

Implications beyond the planning horizon — The

organization may anticipate or plan some changes

beyond the planning horizon of the model.

For example, it may retire workers or introduce

technology that requires fewer or more workers. If

the organization plans to introduce technology that

requires fewer workers, it would choose a plan that

would require a smaller work force towards the end of

the planning horizon. Similarly, if some workers are

expected to retire in the near future, the organization

would choose a plan that would require hiring more

workers towards the end of the planning horizon.

The exact choice of the plan will depend on the

magnitude of the changes beyond the planning

horizon and the cost penalty during the planning

horizon. In some cases, the optimal levels of

inventory and work force in the final period may be

incompatible with the demand forecasts for periods

beyond the planning horizon (these forecasts may be

too imprecise to extend the length of the planning

horizon but they may indicate the overall magnitude

of demand). In such cases, trade-offs can be made by

comparing the possible benefits of an alternate plan

and the cost penalty associated with it.

Both the finite and infinite horizon versions can be

implemented on the rolling basis. In the infinite

horizon version, no consideration is given to

information beyond a certain period. In the finite

horizon version, the implications beyond the planning

horizon are first included in the specification of the

terminal conditions and then evaluated through

sensitivity analysis.

Bergstrom and Smith (1970) extended the Holt et al.

model to a multi-product situation. It is given as

Minimize TC ¼
XT

t¼1
C1Wt þ

XN

i¼1
½Ci7ðIit � Ci8 � Ci9DitÞ2�

"

þ C3

XN

i¼1

kiPit � C4Wt

 !2

þ
XN

n¼1

C5kiPit � C6Wt

þ C12Wt

XN

i¼1

kiPit

 !

þ C2ðWt �Wt�1 � C11Þ
2
i

subject to:

Iit¼ Ii;t�1þPit�Dit; i¼1;2; . . . ;N; t¼1;2; . . . ;T;

where N and T denote the number of products and

periods respectively; Pit, Dit, and Iit represent the

production, demand forecast, and inventory of

product i during period n; ki represents the standard

labor time to complete one unit of product i; and Wt

represents the work force during period t. The Ci are

the cost coefficients. Aggregate production Lt,
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aggregate inventory It, and aggregate demand forecast

Dt can be written as

Lt ¼
Xki

i¼1
Pit; t ¼ 1; 2; . . . ; T

It ¼
Xki

i¼1
Iit; t ¼ 1; 2; . . . ; T

Dt ¼
Xki

i¼1
Dit; t ¼ 1; 2; . . . ; T

Iit ¼ It�1 þ Lt � Dt; t ¼ 1; 2; . . . ; T

All decision variables are unconstrained. Initial

conditions I0, W0, and I0i (i ¼ 1, 2,. . ., N) and the

final conditions (work force and aggregate inventory)

are specified. Singhal (1992) developed a simple

and efficient non-iterative algorithm for obtaining

the optimal values of the levels of production

management in, inventory, and work force during

the planning horizon. The efficiency is achieved by

exploiting the special structure of the recurrence

relations obtained by differentiating the cost function.

Once the input data are developed, the computation

time will remain the same irrespective of the number of

products which, as noted earlier, could be as many as

100,000.

Linear cost models — Linear programming models

are widely used because they can be easily tailored to

a specific situation. Many constraints can be directly

included in the model. A major advantage of linear

programming models is the availability of computer

codes that can solve very large problems. Most cost

structures are generally linear within the range of

interest. If they are not, one can use linear

approximations. Another advantage is parametric and

sensitivity analyses. The dual solution can be used to

obtain the costs of constraints and one can easily

perform sensitivity analysis on cost parameters and

demand forecasts. For a more detailed discussion of

linear programming models, see Hax and Candea

(1984) and Silver et al. (1997). Hax and Candea

(1984) described the following general purpose model:

Minimize Z ¼
XN

i¼1

XT

t¼1

ðditPit þ citI
þ
it þ bitI

�
it Þ

þ
XT

t¼1

ðwtWt þ otOt þ htHt þ ftFtÞ

subject to:

Pit þ Iþi;t�1 � I�i;t�1 � Dit ¼ Iþit � I�it i ¼ 1; 2; . . . ;N;

t ¼ 1; 2; . . . ;T;

Wt �Wt�1 ¼ Ht � Ft t ¼ 1; 2; . . . ;T;

Ot � pWt t ¼ 1; 2; . . . ; T;

Pit; I
þ
it ; I

�
it ;Wt;Ot;Ht;Ft � 0

i ¼ 1; 2; . . . ;N; t ¼ 1; 2; . . . ; T

Pit ¼ Units of item i to be produced in period t

Dit ¼ Forecast demand for item i in period t

dit¼ Cost of producing one unit of product i in period t

cit ¼ Cost of carrying one unit of inventory of product

i from period t to t + 1

bit ¼ Cost of backordering one unit of inventory of

product i from period t to t + 1

wt ¼ Cost of one regular labor hour in period t

Wt ¼ Regular labor hours employed in period t

ot ¼ Cost of one overtime labor hour in period t

Ot ¼ Overtime labor hours used in period t

ht ¼ Cost of hiring one labor hour in period t

Ht ¼ Labor hours of regular work force hired in

period t

ft ¼ Cost of laying off one labor hour in period t

Ft ¼ Labor hours of regular work force laid off in

period t

iþit ¼ Inventory of product i at the end of period t

I�it ¼ Units of product i backordered at the end of

period t

p ¼ An upper bound on overtime as a fraction of

regular hours

The first constraint is similar to the

production-inventory balance equation in

the linear-quadratic model when Iit ¼ Iþit � I�it ,
t ¼ 1, 2,. . ., T. The second constraint shows the

changes in the level for work force due to hiring and

layoff. The third constraint provides a limit on

the overtime; the limit is proportional to the level of

work force.

Job Shops

Job shops specialize in producing customized

products, and the production process has the

flexibility to produce many different products. Due to

the high variety the flows in job shops are jumbled,

thus making it very difficult to predict and manage the

completion times of jobs. Since most of the jobs are
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produced after receiving an order from a customer,

very important managerial tasks are to accurately

predict due dates, ensure that the quoted dates are not

violated, and use resources effectively and efficiently.

Operational Problems — The challenge of

managing day to day operations has given rise to

a rich set of combinatorial optimization problems.

The most basic operational problem is to determine

a schedule that specifies when each job will be

allocated different resources. Associated with each

job are the arrival time, a due date and a set of

operations. Each operation requires a set of resources

for some duration, and there may be precedence

constraints on the order in which the operations can

be performed.

A variety of performance measures have been

considered for evaluating alternative schedules.

Common performance measures are the average or

maximum time a set of jobs remains in the facility,

number of jobs that are late, or the average or

maximum tardiness for a set of jobs. Most of the

problems of job shop schedule optimization

problems, except for a small class, are

computationally intractable (Lenstra et al. 1977;

French 1982). Hence for most practical problems the

emphasis has been on heuristics.

Researchers have successfully analyzed job shops

with special structures. Many insights have been

gained into the single machine and single stage,

multiple machine scheduling problems. For multiple

stage job shops, analysis has been possible, provided

all the jobs follow the same route.

Job shop scheduling models can be classified into

static and dynamic models. In static models the set of

requirements including job arrival times and

processing requirement are known in advance. In

contrast, in dynamic job shop models new arrivals are

permitted. The arrival times may be stochastic and the

processing requirements may also vary dynamically.

Mathematical programming approaches have been

employed to study static job shop problems. For

performance measure that are non-decreasing in the

completion time of the job, dynamic programming

techniques have been employed to generate optimal

solutions for problems of modest size. Dynamic

programming based approaches have also been useful

in identifying dominance criteria to reduce the number

of schedules to be evaluated. Several heuristics have

been developed that exploit dominance criteria.

Integer programming formulations of scheduling

problems have also been used to generate near

optimal solutions. Typically some complicating

constraints in the integer program are relaxed to yield

tractable sub-problems.

While most of the theory focuses on static job shop

models that assume deterministic requirements, most

practical problems are dynamic and stochastic. For

such complex environments analysis has largely been

restricted to simulations of local dispatching rules.

Each station employs a dispatching rule — for

example, process jobs in increasing order of

processing times — and the overall performance of

the shop is evaluated via Monte Carlo simulations.

Many dispatching rules have been discussed in the

literature. Further details regarding scheduling

algorithms are given in Conway et al. (1967), Graves

(1981), and O’Eigeartaigh et al. (1985).

An important development in the area of scheduling

dynamic shops has been to approximate the job shop

scheduling problem by a Brownian control problem.

Although the size of the networks analyzed is small,

since the focus is on bottleneck stations the method is

useful in many practical situations. The Brownian

control problems have been useful in identifying near

optimal scheduling policies for minimizing the

average lead times (Wein 1990).

Strategic and tactical problems— Since most of the

operational problems of sequencing and scheduling

jobs through a shop floor are computationally

intractable, there is a need to design the job shops

such that simple real time control rules are adequate

to obtain good performance. The long term

performance of the shop will depend on the types of

jobs processed by the facility (product mix), the

capacity and technology of different stations, and the

rules employed to quote due dates and manage the flow

through the shop floor. Tactical and strategic decisions

regarding each of these variables require models that

predict the medium to long term performance of the

job shops.

One approach for assessing the long term

performance is to employ Monte Carlo simulations.

The strength of simulation models lies in their ability

to incorporate many features, such as (i) complex

control rules — for example, local dispatching rules,

control of input to the shop, etc.; (ii) complex arrival

patterns — for example, correlated demands,

non-stationary demand, etc.; and (iii) complex
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resource requirements and availability — for example,

multiple resources, machine failures, etc. A broad

range of performance measures can also be assessed

through simulation models. These models, however,

are time consuming and cannot identify optimal

parameters for the policies being investigated.

Open queueing network models have been

proposed to evaluate the long term performance of

job shops. Good approximation procedures have been

developed to estimate the average queue lengths in

networks with features such as general processing

and interarrival time distributions, multiple job

classes, and class dependent deterministic routing

through the network.

An approximation procedure that has been

frequently employed is the parametric decomposition

approach (PDA). Under the PDA, each node is treated

as being stochastically independent and all the

performance measures are estimated based on the

first two moments of the inter-arrival and service

time distributions at each node. Extensive testing has

shown that PDA provides accurate estimates of the

average queue length at each node in very general

networks. Limitations of the approach are that all the

measures are for steady state, only the average queue

lengths are accurately predicted, and the analysis is

based on the assumption that the jobs are processed

on a first come first served basis. Nevertheless, the

power of this approach lies in the ease with which

complex networks can be analyzed, which in turn

facilitates the design of networks.

The PDA has enabled the analysis of several

optimal facility design problems. One such problem is:

• Objective: Minimize total cost of equipment.

• Decision Variables: Capacity of each station in the

network, and technology.

• Constraints: Upper bounds on the average lead time

for different job classes.

This model addresses the relationship between

average lead times and the choice of equipment.

Since system design is based on multiple criteria,

it is useful to develop curves that reflect the

trade-off between lead times and cost of equipment.

This can be done by parametrically varying the

upper bound on the permissible lead times. Figure 1

provides a possible trade-off curve (Bitran and Tirupati

1989). Details regarding the application of queueing

models to job shops are given in Bitran and Dasu

(1992).

Batch Shops

The variety of jobs processed in a batch shop is less

than that in job shops; furthermore, the set of products

that are produced by the facility may be fixed.

Nevertheless, the production volume of each product

is such that several products may share the same

equipment. Often the demand for final goods is met

from finished goods inventory and production plans

are based on demand forecasts. A large number of

discrete part manufacturing systems can be classified

as batch shops.

Operational problems: The time and cost for

switching machines from one product to the next

poses one of the biggest problems in managing batch

shops. Although job shops can also have significant

set-ups, since each job is unique the set-up time can be

incorporated in that job’s total processing time.

On the other hand, in batch shops, the same products

are produced repeatedly and there is an opportunity to

mitigate the effect of set-ups by combining or splitting

orders. Consequently much attention has been paid to

problems of determining batch quantity of and

the sequence in which each item is produced.

The primary trade-offs are between inventory

carrying, shortage and set-up costs.

A classic lot sizing problem is the economic lot

scheduling problem (ELSP). The ELSP seeks the

optimal lot size at a single production stage when the

demand rate for each item is fixed and deterministic

(Panwalker and Iskander 1977). The objective of the

analysis is to determine the frequency with which each

item is to be produced so as to minimize the average

set-up and holding costs without ever stocking out.

Capacity

Lead Time

Production Management, Fig. 1 Illustrative trade-off curve

P 1178 Production Management



Many of the solution procedures for ELSP consist

of three steps. First, ignoring the capacity constraint,

the optimal production frequency for each item is

determined. Next the frequencies are rounded off to

an integer multiple of a base period. In the final step

a solution that specifies the sequence in which each

item is produced is generated. Roundy (1986) showed

that in the second step if the integer multiple is

restricted to some power of 2, then a near optimal

solution can be found. In recent years researchers

have begun to extend the approaches developed for

ELSP to multistage multi-machine problems.

ELSP is a continuous time model. In practice

production plans are made on a periodic basis,

prompting several researchers to develop and analyze

discrete time models of the lot-sizing problems. Below

a single-stage, multi-item, multi-period, capacitated

lot-sizing problem is formulated:

Minimize
XT

t¼1
ptðXtÞ þ htðItÞ þ

XI

i¼1
sitdðXitÞ

( )

subject to:

Ii;t�1þXit� Iit ¼Dit t¼ 1;2; . . . ;T; i¼ 1;2; . . . ;I:

XI

i¼1

Xit � Xt t¼ 1;2; . . . ;T:

dðXitÞ¼
1 if Xit ¼ 0

0 otherwise




Iit;Xit� 0 t¼ 1;2; . . . ;T; i¼ 1;2; . . . ; I:

where Xit, Iit, Ct, Dit and sit denote respectively for

period t and product i, the production quantity, the

ending inventory, the capacity, the demand, and the

setup cost; Xit and Iit are the only decision variables;

and Xt and It are vector with elements {Xit} and {Iit},

respectively. The functions pt(�) and ht(�) denote

respectively the variable production and inventory

holding costs.

Once again, except for a small class, the lot-sizing

problems are NP-hard (Garey and Johnson 1979);

Bitran and Yanasse 1982). The following two

lot-sizing problems, however, can be solved in

polynomial time and have been the basis of many

approximation procedures: (a) the single item

lot-sizing problem without capacity constraints, and

concave variable production and inventory holding

costs; and (b) single item problem, with constant

capacity, and concave variable production and

inventory holding costs.

Multistage systems producingmultiple products with

dynamic demands, usually require extensive

information and considerable computational effort to

find optimal solutions. For these reasons, hierarchical

planning systems have been proposed. At the highest

level in the hierarchy an aggregate plan with a horizon of

several, usually 12, months is developed. If the demand

is seasonal, the horizon should cover the full demand

cycle. Over such horizons it is impractical to obtain

detailed information about demand for each item and

the availability of every resource. Hence, it becomes

necessary to aggregate the items into families, and the

machines into machine centers, etc. The aggregate plan

determines the time phased allocation of aggregate

resources to different part families. The plan focuses

on the primary trade-offs among the cost of varying

production resources employed by the firm, the costs

of carrying inventory (and possibly backordering

demand), and major setup costs. The extended horizon

enables the facility to respond to seasonality in demand.

The aggregate plan becomes the basis for

determining the detailed production schedule for each

item. The detailed resource allocation decisions

are constrained by the decisions made at the

aggregate planning level.

The number of hierarchical planning stages, the

degree of aggregation at each level, and the planning

horizon lengths affect the quality of the plan and

must be carefully determined for each context.

Many researchers have studied hierarchical planning

systems. Bitran and Tirupati (1993) and Hax and

Candea (1984) contain discussions of this approach.

Once the plans have been disaggregated and the

monthly requirements of each item are known, there

are a number of approaches for scheduling and

controlling the flow of the items through the shop.

One approach is to time the release of the orders to

the shop so that the required quantities of the items

become available by the date specified by the

hierarchical planning system. In this approach, also

referred to as the push system, an estimate is made of

production lead times, and order releases are offset by

the lead times. The scheduling decisions at each work

station may be made on the basis of the queue in front

of each work station. Scheduling models developed for

job shops are also useful here.
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An alternate approach for operating the shop is the

pull system. Under this approach the work-in-process

inventory level after a production stage determines the

production decisions at that stage. The buffer

inventories are maintained at planned levels and

a production order is triggered if the inventory level

drops below the threshold.

Since the push system operates on the basis of

planned lead times, OR/MS models have been

developed to understand the relationship between

release rules, capacity and lead times. The key

decision variable in pull systems is the size of

each buffer. Several researchers have examined the

impact of buffer sizes on the shop performance

(Conway et al. 1988).

Strategic and Tactical Problem — An approach

advocated for simplifying the operations of batch

shops is to partition the facility into cells. Parts

produced by the facility are grouped into families and

each family is assigned to a cell. Ideally all operations

required for a family of parts are performed in the same

cell. The advantages of cellular manufacturing systems

are simplified flows, and reduced lead times and setup

costs. These benefits may be partially offset by the

need for additional equipment. Many different

criteria — such as part geometry, production

volumes, setups, and route through the shop — have

been proposed for forming part families. Researchers

have also investigated several algorithms for

identifying alternative partitions. Typically these

algorithms begin with a product-process matrix. In

this matrix rows correspond to parts and columns

correspond to machines. An element ij in this matrix

is one if a part i requires a machine j and zero

otherwise. The columns and rows of the matrix are

interchanged so as to produce a block diagonal

matrix. Each block identifies a set of resources and

jobs that does not interact with the remaining

operations, and so corresponds to a cell.

As in the case of job shops, batch shops system

design can be improved if the medium to long term

performance of the shop can be assessed. Closed and

open queueing network models and simulation based

models are useful for assessing the long term

performance of batch shops. The objective of these

models is to determine the relationship among

capacity of different cells, lot sizes, and lead times

(Bitran and Dasu 1992).

Queueing network models assume that the

processing rate at each station is fixed. In practice

the processing rate at each station may vary.

Variations may be due either to the allocation of

additional (human) resources to a stage or simply

because the queue length has a motivational effect on

the machine operator. Based on these observations, in

recent years an alternative class of tactical models of

the shop have been proposed (Graves 1986). Here the

production rates are assumed to vary as a function of

the size of the queue length. The processing rates at

each stage are allowed to vary so as to ensure that the

time spent at a station is the same for every job.

The model therefore enables managers to plan the

lead times for each stage.

Flow Lines and Continuous Operations

Included in this class are all systems that are dedicated

to the production of (one or few) items in large

volumes. Examples of such systems include assembly

lines, transfer lines, and continuous operations such as

cement and oil derivatives manufacture. The demand

is often met from finished goods inventory and thus the

main focus tends to be on the management of the

corresponding inventory levels and the supply chain.

The operational problems are relatively simple and are

omitted.

Tactical problems — An important operational

problem is to manage the trade-off between the cost

of varying the production rate and the cost of finished

goods inventory. The aggregate planning models

discussed earlier are applicable here. Typically, all

the stages of the production system have equal

capacity, hence, managing the flow through the

facility does not pose a significant problem. In

assembly lines, the balance is achieved by carefully

assigning tasks to different work stations — a complex

combinatorial optimization problem. Several

algorithms have been developed for assembly line

balancing.

Strategic problems — High volume production

systems frequently compete on the basis of low costs

and supply large geographically dispersed markets.

It is therefore not uncommon to have many plants

that cater to different markets. OR/MS models have

been developed to aid in the design of the multiplant
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networks and the distribution systems (Erlenkotter

1978; Federgruen and Zipkin 1984). Here the

discussion is restricted to the plant location problems.

The number of plants their capacity and location

have a big effect on production and distribution costs.

Models have been developed to analyze the trade-off

between the fixed costs of setting up plants and the

variable (transportation and production) costs of

operating the plants. The models assume that a set

of markets with known demands have to be supplied

and the decision variables are the number of plants,

their location and capacities (Erlenkotter 1978).

Concluding Remarks

Production management involves many complex trade-

offs. As a result many mathematical models have been

developed to aid decision makers. This is certainly not

an exhaustive list and excludesmany important problem

areas such as inventory management, preventive

maintenance, capacity expansion, and quality control.

The focus has been on models that are concerned with

the flow of goods through a manufacturing system.

Even within this domain, in order to provide a broad

overview, many important models that deal with

specialized systems were not discussed, such as

intelligent manufacturing systems.

The problems arising in each type of production

system were described as if each plant operated in

isolation. In practice, a production system is likely to

consist of a network of plants. While some plants may

be batch or job shops others are likely to be assembly

or continuous processes. The problems of coordinating

these networks was not discussed.

Most of the OR/MS models focus on managing the

trade-offs among setup costs, inventory carrying costs

and cost of varying production rates. On the other

hand, many gains in productivity are due to the

elimination (or mitigation of) the factors that give

rise to these trade-offs. For example reduction in

set-up costs and times reduces lead times, increases

the ability of the system to produce a wider mix of

products, diminishes the role of inventories and

simplifies the management of batch shops.

Researchers have begun to develop models that

quantify the benefits of and guide such process

improvement efforts (Porteus 1985; Silver 1993).

See
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▶Hierarchical Production Planning
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▶Location Analysis
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▶ Supply Chain Management
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Production Rule

A mapping from a state space to an action space,

generally used in modular knowledge representation.

With roots in syntax-directed parsing of language,

production rules comprise a basic reasoning

mechanism, particularly in heuristic search.

See

▶Artificial Intelligence

▶Expert Systems

Program Evaluation

Edward H. Kaplan and Todd Strauss

Yale University, New Haven, CT, USA

Introduction

Program evaluation is not about mathematical

programming, but about assessing the performance of

social programs and policies. Does capital punishment

deter homicide? Which job training programs are

worthy of government support? How can emergency

medical services be delivered more effectively? What

are the social benefits of energy conservation

programs? These are the types of questions

considered in program evaluation.

Notable evaluations include the Westinghouse

evaluation of the Head Start early childhood program

(Cicarelli et al. 1969), the Housing Allowance

experiment (Struyk and Bendick 1981), the Kansas

City preventive patrol experiment (Kelling et al.

1974), and evaluation of the New Haven needle

exchange program for preventing HIV transmission

among injecting drug users (Kaplan and O’Keefe

1993). As these examples suggest, questions and

issues deserving serious evaluation often are in the

forefront of social policy debates in areas such as

public housing, health services, education, welfare,

and criminal justice.

Closely related to program evaluation are the

activities of cost-benefit and cost-effectiveness
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analysis. These resource allocation methods help

decision makers decide which social programs are

worth sponsoring, and how much money should be

invested in competing interventions. Program

evaluation may be construed as an attempt to

understand and estimate the benefits associated with

the social program under study. While some

evaluations attempt to relate these benefits to the

costs of program activities, most program evaluations

are viewed as attempts to measure benefits alone.

Program evaluation is often conducted by social

scientists at the behest of organizations with some

interest in the program, either as participants,

administrators, legislators, managers, program

funders, or program advocates. In such a charged

atmosphere, how can OR/MS be useful? Program

evaluation contributes to policy making chiefly by

informing policy debate. Evaluation can be construed

as an activity that produces important information for

decision makers in the policy process (Larson and

Kaplan 1981). Evaluation is also useful for framing

issues, and for identifying and choosing among policy

options. Evaluation is crucial to program

administrators concerned with improving service

delivery. These tasks are about gathering, analyzing,

and using information. It is the orientation toward

decision making that renders OR/MS particularly

useful in the evaluation of public programs.

Program Components and the Scope of
Evaluation

In the language of systems analysis, the components of

social programs can be classified as inputs, processes,

and outputs (Rossi and Freeman 1993). Inputs are

resources devoted to the program, while outputs are

products of the program. In this framework, program

evaluation is usually about assessing a program’s

effects on outputs. Such evaluation is often called

outcome or impact evaluation. Typically, the result of

outcome evaluation is the answer to the question: Did

the program achieve its goals?

In contrast to outcome evaluation, process

evaluation is often referred to, perhaps pejoratively,

as program monitoring. As the myriad details of real

programs are classified simply as processes in

monitoring studies, programs become black boxes.

Such a framework is anti-operational. On the other

hand, an OR/MS approach to process evaluation

focuses on program operations, often with the

assistance of appropriate mathematical models.

Typical program evaluations too often lead to

simplistic conclusions regarding which programs

work. Focusing on program operations often results

in understanding why some programs are successful

and other programs fail. As an example, consider

Larson’s analysis of the Kansas City Preventive

Patrol Experiment (Larson 1975). This experiment

attempted to discern the impact of routine preventive

patrol on important outcomes such as crime rates and

citizen satisfaction, in addition to important

intermediate outcomes such as response time and

patrol visibility. The empirical results of this

experiment resulted in several findings of “no

difference” between patrol areas with supposedly

low, regular, and high intensities of police

preventive patrol. In contrast, Larson’s application of

back-of-the-envelope probabilistic models to this

experiment showed that one should have expected

such results due to the nature of the experimental

design. He showed, for example, that one should not

have expected large differences in police response

times given the peculiarities of patrol assignments

and call-for-service workloads evident in the

experiment. The same models suggested that

different experimental conditions, better reflecting

police operations in other large American cities,

could lead to different results.

An advantage of an OR/MS approach to program

evaluation is that goals and objectives are stated as

explicitly as possible. What is the purpose of the

program under study, and how does one characterize

good versus poor program performance? While the

importance of such questions may be self-evident to

OR/MS practitioners, most actors on the policy

stage are not accustomed to such explicitness. The

act of asking such questions is often, by itself,

a contribution to policy debate. A defining feature of

the OR/MS approach to problem solving is the

association of one or more performance measures

with program objectives. A performance measure

quantifies how well a system functions. Performance

measures should be measurable (computable if not

actually observable), understandable, valid and

reliable, and responsive to changes in program
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operations. Operational modeling of public programs

can even yield performance measures not apparent

a priori. For example, the evaluation of the New

Haven needle exchange program involved

a mathematical model of HIV transmission among

drug injectors as modified by the operations of needle

exchange (Kaplan and O’Keefe 1993). The model

revealed needle circulation time, that is, the amount

of time a needle is available for use by drug injectors,

as a critical performance measure. Reducing needle

circulation time reduces opportunities for needle

sharing on a per needle basis. This reduces both the

chance that a needle becomes infected, and the chance

that an injection with a used needle transmits infection.

Needle exchange adjusts the distribution of needle

circulation times. The model uncovered a direct link

between the exchange of needles and the probability of

HIV transmission.

Methodologies

Much of program evaluation is qualitative in nature.

Social science methods relying on field observation,

case histories, and the like are often used. However,

such qualitative data often fail to satisfy critics of

particular social programs. In addition, qualitative

data generally allow only coarse judgments about

program effectiveness. While no panacea,

quantitative assessment methods have become

standard in evaluating social programs and policies.

Assessments of program effects are often made by

statistically comparing a group participating in the

program to a control group. The randomized

experiment is the archetype for this kind of

comparison. Since true randomized experiments may

be difficult to execute under real program settings,

quasi-experimental designs are often used instead.

Rather than randomly assigning participants to

program and control groups, quasi-experimental

methods attempt to find natural or statistical

controls. Multiple regression, analysis of variance, or

other statistical techniques are often used;

Cook and Campbell (1979) is a classic reference on

quasi-experimental methods.

The model-based techniques of OR/MS are also

applicable to program evaluation. Decision analysis

is obviously useful in prospectively selecting among

policy options. Queueing theory may be used to

analyze the delivery of a wide range of programs,

including public housing assignments, 911 hotlines,

and dial-a-ride van services for the elderly and

disabled. Applied probability models are generally

useful, while statistical methods are widely valued.

Techniques for multicriteria optimization, data

envelopment analysis, and the analytical hierarchy

process may be useful in identifying tradeoffs among

multiple objectives.

While it seems that a solid understanding of OR/

MS modeling is useful in conducting program

evaluation, OR/MS has been underutilized. For

example, basic optimization techniques such as linear

programming have not been widely applied, perhaps

because formulating a consensus objective function is

usually very difficult. Training in OR/MS is less

common than training in statistics and other social

sciences. Few of those who have been trained in OR/

MS have chosen to concentrate their efforts in the

evaluation of public programs. Thus, social program

evaluation remains an important and fertile area for

further development and application of OR/MS

methods.

Professional Opportunities and
Organizations

Departments and agencies of federal, state, and

municipal government and international

organizations typically have offices that perform

evaluation activities. Examples include the U.S.

Environmental Protection Agency’s Office of Policy

Planning and Evaluation, the New York City Public

School’s Office of Research, Evaluation, and

Assessment, and the World Bank’s Operations

Evaluations Unit. A few large private or non-profit

organizations under-take many program evaluations.

Among such organizations are The Urban Institute,

Abt Associates, RAND Corporation, Mathematica

Policy Research, and Westat. Much program

evaluation is done by academics, largely social

scientists. There are opportunities for OR/MS

practitioners to get involved. One outlet is the

INFORMS College on Public Programs and

Processes. The American Evaluation Association is

an interdisciplinary group of several thousand

practitioners and academics. The journal Evaluation

Review publishes examples of quality evaluations.
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Program Evaluation and Review
Technique (PERT)

A method for planning and scheduling a project which

models uncertainties in activity by using optimistic,

likely and pessimistic time estimates for each activity.

PERT evolved when the U.S. Navy was developing

a system to plan and coordinate the Polaris missile

program (Malcolm et al. 1959).

See

▶Critical Path Method (CPM)

▶Network Planning

▶ Project Management

▶Research and Development
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Project Management

Mark Westcombe and Graham K. Rand

Lancaster University, Lancaster, UK

Project management means different things to different

people. Traditionally the domain of engineering, it

has concerned itself with managing anything from

small construction developments to large complex

systems integration projects in defense, aerospace

and other industries. A comprehensive survey of the

development of project management since the 1940s

and the issues involved in accomplishing projects is

available in The Management of Projects (Morris

1997). In this period, OR/MS almost exclusively

focused on the technical aspects of conforming to a

contract using the iron triangle paradigm of

management: to deliver a project to a pre-defined

specification, on time, with an efficient use of

resources within budget and with attention to safety. It

accepted the project focus as the activities associated

with the project lifecycle: defining scope; the

work breakdown of the project plan; scheduling

these activities; estimating costs; allocating resources

and monitoring and controlling progress. OR/MS

interested itself predominantly with techniques such as

Program Evaluation and Review Technique (PERT)

and the Critical Path Method (CPM).

Project management has since become ubiquitous

within commercial and public sector organizations

having been used to deliver organizational change
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(see Balogun et al. 2008). Businesses might now

use project management discourse and techniques

to manage anything from opening a new store to the

acquisition, a merger with an international corporation

or to complete an urban regeneration scheme.

They may conceive projects, form project teams and

appoint project managers to issues that previously

would have been dealt with by managers responsible

for day-to-day operations. A critique of this

projectification of operational management is offered

by Hodgson and Cicmil (2006).

This evolution of project management has led to

new ways of thinking about projects (Winter and

Szczepanek 2009) and the focus of the project

manager is now more concerned with defining project

success (Atkinson 1999), delivering long-term

project outcomes and ensuring benefits that add value

to an organization’s operations (Cooke-Davies 2007).

Similarly OR/MS is engaging more at a strategic level

of projects, offering, in particular, ideas from systems

thinking for the developing of processes rather than

just techniques, such as for the project front-end

(Winter 2009), negotiating project objectives

amongst differing stakeholder perspectives and

managing stakeholder relationships. OR/MS has also

contributed significantly to the risk analysis of projects

(Williams 1995) as risk management has come to the

fore, including: mathematical modeling (Chapman and

Ward 2002); qualitative modeling of the systemic

nature of risk (Ackerman et al. 2007); the cost impact

of disrupted learning curves (Howick and Eden 2001);

and the use of system dynamics to model disruption

and delay of projects in litigation (Eden et al. 2000).

It has also concerned itself with project selection,

Monte Carlo simulation of projects and project

portfolio management.

Outside of OR/MS, topics of current concern

include: project evaluation and improvement;

strategic alignment; organizational learning; program

management; project leadership; sustainability issues;

partnering; project governance; and procurement

(see Crawford et al. 2006). A special issue of the

International Journal of Project Management is of

particular interest (Winter et al. 2006), which reviews

future trends in the field as well as explores key

contemporary themes in depth. A comprehensive

breakdown of all the tactical elements of project

management can be found in the professional Bodies

of Knowledge (Association of Project Management

2006; Project Management Institute 2008), as well as

from the growing industry of professional courses and

certification in project management, such as

PRINCE2, which is widely used in UK public sector

projects and offers a particular step by step approach to

project management.

Professional association in project management

is available through the Association of Project

Management, Ibis House, Regent Park, Summerleys

Road, Princes Risborough, Buckinghamshire, UK

HP27 9LE, which publishes The International Journal

of Project Management; and the Project Management

Institute, which publishes the Project Management

Journal. Note that the term project management, or

project management skills, is often misleadingly

appropriated as a term in personal development to

cover such transferable skills as time management,

prioritization, presentation skills, etc.

See

▶Critical Path Method (CPM)

▶Network Planning

▶ Practice of Operations Research and Management

Science

▶ Program Evaluation and Review Technique (PERT)

References

Ackerman, F., Eden, C., Williams, T., & Howick, S. (2007).
Systemic risk assessment: a case study. Journal of the

Operational Research Society, 58, 39–51.
Association of Project Management. (2006). APM body of

knowledge. High Wycombe, Buckinghamshire: Author.
Atkinson, R. (1999). Project management: Cost, time and

quality, two best guesses and a phenomenon, it’s time to
accept other success criteria. International Journal of

Project Management, 17, 337–342.
Balogun, J., Hailey, V. H., Johnson, J., & Scholes, K. (2008).

Exploring strategic change. London: FT Prentice Hall.
Chapman, C., & Ward, S. (2002). Managing project risk and

uncertainty: A constructively simple approach to decision

making. London: Wiley.
Cooke-Davies, T. (2007). Managing benefit. In J. R. Turner

(Ed.), Gower handbook of project management

(pp. 245–259). Aldershot: Gower.

P 1186 Project Management

http://dx.doi.org/10.1007/978-1-4419-1153-7_200107
http://dx.doi.org/10.1007/978-1-4419-1153-7_665
http://dx.doi.org/10.1007/978-1-4419-1153-7_782
http://dx.doi.org/10.1007/978-1-4419-1153-7_782
http://dx.doi.org/10.1007/978-1-4419-1153-7_200653


Crawford, L., Pollack, J., & England, D. (2006). Uncovering the
trends in project management: Journal emphases over the last
10 years. International Journal of Project Management,

24, 175–184.
Eden, C. E., Williams, T. M., Ackermann, F. A., & Howick, S.

(2000). On the nature of disruption and delay (D&D).
Journal of the Operational Research Society, 51, 291–300.

Hodgson, D. E., & Cicmil, S. (2006). Making projects critical.
Basingstoke: Palgrave.

Howick, S. M., & Eden, C. (2001). The impact of disruption and
delay when compressing large projects: Going for
incentives? Journal of the Operational Research Society,

52, 26–34.
Morris, P. W. C. (1997). The management of projects. London:

Thomas Telford.
Project Management Institute. (2008). A guide to the project

management body of knowledge. Newtown Square, PA:
Author.

Williams, T. M. (1995). A classified bibliography of research
relating to project risk. European Journal of Operational

Research, 85, 18–38.
Winter, M. (2009). Using soft systems methodology to

structure project definition. In T. M. Williams, K. Samset,
& K. J. Sunnevåg (Eds.),Making essential choices with scant

information: Front-end decision-making in major projects

(pp. 125–144). London: Palgrave Macmillan.
Winter, M., Smith, C., Morris, P., & Cicmil, S. (2006).

Directions for future research in project management: The
main findings of a UK government-funded research network.
International Journal of Project Management, 24, 638–649.

Winter, M., & Szczepanek, T. (2009). Images of projects.
Farnham, Surrey: Gower.

Project SCOOP

Project SCOOP (Scientific Computation of Optimal

Programs) was a research program of the U.S. Air

Force from the late 1940s to early 1950s whose main

objective was to study and solve Air Force

programming and scheduling problems. It was while

working on Project SCOOP problems that George B.

Dantzig formulated the linear-programming model

and developed the simplex method for solving such

problems.

Projection Matrix

For a given matrix A, its associated projection

matrix is defined as P ¼ A(ATA)�1AT. The matrix

P projects any vector b onto the column space of A.

See

▶Matrices and Matrix Algebra

Proper Coloring

An assignment of colors to nodes in a graph in which

adjacent nodes are colored differently.

See

▶Graph Theory

Prospect Theory

A descriptive theory of decision making under

uncertainty (human choice), which attempts to

explain certain deviations of observed empirical

behavior from expected utility theory.

See

▶Choice Theory

▶Utility Theory
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Protocols

The elicitation of an expert’s procedure by asking the

expert to describe aloud how he or she is solving

a problem, such as making a forecast or a decision.
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See

▶Artificial Intelligence

▶Expert Systems

▶ Forecasting

Pseudoconcave Function

Given a differentiable function f(�) on an open convex

set X, the function f is pseudoconcave if f(y) > f(x)

implies that (y � x)T =f(x) > 0 for all x, y ∈ X where

x 6¼ y.

See

▶Concave Function

▶Quasi-Concave Function

Pseudoconvex Function

Given a differentiable function f(�) on an open convex

set X, the function f is pseudoconvex if � f is

pseudoconcave.

See

▶Convex Function

▶ Pseudoconcave Function

▶Quasi-Convex Function

Pseudoinverse

▶Matrices and Matrix Algebra

Pseudorandom Numbers

A sequence of values coming from a mathematical

algorithm, which appears to be statistically drawn

independently from a uniform distribution over the

unit interval [0,1].

See

▶Random Number Generators

Pseudo-Polynomial-Time Algorithm

An algorithm whose running time is technically not

polynomial because it depends on the magnitudes of

the numbers involved, rather than their logarithms.

See

▶Computational Complexity

Public Policy Analysis

Warren E. Walker1 and Gene H. Fisher2
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Introduction

Public policy analysis refers to the activities, methods,

and tools that are used to give aid, advice, and support in

the context of public policymaking. It covers a wide

range of activities conducted with differing primary

objectives and perspectives. Mayer et al. (2004)

introduced a conceptual framework – the hexagon

framework – that classifies the policy analysis activities

in a structured manner. According to the hexagon

framework, an analyst providing policy support may

carry out six major clusters of activities, each having

different objectives. The six objectives, represented as

the vertices of the hexagon given in Fig. 1, are:

• Research and analyze: This type of activity aims for

the generation of knowledge that can be used later

for policy purposes. The major objective is to

understand certain policy-relevant phenomena,

and develop insights about them.

• Design and recommend: In certain situations the

analyst can assist the decision-making process by

designing alternative solutions to a problem and

analyzing and possibly weighing the consequences
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of these alternative solutions. The main question

here is more about evaluating a set of

interventions, or changing the system that is

related to the already known phenomena. In other

words, there is a certain action orientation that ends

with a policy choice or recommendation.

• Provide strategic advice: In certain situations, an

analysis can be a strategic, client-oriented activity.

The analyst can advise the client on the most

effective strategy for achieving certain goals

given a certain political constellation, i.e., the

environment in which the client operates, the

likely counter-steps of opponents, etc.

• Mediate: A given policy problem generally

involves multiple parties that have different views

and perspectives regarding the issue. Addressing

the problem and coming up with an effective

(i.e., accepted by all parties) policy may require

the understanding of the other parties’

perspectives. Hence, the task for the policy analyst

may be mediating these multiple parties and

promoting communication among them within

a policymaking or decision-making process.

• Democratize: This type of policy-analytic activity

aims mainly at acquiring and maintaining the

involvement of all related parties in the policy

process in order to make it as democratic as

possible. This includes assuring the flow of proper

information to all stakeholders, and the provision of

opportunities for them to have their say regarding the

policy issue.

• Clarify arguments and values: The main objective

of this type of policy analysis activity is the

elicitation of mindset, norms, and values of the

stakeholders involved in the problem at hand. In

these situations, the analyst can support or help

move forward the decision-making process by

analyzing the values and argumentation systems

that underpin the social and political debate.

In real-life cases and projects, a policy analyst will

combine one or more of these activities, albeit not all at

the same time. Traditional policy analysis is focused

on the ‘design and recommend’ vertex (see Walker

2000). The approach related to this objective is

detailed below, and expanded upon in Thissen and

Walker (2013). Its primary purpose is to assist

policymakers in choosing a preferred course of action

to implement in a complex system from among

multiple alternatives under uncertain conditions.

The word “assist” emphasizes that policy analysis

is used by policymakers as a decision aid, just as

checklists, advisors, and horoscopes can be used as

decision aids. Policy analysis is not meant to replace

the judgment of the policymakers (any more than an

X-ray or a blood test is meant to replace the judgment

of medical doctors). Rather, the goal is to provide

a better basis for the exercise of that judgment by

helping to clarify the problem, presenting the

alternatives, and comparing their consequences in

terms of the relevant costs and benefits.

The word “complex” means that the system

being studied contains so many variables, feedback

loops, and interactions that it is difficult to project the

consequences of a policy change. Also, the alternatives

are often numerous, involving mixtures of different

technologies and management policies, and

producing multiple consequences that are difficult to

anticipate, let alone predict.

The word “uncertain” emphasizes that the choices

must be made on the basis of incomplete knowledge

about (a) the future world, (b) the model of the

relevant system for that future world, (c) the outcomes

from the system, and (d) the weights that the various

stakeholders will put on the outcomes. This situation is

sometimes referred to as “deep uncertainty”.

Policy analysis is performed in government, at all

levels; in independent policy research institutions,

both for-profit and not-for-profit; and in various

consulting firms. It is not a way of solving a specific

problem, but is a general approach to problem

solving. It is not a specific methodology, but it makes

use of variety of methodologies in the context of

a generic framework.

Research and
analyze

Design and
recommend

Clarify values
and arguments

Democratize Mediate

Advise
strategically

Public Policy Analysis, Fig. 1 Overview of objectives of
policy analysis (Mayer et al. 2004)
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The Policy Analysis Steps

The policy analysis process generally involves

performing the same set of logical steps, not always

in the same order (Walker 2000; Miser and Quade

1985, p. 123). The steps, summarized in Fig. 2, are:

1. Identify the problem. This step sets the boundaries

for what follows. It involves defining the system

of interest, identifying the questions or issues

involved, fixing the context within which the

issues are to be analyzed and the policies will have

to function (this is often done by using “scenarios”),

clarifying constraints on possible courses of action,

identifying the people who will be affected by

the policy decision (the “stakeholders”), and

discovering the major operative factors.

2. Identify the objectives of the new policy. Loosely

speaking, a policy is a set of actions taken to solve

a problem. The policymaker(s) and stakeholders

have certain objectives that, if met, would “solve”

the problem. In this step, the policy objectives are

determined. (Most public policy problems involve

multiple objectives, some of which conflict with

others.)

3. Decide on criteria (measures of performance and

cost) with which to evaluate alternative policies.

Determining the degree to which a policy meets

an objective involves measurement. This step

involves identifying consequences of a policy that

can be measured (either quantitatively or

qualitatively) and that are directly related to the

objectives. It also involves identifying the costs

(negative benefits) that would be produced by

a policy, and how they are to be measured.

4. Select the alternative policies to be evaluated. This

step specifies the policies whose consequences are

to be estimated. It is important to include as many as

stand any chance of being worthwhile. If a policy is

not included in this step, it will never be examined,

so there is no way of knowing how good it may be.

The current policy should be included as the “base

case” in order to determine how much of an

improvement can be expected from the other

alternatives.

5. Analyze each alternative. This means determining

the consequences that are likely to follow if

the alternative is actually implemented, where the

consequences are measured in terms of the criteria

chosen in Step 3. This step usually involves using

a model or models of the system.

6. Compare the alternatives in terms of projected costs

and benefits. This step involves ranking the

alternatives in order of desirability and choosing

the one preferred. If none of the alternatives

examined so far is good enough to be

implemented (or if new aspects of the problem

have been found, or the analysis has led to new

alternatives), return to Step 4.

7. Implement the chosen alternative. This step

involves obtaining acceptance of the new

procedures (both within and outside the

government), training people to use them, and

performing other tasks to put the policy into effect.

8. Monitor and evaluate the results. This step is

necessary to make sure that the policy is actually

accomplishing its intended objectives. If it is not,

the policy may have to be modified or a new study

performed.

The individual steps in the process are described in

detail by Miser and Quade (1985, Chap. 4), Quade

(1989, Chap. 4), Walker (2000), and Enserink et al.

(2010).

1. Identify Problem

2. Specify Objectives

3. Decide on Criteria

4. Select Alternatives

5. Analyze Alternatives

6. Compare Alternatives

7. Implement Chosen Alternative

8. Monitor and Evaluate Results

Public Policy Analysis, Fig. 2 Steps in a policy analysis study
(Source: Walker 2000)
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OR/MS and Public Policy Analysis

Policy analysis is closely related to operations

research; in fact, in many respects it grew out of

operations research as it was being applied at the

RAND Corporation and other applied research

organizations in the 1960s and 1970s. Miser (1980)

and Majone (1985) describe this evolution. In the

beginning, operations research techniques had been

applied primarily to problems in which there were

few parameters and a clearly defined single objective

function to be optimized (e.g., aircraft design

and placement of radar installations). Gradually,

the problems being analyzed became broader and

the contexts more complex. Health, housing,

transportation, and criminal justice policies were

being analyzed. Single objectives (e.g., cost

minimization or single variable performance

maximization) were replaced by the need to consider

multiple (and conflicting) objectives (e.g., the impacts

on health, the economy, and the environment and

the distributional impacts on different social or

economic groups). Non-quantifiable and subjective

considerations had to be considered in the analysis

(Schlesinger 1967, provided an early discussion of

this issue). Optimization was replaced by satisficing.

Simon (1969, pp. 64–65) defined satisficing to mean

finding an acceptable or satisfactory solution to

a problem instead of an optimal solution. He said that

satisficing was necessary because “in the real world we

usually do not have a choice between satisfactory and

optimal solutions, for we only rarely have a method of

finding the optimum.”

Operations research techniques are among the many

tools in the policy analyst’s took kit. The analyses and

comparisons of alternative policies are usually carried

out with the help of mathematical and statistical

models. Simulation, mathematical programming, and

queueing theory are among the many tools that are

used in policy analysis study. But modeling is just

one part of the process; all of the steps are important.

The policy analysis process has been applied to

a wide variety of problems. Miser and Quade (1985,

Chap. 3) provide examples of some of these, including

improving blood availability and utilization,

improving fire protection (for this, see also Walker

et al. 1979), protecting an estuary from flooding,

and providing energy for the future. More generally,

the policy analysis approach has been used in the

formulation of policies at the national level, including

national security policies, transportation policies, and

water management policies (e.g., Goeller and the

PAWN Team 1985). Other examples that illustrate

the approach can be found in a variety of

publications, including Drake et al. (1972), House

(1982), Mood (1983), Pollock et al. (1994), Miser

(1995), and Walker et al. (2008).

See

▶Choice Theory

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Decision Analysis

▶Decision Making and Decision Analysis

▶Deep Uncertainty

▶Exploratory Modeling and Analysis

▶Multi-attribute Utility Theory

▶ Practice of Operations Research and Management

Science

▶RAND Corporation

▶ Satisficing

▶ Systems Analysis
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Pull System

Production system in which work is released into the

production facility based on the current state of the

facility, which includes information such as available

inventory, work in process, and realized demand.

See

▶CONWIP

▶Kanban

▶ Production Management

Pure-Integer Programming Problem

A mathematical programming problem in which all

variables are restricted to be integer. Usually refers to

a problem in which the constraints and the objective

function are linear.

See

▶Mixed-Integer Programming Problem (MIP)

Push System

Production system in which work is released into the

system according to forecasted demand, usually based

on a schedule prepared in advance.

See

▶ Production Management
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Q

QC

Quality control; quality circles

See

▶Quality Control

Q-Gert

Queue graphical evaluation and review technique.

See

▶GERT

▶Network Planning

▶ Project Management

▶Research and Development

QP

▶Quadratic Programming

Quadratic Assignment Problem
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Introduction

The quadratic assignment problem (QAP) is one of the

most computationally challenging and well-known

problems in the area of combinatorial and integer

optimization. In general terms, also known as in the

Lawler form (Lawler 1963), the QAP can be be stated as

min
p2Pn

Xn

i¼1

Xn

j¼1
cijpðiÞpðjÞ (1)

where Pn denotes the set of all possible permutations

of n elements. In its original introduction due to

Koopmans and Beckmann (1957), the statement of

the QAP assumes that the cost coefficients cijpq have

the following simple structure:

cijpq ¼
fijdpq if i 6¼ j or p 6¼ q;

fiidkk þ aik otherwise:

(

(2)
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This less general version of the problem is known as

the QAP in the Koopmans-Beckmann form.

In economic practice, the QAP arises naturally as

a class of facility location and layout problems in the

following way. Given

• two sets of the same cardinality n, namely, a set of

objects (e.g., facilities) and a set of positions (e.g.,

locations),

• an n� n matrix D ¼ dpq
� �

of distances between

two positions,

• an n� n matrix F ¼ fij
� �

of flows from one object

to another (e.g., amount of goods transferred from

location i to location j), and

• an n� n matrix A ¼ aip
� �

of costs of placing

a specific object at a given location,

find a bijective assignment of the objects to the

respective positions such that the total cost is

minimized. In this context, it is commonly assumed

that F and D are symmetric matrices with all zeros in

the diagonal and nonnegative elements and that matrix

A is also nonnegative.

In addition to the aforementioned area, the QAP has

applications in various other fields as diverse as

ergonomics, electronics and computer manufacturing,

telecommunications, sports, archeology, and organic

chemistry. In particular, the QAP can be used to place

interconnected control and display devices on the

backboard panel in such a manner that minimizes the

total wire length; to design an ergonomic typewriter

keyboard; to create an efficient layout for a hospital; to

rank teams in a relay race; to analyze chemical

reactions between various organic compounds; and to

study archeological data. Other QAP applications

include discriminative word alignment used in

statistical machine translation systems, and symbol

mapping diversity design for optimal retransmission

of multiple data packets in wireless communications.

For more information regarding applications, see the

surveys by Burkard et al. (1999); Loiola et al. (2007);

and Pitsoulis and Pardalos (2009).

Computational Complexity

The QAP is famous for its computational complexity,

which may be one of the main reasons why the

problem has received a considerable amount of

attention from the operations research and

management science research community. In fact, the

QAP was shown by Sahni and Gonzalez (1976) to be

strongly NP-hard. This means that the optimal solution

for the QAP cannot be computed efficiently, and there

are no computationally efficient algorithms that are

able to find an approximate solution that is within

some constant ratio to the optimal. Formally

speaking, the QAP is an NP-hard problem (i.e., the

existence of a polynomial time algorithms for solving

the QAP implies P ¼ NP), and furthermore, for an

arbitrary e > 0, a polynomial time e-approximation

algorithm for the QAP does not exist unless P ¼ NP.
A stronger result obtained by Queyranne (1986)

states that, unlike in the case of the traveling

salesman problem (TSP), which is also NP-hard and

represents a special case of the Koopmans-Beckmann

QAP that is polynomially approximable within 3=2

when the distance matrix is symmetric and satisfies

the triangle inequality, there is no polynomial

approximation algorithm (unless P ¼ NP) for finding
a feasible solution within some finite approximation

ratio to the optimal, even for the QAPs in the

Koopmans-Beckmann form with D representing

distances of the set of points on a line, a symmetric

block diagonal matrix F of flows, and zero linear

terms (i.e., A ¼ 0). This result can be viewed as

a reinforcement for a common belief that the QAP

appears to be computationally more challenging as

compared to other NP-hard problems in combinatorial

and integer optimization. In addition to the TSP, other

NP-hard problems such as the maximum clique

problem, the subgraph isomorphism problem, the

minimum weight feedback arc set problem, the linear

arrangement problem, and the graph packing problem

can be viewed as a special case of the QAP.

The problems of finding locally optimal

solutions for several neighborhood structures (e.g.,

a Kernighan-Lin-type structure and a pair exchange or

2-opt structure) were investigated for the QAP. Similar

to the way the polynomial time decision problems are

said to be in P, the problems of this kind, for which

polynomial time algorithms exist, are known as the

polynomial time local search (PLS) problems. By

analogy to NP-complete problems, the PLS-complete

problems are the most computationally challenging

among the PLS problems. Both Kernighan-Lin-type

neighborhoods for the QAP and a commonly used

2-opt neighborhood structure are shown to be the

PLS-complete. Burkard et al. (1999) state that

there are no known local search criteria for comparing
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the quality of the locally optimal solution to the global

solution. Furthermore, no computationally efficient

algorithms exist for deciding whether a locally

optimal solution is also globally optimal for a given

QAP instance.

Since in general the QAP is NP-hard and

non-approximable, it is of special interest to find

some more restricted versions of this problem for

which computationally efficient algorithms exist. The

motivation behind this is a natural expectation that

a better understanding of what makes the QAP so

computationally difficult in its general case may be

achieved by comparison of the general QAP

structure with the problem structure in the

polynomially-solvable versions. The approaches

commonly used to find new polynomially-solvable

cases of the QAP can be divided into two categories:

1. Determine a suitable set of assumptions to be

imposed on the structure of coefficient matrices of

the QAP in order to get polynomially-solvable

instances of the QAP.

2. Analyze other relevant problems that can be viewed

a special case of the QAP (e.g., the TSP or the linear

arrangement problem) in order to identify their

polynomially-solvable versions. Then reformulate

these polynomially-solvable versions of the other

relevant problems as the QAP instances.

For further details on the computational complexity

of the QAP (including discussions of the PLS

complexity issues and the polynomially-solvable

special cases) see, e.g., Chapters 3 and 10 in Burkard

et al. (1999), and Chapter 3 in Pitsoulis and Pardalos

(2009).

Formulations

Similarly to many other problems in combinatorial

optimization (CO), the QAP can be equivalently

reformulated using several alternative

representations. Besides the purely combinatorial

formulation (1) that represents feasible solutions of

the QAP as permutations, the problem can be written

as a quadratic integer programming program and as

a concave quadratic optimization problem. The QAP

can also be given a trace formulation. Alternatively, it

can be formulated using the Kronecker product.

Moreover, there is a graph-theoretic formulation of

the QAP, just like there is one for the linear

assignment problem (LAP). Each of these alternative

formulations brings with itself a unique set of solution

methods and analytical techniques developed for that

specific area. For instance, the graph reformulation

allows for application of graph-theoretic reasoning to

the QAP, whereas a reformulation using semidefinite

programming relaxation leads to very different lower

bounds than the Gilmore-Lawler-type lower bounds,

which are based on the Kronecker product

formulation. This section briefly describes some of

the most commonly used QAP formulations. For

more information on various QAP formulations, see,

e.g., Pardalos and Wolkowicz (1994); Burkard et al.

(1999); and Loiola et al. (2007).

Since every permutation p 2 Pn of the n-element

set can be equivalently represented by an n� n 0-1

matrix X ¼ xip
� �

, which is called a permutation

matrix and has the following elements:

xip ¼
1 if pðiÞ ¼ p

0 otherwise;

(

(3)

then the QAP (1) can be stated as the following

quadratic 0-1 integer programming problem:

min
X

n

i¼1

X

n

j¼1

X

n

p¼1

X

n

q¼1

cijpqxipxjq (4)

subject to
X

n

i¼1

xip ¼ 1; p ¼ 1; 2; . . . ; n; (5)

X

n

p¼1

xip ¼ 1; i ¼ 1; 2; . . . ; n; (6)

xip 2 f0; 1g; i; p ¼ 1; . . . ; n: (7)

The above formulation very naturally facilitates

linearization of the quadratic objective function

through introduction of new 0-1 integer variables,

and so the application of this formulation is

a common first step in solving the QAP using several

linearization techniques that are discussed in more

detail later. Additionally, by defining an inner

product of matrices F ¼ fij
� �

and Y ¼ yij
� �

as

F;Yh i ¼
X

n

i¼1

X

n

j¼1

fijyij;
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and then observing that for any n� n permutation

matrix X corresponding to p 2 Pn and any n� n

matrix D, the following is true:

XDXT ¼
Xn

p¼1

Xn

q¼1

xipdpqxjq

( )

¼ dpðiÞpðjÞ
� �

;

the QAP in the Koopmans-Beckmann form is

compactly written as the following quadratic integer

program:

min F;XDXT
� �

þ A;Xh i (8)

subject to X 2 Xn;

where Xn denotes a set of all possible n� n

permutation matrices, i.e., matrices that satisfy

conditions (5), (6), and (7).

Since a number of problems on graphs, including

the subgraph isomorphism and the graph partitioning

problems, can be viewed as special cases of the QAP, it

comes as no surprise that the QAP itself can be given

a graph-based formulation. Specifically, given two

undirected weighted complete graphs GF and GD

both having n vertices and nðn� 1Þ=2 edges with the

weights represented by matrices F andD, respectively,

which are symmetric and have all zeros on the

diagonal, then a Koopmans-Beckmann QAP with

zero linear terms can be formulated as the problem of

aligning the vertex sets of the two graphs in such a way

as to minimize the sum of products of the aligned

edges. As noted in Loiola et al. (2007), this graph

formulation of the QAP also leads to the

characterization of the feasible solutions as the line-

graph automorphisms of the complete graph Kn on n

vertices. For a general graph-based formulation of

a Lawler QAP, see, e.g., Kaibel (2000).

A very convenient cost structure of a

Koopmans-Beckmann QAP also permits its

alternative reformulation via trace function. Indeed,

since the trace of an n� n matrix A is defined as:

trðAÞ ¼
X

n

i¼1

aii

then the QAP in Koopmans-Beckmann form can be

written as:

min tr FXDT þ A
� �

XT
� �

(9)

subject to X 2 Xn:

The trace formulation can be utilized to introduce

eigenvalue-based lower bounds for the QAP instances,

where at least one of the matrices F and D is

symmetric. In such case, the nice properties of the

trace function actually allow transforming the

problem into a QAP where both matrices become

symmetric. For example, if F is symmetric and D

is not, then introducing a new D ¼ 1
2
Dþ DTð Þ does

the trick.

The QAP formulation, originally due to Bazaraa

and Sherali (1982), as the following quadratic

concave minimization problem:

min xTQx (10)

subject to x ¼ vecðXTÞ; X 2 Xn;

(where Q is an n2 � n2 symmetric, negative definite

matrix) can be used in cutting plane procedures. Notice

that x in (10) represents an n2 � 1 vector, which is

formed by arranging all the rows of some n� n

permutation matrix X successively into a single row

of size n2 and then transposing this long row into

a n2-dimensional column vector. The reformulation

(10) is obtained from (4) by first combining the cost

coefficients cijpq into an n
2 � n2 matrix B ¼ fbrsgwith

brs ¼ cijpq, for r¼ði�1Þnþp; s¼ðj�1Þnþq;

then transforming X into x as described

above, and lastly defining the n2�n2 matrix

Q¼B�bI, where I denotes an n2�n2 identity

matrix and b is a positive real number such that

b>max
Pn

s¼1 jbrsj; 1� r� n2
� �

¼:kBk1.
Analogously, the QAP can be easily formulated as

a quadratic convex minimization problem, by simply

adding the bI term to B instead of subtracting it.

By introducing an n2 � n2 cost matrix B (defined

above), using the inner product of matrices, and

incorporating the Kronecker product into constraints

of the problem, the QAP in the Lawler form can be

compactly written as:

min hB;Zi (11)

subject to Z ¼ X � X; X 2 Xn;
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where the Kronecker product of n� m matrix X and

p� q matrix Y is given by an np� mq matrix

X � Y ¼

x11Y . . . x1mY

..

. . .
. ..

.

xn1Y . . . xnmY

2

64

3

75:

The formulation (11) represents the QAP as an LAP

of size n2 with the additional quadratic constraint that

an n2 � n2 permutation matrix Z must be a Kronecker

product of a permutation matrix X with itself. Because

of the new constraint, the resulting problem cannot be

solved efficiently. The trace and the Kronecker product

are also used in semidefinite programming relaxations

of the QAP, discussed below.

Relaxations

Two approaches commonly used to tackle the QAP

are linear programming (LP) and semidefinite

programming (SDP) relaxations, which attempt to

address the difficulties associated with the quadratic

objective function by reformulating the problem based

either on linearization techniques or by SDP-based

transformations of “stretching” and “lifting” the

original matrices into the Euclidean space of

high-dimensional square matrices. The resulting

significant increase in dimensionality of the problem

is the common trade-off with these approaches.

In particular, the consequent high dimensionality of

the linearized versions of the QAP represents a

considerable challenge for efficiently solving

the corresponding linear programs. However,

the relaxations of the linearized versions or the

SDP-based reformulations (especially for QAPs with

additional constraints on the costs structure) can be

solved to compute lower bounds for the QAP.

Therefore, better lower bounds are likely to be

produced with a tighter relaxation.

The four fundamental QAP linearization techniques

are given by Lawler (1963), Kaufmann and Broeckx

(1978), Frieze and Yadegar (1983), and Adams and

Johnson (1994). The Lawler linearization represents

the QAP as the following 0-1 integer LP with n4 þ n2

variables and n4 þ 2n2 þ 1 constraints:

min
X

i;j;p;q

cijpqzijpq (12)

subject to xij
� �

2 Xn;
X

i;j;p;q

zijpq ¼ n2

xij þ xpq � 2zijpq � 0; 8i; j; p; q;
zijpq 2 0; 1f g; 8i; j; p; q;

by replacing all the products of the form xijxpq in

(4) with new binary variables zijpq ¼ xijxpq.

Understandably, a large number of variables and

constraints in (12) is a disadvantage of this

linearization.

Kaufmann and Broeckx (1978) proposed a

linearization with the smallest number of variables

and constraints. In their linearization, the QAP is

equivalently expressed as the following mixed integer

linear programming (MILP) problem with n2 real

variables, n2 binary variables and n2 þ n constraints:

min
X

i;j

yij (13)

subject to xij
� �

2 Xn;

8i; j; aijxij þ
X

p;q

cijpqxpq � yij � aij

yij 2 0; 1f g; 8i; j;

by introducing new real-valued variables

yij¼ xij
Pn

p;q¼1 cijpqxpq and constants aij¼
Pn

p;q¼1 cijpq.

Similarly to the Lawler’s technique, the

linearizations by Frieze and Yadegar (1983) and by

Adams and Johnson (1994) both introduce new

variables zijpq ¼ xijxpq, but unlike in Lawler’s case, the

Frieze-Yadegar and the Adams-Johnson linearizations

relax the integrality condition by allowing zijpq
� �

to be

real-valued. Therefore, the latter two linearizations

result in MILP problems with the same objective

function but different constraints. Specifically, the

Frieze-Yadegar linearization reformulates the QAP as:

min
X

i;j;p;q

cijpqyijpq (14)

subject to fxijg 2 Xn;
X

i

yijpq ¼
X

i

yjipq

¼
X

i

ypqij ¼
X

i

ypqji ¼ xpq; 8j; p; q;

yijij ¼ xij; 8i; j;
0 � yijpq � 1; 8i; j;
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whereas the Adams-Johnson linearization rewrites the

QAP as:

min
X

i;j;p;q

cijpqyijpq (15)

subject to fxijg 2 Xn;

8j; p; q;
X

i

yijpq ¼
X

i

yjipq ¼ xpq

yijpq ¼ ypqij; 8i; j; p; q;
yijpq � 0; 8i; j; p; q:

As mentioned above, useful QAP relaxations can

also be obtained using semidefinite programming

(SDP). Interestingly, SDP can be thought as

a generalization of LP with the variables that belong

to the Euclidean space of matrices, where the inner

product between the elements is given by the trace of

the product of matrices. Interior point methods or

cutting plane procedures are commonly applied for

solving the SDP relaxations, and the obtained

solutions represent valid lower bounds for the

original QAP. In fact, the lower bounds produced by

the SDP relaxations are typically rather strong, but

they often are computationally very expensive due to

high dimensionality of the problems resulting from the

SDP relaxations. A thorough explanation of the

application of SDP to the QAP can be found in

Zhao et al. (1998), where it is shown that based on

the trace formulation of the problem below:

min tr FXDXT � 2AXT
� �

(16)

subject to XXT ¼ XTX ¼ I;

Xe ¼ XTe ¼ e ¼ ð1; . . . ; 1ÞT ;
x2ij � xij ¼ 0;

the following SDP relaxation of the QAP can be

obtained:

min tr KYð Þ (17)

subject to b0diagðYÞ ¼ o0diagðYÞ ¼ I;

arrowðYÞ ¼ e0;

trðRYÞ ¼ 0;

Y� 0;

where

K ¼ 0 &� vecðAÞT � vecðAÞ & D� F
h i

;

R ¼ 2n &� 2eT � eT � 2e� e & I � Eþ E� I
� 	

;

and E is an n� n matrix of all ones, � denotes the

Löwner partial order (i.e., A�B if and only if

B� A� 0, which means that B� A is positive

semidefinite). Note that the rows and columns of an

ðn2 þ 1Þ � ðn2 þ 1Þ matrix Y are assumed to be

numbered starting from 0 to n2. Then b0diag and

o0diag, respectively, are the block-0-diagonal and

off-0-diagonal operators from the space of

ðn2 þ 1Þ � ðn2 þ 1Þ matrices into the space of n� n

matrices given by:

b0diagðYÞ ¼
X

n

k¼1

Yðk;�Þðk;�Þ;

o0diagðYÞ ¼
X

n

k¼1
Yð�;kÞð�;kÞ:

Here Yðk;�Þðk;�Þ denotes the k-th n� n matrix on the

diagonal of the n� n array of n� n matrices, all of

which together with the first row Yð0;�Þ and the first

column Yð�;0Þ compose the ðn2 þ 1Þ � ðn2 þ 1Þ
original matrix Y. In a similar fashion, Yð�;kÞð�;kÞ
denotes an n� n matrix of the diagonal elements in

the position ðk; kÞ of the n� nmatrices, which together

form the n2 � n2 lower right block of Y. Also, arrowð�Þ
in (17) denotes the arrow operator from the space

of ðn2 þ 1Þ � ðn2 þ 1Þ matrices into the space of

(n2 þ 1)-dimensional vectors defined as:

arrowðYÞ ¼ diagðYÞ � 0;Yð0;1:n2Þ

� �

;

where diagðYÞ¼ y00; . . . ;yn2 n2
� �T

and 0;Yð0;1:n2Þ

� �

¼

0;y01; . . . ;y0n2ð ÞT is an ðn2þ1Þ-dimensional vector

with zero in the first position and the rest of the

elements given by the elements in the first row (i.e.,

row 0) of Y starting from the position 1 all the way to

the last position n2. Finally, e0 ¼ð1;0; . . . ;0ÞT is

a ðn2þ1Þ-dimensional unit vector with a one in the

first dimension (i.e., row 0).

For formulations of many additional SDP

relaxations, theoretical relationships between them and
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a general approach of devising strong SDP relaxations

for the QAP and other CO problems using a Lagrangian

framework, see, e.g., the survey by Roupin (2009).

Polytopes

Although polyhedral combinatorics has been around

since the 1950s and proved quite successful in

application to many NP-hard problems in

combinatorial optimization (CO), including the TSP,

the stable set problem, and the maximum cut problem,

polyhedral theory was not applied to the QAP until the

1990s (Kaibel 2000). Generally speaking, polyhedral

combinatorics is concerned with understanding the

geometric structure imposed by the constraints of CO

problems with linear objective functions. Moreover,

polyhedral methods can be extended to study the

linearized versions of CO problems with nonlinear

objectives, such as the QAP.

Since the space of all feasible solutions of a CO

problem is represented geometrically as a convex hull

called the associated polytope of the problem, and

because the polytopes can equivalently be described

via the finite systems of inequalities that produce

bounded solution spaces and are referred as linear

descriptions, polyhedral combinatorics can basically

be thought of as the branch of CO that is concerned

with finding such linear descriptions for the polytopes

arising fromCO problems (Kaibel 2000). Investigation

of the linear descriptions helps gain structural

insights into the corresponding problems and their

solution algorithms. Furthermore, by finding

a complete linear description for a CO problem and

then proving that the so-called separation problem for

that linear description is solvable in polynomial time,

one can prove that the correspondent problem is in P.

Of course, because the QAP is well-known to be

NP-hard, instead of searching for a complete linear

description, which is unlikely to exist, the focus of

the polyhedral methods for the QAP is on finding its

partial linear descriptions.

Partial linear descriptions of polytopes based on the

linearized versions of the QAP can be used in particular

to compute lower bounds on the optimal solution value

of an instance via cutting plane algorithms. Obviously,

for reasons of efficiency of cutting plane algorithms, it is

important that the obtained partial linear descriptions

are non-redundant, i.e., no inequality in such systems

can be represented as a linear function of the other

inequalities with non-negative weights. In particular,

this leads to the questions about the polytope’s

dimension and the dimensional gap. Other important

characteristics of the polytopes are its faces of

different dimensions, including vertices, edges, ridges,

and facets.

As Kaibel (2000) shows, a convenient way to derive

a number of important results regarding the polytopes

associated with the QAP is by considering a graph

formulation of the QAP. In particular, this approach

can be used to derive a characterizations for the

vertices of the symmetric QAP polytope and the

polytope of a general QAP with m objects and n

locations. Also the graph-based formulation can be

utilized to establish an affine isomorphism between

the QAP polytopes for the QAP with n� 1 objects

and n locations and the QAP with n objects and n

locations. An analogous result for the symmetric

QAP polytopes are also true.

Several interesting results have already been

established about the connection between the QAP

polytopes and other polytopes (Kaibel 2000). The

polytope of a general QAP with m objects and n

locations can be thought as a specific face of a cut

polytope. This important fact allows utilizing existing

extensive knowledge regarding the structure of the cut

polytopes. Not very surprisingly (since the TSP is

a certain special case of the QAP), the TSP polytope

can be viewed as a simple orthogonal projection of the

QAP with the equal number of objects and locations.

A similar fact is also true for the linear ordering

polytope. The change of coordinate representation,

called the star-transformation, has been proved

exceptionally useful for reducing the dimensional gap

and for proving the results about facial descriptions of

the QAP polytopes, the polytopes’ dimensions, and the

so-called box-inequalities for the QAP.

Also it is noteworthy that there exists an interesting

connection between the QAP polytopes and the

representation theory of the symmetric group,

which was exploited to obtain one of the earliest

results on the dimension of the QAP polytope. For

further references, formulations of theoretical

results, and in-depth discussion of the subject of the

polyhedral methods for the QAP, see, e.g., the survey

by Kaibel (2000).
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Lower Bounds

Lower bounds play a fundamental role in

combinatorial and integer optimization in general,

and are especially useful for solving the QAP. Not

only do they serve as a key instrument in evaluating

the quality of solutions obtained by heuristic

algorithms (i.e., procedures that do not necessarily

return optimal solutions), but also they can be very

useful in reducing the search space of the implicitly

enumerative algorithms (e.g., branch-and-bound-type

procedures).

In terms of usability, the two crucial characteristics

of lower bounds for the QAP are the tightness of

a bound and the computational efficiency. As applied

to implicit enumeration methods, lower bounds can

provide a guarantee that a given subset of the

solution space does not contain the global optimal

solution and therefore does not need to be searched.

Hence, given that a stronger lower bound lies closer to

the optimum, such a lower bound would likely be

capable of producing a greater reduction of the search

space. Similarly, in application to heuristics, stronger

lower bounds are able to provide a better estimate

of the quality of the solution found by the

heuristic. However, computing a strong lower bound

for the QAP typically can be very challenging. For the

general QAP, there seems to be a trade-off between the

tightness and the computational efficiency of its lower

bounds, although results by Mittelmann and Peng

(2010) show that for the QAP instances that are based

on the Hamming and Manhattan distance matrices, the

SDP relaxation can produce lower bounds that are both

strong and relatively easy to compute.

Lower bounds for the QAP can loosely be

subdivided into the following seven categories:

• Gilmore-Lawler type lower bounds;

• Lower bounds based on LP relaxations;

• Lower bounds based on SDP relaxations;

• Variance reduction lower bounds;

• Eigenvalue-based lower bounds;

• Decomposition-based improved lower bounds for

specially structured QAPs;

• Lower bounds based on polyhedral methods.

Gilmore-Lawler type lower bounds (GLTB) are

derived using the formulation (11), which represents

the QAP as an LAP of size n2. To compute GLTB,

a solution matrix Z is constructed by solving

a sequence of LAPs. If the computed matrix Z is

a permutation matrix, then it is also a feasible

solution of the QAP, and therefore, Z gives the

optimal solution of the QAP; otherwise the value of

the optimal solution of the QAP is bounded from below

by B;Zh i.
Several lower bounds utilize this basic principle,

including the original Gilmore-Lawler bound (GLB).

This bound is simple to compute, but the gap between

GLB and the QAP optimal value increases very

quickly with the size of the problem. One way to

improve the quality of GLB is by transforming

a given problem so that some of the weight of the

cost coefficients in the quadratic terms is moved into

the corresponding linear cost coefficient. This can be

achieved by means of reduction methods, which work

by first suitably decomposing the cost coefficients in

the quadratic term and then moving some of their value

into the linear term, which, in fact, results in a stronger

lower bound. An alternative approach for improving

GLB is by using a reformulation. The idea behind this

approach is to devise a series of successive

reformulations constructed in such a way as to

guarantee that the sequence of GLBs computed for

the consecutive reformulations is monotonically

nondecreasing. Although lower bounds based on

reformulation procedures typically have good quality,

the tradeoff is that they are time-consuming.

Some GLB-inspired approaches incorporate a dual

formulation and LP relaxations. A number of these

bounds are based on the reformulation-linearization

(RLT) technique and are considered some of the

tightest and most computationally efficient lower

bounds for the QAP; see, e.g., Loiola et al. (2007).

RLT procedures were originally introduced for

solving mixed-integer 0-1 programming problems.

For a given instance with n 0-1 variables, RLT

constructs an n-level hierarchy of relaxations starting

from the LP relaxation and ending with the convex hull

of feasible solutions. This is essentially an iterative

procedure that incorporates two key phases. In

the first phase, the problem is reformulated

by introducing redundant nonlinear constraints

that are obtained by multiplying each of the

defining constraints by the product factors. Next, in

the linearization phase, each distinct variable in

the nonlinear terms of the objective or constraints

is replaced by the corresponding single

continuous variable. As a result, the problem is

formulated as mixed-integer 0-1 LP problem in
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a higher-dimensional space. Furthermore, at each level

of the hierarchy in RLT, the resulting continuous

relaxation is at least as tight as the preceding one, and

the highest n-th level gives the convex hull of the entire

feasible region of the original QAP. Therefore, the

facets of this hull in the variables of the original

QAP can be obtained as projections of the final

relaxation. Importantly, the RLT procedure is able to

exploit the special block-diagonal structure of the

Lagrangian dual. This allows to use the dual-ascent

procedure to solve the dual of the relaxation and

compute lower bounds.

RLT bounds can be viewed as the bounds obtained

via the so-called lift-and-project method, which

represents the QAP polytope as the projection of

some higher-dimensional polytope. Other bounds that

also utilize this general method are SDP-based lower

bounds. The major difference between the RLT and

SDP-based bounds in terms of their application of

the lift-and-project method is that the SDP involves

semi-definite relaxation in place of the linearization

that is used in RLT.

The SDP-based bounds are among those with the

smallest gap to the optimal value for many QAP

instances from the QAP library (Burkard et al. 1997).

Typically, the SDP lower bounds are computed by

solving the SDP relaxation by means of cutting plane

algorithms or interior point methods. Application of

cutting plane algorithms for computing the SDP-based

bounds often can speed up the computation, which

allows to use the SDP in exact methods by computing

bounds for weaker relaxations in a shorter time.

Typically, the task of solving the SDP relaxations by

interior point methods represents a significant

computational challenge, although in some cases it

may be possible to exploit group symmetry in the

structure of QAP cost coefficients. In fact, using the

representation theory of symmetric groups, it was

shown that when the QAP coefficient matrices have

sufficiently large automorphism groups, it becomes

possible to solve the SDP relaxations using interior

point methods and obtain extremely strong lower

bounds. Roupin (2009) used the connections between

partial Lagrangian and SDP relaxations of 0-1

quadratic programs to analytically compare some of

the SDP-based lower bounds for the QAP and show

theoretical equivalence between the R3 SDP relaxation

by Rendl and Sotirov (2007) and the SDP relaxation

in the lift-and-project procedure by Burer and

Vandenbussche (2006). However, because of their

dependence on SDP solvers, these two equivalent

SDP relaxations produce lower bounds that differ in

their usefulness and numerical behavior, indicating

that the results of numerical comparison of the QAP

lower bounds’ performance may depend heavily on the

implementation. Roupin (2009) explains how partial

Lagrangian relaxations can be used to easily develop

various strong SDP relaxations. Overall, due to their

tightness and despite significant computational

challenges involved, the approaches utilizing the SDP

bounds appear to be very promising for solving large

instances of the QAP. For additional information on

the SDP relaxations and the performance of their lower

bounds for the QAP, see Loiola et al. (2007), Rendl and

Sotirov (2007), and Roupin (2009).

Variance reduction lower bounds can be used for

the QAP in the Koopmans-Beckmann form (2). These

bounds perform well when the flow and distance

matrices exhibit high variances. Unfortunately, when

the variance of the coefficient matrices is small, they

are rather weak, with performance comparable to that

of GLB. Eigenvalue-based lower bounds capitalize on

the connection between the QAP objective in the trace

formulation (9) and the eigenvalues of its coefficient

matrices. Although the quality of these bounds is better

than GLB, they are disadvantageous in terms of

computational time, and their usefulness for reducing

the search space diminishes with each subsequent level

of the branch and bound. Several QAP lower bounds

are based on the idea of decompositions, which

involves exploiting special structure of some

restricted QAP instances. The approach works well

for the rectilinear QAPs called grid QAPs, where the

flow and distance matrices are given by the distances

of the points on the rectangular grid. Finally, as

described by Kaibel (2000), polyhedral methods

can used to compute good quality lower bounds for

the QAP.

Exact Solution Approaches

Various algorithms for solving the QAP to optimality

have been developed. Many of the exact

algorithms proposed for the QAP are some type of

branch-and-bound (B&B) procedures. Other exact

approaches used for solving the QAP are traditional

cutting plane methods and polyhedral cutting plane
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(or branch-and-cut) methods. B&B algorithms appear

to be the most efficient exact procedures for solving

the QAP. The performance of B&B algorithms on

large-sized QAPs strongly depends on the quality and

computational efficiency of the lower bounds

employed by such algorithms. As discussed above, as

well as in the surveys by Loiola et al. (2007) and Hahn

et al. (2010), B&B approaches based on the RLT lower

bounds are among the best and are capable of solving

difficult large QAP instances.

In terms of the rules used in the construction of

a tree or a forest of trees of the branching process, the

B&B type procedures can be grouped into three

categories:

• Algorithms based on single assignment;

• Algorithms based on pair assignment;

• Relative positioning algorithms.

Single assignment algorithms appear to be the

most efficient.

Since the decisions made at the early branching

stages clearly play an enormous role in the consequent

evolution of the search tree, the idea of strong branching

was introduced in an attempt to reduce the computation

for the QAP and other hard CO problems. Strong

branching utilizes dual information associated with the

bounds. Strong branching works by computing bounds

either partially or fully for the candidate child nodes in

the search tree, and selecting the final branching

variables so that the resulting search space is reduced

as much as possible. Strong branching appears to be

very effective at reducing the size of the B&B tree,

which is especially useful for solving large QAPs as

illustrated in Anstreicher (2003).

A number of cutting plane algorithms for finding

the optimal solution of the QAP exist (Burkard et al.

1999). Traditional cutting plane algorithms for the

QAP incorporate MILP formulations, which allow

the use of Bender’s decomposition. In the application

of cutting plane algorithms to the QAP, the

performance of these procedures is usually rather

slow, due to significant amount of time needed for

the upper and lower bounds to converge.

Consequently, traditional cutting plane algorithms

can solve only QAP instances of a small size. On the

other hand, the heuristics derived from these

algorithms are able to produce good quality feasible

solutions early in the search (Burkard et al. 1999).

Polyhedral cutting plane methods, also known as

branch-and-cut algorithms (B&C), can be used for

solving the QAP to optimality. Cutting plane

algorithms based on the polyhedral results in Kaibel

(2000) have several advantages over traditional cutting

plane approaches. In particular, the former generate

the cuts valid for the entire polytope of feasible

solutions, in contrast to traditional techniques. Hence,

the polyhedral techniques do not require complete

recomputation for different cuts, which means that

they need less running time and memory than the

traditional cutting plane algorithms. Computational

studies indicate B&C methods employing the box

inequalities for computing the lower bounds are

promising for computing tight lower bounds and

even finding optimal solutions. However, the running

times of these algorithms on larger QAP instances

are considerably slow because of significant

computational requirements for computing the

bounds. A possible way to improve running times of

the polyhedral cutting plane algorithms is to exploit

special cost structures, e.g., sparsity of the QAP

objective function.

Heuristics

Because solving the QAP has proved to be so hard

for even moderately-sized problem instances, a

large body of research is devoted to the development

of approaches for finding good quality feasible

solutions. These heuristic algorithms for the QAP can

be categorized into the following groups:

• Constructive heuristics;

• Heuristics derived based on limited enumeration

methods;

• Improvement methods;

• Genetic algorithms (GA);

• Simulated annealing (SA);

• Ant colony optimization (ACO) methods;

• Greedy randomized adaptive search procedures

(GRASP);

• Tabu search (TS);

• Memetic algorithms (MA);

• Path relinking (PR);

• Artificial neural networks (ANN);

• Hybrid algorithms.

Constructive heuristics are one of the earliest

approximate methods for the QAP. They work

iteratively often starting with an empty permutation

and gradually building partial permutations into
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a feasible solution of the QAP, e.g., by assigning

a given object to an available location. Heuristics

based on limited enumeration methods typically

exploit the fact that enumeration methods, e.g., B&B,

can often produce a good quality solution in early

stages of the search. The disadvantage of these

procedures is that the stopping criteria employed by

limited enumeration methods tend to eliminate the

optimal solution (Loiola et al. 2007).

Improvement methods are local search (LS)

algorithms, and as such they depend on the definition

of neighborhood structure. Some of the neighborhood

structures commonly used for the QAP are the

pair-exchange and cyclic triple-exchange

neighborhoods, which are based on the permutation

representation of a feasible solution. Another

important characteristic of LS procedures is the

so-called update rule for the selection of the next

current solution. The rules commonly used by

the improvement methods to search the QAP solution

space are the first improvement, the best improvement,

and the Heider’s rule (Burkard et al. 1999).

Because the QAP has many local optima, the

improvement methods are likely to terminate in

a local optimum. Therefore, they are usually

performed multiple times starting with a new initial

solution. Some interesting theoretical results relevant

to the LS methods for special cases and general QAP

are obtained in Barvinok and Stephen (2003). Several

metaheuristic approaches applied to the QAP, such as

SA, GRASP, and TS, incorporate LS procedures.

A number of different algorithms based on

simulated annealing (SA) exist for the QAP. All

of these procedures use the pair-exchange

neighborhood, but integrate distinct cooling and

thermal equilibrium schemes. Numerical experiments

indicate that the performance of SA is significantly

impacted by the choice of the cooling scheme and

other control parameters. Since SA can be viewed as

a non-homogeneous ergodic Markov chain, under

suitable conditions SA converges asymptotically

to the QAP optimal solution; however, the SA

convergence speed for the QAP is hard to analyze

theoretically (Burkard et al. 1999).

The GRASP metaheuristic has been applied

successfully for solving various hard CO problems,

including the QAP. It combines the greedy

improvement phase with the random search phase that

allows to explore the space of the feasible solutions.

Tabu search (TS) is another LS-based metaheuristic

that has been shown to be useful for solving the QAP. It

facilitates the efficient exploration of the solution

space by placing some solutions in the tabu list and

using the aspiration criterion to override the tabu status

of the solution. Different implementations of TS for

the QAP exist, including the TS with fixed tabu list, the

robust TS, and the reactive TS. Based on numerical

studies reported in Burkard et al. (1999), the latter

TS implementation appears to outperform other

traditional TS schemes. Exponentially decreasing

tabu effects also appears to improve the performance

of TS on the QAP. Useful strategic diversifications can

be incorporated into TS for the QAP both with and

without hybridization. TS algorithms for the QAP are

shown to benefit from hybridization with other

heuristics. One example is TS with mutation (where

the idea of mutation is borrowed from GA).

Genetic algorithms (GAs) are another metaheuristic

that have been applied to solving the QAP. Standard

GA procedures perform poorly even on small to

moderate size instances of the QAP, so to improve

the performance of GAs on the QAP, several

hybridization schemes have been proposed, including

a method combining GA with TS and another hybrid

procedure incorporating a greedy scheme into GA.

In particular, the greedy GA performed well on

large-scale instances from QAPLIB (Burkard et al.

1997). An alternative improved GA technique is

a two-phase approach that works, essentially, by

hybridizing GA with itself, since in each phase

different GA-based approaches are used. Another

improved GA method takes advantage of massive

parallelization on GPUs (graphic processing units).

In addition to GAs, another evolutionary-based

technique applied to the QAP is a genetic LS,

better known as memetic algorithms (MA). These

procedures combine recombination of the good

solutions with LS algorithms. Numerical experiments

show that MA can outperform reactive TS, robust TS

and fast ACO. Parallel MA implementations for large

QAPs also exist.

Path-relinking (PR) is another approach used for the

QAP. Its main advantage is that PR can often

quickly find new local optima on its path connecting

two high-quality solutions. Such paths may have many

non-improving solutions that are typically barriers for

standard LS-based procedures. Both serial and parallel

PR implementations for the QAP exist.
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An interesting alternative to more commonly used

methods for solving CO problems is an approach based

on artificial neural networks (ANN or simply NN).

ANN implementation for the QAP, based on the

Hopfield NN, cannot by itself compete with more

traditional methods, but can serve to obtain initial

solutions for further application of improvement

methods. An improved performance of ANN for the

QAP can also be achieved by incorporating chaotic

behavior and burst noise instead of uniform noise in

the Hopfield NN.

Ant colony optimization (ACO) procedures have also

been applied to the QAP. These are nature-inspired

multi-agent search algorithms that imitate the behavior

of ants during the search for food. Ants initially start

searching for food randomly, then as they gradually

mark the trail leading to promising solutions with the

pheromone, the colony’s search begin to gravitate more

towards following the trails where the good quality

solutions were often found at earlier stages. To avoid

search stagnation, the pheromone strength is allowed

to decrease with time. Although early ACO

implementations for the QAP were not competitive

with other metaheuristics, numerical results show that

ACO appears to be one of the best available procedures

for real-life, structured QAP instances.

Hybridizing algorithms for the QAP appears to be

a useful and popular technique. In addition to

aforementioned hybrid algorithms, a number of

hybrid procedures for the QAP appear in the

literature, including algorithms combining several

methods, e.g., LS and ACO with TS, or LS and ACO

with SA, or LS and ACOwith GA. Other QAP solution

algorithms hybridize GA with LS, GA with TS,

GRASP with PR, and even TS and ANN.

Distributed Computing

Parallel implementations for the QAP have appeared

since the 1990s. In fact, many large difficult instances

of the QAP were solved using distributed algorithms.

In distributed computing, a network of connected

machines is utilized to perform computationally

expensive tasks. The size of such network may vary

considerably from small local area networks to the

Internet. As described in Anstreicher (2003), parallel

implementations of QAP solution algorithms share

common difficulties with other computational tasks

performed using distributed computations, including

load balancing and reliability issues. In fact, worker

processes are inherently unreliable, as the availability

of CPUs (central processing units) is typically dynamic

and the master process utilizes worker processes as

they become available. Clearly, fault tolerance is

very important for master and worker processes.

In terms of the application of metacomputing and

grid computing, which involve geographically

distributed computer networks, QAP solution

methods based on computationally inexpensive lower

bounds (e.g., GLB) appear to be easier to implement in

parallel as compared to the more computationally

demanding lower bounds (e.g., many SDP-based

bounds). Some approaches, such as ACO or TS, are

inherently easier to implement in parallel, as they may

allow, as in the case of ACO and TS, the search to be

easily divided among multiple processes. For further

discussion of the application of distributed computing

to the QAP, see Anstreicher (2003) and Pardalos and

Pitsoulis (2000).

Landscapes and Asymptotics

The investigation of the fitness landscape and the

asymptotic properties of the QAP has led to a number

of important results. The study by Barvinok and

Stephen (2003) investigated the distribution of the

objective function values with respect to the

Hamming distance on permutations for a general

QAP and some special cases, such as TSP, using the

representation theory of the symmetric group. These

results have interesting interpretations in terms of

performance of the LS algorithms.

In CO, the fitness landscape is used to study the

performance of LS-based heuristics. The landscape of

a given QAP instance can be thought as an ordered

quadruple ðS;N ; f ; dÞ of the space S of all feasible

solutions of the QAP, a neighborhood structure N on

S, a distance d between the pairs of solutions from S,

and the solution fitness f. The objective function value

is usually referred as the solution fitness. A number of

approaches, including fitness-distance correlation

coefficient and correlation length, have been applied

to analyze the so-called landscape ruggedness. A flat

landscape, where the costs between the neighboring

solutions are very close on average, appears to be

better suited for the LS algorithms as compared to
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a more rugged landscape. It turns out that the fitness

landscape properties of the QAP depend considerably

on the degree of correlation in the structure of cost

coefficients as well as the magnitude of the flow

dominance characteristic (Krokhmal and Pardalos

2009). The flow dominance is essentially defined as

the ratio of the standard deviation of the coefficients in

the flow matrix to their average. The numerical

analysis of various QAP instances indicates that

many QAPs have rather unstructured landscapes,

with the exception of the randomly generated QAP

instances with cost matrices satisfying the triangle

inequality. In fact, it has been observed that the

LS-based heuristics appear to perform better on the

structured QAPs with low flow dominance.

In general, the asymptotic properties of the QAP

with randomly generated cost coefficients differ

considerably from the asymptotic behavior

exhibited by its linear counterparts, such as the LAP or

the multi-dimensional assignment problem (MAP). An

interesting property of the randomly generated QAPs is

that the ratio of the objective function values between

the optimal solution and an arbitrary (including the

worst) feasible solution of the QAP converges to one

in probability as the size of the problems approaches

infinity. However, the convergence rate is rather slow.

This convergence implies that despite the complexity of

the QAP, for extremely large problems any algorithm

can produce a solution of very good quality. In fact, it is

possible to prove that a similar result holds not only in

probability but also almost surely. As explained in

Krokhmal and Pardalos (2009), investigation of the

asymptotic behavior of the QAP has led to discovery

of a more general class of CO problems with analogous

asymptotic properties. Another noteworthy analytic

result proves that a relationship similar to the

well-known Chebyshev’s inequality holds for the

optimal solution value of random QAPs.

Additional details on the asymptotic properties and

fitness landscape analysis of the QAP, as well as

comparison of these two characteristics for other

assignment problems, can be found in the survey by

Krokhmal and Pardalos (2009).

Generalizations and Related Problems

The relationship of the QAP to many other related

problems have been known for some time

(Pardalos and Pitsoulis 2000). Not only can numerous

hard CO problems (e.g., the TSP, the linear

arrangement, the graph partitioning, the maximum

clique, the minimum weight feedback arc set, and the

graph packing problems) be viewed as special cases of

the QAP, but also the QAP itself can be considered as

a special case of other CO problems, e.g., the quadratic

three-dimensional assignment problem (Q3AP), which

can be viewed as a problem of minimizing the

quadratic and linear costs associated with finding

a tripartite matching. Mathematically, the Q3AP can

be compactly formulated as follows:

min
p;s2Pn

Xn

i¼1

Xn

j¼1
cipðiÞsðiÞjpðjÞsðjÞ (18)

where as before Pn denotes the set of all possible

permutations of n elements. The Q3AP arises as

a problem of minimizing a transmission error bound in

the design of the wireless communication systems where

a digital message is automatically repeated twice to

improve wireless transmission quality. During each

message repeat the data are mapped into symbols for

a transmission. To minimize the likelihood of

a transmission error, the two mappings of the data into

transmitted symbols must be as independent as possible.

Several solution procedures for the Q3AP have been

proposed, including B&B algorithms based on the RLT

techniques similar to those used for solving large QAPs.

Implementing the exact algorithms for the Q3AP

requires solving a three-dimensional extension of the

LAP, itself an NP-hard problem (Hahn et al. 2010).

A number of heuristic approaches originally developed

for the QAP, including stochastic LS, have also been

applied for solving the Q3AP. Serial implementations

of solution algorithms for the Q3AP have only been

able to solve the Q3APs of a moderate size. Overall,

solving larger instances of the Q3AP may require

development of parallel algorithms.

The survey byHahn et al. (2010) presents the QAP as

a fundamental problem in a growing class of practically

important and computationally difficult assignment

problems that in addition to the Q3AP, includes the

linear three-dimensional assignment problem (3AP),

the cubic and generalized cubic assignment problems

(CAP and GCAP, respectively), the biquadratic

assignment problem (BiQAP), the generalized linear

and generalized quadratic assignment problems

(G3AP and GQ3AP, respectively), the multi-story

Quadratic Assignment Problem 1205 Q

Q



space assignment (MSAP), the cross-dock door

assignment problem (CDAP), and the stochastic

quadratic assignment problem (SQAP). Other APs

related to the QAP include a polynomially-solvable

LAP and several NP-hard problems, such as MAP

(which is a generalization of the LAP and 3AP), the

bottleneck QAP, and the quadratic semi-assignment

problem (QSAP). Using the totally ordered

commutative semigroups, the so-called algebraic

LAP and algebraic QAP are defined as algebraic

generalizations of the LAP and the QAP, respectively.
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Quadratic Form

A function that can be written as xT Cx, where the

n � n matrix C is a matrix of known coefficients and

x is a column vector. Matrix C is usually assumed

to be symmetric or can be transformed into a

symmetric matrix. The form is said to be positive

definite if xT Cx > 0 for x 6¼ 0. The form is positive

semidefinite if xT Cx � 0 for all x. Negative definite

and negative semidefinite forms are defined by

appropriate reversal of the inequality signs in the

preceding definitions.

See
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Introduction

Quadratic programming (QP) deals with a special class

of mathematical programs in which a quadratic

function of the decision variables is required to be

optimized (i.e., either minimized or maximized)

subject to linear equality and/or inequality constraints.

Let x ¼ ðx1; . . . ; xnÞT denote the column vector of

decision variables. In mathematical programming it is

standard practice to handle a problem requiring the

maximization of a function f ðxÞ subject to some

constraints, by minimizing � f ðxÞ subject to the

same constraints. Both problems have the same set of

optimum solutions. Because of this, the discussion is

restricted to minimization problems, without any loss

of generality.

A quadratic function of decision variables x is

a function of the form

QðxÞ ¼
Xn

i¼1

Xn

j¼i

qijxixj þ
Xn

j¼1

cjxj þ c0:

Define c ¼ ðc1; . . . ; cnÞ, and a square symmetric

matrix D ¼ ðdijÞ of order n, where

dii ¼ 2qii for all i ¼ 1 to n / dij ¼ dji ¼ qij for j > i

Then in matrix notation, QðxÞ ¼ 1
2
xTDxþ cxþ c0.

Here D is the Hessian matrix (i.e., the matrix of second

order partial derivatives) of QðxÞ.
As an example, consider n ¼ 3, x ¼ ðx1; x2; x3ÞT ,

and hðxÞ ¼ 81x21 � 7x22 þ 5x1x2 � 6x1x3 þ 18x2x3.

This quadratic function hðxÞ ¼ 1
2
xTDx where

D ¼
162 5 �6

5 �14 18

�6 18 0

0

@

1

A:

A quadratic function is the simplest nonlinear

function, and hence they have always served as

model functions for approximating general nonlinear

functions by local models.

A square matrix D of order n is said to be

Positive semidefinite (PSD) if xTDx � 0 for all

x 2 Rn;

Positive definite (PD) if xTDx > 0 for all nonzero

x 2 Rn.

These matrix-theoretic concepts are important in

the study of QP because the quadratic function

QðxÞ ¼ 1
2
xTDxþ cxþ c0 is a convex function over

Rn iff the matrix D is PSD.

Superdiagonalization Algorithm to Check
Whether a Given Square Matrix is PD, PSD

Let M0 be the square matrix of order n to be checked.

Let Dn ¼ M0 þMT
0 . D

n is symmetric. M0 is PSD,
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PD iff Dn is. The algorithm consists of at most n steps

carried out onDn. In each step, one Gaussian pivot step

is carried out; and some rows t and the corresponding

columns t are deleted, so the remaining matrix is

a symmetric square matrix of smaller order.

When the remaining matrix is of order s, denote it

by Ds. The algorithm begins with s ¼ n.

General Step: Let Dr be the current matrix of

order r.

If any principal diagonal entry ofDr is negative,M0

is not even PSD; terminate with this conclusion.

If any diagonal entry ofDr is 0, the row and column

of Dr of that entry must be 0-vectors; otherwise M0 is

not even PSD; terminate with this conclusion. If that

row and column are 0-vectors, eliminate them, and

continue with the remaining matrix.

Now all diagonal entries of the remainingmatrix are

positive. Perform a Gaussian pivot step on this

remaining matrix in column 1 with its diagonal entry

as the pivot element, to convert all nondiagonal entries

in this column to 0. After the pivot step, eliminate row

1, column 1 of the resulting matrix, and with the

remaining matrix go to the next step.

If the conclusion that M0 is not PSD is never

reached, and all the steps are carried out, the

algorithm will terminate with a 1� 1 matrix, i.e.,

a positive number. in this case terminate with the

conclusion that M0 is PSD. It is also PD if no

0-diagonal entry appeared during the algorithm.

For numerical examples, see Sect. 9.2 in Murty

(2010).

Classification of Quadratic Programs

QPs can be classified into the following types.

Unconstrained quadratic minimization
problem: minimization of a quadratic function QðxÞ
over the entire space.

Equality constrained quadratic minimization
problem: minimization of a quadratic function QðxÞ
subject to linear equality constraints on the variables,

Ax ¼ b. These equations can be used to eliminate

some variables by expressing them in terms of the

others, and thereby transform the problem into an

unconstrained one in the remaining variables. Thus

these problems are mathematically equivalent to (and

can be solved by techniques similar to those of)

unconstrained quadratic minimization problems.

Inequality constrained quadratic minimization
problem: minimization of a quadratic function QðxÞ
subject to linear inequality constraints Bx � d, and

possibly bounds on individual variables ‘ � x � u,

and may be some equality constraints Ax ¼ b.

Quadratic network optimization problem:

quadratic program in which the constraints are flow

conservation constraints on a pure or generalized

network.

Bound constrained quadratic minimization
problem: minimization of a quadratic function subject

only to bounds (lower and/or upper) on the variables.

Convex quadratic program (CQP): any of the

above problems in which the objective function to be

minimized, QðxÞ, is convex.
Nonconvex quadratic program: any of the above

problems in which the objective function to be

minimized, QðxÞ, is nonconvex.
Linear complementarity problem (LCP): special

problem dealing with a system of equations in

nonnegative variables in which the variables are

formed into various pairs called complementary

pairs. A feasible solution in which at least one

variable in each pair is zero is desired. There is no

objective function to be minimized in this problem.

The first order necessary optimality conditions for

a QP are in the form of an LCP. And in turn every

LCP can be posed as a QP.

Nearest point problems: special type of QPs that

require finding the nearest point in the set of feasible

solutions of a system of linear constraints, by Euclidean

distance, to a given point (Liu and Fathi 2011).

Unconstrained Quadratic Minimization in
Classical Mathematics

Historically, quadratic functions became prominent

because they provide simple local models for general

nonlinear functions. A quadratic function is the

simplest nonlinear function, and when used as a local

approximation for a general nonlinear function, it can

capture the important curvature information that

a linear approximation cannot.

The use of quadratic approximations to handle

general nonlinear functions goes back a very long

time. Some important instances are the following.

1. Newton’s method Newton developed the

celebrated method for finding an unconstrained
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minimum of a twice continuously differentiable

function, f ðxÞ, by constructing the local model for

f ðxr þ yÞ at the current point xr to be the quadratic

function QðyÞ ¼ f ðxrÞ þ Hf ðxrÞyþ 1
2
yTHðf ðxrÞÞy,

where Hf ðxrÞ is the row vector of the first order

partial derivatives of f ðxÞ at xr, and Hðf ðxrÞÞ is
the Hessian matrix of f ðxÞ at xr. QðyÞ is the 2nd

order Taylor series approximation for f ðxÞ at xr.
The method finds the minimizer yr of the model

function QðyÞ (assuming that Hðf ðxrÞÞ is PD, then
yr ¼ �ðHðf ðxrÞÞÞ�1ðHf ðxrÞÞT), and the next point

to be xrþ1 ¼ xr þ yr.

Thus Newton’s method solves an unconstrained

quadratic minimization problem in each step.

Starting from an initial point x0, it generates the

sequence fxrg, which under certain conditions can

be shown to converge to the minimum of the

original function f ðxÞ.
To treat the case where the Hessian Hðf ðxrÞÞ

may not be PD, several modified Newton methods

based on quadratic models different from the 2nd

order Taylor series approximation at xr, have been

developed.

Also, the mathematically beautiful theory of

quasi-Newton methods for unconstrained

minimization has also been developed through the

study of quadratic models (Bazaraa et al. 1993).

2. Conjugate gradient method There is the very

efficient Gaussian elimination method for solving

a square nonsingular system of linear equations,

Ax ¼ b say, of order n. However, when n is very

large, this method becomes unwieldy and difficult

to implement. The least squares formulation of this

system of equations is the unconstrained quadratic

minimization problem

Minimize ðAx� bÞTðAx� bÞ

and Hestenes and Stiefel developed the conjugate

gradient method for solving this problem in the

1950s. Subsequently, through the study of the

quadratic model, several researchers have extended

this method directly into a variety of conjugate

gradient methods for the unconstrained minimization

of general nonlinear functions.

3. Linear least squares Consider a large system of

linear equations (typically overdetermined, i.e.,

where the number of equations exceeds the

number of variables), say Ax ¼ b, which has no

exact solution. A common approach for handling

such a system is to look for a least squares solution,

i.e., an optimum solution of the unconstrained

quadratic minimization problem

Minimize ðAx� bÞTðAx� bÞ

This problem is known as the linear least squares

problem. Powerful numerical linear algebra

techniques such as singular value decomposition

(SVD) have been developed to solve large scale

versions of this special class of QPs. Statisticians

have been using the linear least squares model for

computing the estimates of the coefficients in

a linear regression model for a long time.

Types of Solutions

Linear programming (LP) deals with only one type of

optimum solution, but not about different types of

optima such as local and global optima. That is

because every local optimum, and every point

satisfying the first order necessary optimality

conditions for an LP, is also a global optimum.

Unfortunately this is not the case in general QPs.

For a QP, or any mathematical program in which an

objective function yðxÞ is required to be minimized,

there are the following types of optimum solutions:

Local minimum — a feasible solution �x for which

there exists an E > 0 such that yðxÞ � yðxÞ for all
feasible solutions within a Euclidean distance of at

most E from �x

Global minimum — a feasible solution x̂ satisfying

yðxÞ � yð x̂Þ for all feasible solutions x
Stationary point or KKT point— a feasible solution

satisfying the first order necessary optimality

conditions (also called the KKT (Karush, Kuhn,

Tucker) optimality conditions) for the problem.

In a convex QP, every stationary point (KKT point),

or a local minimum, is a global minimum; hence all

these concepts converge in a convex QP. The same

may not be true in nonconvex QPs, i.e., there may be

local minima which are not global minima, and

stationary points which are neither global nor local

minima. Also, the problem may have some local

minima, even when the objective function is

unbounded below on the set of feasible solutions.
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The first order (KKT) necessary optimality

conditions for a QP will be referred to as its

KKT system.

What Types of Solutions Can Be Computed
Efficiently by Existing Algorithms?

Like LPs, QPs have the property that when the set

of feasible solutions is nonempty, either a global

minimum exists, or the objective function is

unbounded below on the set of feasible solutions.

And for both convex and nonconvex QPs, there exist

finite algorithms for checking whether the objective

function is unbounded below on the set of feasible

solutions, and for computing a global optimum

solution when one exists.

For convex QPs there are very efficient algorithms

for computing a global minimum when it exists, and

very high quality software implementing these

algorithms is available commercially.

For nonconvex QPs, even though finite algorithms

for computing a global minimum are available, they

are impractical, because the computational effort

needed by them grows exponentially with the size of

the problem being solved. Nonconvex QP is NP-hard,

and so far there is no algorithm known that is

guaranteed to find a global minimum for it within

a reasonable time.

Can at least a local minimum for a nonconvex QP be

computed efficiently? Unfortunately, even the problem

of checking whether a given feasible solution is a local

minimum for a nonconvex QP may be a hard problem.

In Murty and Kabadi (1987), it has been shown that the

problem of checking whether 0 is a local minimum in

the following simple QP

Minimize xTDx

subject to x � 0

is a co-NP-complete problem when D is not PSD. In

this paper, it has been explained that when dealing with

a nonconvex QP, a reasonable practical goal is to look

for an algorithm that produces a descent sequence

(i.e., a sequence of feasible points along which the

objective value strictly decreases) converging to

a KKT point. Some of the algorithms discussed

below have this property.

Some Important Applications of QP

Finance Analysis using QP models is an established

part of selecting optimum investment strategies.

Perhaps Markowitz (1959) is the first published book

in this area. The Markovitz model employs the

variation in return as measured by the quadratic

function xTDx, where D is the variance/covariance

matrix, and x is the vector of stock investments; as

a measure of the risk. This risk is the objective function

to be minimized. Constraints in the model guarantee

conservation on the flow of funds, and a lower bound

on the expected returns from the portfolio. There may

also be bounds placed on the investments in particular

sectors of the economy (such as utilities, etc.) to make

sure that the model does not put too many eggs in any

basket, thus achieving diversification. Many other

practical aspects of investing can easily be included

by either adding appropriate constraints or modifying

the objective function by including quadratic

penalty terms.

Portfolio management The portfolio optimization

problem discussed above is a widely studied static

problem since it only determines the optimum

investment amounts in various stocks at one point of

time. But the real problem in managing investments,

known as portfolio management, is dynamic, as yield

and risk data keep changing over time randomly. Many

authors (e.g., Mulvey 1987) have designed multiperiod

quadratic generalized network flow models in which

interest, dividends, and loans are modeled by means of

arc multipliers.

Taxation QP models play a very important role in

the analysis of tax policies. Political leaders at the

national and state levels are relying more and more

on such analyses to forecast growth rates in tax

revenues, and to set various taxes at levels that are

likely to ensure growth at desired rates. White (1983)

gives a detailed description of such an analysis carried

out for the state of Georgia.

National and state government taxes such as sales

tax, motor fuels tax, alcoholic beverages tax, personal

income tax, etc. are all set at levels to ensure a healthy

economic growth. Government finance is based on the

assumption of predictable and steady growth of each

tax over time.

If s is the tax rate for a particular tax and St the

expected tax revenue for this tax in year t, then

a typical regression equation used to predict St as
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a function of s and t is: logeSt ¼ aþ btþ cs where

a; b; c are parameters to be estimated from past data

to give the closest fit by the least squares method. The

annual growth rate in this tax revenue is then the

regression coefficient b multiplied by 100 to convert

it to percent.

The decision variables in the model are: sj ¼ the tax

rate for tax j in the base year (0th year) as a fraction.

From the known tax base for tax j in the 0th year,

the revenues from tax j in this year can be obtained

as: sj (tax base for tax j) ¼ xj. The instability or

variability in this revenue is measured by the

quadratic function QðxÞ ¼ xTVx, where V is the

variance/covariance matrix estimated from past

data and QðxÞ is to be minimized. The constraints

in the model consist of bounds on the xj, and

a condition that
P

xj ¼ T, the total expected tax

revenue in the 0th year. And there is an equation

that the overall growth rate which can be measured

by the weighted average of the growth rates of the

various taxes j,
PðxjbjÞ=T should be equal to the

desired growth rate l. Any other linear constraints

that the decision variables are required to satisfy can

also be included. In fact l can be treated as

a parameter, and the whole model solved as

a parametric QP model. Exploring the optimum

solution for different values of l in the reasonable

range yields information for the political decision

makers to determine good values for the various

tax rates that are consistent with expected growth in

tax revenues.

Equilibrium models Economists use equilibrium

models to analyze expected changes in economic

conditions, predict prices, inflation rates, etc. These

models often involve QPs. As an example, in Glassey

(1978) a simple equilibrium model of interregional

trade in a single commodity is described.

He considers N regions, and the following data

elements and variables.

Data: ai > 0 the equilibrium price in the ith region in the
absence of imports and exports.

bi > 0 the elasticity of supply and demand in the ith
region.

cij the cost/unit to ship from i to j.

Variables: pi equilibrium price in the ith region.

yi net imports into the ith region (may be > 0, or 0,
or < 0)

xij actual exports from region i to region j.

If pi > ai, supply locally exceeds demand in the ith

region, the difference being available for export. From

this follows pi ¼ ai � biyi. Also, the yi and xij are

linked through flow conservation equations.

The interregional trade equilibrium conditions are

pi þ cij � pj for all i; j

ðpi þ cij � pjÞxij ¼ 0 for all i; j

If the first condition above does not hold, exports

from i to j will increase until the elasticity effects in

markets i and j rise, and prices will adjust so that

additional profit from export no longer exists. Also, if

xij > 0, then pi þ cij � pj ¼ 0.

It can be verified that these conditions are the

first-order necessary optimality conditions for

a quadratic network flow problem in which the

quadratic objective function can be interpreted as a net

social payoff function. Using this observation, Glassey

(1978) describes a procedure for computing the

equilibrium prices and flows based on solving the QP.

In the same way, traffic engineers use traffic

equilibrium models solved by quadratic network flow

algorithms for road and communication network

planning. These traffic equilibrium models typically

have hundreds of thousands of variables and

constraints, and are probably the largest QP models

solved on a regular basis.

Electrical networks Even during the physicist

J. C. Maxwell’s time in the second half of the 19th

century, it has been well recognized that the

equilibrium conditions of an electrical or a hydraulic

network are attained at the point where the total energy

loss is minimized. Dennis (1959) has formally shown

that the sum of the energy losses in the resistors and at

the voltage sources in an electrical network, is

a quadratic function of the branch currents, if all

devices in the network are of a linear (i.e., ohmic)

nature. Using this he formulated the problem of

determining the branch currents at equilibrium in an

electrical network connecting various devices, voltage

sources, diodes, and resistors, as a QP. He then

showed that the optimality conditions for this QP

are precisely the Kirchoff laws governing the

equilibrium conditions of the network, with the

Lagrange multipliers representing node potentials. In

the distribution of electrical power, this QP model is

used to solve the load flow problem concerned with the
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flow of power through the transmission network to

meet a given demand.

Power system scheduling problem The economic

dispatch problem in an electrical power system

operation deals with the problem of allocating the

demand for power – or system load – among the

generating units in operation at any point of time.

The optimal allocation of load among the units to

achieve a least cost allocation, depends on the

relative efficiencies of the units; and can be modeled

as a QP; see Wood (1984). In power system operation,

this model is usually solved many times during the day

with appropriate load adjustments.

Application in solving general nonlinear
programs One of the most popular algorithms for

solving general nonlinear programming problems

is the SQP (sequential or recursive quadratic

programming) method. It is an iterative method

which in each iteration solves a convex QP to find

a search direction, and a line search problem (one

dimensional minimization problem for a merit

function) in that direction. The original concepts of

this method are outlined in the Harvard Ph. D. thesis

of R. B.Wilson in 1963, and now it has been developed

into a successful approach through the work of many

researchers; see Bazaraa, Sherali and Shetty (1993),

and Murty (1988). The success of these methods has

made QP a very important topic in mathematical

programming. A nice software package for nonlinear

programs based on this approach is FSQP (Zhou and

Tits 1992).

Studies involving Support Vector Machines
(SVMs) SVMs are learning methods used for

classification and regression. Given training examples

of two categories of objects, each object represented

as a vector in Rn (this vector may represent the

measurements of various characteristics of the object),

SVM training algorithm builds a model to construct

a hyperplane in Rn (represented by a linear equation in

which the coefficients are the parameters to be

determined using the model) that separates the sets of

points of the two categories; with the largest possible

distance to the nearest training data points of any

category. This hyperplane is later used to classify new

examples into one of the categories based on which side

of the hyperplane they fall on. The model to determine

the hyperplane is a QP model. Thus algorithms for QP

play an important role in applications involving SVMs.

A version of SVM for regression was proposed

by Vapnik and others, this method is now called

support vector regression. SVMs find many diverse

applications in character recognition, image

classification, clustering, machine learning, neural

networks, statistics, data mining, biosequence

analysis, and bioinformatics (Steinwart and

Christmann 2008).

Algorithmic Developments

(a) Frank-Wolfe method One of the first methods for

QP developed in 1950s is that of Frank and Wolfe.

It is an iterative method which in each iteration

solves an LP to find a search direction, and a line

search problem in that direction. It produces

a descent sequence such that every limit point of

this sequence is a KKT point. However, the

method has slow convergence, and is not popular

except on problems with special structure that

makes it possible to solve the LP in each iteration

by an extremely fast special method taking

advantage of the structure.

(b) Reduced gradient methods The simplex method

for LP has been extended to solve problems

involving the minimization of a quadratic (or in

general a smooth nonlinear) function subject to

linear constraints. The method is called the

reduced gradient method and is discussed by

P. Wolfe in 1959. The name reduced gradient

method refers to any method which uses the

equality constraints to eliminate some variables

(called the dependent or basic variables) from the

problem, and treats the remaining problem in the

space of the independent (or nonbasic variables)

only, either explicitly or implicitly. The reduced

gradient is the gradient of the objective function in

the space of independent variables. The method is

quite popular. The OSL software package uses this

method for solving QPs. The MINOS software

package uses this method for minimizing

a smooth nonlinear function subject to equality

constraints.

This method has been generalized directly into

the GRG (generalized reduced gradient) method

for solving nonlinear programs involving

nonlinear constraints. The GRG is a popular
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method on which several successful nonlinear

programming software packages are based.

(c) Methods based on the LCP In the 1950s and 60s

several researchers proposed schemes for solving

the QP by solving its KKT system. Lemke

formulated the KKT system for a QP as an LCP

and developed a beautiful algorithm for it called the

complementary pivot algorithm. The data for an

LCP of order n consists of a square matrix M of

order n, and a column vector q 2 Rn; and it is to find

a w ¼ ðwjÞ 2 Rn and a z ¼ ðzjÞ 2 Rn satisfying

w�Mz ¼ q

w; z � 0

wjzj ¼ 0 for all j

Checking whether the general LCP has

a solution is an NP-complete problem, and there

are no efficient algorithms known for it. But the

complementary pivot algorithm is a finite path

following method for finding a solution, when

one exists, to a class of LCPs which includes the

KKT systems corresponding to convex QP.

The development of the complementary pivot

method is a nice theoretical breakthrough for

which Lemke received the von Neuman Theory

Award of ORSA/TIMS in 1978. However, the

complementary pivot method, and several other

methods developed for the LCP, are not preferred

for solving even convex QPs, because a QP

involving m inequality constraints in n

nonnegative variables leads to an LCP of order

mþ n, blowing up the size of the model.

For tackling nonconvexQPs, the complementary

pivot approach is clearly unsuitable, as it focusses

attention purely on the KKT system, and never even

computes the objective value; and if it leads to

a KKT point at termination, that point may not

even be a local minimum.

However, the formulation of the LCP and the

complementary pivot method constituted great

contributions to theory. The LCP has a

fascinating geometrical interpretation. The study

of the geometry of LCP was initiated in the 1968

Ph. D. thesis of Murty and continues to be a very

active area of research. And the mathematical

principle behind the complementary pivot method

has been used to develop simplicial methods

(which are also called complementary pivot

methods) to solve systems of nonlinear equations

and fixed point problems. See Murty (1988) and

Cottle, Pang and Stone (1992).

(d) Active set methods A popular method for solving

QP is based on a combinatorial approach to

iteratively determine the set of active constraints

at the optimum. This type of strategy for handling

inequality constrained optimization problems is

called the active set strategy. The method solves

a sequence of equality constrained QPs by treating

some of the inequality constraints as equations (the

active set) and temporarily ignoring the others.

Several rules are employed to modify the active

set from one iteration to the next, to guarantee

finite convergence of the procedure. Several

researchers have extended this method to

minimize a smooth nonlinear function subject to

linear equality and inequality constraints; see

Bazaara, Sherali and Shetty (1993).

(e) Interior point methods Since the development of

a very successful interior point method for LP by

Karmarkar (1984), a variety of interior point

methods have been developed for convex QPs

and the LCPs associated with them. These

methods are polynomially bounded, and some

versions of them give excellent computational

performance on large sparse problems. The

monograph (Kojima et al. 1991) establishes the

theoretical foundations for primal-dual interior

point methods for LP and LCP. The authors won

the 1992 Lanchester award for this monograph.

Some other references on these methods are Ye

(1991), Wright (1997), Vanderbei (2008).

(f) Sphere methods These are also interior point

methods. They find a largest inscribed sphere with

center having an objective value � that at the

current interior feasible solution, approximately.

The problem of minimizing the objective function

on that sphere, is known as a trust region problem,

for which there are efficient algorithms. Also, good

software implementations of these algorithms are

available. Sphere methods use the direction from

the center of inscribed sphere to the point

minimizing the objective function on this sphere

as a descent direction. For details, see Chapter 9 in

(Murty 2010).
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(g) Methods for nonconvex QP Efficient

polynomially bounded algorithms that are

guaranteeed to find a local minimum for some

special classes of nonconvex QP have been

developed by Vavasis.

The sphere methods discussed above have also

been adopted to solve nonconvex QPs, and even

0-1 interger programs through nonconvex QP

formulations (Murty 2010).

Software

There are several commercially available software

packages for solving QPs, including CPLEX, MINOS

(available from The Scientific Press as part of either of

the algebraic modeling systems AMPL or GAMS),

IBMs OSL, MOSEK, and LINDO (Schrage 1987).

Also, the online NEOS server for optimization

provides a list ofQP software, and solvers offering them.

AMPL (Fourer et al. 1993) is a modeling language

for mathematical programming which provides

a natural form of input for linear, integer, and

nonlinear mathematical models besides QP models.

The book is accompanied by a PC student version of

AMPL and representative solvers, enough to easily

handle problems of a few hundred variables and

constraints. Versions that support much larger

problems are available from the publisher. AMPL

uses either MINOS, OSL, or CPLEX solvers for

solving QP models.

GAMS (Brooke et al. 1988) is a high-level language

that is designed to make the construction and solution

of large and complex mathematical programming

models straightforward for programmers, and more

comprehensible to users of models. It uses the

MINOS or the CPLEX solvers for solving QPs, it

has also solvers for linear, integer, and nonlinear

programming problems. A student version and a

professional version are available.

IBM’s OSL is a collection of high performance

mathematical subroutines for solving linear, integer

and quadratic programming models.

MINOS is a Fortran-based computer system

designed to solve large scale linear, quadratic, and

nonlinear models developed by Murtagh and Saunders

in the Department of OR at Stanford University.

The books by Wright (1997) and Vanderbei

(2008) provide details about sources for QP software

systems.

See

▶Algebraic Modeling Languages for Optimization

▶Complementarity Applications

▶Complementarity Problems

▶Convex Optimization

▶Economics and Operations Research

▶ Financial Engineering

▶ Interior-Point Methods for Conic-Linear

Optimization

▶Linear Programming

▶Nonlinear Programming

▶ Portfolio Theory: Mean-Variance Model
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Introduction

While interest in quality goes back to the Middle Ages,

quality control as a technical and managerial discipline

started to become accepted and widely practiced only

in the 1940s and 1950s. Statistical methods of quality

control, though developed in the United States and

Britain, found their most ardent followers among

Japanese businessmen and managers in the post-War

decades. Statistical quality control (SQC) consultants

such as W.E. Deming became household names in

Japan although they were scarcely known in their

own countries. During the 1980s, however, there was

a renewed interest in quality control in the West,

spurred no doubt by the globalization of competition

and increasing customer awareness of quality. The

Baldrige Performance Excellence Program is one

continuous improvement program that has had a great

impact on putting quality on top managements’

agendas throughout the nation. Even those companies

that do not apply for the Malcolm Baldrige Award

(MBA) are using its criteria to assess the quality

management system of their company, identify any

existing gaps and determine necessary improvements.

Organizations establish and employ quality

management systems to satisfy the requirements of

their customers. A Quality Management System

(QMS) is the collection of interrelated activities that

a firm uses to define and implement its quality policies

and attain its quality objectives. The ISO 9000 standard,

the Baldrige Criteria for Performance Excellence and

programs such as Six Sigma can be used to provide an

infrastructure for implementing a QMS.

To ensure that an organization’s supplierswill deliver

products and services that conform to its requirements in

an era of growing international trade, the International

Organization for Standardization (ISO) developed and

issued a set of international standards called ISO 9000.

The International Organization for Standardization is
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a non-governmental organization founded in 1947 and is

located in Geneva, Switzerland.

The ISO 9000 series first published in 1987

consisted of ISO 9000 (Guidelines for Selection and

Use), three 9001 standards and the 9004 standard. The

Series has been revised several times since then. One

update, designated ISO 9000:2000, was released in late

2000. In this revision, the three ISO 9001 standards

were merged into ISO 9001 and renamed “Quality

management systems — Requirements.” Although an

organization is certified using the requirements given

in ISO 9001, the organization frequently states that it is

ISO 9000 certified.

The latest revision occurred in 2008 and

includes ISO 9000:2008 (Quality management

systems — Fundamentals and vocabulary)

and ISO 9001:2008 (Quality management

systems — Requirements). The revisions to the 2008

version are minor compared to the 2000 version and

usually clarify terminology. A listing of the specific

changes between the 2000 and 2008 versions of ISO

9001 can be found in Annex B of ISO 9001:2008.

ISO 9001:2008 is based on eight quality

management principles: customer focus, leadership,

involvement of people, process approach, system

approach to management, continual improvement,

factual approach to decision making and mutually

beneficial supplier relationships. The close

relationship between these eight principles and those

underlying Total Quality is found in Goetsch and

Davis (2009).

ISO 9004:2009 is now called “Managing for the

sustained success of an organization — A quality

management approach.” This standard shows how

to continually improve the performance of an

organization, thereby leading to its long-term success.

An organization wanting to obtain the registration

and approval of its quality system needs to go through

extensive documentation and assessment and periodic

audits by a registrar. An overview of the registration

process is found in Foster (2010). The ISO9000

certification has become essential for companies

interested in doing business globally.

The 2000 and 2008 revisions of ISO 9000 provide

for improved alignment between ISO 9001 and ISO

14001, where ISO 14000 is directed towards the

implementation of an effective environmental

system. However, as Foster (2010) states: “ISO

14000 is very riskyfor U.S. firms.” The reason is that

firms are required to report environmental violations to

the U.S. Environmental Protection Agency, thereby

exposing themselves to fines and penalties.

The use of statistical techniques plays a key role in

the ISO 9001:2008 standard and includes those used

for process monitoring and the analysis of supplier and

customer satisfaction data. To assist in the selection of

the appropriate statistical technique, ISO has issued

ISO/TR 10017:2003 (Guidance on Statistical

Techniques for ISO 9001:2000).

The Baldrige Criteria for Performance Excellence

provide another infrastructure for implementing

a quality management system. The criteria also allow

an organization to determine the current status of its

quality journey so that it can improve its performance

and competitiveness. The award was named after

Malcolm Baldrige, the 26th Secretary of Commerce.

The Malcolm Baldrige National Quality Improvement

Act was signed into law in 1987. One statement in the

Findings and Purposes Section of the law is: “strategic

planning for quality and quality improvement

programs, through a commitment to excellence in

manufacturing and services, are becoming more and

more essential to the well-being of our Nation’s

economy and our ability to compete effectively in the

global marketplace.”

Applicants for the Malcolm Baldrige Award are

graded on the following seven criteria: Leadership

(120), Strategic Planning (85), Customer Focus (85),

Measurement, Analysis and Knowledge Management

(90), Workforce Focus (85), Process Management and

Results(450). The point value for each criterion is in

parentheses where the total point value is 1,000. The

National Institute of Standards and Technology

(NIST), which manages the program with assistance

from the American Society for Quality (ASQ),

states “[The Criteria] have evolved from having

a specific focus on manufacturing quality to a

comprehensive strategic focus on overall

organizational competitiveness and sustainability.”

The Criteria are built on a set of interrelated Core

Values and Concepts including visionary leadership,

customer-driven excellence, and a systems perspective.

The number of categories eligible for the award was

increased in 2007, and the categories now comprise:

manufacturing businesses (2), service companies,

small businesses (3), educational organizations (1),

health care organizations (1), and nonprofit

organizations such as charities, trade and professional
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associations and governmental agencies. The numbers

in parentheses are the number of recipients in each

category for 2010 which marked the first year in the

award’s history with three small business recipients.

Information about the criteria and the award can be

found at the NIST/Baldrige Award Web site.

A third infrastructure for quality improvement is

Six Sigma, which originated at Motorola in the

mid-1980s. However, its adoption by General

Electric, led by former CEO Jack Welch, brought Six

Sigma to the forefront as a quality framework that

merited serious consideration. Six Sigma has at least

three perspectives.

One is a level of process performance such that if

the process mean shifts by 1.5 standard deviations, the

process will not generate more than 3.4 defects per

million opportunities (DPMO), where an opportunity

is defined as a chance for nonconformance. Allowing

a shift of 1.5 standard deviations recognizes that it is

very difficult to hold a process on target. The number

of defects per million opportunities (DPMO) can be

written as

DPMO¼ 106�
Number of Defects Observed in a Fixed Period of Time

ðNumber of Units InspectedÞðOpportunities for ErrorÞ :

To determine the sigma level of a process, calculate

z ¼ 1� ½ðDPMOÞ=106� and then find F�1ðzÞ þ 1:5,

where F�1 is the inverse cumulative distribution

function of the standard normal. This assumes the

critical to quality characteristic (measures what is

important to customers) has a normal distribution and

that the shift is 1.5 standard deviations.

There is nothing sacred about a shift of 1.5 standard

deviations and a 6-sigma quality level. Other shifts and

quality levels can also yield 3.4 DPMO. Specifically,

Magnitude of shift Sigma quality level DPMO

0.00 4.50 3.4

0.50 5.00 3.4

1.00 5.50 3.4

1.50 6.00 3.4

A DPMO other than 3.4 can also be used. The

specific combination that is used depends on the

objectives of the organization, the resources available

to achieve those objectives and the potential benefit.

As Evans and Lindsay (2011) state, “ . . . a change

from 3- to 4- sigma represents a 10-fold

improvement; from 4- to 5- sigma, a 30-fold

improvement; and from 5- to 6- sigma, a 70-fold

improvement—difficult challenges for any

organization.”

A second perspective of Six Sigma is that it can be

thought of as a data-driven, highly structured approach

for improving processes using the DMAIC

methodology, where DMAIC is an acronym for the

five sequential phases: Define, Measure, Analyze,

Improve and Control.

Suppose that a project has been selected and

embraced by a champion: usually a senior manager

who owns the project and “provides continuing

support for the project and validates the results at the

end of the project” (Foster 2010). Project selection

could involve developing a business case for each

project and assessing its risk and return.

In the Define phase, the problem is clearly defined

including its goals and customers. The project team is

formed in which a team includes master black belts,

black belts, green belts, and others. A detailed

description of the typical six sigma roles is found in

Munro et al. (2008). The team articulates the project’s

charter, develops a communication plan for the

project’s stakeholders and a preliminary timeline to

monitor the project’s progress. Furthermore,

a process map or SIPOC diagram is prepared

toidentify suppliers (S), inputs (I), the process (P),

outputs (O) and customers (C). Preliminary

information is obtained on the voices of the customer

(VOC), the business (VOB) and the employee

(VOE)—what is important to the customer, business

and employees.

The Measure phase involves collecting accurate

and reliable data to address the problem being

studied. This includes identifying key output

variables (Y) and input variables (X) where the

expression Y ¼ f ðXÞ is used to denote the process by

which the X’s are transformed into Y’s. The Measure

phase includes developing data collection plans for all

variables and providing their operational definitions to

remove ambiguity. Sometimes, a measurement

systems analysis is conducted to determine the

consistency of measurements, usually via a gage

repeatability and reproducibility (Gage R&R)

analysis. Repeatability and reproducibility capture

the equipment and operator measurement variation,
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respectively. Detailed examples for conducting

a Gage R&R analysis can be found in Burdick,

Borror, and Montgomery (2005). A major goal of

the measure phase is to determine the current

performance level and capability of the process that

can be used as a baseline for future performance after

the Improve phase.

In the Analyze phase, the data is methodically

examined to identify sources of variation affecting

the key input and output variables and the root causes

underlying those sources.

The Improve phase entails acting on the data to

bring about lasting process improvement by

identifying and addressing the root causes and

generating potential solutions. The set of solutions is

evaluated and prioritized by using such criteria as the

time and cost of implementation and the probability of

successful implementation. Design of Experiments is

frequently used to determine the levels or settings of

the X’s that yield the optimal values of the Y’s. Once

improvements/countermeasures are implemented, the

results are analyzed and compared to the baselines

from the Measure phase.

In the Control phase, procedures are put in place to

ensure that the improvements implemented in the

Improve phase are sustained. It is also necessary to

determine whether cost savings are being realized.

Control charts are frequently used to monitor the

modified process. The project is completed by

returning the improved process back to the process

owner who now assumes responsibility for the

improved process.

Foster (2010) presents quality tools that could be

used at each phase. The American Society for Quality

provides formal certification of green, black and

master black belts.

A third perspective of Six Sigma is that it can be

thought of as an infrastructure for quality improvement

throughout an organization: the relentless and vigorous

pursuit of the reduction of variation in all critical

processes to achieve continuous and breakthrough

improvements that positively impact the profit of the

organization and increase customer satisfaction.

Lean Six Sigma combines Six Sigma with Lean,

where Lean is also known as Lean operations, Lean

manufacturing and Lean production. Lean is embodied

in the management philosophy and practices of the

Toyota Production System. Two key philosophies

underlying Lean are the systematic elimination of

waste (muda) and the respect for people. Ohno

(1988) identified seven sources of waste: Correction

or rework, Motion, Overproduction, Inventory,

Conveyance, Overprocessing and Waiting. These

seven types of waste can be viewed as opportunities

for improvement when non-value added activities are

identified. A downside of Lean is the possible

occurrence of major disruptions in the supply chain.

Lean embraces such principles as one-unit-at-a-time

flow versus large batches, as well as demand-driven

pull systems versus forecast-based push systems. The

concept of Statistical Thinking underlies Six Sigma

where Statistical Thinking is based on three

principles: (i) all work occurs in a system of

interconnected processes; (ii)variation exists in all

processes; and (iii) understanding and reducing

variation are keys to success (Hoerl and Snee 2003).

It is not a question of whether to choose between Lean

or Six Sigma, because an organization can use both

since they focus on different issues. As Meisel et al.

(2007) state: “Flow is negatively affected by excessive

variation and rework; quality is negatively affected by

unnecessary complexity in a process. The ability to go

back and forth between the two methodologies, in

a Lean Six Sigma culture, is a real plus and results in

accelerated improvement.”

The development of the Toyota Production System

can be found in Ohno (1988) and Womack, Jones, and

Roos (1991). Womack and Jones (2003) provide

guidelines for implementing Lean in the context of

a lean supply chain while Meisel et al. (2007) provide

an overview of Lean Six Sigma.

Many organizations have benefited greatly from

employing such QMS as ISO 900, Baldrige and Six

Sigma. While some organizations have decided to use

only one or two of the three, others have employed all

three. The QMS chosen and utilized depends on the

needs of an organization at a particular point in its

quality passage. Although all three QMSs have

common elements, they are different. A comparison

of the three QMS can be found at the NIST/Baldrige

Web site.

While basic statistical process control (SPC)

techniques have remained unchanged for over fifty

years, developments are taking place, such as the

robustness of existing methods, the application of

Bayesian decision theory to control charts, the

extension to the multivariate case and the relationship

between SQC and engineering control. After a brief
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introduction, the basic concepts of control charts and

classical SPC methods (Shewhart control charts) are

discussed. Cumulative sum and moving average

quality control procedures, which are more suitable

for detecting small persistent changes in a process,

are then described.

History of SQC Procedures

Over the years, SQC techniques have found literally

thousands of applications in manufacturing, service,

and health care organizations, as well as government

and education. The basic SQC techniques are

relatively simple to use and are often applied by shop

floor personnel with little training in statistical

methods. SQC techniques can be broadly divided into

two categories: statistical process control and

acceptance sampling.

Statistical process control (SPC) involves the use of

control charts for monitoring a process at regular

intervals of time to detect any problems that may

develop in the process and to take corrective action if

necessary. Control charts provide a clear and visual

representation of the status of the process. Often,

problems are identified early and corrective action is

taken — thus minimizing economic losses.

Montgomery (2009b) listed five main reasons for

the popularity of control charts. Control charts are

a proven technique for improving productivity,

preventing defects and unnecessary process

adjustments, and providing diagnostic and process

capability information.

The quality of inputs into a process has a significant

bearing on the quality of its output. Rawmaterials from

a supplier or semifinished output from a work station

may be the input for a particular process. In such

a situation, one may receive a batch of products/

materials from a source external to the process and

one has to then decide whether to accept or reject the

batch based on the quality of a representative sample

taken from it. This type of quality control where the

decision to accept or reject a batch is based on

inspection of a sample of incoming/outgoing goods

is termed acceptance sampling. Although this is

a well-developed branch of SQC, its use has been

criticized because quality cannot be inspected into

a product. By the time that a sampling plan is used,

the possible production of nonconforming items from

an out-of-control process has already occurred.

A sampling plan will merely detect with a certain

probability, the presence of nonconforming product.

Quality control is most effective when it is preventive

in nature rather than curative. A comprehensive

overview of acceptance sampling is found in

Schilling and Neubauer (2009).

Deming (1986) was critical of standard sampling

plans because they fail to take into account the cost of

inspection and the cost associated with the failure to

detect a defective item. This has led to the

development of Deming’s kp rule for a stable

process, which calls for either 0% inspection or 100%

inspection.

The techniques of statistical process control and

acceptance sampling have been around since the

1920s. Walter A. Shewhart of the Bell Telephone

Laboratories developed control charts in 1924. In the

late 1920s, Harold F. Dodge and Harold G. Romig

developed the concept of acceptance sampling, again

at the Bell Telephone Laboratories. The development

and use of SQC techniques grew rather slowly initially.

The exigencies created by the defense requirements of

World War II provided an impetus to the use of SQC

techniques in industry. The late 1940s and 1950s were

a period characterized by the consolidation of

technical gains in SQC methodology achieved during

the war. While the use of SQC spread in the

industrialized and industrializing nations, Japan

embraced these techniques with a missionary zeal

and showed their potential to the world.

The 1950s saw the use of experimental designs for

making sequential product and process improvements.

Box (1957) suggested an innovative industrial

application of (statistical) design of experiments and

termed it Evolutionary Operation (EVOP). EVOP

involves introducing small, deliberate variations in

a process according to a systematic plan (i.e.,

according to a designed experiment). After a certain

number of trials, sufficient information becomes

available to guide future trials (in an evolutionary

manner) in order to improve productivity, reduce

costs, or both. The key idea being that process

improvement can be effected right in the plant during

regular production runs rather than in a research lab.

The concept of designed experiments was championed

in Japanese manufacturing through Taguchi’s efforts.

Taguchi’s rationale was that quality has to be built into

the product, and any deviation from the target leads to
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quality losses that can and should be minimized.

Bendell, Disney, and Pridmore (1989) contains many

case studies and Ross (1996) gives an overview of the

Taguchi approach. Montgomery (2009a) gives

a thorough treatment of experimental design. Refer to

Myers, Montgomery, and Anderson–Cook (2009) for

a general treatment of response surfaces.

Basic SPC Concepts

In this section, some of the key ideas on which SPC

procedures (control charts) were developed are

presented. A key concept is the realization that two

items manufactured on the same machine under nearly

identical conditions may nevertheless have different

values for the quality characteristic. This is to

say, variability is inherent in all processes and that

it is impossible to eliminate all variability in

manufactured products irrespective of the precision

of the process used. Some processes may exhibitless

variability than others, but variability is present

nonetheless.

There are two broad sources of process variation:

Natural variation, and variation produced by

assignable causes. Natural variation is the sum total

of the effects of numerous factors impacting on

a process, each of which has too small an impact to

be identified individually. A stable process is one that

exhibits only natural variation, which can be

monitored by a control chart. This inherent variation

in a process is suggested when design engineers

provide specification limits instead of a single

precisevalue. When a stable process is operating as

planned, it will produce products with the desired

quality characteristics within specification limits. In

such a situation, the process is said to be in control.

Deming (1986) referred to natural variation ascommon

cause variation.

The other source of variation in processes is that due

to one or more assignable causes. When an assignable

cause is present in a manufacturing process (such as

wear and tear of a tool, a displaced setting, temperature

change, introduction of poor qualityraw materials, or

even an inspection gauge needing recalibration), the

process is said to be out of control. The presence of

assignable causes can be identified through the

use of control charts and the process returned to

stable in-control operation by removing the

assignable cause(s). Deming (1986) referred to

assignable cause variation as special cause variation.

When a stable process is in control, measurements

on the quality characteristic tend to exhibit behavior

which may be taken as the model of satisfactory

process behavior. A normal distribution is frequently

used as a model of satisfactory process behavior. Thus,

a stable, in control process has predictable behavior;

that is, its measurements follow the normal

distribution. If measurements on the quality

characteristic and the corresponding value of some

statistic indicate that they do not follow the

predictable pattern, the implication is that there must

be an assignable cause for this out-of-control status.

The purpose of SPC is to detect an assignable cause as

early as possible so that corrective actionmay be taken.

A process is monitored by regularly taking random

samples of size n from the output, taking

measurements on the selected items, computing

a relevant statistic (such as the mean, standard

deviation, range, proportion nonconforming, etc.),

and plotting the summary statistic for each sample on

a chart. The Shewhart (1931) control chart has a center

line and control limits and is used for monitoring

a single quality characteristic.

If the sample statistic falls between the control

limits, the process is stable—that is, there is no signal

that special causes are present and the variation

observed between time periods is due to natural

variation. On the other hand, if the statistic falls

outside the control limits or if the statistic shows

some kind of pattern, the data suggests that an

assignable cause has changed the process and the

resulting production does not meet the customer’s

expectations. The process should be stopped and

adjusted to remove this assignable cause before

restarting.

For the Shewhart charts, the specification of the

probability of false alarms (Type I error) associated

with an in-control process can be used to determine the

control limits. A false alarm occurs when a statistic

plots outside the control limits but the process is

actually in control. The probability of a false alarm

has to be balanced against the probability of the failure

to detect an out-of-control process (Type II error). The

forms of the control limits are presented later for

a variety of control charts.

The relevant sampling issues in the use of control

charts include the determination of sample size,
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frequency of sampling, and sampling technique. In

terms of the sample size, the larger the sample, the

higher the probability of detecting a shift in the process

mean. In practice, however, small samples

ðn ¼ 4 or 5Þ are used. In terms of the frequency of

sampling, it would be desirable to specify the

frequency depending on how fast a process change

could occur. If a process could change rapidly,

samples would be taken more frequently. Taking

smaller samples more frequently is more common

than taking large samples infrequently.

Since one is generally interested in monitoring

a process over time to detect any process shifts, it

makes sense to use the time order of production as

a logical basis for drawing samples. Shewhart

suggested that samples (subgroups) should be drawn

rationally so that, if assignable causes are present, the

chance for within group differences is minimized

while the chance for between group differences is

maximized. The most commonly used approach for

rational subgrouping is to include items produced

around the same time in a sample. The proper

selection of samples is absolutely essential for

gaining as much useful information as possible from

control chart analysis. Outputs from different

machines, work centers, shifts, or operators should

not be pooled together to form a rational subgroup

because that would make it impossible to pinpoint

assignable causes.

The performance of a control chart is judged

in terms of its average run length (ARL), which is

the mean number of samples taken before an

out-of-control signal is observed. An out-of-control

signal for an in-control process is nothing but a false

alarm. Thus, the ARL of an in-control process should

be large while the ARL of an out-of-control process

should be small. It can be shown that the in-control

ARL for a Shewhart chart equals 1=a, where a is the

probability of Type I error associatedwith the control

chart. The out-of-control ARL is 1=ð1� bÞ, where b is

the probability of Type II error. The ARL can also be

used to determine the sample size and sampling

frequency.

Shewhart charts, based only on the latest sample,

are effective at detecting large shifts in the process but

are insensitive to small and medium shifts as well as to

incremental shifts over time. Other quality control

charts, specifically the cumulative sum (CUSUM)

chart and the exponentially weighted moving average

(EWMA) chart are, however, useful for detecting

small to moderate shifts in the process though they

are less sensitive for detecting large shifts.

Finally, a word about how the control charts are

implemented. Consider the case where the quality

characteristic is measured (depth, contents). If the use

of the control chart is to detect deviation from a target

mean ðm0Þ and standard deviation ðs0Þ, the design of

control chart procedures is relatively straightforward.

If m0 and s0 are unknown, they are estimated by

sampling a process under allegedly stable conditions

of production. Data from 20 or more samples (rational

subgroups) are frequently used for estimating the

process mean and standard deviation.

Using these estimates, trial limits are computed and

the process is retrospectively tested to see whether it

was in control when the samples were taken. If

necessary, the trial limits are revised by excluding

samples that resulted in out-of-control signals using

the trial limits and for which a root cause was identified

and eliminated. Then, the remaining subgroups are

iteratively reviewed using the revised limits to

determine if they come from a stable process. The

process continues to be monitored in the short-term

future using the revised limits.

Univariate control charts can be classified into two

groups. If the quality characteristic of interest is

a continuous variable, control charts based on

measurements of that characteristic are referred to as

control charts for variables. If the data being collected

come from a discrete variable, the relevant control

charts are termed control charts for attributes. Each

of these groups contains three main types of control

charts, namely, Shewhart, CUSUM, and EWMA

charts. The next section presents the univariate

Shewhart charts, which is followed by a section

describing the univariate CUSUM and EWMA charts.

Shewhart Charts

For a continuous variable with a probability

distribution (assumed to be normal in this discussion),

generally both the central tendency and the variability

of the process should be monitored. The central

tendency can be monitored using either individual

observations (X chart) or sample means (X chart)

based on grouped observations. Measures typically

used for monitoring variability of grouped
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observations are the sample range (R chart) and sample

standard deviation (S chart). Typically, control charts

are used in pairs such as X and R charts (or X and S

charts). It is recommended that process variability be

monitored while monitoring the processaverage and

that one analyze the R or S chart first.

Monitoring some quality characteristics may

involve the classification of each inspected item as

conforming or nonconforming to the specifications,

such as can be determined by using a go/no-go

gauge. Quality characteristics of this type are referred

to as attributes, and the control chart is either based on

proportion nonconforming (p chart) or number

nonconforming (np chart). The basis for these charts

is the binomial distribution. It is assumed that the

probability (p) of obtaining a nonconforming unit is

constant.

Another set of attribute control charts is based on

counting nonconformities in a unit. If each sample

unit, say, a square yard of fabric, or a roll of wire of

given length, can have a number of different

nonconformities, a control chart that monitors

thenumber (or average number) of nonconformities

per unit (c chart or u chart) may be appropriate.

These charts are relevant if the probability of

occurrence of a nonconformity is constant and very

low relative to the opportunities for its occurrence.

These charts are based on the Poisson distribution.

Control Chart for Sample Means (X Chart)

The control limits for a chart based on sample means

are developed using the result that if observations from

a process are normally distributed with mean m0 and

standard deviation s0, then the sample mean based on n

observations from the same process is normally

distributed with mean m0 and standard deviation

s0=
ffiffiffi

n
p

. The control limits are:

ðLCL;UCLÞ ¼ m0 	 za=2
s0
ffiffiffi

n
p ¼ m0 	 As0

where the values of A for za=2 ¼ 3 and n ¼ 2; 3; . . . ; 25
can be found in Montgomery (2009b). The commonly

used za=2 ¼ 3 results in a ¼ 0:0027 and an in-control

ARL of 370. For successive random samples of size n,

this control chart can be viewed as repeated

significance tests of H0 : m ¼ m0 vs. H1 : m 6¼ m0
where a is the Type I error associated with the test.

In many cases the in-control values m0 and s0 are

unknown and replaced with unbiased estimates from

a sample believed to be representative of the process

during stable in-control operation. The estimates are

found by using the sample mean X and sample standard

deviation S for each of m subgroups to compute the

overall mean X and average standard deviation S. If the

range is used instead of the standard deviation, then R

is computed for each subgroup, and average range is

denoted by R. Note that S and R are biased estimators

of the process standard deviation, but unbiased

estimators are obtained by using S=c4 or R=d2. The

control limits for X charts when S is used are:

ðLCL;UCLÞ ¼ X 	 3
S

c4
ffiffiffi

n
p ¼ X 	 A3S

and if R is used the control limits are:

ðLCL;UCLÞ ¼ X 	 3
R

d2
ffiffiffi

n
p ¼ X 	 A2R

where the values for A2 and A3 for n ¼ 2; 3; . . . ; 25 are
given in Montgomery (2009b). For a set of m rational

subgroups the control limits can be applied

retrospectively to check whether the process was

stable. If there are any rational subgroups that

resulted in out-of-control signals, the estimates X and

S or R can be recomputed.

Control Charts for Process Variation
(R and S Charts)

If samples of size n are taken at regular intervals, the

variation or dispersion of the process is monitored

using either the range (R chart) or the standard

deviation (S chart).

The range is R ¼ Xmax � Xmin, which has

EðRÞ ¼ d2s0 and
ffiffiffiffiffiffiffiffiffiffi

VðRÞ
p

¼ d3s0 where d2 and d3
are constants tabled in Montgomery (2009b) for

n ¼ 2; 3; . . . ; 25. The control limits for the R chart are

ðLCL;UCLÞ ¼ EðRÞ 	 3
ffiffiffiffiffiffiffiffiffiffi

VðRÞ
p

¼ d2s0 	 3d3s0
¼ ðd2 	 3d3Þs0 ¼ ðD1s0;D2s0Þ
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where the values of D1; D2 for n ¼ 2; 3; . . . ; 25 are

given in Montgomery (2009b).

SinceR is not normally distributed, the control limits

for the R chart are based on the premise that most of the

probability distribution of R is within three standard

deviations of its mean. Thus, if a value of R plots

outside the control limits, it is highly likely that the

process variability has shifted from the target value s0.

Because the computation of the sample standard

deviation S is not as straightforward as the range, R

charts have been used more often than S charts for

monitoring the process variation. However, with

modern computing replacing hand calculation even

on the shop floor, the use of S charts has increased.

The efficiency of the S chart relative to the R chart was

discussed in Lowry, Champ, and Woodall (1995).

While the S charts are superior, the difference isn’t

dramatic until n � 10. The target value for the S

chart is c4s0 and the control limits are

ðLCL;UCLÞ ¼ ðB5s0;B6s0Þ, with the values of

c4;B5;B6 for n ¼ 2; 3; . . . ; 25 found in Montgomery

(2009b). As was discussed above with R charts, S is not

normally distributed and S charts are based on the

notion that most of its probability distribution lies

within three standard deviations of its mean.

When s0 is unknown, the control limits can be

constructed using S or R using the appropriate

constant to create an unbiased estimator. In S charts,

the control limits become

ðLCL;UCLÞ ¼ ðB5S=c4;B6S=c4Þ ¼ ðB3S;B4SÞ

and the control limits for R charts become

ðLCL;UCLÞ ¼ ðD1R=c4; D2R=c4Þ ¼ ðD3R; D4RÞ

where values of B3;B4;D3;D4 are in Montgomery

(2009b). Control charts for S, S2, and R using

probability based limits are found in Ryan (2000).

Control Chart for Individual Observations
(X and MR Charts)

In this case each subgroup is of size n ¼ 1 and an

unbiased estimator of the in-control mean is obtained

by averaging m historical observations from the

process during in-control operation. A procedure for

estimating the in-control variance is based on the

average value of the moving ranges where

MR ¼ 1

m� 1

Xm�1

i¼1

jXiþ1 � Xij:

An unbiased estimator of s is given by

MR=d2 ¼ MR=1:128, using the value for d2 when

n ¼ 2. Using this estimate of s, the control limits for

monitoring the process mean are

ðLCL;UCLÞ ¼ X 	 2:66MR

since 3=1:128 ¼ 2:66.

Tomonitor process variability, compute the moving

range MR ¼ jXiþ1 � Xij and compare to the upper

control limit UCL ¼ 3:267MR. An interesting feature

of the moving range chart is that if MR exceeds the

upper control limit this could actually reflect a change

in the level of the process mean between the two

adjacent observations. Amin and Ethridge (1998)

discussed the value added by using both X and MR

charts versus only the X chart. The ARL of the X and

MR charts was investigated by Crowder (1987a).

Control Chart for Proportion of
Nonconforming Units (p Chart)

Suppose that a process is operating in a stable manner

and that the probability of producing a nonconforming

unit is p0, the nominal value. If this process is

monitored by taking samples of size n at regular time

intervals and counting the number (Y) of

nonconforming units in each sample, then the random

variable Y (the number of nonconforming units)

follows a binomial distribution with parameters n and

p0. Themean of Y is np0 and its variance is np0ð1� p0Þ.
If the statistic fraction of nonconforming units ðY=nÞ is
used, its mean is p0 and its variance is p0ð1� p0Þ=n.
Plugging these values into the structure of the Shewhart

chart yields the following control limits:

ðLCL;UCLÞ ¼ p0 	 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p0ð1� p0Þ
n

r

where LCL ¼ 0 if the computed value is negative.
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If this chart is used retrospectively, the process

proportion ðpÞ of nonconforming units is estimated

by using data from, say, 20 to 30 rational subgroups.

The sample fraction of nonconforming units from each

of these subgroups is computed and the average of

these sample fractions, p, is used as an estimate of p0.

Replacing p0 by p results in trial control limits for the p

chart. If necessary, the trial limits may need to be

revised.

The control limits given above apply only if the

sample size n is constant. If the sample size changes

from subgroup to subgroup, then the upper and lower

control limits will change from subgroup to subgroup

by using the relevant sample size (nt) in place of n in

the control limits formulae.

As mentioned earlier, sample sizes required for

fraction nonconforming units charts are much larger

than the sample sizes used in variables control charts.

A rule of thumb is that the sample size should be such

that the probability of detecting a specified shift, d, on

the next sample is 0.5. Using the normal approximation

to the binomial distribution and 3s limits, the

minimum sufficient sample size n is given by:

n ¼ 9pð1� pÞ
d2

:

Montgomery (2009b) gives a method for choosing n

such that LCL>0.

Control Chart for Number of Nonconforming
Units (np Chart)

The control limits of this chart are easily obtained

from those of the p chart by noting the number of

nonconforming units (Y) in a sample of size n has

mean np0 and variance np0ð1� p0Þ, where p0 is the

in-control probability of a nonconforming unit.

Control Chart for Number of
Nonconformities (c Chart)

In some processes the inspection unit or area of

opportunity is a single item (e.g. a bolt of fabric) or

a group of items (e.g. 50 DRAM chips), but the

inspection unit is constant. A common assumption is

that the random variable counting the number of

nonconformities follows a Poisson distribution where

c is the mean and variance of the number of

nonconformities.

Thus, 3s control limits for the c chart with

in-control nonconformity rate c0 are:

ðLCL;UCLÞ ¼ c0 	 3
ffiffiffiffiffi

c0
p

:

IfLCL is negative, it is set equal to zero. Again, every

effort should be made to reduce the level of c. If no

standard is given, c0 is estimated by the average number

of nonconformities, c, in a preliminary sample of sizem

and trial limits are computed using c instead of c0.

Control Chart for Average Number of
Nonconformities per Unit (u Chart)

The u chart is used in place of the c chart when areas of

opportunity vary in size. For example, in monitoring

the daily number of medication errors (wrong patient,

amount, time, etc.) at a hospital, the area of opportunity

(number of patients) would vary day to day. The

plotted statistic is u ¼ c=ðarea of opportunityÞ, and

the control limits are

ðLCL;UCLÞ ¼ u	 3

ffiffiffiffi

u

ni

r

where u ¼
P

ci=
P

ni and ni is the size of the ith

sample.

Interpreting Control Chart Patterns

If a process is operating only under natural or common

causes of variation, the points on the control chart

should be randomly scattered around the center line.

Nonrandom control chart patterns of any kind signal

the possibility of assignable causes beingpresent. So,

in addition to the 3s limits, one can use additional rules

to identify nonrandom patterns on the control chart.

In addition to the rule of one point falling outside

the three-sigma control limits, Western Electric’s

Statistical Quality Control Handbook (1956)

recommends three other rules to identify nonrandom

patterns based on dividing the region between the LCL

and UCL into six zones each with a width of one
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standard deviation. The rules given in the handbook

are such that the probability of occurrence of

those patterns is approximately equal to the

probability of a point falling outside the 3s limits.

These rules are: Two out of three successive

points outside 2s limits (same side), or four out of

five successive points outside 1s limits (same side),

or eight successive points on the same side of the

center line. The occurrence of any of these

patterns indicates the possible presence of an

assignable cause. Popular software for quality

improvement allows one to incorporate these and

other additional rules.

If one uses more than one rule for monitoring

a process, the probability of detection of special

causes increases but the probability of false alarms

increases. Refer to Nelson (1984, 1985), Champ and

Woodall (1987) and Walker, Philpot, and Clement

(1991) for the effects of using these rules. More

information on the interpretation of these and other

other patterns is available in Western Electric’s

Statistical Quality Control Handbook (1956).

CUSUM and EWMA Charts

The CUSUM chart is based on a statistic that reflects

the cumulative sums of the deviations of each sample

statistic relative to the target value. The EWMA

chart is based on exponentially weighted moving

averages of the current and all past observations. The

CUSUM procedure gives equal weight to all of the

observations. The EWMA procedure, on the other

hand, gives the most weight to the latest observation

and exponentially decreasing weights to prior

observations.

A CUSUM procedure combines information both

from previous samples and the current sample to detect

process shifts. CUSUM procedures were first proposed

by Page (1954, 1961) and are based on repeated

applications of the sequential probability ratio test

(see Wald 1947; Johnson and Leone 1962). While

CUSUM procedures can be derived for many sample

statistics, this section will discuss only the use of

CUSUM for individual values.

Since the shift in the process mean may be an

increase or a decrease, a CUSUM can be constructed

using either a mobile V-mask or an equivalent tabular

procedure with a decision interval. Suppose the

individual values are independent and normally

distributed with mean m0 and variance s20. Then, at

time t, compute two cumulative sums, Lt and Ut, for

detecting shifts in the process mean:

Lt ¼ minf0; Lt�1 þ ðXt � m0Þ þ Kg
Ut ¼ maxf0;Ut�1 þ ðXt � m0Þ � Kg

where L0 ¼ U0 ¼ 0, and K � 0 is referred to as the

reference value. The value for K is frequently chosen

as halfway between the in-control mean m0 and

the out-of-control mean m1, or K ¼ jm1 � m0j=2. An
out-of-control signal is given atthe first t or which

either Lt < �H or Ut > H, where Hs called the

decision interval. Typically, the use of H ¼ 4s0 or

H ¼ 5s0 yields charts with good ARL properties for

detecting shifts of one standard deviation in the mean.

If the out-of-control signal is the result of Lt < �H

there has been a downward shift in the process mean,

whereas if Ut > H signals an upward shift in the

process mean. The determination of when the process

mean has shifted is accomplished by using countersNþ

and N�, respectively. In the case of an upward shift,

Nþ counts the number of consecutive periods from

when Ut first became nonzero at period t
 until

Ut > H. The shift occurred between periods ðt
 � 1Þ
and t
.

Although CUSUM charts are more effective than

Shewhart charts in detecting small to moderate shifts

in the process mean, these charts are not as effective in

detecting large shifts. Hawkins and Olwell (1998)

provide details on choosing H and K based on the

desired in-control and out-of-control ARLS, as well

as modifications like the fast initial response to

improve the sensitivity of the CUSUM at process

start-up.

The EWMA chart was introduced by Roberts

(1959) and a detailed exposition was given by Hunter

(1986). Suppose individual observations Xt are made

on a process that is normally distributed with in-control

mean m0, in-control standard deviation s0, and that

observations are independent over time. At time t, the

EWMA statistic is

Zt ¼ lXt þ ð1� lÞZt�1

where Z0 ¼ m0 and 0 < l � 1. Montgomery (2009b)

recommended values for l in the interval ½0:05; 0:25�.
It can be shown that Zt is a weighted average of all
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previous observations where the weights add to 1 and

decrease geometrically with the age of the sample. The

variance of Zt is given by

VðZtÞ ¼ s20
l½1� ð1� lÞ2t�

ð2� lÞ

and as t increases VðZtÞ approaches s20l=ð2� lÞ.
Therefore, the control limits for the EWMA chart are

ðLCL;UCLÞ ¼ m0 	 3s0

ffiffiffiffiffiffiffiffiffiffiffi

l

2� l

r

for moderately large t. For small t, control limits

should be based on the exact variance of Zt.

The EWMA chart is very effective in detecting

small shifts in the process mean but is not as effective

as the Shewhart chart for detecting large shifts in the

process mean. Crowder (1987b, 1989) and Lucas and

Saccucci (1990) have provided tables for designing

optimal EWMA procedures. An optimal EWMA

chart is defined as one with a fixed in-control ARL

which has the smallest out-of-control ARL for

a specified process shift. For example, by using

2:962s control limits (rather than 3) and l ¼ 0:20,

the EWMA chart has an in-control ARL of 500 and

an out-of-control ARL of 10.5 for a shift of one s.

Specification Limits and Process Capability

Once the specification limits for a quality

characteristic have been established, one needs to

make sure that a stable process is capable of meeting

these requirements. A commonly used measure of

process capability relative to specification limits is

called the Process Capability Index. One such index

is Cp, which is defined as

Cp ¼
U � L

6s
;

where ðL;UÞ denote the lower and upper specification

limits for the quality characteristic and s is the

standard deviation of the distribution of the process.

Therefore, Cp is a comparison of the specification

limits to the natural variation of the process. The 6s

value represents the process has 99.73% of production

within three standard deviations of the mean. If the

process has been improved so that Cp is increased, the

process has become “more capable” of production

within the specification limits. The Cp index is

frequently written as Cp ¼ VOC=VOP, where VOC

is the voice of the customer and VOP is the voice of

the process.

The Cp index assumes the process is centered at

the target mean. An index that penalizes for

a mean different from the midpoint of the

specification limits is

Cpk ¼ min
U � m

3s
;
m� L

3s

� �

where m is the mean of the process distribution. Cpk is

the more commonly applied summary statistic

comparing process capability to specification limits.

For a Six Sigma process that is centered at the target

mean, the distance from the mean to either

specification limit is 6s and Cpk ¼ 2. If the process

mean shifts by 1:5s, Cpk ¼ 1:5 and the DPMO ¼ 3:4.
In practice, one needs to estimate m and s2, which can

be used to obtain a confidence interval for the

capability index. A comprehensive treatment of

process capability indices and their statistical

properties is in Kotz and Johnson (1993).

See

▶Multivariate Quality Control

▶Total Quality Management
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Quasi-concave Function

Given a function f (�) and points x, y 2 X, with x 6¼ y

and X convex, if f (y)� f(x) implies that f (lx + (1�l)y)

� f(x) for all 0 < l < 1, then f is a quasi-concave

function.

See

▶Concave Function

▶Convex Function

Quasi-convex Function

Given a function f (�) and points x, y 2 X, with x 6¼ y andX

convex, if� f (y)��f(x) implies that� f (lx + (1� l)y)

� �f (x) for all 0 < l < 1, then f is a quasi-convex

function.

Quasi-convex Function 1227 Q

Q

http://dx.doi.org/10.1007/978-1-4419-1153-7_200061
http://dx.doi.org/10.1007/978-1-4419-1153-7_200079


See

▶Concave Function

▶Convex Function

Quasi-reversibility

A property of a node in a queueing network where the

state of the system at t0, the departure process prior to

t0, and the arrival process subsequent to t0 are

independent.

See

▶Networks of Queues
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Introduction

Imagine receiving your monthly bank statement and

with it is your personal probability distribution of the

times you spend waiting in bank queues. The queues

could include both those involving human tellers and

automatic tellermachines (ATMs).With the technology

of the Queue Inference Engine (QIE) such an innovation

is now well within the realm of possibility.

Background, Motivation and Overview

The idea of QIE was born in the late 1980s as a result

of M.I.T.-based queueing research for Bay Banks,

an eastern Massachusetts bank, under the auspices

of a grant from the National Science Foundation.

Bay-Banks had provided a large sample of

transactional data from three of their ATM sites. Their

question was, “Which, if any, of these sites is ‘too

congested’ from a queueing point of view, thereby

requiring additional ATM capacity at the site?”

The transactional data consisted of the times of each

ATM transaction by each customer over a period of up

to a month.

The first approach to this problem was traditional:

estimate arrival rates and service times from the data

and then apply well known (steady state) queueing

models, such as Erlang’s results or the M/G/1 model.

Examining the data set, it was realized that

a substantial portion of the sample path of the queue

had been preserved in the data set. That is, the data set

contained a large subset of the information one would

have if one tracked the actual queue with “clipboard

and stopwatch.” For instance, one could identify

which customers had been delayed in queue (rather

then enter service immediately) by noting the

“signature” of a queued customer: a back-to-back

service completion and service initiation at the same

ATM, during a time when all N ATM’s are busy with

customers. The customer entering service in such

a back-to-back situation was, with probability near

one, delayed in queue. Moreover, by following this

signature over time-adjacent customers, one could

identify the entire set of customers who were delayed

in queue during a single congestion (or busy) period,

a continuous period of time during which all N servers

are continuously busy (except the small intervals

during which a customer whose service is completed

departs and the new [queued] customer enters service).

Further, the information content of the data set was

explored to see if it contained additional queue-related

information.

Surprisingly, the partial information in the data

set allowed a wide variety of queueing measures for

each congestion period to be computed efficiently.

Assuming Poisson arrivals, these measures include

mean queue delay, mean queue length, probability

distribution of the queue length and even the transient

mean queue length over the course of the congestion

period. Later research extended these first results in

a number of important directions.

Here, the focus is four-fold: (1) to illustrate the

types of physical situations in which the QIE can be

applied; (2) to describe one of three alternative
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analytical approaches to obtaining QIE results; (3) to

guide the reader through the emerging literature in this

new and exciting field; and (4) to discuss briefly

several implementation experiences.

Illustrative Queue Inferencing Problems

Retail Sales — With most human server retail service

systems, one has to collect the transactional data either

from a modern POS (Point Of Sale) computer system

that does the time marking or from some type of

customer sensing device (e.g., pressure sensitive

mats, infrared or ultrasonic sensors). For an ATM,

the transactional data are recorded automatically, by

time marking the moment that a customer inserts

a bank card (corresponding to service initiation) and

the moment that the ATM ejects the card

(corresponding to service completion). The queue

statistics generated by the QIE for ATMs may be

used by bank managers to monitor the use of ATM

sites, thereby providing an accurate method of

identifying those sites requiring additional (or fewer)

machines. With human servers in retail sales, at banks,

post offices, fast food restaurants, etc., the manager

would most likely use the results to (1) monitor

service levels throughout the day and week, to assure

that queue delays are within prescribed quality limits,

and (2) to schedule servers optimally over the course of

a day and week.

Invisible Queues in Telecommunication

Systems — During periods of congestion, many finite

capacity telecommunications systems have invisible

queues of customers outside the system continuously

trying to gain access to it. One example is a k-channel

land mobile radio system. Whenever all k channels are

simultaneously in use, potential users having a

message to transmit (often in the field, in vehicles)

continuously monitor channel use and at-tempt to

acquire a channel as soon as any one of the current k

communications is completed. If at any given time t

there are n(t) such potential users awaiting a channel,

they constitute a spatially dispersed invisible queue,

a queue in which one of the waiting customers enters

service very shortly after another customer completes

service. This queue can grow in size due to the Poisson

arrivals of new potential users desiring channel access.

The user entering service next is the one who

successfully “locks in” the channel very shortly after

termination of a previous message. Service discipline

is most likely not first come first served (FCFS).

Within the context of the QIE the customer

transaction times are the moments of gaining channel

access (service initiation) and message termination

(service completion). These times can be routinely

monitored and recorded by technology, and thus the

QIE can be used to deduce queueing behavior. The

same argument, perhaps with minor modifications,

can be applied to other telecommunications systems,

including phone systems from airplanes, mobile

cellular telephone systems, standard telephone

systems and various digital communications networks.

Using Order Statistics to Derive QIE
Performance Measures

The analysis of the queue inferencing problem is

rooted in order statistics. Suppose a homogeneous

Poisson process is considered with rate parameter

l > 0. Over a fixed time interval 0; T½ �, it is known

that precisely N Poisson events (e.g., queue system

arrivals) occur. The N ordered arrival times are

0 � Xð1Þ � Xð2Þ � � � � � XðNÞ � T (by implication

X Nþ1ð Þ > T). The N unordered arrival times are

X1;X2; . . . ;XN; 0 � Xi � T i ¼ 1; 2; . . . ;Nð Þ. Since

the Poisson process is time homogeneous, it is well

known that the Xif g are independent and uniformly

distributed over 0; T½ �. If the Poisson process is

non-homogeneous, that is, having time varying

rate parameter lðtÞ, then the N unordered arrival

times are independent identically distributed (iid)

over 0; T½ �, with a PDF (probability density function)

proportional to lðtÞ. For simplicity in this discussion,

homogeneous processes are focused on.

A Pedestrian Queueing Example — To illustrate

queue inference, consider a signalized pedestrian

cross walk having fixed cycle time T.

Poisson-arriving pedestrians queue at curbside

waiting to cross the street during a time interval of

length T, and all such queuers are served in “bulk”

fashion when the light changes at time T allowing

them safely to cross the street. The number N of

queued arrivals in any particular light cycle is

Poisson distributed with mean lT. Given N, XðiÞ is the
arrival time during 0; T½ � of the ith queued pedestrian.

Here Xi could be viewed as the arrival time of a random

queued pedestrian, selected from, say, a photograph of

Queue Inference Engine 1229 Q

Q



all queued pedestrians taken just before the light

changed at time T. The Poisson arrival assumption

is usually thought of as evolving sequentially over

time, with customer interarrival times selected in an

iid manner from a negative exponential PDF with

mean l�1.

An equivalent way to conduct the pedestrian cross

walk experiment is to first select N from the Poisson

distribution, and then, for each of the N queuers, to

select the arrival time over 0; T½ � independently from

a uniform PDF. This experiment is probabilistically

identical to the sequential Poisson arrival realization

of the experiment. Suppose now at some intermediate

time T, the total number of queued pedestrians N(t) is

focused on, defined as the total number of arrivals (at

curbside) during the interval ½0; tÞ. The following

results, derived from the second model of the

process, are well known for N(t):

E½N tð Þ� ¼ t=Tð ÞT
Var½N tð Þ� � s2N tð Þ ¼ N tð Þ=T½ �y T � tð Þ=T½ �

Pr N tð Þ ¼ kf g ¼
N

k

 �

t

T

� �k T � t

T

 �N�k
(1)

Here the transactional data are N, the total number

of queuers, and T, the time until bulk service. From

these data transient values of conditional mean have

been found, variance and probability distribution of the

queue length. Similar logic can be applied to find other

performance measures, such as mean delay in queue,

that in this case is trivially equal to T/2. This is one of

the simplest examples of queue inferencing.

Queue Inference in More General Queues —In

most queues, customers usually leave one-at-a-time.

Their service completion times within a congestion

period, recorded as part of the transactional data set,

impose a set of inequality constraints on the arrival

times of customers who waited in queue. It is this set

of inequality constraints that produces precise

conditioning information within the general context

of order statistics, conditioning information that can

be used to deduce queue behavior.

Suppose for a M/D/1 system, a congestion period

having precisely N ¼ 2 queued customers is

examined. For simplicity the service time is one

minute per customer and the server’s congestion

period starts at time zero. Then since N ¼ 2, it is

known that precisely 2 customers queued during this

congestion period and after their service the server was

again idle. The busy period for the server is 3 minutes

in length, the time to serve 3 customers, the two who

queued and the first arrival who initiated the

congestion period. From the transactional data, it is

known that zero customers arrived during service of

the last customer, the third in the congestion period and

the second to queue (assuming FCFS queueing). It is

known that at least one of the 2 queued customers must

have arrived in [0, 1], else there would be no queued

customer to select for service commencement at time

T ¼ 1þ. Similarly, the second queued customer must

have arrived by time T ¼ 2.

Without the ordering information, the conditional

arrival times for the two queued customers

are independent uniformly distributed over [0, 2].

In the joint sample space of random variables

X1 and X2, this corresponds to X1 and X2 uniformly

distributed over the square of size 2 in the positive

quadrant. The sample space can be split into

four equal subsquares, (1) 0� X1� 1;0� X2� 1;

(2) 1� X1�2;0� X2�1; (3) 0� X1� 1;1� X2� 2;

(4) 1� X1� 2;1� X2� 2. Without the additional

conditioning information regarding service

completion times, the outcome of the experiment is

equally likely to be within each of the four subsquares,

and conditional on being in a subsquare the r.v.’s X1

and X2 are conditionally uniformly distributed over

that subsquare. But the additional conditioning

information from the transactional data imposes the

constraints: X 1ð Þ� 1, X 2ð Þ� 2, thereby eliminating

subsquare (4). The a priori probability of this event,

called the master probability, is 3/4. For any number of

queued customers N, the master probability is the

a priori probability that the order statistics will obey

the ordered inequalities imposed by the transactional

data. Once the master probability can be efficiently

calculated, most other quantities of interest are easy

to compute.

Continuing with the N ¼ 2 example, if it is known

that X1 and X2 fall in subsquare (1), then these two

arrival times are uniform identically distributed over

[0, 1]. If one falls in [0, 1] and the other falls in [1, 2],

that is, subsquare (2) or (3), then the minimum is

uniformly distributed over [0, 1] and the maximum is

uniformly independently distributed over [1, 2]. This

property generalizes: once it is known that n1 of
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N arrival times are contained in subinterval tk; tkþ1½ Þ,
where tk and tkþ1 are the entry into service times of

queued customers k and k+1, respectively, during the

congestion period, then the n1 arrival times are

conditionally uniform and independently distributed

over tk; tkþ1½ Þ (Larson 1990). These facts allow one

to obtain many useful performance characteristics

of the queueing system, conditioned on the

transactional data.

A simple application of the above observation

yields for the PDF of the arrival time A of a randomly

queued customer the step-wise decreasing PDF shown

in Fig. 1a. The form of this PDF generalizes to

arbitrary N: the marginal PDF for the arrival time of

a random queued customer has a stepwise de creasing

PDF over the duration of the congestion period, with

each step occurring at an end-of-service time ti (Hall

1992; Larson 1990).

As a second illustration, the conditional arrival time

X 1ð Þ of the first queued customer is either the minimum

of two uniform independent r.v.’s over [0, 1] or simply

uniform over [0, 1], with the former situation applying

only if the experimental outcome is within subsquare

(1). Likewise the conditional arrival time X 2ð Þ of the
second queued customer is either the maximum of two

uniform independent r.v.’s over [0, 1] or simply

uniform over [1, 2], the former applying again only

within subsquare (1). Recalling that such minimum

and maximum r.v.’s have triangular PDFs and

combining results appropriately, the PDFs for the

arrival times of the two respective customers are

immediately obtained, as shown in Fig. 1b. Finally,

assuming a FCFS queueing discipline, the queueing

delay for the first queued customer is 1 � X 1ð Þ and the

queueing delay of the second is 2� X 2ð Þ. The

corresponding queue delay PDFs are inverted forms

of those in Fig. 1b, as shown in Fig. 1c. If a bank knows

that you were the second customer in this congestion

period, it then has the required information to begin to

build your personal PDF for bank queueing. To obtain

the monthly PDF, the bank simply has to add together

such conditional PDFs for each banking service

session that you had during the month.

AGeneral Result in Order Statistics and Application

to Queue Inference — Suppose that the service end/

start time transactional data are given by the vector

t ¼ ti; i ¼ 1; . . . ; Nf g. In a queue inferencing setting,

ti has two definitions: (1) it is the observed time of

departure of the ith departing customer to leave the

system during the congestion period; (2) it is also the

observed time for the ith customer from the queue to

enter service, not necessarily in a FCFS manner. The

two sets of individuals comprising the set of arriving

customers and the set of departing customers during

a congestion period are never identical and may be

disjoint. The number of servers M does not enter into

the analysis, nor do any distributional properties of the

service times (e.g., there is no requirement for iid

service times). It is assumed that service times are

independent of arrival times. For any given

congestion period, the QIE computations may occur

any time after completion of the congestion period.

Let X1;X2; ¼ ;XNð1Þ be an iid sequence of r.v.’s

with values in [0, 1], where the sequence length N(1) is

an independent random integer. The goal is to find

a computationally efficient algorithm to calculate the

probability of an order statistics vector lying in a given

N-rectangle,

G s; tð Þ � P s1 < Xð1Þ � t1; s2
�

< Xð2Þ � t2; . . . ; sN < XðNÞ � tNjNð1Þ ¼ N
�

;
(2)

where s � s1; s2; . . . snð Þ; t t1; t2; . . . tnð Þ and without

loss of generality the sequences sif g and tif g are

increasing. Using the fact that the N unordered

Poisson arrival times during any fixed time interval

0; Tð � are iid and now (for convenience) scaling the

congestion period to 0; 1ð �, then in our notation, Gð0; tÞ
is the a priori probability that the (unobserved) arrival

times X 1ð Þ;Xð2Þ; . . . ;XðNÞ obey the inequalities XðiÞ � ti
for all i ¼ 1; 2; . . . ;N, that is, it is the “master

probability” discussed above. That is, XðiÞ � ti simply

says that the ith arriving queued customer must arrive

(and enter the queue) before completion of service of

the ith departing customer from service.

If the Poisson arrival process is homogeneous, then

the unordered arrival times are iid uniform and the rate

parameter of the process does not enter the analysis.

If the arrival process is nonhomogeneous, then

the time-dependent arrival rate parameter lðtÞ must

be known up to a positive multiplicative constant for

use in computing the CDF FðxÞ, that is,

FðxÞ ¼
Ð x

0
lðtÞdt

Ð 1

0
lðtÞdt

0 � x � 1ð Þ:
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For simplicity, it is assumed that FðxÞ is strictly

monotone nondecreasing continuous. Jones and

Larson (1995) have derived an O N3ð Þ algorithm for

finding Gðs; tÞ. Next several of its queue inference

applications will be discussed briefly.

The Maximum Experienced Queue

Delay — Assume a FCFS queue and consider a

congestion period having N customers with observed

departure time vector t, and where the interest is in the

maximum time that any of the N customers was

delayed in queue, given t. More precisely, to goal is

finding the CDF of the maximum of N nonindependent

r.v.’s, the in-queue waiting times of the N queued

customers, given t.

Define Dðt=tÞ as the conditional probability that

none of the N customers waited t or more time units,

given the observed departure time data. Set

si ¼ maxfti�; 0g for all i ¼ 1; 2; . . . ; N. Then

Gðt� t; tÞ is the a priori probability that the

observed departure time inequalities will be obeyed

and that no arrival waits t or more time units in

queue. Clearly,

D tjtð Þ ¼ G t� t; tð Þ=G 0; tð Þ: (3)

Maximum Queue Length — Without any

assumption regarding queue discipline, suppose

s ¼ t
k is defined such that s
t i�Kð Þ for all

f(a)
A

a

b

c
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Fig. 1 Probability density
functions of arrival times and
queueing delays of queued
customers
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i ¼ 1; 2; . . . ; N; K ¼ 1; 2; . . . ; N, where a

non-positive subscript on t implies a value of zero.

These values for s imply that each arriving customer i

has to arrive after the departure time of departing

customer i ¼ K during the congestion period. Now

the conditional probability can be computed that the

queue length did not exceed K during the congestion

period, given t:

PrfQ � kjtg ¼ P {queue length did not exceed K

during the congestion period | observed departure time

data}, or

PrfQ � Kjtg ¼ G s
K; t
� �

=G 0; tð Þ: (4)

Probability Distribution of Queue

Length — Following the same arguments as in

Larson (1990), the O N3ð Þ computational algorithm

can be used to determine for any queue discipline the

probability distribution of queue length at departure

epochs, and by a balance of flow argument, this

distribution is also the queue length distribution

experienced by arriving customers.

The Cumulative Distribution of Queue

Delay — The algorithm allows computation of points

on the conditional in-queue waiting time distribution,

given the observed departure data. Again assume

a FCFS queue. Define bi tjtð Þ � Pfjth customer to

arrive during the congestion period waited less than t

time units | observed departure time data}. Then setting

s ¼ sj, defined so that

s
j
i ¼ 0 i ¼ 1; 2; . . . ; j� 1

s
j
i ¼ Max tj � t; 0

� �

i ¼ j; jþ 1; . . . ;N

it follows that

bj tjtð Þ ¼ G sj; t
� �

=G 0; tð Þ: (5)

This result allows the determination for any

congestion period the probability that a random

customer waited less than t time units, given

the observed departure data. Simply compute Eq (5)

for each value of j and average the results. Jones and

Larson (1995) developed a separate algorithm that

allows O N3ð Þ computation of this average probability

of queue delay exceeding some threshold.

Research Literature

Research in queue inferencing is rather extensive. For

O N3ð Þ algorithms for queue performance estimation,

see Bertsimas and Servi (1992), Larson (1990), Daley

and Servi (1992, 1993); for personnel queue delay

PDF, see Hall (1992); for balking, see Larson (1990),

Daley and Servi (1993), Jones (1994, 1999); for

unknown number of servers, see Kim and Park

(2008). Applications of QIE are discussed in Gawlick

(1990) and Chandrs and Jones (1994). QIE concepts

have been incorporated into a commercial software

product Queue Management System (QMS) and has

been used by banks, an airline, and the United States

Postal Service.

See

▶Queueing Theory

▶Retailing
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Queueing Discipline

Rules used to select the next customer to be served.

The first-come, first-served (FCFS) discipline chooses

the head of the line customer, the last-come,

first-served (LCFS) chooses the tail of the line, and

random order chooses the next customer at random,

usually equally likely. Other disciplines include

putting customers into priority classes.

See

▶Queueing Theory

Queueing Networks

▶Networks of Queues
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Daniel P. Heyman

Lincroft, NJ, USA

Introduction

Queueing theory is the study of service systems with

substantial statistical fluctuations in either the arrival or

service rates. Other names for the subject are stochastic

service systems and the theory of mass storage. An

example of a stochastic service system from everyday

life is a line for bank tellers (human or machine);

customers arrive at random, and the transaction lengths

will vary depending on the services requested.

An example from the world of technology is

a computer system; jobs arrive randomly and

require different amounts of system resources. An

all-too-common source of service-rate variability is

a hardware or software crash, which probably occurs

randomly even though it might appear that they happen

just when you want to use the computer. Looking

inside the computer system reveals some more

stochastic-service systems. The components (e.g., disk

drives, I/O devices, the CPU) have randomly arriving

tasks, and the time required to execute a task may be

subject to significant statistical fluctuations.

Queueing theory traces its roots back to 1905,

starting with the work of A.K. Erlang, who was

designing automatic telephone exchanges and needed

to know how many calls might be carried

simultaneously. Since the calls start at random times

and have random durations, the number of calls in

progress fluctuates as a stochastic process. Erlang

developed several concepts (e.g., birth-and-death

processes and statistical equilibrium) about stochastic

processes before the formal mathematical theory of

stochastic processes was developed. Most of the first

30 years of queueing theory was done in the context of

telephony, and telephony continues to be a major

consumer of queueing theory. The creation of

operations research during World War II led to other

applications, such as capacity evaluation of toll booths

and port facilities, the order to assign “stacked”

airplanes to runways, and scheduling patients in

hospital clinics. Areas of extensive current activity

include the analysis of production systems, supply

chains, call centers, and computer/communication

systems.

Basic Notions

The paradigm of a queueing model is that there is

a facility consisting of some servers, and customers

arrive at the facility to receive some sort of service.

Upon arrival, the customers will go to a server if one is

available; if all the servers are busy, the customer will

either join the queue (also called the waiting room or

buffer) or leave. There are two typical reasons that

a customer will leave before obtaining service: the

queue may be full (in this case the customer is said to

be blocked) or the customer may be adverse to waiting

in line (in this case the customer is said to have balked).
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A departing customer may leave forever or retry after

some time. Customers who join the queue may wait

until a server is free (the alternative is to bolt from the

queue, which is called reneging), and then one of them

enters service; the rule that selects the lucky customer

is called the queue discipline. Some queue disciplines

allow newly arrived customers to displace a customer

that is in service, which is called preemption. Once at

the server, the customer receives the desired service

and then departs. When there is a single facility, the

departing customer leaves the system. When there are

multiple facilities, the model is called a queueing

network, and a routing rule determines where a

departing customer goes.

A statistical description of the arrival and service

times is almost always given. The objective of the

theory is to describe some performance measures,

which include the following: the delay of a customer

is the time spent in the queue waiting to start service

(sometimes it is called the queueing time), the sojourn

time of a customer is the total time spent in the facility

(it is sometimes called the total waiting time or waiting

time), the queue length is the number of customers in

the queue, and the number in the system is the queue

length plus the number of customers in service. Other

performance measures include the number of busy

servers, the proportion of blocked customers, and the

proportion of non-blocked customers who have

a positive delay.

Taxonomy

In the 1950s, D.G. Kendall (1953) introduced a compact

notation for describing queueing models. In the current

form of the notation, a model is generally described by

five parameters, written A/S/c/K/Q: A describes the

distribution of the times between arrivals, S describes

the service time distribution, c is the number of parallel

servers,K is themaximumnumber of customers that can

be in queue or in service, andQ is the queue discipline. It

is required that K� c; when K¼1, it is often omitted.

Sometimes another parameter is included between

K and Q that gives the size of the customer population

arrival source, which again is infinite if omitted

(see, e.g., Kleinrock 1975).

The following symbols are used for both A and S:M

for exponential (Markov), D for deterministic, Ek for

Erlang k, Hk for hyperexponential of order k, and PH

for phase-type. When the service-times have a general

distribution, the letter G is used. The symbol G is used

for interarrival times when they are not necessarily

independent; independence is emphasized by using

the pair of letters GI.

A common queue discipline is FIFO (First-In,

First-Out), which is usually taken to be the same as

FCFS (First-Come, First-Served). They are identical

when there is a single server, but when there are

multiple servers, FIFO is stronger than FCFS.

Since this is considered the default queue discipline,

it is commonly omitted in the notation. Thus, an

M/M/1 queue refers to an FCFS single-server queue

with a Poisson arrival process and exponentially

distributed service times. Other common rules

include LIFO (Last-In, First-Out), SIRO (Service In

Random Order), and processor sharing. Customers

may be partitioned into priority classes, so that more

important customers get favored treatment.

There are tacit assumptions that service times are

independent and identically distributed (i.i.d.), that

service times are independent of interarrival times,

that (except for the G case) interarrival times are

i.i.d., and that arrivals and services occur one at

a time. Other notations are used to represent bulk

arrivals or departures, dependencies, and other features.

It is common to denote the mean interarrival time by

1/l (l is the arrival rate) and the mean service time

by 1/m. Then a ¼ l=m is the rate at which work is

brought to the system; it is called the offered load. The

offered load is dimensionless, but it is often expressed in

Erlangs to honor the contributions ofA.K. Erlang.When

there are c servers, the load on each server is a/c, which is

usually denoted by r and is called the traffic intensity.

General Theorems

Most results in queueing theory are formulas for

operating characteristics in particular models. There

are some theorems that apply to many queueing

models, and two of them will be described here.

Before doing so, the notion of statistical equilibrium,

also called the steady state, is introduced.

Let zero be the time that a queueing system starts

operating; for example, for a computer system, it is the

time that the installation procedures are completed. Let

t be the current time, and let X(t) be the operating

characteristic being modeled at time t, for example,
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the number in the system t time units after the system

started. The initial conditions at time zero usually

affect X(t). If there was a backlog of work at time

zero, X(t) would be larger than if there was no

backlog. The effects of the initial conditions usually

decrease as t increases; statistical equilibrium is

reached when the effects of the initial conditions have

faded away. A queueing system with this property is

usually called stable. The mathematical description of

this idea starts with defining pij(t) ¼ Pr{X(t) ¼ j, given

X(0) ¼ i}, and then showing that pj ¼ limt!1pijðtÞ
exists and is independent of i. Another interpretation

of the steady state is that probabilities are not changing

with time, that is, the derivatives of pij(t) with respect

to t are zero.

The steady-state solution {pj} is typically much

easier to obtain than the transient solution {pij(t)}.

Interpreting pj as the long-run proportion of time that

X is in state j,

pj ¼ limt!1
1

t

Z t

0

IfXðsÞ ¼ jg ds

2

4

3

5

¼ limt!1
TjðtÞ
t

� �
(1)

where I{�} is the indicator function, which is equal to 1
if the condition is true, 0 otherwise, and Tj(t) is the

amount of time X(s) equals j during (0, t]. Results of

this type are called ergodic theorems, and some

conditions on the model are needed for (1) to be

valid. The theories of stationary and regenerative

processes often are used to prove ergodic theorems.

Among the general theorems, these two are used

most frequently.

Little’s Theorem (often referred to as Little’s

Law) – For any stable queueing system, or part of

a queueing system, let l be the arrival rate, L be the

steady-state mean number of customers present, andW

be the steady-state mean waiting time. If l and W are

well defined, then so is L and L ¼ lW.

The use of this theorem is clearly to obviate the

need to compute separately both L and W. Three

subtler uses of the theorem are the following. It is

important to know, and difficult to measure, the

average time to get a telephone dial tone (W). It is

not so difficult to measure the arrival rate of calls (l)

and the average number of calls waiting to receive

dial tone (L). Little’s theorem gives an indirect way

to estimate the dial tone delay.

In a model with homogeneous servers where all

arriving customers are served and the steady-state

queue length is finite, suppose the objective is to

calculate the mean number of busy servers; this can be

very intricate if done in a straightforward way. By

considering the servers as “the system,” the arrival rate

is the arrival rate of customers l, the “waiting time” of

a customer in the system is the service time, with mean

1/m say, and the “number in the system” is the number of

busy servers. Little’s theorem shows that our answer is

simply l/m, which is the offered load. This result shows

that at least l/m servers are needed. When the queue

discipline is such that all servers are equally used, the

traffic intensity is the proportion of time a server is busy.

The third application concerns comparisons among

queue disciplines. Disciplines that produce the same

L as FIFO (LIFO and SIRO are examples) must

produce the same value of W. Some disciplines use

information about service times (e.g., serve the shortest

job first, also known as the shortest processing time

priority discipline) and reduce L (compared to FIFO);

these must also reduceW.

PASTA is an acronym for Poisson Arrivals See

Time Averages. Equation (1) shows that pi can be

interpreted as a time average, that is, as the

proportion of time i customers are present.

A customer is said to see the stochastic process X(t)

in state i if X¼ i just before the customer arrives. Let tn
be the arrival epoch of the nth customer. The state seen

upon arrival by the nth customer is X(tn), and

pi ¼ limN!1
1

N

XN

n¼1
I XðtnÞ ¼ if g

" #

(2)

is the customer average for state i. A simple example

where pi 6¼ pi is a D/D/1 queue where the times

between arrivals are 1 and all the service times are

1/2. Here, p0 ¼ 1 yet p0 ¼ 1/2. The PASTA theorem

asserts that when the arrivals occur according to

a Poisson process, if either pi or pi exists, then the

other one exists and is equal to it. There is a technical

proviso that roughly states that at any time, the future

of the arrival process is independent of the past of the

X-process. This theorem will be invoked several times

in subsequent sections.
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Birth-and-Death Queues

The simplest stochastic queueing model has

exponentially distributed service and interarrival

times. Let X(t) be the number of customers present at

time t. When X(t) ¼ i, the probability that an arrival

will occur in (t, t + h] is lih, and the probability that

a service will be completed in the interval is mih. It is

implicit that h is small, and terms of order h2 can be

(and are) ignored. The probability of an arrival and

a service occurring, or of more than one arrival or

service occurring in (t, t + h], is of order h2.

Implicit in this description is the memoryless

property of the exponential distribution. The m’s are

called death rates and the l’s are called birth rates

because of the interpretation of this model as the size

of a population.

The parameter m0will have no role in the analysis; it is

convenient to set it equal to zero.Otherwise, it is assumed

that mi> 0 for i> 0 so that the population does not have

an a priori lower bound. When ln ¼ 0, a population of

size n + 1 will not occur after the population drops below

n + 1, so this is a device tomodel a finite capacity system.

The goal is to obtain pi(t) ¼ Pr{X(t) ¼ i}, where the

{pi(0)} are given initial conditions.

Flow of probability argument – Think of

probability as a fluid flowing between buckets

numbered 0, 1, 2, . . ., and pi(t) as the amount of

probability in bucket i at time t. Think of li as the

rate at which each molecule of probability in bucket

i flows to bucket i + 1, and mi is the rate at which each

molecule of probability flows to bucket i� 1. Then the

rate at which probability flows from bucket i to bucket

i + 1 is lipiðtÞ, and the rate of flow in the reverse

direction is mi+1 pi+1(t). Since the rate of change of

the contents of a bucket is the inward flow rate minus

the outward flow rate, for i ¼ 0, 1, 2, . . .,

dpiðtÞ
dt

¼ li�1 pi�1ðtÞ þ miþ1 piþlðtÞ

� ðli þ miÞ piðtÞ
(3)

ignoring the pi�1(t) term when i ¼ 0. These are

called the backward Kolmogorov equations of the

birth-and-death process. In the steady-state, the

derivatives in (3) equal 0 and the probabilities on

the right-hand side equal their steady-state limits,

leading to the steady-state balance equations

ðli þ miÞpi ¼ miþ1piþ1 þ li�1pi�1;

i ¼ 0; 1; 2; . . .
(4)

These are currently written as second-order

difference equations (because they have i � 1, i, i + 1);

the flow-of-probability argument can be used

to make them first-order difference equations

lipi ¼ miþ1piþ1; i ¼ 0; 1; 2; :::; yielding the solution

pi ¼ p0
l0l1 . . . li�1

m1m2 . . . mi
; i ¼ 0; 1; 2; . . . ; (5)

where p0 is chosen to make the sum of all the

probabilities equal to 1. This can only be done if the

sum of the product terms in (5) converges, so some

restrictions on the birth and death parameters apply.

M/M/1 queue – In the M/M/1 queue, the

memoryless property of the exponential distribution

implies that li ¼ l for all i, and mi ¼ m for all i, so (5)

yields pi ¼ p0 ri, where r ¼ l=m and is called the

traffic intensity. The summability condition requires

that r < 1, and then p0 ¼ 1� r is obtained. (No

calculation is required because this was proved via

Little’s theorem.) The mean of this distribution

is r=ð1� rÞ, and Little’s theorem yields

W ¼ 1=½mð1� rÞ�. The probability that more than k

customers are present is rk. The formulas exhibit some

of the qualitative features of all stochastic service

systems. The operator of the system typically wants

to keep the server busy, so the closer r is to 1 the better.

However, keeping r close to 1 will produce very long

waiting times, which tend to make customers

complain.

To obtain the delay distribution, the memoryless

property of the exponential distribution and PASTA

are used to argue that at arrival epochs, the remaining

service time of the customer in service (if any) is

exponential. Thus, a customer who arrives to find i

customers in the system has a delay that is distributed

as the sum of i independent and identically distributed

exponential random variables, which is a gamma (or

more specifically, an Erlang) distribution with shape

parameter i. PASTA is invoked again to interpret pi as

the probability that an arriving customer sees i other

customers. Hence, with probability 1 � r the delay is

zero, and with probability r the delay is exponentially

distributed with mean 1=ðm� lÞ.
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M/M/1/N queue – When at most N customers can

be present, set li ¼ 0 for i � N. Then (5) yields

pi ¼ p0 r
i and the normalizing condition produces

p0 ¼ ð1� rÞ=ð1� rNþ1Þ for r 6¼ 1. When

r ¼ 1; pi ¼ 1=ðN þ 1Þ, for i ¼ 0,1, . . ., N.

The condition r < 1 is not needed here because the

normalizing sum has finitely many terms.

M/M/c queue – Here li ¼ l for all i, mi ¼ im for

i � c, and mi ¼ cm for i � c.

This is called the Erlang delay or Erlang C model.

The quantity a ¼ l=m is the offered load; the traffic

intensity is r ¼ a=c. Using (5) leads to

pi ¼
p0a

i

i!
if 1 � i � c

p0a
i

ci�cc!
if i � c

(

where

p0 ¼
Xc�1

j¼0

aj

j!
þ ac

c!ð1� rÞ

" #�1

; a < c:

The probability that all servers are busy is given by

C ðc; aÞ ¼ p0a
c

c!ð1� rÞ

which is called the Erlang C formula.

The M/M/c/c queue – This is the same as theM/M/c

queue except that li ¼ 0 for i � c. It is called Erlang’s

loss model or sometimes the Erlang B model.

Equation (5) yields

pi ¼
ai=i!
Pc

k¼0

ak=k!

ð0 � i � cÞ

which is a truncation of the Poisson distribution. From

PASTA, pc is the probability that a customer is

blocked; it is called Erlang’s loss (or sometimes

Erlang B) formula and denoted by B(c, a).

A remarkable feature of this formula is that it is valid

for any service-time distribution with mean 1/m. This is

an example of an insensitivity theorem.

M/M/1 queue – This is the previous model

with c ¼ 1. It may be an appropriate model

for a self-service system. The steady-state probabilities

are given by the Poisson distribution with mean a.

Machine-repair (finite-source) queue – This is

a model where there are m machines attended by c

mechanics. When the times between machine failures

are i.i.d. and exponential, and so are the repair times,

then the number of inoperative machines is a

birth-and-death process with li ¼ ðm� iÞ l and

mi ¼ min(i, c)m. Equation (5) can be used to calculate

the steady-state probabilities, which will be denoted by

pi(m) to emphasize the dependence on m. Since the

machine failures do not constitute a Poisson process, it

does not necessarily follow that
P

i�cpiðmÞ is the

probability that a failed machine has to wait for

repair to begin. A surprising feature of this model is

that pi(m � 1) is the probability that i other machines

are down at a failure epoch.

When li ¼ 0 for i � c, this model is the finite

source analog of the M/M/c/c queue (sometimes

denoted as an M/M/c/c/m queue). It is appropriate

when the number of sources is not so large that the

arrival rate is not diminished when all servers are busy.

Let b ¼ l=m; then Eq. 5 yields

piðmÞ ¼

m

i

 �

bi

P

c

k¼0

m

k

 �

bk
i ¼ 0; 1; . . . ; c

An important feature of this model is that this

formula is valid for any service-time or interarrival

time distributions. This insensitivity result can be

extended to sources with different interarrival time

distributions. When m > c, the probability that all

servers are busy at an arrival epoch is

pcðmÞ ¼ pcðm� 1Þ ¼

m� 1

c

 �

bc

P

c

k¼0

m� 1

k

 �

bk

which is called the Engset formula.

Balking and reneging – Balking and reneging can

be incorporated into the models above by adjusting

the birth and death rates. Suppose that customers

will balk at a queue of length i with probability bi.

To describe this, replace li with libi. Suppose that

when i customers are present, the probability that

one of them will renege in a short time interval

of length h is rih. To describe this, replace mi with

mi + ri.
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Output theorem – Let D(t) be the number

of departures in an interval of length t in the

steady-state. When li � l; DðtÞ is a Poisson process.

This result is also known as Burke’s theorem.

Additional details on these fundamental models are

presented in the classic texts of Morse (1958), Cox and

Smith (1961), and Prabhu (1965).

Markov Chain Models

The birth-and-death process is the special case of a

continuous-time Markov chain in which all transitions

are to neighboring states. The added flexibility of the

continuous-time Markov chain permits analysis of bulk

service and arrival, and some forms of non-exponential

service and interarrival times.

A continuous-time Markov chain is described by its

rate matrix Q ¼ (qij) where qij is the rate of making

transitions from state i to state j, i 6¼ j, and

qii ¼ �Pj 6¼i qij by convention, corresponding to the

rate of making transitions out of state i. The flow of

probability argument is valid for continuous-time

Markov chains, and the generalization of (5) is

that the row vector of steady-state probabilities,

p ¼ (p0, p1, . . .), satisfies the matrix equation pQ ¼ 0,
with the elements of p summing to 1.

Erlang distributions – Erlang devised the

following way to use exponential distribution

arguments for some non-exponentially distributed

random variables. For a random variable with mean

1=l, imagine that it is constructed by adding k i.i.d.

exponential random variables called stages, each

having mean 1=ðklÞ. The resulting distribution is

called an Erlang distribution of order k; it is

a gamma distribution with an integer shape

parameter, and the density function at t is given by

klðkltÞk�1
e�klt=ðk � 1Þ!. The standard deviation is

1=ðlpkÞ, which is less than 1=l for all k > 1, the

standard deviation of the exponential distribution

with the same mean.

For the M/Ek/1 model, the state is taken as the

number of customers present and the stage of

the customer in service (if any). A customer in stage

j < k that completes a service stage moves to the next

larger-numbered stage. A customer that completes

stage k actually leaves the server. This is called the

method of stages. The balance equations for this model

are more intricate than for the M/M/1 queue, and

solving them requires more work. One result is that

the steady-state mean delay D is given by

D ¼ k þ 1

2k

r

1� r

1

m

which is the expected delay of the M/M/1 model

multiplied by (k + 1)/(2k), a number less than 1 for

all k > 1.

Extended Erlang family of distributions – Extensions

of the method of stages are based on the following

distributions. A hyperexponential random variable

is formed by selecting from among k different

exponential distributions according to a probability

distribution. Let aj be the probability of choosing

distribution j and 1=lj be the mean of distribution j.

Then the density function at t is given by
Pk

j¼1

ajlje
�ljt.

This produces a larger standard deviation than an

exponential distribution with the same mean. This

distribution can be used in queueing models in the

same way as the Erlang distributions.

Erlang distributions can be pictured as exponential

stages in series, and hyperexponential distributions

can be pictured as exponential stages in parallel.

Replacing these exponential stages by Erlang or

hyperexponential distributions yields a broader class

of distributions. Repeating this procedure as many

times as desired produces the family of general

Erlangian distributions. General Erlangian

distributions can be pictured as directed graphs.

The time required to traverse an edge is an

exponential random variable. At each node, an edge

is traversed; the choice of which edge to take is

determined by a chance event that is independent of

how the node was reached. The time to go from the

source node to the sink node has a generalized

Erlang distribution.

The generalized Erlang distribution is the time to

absorption in some continuous-time Markov chain

where the initial state is fixed. A phase-type

distribution is the time of absorption of a finite

continuous-time Markov chain with a single

absorbing state, where the initial state can be chosen

at random. The representation expands and unifies the

extensions of the exponential distribution described

above. The family of PH distributions has properties

that can be exploited to obtain algorithms for solving
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the balance equations when they are used for either the

interarrival or service times.

Bulk queues – Heretofore the assumption has been

that arrivals and services occur one at a time; this need

not be the case. A busload of customers may arrive at

a ticket counter, or a bus may serve several customers

waiting at a bus stop. The batch sizes may be random

variables, for example, partially filled buses. In the bus

example, it is natural to assume that the number of

customers served will be the smaller than the number

of the spaces available and the number of waiting

customers. This may not always be valid; when there

are large setup costs, a minimum number of customers

may be required. Similarly, if there is not enough

queueing space for an entire arriving batch, sometimes

the entire batch is blocked (some communication

systems will not accept part of a message) and

sometimes part of the batch is blocked.

In the M/M/1 queue with batch arrivals, let ck be

the probability that a batch consists of k customers, and

let �c be the mean batch size. The arrival rate is l �c, so

that r ¼ l �c=m < 1 is required for the steady-state to

exist, and Little’s theorem yields p0 ¼ 1� r. The

number in system goes from i to i + k at rate lck and

from i to i � 1 at rate m, so the balance equations are

lp0 ¼ mp1;

ðlþ mÞpi ¼ mpiþ1 þ
Xi

k¼1

pi�kck; i ¼ 1; 2; . . .

These equations can be solved for the probability

generating function of the {pn} in terms of the

probability generating function of the {ck}. For

geometrically distributed batch sizes, i.e.,

ck ¼ ð1� aÞ ak�1; 0 < a < 1, an explicit solution is

pi ¼ ð1� rÞ½aþ ð1� aÞr�i�1ð1� aÞr; i > 0

The mean of this probability function is

r½ð1� rÞð1� aÞ��1
, which is the mean of the M/M/1

queue with the same traffic intensity multiplied by the

mean batch size. A reason why the performance is

worse with batches than without is that batches make

the arrival process more bursty, i.e., in any interval of

time, the batch process will tend to have less epochs

where arrivals occur, but those epochs will have several

customers appearing at once and the arrivals cluster.

Non-Markovian Queues

The exponential interarrival and service times

render the queue length processes Markovian;

when these conditions are not valid, there may be

other ways to formulate a Markov chain model. The

models below have embedded Markov chains

instead, which are obtained by restricting attention

to selected times.

M/G/1 queue – Here, the service times have a known

distribution G(�) with mean ng ¼ 1=m, second moment

n2g, variance s2g , and Laplace-Stieltjes transform ~Gð�Þ.
The mean delay can be obtained without detailed

calculations using some general theorems. In the

steady-state, let D be the mean delay and Q be the

mean queue length. Let R be the mean of the remaining

service time of the customer in service (if any)

when a customer arrives in the steady-state. Then

D ¼ Qng þ R, and Little’s theorem asserts that

Q ¼ lD; solving simultaneously yields

D ¼ R=ð1� rÞ, where r ¼ lng is the traffic intensity

and the probability that the server is busy. The next two

statements are justified by PASTA. When the server is

idle, R¼ 0.When the server is busy, renewal theory can

be applied to argue that R is the mean of

the forward-recurrence time associated with G(�),
which is n2g=2ng. Hence, R ¼ rn2g=2ng and

D ¼ ln2g=½2ð1� rÞ�; this is the Pollaczek-Khintchine

formula for the mean delay. It is instructive to write this

formula in terms of the squared coefficient of variation

c2 ¼ s2g=n2g,

D ¼ c2 þ 1

2

r

1� r

1

m
: (6)

From this equation it is easily seen that constant

service times produce one-half the mean delay of

exponential service times.

The waiting-time distribution is obtained by looking

at the number in the system only at service-completion

epochs. In any queue where arrivals and services occur

one at a time, the number of customers that see state i

upon arrival differs from the number of customers that

leave state i upon departure by at most 1, so the

steady-state distributions at arrival and departure

epochs are equal. From PASTA, it follows that looking

at only departure epochs will yield time-averaged

probabilities.
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Let Xn be the number present just after the nth

departure, and let An be the number of arrivals during

the nth service time. To make matters easy, assume that

the 0th customer arrives at time 0 and sees an empty

system. Then Xn+1¼max(0, Xn� 1) + An, which shows

that {Xn} forms a Markov chain. When r < 1, this

Markov chain has a limiting distribution independent of

the initial state, say {pi}, with probability generating

function p̂ð�Þ. The transition matrix is

a0 a1 a1 a3 a4 � � �
a0 a1 a2 a3 a4 � � �
0 a0 a1 a2 a3 � � �
0 0 a0 a1 a2 � � �
� � � � � � � � � � � � � � � � � �

2

66664

3

77775
(7)

where ai ¼
R1
0

eð�ltÞðltÞi=i! dGðtÞ is the probability

that i customers arrive during a service time. It is not

hard to show that

p̂ðzÞ ¼ ð1� rÞð1� zÞ ~Gðl� lzÞ
~Gðl� lzÞ � z

which is another equation associated with Pollaczek and

Khintchine. Let W(�) be the waiting-time distribution

when the customers are served FIFO, and ~Wð�Þ be its

Laplace-Stieltjes transform. Then pi is the probability

that i customers arrive in an interval of timewhose length

is distributed as W(�), so pi ¼
R1
0
e�ltðltÞi=i! dWðtÞ;

whence p̂ðzÞ ¼ ~Wðl� lzÞ or

~WðsÞ ¼ ð1� rÞs ~GðsÞ
s� l½1� ~GðsÞ�

:

Moments of the queue length and waiting time can

be obtained from the transforms p̂ and ~W.

Another performance measure is the busy period,

which commences when the server goes from idle to

busy and ends when the server next becomes idle. Let
~Bð�Þ be the Laplace-Stieltjes transform of its

distribution function, which satisfies the implicit

equation ~BðsÞ ¼ ~G½sþ l� l ~BðsÞ�. The mean length

is finite when r < 1 and equals 1=ðm� lÞ.
M/G/1/Priority queue – Let the customers be

partitioned into K priority classes, where class i

has priority over class j if i < j. At a service

completion epoch, the next customer to enter

service is a member of the class with the lowest

priority number among those present. Assume

priority is non-preemptive, that is, the customer

in service is not replaced when a customer with

more priority arrives. The notation is the same as

above with the script k denoting class k. The

service-time distribution for an arbitrary customer

is a mixture of the service-time distributions of

the classes, and has mean 1/m and coefficient of

variation c2. The mean delay of a class j

customer is

Dj ¼
c2 þ 1

2

r

1�P
j�1

i¼1

ri

 �

1�P
j

i¼1

ri

 �

m

;

j ¼ 1; 2; . . . ; K:

Comparison with the FIFO formula (6) shows that

class 1 does better with priorities than without, and

class K does worse.

Suppose that the cost of keeping members of class j

waiting in queue per unit time is Cj and that priorities

can be ordered in any arbitrary manner. The way to

minimize the waiting costs is to assign priorities in

increasing order of Cjmj; this is called the Cm -rule.

Taking Cj ¼ 1 shows that the overall mean delay is

minimized when priorities are assigned in increasing

order of mean service time. Letting the number of

priority classes become infinite, so that customer i

has priority over customer j if its service time is

shorter, shows that “serve the shortest job first” is the

optimum non-preemptive priority rule. When

preemption is allowed, the optimum rule is “serve the

job with the shortest remaining-processing-time first.”

GI/M/c queue – The GI/M/c queue is analyzed

similarly to the M/G/1 queue. There is an embedded

Markov chain at arrival epochs. The c-server model

is analyzed similarly to the single-server model and is

more intricate, so only the single-server model is

presented in detail.

Let Yn be the number of customers present when

the nth customer arrives and Bn be the number of

customers served during the nth interarrival time.

Then Ynþ1 ¼ Yn þ 1� Bn. Let A(�) and 1=l be the

distribution function and mean of a generic

interarrival time, respectively, bk ¼ PðBn ¼ kÞ, and

b̂ð�Þ be its probability generating function. Let 1=m

be the mean service time, then

bn ¼
R1
0

e�mtðmtÞn=n! dAðtÞ. The transition matrix is
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1� b0 b0 0 0 0 � � �
1�P

1

k¼0

bk b1 b0 0 0 � � �

1�
P2

k¼0

bk b2 b1 b0 0 � � �

..

. ..
. ..

. ..
. ..

. ..
.

2

66666664

3

77777775

(8)

When r < 1, this chain has a limiting distribution,

say fqig, and qi ¼ ð1� rÞri, where r is the unique root
in (0,1) of the equation b̂ðrÞ ¼ r. The delay distribution

is similar to theM/M/1model; with probability 1� r the

delay is zero, and with probability r the delay is

exponentially distributed with mean 1=½m ð1� rÞ�. The
time-averaged probabilities are obtained from

lqi ¼ mpi; i > 0, which equates upward and

downward transition rates.

The analysis with multiple servers is similar. The

embedded chain at arrival epochs has the same

structure as (8) except care has to be taken to account

for the changing number of active servers when the

row or column index is less than c.

GI/G/1 queue – For theGI/G/1/ FIFO queue, for the

nth arriving customer, let Dn be the delay, Tn be the

arrival time, Un ¼ Tn+1 � Tn, and Sn be the service

time. The departure time is Tn + Dn + Sn, so that

Dnþ1 ¼ maxð0;Dn þ Sn � UnÞ:
When r < 1, the Dn-process has a proper limit; let

D(�) be the limiting distribution. {Si} and {Ui} are

mutually independent and individually i.i.d., so let

FðtÞ ¼ PfS1 � U1btg. Then

DðtÞ ¼
Z t

�1

Dðt� xÞdFðxÞ;

which is called Lindley’s equation. (Note: The

recursion for delay Dn+1 above is also referred to as

Lindley’s equation; see Lindley 1952). A tractable

general solution to this equation is not known; but the

equation has proved useful for obtaining qualitative

information. For example, it has been shown that the

mean delay is no larger than the quotient

l s2u þ s2S
� �

=½2ð1� rÞ�, where the s2 values are the

variances of U1 and S1, respectively. When

r approaches one from below, D(�) approaches an

exponential distribution whose mean is the upper

bound multiplied by r. This is an example of

a heavy-traffic approximation.

Numerical Methods

Many results in queueing theory, such as the

Pollaczek-Khintchine equations, are given as

transforms. These can be numerically inverted using

methods that are devised for probability distributions.

Abate and Whitt (1992) survey past work and present

new algorithms for carrying out numerical inversion.

The models described above have many variants,

such as heterogeneous servers, enforced servers idle

times, and blocked customers. With suitable

probabilistic assumptions, these models are Markovian

or possess useful embedded Markov chains. The

stationary distribution of the chains is often the desired

numerical quantity of interest, or computing it may be an

intermediate step. For finite chains, the state-space is

often large (hundreds of thousands or more) and

sometimes there is a special structure that can be

exploited in algorithms for computing the stationary

distribution. Stewart (1994) describes many of the

methods that can be used.

The M/M/1, M/G/1, and GI/M/c queues are

analyzed via Markov chains with infinitely many

states. The special structure of these chains is used to

obtain analytical results. M. F. Neuts introduced

extensions of these models where the special

structure is used to obtain algorithmic solutions. The

basis for these models is an extension of the Erlang and

hyperexponential distributions that can approximate

any density with support ½0; 1� and maintain the

Markov property. See Neuts (1981) and the entry on

matrix-analytic stochastic models.

Control of Queues

The performance models described heretofore can be

used to optimize a performance measure subject to

resource constraints by trial and error. For example,

one might seek the fewest number of servers in an

M/M/c/c queue setting that make the loss probability

no larger than a given target. When a cost structure is

introduced to the model, such as server operating and

customer waiting costs, optimization models can be

formulated directly. When the cost of a lost customer

and operating a server are known, instead of choosing

the number of servers to achieve a given loss

probability, one could choose the number that

minimizes the sum of operating and lost customer
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costs. Other optimization problems that have been

studied include joining rules for heterogeneous

customers, server on-off policies, and scheduling

rules. Since queueing performance models are

frequently analyzed with Markov processes,

Markov-decision processes are often used to obtain

optimal controls. Stidham (2009) covers these models

in depth.

Queueing Networks

In the models above, a customer gets service from one

server and then departs. In a queueing network, the

departures may join another queue. This may be

described as a network, where the nodes represent

service centers (a queue and some parallel servers)

and a directed arc connects service centers i and j if

departures from node i can join the queue at node j.

New issues that arise include specifying the routing

rule and the disposition of customers that attempt to go

to a service center where all the waiting positions are

occupied.

Feedback queues – The simplest network is a single

node where some departures rejoin the queue. This is

called a feedback queue and it can be used to model

rework in a manufacturing context. Placing the items

to be reworked at the head of the queue is equivalent

to using an expanded service time, but placing them

at the tail of the queue resembles an increase in the

arrival rate.

Tandem networks – A queueing system in which

the arrivals first appear at node 1, then go to nodes

2, 3, . . ., and N in order, and then depart is called

a tandem network. This is useful for describing

repair or assembly operations. When the arrivals are

Poisson, the service times are exponential and

independent from node to node, and every arrival to

a node will be granted a waiting space, Burke’s

theorem shows that in the steady state, node i is

a birth-and-death queue. Let pn(i) be the steady-state

probability that i customers are present at node n, and

let p(i), where i ¼ i1, i2, . . ., iN, be the joint probability

that in customers are at node n, n ¼ 1, 2, . . ., N; then

pðiÞ ¼ QnpnðinÞ. This is a product-form solution,

which greatly simplifies computing the joint

distribution and shows that the steady-state queue

lengths at the various nodes act as independent

random variables.

Jackson networks – Let rij be the probability that

a customer will go from node i to node j, and assume

that this probability is independent of all other routings

of this and all other customers. This is called

Markovian routing. The probability that a departure

from node i leaves the network is 1�
P

jrij.

A network with birth-and-death assumptions for

arrival and service times and Markovian routing is

called a Jackson network.

Let aj be the arrival rate to node j from outside the

network and lj be the arrival rate including arrivals

from other nodes. The arrival rates are related by the

traffic equations:

lj ¼ aj þ
X

i

lirij:

j¼ 1, 2, . . ., N, where N is the total number of nodes in

the network.

A network is called open if some aj > 0. Open

networks have been used to model flexible

manufacturing systems and communication networks.

When the routing matrix (rij) is irreducible, the traffic

equations have a unique solution for open networks

when some row sum of (rij) is less than 1. Open

Jackson networks have a product-form solution based

on birth-and-death queues for the steady-state

probability p(i), with arrival rate lj used at node j.

A network is called closed if every aj ¼ 0 and all of

the row sums of (rij) equal 1 and a fixed number of

customers, say M, circulate among the nodes of the

network. Closed networks have been used to model

time-shared computer systems. When the system is

almost always heavily loaded, the number of jobs is

essentially constant, and they sequentially require

work from different components (processors, disks,

etc.). Closed networks are also used to model

manufacturing systems where the number of pallets

in the system is fixed, sometimes called a CONWIP

(constant work in process) system. The traffic

equations have infinitely many positive solutions for

a closed network; if l is a solution, then so is Cl for

any C > 0. There is a product-form solution,

pðiÞ ¼ C
Q

npnðinÞ, where the pn(�) are computed from

birth-and-death formulas with ln taken from some

particular solution of the traffic equations. The

normalizing constant C must be chosen to make the

probabilities sum to 1, which can become

computationally intractable. Specifically, there are
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N+M�1CM ways to place M customers in N service

centers, which is roughly 4.25 � 1012 for M ¼ 100

and N ¼ 10.

There have been many texts written on queueing

theory over the years, and some of the classics include

Cohen (1969), Cooper (1984), Cox and Smith (1961),

Gross et al. (2008), Heyman and Sobel (1982), Kelly

(1979), Kleinrock (1975), Morse (1958), Prabhu (1965),

Takács (1962), Walrand (1988), and Wolff (1989).

See

▶Birth-Death Process

▶CONWIP

▶Little’s Law

▶Markov Chains

▶Markov Decision Processes

▶Markov Processes

▶Matrix-Analytic Stochastic Models

▶Networks of Queues

▶ PASTA

▶ Pollaczek-Khintchine Formula
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R

R Chart

A quality control chart that shows the variations in the

ranges of samples.

See
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Radon-Nikodym Derivative

If measure P is absolutely continuous w.r.t. measureQ,

then dP/dQ is called the Radon-Nikodym derivative.

For example, if P is a probability measure (distribution)

for a continuous random variable and Q is Lebesgue

measure, then the Radon-Nikodym derivative

corresponds to the probability density function.

Rail Freight Operations

Carl D. Martland

Massachusetts Institute of Technology, Cambridge,

MA, USA

Introduction

In North America, the railroad industry is

predominantly privately owned and overwhelmingly

oriented toward freight rather than passenger

operations. An emphasis on profitability and practical

problems has been a characteristic of OR/MS

applications in the rail industry. This article focuses on

freight car utilization, operations planning and control,

and line dispatching, the three rail areas that have had

the longest history of successful OR/MS applications.

Freight Car Utilization

There are three main issues in freight car utilization: fleet

sizing, allocation of equipment to specific services, and

distribution of empty equipment. Each of these issues is

complicated by the fact that cars are interchanged among

the North American railroads. A complex set of rules has

been developed for the use of “foreign” cars owned by

another railroad or “private” cars owned by a shipper or

a car-supply company. The Freight Car Utilization

Research/Demonstration Program (1980), jointly

established in 1975 by the Association of American

Railroads and the Federal Railroad Administration,

conducted a series of studies addressing all facets of

freight car utilization. Each study was supervised by an

S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research and Management Science,
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industry task force in order to promote consideration of

the most important issues, to provide access to data, and

to enhance implementation. Task Force I-2 (1977), for

example, developed an integrated set of performance

measures for car utilization and showed how these

measures could be used in both fleet sizing and

fleet allocation decisions.

The process of moving cars from an unloading point

to a location where they can be reloaded is called

empty car distribution. Railroads typically try to hold

enough empty cars at each major yard to cover the

expected demand in the surrounding region; extra

cars can be sent to locations where additional, or

more profitable, loads are required. Southern Railway

was a leader in the application of linear programming

(LP) to car distribution (AAR 1976). They divided the

railroad into 37 zones and created monthly supply and

demand estimates for each of 13 car types. They then

used a linear program to define flow rules that

determined where local car distributors should send

any extra cars. After Southern merged with Norfolk

&Western to form the Norfolk Southern Railroad, this

approach to car distribution was expanded to the entire

merged system. The program has gone through several

revisions and is now run weekly, but the underlying

logic is similar to what was originally installed in the

late 1960s (Gohring et al. 1993). In 1993, the Norfolk

Southern used 70 distribution areas and 15 car types.

The revised program addressed shortages and

surpluses more realistically and it also provided more

flexibility for forecasting supply and demand.

When Philip (1980) surveyed car distribution

models, Southern Railway had the most successful

intraroad application in the industry. The review by

Dejax and Crainic (1987) cited 151 separate studies of

the empty vehicle distribution problem, many of which

involved railroads, but the Southern Railway’s model

and two discontinued models were the only ones

identified as having been implemented by a railroad.

Two other LP models have been used to overcome

problems in the car service rules, which govern car

distribution among railroads. The car service rules

generally favor the use of system as opposed to

foreign cars, which tends to increase fleet sizes and

empty mileage. The “Clearinghouse” encouraged

member railroads to use each other’s cars as if they

were system cars, thereby reducing the flow of empty

cars (Task Force I-5 1978). A linear programwas run on

a weekly basis to determine how best to balance the

supply of empties among the member railroads. A study

conducted in 1977 showed that the percentage of cars

reloaded had risen from 55% to 62%, while the

percentage of loaded car days increased from 50.7% to

56.2% and the percentage of loaded miles increased

from 60% to 64%. The success of the Clearinghouse

led to changes in the car service rules that produced

similar benefits for the entire industry.

The Multilevel Reload program (I.C.C. Finance

Docket 29653, 1981) targeted a particularly expensive

and poorly utilized portion of the fleet, namely the

two- or three-decked equipment used to transport new

automobiles from assembly plants to distribution

centers. Historically, separate fleets were assigned to

movements between each assembly plant and

distribution center, so that the empty mileage equaled

the loaded mileage. In 1979, the Multilevel Reload

Program combined all the fleets serving General

Motors assembly plants (later expanded to the other

major manufacturers) and created an industry group

that used an LP to minimize empty movements. This

led to an immediate, significant reduction in empty

mileage of multilevel cars. By 1981, more than 9,000

cars were managed under this program and the ratio of

empty to loaded miles had dropped from 0.95 at the

outset to 0.55 for the GM fleet and 0.84 for the Ford

fleet. The program was still in operation at the end of

1993. It is noteworthy that the analytic application in

both of these very successful programs was only a small

part of major institutional changes.

Blocking and Scheduling

The consolidation of individual cars into blocks and

the movement of blocks on trains is the essence of

railroading. A block is a group of cars that move

together from one location to another. A block can be

carried by one train or by two or more trains. Blocks

can be defined based upon the type of traffic, the

destination, the priority of the customer, and many

other factors. The operating plan specifies how and

where cars are classified into blocks, which trains can

carry a block, and which blocks are carried by each

train. Unfortunately, it has proven impossible so far to

define an optimization technique that can solve

simultaneously for blocking and scheduling for

realistic networks. Successful OR applications have,

therefore, focused on specific aspects of operations
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planning and paid close attention to the institutional

and organizational contexts.

Algorithms have been developed for blocking

policy, for assigning blocks to trains, and for

scheduling trains. The Automatic Blocking Model

and the Train Scheduling System have been widely

used in the North American rail industry to determine

yard work loads under alternative operating plans (Van

Dyke and Davis 1990).

The operating plan implies a trip plan for cars,

where a trip plan is the sequence of train movements

required to move the car from its origin, through

a series of yards, to its destination. For a typical

boxcar movement, the shipment will depart on the

first available local train after the car is made

available by the shipper. The local train is scheduled

to bring the car to a nearby yard. The car is next

scheduled to move in a particular block that could

move on various outbound trains. The car can be

scheduled to the first outbound train whose cut-off is

later than the car’s scheduled arrival time. This process

is repeated until the car has a scheduled arrival time at

its destination. The first computerized freight car

scheduling system was developed by the Missouri

Pacific Railroad (1976). In 1991, the rail industry

established a plan to implement inter-line car

scheduling as a major element of interline service

measurement (Ad Hoc Committee 1991).

Predicting the time required for a train connection is

the most difficult portion of car scheduling and it is

also a critical problem in establishing standards for

terminal control systems. Many railroads have

terminal control systems that include connection

standards, which are usually based upon cutoffs.

Problems arise with these systems because it is

difficult to maintain a coherent system of cutoffs or

connection standards. There is also a conceptual

problem. Since operating conditions are variable,

better predictions of yard times and connection

reliability can be obtained by considering the

probability of making a connection, which can be

called “PMAKE.” It is possible to calibrate PMAKE

functions that express the probability of making

a connection as a function of the time available, the

priority of the car, the priority of the inbound and

outbound trains, the time of arrival, and other factors

(Martland 1982). PMAKE functions can also be

calibrated by convolving yard processing time

distributions.

The Service Planning Model uses PMAKE analysis

to predict trip times and reliability for a given

operating plan and traffic flows (McCarren and

Martland 1980). The SPM has been used by the rail

industry to set standards for trip time reliability, to

evaluate alternative operating plans, and to evaluate

merger possibilities.

Network models have also been widely used in

railroad rationalization studies. These models are more

concerned with traffic flows and line capacity than with

the details of operating plans. In many cases, shortest

path algorithms are used to route traffic over various

proposed networks and the results are displayed

graphically (Hornung and Kornhauser 1979).

Line Dispatching

Effective control systems are essential to rail systems.

Dispatching is the process of giving trains authority to

move along a route, maintaining a safe distance between

trains, deciding which sidings to use for meets between

trains traveling in opposite directions on a single track

railroad, and allowing faster trains to overtake slower

trains. In systems where trains routinely run on

schedule, train meets and passes are worked out

carefully as part of the development of the operating

plan. In complex environments, such as is the case in

systems with high density passenger operations, it may

take a year or more to develop a workable schedule.

Various algorithms have been developed to assist in

these processes. Here, dispatching involves enforcing

the plan and responding to emergencies.

In North American operations, train schedules are

seldom planned at this level of detail and departure

times vary considerably from one day to the next. As

a result, meets and passes are continually different and

the dispatching function is very critical to train

performance. Several approaches have been take to

providing support for dispatching. Sauder and

Westerman (1983) formulated the dispatching

problem as an integer program, which they solved

using a branch and bound solution technique on

Southern Railway. Their procedure identifies the

optimal set of meets and passes for the upcoming 4 h,

that is updated continually and presented as

information to the dispatcher. Other systems have

used less complex algorithms to plan meets and

passes, but implement these plans automatically
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unless overridden by the dispatcher. It appears that the

savings from making routine decisions in a timely

manner (e.g., avoiding delays while the dispatcher is

on the phone) are at least as large as the savings from

making “optimal” decisions.

Models have been used to study line capacity, line

scheduling, and dispatching, many of them building

upon the work of Petersen and Taylor (1982).

Jovanovich and Harker (1991) developed the SCAN

system (1991), which was used by the Burlington

Northern Railway to evaluate the potential

improvements from advanced line control systems

(Smith et al. 1990).

See

▶Linear Programming

▶Network

▶ Scheduling and Sequencing
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Introduction

As World War II was ending, a number of individuals,

both inside and outside the U.S. government, saw the

need for retaining the services of scientists for

government and military activities after the war’s end.

Theywould assist inmilitary planning, with due attention

to research and development. Accordingly, Project

RAND was established in December 1945 under

contract to the Douglas Aircraft Company. The first

RAND report was published in May 1946. It dealt with

the potential design, performance, and use of man-made
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satellites. In February 1948, the Chief of Staff of the Air

Force approved the evolution of RAND into a nonprofit

corporation, independent of the Douglas Company.

On May 14, 1948, the RAND Corporation was

incorporated as an independent non-profit

organization and on November 1, 1948, the Project

RAND contract was formally transferred from the

Douglas Company to the RAND Corporation. The

Articles of Incorporation set forth RAND’s purpose:

“To further and promote scientific, educational, and
charitable purposes, all for the public welfare and
security of the United States of America.”

It accomplishes this purpose by performing both

classified and unclassified research in programs

treating defense, international, and domestic issues.

The current staff numbers nearly 1,000 researchers

and about 600 support persons, with about 21% of the

researchers being operations researchers,

mathematicians, physical scientists, engineers, and

statisticians. For much of its history, RAND’s

research departments were discipline based (e.g.,

mathematics, economics, physics, etc.). However,

research is now carried out by five units that address

social and economic policy issues both in the United

States and overseas; by three federally funded research

and development centers (FFRDCs) that focus on

national security; by professors and graduate fellows

at the Pardee RAND Graduate School; and by RAND

Europe, an independently chartered European affiliate.

This article focuses on RAND’s contributions to the

theory and practice of operations research. However,

RAND has also made major theoretical and practical

contributions in other areas, including engineering,

physics, political science, and the social and behavioral

sciences. A broader and more comprehensive history of

RAND’s early years is contained in Jardini (1996).

The First Ten Years (1948–1957)

The first decade saw RAND accomplishments ranging

from the beginning of the development of systems

analysis, which evolved from the earlier more

specific and more narrowly focused military

operations analysis of World War II, to the creation

of newmethodological concepts and techniques to deal

with problems involving many variables and multiple

objectives.

Systems analysis may be defined briefly as the

systematic examination and comparison of alternative

future courses of action in terms of their expected

costs, benefits, and risks. The main purpose of

systems analysis is to provide information to decision

makers that will sharpen their intuition and judgment

and provide the basis for more informed choices. From

the beginning it was evident that to be successful,

systems analysis would require the conception and

development of a wide range of methodological tools

and techniques. One of the most important sources of

these tools and techniques was the emerging discipline

of operations research.

In the early 1950s Edwin Paxson led the project that

produced a report entitled Strategic Bombing Systems

Analysis, which is generally regarded as the first major

application of the concept of systems analysis, as well as

the source of the name for the newmethodology.Among

other things, the report advocated the use of decoys to

help mask bombers from enemy defenders. This study

was a catalyst that stimulated the development and rise

of a number of analytical methods and techniques. Some

of the more important examples are:

• Game theory — Mathematics and game theory

were prominent subjects in the early research

agendas of Project RAND. Lloyd Shapley, J.C.C.

McKinsey, Melvin Dresher, Martin Shubik, Rufus

Isaacs, and Richard Bellman were among the

numerous early RAND contributors to this area,

while John Williams and Herman Kahn played an

important role in popularizing some of the simpler

aspects of game theory. John von Neumann, who is

often cited as the father of game theory, and Oskar

Morgenstern, who linked game theory to economic

behavior, were active RAND consultants, as were

many others with connections to major universities.

• Enhanced computer capabilities — The Paxson

project required computer capabilities beyond

those available at that time. This stimulated

developments that led to the building of the

JOHNNIAC digital computer, which became fully

operational in the first half of 1953. Based on

a design by John von Neumann, it was one of the

six “Princeton class” stored programming

machines, and the first operational computer with

core memory in the world. After using the

JOHNNIAC to implement the first distributed

on-line time-shared computer system (1960), RAND

built the JOHNNIAC Open Shop System (JOSS),
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one of the first interactive programming languages

for individual users.

• Dynamic Programming— The Paxson project also

demanded the examination, through dynamic

programming, of key strategic bomber

components (e.g. decoys) in the context of an

overall enhanced strategic capability. This, along

with the demands of other projects in the early

1950s, provided a significant part of the

motivation for the development of the

mathematical theory of dynamic programming.

Richard Bellman, together with a few

collaborators, almost exclusively pioneered the

development of this theory. The first RAND report

on dynamic programming was published in 1953.

Bellman’s well-known book (Dynamic

Programming) followed in 1956, and his book

with Stuart Dreyfus (Applied Dynamic

Programming) was published in 1962.

A second large systems analysis study of this period

was a study led by Albert Wohlstetter on the selection

and use of strategic air bases. It developed basing and

operational options for improving the survivability of

SAC forces and helped shift the focus of strategic

thinking in the United States toward deterrence based

on a secure second-strike force.

Another major effort beginning in the 1950s that led

to the development of operations research tools was

research on logistics policy issues. RAND’s

involvement with Air Force logistics stressed the

demand for spare parts and the need for logistics

policies that could cope with demand uncertainty.

Major players in this effort were Stephen Enke,

Murray Geisler, James Peterson, Chauncey Bell,

Charles Zwick, and Robert Paulson. The key

analytical issue here was the examination of

alternative policy issues under conditions of strategic

uncertainty. Early research used “expected value”

analysis. Later, RAND researchers developed and

used more sophisticated methods, such as:

• The use of sensitivity analysis to determine what

areas of uncertainty really matter in final outcomes;

• Iteration of the analysis across several relevant future

scenarios to seek problem solutions that are robust

for several of the possible (uncertain) scenarios;

• Given the outcomes of the above, design R&D

activities that will (1) reduce key areas of uncertainty,

(2) provide hedges against key uncertainties,

(3) preserve options for several possible courses of

action, any one of which might be used when the

future environment becomes less uncertain.

Finally, the first decade witnessed the development

of a number of methods and techniques that were

useful across a range of RAND projects and

elsewhere. Some important examples are:

• Problem Solving with the Monte Carlo

Techniques — Although not invented at RAND,

the powerful mathematical technique known as the

Monte Carlo method received much of its early

development at RAND in the course of research

on a variety of Air Force and atomic weapon

problems. RAND researchers pioneered the use of

the method as a component of a digital system

simulation. RAND’s main contributions to Monte

Carlo lie in the early development of two tools:

generating random numbers, and the systematic

development of variance-reduction techniques.

• Cost Analysis—David Novick, as head of RAND’s

Cost Analysis Department, developed the

fundamental building blocks of cost analysis

during the 1950s and 1960s. Gene Fisher

documented this work in his seminal book Cost

Considerations in Systems Analysis.

• A Million Random Digits with 100,000 Normal

Deviates — The tables of random numbers in this

1955 report have become a standard reference in

engineering and econometrics textbooks and have

been widely used in gaming and simulations that

employMonte Carlo trials. It is one of RAND’s best

selling books.

• Approximations for Digital Computers — This

book, by Cecil Hastings and J.P. Wong, Jr.,

contained function approximations for use in

digital computations of all sorts.

• Systems Development Laboratory — This

laboratory was set up under the leadership of John

Kennedy to help examine how groups of human

beings and machines work under stress. The work

ultimately led to the formation of the System

Development Corporation.

The Second Ten Years (1958–1967)

This period in RAND’s history witnessed the

beginning of the evolution of systems analysis into
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policy analysis. It also witnessed a branching out from

national security research into research on domestic

policy issues.

One of the most important dimensions of change as

systems analysis evolved into policy analysis was the

context of the problem being analyzed. Contexts

became broader and richer over time. What was

taken as given (exogenous to the analysis) before

became a variable (endogenous to the analysis) later.

For example, in the typical systems analysis of the 1950s

and early 1960s, many considerationswere not taken into

account very well, often not at all: for example, political,

sociological, psychological, organizational, and

distributional effects. Thus, as systems analysis evolved

into policy analysis, the boundaries of the problem space

expanded. This had important implications for changes

in concepts and methods of analysis. For example, with

respect to models, the demands of the expanded

boundaries of the problem space could not be met by

merely trying to make models used in policy analysis

bigger and more complex. Of equal importance, was the

development of sophisticated strategies for the

development and use of models.

While the evolution of systems analysis into policy

analysis did not progress very far during this period,

there are several areas of RAND research that were

conducted in broader contexts than were typical of the

1950s. These included Ed Barlow’s Strategic Offense

Forces Study (SOFS), Bernard Brodie’s work on the

development of a strategy for deterrence in the new age

of abundant nuclear weapons and ballistic missiles,

Herman Kahn’s analysis of civil defense in the event

of a nuclear war, and Charles Hitch and Roland

McKean’s book Economics of Defense in the Nuclear

Age, which espoused the view that the economic use of

scarce resources should be a critical aspect of defense

planning. This view was adopted by Secretary of

Defense Robert McNamara and led to RAND’s

involvement in the development of the defense

Planning, Programming, and Budgeting System (PPBS).

In addition to policy strides like those discussed

above, the second ten years witnessed further

development of methodological tools for quantitative

analysis — primarily operations research tools. Major

advances were made at RAND in the areas of

mathematical programming, queueing theory,

computer simulation, stochastic processes, and

operational gaming.

Linear programming (LP) was probably RAND’s

most important and most extensive contribution to the

theory and practice of operations research as well as to

economic decision making. Between 1947 and 1952,

George Dantzig and others who worked in the

Pentagon on the Air Force’s Project SCOOP

developed the simplex method and other basic

features of LP. Dantzig moved to RAND in 1952.

During the following decade, RAND was the world’s

center of LP developments. In addition to

methodological developments by Dantzig and other

RAND employees and consultants (e.g., the

development of the dual simplex algorithm), there

was seminal work on classic problems like

production planning and the traveling salesman

problem. In addition, most of the pioneering

computer programming of LP algorithms (e.g., the

first code for the revised simplex method) was carried

out by William Orchard-Hays and others at RAND.

Much of the work of this period is captured in

Dantzig’s book, Linear Programming and

Extensions, published in 1963.

Seminal work in other areas of mathematical

programming also took place at RAND during the

1950s and 1960s. Ralph Gomory developed the first

integer programming algorithms; Philip Wolfe,

George Dantzig, and Harry Markowitz initiated work

on quadratic programming; and George Dantzig and

Albert Madansky initiated work on stochastic

programming.

Five other examples of RAND work in the “tools”

area during this period are worthy of note:

• Simulation — In the early 1960s, after doing

complex simulation modeling “the hard way,”

Harry Markowitz and Herb Karr developed

SIMSCRIPT, a programming language for

implementing discrete event simulation models.

This work led in l968 to SIMSCRIPT II, which

introduced ideas that eventually inspired the

modern object-oriented programming paradigm.

• Artificial intelligence (AI) — The man–machine

partnerships explored in the Systems Research

Laboratory gained new impetus as Allen Newell,

Herb Simon, and Cliff Shaw began to construct

a general problem solving language that employed

symbolic (non-numerical) processes to simulate

human thinking on a computer. One of their initial

efforts to carry out a “theory of thinking” involved
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programming computers to play chess. On

a broader scale, this research resulted in several

information processing languages (e.g., IPL V),

which were similar to LISP and were used in some

of the early AI computer work.

• Flows in networks — In 1962, Lester Ford, Jr. and

Delbert R. Fulkerson, RAND mathematicians,

published the first unified treatment of methods for

dealing with a variety of problems that have

formulation in terms of single commodity flows

in capacity-constrained networks. Their book,

entitled Flows in Networks, introduced concepts

(e.g., “max-flow/mincut”) and algorithms

(e.g., “out-of-kilter”) that have been used to treat

network problems ever since.

• Branching processes — The notion of a branching

process concerns individuals from some population

that can reproduce and die (become extinct), subject

to some probabilistic laws of chance. The theory of

branching processes is the mathematical

formulation of the development of that population

subject to those laws of chance. RAND

mathematician Ted Harris was preeminent in this

field. His book entitled The Theory of Branching

Processes was first published in 1964. The theory

has been applied to problems associated with such

diverse issues as neutron diffusion, cosmic rays,

gene attributes, and biological populations.

• Multi-echelon Inventory theory — In 1966 the

METRIC model was documented by Craig

Sherbrooke. This was a pioneering development in

dealing with inventory systems having hierarchies

of stockage locations.

The year 1964 saw the publication of the first of

several RAND books by mathematician Edward

Quade, who played a major role in developing and

disseminating the methodology of systems analysis

and (later) policy analysis. Analysis for Military

Decisions documents an intensive five-day course

that RAND offered to military officers and civilian

decision makers in 1955 and 1959.

The Third Ten Years (1968–1977)

This period in RAND’s history saw an acceleration of

many of the trends begun in the previous ten years. One

of these trends involved the development of improved

procedures for the use of expert judgment as an aid to

military decision making. The Delphi procedures grew

out of this effort. These procedures incorporate

anonymous response, iteration and controlled feedback,

and statistical group response to elicit and refine group

judgments where exact knowledge is unavailable.

Other trends involved the continued evolution of

systems analysis into policy analysis and an

increasing emphasis on analyzing major domestic

research issues. Important in the last two trends was

the establishment of the New York City-RAND

Institute (NYCRI). Important RAND research efforts

during 1968–1977 include the work performed at the

NYCRI and policy analysis studies for the government

of the Netherlands.

The New York City-RAND Institute — In 1968,

RAND began a long-term relationship with the City

of New York to tackle problems in welfare, health

services, housing, fire protection, law enforcement,

and water resources. The NYCRI was formally

established in 1969. The research staff evaluated job

training programs, suggested solutions to shortages of

nurses in municipal hospitals, helped change rent

control, altered fire department deployment policies,

reallocated police manpower, and helped improve

Jamaica Bay’s water quality.

The most successful of the NYCRI’s projects was

the one devoted to improving the operations and

deployment of the Fire Department of New York. In

1968, the major problem facing the Department was

the rising alarm rate. Its increasing workload was not

significantly relieved by adding more men and

equipment; nor were traditional methods of fire

company allocation, dispatching, and relocation

working. The Institute’s studies altered the way the

Department managed and deployed its men and

equipment and operated its dispatching system.

An integral part of the research involved creation of

a wide variety of computer models to analyze and

evaluate deployment, which led to the formulation of

new policies. Warren Walker and Peter Kolesar were

awarded ORSA’s 1974 Lanchester Prize for a paper

that described how mathematical programming

methods were applied to the problem of relocating

available fire companies to firehouses vacated

temporarily by companies fighting fires. The entire

body of work from this project is documented in

Walker et al. (Walker et al. 1979).

Policy Analysis Studies for the Dutch

Government — Reflecting an increasing interest in
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doing policy analysis studies in international contexts,

RAND started working for the Dutch government in

the 1970s.

One important study was concerned with protecting

an estuary from floods. In April 1975, RAND began

a joint research venture with the Dutch government to

compare the consequences of three alternative

approaches for protecting the Oosterschelde, the

largest Dutch estuary, from flooding. Seven

categories of consequences were considered for each

alternative: financial costs, ecology, fishing, shipping,

recreation, national economy, and regional effects.

Within each category, several types of consequences

were considered. In June 1976, the Dutch Parliament

adopted one of the alternatives based in large part on

the results of the RAND study: to build a 10 km,

multi-billion dollar storm surge barrier with large

movable gates across the mouth of the estuary. The

study required the development of sophisticated

computer models of estuaries and coastal seas.

A second study was focused on improving water

management in the Netherlands. Begun in April 1977,

the Policy Analysis for the Water Management of the

Netherlands (PAWN) project was conducted jointly by

RAND, the Dutch Government, and the Delft

Hydraulics Laboratory. It analyzed the entire Dutch

water management system and provided a basis for

a new national water management policy for the

country. It developed a methodology for assessing

the multiple consequences of possible policies,

and applied it to generate alternative policies and

to assess and compare their consequences.

Considering both research and documentation, it

directly involved over 125 person-years of effort

(including a considerable amount of support from

Dutch organizations). The project won a Franz

Edelman Award for Management Science

Achievement in 1984.

In 1970, RAND established one of the original eight

public policy graduate schools in the United States, the

Pardee RAND Graduate School (PRGS). PRGS is the

world’s largest doctoral program in the field. PRGS

doctoral fellows take advanced courses in such fields

as economics, statistics, political science, and the

social sciences. They also work part-time as members

of RAND’s interdisciplinary research teams, which is

how they earn their fellowships. This combination of

advanced course work and on-the-job training is

unique. Fellows obtain research training in RAND’s

classrooms, and get to apply it to real problems with

RAND mentors and clients.

The Fourth Ten Years (1978–1988)

This period witnessed a number of major institutional

milestones. Some examples:

• In 1982 the joint RAND/UCLA Center for Health

Policy Study was funded by the Pew Memorial

Trust. A year later RAND and UCLA established

a joint Center for the Study of Soviet International

Behavior.

• In 1984 a new Federally Funded Research and

Development Center — the National Defense

Research Institute (NDRI) — was established,

funded by the Office of the Secretary of Defense.

• The Arroyo Center, the Army’s Federally Funded

Research and Development Center for studies and

analysis, was established at RAND in 1984.

• The Center for Policy Research in Health Care

Financing, sponsored by the U.S. Department of

Health and Human Services, was created in 1984.

These institutional developments helped RAND to

enhance its work in existing areas of the research

program — for example, health policy — and to

stimulate work in new areas — for example, analysis

of Army policy issues.

During this period, RAND’s research program

increased substantially in size and diversity. Many of

the trends of the past continued — for example, the

increase in efforts devoted to domestic policy research

and the tendency to conduct research in broader

contexts. Several new trends began to emerge — for

example, an increase in emphasis on research done in

international contexts other than the (then) USSR. The

development of analytical concepts, methods, and

techniques also continued. Some of the more

important of these were:

• RAND Strategy Assessment System (RSAS) —

Because of perceived limitations in methods of

strategic analysis, in 1982 RAND began to

develop methods for strategic analysis that

combined classical gaming, systems analysis

methods and techniques, artificial intelligence, and

advanced computer technology. The RSAS

provided a structure and tools for analyzing

strategic decisions at the national command level

as well as decisions at the operational level. It also
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provided great flexibility in choosing which roles

are to be played by people and which by machines.

• Dyna-METRIC — The Dyna-METRIC logistics

support model provided a major new tool for

relating the availability of spare parts to wartime

aircraft sortie generation capability. The model,

which was developed by Richard Hillestad,

Manuel Carrillo, and Gordon Crawford, combines

elements of queueing theory, inventory theory, and

simulation. It is still an integral part of the Air Force

logistics and readiness management system.

• CLOUT (Coupling Logistics to Operations to

Meet Uncertainties and the Threat) is

a RAND-developed set of initiatives for

improving the ability of the Air Force logistics

system to cope with the uncertainties and

disruptions of a conventional war overseas. The

CLOUT initiatives are intended to offset the

substantial variability expected in the demand for

spare parts, maintenance, and other support

activities, as well as the consequences of damage

to theater air bases. CLOUT was the basis for the

DRIVE model (Distribution and Repair in Variable

Environments), developed by Lou Miller and John

Abell, that became the kernel of a management

system, called EXPRESS, that is still used today

in Air Force depots.

• The Enlisted Force Management System

(EFMS)—The EFMS project is notable for the

scope and complexity of the decision support

system that it developed, and for demonstrating

how the tools of operations research could be

married with emerging information technologies

to provide real-time decision support throughout

an organization. Warren Walker led a large RAND

team that worked with Air Force counterparts

beginning in the early 1980s. Together, they

produced an organizational decision support

system (ODSS) to help make decisions about the

grade structure of the enlisted force, enlisted

promotion policies, and the recruitment,

assignment, training, compensation, separation,

and retirement of Air Force enlisted personnel.

Since 1990, the EFMS has been the primary

analytical tool used to support major policy

decisions affecting the enlisted force. The success

of the system motivated the publication of a 1992

book, Building Organizational Decision Support

Systems.

Concluding Remarks

After the first 40 years, most of the main trends

outlined above continue to play themselves out — for

example, domestic research represents about half of

RAND’s $250 million annual research budget, and

methodological enhancements driven by the practical

needs of the problem-oriented research continue to

have high priority. Methodologically, some of the

most important advances have involved new

approaches for dealing with uncertainty in making

decisions. Chief among these approaches are

Assumption-Based Planning (Dewar et al. 1993),

exploratory modeling (Bankes 1993), and adaptive

policies (RAND (Europe 1997)). All three of these

approaches are combined in a methodology for

long-term policy analysis called Robust

Decisionmaking (Lempert et al. 2003).

Over the past two decades, RAND has been

becoming a more global institution. The RAND

research staff now includes citizens of more than 50

nations and RAND now performs research for many

countries besides the United States. In 1992, RAND

established an affiliate in the Netherlands called

RAND Europe. It conducts policy studies to inform

public- and private-sector decision making throughout

Europe. Major research efforts so far have included

studies of the safety of Schiphol Airport, ways of

improving river dikes in the Netherlands while

preserving the environment, a systematic

examination of alternative strategies for reducing the

negative effects of road freight transport in the

Netherlands, and a cost-effectiveness analysis of

strategies for improving shipping safety in the North

Sea. Other efforts include pioneering work on

widening the application of discrete choice analysis,

guiding appraisals of transport infrastructures, and

providing cost analysis for the UK Ministry of

Defence. RAND Europe now operates from its

headquarters in Cambridge, England and

a representation office in Brussels. With a diverse

range of research areas ranging from defense to

healthcare, it has become a key provider of

evidence-based policy research across the European

Union.

In 2003, RAND established the RAND-Qatar

Policy Institute (RQPI). The RQPI is located in Doha,

Qatar, and is part of Education City. RQPI serves

clients throughout the Middle East, North Africa, and
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South Asia, performing studies on such issues as

education reform, health services delivery,

governmental reorganization, and environmental

health. RQPI also helps train analysts and build

capacity in Qatar and other countries of the region.

RAND analysts continue to be recognized for their

contributions to the profession of operations research

and the management sciences. In 1996, Moore et al.

were awarded the Richard H. Barchi Prize for the best

paper given at the Military Operations Research

Society (MORS) Symposium. Brooks et al. won that

prize in 1998. Warren Walker received the INFORMS

President’s Award in 1997 for his “contributions to the

welfare of society through quantitative analysis of

governmental policy problems.”

See

▶Artificial Intelligence

▶Cost Analysis

▶Deep Uncertainty

▶Delphi Method

▶Dynamic Programming

▶Emergency Services

▶Exploratory Modeling and Analysis

▶ Fire Safety Modeling and Applications

▶Game Theory

▶Gaming

▶ Inventory Modeling

▶Linear Programming

▶Logistics and Supply Chain Management

▶Military Operations Research

▶Network Planning

▶Network Optimization

▶Nonlinear Programming

▶Optimization

▶ Public Policy Analysis

▶Queueing Theory

▶ Simulation of Stochastic Discrete-Event Systems

▶ Systems Analysis

▶Traveling Salesman Problem
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Random Field

A stochastic process with a multi-dimensional index

set; for example, {R(x, y), �1 < x, y < 1},

where R(x, y) equals the amount of rain falling during

a given day at location (x, y).

Random Number Generators

Pierre L’Ecuyer

Université de Montréal, Montréal, Québec, Canada

Introduction

Many algorithms and heuristics in operations research

and management science require a source of random

numbers. This is needed in particular to simulate

stochastic models, to estimate multivariate

integrals and the solutions of differential equations

numerically by Monte Carlo, and in probabilistic

algorithms in general. These so-called random

numbers are typically produced by a deterministic

computer program, and are therefore not random at

all. The program that produces them is nevertheless

called a random number generator (RNG). Its aim is to

imitate the realization of a sequence of i.i.d.

(independent and identically distributed) random

variables, say from the U(0,1) distribution

(the uniform distribution over the interval between

0 and 1). The generator and the numbers it returns are

sometimes called pseudorandom to emphasize their

deterministic nature, but the common usage of just

random will be adopted here for simplicity.

True random numbers can be produced by physical

devices such as noise amplifiers in electric resistances,

photon trajectory detectors, and the like. Typically,

these devices construct a binary sequence by

sampling a signal periodically and returning 1 if the

signal is above a given threshold, and 0 otherwise.

Simple transformations are applied to this sequence,

for example by combining bits, to remove (or reduce)

the bias and the dependence between the bits.

Although one cannot prove that the returned bits are

1 or 0 with probabilities exactly 1/2 and that they are

all independent, the output binary sequences of some

of these devices are so close to having these properties

that the difference is practically undetectable. Such

physical RNGs are appropriate for applications such

as cryptography and gaming machines, for example,

where unpredictability is essential. But for stochastic

simulation, well-crafted algorithmic RNGs, based on

a purely deterministic mathematical recurrence, have

a good enough statistical behavior and are sufficiently

reliable. They are also much more convenient because

they require no specialized hardware and their output

sequences can be repeated as many times as desired

without the need for storage. The ability to repeat the

same sequence exactly is a key requirement for the

implementation of efficient stochastic simulation

techniques (Asmussen and Glynn 2007; L’Ecuyer

2008; Law and Kelton 2000).

There is a well-developed body of theory on the

construction and analysis of algorithmic RNGs (Knuth

1998; L’Ecuyer 1994, 2004, 2006; L’Ecuyer and

Panneton 2009; Niederreiter 1992; Tezuka 1995).

Obvious requirements such as a fast implementation

and a very long period are not sufficient. Good and

reliable RNGs cannot be constructed at random by just

trying arbitrary recurrences and testing them

empirically. They must be constructed on the basis of

a good understanding of the uniformity of their vectors

of output values, by proper analysis of their

mathematical structure. Empirical statistical testing is

certainly relevant, but it should comes only after a solid

theoretical analysis.

Unfortunately, poor and unreliable RNGs still

abound in the scientific literature and in popular

software (L’Ecuyer and Simard 2007). Typically,

their weakness comes from too much structure, due

to overly simplified recurrences constructed to
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optimize speed. For most applications, it turns out that

these weaknesses have little or no noticeable impact on

the simulation results, because the random numbers

are sufficiently transformed by the application to

distort the simple structure and this has the accidental

effect of improving the RNG for that particular case.

But in some situations, when the RNG structure is not

distorted by the application, things can quickly become

disastrous in the sense that simulation results are

totally wrong, sometimes by huge factors. Examples

of specific well-tested and recommended generators,

with computer codes, can be found in L’Ecuyer

(1999a, b), L’Ecuyer and Touzin (2000), L’Ecuyer

et al. (2002), Panneton et al. (2006), for example.

Random variates from non-uniform distributions,

such as the normal, exponential, Poisson, and so on,

as well as random vectors from multivariate

distributions, stochastic processes, and other types of

random objects, are generated by transforming

uniform random numbers in an appropriate way

(Devroye 1986, 2006; Gentle 2003; Hörmann et al.

2004; L’Ecuyer 2004).

Algorithmic Generators

An algorithmic RNG is defined in L’Ecuyer (1994) as

a structure ðS; m; f ;U; gÞ, where S is a finite set of

states, s0 2 S is the seed or initial state selected with

the probability distribution m on S, f : S ! S is the

transition function, U is a set of output values taken

here as the interval U ¼ (0,1), and g : S ! U is the

output function. The generator starts in state s0,

evolves according to si ¼ f si�1ð Þ, and outputs

ui ¼ g sið Þ at step i. The output sequence u0, u1, u2,

. . . should behave as the realization of a sequence of

i.i.d. U(0,1) random variables, Since S is finite, the

sequence of states is ultimately periodic. The period

is the smallest positive integer r such that for some

integer t� 0 and for all n� t, srþi ¼ si. Usually, t¼ 0,

in which case the sequence is said to be purely

periodic. The role of m is to allow a random

selection of the seed s0, using an external source of

randomness. Generating a truly random seed is much

less work and is more reasonable than generating

a long sequence of truly random numbers. An RNG

with a random seed can be viewed as an extensor of

randomness, whose purpose is to save “coin tosses”. It

stretches a short truly random seed into a long

sequence of values that is supposed to behave like

a true random sequence.

Basic requirements for a good RNG include a very

long period (say, at least 2100 and preferably 2200 or

more), the availability of a fast platform-independent

implementation, the possibility of splitting the

sequence into long disjoints subsequences (more on

this later), and efficient ways of jumping between

those sequences and to replay the same sequences

over and over again. To show that a long period is

not sufficient, consider an RNG defined by s0 ¼ 1,

si ¼ si�1 þ 1ð Þmod 21000, and ui ¼ si 21000
�

. It has

a huge period and a fast implementation is trivial to

obtain, but it is definitely not an acceptable RNG; the

successive output values are very strongly correlated.

Multivariate Uniformity

Uniformity and independence of successive output

values can be assessed by studying the

uniformity of the sets Cs ¼ u0; . . . ; us�1ð Þ ¼f
g s0ð Þ; . . . ; gðf s�1 s0ð Þð Þ : s0 2 Sg of all vectors of s

successive output values produced the the RNG, from

all possible initial seeds s0, for arbitrary positive

integers s. The theoretical ideal that the ui are i.i.d.

Uð0; 1Þ is equivalent to having ui; . . . ; uiþs�1ð Þ
uniformly distributed over (0,1)s for each s � 1. One

can argue that the RNG provides a good approximation

of this if Cs covers the unit hypercube (0,1)s very

evenly (or uniformly). The rationale is that the (large)

finite set Cs can be viewed as a sample space from

which a tiny fraction of the points are taken at random

by the generator, without replacement, and this

provides a good approximation of the uniform

distribution over (0,1)s only if Cs covers the space

very uniformly. This argument also suggests that

RNGs should have huge periods, many orders of

magnitude larger than whatever will be used in

practice, so that only a tiny fraction of the points

from Cs are used.

A key issue is how to measure this uniformity. This

must be done from a mathematical analysis of the

recurrence, without enumerating the points explicitly

(which would be infeasible). Measures of uniformity

are usually defined in a way that they can be computed

efficiently by exploiting the linear structure of the

recurrence. This is the main reason why RNGs based

on linear recurrences are still the most widely used.
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Good RNGs are typically constructed by first selecting

a form of recurrence that can be implemented

efficiently, choosing a period length (or the

cardinality of S), and then searching for parameters

of the recurrence for which the target period length is

reached and for which Cs has the best possible

uniformity, for all s up to a given value. This type of

search can take months of computing time (L’Ecuyer

1999a, b; Matsumoto and Nishimura 1998; Panneton

et al. 2006).

Multiple Streams and Substreams

Modern stochastic simulation software tools contain

uniform RNGs with multiple streams and substreams

of random numbers (L’Ecuyer 2008; L’Ecuyer et al.

2002). Each stream provides a very long (practically

inexhaustible) sequence of numbers, divided into

a large number of long disjoint substreams, and

methods (or procedure calls) are readily available

to jump ahead to the beginning of the next

substream, or jump back to the beginning of the

current substream or the beginning of the first stream.

These streams and substreams can be taken as

independent sequences. Streams can be created at

will, in practically unlimited numbers, just like

instances of other types of objects in a computer

program. For their implementation, one needs

efficient jump-ahead algorithms, which permit one to

quickly compute the state si+n for an arbitrarily large n,

given the current state si (L’Ecuyer 1990; L’Ecuyer

et al. 2002).

These streams are certainly convenient when

simulating a system on multiple processors; each

processor can be given its own stream(s) and run it

without having to communicate with other processors

or with a central monitor to get its random numbers.

An important situation where multiple streams and

substreams are useful even on a single processor is

when one wishes to simulate two (or more) similar

systems with common random numbers, to reduce the

variance when comparing their performance

(Asmussen and Glynn 2007; Law and Kelton 2000).

For example, suppose one wishes to estimate the

sensitivity (or derivative) of some performance

measure of a complicated queueing system with

respect to a small change in some parameter of the

system. The model would be simulated with and

without the change, with the same random numbers

used for the same purpose (as much as possible) in the

two configurations, and this would be repeated several

times, independently. To this end, one would reserve

a separate random stream for each type of random

numbers required in the model (e.g., each type of

arrival, each type of service time, each type of

routing decision, etc.), to make sure that the same

random numbers play the same role even though they

are generated in a different order and their required

quantity differs across the two simulation runs of any

given pair. To ensure that the same random numbers

from each stream are reused within any pair of runs,

one would advance all streams to a new substream

before each pair of runs, simulate the first

configuration, rewind the streams back to the

beginning of the current substream, simulate the

second configuration, then move them ahead to

the beginning of the next substream, for the next

runs. This example also illustrates an important

advantage of algorithmic RNGs compared with those

based on physical devices: replaying the same

sequence several times, which is frequently needed,

is much easier.

Empirical Statistical Tests

Theoretical analysis of RNGs by computing their

period and measuring the uniformity of Cs must be

complemented by empirical statistical tests. These

empirical tests can never prove that an RNG has no

defect, no matter how many tests are applied, but at

least they can be reassuring. There is no limit on the

number of tests that can be defined. The TestU01

library (L’Ecuyer and Simard 2007) describes and

implements a large collection of statistical tests for

RNGs, as well as predefined batteries of tests of

different strengths. It includes most of the tests

previously proposed in Knuth (1998) and Marsaglia

(1996), for example, and many more. Ideally, the tests

should be selected in relation with the target

application. So, when a general-purpose generator

provided in a software library is used for a sensitive

application, it may be wise to submit it to additional

specialized empirical testing. For any RNG whose

output sequence is periodic, one can always construct

(in principle) statistical tests that this RNG will

fail unequivocally (L’Ecuyer 2006). In some sense,
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the good RNGs are those for which those tests are

more complicated, hard to construct, or take too

much time to run.

Linear Recurring Sequences and MRGs

The most popular currently-used RNGs are based on

linear recurrences of the form

xi ¼ a1xi�1 þ � � � þ akxi�kð Þ mod m; (1)

where m is a positive integer called the modulus,

a1, . . . , ak are integers between �m and m called the

multipliers, with ak 6¼ 0, and k is the order of the

recurrence. Define the state of the recurrence at step n

as si ¼ xi ¼ xi; . . . ; xiþk�1ð Þ 2 Z
k
m. The zero state

(0,. . . ,0) is absorbing and must be avoided. The

longest possible period is mk � 1, and it is achieved if

and only if m is a prime number and the characteristic

polynomial of the recurrence,

PðzÞ ¼ zk � a1z
k�1 � � � �� ak;

is a primitive polynomial modulo m. Such primitive

polynomials are easy to find once the factorizations of

m � 1 and mk � 1
� �

m� 1ð Þ= and available (Knuth

1998; L’Ecuyer 1990, 1999a). For a full-period

recurrence, in any subsequence of r consecutive

values of the state i, each element of {0, . . . , m � 1}k

appears exactly once, except for xi ¼ (0,. . . ,0).

A multiple recursive generator (MRG), in its classical

definition, uses the recurrence (1) with a large m, and

returns ui ¼ xi m= as its output at step i (L’Ecuyer

1994; Niederreiter 1992). In implementations, the

output transformation is modified slightly so that the

MRG never returns 0 or 1, for example by taking

ui ¼ xi þ 1ð Þ mþ 1ð Þ= . When k ¼ 1, it is a linear

congruential generator (LCG). LCGs with modulus

m � 264 have been popular in the past, but they

should no longer be used except for very short

simulations, because their state space (and period) is

too small.

The MRG recurrence can be written in matrix form

as xi ¼ Axi�1 mod m for some matrix A, where

xi ¼ xi�kþ1; . . . ; xið Þt. This form can be exploited to

jump ahead by an arbitrary number of steps in

a single leap, via the matrix-vector multiplication

xiþn ¼ An mod mð Þxi mod m, after having

precomputed An mod m (L’Ecuyer 1990, 2006).

An important characteristic of MRGs is that the

corresponding sets Cs have a lattice structure: Cs is

the intersection of a lattice with the unit hypercube

[0, 1)s. This implies that all s-dimensional vectors

ui ¼ ui; . . . ; uiþs�1ð Þ, for i � 0, lie in a relatively

small number of equidistant parallel hyperplanes

(Knuth 1998). The shorter the distance ds between

those hyperplanes, the better, because this means

thinner empty slices of space, and so a more evenly

distributed set Cs. This ds can be computed in

reasonable time in up to about 50 dimensions.

A standardized figure of merit between 0 and 1 can

then be computed by dividing a lower bound on the

best possible value of ds (which depends on s and mk)

by the actual value of ds, and taking the minimum over

a given range of values of s (L’Ecuyer 1996a, 1999a).

For good MRGs, the resulting figure should be above

0.6, say.

It is tempting to take m as a power of two in (1),

because then the mod m operation can be performed

trivially by just chopping-off the high-order bits,

without caring for overflow. However, there is a high

price to pay in terms of period length and statistical

robustness. When m ¼ 2e, the period of (1) cannot

exceed 2k � 1
� �

2e�1 if k > 1, and 2e�2 if k ¼ 1 and

e � 4. In the latter case, the period of the j-th least

significant bit is at most 2j�2 (so the low-order bits

have very short periods).

To obtain recurrences with a large period and a fast

implementation, it also appears attractive to take

a large k, many coefficients aj equal to 0, and the

other ones small. One extreme case is to have only

two nonzero coefficients aj, say ar and ak, both equal

to �1; this is an additive/subtractive lagged-Fibonacci

RNG. But in this case, all the vectors ui; ui�r; ui�kð Þ

produced by the RNG lie in only two parallel planes in

[0, 1)3 (L’Ecuyer 1997). This is quite bad. In general,

the distance dk+1 between the successive hyperplanes

in Ck+1 always satisfies 1 d2kþ1 � 1þ a21 þ � � � þ a2k
�

(L’Ecuyer 1997). Thus, there is no chance of having

a good lattice structure if the latter sum of squares is

small. This means that taking only small coefficients

aj, and many of them equal to 0, is a bad idea. L’Ecuyer

and Touzin (2004) point out a similar problemwhen all

nonzero aj’s are equal to the same constant a, as

suggested by Deng and Lin (2000), Deng and Xu

(2003), for example. A class of generators named
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add-with-carry and subtract-with-borrow are slight

modifications of MRGs having essentially the same

bad properties as the lagged-Fibonacci.

One way to construct reliable and efficient MRGs is

combine two or more MRGs for which a fast

implementation is available (their coefficients can be

small). If they are combined by adding their outputs

modulo 1, then the combination turns out to be another

MRG, and one should select the components so that the

resulting combined MRG has a long period and

excellent multivariate uniformity. Good parameters

for such constructions have been found by extensive

computerized searches and concrete implementations

are available in L’Ecuyer (1996a, 1999a) and

L’Ecuyer and Touzin (2000), for example.

Linear Recurrences Modulo 2

A second popular and efficient class of RNGs are based

on linear recurrences of the form (1) with modulus

m ¼ 2 and a large k. They are often called F2 -linear,

because this is a linear recurrence in the finite fieldF2

with elements {0, 1}. Following L’Ecuyer (2006) and

L’Ecuyer and Panneton (2009), their general form can

be given in matrix notation by

xi ¼ Axi�1 mod 2;

yi ¼ Bxi�1 mod 2;

ui ¼
Xw

‘¼1

yi;‘�1 2
�‘

where xi ¼ xi;0; . . . ; xi;k�1

� �t
is the k-bit state vector at

step i, yi ¼ yi;0; . . . ; yi;w�1

� �t
is a w-bit output vector,

k andw are positive integers,A is a k� k binary matrix,

B is a w� k binary matrix, and ui 2 0; 1½ Þ is the output
at step i. This output is usually modified slightly so that

ui is never exactly 0 or 1.

This class includes the Tausworthe or linear

feedback shift register (LFSR) generators, the

generalized feedback shift register (GFSR), the

twisted GFSR, the Mersenne twister, the WELL

generator, and combinations of these, among others

(L’Ecuyer 1999b, 2004; L’Ecuyer and Panneton

2009; L’Ecuyer and Simard 2007; Matsumoto and

Nishimura 1998; Panneton et al. 2006; Tezuka 1995).

The maximal period is 2k � 1, reached when the

characteristic polynomial P(z) of A is a primitive

polynomial modulo 2. Each coordinate of xi obeys
the recurrence (1) based on this characteristic

polynomial. The matrices A and B are selected to

allow a fast implementation by using just a few

simple binary operations such as or, exclusive-or,

shift, and rotation, on blocks of bits, while still

providing good uniformity of Cs. This uniformity is

assessed differently than for MRGs, by measures of

equidistribution of the points in rectangular boxes

obtained by partitioning the interval [0, 1) for each

axis j into subintervals of lengths 2�qj for some

integers qj � 0 (L’Ecuyer 1996b; L’Ecuyer and

Panneton 2009). Combined generators of this type,

obtained by a bitwise exclusive-or of the output

vectors Yi of two or more simple F2-linear

generators, are equivalent to yet another F2-linear

generator (L’Ecuyer 1996b, 1999b; L’Ecuyer and

Panneton 2009; Tezuka 1995). They provide fast and

good RNGs.

Nonlinear Generators

Many believe that the structure of linear sequences is

too regular and that the right way to go is nonlinear

(Eichenauer-Herrmann 1995; Niederreiter 1992). One

can introduce nonlinearity by either (a) using a

linear-type generator but transforming the state

nonlinearly to produce the output, or (b) constructing

a generator with a nonlinear transition function f. One

example of (a) is the inversive generator, which uses

(1) but then takes the inverse of xi modulo m

(discarding the zeros) before dividing by m to

produce the output (Eichenauer-Herrmann 1995).One

example of (b) is the BBS generator, proposed by

Blum et al. (1986) for cryptographic applications,

which evolves according to a recurrence of the

form xi ¼ x2i�1 modm, and just a few of the least

significant bits of xi are retained. These RNGs have

sets Cs with less regularity than the linear ones, but

they are slower and less convenient for simulation

applications. A nonlinear RNG can also be obtained

by combining two linear generators of different types.

L’Ecuyer and Granger-Piché (2003) combine an MRG

with an F2-linear generator, and obtain bounds on

certain measures of uniformity of Cs for the

combination.
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Non-uniform Random Variates

The standard approach for generating random

variables from non-uniform distributions is to apply

further transformations to the output values ui of

a uniform RNG. This is easily done for several

distributions, but not all. Devroye (1986), Gentle

(2003), and (Hörmann et al. 2004) provide extensive

coverages of the most useful methods. In some cases,

compromises must be made between simplicity of the

algorithm, quality of the approximation, robustness (with

respect to parameter changes), and efficiency (speed and

memory requirements). As a general rule, simplicity

should not be sacrificed for small speed gains.

Inversion. Conceptually, the simplest way to

generate a one-dimensional random variable X with

cumulative distribution function (cdf) F is by

inversion: put X ¼ F�1ðUÞ ¼def min x FðxÞ � Ujf g,
where U is U(0,1). With that definition of X, one has

P X � x½ � ¼ P F�1ðUÞ � x½ � ¼ P U � FðxÞ½ � ¼ FðxÞ;
and so X has cdf F. This method requires that F�1

(or a good approximation of it) be available. In most

simulation applications, inversion should be the

method of choice, because it is the only monotone

non-decreasing transformation of U into X, which

makes it most compatible with major variance

reductions techniques such as antithetic variates,

common random numbers, external control variates,

and randomized quasi-Monte Carlo (Asmussen and

Glynn 2007; Law and Kelton 2000; L’Ecuyer 2009).

However, in situations where speed is the real issue

and where monotonicity is not critical, non-inversion

methods might be appropriate.

For a specific example of inversion, if X has the

Weibull distribution with parameters a and b,

then FðxÞ ¼ 1� exp � x b=ð Þa½ � for x>0, and

F�1ðUÞ ¼ b � ln 1� Uð Þ½ �1 a=
, so X is easy to

generate. As another example, if X is geometric with

parameter p, then FðxÞ ¼ 1� 1� pð Þxþ1
for x ¼ 0, 1,

2, . . . and F�1ðUÞ ¼ ln 1� Uð Þ ln 1� pð Þ=b c.
For some distributions, F�1 cannot be written in

closed form but it can be approximated numerically.

For distributions having only scale and location

parameters, it suffices to approximate the cdf of

a standardized version (say with scale 1 and

location 0) and then rescale and shift the result

appropriately. For example, several good

approximations of the inverse standard normal cdf

F�1 are available, and some provide essentially

machine-precision accuracy while being fast to

compute (L’Ecuyer 2008).

For distributions with shape parameters, a different

approximation of F�1 must be constructed for each

value of those parameters. If a large number of

variates are to be generated from the same F (with

the same shape parameters), it can be worthwhile to

construct on-demand an approximation of F�1 based

on interpolation methods, by a setup algorithm that

precomputes tables from which F�1(u) can be

evaluated quickly for any u (Derflinger et al. 2010;

Hörmann et al. 2004).

Tables can be precomputed in a similar way for

discrete distributions such as the Poisson and

binomial, for example, with fixed parameters. When

the support is large or infinite (such as for the Poisson

distribution), one would only store a truncated table,

over a finite range with probability close to 1, and

compute the remaining values only when needed

(which would typically be rare). The fastest methods

are obtained by using an index, as follows (Devroye

1986; Hörmann et al. 2004). One partitions the interval

(0, 1) into c subintervals of equal sizes, j c= ; jþ 1ð Þ c=½ Þ
for j ¼ 0; . . . ; c� 1, and store the smallest and largest

possible values of X for each subinterval, namely

Lj ¼ F�1 j c=ð Þ and Rj ¼ F�1 jþ 1ð Þ c=ð Þ. Once U is

generated, the corresponding interval number

J ¼ cUb c is readily computed, and the index I of the

returned value is searched only in the interval [LJ, RJ],

with linear or binary search. By taking a large enough

c, this gives a method that works in constant time for

practical purposes.

Rejection methods. To generate X from

a complicated density f, one can find a simpler

dominating function t (called a “hat” function) for

which f ðxÞ � tðxÞ for all x and such that generating

variates from the density r defined by rðxÞ ¼ tðxÞ a= ,

where a ¼
R1
�1 tðsÞds, is easy. This r is just the

rescaling of t into a density. The random variate X

can be generated by repeating: generate Y from the

density r and an independent U(0,1) variate U, until

U � f ðYÞ tðYÞ= ; then return X¼ Y. This is the rejection

method (Hörmann et al. 2004; Devroye 1986). The

number of returns into the repeat loop is a geometric

random variable with mean a > 1, which can be

reduced by having a closer to 1 (or t closer to f).

A compromise must be made between reducing a and
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keeping t simple. The rejection method is often

combined with a change of variable to transform the

density f into a new density for which a more effective

hat function and a fast implementation can be

constructed.

In general, rejection can also be used to generate

a point uniformly in a complicated region R, in an

arbitrary space (not necessarily the real space). The

idea is to define another region B that containsR, and in

which it is easy to generate points uniformly. Random

points are generated uniformly in B and the first one

that falls in R is retained.

A variant of the rejection method, called thinning, is

sometimes adopted to generate events from a

non-homogeneous Poisson process. If the process

has rate lðtÞ � �l for all t, where �l is a finite constant,

one can generate Poisson pseudo-arrivals at constant

rate �l by generating interarrival times as i.i.d.

exponentials of mean 1 �l
�

. Then, any pseudo-arrival

at time t is accepted (becomes an arrival) with

probability lðtÞ �l
�

(i.e., if U � lðtÞ �l
�

, where U is an

independent U(0,1), and rejected with probability

1� lðtÞ �l
�

.

Multivariate distributions. The cdf of a random

vector X ¼ (X1, . . . , Xd) does not have a well-defined

inverse, so inversion does not apply directly to

generate X. In some situations, one can generate X1

first, then X2 conditional on X1, then X3 conditional on

(X1, X2), and so on. In other situations, one can

generate a vector of d independent random variates

by inversion and transform it to obtain X. For

example, if the target distribution for X is

multinormal with mean vector m and covariance

matrix S, then one can first decompose S ¼ AAT

(e.g., via the Cholesky decomposition or via an

eigendecomposition), where the superscript “T”

denotes matrix transpose, and return X ¼ mþ AZ,
where Z is a vector of d i.i.d. standard normals,

which can in turn be generated by inversion. A very

general (and rich) way of specifying a multivariate

distribution is via a copula, which is basically

a multivariate distribution whose one-dimensional

marginals are all U(0,1). If U ¼ (U1,. . . ,Ud) is

generated from the copula, and Xj ¼ F�1
j Uj

� �
for

each j, then X is a random vector whose jth marginal

cdf is Fj and whose dependence structure is determined

by the copula. See Hörmann et al. (2004) and Nelsen

(1999) for more details.

See

▶Hit-and-Run Methods

▶Markov Chain Monte Carlo

▶Monte Carlo Methods

▶Monte Carlo Simulation

▶Randomized Algorithm

▶ Simulation of Stochastic Discrete-Event Systems

▶Variance Reduction Techniques in Monte Carlo

Methods
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Derflinger, G., Hörmann, W., & Leydold, J. (2010). Random

variate generation by numerical inversion when only the
density is known. ACM Transactions on Modeling and

Computer Simulation, 20(4). Article 18.
Devroye, L. (1986). Non-uniform random variate generation.

New York: Springer.
Devroye, L. (2006). Nonuniform random variate generation. In

S. G. Henderson & B. L. Nelson (Eds.), Handbooks in

operations research and management science (pp. 83–121).
Amsterdam, The Netherlands: Elsevier. Chapter 4.

Eichenauer-Herrmann, J. (1995). Pseudorandom number
generation by nonlinear methods. International Statistical
Reviews, 63, 247–255.

Gentle, J. E. (2003). Random number generation and Monte

Carlo methods (2nd ed.). New York: Springer.
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Random Search

A search algorithm that uses probabilistic sampling to

select search points from a neighborhood of the current

solution(s).

See

▶Metaheuristics

Random Variates

Random values generated according to a specified

probability distribution, corresponding to the outcomes

of a random variable. Generally, this is realized on

a computer through a transformation from IID

pseudorandom numbers. The most commonly used

procedures are the inverse transform method (inversion)

and acceptance-rejection (rejection methods).

See

▶Random Number Generators

▶ Simulation of Stochastic Discrete-Event Systems
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Random Walk

If Sn ¼ X1 + X2 + . . . + Xn, then Sn is a special

discrete-time Markov process called a random

walk if S0 ¼ 0 and the random variables {Xi} are

independent and identically distributed. The most
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common form of the randomwalk is the discrete one in

which Xi ¼ �1 or + 1.

See

▶Markov Chains

▶Markov Processes

Randomized Algorithm

An algorithm that employs a probabilistic element in

its procedure, as in Monte Carlo sampling

implemented using a random number generator. Thus

the performance of the algorithm, in terms of results

returned and computation time, will be random

variables. Examples include random search,

evolutionary algorithms, model-based algorithms,

and algorithms based on swarm intelligence.

See

▶Evolutionary Algorithms

▶Metaheuristics

▶Random Search

▶ Swarm Intelligence
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Ranging

A term equivalent to a full sensitivity analysis of an

optimal solution to a linear programming problem.

Ranging refers to how much the cost coefficients

and the right-hand-side elements of the linear

program can vary before the optimal feasible basis

is no longer optimal or feasible. A ranging analysis

could also include variations of a technological

coefficient, but it is not standard practice. A full cost

and right-hand-side ranging analysis is part of

computer-based simplex method solutions.

See

▶Linear Programming

▶ Sensitivity Analysis

▶ Simplex Method (Algorithm)

Rank

The rank of an m � n matrix A is the maximum

number of linearly independent columns in A.

The rank of A equals the rank of its transpose AT,

with the rank not greater than m or n.

See

▶Matrices and Matrix Algebra

Ranking and Selection

Statistical methods to choose the best (or a rank

ordering) among a finite set of alternatives according

to some probabilistic criterion, where the performance

of each alternative must be estimated through statistical

sampling, e.g., through simulation runs (replications).

See

▶ Statistical Ranking and Selection

Rare Event Simulation
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Introduction

The estimation of rare event probabilities is probably

one of the most challenging topics in Monte Carlo
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simulation. Interest in rare events arises from many

branches of science. Examples include performance

analysis in communication theory and computer

science where extremely small buffer overflow

probabilities are of concern, chemical physics where

the transition probabilities from one metastable state

to another plays a key role, and risk management

where measuring rare but catastrophic losses is

a prerequisite. Under these circumstances, one is

often interested in both qualitative and quantitative

information directly related to the rare event, such as

how likely is the rare event and, given that it does

occur, how does it happen.

To illustrate the inefficiency of standard Monte

Carlo in simulating rare events, consider a simple

example. Let X be a random variable defined on some

probability space ðO;F ;PÞ. Suppose that one is

interested in estimating the probability that X is in

some given set A:

p ¼ P X 2 Að Þ:

Standard Monte Carlo would generate k

independent identically distributed samples

Xi : i ¼ 1; . . . ; kf g from the distribution of X and

form an unbiased estimate

p̂k ¼
1

n

Xk

i¼1
1 Xi2Af g;

where 1 x2Af g is the indicator function of the set A:

1 x2Af g ¼
1 if x 2 A;
0 if x =2A:

�

As the sample size k tends to infinity, the estimate

p̂k converges to p with probability one by the

strong law of large numbers. The rate of convergence

is determined by the variance of 1 X2Af g. More

precisely, by the central limit theorem, the

distribution of p̂k is approximately normal with

mean p and variance

Var p̂k½ � ¼ 1

k
Var 1 X2Af g

� �

¼ 1

k
p 1� pð Þ:

Even though this variance is very small when p is

very small, the relative error associated with the

estimate p̂k

Relative error ¼ standard deviation of p̂k
mean of p̂k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

p� p2
p

ffiffiffi

k
p

p

can be very large. Indeed, the relative error is

unbounded as the event A becomes rarer. Therefore,

a large number of samples are required in order to

achieve a fixed relative error bound.

Two major classes of techniques to improve the

efficiency of estimating small probabilities are

importance sampling and particle splitting. When

properly designed, both algorithms can dramatically

reduce the number of samples needed to achieve the

desired precision. Here, the focus is on importance

sampling, although particle splitting is related to

importance sampling in an unexpected way via

subsolutions; see Glasserman et al. (1999), Dean and

Dupuis (2009), Rubinstein (2010), and the references

therein.

The basic idea of importance sampling is to

simulate the system based on an alternative

probability distribution (i.e., change of measure), and

an unbiased estimate is formed by multiplying the

original estimate by an appropriate likelihood ratio.

Thistechnique was first applied to nuclear-physics

calculation around the 1940s. Heidelberger (1995)

and Asmussen and Rubinstein (1995) survey much of

the research up to the early 1990s, whereas research

since then is reviewed here, emphasizing basic

concepts and innovative ideas. The precise statements

of the theorems and their rigorous proofs can be found

in the relevant references.

The next section describes two efficiency criteria

for Monte Carlo simulation algorithms. Following

that, two examples frequently used throughout are

presented. Several different techniques for the design

of the change of measure in importance sampling are

then discussed, including the cross-entropy method,

the game/subsolution approach in dynamic

importance sampling, and the Lyapunov function

method for heavy-tailed distributions.

Efficiency Criteria

There are two commonly used criteria for the

performance of a Monte Carlo algorithm in rare event
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simulation. Consider a family of rare event

probabilities {pn} such that pn ! 0 as n ! 1. One

can think of n as an index for rarity. For example, pn
may denote the probability that a one dimensional

simple random walk with negative drift ever crosses

a large threshold n, starting at the origin.

Consider a Monte Carlo algorithm for estimating

pn, where the estimate is the sample mean of

independent copies of some random variable Yn that

satisfies E Yn½ � ¼ pn. Then the estimate is unbiased. The

estimate is said to have bounded relative error if

lim sup
n!1

Var Yn½ �
p2n

<1:

It is not difficult to show that the number of samples

required to achieved a fixed relative error remains

bounded as n increases.

Since Yn is unbiased, minimizing its variance is

equivalent to minimizing its second moment. By

Jensen’s inequality, E Y2
n

� �

� EYnð Þ2 ¼ p2n. This

motivates a weaker notion of efficiency, namely, the

logarithmic asymptotic efficiency or asymptotic

efficiency, which holds if

lim
n!1

logE Y2
n

� �

log pn
¼ 2: (1)

This criterion is particularly convenient when the

rare event probabilities {pn} satisfy the large deviation

asymptotics

lim
n!1

1

n
log pn ¼ �g;

where g > 0 is some constant. In this situation,

logarithmic asymptotic efficiency amounts to

lim
n!1

1

n
logE Y2

n

� �

¼ �2g;

and implies that the number of samples required to

achieve a fixed relative error grow sub-exponentially

as n increases. In the literature, logarithmic asymptotic

efficiency is sometimes referred to as asymptotic

optimality.

Two Illustrative Examples

Even though the methodologies presented here can be

applied to general settings, to convey the main ideas,

two examples will be used to illustrate various Monte

Carlo schemes.

Simple Random Walk [SRW]. Let {Zi} be

a sequence of ℝ
d-valued, independent identically

distributed random variables with distribution m, and

assume that the log-moment generating function

H að Þ ¼ logE e a;Z1h i� �

¼ log

Z

R
d

e a;xh im dxð Þ

is finite for every a∈ℝ
d. Define for n � 1,

Sn ¼ Z1 þ � � � þ Zn. For some Borel set A 	 ℝ
d, it is

of interest to estimate the probability

pn ¼ P
Sn

n
2 A

	 


:

Under some mild conditions, the large deviations

asymptotics hold, namely,

lim
n!1

1

n
log pn ¼ � inf L

b2A
bð Þ; (2)

where L is the Legendre transform of H:

L bð Þ ¼ sup
a2Rd

a; bh i � H að Þ½ �: (3)

Tandem Queueing Network [TQN]. Consider

a two-node tandem Jackson queueing network, where

the arrival process is Poisson with rate l and the

service times are exponentially distributed with rate

m1 and m2, respectively. The system is assumed to be

stable, that is, l < min m1; m2f g. See Fig. 1.
Assume that the two queues share a single buffer

with total capacity n. The quantity of interest is the

buffer overflow probability

m1

λ
m2

Rare Event Simulation, Fig. 1 Two-node tandem queue
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pn ¼ P network total population reaches nf
before returning to 0; starting from 0g:

Glasserman and Kou (1995) established the large

deviation limit

lim
n

1

n
log pn ¼ � log

min m1; m2f g
l

:

Importance Sampling

The basic setup of importance sampling is as follows.

Suppose that one is interested in estimating

p ¼ P X 2 Að Þ;

where X is a random variable with distribution m.

Importance sampling generates samples from

a different probability distribution n and uses the

sample mean of independent copies of

Y ¼ 1 X2Af g
dm

dn
ðXÞ

as the estimate. One usually requires that m be

absolutely continuous with respect to n so that the

likelihood ratio dm/dn is well defined. This

requirement can be relaxed as long as the absolute

continuity holds for the restrictions of m and n to the

set A. Note that the estimate Y is unbiased since

Ev Y½ � ¼
Z

A

dm

dv
ðxÞdvðxÞ ¼

Z

A

dmðxÞ ¼ P X 2 Að Þ:

Here En[�] denotes the expectation taken under the

probability distribution n.

The key question in importance sampling is the

choice the sampling distribution n. Ideally, one would

like to find the one that minimizes the variance of Y.

To this end, define a measure n* such that

dv


dm
ðxÞ ¼

1

p
� 1 x2Af g:

It is not difficult to verify that n* is a probability

distribution and the corresponding importance

sampling estimator Y has variance zero. However,

such a probability measure is of little practical use

since it requires the knowledge of p, the unknown

quantity one wishes to estimate. Therefore, instead of

this unconstrained optimization, it is typical to search

within a parameterized family of alternative

probability measures. When the problem can be cast

into the framework of efficiency criteria, it is desirable

for the estimator to achieve logarithmic asymptotic

efficiency or bounded relative error.

Remark. For future analysis, observe that the second

moment of the importance sampling estimate Y admits

a very simple form

Ev Y2
� �

¼

Z

A

dv

dm

	 
2

ðxÞdvðxÞ ¼

Z

A

dv

dm
ðxÞdmðxÞ

¼ Em Y½ �:

Classical Results in Importance Sampling

Siegmund (1976) was the first to argue that, using an

exponential change of measure, asymptotically

efficient importance sampling schemes can be built

for estimating gambler’s ruin probabilities. The

analysis was related to the theory of large deviations,

which has since become an indispensable tool for the

design of efficient Monte Carlo algorithms.

To illustrate the idea, consider the example of SRW

where A is assumed to be a closed convex set. Suppose

that instead of generating the increments {Zi}

according to m, samples of {Zi} from an exponential

change of measure na are generated where

na dxð Þ ¼ e a;xh i�H að Þm dxð Þ

for some a∈ℝ
d. The importance sampling estimate is

Yn ¼ 1 Sn=n2Af g
Y

n

i¼1

e� a;Zih iþH að Þ

¼ 1 Sn=n2Af ge
� a;Snh iþnHðaÞ:

Taking into account Remark 0.1 and application of

Varadhan’s Lemma, the second moment of Yn satisfies
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lim
n!1

1

n
logEna Y2

n

� �

¼ lim
n!1

1

n
logEm Yn½ �

¼ � inf
b2A

a; bh i � H að Þ þ L bð Þ½ �:

The a* that minimizes the right-hand-side of the

above display yields the asymptotically most efficient

exponential change of measure (say n
 ¼ na
 ), and is

the solution to the min/max problem

sup
a2Rd

inf
b2A

a; bh i � H að Þ þ L bð Þ½ �: (4)

Since A is closed and convex, it is valid to exchange

of the order of the sup and inf in the above expression.

Then it follows from (3) that

lim
n!1

1

n
logEn
 Y2

n

� �

¼� inf
b2A

sup
a2Rd

a;bh i�H að ÞþL bð Þ½ �

¼�2 inf
b2A

L bð Þ:

In other words, n
 ¼ na
 is logarithmic

asymptotically efficient. Furthermore, if b*

minimizes L(b) over b∈A, then a* can be identified

as the conjugate point of b* or the point that maximizes

ha, b*i � L(b*) over a∈ℝ
d.

It turns out that n* coincides with the change of

measure used in the classical proof of the large

deviations lower bound for the rare event

probabilities P Sn=n 2 Að Þ. This formal connection

between importance sampling and the theory of large

deviations has been subsequently explored by many

and made rigorous under certain circumstances,

e.g., Asmussen (1985), Heidelberger (1995),

Asmussen and Glynn (2007) and the references

therein. These investigations gave rise to an entirely

new community using exponential change of measure

as the driving force for importance sampling.

Glasserman and Kou (1995) was the first to

challenge the standard heuristic that the change of

measure used in the proof of the large deviation

lower bound should perform well. The paper

considered a change of measure proposed by Parekh

and Walrand (1989) for the example of TQN, which

amounts to interchanging the arrival rate and the

smallest service rate, and showed that it failed to be

asymptotically efficient in general. In Glasserman and

Wang (1997), counterexamples were constructed, such

as SRW with a non-convex target set A, to show

that the importance sampling estimator based on the

standard heuristic can be less efficient than

the standard Monte Carlo. In retrospect, the failure of

the standard heuristic even in very simplistic settings is

not surprising. In the previous analysis of the SRW

model, a key assumption is that A is convex so that the

sup and inf in (1) can be interchanged. This is clearly

not true when A is a general non-convex set. The work

of Glasserman and Kou (1995) and Glasserman and

Wang (1997) made it clear that the standard heuristic

had to be applied with great caution and motivated the

development of general methodologies such as

dynamic importance sampling. Some of these

development will be reviewed later.

Cross-Entropy Method

The cross-entropy method is a Monte Carlo technique

that originated from a sequence of papers Rubinstein

(1997, 1999), which can be used not only

for estimating rare event probabilities, but also for

solving difficult combinatorial optimization

problems; seede Boer et al. (2005) for a tutorial and

Rubinstein and Kroese (2004) for a comprehensive

treatment.

Consider the generic importance sampling

problem for estimating p ¼ P X 2 Að Þ, where X is

a random variable with distribution m. Assume that

the alternative sampling distribution is restricted to

a prescribed, parameterized family of distributions,

say my : y 2 Yf g, that contains the original

distribution m. The reference parameter y is

sometimes termed the tilting parameter. As discussed

previously, the zero-variance change of measure n* is

defined by

dv


dm
¼ 1

p
� 1 x2Af g: (5)

Under the natural assumption that a sampling

distribution close to n* should be a good choice for

importance sampling, the cross-entropy method aims

to solve for the distribution my that is closest to n
* under

the Kullback-Leibler distance. This leads to the

minimization problem

min
y2Y

R v
 k myð Þ; (6)
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where R(�k�) is the Kullback-Leibler cross-entropy, or
relative entropy, defined by

R v k mð Þ ¼

Z
log

dv

dm
ðxÞdvðxÞ

if n is absolutely continuous with respect to m and 1
otherwise. Note that R(nkm) is always non-negative

and equals zero if and only if n ¼ m.

The cross-entropy method provides a simple

iterative procedure to obtain a solution to

the optimization problem (6). Every iteration

involves two phases: (1) samples are generated from

the distribution myt where yt is the current candidate of

the tilting parameter; (2) based on these samples, the

tilting parameter yt is updated to yt + 1 in order to

produce better samples in the next iteration. The

iteration is terminated when the convergence of {yt}

is reached. Suppose that y* is the final tilting

parameter. Then my
 is used as the importance

sampling change of measure to estimate p, the

probability of interest.

A big advantage of the cross-entropy method is that

yt + 1 can often be solved analytically. In particular, this

happens when the distributions {my} belong to the

family of exponential changes of measure, as will be

shown in more detail later.

The initialization y0 of the cross-entropy algorithms

is quite flexible in general. For example, in many

situations one can simply choose y0 that corresponds

to the original distribution m. However, in the

context of rare event simulation, the choice of

y0 becomes less straightforward. These issues will be

discussed shortly.

The Adaptive Updating of y

Consider the minimization problem (6). Denote byWy

the likelihood ratio function

W x; yð Þ ¼
dm

dmy
ðxÞ:

Plugging in the formula (5), it follows that

R v
 k m
y

� �
¼

Z
log

dv


dm
y

ðxÞdv
ðxÞ

¼ � log pþ 1

p

Z
1 x2Af g logW x; yð ÞdmðxÞ:

Therefore the minimization problem (6) amounts to

minimizing over y ∈ Y the integral

Z
1 x2Af g logW x; yð ÞdmðxÞ:

Now let g∈Y be an arbitrary reference parameter.

Then the above integral equals

Z
1 x2Af gW x; gð Þ logW x; yð ÞdmgðxÞ

¼ Eg 1 X2Af gW X; gð Þ logW X; yð Þ
� �

;

where Eg[�] means that the expectation is taken with

X distributed according to mg. Therefore the

minimization problem (4.5) is equivalent to the

minimization problem

min
y2Y

Eg 1 X2Af gW X; gð Þ logW X; yð Þ
� �

; (7)

for any arbitrarily fixed g ∈ Y. In the cross-entropy

method, the minimizing y is estimated by solving the

corresponding stochastic program

min
y2Y

1

N

X

N

i¼1

1 Xi2Af gW Xi; gð Þ logW Xi; yð Þ; (8)

where {X1,. . .,XN} are independent samples from the

distribution mg. The function in (8) is convex and

differentiable with respect to y in typical applications.

Thus the minimizing y is the solution to the equation

1

N

X

N

i¼1

1 Xi2Af gW Xi; gð ÞH logW Xi; yð Þ ¼ 0;

where the gradient H is with respect to y.

Stated below is the basic adaptive updating rule for

the tilting parameter y in the cross-entropy method.

The stochastic program (8) will be used in lieu of the

deterministic program (7).

The basic updating rule of y.

Suppose ŷt is the value of the tilting parameter at the

end of the last iteration. Generate independent samples

X1; . . . ;XNf g from the distribution m
ŷt
. Define

ŷtþ1 ¼ argmin
y

1

N

XN

i¼1
1

Xi2Af g
W Xi; ŷt

� �

logW Xi; yð Þ:

(9)
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The iteration continues until a prescribed

convergence criterion of ŷt is satisfied.

As mentioned previously, the minimization problem

(9) can often be solved analytically (the connection

between this minimization problem and the maximum

likelihood estimate can be found in Asmussen and

Glynn 2007). For illustration, consider the case where

{my} is the family of exponential changes of measures

of the original distribution m. That is,

dmy
dm
ðxÞ ¼ e y;xh i�H yð Þ

Then logW Xi; yð Þ ¼ H yð Þ � y;Xih i and HW Xi; yð Þ
¼ HH yð Þ � Xi. It follows easily that the minimizing

ŷtþ1 satisfies

HH ŷtþ1

� �

¼
PN

i¼1 1 Xi2Af gW Xi; ŷt

� �

Xi

PN
i¼1 1 Xi2Af gW Xi; ŷt

� � :

Note that HH(y) equals the expected value of

a random variable with distribution my. Therefore if

the family of distributions {my} is reparametrized by

the mean v, then the classical cross-entropy updating

formula follows:

v̂tþ1 ¼
PN

i¼1 1 Xi2Af gW Xi; v̂tð ÞXi
PN

i¼1 1 Xi2Af gW Xi; v̂tð Þ
: (10)

This formula actually holds when the distributions

{my} belongs to a more general natural exponential

family that is reparametrized by the mean; see

Appendix A.3 of Rubinstein and Kroese (2008).

Example 1. Consider the SRW model. Let

X ¼ (Z1,. . .,Zn) where Zj’s are independent with

common distribution m. Denote by my : y 2 Yf g the

family of exponential change of measure of m, that is,

dmy

dm
ðzÞ ¼ e y;zh i�H yð Þ

Suppose that the family of candidate sampling

distributions of X is ny : y 2 Yf g such that under ny,

Zj’s are independent with common distribution my.

Then the likelihood ratio W(x;y) is given by

W x; yð Þ ¼
Y

n

j¼1

e y;zjh i�H yð Þ ¼ en y;�SðxÞh i�nH yð Þ;

where x ¼ (z1,. . .,zn) and �SðxÞ ¼ z1 þ � � � þ znð Þ=n.
It is not difficult to solve the updating formula (9)

to obtain

HH ŷtþ1

� �

¼

PN
i¼1 1 Xi2Af gW Xi; ŷt

� �

�S Xið Þ

PN
i¼j 1 Xi2Af gW Xi; ŷt

� � ;

where Xi ¼ ðZ
ðiÞ
1 ; . . . ; Z

ðiÞ
n Þ, i ¼ 1,. . .,N, and Zj

(i) are

independent samples from the common distribution

m
ŷt
. As before, reparametrizing the distribution ny by

the mean v, the formula becomes

v̂tþ1 ¼

PN
i¼1 1 Xi2Af gW Xi; v̂tð Þ�S Xið Þ
PN

i¼1 1 Xi2Af gW Xi; v̂tð Þ
:

In other words, the mean of the updated sampling

distribution is the weighted average of the sample path

means.

Example 2. Consider the TQN model. Suppose that

the family of candidate sampling distributions is

Pv : v ¼ v1; v2; v3ð Þ; vi > 0f g such that under Pv the

system is a Jackson network with exponential

interarrival times of mean v1, and exponential service

times of mean v2 and v3, respectively. The original

distribution corresponds to v0 ¼ 1=l; 1=m1; 1=m2ð Þ.
Let X1,. . .,XN be independent sample paths

generated from the distribution Pv̂t , each of which

starts from the origin and stops at the first time either

the total population hits the level n or the system

becomes empty again. For a sample path X, denote

by t1(X), t2(X), and t3(X) the total number of

interarrivals, service completion at node 1, and

service completion at node 2, respectively. Let

Y1jðXÞ : j ¼ 1; . . . ; t1ðXÞ
 �

be the interarrival times.

Similarly, let fY2jðXÞ : j ¼ 1; . . . ; t2ðXÞg and

Y3jðXÞ : j ¼ 1; . . . ; t3ðXÞ
 �

be the service times at

node 1 and node 2, respectively. Then the density of

a sample path X under the distribution Pv equals

f X; vð Þ ¼
Y

3

k¼1

Y

tkðXÞ

j¼1

1

vk
e�YkjðXÞ=vk

and the likelihood ratio W is given by

W X; vð Þ ¼ f X; v0ð Þ
f X; vð Þ :
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Denote by A the buffer overflow event. It is not

difficult to solve the stochastic program (9) to obtain

the analytic formula

v̂tþ1;k ¼
PN

i¼1 1 Xi2Af gW Xi; v̂tð ÞPtk X1ð Þ
j¼1 Ykj Xið Þ

PN
i¼1 1fXi2AgW Xi; v̂tð Þtk Xið Þ

for k ¼ 1,2,3. This updating formula is actually valid

for much more complicated queueing networks; see de

Boer et al. (2004) for more details.

The Initialization in Rare Event Simulation

The initialization of the cross-entropy algorithm, or the

choice of ŷ0 , can be quite flexible in general. It usually

suffices to set ŷ0 ¼ y0 where y0 corresponds to the

original distribution. However, this recipe is

problematic in the context of rare event simulation,

since most likely the indicator 1fXi2Ag will be zero for

all i if A is a rare event, rendering the minimization

problem (9) meaningless.

A possible approach is as follows. Choose a set

B � A so that it is much less rare than A but shares

the same qualitative flavor, e.g., in the TQN example

one may choose B to be the event of total population

overflow with buffer size m � n. Setting ŷ0 ¼ y0,

a pilot cross-entropy algorithm delivers the nearly

optimal tilting parameter (say) y* for estimating

P(X∈B). Next with ŷ0 ¼ y
, the main cross-entropy

algorithm is performed to yield the optimal tilting

parameter for estimating the actual probability of

interest P(X∈A). De Boer et al. (2004) used this

approach to estimate buffer overflow probabilities in

queueing networks, where B is chosen as the buffer

overflow event with a small buffer level.

Generalizing this idea, a two-stage iterative scheme

where both the set B and the tilting parameter y are

updated seems to be more convenient for most

problems. To describe the idea, assume that the

probability of interest is

p ¼ P SðXÞ � gð Þ ¼ P X 2 Ag

� �

where g is a fixed level, S is some performance measure,

and Ag ¼ x : SðxÞ � gf g. It is assumed that g is large

and Ag is a rare event. As before, the distribution of

X is denoted by m and my : y 2 Yf g is a parametrized

family of candidate sampling distribution. In this

two-stage approach for estimating p, one generates

a sequence of tilting parameters fŷtg, as well as

a sequence of levels ĝtf g that are determined by

the samples and generally increase to the actually

fixed large level g. In essence, these artificial

intermediate levels divide the original difficult

rare event A into a sequence of easier, less rare

events Aĝt .

The algorithm is as follows. Fix a priori a fraction r

that is not too small, usually between 1 and 10%. Set

ŷ0 ¼ y0 and generate N samples X1,. . .,XN from the

distribution m
ŷ0
. Estimate the (1 � r)-quantile of S(X)

by the sample quantile. That is, order the performances

S(Xi) from the smallest to the largest: S(1) � � � � � S(N)
and define

ĝ1 ¼ S Neð Þ; Ne ¼ 1� rð ÞNd e;

where [x] is the ceiling of x or the smallest integer that

is greater than or equal to x. Then update the tilting

parameter as in (9) with the set A replaced by Aĝ1 . In

other words, ŷ1 is estimated on the basis of those

samples Xi that satisfies S Xið Þ � ĝ1 and there

are about rN of them (elite samples). Iterated these

steps until ĝt � g. The algorithm is summarized as

follows:

Main Cross-Entropy Algorithm for Rare Event

Simulation

1. Let ŷ0 ¼ y0 and t ¼ 0 (iteration counter).

2. Generate samples X1,. . .,XN from the distributions

m
ŷt
. Calculate the performances S(Xi) and order

them from the smallest to the largest: S(1) � � � � �
S(N) and define ĝtþ1 ¼ min S Neð Þ; g

 �
:

3. Use these samples X1,. . .,XN to solve the stochastic

program (9) with the set A replaced by Aĝtþ1
.

4. If ĝtþ1 <g, set t ¼ t + 1 and reiterate from Step 2.

Otherwise, proceed with Step 5.

5. Let T be the final iteration counter. Estimate the rare

event probability p by importance sampling, with

the final tilting parameter ŷT .

Sometimes between Step 4 and Step 5, one can

refine the final tilting parameter by running a few

extra iterations of the standard cross-entropy updating

program (9) with ŷT as the initial tilting parameter and

the set A fixed as Ag. The analysis of the convergence

properties of this algorithm can be found in

R.Y. Rubinstein and D.P. Kroese (2004) and Costa

et al. (2007).
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Dynamic Importance Sampling

The notion of dynamic, or state-dependent importance

sampling was introduced in Dupuis and Wang (2004).

The development of this methodology was partly

motivated by the counterexamples in Glasserman and

Kou (1995) and Glasserman andWang (1997) that had

challenged the validity of the standard heuristic. It was

shown in Dupuis and Wang (2004) that the second

moment of an importance sampling estimator can be

interpreted as the value of a small noise stochastic

game. In this context it was obvious that the heuristic

approach, which amounted to allowing only those state

independent changes of measure)) or open loop

controls in the language of stochastic games), could

not possibly be asymptotically efficient in general; see

also Bassamboo et al. (2006). This connection also

linked importance sampling to the Isaacs equation of

a limiting differential game, which turned out to be

equivalent to the Hamilton-Jacobi-Bellman (HJB)

equation associated with the corresponding large

deviation rate function. As a consequence, the

solution to this HJB equation can be used to construct

asymptotically efficient importance sampling

schemes.

Dupuis and Wang (2007) explored this connection

in further depth and showed that the design and

analysis of dynamic importance sampling algorithms

could be based on the classical subsolutions to

the HJB equation. One can often construct

subsolutions that are structurally much simpler

than the actual solution, but which correspond to

asymptotically efficient importance sampling

schemes that reflect this simplicity. Subsolutions

provide a unifying and flexible tool and can be

used to study to a broad range of process models;

see, e.g., Dupuis et al. (2007) and Dupuis and Wang

(2007, 2009).

Limit Differential Game and its Isaacs Equation

In order to formally illustrate the connection

between importance sampling and small noise

stochastic games, consider the SRW model. Recall

that {Z1,. . .,Zn} is a sequence of independent random

variables with common distribution m. Define the

scaled random walk process

Xj ¼
1

n

Xj

i¼1
Zi; j ¼ 1; . . . ; n; (11)

with X0 ¼ 0. The probability of interest is

pn ¼ P Xn 2 Að Þ. As before, one can define an

exponential change of measure na by

na dxð Þ ¼ e a;xh i�H að Þm dxð Þ

for every a∈ℝ
d.

Consider a state-dependent change of measure in

the following sense. For each j ¼ 0; 1; . . . ; n� 1,

conditional on the simulation history

Zi : i ¼ 1; . . . ; jf g, Zj+1 is sampled from a distribution

maj , where aj is a function of both the scaled time j/n

and the scaled state Xj as defined in (11). The

corresponding importance sampling estimator is

given by

Yn ¼ 1 Xn2Af g
Yn�1

j¼0

e� aj;Zjþ1h iþH ajð Þ:

The estimate Yn is unbiased. The goal is to minimize

the variance, or equivalently, the secondmoment of Yn.

This minimization problem connects naturally to

a partial differential equation when it is recast as

a stochastic control problem with {aj} being the

control. To this end extend the problem slightly to

allow a general initial time and state. For i � 0 and

x∈ℝ
d, define Xj for j ¼ i,. . .,n as above except that

Xi ¼ x, and then define

Vn x; ið Þ ¼ inf
ajf g

�E 1 Xn2Af g
Yn�1

j¼i

e� aj;Zjþ1h iþH ajð Þ
" #2

;

where �E denotes the expectation taken under the

change of measure determined by the control {aj}. In

other words, Vn(x,i) is the minimal second moment of

the importance sampling estimators given that the state

process {Xj} startsat time iwith initial state x. It will be

more convenient to express this in terms of the original

distributions:

Vn x; ið Þ ¼ inf
ajf g

E 1 Xn2Af g
Yn�1

j¼i

e� aj;Zjþ1h iþH ajf g
" #

;

where the expected value is taken such that {Zj,. . .,Zn}

are independent with common distribution m.
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As the value function of a discrete time

stochastic control problem, Vn satisfies the dynamic

programming equation

Vn x; ið Þ ¼ inf
a2Rd

Z
eH að Þ� a;yh iVn xþ y

n
; iþ 1

� �

m dyð Þ:

(12)

Owing to the exponential scaling in n, it is natural to

consider the logarithmic transform of Vn and assume

that

� 1

n
logVn x; ið Þ  W x; i=nð Þ (13)

for some smooth functionW : Rd � 0; 1½ � ! R. This

leads to the approximation

Vn xþ y

n
; iþ 1

� �

� V�1
n x; ið Þ

 exp � HW x; tð Þ; yh i � @W

@t
x; tð Þ

� �

where H is the gradient with respect to x, and t ¼ i/n.

Plugging the above approximation into equation (12),

taking log on both sides, and recalling the definition of

H, it follows that

0 ¼ � @W

@t
þ inf

a2Rd
H að Þ þ H �HW � að Þ½ �: (14)

Since Vn(x,n) ¼ 1{x∊A}, W satisfies the boundary

condition W(x,1) ¼ 0 if x∊A and 1 otherwise.

Even though a very special model has been used

here, equation (14) leads to a few observations that

actually hold in much greater generality.

1. Equation (14) is the Isaacs equation associated with

a two-person zero-sum game. Indeed, sinceH and L

are convex duals, for every a∈ℝ
d

H að Þ ¼ sup
b2Rd

<a; b > �L bð Þ½ �:

Thus equation (14) can be written as

0 ¼ @W

@t
þ sup

a
inf
b

HW; bh i þ L bð Þ þ a; bh i � H að Þ½ �:

This is the Isaacs equation corresponds to the

following zero-sum differential game. The

dynamics _fðtÞ ¼ bðtÞ only involves the b-player.

The running cost L bð Þ þ a; bh i � H að Þ is affected
by both players, and the terminal cost is 1 � 1Ac .

Because of the intervening minus sign, the

maximizing a-player indeed tries to minimize the

variance.

2. Thanks to the convexity of H, the maximizing a in

equation (14) is

a
 x; tð Þ ¼ � 1

2
HW x; tð Þ: (15)

This is the basic formula for computing the

state-dependent change of measure.

3. Plugging the formula of a* into equation (14), it

follows that

0 ¼ @W

@t
þ 2H �HW=2ð Þ: (16)

This is equivalent to the HJB equation associated

with the corresponding large deviation rate

function. To see this, abuse the notation and

extend the definition of pn to

pn x; tð Þ ¼ P Xn 2 AjX ntd e ¼ x
� �

for x ∈ ℝ and t∈[0,1]. Clearly the probability of

interest P(Xn∈A) equals pn(0, 0). Then under suitable

conditions

� lim
n

1

n
log pn x; tð Þ ¼ inf

f

Z 1

t

L _fðsÞ
�

ds;
�

where the infimum is taken over all absolutely

continuous functions f such that f(t) ¼ x and

f(1)∈A. Denote by U(x, t) the value function of this

minimization problem. Then U satisfies the HJB

equation

0 ¼ inf
b

@U

@t
þ HU; bh i þ L bð Þ

� �

¼ @U

@t
þ H �HUð Þ

with terminal condition U(x,1) ¼ 0 if x∈A and 1
otherwise. Clearly it is equivalent to (16) by a change

of variable W ¼ 2U. This equivalence also
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indicates that the state-dependent change of measure

based on the solution to the Isaacs equation (16) is

asymptotically efficient since by equation (13),

� lim
n

1

n
log Vn 0; 0ð Þ ¼ W 0; 0ð Þ ¼ 2U 0; 0ð Þ

¼ �2 lim
n

1

n
log pn 0; 0ð Þ;

and Vn(0, 0) is the second moment of the

corresponding importance sampling estimator.

A rigorous proof can be found in Dupuis and Wang

(2004).

The Idea of Subsolutions

From the previous discussion, it follows that the

solution to a related Isaacs equation can be used to

build asymptotically efficient importance sampling

schemes. A difficulty with this approach is that

a solution to a nonlinear partial differential equation

such as Isaacs equation is hard to compute. To

circumvent this, Dupuis and Wang (2007) proposed

importance sampling schemes based on the

subsolutions to the Isaacs equation. Subsolutions are

functions that satisfy the partial differential equation

with inequality instead of equality, and allow much

greater flexibility in the design of importance sampling

schemes.

In order to understand the sufficiency of

subsolution, examine the criterion of logarithmic

asymptotic efficiency more closely. Recall the

definition of logarithmic asymptotic efficiency (1).

Jensen’s inequality implies that

logE Y2
n

� �

� 2log E Yn½ � ¼ 2 log pn:

Therefore, if for some g > 0 the large deviation

asymptotics

lim
n!1

1

n
log pn ¼ �g

hold, then (1) is equivalent to the inequality

lim sup
n!1

1

n
log E Y2

n

� �

� �2g: (17)

In other words, in order to show that Yn is

asymptotically efficient, it suffices to establish the

upperbound (17) only. The inequalities in the

definition of a subsolution [see below] are consistent

with this upper-bound, when the subsolution is

combined with a verification argument to bound the

second moment of Yn.

To give the definition of a subsolution, consider

a family of Isaacs equations of a given form. The

definition easily extends to other types of Isaacs

equations. For a broad collection of problems, the

probability of interest is of form pn ¼ P Sn=n 2 Að Þ,
where Sn is the partial sum of independent identically

distributed random variables or functionals of Markov

chains. Then under suitable conditions, the large

deviations asymptotics

lim
n!1

1

n
log pn ¼ � inf

b2A
L bð Þ :¼ �g

hold for some convex rate function L. Denoting by H

the Legendre transform of L, then the Isaacs equation

takes the familiar form

@W

@t
þ sup

a
inf
b

HW; bh i þ L bð Þ þ a; bh i � H að Þ½ � ¼ 0;

(18)

with boundary condition W(x,1) ¼ 0 if x∈A and 1
otherwise.

Definition. A classical subsolution (18) to the Isaacs

equation is a smooth function W that satisfies

@W

@t
þ sup

a
inf
b

HW; bh i þ L bð Þ þ a; bh i � H að Þ½ � � 0

with boundary inequality W(x,1) � 0 for x∈A.

Given a classical subsolution W, the corresponding

change of measure is determined by the maximizing a*

for the min/max term, which has exactly the same form

as (15). The following theorem is the key result in the

performance analysis of those importance sampling

schemes based on subsolutions; see Dupuis and

Wang (2007) for more details.

Theorem 1. Let W be a classical subsolution to

the Isaacs equation and Yn the corresponding

importance sampling estimate of pn. Then under

suitable conditions
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lim sup
n!1

1

n
logE Y2

n

� �

� �W 0; 0ð Þ: (19)

In particular, if W (0, 0) ¼ 2g, then Yn is

asymptotically efficient.

Construction of Subsolutions

Theorem 1 reduces the problem of building an

asymptotically efficient or nearly asymptotically

efficient importance sampling scheme to that of

a classical subsolution W with W(0, 0) equal or close

to 2g, respectively. For systems with piecewise

homogeneous dynamics, a particularly useful

technique is to build a piecewise affine subsolution at

first and then obtain a classical subsolution by

mollification. The construction of a piecewise

affine subsolution, which is usually identified as the

minimum of a collection of affine functions, is the

key step. Once such a piecewise affine subsolution is

given, say,

�W ¼ W1 ^ � � � ^Wm;

a mollification technique called exponential weighting

is used to produce a smooth function:

We ¼ �e log
X

m

i¼1

e�Wi=e;

where e is a small positive number. It is not difficult to

show that We approximates �W as e approaches zero.

Furthermore, analytic formulas for quantities such as

HWe are readily available. There are two important

remarks regarding the function We and the

corresponding change of measure: (1) In general, We

is not exactly a subsolution, but an approximate one in

the sense that the inequality (19) is satisfied with the

right hand side replaced by a vanishing negative

number. This is usually sufficient for asymptotic

efficiency; (2) It is sometimes more convenient to use

a change of measure slightly different from the

one determined by a* ¼ �HWe/2. It is essentially

a state dependent mixture of the changes of measure

determined by {Wi}. Theorem 1 still holds in this case;

see Dupuis and Wang (2007) for details.

In general, the construction of piecewise affine

subsolutions is accomplished by carefully analyzing

the properties of the system dynamics and the

relevant large deviation properties. For illustration,

consider two concrete examples.

Example 3. Consider the SRW model. Without

loss of generality assume that E[X1] ¼ 0. First

consider the simple case where A ¼ [b,1) for some

b > 0. Denote by a the conjugate point of b. Then the

affine function

WðxÞ ¼ �2 a; x� bh i � 2 1� tð ÞH að Þ

is a subsolution to the Isaacs equation.

Since � HW/2 ¼ a, the corresponding change of

measure is exactly the classical one.

A more interesting case is when A ¼
�1; �b [� ½b;1
� �

when �b<0<b. Let �a be the

conjugate point of �b. Define

�WðxÞ ¼ �2 �a; x� �b
� �

� 2 1� tð ÞH �að Þ:

Then it is not difficult to check thatW
 ¼ W ^ �W is

a two-piece affine subsolution. Note that

� HW
=2 ¼
a if W < �W

�a if W > �W

(

is piecewise constant. Figure 2 illustrates how this

would partition the space-time domain.

Example 4. Consider the TQN model. Without loss

of generality assume lþ m1 þ m2 ¼ 1. Define by

Zk ¼ Zk;1; Zk;2
� �

: k ¼ 0; 1; . . .
 �

the embedded

discrete time Markov chain, where Zk,i represents

the length of the i-th queue at the k-th transition

epoch of the network, i ¼ 1,2. The space of the

possible jumps is

V ¼ v0 ¼ e1; v1 ¼ �e1 þ e2; v2 ¼ �e2f g:

The system dynamics can be described as

Zkþ1 ¼ Zk þ p Zk; Ykþ1½ �, where {Yk} are random

variables taking values in V and p is the mapping

due to the non-negativity constraint on the queue

lengths: for x ¼ x1; x2ð Þ 2 R
2
þ and y 2 V

x½x; y� ¼
O if xi ¼ 0 and y ¼ ui for some i ¼ 1; 2

y otherwise

(
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See Fig. 3. Let P be the space of strictly positive

probability measures on V, i.e.,

P ¼ fy ¼ ðy0; y1; y2Þ : y0 þ y1 þ y2 ¼ 1; yi > 0g:

Under the original distribution, {Yk} are

independent identically distributed with distribution

Y ¼ l; m1; m2ð Þ. Recall that R(�k�) denotes the relative
entropy. The relevant Isaacs equation is such that for

x 2 x1; x2ð Þ 2 R
2
þ : x1 þ x2 < 1g



sup
�Y2P

inf
y2P

HWðxÞ;
X2

i¼0

yi � p x; vi½ �
* +"

þ
X2

i¼0

yilog
�Yi

Yi

þ Rðy k YÞ
#

¼ 0;

with the boundary condition W(x) ¼ 0 when x1 +

x2 ¼ 1. Here �Y corresponds to the change of

measure. Given W, the optimal (maximizing) �Y

admits an analytic formula.

The definition of a subsolution is just to replace the

“¼” by “�” in the Isaacs equation and replace the

boundary condition “W(x) ¼ 0” by “W(x) � 0”.

Simple piecewise affine subsolutions can be

constructed. For example, when m2 � m1, define

vectors

r1 ¼ 2g �1;�1ð Þ; r2 ¼ 2g �1; 0ð Þ; r3 ¼ 0; 0ð Þ:

Let d be a small positive number. Then
�W ¼ W1 ^W2 ^W3 defines a subsolution, where

WkðxÞ ¼ rk; xh i þ 2g� kd; k ¼ 1; 2; 3:

This subsolution divides the region into three

pieces: R1, R2, and R3, such that �WðxÞ ¼ WkðxÞ for

x∈Rk. See Fig. 4. The regions R2 and R2 are

sometimes called “boundary layers”. They are

closely related to the discontinuity of the dynamics

on the boundary {x2 ¼ 0} and the origin, and

the large deviations properties of the rare event.

Details of the algorithms can be found in Dupuis

et al. (2007).

Lyapunov Function Method for Heavy-Tailed

Distribution

Much of the previous discussion has assumed that the

distributions involved are light-tailed in the sense that

their moment generating functions are finite in a small

neighborhood of the origin, and thus the exponential

changes of measure are meaningful. On the contrary,

for a large class of distributions emerging from

practice, the tail probabilities decay much more

slowly. These heavy-tailed distributions have very

different large deviation properties and the

exponential scaling is in general not valid. As

x

t

b*

b
−

Rare Event Simulation, Fig. 2 Domain decomposition and
corresponding drifts

u2

u0

d2

d1 u1

z2

z1

Rare Event Simulation, Fig. 3 The system dynamics

R 1276 Rare Event Simulation



a consequence, fast rare event simulation algorithms

can look very different from those for light-tailed

distributions; see Asmussen et al. (2000) and

references therein.

Some of the recent works on rare event simulation

involving heavy-tailed distributions have been

concerned with state-dependent algorithms, e.g.,

Dupuis et al. (2007). This section reviews a general

technique proposed by Blanchet and Glynn (2008) that

is based on Lyapunov functions. These Lyapunov

functions are closely related to the subsolutions

discuss previously (they are in some sense the

exponential of subsolutions). Even though

the method is applicable to light-tailed distributions

as well, the discussion will be made in the context

of heavy-tailed distributions, via the example

of estimating level crossing probabilities for

heavy-tailed random walks.

Let {Xi} be a sequence of independent identically

distributed heavy-tailed random variables with

common distribution m and strictly negative mean.

Define the simple random walk

Sn ¼ yþ
Xn

i¼1
Xi;

with initial condition S0¼ y. Here it is assumed that y is

a very negative number and the quantity of interest is

the level crossing probability

p
ðyÞ ¼ P Sn � 0 for some nð Þ:

Under suitable conditions, as y!�1, p*(y) has the

asymptotics

p
ðyÞ � 1

�E X1½ �

Z 1

jyj
P X1 > sð Þds: (20)

A useful observation is that if Q* is a probability

measure (Doob’s h-transform) that satisfies

Q
 Xnþ1 2 dzjSn ¼ xð Þ ¼ p
 sþ xð Þ
p
ðxÞ m dzð Þ (21)

for x < 0, then Q* is the zero variance importance

sampling change of measure. As before, Q* is

impractical since p*(�) is unknown.
However, (21) does motivate the use of a change of

measure Q such that for x < 0

Q Xnþ1 2 dzjSn ¼ xð Þ ¼ v zþ xð Þ
wðxÞ m dzð Þ; (22)

where v is a function that is close to p* and w(x) is the

normalization constant such that

wðxÞ ¼
Z

R

v zþ xð Þm dzð Þ: (23)

The corresponding importance sampling estimator

is just

Y ¼ 1 T<1f g
YT�1

i¼0

w Sið Þ
v Siþ1ð Þ ;

where T ¼ inf n � 1 : Sn � 0f g.
To aid the design of Q, one also need some means

to analyze its performance. This is where the

Lyapunov function comes into play. Even though the

definition here is slightly different from that of

Blanchet and Glynn (2008) in the form, they are

indeed equivalent.

r3

z2

1

1

r1

q2

q1

qc

R1

R3
R2

x1
d2

d1

r2

Rare Event Simulation, Fig. 4 Piecewise affine subsolution
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Definition. A function H : R! 0;1½ Þ is said to be

a Lyapunov function associate with the probability

measure Q if for every x < 0,

HðxÞ �
Z

R

wðxÞ
v zþ xð ÞH zþ xð Þm dzð Þ:

and H(x) � 1 for x � 0.

Theorem. Let Y be the importance sampling estimator

and H a Lyapunov function associated with Q, then

EQ Y2jS0 ¼ y
� �

� HðyÞ:

Proof. Define the process

Rn ¼: H Snð Þ �
Y

n�1

i¼0

w2 Sið Þ
v2 Siþ1ð Þ :

Then it is straightforward to check that the definition

of the Lyapunov function H is equivalent to the claim

thatRT∧n is a supermartingale underQ. Therefore by the

Optional Sampling Theorem, for y < 0

EQ RT jS0 ¼ y½ � � EQ R0jS0 ¼ y½ � ¼ HðyÞ:

Observing that RT� Y2 sinceH(ST)� 1, the proof is

complete. □

The idea of the Lyapunov function method is to find

a pair (v,H) such that (i) v is close to p* in the sense that

they are asymptotically equivalent; (ii) H is

a Lyapunov function of the form HðxÞ ¼ hðxÞv2ðxÞ.
Then the preceding theorem asserts that the

performance of the importance sampling algorithm

associated with the change of measure Q is

characterized by h. For example, if h is bounded then

it is of bounded relative error.

Now consider the objectives (i) and (ii). An

immediate problem is that how one can tell if v is

close to p* when p* is unknown in the first place. The

idea is that, comparing (21) and (22), if v ¼ p* then

w defined in (23) should equal p* as well and thus

w � v ¼ 0. Therefore, w � v can be used as a criterion

to measure how close v and p* are. With this in mind,

it is natural to start with the function on the

right-hand-side of (20). Define a non-negative

random variable Z that is independent of {Xi} and

such that for t > 0,

P Z > tð Þ ¼ 1 ^
Z 1

t

1

�E X1½ �P X1 > sð Þds:

Define �vðxÞ ¼ P Z > �xð Þ for all x ∈ ℝ. Note that

�vðxÞ ¼ 1 ¼ p
ðxÞ if x> 0. Furthermore, with �w defined

as in (23) with v replaced by �v, it can be

shown that �wðxÞ and �vðxÞ are asymptotically very

close as x ! �1. Therefore, there exists an a* < 0

such that vðxÞ ¼ �v xþ a
ð Þ and wðxÞ ¼ w xþ a
ð Þ are
very close for all x < 0. Given the function v, one can

find a bounded piecewise constant function h such that

HðxÞ ¼ hðxÞv2ðxÞ defines a Lyapunov function. This

leads to an importance sampling scheme with bounded

relative error.

It should be mentioned in the end that the sampling

distribution is determined by (22), and it is not difficult

to check that

Q Xnþ1 2 dzjSn ¼ xð Þ¼P X1 2 dzjX1þZ>�x�a
ð Þ:

Samples from this conditional distribution are

typically generated by suitable acceptance/rejection

schemes, where the acceptance probability remains

uniformly bounded away from 0. The design of such

schemes is based on the tail behavior of the distribution

m. See Blanchet and Glynn (2008) for the case when m

is regularly varying.

See

▶Cross-Entropy Method

▶ Importance Sampling

▶ Simulation of Stochastic Discrete-Event Systems

▶Variance Reduction Techniques in Monte Carlo

Methods
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Rate Matrix

The matrix of transition rates (or intensities) in

a continuous-time Markov process with discrete state

space (sometimes called a continuous-time Markov

chain), such as a birth-and-death stochastic process.

Each (non-diagonal) entry gives the probability

“rate” of making a transition from one state to

another, where the time spent in any state is

exponentially distributed. By convention, the

diagonal entry is selected so that the rows sum to

zero; thus it is equal to the negative of the total

instantaneous rate out of the state, corresponding to

the inverse of the mean (exponentially distributed)

holding time in a state. Also called the infinitesimal

generator matrix.

See

▶Birth-Death Process

▶Markov Chains

▶Markov Processes

Ray

A ray is a collection of points (x0 + l d), where d

is a nonzero vector and l � 0. The vector d is

called the direction of the ray and x0 the origin

of the ray.
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Reasoning

A problem-solving process. Two paradigms are logical

and analogical reasoning. Logical reasoning includes

deductive and inductive. Deductive reasoning is

arriving at a conclusion from premises and rules of

inference. Inductive reasoning is forming a general

conclusion that explains multiple observations.

Analogical reasoning uses analogy of a current

situation to familiar ones from previous experiences.

One paradigm for analogical reasoning is a neural

network.

See

▶Artificial Intelligence

▶Expert Systems

▶Neural Networks

Reasoning Knowledge

Knowledge about what circumstances allow particular

conclusions to be considered to be valid.

See

▶Artificial Intelligence

▶Expert Systems

Recognition Problem

A computational problem whose answer is “yes” or

“no.” For example, “given a graph G, is there an Euler

tour?”

See

▶Computational Complexity

Recourse Linear Program

▶ Stochastic Programming

Reduced Costs

▶ Prices

Reduced Gradient Methods

▶Nonlinear Programming

▶Quadratic Programming

Redundancy

Igor Ushakov

Qualcomm Inc., San Diego, CA, USA

Redundancy is an engineering method of improving

system and equipment reliability. Mainly, redundancy

consists in using extra units (subsystems, modules

and/or additional elements) within the system to

increase reliability. This kind of redundancy is

usually called structural. Redundancy might be called

functional when a system may perform the same

operation by several different ways. For instance,

a communication network may be able to bypass its

failed links or switches. Another possibility is time

redundancy, where the system has extra time for

possible repetition of the same operation after

a failure. As an example, one can consider

a computer system with restarting in the case of error.

This article only considers structural redundancy.

Redundancy may be implemented on the system or

unit levels. System-level redundancy means that an

entire system would be replaced upon its failure by an

identical structure; unit-level redundancy means that

an individual unit would be replaced upon failure by

a devoted or shared backup element. Let pk equal the

reliability of unit k, n be the number of system units

connected in series, and m the degree of redundancy
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(i.e., there arem� 1 replacements standing by). Further

assume that the system is operating under hot standby

redundancy, wherein items age as they wait to be used.

Then it follows for the system-level case that the system

reliability is given by P1 ¼ 1� 1�
Q

k¼1n pk
� �m

since

total failure occurs when the original and all backup

series systems fail. For hot standby at the unit level in

the case that each unit is backed up by m� 1 identical

others, the reliability of such a series system would be

given by P2 ¼
Q

k¼1n 1� 1� pkð Þm½ � since all m of at

least one type must fail for the system to fail. For any

fixed set of parameters, one always has P2 > P1.

(An analogous result can be formulated for cold

standby wherein each backup unit only begins to age

upon connection).

Redundancy on the unit level can also be done using

a shared backup pool. A good example might be

a group of n redundant units assigned to the

simultaneous support of a main group of k units, as

would be typical in spares provisioning. Illustrations of

system-level redundancy, as in the calculation of P1

above, could include enclosed power packs and printed

circuit boards.

When considering redundant systems, one must

take into account the monitoring of main and

redundant units, the time needed to switch from

failed unit to redundant one, and the reliability of

switching devices. One special type of redundancy is

represented by voting systems. A common use of

a voting system is in mission critical software

decisions. In these systems, n independent outputs

(signals) are compared against each other, such that if

k signals coincide, the system is assumed to be

operating successfully. If several outputs are possible,

then the output that appears most often is taken as

correct one (unless there is a tie).

The effect of redundancy can be dramatically

increased by the use of renewal (repair or

replacement) of failed units. Thus far, the implicit

assumption has been that failed units are never

repaired but replaced with new ones when needed.

However, most failed units are not thrown out but are

repaired where appropriate and retained for future use.

In this case, system failure can occur only if all units of

the redundant group fail during the renewal procedure.

So, reliability of a repairable system depends on the

duration of repair. For comparison of redundancy with

and without repair, consider a duplicated system (one

main with a single redundant unit). Let the

distributions of time-to-failure and repair time be

exponential with parameters l and m, respectively.

For hot standby, a system without repair has a mean

time-to-failure equal to T1 ¼ 1:5=l, whereas for

a system with repair, the mean time-to-failure is

T2 ¼ ð1=lÞðmþ 3lÞ=2l (see Kozlov and Ushakov

1970; Ushakov 1994). For instance, if l ¼ 0:001

(i.e., the unit’s mean time-to-failure ¼ 1,000 hr) and

m ¼ 1 (i.e., mean repair time¼ 1 hr), then T1 ¼ 1; 500

hr and T2  500; 000 hr. For cold standby, T1

 ¼ 2=l

and T2

 ¼ ð1 =lÞðmþ 2lÞ=l, respectively, which for

the above numerical data gives T1 ¼ 2; 000 hr and

T2  1; 000; 000 hr. These numerical examples show

the effectiveness of repair for redundant systems.

Though redundancy improves system reliability, it

requires extra resources and money. Cost effectiveness

analysis of redundancy is considered as the problem of

optimal redundancy.

Consider a system consisting of n independent

units. For simplicity, assume that the considered

system is series, i.e., failure of any main unit of the

system leads to total system failure. To increase the

reliability of the system, one uses redundant units in

the following way. Let unit i of the system have xi
redundant units and write the probability of

successful operation (PSO) of this group as Ri xið Þ.
For independent groups of units, the system PSO

can be written as

RðXÞ ¼
Yn

i¼1

Ri xið Þ

where X ¼ x1; . . . ; xnð Þ. At the same time, introducing

xi redundant units leads to the expenditure ofC xið Þ cost
units. Usually, one assumes that C xið Þ ¼ cixi. In this

case, the system total cost equals

CðXÞ ¼
Xn

i¼1

cixi

Then the optimal redundancy problem consists of

solving one of the following problems: find the vector

solution that delivers either

max
X

Yn

i¼1

Ri xið Þ
Xn

i¼1

cixi � C0

�����

( )

(1)
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or

min
X

Xn

i¼1
cixi

Yn

i¼1
Ri xið Þ � R0

�����

( )

: (2)

These problems are conditional discrete

optimization problems that can be solved by means

of standard tools such as steepest descent, branch and

bound, dynamic programming, and integer

programming. Notice that both goal functions, RðXÞ
and CðXÞ, are concave. One of the best ways to solve is
by use of Kettelle’s Algorithm, which represents

a convenient computational modification of dynamic

programming (Gnedenko and Ushakov 1995).

Cases of multi-constraint versions of problem (1)

and its solution are considered in Barlow and Proschan

(1981) and Ushakov (1994). The optimal redundancy

problem for multi-functional systems, an important

extension of problem (2), is solved in Ushakov

(1994) as well.

See

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Reliability of Stochastic Systems
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Redundant Constraint

An inequality or equation of a mathematical

programming problem that does not define part of the

solution space. An equivalent problem can be formed

by removing redundant constraints.

Regeneration Points

If there exists a time epoch T1 in a stochastic process

such that the continuation of the process beyond T1 is

a probabilistic replica of the process starting at time 0,

then the process is said to be regenerative. For such

a regenerative process, the existence of subsequent

times T2, T3, . . ., having the same properties follows

by repeating the argument, and the set {T1, T2, T3,. . .}

are said to be regeneration points of the process.

See

▶Regenerative Simulation

▶Renewal Process

Regenerative Process

▶Regeneration Points

▶Regenerative Simulation

Regenerative Simulation

Peter J. Haas

IBM Almaden Research Center, San Jose, CA, USA

Introduction

Regenerative simulation refers to a collection of

statistical techniques for analyzing the output of

a discrete-event stochastic simulation whose

underlying stochastic process XðtÞ : t � 0f g is

a regenerative process – here XðtÞ denotes the

(random) state of the simulated system at time t.

A regenerative stochastic process has the

characteristic property that there exists an infinite

sequence of random times, called regeneration points,

at which the process probabilistically restarts.

The essence of regeneration is that the evolution of

the process between any two successive regeneration

points is an independent probabilistic replica of the

process in any other such cycle. The basic ideas were
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initially hinted at by Cox and Smith (1961) and the

method itself was pioneered by Crane and Iglehart

(1974, 1975) and Fishman (1974). Books and surveys

on the regenerative method and regenerative process

theory include Asmussen (2003), Asmussen and Glynn

(2007), Haas (2002), Henderson and Glynn (2001),

Shedler (1993), and Thorisson (2000).

When applicable, regenerative simulation

techniques provide a theoretically rigorous and

elegant means of studying the limiting or steady-state

behavior of XðtÞ : t � 0f g. Initial applications

of regenerative simulation centered on the

problem of obtaining point estimates and confidence

intervals for system performance measures

comprising time-average limits of the

form rðf Þ ¼ limt!1ð1=tÞ
R t
0
f ðXðuÞÞ du, where f is

a real-valued performance function. Under mild

conditions, the value of a time-average limit is

determined by the expected behavior of the process

in a single regenerative cycle – a fact that has important

implications for simulation analysis. Under some

additional regularity conditions, the time-average

limit can also be interpreted as a steady-state or

limiting expected value. In general, when estimating

steady-state performance measures, one has to worry

about the fact that the initial distribution – i.e., the

distribution of Xð0Þ – differs from the steady-state

distribution, and that the XðtÞ process is

autocorrelated. Thus the effects of initialization bias

persist over time and, moreover, estimation methods

based on independent and identically distributed

(i.i.d.) observations cannot be directly applied. These

problems vanish in the regenerative setting. Later work

on regenerative simulation has focused on improving

the basic estimators, applying the methodology to

other system performance measures, extending the

theory and methodology to more general classes of

stochastic processes, and identifying conditions on

the building blocks of a stochastic model under

which the regenerative method is applicable.

Regenerative Processes

Regenerative stochastic processes were originally

defined by Smith (1955, 1958). The following

discussion focuses on processes that evolve

in continuous time, but the results carry over to

discrete-time process in a straightforward

manner – indeed, one can obtain results for

a discrete-time process Xn : n � 0f g by simply

applying continuous-time theory to the process

X tb c : t � 0
 �

, where xb c denotes the largest integer

less than or equal to x.
A stochastic process XðtÞ : t � 0f g with state

space S is a regenerative process in continuous time

if there exists an increasing sequence

0 � T0 < T1 < T2 < � � � of almost surely (a.s.) finite

random times such that the post-Tk process

fXðTk þ tÞ : t � 0; tkþl : l � 1 g
1. Is distributed as the post-T0 process

XðT0 þ tÞ : t � 0; tl : l � 1f g, and
2. Is independent of the pre-Tk process

XðtÞ : 0 � t < Tk; t1; . . . ; tkf g
for k � 1, where tk ¼ Tk � Tk�1 for k � 1. The

sequence Tk : k � 0f g of regeneration points is

a (possibly delayed) renewal process that decomposes

sample paths of fXðtÞ : t � 0 g into i.i.d. cycles; the

kth cycle is fXðtÞ : Tk�1 � t < Tk g. The random

variable tk defined above is the length of the kth

cycle. When T0 ¼ 0 the process XðtÞ : t � 0f g is

called a nondelayed regenerative process; otherwise,

it is called a delayed regenerative process. For

a delayed regenerative process XðtÞ : t � 0f g, the

0th cycle fXðtÞ : 0 � t < T0 g need not have

the same distribution as the other cycles. Similarly,

the length of this cycle – denoted by t0 – need not

have the same distribution as t1, t2, and so forth.

Typically, each random point Tk is a stopping time

with respect to the XðtÞ process, in that, for t � 0, the

occurrence or nonoccurrence of the event Tk � tf g is

completely determined by XðuÞ : 0 � u � tf g. In this
case, the cycle lengths are determined by the XðtÞ
process, and verifying the regenerative property

amounts to showing that for each k � 1, the

distribution of XðtÞ : t � Tkf g, is distributed as

XðtÞ : t � T0f g and is independent of

XðtÞ : 0 � t < Tkf g.
As a simple example of a regenerative process, let

XðtÞ be the number of jobs waiting or in service at time

t in a GI=G=1 queue, and let Tk denote the kth time at

which a job arrives to an empty system, so that

XðTkÞ ¼ 1 for all k. Assume that T0 ¼ 0, so that the

simulation starts with such an arrival. Then the random

times Tk : k � 0f g form a sequence of regeneration

points for XðtÞ : t � 0f g. Similarly, if Wn is the

waiting time in the queue (exclusive of service time)

experienced by the nth job to arrive at the queue, and if
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NðkÞ is the random index of the kth job that arrives and

finds the system empty, so that WNðkÞ ¼ 0, then the

random indices NðkÞ : k � 0f g form a sequence of

regeneration points for the discrete-time process

Wn : n � 0f g. An irreducible positive recurrent

continuous time Markov chain (CTMC) having

a discrete (i.e., finite or countably infinite) state space

S is also a regenerative process, with one set of

regeneration points comprising the successive times

that the chain enters a fixed state s 2 S, and another

set comprising the successive times just after the chain

jumps out of a fixed state s. Indeed, such a chain

has many sequences of regeneration points that

correspond to different choices of s. Discrete-time

Markov chains and semi-Markov processes also have

regenerative structure, and hence are amenable to

regenerative-process theory and methods.

Because a regenerative process has an embedded

i.i.d. cycle structure, classical results for i.i.d. random

variables can be readily adapted to study the limiting

behavior of a regenerative process XðtÞ : t � 0f gwith
state space S and regeneration points Tk : k � 0f g.
E.g., suppose that the process is non-delayed, and for

a real-valued function f defined on S, set

Ykðf Þ ¼
R Tk
Tk�1

f ðXðuÞÞ du for k � 1. Also define the

function jf j by setting jf jðsÞ ¼ jf ðsÞj for s 2 S.

It follows from the definition of a regenerative

process that the sequence ðYkðf Þ; tkÞ : k � 1f g
consists of i.i.d. random pairs. Defining rðf Þ as before
to be a time-average limit, a relatively straightforward

application of the strong law of large numbers (SLLN)

for i.i.d. random variables establishes the regenerative

ratio formula

rðf Þ ¼ E Y1ðf Þ½ �
E t1½ � ; (1)

provided that E t1½ � < 1 and E Y1 jf jð Þ½ � < 1. This

SLLN for regenerative process illustrates one sense

in which the steady-state behavior is determined by

the behavior of the process within a cycle.

This result can be extended to steady-state

and limiting expected values. Specifically, call a

real-valued random variable X aperiodic if there exists

no real number d such that
P1

n¼0 P X ¼ ndf g ¼ 1.

In the literature such random variables are also called

non-arithmetic or non-lattice. If, in addition to the

foregoing assumptions for the SLLN, it also holds that

XðtÞ : t � 0f g has right-continuous sample paths

and that t1 is aperiodic, then there exists a random

variable X having state space S such that

limt!1P XðtÞ � xf g ¼ P X � xf g for all x at which

the function FðxÞ ¼ P X � xf g is continuous; i.e., XðtÞ
converges in distribution to X as t ! 1, denoted by

XðtÞ ) X. For any function f having a set Dðf Þ of

discontinuity points, the continuous mapping theorem

ensures that f ðXðtÞÞ ) f ðXÞ as t ! 1, provided that

P X 2 Dðf Þf g ¼ 0; moreover, it follows from some

basic results in renewal theory – see, e.g., Asmussen

(2003) – that rðf Þ ¼ E f ðXÞ½ �. That is, rðf Þ can be

interpreted not only as a time-average limit, but also as

a steady-state expected value. Finally, if the process

f ðXðtÞÞ : t � 0f g is uniformly integrable, then

a classical result from probability theory shows that

limt!1E f ðXðtÞÞ½ � ¼ E f ðXÞ½ � ¼ rðf Þ, so that rðf Þ can

also be viewed as a limiting expected value.

(A stochastic process YðtÞ : t � 0f g is uniformly

integrable if limc!1suptE½jYðtÞjIðjYðtÞj > cÞ� ¼ 0,

where IðAÞ denotes the indicator of event A.)

The Standard Method

The power of the ratio formula (1) lies in the fact that it

reduces the problem of estimating steady-state

quantities – such as time-average limits or steady-state

expected values – to a classical ratio-estimation

problem in statistics. The goal of ratio-estimation

methods is to obtain point estimates

and confidence intervals for quantities of the

form r ¼ E½U�=E½V�, based on i.i.d. samples

ðU1;V1Þ; ðU2;V2Þ; . . . ; ðUn;VnÞ from the joint

distribution of ðU;VÞ. In the current setting,

Ui ¼ Yiðf Þ and Vi ¼ ti.

The standard version of the regenerative method

simply applies the delta method from statistics

to estimate the ratio of interest. Specifically, suppose

that a fixed number n of cycles of XðtÞ : t � 0f g
have been observed, so that observations

Y1ðf Þ; Y2ðf Þ; . . . ; Ynðf Þ and t1; t2; . . . ; tn are

available. Set

r̂ðnÞ ¼
�YðnÞ
�tðnÞ ; (2)

where �YðnÞ ¼ ð1=nÞ
Pn

k¼1 Ykðf Þ and
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�tðnÞ ¼ 1

n

Xn

k¼1
tk: (3)

A simple application of the SLLN for i.i.d. random

variables shows that limn!1r̂ðnÞ ¼ rðf Þ a:s:; i.e., r̂ðnÞ
is strongly consistent for rðf Þ. Similarly, application

of the classical central limit theorem (CLT) to

the i.i.d. random variables Z1; Z2; . . . ; Zn – where

Zi ¼ Yiðf Þ � rðf Þti for 1 � i � n – leads to the

following CLT. Set

s2ðnÞ ¼ ðn� 1Þ�1
Xn

i¼1

ðYiðf Þ � r̂ðnÞtiÞ2: (4)

Here s2ðnÞ is a consistent estimator of the common

variance of the Zi’s. Then, if E½t21� < 1,

E Y2
1 jf jð Þ

� �

< 1, and Var½Zi� > 0,

ffiffiffi

n
p ðr̂ðnÞ � rðf ÞÞ

sðnÞ=�tðnÞ ) Nð0; 1Þ

as n ! 1, where Nð0; 1Þ is a standard (mean 0,

variance 1) normal random variable. That is, for large

n, the distribution of the estimator r̂ðnÞ is

approximately normally distributed with mean

rðf Þ and variance s2ðnÞ=ðn�t2 ðnÞÞ. These results

immediately lead to the standard regenerative

method, which proceeds as follows. Fix p 2 ð0; 1Þ
and let zp be the unique nonnegative real number

such that P �zp � Nð0; 1Þ � zp
 �

¼ p. Then

1. Select a sequence f Tk : k � 0 g of regeneration

points for the process XðtÞ : t � 0f g.
2. Simulate the process XðtÞ : t � 0f g and observe

a fixed number n of cycles defined by the random

times Tk : k � 0f g.
3. Compute the length tk of the kth cycle and the

quantity Ykðf Þ ¼
R Tk
Tk�1

f ðXðuÞÞ du for 1 � k � n.

4. Form the strongly consistent point estimate

r̂ðnÞ ¼ �YðnÞ=�tðnÞ for rðf Þ.
5. Form the asymptotic 100p% confidence interval

r̂ðnÞ � zp sðnÞ
�tðnÞ ffiffiffi

n
p ; r̂ðnÞ þ zp sðnÞ

�tðnÞ ffiffiffi

n
p

� �

for rðf Þ.
For simplicity, the key limit theorems that underlie

the regenerative method have not been presented here

in their strongest possible forms; the necessary

conditions for these theorems, and hence for

applicability of the method, can be weakened in

a variety of ways; see, e.g., Asmussen (2003) and

Glynn and Iglehart (1993).

The regenerative method also applies directly to

a wide range of performance measures other than

simple time-average limits and steady state means of

the XðtÞ process. A key observation is that the

foregoing ratio estimation methods work for any

random pair ðU;VÞ such that U and V are each

completely determined by the behavior of the XðtÞ
process within a cycle; the pair ðYðf Þ; tÞ is only one

possibility. For example, suppose that XðtÞ : t � 0f g
is a regenerative process having a discrete state space

and piecewise-constant sample paths (as in the case of

a continuous-time Markov chain). Let Ui ¼ the

number of transitions from a fixed state s1 to another

fixed state s2 during the ith cycle and Vi ¼ the total

number of state transitions during a cycle. Then by

applying the regenerative method with Ui and Vi

replacing Yiðf Þ and ti as the input data, one obtains

a point estimate and confidence interval for the

long-run fraction of state transitions that go from

s1 to s2. Similarly, performance measures such as

discounted rewards and mean time to failure fall

within the ratio-estimation framework (Haas 2002,

p. 249), as do many performance measures involving

delays in discrete-event systems. More generally, the

delta method can be applied to permit estimation of

smooth nonlinear functions of one or more time-

average limits, i.e., performance measures of the

form a ¼ gðrðf1Þ; rðf2Þ; . . . ; rðf lÞÞ, where g is

a differentiable nonlinear function and each rðfiÞ
is a time-average limit of the form discussed

previously.

When multiple sequences of regeneration points

are available, as in the CTMC setting, a natural

question is whether the choice of regeneration-point

sequence makes a difference and, if so, which

sequence to choose. In general, some quantities in

regenerative simulation are sensitive to the particular

choice of regeneration points and other quantities are

not. For example, the expected length of the

confidence interval for rðf Þ based on a simulation of

length t (see below) is asymptotically insensitive to

the choice of regeneration points as t ! 1, whereas

the variance of the confidence-interval length is

extremely sensitive to the choice of regeneration

points. See Calvin (1994) for a detailed discussion of

this issue.
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Variants

Many variants of the basic method have been

proposed. Some of these concern the run length of

the simulation. One variant, for example, runs the

simulation until a fixed (simulated) time t. Point

estimates and confidence intervals are computed as

above, except that statistics are computed for the

random number nðtÞ of cycles completed by time t.

Other variants attempt to automatically determine the

number of cycles to simulate so as to achieve a desired

precision, either based on an initial pilot sample or by

means of a fully sequential estimation procedure.

Various researchers have adapted the regenerative

method to estimate steady-state quantities other than

means, such as quantiles, central moments, discounted

costs, extreme values, and mean time to failure in

highly reliable systems. Regenerative simulation can

also be used for estimating the gradient of

a performance measure that depends on a parameter,

such as dhðyÞ=dy, where hðyÞ ¼ Ey f ðX; yÞ½ �;
see, e.g., (Asmussen and Glynn 2007, Sec. VII.4) and

(Haas 2002, Sec. 6.3.6). Here XðtÞ ) X, the function f

depends explicitly on y, and the subscript y on the

expectation operator indicates that the distribution of

the regenerative process XðtÞ : t � 0f g depends on y.

One serious concern with the standard method is

that, even if a sequence of regeneration points exists,

the regenerations will not occur frequently enough for

the method to be practical. Several algorithm variants

therefore try to increase the frequency of

regenerations. Andradottir et al. (1994) provide such

a scheme for Markov processes. Another example is

the almost regenerative method; see Calvin et al.

(2006) for a discussion and references.

A number of approaches modify the standard

estimator in an attempt to reduce the bias, using, e.g.,

jackknifing techniques. In the case of simulation until

a fixed time t, Meketon and Heidelberger (1982) show

that bias can be reduced simply by continuing the

simulation until the first regeneration point TnðtÞþ1

after time t. Results of Awad and Glynn (2007),

however, indicate that the results of such efforts can

be mixed.

Similarly, a number of authors discuss various

schemes for reducing the variance of the standard point

estimator for the regenerative method. Some of these

schemes adapt classical variance reduction methods for

i.i.d. random variables – such as control variates,

importance sampling, or conditional Monte Carlo – to

the regenerative setting. Other approaches exploit

particular properties of the system being simulated,

e.g., a queueing system or a Markov model of a highly

reliable system, to obtain a hybrid simulation-analytic

method. Several approaches that are specific to the

regenerative setting apply to simulations with multiple

sequences of regeneration points, and use resampling or

stratified-sampling methods to reduce the variance; see,

e.g., Calvin et al. (2006).

Extensions

Some key extensions to the regenerative method,

important both theoretically and practically, center

around generalizations of regenerative processes that

allow some limited dependence between cycles. One

setting in which such processes arise is related to

estimation of time-average limits for a sequence of

delays that is defined in terms of an underlying

regenerative process. It is common in such settings

that a delay can begin in one cycle and end in another

cycle, so that the delay sequence does not inherit the

regenerative property. Another setting concerns

Markov chains having a general (possibly

uncountable) state space. Such chains can be viewed

as fundamental processes underlying discrete-event

systems. E.g., generalized semi-Markov processes

(GSMPs) and stochastic Petri nets (SPNs) – both

well-studied frameworks for specification of

discrete-event systems – are defined in terms

of a general state space Markov chain (GSSMC) that

records the physical state of the system along with

nonnegative, real-valued “clock readings,” i.e., the

remaining times until various events are scheduled to

occur (Haas 2002; Shedler 1993). In general,

sequences of regeneration points for GSSMCs cannot

be directly constructed as for Markov chains having

a discrete state space, since the probability that

a GSSMC hits a given state is often 0.

In the case of delays, it can often be shown (Haas

2002, Sec. 8.2) that the delay sequence of interest is an

od(one-dependent)-regenerative process. For such

a process, the cycles are identically distributed and

one-dependent, in that the ith and ðiþ kÞth cycles are

independent unless k ¼ 1 (Henderson and Glynn 2001;

Sigman 1990). The SLLN for regenerative process

carries over unchanged to the od-regenerative setting.
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The extended regenerative method for obtaining point

estimates and confidence intervals looks almost like

the standard regenerative method, but the variance

constant appearing in the regenerative CLT contains

a covariance term that involves adjacent cycles.

Alternatively, one can apply a multiple runs method

in which cycles are simulated independently and then

“glued” together to form a (classically) regenerative

process having the same time-average limit as the

original process (Glynn 1994; Haas 2002). The

standard regenerative method can then be applied to

this latter process; if the cycle variables

Zi ¼ Yiðf Þ � rðf Þti are positively correlated, then the

multiple runs method will have higher asymptotic

efficiency than the extended regenerative method.

Analysis of GSSMCs, on the other hand, leads to the

notion of an od-equilibrium process. Such a process

satisfies all of the properties of an od-regenerative

process and, moreover, the cycle lengths are i.i.d.. It

follows that a SLLN holds (as with an od-regenerative

process) and, in principle, the extended regenerative

method and multiple runs methods may be applied to

obtain point estimates and confidence intervals for

steady-state means. Moreover, the regeneration

points form a renewal process and – under

appropriate aperiodicity and uniform integrability

assumptions – the time-average limit can be

interpreted as a steady-state and a limiting expected

value. Thus estimation can proceed in essentially the

same manner as for a classical regenerative process.

The link to GSSMCs rests on a splitting argument,

which shows that a GSSMC is an od-equilibrium

process if it is Harris recurrent; see, e.g., Meyn and

Tweedie (1993), Thorisson (2000), or Henderson and

Glynn (2001) for details. Harris recurrence generalizes

the notion of recurrence for a Markov chain with

a discrete state space, and roughly asserts that a dense

enough set of states is visited by the chain infinitely

often with probability 1. The key impediment in

practice is that actually identifying the od-equilibrium

points (i.e., the cycle boundaries) appears to be

extremely difficult in general; Henderson and Glynn

(2001) explore this issue in detail. On the other hand,

Glynn (1994) shows that all well-posed simulations

have this type of regenerative structure, and there

exist examples of Harris recurrent GSSMCs for

which od-equilibrium points can be found.

If the definition of an od-equilibrium process is

weakened by dropping the requirement that cycles be

one-dependent (so that the cycles are merely stationary

but the cycle lengths are i.i.d.), one obtains the class of

equilibrium processes (Smith 1955), also called

wide-sense regenerative processes (Thorisson 2000).

Such processes are also related to the notion of

renovating events in queueing networks (Foss and

Kalashnikov 1991). Since renewal theory can be

applied to such processes, results for steady-state

means follow as for ordinary regenerative processes.

Conditions for Applicability

From a practical point of view, it is important to

determine whether the regenerative method is

applicable to a specific simulation of interest.

Typically, some sort of modeling framework is used

to specify a simulation model of the system under

study, with either application-specific building

blocks – such as robot arms and conveyor belts for

manufacturing simulations – or general frameworks

such as networks of queues, SPNs, event graphs,

stochastic automata, and GSMPs. Thus the question

is: what are the conditions on the building blocks of

a simulation model under which steady state quantities

are well defined and the regenerative method is valid?

For systems where the regenerative method is

potentially applicable, it is often apparent that the

underlying stochastic process probabilistically

restarts, e.g., whenever the process is in a specified

state and a specified event occurs (such as at an

arrival to an empty GI=G=1 queue). It can be

difficult, however, to verify that such restarts occur

infinitely often with probability 1. It is even harder to

determine whether the random time between

successive regenerations has finite moments. Thus,

establishing the validity of the regenerative method

often amounts to establishing recurrence properties

for the simulation model of interest.

Sufficient recurrence conditions for applicability of

the regenerative method have been established in the

specific setting of closed networks of queues – see,

e.g., Kaspi and Mandelbaum (1992) – and in more

general settings such as finite-state GSMPs and

stochastic Petri nets. In these latter settings, one set

of sufficient conditions for recurrence (Glynn and Haas

2006; Haas 2002) requires roughly that (1) the system

be irreducible in that between any two states s and s0

there exists a sequence of events that leads from s to s0
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with positive probability, and (2) the clock-setting

distributions used to stochastically schedule events

have finite moments and densities that are positive on

a common interval ð0; eÞ. In this case recurrence is

established by first establishing Harris recurrence of

the underlying GSSMC using arguments based on

stochastic Lyapunov functions. An alternative

approach based on geometric trials arguments (Haas

2002; Shedler 1993) avoids the positive density

assumption but requires detailed knowledge of

system behavior.

Relation to Other Methods

In general, many steady-state simulation methods can

be viewed as exploring the behavior of the reward

rðf ; tÞ ¼
R t
0
f ðXðuÞÞ du as t becomes large. Under

fairly general conditions, there exist constants rð f Þ
and s2ðf Þ such that rð f ; tÞ=t! rð f Þ a.s. and

Var½rðf; tÞ�=t ) s2ðfÞ as t ! 1. The goal of the

simulation is to estimate the time-average limit rð f Þ
and the time-average variance constant (TAVC)

s2ð f Þ – given estimates r̂ð f Þ and ŝ2 ð f Þ of these

quantities, the reward rðf ; tÞ and its variance can then

be easily approximated as rðf ; tÞ  tr̂ðf Þ and

Var½rð f; tÞ�  t ŝ2 ð fÞ when t is large. Examples of

steady-state estimation methods include batch-means

methods, spectral methods, the autoregressive method,

and a variety of methods based on standardized time

series, including the method of integrated paths

(Calvin 2009).

Based on a simulation until time t, virtually all

steady-state simulation methods estimate rð f Þ by

�rð f ; tÞ ¼ rð f ; tÞ=t. The regenerative method

essentially uses this estimator also. Indeed, the

estimator of rð f Þ based on simulation until time t is

r̂ðnðtÞÞ, where nðtÞ is the number of regenerative cycles

completed by time t and r̂ðnÞ is given by (2). This

estimator differs from �rð f ; tÞ by a (random)

remainder term that becomes negligible for large t.

The key difference between estimation methods lies

in how they estimate the TAVC.

When XðtÞ : t � 0f g is a regenerative process, it

can be shown that, under appropriate moment and

regularity conditions, the TAVC has the

representation Var½Y1ðfÞ � rðfÞt1�=E½t1� – see

Henderson and Glynn (2001) – and can thus be

consistently estimated by s2ðnðtÞÞ=�tðnðtÞÞ, where the

quantities �tðnÞ and s2ðnÞ are defined as in (3) and (4).

Note that the TAVC and the variance term in the

previous CLT for regenerative process differ slightly,

because the CLT is expressed in terms of number of

cycles rather than simulated time. As discussed in

Henderson and Glynn (2001), the mean squared error

(MSE) of the regenerative estimate of the TAVC

typically decreases at a rate of Oðt�1Þ, whereas the

MSE for all other known methods decreases at

a strictly slower rate. On the other hand, these other

methods can often be applied in practice to simulations

for which regeneration points of sufficient frequency

cannot be found.

Concluding Remarks

The standard regenerative method can only be applied

to simulations having a sequence of identifiable

regeneration points that occur with sufficient

frequency. When applicable, however, the method

provides a clean and simple solution to the problems

of initialization bias and autocorrelation that are

fundamental to steady-state analyses. For this reason,

the regenerative method was the first mathematically

rigorous method proposed for steady-state simulation

analysis. Moreover, the point estimates and confidence

intervals obtained from the regenerative method often

have superior asymptotic properties relative to other

output-analysis methods. Virtually all well-posed

steady-state simulations have a form of regenerative

structure, namely, the od-equilibrium property,

making extensions of the standard regenerative

method to this setting an important research area.

See

▶ Simulation of Stochastic Discrete-Event Systems

▶Variance Reduction Techniques in Monte Carlo

Methods
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Regression Analysis

Irwin Greenberg

George Mason University, Fairfax, VA, USA

Introduction

In almost all fields of study, the researcher is frequently

faced with the problem of trying to describe the

relation between a response variable and a set of one

or more input variables. Given data on input (predictor,

independent) variables labeled x1, x2,. . ., xp and the

associated response (output, dependent) variable y,

the objective is to determine an equation relating

output to input. The reasons for developing such an

equation include the following:

1. To predict the response from a given set of inputs.

2. To determine the effect of an input on the response.

3. To confirm, refute, or suggest theoretical or

empirical relations.

To illustrate, the simplest situation is that of a single

input for which a linear relation is assumed. Thus, if

the relation is exact, it is given for appropriate values

of b0 and b1 by

y ¼ b0 þ b1 x: (1)

The determination of b0 and b1 in this case is easy,

requiring only two distinct pairs of observations

(x1, y1) and (x2, y2).

In general, the problem is more complex in that the

response is not given exactly by (1). This may be true

because, although the relation is theoretically given by

(1), the observations are not measured without error.

Alternatively, there may be no theoretical justification

for an exact linear relation but it is used as an

approximation.

A model, commonly used in both cases, is

y ¼ b0 þ b1 xþ e: (2)
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Here e denotes the measurement error or other

random fluctuations in y which cause the response to

depart from (1); it is assumed that the input variables

are either specified by the user or measured without

error.

The appropriate analysis of (2) is dictated by the

assumptions made on the distribution of errors.

Typically, it is assumed that the errors have mean

zero and variance s2 and that the errors associated

with distinct observations are uncorrelated. That is, if

a very large number of pairs (xi,yi ) were observed for

a situation modeled by (2), then (a) the errors

ei ¼ yi � b0 � b1 xi (3)

would average to zero; (b) the error associated with

one observation would in no way influence any other

error; and (c) the mean of the squares of the errors

would be s2.

Based on n pairs of observations (xi, yi ), i¼ 1,. . .,n,

the objective of the analyst is to estimate b0, b1, and s
2

and to make inferences about these parameters. In

addition, it may be desirable to indicate the precision

of a prediction obtained for a given input when the

estimates b0 and b1 of b0 and b1 are used in (1). These

inferences require further specification of the

distribution of the errors. The classical results are

developed assuming a Gaussian (or normal) distribution.

A generalization of this simple model is the

multiple linear regression model

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bp xp þ e: (4)

Here the assumption on the errors is the

same as given above and the analysis is to be based

on n(p + 1)- tuples (x1i, x2i,. . .,xpi, yi ), i¼ 1,. . ., n. The

sense in which (4) is a linear model must be

emphasized. As written, the average response in (2)

is a linear function of x and in (4) is a linear (planar)

function of x1,. . .,xp, but this is not the essential

linearity. The critical feature is that the average

response is a linear function of the coefficients b0, b1,

. . ., bp The variables indicated by y and xi, i ¼ 1, . . ., p

may represent functions of the variables which are

actually observed as long as these functions do not

depend on unknown parameters. For example, themodel

log z ¼ b0 þ b1=wþ e (5)

does not represent z as a linear function of w, but by

letting y ¼ log z and x ¼ 1/w this model is seen to be

equivalent to (2). Similarly, the polynomial model

y ¼ b0 þ b1xþ b2x
2 þ e (6)

is a special case of (4) with x1 ¼ x and x2 ¼ x2.

Classical Least-Squares Analysis

The estimation of the unknown parameters in the

general linear regression model is most frequently

achieved by the method of least squares. Given n

observations (or cases) (x1i, x2i,. . .,xpi, yi ), i ¼ 1, . . ., n,

let the ith residual be

ei ¼ yi � b0 �
Xp

j¼1

bjxij:

The method of least squares determines values, bj,

as estimates of bj so as to minimize the sum of squared

residuals. The estimated regression function (predicted

value) for the ith set of inputs, ŷi, and the estimated

residual ri are given by

ŷi ¼ b0 þ
Xp

j¼1

bjxij

ri ¼ yi � ŷi

(7)

There are essentially two major advantages of this

method. The first is computational, since the method

only requires the solution of a system of linear

equations. The second is statistical, in that the

estimates possess desirable small sample properties.

In particular, the bj are unbiased estimates of the bj
which have minimum variance in the class of

estimators which are unbiased. Further, the

assumption of normality allows for simple inferences

on the bj The estimate of s2 is also unbiased and

minimum variance.

Note that these properties refer to the (x1, x2,. . ., xp, y)

relationship and not to the underlying variables. For

example, the b0 and b1 values derived to estimate the

b0 and b1 of (5) provide unbiased estimators of log z, not

of z, and minimize the sum of the squares of the

deviations from the linear plot of log z vs. 1/w, not from

the curvilinear plot of z vs. w.
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With the advent of high-speed computing, the

computational advantage is less compelling than in

the past. This has encouraged a study of alternatives to

least squares, some of which will be described

subsequently.

Departures from the Classical Assumptions

The standard analysis assumes that the model is correct

and that the data are good. In practice, this is rarely the

case and it is essential that the violations be detected

and evaluated. Some of the main problems are the

following:

1. Incorrect functional form for the regression

function. Additional variables and/or different

functions of the variables may be required.

2. Violations of the assumptions of independence,

constant variance, and normality of errors.

3. Outliers and extreme points. The former are

observations in which the response is abnormally

large or small and the latter are cases in which the

inputs are different from the rest of the data.

4. Multicollinearity among the input variables, that is,

nearly exact linear relations among subsets of the

input variables. This includes the case where one of

the inputs is nearly constant.

One or more of these problems may completely

invalidate the analysis. Several additional indicators

have been proposed to address these possibilities.

Unfortunately, there are no guaranteed solutions to

any of the problems cited. The following remedies

are typical but must be used with caution.

1. Nonuniform residual plots may suggest nonlinear

functions. Individual points that are outstanding

may suggest other variables that could be

included, especially categorical variables defining

subgroups of cases.

2. The most common cause of variance

inhomogeneity is that the variance is proportional

to one of the inputs. Division of the equation by this

variable, or some power of it, will help. Normality

may be achieved by transformations.

3. Outliers and extreme points may be deleted from

the analysis but care must be taken, as these may be

valid, informative observations. Alternatively, one

of the robust procedures might be used.

4. An eigenvector analysis may identify the

multicollinearity, but the action to be taken depends

on the cause. If the linear relation is inherent in

the system being modeled and the relation is strong,

it may be appropriate to eliminate one of

the variables in the relation. If the apparent linear

relation is due to the peculiarities of the particular

sample, then, if possible, additional data should

be taken which are more uniformly spread over

the sample space. Alternatively, one might

simulate this by using ridge regression or a related

method.

Alternatives to Classical Least Squares

Since least-squares analysis is vulnerable to departures

from the basic assumptions, several alternatives have

been suggested.

One of best known of these alternatives is robust

regression, where the basic idea is that observations

with large residuals are given less weight and hence

become less influential.

When multicollinearities are present, least squares

estimates of the coefficients may be abnormally large

or even have the wrong sign. Ridge regression is the

method that effectively adjoins fictitious data.

One of the oldest modifications of least squares is

that of eliminating variables. This has been a confusing

and controversial topic primarily because it has often

applied indiscriminately to data that have not been

subjected to proper diagnostics. Variable elimination

only should be applied after the data have been

examined for extremes, outliers, and

multicollinearities, and appropriate action has been

taken. Variables that are then not contributing to the

description of the response may be eliminated.

An alternative to eliminating variables,

implemented in most of the popular statistical

software packages, is stepwise regression. The most

significant of the xi are determined and the parameters

of (1) are estimated. New x variables are added to the

equation until the resulting decrease in the portion of

the variance of errors not explained by the regression

becomes statistically insignificant.

See

▶Exponential Smoothing

▶Time Series Analysis
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Reinforcement Learning

The name used by the artificial intelligence community

for approximate dynamic programming.

See

▶Approximate Dynamic Programming

Relational Database

▶ Information Systems and Database Design in

OR/MS

Relative Costs

▶ Prices

Relaxed Problem

The term given to a constrained optimization

problem in which some of the constraints have been

weakened or relaxed. In particular, it is applied to an

integer-programming problem in which the variables

are no longer restricted to be integer. The objective

function of the relaxed problem serves as a bound for

the original problem.

See

▶ Integer-Programming Problem

Reliability

The ability of a component or system to be operable

when called upon to do its intended job. Reliability is

most often quantified as the probability that the

component or system has not failed (is alive) at

a particular time: R(t) ¼ Pr{ lifetime > t} ¼ 1 � F(t),

where F is the cumulative distribution function of the

lifetime of the component or system. This reliability

function is often also called the survival function.

See

▶ Failure-Rate Function

▶Reliability Function

▶Reliability of Stochastic Systems

Reliability Function

The reliability at time t, R(t), is defined as

Pr{lifetime > t} ¼ 1 � F(t), where F is the

cumulative distribution function of the lifetimes. Also

called the survival function.

See

▶ Failure-Rate Function

▶Reliability

▶Reliability of Stochastic Systems

Reliability of Stochastic Systems

Donald Gross

George Mason University, Fairfax, VA, USA

Introduction

Quality is a ubiquitous concept, from newer

developments such as quality circles and total quality

management to old standbys such as quality control

and quality assurance. Intricately related to quality,
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in fact, a necessary ingredient, is reliability, loosely

defined as the probability that a system, subject to

random failures, will perform properly over some

time span of interest. This definition shall be made

more precise in the following. One might be able to

have reliability without quality, but one can never have

quality without reliability.

The major issue here is a consideration of the

probability structure of systems made up of

individual components, each with a known lifetime

density, say, fi(t). The two basic combinations of

system design are the series and parallel systems,

with more complex structures built up from these. By

series it is meant the arrangement whereby any single

item’s failure leads to total system failure. For the

parallel case, all component devices must fail for

total system failure.

There are a number of important variations on the

parallel theme. They differ in the manner in which the

set of devices are permitted to operate simultaneously

and if not, what form of switch is necessary to call upon

any alternative. When all are going together, such

a system is called parallel redundant. When items are

not in use but waiting to be switched to use if needed,

and the items not in use do not deteriorate with age, the

structure is said to be a cold standby system.

The hybrid combination which finds the standby

elements possibly aging at a slower pace than if they

were in use is called a warm standby system. If

items not in use age at the same rate as they do when

in use, then the system is often referred to as a hot

standby system and is equivalent to a parallel

redundant system as long as the switching

mechanism which brings the standby item on line

when the operating item fails is itself 100% reliable

(zero probability of failing).

Lifetime Probabilities

The direct application of the basic laws of probability

permits the easy derivation of the lifetime probabilities

associated with each of these fundamental structures.

The cumulative distribution function (CDF) for the

simple series system without maintenance is

FðtÞ ¼ 1�
Yn

i¼1

½1� FiðtÞ�

where Fi(t) is the lifetime CDF of the ith component.

This result is made slightly more compact by defining

a reliability function R(t) as the complementary CDF,

1 � F(t), namely, the probability of a lifetime longer

than t. Then the system reliability may be written in

terms of the component device reliabilities as

RðtÞ ¼
Yn

i¼1

RiðtÞ:

In the special case where each component’s life

follows the exponential distribution with parameter li,

RðtÞ ¼ exp
Xn

i¼1

lit

 !

:

For the parallel redundant (or hot standby with

a 100% reliable switch) case, the system lifetime

CDF is

FðtÞ ¼
Yn

i¼1

FiðtÞ

and thus, its reliability function is

RðtÞ ¼ 1�
Yn

i¼1

FiðtÞ:

In the event that the devices are independent and

identically distributed exponential distributions with

parameter l, then

FðtÞ ¼ ½1� expð�ltÞ�n:

In the special case where n ¼ 2, the exponential

system has reliability function

RðtÞ ¼ expð�ltÞ½2� expð�ltÞ�:

It is interesting then to compare this result to that for

the two-unit exponential parallel cold standby 100%

reliable switch system. The latter can be derived as

the sum of two probabilities: the probability that

the original component lives past time t plus the

probability that the original component fails in some

time v, 0 � v � t, and the standby component lives

longer than t � v, integrated over v from 0 to t.
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This cold-standby reliability, which, for the case of

identical exponential components, turns out to be

R(t) ¼ (1 + lt)exp(�lt), is greater than that of the

redundant structure for all values of l. This result can

be easily extended to general n. One can also build in

a probability of switch failure for the standby case and

observe the effects of an unreliable switch on the

relative merits of standby versus redundant systems.

If p is the probability that the switch will work, the

reliability is adjusted to R(t) ¼ (1 + plt)exp(�lt).

Figures 1, 2, and 3 show plots of R(t) versus t for

p ¼ 0.5 and 1, respectively. When the probability of

the switch working is zero, the graph shows that the

parallel redundant case is superior. When the

probability of the switch working is 1, the cold

standby case is superior, as seen above. However,

when the switch probability is between 0 and 1, as it

is for the 0.5 case, there is a point of time where the

reliabilities of the parallel redundant and the cold

standby cases cross.
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N-Out-of-K Systems

The parallel redundant system is generalized to define

failure if more than n � k of the n components are

not working (less than k working). So R(t) ¼ Pr{at

least k of n are up}. Let p ¼ Pr{component works

until t ¼ exp(�lt)}. Then, from the binomial

probability law,

RðtÞ ¼
Xn

i¼k

n

i

	 


exp �ltið Þ½1� expð�ltÞ�n�i:

Maintained Systems

In the typical reliability application, failed units are

often put into repair. As a first illustration of such

a maintained system, consider a single device with

time-to-failure exponential, mean 1/l, and the time to

repair exponential, mean 1/m. It then turns out in this

simple single-component system that the probabilities

that the system is operating or is down at time t,

respectively, are

p0ðtÞ ¼
mþ l exp½�ðlþ mÞt�

lþ m

and

p1ðtÞ ¼
l 1� exp½�ðlþ mÞt�f g

lþ m
:

Thequantityp0(t) isoftencalled thesystemavailability

(written asA(t) since it is the probability that the system is

available at time t). The long-run average availability is

computed from A(t) as t!1 to be A¼ m /(l + m).

Next, consider a two-item series systemwith identical

exponential failure distributions and one exponential

repair facility. The time-dependent probabilities are

found as the solution to a 3 � 3 system of difference/

differential equations; here, only the limiting probabilities

are treated. The steady-state availability is the limiting

fraction of time no devices are down and is given by

A ¼ m2/(2l2 + 2lm + m2). The limiting probabilities that

one and two units are down are respectively given as

p1 ¼
2lm

2l2 þ 2lmþ m2

p2 ¼ 1� p1 � A

The final maintained system discussed is the simple

two-item exponential parallel redundant structure with

repair. Here

A ¼ m2 þ 2lm

2m2 þ 2lmþ 2l2

which is clearly larger than that just presented for the

series system.
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The Structure Function

For more complicated systems of components, what is

commonly called the structure function is a convenient

vehicle for characterizing the reliability. First, for any

component i, define a binary indicator random variable

Xi as 1 if the device is operating and 0 otherwise. The

structure function of a system of n components is then

written as f(X1,. . ., Xn ) and will likewise be 1 if the

system is operating and 0 otherwise. If all the

components are queried at time t, then the system

reliability R(t) at that point is the probability that

f ¼ 1.

For a full series system then, all Ximust be 1 forf to

be 1, so that

fðX1; . . . ;XnÞ ¼
Yn

i¼1
Xi:

In the pure parallel case, f¼ 1 if any Xi¼ 1, so that

fðX1; . . . ;XnÞ ¼ 1�
Yn

i¼1

ð1� XiÞ:

The beauty of the structure function is its ability to

model the most complex of systems in a fairly natural

Boolean way. For example, consider a structure of five

components with 1 and 4 in series, parallel with 2 and 5

in series, and also allowing the combination 1, 3, 5 for

operation (together called a bridge structure). The

system operates as long as at least one of these three

combinations is up. Thus

fðX1; . . . ;XnÞ ¼ 1� ð1� X1X4Þð1� X2X5Þð1� X1X3X5Þ:

As a general rule, attention is limited to structures

that make sense. A system is coherent if

(a) its structure function f is increasing in each

argument (that is, f improves as X goes to 1 from

0); and

(b) each component is relevant (that is, its reliability

affects system performance).

A fairly complete theory has been developed and is

given in Barlow and Proschan (1975).

There is quite an extensive literature on

systems reliability and related problems. Barlow and

Proschan (1975) and Barlow (1998) are key references,

and further material of special importance on systems

problems may be found in Kaufmann et al. (1977).

Introductory material on systems reliability may also

be found in Chapter 12 of Hillier and Lieberman

(1990) and Chapter 9 in Ross (2010), with a more

advanced treatment in Chapter 9 of Crowder et al.

(1991).

See

▶Distribution Selection for Stochastic Modeling

▶Markov Chains

▶Markov Processes

▶Quality Control

▶Queueing Theory

▶Redundancy

▶Total Quality Management
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Reneging

In queueing, when customers get impatient and

leave their queue before their service is begun.

See

▶Queueing Theory
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Renewal Equation

▶Renewal Process

Renewal Process

Igor Ushakov

Qualcomm Inc., San Diego, CA, USA

A renewal process is a stochastic point process

{N(t), t � 0}, where N(t) ¼ number of occurrences

by time t, which describes the appearance of

a sequence of instant random events where the times

between occurrences (e.g., called interarrival times in

queueing theory) are a sequence of independent and

identically distributed (i.i.d.) non-negative random

variables. It is common to write the interoccurrence

distribution function as F(t) and its density (if it exists)

as f(t), with expected value 1/m. The Poisson

process represents a particularly important renewal

process in which the intervals between occurrences

are exponentially distributed (Cox 1960; Cox and

Isham 1980; Feller 1966; Ross 1996; Smith 1955;

Wolff 1989).

The renewal equation for the process expectation

(or renewal function) H(t) ¼ E[N(t)], plays

a fundamental role in all renewal problems:

HðtÞ ¼ FðtÞ þ
Z t

0

H ðt� xÞ dF ðxÞ:

The derivative of H(t), h(t) ¼ dH/dt, is often called

the intensity function and has a simple interpretation:

h(t)dt is the approximate probability of an occurrence

within the time interval [t, t + dt].

One can write an equation for the intensity function

similar to the one above:

hðtÞ ¼ f ðtÞ þ
Z t

0

h ðt� xÞ dF ðxÞ:

With t increasing, it follows that

lim
t!1

H ðtÞ
t

¼ 1

m

In a physical sense, this means that, over

a large interval of size t, the mean number of

events is inversely proportional to the expected

interarrival time. This is usually referred to as

the elementary renewal theorem (Ross 1996;

Wolff 1989).

Very close to the previous statement is the

following. If the renewal process is formed by

continuous random variables, then

lim
t!1

h ðtÞ ¼ 1

m

This reflects the fact that with increasing t, the

renewal process becomes stationary and its intensity

becomes independent of the current time.

A further generalization comes from

Blackwell’s Theorem, which states for continuous

interrenewal-time random variables and an arbitrary

interval width t � 0 (Feller 1966; Ross 1996;

Wolff 1989):

lim
t!1

½H ðtþ tÞ � H ðtÞ� ¼ t

m

The next important result is contained in Smith’s

Theorem (1955), also known as the key renewal

theorem (Ross 1996; Wolff 1989). If the

renewal times random variables are continuous

and V(t) is a monotone non-increasing function,

integrable on (0, 1), then

lim
t!1

Z t

0

V ðt� xÞ dH ðtÞ ¼ 1

m

Z 1

0

V ðtÞ dt:

The actual choice of the function V(t) depends on

the particular problem of concern.

Another special point process can be formed by

two independent subsequences of random variables

that alternate, where a realization of such a process

has the sequence X1, Y1, X2, Y2, . . . . Such a process

is called an alternating renewal process when the X

and Y subsequences are themselves ordinary

renewal processes. An example of such a process

is the modeling of equipment failure and repair

over time.

Renewal Process 1297 R

R

http://dx.doi.org/10.1007/978-1-4419-1153-7_880


See

▶ Point Stochastic Processes

▶ Poisson Process

▶Queueing Theory

▶ Stochastic Model
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Representation Theorem for
Polyhedral Set

Given a nonempty polyhedral set S, then a point X is in

S if and only if X can be expressed as a convex

combination of the set’s extreme points plus

a non-negative combination of its extreme directions.

Research Analysis Corporation (RAC)

▶Operations Research Office and Research Analysis

Corporation

Research and Development

John C. Papageorgiou
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Introduction

Products and services have a finite life cycle, and the

speed with which they go through their life cycle

stages has been continuously increasing. Through

the functions in an organization called research and

development (R&D), new products and services are

developed, existing ones are improved, and the

respective transformation processes are improved to

increase efficiency and minimize cost.

The worldwide distribution of R&D performance is

highly concentrated in several industrialized nations,

but large emerging economies like China, India and

Brazil have been added to the countries engaged in

R&D performance. Part of the R&D activity is aimed

at pure research, i.e., research meant for pursuit of

knowledge. This research takes place mainly in

research laboratories of universities, research centers,

government agencies, and major corporations. The

other part of R&D activity is made on applied

research, in which existing knowledge is used to

design new products, services and processes, as well

as on development, i.e., the conversion of the results of

applied research into the actual transformation systems

that will produce the new products and services.

In industry, ideas for R&D projects originate

primarily in a firm’s R&D department. However,

other departments such as marketing, production

and engineering are frequent contributors, as is

top management. In some cases, suppliers, clients/

customers, and government departments are sources

of ideas. R&D project management is often difficult,

due to the high degree of uncertainty involved, and

OR/MS has developed several approaches to help

R&D managers. OR/MS has addressed mainly two

major problems in R&D management: (1) project

evaluation, selection and resource allocation; and

(2) project planning and control.

R&D Project Selection

The R&D project evaluation, selection and resource

allocation problem deals with the evaluation of

candidate R&D projects, and the selection of a subset

of such projects to which available R&D resources

(manpower, funds, equipment and facilities) will be

allocated. Because of the investment commitment, the

uncertainties involved, and the impact of the decisions

upon the future of the organization, project selection is

a very important and difficult problem. As a result,

hundreds of papers have been published discussing

the problem and suggesting various approaches for its

R 1298 Representation Theorem for Polyhedral Set

http://dx.doi.org/10.1007/978-1-4419-1153-7_762
http://dx.doi.org/10.1007/978-1-4419-1153-7_200606
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_200812
http://dx.doi.org/10.1007/978-1-4419-1153-7_713
http://dx.doi.org/10.1007/978-1-4419-1153-7_713


solution. Early approaches to the solution of the project

selection problem were reviewed in several literature

survey papers (Augood 1973; Baker and Pound 1964;

Baker 1974; Baker and Freeland 1975; Liberatore and

Titus 1983; Souder 1972; Souder and Mandakovic

1986). Since then, researchers have proposed several

other approaches that introduce improvements over the

earlier approaches. Only a small number of all the

approaches that have been proposed can be discussed

here, indicating the evolution of this area of OR/MS.

Before World War II, the project selection problem

was non-existent. Companies were relatively small and

competition was limited, which resulted in a limited

need to develop new products. There was no

distinction between “research” and “development,”

and the relevant function was not viewed as

important. Usually, the chief technical officer would

come up with a production related project and pursue it

through its implementation. It was after World War II

that the business environment changed, increased

competition resulted in increased demand for new

products/services and improved processes, and R&D

project selection became a problem.

Project evaluation and selection methods started

appearing in the mid-1950s. The first methods used,

called checklists or profile charts, are based

on a checklist of criteria. The checklist consists of

factors considered to be important to the success or

failure of the project, and is used as the basis on which

each project is subjectively rated by one or more

individuals. The checklist may include both

economic and non-economic factors, such as social

impacts and environmental concerns. The degree of

favorableness of each criterion is checked for each

project, with the objective to derive an overall pattern

for each project and determine its degree of

favorableness.

Because this method does not differentiate among

the importance of different criteria and is based on

qualitative judgment, scoring models were later

developed. These models use weights assigned

to both the different criteria and the degree of

favorableness of each of them for each project. As

a result, a weighted score is computed for each

project. For the project scores to be comparable,

similar criteria have to be used for all the projects.

Different methods have been proposed for deriving

the set of weights representative of the preference

function of the particular decision maker, such as

having the decision maker rank order the criteria or

make comparisons of different pairs of projects.

Since these methods give dimensionless

results, benefit-cost ratio approaches were developed.

The different costs and benefits associated with

a project, including non-economic costs and benefits,

are expressed in terms of a common measure and their

present value computed and expressed as a ratio. Risk

factors can also be included in terms of probabilities

of research, development and market success.

For a project to be considered, its benefit-cost ratio

should be greater than one.

The above methods, usually called classical

methods, have been used extensively in R&D project

evaluation and selection due to their simplicity and

ease of use. They can prove useful in preliminary

project analysis and screening. However, they cannot

solve the project selection problem because they

ignore several key aspects. For example, that projects

are selected in sequences rather than individually,

where the outcome of one affects that of another.

Other ignored aspects include the dynamic nature of

the R&D environment in terms of project funding at

different levels, in which case the value and

preferability of a project is a function of its funding

level; dynamic resource constraints; and that the set of

candidate projects continuously changes over time.

Decision trees were then introduced to deal with

sequences of interrelated projects. A decision tree

consists of decision nodes and event nodes from

which alternative decisions and events, respectively,

are branched out. Economic consequences expressed

in monetary or utility values for decisions, and

probabilities for events are added and, starting at the

end of the branches and working backwards, the

expected payoff for a sequence of decisions is

computed. The optimum sequence of decisions

(optimum sequence of projects/sub-projects) can thus

be identified. Since the number of events that can be

branched out of an event node is limited, stochastic

decision trees were developed, where the event nodes

are represented by a probability distribution. However,

resource constraints cannot be included in a decision

tree, which is a serious drawback, amongst others.

With the advent of OR/MS and the wide availability

of computers, different portfolio models were

developed to overcome the shortcomings of the

above methods. Several types of mathematical

programming (linear, integer, mixed integer,
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zero-one, nonlinear, dynamic, goal, multi-objective,

and stochastic) have been used to select a subset of

projects that maximizes a particular objective without

violating a set of constraints. The objective is usually

to maximize the expected net present value of the

subset of projects. In addition to providing the

optimum portfolio of R&D projects and allocating

the budget among them, mathematical programming

presents the additional advantage of making sensitivity

analysis easy, suggesting ranges of solutions, and

answering what-if types of questions. However, the

optimality of the portfolio is a function of the

assumptions associated with each particular type of

mathematical programming and the estimates used in

the input data. This, combined with the difficulty on

the part of decision-makers in understanding the

mathematical aspects of the models, has resulted in

limited reported successes of the portfolio models in

terms of actual implementation.

During the 1970s, issues regarding the usefulness of

the existing methods for solving real life R&D project

selection problems and their acceptability by R&D

managers were widely discussed. Two studies by

Baker (1974) and Baker and Freeland (1975)

identified several limitations of the methods that had

been proposed up until that time. Such limitations

included the inadequate treatment of uncertainty and

risk with respect to benefit contribution and parameter

estimation; project and parameter relationships with

respect to both benefit contribution and resource

utilization; multiple, interrelated decision criteria; the

time variant property of data and criteria; and

the problems associated with the continuity in the

research program and the research staff.

Further limitations were the lack of explicit

recognition of the experience and knowledge of the

R&D manager; the non-monetary aspects such as

establishing and maintaining a balance between basic

and applied research, product and process

development, in-house and contracted projects,

improvement and breakthrough work, and different

levels of risk-pay-off opportunities; the perceptions

held by R&D managers that the models are difficult

to understand and use; and the importance of certain

individuals in the R&D organization.

Other limitations include the failure to treat the

problem as an intermittent stream of investment

alternatives and as a hierarchical diffuse decision

process; to include in the model the timing of

decisions, the generation of additional alternatives,

and project recycling by gathering new information,

reformulating criteria, variables and constraints,

and defining new alternatives; and to recognize

the diversity of projects from basic research to

engineering.

Several OR/MS researchers tried to develop

approaches that do not have these limitations. As

a result, different models have been proposed which

take into consideration a particular aspect of the

shortcomings of the existing methods. Among

the approaches that have been developed, the

emphasis has been on multi-objective mathematical

programming methods. In this respect, goal

programming methods have been developed, where

several goals are considered and expressed as

constraints, with deviational variables used to express

under-achievement or over-achievement of the goals.

The objective function minimizes these deviations.

The goals can be prioritized, so that their

achievement is considered according to their priority

sequence.

As difficulties arise in setting the aspiration levels

of the goals and in including tradeoffs among goals,

multi-objective linear programming methods were

used, including multi-attribute utility theory

(Ringuest and Graves 1989; Mehrez et al. 1982). In

applying multi-attribute utility theory, utility values

are assigned to each possible subset of projects for

each of the goals and, using integer programming,

a list of all non-dominated solutions is generated,

consisting of solutions in which the performance in

one goal cannot be improved without sacrifice in one

or more other goals. One drawback is that the list of

non-dominated solutions can be very large in a real life

situation, creating a complex selection problem for the

decision-maker. Screening methods that have been

developed could provide some help in selecting one

of the non-dominated solutions.

Several researchers have proposed multi-criteria

and multi-objective approaches. Stewart (1991)

developed a multi-criteria decision support system

for R&D project selection. Medaglia, Graves and

Ringuest (2007) have proposed an evolutionary

method with partially funded projects, multiple

(stochastic) objectives, project interdependencies

(in the objectives), and a linear structure for resource

constraints. Stewart and Mohamed (2002) have

developed a decision-making framework for senior
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executives when selecting innovative IT/IS projects,

based on the multi-criteria utility theory combined

with information economics principles. Guikema

and Milke (2003) have proposed a multi-attribute

optimization model based on a combination

of multi-attribute utility theory, mixed-integer

optimization, and statistical analysis. Gabriel

et al. (2006) have developed a multi-objective,

integer-constrained optimization model using

probability distributions to describe costs and

the Analytic Hierarchy Process to determine the

criterion rank; it integrates multi-objective

optimization, Monte Carlo simulation, and the

Analytic Hierarchy Process.

Most of the suggested models that are based

on mathematical programming techniques have

almost exclusively dealt with R&D activities at the

micro-level. Oral et al. (1991) have proposed

a methodology for collective evaluation and selection

of R&D projects at the macro-level (sectorial or

national), where the experts participating in the

evaluation and selection process are also

stakeholders. The evaluation and selection process is

based on the “relative values” of a given R&D project

from the viewpoint of the other R&D projects,

determined through mathematical programming.

Oral et al. (2001) have developed a methodology

for an international organization which has more

than a dozen country members whose units

or divisions have different values and preferences;

the methodology is based on a multi-criteria

disaggregative approach used as an instrument rather

than as a descriptive tool that provides a platform to

maximize the level of consensus among the member

countries.

As projects may depend upon each other with

respect to several factors such as cost and technology,

cross impact may be significant. Cho and Kwon (2004)

have developed an extended model of the

Analytic Hierarchy Process called Cross-Impact

Hierarchy Process through which a number of

dependent technological alternatives are ranked.

Kwon et al. (2004) have constructed a model which

evaluates R&D projects considering cross impact

among them, and selects proper projects to utilize

resources efficiently as well as to maximize

efficacy of investments. Wey and Wu (2007) have

proposed a project selection methodology that

reflects interdependence among evaluation

criteria and candidate projects using the Analytic

Network Process within a zero-one goal

programming model.

Mittal and Kanda (2009) use two-phase heuristics

based on a two-stage prioritization process of activities

for resource allocation. At any decision point the

projects are first prioritized as per project selection

rule and eligible activities in the projects are

then prioritized as per activity selection rule. These

heuristics are categorized into look-ahead and

non-look-ahead type based on the project selection

rules used.

Mohanty et al. (2005) have applied a Fuzzy Analytic

Network Process along with fuzzy cost analysis

in selecting R&D projects. Fuzzy set theory has

been incorporated to overcome vagueness in the

preferences of the various stakeholders in an

organization, which can differ and often hinder the

attainment of consensus and coordination.

A different philosophy in approaching the problem

of R&D project selection and resource allocation has

been proposed by including in the decision making

process the people at every level of the organization

who would influence the project selection process. As

a result, Behavioral Decision Aids (BDA) have been

proposed, that use the output of project selection

models, not as a solution to the problem, but as aids

to communication and interaction among the parties

involved to achieve a consensus. One such approach is

Q-Sorting, where each individual is given a stack of

cards, each bearing the title or number of one project.

Through a series of sorting operations and the use of

a specific criterion, the projects are sorted into five

piles ranging from very high level of the criterion to

very low. Another BDA approach is the Nominal

Interactive Decision Process, used in combination

with various other methods depending on the type of

the project, where consensus is built using a modified

Delphi approach.

The Analytic Hierarchy Process has also been used

in what is called Decentralized Hierarchical Modeling,

where the involved parties communicate electronically

until they reach a consensus on the project portfolio.

The dialogue takes place among the different

hierarchical levels. Top management initiates the

process through budgetary guidelines sent to the

divisional managers; the divisional managers then

send the guidelines, maybe modified, together with

suggested prioritized program areas to the R&D
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managers; and the R&D managers and their staff

propose an R&D portfolio and send it up the

hierarchy. The R&D people, in coming up with the

portfolio, may use any of the available OR/MS

techniques. This process may be repeated several

times. Back and forth communication among the

different hierarchical levels may take place at any

stage of the process.

Another multi-criteria decision approach to R&D

project selection has been applied by Henig and Katz

(1996). It is based on an objective investigation into the

impact of alternatives (portfolios of projects) on

attributes and to the subjective evaluation of the

decision-maker’s preference system. The main stages

of this application are: identifying the initial set of

projects, their important attributes, and criteria

associated with them; consolidating or revising

attributes based on the criteria; and evaluating

existing and searching for new alternatives based on

the reevaluated attributes. This process goes through

several iterations and helps the decision-maker to

better understand the nature of the problem. The

“objective hierarchy” (Keeney and Raiffa 1976) of

the decision maker is thus generated and the best

alternative can then be found.

There have been a few approaches that have been

proposed for large-scale R&D program planning.

Such programs involve multiple interdependent

technologies. They are initially defined in terms of

broad, qualitative policy directives, serve broad

constituencies of sponsors, and R&D is performed at

separate external organizations or at remote sites

within an organization. Decisions regarding resource

allocation among projects, establishment of objectives,

assignment of projects to program sub-divisions,

and scheduling of the projects need to be made. For

a decision-support approach and pertinent

bibliography see Mathieu and Gibson (1993).

Hueth et al. (2008) have proposed a mixed integer

programming model that selects projects worthy of

investment in a public utility company (a major Latin

America water and sewage company). It maximizes

the weighted sum of normalized economic and

financial net present values and a social impact index.

Buchanan and Vanderpooten (2007) describe a project

selection methodology which incorporates a decision

support tool (ELECTRE III), developed by

a New Zealand electric generator, used in ranking

and selecting projects.

Project Planning and Control

The second major area of R&D management to which

OR/MS has made a significant contribution is project

planning and control. Several approaches have been

developed in this area as well.

One of the first approaches is Program Evaluation

and Review Technique (PERT), developed in 1958 for

planning and controlling the Polaris Fleet Ballistic

Missile project by the Navy Special Projects Office

and Lockheed Aircraft Corporation, in cooperation

with Booz, Allen and Hamilton. In using PERT, the

project is represented by a network, consisting of

events (nodes) standing for specific accomplishments

at a point in time, or milestones, and activities (arrows)

representing the actual performance of a task. The

events and activities follow one another in their

proper technological and logical sequence, and the

PERT network, also called the precedence

relationships network, has a beginning event and an

ending event. Activities consume time and resources

such as manpower, materials, equipment, funds, and so

on, and each activity is represented by the beginning

and ending nodes. This means that only one activity

can connect two nodes and that the network cannot

have a loop.

Activity times are assumed to follow the beta

distribution and three time estimates are given

for each activity: an optimistic standing for the

practically minimum time, a most likely standing for

the best estimate of time, and a pessimistic standing

for the practically maximum time. On the basis of

these estimates, the mean and variance for each

activity time is computed, the longest time path is

determined (critical path), and the probability of

reaching an event or of completing the critical path

by a certain scheduled time is computed. The latter is

usually taken as the probability of completing the

project. Other important information derived from

PERT is the earliest start and finish time, the latest

start and finish time, and the slack time for each

activity. Activities with zero slack time are

considered critical activities that require special

monitoring to avoid delays in the completion of

a project.

At about the same time of the PERT development,

the Critical Path Method (CPM) was developed

in 1957 at the du Pont Company, in consultation

with Remington Rand, in scheduling maintenance
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shutdowns of chemical processing plants. PERT

is a probabilistic approach whereas CPM is

deterministic. CPM uses normal and crash time

estimates for each activity, and their associated costs.

The normal time estimate would be equivalent to

PERT’s expected time, and the crash time would be

the minimum possible time needed to complete the

activity irrespective of cost increases. Aside from

these differences, CPM is almost identical to PERT,

and for this reason the two techniques are referred to as

the PERT/CPM technique. PERT and CPM have

generated several variations, modifications, and new

techniques with added capabilities and wider

applications.

A number of project management software have

been developed and continue being developed and

updated. Mellentien and Trautmann (2001) have

evaluated the resource allocation capabilities of a few

of them: Acos Plus 1.8.2, CA SuperProject 5.0a,

CS Project Professional 3.0, MS Project 2000, and

Sctor Project Scheduler 8.0.1. Among them, Acos

Plus.1 and Project Scheduler showed the best

resource allocation performance. Several other

software have been mentioned in the OR/MS

bibliography like P3, MATLAB, Expert Choice,

Time Line, Primavera Project Planner, Milestone,

and others. There is a long list of current software

published in Wikipedia which have been evaluated

according to their capabilities. It can be accessed by

searching for project management software.

PERT and CPM have been used in a variety of

project planning and control situations, including

R&D project management. However, some of their

underlying assumptions are not always valid.

For example, the originally developed network

may become irrelevant in the future because of

the changed content of a project. Precedence

relationships cannot always be specified as they

sometimes depend on the outcome of previous

activities. Project completion time is not always

determined by the longest time path, as a delay in

a non-critical activity may result in a longer

completion time of the project. The beta distribution

is not the only distribution that could be used,

the formulae used to estimate its mean and variance

may give erroneous estimates compared with

the original beta distribution formulae, and the three

time estimates may include a high degree of

subjectivity (Chase et al. 1998).

In addition to the criticisms of PERT and CPM,

their use in R&D project planning and control

includes some additional limitations (Clayton and

Moore 1972; Pritsker et al. 1989). One of them is that

branching from the nodes is deterministic, that is, each

activity must be completed before the project is

completed. In R&D projects, however, branching

is usually probabilistic, for example, successful test

and performance of the next stage, failure and

abandonment of that part of the project, inconclusive

results and repeat of the test. All the activities leading

to a node must be realized before the relevant event can

be realized, while in R&D projects, given the

probabilistic nature of branching, not all activities

leading to a node can be realized. Looping is not

allowed, though an activity in an R&D project may

have to be repeated, for example, a test. Activity times

are assumed to be solely described by a beta

distribution, while R&D activities may follow

different other distributions. One terminal node is

allowed (completion of the project) while in R&D

one of several end events can be realized, for

example, successful completion, failure and

abandonment, redesign of the project.

It is obvious that these limitations render PERT

inflexible in modeling complex R&D projects. To

overcome PERT’s limitations, the Graphical

Evaluation and Review Technique (GERT) was

developed under the assumption that each activity

has an associated probability of being selected,

ranging from zero to one. As a result, the nodes are

constructed differently to denote their nature as

deterministic or probabilistic. The realization of

a node may be specified to occur upon the realization

of one or more of the activities leading to it, it may be

realized one or more times, and the first time it is

realized the number of activities to be completed may

be different from subsequent repeats. Looping in

simple or complex forms is allowed. The network can

have more than one source node and/or sink node.

Modifications of the network following the

completion of certain activities can be incorporated.

Several types of probability distributions can be used

to represent activity times. Cost can be assigned to

each activity in terms of a fixed part and a variable

per unit time component. Statistics on time, cost, and

activity counts for specified activities can be collected

for the sink as well as other designated nodes. GERT is

a network-simulation approach that has been further
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improved into a more powerful version, Q-GERT, that

allows the inclusion and the simulation of more than

one project, can model queues at nodes and route

projects through teams based on user established

decision rules (Taylor and Moore 1980; Pritsker

et al. 1989).

In decision models for GERT networks, cost or time

minimization is achieved under the assumption that the

selection procedure of activities and the stopping rule

are imposed exogenously into the model. However,

in classical R&D projects, the activities and

technological specifications are selected dynamically

throughout the project’s duration, and the stopping

time of the project is unknown in advance. Granot

and Zuckerman (1991) have constructed a model in

which the selection procedure of activities and the

stopping rule are defined as decision variables to be

determined endogenously.

Another network-simulation based technique that

was developed after GERT is Venture Evaluation and

Review Technique (VERT). VERT, like GERT, has

been developed as a technique for analyzing potential

outcomes of projects, expected values of various

project parameters, and criticality indices rather than

for scheduling projects. It is used in assessing the risks

involved in undertaking new ventures and in resource

planning, control monitoring, and overall evaluation of

on-going projects with respect to time, cost, and

performance. It is considered to be more powerful

than GERT due to the fact that performance enters

the network in numerical terms. It can be modeled in

terms of any unit of measurement or a dimensionless

index. VERT introduced six new types of node logics

and the capability of establishing a mathematical

relationship between an arrow’s parameter values

(time, cost, performance) and any other arrow or

node’s parameter values, as well as mathematical

relationships between the time, cost, and performance

variables of a given arrow.

There have been several studies that have tried to

provide solution approaches to the different

complexities of the real R&D project planning and

control problem. Hans et al. (2007) have looked into

several viewpoints on the management of the planning

complexity of multi-project organizations under

uncertainty. They proposed a positioning framework

to distinguish between different types of project driven

organizations and thus aid project management in

the choice between the various existing planning

approaches. They also introduced a generic

hierarchical project planning-and-control framework

that serves to position planning methods for

multi-project planning under uncertainty.

PERT assumes that activities are independent and

they occur in linear sequence. However, R&D activity

networks are recursive, reversing to earlier stages for

rectification or to incorporate changes. Hardie (2001)

has modeled such a network as a Markov process,

where the probability of a reversion to an earlier

stage is claimed to be the main factor determining

project length.

Managing R&D projects under resource constraints

is a usual case. Tormos and Lova (2001) have extended

the concepts of activity slack and defined a new

activity criticality index to classify the activities of

the resource constrained project scheduling and

control context. These new concepts have been

integrated into standard project management

software. Pantouvakis and Manoliadis (2006) have

developed a heuristic method based on traditional

CPM scheduling calculations and leveling algorithms

for the resource constrained projects, which can

be applied using normal scheduling software such as

P3 and MSProject.

As a project is being implemented, it is necessary at

some points that management evaluates the progress of

the plan, analyze deviations and take appropriate

corrective action. Falco and Macchiaroli (1998) have

provided a quantitative determination of the optimum

control points, based on the definition of an Effort

Function. Raz and Erel (2000) have presented an

analytical framework for determining the optimal

timing of project control points, based on maximizing

the amount of information generated by the control

points. This depends on the intensity of the activities

carried out since the last control point and on the

time elapsed since their execution. They have used

dynamic programming to solve the optimization

problem. Given the uncertainty involved in planning

an R&D project, Badri et al. (1997) have developed

a simulation based decision support system to analyze

the effect of delays in individual activities on the whole

project.

A project may have to be terminated, due to

technological risks, before completion, with each

stage having a specific likelihood of success. Reyck

and Leus (2008) have proposed an approach of

scheduling projects in order to maximize their
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expected net worth value when the project activities

have a probability of failure and when an activity’s

failure leads to overall project termination. Managerial

flexibility with respect to the option of abandonment of

a project or taking corrective action is referred to as

real option value. Huchzermeier and Loch (2001) have

identified five example types of R&D uncertainty: in

market payoffs, project budgets, project performance,

market requirements, and project schedules. They have

developed a model based on options pricing theory,

which builds intuition for R&Dmanagers as to when it

is and when it is not worthwhile to delay commitments.

Al Subhi Al-Harbi (2001) presents the Analytic

Hierarchy Process as a potential decision making

method in project management using as an example

the contractor prequalification problem. A hierarchical

structure is constructed for the prequalification criteria

and the contractors wishing to prequalify for a project.

Then the prequalification criteria are prioritized and

a descending-order list of contractors is made in order

to select the best contractors. A sensitivity analysis can

be performed to check the sensitivity of the final

decisions to minor changes in judgments.

Kablan and Dweiri (2006) identify three criteria that

may be considered as project management internal

measures of efficiency: project cost, project time, and

project quality. They present an approach that employs

fuzzy decision making to combine these three measures

into one measure they name project management

internal efficiency, representing an overall estimate of

how well the project was managed and executed.

Lova et al. (2000) have dealt with the problem

of managing various projects that share a pool

of constrained resources. They have developed

a multi-criteria heuristic algorithm that improves

lexicographically two criteria, each chosen by the

user from two types: time type (mean project delay,

multi-project duration increase), and no time type

(project splitting, in-process inventory, resource

leveling, idle resources). The multi-criteria heuristic

consists of several algorithms based on the

improvement of multi-project feasible schedules.

Wiley et al. (1998) have looked at the application of

optimization techniques to the initial design and

development of multi-project programs. The classic

work breakdown structure is used as a framework to

provide an aggregate model to investigate the effects

of funding levels, resource allocation, and program,

project, and component durations. Decomposition,

sensitivity analysis, and parametric programming are

utilized to provide the decision maker detailed

information for establishing program parameters,

conditions, and bounds.

Concluding Remarks

In summary, there are hundreds of OR/MS models that

have been proposed for R&D management. The

evolution of the field continues through newly

proposed models that appear in the references,

which try to improve upon existing ones by including

additional aspects of the problem situation. The

trend has been to recognize the multi-criteria and

multi-objective nature of real world R&D projects as

well as their interdependency with respect to

resources, technologies, and other factors. The usage

of these approaches is expected to increase in the

future due to the wider exposure of R&D managers to

OR/MS approaches, the wider availability of

computers and user-friendly software, and the

emphasis on using them “as a laboratory for testing

policies, sharing opinions, asking ‘what-if’ types of

questions and simulating interdepartmental

interactions throughout the organization” (Souder and

Mandakovic 1986).

Williams (2003) looked at the contribution that

mathematical modeling has made to project

management over the past 50 years (at the time of his

study), and the contribution it is currently making and

can make in the future. He maintains that project

management started with well-defined foundations and

modelers played an essential role in offering solutions.

Since then, he concludes thatmuch of themathematical-

modeling world continued producing ever more

complex solutions to ever more complex models that

did not help in solving real-world problems. However,

several of the models built during the last couple of

decades are systemic and dynamic and explain many

of the behaviors of R&D projects.

See

▶Analytic Hierarchy Process

▶Analytic Network Process

▶Decision Trees

▶GERT
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▶Goal Programming

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Multi-attribute Utility Theory

▶Multiobjective Programming

▶Multiple Criteria Decision Making

▶Network Planning

▶ PERT

▶ Portfolio Theory: Mean-Variance Model

▶ Project Management

▶VERT
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Oral, M., Kettani, O., & Çinar, €U. (2001). Project evaluation and
selection in a network of collaboration: A consensual

R 1306 Research and Development

http://dx.doi.org/10.1007/978-1-4419-1153-7_393
http://dx.doi.org/10.1007/978-1-4419-1153-7_129
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_644
http://dx.doi.org/10.1007/978-1-4419-1153-7_652
http://dx.doi.org/10.1007/978-1-4419-1153-7_653
http://dx.doi.org/10.1007/978-1-4419-1153-7_665
http://dx.doi.org/10.1007/978-1-4419-1153-7_200590
http://dx.doi.org/10.1007/978-1-4419-1153-7_775
http://dx.doi.org/10.1007/978-1-4419-1153-7_817
http://dx.doi.org/10.1007/978-1-4419-1153-7_200904


disaggregation multi-criterion approach. European Journal

of Operational Research, 130, 332–346.
Pantouvakis, J.-P., & Manoliadis, O. G. (2006). A practical

approach to resource-constrained project scheduling.
Operational Research, 6, 299–309.

Pritsker, A. A. B., Sigal, C. E., & Hammesfahr, R. D. F. (1989).
SLAM II–network models for decision support. Englewood
Cliffs: Prentice Hall.

Raz, T., & Erel, E. (2000). Optimal timing of project control
points. European Journal of Operational Research, 127,
252–261.

Ringuest, J. L., & Graves, S. B. (1989). The linear multi-
objective R&D Project selection problem. IEEE

Transactions on Engineering Management, 36, 54–57.
Schroder, H. H. (1971). R&D project evaluation and

selection models for development: A survey of
the state of the art. Socio-Economic Planning Sciences, 5,
25–39.

Souder, W. E. (1972). A comparative analysis of R&D
investment models. AIIE Transactions, 4, 57–64.

Souder, W. E., &Mandakovic, T. (1986). R&D project selection
models. Research Management, 29, 36–42.

Stewart, T. J. (1991). A Multi-criteria decision support system
for R&D project selection. Journal of Operational Research
Society, 42, 17–26.

Stewart, R., & Mohamed, S. (2002). IT/IS projects selection
using multi-criteria utility theory. Logistics Information

Management, 15, 254–270.
Taylor, B. W., & Moore, L. J. (1980). R&D project planning

with Q-GERT network modeling and simulation.
Management Science, 26, 44–59.

Tormos, P., & Lova, A. (2001). Tools for resource-constrained
project scheduling and control: Forward and backward slack
analysis. Journal of the Operational Research Society, 52,
779–788.

Wey, W.-M., & Wu, K.-Y. (2007). Using analytic network
process priorities with goal programming in resource
allocation in transportation. Mathematical and Computer

Modeling, 46, 985–1000.
Wiley, V. D., Deckro, R. F., & Jackson, J. A. (1998).

Optimization analysis for design and planning of
multi-project programs. European Journal of Operational

Research, 107, 492–506.
Williams, T. (2003). The contribution of mathematical modeling

to the practice of project management. IMA Journal of

Management Mathematics, 14, 3–30.

Resource Aggregation

In a project network, a method of scheduling

activities within their available float times

according to a specific rule, for example, at their

earliest start times, and determining the consequent

total units of each resource required in each time

period.

See

▶Network Planning

Resource Leveling

A method of scheduling activities of a project to meet

a limit in the amount of a resource that is available.

This may mean that the project completion date is

allowed to slip.

See

▶Network Planning

▶ Project Management

Resource Smoothing

A method of scheduling activities of a project within

their available float times to minimize fluctuations in

day-to-day resource requirements. This approach

would be used when the project completion time is

not allowed to slip.

See

▶Network Planning

▶ Project Management

Response Surface Methodology

Russell R. Barton

The Pennsylvania State University, University Park,

PA, USA

Introduction

Response surface methodology (RSM) is a technique

to determine design factor settings to improve or

optimize the performance or response of a process or
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product. It combines design of experiments, regression

analysis and optimization methods in a general

purpose strategy to optimize the expected value of

a stochastic response. In their landmark paper, Box

and Wilson (1951) describe the development and

application of this sequential method to chemical

process design, in which yields of particular

compounds were maximized. Since that time the

method has been applied successfully in many areas.

Recent texts devoted to RSM include Myers et al.

(2009) and del Castillo (2007).

Problem Setting and Background

Mathematically, RSM solves:

max f ðxÞ � E YðxÞð Þ

where Y is a random variable whose mean is an

unknown function of the d-dimensional factor vector

x and whose variance (arising from experimental error)

is an unknown constant value, denoted s2; and where

the maximization is over x in some region R. Generally

the constraints describing R are not modeled, so the

setting is usually considered an unconstrained

optimization problem. RSM fits a sequence of local

regression models, at first linear, and later

quadratic. The models are fitted to experimental data

based on a set of prescribed x vectors – also called the

experiment design. The linear model has the form:

Y xið Þ ¼ b0 þ
Xd

j¼1
bjxij þ ei; feig � i:i:d:N 0;s2

� �
(1)

where i indexes the experimental run and j the

component of the xi vector. The fitted model is

represented as

E Y xið Þð Þ ¼ ŷ ¼ b0 þ
Xd

j¼1
bjxij ¼ b0 þ b0xi: (2)

The quadratic model has the form:

Y xið Þ ¼ b0 þ
Xd

j¼1
bjxij þ

Xd

j¼1

Xd

k¼j
bjkxijxik

þ ei; feig � i:i:d:N 0;s2
� �

(3)

with fitted model

E YðxÞð Þ ¼ ŷ ¼ b0 þ
Xd

j¼1
bjxj þ

Xd

j¼1

Xd

k¼j
bjkxjxk

¼ b0 þ b0xþ x0Bx:

(4)

The fitted coefficients b0, bj and bjk are usually

calculated via least squares. Note that in equation (4),

the off-diagonal elements of B are half the magnitude

of the bjk values, i.e. B[j,k] ¼ B[k,j] ¼ bjk/2. Also,

feig�i:i:d:N 0;s2ð Þ can be represented in multivariate

form. If the experiment consists of n instances or

runs, then e is assumed to be a normally distributed

random n-vector with mean the zero vector and

covariance matrix Se ¼ s2I: Each fitted local

model is used to determine a search direction or

subregion in R where an increase or optimum of

E(Y(x)) is expected.

RSM is preferred over a simple grid search over R

under the following conditions:

1. The response function f is complex: it is not well

approximated by a single quadratic over all of R.

2. Experimental error (hence s2) is small enough to

permit local characterization of fwith relatively few

experiment runs.

3. Derivatives of f are continuous.

4. Experiments can be carried out sequentially without

undue delay or cost.

The first condition means that a grid search over d

variables would require a fine rather than coarse grid.

With l levels for each variable, the total number of

experiments for a grid search would be ld, i.e., a large

number of different experimental conditions or points.

The second condition says that a small number of

experiment points will be sufficient to provide local

approximation of the response by a low-order

polynomial, without requiring many replications

(repeated experiments under the same experimental

conditions). The third condition permits local

characterization of the response function by a

low-order polynomial, typically linear or quadratic. The

fourth condition allows each local approximation to be

used to identify a next local subregion to explore. Since

this sequential approach avoids local subregions that are

not promising, fewer experiments are required to

characterize the optimum subregion, compared with

a grid search that characterizes all of R.
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RSM Algorithm

At the highest level, RSM has four activities: scaling

and transforming, screening, Phase 1 modeling and

search, and Phase 2 modeling and search.

1. Scale the x variables (for example, to provide

comparable units of change), and transform Y

values (for example, to provide responses with

homogeneous variance across different x values).

2. Screen for important components of the x vector

(called factors - explained below).

3. Phase 1:

a. Select an experiment design appropriate for

fitting a first-order regression model.

b. Conduct the experiment, fit the appropriate

model, assess significance and fit.

c. If the model is satisfactory, identify a search

direction and conduct a sequence of

experiments in this direction.

d. Return to step 3a.

4. Phase 2:

a. Select an experiment design appropriate for

fitting a second-order regression model

(this may be an augmentation of an existing

first-order design).

b. Conduct the experiment, fit the appropriate

model, assess significance and fit.

c. If the model is satisfactory, identify whether an

optimum, saddle point or a ridge has been

identified.

d. If a ridge or optimal solution is contained in the

experimental range, continue to step 5.

e. Otherwise, identify a search direction and conduct

a sequence of experiments in this direction.

f. Return to step 4a.

5. Communicate the optimum settings or

a ridge of near-optimum settings in the original

units of x.

Scaling of the x variables is equivalent to

determining the size of the local region for each

variable, since the low and high values in a local region

are generally scaled to +/� 1 for regressionmodel fitting

and analysis. The steepest ascent direction depends on

this scaling. Transformation of Y values can be helpful

in stabilizing the variance of Y(x) across different

x values, i.e., when Var(Y(x)) ¼ s 2(x). Since the

models imply Var(Y(x)) ¼ Var(e (x)), transforming Y

for homogeneous variance (s 2(x) ¼ s 2 for every x)

permits the use of statistical methods that assume

feig�i:i:d:N 0;s2ð Þ, given independence of

experimental runs. Nonhomogeneous variance is

common in simulation settings, often having a power

relationship with components of x. The Box and Cox

(1964) power transformations are useful in this case. The

family of transformations is parameterized by l:

y lð Þ ¼
yl � 1

l
l 6¼ 0

lnðyÞ l ¼ 0

8
<

:

9
=

;

where the natural log function provides continuity at

l ¼ 0 and the parameter l can be chosen by maximum

likelihood or estimated as one minus the slope of a plot

of the ln(estimated standard deviation of Y(x)) on the

vertical axis vs. ln(estimated mean of Y(x)) on the

horizontal axis (Montgomery 2009). Selecting

a member of this transformation family requires

replicated experiments at each design point.

Transformation of Y can produce an additional

benefit: the response surface is often less complex

after the variance stabilizing transformation. This is

because the nonlinearity of the response and the

nonhomogeneity of the variance are often related,

and so they are both removed or reduced by the same

transformation. This allows the size of the local region

to be increased, which permits faster progress for the

optimization.

Alternatively, to achieve homogeneous variance, it

is possible to conduct replications at each x point in the

design, with the number or replications proportional to

the variance at that x value. For large differences in the

variance of Y(x), many replications could be required,

increasing the experimental costs of RSM.

Since the number of design points needed to fit

a first-order (second-order) regression model

increases linearly (quadratically) with the number of

factors, screening out unimportant factors at the start of

the response surface optimization can significantly

reduce experimental effort. Screening experiment

designs are typically fractional factorial designs, and

often have d + 1 or fewer points for d factors. These

designs are discussed by Satterthwaite (1959), Plackett

and Burman (1946) and Lin (1993). Screening is

performed by examining the regression equation. If

fewer than d + 1 runs are conducted, this can be done

using stepwise regression or other strategies described

in Li and Lin (2003). Sequential screening methods
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group factors together in setting their high and low

values, to eliminate large numbers of factors in

a relatively small number of runs. This strategy

requires a priori knowledge of the sign of the factor,

which is practical in some physical settings and

uncertain in others. Sanchez et al. (2009) describe

a strategy for dealing with uncertain signs, and

summarize the original developments in this area by

other researchers, including Bettonvil, Cheng and

Kleijnen.

Phase 1 consists of building and exploiting local

linear approximations to the response function.

Typically a factorial or fractional factorial design is

used for experimentation, along with a center point,

with replications that allow a statistical test of lack of

fit of the first-order model. The region for

experimentation is local rather than all of R. The

local region must be chosen small enough so that

a linear approximation is likely to be adequate, but

large enough so that the linear effects can be detected

as statistically significant without large numbers of

replications. The results of the regression analysis

ideally provide a statistically significant model with

no significant lack of fit. In this case a sequence of

experiments are conducted, from the design center in

the direction of the gradient. The increment between

experimental points along this line is usually chosen to

give a magnitude of 1 for the largest gradient

component, so the increment in this direction would

be b/max{|bj|}. Steps continue until the observed

response decreases, but various rules have been

proposed to use additional steps to ensure that

random error does not cause premature termination.

These rules include i) using multiple replications and

testing for statistical significance of the change from

one step to the next, ii) fitting a univariate polynomial

to the responses observed along the search direction

and stopping when the fitted maximum lies within

the scope of the search, iii) stopping after three

consecutive failures to increase the response. These

and other stopping rules are compared in del Castillo

(2007).

Outcomes other than a statistically significant

model with no significant lack of fit are possible in

Phase 1. Table 1 summarizes the possibilities and the

corresponding actions as presented in Barton and

Meckesheimer (2006).

Entry to Phase 2 is based on lack of fit in Phase 1.

The local region then usually remains the same, since

the Phase 1 factorial or fractional factorial design is

usually retained, and augmented with design points at

+/-d on the factor axes. A design having a full factorial

augmented by center and axis points is called a central

composite design. For central composite designs, d can

be chosen to make the design rotatable. Rotatable

designs give regression models with equal prediction

variance at all points a fixed distance from the center of

the design, and have some advantages, as discussed by

Box and Wilson (1951) and others. Other types of

rotatable (or near-rotatable) designs have been used,

for example, Box-Behnken designs (Box and Behnken

1960). Donohue et al. (1995) construct designs that

minimize sensitivity to model misspecification. These

designs provide coefficient estimates that are least

sensitive to the presence of higher-order terms in the

true local response. As for Phase 1, the results of

a Phase 2 regression analysis ideally provide

a statistically significant quadratic model with no

significant lack of fit. In this case, a canonical

analysis is usually performed. This analysis

transforms x-space to be centered at the zero slope of

the fitted quadratic: x0 ¼ -1/2 B-1b and a transformed

factor vector w ¼ M ’(x-x0), where M is the matrix of

normalized column vectors corresponding to the

eigenvectors of B. When the fitted quadratic has all

negative eigenvalues, the location of the origin for w is

x0, the maximum of the fitted quadratic, and the w axes

correspond to the major and minor axes of the

ellipsoidal contours of the quadratic. The canonical

model is:

E YðwÞð Þ ¼ ŷ ¼ w0 þ
Xd

j¼1
ljwj;

Response Surface Methodology, Table 1 Phase 1
Assessment of Significance and Fit Results and Actions

Linear Effects Not
Significant

Linear Effects
Statistically Significant

Lack of Fit
of Linear
Regression

Augment design and fit
quadratic regression
model, go to Phase 2.

Augment design and fit
quadratic regression
model, go to Phase 2.

No
Significant
Lack of Fit

Choose a larger local
region for
experimentation or
increase the number of
replications at each
design point. Go to
step 3a.

Go to step 3c: identify
a search direction and
conduct a sequence of
experiments in this
direction.
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where the lj are the eigenvalues corresponding to the

eigenvectors of B. Canonical analysis allows easy

identification of the nature of the fitted quadratic. If

all lj are positive, a local minimum has been fitted; if all

are negative, a local maximum.When some are positive

and some negative, a saddle point is identified. In this

case, a search proceeds in a direction that will increase

the objective, for example by the largest amount for

a given step length, r.

Small eigenvalues correspond to directions of little

change in the objective, usually called ridges. The

ridges identified through canonical analysis provide

a set of alternative factor settings (along the ridge)

that provide nearly the same response. When a ridge

exists, the decision maker has added flexibility in

choosing among factor settings along the ridge based

on secondary criteria.

Confidence regions for the optimal value x∗ and

optimal value of E(Y(x∗)) can be constructed from the

fitted regressionmodel. These are presented in the original

paper by Box and Wilson (1951) and the discussion

accompanying the paper. Subsequent enhancements to

these methods, in particular to the constrained case, are

explained in detail in del Castillo (2007).

As for Phase 1, outcomes other than a statistically

significant model with no significant lack of fit are

possible in Phase 2. Table 2 summarizes the

possibilities and the corresponding actions as

presented in Barton and Meckesheimer (2006), which

also contains a completely executed example of RSM.

Application of RSM to Discrete-Event
Simulation

The output of discrete-event dynamic simulations are

stochastic responses, and RSM was recognized as

a tool for simulation optimization in the early

development of that field (Mihram 1970). In

discrete-event simulation, random variation is

introduced using pseudorandom number generation.

This control permits deliberate introduction of

correlation in responses across design points, which

was exploited by Schruben and Margolin (1978)

for the case where the design can be decomposed

into orthogonal blocks. For the central composite

design, for example, inducing positive correlation

across factorial points, positive correlation across

axis points, and negative correlation between these

blocks, greater precision is possible in the regression

model. This advantage depends on the ability to

induce correlation in the output values based

on common and antithetic input pseudorandom

number streams, which can be hard to achieve.

Successful correlation-induction strategies are

discussed in simulation texts, for example Law and

Kelton (2000) and Banks et al. (2009). Statistical

issues associated with common and antithetic

variate strategies for response model fitting were

examined by a number of researchers, including

Nozari et al. (1987), Tew and Wilson (1992, 1994)

and Donohue (1995).

Variants and Properties

Many variants have been proposed to the RSM

structure described above. Many recent contributions

have come from research in the discrete-event

simulation community, but with broad applicability

to RSM outside the simulation domain, so they are

not identified separately.

A number of modifications relate to the models and

estimators in equations (1–4). A general variance

structure implying Se 6¼ s2I occurs for the

correlation-induction strategies developed for

simulation applications, but can also occur in

Response Surface Methodology, Table 2 Phase 2
Assessment of Significance and Fit Results and Actions

Quadratic Effects Not
Significant

Quadratic Effects
Statistically Significant

Lack of Fit of
Quadratic
Regression

Unlikely. If this occurs,
one could select
a higher-order model
(cubic) but instead one
would usually reduce
the size of the local
region and go to
step 4a.

Reduce the size of the
local region and go to
step 4a.

No
Significant
Lack of Fit

Unlikely. If this occurs,
increase the number of
replications and go to
step 4b.

Perform canonical
analysis. If result is an
optimum within the
range of the local
design, go to step 5.
Otherwise, conduct a
search or identify a best
value within a fixed
distance from the
center of the design,
then go to step 4a.
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physical experimentation. In this case, weighted least

squares or generalized least squares can be used to

estimate the regression coefficients in equations (2)

and (4). Independent nonhomogeneous variance is

a special case of general variance. In this case Se is

diagonal but with unequal diagonal values.

Consequently weighted least squares provides an

alternative to the strategies of transformation of Y or

differential replication that were described above.

Bayesian estimation can be used to determine

regression coefficients (Cheng and Currie 2004; del

Castillo 2007). This can be applied in physical or

computer experimentation if prior experience or

theory suggest appropriate ranges for bj values.

The models in (1) and (3) can be replaced by

generalized linear models which provide more

flexible distribution forms for the random component

and more general modeling terms as well. Staum

(2009) describes weighted least squares, generalized

least squares and generalized linear models for RSM.

A broad class of model-based optimization methods

use global approximations, for example, Kriging,

splines, or neural networks. Barton and

Meckesheimer (2006) review global model-based

optimization and contrast it with RSM.

If the Phase 1 search is repeated several times, one

can use a modified search direction to avoid the

zigzagging that may occur. Conjugate gradient

directions from nonlinear optimization were applied

in the RSM setting by Joshi et al. (1998). The Phase 1

design is often not rotatable, and so the prediction

variance in the gradient direction may increase more

rapidly than in other directions. Kleijnen et al. (2004)

used this concept to develop a search direction

different from b and an interval different from

b/max{jbjj}. For a fitted first-order model, they

identify the point x+ that maximizes a lower 1-a

confidence interval for the predicted mean. This

“adapted steepest ascent” search direction and

interval is invariant to the scaling of the x

components, unlike steepest descent, and the authors

find that the performance is usually improved over

steepest ascent.

Although the original form of RSM does not

consider explicit constraints on the value of x,

constraints must usually be taken into account (see

Kleijnen 2008). When constraints are linear, linear

programming may be used in Phase 1 optimization,

and quadratic programming in Phase 2. For nonlinear

constraints, other techniques have been proposed.

Biles (1974) used a gradient projection search for

RSM applied to the optimization of discrete-event

simulation output. Robust design methods present an

RSM situation with constraints that are themselves

based on a model (del Castillo 2007). For this setting

Bettonvil et al. (2009) developed statistical tests based

on the Karush-Kuhn-Tucker conditions for nonlinear

programming to check for optimality.

Box, in the discussion section of Box and Wilson

(1951) warned against automating RSM. He felt that

the specifics of each application would require the

judgment of statisticians and process experts as

decisions were made on experiment design choice,

search direction choice and model choice.

Nonetheless it is tempting, when applying RSM to

the optimization of a computer simulation response

function, to formalize and code the RSM process to

permit an automated algorithm. Formal RSM

algorithms were described by Neddermeijer et al.

(2000), Nicolai et al. (2004), and Barton and

Meckesheimer (2006). A formal structure naturally

leads to a question of the convergence properties of

the method. No convergence results were available for

RSM until recently. Chang and Wan (2009) developed

a version of RSM that chooses the step size and

direction based on a trust region for the

approximating model. They prove convergence under

assumptions related to boundedness of the expected

value of the maximum response, a mean response that

is twice differentiable, bounded below and has

uniformly bounded Hessian and gradient, and that for

sufficiently small region the quadratic regression

model (3) holds (possibly with nonhomogeneous

variance). Convergence in this case means that with

probability 1 the norm of the gradient of the E(Y(x))

with respect to x will go to zero as the number of

successful iterations goes to infinity.

See

▶Nonlinear Programming

▶Regression Analysis

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Metamodeling

▶ Simulation Optimization

▶Variance Reduction Techniques in Monte Carlo

Methods
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Response Time

Often used to describe the time between the arrival of

a new queueing customer (e.g., as in the receipt of

a call by an emergency dispatcher) and the initiation

of service (as in the arrival of the emergency unit at the

scene of the call), thus equal to the queueing delay.

Restricted-Basis Entry Rule

In the adaptation of the simplex algorithm for solving

separable-programming problems in which variables

are approximated by a set of grid variables, the

restricted basis entry rule only allows, for each

original variable, no more than two such neighboring

grid variables to be in a solution. Such a rule is also

used in solving quadratic-programming problems to

force certain complementarity conditions to hold.

See

▶ Separable-Programming Problem

▶ Special-Ordered Sets (SOS)

▶Wolfe’s Quadratic-Programming Problem

Algorithm
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Introduction

Retailing can be seen as the third phase in the flow of

goods, following production and logistics. Retail shops

are traditionally and historically classified into several

categories: independent stores, department stores,

supermarkets, discount stores and convenience stores.

The advent of the Internet had a drastic impact on

retailing, as it has alleviated restrictions in relation to

time as well as space on the globe. As a result, online

stores with global reach have led to even more intense

competition between retailers.

Retailing has a wide variety of decision-making

phases, and therefore OR/MS has been applied in

many aspects with a view to obtaining scientific

solutions to such areas as store location problems,

product assortment along with shelf-space allocation,

inventory control and advertising/sales promotion.

Since the mid-1980s, applications of scientific

methods have increased in retailing against growing

competition among retailers in pursuit of larger profit.

Many useful software packages have also been

developed for the purpose of surviving in these

extremely competitive environments.

Retail Store Location Problems

Decisions regarding store location are preliminary but

vital for the retail management. Traditionally, OR/MS

has addressed this problem along with general facility

location problems. Models for a facility location

problem often confine themselves to obtaining an

optimal solution assuming the attractiveness of the

facilities is known. For store location problems,

however, how attractiveness can be measured is

a critical concern, since development of accurate

sales forecast is central to successful retail-site

selection (Kotler 1984). For this reason, the following

gravitational models are mainly used for retail store

location problems.

Huff (1963) utilizes the conceptual properties of the

gravity model, which is from the laws of Newtonian

physics, to provide a probability that a customer

patronizes a specific retail store. This gravity-based

formula suggests that the probability is proportional

to the attractiveness of the retail store and inversely

proportional to the distance from it. More

precisely, the attraction felt by customer i towards

retail store j(¼ 1, 2,� � �,n) is expressed by Sj Tl
ij

.
,

where Sj denotes the selling space devoted to the sale

of a specific class of goods by store j, Tij the travel time

of a customer Sj to retail store j, and l a parameter

which is to be estimated empirically to reflect the effect

of travel time on various kinds of shopping trips.

Then the probability that customer i chooses store j

is given by Sj Tl
ij

.� �

P

n

k¼1

Sk Tl
ik

�� �

�

. Once such
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a probability is obtained, it serves as a useful index to

determine the location of a new store. This model is

called a gravitation model.

Nakanishi and Cooper (1974) generalize this

gravitational model to include other properties of

stores by suggesting techniques to estimate the

attractiveness of stores, and since then retail location

problems have been studied extensively. The

gravitational models and, more generally, spatial

interactions models receive more interest as more

data and global information system technologies are

becoming available (Birkin et al. 2002).

Prediction of the Number of Customers
Visiting a Store

The number of customers visiting a retail store will

influence the sales volume of individual goods at the

store. If management can predict with a fair degree of

accuracy the future number of customers, be it 1 day,

a week or a month in advance, it then becomes possible

to map out an efficient operations program. Regular

and part-time employees can be scheduled effectively

to reduce operating costs and improve customer

service. On the product side, stock orders can be

gauged more accurately, reducing the risk of lost

sales due to shortages and wastage due to an

overstocking of goods.

The number of customers is usually affected by the

day of the week, weather, temperature, sales

campaigns and economic conditions. Multiple

regression analysis can be used to arrive at a formula

that explains the volume and distribution of customers;

see Chatterjee and Price (1991) for details of statistical

methods. By using new data, the formula can

be updated on a daily or weekly basis, or when

the difference between the predicted number and the

actual number falls out of a predetermined range.

Classification of Goods by Sales Volume

In an average size supermarket, several thousands of

goods are displayed. They can be divided into three

classes according to sales (or gross sales). This

is known as ABC analysis or the Pareto chart.

Class A goods, while accounting for around 50% of

sales, constitute only a small portion of the entire range

of goods, usually about 10%. Class B comprise

approximately 40% of both the range of goods and

sales value. Class C goods comprise about half of the

goods available but only around 10% of the sales.

Empirical studies have shown that the sales of Class

C goods reflect a Poisson-type distribution, while

that of Class B goods is represented by a normal or

log-normal distribution. The sales of Class A goods are

well explained by regression analysis using causal

models (including price and sales campaigns).

Retailers, wholesalers and producers will be able to

get valuable information by classifying goods in

this way and extend their understanding of

their characteristics as represented by the set of

parameters. This information can then be used to

make appropriate choices for items in the store. For

Class A goods, the effects of price and sales campaigns

in the regression formula provide useful information

for strategic management. In addition, as will be

discussed below, goods procurement and inventories

will be more efficiently controlled.

Product Assortment and Shelf-Space
Allocation

One of the primary concerns of retail management

involves determining the variety of products to offer,

and the allocation of limited shelf-space among the

selected products so as to maximize the store’s profit.

Most of the shelf-space research indicates that the

proportion of total product shelf-space received by

a particular product is important since it influences

the brand’s aggregate sale and market share.

Anderson and Amato (1974) develop a model for

simultaneous decision making for a brand assortment

and shelf-space allocation problem, assuming the

shelf-space large enough to contain at least one

facing of each available brand. Let B and S,

respectively, denote a set consisting of all the

available brands and a subset of B. In addition, let nb
(b 2 S) signify the number of facings of brand b to be

displayed. For a subset S of B, seeking an optimal value

for nb is a knapsack problem. They also provide

a method for obtaining an optimal set of brands to be

displayed.

However, their model does not take into account the

cross-effect among products within the store. For this

reason, Corstjens and Doyle (1981) develop a more
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comprehensive model, considering the main effects

and the cross-effect of demand with the cost effects,

which is a generalized geometric programming

problem. Hansen et al. (2010), furthermore, propose

a retail shelf-space decision model that incorporates

a nonlinear profit function, vertical and horizontal

location effects, and product cross-elasticity together

with comprehensive survey of shelf-space decision

models.

Inventory Control

Future sales can be estimated with a certain degree of

accuracy based on the results of the type of data

analysis described before. The estimated values relate

to the buying-in amount and the inventory of goods. It

is especially important to predict and control the

inventories of non-durable goods delivered daily,

such as fresh foods and dairy products.

A basic inventory policy for a retail store can be

described as follows. Let Z denote the remaining

amount of a commodity at the store’s closing time, of

which a part, D, is to be scrapped due to expiration.

Then, the stock at the end of the day is U ¼ Z � D. If

the predicted sales for the following day is Y, and the

leadtime for buying-in is one night, then the order

volume, P, is determined by P ¼ max{Y � U + a, 0},

where a corresponds to the safety stock, the slack

which prevents opportunity loss. The safety stock a

relates directly to the trade-off between the probability

of loss and the holding cost. An inventory simulation

can be applied using past data to estimate an adequate

a. It should be noted that the classical inventory control

problem where the remaining amount Z should always

be disposed, i.e., D ¼ Z or U ¼ 0, is called a newsboy

problem.

Inventory control for a retail store is significantly

relevant to that for a warehouse as well as

a manufacturer in the context of supply chain

management.

Analysis of Movement of Customers

Although a point-of-sales (POS) record of a customer

tells what kinds of goods were purchased, his or her

movements through the store are not clear from the

record alone. However, by comparing the layout of the

store and the POS record, it becomes possible to

deduce the route taken via a ‘traveling salesman’

scenario. By superimposing the solutions for a given

number of customers, the congestion likely in each

pathway of the store can be estimated. In addition,

changing the distance table to correspond with the

new assignment makes it much easier to analyze the

effects of display changes on congestion. Traditional

methods, such as the use of video and first-hand

observations, are less efficient in terms of cost and

precision. Using analysis such as that described

above will result in less dead corners and fewer busy

corners.

Pricing Strategies for Consumer Sales
Promotion

Since the mid-1980s, consumer sales promotion has

particularly been emphasized in retailing due to severe

competition. Under these circumstances, retailers have

actively introduced a variety of scientific models,

mainly through software packages, for pricing

strategies for consumer sales promotion with a view

to attracting more customers to their shops.

Research on pricing strategies has been conducted

by economists, marketing scientists, and operations

researchers from a wide range of perspectives.

Eliasberg and Steinberg (1993) present

a comprehensive survey on this topic, and Nagle

et al. (2002) develop excellent overview of decision

makings for pricing management.

Markdown

Markdown pricing is one of the simplest and most

popular pricing strategies for consumer sales

promotion. Retailers of fresh foods use markdown

pricing to sell out excess inventory before their

expiration date. Retailers of apparel and seasonal

goods likewise rely on markdown pricing. When

goods have low salvage values once the sales season

is over, retailers have incentive to sell the remaining

goods while they can even at a low price due to their

low salvage values.

Markdown pricing is advantageous when retailers

are uncertain which products will be popular with

customers. Retailers set high prices for all items

initially to identify which products are popular for

which customers have high reservation prices since
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popular products sell out at the high initial price.

The retailers then notice the remaining products as

low-reservation price products and mark them down.

These observations reveal that markdown pricing is

a learning process of the market for retailers to sell

a new item (Lazear 1986). Markdown pricing can also

be interpreted as a segmentation mechanism since

customers purchasing early have higher willingness

to pay (Talluri and van Ryzin 1994). Heching et al.

(2002) show significant improvements in revenues

using model-based markdown optimization.

Decisions in markdown pricing involve

optimization of the timing and magnitude of

a markdown. It is essential for these decision models

to identify a demand function, which explains the

relationship between the price and the demand

quantity. Usually, retailers themselves or related

software packages seek a suitable form for the

demand function by fitting historical POS data

involving inventory transitions. Regression analysis

will be effective when a linear demand function can

be assumed.

Dynamic Pricing

Dynamic pricing is a flexible and efficient extension of

markdown pricing. Under a dynamic pricing strategy,

retailers of fashion and seasonal products, for example,

reduce the selling price of items gradationally over

time according to customers’ reservation prices.

Compared with markdown pricing described above,

dynamic pricing is advantageous since it can explore

the market in more detail with more accurate

segmentation. However, dynamic pricing does not

always introduce cost reduction, as airlines often

raise prices over time.

There is an extensive literature on dynamic pricing.

Bitran and Caldentey (2003) and Elmaghraby and

Keskinocak (2003) provide an excellent survey on

dynamic pricing in academic fields. Talluri and van

Ryzin (2004) extensively discuss dynamic pricing

within the framework of revenue management.

In the research literature, various models have been

proposed for dynamic pricing from a wide range of

perspectives. They are, first of all, categorized

according to the level of competition of retail stores,

monopoly, duopoly, oligopoly or perfect-competition.

They are also classified depending on the population

size, finite or infinite. Most important for theoretical

understanding of dynamic pricing is a model of how

demand responds to changes in price. Demand models

can be for individual customers or for more aggregate

classes, and can also be classified according to whether

they are continuous or discrete, deterministic or

stochastic, static or dynamic, without replenishment

or with replenishment, etc. (Talluri and van Ryzin

2004). For example, a logit model or a discrete

choice model (see Anderson et al. 1995) is a useful

tool for describing demands by individual consumers

under stochastic demand.

See

▶Data Mining

▶ Facility Location

▶Geometric Programming

▶ Inventory Modeling

▶Knapsack Problem

▶Newsboy Problem

▶Regression Analysis

▶Revenue Management

▶ Supply Chain Management

▶Traveling Salesman Problem
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Revenue Equivalence Theorem

Revenue equivalence theorems in bidding theory

establish conditions under which the expected

revenue from various auction types (e.g., standard

sealed bidding sales and progressive oral auctions)

is the same.

See

▶Bidding Models

Revenue Management

Costis Maglaras

Columbia University, New York, NY, USA

Introduction

Revenue management focuses on how a firm should set

and update pricing and product availability decisions

across its various selling channels in order to maximize

its profitability. A familiar example comes from the

airline industry, where tickets for the same flight may

be sold at many different fares, the availability of

which is changing as a function of purchase

restrictions, the forecasted future demand, and the

number of unsold seats. Indeed, the airline

deregulation act in the late 1970s motivated the rapid

development and deployment of revenue management

tools to manage the sales process of airline tickets, and

such systems have been adopted and have transformed

the transportation and hospitality industries, and is

increasingly important in retail, telecommunications,

entertainment, financial services, health care and

manufacturing. In parallel, pricing and revenue

optimization has become a rapidly expanding

practice in consulting services, and a growing area of

software and information technology (IT)

development.

Revenue management, or yield management, as it

was originally called focused on tactical optimization

of capacity allocation decisions. This was motivated

by the airline industry, where ticket prices – or fare

classes – were determined early in the sales horizon,

but where airlines could tactically decide which fare

classes to make available to consumers at different

points in time. The implementation of such systems

was facilitated from the presence of industry-wide

electronic reservation systems that allowed airlines to

“push” their capacity allocation decisions to the travel

agents that used to interact with potential passengers.

Similar models and systems were applied in many

other industries successfully starting with hotels and

car rental companies in the late 1980s and the 1990s.

In other application settings, such as retailing,

instead of tactical capacity allocation decisions,

revenue management systems focus on tactical

pricing and markdown decisions. Specifically, in

retailing, such systems are used to choose which

product pricing decisions to change, either through

temporary promotions or permanent markdowns, so

as to optimize the overall profitability of a product,

a store, or a chain of stores. The same product may be

offered at different initial prices at different

geographic locations, reflecting local demand

conditions, and can be differentially priced

throughout its sales season across stores. Moreover,

the initial inventory and product assortments at each

store may themselves be optimized using to a large

extent inputs from such a revenue management

system. Revenue management systems have been

widely adopted in retailing after their introduction

around 2000, and similar tactical price optimization

systems have been applied in many other settings

such as sports event pricing, entertainment,
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telecommunications, and financial services. And while

most of the above applications are typically concerned

with the interface between businesses and consumers,

similar techniques have been adopted in many

business-to-business (B2B) settings in customized

pricing of B2B transactions.

In all of the above settings, some common

characteristics can be identified, such as the large

scale of potential transactions; markets with

imperfect competition that allows firms to at least

partially discriminate potential customers via

differential pricing or capacity allocation decisions;

the availability of data that is used to quantify market

response and estimate demand models, form demand

forecasts, characterize consumer choice behavior, etc.;

and the use of quantitative methods and IT systems to

implement and deploy such solutions.

Consider a firm that owns a fixed capacity of

a certain resource that is consumed in the process of

producing or offering multiple products or services

over a finite time horizon. The firm’s problem is to

maximize its total expected revenues by dynamically

selecting the price of each of its products over time.

Four variants will be considered. In the first two, the

prices of the products are assumed to be fixed and the

firm controls the allocation of capacity at the different

price levels. The first variant will focus on the basic

setting of Littlewood’s problem of a low-fare and

a high-fare demand class that arrive sequentially over

time, and the firm controls how much capacity to

protect for the high-fare class. The second variant

assumes that there are more than two demand classes,

and where demand requests are not sequenced in time

from lower to higher fare, but instead arrive

stochastically over time. In such a setting the firm

needs to dynamically control which set of fare class

requests to be accepted at any point in time. In the next

two variants, the firm controls the pricing of the

product. In one case the firm offers just one product

and is assumed to be a monopolist or to operate in

a market with imperfect competition, and thus to

have power to influence the demand for each product

by varying its price. In this setting, the firm’s problem

is to choose a dynamic pricing strategy for its product

in order to optimize expected revenues. In the second

case, the firm offers many products that consume

capacity of the same scarce resource, and again has

pricing power and seeks to optimize its expected

revenues by choosing a multi-dimensional dynamic

pricing policy. Finally, the first two are referred to as

capacity control problems, and the last two as dynamic

pricing problems.

The approach taken here will highlight how the last

three problems can be reduced to a common

formulation, thus connecting prior results that have

appeared in the literature under a unified framework,

and explores some of the consequences of this

formulation. Specifically, it is shown that the

multi-product dynamic pricing and the capacity

control problems can be recast within this common

framework, and be treated as different instances of

a single-product pricing problem for appropriately

selected concave revenue functions. Broadly

speaking, this is done by decoupling the revenue

maximization problems in two parts: first, at each point

in time the firm selects an aggregate capacity

consumption rate from all products, and second, it

computes the vector of demand rates to maximize

instantaneous revenues subject to the constraint that all

products jointly consume capacity at the aforementioned

rate. The latter is akin to the basic microeconomics

problem of resource allocation subject to a budget

constraint, and gives rise to an appropriate aggregate

revenue rate function in each case.

Adopting this common formulation, it will be

straightforward to review some of the key structural

results regarding the monotonicity properties of the

value function and the associated controls, which

were derived in the literature (Gallego and van Ryzin

1994, 1997; Lee and Hersh 1993; Lautenbacher and

Stidham 1999; Zhao and Zheng 2000; Maglaras

and Meissner 2006). Subsequently, the deterministic

and continuous (fluid) approximations of the dynamic

pricing problems described above are presented,

reviewing their solution, the pricing heuristics that

can be gleaned from them, and the performance

bounds that they offer for the expected revenues

of the stochastic and discrete revenue maximization

of original interest.

The next section formulates and solves Littlewood’s

two-fare-class capacity control problem, and briefly

discusses its extension to multiple fare classes. After

that, the single product dynamic pricing problem is

formulated, some known structural results are

reviewed, and the deterministic and continuous (fluid)

analog of the dynamic pricing problem presented.

Multi-product variants and extensions to a network

setting are then each described in separate sections.
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Single-Resource Capacity Control with Two
Fare Classes

Model

In its simplest form, this model can be described as

follows: an airline has a fixed capacity for a flight to

sell to the market; there is a low-fare and a high-fare

class, and low-fare demand is realized before the

high-fare demand; the key decision is to select

how many units of capacity to reserve for the

high-fare demand (i.e., make them unavailable for the

low-fare demand that gets realized first), so as

to maximize the total expected revenue per flight.

A firm has C identical units of a good to sell over

two time periods to two demand classes indexed by

i ¼ 1; 2. The class-2 demand, denoted by D2, arrives

first and pays a price of p2, followed by the class-1

demand, denoted by D1, which pays p1 > p2. The

salvage value is assumed without loss of generality to

be 0. The two demands are discrete random variables

that are independent of each other, and independent of

any capacity control decisions made by the system

manager, drawn from some distributions Fi for

i ¼ 1; 2. The firm controls whether to accept or reject

each class- i request for one unit of its capacity, and its

objective is to allocate the available capacity to the two

demand streams described above so as to maximize its

total expected revenue over the entire selling horizon.

It is well known that the structure of the firm’s optimal

policy takes the form of a threshold, or protection

level, denoted by L, which sets the number of units of

capacity to be reserved for the high-fare class demand,

D1, i.e., class 2 demand requests are accepted as long

as it the remaining capacity left for period 1 for the

high-fare demand stream is greater than L, and are

rejected otherwise. In summary, the firm’s problem is

to choose the protection level L to maximize its

expected revenue:

max
0�L�C

 p1 min D1; max C� D2; Lð Þð Þ½

þp2 minðD2;C� LÞ�:
(1)

where the expectation is taken with respect to the two

demand distributions.

Littlewood’s Formula

In the capacity control problem in (1), the term

minðD2; C� LÞ is the sales for the low-fare class,

which arrives first; and consequently, the high-fare

class sales is the minimum of demand D1

and the remaining number of seats

C�min D2; C� Lð Þ ¼ max C� D2; Lð Þ. If D1 and

D2 were continuous random variables and partial

sales were allowed, then the optimal protection-level

L
 would be given by the following equality:

p1 ðD1 � L
Þ ¼ p2

if and only if F1ðL
Þ ¼ g :¼ 1� p2=p1:
(2)

This condition is commonly referred to as

Littlewood’s rule. The left hand side of the above

expression equates the marginal expected revenues

from an immediate sale at price $p2 versus a potential

sale in the next period at the higher price $p1.

For discrete demand distributions, the optimal

protection level satisfies

p2 < p1 ðD1 � L
Þ and p2 � p1 ðD1 � L
 þ 1Þ
, g > F1ðL
 � 1Þ and g � F1ðL
Þ;

(3)

i.e., the optimal protection level is given by

L
 ¼ inf L : F1ðLÞ � gf g: (4)

The above expression is known as Littlewood’s

rule, following Littlewood’s 1972 paper that

formulated and solved that problem. There is

a natural connection between this problem and the

well-known newsvendor problem in operations

management.

Littlewood’s rule has been extended into multiple

fare classes, still under the assumption that lower fare

demand is realized before higher fare demand. Two

heuristics were developed in the literature under the

EMSR(a) and EMSR(b), where the acronym EMSR

stands for Expected-Marginal-Seat-Revenue. Both

heuristics are based on recursive reductions of the

multiple fare class problem into two fare classes

looking at a marginal class against all downstream

fare classes. The nature of the solution is a sequence

of nested protection levels, where L1 units are

protected for class 1, L2 are protected for the two

highest fare classes 1,2, etc. The optimal solution of

the multiple fare class problem is given in Brumelle

and McGill (1993).
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Single-Product Dynamic Pricing Problem

Model

Consider a firm endowed with C units of capacity of

a product that is to be sold over a finite horizon t, and

where capacity cannot be replenished up to that time.

The salvage value of remaining capacity at time t is

assumed to be zero. (A constant per-unit salvage value

would also result to formulations similar to those

developed below.) The firm is either a monopolist or

is assumed to operate in a market with imperfect

competition, and, in that, has power to influence the

demand for each product by varying its menu of prices.

Let pðtÞ denote the price posted at time t. The demand

process is assumed to be a non-homogeneous Poisson

process with rate vector l determined through

a demand function lðpðtÞÞ, where l : P ! L, P � 

is the set of feasible prices, and

L ¼ x � 0 : x ¼ lðpÞ; p 2 Pf g � þ is the set of

achievable demand rate vectors. Assume that L is

a convex set. For ease of exposition the demand

function lð�Þ is assumed to be stationary. Consider

regular demand functions that satisfy some additional

conditions. In the sequel, x0 denotes the transpose of

any matrix x, for any real number y, yþ :¼ maxð0; yÞ, e
is the vector of ones of appropriate dimension and a.s.

stands for almost surely.

Definition 1. A demand function is said to be regular

if it is a continuously differentiable, bounded function,

and (a) lðpÞ is strictly decreasing in p, (b)

limp!1 lðpÞ ¼ 0 , and (c) the revenue rate plðpÞ is

bounded for all p 2 P and has a finite maximizer p̂.

Assuming there exists a continuous inverse demand

function pðlÞ, p : L ! P, which maps an achievable

demand rate l to the corresponding price pðlÞ, the
demand rate can be taken as the firm’s control, from

which the appropriate price can be inferred using the

inverse demand function. The expected revenue rate

can be expressed as a function of the vector of demand

rates l as RðlÞ :¼ lpðlÞ, and is assumed to be

continuous, bounded and strictly concave.

Ex.1 Linear demand model: the demand for the

product at price p is given by lðpÞ ¼ L� bp,

where L > 0 is the market potential for the

product and b > 0 is the price sensitivity

parameter. The inverse demand and revenue

functions are pðlÞ ¼ ðL� lÞ=b and

RðlÞ ¼ lðL� lÞ=b, respectively.

Ex. 2 Logit demand model: lðpÞ ¼ Le�bp=ð1þ e�bpÞ,
pðlÞ ¼ ð1=bÞlnðL=l� 1Þ and RðlÞ ¼ ðl=bÞ
lnðL=l� 1Þ, respectively.
The problem addressed is roughly described as

follows: given an initial capacity C, a selling horizon

t, and a demand function that maps a posted price to

a corresponding instantaneous demand rate, the firm’s

goal is to choose a non-anticipating dynamic pricing

strategy in order to maximize its total expected

revenues.

A discrete-time formulation is adopted, i.e., one

where time has been discretized in small intervals of

length dt, indexed by t ¼ 1; . . . ; T, such

that ðone product request in ½0; dt�Þ ¼ ldtþ oðdtÞ,
ðtwo product requests in ½0;dt�Þ ¼ l2ðdtÞ2 þ oððdtÞ2Þ,
and so on, where the notation f ðxÞ is of order oðxÞ
implies that f ðxÞ=x! 0 as x! 0. In addition,

T ¼ t=dt. With slight abuse of notation, write l in

place of ldt, and refer to l either as the demand or

the buying probability. The random demand in period

t, denoted by xðt;lÞ, is Bernoulli with probability

lðtÞ ¼ lðpðtÞÞ, i.e., ðxðt;lÞ ¼ 1Þ ¼ lðpðtÞÞ and

ðxðtÞ ¼ 0Þ ¼ 1� lðpðtÞÞ. Treating the demand rate l

as the control variables (prices are inferred via the

inverse demand relationship), the discrete-time

formulation of the dynamic pricing problem of

Gallego and van Ryzin (1994) is:

max
lðtÞ; t¼1;...;Tf g



XT

t¼1

pðlðtÞÞxðt; lÞ
" #

:

(

XT

t¼1

xðt; lÞ � C a:s: and lðtÞ 2 L8t
)

:

(5)

Analysis of the Dynamic Program

Let x denote the number of remaining units of capacity

at the beginning of period t, and Vðx; tÞ be the expected
revenue-to-go starting at time twith x units of capacity

left. Then the Bellman equation associated with (5) is:

Vðx; tÞ ¼ max
l2L

l pðlÞ þ Vðx� 1; tþ 1Þ½ �f

þð1� lÞ Vðx; tþ 1Þg;
(6)

with the boundary conditions

Vðx; T þ 1Þ ¼ 0 8 x and Vð0; tÞ ¼ 0 8 t: (7)
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Letting DVðx; tÞ ¼ Vðx; tþ 1Þ � Vðx� 1; tþ 1Þ
denote the marginal value of one unit of capacity as

a function of the state ðx; tÞ, (6) can be rewritten as

Vðx; tÞ¼max
l2L

RðlÞ�lDVðx; tÞf gþVðx; tþ1Þ; (8)

and the optimal control l
ðx; tÞ is given by

l
ðx; tÞ ¼ argmax
l2L

RðlÞ � lDVðx; tÞf g;

where Rð�Þ is a concave increasing revenue function.

Using the properties of Rð�Þ, one can show that l
ðx; tÞ
is decreasing in DVðx; tÞ, which using a backwards

induction argument in t gives that DVðx; tÞ is

decreasing in x and t. These monotonicity results are

the key structural properties that one can extract from

the dynamic program and are summarized in the

following results.

Proposition 1. (Talluri and van Ryzin 2004b, Prop.

5.2 Ch. 4) For the problem defined in (5):

1. l
ðx; tÞ is decreasing in the marginal value of

capacity DVðx; tÞ, and
2. DVðx; tÞ is decreasing in x and t.

The dynamic program in (6) and (7) admits

a closed-form solution for the special case of the

exponential demand model, and is fairly easy to solve

numerically in other cases. The optimal policy takes

the form of a two-dimensional table that specifies

a price for each (remaining inventory, time) pair.

The optimal price path continuously decreases price

between sales, and jumps up at every sales epoch.

The Fluid Model

The fluid model has deterministic and continuous

dynamics, and in broad terms is obtained by

replacing the Poisson demand process with

non-homogeneous rate lðtÞ, where demand requests

arrive stochastically over time and require discrete units

of capacity, by a deterministic and continuous process

where demand for the product arrive continuously at the

deterministic rate lðtÞ. The resulting inventory dynamics

(in discrete time) are given by

Xðtþ 1Þ ¼ XðtÞ � lðtÞ; xð0Þ ¼ C; XðTÞ � 0:

This deterministic analog is a simplification of the

discrete and stochastic model from the previous

subsections. It can be rigorously justified as a limit

under a law-of-large-numbers type of scaling as the

potential demand and the capacity grow proportionally

large, and, as such, one would expect to provide more

useful analysis and policy recommendations in settings

where the firm has many units to sell and operates in

a market with high demand. For example, one would

expect that the discrete and stochastic nature of the

pricing problem to be relevant when selling four newly

constructed single family homes over the course of 24

weeks, but it may be less critical when selling 4000

pairs of skis over a similar time duration from, say,

October to March.

The fluid model formulation of the dynamic pricing

problem is one where the firm selects a demand rate

lðtÞ (or a price) at each time t to:

max
lðtÞ; t¼1;...; Tf g

XT

t¼1

RðlðtÞÞdt :

(

XT

t¼1

lðtÞdt�C and lðtÞ 2L 8t
)

:

(9)

Optimal policy for fluid pricing problem. An

important result derived in Gallego and van Ryzin

(1994) is that a constant price (and thus a constant

demand rate) is optimal for (9). Specifically, let

l̂ ¼ argmax RðlÞ : l 2 Lf g and p̂ ¼ pðl̂Þ be the

demand rate and price that maximize the revenue rate

disregarding any capacity considerations, respectively.

Also, let l0 ¼ C=T be the run-out rate that depletes

capacity at time T, and p0 ¼ pðl0Þ.

Proposition 2. (Talluri and van Ryzin 2004b, }

5.2.1.2) The optimal solution for (9), denoted by �l

and �p, are given by

�lðx; tÞ ¼ minðl0; l̂Þ; �p ¼ maxðp0; p̂Þ;
t ¼1; . . . ; T:

(10)

Intuitively, the firm uses the revenue-maximizing

price p̂ unless this would deplete the capacity too soon,

in which case it increases its unit price to p0 and sells

its capacity by time T, while accruing higher total

revenues. The proof is simple and exploits the

structure of (9) that seeks to maximize a concave

function over the capacity constraint; the first-order
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optimality conditions set the marginal revenue rates at

each time t to be equal, which in turn is achieved via

a static pricing policy.

The static nature of the optimal policy for the fluid

control problem is simple and intuitive, but also lacks

the capability of corrective action against stochastic

fluctuations. This does not arise in the fluid

formulation, where the capacity is drained along the

optimal deterministic trajectory, but it is relevant for

the stochastic problems of original interest.

Alternatively, �l can also be expressed in feedback

form. Note that the deterministic trajectory of

the fluid model is such that x=ðT � tÞ ¼ C=T for all t

if l̂ � C=T, and x=ðT � tÞ ¼ ðC� l̂tÞ=ðT � tÞ � C=T

if l̂ < C=T. Given this observation, �l can be

expressed as

�lðx; tÞ ¼ min l̂;
x

T � t

� �

: (11)

Equation (11) illustrates that the optimal pricing

policy extracted from the fluid model is essentially

a tracking or feedback policy that continuously

re-optimizes its decision so as to achieve a sales rate

that is given by the minimum between the capacity

unconstrained revenue maximizing rate and the rate

that would deplete all inventory exactly at time T. This

interpretation motivates the common practical

heuristic that periodically resolves the fluid model so

as to adjust its prevailing price, which according to

(11) is exactly what the fluid model prescribes; it is

worth noting that the resolving heuristic is one of the

most practical and widely adopted approaches to price

optimization.

An upper bound on achievable performance.
Apart from good policy recommendations, the fluid

model offers a useful upper bound on the achievable

expected revenue in the underlying stochastic and

discrete problem in (5). Specifically, Gallego and van

Ryzin (1994) showed the following:

Proposition 3. (Talluri and van Ryzin 2004b,

}5.2.2.3) VðC; 1Þ � ð�l�pÞT.
This result establishes a tractable limit for the best

achievable performance that is useful in establishing

sub-optimality gaps for heuristics that one may wish to

use, and to prove asymptotic optimality results of

candidate policies.

Multiple Products, Single Resource

This section studies multi-product dynamic pricing

and capacity control problems.

Problem Formulations

Dynamic pricing problem. The basic elements of the

problem as similar to those in the previous section,

with the key difference that the firm is now selling

multiple products or services, indexed by i ¼ 1; . . . ; n
that consume the capacity C. Each product i

request requires one unit of capacity. Let

pðtÞ ¼ ½p1ðtÞ; . . . ; pnðtÞ� denote the vector of prices

at time t. The demand process is assumed to be n

-dimensional non-homogeneous Poisson process with

rate vector l determined through a demand

function lðpðtÞÞ, where l : P ! L, P � 
n is

the set of feasible price vectors, and

L ¼ x � 0 : x ¼ lðpÞ; p 2 Pf g � 
n
þ is the set of

achievable demand rate vectors, assumed to be

a convex set. As in the previous section, the demand

function lð�Þ is assumed to be stationary. The

definition of regular demand functions is as follows:

Definition 2. A demand function is said to be regular

if it is a continuously differentiable, bounded function,

and (a) for each product i, liðpÞ is strictly decreasing
in pi, (b) limpi!1 liðpÞ ¼ 0 (i.e., consumers have

bounded wealth), and (c) the revenue rate

p0lðpÞ ¼
Pn

i¼1 piliðpÞ is bounded for all p 2 P and

has a finite maximizer �p.

Assuming there exists a continuous inverse demand

function pðlÞ, p : L ! P, which maps an achievable

vector of demand rates l into a corresponding vector of

prices pðlÞ, allows one to view the demand rate vector

as the firm’s control, and infer the appropriate prices

using the inverse demand function. The expected

revenue rate can be expressed as a function of the

vector of demand rates l as RðlÞ :¼ l0pðlÞ, and is

assumed to be continuous, bounded and strictly

concave.

Ex. 1 Linear demand model: the demand for product i

is given by

liðpÞ ¼ Li � biipi �
X

j6¼i

bijpj;

or ðin vector formÞ lðpÞ ¼ L� Bp;
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whereLi is the market potential for product i and bii; bij
are the price and cross-price sensitivity parameters.

The inverse demand and revenue functions are

pðlÞ ¼ B�1ðL� lÞ and RðlÞ ¼ l0B�1ðL� lÞ,
respectively. Definition 1 requires that bii > 0 for all

i. To ensure that the inverse demand function is well

defined and the revenue function is concave, it is

required that either bii >
P

j6¼i jbjij or bii >
P

j6¼i jbijj
for all i; both conditions guarantee that B is invertible

and that its eigenvalues have positive real parts (Horn

and Johnson 1994, Thm. 6.1.10). The linear demand

model has the obvious shortcoming that for some

prices it may generate negative demand values. This

could be corrected by taking lðpÞ ¼ ðL� BpÞþ, but
such a change does not preserve the concavity of the

revenue function. In practical applications, it is

appropriate to use the linear demand model in

settings where the set of reasonable prices would

ensure that the demand rates are positive, or in

applications where the pricing manager can constrain

the prices so as to ensure this property.

Ex. 2 Multinomial Logit (MNL) model: Potential

customers arrive with rate L and have utilities for

each product i given by vi � pi þ xi, where vi is the

deterministic portion that is common to all

customers, pi is the price, and xi is the random

term (that differentiates customers) that is drawn

from a Gumbel distribution with mean zero and

parameter one (the latter is assumed w.l.o.g.), and

is IID across products and customers. The

no-purchase option has utility u0 þ x0, x0 is IID

with the xi’s and u0 ¼ 0. The demand rates for

product i is given by

liðpÞ ¼ L
evi�pi

1þ
P

j e
vj�pj

:

Adopting again a discrete-time formulation, the

random demand vector in each period t, denoted

by xðt; lÞ, is Bernoulli with probabilities

lðtÞ ¼ lðpðtÞÞ, and  xiðt; lÞ ¼ 1ð Þ ¼ liðpðtÞÞ and

ðxiðt; lÞ ¼ 0Þ ¼ 1� liðpðtÞÞ for all i. Treating

the demand rates li as the control variables

(prices are inferred via the inverse demand

relationship), the discrete-time formulation of the

dynamic pricing problem of Gallego and van Ryzin

(1997) is:

max
lðtÞ; t¼1:...; Tf g



XT

t¼1

pðlðtÞÞ0xðt; lÞ
" #

:

(

XT

t¼1

e0xðt; lÞ � C a:s: and lðtÞ 2 L8t
)

:

(12)

Capacity control problem. The next variant

considered is the one studied by Lee and Hersh

(1993), where the price vector p and the demand rate

vector l ¼ lðpÞ are fixed, and the firm optimizes over

capacity allocation decisions. For this problem and

without any loss of generality it is assumed that

products are labelled such that p1 � p2 � � � � � pn.

The firm has discretion as to which product requests

to accept at any given time. This is modeled

through the control uiðtÞ that is equal to the

probability of accepting a product i request at time t.

It is customary to assume that the firm is “opening” or

“closing” products, thus considering controls uið�Þ
that are 0 or 1, but this need not be imposed as

a restriction. The dynamic capacity control problem

is the following:

max
uðtÞ:t¼1;...;Tf g



XT

t¼1

p0xðt;ulÞ
" #

:

(

XT

t¼1

e0xðt;ulÞ�C a:s: 1 and uiðtÞ 2 ½0;1� 8t
)

;

(13)

where ul above denotes the vector with coordinates

uili.

The remainder of this section describes how to

reduce (12) and (13) into dynamic optimization

problems where the control is the (one-dimensional)

aggregate capacity consumption rate. The reduced

problems can be studied through a unified analysis.

A Common Formulation in Terms of the Aggregate

Capacity Consumption

Dynamic pricing problem. Let x denote the number

of remaining units of capacity at the beginning of

period t, and Vðx; tÞ be the expected revenue-to-go
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starting at time t with x units of capacity left. Then, the

Bellman equation associated with (5) is:

Vðx; tÞ ¼max
l2L

Xn

i¼1
li piðlÞ½

(

þVðx� 1; tþ 1Þ� þ ð1� e0lÞ Vðx; tþ 1Þ
)

;

(14)

with the boundary conditions

Vðx; T þ 1Þ ¼ 0 8 x and Vð0; tÞ ¼ 0 8 t: (15)

Letting DVðx; tÞ ¼ Vðx; tþ 1Þ � Vðx� 1; tþ 1Þ
denote the marginal value of one unit of capacity as

a function of the state ðx; tÞ, (14) can be rewritten as

Vðx; tÞ ¼max
l2L

RðlÞ �
Xn

i¼1
liDVðx; tÞ

n o

þ Vðx; tþ 1Þ
¼max

r2R
RrðrÞ � rDVðx; tÞf g

þ Vðx; tþ 1Þ;

(16)

where r :¼Pn
i¼1 li is the aggregate rate of capacity

consumption, R :¼ r :
Pn

i¼1 li ¼ r; l 2 L
 �

is the

set of achievable capacity consumption rates, and

RrðrÞ :¼ max
l

RðlÞ :
Xn

i¼1
li ¼ r; l 2 L

n o
(17)

is the maximum achievable revenue rate subject to the

constraint that all products jointly consume capacity at

a rate r. Note that (17) is a concave maximization

problem over a convex set, and its solution is readily

computable, often in closed form. The aggregate

revenue function Rrð�Þ is concave and satisfies the

conditions of Definition 1. The optimal vector of

demand rates, denoted by lrðrÞ, is unique and

continuous in r.

Ex. 1 Linear demand model: For lðpÞ ¼ L� Bp, the

associated aggregate revenue function RrðrÞ
defined through (17) can be expressed as

RrðrÞ ¼ �air
2 þ birþ gi for r 2 ½ri�1; riÞ;

for 0 ¼ r0 � r1 � r2 � � � � � rI, and constants

ðai; bi; giÞ and ri that depend on the model parameters

L;B; m, and are such that RrðrÞ is continuous, almost

everywhere differentiable, and increasing for all

r � r̂ :¼ argmaxr R
rðrÞ. The value of ri�1 is that of

the smallest capacity consumption rate above which it

is optimal to start offering the i most profitable

products. The derivation of the constants ða; b; g; rÞ
can be found in the Appendix of Maglaras (2005).

Ex. 2 For the MNL model, straightforward

manipulations show that

RðrÞ ¼ r ln
X

j

evj

 !

� r lnðr=ðL� rÞÞ;

liðrÞ ¼ r eviP
j
e
vj

and piðrÞ ¼ ln
P

j e
vj

� �

� lnðr=ðL� rÞÞ.

Proposition 4. The dynamic pricing problem (12)

can be reduced to the dynamic program (15)/(16)

expressed in terms of the aggregate consumption

rate. In particular, if r
ðx; tÞ denotes the

associated optimal control and l
ðx; tÞ and p
ðx; tÞ
denote the respective optimal demand rate and

price vectors associated with (12), then,

l
ðx; tÞ ¼ lrðr
ðx; tÞÞ and p
ðx; tÞ ¼ pðlrðr
ðx; tÞÞÞ:
The capacity control problem. Similarly, the

Bellman equation associated with (13) is

Vðx; tÞ ¼ max
ui2½0; 1�

X

n

i¼1

liui½pi þ Vðx� 1; tþ 1Þ�
(

þð1� u0lÞ Vðx; tþ 1Þ
)

(18)

with the boundary condition (15), which using the

marginal value of capacity DV becomes

Vðx; tÞ ¼ max
ui2½0; 1�

Xn

i¼1
liuipi � u0lDVðx; tÞ

n o

þ Vðx; tþ 1Þ
¼ max

0�r�
Pn

i¼1
li

RaðrÞ � rDVðx; tÞf g

þ Vðx; tþ 1Þ;
(19)
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where r ¼ u0l and RaðrÞ ¼ max u

Pn
i¼1 uilipi :



u0l ¼ r; ui 2 ½0; 1�g is the maximum revenue rate

when the capacity is consumed at rate equal to r, and

uaðrÞ is the corresponding control.

Proposition 5. The capacity control problem (13) can

be reduced to the dynamic program (15)/(19)

expressed in terms of the aggregate consumption rate

r. In particular, if r
ðx; tÞ denotes the optimal solution
of (15) and (19) and u
ðx; tÞ denote the optimal policy
for (13), then u
ðx; tÞ ¼ uaðr
ðx; tÞÞ:

A similar result was derived by Talluri and van

Ryzin (2004a) for a capacity control problem for

a model with customer choice.

A Unified Analysis of the Pricing and Capacity

Control Problems

The preceding analysis illustrates that both problems

can be reduced to appropriate single-product pricing

problems, highlighting their common structure and

enabling a unified treatment. As a starting

observation, for both (16) and (19), the optimal

control r
ðx; tÞ is computed from

r
ðx; tÞ ¼ argmax
r2R

RðrÞ � rDVðx; tÞf g:;

where Rð�Þ is a concave increasing revenue function.

Using Proposition 1 and the properties of Rð�Þ, one gets
that r
ðx; tÞ is decreasing in DVðx; tÞ, which using

a backwards induction argument in t gives that

DVðx; tÞ is decreasing in x and t.

Structural results for the pricing and capacity

allocation policies follow from the properties of

Rr; lr and Ra; ua, respectively. For example, consider

the pricing problem for the case where the products are

non-substitutes, i.e., the demand for product i is only

a function of the price for that product pi. In that case,

the Lagrangian associated with (17) is

Lðl; x; yÞ ¼ RðlÞ þ xðr�
Pn

i¼1 liÞ � y0l, with first

order conditions given by @RðlÞ=@li ¼ xþ yi, for

some x � 0 and yi � 0 with yi ¼ 0 if li > 0. It is

easy to show that x is decreasing in r (i.e.,

the shadow price for the capacity consumption

constraint decreases as r increases), and that lri ðrÞ is
decreasing in x.

Corollary 1. Consider the problem specified in (12)

and further assume that the products are

non-substitutes, i.e., liðpÞ ¼ liðpiÞ for all i.

Then, l
i ðx; tÞ is non-decreasing in r
ðx; tÞ
(and non-increasing in DVðx; tÞ).

A similar result can be obtained when products are

substitutable provided that the demand model satisfies

certain conditions analogous to those of the sensitivity

matrix B of the linear model described earlier in this

section.

For the capacity control problem, it is easy to

recover some well-known structural properties of the

optimal policy (e.g., Lee and Hersh (1993)). The

derivation based on the capacity consumption rate

offers new intuition as to why they hold. Specifically,

Rað�Þ is a knapsack solution for which

RaðrÞ ¼ min
i

ci þ pi;

uakðrÞ ¼ min
ðr�

P
i<k liÞ

þ

lk
; 1

	 


;
(20)

where c1 ¼ 0 and ci ¼
P

k<i lkðpk � piÞ, and for any

x 2 R, xþ :¼ maxðx; 0Þ, and the optimal control

r
ðx; tÞ reduces to the solution to

max mini ci þ ðpi � DVðx; tÞÞr : 0 � r �
Pn

i¼1 li
 �

:

Let i
ðx; tÞ ¼ max i � 1 : pi � DVðx; tÞf g. Then, by
inspecting the form of the piecewise linear objective

function involved in the calculation of r
ðx; tÞ, it

follows that r
ðx; tÞ ¼
Pn

i�i
ðx;tÞ li, i.e., the solution

is “bang-bang” in the sense that the form of the

optimal control is such that u
i ðx; tÞ is 0 if i > i
ðx; tÞ
and 1 if i � i
ðx; tÞ. In addition, from Proposition 1

part 1, i
ðx; tÞ is decreasing in the marginal value of

capacity DVðx; tÞ. Therefore:

Corollary 2. For the capacity control problem (13)

or equivalently, (15)/(19), the optimal allocation

policy is nested, in that u
i ðx; tÞ ¼ 1 if i � i
ðx; tÞ, and
u
i ðx; tÞ ¼ 0 otherwise, and i
ðx; tÞ is decreasing in the

marginal value of capacity DVðx; tÞ.
Efficient frontier. The subproblem of computing

the optimal revenue subject to a constraint on the

aggregate capacity consumption rate specified in (17)

and (20) defines an efficient frontier ðr; RrðrÞÞ and

ðr; RaðrÞÞ for the dynamic pricing and capacity

allocation problems, respectively. As in the context of

portfolio optimization, the efficient frontier provides

a systematic framework for comparing different

policies and highlights the structure of the respective

optimal controls. Some of the direct insights extracted

form the efficient frontier calculation is that the optimal
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capacity control policy in a multi-product setting is

nested, and that the optimal dynamic pricing policy is

the solution of a problem that strives to equalize the

marginal revenue rates across products.

It may also lead to computational improvements if

this subproblem can be solved efficiently, which is

indeed the case for some common demand models

such as the linear and the multinomial logit. The

preceding discussion is from Maglaras and Meissner

(2006); see also Feng and Xiao (2000, 2004) and

Talluri and van Ryzin (2004a). Finally, note that the

structure of the dynamic programs studied in this

section has been observed in other papers, such as

Lin et al. (2003) and their study of single-resource

capacity control problems where each arrival may

request multiple units of capacity, and Vulcano et al.

(2002) and their analysis of optimal dynamic auctions.

The latter involves an analysis of a discrete-time, batch

demand analog to the dynamic program studied here.

Solution to the Deterministic Multi-product

Pricing Problem

As before, the fluid model has deterministic and

continuous dynamics, and is obtained by replacing

the discrete stochastic demand process by its rate,

which now evolves as a continuous process. The

realized instantaneous demand for product i at time t

is deterministic and given by liðtÞ. It is allowed for

product i requests to consume capacity at a rate of

ai > 0 units per unit of demand, and denote by a the

vector ½a1; . . . ; an�. This is a generalization of the

model considered thus far that assumed uniform

capacity requirements (all equal to 1). With a general

capacity requirement vector a, the capacity

consumption rate is defined by r ¼ a0l, and the

definitions of Rr and lr can be appropriately adjusted

to reflect that change. The system dynamics are given

by Xðtþ 1Þ ¼ XðtÞ �Pn
i¼1 ailiðtÞ, Xð0Þ ¼ C,

together with the boundary condition that XðTÞ � 0.

The firm selects a demand rate liðtÞ (or a price) at each
time t. The fluid formulation of the multi-product

pricing problem is the following:

max
lðtÞ;t¼1;...;Tf g

XT

t¼1

RðlðtÞÞdt :
XT

t¼1

a0lðtÞdt � C

(

and lðtÞ 2 L8t
)

:

(21)

Gallego and van Ryzin (1997, }4.5) partially

extended their single product results to multiple

products, but without providing such a succinct

solution as the one presented in the previous section.

An alternative approach that exploits the action space

reduction described earlier was described in Maglaras

and Meissner (2006) and is reviewed below.

Specifically, recalling the definitions of the aggregate

revenue function RrðrÞ and optimal demand rate

vector lrðrÞ in (17) adjusted for the fact that r ¼ a0l,
(21) can be rewritten as:

max
rðtÞ; t¼1;...; Tf g

XT

t¼1

RrðrðtÞÞdt :
(

XT

t¼1

rðtÞdt � C; rðtÞ 2 R8t
)

:

(22)

Note that (22) is identical to a single-product

problem with revenue function Rr, and thus is

solvable using the approach described above. Let

r0 :¼ C=T and r̂ ¼ argmaxr R
rðrÞ. Then, the optimal

solution to (22) is to consume capacity at a constant

rate �r given by

�rðtÞ :¼ minðr̂; r0Þ 8 t; (23)

the corresponding vector of demand rates is lrð�rÞ,
while the price vector is pðlrð�rÞÞ. A direct

verification that this solution satisfies the optimality

conditions for (21) establishes the following:

Proposition 6. Let �lð�Þ and �pð�Þ denote the optimal

vectors of demand rates and prices for (21). Then, �l; �p
are constant over time and are given by �lðtÞ ¼ lrð�rÞ
and �pðtÞ ¼ pðlrð�rÞÞ:

Asymptotically Optimal Heuristics Extracted from

the Deterministic Model

Finally, three heuristics for the revenue management

problems studied in this section are presented. For each

of these policies, one could show that they achieve the

optimal asymptotic performance (Maglaras and

Meissner 2006).

a. The static pricing (make-to-order) heuristic of
Gallego and van Ryzin (1997). This policy

implements the static prices �p specified in

Proposition 1.
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b. A List Price Capacity Control (LPCC) heuristic.
One way to implement (3) is by introducing

capacity control capability on top of the static

prices given in (a), specifically,

1. price according to �p and label products such that

�p1 =a1 � �p2 =a2 � � � � � �pn =an, and

2. compute �rðx; tÞ and use the capacity controls

u1ðx; tÞ ¼ 1 if x > 0, u1ð0; tÞ ¼ 0, and for i � 2,

uiðx; tÞ ¼
1 if �rðx; tÞ �

X

j<i

aj �lj � 0

0 otherwise

8
<

: (24)

Note that this policy can only reduce the aggregate

capacity consumption rate from its nominal value ofPn
i¼1 ai �li , but can never increase it. A product is

made available only if the fluid solution starting

from that state would choose to sell this product in

all future time periods, and closes the product if the

fluid solution would dictate only partial acceptance

of the associated demand.

This policy was described in Maglaras and

Meissner (2006). It is a refinement of the static

pricing policy in (a) and the make-to-order

heuristic of Gallego and van Ryzin (1997). Other

examples of joint pricing and capacity controls

include Vulcano et al. (2002), Lin et al. (2003),

and Feng and Xiao (2004).

c. A dynamic pricing heuristic. The solution of the

fluid pricing problem studied earlier can be

described in feedback form as

�rðx; tÞ ¼ min r̂;
x

T � t

� �

; (25)

where x is the remaining capacity at time t. The third

heuristic translates the aggregate control �rðx; tÞ into

product-level rates (and prices) through

lðx; tÞ ¼ lrð�rðx; tÞÞ and

pðx; tÞ ¼ pðlðx; tÞÞ; (26)

where the mapping lrð�Þwas the maximizer in (17) and

it is continuous in r. This corresponds to the idea of

resolving the fluid problem while stepping through

time. This is widely applied in practice, where,

however, the resolving occurs at discrete points in

time, e.g., daily or weekly, depending on the

application setting. These resolving policies seem to

have been first analyzed in Maglaras and Meissner

(2006), which show that the idea of resolving applied

in the context of the dynamic pricing or the LPCC

heuristics is fluid-scale asymptotically optimal, as is

the static policy (a). The single-product version of this

feedback pricing policy has also been studied by

Reiman (2002). These result show that the

suboptimal behavior demonstrated by a resolving

policy in the negative example studied in Cooper

(2002) does not persist in systems with large capacity

and large demand. Intuitively, resolving is nothing but

implementing the fluid policy in feedback form.

Numerical experiments documented in many papers

(e.g., Maglaras and Meissner (2006)) demonstrate

that such feedback heuristics tend to outperform

policies that are static.

Dynamic Pricing Network Revenue
Management Problems

This section offers a glimpse of network revenue

management problems, and specifically a brief

review of its associated fluid model formulation; see

Gallego and van Ryzin (1997) and Talluri and van

Ryzin (2004b) for a more detailed treatment. Suppose

that the firm is operating a network of resources,

indexed by j ¼ 1; . . . ;m, and that each product i

request consumes Aij units of resource j capacity. Let

A :¼ ½Aij� denote the associated capacity consumption

matrix, and assume that the initial capacity for each

resource j is Cj. Then, the fluid model formulation of

the network dynamic pricing problem is:

max
lðtÞ; t¼1;...; Tf g

X

T

t¼1

RðlðtÞÞdt :
(

X

T

t¼1

AlðtÞdt � C and lðtÞ 2 L8t
)

:

(27)

As before, this problem can be expressed in terms of

r, which is defined by r :¼ Al: Specifically, let

RrðrÞ :¼ max
l

RðlÞ : Al ¼ r; l 2 Lf g; (28)

be the maximum achievable revenue rate when

resource capacity is consumed at a rate r, and lrðrÞ
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denote the corresponding vector of optimal demand

rates. Then, (27) can be reduced to

max
rðtÞ; t¼1;...; Tf g

XT

t¼1
Rr ðrðtÞÞdt :

(

XT

t¼1
rðtÞdt � C and rðtÞ 2 R8t

)

:

(29)

Let �r denote the solution to (29). Then, lrð�rÞ is the
vector of optimal demand rates for (27). This reduction

could prove computationally beneficial, since as is

often the case the number of products (e.g., the

number of fare-class and origin–destination pairs)

tends to be greater than the number of resources (e.g.,

number of flights in a hub-and-spoke network).

However, unlike the treatment of the single-resource

models in the previous section, this reduction need not

necessarily apply to the discrete and stochastic

formulation of the underlying revenue management

problem.

Concluding Remarks

The papers by Elmghraby andKeskinocak (2003), Bitran

and Caldentey (2003), andMcGill and van Ryzin (1999),

and the book by Talluri and van Ryzin (2004b) provide

comprehensive overviews of the areas of dynamic

pricing and revenue management. The modeling

framework adopted here closely matches that of

Gallego and van Ryzin (1994, 1997). Additional

references on the capacity control formulation are

Brumelle and McGill (1993) and Lautenbacher and

Stidhman (1999). The reduction of the multi-product

and capacity control problems to single-product pricing

problems and their subsequent solutions are from

Maglaras and Meissner (2006). The asymptotic analysis

that is briefly reviewed here builds on the setup used in

Gallego and van Ryzin (1994, 1997) and Cooper (2002),

and the results reviewed here are adopted fromMaglaras

and Meissner (2006). The idea of efficient controls and

that of a notion of an efficient frontier on how to choose

the product level pricing and capacity control decisions

to achieve a desired capacity absorption rate is from

Maglaras and Meissner (2006). Related ideas have

appeared in slightly different settings in Talluri and van

Ryzin (2004a), in the context of a capacity control

problem for a model with customer choice among

products, and in Feng and Xiao (2000, 2004), while

studying pricing problems with a predetermined set of

price points; the presentation of this topic here follows

Maglaras and Meissner (2006). The pricing and

capacity control heuristics have appeared in many

references such as Gallego and van Ryzin (1994, 1997),

McGill and van Ryzin (1999), Feng andXiao (2004), Lin

et al. (2003), and Maglaras and Meissner (2006).

The feedback form of the static pricing policy that is

optimal for the deterministic and continuous (fluid)

analog of the stochastic and discrete dynamic pricing

problem and the property of asymptotic optimality of

the resolving pricing heuristic that is based on that

feedback policy are both from Maglaras and Meissner

(2006).

The are several extensions, generalizations, and

new directions of work in the area of revenue

management that were not reviewed here. Some may

be the result of practical considerations. For example,

one may want to consider pricing policies where the

feasible price grid is discrete, say in $10 increments.

Another extension would incorporate costs incurred

when the price is changed. Other important research

directions include revenue maximization problems for

which the seller does not have accurate information

about the underlying demand model, where in such

settings, the seller uses its pricing decisions to

simultaneously learn the demand and optimize

revenues; the effect of strategic consumer behavior

on revenue maximization practices, such as

intentional waiting for sales to make retail purchases;

and multi-product and multi-firm pricing problems

under competition.

See

▶Bellman Optimality Equation

▶Dynamic Programming

▶ Inventory Modeling

▶Markov Decision Processes

▶Yield Management
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Revenue Neutrality Theorem

▶Revenue Equivalence Theorem

Reversible Markov Chain/Process

A stationary Markov process whose infinitesimal

generator (rate matrix) has elements given by

q ðk; jÞ ¼ pj qðj; kÞ
pk

for j; k 2 E;

where p j is the steady-state probability that the chain is

in state j and q (j, k) is the rate at which the chain goes

from state j to k, i.e., the mean flow rates or probability

flux satisfies detailed balance equations for every pair

of nodes.

See

▶Detailed Balance Equations

▶Markov Chain Monte Carlo

▶Markov Chains

▶Markov Processes

▶Networks of Queues

▶Queueing Theory

▶Rate Matrix

Revised Simplex Method

A version of the simplex method that uses an explicit

or implict expression of the inverse of the current basis

to calculate the simplex multipliers (prices) and related

information.

See

▶ Product Form of the Inverse (PFI)

▶ Simplex Method (Algorithm)

▶ Simplex Tableau
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RHS

▶Right-Hand Side

Right-Hand Side

The column vector of coefficients b in a system of

linear constraints Ax ¼ b.

Right-Hand-Side Ranging

▶ Sensitivity Analysis

Risk

The risk of a decision d is the expected value of the loss

incurred using d taken over all possible states of nature.

A risk-averse person is one who prefers to behave

conservatively. A decision maker (DM) is said to

be risk averse if the DM prefers the expected

consequence of a nondegenerate lottery to that

lottery (a nondegenerate lottery is one where no

single consequence has a probability of one of

occurring). A DM is risk averse if and only if the

DM’s utility function is concave. In contrast, a risk-

prone (or risk-seeking) person is one who does not

prefer to behave conservatively. A DM is said to be

risk prone (or risk seeking) if the DM prefers any

nondegenerate lottery to the expected consequences

of that lottery. A DM is risk prone if and only if

the DM’s utility function is convex. Finally, a DM is

risk neutral if and only if the DM’s utility function is

linear.

See

▶Lottery

▶Risk Assessment

▶Utility Theory

Risk Assessment
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Introduction

To the layman, risk is often quantified in terms of

probabilities, whereby it might be said that gambling

on any event with a low probability of occurring

is a risky proposition. Or, the mere existence of

a catastrophic event with non-zero probability

exposes those involved to risk. The risk of nuclear

plant failure, global warming, or the depletion of

the ozone layer are examples. One might say that the

risk of not carrying an automobile insurance policy is

not worth the risk. One result of these simple

considerations is that the standard components of risk

are the chance of a loss, the possible magnitude of the

loss, and the exposure to that loss.

Public interest in the field of risk analysis

has grown and expanded in leaps and bounds

since 2000. Furthermore, since 1990, risk analysis has

emerged as an effective and comprehensive procedure

that supplements and complements the overall

management of almost all aspects of people’s lives.

Managers of health care, the environment, and

physical infrastructure systems (e.g., water resources,

transportation, and electric power) all incorporate

risk assessment in their decision-making processes.

The omnipresent adaptation of risk analysis by many

disciplines and its deployment by industry and

government agencies in decision making have led to

an unprecedented development of theory,

methodology, and practical tools. Technical articles

on risk assessment address concepts, tools, and

technologies that have been developed and practiced

in such areas as design, development, system

integration, prototyping, and construction of physical

infrastructure; in reliability, quality control, and

maintenance; and in the estimation of cost and

schedule and in project management (Haimes 2009).

Risk, a measure of the probability and severity

of adverse effects, is a concept that many find
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difficult to comprehend, and its quantification has

challenged and confused lay persons and

professionals alike. There are myriad reasons for this

state of affairs. One of the fundamental elements

that causes so much confusion and misunderstanding

of the concept of risk is that it is composed of two

diverse constructs. It is a complex composition and

amalgamation of two components, one real (the

potential damage, or unfavorable adverse effects and

consequences), the other an imagined, mathematical

human construct, termed probability. Probability, per

se, is intangible, yet its omnipresence in risk-based

decision making is indisputable. Furthermore, the

measure of the probability that dominates the

measure of risk is itself uncertain, especially for rare

and extreme events, e.g., when there exists an element

of surprise. Furthermore, what is meant by the terms

probability (or likelihood) and adverse effects?

Consider the interpretation of the term likelihood

in isolation (for now) of its probable consequences:

Is it the likelihood of the occurrence of any kind of

threat (or other initiating event), at any level or

magnitude, and when, and of what duration? Or, is

it the likelihood of the level and magnitude of the

consequences (for every element of the vector of

consequences)? Thus, the phrase “probability and

severity of adverse effects” can be interpreted in

two ways at the same time: (1) in terms of the

probability of the occurrence of adverse effects, and

(2) in terms of the probability of the severity of

adverse effects, given their occurrence. Both

interpretations are valid; however, each represents

varied conceptual and theoretical challenges

(Haimes 2009).

In the first issue of Risk Analysis, Kaplan

and Garrick (1981) set forth the following “set of

triplets” definition of risk, R:

R ¼ <Si; Li; Xi>f g (1)

where Si denotes the ith risk scenario, Li denotes

the likelihood of that scenario, and Xi the “damage

vector” or resulting consequences. This definition

has served the field of risk analysis well since then,

and much early debate has been thoroughly resolved

about how to quantify the Li and Xi, and the meaning

of probability, frequency, and probability of

frequency in this connection (Kaplan 1993).

In Kaplan and Garrick (1981), the Si themselves

were defined, somewhat informally, as answers to

the question, “What can go wrong?” with the system

or process being analyzed.

Subsequently, a subscript “c” was added to the set

of triplets by Kaplan (1991, 1993):

R ¼ <Si; Li; Xi>f gc (2)

to denote that the set of scenarios, {Si}, should

be complete, meaning it should include all the

possible scenarios, or at least all the important ones.

Also in Kaplan (1991, 1993), the idea of the

“success,” or “as-planned,” scenario was introduced

and denoted by S0. The risk scenarios Si could then

be visualized as deviations from S0. Thus the idea

began to gel that the various risk analysis methods

used in different industries (e.g., failure mode

and effects analysis (FMEA), fault trees, and event

trees) could be viewed as just different systematic

ways of identifying and categorizing these deviations,

Si. When these methods became generalized and

when the Russian method of anticipatory failure

determination (AFD) was added, this idea matured

into what is now called the theory of scenario

structuring (TSS) (Kaplan et al. 2001).

At about the same time that the definition of risk

article (Kaplan and Garrick 1981) was published,

so too was the first article on hierarchical holographic

modeling (HHM) (Haimes 1981). Central to the

HHM method is a particular form of diagram, which

is particularly useful for the analysis of systems

with multiple, interacting (perhaps overlapping)

subsystems such as a regional transportation or water

supply system (Haimes 2009). Figure 1 presents an

HHM for software acquisition (Schooff et al. 1997;

Haimes 2009). The different columns in the diagram

reflect different perspectives on the overall system.

The HHM methodology recognizes that most

organizational as well as technology-based systems

are hierarchical in structure, and thus the risk

management of such systems must be driven by and

responsive to this structure. The intent is that from

this perspective, multiple methods can be compared,

and thus be better understood. The risk analyst then

can be more confident and flexible when choosing,

mixing, and designing the method applicable to

a specific problem.
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HHM can be seen as part of the TSS and vice

versa. Under the sweeping generalization of the

HHM method, the different methods of scenario

structuring can lead to seemingly different sets of

scenarios for the same underlying problem.

This fact is a bit awkward from the standpoint of the

set-of-triplets definition of risk (Kaplan and Garrick

1981). To eliminate this awkwardness, this definition

of risk is refined to make explicit what was only

implicit before: The set of risk scenarios used in

a quantitative risk analysis should be (1) complete,

(2) finite, and (3) disjoint. These three properties can

be achieved by first noting that in realistic problems,

there is always an underlying continuum of possible

scenarios; this continuum is then divided into a finite

set of nonoverlapping subsets. Thus, recognizing that

each such subset is itself a scenario leads to a

complete, finite, and disjoint set. The mathematical

term for this dividing process is partitioning.

The HHM approach divides the continuum but does

not necessarily partition it. In other words, it allows the

set of subsets to be overlapping, i.e., non-disjoint.

It argues that disjointedness is required only when the

likelihood of the scenarios is going to be quantified,

and even then, only if these likelihoods are going to

be added up (in which case the overlapping areas

would end up counted twice). Thus, if the risk

analysis seeks mainly to identify scenarios rather than

to quantify their likelihood, the disjointedness

requirement can be relaxed somewhat, so that it

becomes a preference rather than a necessity.

With this understanding, the risk identification

and scenario structuring dimensions of HHM take

their place within the TSS as an extremely general

scenario identification process, alongside the other

well-known but more specific processes: FMEA,

hazard and operations analysis (HAZOP), fault and

event trees, and AFD (Haimes 2009).

In seeing how HHM and TSS fit within each other,

one key idea is to view the HHM diagram as

a depiction of the success scenario S0. Each box in

the diagram may then be viewed as defining a set
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of actions or results required of the system, as part of

the definition of success. Conversely then, each box

also defines a set of risk scenarios; the set of scenarios

in which there is failure to accomplish one or more of

the actions or results defined by that box. The

union of all these sets of risk scenarios is then

“complete” in that it contains all possible risk

scenarios.

In (1) the choice of the subscript i, on the Si, carries

with it, by conventional usage, the implicit

assumption that the set of scenarios is denumerable

(i.e., countable). Moreover, because (1) is intended to

describe the result of an actual risk analysis, there is the

further implicit assumption that the number of

scenarios in the set {Si} is finite. To release both

these assumptions, revise (2) to read:

R ¼ f<Sa; La; Xa>g; a eA (3)

where the index a now ranges over a set A,

which in general is non-denumerable. The set A is

therefore infinite and non-denumerable. It has the

same order of infinity as the real number continuum.

From the perspective of this framework, TSS

can now be viewed as a study of the various

techniques for achieving such a partitioning. Having

defined the success scenario S0, the process of finding

the risk scenarios, Si, consists of decomposing S0 into

parts or components. Then, putting a magnifying glass

over each part in turn, it is asked, “What could

go wrong in this part?” In this way the Si is generated.

Now (2) and (3) can be connected by recalling the

principle that every scenario, Si, that can be described

with a finite number of words is itself a set of

scenarios (Kaplan 1991, 1993). Thus, each Si in (2)

can be visualized as a subset of SA. For practical

purposes, the set of scenarios in the risk analysis,

{Si}, should be

1. Complete, in the sense that [iSi ¼ SA;

2. Finite; and

3. Disjoint, meaning that Si \ Sj;¼ ; for all i 6¼ j:
Such a set of subsets of SA is termed a partitioning,

P, of SA. Thus, the goal of risk analysis can be viewed

as identifying a partitioning of the underlying

risk space SA. The individual sets in this partitioning

are the scenarios Si, which are finite in number,

disjoint, and together cover the underlying space SA.

It may then be written

RP ¼ <Si; Li; Xi>f gP (4)

RP is thus an approximation to R based on the

partition P:

RP  R (5)

Within the field of risk assessment, TSS and

HHM aspire to be a comprehensive treatment of the

process of finding, organizing, and categorizing the set

of risk scenarios. As such, each should include within

itself the well-known standard methods of scenario

identification such as fault trees, FMEA, and failure

mode, effects, and criticality analysis (FMECA)

(Haimes 2009).

See

▶Risk Management for Software Engineering

▶ Stochastic Programming
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Introduction

Most, if not all, engineering systems are conceived,

designed, constructed, marketed, and maintained

under great unknowns and immense uncertainties.

This lack of knowledge is not limited to

technological issues such as strength of material,

functionality, performance, accuracy, and quality of

the components and the total product, but in fact

spans a diversity of non-technical areas as well, such

as predictions of customer, competitor, and market

behaviors, or the anticipation of the product’s

impact on the organization that manufactures it.

Thus, there are risks (measured by the probability

and severity of adverse effects) associated with

engineering systems; these risks must be managed.

Computer software plays a critical role in

the operation of engineering systems, due to the

pervasive nature of computers in society, plus

the integrality of software to the business of OR/MS.

Because software has its foundation in mathematics

and logic and not in physical laws, the ability of

a software engineer to introduce uncertainty into a

software system is greater than in any other field.

Only through very stringent management can those

uncertainties introduced during the software

development cycle be effectively controlled. The

increased influence of software in decision making

has introduced a new dimension to the way

business is done in engineering quarters: many of the

used-to-be-engineering decisions have been or

transferred and transformed, albeit in a limited and

controlled manner, to the software function. This

power shift in software functionality, the explicit

responsibility and accountability of software

engineers, and the expertise required on the job

of technical professionals, has interesting

manifestations, implications, and challenges for

the software engineers to adapt to new realities and to

change — all of which affect the assessment and

management of risk associated with software

development (Chittister and Haimes 1994; Haimes

and Chittister 1996).

Perhaps one of the most striking manifestations

of this power shift relates to real-time control systems.

Quality control in the manufacture of an engineering

component, for example, is no longer primarily

the responsibility of the operator; instead, the software

controlling the process also controls the quality. Thus, in

many respects, the software, which is designed and

developed by software engineers, actually controls the

process, not the engineers who originally designed

the product. This implies that a shift has taken place

from a strictly hardware-engineering perspective to

a hardware-and software-engineering perspective.

Software now fundamentally influences the design of

the system. For example, the C-17 transport

aircraft has been called the most computerized,

software-intensive transport aircraft ever built (General

Accounting Office 1992). Similarly, the Space Station

has “on-board computers . . . critical to space craft safety

and mission” (General Accounting Office 1989).

Likewise, neither the A320 Airbus nor a number of

high technology civilian and military systems can

perform their functions without software. Such

examples illustrate the difference between software

as amanufacturing or implementation mechanism

and software as a system-design component.

A comprehensive discussion of software acquisition is

presented by Boehm and Lane (2007) and Haimes and

Chittister (1996).

For example, the decision to update or

change operating parameters or entire algorithms

based on real-time sensor data received from other

sources is now embedded in the software system

design. As another example, the data selected to

be displayed on one system may be based on

information received from other systems. Indeed, the

types of changes or updates being implemented

by software today would have, in the past, required

either system hardware modification or a fundamental

redesign of the system. In spite of these examples and

others like them, software risk assessment and

management, as a specialized entity, with all its

importance and implications on other engineering

systems and humans, remains an emerging rather

than a well-understood activity.

Since software development, in the majority

of cases, is an ad hoc process (Humphrey 1990), it is
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not surprising that the risk identification and

management process has been by and large ad hoc

also. That process, however, can be made systematic

and structured even if the software development

process is not. The advances in hardware technology

and reliability and the seemingly unlimited capabilities

of computers render the reliability of most systems

to be more heavily dependent on the integrity of the

software used. Thus, software failure must be

scrutinized with respect to its contribution to overall

system failure and with the same diligence and tenacity

that have been devoted to hardware failure.

Software Risk

In the software development process, the following

three basic questions must be posed and answered at

each stage regarding risk: (1) What can go wrong?

(2) What is the likelihood that it will go wrong?

(3) What are the consequences? (Kaplan and Garrick

1981). Now it can be added: what is the time frame?

(Haimes 2009a). Only after these questions have been

answered can the final question be asked: What can be

done? Determining what can be done entails

developing alternative design options; evaluating

trade-offs; selecting one or more acceptable options

(in terms of cost, reliability, performance, total quality,

and safety); and evaluating the impact of current

policies on future options. To answer the first three

questions in the risk assessment process, however,

one may benefit from knowledge of the four major

sources of failure of systems in general, as well as in

software development (Haimes 1991, 2009a, b):

1. Hardware failure

2. Software failure (which includes software used in

the development of software)

3. Organizational failure

4. Human failure

The evolving role of the software engineer in

decision making has created and continues to create

enormous new challenges. The risk of not meeting

specified product quality has also shifted. What was

once solely the responsibility of traditional engineers

who had technical know-how, expertise, and

experience is now responsibility shared with software

engineers, who design and develop the controlling

software (Haimes and Chittister 2005, 2006;

Chittister and Haimes 2004).

Although all engineering managers practice

risk management in one way or another, only

a minority follow this systemic process by looking

for sources of failure across the entire system.

The intricacy and complexity of the risk assessment

and management process (when applied to

complex engineering systems) and the need for

quantitative analysis (which requires knowledge in

probability and statistics, and frequently other

content knowledge) have contributed to the

emergence of the subspecialization of risk

management in engineering. Thus, seeds for two

seemingly distinct groups — engineers as managers

of risk, and risk experts as managers of engineering

systems — have been sown. In a parallel way, one

may trace the distinction between (a) the engineer

as a technical expert, one primarily concerned

with the technical aspects of a project and to

a lesser degree with managerial issues; and (b)

the manager, one primarily concerned with

management (in the broader and more encompassing

sense of the term) and to a lesser degree with technical

aspects.

Here again, the engineer (as a local manager) and

the manager (as a more global manager with a broader

vision and perspective) share responsibilities, tools,

and methodologies, yet at the same time, each

performs distinct functions, matures in different

professional cultures, often uses a different jargon,

and communicates with a different language.

Understanding this emerging paradigm surrounding

the three entities — software engineering,

management, and risk analysis — is at the heart of

understanding the emergence of software technical

risk management.

Furthermore, to appreciate the connectedness

among the three elements of this paradigm, one

must also understand the hierarchical managerial

structure and the consequences of its divisions:

1. Upper management: This group views risk almost

exclusively in terms of profitability, schedule, and

quality. Risk is also viewed in terms of

the organization as a whole, and the effect on

multiple projects or a product line.

2. Program management: Although this group is

concerned with profitability, it concentrates more

on cost, schedules, product specificity, quality,

and performance, usually for a specific program or

project.
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3. Technical staff (software engineers, hardware

engineers, etc.): This group of professionals

concerns itself primarily with technical details

of components, subassemblies, and products for

one or more projects.

Clearly, differences among the risk managers at

each level of this hierarchical decision making

structure are caused by numerous factors, including

the scope and level of responsibilities, time horizon,

functionality, as well as requirements of skill,

knowledge, experience, and expertise. Consequently,

these differences determine, to a large

extent, the tools and methodologies employed by

risk managers at various levels. The management of

risk associated with the development of software

is governed by the same hierarchical decision

making structure and by the same interconnected

engineering-management-risk subspecialization

paradigm.

Technical vs. Non-technical Risk

The increase in the influence and dominance of

software on the system necessarily accompanies an

increase in the elements of risk and uncertainty.

Although no single classification of risk associated

with software development has been developed,

a dichotomous model of software technical risk vs.

software non-technical risk is adopted here (Chittister

and Haimes 1994).

This dichotomy between software technical and

non-technical risk is introduced not for the purpose of

distinguishing between two types of software products;

rather, this classification distinguishes various

functions in the developmental process of software,

and thus, is concerned with the expertise required to

deliver each function. Clearly, software technical and

non-technical risks are dependent on and influence one

another. For example, during a systems integration

phase, the developed software may not meet

some performance criteria or requirements. In this

case, management has several options, including

fixing the product and thus delaying the delivery

time (and possibly exceeding the budgeted cost)

or shipping the product as-is on time. In either

case, however, the sources of software technical risk

have not changed: only the consequences have been

altered.

Software technical risk is defined as a measure of

the probability and severity of adverse effects inherent

in the development of software that does not meet its

intended functions and performance requirements.

Thus, software technical risk connotes the risk

associated with those aspects in the software

developmental process that are concerned with the

quality, precision, accuracy, and performance over

time of the developed software. In other words,

software technical risk connotes the risk associated

with building a software product that meets intended

functions and performance.

On the other hand, software non-technical risk

connotes the risk associated with the programmatic

aspects in the developmental process of software that

are concerned with general management, that is, with

personnel, contractor selection, scheduling, budget,

and marketing.

Software non-technical risk is defined as a measure

of the probability and severity of adverse effects that

are inherent in the development of software and

are associated with the programmatic aspects in the

development process of software. Although each

type of risk may have an impact on the other, this

distinction is still useful because it improves the

process of risk assessment and management by

establishing causality. Indeed, the distinction between

software technical risk (e.g., noncompliance with

expected product quality) and software non-technical

risk (e.g., cost overruns and delays in scheduled

delivery of the product) is helpful in many ways.

Indeed, cognizance of the differences between the

types of risks should improve their assessment

and management, not serve as a detriment to dealing

with them. In other words, while the distinction among

the multifarious sources and types of risks is

important only to the extent that the totality of these

sources and type can be accounted for through their

inherent differences, the successful management of

risk can be achieved only through an integrated and

holistically-based approach. Since software

development is an intellectual, labor-intensive

activity, the role of humans and human factors must

be carefully understood to properly assess and manage

software technical risk.

The sources of risk associated with software

development are many and varied. Indeed, at each

stage of the software life-cycle (design, development,

testing, installation, integration into a larger system,
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and its ultimate use), one can identify numerous

sources of risk.

The road to building a software system is full of

surprises. Software often goes through numerous

changes, upgrades, fixes, recompiles, and system

builds, etc., to address problems; nevertheless,

new problems invariably arise. These changes take

place because requirements change, people make

mistakes, hardware manufacturers make changes to

the system in response to marketing information,

engineers introduce improvements, and software

vendors upgrade their tools. In addition, often there is

a break in communication, all these changes

necessarily introduce uncertainties into the

software development process and into the road to

building software.

The ability to predict software problems

before-hand has three major components:

1. Identifying and anticipating problems before they

happen.

2. Determining the magnitude of potential or existing

problems or risks.

3. Communicating the problems or risks to the

appropriate people (people who cause, fix, are

affected by, or are responsible for the problems).

The Role of Software in a Larger System

To understand what software development risk is, and

to contribute to its assessment and management

through the transfer of knowledge from the

hardware engineering field to the software

engineering field, one must (a) recognize the salient

features and differences between the development

processes of hardware engineering and software

engineering; (b) understand the role of software

engineering within the entire system; (c) appreciate,

in the context of design and development, the

uniqueness of software failure as juxtaposed against

hardware failure, recognizing the importance of all

four sources of system failure — hardware, software,

organizational, and human; and (d) be familiar with

the process of risk assessment and management from

a total systems viewpoint.

There would be, in general, a finite and

unambiguous number of fundamentally different

paths or design options for hardware development to

meet a given set of design specifications. Indeed, the

extensive use of fault-tree analysis builds on this

premise of finiteness. This is not so in the case of the

architectural design of software; the number of

significantly distinguishable paths or design options

of software, for any given specifications, is

significantly larger, more ambiguous, and broader.

This inherently large number of degrees of freedom

in design defies attempts to rely on historical statistics

in predicting potential defects, faults, and errors in the

development of software. A case in point is the

development of high performance computing

technology (Chittister and Haimes 2010). Significant

challenges are facing the following three different

groups within the professional community that

support the development of large-scale scientific and

engineering software applications. The first of the

groups encompasses the application developers of

large-scale scientific and engineering software

systems, especially those requiring high-performance

computing (HPC). The second group covers the HPC

software development and run-time environments.

The third consists of the integrators of the first two

groups, with a focus on the systems engineers whose

task is to bridge the technical and cultural gap between

the other two. These challenges reside in several areas,

the most important being the educational and cultural

backgrounds that are reflected in the knowledge,

expertise, and experience of the principals involved

(Chittister and Haimes 2010).

The design and development of software do not

typically follow well-established protocol and

commonly accepted procedures. Indeed, in most

cases, each software development is envisioned as

a unique and distinct product. This lack of

a well-developed and acceptable protocol has major

implications on several dimensions for the assessment

of software development risk.

Hardware has been increasingly taking the

component role, whereas software has been

forcefully assuming the overall systems role. Clearly,

however, this is not the case in all organizations.

This seemingly pivotal development has significant

implications for the evolving influence of software

engineers on important and critical decisions

concerning product design, development, and

marketing. The coordination of myriads of

components in one system can often be accomplished

more cost effectively and with higher reliability

through software; this is a marked departure from
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past practices. This fact has also brought the role of

systems engineers to greater prominence in

formulating policy affecting product design and

development. Furthermore, the software engineers’

evolving role in implementation, more than the

knowledge that they bring into the project, constitutes

another important force in the power shift from

hardware to software engineers. Indeed, the last step

in the development of a system always involves

software engineers, a fact that carries with it more

responsibility and implied authority in final product

development. It is important to recognize, however,

that both hardware and software engineers play an

equally important role in the over all system design.

In this sense, in the evolution of the power shift from

hardware to software one must keep in mind that

software development is an intellectually intensive

activity where human factors are central. In his

chapter on cognitive ergonomics, Sage (1992) makes

a forceful argument about the centrality of human

interaction with various aspects of the system

throughout all phase so fa systems engineering life

cycle. Therefore, to assess and manage software

technical and non-technical risks, one must explicitly

address the human element. Sage argues that

“a systematic study of human error and approaches to

ameliorate the effects of human error in systems and in

organizations” is essential in this regard.

As the role that software is assuming in meeting

system requirements grows, the impact of software on

system risk grows. To be effective and meaningful,

risk management must be an integral part of overall

system management. This is particularly important in

the management of technological systems, especially

software-intensive systems, where the failure of

a system can be caused by the failure of hardware,

software, the organization, or its people.

Hierarchical Holographic Modeling for Risk
Assessment

In the quest to develop an analytical framework for

risk management of software engineering it is

important to focus on the sources and causes of these

problems, attempt to group them into a meaningful, yet

manageable, number of categories, and then develop

a comprehensive framework for dealing with

the causes rather than the symptoms. To streamline

the discussion and add order to it, a hierarchical

structure is adopted.

Indeed, it is impossible to do justice to

a comprehensive framework for the risk assessment

and management of software development by

boxing it into one planar structure (model). By

allowing cross-representations and overlapping

models of the various facets and dimensions of the

process, hierarchical holographic modeling (HHM)

alleviates some of the limitations of a single schema

or a single vision of the complex system (Haimes 1981,

2009a, b; Haimes et al. 1990).

Fundamentally, HHM is grounded on the premise

that large-scale and complex systems, such as software

development, should be studied and modeled by more

than a single representation, vision, or schema. And,

because such complexities cannot be adequately

modeled or represented through a planar or a single

vision, overlapping among these visions is not only

unavoidable, but can be helpful in a holistic

appreciation of the interconnectedness among the

various components, aspects, objectives, and decision

makers associated with such systems.

The stratagem presented here for risk identification

evolves around three hierarchical levels (Chittister

and Haimes 1994; Haimes 2009a, b). The three major

decompositions, visions, or perspectives include: the

functional perspective, the source-based perspective,

and the temporal perspective.

From a functional perspective, the software

development process may be decomposed into the

following seven subsystems: requirement, product,

process, people, management, environment, and the

development system (Fig. 1). These terms may be

defined as follows:

1. Requirement: The highest-level definition of what

the product is supposed to do: what needs it must

meet, how it should behave, and how the customer

will use it. It corresponds to the production

perspective.

2. Product: The output of the project that will

be delivered to the customer. It includes the

complete system: hardware, software, and

documentation.

3. Process: The way by which the contractor proposes

to satisfy the customer’s requirement. The process

is the sequence of steps — their inputs, outputs,

actions, validation criteria, and monitoring

activities — that leads from the initial requirement
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to the final delivered product. It includes such

phases as requirements analysis, product

definition, product creation, testing, and delivery.

It includes both general management processes,

such as costing, schedule tracking, and personnel

assignment, and project-specific processes, such as

feasibility studies, design reviews, or regression

testing.

4. People: All those who will be associated with

the technical work on the project and all the

support staff. It also includes the technical

advisers, overseers, and experts, whether in the

chain of command or matrixed.

5. Management: The line managers at every level who

have authority over the project, including

those responsible for budget, schedule, personnel,

facilities, and customer relations.

6. Environment: The “externals” of the project: the

factors that are outside the control of the

project but can still have major effects on its

success or be sources of substantial risk.

7. Development system: The methods, tools, and

supporting equipment that will be used in the

product development. This includes, for instance,

CASE tools, simulators, design methodologies,

compilers, and host computer systems.

Another vision of the HHM can be obtained

through the four sources of system failure discussed

earlier (Fig. 2):

1. Hardware failure

2. Software failure (software used in the development

of software)

3. Organizational failure

4. Human failure

These four sources of failure are not necessarily

independent of each other. Just as the distinction

between software and hardware is not always

straightforward, neither is the separation between

human and organizational failure. Nevertheless,

these four categories of sources of failure provide

a meaningful foundation upon which to build the

decision-making hierarchy for the proposed

framework. Note that software development is an

intellectual, labor-intensive activity that must be

streamlined through a well-managed organizational

infrastructure and nurtured by an organizational

culture and vision that are conducive to and driven

by a continuous improvement philosophy.

The third vision of the HHM relates to the

evolution of software development over time. Each of

the various stages of software development, although

often not sharply distinguishable, overlapping, and

iterative, constitutes a subsystem in the temporal

decomposition (Figs. 3 and 4). For purposes of this

section, the temporal stages are identified as in

Humphrey (1990) as: (1) system requirements;

(2) software requirements; (3) analysis; (4) program

design; (5) coding; (6) testing; and (7) operations.

Third
Level

Second
Level

First
Level

People Management Product Process Environment Requirement

Risk of
Software
Failure

Risk of
Organizational

Failure

Risk of Hardware/
Equipment

Failure

Risk of
Human
Failure

Total Risk Assessment
and Management of

Software Development

Development
System

Risk Management for Software Engineering, Fig. 1 Total risk assessment and management of software engineering:
Functional-based hierarchical holographic structure
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Each stage (subsystem) in the temporal

decomposition can be viewed as one frame in a fixed

time (e.g., testing) during the software development

process. It is at this fixed-time frame that

risks associated with the functional decomposition

(e.g., requirement) and with the source-based

decomposition (e.g., organizational failure) are

identified and articulated. As another example,

consider the following four risks that are common

during each stage of software development: cost

overrun, time delay, not meeting requirements,

and not meeting technical quality specifications.

Third
Level

Second
Level

First
Level

People Management Product Process Environment Requirement

Risk of
Software
Failure

Risk of
Organizational

Failure

Risk of Hardware/
Equipment

Failure

Risk of
Human
Failure

Total Risk Assessment
and Management of

Software Development

Development
System

Risk Management for Software Engineering, Fig. 2 Total risk assessment and management of software engineering: Source-
based hierarchical holographic structure
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Stage 1 Stage 2 Stage i Stage n

Risk of
Software
Failure

Risk of
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Failure
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Failure

Risk of
Human
Failure

Total Risk Assessment
and Management of

Software Development

People Management Product Process Environment Requirement
Development

System

Risk Management for Software Engineering, Fig. 3 Total risk assessment and management of software engineering:
Temporal-based hierarchical holographic structure

Risk Management for Software Engineering 1341 R

R



The temporal domain has significance far beyond the

schedule of the project; it articulates how risks change

and evolve over time.

Each of the three hierarchical holographic (HH)

submodels developed here contributes to the

identification of risk associated with software

development. The overlaps among these HH

submodels mimic the fuzziness that characterizes the

real world of software development with respect to

the inability to make a clear distinction among the

various causes of failures. Figure 1, which is an

inverted image of Fig. 2, presents an entirely

different perspective in answering the set of triple

questions: What can go wrong? What is

the likelihood that it will go wrong? And what would

the consequences be? Since a central objective of

risk assessment is to identify, to the extent possible,

everything that can go wrong, then a hierarchical

holographic modeling structure is superior to a planar

single model in this respect. Note, for example, that

in Fig. 1, the four sources of risk (human, hardware,

organizational, and software) are investigated for

each subsystem of the functional decomposition

(people, management, product, process, environment,

requirement, and development systems). On the

other hand, Fig. 2 depicts a different perspective;

namely, the seven functional de-compositions are

investigated for each of the four sources of risk of

failure. Figures 3 and 4 incorporates the temporal

decomposition that captures the stage-wise

evolutionary process of software development, and

thus the risk associated with each stage and for each

subsystem of the functional and source-based

decompositions. In particular, Figs. 3 and 4 extend

Figs. 1 and 2 by incorporating the temporal domain

into the HHM.

Bases for Variances in Software Cost
Estimation

Most developers of large complex software systems

use cost models to estimate their costs and to assess the

risk of cost overrun. These models are structured on

a set of relationships based on such parameters as the

size and complexity of the software, the experience

level of the software developer, and the type of

application within which the software will be used.

Different models generate different weights or levels

of importance for these parameters, and not all models

Third
Level

Second
Level

First
Level

People Management

Stage 1 Stage 2 Stage i Stage n

Product Process Environment Requirement

Risk of
Software
Failure

Risk of
Organizational

Failure

Risk of Hardware/
Equipment

Failure

Risk of
Human
Failure

Total Risk Assessment
and Management of

Software Development

Development
System

RiskManagement for Software Engineering, Fig. 4 Total risk assessment and management of software engineering: Temporal-
based hierarchical holographic structure
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use the same parameters. Radically different

cost estimates can result merely on the basis of which

parameters are used in the models and how they are

implemented. Even when the parameters are

consistent, different developers will probably not

agree on the value or weight of the parameter in the

first place. In fact, many organizations consider

their interpretations of these parameters to contribute

to their “competitive edge” because the definition

affects their ability to determine costs accurately. For

example, an organization that has little experience in

developing space system software may not have the

same perception of difficulty when developing

a complex avionic software system as would an

organization that has significant experience in that

area. Their understanding of space systems, however,

will alter their definition of the avionic system

parameters. Do developers with little experience

overestimate or underestimate the complexity of

the task because of how they define these

parameters? The central questions are, “What are the

sources of risk associated with project cost estimation?

How can such risk be quantified?” (Schooff 1996;

Schooff et al. 1997; Haimes 2009a, b).

Although creating, maintaining, and updating

project cost-estimation metrics and parameters are

extremely important for an organization, it is

nevertheless unlikely that a future project will be

similar enough to previous projects to merit directly

importing these metrics or parameters; such metrics

and parameters may not be directly applicable without

appropriate modifications. Indeed, cost estimators

must use judgment when applying these parameters

to a new project requirement. Furthermore, cost

estimation constitutes a critical area with regard to

the sources of risk for software development, which

is without parallel to other fields. An analogy would be

a contractor estimating the cost to construct a 50-story

building. If the contractor had previously built only

structures with a maximum of ten stories, he would not

just increase the estimate five-fold. In fact, the

contractor would probably question the basic

foundations and relevance of extending the 10-story

model to the new structure parameters. In software,

however, it is not uncommon to increase estimates

for new projects by a factor of five from previous

projects of one-fifth the size and complexity. Many

new systems have size estimates of over 1,000,000

lines of code even though the developers have little

experience with systems of this size (Schooff et al.

1997; Haimes 2009a, b).

Another example is in the use of commercial

off-the-shelf (COTS) software. The original

assumption that a commercial database management

system (DBMS) can be used to meet customer

requirements may change if the customer requires

features not supported by DBMS suppliers. Such

changes may have serious ramifications for the

cost estimate, depending on how the developer plans

to solve the problem. If the developer chooses to deal

with a subcontractor in a way similar to dealing

with the DBMS vendor, there will be risk associated

with the subcontractor. The alternative is for the

developer to undertake the development of its own

DBMS. This requires an additional set of

assumptions, design parameters, and judgments

regarding the architecture, size, experience level,

domain knowledge, software engineering knowledge,

and the support environment needed to develop

the DBMS. Each of these assumptions, parameters,

and judgments has some uncertainty associated with

it, which contributes to the overall risk in the cost

estimate. If the developer chooses to subcontract the

DBMS development to an outside vendor, then the

issue for the contractor is understanding and

accounting for the set of assumptions that are made

by the subcontractors on the DBMS and on the system

architecture.

The ability of the developer to make valid

assumptions and design decisions is usually based

on a set of metrics; these metrics can either be based

on current measurements or on past performance.

Either way, however, there has to be an agreed-upon

set of measures that is being evaluated (such as

the number of lines of code needed to accomplish

specified tasks, or productivity rates in terms of lines

of code per hour). The difficulty with software

development is that the community has not agreed

upon basic measures, such as how to count lines of

code or how to measure productivity. Using

performance history is difficult because the systems

under development are sufficiently different such

that history may not adequately reflect the new

parameters accurately.

There are many models for software acquisition

(Schooff et al. 1997). In the spiral model of software

development (Boehm 1988), the process consists of

multiple repetitions of primary stages and often
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extends over a great length of time. Lederer and

Prassad (1993) reported that in practice, software

estimation is most often prepared at the initial project

proposal stage; then, with declining frequency, at

the requirements, systems analysis, design, and

development stages. However, as the software

development community continues to move away

from the traditional waterfall development process

model to the spiral-type models, demand has

increased for cost-estimation models that account for

the dynamics of changing software requirements and

design (and the always-present uncertainty) over

multiple time periods (Schooff et al. 1997; Haimes

2009a, b). Bell’s survey of software development and

software acquisition professionals indicates that a vast

majority believe a dynamic software-estimation

model would be most applicable for their estimation

requirements (Bell 1995).

At each stage of the acquisition process, decisions

are made that affect the events and decision

opportunities of subsequent phases. Software

estimation is a required activity in every stage of the

process. Applying the probabilistic cost-estimation

method with multiple objective risk functions

described in Schooff and Haimes (1997) and in

Haimes (2009a, b) constitutes a multiple-objective

decision problem that is solved over the multiple

stages of the acquisition life cycle.

Concluding Remarks

Software will continue to grow in size, complexity, and

importance as it assumes more functionality in large,

complex systems. If engineers and managers working

in the community do not embrace a risk management

ethic for software development, then software

problems will continue to grow as well. Although

practicing risk management does not guarantee fewer

problems, it does provide a structure with which to

make better decisions about the uncertainty and

impact of future events. If risks can be measured,

then contingency strategies can be provided;

however, if risks are unknown, then surprise is likely

when it is least convenient (Haimes 2009a).

Although software engineering is different from

other engineering disciplines, the management of risk

in the developmental process is critical for all

engineering disciplines. The framework for

identifying and assessing risk in the software

development process is grounded on the premise

that software development is an intellectual,

labor-intensive activity, thus making the human

factor central to the assessment and management

of risk.

As systems become larger and more complex, the

assessment and management of risk must be a team

effort. The team has to include, among others, the

system developers, support staff from the

organization, and management. Risk management

is neither just the program manager’s job nor just

a technical issue. Financial and quality risks are as

important as software technical risk.

Themore diversified the team, the more important it

is to have a common and agreed-upon risk assessment

and management process. The members of the

team will have their own technical jargon and

their own frames of reference. If each subgroup

identifies and manages risks differently, there will be

no common ground for communication or

measurement. A systematic and structured process

that is used by everyone will provide a foundation for

discussion and for mitigation strategies. This process

will also greatly reduce confusion caused by

misunderstanding, which is itself a source of risk in

large complex systems.

Indeed, modeling and managing software technical

risk must be an activity that recognizes the intricacy of

the internal and external environment within which

software development is practiced. Depending on

the forces exerted and on the software development

practice itself, two types of risks are likely to

emerge — software technical and non-technical risks.

Indigenous to these forces is the power shift from

hardware to software; consequently, such change

must be recognized and managed. In Changed

Agents, London (1990) summarized his views on

organizational change, as follows:

Incremental change merges the new with the old.

It requires a willingness to be open to new ideas and to

continuously refine and possibly extend the goals of

the organization. Frame-breaking change is dramatic

and often sudden. Though resistance is likely, the

organization’s survival depends on re-creating the

organization’s mission, structure, staff, and modes of

operation.

Indeed, the risks of not meeting product quality and

performance, cost, and schedule can be successfully
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identified, quantified and measured, evaluated,

and managed only when a systemic and holistic

process of assessment and management is employed.

Such a process is an organizational recipe for

long-term sustainable development. Toffler (1990)

best articulated the imperative of properly coping

with technological change. The software engineering

community is traveling in unexplored terrain; the

success of its journey depends, to a large extent, on

its ability to bring the larger systems community into

the realization that acknowledging and responding

to the power shift in the software area is a first and

critical step in a successful management of software

technical and non-technical risk.

No one would argue that the best way to manage

problems is to keep them from happening. A risk ethic

that is embraced and practiced by an entire

organization will significantly reduce the chaos

created by unknown risks and crisis situations.

See

▶Quality Control

▶Risk Assessment
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Ritter’s Partitioning Method

A procedure for decomposing and solving a

linear-programming problem that has both coupling

constraints and coupling variables.

See

▶Block-Angular System

Robust Optimization

Optimization that takes into account data uncertainty

without using probability by considering only the

ranges of possible values of parameters, e.g., “best

case” and “worst case” scenarios. For example, in the

standard linear programming problem minx cTx

subject to Ax � b, the robust counterpart formulation

would consider the input data A, b, and c in a given

range comprising the uncertainty set for the

parameters. This approach is contrasted with

stochastic programming, which takes into account

uncertainty explicitly by using probability

distributions on scenarios.

See

▶Linear Programming

▶ Sensitivity Analysis

▶ Stochastic Programming
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Robustness Analysis

Jonathan Rosenhead

The London School of Economics and Political

Science, London, UK

Robustness Analysis is a method for evaluating

initial decision commitments under conditions of

uncertainty, where subsequent decisions will be

implemented over time. The robustness of an initial

decision is an operational measure of the flexibility

which that commitment will leave for useful future

decision choice.

The definition of the robustness of an initial

commitment is:

the number of acceptable options at the planning horizon

that are compatible with that commitment, as a ratio of

the total number of acceptable options.

In more formal notation, if

S is the set of all options at the planning horizon with

acceptable performance;

Si is the subset of S that is compatible with initial

commitment di;

and n (.) denotes the number of elements in a set

then the robustness of commitment di is given by

r dið Þ ¼ nð�SiÞ=nð�SÞ

All robustness scores lie in the range (0, 1). Higher

scores are preferred to lower ones.

The same basic logic can be used where there is

a particular concern to avoid access to future options

that are assessed as likely to perform unacceptably

badly. The mirror image concept of debility is

defined as above, where now both numerator and

denominator refer to unacceptable options. Lower

debility scores are preferred.

A variant of the approach is multi-future robustness

analysis. In this case the acceptability of an option may

vary between futures, and the analysis produces

a vector of robustness scores for each commitment.

For a fuller description of Robustness Analysis, see

Rosenhead (2001).

To employ Robustness Analysis it is necessary to:

• Identify the initial commitments to be evaluated;

• Select a planning horizon (typically 5–10 years,

depending on the speed of change in the

environment and the time lag in implementing

decisions);

• Clarify the range and variety of future options that

could result at the planning horizon;

• Establish which commitments are compatible with,

ie leave available, which options; and

• Determine the acceptability of future options in the

projected future(s)
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The evaluations of ‘acceptability’ and of

‘compatibility’ may be model-based, or may be

elicited from stakeholders. When employed in a

workshop format Robustness Analysis is a member of

the Problem Structuring Methods family. The

conceptual simplicity of Robustness Analysis makes

it easy to grasp intuitively.

It is not suggested that decision-makers should

automatically select and implement the commitment

that has the highest robustness score. The balance

between flexibility and more short-term factors will

depend on circumstances. The advantage that

Robustness Analysis brings to the decision table is

a language in which flexibility can participate

systematically in the conversation.

See

▶ Problem Structuring Methods

▶ Sensitivity Analysis
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Role-Playing

People are asked to adopt roles and then to act out

various situations. This procedure, widely used for

training and therapy, can also be used for forecasting.

See

▶ Forecasting

Rosen’s Partitioning Method

A procedure for decomposing and solving a

linear-programming problem that is a block-angular

system with either coupling constraints or coupling

variables.

See

▶Block-Angular System

Roundoff Error

The computational error due to the significant-digit

arithmetic inherent in digital calculations.

Route Construction Heuristic

A vehicle-routing heuristic that builds a feasible

solution by inserting at every iteration unrouted

customers into a current partial vehicle route.

See

▶Vehicle Routing

Route Improvement Heuristic

A local improvement heuristic for vehicle routing.

See

▶Vehicle Routing

Row Vector

One row of a matrix or a matrix consisting of a

single row.

Rule

A named fragment of reasoning knowledge consisting

of premise and a conclusion. In addition, a rule may

have other attributes such as a priority, a cost,

a preaction sequence, a premise-testing strategy,

a textual description, and an internal comment.
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See

▶Artificial Intelligence

▶Expert Systems

Rule Set

A named collection of rules that represent reasoning

knowledge about some problem area. A rule set is used

by an inference engine to solve specific problems in

that area. In addition to rules, a rule set may also

contain an initialization sequence, a completion

sequence, and variable descriptions.

See

▶Artificial Intelligence

▶ Inference Engine

Rule-Based Forecasting

Rules developed for the weighting of a set of

extrapolation models based upon forecasting

methodology guidelines and knowledge about the

specific problem domain.

See

▶ Forecasting

Running Time of an Algorithm

▶Computational Complexity
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▶ Sensitivity Analysis
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▶ Stochastic Approximation

Saddle-Point of a Function

For an arbitrary payoff function F(X, Y), the point

(X 0, Y 0) is a saddle point if F(X 0, Y) � F(X 0, Y 0) �
F(X, Y 0).

See

▶ Saddle-Point Problem

Saddle-Point of a Game

For a zero-sum, two-person game, if an element aij of

the payoff matrix is the minimum of its row and

maximum of its column, it is a saddle point. The

value of the game is equal to the value of the saddle

point, with the maximizing player’s optimal strategy

being the pure strategy i and the minimizing player’s

optimal strategy being the pure strategy j.

See

▶Game Theory

▶ Saddle-Point of a Function

Saddle-Point Problem

For the mathematical-programming problem:Minimize

f (x), subject to {gi (x)� bi}, the saddle-point problem is

to find vectors x0 and y0 such that F(x0, y)� F(x0, y0)�
F(x, y0), where F(x, y) is the associated Lagrangian

function, y � 0.

See

▶ Saddle-Point of a Function

Safety

Igor Ushakov

Qualcomm Inc., San Diego, CA, USA

Safety is a property of a system that permits the system

to operate without dangerous consequences for people

(including serving personnel) and the environment.

For many systems (as aircraft, submarines, chemical

plants, nuclear power stations, etc.), some kinds

of failures can lead to catastrophic results. In these

cases, the safety indices coincide with reliability

S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research and Management Science,
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indices after the choice of the appropriate criteria for

defining failure. These might be the (complementary)

probability of successful operation without accident,

the mean time to accident appearance, etc.

Sometimes the safety of systems (as for dams of

hydro-power stations, constructions in seismic zones,

etc.) is considered to be only under the influence of

nature. In this case, probabilistic measures may be

insufficient and one should instead consider

conditional safety under some specified levels of

external influence.

But many systems may be harmful even under ideal

conditions, without accidents. Examples are various

chemical and metallurgical technological processes,

power stations, and other objects polluting the

environment with various toxic substances.

To quantify, begin by letting f(t) be the poisonous

emission function in time. One useful index of safety

of such a system is the condition that, for some

specified time interval of width D,

Z tþD

t

f ðtÞdt � f 0

where the threshold f 0 is given.

If there is some reduction process f(t) which lowers

the harmful consequences described by f(t), then an

appropriate index could be

Z tþD

t

f ðtÞ � fðtÞ½ �þdt � f 0

where [·]+ denotes the positive part of the number in

brackets.

Many harmful processes (radioactive emission,

dioxide pollution, etc.) exponentially calm down

(recover) with time. In this case, a good safety

criterion might be

Z tþD

t

f ðtÞe�at dt � f 0

where a is the intensity of the recovery.

For more complete discussions of the issues

outlined here, see Ushakov (1994), particularly for

the relationship of classical reliability modeling to

the analysis of safety.

See

▶Redundancy

▶Reliability of Stochastic Systems
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Sample Average Approximation

Alexander Shapiro

Georgia Institute of Technology, Atlanta, GA, USA

Introduction

Consider the following optimization problem

Min
x2w

f0ðxÞ subject to fiðxÞ � 0; i ¼ 1; . . . ; q: (1)

In stochastic optimization (stochastic

programming), the objective and/or constraint

functions are given in the form of expected values:

fiðxÞ :¼ ½Fiðx; xÞ�; i ¼ 0; . . . ; q; (2)

where “ :¼ ” means “equal by definition”, the set

w � 
n is deterministic, x 2 

d is a vector

representing uncertain parameters of the problem and

Fiðx; xÞ, i ¼ 0; . . . ; q, are explicitly defined real-valued

functions. In this formulation it is assumed that the

parameter vector x is modeled as random with

a specified probability distribution P, and the

expectations in (2) are computed with respect to this

distribution. (The same notation x will be used to

denote a random vector and its particular realization;

which one of these two meanings will be used in

a particular situation will be clear from the context.)

By writing the objective function f0ðxÞ, say a cost of

a certain procedure, as an expected value with respect to

the probability distribution of involved random

parameters, the optimization (minimization) is

supposed to be performed on average. In some

situations where the same procedure is repeated many
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times, this can be justified by the Law of LargeNumbers.

On the other hand, modeling constraints as expectations

could be quite different. It does not make sense trying to

maintain on average power supply in a large city.

Nevertheless there are some cases where expectation

constraints appear naturally. One such example is given

by problems with chance (probabilistic) constraints.

Suppose that it is desirable to enforce constraints

Gðx; xÞ � 0, where Gðx; xÞ is a given function

depending on parameter vector x, for all possible

realization of vector x varying in a specified

uncertainty set X � 
d. However, this could be too

costly or even impossible to maintain for all x 2 X,

and one settles for a less restrictive constraint

PrfGðx; xÞ � 0g � 1� a; (3)

where parameter vector x is modeled as random,

PrfGðx; xÞ � 0g denotes probability of the event

“Gðx; xÞ � 0” and a 2 ð0; 1Þ is a small specified

number. Constraints of the form (3) are called chance

(or probabilistic) constraints and 1� a is often referred

to as the corresponding confidence level. Chance

constraints were introduced by Charnes et al. (1958)

and thoroughly discussed in Prékopa (1995). Recall

that probability of an event A can be written as the

expectation ½1A�, where 1A denotes the

corresponding indicator function, i.e., chance

constraint (3) can be written as the expectation

constraint ½Hðx; xÞ� � 1� a, where

Hðx; xÞ :¼ 1 if Gðx; xÞ � 0;
0 if Gðx; xÞ > 0:

�

(4)

A problem with the above formulation is that the

function Hðx; xÞ is not everywhere continuous.

Monte Carlo Sampling

The expected value functions fiðxÞ, i ¼ 0; . . . ; q, are
given by integrals ½Fiðx; xÞ� ¼

Ð

Fiðx; xÞdPðxÞ: If the
probability distributionP of x is discrete, say x can take

values x1; . . . ; xK with respective (positive)

probabilities p1; . . . ; pK , then these integrals can be

written as sums

½Fiðx; xÞ� ¼
X

K

k¼1

pkFiðx; xkÞ; i ¼ 0; . . . ; q; (5)

and for not too large values of K could be computed in

a straightforwardway.On the other hand, for continuous

distributions these expectations become multivariate

integrals which could be evaluated in a closed form

only in rather specific cases. Numerical computation

of these integrals can be approached by discretization,

i.e., by using approximations of the form (5). Suppose,

for example, that components of the randomvector x are

distributed independently of each other, and r points are

used for discretization of marginal distribution of each

component of x. Then the total number of discretization

points is K ¼ rd and this number quickly becomes

astronomically large with increase of the dimension

d of x even for moderate values of r.

A way of dealing with exponential growth of

discretization points is by using randomization based

on Monte Carlo sampling techniques. Suppose that it

is possible to generate in the computer a random

(or rather pseudo-random) sample x1; . . . ; xN of N

independent realizations of the random vector x

(see, e.g., Fishman 1999), i.e., x1; . . . ; xN is an

independent identically distributed (iid) sample of

the random vector x. Then the expected value

functions can be approximated by the respective

sample averages f̂ iN ðxÞ :¼ N�1
PN

j¼1 Fiðx; xjÞ. The

employed sample can be viewed as a randomized

discretization with each discretization point xj taken

with equal probability pj ¼ N�1. Consequently the

“true” problem (1) can be approximated by the

optimization problem

Min
x2w

f̂ 0N ðxÞ subject to f̂ iN ðxÞ � 0; i ¼ 1; . . . ; q: (6)

Once the sample is generated, each f̂ iN ðxÞ becomes

an explicitly defined function of the decision vector x

and (6) becomes a deterministic problem which could

be solved by an appropriate deterministic algorithm.

Although the sample average functions f̂ iN also

depend on the generated sample, for the sake of

simplicity, this dependence is suppressed with only

the sample size appearing in the notation.

It is difficult to point to an exact origin of such

Monte Carlo sampling approach to solving stochastic

optimization problems. The idea is rather simple and

natural, and the method and its variants were

discovered and rediscovered by many authors under

different names in various contexts and applications.

In the stochastic optimization literature, it can be

pointed, for example, to Rubinstein and Shapiro (1990)
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and Robinson (1996), where this approach was called

the stochastic counterpart method and sample-path

optimization, respectively; in statistics, this type of

approach was used in Geyer and Thompson (1992); in

the machine learning literature, some specific forms of

this approach are referred to as the empirical mean

optimization. In the recent stochastic programming

literature, it is often called the sample average

approximation (SAA) method, the term coined in

Kleywegt et al. (2001). Interestingly, only relatively

recently it was realized that the SAA method can be

reasonably efficient in solving certain classes of

stochastic optimization problems. This was motivated

by development of statistical inference of the SAA

method and supported by numerical experiments.

Statistical Properties of SAA Estimates

The SAA problem (6) depends on the corresponding

random sample and hence its optimal value and

optimal solutions can be viewed as random

(statistical) estimates of their counterparts of the

“true” problem (1). The notation #� and #̂N will be

used for the optimal values of the true (1) and SAA (6)

problems, respectively, and S and ŜN for respective

sets of optimal solutions. Statistical properties of the

optimal value #̂N and optimal solutions x̂N 2 ŜN of

the SAA problem are discussed, e.g., in Shapiro et al.

(2009). Below is presented a somewhat informal

discussion of the main implications of that theory.

By the Law of Large Numbers (LLN), it follows

that sample averages f̂ iN ðxÞ converge with probability
one (w.p.1) to their expected values fiðxÞ as the sample

sizeN tends to infinity. The classical LLN ensures such

pointwise convergence w.p.1, i.e., it holds for a fixed x

provided that the expected value fiðxÞ is well defined
and finite valued. Under mild additional conditions, it

is possible to show that this convergence is uniform on

any bounded subset of n (uniform LLN). It follows,

under certain regularity conditions, that #̂N and x̂N
converge to their true counterparts w.p.1 asN ! 1. In

the statistical terminology this means that #̂N is

a consistent estimator of #�. For optimal solutions

x̂N 2 ŜN of the SAA problem the convergence issue

is more delicate. Assuming that the true problem has

unique optimal solution �x, i.e., S ¼ f�xg, under mild

regularity conditions it holds that x̂N ! �x w.p.1 as

N ! 1. This, however, does not imply that x̂N is

a feasible point of the true problem for any sample

size N. If the problem does not have expectation

constraints, i.e., is of the form

Min
x2w

ff ðxÞ :¼ ½Fðx; xÞ�g; (7)

then the (deterministic) feasible set w of the true and the

corresponding SAA problems is the same.

Next the rate of convergence is considered. For

a given x, the Central Limit Theorem (CLT) implies

that N1=2½f̂ iN ðxÞ � fiðxÞ� converges in distribution to

a normal distribution with zero mean and variance

s2i ðxÞ ¼ Var½Fiðx; xÞ�. In particular, this implies that

the error f̂ iN ðxÞ � fiðxÞ of the sample average

estimator is of stochastic order OpðN�1=2Þ. In other

words in order to improve the accuracy of the sample

average estimator by one digit (i.e., 10 times) the

sample size should be increased by 100 times.

There are some variance reduction techniques which

are aimed at reducing variance of the corresponding

estimators (e.g., Fishman 1999), but the rateOpðN�1=2Þ
of convergence of Monte Carlo sampling estimates

cannot be changed. It also could be mentioned that

Quasi-Monte Carlo methods have theoretically better

rates of convergence and in some cases, especially

when the dimension of the parameter vector x is

relatively small, can outperform the straightforward

Monte Carlo methods (e.g., Niederreiter 1992).

However, in principle it is not possible to evaluate

multidimensional integrals with a high precision.

There are CLT-type results for the optimal value

and optimal solutions of the SAA problems. Consider

problem (7) and let f̂ N ðxÞ be the sample average

estimate of f ðxÞ and #̂N be the optimal value of the

corresponding SAA problem. Under mild regularity

conditions, in particular if Fð�; xÞ is Lipschitz

continuous, then

#̂N ¼ inf
x2S

f̂ N ðxÞ þ opðN�1=2Þ: (8)

Moreover, if the true problem (7) has unique

optimal solution �x, then

#̂N �#� ¼ f̂ N ð�xÞ � f ð�xÞ þ opðN�1=2Þ; (9)

and hence N1=2ð#̂N �#�Þ converges in distribution to

a normal distribution with zero mean and variance

s2ð�xÞ ¼ Var½Fð�x; xÞ� (Shapiro 1991). For the
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problems of the form (7) (i.e., without expectation

constraints), it also holds that ½#̂N� � #� and the

bias #� � ½#̂N� is monotonically decreasing to zero

with increase of the sample size N (Norkin et al. 1998).

By (9) it follows that if problem (7) has unique optimal

solution �x, then this bias is of order oðN�1=2Þ and #̂N

converges to #� more or less at the same rate as f̂ N ð�xÞ
converges to f ð�xÞ. On the other hand, if the problem (7)

has a large set S of optimal solutions, then the bias

tends to become bigger and is of order OðN�1=2Þ.
Consider now problem (1) with expectation

constraints. Suppose that the true problem (1) has

unique optimal solution �x and unique corresponding

Lagrange multipliers �li � 0, i ¼ 1; ::; q. Then

under certain regularity conditions, in particular if the

set w is convex and functions Fið�; xÞ, i ¼ 0; . . . ; q, are

either convex or continuously differentiable, it

follows that

N1=2ð#̂N �#�Þ !d Nð0; s2Þ; (10)

where s2 ¼ Var F0ð�x; xÞ þ
Pq

i¼1
�li Fið�x; xÞ

� �

(Shapiro

1991) and !d denotes convergence in distribution and

Nð0; s2Þ denotes normal distribution with mean 0 and

variance s2.

There is an interesting implication of this result. In

the formulation (6) of the corresponding SAA

problem, the same sample is used in estimation of the

objective and constraint functions. An alternative will

be to employ different, independent of each other,

samples for estimation of the involved functions. In

the first case, the asymptotic variance of #̂N is given

by N�1 times Var F0ð�x; xÞ þ
Pq

i¼1
�li Fið�x; xÞ

� �

, and

this variance is equal to the sum of variances

Var F0ð�x; xÞ½ � and Var �li Fið�x; xÞ
� �

, i ¼ 1; . . . ; q, and

the corresponding covariance terms. On the other

hand, in the second case of independent samples,

a similar formula holds but without the covariance

terms. It could be expected for the covariance terms

in the first case to be positive. In such situation it would

be preferable to use the independent samples strategy

in order to reduce variability of the SAA estimators.

Evaluation of the Sample Size and Validation
of Optimality

Consider problem (7) (without expectation

constraints). For an e > 0 it is said that a feasible

point �x 2 w is an e -optimal solution of problem (7) if

f ð�xÞ � #� þ e. A natural question is how large should

be the sample size N to ensure that an e0 -optimal

solution of the corresponding SAA problem is an

e-optimal solution of the true problem. Recall that the

SAA method is not an algorithm; the constructed SAA

problem still has to be solved numerically. Clearly the

computational effort in solving the SAA problems

grows with increase of the sample size N. (For

convex problems coupled with good algorithms, this

computational effort is more or less proportional to N.)

Therefore, this question is directly related to

computational complexity of stochastic programming

problems.

Suppose for the moment that the feasible set w is

finite (i.e., the true problem is discrete), although its

cardinality jwj can be very large. The following

estimate of the required sample size is given in

Kleywegt et al. (2001): for e>0, e0 2 ½0; eÞ, a 2 ð0; 1Þ
and sample size N satisfying

N � 2s2

ðe� e0Þ2
ln

jwj
a

� �

; (11)

it follows with probability at least 1� a that any

e0-optimal solution of the SAA problem is an

e-optimal solution of the true problem, i.e., for any

sample size satisfying (11), there is a guarantee with

confidence 1� a that by solving the SAA problem

with accuracy e0<e, an e-optimal solution of the true

problem is recovered.

The constant s2 in (11) measures, in a sense,

variability of the objective function Fðx; xÞ. An

important feature of the estimate (11) is that the

cardinality of the set w and significance level a are

under the logarithm sign. This indicates that

the required sample size is not very sensitive to

increase of the cardinality of the considered

combinatorial problem and a desirable confidence

level. On the other hand, for say e0 ¼ e=2, the sample

size N is of order Oðe�2Þ. Such dependence of the

sample size on the required accuracy is unavoidable

for Monte Carlo sampling estimates. This type of

sample size estimates can be extended to general

(bounded) sets w � 
n with similar conclusions

(Shapiro (2001); see also Shapiro et al. (2009) for

a discussion of such estimates).

Although important from the theoretical point of

view, sample size estimates of the type (11) are far
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too conservative for practical applications.

The following procedure for validation of optimality

of a candidate feasible point �x 2 w, and hence for

controlling the corresponding sample size, was

suggested in Norkin et al. (1998) and developed in

Mak et al. (1999). Since �x 2 w is a feasible point

of the problem (7), it follows that f ð�xÞ � #�. Value

f ð�xÞ can be estimated by a direct Monte Carlo

sampling.

An iid random sample xj, j ¼ 1; . . . ;N0, is

generated, and f ð�xÞ is estimated by the average

f̂ N0 ð�xÞ. Note that the employed sample should be

independent of sample(s) used in construction of the

candidate solution �x. Also since it does not require

solving large optimization problems, the sample size

N0 can be relatively large here. At the same time, the

sample variance

ŝ2 ð�xÞ :¼
1

N0 � 1

XN0

j¼1

Fð�x; xjÞ � f̂ N0 ð�xÞ
� �2

is computed. Consequently the upper bound

f̂ N0 ð�xÞ þ zaŝð�xÞ=
ffiffiffiffiffi

N0
p

of the corresponding

confidence interval gives an upper bound, with

confidence of 1� a, for the value f ð�xÞ, and hence for

the optimal value #�, where za is the ð1� aÞ-quantile
of the standard normal distribution.

Construction of a lower bound for the optimal value

is based on the inequality ½#̂N� � #�, where the

expectation ½#̂N� can be estimated by averaging

optimal values of several SAA problems. Let

#̂
1

N; . . . ; #̂
M

N be optimal values of SAA problems

based on independent samples each of size N. Then

v̂N;M :¼ M�1
PM

m¼1 #̂
m

N is an unbiased estimate of

½#̂N�, and v̂N;M �ta;M�1 ŝN;M =
ffiffiffiffiffi

M
p

can be used as

a lower bound for #�, where ŝ2N;M is the

sample variance of #̂
1

N; . . . ; #̂
M

N , and ta;M�1 is the

ð1� aÞ-critical value of t-distribution with M � 1

degrees of freedom (since M is typically

not large, say in the range of 5–10, critical values of

t-distribution, rather than standard normal, are used

here). This procedure requires solving SAA problems

M times, which involves considerable additional

computational effort. For some ideas of reducing the

computational burden of solving several SAA

problems, see Bayraksan and Morton (2006).

Consider now problem (1) (with expectation

constraints), and the corresponding Lagrangian

Lðx; lÞ :¼ f0ðxÞ þ
Pq

i¼1 lifiðxÞ. Of course,

#� ¼ inf
x2w

sup
l�0

Lðx; lÞ;

and hence #� � infx2wLðx; �lÞ for any �l � 0.

The equality #� ¼ infx2wLðx; �lÞ holds, under

mild regularity conditions, if the problem is convex

and �l is a Lagrange multipliers vector, given by an

optimal solution of the dual problem. By fixing �l � 0

and solving SAA problems associated with the

minimization of Lðx; �lÞ over x 2 w, it is possible in

a way described above to construct a lower bound for

the optimal value of the true problem (1). In order to

construct an upper bound for #�, it is needed to find,

say with confidence 1� a, a feasible point �x of the true

problem and then to estimate value f ð�xÞ of the

objective function.

Concluding Remarks

It is possible to apply the SAA method to chance-

constrained problems. For a generated sample

x1; . . . ; xN , the probability pðxÞ :¼ PrfGðx; xÞ � 0g
can be estimated by the average

p̂N ðxÞ :¼ N�1
PN

j¼1 Hðx; xjÞ, where function Hðx; xÞ
is defined in (4), i.e., p̂N ðxÞ is given by frequency of

the event “Gðx; xjÞ � 0”, j ¼ 1; . . . ;N. Consequently

the chance constraint (3) can be approximated by the

constraint p̂N ðxÞ � 1� g. The confidence level 1� g

of the SAA problem does not need to be the same as for

the true problem, i.e., g does not need to be equal to a.

The constructed SAA problem could be a difficult

combinatorial problem. Recently some progress

was made in solving such type of problems

(Luedtke and Ahmed 2008). It is also possible to

construct statistical upper and lower bounds for

optimal values of chance constrained problems

(Nemirovski and Shapiro 2006).

The SAA method can also be applied in a dynamic

setting to multistage stochastic programming problems.

However, the complexity of constructed SAAproblems,

in terms of the number generated scenarios, grows

exponentially with increase of the number of stages

(Shapiro and Nemirovski 2005; Shapiro 2006).
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This poses a question whether multistage stochastic

programming problems could be solved with a

reasonable accuracy by randomization techniques.

See

▶Monte Carlo Methods

▶Monte Carlo Simulation

▶ Simulation Optimization

▶ Stochastic Programming

▶Variance Reduction Techniques in Monte Carlo

Methods
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Sand Table Battle Model

A model or game with a physical representation of the

geography and units. The classical sand table used sand

because it could be molded into a model of the terrain’s

relief. The tin soldiers were used to represent the troops.

See

▶Battle Modeling

Satisficing

In a decision problem, the selection by the decision

maker (DM) of a satisfactory alternative as opposed

to the selection of an “optimal” alternative. Here, the

DM sets aspiration levels or acceptable levels on the

outcomes and chooses the (first) alternative that

satisfies these levels. This compromise selection

is due to the DM’s inability to encompass all the

complexities of the decision problem and/or lack of

a method that can determine an optimal solution.

The concept is due to Herb Simon (1955, 1957).

See

▶Bounded Rationality

▶Choice Theory

▶Decision Analysis

▶Decision Maker (DM)
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▶Decision Problem

▶Goal Programming

▶Multiple Criteria Decision Making
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Scaling

The pre-solution transformation of the data of

a problem that attempts to make the magnitudes of all

the data as close as possible. Such scaling is important

for mathematical-and linear-programming problems

as it helps to reduce roundoff error. Most

mathematical-programming systems have a SCALE

command that automatically adjusts the magnitudes

of the data in the rows and columns. This can be done

by multiplying the technological coefficient matrix A

by suitable row and column transformation matrices.

A frequently used scaling algorithm is to divide each

row by the largest absolute element in it, and then

divide each resulting column by the largest absolute

element in it. This ensures that the largest absolute

value in the matrix is 1.0 and that each column and

row has at least one element equal to 1.0.

Scenario

The set of conditions and characteristics that define the

situation or environment under which a system or

policy has to perform. There is often a baseline

scenario (what will happen if trends continue) and an

ideal scenario (what future one would like to have).

In stochastic programming, a scenario represents

a possible future uncertain outcome (or sample path).

See

▶Battle Modeling

▶ Forecasting

▶ Sensitivity Analysis

▶ Stochastic Programming

Scenario Analysis

▶ Stochastic Programming

SCERT

Synergistic, Contingency Evaluation and Response

Technique, which uses a systematic approach for the

identification and articulation of the risks to which a

project is subject and the uncertainties and

contingencies which might significantly affect the

outcome of the project.

See

▶Network Planning

▶ PERT

Schedule Recovery

▶Airline Industry Operations Research
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Introduction

Scheduling is the allocation of limited resources over

time to perform a given set of jobs or activities. The

focus here is on scheduling models with applications to

factory and computer systems. Other common uses of

the term scheduling include:

1. Project scheduling – the determination of activity

times and project duration for complex projects

composed of multiple activities with precedence

relations;

2. Workforce scheduling – the determination of the

number of workers and their duty cycles to meet

certain labor restrictions; and
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3. Timetabling – the determination of the matching of

participantswith each other andwith resources, such as

sports scheduling or student/room exam assignments.

Scheduling problems have been studied informally

for centuries. The Gantt Chart, developed in World

War I for logistics purposes, is a graphical

representation of tasks and resources over time, and

was the first formal model used for scheduling

purposes. Critical path methods were developed after

World War II for project management and are still

widely used. The 1950s saw the first analyses of

machine scheduling problems using mathematical

models. Further research interest was provided by

the computational complexity paradigm of the early

1970s. More recently, modern manufacturing

environments and supply chain coordination issues

have attracted the attention of scheduling researchers.

The reason for this continuing activity is the amount

of time and value that manufacturing organizations

necessarily invest in the scheduling function.

This function typically takes place at the operational

level, after completion of the planning phases concerned

with which tasks are to be performed and which resources

are to be made available. Examples of such planning

phases include forecasting, aggregate planning,

inventory control and materials requirements planning.

In spite of all the research in this area, there is little

unifying theory (McKay et al. 1988; Pinedo 1995).

This is apparently because of the very difficult and

diverse mathematical structure of these problems, due

for example to the wide variety of special constraints

that arise in applications. Nevertheless, there are some

results that have had a major impact. These, along with

some of the basic tools of scheduling will be described,

following some useful definitions.

Textbooks and surveys reviewing the scheduling

literature include Conway et al. (1967); French

(1982); Lawler et al. (1993); Morton and Pentico

(1993); Baker (1995); Pinedo (1995); Pinedo and

Chao (1998); and Potts and Strusevich (2009).

Preliminaries

Scheduling involves the determination of two types of

decisions:

• Allocation decisions – which resources (here called

machines) will be assigned to perform each of

a given set of jobs; and

• Sequencing decisions – in what order and when are

each of these jobs performed.

Although many applications involve the

determination of a schedule that is simply feasible

with respect to scarce resources, most mathematical

models use some economic objective that requires

comparison of different schedules.

These objectives typically represent some measure

of throughput, customer satisfaction or costs.

In general, the problems focus on a single objective

at a time, although there are some results on

multicriteria problems (Hoogeveen 2005).

The constraints or considerations that are relevant in

these models include precedence relations among jobs,

job priorities, setup times onmachines, and preemption

capabilities. McKay et al. (1988) identified over

600 types of constraints present in manufacturing

environments. The machine environment also affects

the ability to solve these problems. Considered here are

single-machine problems, several machines in parallel,

flow shops that involve several machines in series, and

job shops that involve several machines through which

jobs follow various routings.

Also influencing the difficulty of solving these

problems and the techniques that can be used to solve

them is the precision in the problem data. Most models

and results assume that the data is deterministic,

although there exist some results for stochastic or

probabilistic environments (Righter 1994), as well as

some models that protect against uncertainty in the

data (Daniels and Kouvelis 1995).

Solution Techniques

Since most scheduling problems have economic

objectives and constraints, it is natural to use

optimization methods to solve these problems.

However, the number of feasible schedules grows

quickly with problem size, making almost all such

problems extremely difficult to solve. Consider the

simplest problem with n jobs on a single machine,

with no additional constraints. There are n! sequences

that must be considered, and even for relatively

small problems, for example of size n ¼ 100, the

enumeration task is virtually impossible. In the

mid 1970s, many scheduling problems were

classified by complexity theory as intractable.

More formally, as optimization problems, they are
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NP-hard (Garey and Johnson 1979), and thus optimal

solution procedures that are substantially more

efficient than enumeration are unlikely to exist.

Traditional optimization techniques such as

mathematical programming, enumeration methods,

and dynamic programming have had limited success.

Quite often, it is necessary to resort to heuristic

techniques, which do not guarantee an optimal

solution. These techniques have been of two types:

limit the space of search by only considering schedules

that meet some specified criteria, or search in a limited

neighborhood of some known feasible schedule. These

heuristics have shown some success, but unfortunately

much of this work considers only their worst-case

performance, which is not necessarily a true measure

of the average performance of a heuristic. Recent

advances in heuristics, including constraint satisfaction

(Fox and Smith 1984), simulated annealing (Matsuo

et al. 1989), tabu search (Widmer and Hertz 1989) and

genetic algorithms (Storer et al. 1992) have extended the

ability to find good solutions. Anderson et al. (1997)

provided a comprehensive discussion of local search

methods for scheduling problems.

Surprisingly, it is a simple principle that has given

some of the most significant scheduling results.

This principle is pairwise interchange (Baker 1995).

This neighborhood search technique starts with

a feasible schedule for the problem and interchanges

the sequence of two already scheduled jobs according

to some rule. For some classes of simple problems, this

procedure always results in an optimal solution. For

other classes, it routinely results in a computationally

good, although not necessarily optimal, solution.

In problems with stochastic data, some of these same

combinatorial techniques can be used. In some simple

problems, it is possible to take advantage of queueing

theory results or of stochastic analogs of the pairwise

interchange rules discussed above. However, in most

cases, simulation becomes the technique of choice.

Often, the complicated environment or simply the

highly combinatorial nature of the problem is enough

to make simulation the only viable method of analysis.

Scheduling Results

Next some results are described, which are key

building blocks to scheduling theory and

applications. These arise from problems with

a single, continuously available machine; with

independent, one-operation, and deterministic jobs;

and with machine setup times that are negligible or

are not sequence-dependent.

Single-Machine Models – it is assumed that there

are n jobs with the following data:

pj ¼ the processing time required by job j;

rj ¼ the ready time of job j, i.e., the earliest time at

which the job can begin processing;

dj¼ the time job j is due to have processing completed.

Once a schedule has been determined, the following

variables can be evaluated:

Cj ¼ the completion time of job j;

Fj ¼ the flowtime of job j ¼ Cj - rj;

Lj ¼ the lateness of job j ¼ Cj - dj;

Tj ¼ the tardiness of job j ¼ max{0, Lj}.

The simplest models assume criteria that are

nondecreasing in the completion time of jobs, i.e., in

all the above variables. These are called regular

measures, and include:

Total Flowtime ¼P
n

j¼1
Fj;

Total Lateness ¼P
n

j¼1
Lj;

Maximum Lateness ¼ Lmax;

Total Tardiness ¼P
n

j¼1
Tj; and

Maximum Tardiness ¼ Tmax:

In these problems, optimal schedules exist in which

job preemption and machine idle time do not occur.

Thus, a solution is completely characterized by

a sequence of the jobs.

The following is an important result in scheduling

theory (Smith 1956): Shortest Processing Time (SPT)

sequence, i.e., sequencing the jobs from shortest to

longest processing time, minimizes total flowtime

when rj ¼ 0 for all jobs.

This is proved by interchange arguments and can be

extended to include jobs of different importance, or

weights, by using weight-to-processing-time ratio.

For customer service measures, due date

information is included. Perhaps counterintuitively,

SPT also minimizes Total Lateness. The most

important result using due date measures is:

Earliest Due Date (EDD), i.e., sequencing the jobs

from earliest to latest due date, minimizes both Lmax

and Tmax (Jackson 1955).
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In many other problems with due-date measures,

EDD provides useful guidance towards an optimal, or

close to optimal, solution.

There are several other single machine results. The

presence of nonzero ready times creates problems with

due date measures unless jobs can be preempted

without penalty. If this is not the case, it is necessary

to look ahead to jobs not yet in the system, causing

simple dispatching rules that do not consider the

current partial sequence, such as SPT or EDD, to

yield suboptimal solutions.

Another condition imposed on jobs may be

precedence relations. They represent a partial

ordering of the jobs, which is imposed for

technological reasons. These relationships (which can

be represented by graphs where job i precedes job j if

there is an arc from i to j), may under certain conditions

still yield relatively simple algorithms.When the graph

is composed of chains or is series–parallel, many

problems can be solved optimally. However, general

precedence relationships between jobs typically

prevent the finding of optimal solutions quickly

(Monma 1981).

As noted, these simple models ignore setup times.

When setup times are present and sequence-dependent,

many simple problems become very difficult to

solve. For example, minimizing makespan, i.e.,

Cmax ¼ completion time of the last job, is equivalent

to solving a traveling salesman problem.

Thus far only regular measures of performance

were considered. One important non-regular

measure that represents another attribute of

customer service is a job earliness penalty, where a

job’s earliness is Ej ¼ max{0, dj � Cj}. When

there are many jobs and a common due date,

minimizing a combination of earliness and tardiness

penalties is still possible (Baker and Scudder 1990;

Hall and Posner 1991). When the due dates are

distinct for each job, these problems are difficult

to solve.

Multiple Parallel-Machine Models – Fast

optimal algorithms for scheduling problems with

several machines are scarce. The existence of several

machines requires not only sequencing decisions, but

also allocation decisions. The simplest environment

assumes there are n jobs available at time zero and m

identical machines for processing them.

The simplest model in this environment attempts

to minimize makespan, i.e., the time to complete

all n jobs. Since changing the sequence of jobs

allocated to a particular machine does not affect the

makespan, the only decision is allocating jobs to

machines. If preemption is permitted, McNaughton

(1959) showed that there is a simple algorithm to

perform this allocation. When preemption is not

permitted, the problem is NP-hard even for m ¼ 2.

However, a computationally reasonable (pseudo-

polynomial time) algorithm provides optimal

solutions.

Here, a reasonable heuristic seems to be to list the

jobs in some prespecified order, placing the next job in

the list onto the first machine that becomes available.

By cleverly ordering the jobs, list-scheduling

heuristics provide acceptable performance

guarantees. For example, a simple rule such as

longest processing time first (LPT) guarantees a

solution within 33% of the optimal makespan

(Graham 1969). Graham also found several

interesting anomalies in list scheduling, such as that

increasing the number of machines or reducing the

processing time of the jobs can increase makespan.

If the objective is to minimize total flow time on m

identical machines, an SPT list-scheduling algorithm

gives an optimal solution. Unfortunately almost all

other problems that can be generalized from the

single machine case fail to yield optimal solutions in

polynomial time.

The next important class of problems is flow shop

models. The simplest instance assumes there are m

machines and each job requires processing on each

machine, i.e., each job has m operations. In addition,

processing moves from machine to machine in

a prespecified order that is the same for each job.

These problems are much more difficult to solve

than single-machine problems. One additional

consideration is that inserted idle time may be

desirable. This was not the case for single machines

with regular performance measures. In addition, if

there are more than three machines, different

permutations of the jobs must be considered for each

machine, giving rise to (n!) m possible sequences.

When m ¼ 2, however, Johnson (1954) provided

an efficient algorithm for minimizing makespan.

When there are more than two machines, the

makespan problem becomes NP-hard. There are

several special cases, however, when m ¼ 3 that use

variations of Johnson’s algorithm to guarantee

optimal solutions.
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Johnson’s theorem is stated using his notation.

Here,

Ai ¼ the processing-time (including setup, if any) of

the first operation of the ith job;

Bi ¼ the processing-time (including setup, if any) of

the second operation of the ith job.

Johnson’s algorithm is applied to the following

problem: sequence an arbitrary number of jobs in

a two-machine flow shop to minimize the makespan.

It is assumed that all jobs are simultaneously available.

Johnson’s Theorem

An optimal schedule for a two-machine flow shop that

minimizes the make-span is obtained when job j

precedes job j + 1if

minfAj;Bjþ1g � minfAjþ1;Bjg:

Under certain conditions, the processing of an

operation of job j can start before the completion of

the previous operation. This overlapping of operations

can improve the makespan. Trietsch and Baker (1993)

discussed a variety of these lot-streaming problems.

One variation of the flow shop model requires that

the processing of a job cannot be interrupted once it has

started. A survey of applications, algorithms and

complexity results for these no-wait models, and for

related models with machine blocking, was given by

Hall and Sriskandarajah (1996). Another extension of

the flow shop model allows the job to pass through the

machines in any order. This is referred to as an open

shop and, except for the case of two machines with

makespan objective, the problems are essentially all

very hard to solve optimally.

Job shop scheduling models cover a significant

portion of all factory scheduling problems. In a job

shop, the number and order of operations for each job

may differ. These problems are virtually intractable

because of the large number of possible schedules.

The notorious 10-job, 10-machine problem of Fisher

and Thompson (1963) provided the benchmark for the

computational difficulty of these problems. It took

25 years of research for its optimal solution to be

verified (Carlier and Pinson 1988). Many heuristic

procedures use dispatching rules. These heuristics

choose, according to some rule, the next job from

those available to start on a machine when that

machine becomes idle. A successful and widely used

heuristic for the job shop problem was described by

Adams et al. (1988).

Research Directions

Scheduling Families or Groups – Modern

manufacturing facilities contain flexible machines

that can produce or assemble a variety of products.

When products are similar, switching between them

requires no setup time. These groups of products are

called product families. Switching between different

product families is possible, but requires a setup. Here

a batch represents a set of items that are produced

following a single setup. The difficulty in scheduling

these environments arises from the tradeoff between

scheduling large batches, which cause delays to jobs in

other families, and scheduling small batches, which

incur many setups. The issues to be resolved include

sequencing items within families, the determination of

the batch sizes and the sequencing of the batches from

different families (Monma and Potts 1989; Santos and

Magazine 1985). A useful survey is provided by Potts

and Kovalyov (2002).

Modern Manufacturing Environments – The

requirements of modern manufacturing impose new

demands on the scheduling function and the theory

that supports it. Lee et al. (1992) considered burn-in

problems that arise in semiconductor manufacturing,

where the processing time required by a batch of jobs is

the length of the longest job rather than the total

processing time. Automated manufacturing systems,

particularly those which require the coordination of

computer-controlled material handling devices with

production schedules, generate a variety of

interesting scheduling problems, as discussed by

Crama (1997). For example, Hall et al. (1997)

considered robotic cells, in which a robot serves

several production machines. Also in accordance

with modern manufacturing principles are

manufacturing environments with limited storage

buffers (Hall et al. 1998). Deterministic scheduling,

with an emphasis on modern manufacturing

problems, is extensively reviewed by Lee et al. (1997).

Online Scheduling – In various practical

situations, information about arriving jobs is

not know at the start of the planning horizon.

In online scheduling, this information is revealed
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over time. A standard performance measure for online

algorithms is the competitive ratio, which bounds the

performance ratio of online and optimal offline

schedules. Online scheduling models have

application to purchasing and ordering systems that

use the Internet. Pruhs et al. (2004) provide

a thorough review of the research in this area. One of

the key ideas in online scheduling is to delay the

processing of jobs until more information about the

future is available. Hall et al. (2009) consider an

environment where jobs can only arrive at known

future times. This environment interpolates between

the classical offline and online environments.

Supply Chain Scheduling – One of the most active

research areas within operations management starting

in the 1990s has been supply chain management, i.e.,

the consideration of integration and coordination

issues, and incentives, within manufacturing systems.

Much of this research has been strategic in nature, but

the supply chain scheduling area focuses on

operational level decisions. Examples of this research

include the coordination of manufacturing and

distribution (Hall and Potts 2003), and the

coordination of component delivery from multiple

suppliers (Chen and Hall 2007). Issues that are

discussed include the classical one of computational

solvability, evaluation of the cost of conflict if one

powerful supply chain member imposes their

preferred schedule on others, and evaluation of the

benefit of cooperation that results if all supply chain

members agree on a common schedule.

A comprehensive survey of related results is provided

by Chen (2010).

Scheduling with Machine Availability
Constraints – Although classical scheduling models

typically assume that all processing resources are

continuously available from the start of the planning

horizon, there are practical situations where this

assumption is incorrect. For example, resources may

be allocated to outsourcing contracts at particular

times, or downtime for maintenance may be planned in

advance. Unavailable times may either be known in

advance or not. Moreover, jobs that are interrupted by

resource unavailability may either be resumable, or may

need to be restarted. As the surveys by Schmidt (2000)

and Lee (2004) reveal, most scheduling problems in this

area are intractable. Consequently, the design of

approximation algorithms and approximation schemes

(Ng and Kovalyov 2004) is an active research area.

Safe Scheduling – Safe scheduling (Baker and

Trietsch 2009) is an approach to stochastic

scheduling problems that explicitly considers the role

of safety time to meet service levels. These problems

are analogous to safety stocks in inventory problems.

A key element of safe scheduling is the inclusion of

service levels, defined as the probability that a job

completes by its due date. Safety time is the

difference between the expected completion time and

the due date. Safe scheduling problems are formulated

with either explicit service level constraints or as an

objective function that considers costs associated with

not meeting due dates. To completely specify the

problem either decisions have to be made as to which

jobs (with known release date and due date) to choose

or to decide on release dates and due dates and

minimizes total cost. Results are often not analogous

to the deterministic version of the problem.

See

▶Computational Complexity

▶Critical Path Method (CPM)

▶ Flexible Manufacturing Systems

▶Genetic Algorithms

▶Heuristics

▶ Integer and Combinatorial Optimization

▶ Inventory Modeling

▶ Job Shop Scheduling

▶Metaheuristics

▶Operations Management

▶ Production Management

▶ Simulation of Stochastic Discrete-Event Systems
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Introduction

Many complex real world systems can be modeled

as discrete-event systems (DES). Examples

are computer-communication networks, flexible

manufacturing systems, probabilistic fracture

mechanics models, PERT-project networks and flow

networks. In view of the complex interactions within

a DES, they are typically studied via stochastic

simulation.

In the design and analysis of a DES, the interest is

not only in performance evaluation, but also in

sensitivity analysis and optimization. Consider for

example manufacturing systems. Here (1) the

performance measure may be the average waiting

time of an item to be processed at several work

stations (robots) according to a given schedule and

route; (2) the sensitivity and decision parameters may

be the average rate at which the work-stations (robots)

process the item. In such a system, the goal may be to

minimize the average makespan consisting of the

processing time and delay time with allowance for

some constraints (e.g., cost).

Alternatively, consider failure probability models

for mechanical passive components (such as pipes or

vessels). Here (1) the performance measure may be

cumulative failure or leakage probability of a passive

component over some time; (2) the sensitivity and

decision parameters may be the geometry of the

component (thickness of the walls), fracture

toughness of the material and stress intensity factors.

In such a system, failure probability is a function of the

sizes of defects (cracks) and their time dependent

stochastic development.

Methods for sensitivity analysis and optimization of

a DES include infinitesimal perturbation analysis

(IPA) and the score function (SF) method, also called

the likelihood ratio (LR) method (Rubinstein 1976;

Reiman and Weiss 1989; Glynn 1990; L’Ecuyer

1990; Ho and Cao 1991; Glasserman 1991;

Rubinstein and Shapiro 1993; Asmussen and Glynn

2007). The SF method allows one to evaluate,

simultaneously from a single sample path (simulation

experiment) not only the performance and all its

sensitivities, (gradient, Hessian, etc.), but to solve an

entire optimization problem as well. An alternative

approach, called analytic perturbation analysis, for

calculating the sensitivities of discrete-event systems

using analytical formulas for the expectations of

indicator functions, has also been proposed by

Uryasev (1995, 1997).

Estimation and Sensitivity Analysis of
Discrete-Event Static Systems

Let lðuÞ be a real-valued function represented in the

form lðuÞ ¼ Eu½LðYÞ�. Here Y is a random vector

whose cumulative distribution function (CDF) F(y, u)

depends on the parameter vector u 2 	 with 	 being

a subset of a finite dimensional vector space, say

	 � Rn. The function L(Y) can be viewed as

a sample performance driven by the input vector Y.

The notation Eu stands for the expectation with respect

to the CDF F(y, u).

In order to estimate the expected value lðuÞ by

simulation (Monte Carlo) techniques, one can

proceed as follows. Generate a sample Y1,. . ., YN

from N the CDF F(y, u) and set the sample mean

N�1
Pn

i¼1L Yið Þ as the corresponding estimator. Of

course, this procedure requires generation of a new

sample every time the expectation lðuÞ should be

estimated for a different value of the parameter

vector u 2 	. In order to overcome this difficulty,

consider the following procedure based on a change
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of probability measure techniques. Suppose that the

random vector Y has a probability density function

(PDF) f(y, u) corresponding to the CDF F(y, u). For

a PDF g(y) such that the outcome space of f(·,u) lies in

the outcome space of g(·):

lðuÞ ¼
Z

LðzÞ ½f ðz; uÞ=gðzÞ�gðzÞdz

¼ Eg½LðZÞWðZ; uÞ�;
(1)

whereWðz; uÞ ¼ f ðz; uÞ=gðzÞ. Note that the integration
variable y was replaced by z when the involved

densities were changed from f(·,u) to g(·), and

the integrals are over the outcome spaces of the

corresponding density functions. Formula (1)

suggests the following way for estimating lðuÞ.
Generate a sample Z1, . . ., ZN, from the PDF g(z) and

estimate lðuÞ by

l̂ðuÞ ¼ N�1
XN

i¼1

LðZiÞWðZi; uÞ (2)

The function W(z, u) is called the likelihood ratio

(LR) function and g(y) is the dominating density.

Typically one takes gðzÞ ¼ fðz; u0Þ for a particular

value u0 2 	 of the parameter vector. The chosen

u0 is referred to as the reference value of the

parameter vector.

The LR function is given explicitly through the

corresponding density functions and is typically

smooth (differentiable) in u. As soon as the sample

Z1,. . ., ZN is generated, the obtained LR estimator

ÎNðuÞ becomes an analytical function of u and

provides an estimate of the entire function (response

surface) lðuÞ. Moreover, under mild regularity

conditions ensuring interchangeability of the

integration and differentiation operators, it follows

that derivatives of the expected performance lðuÞ can
be taken inside the expected value representation given

in the right-hand side of (1). Consequently, the

gradient = l̂NðuÞ of the sample estimate, as defined in

(2), provides an unbiased estimator of the

corresponding gradient of lðuÞ. The Hessian matrix

can be similarly estimated (Rubinstein and Shapiro

1993).

In particular, for gð�Þ ¼ f ð�; uÞ, the gradient of the

LR function W(y, u) is called the score function (SF)

and can be written in the form Sðy; uÞ ¼ H log f ðy; uÞ.
Then, given a random sample Y1,. . ., YN from f(y, u),

the gradient Hl(u) can be estimated by

�HlNðuÞ ¼ N�1
XN

i¼1

LðYiÞSðYi; uÞ: (3)

High-order derivatives can be handled in a similar

way. Note that gradient HW(z, u) of the LR function

can be written in the form Wðz; uÞSðz; uÞ and is called

the generalized score function.

A word of caution is due. Although the generalized

SF estimators typically are unbiased and consistent,

their accuracy is determined by the corresponding

variances and can be quite sensitive to the choice of

the dominating PDF g(y) (reference value u0). The

problem of an optimal choice of g(y) is closely

related to the importance sampling method in

simulation. A detailed discussion of this problem and

relevant variance reduction techniques may be found

Rubinstein and Shapiro (1993).

Example 1 (System Reliability). Consider the

sample performance function:

LðYÞ ¼ max
l�k�p

min
j2=

Yj;

where ℑ1,. . ., ℑp are the complete paths from a source

to a sink and Yj are durations (lifetimes) of the

components in the system. Suppose that the random

variables Y1,. . ., Ym are independent and each

distributed as a gamma. Given the (vector) random

sample Y1,. . ., YN, the gradient of the corresponding

expected performance l(l) can be estimated by the SF

estimator

�=lNðlÞ ¼ N�1
XN

i¼1

LðYiÞðbl�1 � YiÞ:

Estimation and Sensitivity Analysis of
Discrete-Event Dynamic Systems

The SF approach presented in the previous section can

be extended to dynamic systems as well. Consider

a Discrete Event Dynamic System (DEDS) driven by
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an input sequence of iid random vectors Y1, Y2,. . .,

generated from a PDF f(y, u) depending on the

parameter vector u 2 	. Let L1, L2,. . ., be an

output process driven by this input sequence.

That is, Lt ¼ LtðYtÞ; t ¼ 1; 2,. . ., where vector

Yt ¼ (Y1, . . ., Yt ) represents a history of the input

process up to time t, and Lt (·) is a sequence of real

valued functions.

Suppose that {Lt} is a discrete-time regenerative

process with the regenerative cycle of length t. For

example, consider a GI/G/1 queue with FIFO

discipline. In that case, the input sequence is

represented by the two-dimensional vector

Yt ¼ ðY1t; Y2tÞ, with Y1t being the service time of the

tth customer, Y2t being the interarrival time between

the (t � 1)stand tth customers, and t is the number of

customers served during the busy period. The output

process Lt can be, for example, the system waiting time

of the tth customer.

Consider the expected long-run average l(u) of the

process Lt. It is well known in the theory of

regenerative processes that l(u) is equal to the

expected steady-state performance of Lt and can

be represented as the ratio lðuÞ ¼ l1ðuÞ=l2ðuÞ of the

expectations l1ðuÞ ¼ Eu½
P

t¼1
tLt� and l2ðuÞ ¼ Eu½t�,

respectively. Note that the above expectations and

hence the expected performance l(u) are functions of

the parameter vector u 2 	.

The SF approach can again be used to derive an

estimate of the expected performance l(u) and its

sensitivities Hl(u) for different values of u, i.e.,, for

a chosen dominating PDF g(y), the expected value

functions l1(u) and l2(u) can be written in the form

l1ðuÞ ¼ Eg

Xt

t¼1

LtðZtÞ~wtðZt; uÞ
" #

and

l2ðuÞ ¼ Eg

Xt

t¼1

~wðZt; uÞ
" #

;

(5)

where ~wðZt; uÞ ¼ ftðZt; uÞ=gtðZtÞ with

ft ðzt; uÞ ¼
Qt

i¼1f ðzt; uÞ and gtðztÞ ¼
Qt

i¼1gðziÞ. The
latter term is the density function of the random

vector Zt ¼ (Z1, . . ., Zt), with the random vectors

Z1, . . ., Zt drawn according to the PDF g(·).

Under standard regularity conditions, the

derivatives of l1(u) and l2(u) can be taken inside the

expectation. Consequently, by generating a random

sample of N regenerative cycles based on the PDF g

(·), one can estimate the above expectations by the

corresponding sample means (averages), and hence

can estimate l(u) and Hl(u).

Example 2 (Queueing Delays). Let Lt be the system

waiting time of tth customer in a GI/G/1 queue driven

by the input sequences of the service times Y1t and the

interarrival times Y2t with respective density functions

f1(y1, u1) and f2(y2, u2). By Lindley’s equation, it

follows:

Lt ¼ Y1t þ ½Lt�1 � Y2t�þ; t ¼ 1; 2; . . .

Let t be the number of customers served in the first

busy period. Then the expected long-run average

waiting time of a customer can be written as

lðuÞ ¼
E
Pt

t¼1

Lt


 �

Eu½t�
¼

E
P

t

t¼1

P

t

j¼1

Y1j �
P

t

t¼2

P

t

j¼2

Y2j

" #

Eu½t�
;

where u ¼ ðu1; u2Þ and f ðy; uÞ ¼ f1ðy1; u1Þf2ðy2; u2Þ.
By generating N regenerative cycles (busy periods) of

the service and interarrival times according to the PDF

f(z, u0) for a chosen value u0 of the parameter vector,

one can estimate l(u) and Hl(u) for various values of u.

Optimization

Consider the following (unconstrained) optimization

problem involving the expected performance function

of a static or dynamic system:

ðP0Þ minimize lðuÞ; u 2 	

Let u∗ be an optimal solution of the program (P0).

The optimal solution u∗ can be estimated from a single

simulation using the SF approach, i.e., let l̂NðuÞ be the
LR estimator of l(u) calculated via the corresponding

LR function (process). Consider the optimization

problem:

ðP̂NÞ minimize l̂NðuÞ; u 2 	

where the program ðP̂NÞ is referred to as the stochastic
counterpart of the program (P0).
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The LR estimator l̂NðuÞ and, hence, the program

P̂NðuÞ depend on the generated random sample and

in that way are stochastic. However, as soon as the

sample is generated by the function l̂, its derivatives are

given explicitly through the corresponding density

functions and can be calculated for various values of

u. Consequently, ðP̂NÞ becomes a deterministic

optimization program and can be solved by standard

methods of mathematical programming. Rubinstein

and Shapiro (1993) showed that, under mild

regularity conditions: (i) The optimal solution û N of

the program ðP̂NÞ converges with probability one as

N !1 to its true counterpart u∗, i.e., û N is

a consistent estimator of u∗; (ii) N1=2ðû N � u�Þ
converges in distribution to multivariate normal with

zero mean vector and covariance matrix B�1
P

B�1,

where B ¼ H2lðu�Þ and
P

is the asymptotic

covariance matrix of N1=2= l̂Nðu
�Þ, i.e., ûN is

asymptotically normal Nðu�;N�1B�1
P

B�1Þ.
Extensive simulation studies with the SF approach, as

well as extension of the above simulation-based

approach to constrained optimization, can be found in

Rubinstein and Shapiro (1993).
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Methods
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Scoring Model

▶Research and Development

Scripted Battle Model

A model or game in which some (or all) major events

are predetermined to ensure that particular points are

addressed. The list of predetermined events (with time

and description) is the script.

See

▶Battle Modeling

Search Theory

Lawrence D. Stone

Metron Inc., Reston, VA, USA

Introduction

Search theory is the study of how to effectively employ

limited resources when trying to find an object whose

location is not precisely known. The goal is to deploy

search assets to maximize the probability of locating

the search object with the resources available.

Sometimes this goal is stated in terms of minimizing
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the time to find the search object. Search theorists

seek to find methods, procedures, and algorithms

that describe how to achieve these goals. In search

theory, the search object is called the target even

when the target is neutral or friendly, such as a

person lost at sea.

In 1942 work on search theory began in the U. S.

Navy’s Antisubmarine Warfare Operations Research

Group (ASWORG) (1942) in response to the German

submarine threat in the Atlantic (Morse 1982).

A summary of the work done by this group from

1942 to 1945 is given in Sternhell and Thorndike

(1946).

Bernard Koopman joined ASWORG in 1943, and at

George Kimball’s suggestion, Koopman, James

Dobbie, and a few others were given the job of

assembling the existing results on search into

a coherent theory. Morse (1982) credits Koopman

with providing the basic probabilistic foundation of

the subject and finding the first results on optimal

allocation of search effort, specifically the optimal

allocation of a fixed amount of search effort to detect

a stationary target with a bivariate normal distribution

of possible locations and an exponential detection

function.

Koopman defined the elements of the basic problem

of optimal search: a prior probability distribution on

target location; a function relating search effort and

detection probability; a constrained amount of search

effort; and an optimization criterion of maximizing

probability of detection subject to the constraint on

effort. This is called the optimal detection search

problem: finding an optimal allocation of a fixed

amount of search effort to maximize probability of

detection.

The resulting synthesis of search theory by

Koopman and his colleagues was published in Search

and Screening (Koopman 1946), which defines many

of the basic search concepts such as lateral range

function, sweep width, sweep rate, detection function,

and kinematic enhancement.

Search and Screening provided methods for

designing barrier searches (bow tie searches) and

antisubmarine warfare screens. It presented models

for radar and visual search. This report and its

updated version, Koopman (1980), are still the classic

references on basic search theory. Washburn (1981b)

provides an excellent and very readable introduction to

search and detection problems.

Types of Search Problems

The work of Koopman and his colleagues in the

ASWORG (later the Operations Evaluation Group

(OEG)) laid the groundwork for the development of

search theory and the applications that followed. It is

convenient to categorize this subsequent work

according to the type of search problem involved.

A detailed bibliography and discussion of the types

of search problems can be found in Benkoski,

Monticino, and Weisinger (1991).

One-Sided Search Problems

The simplest type of search problems are those in

which the searcher can choose his strategy, but the

target neither chooses a strategy nor reacts to the

search in any way. These are called one-sided search

problems. The simplest one-sided problems involve

search for a stationary target.

Stationary Targets. A stationary target is one that

does not move. The searches for the sunken treasure

ship, SS Central America (Stone 1992), the missing

submarine USS Scorpion (Richardson and Stone

1971), and the H-bomb lost off the coast of Spain in

1964 (Richardson 1967) are examples of searches for

stationary targets. Other examples include searches for

downed aircraft, hidden natural resources (gas, oil,

minerals, etc.), searches for archeological sites and

artifacts, and even searches for something as

mundane as lost car keys.

These are one-sided search problems because the

target has not chosen its location and it does not react to

the searcher’s efforts.

Moving Targets. Search for a life raft adrift in the

ocean is an example of a one-sided moving target

search problem. The movement of the raft is not

(substantially) under the control of the people in the

raft, and the people are not able to react to the search

effort except perhaps by trying to signal an aircraft or

a passing vessel. The U. S. Coast Guard’s Search and

Rescue Optimal Planning System (SAROPS) employs

search theory to plan searches for people and vessels

lost at sea (Kratzke et al. 2010). Searches for

submarines can be considered one-sided searches

when the searching platform or system is covert, i.e.,

when the target submarine is unaware of the searcher’s

presence. During the Cold War, the U. S. Navy used

a computer system that employed search theory to plan

passive sonobuoy searches by Anti-Submarine
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Warfare Patrol Aircraft for Soviet Nuclear submarines.

Use of the system doubled the success probability of

the searches.

Two-Sided Search Problems

In two-sided search problems, both the target and

the searcher are allowed to choose their strategies.

Two-sided problems can involve either stationary or

moving targets. An example of a two-sided stationary

target problem occurs when the target chooses a place

to hide and stays there. The searcher then has to find

the target. Most two-sided problems involve moving

targets. Two-sided search problems divide into

cooperative and non-cooperative searches.

Cooperative. An example of a two-sided

cooperative search is a rendezvous search. In these

searches two people are trying to find one another.

For example, when two people have become

separated and wish to find one another again, one has

a cooperative search problem.

Another example is searching for an intelligent

person lost in the woods. That person may be trying

to move to a place where he can be found more easily

or to cooperate in some way by leaving or giving

signals to indicate his position.

Non Cooperative. Many two-sided searches are

non-cooperative. An example is one submarine

searching for another submarine when each is aware

of the other’s presence. Another example is law

enforcement officers searching for drug smugglers.

Optimal Search for Stationary Targets

Koopman (1956a, b, 1957) published three articles that

summarized, in an unclassified fashion, the theoretical

aspects of the work reported in Search and Screening

(Koopman 1946),which was classified at that time. In

these papers Koopman showed how to find optimal

allocations of search effort when the target is

stationary and the detection function is exponential.

He was able to solve explicitly for the optimal effort

allocation for a bivariate normal target location

distribution.

Lateral Range Function and Sweep Width.
Koopman characterized a sensor’s detection capability

by the use of a lateral range function defined as follows.

Consider a sensor that passes by a stationary target on

long a straight path. The range r of the target from the

sensor at the point of closest approach is called the

lateral range of the target for that path. Let

aðrÞ ¼ probability the sensor detects the target on a

path having lateral range r to target:

(1)

Positive lateral ranges indicate ranges on right hand

side of the sensor. Negative ones indicate ranges on the

left-hand side.

Sweep Width. The sweep width W of a sensor is

defined as

W ¼
Z 1

�1
aðrÞdr: (2)

If one imagines the sensor moving through space on

straight line of length l, then l W is the effective

(expected) area swept by the sensor.

Exponential Detection Function. Suppose that

one is searching with a sensor that has sweep width

W and moves at speed v. If the search is uniform in

a region of area A with the effectiveness of “random”

search, then the probability of detecting the target by

time t given it is located in the region is

PðtÞ ¼ 1� exp �Wvt

A

� �
: (3)

The fractionWvt=A is the density of search effort in

the region. Equation (3) is called the random search

formula. This typically gives a lower bound on the

effectiveness of a systematic search that tries to

spread its effort uniformly over the search region.

The term random searchmust not be taken too

literally. With completely random searching, one can

obtain very non-uniform coverage of the search area,

and as a result obtain a lower probability of detection

than that given by the random search formula.

Suppose that f ðxÞ is the density of search effort in

the neighborhood of the point x in the search space, X,

the plane. Let

b x; f ðxÞð Þ¼ probability of detecting the target given

it is located at x and the search density is f ðxÞ:

The function b is called a detection function. If

b x; f ðxÞð Þ ¼ 1� expð�f ðxÞÞ, then b is an exponential

detection function.
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Target Location Distribution. Suppose that the

target is stationary and located in the plane X.

Knowledge of the target’s location is given by

a bivariate normal probability distribution with its

mean at ð0; 0Þ. This knowledge may have been

obtained from a navigational fix with uncertainty

where the uncertainty in the fix is modeled by

a bivariate normal distribution.

The density function, p, for this distribution is given

by

pðx1; x2Þ ¼
1

2ps1s2
exp � 1

2

x21
s21

þ x22
s22

� �
 �

:

A graph of this density function is shown in Fig. 1

for the case where s1 ¼ s2. This is called a circular

normal distribution. In Fig. 1, the probability density is

highest at the center of the distribution (0,0) and

decreases as distance from the center increases. In

theory, this distribution covers an infinitely large area

since the probability density approaches, but never

actually reaches, zero. In practice some reasonable

cutoff is applied.

Optimal Search Density. Suppose that the search

sensor has sweep width W, travels at speed v, and has

an exponential detection function. If there are T hours

of search time available, then Koopman (1946)

showed that the optimal search density f � is

f �ðx1;x2Þ¼

WvT

ps1s2

� �1
2

�1

2
r2 x1;x2ð Þ forr2 x1;x2ð Þ�2

WvT

ps1s2

� �1
2

0 for r2 x1;x2ð Þ>2
WvT

ps1s2

� �1
2

8

>

>

>

>

<

>

>

>

>

:

where

r2ðx1; x2Þ ¼
x21
s21

þ x22
s22

:

Figure 2 shows an example of the optimal search

effort density for the circular normal location density

in Fig. 1 based on a specific amount of search effort.

The optimal effort density is highest at the center

where the location probability density is also highest.

The optimal density decreases with distance from the

center until at a certain radius the effort density

becomes zero. All the available search effort is

expended within a certain radius (depending on the

amount of effort available) and none is expended

outside that radius even though there is some

probability of the target being outside the circle

inscribed by this radius.

Posterior Target Location Density. Suppose that

the optimal search has been applied as shown in

Fig. 2 and failed to detect the target. What is the

target location distribution given this unsuccessful

search effort? This distribution is computed by

employing the form of probabilistic reasoning called

0
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Search Theory, Fig. 1 Probability density function for
a circular normal distribution
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4 −4

−2

0
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Search Theory, Fig. 2 Optimal search density for a circular
normal distribution
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Bayes’ rule. The result is shown in Fig. 3. This is the

posterior target location density given the search has

been unsuccessful. The posterior density is flat inside

the circle where search effort has been applied. As

more and more effort is applied (in an optimal

fashion), the posterior density becomes flatter and

flatter, and the radius of the circle of search increases.

Koopman (1957) extended his optimal allocation

results from normal distributions to a more general

class of probability distributions

Non-exponential Detection Functions

Koopman’s original results have been extended in two

important directions to allow one to find optimal

allocations of search effort when the detection

function is not exponential and when the target

location distribution is not bivariate normal. Target

location distributions that are not bivariate normal

occur often in operational problems. For example,

cellular target location distributions commonly arise

in both land and maritime search and rescue situations.

The use of detection functions that are not exponential

is also common in operational search problems. For

example the U. S. Coast Guard uses inverse-cube

detection models in SAROPS (Kratzke et al. 2010).

This detection function was initially postulated by

Koopman (1946) as a model for visual search.

The exponential detection function has an

important property. It is exhibits a decreasing rate of

return. This means that the probability of detection

increases more and more slowly as the amount of

search effort increases. This effect is seen clearly

in Fig. 4.

In mathematical terms, this property is expressed by

saying the detection function has a decreasing

derivative or rate of return. A decreasing rate of

return is a common property in economic situations

in which effort may be measured in dollars, time, or

manpower and return is in dollars. Most detection

functions have the decreasing rate of return property.

DeGuenin (1961) extended Koopman’s results by

finding the optimal allocation of search effort for

a stationary target for any detection function with

a decreasing rate of return. Let b0ðx; zÞ denote the

derivative of detection function bðx; zÞ with respect to

z. If b0ðx; zÞ is decreasing in z, then b has the decreasing
rate of return property.

Regular Detection Functions. A detection

function is regular if bðx; 0Þ ¼ 0 and b0ðx; �Þ is

continuous, positive, and strictly decreasing for

x 2 X. Let

rxðzÞ ¼ pðxÞb0ðx; zÞ for x 2 X and z � 0: (4)

If one has applied z effort density at x, then rxðzÞ is
the marginal rate of return (in terms of increase in

probability of detection) for applying additional

search effort density at x when density z has already

been applied.

Optimal Allocations for Continuous Target

Location Distributions

A search plan is a non-negative function f defined

on the search space X which is a subset of Euclidean

n-space. Typically, n ¼ 2 or 3. The probability of

detection, P½f � and cost C½f � of the plan f are

computed as follows.

P f½ � ¼
Z

X

b x; f ðxÞð Þdx andC f½ � ¼
Z

X

f ðxÞdx: (5)

A search plan f � is optimal for cost K if

P f �½ �� P f½ � for all search plans f such that C f½ �� K:

(6)

Stone (1989, section 2.2) showed that the following

is a necessary and sufficient condition for a search plan

f � to be optimal for cost K.

−4
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4 −4
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2

4

Search Theory, Fig. 3 Posterior Target Location Distribution
given Failure to Detect
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Optimality Condition for Stationary Target

Search. If the detection function b is regular, then

a search plan f � is optimal for cost C f �½ � if and only if

there exists a l > 0 such that for x 2 X

rx f �ðxÞð Þ ¼ pðxÞb0 x; f �ðxÞð Þ ¼ l if f �ðxÞ > 0

� l if f �ðxÞ ¼ 0:
(7)

Observe that the optimal plan searches in a way to

level the marginal rate of returns to some value l in all

locations where search effort is allocated and to be less

than or equal to l in all locations where no search is

effort is allocated.

In the case where b is an exponential detection

function, rx f ðxÞð Þ ¼ pðxÞ exp �f ðxÞð Þ. Let ~p denote

the density function of the posterior target location

distribution given failure of plan f to detect the

target. By Bayes’ rule,

~pðxÞ /Pr plan f fails to detect targetjtarget at xf gpðxÞ ¼
exp �f ðxÞð ÞpðxÞ ¼ rx f ðxÞð Þ:

Thus for an exponential detection function, the

optimal plan searches the highest probability areas in

a way that levels the posterior distribution where

search takes place as one can see from Fig. 3.

Computing Optimal Stationary Target Search
Plans. The optimality condition provides a method of

computing the optimal search plan for a given cost K.

The assumption that b is a regular detection function

insures that rx has an inverse for any x such that

pðxÞ > 0. For l > 0 define

flðxÞ ¼
r�1
x ðlÞ if l � rxð0Þ
0 otherwise

(

and

U ðlÞ ¼
Z

X

flðxÞdx for l > 0:

(8)

One can check that U is a function that decreases

continuously from 1 to 0 as l increases from 0 to 1.

This means that for any K � 0, one can find a l� > 0

such that C fl�½ � ¼ K. By (8), fl� satisfies

rx fl�ðxÞð Þ ¼ l if fl�ðxÞ > 0

� l if fl�ðxÞ ¼ 0:
(9)

By the optimality condition, fl� is optimal for cost K.

Optimal Allocations for Cellular Distributions

In the above examples, the probability distributions

have density functions that vary smoothly over space.

However, there are many situations in which the search

space is divided into cells. This occurs in Coast Guard

maritime search and rescue problems, land search and

rescue problems, and in many others.

Suppose there are J cells with

pj ¼ probability the target is in cell j

Aj ¼ area of cell j

Wj ¼ sweep width in cell j

vj ¼ search speed in cell j

tj ¼ time spent searching in cell j:

(10)
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The optimal search problem is to divide the total

search time T over the cells to maximize probability of

detection.

Charnes and Cooper Algorithm. Suppose the

detection function in the jth cell is

bðj; tÞ ¼ 1� exp �Wjvjt

Aj

� �
: (11)

For this case, Charnes and Cooper (1958) presented

the following algorithm for computing the optimal

distribution of search effort over these cells to

maximize probability of detection by search time T.

The problem solved by Charnes and Cooper arises

often in land search and rescue. The probability

distribution for the location of the target, say a lost boy,

is often cellular with cells of varying size. Because

of variations in terrain, both the sweep width and the

speed at which one can search may vary from cell to cell.

Optimal Allocation f� of T Search Time for

a Cellular Distribution

Set aj ¼
Wjvj

Aj

for j ¼ 1; . . . ; J

Index cells so that a1p1 � a2p2 � . . . � aJpJ

Set Sð0Þ ¼ 0 and yJ ¼ 1

For i ¼ 1 to J � 1

yi ¼ ln
aipi

aiþ1piþ1

and SðiÞ ¼ Sði� 1Þ

þ yi
Xi

j¼1

1

aj

End

If Sðj�Þ � T for some j� < J;

then

a ¼
T � Sðj� � 1Þ

Sðj�Þ � Sðj� � 1Þ
otherwise

j� ¼ J and a ¼
T � Sðj� � 1Þ
PJ

j¼1
1
aj

End
Set

f �ðjÞ ¼

1

aj

Xj��1

i¼j
yi þ ayj�

� 
for 1 � j � j�

0 for j > j�

8
><

>:

Uniformly Optimal Search Plans

The search plans described above maximize the

probability of detecting the target with a fixed amount

of effort K or time T. They tell the searcher the total

effort to put into each cell or region, but they say nothing

about how the effort should be put into cells over time.

Suppose that one wants a plan that tells the searcher how

to allocate search effort in space and time so that at each

time t between 0 and T, he has done as well as possible.

In fact, one would like the result after time t of search to

be optimal for time t. A plan with this pleasing property

is called uniformly optimal. Uniformly optimal plans

also minimize the mean time to detect the target.

Koopman showed that when the detection function

is exponential, a uniformly optimal plan exists. In fact,

the way to obtain a uniformly optimal plan is to

organize the search effort so that by time t one has

allocated search effort to be optimal for that time. One

then continues on to a plan that is optimal for time

T > t by distributing the additional effort that it is

required by the time T plan over the time t plan.

Stone (1989) showed that uniformly optimal plans

exist and may be constructed in a similar fashion

whenever the detection function is regular.

Uniformly Optimal Plans for a Continuous
Search Space. The family of optimal plans defined in

(8) provides a method for finding uniformly optimal

plans. Let MðtÞ be the cumulative amount of search

effort available by time t for 0 � t � T. Consider the

class of search plans ’ which are defined over space

and time so that

’ðx; tÞ � 0; ’ðx; �Þ is increasing for x 2 X and

C ’ð�; tÞ½ � ¼ MðtÞ for 0 � t � T:

Let U�1 be the inverse of the function U defined in

(8). Set

lðtÞ ¼ U�1 MðtÞð Þ and ’�ðx; tÞ ¼ flðtÞðxÞ for

x 2 X and 0 � t � T:
(12)
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Then ’�ðx; tÞ specifies the cumulative effort density

to be applied to point x by time t. One can check that l

is a decreasing function and that as a result ’�ðx; �Þ is
an increasing function of t for x 2 X. Furthermore,

C ’�ð�; tÞ½ � ¼ MðtÞ, and ’�ð�; tÞ satisfies the optimality

conditions in (7). Thus, ’�ð�; tÞ is optimal for costMðtÞ
for 0 � t � T, and ’� is a uniformly optimal search

plan.

Incrementally Optimal Plans. Usually one

allocates search effort in discrete increments rather

than continuously. So one might first design and

implement a plan to be optimal for Mðt1Þ, the amount

of effort available by t1. If this search fails, one might

decide to add an additional increment D of effort by

time t2 to obtain a total effort of Mðt2Þ ¼ Mðt1Þ þ D.

Question: How does one allocate this increment D

optimally and will this allocation produce a plan that

is optimal for the total effort Mðt2Þ ¼ Mðt1Þ þ D? The

uniformly optimal plan in (12) provides the answer to

both of these questions. First, the allocation of the

initial increment is specified by ’�ð�; t1Þ. Then the

allocation of the increment D is given by

’�ð�; t2Þ � ’�ð�; t1Þ and the resulting total effort

allocation ’�ð�; t2Þ is optimal for Mðt2Þ ¼ Mðt1Þ þ D.

Minimizing Mean Time to Detection. A common

question is, can you design a search plan to minimize

the mean time to detect the target? The answer is

yes, and the plan that does this is the uniformly

optimal plan. First one has to imaging extending to T

to1 so that the detection probability will reach 1. The

mean time to detect, m ’½ �, for a plan ’ can be

calculated by

m ’½ � ¼
Z 1

0

1� P ’ð�; tÞ½ �ð Þ dt: (13)

Since ’� is uniformly optimal, it minimizes the

integrand in (13) for all t and therefore produces the

minimum mean time to detection. If T < 1 and the

probability of detection for the optimal plan is less than

1 by time T, then one can define the mean time to

complete the search as follows

m ’½ � ¼
Z T

0

1� P ’ð�; tÞ½ �ð Þ dtþ 1� P ’ð�; TÞ½ �ð ÞT

and see that ’� minimizes this as well as maximizing

the probability of detection by time T.

Uniformly Optimal Plans for Cellular
Distributions. Stone (1989, Section 2.2) finds

uniformly optimal plans for cellular distributions and

regular detection functions.

Suppose there are J cells with probability pj of the

target being cell j and that the detection function b is

regular. Let MðtÞ be the cumulative search effort

available by time t. Define

rjðzÞ¼ pjb
0 j;zð Þ for j¼ 1; . . . ;J and z� 0

flðjÞ¼
r�1
j ðlÞ if l� rxð0Þ

0 otherwise

(

andUðlÞ¼
XJ

j¼1
flðjÞ

Let U�1 be the inverse of the function U, and set

lðtÞ ¼ U�1 MðtÞð Þ. Then

flðtÞðjÞ ¼ r�1
j lðtÞð Þ for j ¼ 1; . . . ; J (14)

is optimal for MðtÞ effort for t � 0 and is uniformly

optimal.

Optimal Search with Uncertain Sweep Width

In the detection problems discussed so far, such as the

cellular search problems, it is assumed that the sweep

width of the sensor is known with certainty. It is often

the case that the sweep width is uncertain, particularly

in cases where state of the target is uncertain. For

example, if one is looking for a lost aircraft, one

often does not know if the plane has landed in one

piece of if there is wreckage scatter over an area.

Maybe the planed burned after crashing. Each of

these situations will yield a different value for the

sweep width of a visual search from the air.

Richardson and Belkin (1972) and Stone (1989,

section 2.3) show how to find optimal plans when the

sweep width has a probability distribution on its value.

Search in Presence of False Targets

Often searches are performed with a sensor such as

a side-looking sonar which is used in underwater

searches for lost objects. This type of sensor is

excellent for covering large areas with high detection

probability. However, these broad search sensors can

generate a large number of false targets, i.e., detections

on real objects which are not the target. Thus

detections have to be investigated, perhaps by

a visual sensor, to determine whether the objects

detected are targets or not. Thus, a search plan in the

presences of false targets must specify not only the
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allocation of the broad search effort but a strategy for

investigating detections. Chapter 6 of Stone (1989)

develops models of search in the presence of false

targets, introduces a number of classes of search

plans in presence of false targets, and finds plans that

minimize expected cost to detect the target.

Optimal Search for Moving Targets

Prior to Brown (1980), optimal allocation results for

moving targets were limited to very special cases.

Most moving target problems were approached by

freezing the target motion over some increment of

time, allocating effort as though the target were

stationary during that time increment, and then

repeating the process for the next time increment. For

example, the U. S. Coast Guard’s Computer Assisted

Search Planning (CASP) System (Richardson and

Discenza 1980) used this technique. Brown

discovered an efficient algorithm for finding optimal

search allocations for moving target problems

when the target distribution is cellular, the target

motion is Markovian, and the detection function is

exponential. Brown’s algorithm maximizes detection

probability at time T. This algorithm was applied to

great effect by the U. S. Navy in searching for Soviet

Submarines.

Washburn (1983) generalized Brown’s algorithm to

the class of forward and backward (FAB) algorithms

that apply to a more general class of payoff functions.

Algorithms for non-exponential detection functions

and non-Markovian motions are given in Stone

(1979) and Stromquist and Stone (1981).

Optimal One-Sided Search for a Moving Target

The target’s location and motion through X are

specified by the stochastic process X ¼ Xt; t � 0f g
where Xt 2 X gives the target’s position at time t.

A time horizon 0;T½ � is specified and the goal is to

maximize the probability of detecting the target by

time T. For this discussion, time will be discrete so

that t ¼ 0; 1; . . . ; T.

A search plan c specifies the allocation of search

effort in space and time. Specifically c x; tð Þ ¼ effort

density placed at point x at time t for

x 2 X; t ¼ 0; 1; . . . ; T. Search effort is constrained by

the rate at which effort can be applied. Specifically

there is a function m such that mðtÞ ¼ effort

available for search at time t for t ¼ 0; 1; . . . ; T, and
search plans c must satisfy

Z

Y

c x; tð Þ dx � mðtÞ for t ¼ 0; 1; . . . ; T; (15)

c x; tð Þ � 0 for x 2 X; t ¼ 0; 1; . . . ; T: (16)

Let C be the set of search plans satisfying (15) and

(16). For each sample path o of the process X, the

probability of detecting the target by time t, given

that it follows that path, is a function of the weighted

total effort density,

z c;o; tð Þ ¼
Xt

s¼0

W Xs oð Þ; sð Þc Xs oð Þ; sð Þ;

which accumulates by time t on the target over the

course of the path. The weight W x; sð Þ represents the
relative detectability or sweep width against the target

given it is located at point x at time s. There is

a detection function b : 0;1½ � ! 0; 1½ � such that

b zðc;o; tÞð Þ is the probability of detecting the target

by time t given that it follows sample path o and that

search planc is executed. LettingE denote expectation

over the sample paths of X, it follows that

P c½ � ¼ E b zðc; �; TÞð Þ½ �

is the probability of detecting the target by time T with

plan c. In the remainder of this discussion, the

argument o is suppressed.

The optimal detection problem for a moving target

is to find a plan c� 2 C such that P c�½ � � P c½ � for all
c� 2 C. Such a plan is called T-optimal.

Brown’s Algorithm for Continuous Space. For an
exponential detection function and a target moving in

discrete time and space, Brown’s algorithm solves the

problem of finding a T-optimal allocation by solving

a sequence of stationary target problems. The

following paragraphs present an extension of

Brown’s algorithm to continuous search spaces and

relate this extension to the original discrete-space

algorithm. The continuous space algorithm is based

on the following necessary and sufficient condition

for a T-optimal search plan proved by Stone (1979).

Define

g
c
t ðxÞ ¼ Pr Xt ¼ xjfailure to detect at all times otherf

than t using plan cg
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for x 2 X; c 2 C; and t ¼ 0; 1; . . . ; T:

The function g
c
t is the posterior target location density

given failure to detect by the search effort at all times

other than t. If the detection function b is exponential,

i.e., bðzÞ ¼ 1� exp �zð Þ for z � 0, then g
c
t ðxÞ is

proportional to

E exp �
X

s 6¼t

W Xs;sð Þc Xs;sð Þ
( )�

�

�

�

�

Xt ¼ x

" #

where pt is the prior probability density function for Xt

Necessary and Sufficient Condition for

T-Optimality. Assume that the detection function b is

exponential. A necessary and sufficient condition for

c� 2 C to be T-optimal is that c�ð�; tÞ maximizes the

probability of detecting a stationary target with

distribution g
c�

t using effort mðtÞ for t ¼ 0; 1; . . . ; T.
Description of Algorithm. For time t ¼ 0, the

algorithm allocates mð0Þ effort optimally to the target

distribution p0. For t ¼ 1; . . . ; T, the algorithm

calculates the posterior target distribution at time t

given failure to detect by the effort prior to time t and

allocates mðtÞ effort in a manner that is optimal for the

stationary target problem with target distribution given

by g
c
t . The plan that results from this first pass is the

incrementally optimal or myopic search plan. It

maximizes the increment in detection probability at

each time t but does not produce a T-optimal plan.

Subsequent passes proceed as follows for

t ¼ 0; 1; . . . ; T. The algorithm computes g
c
t based on

the allocation c obtained up to that point in the

iteration, redistributes the effort mðtÞ at time t to

be optimal for g
c
t , and changes c to reflect the

reallocation. The algorithm continues in this iterative

fashion until a convergence criterion is met.

To use this algorithm, one must be able to calculate

g
c
t and find the optimal allocation of effort for a

stationary target problem when the detection function

is exponential. The methods described in the section on

Optimal Search for Stationary Targets provide

efficient algorithms for doing this. If one can find an

efficient method of computing g
c
t , then one can

implement the above algorithm for the case of a

discrete or continuous search space. For the case

where X is a discrete time and space Markov process,

Brown (1980) devised a very efficient algorithm

for computing g
c
t and used it along with the

Charnes-Cooper algorithm described above to

produce an algorithm for calculating T-optimal

search plans. By making use of the upper bound

discovered by Washburn (1981a), one can tell when

his solution has come within a specified tolerance of

the detection probability of the T-optimal plan. When

using Brown’s algorithm, the convergence is usually

very rapid.

Stone et al. (1978) present a generalization of

Brown’s algorithm to arbitrary discrete time and

space target motions.

Generalized Search Optimization

Stromquist and Stone (1981) found a set of necessary

and sufficient conditions for maximizing a class of

functionals with search theory applications. Using

these conditions, they were able to unify the solutions

to a number of previously solved search problems

including the following.

Multistate Target Search. A generalization of the

detection search described above is the multistate

target search. In this case the target’s motion is given

by Xt; Stð Þ; t ¼ 0; 1; . . . ; Tf g where Xt is the target’s

position at time t and St is the target’s state at time t.

The target may change state as well as location

stochastically, and the target’s state can affect the

target’s motion as well as its detectability. As an

example, consider a case where there are K states and

the sweep width is a function of location, state, and

time, so that cumulative effort z becomes

z c; Tð Þ ¼
X

T

t¼0

W Xt; St; tð Þc Xt; tð Þ

and

P c½ � ¼ E b z c; Tð Þð Þ½ �

as before. Observe that effort cannot be allocated to

states but only to locations. Discenza and Stone (1981)

developed algorithms for solving these multistate

target search problems.

Optimal Survivor Search is a special case of

multistate target search. In the search problems

discussed above, the goal is to maximize the

probability of detecting the target by some time. In

the case of search and rescue problems, a more

appropriate goal may be to maximize the probability

of detecting the target alive. A search with this goal
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may apply the initial effort in some lower probability

areas that are particularly hazardous to the target in

order to recover a survivor quickly if he or she is

located there. This may involve some sacrifice of

overall detection probability. As an example, one

might want to concentrate initially on search areas

where a survivor would be located if he is immersed

in the water and delay somewhat searching areas that

would be likely only if he is still in his boat.

Defensive Search is another special case of

multistate target search. In defensive search, one is

trying to detect an attacker before it launches

a weapon. In this case the target has two states,

weapon launched and not launched. Once the attacker

launches a weapon, the sweep width is set to zero and

the target remains in the launched state for the

remainder of the problem. In this case, maximizing P

is maximizing the probability of detecting the attacker

before it launches an attack

Surveillance Search. Tierney and Kadane (1983)

have developed a technique for solving surveillance

problems which builds on the optimal detection search

results discussed above. The surveillance problem is to

maximize the probability of being in contact (i.e.,

having a detection on the target) at time T. In contrast

to the detection search problem, a detection before time

T does not end the problem. It merely helps to obtain a

detection at time T. For problems where the target’s

motion is modeled by a discrete-time-and-space

Markov chain, Tierney and Kadane have shown that

the optimal surveillance problem can be solved by

solving a series of optimal detection search problems.

In their method, one starts at time T and works his way

backward in time in a fashion similar to dynamic

programming. At each time t, one must solve what

Tierney and Kadane call a general detection search

problem given knowledge of the target’s position at

time t.

In the general detection problem, the searcher

receives a payoff or return r j; tð Þ if he detects the

target in cell j at time t. The search stops the first

time the target is detected, and the objective of the

general detection problem is to maximize the

expected payoff.

Whereabouts Search. Stone and Kadane (1981)

solve the problem of optimal whereabouts search for

a moving target. In a whereabouts search one can

succeed either by detecting the target or guessing its

location. When X ¼ 1; . . . ; Jf g, Stone and Kadane

show that solving a whereabouts problem is

equivalent to solving J detection search problems

Constraints on the Searcher

In the search problems considered above, it is assumed

that effort can be distributed over the search space any

way one chooses. Sometimes this is a reasonable

approximation. A visual search by aircraft over

a region where the time to travel from one part of the

region to another is small is an example. Sometimes

the constraints on the movement of the search

platforms require that one consider special types of

search plans. Usually there are two of types of

constraints that are considered – path constraints and

simplicity constraints.

Path Constraints. If the search platform is a boat or

a person walking on land, then the place where the

platform is searching now constrains the places where

it can search in the next increment of time. In these

cases, one has an optimal searcher path problem.

Instead of finding an optimal allocation of search

effort, the problem is to find an optimal path for the

searcher. The set of paths from which the optimum is

chosen is restricted to those that obey the physical

constraints on the movement of the search platform.

This is a difficult class of problems, especially for

moving targets, but there has been some progress in

solving them.

Stewart (1979, 1980), Eagle (1984), and Eagle and

Yee (1988) have applied integer programming

approaches to finding efficient algorithms for solving

these problems.

Simplicity Constraints. In executing actual

searches, it may be desirable to restrict the search

patterns to a class of searches the are simple to

execute operationally. A typical example is to restrict

search plans to be composed of searches consisting of

a set of rectangles each with a uniform search density

or coverage. Such plans can be approximated by

searches that employ equally spaced, parallel search

paths in the rectangles.

Single Rectangle Searches. In the case of search for

a stationary target with a bivariate normal location

distribution, Richardson and Discenza (1980), show

how to find optimal rectangle plans. For an optimal

rectangle plan, one chooses a single rectangle and

spreads his search effort uniformly over that

rectangle. Richardson and Discenza show that it is

always possible to pick an optimal rectangle plan that
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comes quite close to (within 3% of) the detection

probability of the optimal plan.

Multiple Rectangle Searches. Discenza (1980)

developed an algorithm for finding optimal multiple

rectangle searches for the cellular target location

distributions generated by CASP. These multiple

rectangle searches consist of non-overlapping

rectangles. In each rectangle the search effort is

spread uniformly over the rectangle. Furthermore,

each search asset (say an aircraft) is assigned to

search one and only one rectangle. The solution

method proposed by Discenza involves some

additional restrictions on the choices of rectangles to

allow an efficient solution of this problem.

Kratzke, Stone, and Frost (2010) describe the

methodology used in the SAROPS program to find

optimal non-overlapping rectangles for Coast Guard

Search and rescue problems. The optimization

approach is numerical, but it does account for the

movement of the search object during the search.

Search and Evasion Problems

A classic two-sided search problem involves a target

that is trying to evade a searcher. In one case the

target’s goal may be simply to avoid detection. In

other cases, the target may have additional goals such

as reaching a certain area undetected. This would be

the goal for a smuggler or an infiltrator. The goal for

the search theorist is to solve for the optimal strategy

for both the searcher and the evader. These problems

tend to have a game theory formulation. Although they

are difficult to solve, there has been some progress

made by Auger (1991), Dobbie (1975), Eagle and

Washburn (1991), Gal (1980), Garnaev (2000),

Stewart (1981), and Washburn (1980b).

Alpern and Gal (2003, Book I) present an excellent

and highly readable summary of the main results in

search games. Below is a sampling of the results

presented by them.

Search Games in a Bounded Connected Region
Q of Euclidean Space of dimension 2 or more with
an Immobile hider.

Search in a Region. Let A be the area or volume of

the region Q and R the search rate (area or volume per

unit time) of the searcher.

Result. The (minimax) value of this game is A=2R.
This is true whether the searcher’s path is continuous

or not, whether he chooses his initial search point or

not, and whether or not his strategy is randomized.

Search on a Network: A network is defined to be

a finite connected set of arcs that intersect only at their

end points. Let the sum of the length of all the arcs be

equal to L. The searcher moves through the network at

unit speed.

Result: The value of the search game using pure

strategies for an immobile hider on the network Q is L

if Q is Eulerian. Note: A network Q is Eulerian if there

is a tour (a path traversing all the arcs of Q and

returning to its starting point) of length L. If mixed

strategies are allowed the value of the game drops

to L=2:

Mobile Hider in Bounded Connected Region:
Result: In the case where the searcher’s path does

not have to be continuous, the value of the game

is A=R.
Mobile Hider in a Bounded Convex Region Q in

Euclidean 2-Space. For these searches r is the

detection radius (which is small compared to the

diameter of Q), the searcher moves in continuous

paths at a speed of 1, and the mobile hider moves on

a continuous path with a speed that is “not too small.”

The searcher starts at specified point in Q, the hider

chooses his starting point.

Result. Both the searcher and the hider can keep the
probability of capture before time t close to

1� exp �2rt=Að Þ where A is the area of Q.

Note that 1� exp �2rt=Að Þ is probability of

detection by time t for random search (as defined

by Koopman) for a stationary target in a region of

area A.

See

▶Bayes Rule

▶Game Theory

▶Markov Chains
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Second-order Conditions

Conditions Involving Second Derivatives.

Self-Dual Parametric Algorithm

A variation of the simplex method and parametric

programming in which the given linear-programming

problem is adjusted so that the same parameter is added
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to each cost coefficient and each right-hand-side

element. By using a sequence of primal and dual

simplex transformations, the problem will be optimal

for some value of the parameter, with the process

continuing until a solution with a zero value of the

parameter is found.

See

▶ Simplex Method (Algorithm)

Semi-Markov Process

A stochastic process that evolves via an embedded

discrete-time Markov process, where the times spent

in a state before making a transition are independent

random variables following general distributions.

Generalizes the continuous-time Markov process

setting where the time spent in a state is

exponentially distributed. Used for analyzing

queueing and related systems.

See

▶Markov Processes

Semi-Strictly Quasi-Concave Function

A function f(x) is semi-strictly quasi-concave

over a convex set S if for any two points x1 6¼ x2 in

S and for any 0 < a < 1, f(x2) > f(x1) implies that

f(a x1 + (1 � a) x2) > f(x1).

See

▶Concave Function

▶Convex Function

▶Quasi-Concave Function

▶Quasi-Convex Function

▶ Semi-Strictly Quasi-Convex Function

▶ Strictly Quasi-Concave Function

▶ Strictly Quasi-Convex Function

Semi-Strictly Quasi-Convex Function

A function f(x) is semi-strictly quasi-convex over

a convex set S if for any two points x1 6¼ x2 in S

and for any 0 < a < 1, �f(x2) > �f(x1) implies

that �f(a x1 + (1 � a) x2) > �f(x1).

See

▶Concave Function

▶Convex Function

▶Quasi-Concave Function

▶Quasi-Convex Function

▶ Semi-Strictly Quasi-Concave Function

▶ Strictly Quasi-Concave Function

▶ Strictly Quasi-Convex Function
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Introduction

In operations research (OR), sensitivity analysis

describes the methods and tools used to study how

the output of a model varies with changes in the input

data. The input data may refer to parameters affecting

the objective functions and/or constraints or to the

structure of the problem. Depending on the problem

and model, the output could refer to:

• the optimal alternative and/or the optimal value, or,

• a set of alternatives with a certain property. Some

examples include the non-dominated set in

a multi-objective optimization problem; the set of

alternatives satisfying certain constraints in

a classification problem; or the set of the, say, five

best alternatives.

Typical questions addressed within sensitivity

analysis are whether a given optimal solution will

remain as such if inputs are changed in a certain way,

and, if not, which other alternatives may become
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optimal. Finding the most critical directions for

changes in inputs that may affect the model output

are also relevant sensitivity analysis issues; see

French and Rı́os Insua (2000), Saltelli et al. (2000),

and Saltelli et al. (2004) for reviews.

As motivating examples, consider the following

problems:

1. Linear programming. One may be interested in

checking how the costs (reduced costs) and/or the

right hand side terms and/or the technological matrix

terms impact over the optimal solution. A typical

question would be: does the optimal solution

change if one of the costs increases so much?

2. Decision analysis. One may be interested in

checking the impact of the beliefs and preferences,

modeled, respectively, through a probability

distribution and a utility function, over the optimal

alternative and its expected utility. For example,

one could wonder how much arelevant binomial

parameter and a risk tolerance parameter should

be changed to make a certain alternative optimal.

3. Multi-objective decision making with

a multi-attribute value function. One may want to

check which alternatives become optimal when the

weights vary within a range around the current

weight settings.

An important, and occasionally controversial, issue

in sensitivity analysis is the distinction between

decision sensitivity and value sensitivity (Kadane and

Srinivasan 1996). A variety of situations may hold. For

instance, when performing sensitivity analysis, it may

happen that value changes considerably with virtually

no change in the optimal alternative.

Motivations

There may be many reasons to check the sensitivity of

the output of an OR model to its inputs. A first reason

may be the almost ubiquitous uncertainty in the inputs.

One may not be willing or capable of assessing such

uncertainty with a probability distribution. Then,

baseline values for the inputs could be assessed and

changes in how they affect the output are observed.

Similarly, the assessment of the inputs might be

affected by inherent imprecision and output

robustness may be checked. In relation with this, it

may be interesting to check the robustness of the

output under various input scenarios.

Note also that, since some of the inputs to an

analysis may encode the subjective judgments of the

decision maker (DM), their implications and possible

inconsistencies should be explored. The need for

sensitivity analysis is further emphasized by the fact

that the assessment of such judgments could be

a difficult task. For example, it is frequently

mentioned that assessing a subjective probability

distribution is involved. Consider the simplest case in

which it is desired to elicit a prior over a finite set of

states yi; i 2 f1; . . . ; Ig. A common technique to assess

a precise probability distribution pðyiÞ ¼ pi proceeds

as follows, with the aid of a reference experiment: one

progressively bounds pðyiÞ above and below until no

further discrimination is possible and then takes the

midpoint of the resulting interval as the value of pi.

Instead, one could directly operate with the obtained

constraints ai � pðyiÞ � bi, acknowledging cognitive

limitations. This is an especially important point, as the

DM’s judgments will evolve through the analysis until

they are requisite. Sensitivity analysis may guide such

process.

In relation with the limitations of elicitation,

consider also the situation in which there are several

decision makers and/or experts involved in the

elicitation. Then it is not even necessarily possible

theoretically to obtain a single model: one might be

left with only classes of each, corresponding to

differing expert opinions, and one may need to study

the model under those various settings.

Finally, note that sensitivity analysis may be used to

perform value of information calculations that allow

one to compute how much to pay for information used

to reduce uncertainty in an analysis.

To sum up, sensitivity analysis aims at increasing

the confidence in an OR model and its output by

providing an understanding of the responses of the

model to changes in the inputs.

Foundations

A number of results show that imprecision in model

inputs may be dealt with through a class of probability

distributions and a class of utility functions. These

results have two basic implications. First, they provide

a qualitative framework for sensitivity analysis,

describing under what conditions the standard and

natural sensitivity analysis approach of perturbing the
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initial input assessments within some reasonable

constraints may be undertaken. Second, they point out

to the basic solution concept of robust approaches, thus

indicating a key computational objective in sensitivity

analysis, as long as the interest is in decision analytic

problems: that of non-dominated alternatives. An

alternative a dominates another alternative b, if its

evaluation is better for each potential input to the

analysis. Then, an alternative a is non-dominated if no

other feasible alternative dominates it. This corresponds

to a Pareto ordering of alternatives based on inequalities

on their evaluations.

To construct an appropriate framework for general

sensitivity analysis, the standard decision-theoretic

axiomatic foundations should be reconsidered to

account for imprecision in model inputs. Although

this approach does not lead to such well-rounded

development as in the precise case, in which various

axiomatizations essentially lead to the subjective

expected utility model, various partial results do exist

(e.g., Rı́os Insua 1990 or Walley 1991), leading to,

essentially, the same conclusion: imprecise beliefs

and preferences may be modeled by a class of priors

and a class of utility functions, so that preferences

among alternatives may be represented by

inequalities of the corresponding posterior expected

utilities. The basic argument for such results assumes

that the underlying preference relation, rather than

being a weak order (complete and transitive), is

a quasi order (reflexive and transitive).

Key Approaches to Sensitivity Analysis

Clearly, as there is a large variety of OR models, there

is a comparatively large number of approaches to

sensitivity analysis. Only a few of the approaches that

may be applied to various OR models are described,

without much dwelling into their numerical details.

Testing Alternative Inputs

One first generic approach refers to changing the inputs

to the model and observe variations in the output. This

may be done in several ways.

Trying Other Values

The first approach may be termed the informal one,

which considers several inputs and compares the

quantity of interest (e.g., the posterior mean,

the difference in value between two alternatives, the

optimal alternative) under them. The approach is very

popular because of its simplicity. While this is

a healthy practice and a good way to start

a sensitivity analysis, in general this will not be

sufficient and more formal analysis should be

undertaken: the limited number of priors chosen

might not include some which are compatible with

the prior knowledge and could lead to very different

values of the quantity. Sometimes, the alternative

inputs considered are randomly generated.

Parametric Analysis

Another way of changing the inputs is through

parametric analysis. Using a baseline input

assessment, one determines a relevant direction to

perturb the inputs and considers a parametric

perturbation along such direction observing whether

there is a change, or not, in, e.g., the optimal alternative

(Gal and Greenberg 1997).

Global Robustness

Another popular approach in SA is called global

sensitivity. All inputs compatible with the prior

knowledge available are considered and robustness

measures are computed as the inputs vary within that

class. Computations are not always easy since they

require the evaluation of suprema and infima of

quantities of interest. The choice of the class of

inputs should be driven by the following goals:

1. the class should be related with the elicitation

method used;

2. the class should contain only reasonable inputs,

avoiding unreasonable inputs which might

erroneously lead to lack of robustness;

3. computation of sensitivity measures should be as

simple as possible.

The robustness measures provides, in general,

a number that should be interpreted in the following

way:

• if the measure is small, then robustness is achieved

and any input in the class can be chosen without

relevant effects on the quantity of interest;

• if the measure is large, then new data should be

acquired and/or further elicitation to narrow the

class, recomputing the robustness measure and

stopping as before;

• otherwise, if the measure is large and the class

cannot be modified, then an input can be chosen in
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the class but the relevant influence of the choice

over the quantity of interest should be considered

carefully.

Given a class of inputs, global sensitivity analysis

will usually pay attention to the range of variation of

a quantity of interest as the input ranges over the class.

As an example, in a decision-theoretic problem,

suppose a quadratic loss function is used in

a problem. The optimal rule is the posterior

expectation. If there is imprecision about the prior,

the range of the posterior expectation as the prior

ranges in the class would be computed.

Behavior of the Optimal Alternative

The other family of sensitivity analysis approaches

studies the behavior of the output of interest under

small input perturbations, either via differential

approaches or convergence arguments.

Local Sensitivity

Local sensitivity analysis studies the rate of change in

inferences and decisions, using functional analysis

differential techniques, trying to assess how a small

change in the input affects the quantity of interest. The

two issues involved refer to choosing the derivative

and the corresponding norm, over the appropriate class

of inputs. For the first choice, Fréchet derivatives, total

derivatives and Gateaux differentials have been used,

among others. Divergence measures have been used as

well. For the second choice, the total variation,

Prohorov, Levy, and Kolmogorov metrics have been

used among others. The direction providing the

supremum norm is used as the most sensitive

direction; alternatively, the average sensitivity is

sometimes used integrating the norm along all

possible relevant directions.

As an example, Ruggeri and Wasserman (1993)

measured the local sensitivity of a posterior

expectation with respect to the prior by computing

the norm of the Fréchet derivative of the posterior

with respect to the prior over several different classes

of inputs.

Stability

Stability theory provides another unifying, general

sensitivity framework, formalizing the idea that

imprecision in elicitation of inputs should not affect

the optimal decision greatly. When strong stability

holds, a careful enough elicitation leads to decisions

with optimal value close to the greatest achievable;

when weak stability holds, at least one stabilized

decision will have such property. However, when

neither concept of stability applies, even small

elicitation errors may lead to disastrous results in

terms of large losses in value.

Stability theory studies the convergence of

decisions, nearly optimal for input sequences

converging to the baseline inputs, to the

corresponding optimal alternative. The arguments

involved refer to the continuity of the relevant

operator, e.g., the posterior expected utility

functional. Note that stability is not always

guaranteed, even in standard problems, as shown

e.g., in Kadane and Srinivasan (1996). Such

counterexamples show a need for conditions which

ensure stability. While these conditions simplify the

task of verifying stability, it can still be hard to do so in

practice.

An Operational Approach to Sensitivity Analysis

An operational approach to sensitivity analysis in OR

models may be described as follows. At a given stage

of the analysis, information on the DM’s inputs is

elicited, and the class of all inputs compatible with

such information is considered. The set of

non-dominated solutions is approximated. If these

alternatives do not differ too much in their value, the

analysis may be stopped; otherwise, additional

information will be gathered. This would further

constrain the class: the set of non-dominated

alternatives will be smaller. It is hoped that this

iterative process would converge until the

non-dominated set is small enough to reach a final

decision. It is conceivable in this context that at some

stage it might not be possible to gather additional

information yet there remain several non-dominated

alternatives with very different values. In these

situations, ad hoc approaches such as maximin

solutions may aid as a way of selecting a single

robust solution: each alternative is associated with its

worst evaluation, given the current input imprecision.

The alternative with best worst evaluation is

suggested. Alternatively, a prior over the class of

inputs could be built and base choice on expectations

over evaluations.

The relevant steps are now described.
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Non-dominated Alternatives

As mentioned, a key solution concept is the efficient

set, i.e., the set of non-dominated alternatives. In most

cases, it is not possible to compute the non-dominated

set exactly, and thus approximation schemes are

necessary. Typically, one would proceed by

randomly sampling the set of alternatives, randomly

sampling the set of inputs, and checking dominance

among pairs of alternatives. Under appropriate

conditions, this sampling scheme is such that the

sample non-dominated set converges to the non-

dominated set, as the sample size grows.

Extracting Additional Information

In some cases, non-dominance is a very powerful

concept leading to a unique non-dominated

alternative. However, in most cases the

non-dominated set will be too large to imply a final

decision. It may happen that there are several

non-dominated alternatives and differences in

expected utilities are non-negligible. If such is the

case, additional information should be sought that

would help to reduce the classes, and, perhaps,

reduce the non-dominated set. Some tools based on

functional derivatives to elicit additional information

may be seen in Rı́os and Ruggeri (2000). Tools based

on distance analysis may be seen in Rı́os Insua (1990).

Robust Solutions

When no additional information may be extracted

from experts to reduce the set of inputs, and the set of

alternatives is still too large, robust solution concepts

should be sought. One is the maximin approach which

may be considered as an automated method that allows

the choice of actions that guard against catastrophic

consequences. A maximin approach would be suitable

after a sensitivity analysis has been unable to

significantly narrow the range of variation, under

changes in inputs of the quantity of interest.

Hyperpriors

Another approach to dealing with lack of robustness

would be to place a hyperprior on the class of inputs.

Indeed, if there were no possibility of obtaining

additional information to deal with the lack of

robustness, this technique would be recommended,

with the hyperprior being chosen in some default

fashion.

Misconceptions in Sensitivity Analysis

Some basic issues corresponding to a number of

sensitivity analysis approaches are described. Their

relevance stems from them corresponding to typical

misconceptions.

• It is not enough to study changes in output by trying

some other inputs.

• Partial sensitivity studies may not be sufficient:

a problem may be insensitive to changes in utility

and changes in probability, but sensitive to

simultaneous changes in utility and probability.

• When performing sensitivity analysis, there are

cases in which the optimal value may change a lot,

with virtually no change in the optimal action, even

if the utility is fixed.

• Alternatively, there are cases in which the optimal

alternative varies widely, but the optimal value does

not practically change.

• Big changes in optimal value do not necessarily

correspond to big changes in consequences of interest.

• Standard global robustness studies, based for

example on ranges of expected utilities of actions,

may not be sufficient within a decision-theoretic

perspective.

Concluding Remarks

Imprecise probability is a generic term used to describe

mathematical models that measure uncertainty without

precise probabilities. This is certainly the case with

robust Bayesian analysis, but there are many other

imprecise probability theories, including upper and

lower probabilities, belief functions, Choquet

capacities, fuzzy logic, and upper and lower

previsions (Walley 1991). Some of these theories,

such as fuzzy logic and belief functions, are only

tangentially related to sensitivity analysis, whereas

others are intimately related. For example, some

classes of probability distributions that are considered

in Bayesian sensitivity analysis, such as distribution

band classes, can also be interpreted in terms of upper

and lower probabilities (Rı́os Insua et al. 2000). Also,

classes of probability distributions used in sensitivity

analysis robust Bayesian analysis will typically

generate upper and lower previsions as their upper

and lower envelopes (Berger et al. 1996).
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Finally, sensitivity analysis is linked to uncertainty

analysis, which aims at quantifying the uncertainty of

the output as a function of the uncertainty in the model

inputs.

See

▶Bayes Rule

▶Bayesian Decision Theory, Subjective Probability,

and Utility

▶Decision Analysis

▶Decision Maker (DM)

▶Hundred Percent Rule

▶Linear Programming

▶Multiple Criteria Decision Making

▶Nonlinear Programming

▶ Parametric Linear Programming

▶ Pareto-Optimal Solution

▶Ranging

▶Robustness Analysis

▶Tolerance Analysis
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Separable Function

A function f(x1, . . ., xn) is a separable function if

f(x1, . . ., xn) ¼ f1(x1) + . . . + fn(xn). Certain

nonlinear-programming problems that contain

separable functions can be suitably represented by

a linear approximation and solved by a variation of

the simplex method.

See

▶ Separable-Programming Problem

▶ Simplex Method (Algorithm)

Separable-Programming Problem

A nonlinear-programming problem in which some or

all of the constraints and the objective function are

separable functions of one variable. Using linear

approximations to the separable functions, the

problem can be approximated and solved by a

variation of the simplex algorithm that uses a

restricted-basis entry rule.

See

▶ Separable Function

▶ Special-Ordered Sets (SOS)

Separating Hyperplane Theorem

Let C1 and C2 by two nonempty disjoint convex sets

in n-dimensional space. Then there exists an

n-dimensional hyperplane ax ¼ b, a 6¼ 0, that

separates them. That is, for x in C1, ax � b, and for

x in C2, ax � b.

See

▶Hyperplane
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Series Queues

A network of queues with serial routing as found in

traditional assembly lines; also called tandem

queues.

See

▶Networks of Queues
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Introduction

Service science is the interdisciplinary study of service

systems and value-cocreation phenomena in the

human-made world. However, because the service

science community brings together participants from

many academic disciplines, industry sectors, and

national governments, the community is still working

to answer basic questions, such as: (1) what is service?

What is a service system? What is value-cocreation?

(2) What are the causes of the tremendous observed

growth in service activities in both developed and

emerging economies around the world? How are

product-systems and service-systems alike and

different? Is there any longer a meaningful distinction

to be made? (3) What should the research agenda

associated with service science be? (4) Where is the

science in service science? (5) How is service science

different from <name your favorite academic

discipline that studies complex human-made

systems>? (6) If service science is successful, how

will the world be different/better?

Service science is an emerging area of

research and practice for the interdisciplinary study

and improvement of service system structures and

value-cocreation mechanisms. Value-cocreation or

non-zero-sum games have been growing in quantity

and quality, and between more complex entities,

throughout human history (Wright 2000). Service

systems are human-made systems to improve

customer-provider interactions. Service systems

include the complex business and societal systems, in

which customers, providers, and other stakeholders

interact directly and indirectly to create mutual

benefits (value-cocreation). Service systems include

government, education, health, finance, retail,

buildings, communications, energy, food, water, and

transportation.

Many of the grand challenges facing the world’s

growing population, such as hunger, poverty, and

discrimination can be framed as lack of access to

resources and capabilities in a world of increasing

abundance. For the last 50 years the economies of

most developed nations and nearly all cities have

been dominated by what traditional economists refer

to as the service sector, and yet service has been

understudied in academia relative to its economic

importance (Chesbrough and Spohrer 2006).

Economics, marketing and operations (including

operations research) were three of the first disciplines

to begin scientific study of service and service systems,

and more recently management, engineering,

computing, design, law, social and behavioral

sciences, and other disciplines have applied their

unique methods and also established service-oriented

specializations. As the world’s population shifts

from rural to urban areas and as national economies

become dominated by the what economist call the

service sector, or the knowledge economy, interest in

service science has grown.

Also, the service science community has become

increasingly focused on the study of holistic service

systems, such as cities, universities, luxury resort

hotels, and cruise ships that are parts of a complex

system of systems. As service science matures

operations research is playing a central role and

provides the mathematical models and optimization

tools for the study of holistic service systems, in

which local optimization does not necessarily lead to

global optimization and in which small changes in one

component system can lead to large consequences in

other systems. These are familiar optimization

challenges for operation researchers, especially in

queueing theory, supply chain optimization, and total

quality improvement.
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Service Growth

The growing interest in the study of service and service

systems can be traced to five factors:

1. Service Sector Growth (OECD 2005): Traditional

economic measures of the overall relative

percentage of and growth of economic output

from service sector and knowledge economy in

nations, often referred to as the intangible

economy and contrasted with agriculture and

manufacturing which create tangible output. This

also includes the growth of manufacturing

companies growing their service revenue

(servitization). Servitization often results because

of the growing complexity of manufactured goods,

and the need for more customer service to help

maintain the product and for users to get the full

benefit from the products they purchase.

2. Urban and Knowledge Economy Growth

(North 2005: 87–102): The increase in the

percentage of the world’s population that lives in

urban areas as compared with rural areas. The

growth of cities and the dependence of cities on

universities to ensure skills needed to compete in

a global knowledge economy, as well as to provide

sustainable innovations that improve quality of life

from one generation to the next.

3. IT-Enabled Service Growth (UK Royal Society

2009): The increase in IT enabled service,

exemplified by both the rise of internet and

web-based service delivery, but also what IBM

calls “Smarter Planet” in which natural and

human-made systems are becoming instrumented,

interconnected, and intelligent. The potential for

new types of service that IT-enables creates the

possibility of continuous improvement by tapping

into increasingly powerful IT, has resulted in the

growth of areas such as service computing. This is

also tied to the view that “nature’s service” that

access to resource and capability of the planet are

increasingly in jeopardy if greener and more

sustainable technology-enabled approaches are not

implemented.

4. Grand Challenges Framing (Sen 2001): The

increasing realization that grand challenges such

as hunger, poverty, discrimination, etc. result from

lack of access to resources and capabilities in

a world of increasing abundance. Using traditional

economist definitions of service, the challenge is

not only about increasing the number of farms,

factories, and law-enforcement/court-houses, but

ensuring access to these resources. Other examples

are the large percentage high school drop out rate in

the US and other developed nations, especially in

urban areas; or joblessness during economic cycles.

Recovering from natural disasters can be seen as

getting service systems back up and running.

Even warfare these days may be viewed as

nation-building and building up service systems.

5. Skills for Twenty-first Century (Hefly and Murphy

2008; Donofrio et al. 2010): In a knowledge

economy, the challenge is there is too much to

teach. Even with specialization, it is important that

specialists be able to communicate with other

specialists and work on teams together. Specialists

or I-shaped people, who have good deep knowledge

and problem-solving skills, become better team

members when they have broad communications

skills, and become what is known as a T-shaped

person. T-shaped people are better at team-oriented

projects, and in general are faster learners and more

adaptable because they already have advanced

organizers and knowledge of the main concepts in

many domains.

For more on the growth of service and national

responses to the need for scientific approaches

to service innovation see (US Congress 2007) and

(UK Royal Society 2009).

Academic Response: Discipline Growth

While many have argued convincingly that academic

institutions have been slow to respond to service

growth, nevertheless an ever increasing number of

existing disciplines have established service-oriented

sub-disciplines. Five of the major areas are:

1. Service marketing (Vargo and Lusch 2004;

Zeithaml et al. 2006): Marketing was one of

the first disciplines to establish a service-oriented

sub-discipline, with service quality

a primary measure of concern, largely from

the customer perspective. Concepts include

service-dominant-logic, the gaps model, linkage

research relating employee and customer

perceptions of quality, the service profit chain,

customer equity, customer co-development of

service innovations, and relationship marketing

S 1386 Service Science



2. Service engineering (Tien and Berg 2003; Chang

2010; Karwowski and Salvendy 2010): More

recently, systems engineers have begun to study

service systems, and textbooks have begun to

appear. Service engineering is working to identify

common building blocks or architectural

components of service systems.

3. Service design (Glushko 2010): This is one of the

fastest growing areas of service research. Service

design has an architectural component like

service engineering, but much more emphasis on

customer and employee experience during service

interactions.

4. Service computing (Demirkan and Goul 2006;

Zysman 2006; Zhang 2007; Katzan 2008): Another

fast growing area, the rise of service-oriented

architectures, web services and smart phones have

given a huge boost to this emerging service-oriented

sub-discipline of computer science. IEEE and ACM

have been collaborating on establishing a standard

curriculum in this area.

5. Service operations (Fitzsimmons and Fitzsimmons

2007; Chase 2010; Sampson 2010; Daskin 2010):

Operations, which includes operations

management, service management, and operations

research, was also one of the first discipline areas to

establish a service-oriented sub-discipline, with

service delivery productivity a primary measure of

concern, largely from the provider perspective.

Concepts include customer contact theory, unified

service theory based on customer input to

processes, modeling and optimization and much

more.

Some Examples of Major Contributions
of Operations Research in Services

• Supply chain; personnel staffing; scheduling

• Pricing optimization

• Layout (queues/waiting – Disney; banks)

• (Help desk) call flow optimization, forecasting

• Projects – critical path, resource constraints (could

be inventory management for people)

• Models to assist in forecasting demand for services,

regression, econometric, time series

• Managing demand

– Incentives to affect demand (shifting demand,

off peak demand)

– Overbooking of airline seats

– Sharing capacity

• Yield management

• Simulations

• Capacity planning

• Queueing models

• Vehicle routing (bus, train service)

Operations researchers are working to address the

grand challenges mentioned above. Local

optimization does not always lead to global

optimization; and in highly interconnected system of

systems, a small problem in one place can lead to large

problems elsewhere. There are issues of stability and

resilience in service networks to consider. Operations

research benefits from the interdisciplinary framework

of service science, and therefore contributions from

operations research to service science, can also

impact service marketing, service engineering,

service design, and service computing as well. For

example, consider some of the human-aspects of the

following service system challenges:

1. Staffing. People aren’t widgets and perhaps one

doesn’t want to do the assignment the tool

“optimally” matched –them with according to

existing criteria (skills, availability), or perhaps

the customer doesn’t like them and so the

employee might better be assigned another place

or another time.

2. Price optimization. Perhaps perception of service

value is resistant to price incentives; maybe models

take this into account, but can they be adjusted for

each day’s mass mental state (a la why the stock

market rises and falls – emotion!)

3. Call routing.Maybe the person next on the call queue

is tired of answering the same questions and wants

a new challenge; is there a way to accommodate the

human need to achieve and contribute?

4. Demand management. Overbooking of airline seats

is today getting a great deal of customer

unhappiness.

5. Queueing and routing. Tarmac waiting time has not

been deemed illegal after certain limits.

6. Yield management. One of these days passengers

are going to revolt against paying premium for

business travel over leisure travel. Companies are

eschewing travel for alternative means for people to

meet face to face.

As additional disciplines, from management of

information systems to areas of the social sciences,
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add service-oriented sub-disciplines, there is a growing

interest working together to establish a science of

service (Ostrom et al. 2010).

Industry Response: Product-Service-Systems
Growth

The servitization of traditional manufacturing

businesses and the growth of self-service

technologies in traditional service businesses have

given rise to the concept of product-service-systems

(IfM and IBM 2008; Spohrer et al. 2010). Industry

practitioners and academic researchers are

collaborating on public-private partnerships to

engineer smarter product-service-systems in three

main areas.

1. Systems associated with moving physical things:

Transportation, supply chain, water, air, waste,

food, products, energy, electricity, and

information and communications technology deal

with systems engineered to move physical things.

Productivity is a primary concern.

2. Systems that support human activities: Buildings,

construction, retail, hospitality, media,

entertainment, tourism, sports, financial, business

consulting, health, family life, education, and

professional life deal with systems engineered to

support human activities. Quality is a primary

concern.

3. Systems that govern: Cities, security, states,

economic development, nations, and the law deal

with systems engineered to govern. Compliance

and competitiveness are primary concerns.

As product-service-systems become smarter, or

more instrumented, interconnected, and intelligent

(using analytics to support decision making), there is

an ever growing need to model and optimize networks

or product-service-system value chains.

Service Science: An Emerging Framework

Service science is the interdisciplinary study of service

systems and value-cocreation phenomena (Spohrer

et al. 2007; Spohrer and Maglio 2008). A service

system is a human-made system to improve

customer-provider interactions, or value-cocreation.

Service science is also an emerging community of

academic researchers, industry practitioners, and

government policy makers working together to study

the entities, interactions, and outcomes associated with

the growth of the service system ecology (Spohrer and

Maglio 2009, 2010). The “systems and disciplines

matrix” is used to visualize the areas of study that is

service science, and is shown in Fig. 1 below:

Spohrer andMaglio (2009) describe the foundational

concepts of service science (see Fig. 2). Spohrer et al.

(2010) provides a glossary of the key terms.

Service science identifies three premises

summarized in Fig. 3. Service system entities

dynamically configure (transform) four types of

resources: people, technology, organizations, and

shared information. Service system entities calculate

value from multiple stakeholder perspectives,

including: customer, provider, authority, and

competitor. Service system entities reconfigure

access rights to resources by mutually

agreed to value propositions, and include:

owned-outright, leased-contracted, shared-access, and

privileged-access. These concepts and premises allow

service scientists to bridge across multiple disciplines

that may use different vocabulary or take different

perspectives when analyzing service system entity

structure or interaction mechanisms.

Concluding Remarks

While the growth of the service science community

has been accelerating, nothing is settled and much

work remains to be done (Chesbrough and Spohrer

2006; Maglio et al. 2010). Members of the

community from marketing refer to service systems

entities as resource-integrators, consistent with

Service-Dominant Logic of (Vargo and Lusch 2004;

Lusch et al. 2008). Members of the community from

operations and manufacturing companies may refer to

service system entities as product-service-systems.

What is clear is that the old distinction between

product businesses and service businesses is

gradually disappearing as result of the efforts of the

service science community, and instead the focus is

shifting to entities, interactions, and outcomes.

Practitioners are concerned with practical tools and

methods that apply service science to guide

investments to improve quality, productivity,

compliance, and sustainable innovation.
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Operations research challenge: Analytic framework

needed.

• What type of mathematical models can be

constructed?

• What analytic tools exist to study and refine

mathematical models?

• Analytic tools – mathematical tools and techniques

No single discipline provides the comprehensive

view but by using an interdisciplinary approach, the

service science community is making progress.

Service science is not just the union of separate

disciplines but a deeper integration that may lead to

the formation of a service science transdiscipline

someday. Mathematics and computer science are

existing examples of transdisciplines because they

can be used to model aspects of many types of

systems. As service scientists develop new tools and

methods to model a wide range of service systems and

diverse types of value-cocreation phenomena,

then service science will likely emerge as

a transdiscipline.

The results of an Arizona State University

(Ostrom et al. 2010) survey of the global service

research community on research priorities for

those working to develop a science of service are

summarized in Fig. 4.

In sum, service science is an area of research

and practice for the interdisciplinary study and

improvement of service system structures and

value-cocreation mechanisms. Service systems are

complex business and societal systems the create

benefits for customers, providers, and other

Service system entities
dynamically configure (transform)

four types of resources

Service system entities
calculate value from multiple

stakeholder perspectives

Service system entities
reconfigure access rights 

to resources by mutually agreed 
to value propositions

S A
P C

Physical

Not-Physical

Rights No-Rights

2. Technology

4. Shared

Information

1. People

3. Organizations

Stakeholder
Perspective

Measure
Impacted Pricing Questions Reasoning

1. Customer Quality
Value 
Based

Should we?
Model of customer: 
Do customers want 
it? 

2. Provider Productivity
Cost
Plus

Can we?
Model of self: Does 
it play to our 
strengths? 

3. Authority Compliance Regulated May we?
Model of authority: 
Is it legal? 

4. Competitor
Sustainable 
Innovation

Strategic Will we?
Model of 
competitor: Does it 
put us ahead? 

Service Science, Fig. 3 Summary of service science based on Spohrer and Maglio
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stakeholders, and include all human-made systems that

enable and/or grant diverse entities access to resources

and capabilities such as transportation, water, food,

energy, communications, buildings, retail, finance,

health, education, and governance. Many of the grand

challenges facing the world’s growing population,

such as hunger, poverty, and discrimination can be

framed as lack of access to resources and capabilities

in a world of increasing abundance. For the last

50 years the economies of most developed nations

and nearly all cities have been dominated by what

traditional economists refer to as the service sector,

and yet service has been understudied in academia

relative to its economic importance. Economics,

marketing and operations (including operations

research) were three of the first disciplines to begin

scientific study of service and service systems, and

more recently management, engineering, computing,

design, law, social and behavioral sciences, and other

disciplines have applied their unique methods and also

established service-oriented specializations. As the

world’s population shifts from rural to urban areas

and as national economies become dominated by

what economist call the service sector, or the

knowledge economy, interest in service science has

grown. Also, the service science community has

become increasingly focused on the study of holistic

service systems, such as cities, universities, luxury

resort hotels, and cruise ships that are parts of

a complex system of systems. As service science

matures operations research is playing a central role

and provides the mathematical models and

optimization tools for the study of holistic service

systems, in which local optimization does not

necessarily lead to global optimization and in which

small changes in one component system can lead to

large consequences in other systems. These are

familiar optimization challenges in for operation

researchers, especially in queueing theory, supply

chain optimization, and total quality improvement

(Daskin 2010).

See

▶Operations Management

▶Queueing Theory

▶ Simulation of Stochastic Discrete-Event System

▶ Supply Chain Management
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Service Systems

Systems in which the workers provide a service to

customers, as opposed to manufacturing systems

where workers produce or assemble products or

goods. Examples of service systems include financial

services (such as old-fashioned banks), healthcare

systems, and call centers. Both manufacturing and

service systems are modeled in operations research

using queueing models.

See

▶Call and Contact Centers

▶Networks of Queues

▶Operations Management

▶Queueing Theory

▶ Service Science

▶ Supply Chain Management
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Set-covering Problem

The set-covering problem is an integer-programming

problem defined as follows:

• Minimze cx

• subject to Ex � e

where the components of E are either 1 or 0, the

components of the column vector e are all 1’s, and

the variables are restricted to be either 1 or 0. The

idea of the problem is to find the minimum cost set of

column fromE such that the 1’s in vector e are covered

by at least one of the 1’s in the selected set of columns.

Note that multiple coverage is allowed.

See

▶Bin-Packing

▶ Packing Problem

▶ Set-partitioning Problem

Set-partitioning Problem

The set-partitioning problem is an integer-

programming problem defined as follows:

• Minimize cx

• subject to Ex ¼ e

where the components of E are either 1 or 0, the

components of the column vector e are all 1 s, and

the variables are restricted to be either 1 or 0. It is

similar to a set-covering problem except multiple

coverage is allowed in that more general setting.

See

▶ Packing Problem

▶ Set-covering Problem

SEU

Subjective expected utility.

See

▶Decision Analysis

Shadow Prices

The optimal dual variables (marginal values) to a

linear-programming problem. For an activity-analysis

and similar problems, the shadow price associated with

a constraint can be interpreted as the change in the

value of the objective function per unit increase of

the constraint’s right-hand-side (resource).

See

▶Complementarity Applications

▶Lagrange Multipliers

▶Marginal Value

Shapley Value

▶Game Theory

▶Group Decision Making

Shell

An expert system development tool providing

a pre-fabricated inference engine.

See

▶Expert Systems

▶ Inference Engine

Shewhart Chart

▶Quality Control

Shortest Path Problem

▶ Shortest-route Problem
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Shortest-route Problem

A network problem where the goal is to find the

shortest route from a home (source) node to a

destination node, or the shortest routes from a home

node to all other nodes. This can be formulated as

a linear-programming problem and solved by the

simplex method, but special shortest route algorithms

exist that are computationally more efficient.

See

▶Dijkstra’s Algorithm

▶ Simplex Method (Algorithm)

Signomial Programming

▶Geometric Programming

SIMD

Single Instruction, Multiple Data. A class of parallel

computer architectures in which a single stream of

instructions controls multiple processing elements.

Processors synchronously perform the same

computations on differing data.

See

▶ Parallel Computing

Simple Upper-bounded Problem (SUB)

A linear-programming problem in which some or all of

the variables xj are constrained by upper-bound

conditions of the form xj � uj, where uj is a given

finite bound. It can be solved by a special adaptation

of the simplex method in which the upper-bounded

constraints are considered implicitly.

See

▶Linear Programming

▶ Simplex Method (Algorithm)

Simplex

A polyhedron of the form x1 + . . . + xn � 1, xj � 0.

Also, a simplex is the convex hull of n + 1 points in

general position in Euclidean n-space.

Simplex Method (Algorithm)

A computational procedure for solving

linear-programming problems of the form: Minimize

(maximize) cx, subject to Ax ¼ b, x > 0, where A

is an m 
 n matrix, c is an n-dimensional row vector,

b is an m-dimensional column vector, and x is an

n-dimensional variable vector. The simplex method

was developed by George B. Dantzig in the late

1940s. The method starts with a known basic feasible

solution or an artificial basic solution, and, given that

the problem is feasible, finds a sequence of basic

feasible solutions (extreme-point solutions) such that

the value of the objective function improves or does

not degrade. Under a nondegeneracy assumption, the

simplex algorithm will converge in a finite number of

steps, as there are only a finite number of extreme

points and extreme directions of the underlying

convex set of solutions. At most, m variables can be

in the solution at a positive level. In each step

(iteration) of the simplex method, a new basis is

found and developed by applying Gaussian

elimination in a manner that preserves the

nonnegativity of the solution. The elimination step

replaces a variable in the current solution with a new

one. The inverse of the basis (revised-simplex method)

is used to develop a pricing vector for “pricing out” the

variables not in the current basic solution and to select

one to enter the solution if the current solution is not

optimal. The optimal solution to the corresponding

dual problem is also generated by the simplex

method as part of the solution to the original, primal

problem. The simplex method has been implemented

on just about all major computer systems and a wide
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range of simplex-based software is available for

personal computers and in spreadsheets.

See

▶Artificial Variables

▶Dual Linear-Programming Problem

▶Linear Programming

▶ Prices

▶ Primal Problem

▶Revised Simplex Method

Simplex Multipliers

▶Multiplier Vector

Simplex Tableau

A schematic, numerical representation that displays

the transformed data set associated with a basic

solution to a linear-programming problem. For the

problem: Minimize cx, subject to Ax ¼ b, x � 0, if
the m 
 m matrix B is a feasible basis and the m 
 1

row vector c0 the ordered cost coefficients for the

variables in the basis, then the simplex tableau

displays the following information in an (m + 1) 

(n + 1) rectangular matrix

B�1A

pA� c

"
j
j

B�1b

pb

#

where p, the pricing vector, is equal to c0 B
�1. The last

or (m + 1)st, row of the tableau contains the reduced

costs and the current value of the objective function,

respectively. If the simplexmethod is in Phase I, then an

additional row is added to the tableau, which contains

the reduced costs associated with the artificial basis. In

some arrangements of the tableau, the rows associated

with the reduced costs are given at the top of the tableau;

also, a reduced tableau is obtained by leaving out

the columns that correspond to the columns in the basis

as they transform to unit columns with reduced costs of

zero. The simplex tableau is useful when solving

small problems by hand and as an instructional tool.

Computer-based simplex method software do not use

the tableau as it is computationally inefficient, instead

using some form of the revised simplex method.

See

▶Basis

▶ Phase I Procedure

▶ Phase II Procedure

▶Revised Simplex Method

▶ Simplex Method (Algorithm)

Simulated Annealing

Balram Suman

Energy Technology Company, Chevron Corporation,

Houston, TX, USA

Introduction

Simulated annealing (SA) is a compact and robust

technique to solve single and multiple objective

optimization problems with a substantial reduction in

the computation time. The method is based on an

analogy with the way metals cool and anneal. When

a liquid metal is cooled slowly, its atoms form a pure

crystal corresponding to the state of minimum energy

for the metal. In contrast, when cooled quickly, the

metal reaches a state with higher energy (imperfect

crystal). Kirkpatrick et al. (1983) and Cerny (1985)

showed that a model for simulating the annealing of

solids, proposed by Metropolis et al. (1953), could be

used for optimization where the objective function to

be minimized corresponds to the energy of states of

the metal. Since the late 1980s, SA has received

significant attention to solve optimization problems

where a desired global optimum is hidden among

many poor local optima. Thus, SA has become one of

the many heuristic approaches designed to give a good,

not necessarily optimal solution.

Key Advantages of this Approach

(i) It is very simple to formulate and it can handle

mixed discrete and continuous problem with ease.
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(ii) The method is also efficient and has low memory

requirement. (iii) It takes less CPU time than using a

genetic algorithm because it finds the solution using

a point-by-point iteration rather than a search over

a population of individuals.

With the initiation of SA, the method has been used

to solve combinatorial optimization problems. SA can

be considered as one type of randomized heuristic

approaches for combinatorial optimization problems.

Many combinatorial problems belong to a class known

as NP-hard problems, whose computation time

increases with N as exp(constant 
 N). A well-known

traveling salesman problem belongs to this class.

The salesman visits N cities (with given positions)

only once and returns to his city of origin. The

objective is to make the route as short as possible.

Later, SA was extended to solve single and

multi-objective optimization problems with

continuous N-dimensional control space. Summary of

these approaches is presented in Van Laahoven and

Aarts (1987). Surveys on single objective SA have

been well documented (Collins et al. 1988; Rutenbar

1989; Aarts and Korst 1989; Eglese 1990, and Reeves

1993). While much of the work on SA to focused

on combinatorial optimization (and integer

programming) problems, there are also articles on the

use of SA for continuous variables (Dekkers and Aarts

1991). A recent review on SA for single and multi-

objective optimization problems was presented by

Suman and Kumar (2006).

Applications of SA

SA has been greatly in use in operational research

problems. Chen et al. (1988) reported a new approach

to setup planning of prismatic parts using Hopfield

neural net coupled with SA. Sridhar and Rajendran

(1993) described three perturbation schemes to

generate new sequences for solving the scheduling

problem in cellular manufacturing system. Suresh

and Sahu (1994) used SA for assembly line

balancing. They only considered single objective

problems. They found that SA performed at least as

well as the other approaches. Meller and Bozer (1996)

applied SA to facility layout problems with single and

multiple floors. The facility layout problem is highly

combinatorial in nature and generally exhibits many

local minima. SA achieves low-cost solutions that are

much less dependent on the initial layout than other

approaches. Mukhopadhyay et al. (1998) used SA to

solve the problem of Flexible Manufacturing system

(FMS) machine loading with the objective of

minimizing the system imbalance. Kim et al. (2002)

considered a multi-period multi-stop transportation

planning problem in a one-warehouse multi-retailer

distribution system to determine the routes of

vehicles and delivery quantities for each retailer.

They suggested a two-stage heuristic algorithm based

on SA as an alternative for large problems that can not

be solved by the column-generation algorithm in

a reasonable computation time to minimize the total

transportation distance for product delivery over

the planning horizon while satisfying demands of the

retailers. Golenko-Ginzburg and Sims (1992) defined

a priority list to be any permutation of a set of symbols

where the symbol for each job appears the same

number of times as its operations. Every priority list

can be associated in a natural way with

a feasible schedule and every feasible schedule arises

in the same way. Therefore, priority lists are

a representation of feasible schedules that avoid

the problems normally associated with schedule

infeasibility. Shutler (2003) presented priority list

based Monte Carlo implementation of SA, which was

competitive with the current leading schedule based

SA and tabu search heuristics. New job sequences were

generated with a proposed perturbation scheme called

the modified insertion scheme (MIS), which has been

used in the proposed SA algorithm to arrive at a near

global optimum solution. The SA algorithm using the

proposedMIS gave substantial improvement in system

imbalance. Its other applications were presented by

machine loading problem of FMS (Swarnkar and

Tiwari 2004), part classification (Tiwari and Roy

2003), resource-constrained project scheduling

(Cho and Kim 1997). McCormick and Powell (2004)

described a two-stage SA algorithm to derive pump

schedules for water distribution in a time short enough

for routine operational use. They built the model

based on automatic interaction with a hydraulic

simulator, which deals with non-linear effects from

reservoir-level variations.

Adaptive simulated annealing (ASA) offers a viable

optimization tool for tackling these difficult nonlinear

optimization problems (Chen and Luk 1999).

Optimization of batch distillation processes, widely

used in chemical industry can be solved using SA.
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Hanke and Li (2000) showed the potential of SA for

developing optimal operation strategies for batch

chemical processes. SA was applied in antenna array

synthesis (Girard et al. 2001), multimedia data

placement (Terzi et al. 2004) molecular physics.

Suman (2002, 2004, 2005) used SA-based

multi-objective algorithms to optimize the profit and

its sensitivity of a refinery model problem. Suman

(2003) applied five simulated annealing based

multi-objective algorithms to find a Pareto set of

solutions of a system reliability multi-objective

optimization problem in a short time. Kumral (2003)

applied chance-constrained programming based on

multi-objective SA to optimize blending of different

available ores in a way that expected value and

standard deviation of the cost of buying ores is

minimized while satisfying the quality specifications.

Application of SA is not restricted to optimization

of nonlinear objective function, it was also applied for

many other purposes. Bell et al. (1987) used it to

cluster tuples in databases. They attempted to use

SA in circuit board layout design and it suggests

that it would be advantageously applied to clustering

tuples in database in order to enhance responsiveness

to queries. SA has not only been applied for

optimization but also for recognition of patterns and

object classification (Liu and Huang (1998), Yip

and Pao (1995), Starink and Barker (1995)). Liu and

Huang (1998) proposed hybrid pattern recognition

based on the evolutionary algorithms with fast SA that

can recognize patterns deformed by transformation

caused by rotation, scaling or translation, singly or in

combination. Object recognition problem as matching

of a global model graph with an input scene graph

representing either a single object or several

overlapping objects has been formulated. Chu et al.

(1996) used SA to analyze the network of interacting

genes that control embryonic development and other

biological processes.

SA for Optimization

SA for Single Objective Optimization

A solution space (S) is a finite set of all solutions and

the objective function ( f ) is a real-valued function

defined for the members of S. The minimization

problem can be formulated to find a solution or state,

i 2 S, which minimizes f over S.

A simple form of a local search algorithm, say

a descent method, starts with an initial solution. In

the neighborhood of this solution a new solution

is generated using suitable algorithms and the

objective function is calculated. If a reduction in the

objective function is observed, the current solution is

updated. Otherwise, the current solution is retained

and the process is repeated until no further reduction

in the objective function is obtained. Thus, the search

terminates with a local minimum, which may or may

not be the true global minimum. Due to this

disadvantage, this algorithm is not relied on, though

this is simple and easy to execute. In SA, instead of

this strategy, the algorithm attempts to avoid being

trapped in a local minimum by sometimes accepting

even a worse move. The acceptance and rejection of

the worse move is controlled by a probability

function. The probability of accepting a move,

which causes an increase d in f, is called the

acceptance function. It is normally set to exp (�d/T)

where T is a control parameter, corresponding to the

temperature in analogy with the physical annealing.

This acceptance function implies that a small increase

in f is more likely to be accepted than a large increase

in f. With high T, most uphill moves are accepted, but

at low T, fewer uphill moves get accepted. Therefore,

SA starts with a high temperature to avoid being

trapped in local minimum. The algorithm proceeds

by attempting a certain number of moves at each

temperature and decreasing the temperature slowly.

The SA-based algorithm for a single objective

optimization problem is illustrated in Table 1.

Similar to other heuristic optimization techniques,

there is a chance of revisiting a solution multiple

times in SA, leading to extra computational time

without any improvement in the optimal solution.

A strategy of avoiding such moves would improve

SA efficiency.

SA for Multi-objective Optimization

Real life problems are multi-objective in nature.

Researchers have developed many multi-objective

optimization procedures, which has a number of

disadvantages and pitfalls. Increasing acceptance

of SA and other heuristic algorithms is due to their

ability to: (1) find multiple solutions in a single run,

(2) work without derivatives, (3) converge speedily to

Pareto-optimal solutions with a high degree of accuracy,

(4) handle both continuous function and combinatorial
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optimization problems with ease, (5) be less susceptible

to the shape or continuity of the Pareto front.

Acceptance of SA in amulti-objective framework is

due to its simplicity and capability of producing

a Pareto set of solutions in a single run with little

computational cost. In addition, the method is not

susceptible to the shape of the Pareto set, whereas

these two issues are real concerns for mathematical

programming techniques. The first multi-objective

version of SA has been proposed by Serafini (1985,

1992). The algorithm is similar to the SA-based

algorithm for single objective problems. The method

uses a modification of the acceptance criterion of

solutions in the original algorithm. Various

alternative criteria have been investigated in order to

increase the probability of accepting non-dominated

solutions. A special rule given by the combination of

several criteria has been proposed in order to

concentrate the search almost exclusively on the

non-dominated solutions. Thereafter, this method was

applied by Ulungu and Teghem (1994). They only

used the notion of the probability in the

multi-objective framework. Serafini (1994) applied

a simulated annealing algorithm on the

multi-objective framework. A target-vector approach

to solve a bi-objective optimization problem was used.

Ulungu et al. (1999) proposed a complete MOSA

algorithm which they tested on a multi-objective

combinatorial optimization problem. A weighted

aggregating function to evaluate the fitness of

solutions was used. The algorithm worked with only

one current solution but maintained a population

with the non-dominated solutions found during the

search. This method was further improved and

extensively tested by Ulungu et al. (1998) and an

interactive version of MOSA was used to solve

an industrial problem (UMOSA method). Tuyttens

et al. (2000) used the MOSA (multi-objective

optimization simulated annealing) method for the

bicriteria assignment problem.

Suppapitnarm and Parks (1999) proposed a different

SA-based approach to tackle multi-objective problems

(SMOSA method). The algorithm uses only one

solution and the annealing process adjusts each

temperature independently according to the

performance of the solution in each criterion during

the search. An archive set stores all the

non-dominated solutions between each of the multiple

objectives. An acceptance probability formulation

based on an annealing schedule with multiple

temperatures (one for each objective) was proposed.

The acceptance probability of a new solution depends

on whether or not it is added to the set of

potentially Pareto- optimal solutions. If it is added to

this set, it is accepted to be the current solution with

probability equal to one. Otherwise, a multi-objective

acceptance rule is used.

Czyżak and Jaszkiewicz (1998) proposed

another way to adopt simulated annealing to a

multi-objective framework, (PSA method). Czyżak

et al. (1994) combined unicriterion simulated annealing

and a genetic algorithm to provide efficient solutions of

multicriteria shortest path problem. A population-based

extension of simulated annealing proposed for

multi-objective combinatorial optimization problems

were used. The population of solutions explored their

neighborhood similarly to the classical simulated

annealing, but weights for each objective tuned in each

iteration. The weights for each solution were adjusted in

order to increase the probability ofmoving away from its

closest neighborhood in a similar way as in the

multi-objective tabu search.

Suman (2002 and 2003) proposed two different

SA-based approaches (WMOSA and PDMOSA) to

tackle the multi-objective optimization of constrained

problems. Suman (2003) also tested five simulated

annealing algorithms for the system reliability

optimization problem. The goal of these methods

Simulated Annealing, Table 1 SA based Algorithm for
single objective

1. Initialize the temperature.

2. Start with a randomly generated initial solution vector,
X and generate the objective function.

3. Give a random perturbation and generate a new solution
vector, Y, in the neighborhood of current solution
vector, X, revaluate the objective function and apply
a penalty function approach to the objective function, if
necessary.

4. If the generated solution vector is archived, make it the
current solution vector by putting X ¼ Y. Update the
existing optimal solution and go to step 6.

5. Else accept Y with probability

P ¼ exp �Ds=Tð Þ;
where Ds ¼ Z(Y) - Z(X).

(1)

If the solution is accepted, replace X with Y.

6. Decrease the temperature periodically.

7. Repeat step 2 through 6 until stopping criterion is met.
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was to generate a set of solutions, which are a good

approximation to the whole set of efficient

(non-dominated or Pareto-optimal) solutions in

a relatively short time.

Suman (2005) further improved the SA based

multi-objective algorithm so that the user does not

need to give a predefined number of maximum

iterations. All simulated annealing multi-objective

algorithms have the advantage that they allow the

full exploration of the solution space: because the

starting temperature is high, any move is accepted.

The move becomes selective as temperature

decreases with an increase in the iteration number

and by the end it accepts only the improving moves.

Suman et al. (2010) proposed an OSA (orthogonal

simulated annealing) algorithm incorporates an

orthogonal based on experiment design (OED) with

a simulated annealing based multi-objective

algorithm aiming to provide an efficient

multi-objective algorithm. A typical multi-objective

algorithm based on SA is presented in Table 2.

Annealing Schedule

Parameters of an annealing schedule for the SA-based

algorithm determine performance of the SA-based

algorithm. A high cooling rate leads to poor results

due to lack of representative states, while a low cooling

rate requires a very high computation time to get the

solution. The following choices must be made for any

implementation of SA and they constitute the

annealing schedule: initial value of temperature (T),

cooling schedule, number of iterations to be performed

at each temperature and stopping criterion to terminate

the algorithm.

Initial value of temperature (T)

The initial temperature is chosen such that it can capture

the entire solution space. One choice is a very high

initial temperature to increase the solution space. But,

at a high initial temperature, SA performs a

large number of iterations, which may be even without

generating better solutions. Therefore, the initial

temperature is chosen by experimentation depending

upon the nature of the problem. The range of change,

Df0 in the value of the objective function with different

moves is determined. The initial value of temperature

should be considerably larger than the largest

Df0 encountered. van Laarhoven and Aarts (1987)

proposed a method to select the initial temperature

based on the initial acceptance ratio w0, and the

average increase in the objective function, Df0:

T ¼ � Df0

lnðw0Þ
; (3)

Simulated Annealing, Table 2 SA based Algorithm for Multi-objective Optimization

The basic steps involved in the SMOSA algorithm for a problem havingN objective functions and n decision variables are as follows:

1. Start with a randomly generated initial solution vector,X (an n x 1 vector whose elements are decision variables) and evaluate
all objective functions and put it into a Pareto set of solutions.

2. Give a random perturbation and generate a new solution vector, Y,in the neighborhood of current solution vector, X,
reevaluate the objective functions and apply a penalty function approach to the corresponding objective functions, if
necessary.

3. Compare the generated solution vector with all the solutions in the Pareto set and update the Pareto set, if necessary.

4. If the generated solution vector is archived, make it the current solution vector by putting X ¼ Y and go to step 7.

5. If the generated solution vector is not archived, accept it with the probability:

P ¼ min 1;
QN

i¼1

exp �Dsi
Ti

n o� �
;

where Dsi ¼ f ziðYÞ � ziðXÞð Þ with the function, f, depends on the choice of a SA based algorithm.

(2)

If the generated solution is accepted, make it the current solution vector by putting X ¼ Y and go to step 7.

6. If the generated solution vector is not accepted, retain the earlier solution vector as the current solution vector and
go to step 7.

7. Periodically, restart with a randomly selected solution from the Pareto set. While periodically restarting with the archived
solutions, Suppapitnarm et al. (2000) have recommended biasing towards the extreme ends of the trade-off surface.

8. Reduce the temperature periodically using a problem dependent annealing schedule.

9. Repeat steps 2 to 8, until a predefined number of iterations is carried out.
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where w0 is defined as the number of accepted

bad moves divided by the number of attempted

bad moves. A similar formula has been proposed by

Sait and Youssef (1999) with the only difference being

in the definition of w0. They defined w0 as the number of

accepted moves divided by the number of attempted

moves. A simple way of selecting initial temperature

has been proposed by Kouvelis and Chiang (1992).

They proposed to select the initial temperature by the

formula:

P ¼ exp
�Ds

T

� �
(4)

where P is the initial average probability of acceptance

and taken in the range of 0.50 to 0.95.

Cooling Schedule

The cooling schedule determines the functional form

of the change in temperature required in SA. The

earliest annealing schedules were based on

the analogy with physical annealing. Therefore, they

set the initial temperature high enough to accept all

transitions, which means heating up substances

until all the molecules are randomly arranged

in liquid. A proportional temperature can be used i.e.,

T (i + 1) ¼ aT (i) where a is a constant known as the

cooling factor and it can vary from 0.80 to 0.99.

Finally, the temperature becomes very small and it

will not search any smaller energy level. It is called

the frozen state.

Three important cooling schedules are logarithmic,

Cauchy and exponential (Azencott 1992). SA

converges to the global minimum of the cost function

if the temperature change is governed by a logarithmic

schedule in which the temperature T (i) at step i is

given by T (i) ¼ To/logi (Geman and Geman 1984).

This schedule requires the move to be drawn from

a Gaussian distribution. A faster schedule is the

Cauchy schedule in which T (i) ¼ To/i converges to

the global minimum when moves are drawn from

a Cauchy distribution (Szu and Hartley 1987). It is

sometimes called “fast simulated annealing”. The

fastest is exponential or geometric schedule in which

T (i) ¼ Toexp(�Ci) where C is a constant. There is no

rigorous proof of the convergence of this schedule to the

global optimum although good heuristic arguments for

its convergence have been made for a system in which

annealing state variables are bounded (Ingber 1989).

A proportional temperature cooling schedule does

not lead to equilibrium at low temperature. Therefore,

there is a need for a small number of transitions to be

sufficient to reach the thermal equilibrium. However,

a serious attempt was made with adaptive simulated

annealing (Gong et al. 2001). Annealing schedules use

information about the cost function obtained during the

annealing run itself. Such a schedule is called an

adaptive cooling schedule (Ingber 1989; Azizi and

Zolfaghari 2004). An adaptive cooling schedule tries

to keep the annealing temperature close to the

equilibrium as well as reducing the number of

transitions to reach equilibrium. It adjusts the rate

of temperature decrease based on the past history of

the run. Otten and van Ginneken (1984) proposed the

following cooling schedule:

Tiþ1 ¼ Ti �
1

Mk

T3
k

s2ðTiÞ
(5)

where s2 is the variance of the objective function at

equilibrium and Mk is given by

Mk ¼
fmax þ Ti lnð1þ dÞ
s2ðTiÞ lnð1þ dÞ Ti (6)

where fmax is an estimated maximum value of the

objective function.

Similar to equation (3.3), Van Laarhoven and Aarts

(1987) proposed the following cooling schedule:

Tiþ1 ¼
Ti

1þ lnð1þdÞTi
3sTi

(7)

where d is a small real number.

Another adaptive cooling schedules is the adaptive

schedule of Lam. The Lam schedule (Lam and

Delosme 1988a, 1988b) has been derived by

optimizing the rate at which temperature can be

decreased subject to the constraint of maintaining

quasi-equilibrium. It is given as:

Skþ1 ¼ Sk þ l
1

s Skð Þ

� �
1

S2k s
2 Skð Þ

� �

4ro Skð Þ 1� ro Skð Þð Þ2

2� ro Skð Þð Þ2

 ! (8)
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where Si¼ 1/Ti and Ti is the temperature at ith iteration

of the cost function E. The quantity s (Sk) is the

standard deviation of E at this step and ro(Sk) is the

acceptance ratio; that is, the ratio of accepted to

attempted moves. The following four factors play

important roles:

(a) l is a quality factor. Smaller l improves the quality

of the solution, but it also increases the

computation time.

(b) 1
s Skð Þ measures the distance of the system from

quasi-equilibrium.

(c) 1
S2
k
s2 Skð Þ

� 
is the inverse of the statistical specific

heat which depends on the variance.

(d)
4ro Skð Þ 1�ro Skð Þð Þ2

2�ro Skð Þð Þ2
� 

is equal to r2=2 where r2 is the

variance of the average energy change during

a move. This is a measure of how effectively the

state space is sampled and was found to be at

a maximum value when ro � 0:44

Azizi and Zolfahgari (2004) used an adaptive

annealing schedule that adjusts the temperature

dynamically based on the profile of the search path.

Such adjustments could be in any direction

including the possibility of reheating. In their

proposed method, an adaptive temperature control

scheme was used to change temperature based on the

number of consecutive improving moves. In the

second method, a tabulist was added to the adaptive

simulated annealing algorithm in order to avoid

revisits to the solutions.

Triki et al. (2004) studied annealing schedules.

They performed experiments to construct an

optimum annealing schedule that showed that there

was no clearly better annealing schedule than the

logarithmic schedule to ensure convergence towards

the set of optima with probability one. They developed

software to calculate a practical and optimum

annealing schedule for a given objective function.

They also conducted experiments on adaptive

annealing schedules to compare classical annealing

schedules. They proposed the following cooling

schedules:

Tiþ1 ¼ Ti exp � lTi

sðTiÞ

� �
(9)

Tiþ1 ¼ Ti 1� Ti
DðTiÞ
s2ðTiÞ

� �
(10)

They showed that several classical adaptive

temperature decrement rules proposed in the

literature, which have different theoretical

foundations and different mathematical equations,

were in fact the same practical rule. They calculated

a new adaptive decrement rule for controlling

and tuning the SA algorithm.

Other cooling schedules make a more direct appeal

to the theoretical results on asymptotic convergence.

Lundy and Mees (1986) proposed an annealing

schedule where there is only a single iteration at each

temperature. They used heuristic arguments to derive

a temperature function of the form

Tiþ1 ¼
Ti

1þ BTi
(11)

where B is a constant. Equation (11) is equivalent to

Ti ¼
C1

1þ iC2

(12)

where C1 and C2 are constants. SA proposed by

Connolly (1987, 1988) suggested that the majority of

the iterations should be conducted at a suitably fixed

temperature.

The choice of decreasing the temperature is an

important issue as there has been a conflict, since the

early days of SA, between theory and practice. There is

no universally valid conclusion in the literature.

However, a general choice is to cool the system

slowly at the stage where the objective function is

rapidly improving.

Number of Iterations

The number of iterations at each temperature is chosen

so that the system is sufficiently close to the stationary

distribution at that temperature. Aarts and Korst (1989)

and van Laarhoven and Aarts (1987) refered this as

quasi-equilibrium. An enough number of iterations at

each temperature should be performed if the

temperature is decreased periodically. If a smaller

number of iterations is performed, all represented

states will not be searched and the solution will

not be able to reach the global optimum. The value of

the number of iterations depends on the nature of the

problem and its complexity.
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Stopping Criterion

Various stopping criteria have been employed with

SA-based algorithms. First, prefix a total number of

iterations and number of iterations to move at each

temperature. This criterion leads to a higher

computation time without much update in f

sometimes leading to a local optimal due to a less

number of iterations. The biggest issue with this

method is the prerequisite of the setting the number of

iteration, which may not be known beforehand.

Second, set a minimum value of the temperature and

the number of iterations at each temperature. This

idea is generated by the fact that the chance of

improvement in a solution is rare once the

temperature is close to zero. At a very low

temperature, moves will be trapped in the

neighborhood of the current solution. Third, set

a number of iterations to move at each temperature

and a predefined number of iterations to get a better

solution. SA-based algorithms are capable of solving

single objective and multi-objective optimization

problems where a desired global optimal is hidden

among many local optima. These methods have

attractive and unique features when compared with

other optimization techniques. First, a solution does

not get trapped in a local minimum or maximum by

sometimes accepting even the worse move. Second,

configuration decisions proceed in a logical manner in

SA. As a result, SA-based algorithms have been

popular and their applications have been expanded.

However, the search for an efficient algorithm based

on SA is still continuing.

See

▶Artificial Intelligence

▶Evolutionary Algorithms

▶Genetic Algorithms

▶Global Optimization

▶Heuristics

▶ Integer and Combinatorial Optimization

▶Optimization

▶ Pareto-optimal Solution
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Introduction

Simulation experiments may be conducted for many

reasons, for example, optimization. Additionally, and

not incidentally, an objective of any system simulation

must be to achieve a certain measure of understanding

of the nature of the relationships between the

input variables and the output variables of the real

system under study. The simulation model, although

simpler than the real-world system, is still a very

complex way of relating input to output. Sometimes,

a simpler model may be used as an auxiliary to the

simulation model in order to better understand the

more complex model and to provide a framework for

testing hypotheses about it. This auxiliary model is

frequently referred to as a metamodel (Santos 2009;

Cheng 2008; Santos and Santos 2007; Friedman

1996).

One simple metamodel favored by some simulation

researchers, e.g., Kleijnen (1979), Kleijnen and

Sargent (2000), Santos and Santos (2009), is the

general linear model. For a univariate response

experiment, this is

m ¼ b0 þ
Xk

j¼1
bjxj þ e:

When simulation-generated data are used to

estimate the parameters of this first-order linear

additive model, the resulting estimated metamodel is

yi ¼ b0 þ
Xk

j¼1
bjxij þ ei ði ¼ 1; . . . ; nÞ:

This general linearmetamodel can provide additional

information regarding the relative contribution of

each input factor to a response variable of interest.

Most simulation experiments study more than

one response variable, and so a multivariate

metamodel (Friedman 1989) must necessarily be

proposed. The multivariate general linear model

mm ¼ b0m þ
Xk

j¼1
bjmxj þ em ðm ¼ 1; . . . ; pÞ

is estimated by

yim ¼ b0m þ
Xk

j¼1
bjmxij þ eim ði ¼ 1; . . . ; n; m ¼ 1; ::; pÞ:

Thus, the multivariate response metamodel is

actually a series of regression-type equations, each

representing the contributions of the criterion

variables to the value of a response. This metamodel

may be tested for significance via the multivariate

S 1404 Simulation Metamodeling



general linear hypothesis (see, e.g., Hair et al. 2010),

which was automated in Friedman and Friedman

(1985a).

It can be shown that many multivariate statistical

techniques as well as the univariate techniques of

experimental design are specific cases of this general

multivariate linear model. Thus, depending on the

experimental layout, whether the factors are

quantitative or qualitative, and the aim of the study,

the general linear metamodel may be applied to

regression analysis, analysis of variance, t-test, paired

t-test, etc. In fact, whether a researcher explicitly

says so or not, designing simulation experiments

that will be analyzed via one of these statistical tests

implies the use of a linear metamodel in one of

its forms. The explicit use of a general linear

metamodel enables one to interpret the simulated

system more easily and more fully supporting model

simplification; the enhanced exploration, optimization,

and interpretation of the model; generalization

to models of other systems of the same type;

sensitivity analysis; etc.

Figure 1 is a pictorial representation of the three

levels of explanation of the dynamics of a system

simulation study. At the first level, the real system

itself is unapproachable by the researcher, who

can never hope to understand it completely. The system

analysis and data collection functions take place here.

At the second level, although the simulation model is

leaner and more streamlined than the real system, it

does attempt to replicate the real system at least with

regard to the variables that are important to the goals of

the researcher. The simulation model building,

verification, and validation functions take place here.

Finally, the analytic metamodel is at the leanest and

most streamlined level. It attempts to approximate and

aid in the interpretation of the simulation model

and ultimately, of the real system itself. The

experimental design and analysis function takes

place here, and the multivariate general linear

metamodel can often be used as a generalization of the

various types of analyses performed on simulation

output data.

Figure 2 displays the steps in a typical simulation

study, with metamodeling included. During the

metamodel construction phase, information uncovered

during system analysis is used to propose one or more

possiblemetamodel forms; use the simulation-generated

data to fit the model, providing estimates of the

parameters of the proposed metamodel; verify this

metamodel by applying a statistical test for fit; and,

validate the metamodel in the same manner that the

simulation model was validated, for example, by

comparing it to actual data from the system under study

or a similar system. Overviews on the use of simulation

metamodeling may be found in Madu and Kuei (1994),

Barton (1994), Friedman (1996) and, more recently,

Kuei et al. (2008), Iooss (2009), Santos and Santos

(2009), and Zobel and Keeling (2008).

A Metamodeling Example

As an illustration, a multivariate general linear

metamodel for the M/M/s queueing system is built

and validated against known theoretical results

(Friedman 1989). For this example, a simulation

program was developed using SIMSCRIPT II.5 of

the M/M/s queuing system with a single service

facility and a single waiting line. The parameters l,

m, and the number of identical service channels, s, were

input as data to the simulation program, i.e., these were

the factors in the simulation experiment. Twenty-five

independent replications were generated for each of

the six system variants displayed in Table 1.

These system variants were selected judgmentally

I. The Real System

II. The Simulation Model

µm = φm ( x1 , x2 , . . . , xq )

yim = fm ( xi1 , xi2 , . . . , xik εim )

yim = b0m + ∑k
j=1bjm xij + eim

III. A Linear Additive Metamodel

Simulation Metamodeling, Fig. 1 The simulation
metamodel in context
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as being fairly congested, i.e., utilization factors

(r ¼ l/sm) between 0.90 and 0.95. Three

performance characteristics were output from each

15-week simulation run: average number of demands

in the system, L; average system waiting time per

demand, W; and average utilization per server, U.

The simulation model was validated by comparing

the values of performance characteristics generated

by the simulation program at the end of a 15-week

run with the steady-state values expected using

queueing theory. This comparison was done via the

one-sample multivariate Hotelling T2 test for the three

measures of effectiveness. Validation results indicated

that the simulation-generated estimates of the

measures of performance were what one would

expect as output from the M/M/s queuing system.

In developing the metamodel, the first impulse

might be to fit a linear additive model with three

main effects (l, m, s) and some interaction effects.

However, attempts to fit such a model resulted in

a lack-of-fit test that showed that the model fit the

data poorly. Poor fit of a linear regression model

is a common problem in metamodels developed from

queueing system simulation data since l, m, and s

are actually intricately related in a nonlinear fashion.

The functional relationship next hypothesized for

theM/M/s simulation metamodel was designed to take

advantage of the fact that an important determinant in

the behavior of queuing systems is the utilization

factor, r ¼ l/s m. Thus, the proposed metamodel was

MOEim ¼ am
l
b1m
i

m
b2m
i s

b3m
i

�im

ði ¼ 1; . . . ; n; m ¼ 1; . . . ; pÞ;

where i is the index for observations;m is the index for

measurements and functions; MOEm is the mth

measure of effectiveness; am is a constant multiplier

for the mth equation; and �im represents an error factor

in the hypothesized function. While this proposed

metamodel is neither linear nor additive, it is

a form of the intrinsically linear multiplicative model,

namely,

MOEim ¼ aml
b1m
I m

b2m
i s

b3m
i �im

which may be transformed to a linear model by

a logarithmic transformation

ln MOEim ¼ ln am þ b1m lnli

� b2m ln mi � b3m ln si þ �im:

That this is the familiar multivariate general linear

(regression) model

Yim ¼ b0m þ b1mX1i þ b2mX2i þ b3mX3i þ eim

Problem definition

System analysis and design

data collection

Model design

Model building

Experimental design

Simulation

Running the experiment

Building the metamodel

Propose metamodel form

Verification: testing for fit

Validation

Statistical analysis

Decision making

Implementation

Language selection

Programming

Verification

Validation

Simulation Metamodeling, Fig. 2 Progress of a simulation
study, metamodeling included

Simulation Metamodeling, Table 1 Experimental design

System Arrival rate(l) Service rate (m) # Servers (s)

1 15 8 2

2 15 16 1

3 18 10 2

4 18 20 1

5 19 10 2

6 19 20 1
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is made clear by the change of variables listed in Fig. 3.

The least-squares estimates for the vectors b0, b1, b2,

b3 are, respectively, the vectors b0, b1, b2, b3.
Applying this multivariate regression equation to the

M/M/s simulation data produced the regression

estimates presented in Table 2 along with their

standard errors.

Metamodel Verification

As can be seen from Table 3, the multivariate linear

regression model specified is indeed a significant effect

in explaining the responses, as are the individual

treatment effects. Further model exploration was not

necessary, as the test for overall lack of fit was not

significant, and the metamodel was accepted. (For

further discussion of the Wilks’ L statistic, and the

F-test derived from it, see Hair et al. 2010). Table 4

displays the results of the regression analysis on each

response variable individually, laid out in the familiar

analysis of variance table.

In this case, estimation of the metamodel

parameters by (say) linear regression analysis is not

an end in itself. Inserting the regression estimates of

the metamodel coefficients into the general linear

model, and then taking antilogarithms of both sides

of the set of regression equations, leads back to

the original (predictive) functional relationships, i.e.,

the simulation metamodel:

L ¼ e3:279
l12:979

m12:877s12:826

W ¼ e3:286
l11:973

m12:871s12:823

U ¼ l

m1:003s1:003

Metamodel Validation

Once a metamodel is developed, there is naturally

a great temptation to simply use it as is, but it is at

least as important to validate the simulation

metamodel as validating the simulation model. After

all, the metamodel is two steps removed from the

real-world system under study. Once built and

verified to determine that the metamodel fits the data

with which it was developed, the metamodel should

then be tested for two types of validity: Internal

validity reflects the degree to which the metamodel

accurately approximates the simulation model;

external validity reflects the degree to which the

metamodel accurately approximates the real-world

system.

New Variable

ln L

ln W

ln U

ln s

ln αm

ln ηm

ln λ

ln μ

Y1

Y2

Y3

X1

X2

X3

β0m

εm

Old Variable

=

=

=

=

=

=

=

=

Simulation Metamodeling, Fig. 3 Change of variables for
the regression metamodel

Simulation Metamodeling, Table 2 Multivariate regression
metamodel estimates

Y1 (ln L) Y2 (ln W) Y1 (ln U)

Estimated regression coefficients

b0 3.279 3.286 0.008∗

b1 12.979 11.973 1.000

b2 �12.877 �12.874 �1.003

b3 �12.826 �12.823 �1.003

Standard errors of the coefficients

b0 0.277 0.270 0.015

b1 0.445 0.433 0.024

b2 0.428 0.417 0.023

b3 0.429 0.418 0.023

∗not significantly different from zero

Simulation Metamodeling, Table 3 Tests of multivariate
hypotheses

Source Wilks’L F d.f. p

Model 0.0001 9885.35 4,294 <0.001

X1 (ln l) 0.0519 876.26 3,144 <0.001

X2 (ln m) 0.0356 1299.22 3,144 <0.001

X3 (ln s) 0.0358 1292.60 3,144 <0.001

Lack-of-fit 0.9951 0.12 6,284 >0.990
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Internal Validity — Regression analysis, used to

develop the general linear metamodel, is very much

a data-based technique in that it finds the model

with the best possible fit to the data. Frequently,

models built in this manner fail to perform as well on

new data. Several appropriate, practical statistical

validation techniques for the general linear

simulation metamodel have been examined (see, e.g.,

Friedman and Friedman 1985b; Panis et al. 1994;

Santos and Porta Nova 2007; Iooss 2009; Kleijnen

and Sargent 2000).

In the cross-validation technique, the regression

metamodel is developed using only a portion, say,

two-thirds of the observations, selected randomly.

The regression metamodel is then tested against the

remaining third, the holdout group, to see how well

this equation, developed on one set of data, explains

the responses in the new data. In this procedure, the

held-out data is used to predict a whole new set of

values of the response variable, which is then used

together with the “true” responses (the values in the

simulation-generated data of the holdout sample) to

find the coefficient of determination, R2. When

compared to the original R2 in the first set of data,

one can see how much deterioration there was from

the original data used to develop the model to the new,

fresh data of the holdout sample, for example, a very

low R2 for the unselected cases would indicate that

the model lacks predictive validity since it does

not sufficiently explain the variation in the new, held

out data. In validating theM/M/smetamodel, the value

of the R2 statistic for the original set of data was .70

and the R2 for the holdout sample was .80. This

indicated that the metamodel developed does

indeed have predictive validity.

Further insight into how well the model predicts may

be obtained by examining the residuals — computed

by taking the actual observations minus the values

predicted by the metamodel equation — of the holdout

sample. The mean absolute percentage error,

whereabsolute percentage error is calculated as 100%


|Residual|/y was found to be 5.6%, indicating good

predictive validity on the part of the simulation

metamodel with respect to the simulation model.

External Validity: Methods used in testing

a simulation metamodel for external validity are

equivalent, and sometimes identical, to those used to

validate the simulation model, for example, face

validity or expert judgment. Just as simulation

responses have been compared with historical data

from the real (or similar) system, so metamodel

responses may also be compared with historical

observations from the real (or similar) system.

For this simulation metamodel to be valid, it should

be a useful approximation not merely to the simulation

model, from which the data used in building the

metamodel was drawn, but also to the real-world

system, to which any inferences and conclusions will

Simulation Metamodeling,

Table 4 Regression analysis
table by response variable

Source d.f. Sum of squares
Response: Y1 (ln L) Mean square F p R2

Model 3 13.173 4.391 303.12 <0.001 0.862

Residual 146 2.115 0.014

Lack of fit 2 0.004 0.002 0.14 >0.860

Pure Error 144 2.111 0.015

Total 149 15.288

Response: Y2 (ln W)

Model 3 14.992 4.997 364.11 <0.001 0.882

Residual 146 2.004 0.014

Lack of fit 2 0.004 0.002 0.15 >0.850

Pure error 144 2.000 0.014

Total 149 16.996

Response: Y3 (ln U)

Model 3 0.080 0.027 613.66 <0.001 0.927

Residual 146 0.006 0.000

Lack of fit 2 0.000 0.000 0.00 >0.999

Pure error 144 0.006 0.000

Total 149 0.086
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be applied. Since the M/M/s system has been

widely studied, it can be used to test the metamodel

developed here for validity to the real systemwhich the

simulation models. This would be equivalent to taking

actual (historical) data from the real system, or

a similar equivalent one, and validating the

simulation model and the metamodel with portions of

that data.

Towards this end, several additional M/M/s system

variants were selected which were different from the

six used to develop the metamodel yet still within the

experimental space. These new system configurations

also had fairly high utilization factors. Values

computed for L, W, and U using the multivariate

metamodel were compared with the actual

steady-state values for these system measures of

effectiveness. The average absolute error, used to

measure metamodel validity, is obtained by means of

the ratio 100% 
 |Metamodel � Analytic|/Analytic.

Given the results of Table 5, the multivariate

metamodel is taken to have performed well in

representing the M/M/s queueing system in the range

of system configurations studied.

Using the Simulation Metamodel

It is obvious from the patterns evident in the estimated

coefficients in Table 2 that the multivariate metamodel

may serve as more than a predictive functional

model relating dependent variables with the

independent variables. When such patterns appear,

they urge the researcher to examine the metamodel

further for relationships that are not immediately

obvious. In simplified form, the multivariate

metamodel may be (after suitable testing of estimated

coefficients) represented as:

L ¼ e3:28
l

ms

� �12:85

W ¼ e3:26

l

l

ms

� �12:85

U ¼ l

ms

It turns out that the formula for U is, of course,

simply a restatement of the analytic formula for

utilization, r. Additionally, from the metamodel

formulas for L and W, it can be concluded that

L ¼ lW, which is (not coincidentally) the well-known

relationship first demonstrated by Little. An example

of another sort of simplified-form relationship derived

from this simplified metamodel that might prove

useful in a study of this nature is L ¼ e3.28 U12.85.

Thus, in addition to providinga vehicle for prediction,

the multivariate metamodel may also be expected to

provide a means of exploring relationships inherent in

the real system and in the simulation model of the

real system, but otherwise masked by the complexity of

the system studied.

See

▶Response Surface Methodology

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization

▶Verification, Validation, and Testing of Models
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Introduction

One of the most powerful modeling tools in the

operations research analyst’s toolbox is stochastic

(or Monte Carlo) simulation, which provides the

ability to study complex stochastic systems in great

detail using a computer program. Simulation models

complement analytical models that require many

simplifying assumptions, and in many situations,

simulation provides the only way to analyze

a system. Stochastic discrete-event systems are

systems whose state changes upon the occurrence of

discrete events, usually at stochastic times (Cassandras

and Lafortune 2010). For example, in a queueing

system, the state of the system includes the queue

lengths, which change at discrete points in time

when arrivals or departures occur. Discrete-event

systems can be contrasted with continuous-time,

continuous-state systems whose state changes

continuously over time, with dynamics usually driven

by differential equations, e.g., the motion of particles

in a fluid. Discrete-event systems are ubiquitous in

the man-made world, and thus simulation is widely

used for modeling, analysis, and decision making

in manufacturing, logistics and transportation,

telecommunications, military operations, computer

networks, health care, emergency response, finance,

business processes, and many other service sectors.

The following presents an overview of the key points

in discrete-event stochastic simulation. For more

details, refer to textbooks such as Banks et al. (2010),

Law and Kelton (2000), and Fishman (1978), and the

handbook on simulation edited by Henderson and

Nelson (2006).

Elements of a Simulation Model

A simulation model contains three major components:

input generation, process/event/sample path

construction, and statistical output analysis. The input

to the simulation model requires generation of the

appropriate input processes. For example,

a manufacturing system is generally modeled as

a network of queues with a variety of different

interarrival time and service time distributions.

Random variates from these different distributions

must be generated so that realizations or sample paths

of the system “in action” can be constructed. Once

these distributions are chosen, input random variates

are generated, from which the next-event mechanism

performs the simulation by advancing time upon

occurrences of scheduled events, updating the system
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state (e.g., queue lengths, idle/busy status of servers),

and keeping track of various statistics through counters

(e.g., number of customers served, waiting

times, cumulative queue lengths) in order to calculate

appropriate output performance measures.

Output analysis employs the appropriate statistical

techniques required to make valid statements

concerning system performance based on the output

performance measures obtained from the simulation

runs.

The following simple hypothetical example

illustrates the three basic elements described above.

A small manufacturer of specialty items has signed
a contract with a very prestigious customer for twenty
orders of its premiere product. Management is concerned
with current capacity and wishes to analyze the situation
using discrete-event simulation. The customer will place
orders at random times and would like them filled as soon
as possible. Orders are placed only at the beginning
of a month and could come as frequently as two months
apart or as infrequently as seven months apart, or
anything in between, all with equal probability
(assumed independent). Currently, the production
capability for this product is such that orders are
shipped only at the end of a month and order filling time
is equally likely between one and six months, inclusive
(again, assumed independent). Only one order at a time
can be processed, so that if a second order comes in while
one is being prepared, it must wait until the order ahead
of it is completed. For this capability, management would
like to get an idea of the average number of orders in the
system, the average time an order spends in the system,
the maximum time an order spends in the system and the
percentage of time the system is idle. The date of the first
order is known and the production line will be set up just
in time to receive the first order. The production line will
be taken down after the last (20th) order is completed.

For this simple example, an easy way to generate

the random input data would be to use independent

rolls of a fair die. To generate the interarrival times,

simply roll the die 19 times and add one to each value

to get the times between successive orders after the

first one. For the service times, the value of the roll

itself suffices, requiring a roll of the die 20 more times.

Table 1 below gives a sample of using a fair die to

generate the input data, and Table 2 presents the

(abbreviated) simulation table constructed from

Table 1’s input data. This would be called one

simulation replication.

Table 2 was constructed from the interarrival and

service-time input data as follows. At clock time 0, the

first order (transaction) comes into the system, has

a service time of 1 (month) and is due to depart at

clock time 1 (month). At clock time 1, the next arrival,

order 2, is due in at clock 0 + 7¼ 7, and since no order is

in the system, will depart at its arrival time plus service

time, i.e., 7 + 3 ¼ 10. The clock is advanced to time

7, and the next arrival (order 3) scheduled at 7 + 2 ¼ 9.

Since order 3 arrives before order 2 leaves, the clock is

advanced to time 9, the arriving order 3 enters the queue

and order 2 is still in service, but due to depart at time 10.

Order 4 is due in at 9 + 6 ¼ 15. The clock is

then advanced to time 10, when order 2 leaves the

system, order 3 enters service and is scheduled to

depart at 10 + 2 ¼ 12. Order 4 is next to arrive and it is

due in at 15, so the clock advances to 12. The simulated

next-eventmechanism continues in this fashion until the

20th order is processed.

The data in Table 2 can be used obtain the queue

wait time and total time in system for each order. For

example, order 1 entered the system at time 0, went

right into service and left at time 1, spending zero time

in queue and one month in the system. Order 2 arrived

at time 7, also went directly into processing and left

at time 10, spending 3 months in the system. Order 3,

however, arriving at time 9, had to enter the queue

since order 2 was still in process when it arrived.

It left the queue for processing at time 10 and exited

Simulation of Stochastic Discrete-Event Systems,

Table 1 Input data

Time between orders: �,7,2,6,7,6,7,2,5,4,5,3,2,6,2,4,2,6,5,5

Service times: 1,3,2,3,6,5,4,5,1,1,3,1,3,2,2,6,5,1,3,5

Simulation of Stochastic Discrete-Event Systems,

Table 2 Key: [n],t ¼ [order number], time of occurrence

Master
clock time

Next events Transaction
in queue

Transaction
in serviceArrival Departure

0 [2],7 [1],1 ! [1]

1 [2],7 [2],10 [1] !
7 [3],9 [2],10 ! [2]

9 [4],15 [2],10 ! [3] [2]

10 [4],15 [3],12 [3] ! ![3] [2] !
● ● ●

● ● ●

● ● ●

81 [20],86 [19],84 ![19]

84 [20],86 [19] !
86 [20],91 ![20]

91 [20] !
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the system at time 12 (not shown in the abbreviated

table), spending 1 month in queue waiting for

processing and 3 months total time in the system.

Average waiting times and maximum waiting times

can also be easily calculated, as well as average queue

lengths and system utilization.

For the above example, the maximum number of

orders in the queue was 1, the maximum number

of orders in the system was 2, the maximum time

an order spent in the system waiting to be processed

was 4 months (order number 17), and the maximum

time an order spent in the system was 9 months

(also order number 17). The average queue length

was 0.13, the average number in system was 0.81, the

percent of the time the system was empty and idle was

32%, and the average waiting times in queue and

system were 0.6 and 3.7 months, respectively.

Input Distribution Selection and Random
Variate Generation

Keeping in mind the old acronym, GIGO (Garbage In,

Garbage Out), care must be given to choosing the

distributions that best describe the environment being

modeled. This involves knowing as much about the

modeling environment as possible and valid data

analyses. There are some cases where data are not

available nor can they be collected (e.g., design of

a new system) and for these, only domain knowledge

can be used. Sensitivity of output performance

measures to specific input distributions is still an area

of active research; some discussion is provided later.

Once the appropriate distributions are chosen

(discussed in the entry on distribution selection for

stochastic modeling), it is necessary to be able to

generate representative samples from these

distributions for running the simulation. Much study

has been done in this area, as discussed in Banks et al.

(2010), Fishman (1978), Law and Kelton (2000).

The basis for generating random variates from

a desired probability distribution lies in being able to

generate random numbers U1, U2, U3,. . . which are

independent and identically distributed (i.i.d.) on the

interval [0,1], written as U(0,1), where U(a,b) denotes

the uniform distribution on [a, b]. This is generally

done via a pseudorandom number generator, which

uses a mathematical recursion to generate a sequence

of integers that statistically look as if they are random.

These integers can then be normalized to the interval

[0,1]. Perhaps the simplest generator is based on

a linear congruence equation of the form

Yi ¼ aYi�1 þ cð Þ mod m;

where a is called the constant multiplier, c is the

increment, and m is the modulus in modulo

arithmetic (the quantity in the parentheses is divided

bym and only the remainder kept). Since the relation is

recursive, a starting point called the seed, Y0, is

required. The numbers generated from this recursion

will be in the interval [0, m�1) and thus dividing by m

normalizes the values to [0,1). When simulation was

first used, these were the most reliable random number

generators, but current practice employs much more

sophisticated generators that are described in the

random number generation entry; see also Chapters 3

and 6 of Henderson and Nelson (2006).

Using i.i.d. U(0,1) random numbers, random

variates from virtually any probability distribution

(including empirical data) can be generated.

One procedure for doing this is via the inverse

(CDF) transform method. Given a random number

U � U(0,1) and the cumulative distribution function

(CDF) F, the inverse transform method generates

a random variate X � F via

X ¼ F�1ðUÞ;

where F-1 denotes the inverse function (not 1/F).

The inversion algorithm can be viewed graphically as

follows: find the U value on the y-axis, project

horizontally to the CDF curve, and then project

vertically down to the x-axis to read off the

corresponding X value. As an example, to generate

exponentially distributed random variates with mean

y, the CDF is given by FðxÞ ¼ 1� e�x=y; so solving

for X in U ¼ 1� e�X=y yields

X ¼ �y lnð1� UÞ:

Since (1- U) has the same distribution as U, the

usual implementation is to use

X ¼ �y lnU;

since it saves one arithmetic operation. Another simple

example is the algorithm for the general uniform
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distribution, i.e., X � U(a, b), which simply scales and

shifts the random number:

X ¼ aþ b� að ÞU:

The inverse transform method can be used for both

discrete and continuous probability distributions,

including empirical distributions. However, for most

continuous distributions, the CDF F is not analytically

invertible, e.g., the normal and most gamma

distributions, though a simple numerical procedure

can often be used. Other methods for generating

random variates include acceptance-rejection,

convolution, and composition. One advantage that

the inverse transform has over other methods is that

a single random number generates a single random

variate, whereas in the other methods multiple

random numbers may be needed to produce a single

random variate; in the case of acceptance-rejection, the

number of random numbers required is generally itself

random. In addition to efficiency, the one-to-one

correspondence can also be of great benefit when it

comes to implementing variance reduction techniques,

e.g., common random numbers. The entire volume of

Devroye (1986), available online from the author’s

own Web site for free download, is devoted to input

variate generation; see also Fishman (1996) and

Chapters 4 and 5 of Henderson and Nelson (2006).

Simulation Programming Languages/
Modeling Software

The simulation modeler has a large variety

of languages and packages from which to choose.

These can be categorized into three main types:

general-purpose languages, simulation languages,

and simulation modeling software packages.

General-purpose languages such as FORTRAN,

BASIC, C, C++, Pascal, and Java allow the most

flexibility in modeling but require the most effort to

program. One can get a feel from the earlier very

simple example of what might be involved in

generating variates from the input probability

distributions and programming the next-event routines

and statistical calculations needed for obtaining output

measures of performance. Numerical computing

languages/environments such as MATLAB and R can

also be used to program simulation models.

Simulation languages such as GPSS, SIMAN,

SIMSCRIPT, and SLAM were developed to

automatically include the components that stochastic

discrete-event simulation models have in common, as

illustrated by the simple example presented earlier,

e.g., random variate generation, next-event logic

execution, statistical counters, and output analyses.

These simulation language packages make building

a simulation model much easier, although some

flexibility in modeling is sacrificed since the model

must fit into the specific language environment being

used. As a general rule, one can expect that the easier

the programming becomes, the less flexibility there is

in deviating from the language environment, although

many software packages allow linkage to general

purpose languages, thereby greatly increasing their

modeling and analysis capabilities.

Even easier to use than simulation languages are

simulation modeling software packages, the

successors to what used to be called simulators.

These are completely self-contained and require very

little, if any, programming, as the model is generally

built in a graphical user interface by choosing among

icons in pull-down menus or from toolbars, and the

software automatically includes animation capabilities

that will allow the user to observe the system evolving

over time. Well-known simulation software packages

include Arena, SIMPROCESS, ProModel, WITNESS,

Simio, SIMUL8, and AnyLogic. Examples of software

packages tailored to a particular application area

include AutoMod and SIMFACTORY.

Falling somewhere between self-contained

simulation software packages and simulation languages

are add-in packages that enable simulationmodeling and

analysis. Examples include SimEvents in MATLAB

and SAS Simulation Studio for JMP. In addition,

for stochastic (Monte Carlo, generally static)

spreadsheet simulation, two of the most common

add-in software packages are Crystal Ball and @RISK.

Output Analysis

Making valid conclusions from simulation output

requires sound experimental design and statistical

analysis. This section presents some basic procedures

for analyzing simulation output.

There are two major types of simulation models:

terminating and non-terminating. A terminating model
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has a natural start and stop time, e.g., a bank opens its

doors at 9:00 am and closes its doors at 3:00 pm. On the

other hand, a non-terminating model does not have

a start and stop time, e.g., a semiconductor

manufacturing fabrication facility that essentially

runs continually. In non-terminating simulations,

steady-state results are usually of interest, and in

simulating such a system, a determination must be

made as to when the initial transients have dampened

out and the simulation is in steady state.

For terminating simulations, Once is not enough!

In other words, a single replication does not provide

enough information to make any statistical statements.

For example, the maximum waiting time is

a single observation, that is, a sample size of one.

Multiple independent replications (repeated runs)

of the experiment are required. For the example

presented earlier, different random number

streams (e.g., two dice rather than one) are used

for the order arrival and processing times for

each replication, which generates a sample of

independent output observations to which classical

statistics can be applied. Thus, n replications would

generate n values for the maximum waiting times, say,

w1, w2, . . ., wn. Assuming n is large enough to employ

the central limit theorem, a 100ð1� aÞ% confidence

interval (CI) is formed by calculating the respective

sample mean and sample standard deviation of the

maximum waiting time by w ¼ 1
n

Pn

i¼1

wi,

sw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

X

n

i¼1

ðwi � wÞ2
s

;

and then obtaining the CI as

w tn�1;1�a=2
sw
ffiffiffi

n
p ;

where tn�1;1�a=2 is the upper 1� a=2 critical value for

the t-distribution with n � 1 degrees of freedom.

Non-terminating simulations aimed at steady-state

estimation face two major challenges: initialization

bias and serial correlation. The former has to do with

determining when steady state is reached, and the

latter has to do with how to carry out the simulations

for the purpose of forming CIs. The main approaches

in non-terminating simulations are independent

replications, batch means, and the regenerative

method. The first two approaches are the most

commonly used and must address both challenges.

The regenerative method can actually eliminate both

major challenges but faces its own unique challenges.

Assume for the moment that the first challenge is

solved, and the simulation is run for n transactions after

reaching steady state to obtain n values for the time

a customer spends waiting in a particular queue for

service, again denoted by wi (now these are actual

waits, not maximum waits). It might be tempting

to calculate the average and standard deviation of

these n values and proceed as above to form a CI.

However, these wi are generally positively correlated,

so that using the above formula for sw would be a poor

(biased low) estimate for the true variance. This is one

version of the serial correlation problem.

One way around the serial correlation problem is

to follow the same procedure as in the terminating

simulation setting, and run m independent

replications, as in the terminating case. For each

independent replication, again calculate the mean of

the wi, denoting the mean for the jth replication by

wj ¼
X

n

i¼1

wij=n

where wij is the waiting time for transaction i in

replication j, i ¼ 1, 2, . . ., n and j ¼ 1, 2, . . ., m. An

approximate 100ð1� aÞ% CI is given by

w tm�1;1�a=2

s
wj
ffiffiffiffi

m
p

where

w ¼ 1

m

X

m

j¼1

wj

and

swj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m� 1

X

m

i¼1

ðwi � wÞ2
s

:

Both the run length (n) and the number of

replications (m) influence the size of the standard

error used in forming the CI. The standard error goes

down by the square root of m, so that the more

replications made, the tighter (narrower) the CI.

As the run length n is increased, the computed value
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of s
wj

itself will be smaller for a given number of

replications, so that longer run lengths will also

increase the precision of the CI. Thus for a fixed

amount of computer running time, there is a trade-off

between the sizes of n and m. CI coverage for

steady-state simulation was first addressed in

Schruben (1980).

The other major challenge in non-terminating

simulations is the determination of the warm-up

period, the initial amount of simulation time required

to bring the process near steady-state conditions and

hence eliminate initialization bias. Data are not

collected until after the end of the warm-up period.

A variety of procedures have been developed and the

reader is referred to the basic simulation texts

referenced previously for more details and further

references.

In the procedure just described, the warm-up period

is wasted in each of the m independent replications.

The method of batch means (Law 1977; Schmeiser

1982) avoids this by using one single long run that is

broken up into m segments (batches) of n transactions

each, so that only a single warm-up period is discarded

rather than m as in the independent replications

procedure. However, this procedure brings back the

earlier problem, since there is serial correlation

between segments. However, the performance

measures for each segment become statistically less

correlated as the length of each individual segment

increases, since the distance between transactions

in each segment is further apart. If the segment length

is sufficiently large, then the methodology for

determining CIs is identical to that for m independent

replications. The trade-off here is between the length

of the batches (n) and the number of segments (m).

Assuming the product mn is kept constant, larger m

means tighter CIs but increased serial correlation,

because the length of each segment is small.

The regenerative method can eliminate

both problems of initialization bias and serial

correlation. The main challenges for the regenerative

method include finding regenerative points, which

can be difficult for large systems, and the length

of regenerative cycles, which are stochastic and can

be long for large systems. Since these cycles are used

to form CIs, with each cycle essentially corresponding

to a replication, the efficiency of the method can be

drastically reduced when regenerative cycles are long.

See the accompanying entry for more details on the

regenerative method. Other methods for steady-state

simulation include autoregressive methods, spectral

analysis, and standardized time series and time series

analyses, which are summarized in Law and Kelton

(2000); see Chapter 8 in Henderson and Nelson (2006)

for an in-depth presentation of statistical techniques for

simulation output analysis, including quantile and

density estimation.

In comparing two alternative system designs, the

technique most commonly used is a paired-t CI on

the difference of a given performance measure.

The number of replications for both designs must be

the same, and the mean and sample variance are

computed in the same manner as before, after

forming the pairwise differences on the performance

measure. The difference in performance of the two

designs is considered statistically significant if the

resulting CI does not contain 0 (zero); if it does

contain 0, then it is generally desirable to carry out

more replications to tighten the CI to be able to detect

a statistical difference. Also, in forming pairwise

comparisons, whenever possible the same random

number stream(s) should be used for each design

within a replication, so that the difference observed

depends only on the design parameter change and not

on the variation due to the randomness of the random

variates generated. Different random numbers streams

are still used between the replications. This is

a variance reduction technique called common

random numbers (CRN) and can be quite effective in

tightening CIs. Critical to the success of CRN is the

notion of synchronization, which intuitively means

that as much as possible the same random numbers

are used for the parts of the two system designs that are

similar (or identical).

Comparing more than two designs necessitates

using multiple comparison techniques. The most

straightforward method would be comparisons in

a pairwise fashion using the methodology for

comparing only two systems. However, making all

pairwise CIs among k designs would require k(k-1)/2

comparisons, and if the confidence level of a single

pairwise CI is 1� a, and there are N CIs, the

confidence associated with a statement concerning all

the pairs simultaneously drops to a lower bound of

1� Na (Bonferroni inequality). So, for example, if

there are 5 designs being compared in all possible

pairs (10 in all), and an overall 95% confidence level

is desired, then each CI level should be 99.5%.
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Since all pairwise comparisons is not very efficient if

the number of alternatives is more than a few, it is

better to consider other statistical ranking and selection

procedures, such as selecting the best of k systems

(or multiple comparisons with the best), selecting

a subset of size r containing the best of the k systems,

and selecting the r best of k systems. This topic is

treated in detail in the entry on statistical ranking and

selection; see also Law and Kelton (2000).

Variance Reduction Techniques

Unlike sampling from the real world, the simulation

modeler has control over the randomness generated

in the system. Often, purposely introducing

correlation among certain of the random variates in a

simulation run can reduce variance and provide tighter

CIs. One example of this was shown above in forming

a paired-tCI for the difference between two systems by

using common random numbers within a replication,

which introduces positive correlation between the two

performance measures within a replication, yielding

a smaller variance for the mean difference.

Another technique, called antithetic variates,

introduces negative correlation between two

successive replications of a given design with the

idea that a large random value in one of the pairs will

be offset by a small random value in the other.

The performance measures for the pairs are averaged

to give a single observed performancemeasure. Hence,

if m replications are run, there are m/2 independent

values being averaged for the CI calculation, but the

variance of these values should be lower than m

independent observations. Caution must be exercised

when combining antithetic variates with common

random numbers (see Law and Kelton 2000).

Indirect estimation is another simple approach for

reducing variance, using known relationships between

quantities whose performance is being estimated by

the simulation model. For example, the mean time

spent in the system is the sum of the mean time spent

in queue and the mean service time. Since the latter is

known exactly, it should be clear that for estimating the

mean system time, it is better – in terms of obtaining

tighter CIs – to estimate the mean queue time and add

this to the known mean service time rather than

directly averaging the individual system times.

As another example, Little’s Law relates mean queue

time to the mean queue length, whereas again both can

be estimated from the simulation. It turns out it is better

in this case to estimate mean queue times directly and

use Little’s Law to obtain an indirect estimate for mean

queue length (see Law and Kelton 2000).

Other effective, albeit more complicated,

variance reduction techniques include control

variates, conditioning, importance sampling, stratified

sampling, and splitting, all of which are described in

the variance reduction techniques entry in this

Encyclopedia.

Sensitivity Analysis and Optimization

All good modelers appreciate the importance of

sensitivity analysis in testing the utility of their

model. For example, in the simple example presented

earlier, one might be interested in the sensitivity of

the average waiting time in queue to the mean service

time of the orders. In simulation, the most direct

brute-force way of carrying out sensitivity analysis

is to perturb the parameter of interest and perform

another simulation at the perturbed value of

the parameter; in other words, resimulation. Clearly if

the number of parameters is large, this becomes very

inefficient. As a result, much research has been carried

out since the 1970s to find efficient ways of estimating

sensitivities, called stochastic gradient estimation

(see Chapter 19 in Henderson and Nelson 2006). The

two most common approaches are perturbation

analysis and the likelihood ratio/score function

method, both of which attempt to provide estimators

that can be computed on a single simulation

replication, i.e., without resimulation; see the

corresponding entries in this Encyclopedia for details.

In addition to sensitivity analysis, stochastic gradient

estimation can be used in conjunction with

the simulation model to carry out optimization for an

objective function based on output measures of

performance from the simulation model. Methods for

doing this are described in the entries on simulation

optimization and stochastic approximation.

Model Verification and Validation

Model validation is an essential step in a simulation

study. Prior to developing a simulation model,
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it behooves the simulation analyst to become very

familiar with the system being studied, to involve the

managers and operating personnel of the system, and

thus to agree on the level of detail required to achieve

the goal of the study. The appropriate level of detail is

always the coarsest that can still provide the answers

required. One problem with simulation modeling is

that since any level of detail can be modeled, models

are often developed in more detail than necessary,

which can be very inefficient and counterproductive.

Validity is closely associated with verification and

credibility. Verification has to do with program

debugging to make sure the computer program does

what is intended. This is generally the most

straightforward of the triumvirate to accomplish, as

there are well-known and established methods for

debugging computer programs. The animation

capability in simulation software can be helpful in

verification, since the user can observe directly if the

evolution is progressing as intended.

Validation deals with how accurate a representation

of reality the model provides, and credibility deals with

how believable the model is to the users. To establish

validity and credibility, users must be involved in the

study early and often. Goals of the study, appropriate

system performance measures, and level of detail must

be agreed upon and kept as simple as possible. A log

book of assumptions should be kept, updated

frequently, and signed off periodically by the model

builders and users. Animation of the system can again

be of help in the process of establishing credibility,

by convincing users that the simulation model

adequately mimics the true system.

When possible, simulation model output should be

checked against actual system performance, if the

system being modeled is in operation. If the model

can duplicate (in a statistical sense) actual data, both

validity and credibility are advanced. The model can

be run under a variety of conditions and results

examined by the users for plausibility. Most

simulation texts have at least one chapter devoted to

this important topic; see also Gass and Thompson

(1980), Sargent (2011).

Other Simulation

For operations research analysts, the most well-known

continuous-time simulation paradigm is probably

system dynamics. In addition to purely discrete-event

or continuous-time models, many systems are

best modeled with a state that contains both

a discrete-event and continuous-time component,

e.g., a flow system that could be in one of many

discrete modes (such as up or down) or a queueing

system where customers possess characteristics with

continuous-valued variables changing over time,

giving rise to hybrid system simulations. Many of

the simulation software packages can handle these,

as well, either directly or through a combination

(e.g., Simulink with SimEvents in MATLAB).

Another important modeling paradigm is agent-based

simulation, where the focus is on the agents in

the system rather than the processes or events; these

models are widespread not only in the operations

research/management science community but also

in economics and the behavioral sciences.

The latest state-of-the-art developments in stochastic

discrete-event simulation and agent-based simulation

are presented annually in December at the Winter

Simulation Conference, which makes its proceedings

freely available online at its Web site.

See

▶Agent-Based Simulation

▶Distribution Selection for Stochastic Modeling

▶Little’s Law

▶Monte Carlo Methods

▶Monte Carlo Simulation

▶Networks of Queues

▶ Perturbation Analysis

▶Queueing Theory

▶Random Number Generators

▶Rare Event Simulation

▶Regenerative Simulation

▶Response Surface Methodology

▶ Score Functions

▶ Simulation Optimization

▶ Statistical Ranking and Selection

▶ Stochastic Approximation

▶ Stochastic Input Model Selection

▶ System Dynamics

▶Variance Reduction Techniques in Monte Carlo

Methods

▶Verification, Validation, and Testing of Models
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Introduction

Optimization in operations research and management

science is generally identified with mathematical

programming, where analytical expressions for

quantities of interest (comprising the objective

function and constraint functions) are assumed to be

readily available and relatively easy to evaluate, so that

the primary focus is on the search for the optimal

solution(s). In simulation optimization, the objective

function and/or constraints require expensive (in terms

of computational effort) simulations to estimate or

evaluate. In the stochastic setting considered here,

multiple simulation runs (or replications) are used for

estimating (through statistical sampling) system

performance measures. The usual generic form of the

optimization problem takes a form similar to that

found in mathematical programming:

min
y2Y

lðyÞ; (1)

where y denotes the (vector of) controllable parameters

or decision variables and Y defines the constraint set

on y. Thus, each point y 2 Y represents one possible

solution in the feasible solution space Y. Assume

throughout that the objective function is an

expectation, i.e.,

lðyÞ ¼ E½Lðy;oÞ�;

with o representing a sample path (or simulation

replication) and Lðy;oÞ the corresponding sample

performance estimate. Objective functions of other

forms (e.g., quantiles) can also be handled in

a similar manner, and of course probabilities are

simply expectations of indicator functions. In contrast

to mathematical programming objective functions, the

quantity lðyÞ is not only expensive to evaluate, but it is
generally quite nonlinear. Moreover, the constraint set

Y may itself also involve quantities that must be

estimated from simulation, although the majority of

existing techniques assume that they are available

analytically.

As in mathematical programming, the set of

solution techniques can be subdivided according to

the state space of the controllable parameter y:

discrete or continuous. In addition, for the discrete

case, there is a distinction between relatively small

state spaces and larger (including infinite) state

spaces; furthermore, the discrete state space may not

possess a natural ordering/metric, e.g., the integers vs.

purely categorical variables. As an example, consider

a queueing network, where decision parameters might

include the service rate at a station, which is generally

continuously valued; the number of servers at

a station, which is discrete valued and could be

relatively small if considering stations individually or

combinatorially large if considering the allocation of a

fixed (large) number of servers among all stations in a
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large network; and the queue discipline — first-come,

first-served vs. various possible (static or dynamic)

priority schemes, which involves a discrete

categorical choice.

Small State Space

In this situation, the approach is analogous to

enumeration in the deterministic setting, but it takes

on a statistical flavor since there is randomness

involved. Two (related) categories of statistical

procedures are most applicable: ranking and

selection, and multiple comparisons (Bechhofer et al.

1995). An applicable ranking-and-selection method

will provide a sequential procedure that will select

the minimizing y among a finite set according to

some statistical criterion such as a pre-specified

confidence level. A number of these procedures

pertinent to the simulation setting can be found in

Law and Kelton (2000). Multiple-comparisons

procedures, on the other hand, specify the use of

certain pairwise comparisons to make inferences in

the form of confidence intervals; they are not

inherently sequential procedures. In terms of

optimization, the most useful of these procedures are

multiple comparisons with the best, which leads to jYj
(size of state space) simultaneous confidence intervals.

A review of these procedures in the context of

simulation can be found in Kim and Nelson (2006).

Other related approaches include optimal computing

budget allocation (OCBA) and optimal learning,

described in Powell and Ryzhov (2012) and Chen and

Lee (2010), respectively; see also Branke et al. (2007)

for a comparison of many of these procedures.

Large Discrete State Space

The main class of algorithms for this setting are

random search methods, which iteratively update

a single point by selecting the next point ynþ1 from

a neighborhood of the present point yn. The resulting

algorithms differ in specification of (i) neighborhood

structure NðyÞ, and (ii) updating from yn to ynþ1.
Variants include the stochastic ruler, as well as those

implementing simulated annealing. One recent

algorithm using an interesting neighborhood structure

is Convergent Optimization via Most-Promising-Area

Stochastic Search (COMPASS) proposed in Hong and

Nelson (2006). For a more detailed discussion on

random search methods with references, see

Andradóttir (2006) and Nelson (2010).

Other algorithms that can treat large discrete state

spaces include genetic algorithms, estimation of

distribution algorithms (Larrañaga and Lozano 2001),

the cross-entropy method (Rubinstein and Kroese

2004), the nested partitions method (Shi and

Ólafsson 2008), and model reference adaptive search

(Hu et al. 2007). Another general approach is ordinal

optimization (Ho et al. 1992), which is based on the

idea that order converges (exponentially) faster than

(statistical) estimation, a notion that can be made

mathematically rigorous through large deviations

theory. Massive parallel computation (e.g.,

simultaneously simulating a huge number of different

alternatives) is especially suited for implementing this

framework.

Continuous State Space

Most of the OR/MS research has focused on this case.

Pattern search methods based on deterministic analogs

directly adapted to the stochastic setting constitute one

set of techniques. Examples include the Nelder-Mead

method and its variants [2] where a simplex family of

points is updated at each iteration according to some

prescribed rules that control movements and possible

expansion or contraction; and the Hookes-and-Jeeves

method. Random search methods can also sometimes

be adapted to the continuous parameter case.

Aside from the aforementioned methods, there are

three major approaches to the continuous parameter

problem. The first approach, stochastic approximation

(SA), uses a stochastic version of gradient-based local

improvement to iteratively update a single point. The

second approach, sample average approximation

(SAA) — also known as sample path optimization,

the stochastic counterpart method, or retrospective

optimization — uses multiple simulation replications

to obtain a sufficiently precise estimate of the objective

function (and constraints, if also noisy) in order to

apply a deterministic optimization algorithm. The

third approach, response surface methodology

(RSM), uses simulation replications to fit a surface

(e.g., the objective function) in either a global or

local manner, on which optimization is performed
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globally or sequentially. These approaches are now

briefly discussed further in the context of simulation

optimization; more details and further references on all

three approaches can be found in the corresponding

entries in this volume.

Stochastic Approximation

Stochastic approximation methods are the stochastic

versions of gradient-based deterministic search

algorithms. The basic underlying assumption of

stochastic approximation when used in simulation

optimization is that the original problem given by (1)

can be solved by finding the zero of the gradient, i.e.,

by solving HlðyÞ ¼ 0; where H denotes the gradient

operator, which may only give a local optimum. The

SA algorithm is of the following form:

ynþ1 ¼ PY yn � anbHlðynÞ
� 

; (2)

where yn is the parameter value at the beginning of

iteration n, bHlðynÞ is an estimate of HlðynÞ from

iteration n, an is a (positive) sequence of step

size multipliers, which shall henceforth be called the

gain sequence, and PY is a projection onto Y. When

an unbiased estimator is used for bHlðynÞ, (2)

is called a Robbins-Monro algorithm and when a

finite difference estimate is used, it is called a

Kiefer-Wolfowitz algorithm. Sometimes, the term

Robbins-Monro-like algorithm is used for those

procedures that estimate the gradient with some bias

but without resorting to finite differences.

The main considerations in using an SA algorithm

for simulation optimization are the following:

• obtaining a gradient estimate bHlðynÞ;
• selecting the gain sequence fang;
• choosing a stopping rule.

Stopping rules are based on the progression of the

iterates, the gradient estimates, or some combination.

When considering long-run (steady-state) performance

measures, there is an additional consideration of

choosing the observation length for each iteration.

Each of the first two items are now discussed in more

detail.

Gradient estimation in stochastic simulation has

been a very active research field, starting in the

1980’s. Approaches that provide an unbiased

estimate of the gradient (leading to Robbins-Monro

SA algorithms) rely on some knowledge of the

underlying system, and include perturbation analysis,

the likelihood ratio/score function method, and weak

derivatives; see Fu (2006, 2008) for recent surveys/

tutorials with references. These techniques are

sometimes referred to as “white box” approaches to

simulation optimization (Pflug 1996).

When the simulator is treated as a black box of

inputs and outputs, the usual approach is to use finite

differences, either one-sided or symmetrical, given

respectively by

Lðyn þ cnei;o
iþ
n Þ � Lðyn;onÞ
cn

; (3)

Lðyn þ cnei;o
iþ
n Þ � Lðyn � cnei;o

i�
n Þ

2cn
; (4)

where ei denotes the unit vector in the ith direction,

fcng is a positive sequence converging to 0, oiþ
n and

oi�
n denote the pair of sample paths (simulation

replications) used for the ith component of the n th

iterate of the algorithm, and on denotes the original

sample path (replication) used to estimate the

performance measure itself. The method of common

random numbers employs oi�
n ¼ oiþ

n ¼ on. Other

approaches that also treat the simulator as a black

box include harmonic differences based on frequency

domain experimentation and simultaneous

perturbations (Spall 2003). The latter approach has

the advantage that it only requires two simulation

replications per gradient estimate, regardless of the

dimension of the parameter vector.

Convergence of SA algorithms can be guaranteed

by establishing conditions on the objective function

lðyÞ, the gain sequence fang, and the bias and

variance of the gradient estimator bHlðyÞ. Generally,
the objective function should be differentiable and

either convex or unimodal; in the unconstrained

version (without the projection operator), additional

conditions are needed. The gain sequence should be

diminishing at an appropriate rate: too fast will lead to

premature convergence to a suboptimal solution, and

too slow will not guarantee (almost sure or with

probability 1) convergence to the optimum. The bias

of the gradient estimate must go to zero, and the

variance must generally be uniformly bounded. As

opposed to conditions placed on the gain sequence,
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conditions on the objective function and gradient

estimator may not be directly verifiable in simulation

optimization.

One set of common assumptions satisfying the gain

sequence conditions for convergence w.p. 1 isP
n an ¼ 1;

P
n a2n <1; which for example the

harmonic series an ¼ a=n (for some constant a)

satisfies. In the harmonic series sequence of step

sizes, a decrease is taken at every iteration, but this

may lead to rather slow convergence, so in practice,

sequences that decrease more gradually, or even

constant step sizes, are often employed. The gain

sequences are generally of the form an ¼ a=na and

cn ¼ c=nb, where a, b, a, and c are constants to be

selected, subject to a � 1 and a� b > 0:5. Under

these conditions, the optimal asymptotic convergence

rates can be achieved: n�1=2 for the Robbins-Monro

algorithm, and n�1=3 (n�1=4) for the Kiefer-Wolfowitz

symmetric (one-sided) differences.

One empirical observation to note is that iterate

averaging often demonstrates superior performance

over simply using the iterate itself, i.e., using

yn ¼
Pn

i¼1 yi=n as the estimate of the optimum; see

Pflug (1996) for further discussion and references.

Sample Average Approximation

The basic idea of the sample average approximation

approach is to replace expectations in the objective

function and/or constraints with their sample

averages, where the samples are obtained through

simulation replications, and then solving the resulting

problem formulation using deterministic optimization

techniques, e.g., from mathematical programming. For

example, in the formulation given by (1), where

lðyÞ ¼ E½Lðy;oÞ�, if a sample of N independent and

identically distributed versions oi; i ¼ 1; . . . ;N; are

obtained through simulation, then one would simply

solve the sample average problem (sometimes called

the stochastic counterpart)

min
y2Y

1

N

XN

i¼1

Lðy;oiÞ;

where the formulation written in this manner

implicitly assumes the constraint set Y does not

involve quantities estimated from simulation.

In many (if not most) SAA applications, much more

is known about the form of L than in the settings

assumed by other procedures described in this entry,

e.g., linearity or convexity, because the types of

problems that are solved by this method generally

arise in mathematical programming settings where

there is structural knowledge about the problem. For

example, SAA is used for stochastic programming

when the scenario structure makes it impractical

to calculate the expectation analytically, so that

sampling becomes the preferred computational

method. More details on convergence and statistical

properties can be found in the accompanying

SAA entry.

Response Surface Methodology

Response surface methodology is based on statistical

design of experiments methodology. The approach

falls into the black box category and attempts to fit

a polynomial of appropriate degree (possibly after

some initial transformation on the input parameters,

called factors) to the performance measure of interest

(called the response). The application of RSM to

simulation optimization takes one of two forms:

• metamodels,

• sequential procedures.

Using a metamodel for optimization means simply

dividing the problem into two separate problems of

estimation and optimization, similar in philosophy to

the sample average approximation approach, the big

difference being that in metamodeling an estimate of

the output L is obtained for specific values of y to be

determined through appropriate statistical design of

experiments. After choosing the design points of y at

which to simulate, the outputs are used to fit a global

response curve called the metamodel – a complete

functional relationship between the performance

measure and the parameters of interest – which is

then treated as a deterministic function and

optimized using applicable deterministic procedures.

An extensive discussion of the statistical issues

involved can be found in Kleijnen (2008), which

also discusses alternatives to polynomial regression

such as kriging.

The more common use of RSM for simulation

optimization is a sequential procedure. Instead of

exploring the entire feasible region, which may be
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inefficient or impractical, small subregions are

explored in succession according to their potential

improvement. A point – usually the center of the

subregion currently being explored – would represent

the current best value of the parameter. The basic

algorithm can be described as follows:

Phase I (iterated a number of times)

• First-order experimental designs are used to obtain

a least-squares fit linear model. Then, a steepest

descent direction is estimated from the model, and

a new subregion chosen to explore via

ynþ1 ¼ yn � anbHlðynÞ;

where yn is the representative point of the n th

explored subregion, bHlðynÞ is the estimated

(from the fitted linear response) gradient direction,

and an represents the step size multiplier

determined by a line search or some other means.

This is repeated until the linear response surface

becomes inadequate, which is indicated when

the slope is approximately zero, by which the

interaction effects become larger than the main

effects.

Phase II (performed once)

• A higher order (e.g., quadratic) response surface is

fitted using more detailed second-order

experimental designs, and then the optimum

determined analytically from this fit.

Since Phase I is iterative, it is desirable to carry out

fewer simulation replications if possible, whereas in

Phase II, the region should be explored quite

thoroughly by using a large number of replications.

The iterative algorithm in Phase I is identical in form

to SA as given by (2), although in RSM, y is simply

a representative point of the current subregion being

explored, and fang is not generally a decreasing

sequence nor is it held constant.

Concluding Remarks

Due to the rapid advances in computational power, the

possibilities for simulation optimization have made

this topic a very active area of research of OR/MS;

more technical details on the areas touched upon here

can be found in Fu (2013). Much of the most current

work is reported in the annual Proceedings of the

Winter Simulation Conference. Discussion of issues

separating theory and practice can be found in Fu

(2002, 2007).

A closely related field that has shown great

promise in large-scale problems is the use of

simulation in conjunction with stochastic dynamic

programming problems, as opposed to the static

optimization setting described here. In particular,

simulation is used to estimate the optimal cost-to-go

or value function. More details on this approach

called approximate dynamic programming, which

grew out of ideas in the artificial intelligence

community in a field called reinforcement learning,

can be found in Gosavi (2003) and Powell (2011); see

also Chang et al. (2007) for the Markov decision

process setting.

See

▶Approximate Dynamic Programming

▶Cross-Entropy Method

▶Markov Decision Processes

▶Nested Partitions Method

▶Nonlinear Programming

▶Optimization

▶ Perturbation Analysis

▶Response Surface Methodology

▶ Sample Average Approximation

▶ Score Functions

▶ Simulation of Stochastic Discrete-Event Systems

▶ Statistical Ranking and Selection

▶ Stochastic Approximation

▶ Stochastic Programming

▶Variance Reduction Techniques in Monte Carlo

Methods
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Simulator

An artificial means used to model a real-world system,

generally falling into two categories: physical

simulator or computer simulator. The former

category typically consists of machines – e.g., flight

or other vehicle simulators, or military weapons

systems – which mimic the real world by generating

cues for the operator(s), accepting inputs by the

operator(s), and simulating realistic responses by the

machine. The cues may include visual, auditory, and

tactile sensations. The operator inputs consist of

manipulation of control systems similar to those of

the equipment being simulated. A computer simulator

refers to the underlying computer code or software of

a mathematical simulation model, e.g., Monte Carlo or

discrete-event simulation. Obviously, machine

simulators incorporate computer simulation, as well.

Simulators are also commonly used for gaming.

See

▶Control Theory

▶Gaming

▶ Simulation of Stochastic Discrete-Event Systems

Single-server Network

A queueing network with one or more nodes and

one server servicing all of them. Examples are

a token-ring system with (rotating) possession of the

token giving a particular node the right to access the

server, and polling systems whereby a rule governs

the movement of the server around a sequence or loop

of queueing stations. Practical applications include

local area computer networks, robots working on

a production line, and sequential physical service

operations.

See

▶Networks of Queues

▶Queueing Theory
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Singular Matrix

A square matrix whose determinant is equal to 0,

which means that the columns (and rows) of the

matrix are linearly dependent.

See

▶Matrices and Matrix Algebra

Sink Node

A node in a network through which all (or some) of the

flow in the network leaves the network.

See

▶Network

SIRO

Service in random order; a queueing service discipline

in which customers are served in random order

unrelated to their arrival times.

See

▶Queueing Theory

Six Sigma

▶Quality Control

Skew-symmetric Matrix

A square matrix A ¼ (aij) is skew-symmetric if

aij ¼ �aji. Thus, all diagonal elements are zero.

See

▶Matrices and Matrix Algebra

▶ Symmetric Zero-Sum Two-Person Game

Slack Variable

A nonnegative variable that is added to a linear

inequality of the form
P

j aij xj � bi to transform the

inequality into an equation. The slack variable

measures the difference between the right-and left-

hand-sides of the inequality.

See

▶Logical Variables

▶ Slack Vector

▶ Surplus Variable

Slack Vector

The column representation of a slack variable in

a linear-programming problem.

See

▶ Slack Variable

SLP

Successive linear programming.

Smooth Patterns of Production

In a production-planning problem with many

production cycles, one usually attempts to have the

S 1424 Singular Matrix

http://dx.doi.org/10.1007/978-1-4419-1153-7_597
http://dx.doi.org/10.1007/978-1-4419-1153-7_200508
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_840
http://dx.doi.org/10.1007/978-1-4419-1153-7_597
http://dx.doi.org/10.1007/978-1-4419-1153-7_200836
http://dx.doi.org/10.1007/978-1-4419-1153-7_200415
http://dx.doi.org/10.1007/978-1-4419-1153-7_200778
http://dx.doi.org/10.1007/978-1-4419-1153-7_200830
http://dx.doi.org/10.1007/978-1-4419-1153-7_200777


amounts produced in the sequence of cycles to be the

same or as similar as possible. Such a smooth

production pattern (one with small fluctuations) tends

to be more cost efficient than one that has large

fluctuations. Many such production problems can be

formulated as linear-programming problems.

See

▶ Inventory Modeling

▶Operations Management

▶ Production Management

Societal Complexity

Dorien J. DeTombe
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Societal Complexity, Amsterdam, The Netherlands

Introduction

The methodology of societal complexity is in essence

a field of Operational Research in the way the founders

of Operational Research wanted to look at the world

and wanted to help the problems in the world (Ackoff

1974, 1978). The field of methodology of societal

complexity concentrates on handling real life

problems, everyday problems that are described on

the front page of newspapers.

Complex societal problems are worldwide natural

problems caused by viruses like flu pandemics,

fowl plagues and HIV/AIDS, local natural disasters

such as earthquakes, hurricanes, avalanches and

floods, technical dangers caused by industry like

pollution (CO2), traffic, nuclear power plants, climate

change and agricultural business, manmade threats

like (world) wars, terrorism, Internet vulnerability

and stock exchange manipulation, credit crisis and

identity theft. These problems cause much trouble to

the people, the economy and the stability of states.

Handling these kinds of problems belongs to the field

of methodology for societal complexity. The claim of

this field is that complex societal problems should be

handled in according to the approaches, methods and

tools of this field.

The Field of Methodology of Societal Complexity

The field of methodology of societal complexity

focuses on handling complex societal problems.

A complex societal problem can be defined as

a complex interdisciplinary societal problem is a real life
problem, which concerns a real life situation. The
problem can be in the present or in the (near) future,
latent or manifest, structural or incidental. The problem
is often undefined. The problem concerns many domains.
The problem is dynamic and imbedded in a dynamic
world. There are many phenomena and parties involved.
The problem has a large impact on each level of
aggregation of the society and provokes much emotion.
Due to the many aspects of the problem the problem is
complex. The problem can be urgent or less urgent.
A solution is not easy at hand and the desired situation
is not always clear and difficult to find.

and problem handling as

Handling a problem is the process of analyzing, defining
or changing a problem in order to gain more insight into
the problem, whether or not this leads to influencing
the problem in order to reach the desired situation. This
process can be performed actively or passively,
consciously or unconsciously, routinely or once-only,
whether it is by circumventing or by forgetting the
problem, by shifting the problem to another party or by
(partly) changing the problem, by imagination or in
real life, whether through thinking, applying tools
and/or methods.

Not every complex societal problem will be

handled. It depends whether it will be put on the

political agenda. If the problem-handling process is

examined it can be distinguished between several

phases of the problem-handling process (Fig. 1).

After becoming aware of a complex societal

problems and reflecting on the problem to be able to

do some real-life interventions, the problem should be

placed and accepted on the political agenda of

a recognized problem owner who has credibility to

handle this type of problem. For instance, reflection

on the CO2 emission problem in relation to climate

change, a recognized problem owner could be the

Kyoto convention of 1997 or the decision of the G20.

When one decides to handle the complex

societal problem, one should look at the field of

societal complexity for a methodology the guide the

problem-handling process.

Complex Societal Problems

Complex societal problems are commonly handled as

mono-disciplinary problems by considering just
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a single disciplinary department and by asking single

disciplinary experts for advice in handling the

problem. However more and more politicians are

aware of the limitations of the boundaries of their

department and of disciplines to handle complex

societal problems. Complex societal problems often

extend the boundaries of their primary field.

For example, handling a natural disaster like

a hurricane, a tsunami or an earthquake takes

preparation to mitigate the damage beforehand

and needs much coordination at the moment of

the disaster and support afterwards. Not only are

scenarios and plans required, but also training,

communications and coordination are vital. There is

a distinction between prevention and disaster, in case

of a tsunami, building flood free safe houses in

protected areas, preparation for the moment of

a disaster, handling on the moment of the disaster and

shortly after the disaster and reflecting on the effects in

the years afterwards the disaster. To be prepared for

disasters, multidisciplinary groups of experts should

discuss how science, updated technology and

communication tools can support the prevention, the

moment of and the support afterwards in a disaster.

The support of methods and tools of the field of

societal complexity can help prevent unnecessary

damages when disaster threatens, coordinate support,

and protect people and goods.

The healthcare system is also a complex societal

system. Therefore some of the interventions in the

healthcare system should be done along the lines of

the field of societal complexity. The healthcare system

includes many aspects like prevention, healthcare of

the patient, and patient follow-up afterwards. The

doctor-patient relation is not a one-to-one relationship;

it is part of a network of relationships. The patient is

imbedded in a societal relation as daughter, mother,

grandmother, employee, and citizen. A doctor is

imbedded in a network of professional assistance, such

as social work, pharmacy, medical specialism, hospital,

medical research medical industry, assurance company.

Prevention is preferred to curing. The chain of

patient safety starts with prenatal baby care and is

closely related to social policy to prevent pollution,

connected with sustainable food production,

preventing smoking, traffic safety, preventing child

and elderly abuse, education on drinking, etc. In this

chain the medical world should give feedback to the

society of the diseases they encounter. Improving

patient safety is improving people safety.

Specialization and division in tasks is fruitful.

However, a patient is not just a hip, or a leg, the

patient is a human being and a member of the society.

The medical world is a part of the horizontal and

a vertical chain. The horizontal chain is, for instance,

on the level of family doctor: the social worker,

employer, dentist family members. The vertical

chain is the family doctor, specialist, hospital and

insurance companies. Medical professionals and non

medical professionals on micro, meso and macro level.

Sub-cycle I: defining the problem

phase 1.1  becoming aware of the problem and

forming a (vague) mental idea of the problem

phase 1.2 extending the mental idea by hearing, thinking,

reading, talking and asking questions about the problem

phase 1.3  putting the problem on the political agenda and deciding to handle

the problem

phase 1.4  forming a problem-handling team and starting to analyze the

problem

phase 1.5  gathering data, exchanging knowledge and formulating hypotheses

about the problem

phase 1.6 formulating the conceptual model of the problem

Sub-cycle II: changing the problem

phase 2.1 constructing the empirical model and establishing the desired goal

phase 2.2 defining the handling space

phase 2.3 constructing and evaluating scenarios

phase 2.4 formulating hypotheses and suggesting interventions

phase 2.5 implementing interventions

phase 2.6 evaluating interventions and the problem handling process

Societal Complexity,

Fig. 1 The sub-cycles of the
problem handling process
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The medical world is imbedded in the social world,

and has aspects of law, psychology, sociology, policy

on local, state and international level. Therefore

some of the healthcare problem should not be

handled mono-disciplinary but should be approached

as a complex societal problem using methods

and tools of the field of societal complexity.

Compram Methodology

One of the methodologies for handling societal

complexity is the Compram methodology, developed

by DeTombe (1994–2010) (DeTombe 1994, 1999,

2001, 2008a, b, 2010).

The Compram is the next step after Soft Systems

Methodology (Checkland 1982) and System

Dynamics. It combines aspects of different

approaches into a structured interactive approach

for policy making in collaboration with experts and

stakeholders in order to find possible transitions of

the situation that can be mutually accepted and

implemented into real life.

The Comprammethodology is based on the idea that

societal problems must be handled multidisciplinary

and cooperatively with experts, policy makers and

stakeholders together. These difficult and complicated

group processes are guided and structured by

a facilitator in a six step approach. Multidisciplinary

experts, stakeholders and policymakers discuss the

content and possible solutions based on a cooperative

(simulation) model of the problem. The method

emphasizes facilitating the exchange of knowledge,

and understanding and communication among the

experts, stakeholders and politicians.

Knowledge, power and emotions are the basic

elements in handing complex societal problems. The

Compram methodology is a prescriptive framework

method to which all kind of sub-methods can be

applied. The Compram methodology has been used

as a theoretical basis for handling over sixty real life

cases in the field of societal policy making and in

real life complex societal problems in several

countries of all continents. The Compram

methodology is advised by the OECD (July 2006) to

handle complex societal issues. The ‘Final consensus

report’ from the OECD Global Science Forum

Workshop held in Tokyo, Japan, on December 5–6,

2005 organized by the JST-RISTEX (Research

Institute for Science and Technology for Society,

Japan Science and Technology Agency).

Many complex societal problems are a threat to

people, the economy and the stability of the state, but

most of all the quality of life. In order to create a safer

society one needs to know where the danger comes

from and what causes the threat. Each threat has

different causes and different effects on different

elements in society. Therefore, one has to carefully

analyze the situation, make a distinction between

causes and effects, see the elements and how they are

related, see which power groups are involved, and to

find out which package of sustainable changes can

have the desired effects.

To find out what is known about the problem one

has to analyze who is effected by it, which parties are

involved, who benefits and who suffers, and what

emotions and political vulnerability are going on.

This needs an interdisciplinary approach. An

interdisciplinary group of knowledge experts should

analyze the situation and discuss possible changes.

Then stakeholders should discuss the issue and give

their opinion on the situation. Together the experts and

stakeholders should find some fruitful changes. The

interventions should be carefully implemented and

evaluated on their desired effect on the problem.

Each complex societal problem has knowledge,

power and an emotional element.

The Compram methodology starts when the

problem owner invites a facilitator to guide the

problem by handling the process according to

the Compram methodology.

Handling complex societal problems needs

a special approach. Handling societal problems in an

interdisciplinary way has become a must for society

and a challenge for the human sciences. The problems

society is confronted with are difficult to handle. There

is a growing gap between the complexity of these

problems and the human capacity to deal with them.

There is a need for better methods and tools, more

knowledge and imagination. Scientific knowledge is

needed to survive amidst these problems.

Some of the scientific reasons for this special

approach are that the problems are seldom defined,

change during their development, many stakeholders

are involved often with a different view on the

problem, with different interest and with different

‘solutions’ in mind. Societal reasons for this special

approach are the importance of these problems for

society, the impact they have on many people, and

the large amount of money involved. Combining the
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effort of scientists who are working in this field is an

inspiring serious challenge from the perspective of

a number of disciplines. Combining existing

knowledge and creating new insights with methods

and tools for supporting complex societal problems is

a challenge for scientists from different fields.

Most political problems are handled directly in

relation with powerful groups involved in the

problem, who by way of lobbyists influence

the decisions of the political interventions. However,

this directs the definition of the problem and therefore

the solution of the problem directly to the definition

of the most powerful groups in the problem handling

process neglecting the more powerless groups. In order

to give the powerless group also a chance and in order

to be able to really see how the problem looks like

a team of so-called neutral experts should first define

the problem before the problem is handled. These

neutral experts are selected based on their knowledge

of a part of the field of which the problem is.

The facilitator therefore selects a group of neutral

experts, neutral toward a certain definition and

a certain solution to the problem and invited them to

make a definition of the problem. In several meeting

the experts each coming from a different discipline

defines the problem. They do this guided by the

facilitator with the help of a seven layer

communication model (see Fig. 2), in which they first

describe the problem in words, then define the concepts

, then identify the knowledge. Is what the experts say

based on theory, assumption or experience? Then base

on the description of the problem they make together

a simulation model. The relations of the phenomena

and their effect on each other can then be carefully

described and simulated. In the conceptual model next

to the phenomena the power groups and their emotions

are identified and described. This conceptual model

can then after agreeing on the content be altered in an

empirical model.

After the empirical model the handling space will

be discussed. How much space is there for the

problem owner to change the problem? Should this

be here and now concerning a country, a continent or

the world? Then, based on several scenarios the group

of experts can suggest several intervention and

intervention strategies.

The Compram methodology consists of 6 steps of

interventions of a complex societal problem

(see Fig. 3).

The second step is inviting the power groups. Power

groups with much influence and less influential

power groups.

Groups of stakeholders who benefit from the

problem and groups of stakeholders who suffer

from the problem. The facilitator invite each group

separate and stimulated them to undergo the same

process of problem handling described above to

define their own view of the problem, their own

definition and to describe the interventions they

want to do and their intervention strategies.

Based on these outcome mutual meetings of neutral

experts and stakeholders groups are then invited to

look at the problem and find mutual accepted

interventions. Then groups are formed to formulate

implementations strategies for changing the problem

and to guide and later on evaluate implementations for

changing the problem (Fig. 3).

The Use of the Methodologies of the Field of

Societal Complexity in Real Life

The Compram methodology is recognized by the

OECD for handling global safety. That means that in

order to develop and combine the knowledge, the

methods and tools for handling societal complexity

problems, special multidisciplinary knowledge

institutes should be created that can become aware of

future and now-a-days dangers and threats. These

institutes perform multidisciplinary research and

advice policy makers how to handle global safety

issues in an integrated multidisciplinary, multi actor

approach. In order to accomplice this, each country

should establish multidisciplinary centers for research

on societal complexity. These institutes should focus

on their own specific local complex societal problems

in cooperation with the already existing local institutes

on safety. International they should cooperate with

same kind of institutes on global threats.

These centers should be closely connected to the

university. Inside the university a department for

societal complexity may be established. In order to give

some ideas this department can start with a team of

scientists mainly interested or educated in methodology,

coming from alpha, beta and gamma sciences.

Although researchers in this field are convinced that

complex societal problems should be handled

according to the direction of the field of methodology

of societal complexity, relatively few complex

societal problems are handled in this way. There are
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several reasons for the reluctance of the politicians to

handle complex societal problems.

First of all, most of the politicians are not aware of

or unfamiliar with the methodology. This could be met

by a more structured approach to teach managers,

future politician and university students in their

basic study in the field of for instance agriculture,

healthcare, economy and transport. The main

concepts and ideas of the field of societal complexity

could be included in their basic university education.

So that they are later on in their professional life at

least aware of a more fruitful and sustainable approach

towards complex societal problems.

A second point is that politicians want to jump to

conclusions and do not want to spend too much time in

defining the problem. They want directly to deal with

the powerful stakeholders to find mutual accepted

solutions. They like to start directly with problem

handling phase 2.3 and 2.4 (see Fig. 1).

Another point is the transparency of, for instance,

Compram. This methodology is based on a democratic

decision-making process and is made transparent

by prescribing that all the activities in each step

should be open reported afterwards including the

result, who were involved in the decision process,

and what has be discussed in this process. Not all

politicians want this openness.

Yet another point is the structure of most of the

government departments. These departments are

separated from each other and it is very hard due to

competition and power fights and budgets to work

together on a mutual problem.

See

▶Complex Problem Analyzing Method (Compram)

▶ Practice of Operations Research and Management

Science

▶ Problem Structuring Methods

▶Robustness Analysis

▶ Soft Systems Methodology

▶ Strategic Choice Approach (SCA)

▶ Strategic Options Development and Analysis

(SODA)

▶ System Dynamics

▶Wicked Problems
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Soft Systems Methodology

Peter Checkland

Lancaster University, Lancaster, UK

Introduction

Soft Systems Methodology (SSM) is an approach to

tackling the kind of problematical situations with

step 1 analysis and description of the problem by a team of neutral

content experts
step 2 analysis and description of the problem by different teams of

stakeholders
step 3 identification of interventions by experts and stakeholders
step 4 anticipation of the societal reactions
step 5 implementation of the interventions
step 6 evaluation of the changes 

Societal Complexity, Fig. 3 The six steps of the Compram
methodology
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which managers of all kinds and at all levels have to

deal in their professional lives. As its name implies,

SSM is based upon systems ideas, and a systems

approach, but not in the conventional sense in which

those phrases are usually used. Normally those words

imply taking parts of the real world to be systems, and

improving the performance of those systems in

meeting their declared objectives. This is the

approach found, for example, in systems engineering,

systems analysis, classical operations research (OR),

and in most management science textbooks. SSM was

developed in the 1970s and 1980s in management

situations in which objectives were themselves

problematic and the engineering/optimizing

approaches developed in the 1950s and 1960 could

not be used unchanged. It is thus complementary to

the earlier methods.

SSMwas developed in a program of action research

in the kinds of real-world situations that are often

referred to as wicked problems (Rittel and Webber

1973) or messes (Ackoff 1974), and it is SSM

which is the main source of the distinction now

commonly made between hard and soft methods

(discussed below); and it is a main component of

what is thought of (especially in Europe) as soft OR.

Origins and Development

At Lancaster University in the UK in the mid-1960s,

a postgraduate department of systems engineering

was established. The first external project carried

out examined the possibility of controlling

a paper-making line by computer, a classic systems

engineering study. However, the late Gwlym Jenkins,

who established the department, always interpreted the

word engineering in its broad sense, the sense in which

you can engineer a meeting with someone, or the

release of hostages. A program of action research was

therefore established by Checkland in order to

investigate the possibility of using systems

engineering methods not in technically defined

problems but in the kind of general problem

situations faced by managers. It was discovered that

in such situations the straightforward definition of the

relevant system and its defined objectives was not

possible. Individuals and groups of people having

different interests were always involved in such

situations; what was problematical, and how, was

always a matter of judgment; and the idea of finding

solutions that eliminated problems was too simplistic

a concept. For example, an early study examined the

then-current Anglo-French Concorde project, already

beginning to overrun its cost and time estimates, and

a matter for much public debate in the U.K. It was not

enough to think of such a development only as

“a system to develop the world’s first supersonic

passenger-carrying aircraft.” The problem situation

as a whole included political, cultural, economic,

environmental and employment issues, having been

set up when President de Gaulle of France was

vetoing British entry into the European Common

Market.

Progress was made in such situations by realizing

that all real-world problem situations, large or small,

public-sector or private-sector, have at least

one characteristic in common: they contain people

seeking to take purposeful action. Methods were

developed of making systems models of

human-activity systems. However, it was soon also

realized that any purposeful action is always open to

many different interpretations, one observer’s

terrorism being another’s freedom-fighting. Therefore

the approach emerged of first making a number of

models thought relevant to the different interests at

work in a problem situation, each model being based

upon an explicit declared world view. Such a clutch of

models could then be used to structure a debate with

people in the problem situation, the debate focusing on

a search for action likely to bring about improvement

in the situation. The structuring of the debate was done

by using the models as a source of questions to ask of

the real situation, or a source of possible scenarios that

could be compared with recent happenings in the

situation in question.

SSM thus developed as a learning, or inquiring

system having the form shown in Fig. 1, one based

on models of human activity systems as an explicit

structuring device which could bring rigor to a debate

about change. The change itself might be procedural,

structural, attitudinal or, as is common, somemix of all

three. It is important to note that the models are never

taken to be descriptions of the real world; they are only

devices to help structure debate.

The first paper on SSM was published in the early

1970s (Checkland 1972), and there is now a large

literature, both primary and secondary. The

development of SSM over more than 40 years has
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entailed the refinement, in practice, of the different

aspects of the inquiring system: ways of finding out

about a problem situation; choosing relevant models;

model building; conducting the debate; defining useful

change. These aspects will be briefly described. See

Checkland and Poulter (2006) for a detailed account.

The Process of SSM

Overall, a use of SSM can be thought of as an

intervention in a human situation that has arisen

among a group of people in a particular setting, in

order to find accommodations which will enable

action to improve the situation to be taken. It

therefore consists of analysis to understand the story

of the situation and how it has arisen, and analysis to

find out (and help to create) the accommodations

between different interests and world views which

enable action to be taken. Explicit use of the

approach leaves a recoverable trail that can be traced

by anyone interested. It has to be accepted that action

in human situations cannot match the repeatability

criterion of natural science carried out in laboratories.

But SSM allows the full recoverability of the

intellectual process that enables action-to-improve to

be taken (Checkland and Holwell 1998).

Three analyses serve the finding out about the

problem situation, something which will inevitably

continue throughout a study. Discovering the history

of the situation is reinforced, in Analysis One, by an

analysis of the intervention itself. Who caused it to take

place?; Who is doing something about it?; and most

important – Who could the issue owners be taken to

be? A list of plausible issue owner’s is a useful source

of choices of models of human-activity systems likely

to be relevant to exploring the situation. (Discovering

which models are truly relevant will emerge in moving

round the learning cycle of Fig. 1, something which

will be done many times during a serious study.)

Analyses Two and Three feed an understanding of

the context of the problem situation. The former

explores the social reality: the roles, norms, and

values taken seriously by people in the situation; the

latter finds out the ways in which power is manifest in

the situation. Both will enrich understanding of what

action might be taken to bring about improvement.

SSM’s stream of logical (task-oriented) analysis

starts by building the devices that are human-activity

system models. They consist of a structured set of

activities that as a whole would constitute purposeful

activity, together with monitoring and control

activities which would in principle enable the

purposeful whole to adapt and survive in a changing

environment. Such models are normally built from

a statement of a purposeful activity, known as

a root definition, which embodies a declared

Weltanschauung or world-view. A full root definition

will usefully use the formula: a system to do P by

means of Q in order to help achieve R. This answers

What? How? and Why? questions about the activity

and leads to the monitoring and control of the system

being in terms of criteria for efficacy (is the output

achieved?) efficiency (are minimum resources used?)

and effectiveness (is this contributing to a longer term

aim?). Figure 2 (Checkland and Holwell 1997) shows

a model built by taking the existing mission statement

of the Scandinavian home furnishing company IKEA

as a root definition. IKEA’s worldview is that

a successful home furnishings business can be

operated which combines elegant design with good

functionality, and, what is more, can do this for

a mass market. The model assembles the activities

necessary to do this and links them by arrows that

Cultural
analysis

Action
to
improve

Structured
debate about
change, seeking
the accommodations
which make change
possible

‘Relevant’
models of
purposeful
activity
systems,
as concepts

Perceived
real-world
problem situation

Soft Systems Methodology, Fig. 1 The learning system
which is Soft Systems Methodology (reprinted with permission
of John Wiley and Sons from Checkland and Holwell’s
Information, Systems and Information Systems, 1997)
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show how the activities are contingent upon each

other. Each activity could now be expanded into

a model of higher resolution.

A final aid to formulating root definitions and

building models is a set of elements that are relevant to

all purposeful activity. They make up the mnemonic

CATWOE, the central T of which indicates that

any purposeful activity can be expressed as

a transformation of an input into an output, not

infrequently a need into that need met. The other

elements are: customers (those directly affected by the

activity, whether as victims or beneficiaries); actors

(who would carry out the activities); the world-view

which makes sense of this purpose; the owner who

could stop the activity; and the constraints from the

environment which this activity takes as given.

Once models have been built they can be used as

intellectual devices to structure a questioning of the

real situation. The models are of course much simpler

than any description of actual real-world purposeful

action (which will always embody more than one

world view) but they serve to tease out often

unquestioned assumptions and to initiate, as well as

structure, a learning process within the situation

studied.

The purpose of the comparing of models with

perceptions of the real situation is, by structuring

debate, to get assent to changes that are both

desirable and culturally feasible, and would improve

the problem situation. Obtaining that assent of course

changes the original situation, so the cyclic learning

process is in principle never-ending.
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Soft Systems Methodology,

Fig. 2 An SSM-style model
from the IKEA mission
statement, concerned with
marketing home furnishing
items of good design and
function at prices low enough
to enable a majority of people
to afford them (after
Checkland and Holwell 1997)
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SSM in Use

SSM is normally taught as a stepwise process, and

users at first normally approach it in this way, but

that is not how experienced practitioners use it. SSM

is, as its name indicates, a methodology, that is, a logos

of method: a set of principles of method. This means

that although uses of it will bear a family resemblance,

it has to be adapted by a particular practitioner to

a specific situation (Atkinson 1984). For experienced

practitioners the methodological principles become

tacit knowledge, and they will react to an evolving

situation as its fluctuations demand. They will use

Fig. 1 and will draw on the specific features of SSM

in whatever ways are appropriate in their particular

situation.

SSM can be seen as building upon work done in the

systems and management science area by Churchman

(1971), Ackoff (1974) and, especially, Vickers (1965).

Its primary and secondary literatures contain many

descriptions of its use, usually in organizational

settings, the primary literature, in book form, being

that which describes the action research program in

which it has been developed: Checkland (1981),

Checkland and Scholes (1990) and Checkland and

Holwell (1997), Checkland and Poulter (2006).

Hard and Soft Systems Thinking

It is frequently stated that such hard problem-solving

approaches as systems engineering and classical OR

are most appropriate in well-defined situations in

which objectives are known, and it is ways of

achieving them which are problematical. On the other

hand, a soft approach such as SSM is said to be

appropriate in confused, unstructured situations in

which both what to do and how to do it are

problematical. This is not untrue, but it fails to make

a sharp distinction between the two kinds of approach.

The core difference between hard and soft

approaches lies in the different ways in which they

use systems ideas (Checkland 1985). A very

influential early textbook of OR, written in the

1950s (Churchman et al. 1957) argues that

“the comprehensiveness of OR’s aim is an example

of a systems approach” and that “OR is concerned with

as much of the whole system as it can encompass.”

This latter statement sees OR as intervening in systems

assumed to exist in the real world. This is a familiar

thought, deeply embedded in all of us by the way in

which the word is used system in everyday language.

One casually speaks of the legal system, health care

systems, or the education system, assuming that these

systems truly exist in the world. This is the hard

assumption: that the world contains systems. In

reality these areas of human activity only very rarely

approach the concept of system as a fully-integrated

adaptive whole. The soft approaches, on the other

hand, do not assume that systemicity lies in the

world. There the assumption is that whatever the

perceived real world consists of (on which they are

neutral), the process of inquiry into the world can be

organized as a learning system. Thus, in SSM, the

system is the process of inquiry itself – though SSM

happens also to make use of systems models of

purposeful activity, though these are not would-be

descriptions of anything in the world, only devices

used to structure debate.

It is this different answer to the question, “where are

systems to be found?” which marks the difference

between hard and soft approaches. This makes the

two complementary to each other and powerful in

combination.

Extensions and Advances

SSM was developed in the action research program at

Lancaster University, which ran for 30 years and

included more than 300 projects carried out in real

situations. So it can fairly be described as a mature and

well-tested process. But such a process, formed through

real-world experience, can never be regarded as having

reached a final state. So it is appropriate to indicate some

developments that have extended the process.

As project experience accumulated it was realized

that a user of SSM always faces two problematic

situations. Obviously one of these is the real-world

situation in which the methodology is to be used; but

also there is the situation in which the user has to

decide how to do the study, how to craft the

principles of the methodology into an approach to

this particular situation, involving the requisite

people, with their particular history and world-views,

now. It was realized that SSM could be used in both

situations. Thus, every use of SSM could, if it seemed

appropriate, entail both SSM using models to explore
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the content of the situation, SSM(c), and SSM using

models to explore the process of tackling the issues

giving rise to the study, SSM(p). Discussion of this is

found in Checkland andWinter (2006), and Checkland

and Poulter (2006). It is frequently the case that as

ideas for models relevant to the situation content

emerge, the first model to be built is of a system to do

the study, i.e. part of a use of SSM(p).

Also, the use of SSM(p) as an overall approach to

project management has been taken further by Winter

and collaborators. See their papers in a special issue of

the International Journal of Project Management

edited by Maylor (2006): Rethinking Project

Management; see also Winter and Checkland (2003)

and Winter and Szczepanek (2009).

Related to the recognition of SSM(c) and SSM(p) is

another example of learning from experience which

arose during SSM’s development. Retrospective

examination of a large number of root definitions

from which models had been built in earlier studies

revealed that most of them were of purposeful activity

which was present in the real world in organizational

form, as departments or divisions, or sections within

organizations. (This limitation was probably due to the

initial legacy of the kind of thinking embodied in hard

systems engineering, namely that the real world

contains systems which can be engineered, the stance

which had to be replaced as SSM emerged and the

fundamentals of the hard/soft distinction were

recognized.) It became important to note that although

organizations could create purposeful functions (such as

Production, Marketing or Distribution) and embody

them as structures, every organization has to carry out

manymore important actions beyond those that could be

embodied in functional structures. For example, a major

UK charity, Oxfam, grew from its origins in relief work

(beginning as the Oxford Committee for Famine Relief)

into a major source of development projects in the Third

World. A permanent issue in the charity is the balance of

resources between these two very different activities.

Thus, in an SSM study of Oxfam, a highly relevant

purposeful activity worth modeling is a notional

system to balance resource allocation between relief

and development, though this is not the function of any

one structure within the organization. Such a root

definition is called an Issue-based definition, whereas

root definitions that relate to organization structures are

known as primary task definitions (Checkland and

Poulter 2006). Much experience has shown that it is

best always to work with both kinds of model, not

least because the boundary of an issue-based model

will cut across organizational boundaries. Since

internal organizational boundaries always relate to

issues of politics and power within organizations,

issue-based models always raise awareness and attract

attention and energy.

A third area of SSM which remains to be cautiously

mined concerns the nature of the very subtle process

which is initiated when purposeful activity models,

built according to different world-views, are used as

a source of questions to explore a real-world situation.

The caution stems from the fact that no two projects

using SSM ever have more than a broad family

resemblance to each other, simply because no two

situations involving human beings are ever exactly

the same. Neither are human situations ever

static. In addition, the discussion and debate initiated

by consideration of models based on different

world-views provokes and stimulates a level of

discussion beyond that which is normal in most

Western organizations. Mental furniture tends to get

shifted in such a debate. Unsurprisingly, attention to

this aspect of SSM has arisen from Eastern interest in

the approach, especially in the work of Kenichi

Uchiyama, which interprets SSM from the Japanese

point of view in his book, The Theory and Practice of

Actuality (Uchiyama 2003). He came to SSM as an

experienced manager. Working in both Casio and in

IBM Japan, he observed two very different ways of

thinking about a market. IBM conceptualized a market

as an external thing outside themselves that they would

enter and try to capture. In Casio, the chief executive,

addressing managers in the company, would say

“We must find ourselves in our market”, a very

different concept to that of IBM.

Uchiyama’s work is centred on making the

distinction between reality and actuality, a distinction

that he takes from the work of Bin Kimura, an eminent

Japanese psychiatrist. Uchiyama uses the example of

listening to music to illustrate the reality/actuality

relationship. The reality of a musical performance is

that a succession of external notes (vibrations in the

air) are produced and delivered. What is heard,

however, is not that, but a melody, as a whole entity,

and hearing it stems from a two-way link between

this particular performance and one’s whole

already-existing experience of listening to music. It is

heard in actuality, not reality. Uchiyama argues that,
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via the modelling and debate stages, SSM is best seen

as a methodology to bridge reality (where most

Western thinking is focused) and the actuality of the

people in the problem situation addressed, of which

Eastern thought is more aware. This is the most

insightful contribution that has so far been made to

the error-strewn secondary literature on SSM, and it

opens up new developmental possibilities. Uchiyama

sees SSM as closer to Japanese models of thought than

it is to Western thinking, and this may explain the

extraordinary difficulty many people in Europe and

America have in grasping, for example, the

difference between hard and soft systems thinking. In

the West, it is evidently extremely difficult for many

people to give up the idea that systems are things out

there in the world, rather than being world-view-based

epistemological devices for trying to understand

the world.

Expositions of SSM come in books from the Open

University in the U.K., where thinking and systems

methodologies have been taught since the early

1970s. The book edited by Reynolds and Holwell

(2010) describes SSM and other systems approaches;

Ramage and Shipp (2009) in their book, Systems

Thinkers, describe the work of thirty selected people

in the field, including Checkland, in short chapters

which introduce the work and include an extract from

the writings of the chosen thirty. For a discussion of the

difference in treatment of SSM between the U.S. and

the U.K., see Paucar-Caceres (2011).

Probably the best attempt to express the essence of

SSM in a single phrase comes from J.M. Gvishiani,

who was head of the Moscow Research Institute for

Systems Analysis when Checkland was invited to

spend a week there giving lectures and seminars.

“I see your approach,” he said, “as a rigorous

approach to the subjective.”

See

▶Community OR

▶Learning

▶Model

▶ Practice of Operations Research and Management

Science

▶ Problem Structuring Methods

▶Robustness Analysis

▶ Strategic Choice Approach (SCA)

▶ Strategic Options Development and Analysis

(SODA)

▶ Systems Analysis

▶ System Dynamics

▶Wicked Problems
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Sojourn Time

The total time spent in a queueing system, including

both the delay and service times; sometimes called the

total waiting time or just waiting time. Often used as

the time spent in a visit to a state of a stochastic process

such as a Markov chain.

See

▶Markov Chains

▶Markov Processes

▶Queueing Theory

Solution

A set of values for the variables of a problem that

satisfy all the constraints of the problem.

See

▶ Feasible Solution

Solution Space

For a constrained mathematical programming

problem, the solution space is a portion of Euclidean

space defined by all the constraints of the problem. For

a linear-programming problem, the solution space

is defined by the intersection of the nonnegative

portion of Euclidean space and the constraints of the

problem.

See

▶Linear Programming

▶Mathematical Programming

▶Mathematical-Programming Problem

▶Nonlinear Programming

SOS

▶ Special-Ordered Sets (SOS)

Source Node

A node in a network from which all (or some) of the

flow in the network enters the network.

See

▶Network

SPA

Smoothed Perturbation Analysis.

See

▶ Perturbation Analysis

Space
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Introduction

Man’s venture into outer space began on October 4,

1957, with the successful launch by the U.S.S.R. of the

first artificial Earth satellite, Sputnik I. This was soon

followed on November 3 by the dog (Laika)-manned

Sputnik II. The first American satellite, Explorer I, was

launched on January 31, 1958. From this period on,

both the U.S. and the U.S.S.R. have mounted extensive

research and development activities for putting

manned space vehicles into Earth orbit. In particular,

the U.S. established the National Aeronautics and
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Space Administration (NASA) on October 1, 1958

with the mission “. . . to achieve at the earliest

practicable date orbital flight and successful recovery

of a manned satellite, and to investigate the capabilities

of man in this environment,” (Swenson et al. 1966,

p. 111). From this beginning, the U.S. man-in-space

program can be traced from Project Mercury (Glenn in

Earth orbit on February 20, 1962), to Project Gemini

(two-manned space capsule in Earth orbit), to Project

Apollo (the moon-landing on July 20, 1969), and to the

Space Shuttle. However, the Soviet effort succeeded in

sending the first manned satellite into Earth orbit with

the launch of Gagarin on April 12, 1961.

During the 1970s, countries in addition to the

United States and the Soviet Union/Russia

became involved in the exploration of outer space.

For example, the European Space Agency (ESA),

established in 1975, has 18 member states and a staff

of approximately 2000. The ESA has engaged in both

manned exploration, mainly through its participation

in the International Space Station Progam, and

unmanned exploration of the moon and other planets.

In addition, the People’s Republic of China was the

third country to independently send humans into space

in 2003 (Clark 2004). For information about U.S.

activities with respect to space exploration prior to

the formation of NASA, see Roland (1985). For

historical perspectives on space flight, see Emme

(1977) and Siddiqi (2010).

Missions to outer space might be classified as

involving: (1) space shuttle/other manned space

flights involving travel to and from the International

Space Station, maintenance of the Hubble Telescope,

or independent earth orbit, (2) satellites launched

into earth orbit for communication, scientific

experimentation, and/or defense, or (3) unmanned

spacecraft with a destination of the moon of earth/

moons of other planets and/or the other planets of the

solar system. In the last category, the missions can

involve the actual landing on and exploration of

planetary surfaces and/or atmospheres (e.g., see the

discussion of the Cassini mission to Saturn by Savory

and Saghi 1997).

Throughout this time, OR/MS techniques have

been used by NASA and the space industry in general

in the management and analysis of their space

activities. It is especially interesting to compare the

level of technological sophistication of space-project

planning in 1962 with what accompanied Senator

Glenn when he went back into space in October

1998. Applications over the years have included

project management, forecasting, scheduling,

cost estimating, optimization, simulation, and

multi-objective decision analysis.

Applications

Motivation

Many of the activities, projects and programs

associated with space exploration are characterized

by (1) high degrees of risk, with respect to both

human life and cost, (2) the use of advanced

technology, some facets of which may not have

even been developed at the onset of a mission, (3) the

long time frame associated with many missions

(e.g., a manned mission to Mars would require a time

frame of 20–40 years), (4) organizational challenges

resulting from required inputs of diverse public and

private organizations, and (5) the multiple objectives

in the areas of safety, cost, scheduling and performance

which must be considered. These characteristics would

imply that the modeling techniques associated with

OR/MS are even more important for space

exploration, than they are for earth-based endeavors.

For example, the high cost of the Cassini-Huygens

Mission to Saturn, descibed below, motivated the use

of sophisticated models to test various scheduling

policies for its hardware data control system in order

to minimize risk of failure.

Applications Involving the Space Shuttle and

Potential Future Systems

NASA’s Space Transportation System consists of an

orbiter and its three engines (i.e., the Space Shuttle),

two solid rocket boosters, and an external fuel tank.

The shuttle began operational flights in 1982 and was

retired from service in 2011, after 135 launches, all

from the Kennedy Space Center in Florida. Each flight

of a Space Shuttle requires the scheduling of thousands

of activities that have certain precedence relationships

and require the use of various types of scarce

resources. Scheduling these activities to meet criteria

relating to time, cost, and quality is a complex process.

Developing feasible schedules requires the use

of sophisticated project management techniques,

including project networks, heuristic scheduling

rules, and. Paté-Cornell and Fischbeck (1994) used
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a probabilistic risk analysis procedure to set priorities

for the maintenance of the heat shield tiles of the space

shuttle orbiter. They showed that implementation of

the policy suggested by their procedure would result in

a 70% reduction in the probability of a shuttle accident

attributable to tile failure. Morris and White (1987)

employed a SLAM II simulation model (Pritsker

1986) to analyze the operational support

requirements of the space shuttle under a delivery

payload scenario from the earth to the proposed space

station. The model consists of three major modules:

one each for ground-base operations, space station

operations, and orbital operations. The main inputs to

the model include the delivery requirements at the

space station. The model can be used to help

determine the delivery rate capability of the system,

the support resources required, and the utilization of

various system resources. Bell (1994) developed

a heuristic approach for scheduling the training

sessions in shuttle cockpit simulators.

Numerous new launch systems have been proposed.

Kaylani et al. (2008) have developed GEM-FLO

(A Generic Environment for Modeling Future Launch

Operations), a generic simulation-based modeling

approach for accurately predicting processing

turnaround times and other performance measures in

order to support key program decisions in the selection

of a new launch system. The system assumes that any

new launch vehicle would be composed of several

major components; e.g., the major components of the

STS are noted above. Each major component follows

a generic conceptual flow process, which is integrated

into a generic flow process for the launch vehicle as

a whole. The model was validated with historical data

from space shuttle operations.

Padula et al. (2006) address the problem of

optimization of aerospace design under conditions of

uncertainty. The specific applications addressed

involved three that were undertaken at the NASA

Langley Research Center: (1) impact dynamics for

airframes, (2) transonic airfoil design for low drag,

and (3) coupled aerodynamic and structures

optimization for a 3-D wing.

Applications Involving the International Space

Station

The International Space Station (ISS), the largest

artificial satellite that has ever orbited earth, is a joint

project involving participation of five different space

agencies: NASA, the ESA, the Russian Federal Space

Agency, the Japanese Aerospace Exploration Agency,

and the Canadian Space Agency. Its on-orbit

construction began in 1998, and it is scheduled for

completion in 2011. The cosmonauts and astronauts

who man the station conduct a variety of scientific

experiments. The initial design process of ISS was

obviously a complex one. For example, Quirk et al.

(1989) addressed the problem of selecting one of two

energy module alternatives (photovoltaic or solar

dynamic) for the space station. A chance-constrained

programming model was developed to select the system

that minimized the expected cost, subject to the

constraint that the probability that the net output would

be less than or equal to some given net output would be

no more than a prespecified value. The structure

underlying the model is a stochastic Leontief system.

Inputs to the model include subjective probability

distributions of energy requirements associated with

various activities, as given by Johnson Space Center

engineers. Hence, the model accounted for the inherent

uncertainties associated with each alternative. Groen

et al. (2006) describe a probabilistic risk assessment

for the ISS using a PC-based software package, the

Quantitative Risk Assessment System (QRAS). The

algorithms embodied in the package employ event

sequence diagrams (ESDs) as opposed to event trees to

model various scenarios; the authors note that the use of

ESDs allow for better communication between mangers

and engineers.

Applications Involving a Proposed Manned

Mission to Mars

An important long range program for NASA is

a manned mission to Mars. In this regard, Tavana

(2004) examined three alternative mission

architectures for such a mission: (1) split mission

scenario (pre-deployment of mission assets to Mars,

followed by the mission crew), (2) combo lander

scenario (mission assets travel with the crew), and

(3) dual scenario (a combination of the previous two

scenarios). The approach employs the analytic

hierarchy process (AHP), subjective probability

assessments (attained from personnel at the Johnson

Space Center), and the entropy method in order to

consider the risks and benefits of the seven phases of

such a mission: earth vicinity/departure, Mars transfer,

Mars arrival, planetary surface, Mars vicinity/

departure, Earth transfer, and Earth arrival.
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In another study related to a manned mission

to Mars, Chamitoff et al. (2005) discuss a software

package, Planetary Resource Optimization and

Mapping Tool (PROMT), which provides as output

a global map indicating the relative value of various

Martian landing sites. The software is illustrated

through the use of data provided by the Mars global

surveyor and the Odyssey Spacecraft. The paper notes

that one important aspect in the evaluation of landing

sites is the location of indigeneous resources that can

be used by the mission.

Miscellaneous Applications Involving Scheduling

There are a myriad of applications of scheduling in

space exploration activities, one of which has already

been described above (Bell 1994). The papers

discussed in the following paragraphs will describe

applications involving the scheduling of activities for

the Hubble Space Telescope, the scheduling of data

transmissions from satellites to earth receiving

stations, and the scheduling of a software simulator

for the Cassini spacecraft.

Muscettola et al. (1992) described the Heuristic

Scheduling Testbed System (HSTS) used for

generating observation schedules for the Hubble

Space Telescope (HST). The HST is a $1.4 billion

observatory, with an expected operational lifetime of

15 years. It was placed into earth orbit in 1990. In any

period of time, there are many different observational

requests for the telescope’s resources. Scheduling

these requests is a difficult process for several

reasons. A particular observation may require that

several different operations be performed with six

different scientific instruments that make up the HST.

Several observations may be grouped together within

a particular window of opportunity, depending on

the locations of the telescope and the space objects to

be observed. Parallel observations may be made

with different viewing instruments; yet, not all

six instruments may be turned on simultaneously

because of energy constraints. The HSTS employs

artificial intelligence procedures that provide

a flexible approach to scheduling HST operations.

This approach allows the “effective balancing of

conflicting scheduling constraints and objectives.”

Bell (1996) illustrated the practical use of a new

approach to finding the dual prices in a Lagrangian

relaxation problem. The practical application

involves the transmission of data from satellites to

receiving stations on earth. Such transmissions

require a “line of sight“ from the satellite to the

station, and hence can only be accomplished at

certain times of the day. Given the increasing number

of satellites as compared to the number of receiving

stations, this problem is becoming increasingly

complex. The approach was illustrated with a case

study involving 12 satellites and three receiving

stations over a 1 week period.

Savory and Saghi (1997) developed a model to

simulate various queue scheduling policies to

improve the performance of a software simulator.

The simulator was used to emulate the hardware data

control system of the Cassini spacecraft, which was

launched towards Saturn in 1997. The mission itself

consists of an orbiter, which entered orbit around

Saturn in 2004 and continues currently, and a probe

which was the first man-made device to accomplish

a landing in the outer solar system, on one of Saturn’s

moons, Titan. At the time of its launch, the Cassini was

thought to be “the best instrumented planetary

probe ever developed.” Its cost (estimated at more

than $3 billion) and importance mandated the use of

extensive testing of its various systems, including its

data control system. In order to perform these tests,

scientists at NASA’s Jet Propulsion Laboratory

developed a computer program to represent the

spacecraft’s data control system. Implementation of

the simulation results combined with a software code

redesign resulted in greatly improved performance of

the data control system.

Applications Involving Organizational Design,

Project/Program Selection, or Project/Program

Management

The organizational challenges associated with

the planning, execution, and control of long range

missions for space exploration are daunting. These

challenges include coordinating the activities of

numerous, geographically dispersed technical experts

over an extended period of time. In this regard, Carroll

et al. (2006) describe a study for developing a new

organizational design tool for the NASA Systems

Analysis Integrated Discipline Team (SAIDT).

The study considered the various interfaces between

the organization, activities, and the environment, and

involved the use of various simulation tools.

Strategic (long range) planning for any organization

which plans and conducts missions to outer space is

S 1440 Space



especially important (and difficult) for the reasons

noted above. Decisions include which missions to

undertake, which programs to fund, the amount of

funding to give to each program, what designs to use

for new spacecraft, etc. For example, a long-range

planning problem encountered by NASA is discussed

in Evans and Fairbairn (1989). This research addressed

the problem of determining which missions, out

of many possibilities, NASA should undertake during

the next decades. A 0-1 integer linear programming

model was formulated in which the decision

variables determine whether or not to include

a particular mission in NASA’s long-range plan. The

model allows for the consideration of several criteria

relating to benefits derived in various areas

(e.g., intellectual, humanistic, and utilitarian), as well

as cost. In addition, the model implicitly considers the

dependence among the various missions in the plan by

specifying appropriate constraints. An example of

dependence would be the fact that a manned mission

to Mars would require the undertaking of several

precursor missions. See the NASA Office of External

Relations (1986) report and Paine (1991) for

a discussion of potential missions to space during the

twenty first century.

As implied in the previous paragraph, the concept of

group decision making is important at NASA. Tavana

(2003) developed a group decision-making tool called

CROSS (consensus-ranking organizational support

system) for evaluating and ranking advanced

technology projects using the Analytic Hierarchy

Process, subjective probabilities, and the entropy

concept. The process includes decision makers and

stakeholders and has three phases: an interaction

phase, an integration phase, and an interpretation

phase. The interaction phase involves identifying the

stakeholders and gathering information from them on

their criteria well as the probabilities of occurrence of

each criterion for each project. Also in this phase, the

decision makers use AHP to weight each of the

stakeholder’s respective departments. The integration

phase calibration of results and the use of the

maximum agreement heuristic in order to achieve

a consensus ranking. Finally, in the interpretation

phase, the decision makers make a final

recommendation to management who makes the final

decision. A case study involving ten projects, six

stakeholder departments, and 38 criteria is used to

illustrate the methodology.

Because of the high cost and wide variety of

tasks associated with space flight, cost estimation,

budget allocation, cost accounting and control are

obviously important, and difficult, aspects in this area.

Dillon et al. (2003) described the Advanced

Programmatic Risk Analysis and Management

(APRAM) model, a framework for allocating the

budget for a program among its various dependent

engineering projects. The process allows for the

consideration of tradeoffs between technical failure risk

and managerial failure risk. The process is illustrated

with an application to the Mars Explorer Program.

Castillo et al. (1992) discussed GOST, a modeling

system for cost estimation and mission planning.

Berente and Youngjin (2010) discussed various

issues associated with the implementation in 2004

of NASA’s Full Cost, an activity-based accounting

program. They noted that “some elements (termed

dressage by control) of Full Cost . . .were geared

towards satisfying disciplinary requirements without

necessarily contributing towards productive activity.”

Their main conclusion was that the ultimate goal of full

enterprise control is not attainable.

Bearden (2003) studied the relationships among

risk, cost, and schedule for 45 low-cost small

satellite, planetary missions over the period of

1990–1999, such as the Mars Polar Lander, the Mars

Climate Orbiter, and the Mars Global Surveyor. One

motivation for Bearden‘s efforts was the debate

concerning NASA’s Faster, Better, Cheaper (FBC)

approach to satellite missions and the thought that,

while the approach may have resulted in

improvements to criteria related to cost and schedule,

this was at the expense of a lower probability of

mission success. As part of his efforts, Bearden

developed a complexity index that could be derived

for a specific mission as a function of its performance,

mass, power, and technology choices. This complexity

index was used to normalize development time and

spacecraft cost across missions. The two main

conclusions derived by Bearden through his study

were (1) there is a clear dependence of success rate

on system complexity, and (2) “that low-cost,

planetary missions cost more, are developed faster,

and fail more often than do Earth-orbiting missions”.

Applications Involving Risk Analysis

Risk analysis is another important aspect of space

exploration. Saunders et al. (2003), described
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a process for estimating the likelihood of success of the

missions associated with NASA’s Explorer and

Discovery Programs. Four evaluation criteria are

considered by the process: scientific merit, feasibility

of achieving the mission’s scientific objectives,

feasibility of the mission implementation approach,

and social benefits associated with the mission.

Newman (2001) used a systems engineering

approach to examine the causes of the failures

associated with 50 space systems occurring from

1960 to 2000. About 70% of the cases examined

were from 1990 to 2000. Newman noted that these

failures can be classified according to whether or not

the proximate (i.e., immediate) cause(s) are known.

For example the proximate cause for the space shuttle

Challenger failure was an o-ring failure, but that the

proximate cause of the 1999 loss of the Mars Polar

Lander is not known for certain. However, Newman

notes that whether or not the proximate failure cause is

known for certain, the basic purpose of any mission

failure analysis is to emerge with something on which

to act, and this requires an analysis which moves

backwards from proximate cause(s) through multiple,

possibly intersecting, paths to a variety of root causes.

See

▶Analytic Hierarchy Process

▶Chance-Constrained Programming

▶Leontief Matrix

▶ Project Management

▶Risk Assessment

▶Risk Management for Software Engineering

▶ Scheduling and Sequencing

▶ Simulation of Stochastic Discrete-Event Systems
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Spanning Tree

A subnetwork (graph) of a given network that connects

all the nodes of the network and which has the property

that once a path travels through a node, it cannot return

to that node (the path has no cycles). A spanning tree is

a tree of the network. If a network has n nodes, then the

spanning tree has n � 1 arcs.

See

▶Kruskal’s Algorithm

▶Minimum Spanning Tree Problem

▶Network Optimization

▶ Primal-Dual Algorithm

▶ Prim’s Algorithm

▶Tree

Sparse Matrix

A matrix whose elements are mostly zero.

See

▶Density

▶ Super-Sparsity

Sparsity

▶Density

▶Large-scale Systems

▶ Sparse Matrix

▶ Super-Sparsity

Special-Ordered Sets (SOS)

Types of constraints in optimization models. SOS of

type 1 require that only one variable in the set may be

nonzero; SOS of type 2 require that only two variables

in the set may be nonzero and they must be adjacent.

SOS of type 1 are used in problems in which

the variables in the set are binary and only one

of them can be equal to one (e.g., assignment of

personnel). SOS of type 2 occur when transforming

a separable-programming problem into an equivalent

linear structure. Special computational approaches are

used to simplify the handling of both types of SOS

problems.

See

▶ Separable-Programming Problem

Splines

Sharon A. Johnson

Worcester Polytechnic Institute, Worcester, MA, USA

Introduction

Splines are an important class of mathematical

functions used for approximation. A spline is

a piecewise polynomial function that is commonly

described as being “as smooth as it can be without

reducing to a polynomial” (de Boor 2001). For

example, the cubic spline shown as the solid line
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in Fig. 1 is composed of individual cubic polynomials,

each defined between two adjacent data points, such

that the function values and first and second derivatives

of adjoining polynomial pieces are the same. In

general, a function defined on an interval [a, b] is

defined as a polynomial spline of degree k, having

knots t1, . . ., tr, if the following three conditions hold:

(i) a< t1 < . . .< tr < b, so the knots t1, . . ., tr partition

the interval [a, b] into r + 1 smaller subintervals, (ii) on

each subinterval [ti, ti+1], the spline is given by

a polynomial function of at most degree k, and (iii)

the spline and its derivatives up to order k � 1 are all

continuous on [a, b]. The definition of splines is

sometimes extended to allow the knots to be

coincident (e.g., so that ti ¼ ti+1), in which case the

spline has less continuity at that knot (de Boor 2001).

Recognition in the early 1960s that splines could

mathematically model the physical process of

drawing a smooth curve with a mechanical spline

resulted in further investigation of their

approximation and methods for computing them

efficiently (Schumaker 2007).

The benefits of splines as approximating functions

are discussed below, followed by an application to

illustrate when spline approximation can be effective.

The B-spline representation of a spline is then

introduced. Finally, multivariate approximation is

briefly addressed.

Splines as Approximating Functions

Scientists create mathematical models to describe

a physical system or problem, then experiment with

the model to draw conclusions about that system.

Functions that relate decisions or independent

variables to output or dependent variables form the

basis of these models. While these underlying

functions are sometimes known explicitly, they are

often created by collecting discrete data about the

system, then constructing an approximation to the

unknown underlying response function. Suppose that

the value of a function is measured at points x1, . . ., xn,

yielding values f(x1), . . ., f(xn). In interpolation

problems, the goal is to find an approximating

function s(x) that passes through the points f(x1), . . .,

f(xn), so that s(xi ) ¼ f(xi ). When the measured values

f(x1), . . ., f(xn) contain errors, an approximating

function s(x) is created to balance the desire to obtain

an approximation with smooth behavior and the desire

to fit the data closely enough (Dierckx 1993). For

example, the smoothing splines shown with dashed

lines in Fig. 1 are constructed with a smoothing

factor that allows deviations from the data (de Boor

2001); permitting larger deviations results in a cubic

spline with a smaller second derivative. Broken curve

regression can also be used (Seber andWild 1989) to fit

data with errors.
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The data fitting problems described above are one

major category of valuable approximation (Schumaker

2007). Other common approximation problems

involve replacing a known function with one that is

easy to compute, or estimating solutions to models

involving differential equations, which can only be

solved explicitly for simple cases.

Spline functions are effective approximations

because they are relatively smooth, and splines of

low degree usually provide an adequate fit with

reasonable computational effort (Dierckx 1993).

Every continuous function on an interval can be

approximated arbitrarily well by a polynomial spline

of a particular order, provided a sufficient number of

knots are allowed. For example, adding more segments

to a linear spline (a piecewise linear function) will

better fit a curve. Low order splines are flexible

and do not exhibit the oscillations usually associated

with polynomials. The ease with which splines can be

stored and evaluated on a computer makes them

powerful for a variety of applications. Spline fitting

routines are included in most general software

libraries (e.g., the NAG subroutine libraries

developed by the Numerical Algorithms Group, Inc.,

or the Spline Toolbox for MATLAB developed by

Mathworks, Inc.).

An Application

The cost-to-go function ft (xt) and optimal solution for

a finite horizon dynamic programming problem can be

found by solving the functional (optimality) equation:

ftðxtÞ ¼ max
Rt

fBtðxt;RtÞ þ Eqt ½ftþ1ðxtþ1Þ�g (1)

which in period t represents the expected benefit from

operating the system from period t to the end of the

horizon, given the system begins period t in state xt.

Such problems arise in managing inventory or

planning water reservoir operations, where the state

xt would represent the amount in inventory or the

volume of water in a reservoir. In stochastic

problems, the system is subject to random influences

qt, such as uncertain demand or the inflow to

a reservoir. In each period t, the decision rt is made to

maximize both the benefit Bt occurring from operation

in the current period as well as expected future benefits

Eq [ft+1]. For example, the decision rtmight correspond

to how much to produce or how much to release. The

status of the system xt+1 at the end of each period t is

determined by a transition function g(xt, qt, rt); for

example, in inventory planning, g is xt + rt � qt.

When the state vector xt is continuous, the

cost-to-go function ft and policy rt are often found by

discretizing xt and recursively solving (1) backward,

for t ¼ T (the last time period) to t ¼ 1. Because the

function ft+1(xt+1) is only known at a finite number of

points, interpolation can be used to generate a value

when it is needed at other points. Using cubic splines to

approximate the cost-to-go function can significantly

reduce the effort required to solve such dynamic

programming problems, particularly when the state

vector is of high dimension, because of their accuracy

relative to piecewise linear approximations (so fewer

knots are needed) and because their smoothness allows

efficient optimization methods to be used to find the

decisions rt (Johnson et al. 1993). Splines can also be

applied to more general dynamic programming

algorithms (Schweitzer and Seidmann 1985). They

are also used extensively in computer-aided design

and visualization, as well as in regression and

statistical applications.

The B-Spline Representation

Any spline s(x) of degree k can be written as a linear

combination of B-splines Bi (x):

sðxÞ ¼
X

i

aiBiðxÞ;

where each B-spline Bi (x) is a spline of degree k

(de Boor 2001; Dierckx 1993). B-splines permit the

efficient evaluation of a spline and its derivatives

because they have local support, i.e., outside of

a small range, they take the value of zero.

A particular spline is selected as an approximating

function by choosing the degree k of the spline, the

number and position of the knots ti, and the coefficients

ai. Choosing the number and/or the position of the

knots is often a matter of trial and error. Theory may

suggest points in the data where the underlying model

changes (Smith 1979). More knots should generally be

placed in those regions where the underlying data

change rapidly. Algorithms have been developed for

some spline problems where the knot locations are
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treated as parameters and optimized. Because the

problem is nonlinear, the computational effort in

these algorithms increases significantly as the number

of knots increases (Dierckx 1993).

The conditions that determine the coefficients ai of

the spline depend on how closely the spline is expected

to fit the data, the desired smoothness, and specified

boundary conditions. In problems where the function

underlying the data are known to have certain

properties, such as convexity or monotonicity, it may

be desirable to develop an approximation with the same

properties constraining the coefficients ai. Such shape-

preserving approximations may also be beneficial

because they prevent undesirable oscillations.

Multivariate Approximation

Tensor products are an efficient way to construct and

evaluate multivariate approximations because they

allow a multivariate problem to be solved as a series

of one-dimensional problems (de Boor 2001).

A bicubic spline constructed using tensor product

methods would be a cubic spline in each coordinate

direction. The major drawback of such splines is that

they require the approximation domain to be

a rectangle, or easily transformed to a rectangle

(Dierckx 1993). In addition, constructing tensor

product approximations is appropriate only when it

makes sense to have preferred directions in the

approximant. For example, a bicubic spline could

efficiently approximate a peak that occurred along

one axis. However, many knots would be required in

each dimension if the peak occurred along a diagonal.

When tensor product methods are not appropriate,

constructing multivariate spline approximations is

much more complex and thus computationally less

attractive. First, an appropriate partition of the data

must be chosen. Next an appropriate set of basis

functions (similar to B-splines) must be defined that

permit efficient evaluation of the approximating

function. Dierckx (1993) described two spline

generalizations based on triangularizations of

a surface. Chen et al. (1999) used multivariate

adaptive regression splines to approximate functions

in dynamic programming applications; computational

effort is reduced by constructing the spline using

discrete points determined by orthogonal array

experimental designs.

See

▶Computer Science and Operations Research

Interfaces

▶Dynamic Programming

▶Numerical Analysis

▶Regression Analysis
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Ben-Gurion University of the Negev, Beer Sheva,

Israel

Introduction

The history of the applications of quantitative methods

and systems analysis to sports events is very much

the history of systems analysis and its applications to

many fields of human endeavor. For a thorough review

of all the sports applications up to 1976, see Ladany

and Machol (1977), while for the second half of

the same two-pronged effort which culminated in

invited research articles of the mid 1970s,
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see Machol et al. (1976). A further review,

incorporating most of the later applications, can be

found in Gerchak (1994). In 2005 the Journal of

Quantitative Analysis in Sports was established,

publishing a wide range of relevant O.R. articles.

A Special Issue of Sports Management, containing

a variety of new O.R. sports papers, was edited by

Ladany (2006). Many of the summaries incorporated

here are based on the overview by Cochran (2008).

The first studies of sports were purely descriptive; the

earliest such technical articles, on cricket, by Elderton

(1909, 1927, 1945) and Wood (1945), are described in

Pollard (1977). The application of sophisticated

statistical analysis started with Mosteller (1952),

who estimated the probability that the better team wins

in the baseballWorld Series competition. The next stage

was Mottley’s (1954) suggestion that operations

research could be profitably applied to sports,

specifying football and basketball examples. Bona fide

optimization applications followed when Howard

(1960) and Bellman (1964) applied dynamic

programming to baseball.

In line with the beginning, most of the studies were

applied to team sports, initially dealing with issues of

individual teams, later moving to organizational

matters preoccupying leagues and associations.

The applications to individual sports have been much

fewer.

Team Sports

Baseball – Most of the studies were applied to

baseball, a sport particularly suitable for OR

approaches because the action occurs in discrete

events, and because the state of the game is simple to

specify. The benefit of the strategy of intentional walk

and base-stealing was thoroughly investigated by

Lindsey (1959, 1961, 1963, 1977). The best batting

order was analyzed by Cook and Garner (1964); Cook

and Fink (1972); Freeze (1975) and Peterson (1977),

by Bukiet et al. (1997) using a Markov chain method,

and finally by Sokol (2003) using a robust

heuristic. A team’s elimination from playoff

consideration was explored by Robinson (1991).

Persistence of racial discrimination was discussed by

Kolpin and Singell (1993) using a game-theoretic

model, and Anderson and Sharp (1997) used Data

Envelopment Analysis to create an alternative to the

traditional batting statistics. Brimberg and Hurley

(2004) dealt with a decision problem, final offer

arbitration applied to Major League Baseball players

salary negotiation was addressed by Greenstein et al.

(2004) and by Hannany et al. (2007); investigated

whether the pitcher or the batter control home plate.

The popular book that was made into a movie,

Moneyball (Lewis 2003), highlighted the use of

quantitative statistical methods in baseball in

evaluating the total value of players.

Basketball – Based on analysis of playing statistics,

players are classified by Ghosh and Steckel (1993) as

filling distinct roles, providing guidelines for selecting

draft choices and executing trades. Sinuany-Stern et al.

(2006) applied the analytic hierarchy process for the

evaluation of basketball teams, while Kvam and Sokol

(2006) and Brown and Sokol (2010) used a logistic

Regression/Markov chain model for NCAA basketball

prediction.

Cricket – The decision whether to run when the

batsman is next to strike, was analyzed by Clarke and

Norman (1998a, b) using dynamic programming.

A method for setting revised target scores at a match,

which has been forcibly shortened, is described by

Duckworth and Lewis (1998; Carter and Guthrie

(2004) analyzed fairness and incentive in limited

overs cricket matches, Barr and Kantor (2004)

suggested a criterion for comparing and selecting

batsmen, while Scarf and Shi (2005) modeled match

outcomes and the setting of final innings target.

Football – The value of field position was

investigated by Carter (a former National Football

League quarterback) and Machol (1971, 1978). The

value of a tie and extra-point strategy was analyzed by

Porter (1967) and Bierman (1968). For the Australian

rules football Clarke and Norman (1998a, b) suggested

a new strategy for defending teams, using a dynamic

programming model, while Tomecko and Filar (1998)

analyzed player assignments using an analytic

hierarchy process. Morrison and Kalwani (1993)

analyzed the ability of field goal kickers, Bilder and

Loughin (1998) investigated the probability of success

for placekicks, Brimberg et al. (1999) discussed the

punt returner location problem, Hurley (1998) derived

optimal sequential decisions, Brimberg and Hurley

(2006) have shown that championships are won

based on the ability of a team to run and to defend

the run, while Rosen and Wilson (2007) analyzed the

defense first strategy in overtime games.
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Hockey – The problem when to pull the goalie was

considered by Morrison (1976); Morrison and Wheat

(1986); Erkut (1987); Nydic and Weiss (1989), and

Washburn (1991). League playoff strategies were

analyzed by Monahan and Berger (1977); Thomas

(2007) analyzed the time between goals, Cochran and

Blackstock (2009) applied the Pythagoras model of the

win/loss percentage and goals scored to the National

Hockey League (NHL), Brimberg and Hurley

(2009a, b) investigated whether NHL referees

represent Markovian behavior and questioned the

importance of the first goal in an NHL game.

Soccer – Rivett (1975) modeled the attendance at

soccer matches and suggested changes in the

organization of clubs. Shikata (1977) tried to analyze

the motions of ball and players in a four-dimensional

space. Mehrez et al. (1987) evaluated a new point

system for the soccer leagues, while Mehrez and Hu

(1995) constructed predictors for outcomes in the

league, and Mosheiov (1998) used an integer

program to the generalized knapsack problem to find

the optimal “Dream Team.” Hirotsu andWright (2002)

used a Markov model for optimal timing of

substitution of players, and (2003) determined the

best strategy for changing the configuration of

a team. Hope (2003) investigated the conditions for

firing a team manager, Wright and Hirotsu (2003)

discussed the tactics and deterrents of fouls, McHale

and Scarf (2007) modeled soccer matches, while Scarf

and Shi (2008) measured the importance of a match in

a tournament. In a sequence of articles, with

psychological orientations, Bar-Eli et al. (2007) and

Azar and Bar-Eli (2008) analyze the game between the

goal keeper and the penalty kicker, from the view point

of the goal keeper, while Bar-Eli and Azar (2009) treat

it from the point of view of the kicker, the irrationality

of the performances of the kickers and the goal keepers

is investigated by Bar-Eli et al. (2009), and in Azar and

Bar-Eli (2011) mixed-strategy Nash equilibrium

model is used to predict the results of penalty kicks.

General League Issues – The problem of planning

the schedule of the games for the entire season with the

objective to minimize traveling distance and/or

number of tours, under various constraints, was

attacked – for various leagues – by Campbell and

Chen (1976); Ball and Webster (1977); Bean and

Birge (1980); Schreuder (1980, 1992); Ferland and

Fleurent (1991); Russell and Leung (1994); Wright

(1994); Kostuk (1997) developed a decision support

system for elimination tournament scheduling. Andreu

and Corominas (1989) scheduled the Olympic Games,

Armstrong and Willis (1993) scheduled the Cricket

World Cup, Costa (1995) used a tabu search

algorithm to schedule the National Hockey League,

Nemhauser and Trick (1998), Heinz (2001), and

Voorhis (2002) dealt with college basketball

scheduling, and Kendall (2007) scheduled an English

soccer league over holiday periods. The related

counterpart problem of scheduling umpires was

considered by Evans (1988); Wright (1991), and

Farmer et al. (2007) scheduled umpire crews for

tennis tournaments. The optimal realignment of the

teams in the National Football League to minimize

total intradivisional travel is discussed by Saltzman

and Bradford (1996) and Smith et al. (2006)

optimized team travel in a basketball tournament.

Horen and Riezman (1985) dealt with drawing

methods for single elimination tournaments, Clarke

and Allsiopp (2001) attempted scheduling cricket

tournaments fairly, Fleurent and Ferland (1993) dealt

with allocating games in the National Hockey

League, analyzed the effects of home-away

sequencing on the length of best-of-seven game

playoff series, Smith et al. (2006) used bracket

assignments for basketball and baseball tournaments,

while Briskoin (2008) summarized the sports leagues

scheduling models in a book.

Draft issues prevailing in North American

professional sports were the subject of investigations

by Price and Rao (1976); Brams and Straffin (1979).

The presence of streaks in baseball was analyzed

and rejected by Tversky and Gilovich (1989), as well as

by Albright (1992). The advantage of splitting a league

into smaller leagues to lead to more pennant races was

studied by Winston and Soni (1982). Finding the

optimal location of a new arena using an analytic

hierarchy process is discussed by Carlsson and

Walden (1995).

The problem of ranking teams (and applicable also

to individuals) has drawn considerable attention by

researchers. Leake (1976) used electrical network

theory, to rank football teams, while Wilson (1995)

used a neural network approach. Ushakov (1976)

presented a methodology for ranking participants

playing in a round robin tournament like in chess.

Applying the analytic hierarchy approach to predict

the true strength of sport teams was discussed by

Sinuany-Stern (1988) and by Takahashi (1990).
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The effect of choosing different point values in ranked

voting systems with scoring was analyzed, using

a stochastic dominance analysis, by Stein et al.

(1994). A system for selecting the best among a set of

competing players or teams, that minimizes the

number of rounds, was developed by Adler et al.

(1994). Finally, Stefani (1999) provided a general

taxonomy of sports rating systems.

The playing order to avoid dead finals and the

calculation of premiership odds for the Australian

Football League’s final eight playoff was discussed

by Clarke (1996), while the problem of fair

assignment of season tickets was solved with mixed

integer programming by Grandine (1998).

Evaluation of individual player performances were

discussed by Fry et al. (2009); Terpstra and Schauer

(2007), and by Alamar and Weinstein-Gould (2008),

while entire teams were evaluated by Rosner (1976);

Coleman and Lynch (2001); Martinich (2002);

Horowitz (2004); Cassady et al. (2005); Coleman

(2005); Baker and Scarf (2006), and by Rump (2008).

Individual Sports

Track and Field – The derivation of optimal training

plans for pentathlon (applicable also to decathlon,

triathlon, biathlon, etc.) was pioneered by Ladany

(1975b) using linear programming with physiological

constraints. Whether Bob Beamon’s miracle jump in

Mexico City was affected by the altitude was first

analyzed by Brearley (1972). Related jump decision

problems, such as aiming at take off, were studied by

Ladany et al. (1975); Sphicas and Ladany (1976);

Ladany and Singh (1978), and Mehrez and Ladany

(1987). The tactical issues in pole-vaulting (which

are similar to those prevailing in high-jump) for the

selection of the optimal starting height were

investigated by Ladany (1975a), and after change in

the rules reinvestigated by Hersh and Ladany (1989)

using dynamic programming. The sequential and

competitive nature of several athletic events led to

the coinage of the term games of boldness and to

their analysis by Gerchak and Henig (1986); Henig

and O’Neill (1992), and Gerchak and Kilgour (1992).

Optimal assignments of runners (or swimmers) to relay

teams, were put forward byMachol (1970) and Heffley

(1977), advancing from the use of the simple

deterministic assignment model to conditional and

stochastic treatments. Strategy in fell running was

analyzed by Hayes and Norman (1994); Friedman

et al. (2006) and Mizrahi et al. (2006) developed a set

of models for determining and analyzing the optimal

threshold in athletic games.

Brimberg et al. (2006) analyzed the optimal

allocation of effort among the stages in the triple

jump, while Gerchack (2000) proposed a method

applicable to decathlon and pentathlon scoring

tables – for athletes rewards based on difficulty of

achievements.

Optimization of the biomechanical aspects were

investigated in various fields. The optimal angle to

release a shot put or a hammer were discussed by

Townend (1984). The influence of slope gradient on

running uphill and the change of the optimal strategy

with the slope were discussed by Davey et al. (1995).

Golf – The evaluation of the handicap system and its

fairness occupied all researchers in the field, starting

with Scheid (1972), and followed by Pollock (1974,

1977). Handicapping was applied also to other sports

events; Camni and Grogan (1988) applied it to

road-running races using frontier analysis.

Levy (1976) estimated a golfer’s tournament score,

while Hurley (2002) investigated the impact of the

order of the golfers on the final day of the Ryder Cup

matches.

Tennis – Analysis of the most important points was

performed by Morris (1977); Gale (1971) investigated

the optimal serving strategies, and justified the greater

risk taken on the first serve. Norman (1985) applied

dynamic programming to determine when to use a fast

serve. Blackman and Casey (1980) suggested a player

rating system.

Other Sports – Selection of teams for gymnastic

competition was dealt with bivalent integer

programming by Ellis and by Corn (1984) and by

Eilon (1986). Optimal weight-lifting policies were

derived by Lilien (1976). Oar arrangements in rowing

eights to prevent fish-tail behavior were analyzed using

the mechanical theory of moments by Brearley (1977).

The unfairness of the existing scoring systems for

jai-alai was evaluated using simulation by Hannan

and by Smith (1981) and by Skiena (1988); Henig

and O’Neill (1992) considered games where the

player performing the hardest task wins, Larkey et al.

(1997) investigated the importance of skill in games,

Beis et al. (2006) described the use of O.R. to manage

the 2006 Athens Olympic Games, Percy (2007)
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analyzed the badminton scoring system, Scarf (2007)

discussed the choice of the route in mountaineering,

Scarf and Grehan (2005) evaluated the route choice in

cycling.

See

▶Analytic Hierarchy Process

▶Decision Analysis

▶Dynamic Programming

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶ Simulation of Stochastic Discrete-Event Systems

▶ Systems Analysis
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Introduction

The electronic spreadsheet is a computer application

that displays on a computer screen one or more

worksheets. A worksheet is a rectangular grid of

numeric and text information. The row and column

organization of worksheets mimics many situations,

such as an accountant’s worksheet, a teacher’s grade

book, an invoice, or a scientist’s data journal. Through

the use of the computer keyboard and pointing device

(mouse), the user is able to manipulate the information

using mathematical, logical, and text operations.

The worksheet is the foundation for graphs and

reports designed to communicate information in

a user-friendly manner.

The computer spreadsheet, operating primarily on

personal computers, is a serious and powerful business

tool. It is used for many applications including from

printing address labels and developing simple budgets

to conducting cash flow analysis, financial planning,

optimizing investments, tracking production,

forecasting, and facilities analysis.

VisiCalc, the first personal computer spreadsheet,

was introduced in October, 1979 (Saffo 1989). Until

then, the personal computer had been viewed more as

a hobbyist’s interest than as a serious office machine.

Users soon began to realize that the electronic

spreadsheet enabled them to change one or more

numbers and immediately see the results of the

changes in other parts of the worksheet. This

capability was instrumental in causing the personal

computer, with spreadsheet software, to become an

important management tool. The 1982 introduction of

Lotus Development Corporation’s spreadsheet

software called Lotus 1-2-3 marked the availability of

a computer application that combined three functions

(worksheet, graphics, and database) into software

designed for the then new IBM personal computer.

The electronic spreadsheet was a very important

driving force in the development of the personal

computer industry, with the dominant spreadsheet

soon being Microsoft’s Excel, surpassing Corel’s

Quattro Pro and IBM’s Lotus 1-2-3. Apache

OpenOffice (formerly under Sun, then Oracle) and

Google Docs are alternatives offering free or

inexpensive packages that provide basic spreadsheet

functionality while lacking some more advanced

features offered by more mature commercial products.

Example

A monthly budget demonstrates the organization of

a worksheet and its basic capabilities. The columns of

the worksheet show expenditures by monthly, while
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the rows display expenditures by budget category.

Totals are shown for each expenditure category and

for each month. On a computer screen a very simple

worksheet might appear as shown in Table 1.

The worksheet columns are identified by letters; the

rows are identified by numbers. Cells are identified by

the column letter(s) followed by the row number.

In Table 1, cell B7 (column B, row 7) contains the

total expenditures for January.

The user can change any monthly expenditure item,

and the spreadsheet will automatically recalculate the

row and column totals. As the size and complexity of

a worksheet grow, this ability to recalculate the entire

spreadsheet rapidly and automatically replaces many

hours of manual labor. Often, a worksheet contains

many more columns and rows and the screen can

display at one time. The mouse or keystrokes can be

used to show any part of the worksheet on the screen.

Prior to the development of spreadsheets, a user

wishing to solve a problem using a computer had to

write a program using a very precise programming

language, with each command, or statement, fed into

the computer in a definite order. Such programs often

had to be run several times to discover programming

and logical errors before they could be used to solve

a problem or prepare an analysis. Spreadsheets, on the

other hand, allow users to enter spreadsheet cell

information in any order and location on the

worksheet, even if that organization does not mimic

familiar manual computation procedures.

Basic Operations

Formulas, data, and text labels are entered from the

keyboard. The formulas define the relationships and

logic for each value calculated by the spreadsheet.

Data values in various cells are used by the formulas.

Text labels are important to users of the spreadsheet

and users of reports generated by the spreadsheet. The

formulas in a worksheet are the driving force behind

a spreadsheet. In Table 1, cell B7 is selected to show its

contents, which is the formula defining this cell:

¼ B2þ B3þ B4þ B5

where the cells B2, B3, B4, and B5 contain values

for food, housing, clothing, and entertainment

expenditures for January. Similar formulas are used

for other calculated cells in the worksheet.

There are many aspects of modern electronic

spreadsheets that enhance their usefulness to people

not trained in computer programming. Among the

more important:

(a) Formulas can be copied from one cell to another,

without disturbing the logic of the formula.

In the budget example, the formula for January

total can be copied to corresponding cells for

February and March.

(b) Theworksheet can be organized in awaymeaningful

to the user, rather than in a way required by

computational procedures. A user may elect to put

monthly totals at the top, and category totals in

another part of the worksheet, without regard to the

fact that these values depend upon cells below and to

the right. This may be contrary to the way one would

manually calculate the budget, which might be

column by column or row by row. This natural

order of recalculation is intelligence within the

program that frees the user from the procedural

steps followed in computer programming.

(c) Reports can be printed by the spreadsheet. The

spreadsheets available today provide substantial

flexibility in formatting the report to meet the

needs of the users. Most spreadsheets include

spelling checkers to assist in report preparation.

Spreadsheets also contain sophisticated

formatting capabilities, allowing the user to

change the appearance of the screen and report.

The spreadsheet may permit the user to change

many appearance items, including color,

typeface, and character size. Reports can also

include graphical images, lines, arrows, boxes,

shading, and other visual enhancements often

associated with desktop publishing.

(d) Graphs can be created from the numbers in or

calculated by the spreadsheet. Graphs are an

Spreadsheets, Table 1 A simple budget spreadsheet

B7 ¼ B2 + B3 + B4 + B5

A B C D E

1 Jan Feb Mar Total

2 Food 220 230 300 750

3 Housing 400 400 400 1,200

4 Clothing 200 50 75 325

5 Entertainment 150 300 75 525

6

7 Total 970 980 850
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integral and dynamic part of the spreadsheet, so

that changes in the numbers on the worksheet also

appear as changes in the graph. The graphs can

be displayed on the screen as separate images,

on paper, or as part of the spreadsheet.

Modern spreadsheets allow small graphs (called

sparklines) to be displayed in individual cells.

By including a graphical image as a part of the

spreadsheet screen display, the graph may become

a part of a report. Some spreadsheets include tools

to assist in a slide-show presentation of a sequence

of screen images displaying tables, graphs,

and text.

Capabilities

Spreadsheets can be used in many different ways, by

users with a wide variety of skills. A beginning

spreadsheet user may view a worksheet as a way of

saving time that would otherwise be spent using

a calculator. This capability of spreadsheets is likely

the initial reason for their popularity. As spreadsheets

have progressed, their capabilities have grown

immensely. Some of the more important of these

enhanced capabilities are:

(a) Spreadsheets may be linked to external database or

websites so that data-intensive applications can be

addressed in a spreadsheet environment. Needed

information can be selectively retrieved from these

data sources and used as inputs for spreadsheet

models or summarized using graphs or cross

tabulations using pivot tables.

(b) Extensive tools for statistical analysis are

included in spreadsheets. Techniques such as

regression analysis, correlation analysis, tests

of significance, and analysis of variance are

typically a part of a spreadsheet’s capabilities.

(c) Mathematical capabilities required for engineering

and scientific calculations are included in

spreadsheets.

(d) Matrix operations (multiply, transpose, invert) can

be performed using the commands of

a spreadsheet.

(e) Extensive tools for financial analysis are included

in spreadsheets.

(f) Optimization algorithms are a part of most

spreadsheets. These optimizers, sometimes called

Solvers, are capable of addressing linear and

nonlinear constrained optimization problems with

continuous or discrete decision variables. The

method of communicating an optimization

problem to a spreadsheet solver may be very

different from the traditional methods used by

OR/MS practitioners. Instead of formulating

a problem as a set of equations and inequalities to

be satisfied, the spreadsheet view of an optimization

problem might be described by these steps:

1. Construct a model to evaluate or calculate the

value of the objective, such as profit, for an

arbitrary set of values for the decision

variables. Include in the model the values that

need to be checked to see if constraints have

been exceeded. This includes limiting factors

such as raw materials, production capacity, and

human resources

2. Identify to the spreadsheet solver the

components of the optimization problem:

• Which cell computes the objective to be

maximized or minimized;

• Which cells are to be adjusted by the

optimizer (the decision variables), and

• Which cells are constraints, and what are the

limiting values.

3. Issue the appropriate ‘solve’ command to the

spreadsheet.

In this spreadsheet optimization environment, the

spreadsheet is serving as a powerful problem

generator, as an optimizing algorithm, and as

a report generator to communicate the results of

the optimization.

(g) Spreadsheet add-in software is available to

expand spreadsheet capabilities in areas such as

Monte Carlo risk analysis, optimization (including

optimization with genetic algorithms), forecasting,

data mining and analysis, and other applications

involving neural networks.

(h) Spreadsheets may serve as the environment for

developing sophisticated software. The capability

to include macros or a set of procedures or steps to

follow, gives the spreadsheet many of the

structures of traditional programming languages,

such as sequence, decision, loop, and case. The

application programming interface (API) of

spreadsheets can also be used by other programs

to access spreadsheet functionality from outside

the visible spreadsheet environment.
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Concluding Remarks

Spreadsheets have become the primary computer

application software for many business managers and

other professionals. Many introductory OR/MS

textbooks center on a spreadsheet-based approach to

presenting the topics (e.g., Ragsdale 2010; Winston

and Albright 2012). While this approach may (or may

not) ignore the algorithmic and mathematical aspects

of OR/MS, it presents the basic tools of the discipline

in a user-friendly manner, using spreadsheets as a

language that is more comfortable than mathematics

to many potential users of OR/MS. This provides both

opportunities and pitfalls. As more end-users are aware

of the spreadsheet OR/MS tools, these tools will be

applied more widely. But as the use expands, those

using the tools will be less familiar with mathematics

and assumptions behind the tools, leading to a new set

of challenges.

See

▶Algebraic Modeling Languages for Optimization

▶ Information Systems and Database Design in OR/MS

▶Linear Programming

▶Monte Carlo Simulation

▶Nonlinear Programming

▶Visualization
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SQC

Statistical quality control.

See

▶Quality Control

Square Root Law

When a model result is proportional to the square root

of input variables and/or parameters. One example is

the formula that indicates that the average distance that

an emergency unit must travel to a call scene is

proportional to the square root of the area it services.

Another example is the economic order quantity

(EOQ) result from inventory modeling.

st or s.t.

Abbreviation: (i) “subject to” as in the

linear-programming problem: Minimize cX st Ax ¼ b,

x � 0. (ii) “such that” as in a mathematical statement:

There exists a constant N s.t. for all n > N. . .

St. Petersburg Paradox

Paradox that arises in a simple gambling game in

which a fair coin is tossed repeatedly until a heads

appears, at which point the payoff is $2 doubled for

each toss. Since the expected value of such a game is

given by (0.5)(2) + (0.5)2(2)2 + (0.5)3(2)3 + . . ., which

is infinite, a decision maker who uses expectation to

value the game would assign an infinite value. The

concepts of utility and risk can be used to resolve this

apparent paradox.

See

▶Bayesian Decision Theory, Subjective Probability,

and Utility

▶Utility Theory

Stages

The set of sequential steps in a model for either

(i) probability distributions, or (ii) dynamic

programming. In applied probability models,

especially queueing, such modeling allows
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non-exponentially distributed random variables such

as interarrival and service times to be represented as

a sequence of exponentially distributed random

variables, each of which is referred to as a stage, thus

enabling the system to be modeled by a Markov chain.

If there are k stages that are independent and

identically distributed, the resulting distribution is

called a k-Erlang distribution, represented as Ek in

Kendall’s queueing notation; if the stages are

only independent, the distribution is called

a generalized Erlang; further extensions lead to

Coxian and phase-type distributions. In dynamic

programming, stages are the time subdivisions of

a dynamic programming model where decisions are

made upon which the state then evolves to the next

state; also called periods.

See

▶Coxian Distribution

▶Dynamic Programming

▶Kendall’s Notation

▶Markov Chains

▶Method of Stages

▶ Phase-type Probability Distributions

▶Queueing Theory

Staircase Structure

A linear-programming problem in which the constraint

set can be arranged into connecting blocks such that the

first block is connected to the second block by a few

variables, the second block is connected to the third

block by a few variables, and so on. Staircase structures

arise in production problems over time in which the

connecting variables are inventories that carry over

from one time period to the next. The matrix of

coefficients defined by such structures is very sparse.

See

▶Block-Angular System

▶Large-scale Systems

▶ Super-Sparsity

▶Weakly-coupled Systems

Stanford-B Model

▶Learning Curves

Stationary Distribution

In a discrete-time Markov chain, the state probability

distribution (vector)p that satisfiesp¼pP, where P is

the single-step transition matrix. Mathematically, this is

equivalent to finding the eigenvector associatedwith the

eigenvalue 1 of the stochastic matrix P. Similarly, for

a continuous-time Markov chain, the stationary

distribution satisfies pQ ¼ 0, where Q is the transition

rate matrix. Also known as the invariant distribution. If

the Markov chain is ergodic, it has a limiting (or steady-

state) distribution that equals the stationary distribution.

See

▶Limiting Distribution

▶Markov Chains

▶Markov Processes

▶ Statistical Equilibrium

Stationary Stochastic Process

A stochastic process in which the state probability

distributions are invariant over time.

Stationary Transition Probabilities

When the transition probabilities of a Markov chain or

Markov process are time-invariant, i.e., for times s < t

in the time domain T, and any state x and any

set A in the state space, Pr{X(t) 2 A|X(s) ¼ x} ¼
Pr{X(t � s) 2 A|X(0) ¼ x}.

See

▶Markov Chains

▶Markov Processes
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Statistical Equilibrium

Let pij(t) be the probability that a stochastic process

takes on value j at time t (discrete or continuous), given

that it began at time 0 from state i. If for each j, pij(t)

approaches a limit pj independent of i by taking

t ! 1, then the process is said to reach statistical

equilibrium. For an ergodic Markov chain in statistical

equilibrium, the corresponding limiting distribution is

identical to the stationary distribution.

See

▶Limiting Distribution

▶Markov Chains

▶Markov Processes

▶ Stationary Distribution

Statistical Process Control

▶Quality Control

Statistical Ranking and Selection
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Introduction

Ranking and selection (R&S) procedures are

statistical tools for selecting the best system among

a finite number of simulated systems. Depending on

the definition of the best, there exist at least four

classes of R&S problems in simulation studies:

selecting the system with the largest or smallest

expected performance measure (selection of the

best); finding systems whose performance measures

are significantly better than a standard and, if there is

any, selecting the one with the largest or smallest

performance (comparison with a standard); selecting

the system with the largest probability of actually

being the best performer (multinomial selection);

and selecting the system with the largest probability

of success (Bernoulli selection).

Approaches to solve R&S problems include subset

selection methods, indifference-zone methods,

Bayesian methods, and optimal computing

budget allocation (OCBA). Subset selection and

indifference-zone (IZ) methods find the best system

with a guarantee on the probability of correct selection

(PCS), whereas the other two methods maximize the

PCS under a limited computational budget. The focus

here will be on procedures for the selection-of-the-best

problem with a guarantee on the PCS. Other classes of

R&S problems are briefly discussed in the concluding

section; see Chick (2006) for a review of Bayesian and

OCBA methods.

Development of efficient R&S procedures has led

to combining these procedures with optimization via

simulation (OvS) algorithms, so some R&S procedures

related to OvS are discussed. R&S procedures can be

applied to “clean up” at the end of an OvS search,

finding the best among all the solutions actually

simulated so far by the search with a statistical

guarantee, or they can be embedded within these OvS

algorithms to help them move to the improving

direction correctly and efficiently.

Also discussed in more detail is a more complicated

form of R&S, namely constrained R&S, where the goal

is to find the best system under a primary performance

measure while also satisfying stochastic constraints on

secondary performance measures. For example, the

decision maker may want to select a production

schedule for a manufacturing system that yields the

largest expected throughput among a number of

different schedules, while keeping the expected lead

time in the system bounded (smaller than or equal to

some constant) at the same time.

Problem Setting

Let Xim denote the mth observation from system

i i ¼ 1; 2; . . . ; kð Þ: The set of all possible systems is

defined as S ¼ 1 . . . ; kf g: Let xi ¼ E Xim½ � and

s2i ¼ Var Xim½ � be the mean and variance of the

outputs from system i, respectively.

The problem is to determine which system has the

best performance measure:

argmax
i2S

xi:
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Without loss of generality, assume that

xk � xk�1 � � � � � x1, so that (unknown to the

decision maker) system k is the best system.

Moreover, the {Xim} are assumed to satisfy the

following assumptions.

Assumption 1. For each i ¼ 1,2,. . .,k,

Xim�
iid
N xi; s

2
i

� �

m ¼ 1; 2; . . .

Where �
iid

denotes independent and identically

distributed (iid) and N m; s2ð Þ denotes the normal

distribution with mean m and variance s2.

Assumption 1 is a common assumption in many

R&S procedures. When the outputs from system

i (Xi1, Xi2,. . .) are either within-replication averages

or batch means from a single sufficiently long

replication after accounting for the elimination of the

initialization bias, the iid normality assumption is

reasonable (Law and Kelton 2000).

Assumption 2. For i;mð Þ 6¼ j;m0ð Þ, Xim and X
jm
0 are

independent.

Assumption 2 implies that all systems are simulated

independently. Assigning different streams of pseudo-

random numbers to the simulation of each system

ensures independence of systems. Procedures that

require this assumption for statistical validity are

reviewed in the next section, while the subsection on

common random numbers reviews procedures that do

not need the independence assumption.

For the selection of the best, two approaches are

considered: subset selection and IZ approaches. Gupta

(1965) presented the subset selection formulation of

the problem, and Bechhofer (1954) established the IZ

formulation.

The subset selection procedures use outputs

available for each system to obtain a subset

I � 1; 2; . . . ; kf g such that

Pr k 2 If g � 1� a (1)

where 1 k<1� a<1= .

On the other hand, the IZ approach suggested by

Bechhofer (1954) attempts to find the single best

system k whose mean is at least a user-specified

amount better than the means of the other systems

with a guarantee on PCS. The IZ parameter is

denoted as d, a practically significant difference

worth detecting. Specifically, the IZ procedure should

guarantee

Pr select kjxk � xk�1 � df g � 1� a (2)

where 1 k<1� a<1= . If there are systems whose

means are within d of the best, then the decision

maker is indifferent to which of these is selected.

Other notation is defined as follows:

n0 ¼ first-stage sample size

ni ¼ sample size available for system i
�Xi ðnÞ ¼ sample average of n observations of system

i, i.e., 1
n

Pn
m¼1 Xim

S2xiðnÞ ¼ sample variance of Xi1; . . . ;Xinf g
S2xijðnÞ ¼ sample variance of Xi1 � Xj1; . . . ;Xin � Xjn

� �

Rðr;v;w;zÞ¼max 0;wz
v
� v

2
r

� �

, for v;w;z2R
þ;v 6¼ 0

Finding the Best

A few illustrative procedures for the selection-of-the-

best problem are provided in this section: one from

the subset selection approach and two from the IZ

approach.

Subset Selection

Suppose that a number of samples are already available

for each system. A subset selection procedure returns

a subset that contains the best systemwith probability at

least 1 � a. A single-stage subset selection procedure

that allows for unequal and unknown variances across

systems was developed by Nelson et al. (2001), with

a generalization that also permits unequal sample sizes

presented below.

Extended Screen-to-the-Best Procedure
(Boesel et al. 2003)
1. Select the overall desired confidence level

1 � a and sample size ni for system

i, i ¼ 1,2,. . .,k. Set ti ¼ t
1�að Þ

1
k�1;ni�1

, where

tb,n is the b quantile of the t distribution with n

degrees of freedom.

2. Obtain ni outputs Xim m ¼ 1; 2; . . . ; nið Þ from
each system i i ¼ 1; 2; . . . ; kð Þ.
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3. Compute the sample means and variances
�Xi Nið Þ and S2xi nið Þ for i ¼ 1,2,. . .,k. Let

Wij ¼
t2i S

2
xi
nið Þ

ni
þ
t2j S

2
xj

nj
� �

nj

 !

1
2

; 8i 6¼ j:

4. Set I ¼ i : 1 � i � k and �Xi nið Þ � �Xj nj
� ��

�Wij; 8j 6¼ ig.
5. Return I as the subset of retained systems.

The above procedure satisfies (1) under Assumptions

1 and 2, and is incorporated into the output analysis

package of the simulation software Arena (Rockwell

Software). A disadvantage of this procedure is that the

size of I is unknown and can be as large as k, but no

procedure can guarantee a subset of size one and

simultaneously satisfy (1) for arbitrary ni. The next

subsection discusses procedures that return one single

system which is likely to be the best or near-best.

Indifference-Zone Procedures

In stochastic simulation, it is impossible to find the

true best with certainty when the sample size is finite.

Instead many procedures employ the IZ approach as

a compromise. The IZ approach guarantees (2), finding

the best with high probability whenever the best is at

least d amount better than the means of the other

systems. Many IZ procedures are sequential with

multiple stages. For example, Rinott’s procedure

(1978) has two stages. In the first stage, the procedure

obtains initial samples for each system and pauses

sampling to calculate some statistics (usually sample

means and variances). Then it resumes sampling to

obtain additional samples for each system in the

second stage.

Classical IZ procedures become inefficient when

the number of alternatives is large, because they are

developed under the Least Favorable Configuration

(LFC) condition. If a procedure guarantees at

least 1 � a PCS under the LFC, it will do so for all

other configurations. The Slippage Configuration (SC)

is the configuration mi ¼ mk � d for all i 6¼ k, which is

known to be the LFC in most IZ procedures. When

the number of systems is large, it is unlikely

that systems face the SC, as means of the systems

tend to be spread out rather than all clustered near

the best. Thus, a procedure developed under the SC

takes more samples than needed when actual

differences are greater than d.

To overcome the inefficiency of IZ procedures,

screening is used. The idea is to identify clearly inferior

systems after some initial samples and eliminate them

from further consideration early. Combining subset

selection algorithms with two-stage IZ procedures, the

NSGS procedure due to Nelson et al. (2001) ensures the

overall PCS 1 � a by decomposing the overall error a

into a0 and a1, and use the decomposed errors for setting

up procedure parameters for an initial screening stage

and a second ranking stage, respectively.

Procedure NSGS (Nelson et al. 2001)
1. Setup. Select the overall desired confidence

level 1 � a, IZ parameter d, and common

first-stage size n0 � 2. Set

t ¼ t
1� 1�a 2=ð Þ

1
k�1; n0�1

and obtain Rinott’s constant

h ¼ h n0; k; 1� a 2=ð Þ from Table 8.3 in

Goldsman and Nelson (1998).

2. Initialization. Obtain n0 outputs

Xim m ¼ 1; 2; . . . ; n0ð Þ from each system

i i ¼ 1; 2; . . . ; kð Þ. Calculate S2xi n0ð Þ for

i ¼ 1; 2; . . . ; k.

3. Subset Selection. Calculate the quantity

Wij ¼ t
S2xi n0ð Þ þ S2xj n0ð Þ

n0

 !1 2=

; 8i 6¼ j:

Form the screening subset I, containing every

alternative i such that 1 � i � k and

�Xi n0ð Þ � �Xj n0ð Þ�max 0;Wij � d
� �

for all j 6¼ i:

4. Ranking. If |I| ¼ 1, then stop and return the

system in I as the best. Otherwise, for all i ∊ I,

calculate the second-stage sample sizes

Ni ¼ max n0;
hSxi n0ð Þ

d


 �2
( )

;

where [�] is the ceiling function.
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5. Take Ni � n0 additional outputs from all

systems i ∊ I.

6. Calculate the overall sample means �Xi Nið Þ
for all i ∊ I. Select the system with the largest
�Xi Nið Þ as best.

Note that NSGS has two stages and screens out

systems only once after the first stage. There are fully

sequential procedures that take a single basic

observation from each alternative still in play at each

stage and eliminate systems from further consideration

when it is statistically clear that they are inferior. The

KN procedure (Kim and Nelson 2001) is a fully

sequential procedure that allows for unequal and

unknown variances across systems, useful in

simulation environments.

Both NSGS and KN are statistically valid

guaranteeing (2) under Assumptions 1 and 2. Also,

they have been shown to be efficient when hundreds

of systems (up to 500) are compared. Note that R(r; � )
in KN defines a triangular continuation region for the

partial sum process,
Pr

m¼1 Xim � Xjm

� �

. As long as the

partial sum process stays within the triangular

continuation region, sampling for systems i and

j continues. Otherwise, an elimination decision is

made. A different shape of continuation regions can

be used. For example, Batur and Kim (2006)

present fully sequential procedures with a

parabolic continuation region, which show a

meaningful improvement over the triangular

continuation region.

Procedure KN (Kim and Nelson 2001)
1. Setup. Select the overall desired confidence

level 1 � a, IZ parameter d and common

first-stage sample size n0 � 2. Set

� ¼ 1

2

2a

k � 1

� ��2 n0�1ð Þ=

� 1

" #

:

2. Initialization. Let I ¼ 1; 2; . . . ; kf g be the set

of systems still in contention, and let

h2 ¼ � n0 � 1ð Þ.
Obtain n0 outputs Xim m ¼ 1; 2; . . . ; n0ð Þ from
each system i i ¼ 1; 2; . . . ; kð Þ.

For all i6¼j calculate S2xij n0ð Þ, the sample

variance of the difference between systems i

and j. Set r ¼ n0.

3. Screening. Set I old ¼ I. Let

I ¼ i : i 2 Iold and
X

r

m¼1

Xim � Xjm

� �

(

� �R r; d; h2; S2xij n0ð Þ
� 

; 8j 2 Iold; j 6¼ i

)

:

4. Stopping Rule. If |I| ¼ 1, then stop and select

the system whose index is in I as the best.

Otherwise, take one additional output Xi,r+1

from each system i ∊ I, set r ¼ r þ 1 and go to

Screening.

Typically, KN reaches a decision faster than NSGS

with fewer number of observations. However, KN

tends to require a large number of switches from

simulating one system to simulating another, whereas

NSGS needs at most 2k � 1 switches. The cost of

stopping and restarting complex simulations can be

quite high both in time and storage. In modern

computing environments that utilize parallel

computing, the switching cost is less of an issue,

making KN attractive. The KN procedure is

incorporated into the output analysis package of

Simio® (Simio LLC).

Some subset selection and IZ procedures are closely

related to multiple comparison procedures. For

detailed discussion for the connection to the multiple

comparison procedures, see Kim and Nelson (2006b).

Efficiency

There are a number of ways to further enhance

efficiency of procedures discussed in the previous

section.

Common Random Numbers

Many procedures require Assumption 2 that systems

are simulated independently. If the same random

number streams are assigned to each simulation

known as common random numbers (CRN), then

under fairly general conditions, positive correlation is

induced among the systems, and the variance of the
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difference is decreased in observed average

performances between two systems. Although CRN

makes statistical procedures more complicated when

there are more than two systems, CRN makes

comparison sharper, meaning spending fewer number

of observations until a decision is made.

For subset selection procedures, a special case of

the Extended Screen-to-the-Best procedure where

ni ¼ n for all i remains valid under CRN (Nelson

et al. 2001) provided S2xiðnÞ n= þ S2xjðnÞ n= is replaced

by S2xijðnÞ n= and t ¼ t1�a k�1ð Þ;n�1= . For unequal sample

sizes ni, the statistical validity of the

Extended Screen-to-the-Best procedure does not hold

under CRN.

For IZ procedures, the procedure of Nelson and

Matejcik (1995) extended Rinott’s two-stage

procedure. Their procedure works in conjunction

with CRN under a special structure of the

variance-covariance matrix, called sphericity. As the

sphericity assumption is often violated for large k,

the use of CRN is not recommended in Nelson and

Metejcik’s procedure when k is large. NSGS requires

systems to be simulated independently, whereas KN is

statistically valid with or without CRN.

Steady-State Simulations

The R&S procedures discussed so far require

Assumption 1, which is appropriate for terminating

simulations. In steady-state simulation, the goal is to

estimate long-run performance, after the impact of the

initial conditions have vanished. The iid normality

assumption applies to steady-state simulation

experiments if the experimenter is willing to make

multiple replications of each system with a good

warm up and use the within-replication averages

as the basic observations. Or the experimenter can

generate a single long replication of each system to

avoid estimation bias due to residual effects of

the initial conditions. The difficulty in a

single-replication design is that the raw outputs

within a replication (such as waiting times of

individual customers in a queueing system) are

typically neither normally distributed nor

independent. In order to achieve the iid normality,

one can take batch means of many individual

raw outputs as the basic observations when only

a single replication is made. Then, batch means

are approximately iid normal for a large enough

batch size. See Law and Kelton (2000) for a

more detailed discussion of replication versus

batching in steady-state simulation.

Both of these remedies for dependent data

are inefficient. Multiple replications require warm up

from each replication and may result in deletion of a

large number of outputs; and batching within a

replication forces selection procedures to make

elimination and selection decisions at long intervals.

This is especially undesirable for fully sequential

procedures where elimination occurs every basic

observation. Thus, procedures that take the raw

outputs within a single replication as basic

observations are desirable for steady-state simulation.

A few procedures have been presented specifically

for steady-state simulation thatmake a single replication

from each system and take raw outputs rather than

batch means as basic observations (e.g., Damerdji and

Nakayama 1999;Goldsman et al. 2002; Kim andNelson

2006a). One of the asymptotically valid procedures,

called KN++ (Kim and Nelson 2006a), updates

variance estimates as more observations are available.

Variance update is shown to improve efficiency of

the procedures greatly, although it may cause some

technical and computational difficulties such as data

storage and recalculation of estimates.

Slippage Configuration

Screening, the use of CRN when applicable, the use

of raw outputs rather than within-replication averages

or batch means in steady-state simulation, and

variance update greatly improve the efficiency of IZ

procedures. Unfortunately, the actual PCS of many IZ

procedures tends to be close to 100%, i.e., overly

conservative, for large k even with all these

amendments, which implies that there is room for

further improvement.

As discussed earlier, because IZ procedures are

derived under the LFC (i.e., the SC), they are

generally very conservative. The SC is essential in

deriving statistically valid IZ procedures, because it

frees the procedures from dependence on the unknown

true differences among the means. A remedy to the SC

is to replace the IZ parameter with estimated mean

differences based on the first-stage samples, e.g., by

adjusting the IZ parameter for system i to

di � max d; �Xi n0ð Þ � �Xb n0ð Þð Þ, where b is the

identity of a system with the largest first-stage sample
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mean (Chen and Kelton 2005). Then use the adjusted

IZ parameter to calculate the total number of

observations Ni for each system i in a two-stage

procedure such as Rinott’s procedure. A similar

technique can be used for fully sequential procedures

by adjusting the IZ parameter between system i and j to

dij � max d; j �Xi n0ð Þ� �Xj n0ð Þj
� �

(Healey 2010; Wang

and Kim 2013). The adjusted IZ parameter dij is used to

calculate R(r; �) when comparing systems i and j. These

modifications allow the procedures to make decisions

quicker but at the cost of statistical validity and

observed PCS.

R&S in Optimization

The procedures discussed in previous sections require

keeping or running simulation models of all systems.

When the number of alternative systems is extremely

large, it may not be possible to keep simulation models

of all systems, and thus those R&S procedures become

inappropriate. Instead, a different class of methods,

called optimization via simulation (OvS), is needed;

for overviews, see Andradóttir (2006) and Fu (2006).

R&S procedures can assist OvS in two ways:

clean-up at the end of the search or efficient and

correct selection of the best neighbor.

Clean up: Commercial add-on products for

simulation software packages employ a combination

of heuristic optimization methods (genetic algorithms,

tabu search, etc.) originally developed for

a deterministic optimization problem. Each

alternative is evaluated by a simulation model

through a number of replications and sampling error

is ignored. As results, heuristic algorithms give no

statistical meaningful estimates and provide no

information about how close the chosen system is to

the true best. To add statistical confidence, a R&S

procedure can be employed to ensure that the

selected system is the best or near-best of all systems

that the search actually did encounter. The number of

systems to compare (all those encountered by the

search) is large, and they may not have been

simulated equally, so a procedure should be able to

handle unequal sample sizes. Nelson et al. (2001)

provide a revised version of the NGSG procedure, the

Group-Screening procedure, in which one can avoid

simulating all the systems simultaneously. Boesel et al.

(2003) extend the Group-Screening procedure to

account for unequal sample sizes to “clean up” after

the search is done. Sequential Selection with Memory

(SSM), an extension of the KN procedure that uses

partial or complete information on systems

previously visited, was developed by Pichitlamken

et al. (2006), and is used in the commercial product

OptQuest (OptTek Systems, Inc.).

Selection of the promising neighbor: Some OvS

algorithms require the selection of the best neighbor

from a finite number of alternatives. For example, the

nested partitions (NP) method (Shi and Ólafsson 2000)

and the convergent optimization via most-promising-

area stochastic search (COMPASS) (Hong and Nelson

2006) repeat search iterations where a number of

candidate solutions are sampled, their performances

are evaluated through a number of replications, and

the best neighbor is selected. In stochastic simulation,

sampling error dramatically complicates selecting the

best neighbor. To select the best neighbor confidently,

a large number of replications for performance

evaluation is needed. But then too much

computational effort on the selection hinders the

search to make much progress in the time available.

Thus, the efficient and correct selection of the best

neighbor is critical to the overall performance of an

optimization algorithm in stochastic simulation.

Pichitlamken and Nelson (2003) use SSM for

selection of the best neighbor within their OvS

algorithm and show that the use of SSM indeed

enhances the overall performance of the algorithm.

Constrained R&S

Due to physical or managerial limits placed on

a system, performance measures other than the

primary performance measure often need to be

considered. To handle multiple performance

measures, one can formulate the problem as a multi-

objective problem (e.g., Butler et al. 2001) or place

constraints on secondary performance measures. The

latter approach forms constrained R&S, for which

a fully sequential IZ approach developed by

Andradóttir and Kim (2010) is presented in this

section, including both the feasibility check of

multiple secondary performance measures and the

comparison of primary performance measures.

Let xi ¼ E Xim½ � and yi‘ ¼ E Yi‘m½ � be the expected

values of the primary and secondary constrained
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performance measures for each system i2S and

constraints ‘ ¼ 1; . . . ; s. The objective is to select

a system with the best primary performance measure

while satisfying all of the constraints:

argmax
i2S

xi

s:t: yi‘ � q‘ for all ‘ ¼ 1; . . . ; s:

Similar to Assumption 1, the following assumption is

needed.

Assumption 3. For each i ¼ 1,2,. . .,k,

Xim

Yi1m

..

.

Yism

2

6664

3

7775�
iid
MN

xi
yi1

..

.

yis

2

6664

3

7775;Si

0

BBB@

1

CCCA; m ¼ 1; 2; . . .

where MN denotes the multivariate normal

distribution and Si is the sþ 1ð Þ
 sþ 1ð Þ covariance
matrix of the vector Xim; Yi1m; . . . ; Yismð Þ.

For the primary performance measure, d still

denotes the IZ parameter. The decision maker is

essentially indifferent among the feasible systems

whose primary performance measures are within d of

each other.

For the secondary performance measures, the

smallest significant distance is e‘, called the tolerance

level associated with the constraint ‘. Systems fall into

one of the following three categories for the

constraints:

• Any system with yi‘ � q‘ � e‘ for all ‘ ¼ 1; . . . ; s is

considered desirable. The set of all desirable

systems is denoted SD.

• Systems that have at least one mean secondary

performance measure greater than q‘ þ e‘ (i.e.,

yi‘ � q‘ þ e‘ for some ‘) are unacceptable and

infeasible, placing them in the set SU.

• Systems that fall within the tolerance level of q‘ for

some ‘, so that q‘ � e‘<yi‘<q‘ þ e‘, and below the

tolerance level for the remaining constraints are

acceptable and they are placed in the set SA.

Figure 1 shows the desirable (D), acceptable (A),

and unacceptable (U) regions in terms of q‘ and e‘ for

‘ ¼ 1,2 when there are two stochastic constraints.

Let [b] be the index of the best desirable system. In

constrained R&S, a CS event is defined as the event

that a desirable or acceptable system is selected whose

mean is greater than x b½ � � d. The procedures seek to

guarantee

Pr select i 2 SD [ SA with xi > x b½ � � d
� �

� 1� a:

(3)

Constrained R&S requires feasibility check

of multiple secondary performance measures

and selection of the best feasible system.

First, some further notation must be introduced

(where superscripted “T” denotes the vector

transpose):

Yim ¼ Yi1m; Yi2m; . . . ; Yismð ÞT ;
« ¼ e1; e2; . . . ; esð ÞT ; e‘ 2 R

þfor ‘ ¼ 1; . . . ; s;

q ¼ q1; q2; . . . ; qsð ÞT ; q‘ 2 R for ‘ ¼ 1; . . . ; s;

a ¼ a1; a2; . . . ; asð ÞT ; a‘ 2 R
þfor ‘ ¼ 1; . . . ; s;

Ya
im ¼ aTYim;

ea ¼ aT«;

qa ¼ aTq;

S2yi‘ðnÞ ¼ sample variance of Yi‘1; . . . ; Yi‘nf g
for the ‘th constraint of system i;

S2ya
i
ðnÞ ¼ sample variance of Ya

i1; . . . ; Y
a
in

� �
:

yi2

yi1

U

A

q1 − ε1 q1 + ε1

D

q2 − ε2

q2 + ε2

Statistical Ranking and Selection, Fig. 1 D Desirable, A
acceptable, and U unacceptable regions when there are two
stochastic constraints
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Feasibility Check

To solve constrained R&S, feasibility check

procedures are necessary that find a set F such that

SD � F � SD [ SAð Þ with a pre-specified probability,

say 1 � a0. Andradóttir and Kim (2010) developed an

IZ procedure for feasibility check in the presence of

one stochastic constraint, which was extended to

multiple stochastic constraints by Batur and Kim

(2010) using the Bonferroni inequality, which makes

the procedure conservative for large k and s. To lessen

the conservativeness, they introduce an accelerated

feasibility check which features an artificial

constraint in addition to original s constraints.

The artificial constraint is obtained by aggregation

(or linear combination) of all secondary performance

measures Yim
a , the aggregated tolerance level ea, and

the aggregated target value qa.

This aggregate constraint adds some complexity,

but can quickly eliminate systems that violate

multiple constraints. The aggregate constraint should

be used only for making infeasibility decisions and not

for making a feasibility determination. The accelerated

feasibility check procedure with aggregation (FA)

keeps M, the set of systems whose feasibility is yet to

be determined, F, the set of systems found feasible, Ki,

the set of constraints found feasible for system i, and A,

the set of systems whose feasibility needs to be

checked by the aggregate constraint. The FA
procedure continues samplings for any system in M

and declares system i to be feasible if all constraints are

found feasible (i.e., |Ki| ¼ s).

Procedure FA (Batur and Kim 2010)
1. Setup. Choose the overall desired confidence

level 1 � a0, vector of tolerance levels «, and

first stage sample size n0 � 2. Compute ea

and qa where a ¼ a‘½ �‘¼1;2;...;s such that

a‘ ¼
Qs

n¼1;n 6¼‘ en. Set �¼ 1
2

2bð Þ�2 n0�1ð Þ= �1
h i

:

2. Initialization. Let M ¼ 1; 2; . . . ; kf g, F ¼;,
A ¼ S, and Ki ¼ ;, i ¼ 1,2,. . .,k. Set

h2 ¼ � n0 � 1ð Þ. Obtain observations Yim and

compute Yim
a , m ¼ 1,2,. . .,n0, from each

system i. For each system i and constraint

‘ ¼ 1,2,. . .,s, compute the sample variance

S2yi‘ n0ð Þ and S2ya
i
n0ð Þ. Set the number of

observations r¼ n0 and go toFeasibility Check.

3. Feasibility Check. For each i 2 M and any

‘ =2 Ki, ‘ ¼ 1,2,. . .,s, if

Xr

m¼1

Yi‘m � q‘ð Þ � þR r; e‘; h
2; S2yi‘ n0ð Þ

� 
;

then eliminate i from M; else if

Xr

m¼1

Yi‘m � q‘ð Þ � �R r; e‘; h
2; S2yi‘ n0ð Þ

� 
;

then add ‘ to Ki. For each i 2 M, if |Ki| ¼ s,

then move i from M to F.

For each system i 2 M\A, if

Xr

m¼1

Ya
im � qa

� �

� þR r; ea; h2; S2ya
i
n0ð Þ

� 

;

then eliminate i fromM and A. For i 2M \ A

with

X

r

m¼1

Ya
im � qa

� �

� �R r; ea; h2; S2ya
i
n0ð Þ

� 

;

remove i from A.

4. Stopping Rule. If |M| ¼ 0, then return F as

a set of feasible systems. Otherwise, take one

additional observation Yi,r+1 from each

system i 2 M and compute Ya
i;rþ1. Set

r ¼ r þ 1 and go to Feasibility Check.

FA identifies all desirable and some acceptable

systems with at least 1 � a0 probability when

b ¼ a0 k sþ 1ð Þð Þ= under Assumption 3. For practical

use, the choice of b ¼ a0 ks= is recommended. The

values a‘ ¼
Qs

n¼1;n 6¼‘ en, for ‘ ¼ 1,2,. . .,s, are chosen

to minimize the area where systems may be

unacceptable for the original s constraints, but

become acceptable for the aggregate constraint.

Finding the Best Feasible

A fully sequential, IZ framework for constrained R&S

consisting of two phases, i.e., feasibility check and

comparison of alternative systems, was introduced by

Andradóttir and Kim (2010) for one stochastic

constraint and extended to multiple stochastic
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constraints by Healey (2010). These two phases can be

performed either sequentially (the feasibility of each

system is determined before comparison begins) or

simultaneously (the feasibility check and comparison

screening occur simultaneously after each additional

sample). In either case, the overall error a needs to be

split into a0 for feasibility check and a1 for

comparison, to ensure the overall PCS 1 � a.

Sequentially running procedures apply a feasibility

check procedure such as FA first to all systems.

Then a comparison procedure is applied to only those

systems that are survived in the completed feasibility

check phase. As feasibility check ends at a different

number of observations for each system, the

comparison phase needs a procedure that allows for

unequal sample sizes across systems such as SSM.

Sequentially running procedures are simple to

implement but their statistical validity is hard to prove.

Simultaneously running procedures perform the

following two steps after each stage of sampling.

First, feasibility screening is performed for

undetermined systems in M and eliminates systems

that are found infeasible. Second, the procedure

compares systems in contention. If a system i is found

inferior to a feasible system, the inferior system i is

eliminated. If a system is found inferior to a system in

M, the procedure cannot eliminate the inferior system i

until feasibility of the superior system is determined.

Sampling from the inferior system continues until the

inferior system is declared infeasible, its superior

system is declared feasible, or the inferior system is

either eliminated by another feasible system or selected

as the best. Basically, simultaneously running

procedures allow the elimination of a system only

when it is declared infeasible or when it is found

inferior to a system declared feasible.

Simultaneously running procedures are more

complicated than sequentially running procedures but

they are statistically valid, guaranteeing (3) whenever

x½b� � xi þ d for all i 2 SD [ SA n ½b�f g. There is no

uniform superiority between sequentially and

simultaneously running procedures. However, under

a difficult mean configuration such as the SC, the

simultaneously running procedures usually perform

slightly better.

Simultaneously running procedures can be

further improved using the concept of dormancy

(Healey et al. 2013), whereby a system may become

dormant – halting sampling for that system – when it is

found inferior to another system whose feasibility has

not been determined yet, returning to contention only if

its superior system is eliminated. If the superior system

is found to be feasible, then the dormant system will be

eliminated. The dormancy framework prevents

procedures from collecting unnecessary observations

from inferior systems. Other enhancements consider

correlation across systems (allowing for the use of

CRN) and procedures that minimize the number of

switches (setup cost of starting and stopping

simulations) between the simulated alternatives.

Other R&S Problems

Other classes of R&S problems include comparison

with a standard, multinomial selection, and Bernoulli

selection.

The goal of comparison with a standard is to find

systems whose expected performance measures are

larger (or smaller) than a standard and, if there are

any, to find the one with the largest (or smallest)

expected performance. In comparison with

a standard, the standard is placed in a special status

such as a guarantee that no alternative will be selected

unless it beats the standard significantly, i.e., the

standard is protected as long as an alternative system

is not substantially better than the standard. However,

if an alternative system does show a significant

improvement, then it needs to be selected. For

example, a decision maker will be reluctant to

implement an alternative due to time and costs

associated with replacement of the existing system

(the standard) unless performance of an alternative in

terms of some measures other than time and costs is

significantly better than the standard. The standard is

usually denoted as system 0 and there are k alternative

systems. Then procedures for comparison with

a standard should satisfy the following:

Pr select 0 jx0 � xkf g � 1� a and

Pr select k jxk � x0 � d; xk � xk�l � df g � 1� a:

In multinomial selection, the definition of best is the

system that is most likely to be the best in a single trial,

i.e., the system with the largest probability,
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pi ¼ Pr Xim > X‘m; 8‘ 6¼ if g. On the other hand,

Bernoulli selection has basic output Xim taking either

the value 1 (success) or 0 (failure), and the best system

is the one with the largest probability of success,

pi ¼ Pr Xim ¼ 1f g. When the performance measure is

a probability, other types of IZ parameters can be

considered. Some multinomial selection procedures

guarantee the PCS whenever pk pk�1 � y= , where

y > 1 is the smallest pk pk�1= ratio (relative risk ratio)

worth detecting. Bernoulli selection procedures

consider at least three types of IZ parameters: the

difference d between probabilities, relative risk ratio,

and odds ratio defined as
pk 1�pkð Þ=

pk�1 1�pk�1ð Þ= ; see Kim and

Nelson (2006b).

See

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization

▶Variance Reduction Techniques in Monte Carlo

Methods
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Steady State

A stochastic process is said to be in its steady state if

its state probabilities have (essentially) become

independent of initial conditions.

See

▶ Statistical Equilibrium

Steady-state Distribution

Another name for the limiting distribution of

a stochastic process.

See

▶Limiting Distribution

▶Markov Chains

▶Markov Processes

▶ Stationary Distribution

▶ Statistical Equilibrium

Steepest Descent Method

A fundamental procedure for minimizing

a differentiable function of several variables. Central

to the method is that the direction of steeptest descent,

in moving from one intermediate solution point to

another, is along the gradient of the function at the

current intermediate solution point.

See

▶Nonlinear Programming

Steiner Tree Problem

For a given subset of nodes S from a network with N

nodes, the problem is to determine a minimum length

(cost) tree that contains all the nodes of S

and, optionally, some other nodes from the set N. The

Steiner tree problem is often defined on the Euclidean

plane where the problem is to find the minimum

length (distance) tree that spans a given set of S

nodes, where the tree can contain nodes (points) other

than those in S.

See

▶Minimum Spanning Tree Problem

Stepping-Stone Method

A procedure for solving a transportation problem

based on a simplification of the simplex method as

applied to the constraint structure that defines

a transportation problem. It starts with an initial basic

feasible solution and then evaluates, for every

nonbasic variable, whether an improved solution can

be obtained by introducing one of the nonbasic

variables into the basis. The problem is structured

into an m-origin by n-destination rectangular matrix

of cells in which the cell location (i, j) corresponds to

the variable xij that represents the amount to be shipped

from origin i to destination j. The evaluation process

for a nonbasic variable xij starts in cell (i, j) and finds

a path (steps) to current basic variable cells so that if xij
does come into the basis, a new feasible solution is

generated. Such a path always exists, although

degeneracy procedures may be needed to define the

path if the current basic solution is degenerate.

Associated with the path is a cost that indicates

whether or not the new feasible solution would

improve (decrease) the value of the objective

function. Although useful for pedagogical purposes,

the stepping-stone method is not efficient for

computer solution. Most computer-based procedures

for solving the transportation problem use the

transportation (primal-dual) simplex method or

special network algorithms.
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See

▶Revised Simplex Method

▶ Simplex Method (Algorithm)

▶Transportation Problem

Stigler’s Diet Problem

A problem formulated by the economist George Stigler

in the early 1940s which had as its goal the

determination of a minimum cost diet for an adult

that met, for a full year, the recommended daily

allowances of nutrients and calories, using 77 foods

and 1939 prices. It was one of the first problems solved

by the simplex method. Stigler’s nonoptimal solution

cost $39.93, with a diet consisting of wheat flour,

evaporated milk, cabbage, spinach, and dried navy

beans. The optimal, linear-programming solution cost

$39.69 and included wheat flour, cabbage, spinach,

beef liver, and dried navy beans.

See

▶Diet Problem

▶Linear Programming

▶ Simplex Method (Algorithm)
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Introduction

Stochastic approximation is an iterative procedure

which, under general conditions, employs noisy

observations to estimate the root of a function. If this

function is the gradient or an estimator for the gradient

of a function of interest, the procedure enables the

identification of optima.

The prototype application for stochastic

approximation is root-finding. Consider a general

function g : p ! 
p defined for y 2 Y � 

p; p > 0.

Then the root-finding problem is to find at least one

y ¼ y� such that

gðyÞ ¼ 0: (1)

The exact form of gðyÞ is not known, and whatever

observations exist of the function are obscured by

noise.

An important special case of (1) is optimization.

Consider a differentiable function L : p ! 

defined for y 2 Y � 
p; p > 0, and suppose g

defined above is the gradient of L. Assume LðyÞ is

bounded from below and has a unique minimizer

denoted by y�. The minimization problem is

argmin
y2Y

LðyÞ: (2)

The exact form of LðyÞ is not known and

observations of L (and g, if it can be observed) are

obscured by noise.

Let ŷk be an estimate for y� at iteration k, ak a step

size at time k, and Gk ŷk

� 
2 

p some information

related to the gradient of the process, also at time k.

Choose an initial estimate ŷ0 and update the estimates

following the iterative scheme

ŷkþ1 ¼ ŷk �akGkðŷkÞ; k ¼ 0; 1; 2; � � � : (3)

The process in (3), along with a set of conditions for

convergence, is the general mathematical model of

stochastic approximation.

There are two general methods in stochastic

approximation, which differ in their use of gradient

information embodied by Gk ŷk

� 
. Stochastic gradient

methods, discussed first, use noisy observations of the

gradient, whereas gradient estimation methods use

observations of the loss function to estimate the

gradient.
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Convergence Results

It is of interest to know whether ŷk converges

(in a probabilistic sense) to y� as k gets large.

The convergence of a stochastic approximation

algorithm requires that conditions be placed on the

objective function, the step size sequence, and the

bias and variance of the observed or estimated

gradient.

There is not a single “standard” set of conditions;

rather, different references offer different sets of

conditions that result in almost sure convergence. For

the most part, the differences among these sets of

conditions lie in weakening one or another condition,

usually at the expense of adding elsewhere. These sets

of conditions can be broadly categorized as having

a statistical perspective (Spall 2003) or an

engineering (ODE) perspective (Kushner and Yin

2003; Spall 2003).

The overwhelming majority of what is known about

stochastic approximation comes from limit theorems.

The robust convergence theory of stochastic

approximation is a powerful result. In many cases, it

is possible to establish formal convergence of an

algorithm or procedure by demonstrating that the

problem is equivalent to a form of stochastic

approximation.

The conditions for convergence are, in general,

global requirements, and thus very broad and difficult

to satisfy (and to verify) except in simple cases.

However, even if the conditions do not hold globally,

there may be a smaller region (still of full dimension p)

in which the conditions do hold. In practice,

controllable parameters are selected carefully and

convergence is assumed.

Practical applications frequently choose other than

optimal parameters for algorithms based on (3)—even

in violation of the regularity conditions—in order to

move the estimate more quickly to the vicinity of y� at

the sacrifice of more slowly reducing the variability in

the estimate. It is often more important to “tweak” the

stochastic approximation procedure appropriately for

the application being considered in order to obtain

satisfactory finite-sample performance. For any

particular sequence of estimates, an individual

observation of ŷk for some (small) finite value of k

could be a poor estimator for y�, even when E
�

ŷk
�

is

close to y�. This is because the variability of the

estimate has not yet had a chance to die down.

Also of importance is the probability distribution of

the iterate. Having knowledge of the distribution

provides key insight into two main aspects of the

algorithm: (1) error bounds and stopping procedures

and (2) guidance in the choice of algorithm parameters

to minimize the deviation of ŷk from y�.

Stochastic Gradient Methods

Though analogous to the steepest descent algorithm,

stochastic gradient methods are fundamentally

different since the deterministic term @L=@y does not

equal the stochastic gradient YðyÞ. However, there is

an intuitive connection, since E½YðyÞ� ¼ @L=@y under

conventional conditions for convergence.

Robbins-Monro Stochastic Approximation (RMSA)

Denote observations of the gradient by YðyÞ and model

these observations by YðyÞ ¼ gðyÞ þ noise. If the

errors have mean zero, then E½YðyÞ� ¼ gðyÞ. Robbins
and Monro (1951) studied the problem of finding the

roots of an unknown function gðyÞ based on noisy

observations of gðŷkÞ. If g is the gradient of L, the

loss function in (2), then this procedure can be used

to solve the corresponding minimization problem.

After setting GkðŷkÞ ¼ YkðŷkÞ in (3), the iteration

formula for stochastic root-finding is

ŷkþ1 ¼ ŷk �akYkðŷkÞ: (4)

Asymptotic Properties of RMSA. The earliest

analytical results were by Robbins and Monro, who

proved mean-square convergence of ŷk to y� for their

algorithm under mild conditions (thereby implying

convergence in probability). A slight tightening of

these conditions enabled Blum (1954) to prove

almost sure convergence (see also Kushner and Yin

2003). Subsequent results have proved asymptotic

normality of the estimate ŷk (Fabian 1968), an

asymptotic rate of convergence of Oðk�1=2Þ (Chen

1998), convergence probability bounds (Davisson

1970), and conditions that are necessary and

sufficient for convergence (Kushner and Yin 2003).

With the conditions for convergence established,

and with ŷk generated according to (4), one can

prove that ŷk �!a:s: y� as k ! 1 (see Kushner and Yin

2003).
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Probably the best-known conditions for the

convergence of RMSA are those on the gain sequence

akf g. The conditions provide a balance between

wanting to damp out the noise effects as ŷk nears the

solution y� (ak ! 0) and avoiding premature

convergence of the algorithm
P1

k¼0 ak ¼ 1
� �

. The

scaled harmonic sequence a=ðk þ 1Þ; a > 0, is an

example of a gain sequence that satisfies the gain

conditions. Usually some numerical experimentation is

required to choose the best value of the scale factor that

appears in the decaying gain sequence. Other conditions

important for convergence relate to the smoothness of

gðyÞ, the relative magnitude of the noise, and the

position of the initial condition (Spall 2003).

To obtain a non-degenerate limiting distribution,

scale the error ŷk �y�. If the step size function takes

the form ak ¼ a=ðk þ 1Þb for 1
2
< b � 1 (and satisfies

certain regularity conditions), one can show that the

distribution of the scaled error is asymptotically

normal:

kb=2ðŷk �y�Þ �!dist Npð0;S�Þ as k ! 1;

where S� is a covariance matrix determined by the

coefficients of the sequence akf g and by the Hessian

of LðyÞ at y ¼ y� (Spall 2003, p. 112). One informal

but natural interpretation of this fact is that ŷk is

approximately multivariate normal with mean y� and

covariance S�=kb. Various special cases of this result

dealing with the situation b ¼ 1 can be found (Ljung

et al. 1992).

Gradient Estimation Methods

Gradient estimation algorithms were first addressed by

Kiefer and Wolfowitz (1952) by using finite

differences to estimate the gradient of the function

LðyÞ. These algorithms demonstrate the convergence

properties of stochastic gradient algorithms using only

measurements of the loss function.

Viewed asymptotically, when speed is measured

by the number of iterations, gradient-based

algorithms converge faster than those using gradient

estimates (convergence being measured in terms of the

deviation of the estimate from the true optimal

parameter vector). The optimal rate of convergence

for gradient-based algorithms is Oðk�1=2Þ, while

for algorithms based on gradient estimates the rate

is Oðk�1=3Þ, where k represents the number of

iterations (Spall 2003).

One cannot say in general that a stochastic gradient

algorithm is superior to a gradient estimation

algorithm even though the stochastic gradient

algorithm has a faster asymptotic rate of

convergence. However, if direct gradient information

is readily available, it is generally advantageous to use

this information in the optimization process.

Denote the estimate of the gradient @L=@y at ŷk by

ĝk ðŷkÞ. Then the general recursive procedure (3) with
GkðŷkÞ ¼ ĝk ðŷkÞ is

ŷkþ1 ¼ ŷk �ak ĝk ðŷkÞ: (5)

Let yðyÞ denote a measurement of LðyÞ
(i.e., yðyÞ ¼ LðyÞ þ noise) and D a perturbation.

One-sided gradient estimates involve the

measurements yðŷkÞ and yðŷk þDÞ, while two-sided

gradient estimates involve the measurements

yðŷk DÞ.
Under appropriate conditions, the iteration in (5)

will converge to y� in some stochastic sense, usually

a.s. (Kushner and Clark 1978). Typical convergence

conditions are similar to those mentioned above for the

RMSA algorithm.

Finite-Difference Stochastic Approximation

(FDSA)

Each component of ŷk is perturbed one at a time, and

corresponding measurements y are obtained; each

component of the gradient estimate is the difference

in the y values divided by the difference interval. This

is a standard approach to estimating gradient vectors

and is motivated by the definition of the gradient as

a vector of p partial derivatives. The ith component of

ĝkðŷkÞ; i ¼ 1; 2; . . . ; p, for a two-sided finite difference

estimate is typically given by

ĝki ðŷkÞ ¼
yðŷk þ ckeiÞ � yðŷk �ckeiÞ

2ck
;

where ei denotes the ith unit basis vector (Kiefer and

Wolfowitz 1952).

Simultaneous Perturbation Stochastic

Approximation (SPSA)

All components of ŷk are randomly perturbed

together (i.e., “simultaneously”) to obtain two
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measurements y, and each component of ĝkðŷkÞ is the
difference in the y values divided by the difference

interval. The ith component of ĝkðŷkÞ; i ¼ 1; 2; . . . ; p,
for a two-sided simultaneous perturbation is

ĝki ðŷkÞ ¼
yðŷk þ ckDkÞ � yðŷk � ckDkÞ

2ckDki

;

where the random perturbations,

Dk ¼ Dk1; Dk2; . . . ; Dkp

� �T
, satisfy the distributional

conditions below.

Note that the number of loss function measurements

y needed in each iteration of FDSA grows with p, while

SPSA requires only two loss function measurements

per iteration. Thus there is the potential for SPSA to

achieve a savings over FDSA in the total number of

measurements required to estimate y when p is large

(Spall 2003).

Asymptotic Properties of SPSA. The conditions for

convergence of the SPSA algorithm are somewhat

different from those of RMSA. Conditions must be

imposed on the gain sequences akf g and ckf g, the
distribution of Dk, and the statistical relationship of

Dk to the measurements y (Spall 2003). The gain

sequences akf g and ckf g both must go to zero at rates

neither too fast nor too slow, LðyÞ should be

sufficiently smooth near y� (several times

differentiable), and the Dki should be independent and

symmetrically distributed about zero with finite

inverse moments E½jDkij
�1� for all k and i. One

distribution that satisfies these conditions is the

symmetric Bernoulli distribution on �1; 1f g.
Under the conditions outlined in Spall, (2003,

p. 204) one can show

kb=2ðŷk �y�Þ �!dist Npðm;S�Þ as k ! 1:

In general, m 6¼ 0, in contrast to the asymptotic

normality results for RMSA. The optimal rate of

convergence for SPSA is Oðk�1=3Þ, compared to

Oðk�1=2Þ for the RMSA algorithm. There are

exceptions to this result; see Kleinman, Spall, and

Naiman (1999).

The efficiency of SPSA (relative to FDSA) depends

on the shape of LðyÞ, the sequences akf g and ckf g, and
the distributions of the Dki and measurement noise

terms. For most practical problems, SPSA is

asymptotically more efficient than FDSA (Spall

2003). In particular, the total number of loss

measurements y to achieve convergence in SPSA is

proportional to 1=p the number needed in FDSA (Spall

2003, Chap. 7).

Extensions to Standard Approaches

Constrained Problems

A simple variation on the form in (3) includes

a projection operator PY that maps solutions outside

the constraint setY back to its nearest point inY. This

approach for the Robbins-Monro algorithm is

discussed in Kushner and Yin, (2003). In this case,

(4) becomes

ŷkþ1 ¼ PY½ŷk �akYðŷkÞ�:

There are implementations of SPSA for constrained

optimization as well. See Sadegh (1997) for

a projection approach, Wang and Spall (2008) for

a penalty approach, and Bhatnagar, Hemachandra,

and Mishra (2011) for a Lagrange multiplier approach.

Iterate Averaging

Averaging is an important development in stochastic

approximation. The approach—sometimes referred to

as Ruppert-Polyak stochastic approximation—was

originally introduced as a means to improve the

efficiency of the usual stochastic approximation

process. Theory supporting the validity of this

approach is found in Polyak and Juditsky (1992).

There are several variations, but the basic idea is to

replace ŷk as the current “best” estimate of y� after k

iterations with the average

�yk ¼
1

k þ 1

X

k

j¼0

ŷj :

A variation on this method is to compute a “sliding

window” average based on the last m estimates:

�yk ¼
1

m

X

k

j¼k�mþ1

ŷj :

The advantage of a sliding window approach is that

the averaging is focused on the later estimates which

are presumably in a neighborhood of y�. Further

variations on these ideas can be devised.
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Recent work has shown some limitations and

cautions regarding the method (see, for example,

Maryak (1997) and Spall (2003, pp. 117–119)), and

the method seems best suited for the class of problems

where the estimates loiter approximately randomly in

a neighborhood of y�.

A further modification to the averaging approach is

to use �yk (together with ŷk ) in a modified form of the

RMSA iteration. This is referred to as the feedback

approach (Kushner and Yang 1995), and occasionally

yields improvements.

Adaptive Estimation

Kesten (1958) developed an adaptive algorithm for

scalar y that looks at the signs of the difference

ŷkþ1 � ŷk . Frequent sign changes are seen as an

indication that ŷk is near y�, while if signs are not

changing, it is an indication that ŷk is far from y�.

A larger step size ak is used if there are no sign changes

and a smaller ak is used if the signs change frequently.

A multivariate extension of Kesten’s idea is described

in Delyon and Juditsky (1993).

Second-Order Algorithms

There are stochastic analogs of the second-order

Newton-Raphson search. The scalar gain ak is

replaced by a matrix Hk that approximates the

unknown true inverse Hessian matrix corresponding

to the current data point’s contribution to the loss

function. An accelerated form of SPSA extends the

algorithm to include second-order (Hessian) effects.

Recent results in adaptive SPSA are discussed in

Spall (2003).

Ruppert (1985) describes an approach where the

Hessian is estimated by taking finite differences of

a gradient measurement. Spall (2000, 2009) gives

a more efficient approach to general Hessian

estimation based on simultaneous perturbations.

Joint Parameter and State Evolution

A generalization of the stochastic approximation

process replaces GkðŷkÞ by Gkðŷk; xkÞ, where xk
represents a state vector related to the system being

optimized. It is typical to assume that xk evolves

according to Markov transition probabilities.

Time-Varying Loss Functions

The loss function LðyÞ may itself be a function of k.

It is assumed that, while LkðyÞ may change shape

with k, the underlying minimum y� is either constant

for all k or fixed in the limit as k ! 1.

Stopping Rules

The need for a stopping rule for stochastic

approximation was recognized by Kiefer and

Wolfowitz (1952). Three broad categories of stopping

methodologies include sequential methods, Monte

Carlo methods, and relaxation methods. Sequential and

Monte Carlo methods are discussed below. A review of

relaxation methods can be found in Hutchison (2009).

Sequential Methods

Chow and Robbins (1965) developed a method to

sequentially determine a bound on the mean of

a continuous scalar random variable with unknown

variance. They suggested the following rule: stop

when the length of the confidence interval based on

asymptotic normality of the sample means is smaller

than 2d for some d > 0. Since this initial work, much

of the effort in stopping stochastic approximation has

been on estimating the distribution of ŷk in order to

apply the Chow-Robbins criterion.

The idea is to fix a level of significance a, estimate

the distribution of ŷk , and form a confidence region

based on the estimated distribution and a. This is done

successively as the algorithm steps through the

iterations. As the sequence converges, the dispersion

of the estimated distribution gets smaller, and the

confidence region follows suit. The algorithm is

stopped when the size of the 1� a confidence region

is small enough.

Theory for the multi-dimensional case can be found

in Pflug (1996). The general validity of the approach is

demonstrated in Glynn and Whitt (1992).

The method requires knowledge of S�, the

covariance matrix of the limiting normal distribution

of the scaled error. Using the step size sequence

ak ¼ a=ðk þ 1Þb; 1
2
< b � 1, the covariance matrix S�

is computed fromone of the followingmatrix equations:

aHðy�Þ � 1
2
I

� �

S� þ S� aHðy�Þ � 1
2
I

� �T ¼ a2Cðy�Þ;
for b ¼ 1;

Hðy�ÞS� þ S�Hðy�Þ ¼ aCðy�Þ; for
1

2
< b <1:

(6)

See, for example, Pflug (1996).
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Approaches that use the asymptotic distribution as a

proxy for the true distribution of ŷk to stop a stochastic

approximation may be unsatisfactory for small (finite)

samples. Alternatively, one can attempt to directly

estimate the true distribution of ŷk or a simpler (but

similar) surrogate distribution. Under certain

conditions, surrogate-based probability calculations

are close to the actual probabilities (Hutchison and

Spall 2009).

Sequential procedures tend to performwell when the

run lengths are relatively long (Glynn and Whitt 1992).

The procedure is less reliable with small samples.

Monte Carlo Methods

A simple idea for stopping is to conduct multiple trials

to generate the information necessary for stopping.

There are two subcategories of this method: iterate

sampling and sample path sampling.

Iterate sampling methods. Iterate sampling obtains

repeated observations of ŷk based on having arrived at

ŷk�1 . Iterate sampling is not directly useful for

determining the distribution of ŷk , though it may be

used to determine bounds on the next step of the

current iteration, on an estimator of the loss, L̂ðŷkÞ, or
of the gradient, ĝðŷkÞ. The most direct approach is to

sample at each iteration to obtain information that can

be used as the basis for stopping.

Sample path methods. Sample path methods obtain

repeated observations of ŷk by running m independent

applications of the stochastic approximation process.

Independent copies of the stochastic approximation

process may become concentrated in a small region

(nominally a ball). As each process converges to y�, the

tails of the sequences of estimates get “close together.”

The iteration is stoppedwhen the tails are “close enough.”

More direct is to use sample path sampling to

estimate the asymptotic distribution of ŷk , a

hypothesized distribution, or the true distribution. For

example, an improvement over using the asymptotic

covariance structure in (6) is to use an estimator for the

true covariance of ŷk , Sk. Hsieh and Glynn (2002)

apply this approach by takingm sample paths of length

k to estimate the covariance matrix Sk.

Concluding Remarks

Although stochastic approximation methods have the

potential to treat a broader class of problems than many

traditional deterministic techniques, their application

can be a challenge. A problem common to all

stochastic approximation techniques is that values

must be specified for the algorithm’s tunable

coefficients. All stochastic approximation techniques

have such coefficients. These coefficient values are

typically problem dependent and can have a

significant effect on the performance of an algorithm.

Stochastic approximation allows for the treatment

of problems such as global optimization and noisy

loss-function evaluations that arise frequently in

areas such as network analysis, neural network

training, image processing, nonlinear control, and

simulation optimization. Stochastic approximation

addresses a broader range of problems than possible

with only standard deterministic methods.

See

▶Neural Networks

▶ Perturbation Analysis

▶ Score Functions

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization
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Stochastic Duel

A stochastic duel is a model of combat (originally

between two individuals, expanded to two sides with

finite numbers of individuals) which emphasizes the

random nature of combat and finite attrition calculations.

See

▶Battle Modeling

Stochastic Dynamic Programming

Dynamic programming setting in which the transitions

and/or costs/rewards are stochastic. The resulting

mathematical model is usually a Markov decision

process.

See

▶Approximate Dynamic Programming

▶Dynamic Programming

▶Markov Decision Processes

Stochastic Input Model Selection
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Introduction

Input modeling is the selection of a probability

distribution to capture the uncertainty in the input
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environment of a stochastic system. Example

applications of input modeling include the

representation of the randomness in the time to

failure for a machining process, the time between

arrivals of calls to a call center, and the demand

received for a product of an inventory system.

Building simulations of stochastic systems requires

the development of input models that adequately

represent the uncertainty in such random variables.

Since there are an abundance of probability

distributions that can be used for this purpose,

a natural question to ask is how to identify

the probability distribution that best represents the

particular situation under study. For example, is the

exponential distribution a reasonable choice to

represent the time to failure for a machining process,

or is it better to use an empirical distribution function

obtained from the historical time-to-failure data?

Recognizing the fact that there is no true input model

waiting to be found, the goal of stochastic input

modeling is to obtain an approximation that captures

the key characteristics of the system inputs.

The development of a good input model requires

the collection of as much information as possible

about the relevant randomness in the system as well

as the historical data consisting of the past

realizations of the random variables of interest. In

the presence of a data set, the input model can be

identified by fitting a probability distribution to the

historical data. However, it may be difficult and/or

costly to collect data for the stochastic system under

study; it can also be impossible to properly collect

any data at all such as when the proposed system does

not exist. In the absence of historical data, any

relevant information (e.g., expert opinion and the

conventional bounds suggested by the underlying

physical situation) can be used for input modeling.

This article addresses the key issues that arise in

stochastic input modeling both in the presence and

in the absence of historical data.

The first step in input modeling is to identify the

sources of randomness in the input environment of the

system under study. Many stochastic systems contain

multiple sources of uncertainty, e.g., the completion

time of an item on a particular machine, the potential

breakdown of the machine, and the percentage

of defective items produced by the machine might

be among the sources of uncertainty in a

manufacturing setting. Throughout, the random

vector X ¼ (X1, X2, . . ., XK)
0 is used to represent the

collection of K different inputs of a stochastic system,

where Xk is the random variable denoting the kth

system input. The K components of this random

vector might also be correlated with each other.

Therefore, the stochastic properties of the random

inputs Xk, k ¼ 1, 2, . . ., K, are captured in the joint

probability distribution function of X. Selecting

a joint distribution function to capture the

randomness in X is called multivariate input

modeling. It might be the case that the machine

breakdown probability is positively correlated with

the job completion time on the machine. In this case,

stochastic input modeling refers to the specification of

a bivariate probability distribution function for the

joint representation of the machine breakdown

probability and the job completion time. It might

also be the case that there is a single source of

randomness (K ¼ 1), or the random component

Xk is independent of the remainder of the

components, Xl, l ¼ 1, 2, . . ., k � 1, k + 1, . . ., K. In

both of these cases, the input-modeling problem

reduces to univariate input modeling which selects

a univariate distribution for the random component

of interest. For example, if the percentage of the

defective items is known to be independent of both

the job completion time and the potential breakdown

of the machine, then the defective-item percentage is

represented with a univariate distribution.

Furthermore, univariate input modeling, despite

failing to capture the dependencies among different

random components, is often a good start towards

solving the multivariate input-modeling problem.

Although the main focus here will be on univariate

modeling, the key issues that arise in multivariate

modeling will also be addressed.

Univariate Input Modeling

Assuming an independent and identically distributed

(i.i.d.) input process, this section treats univariate

input modeling both in the presence and in the

absence of historical data. Additionally, an

autocorrelated input process is considered, with focus

on captuning the temporal dependence.
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Input Modeling with Historical Data

The input-modeling problem of this section

assumes the availability of i.i.d. historical data points

xi, i ¼ 1, 2, . . ., n of length n, and describes how to use

this data set for estimating F(�;C), the underlying

cumulative distribution function (c.d.f.) of the random

variable X and the unknown parameter vectorC.

Preliminary Analysis of the Historical Data

It is possible that the available historical data points are

recorded imprecisely or grouped with the observations

of the other random variables in the input environment

of the stochastic system under study. It might also be

the case that the data set is available in an order other

than when the values were observed. Such data

characteristics do not allow the simulation

practitioner to check whether being i.i.d. is

a reasonable assumption for the underlying input

process; see Vincent (1998) for further examples that

turn input modeling into a challenging problem. The

input-modeling techniques of this section, on the other

hand, assume that the historical data on hand are

statistically i.i.d.; therefore, it is critical to perform

a preliminary analysis of the historical data and verify

the i.i.d. assumption before the implementation of the

input-modeling techniques to be discussed shortly.

A graphical method that can be used for assessing

the independence of the historical input data is the

correlation plot. It shows the sample correlations for

various lags; note that a lag ‘ correlation is the

correlation between data points that are ‘ values

apart. Vincent (1998) reports that lags of size one

through ten are the most informative about a sample,

whereas lags over 20 are non informational. For an

i.i.d. historical data set, the sample correlations are

expected to be small in magnitude and clustered

around zero, with both negative and positive

estimated values.

Another graphical method that can be used for the

same purpose is the scatter diagram plotting the data

pairs xi and xi+1 for i ¼ 1, 2, . . ., n � 1 on each of its

axes. If the historical data points are independently

distributed, then they are randomly scattered. If the

data points lie along a diagonal line with a positive

(negative) slope, then the scatter diagram suggests

a positively (negatively) autocorrelated input process.

In addition to the assessment of the independence

assumption, it should also be checked whether

each data point comes from the same probability

distribution; i.e., the (unconditional) probability

distribution of the input process does not change with

time. A way of doing this is to analyze the data for any

discernible increasing or decreasing patterns over

time; see Vincent (1998) for further discussion on

assessing the stationarity of the underlying input

process.

The next step in the preliminary analysis of the

historical data is the calculation of the summary

statistics such as the sample minimum x(1) and the

sample maximum x(n) for the range estimation,

the sample mean �x ¼Pn
i¼1 xi n= as the measure of

the central tendency, the sample variance

s2 ¼Pn
i¼1 xi � �xð Þ n� 1ð Þ= and the sample

coefficient of variation s �x= as the measures of

variability, the sample coefficient of skewness
Pn

i¼1 xi � �xð Þ3 s3
�

as the measure of asymmetry, and

the sample coefficient of kurtosis
Pn

i¼1 xi � �xð Þ4 s4
�

as

the measure of peakedness and tail weight. In addition,

the quantile summary and the histogram of the

historical data show the level of asymmetry in

the empirical density function. However, the use of

the histogram for input modeling might lead to

different conclusions based on the number of the bins

used; therefore, the histograms should always be

constructed for various bin sizes.

The summary statistics obtained from the

preliminary analysis of the historical data can be used

for identifying the form of the underlying probability

density function. For example, a sample coefficient of

variation close to 1, along with a histogram with an

exponential decay, suggests exponential distribution as

an input model. A sample coefficient of variation

greater than 1 with a right-skewed histogram

indicates that a lognormal distribution can be

a potential input model, while a symmetric histogram

or a sample coefficient of skewness close to zero

indicates normal or Student’s t distribution as an

appropriate candidate for input modeling. Such

a preliminary analysis allows the simulation

practitioner to gain insights about the key

characteristics of the historical input data. A good

resource for further discussion on the initial analysis

of the historical data for input modeling is Law (2007).

Model Fitting and Parameter Estimation

Standard families of distributions (e.g., beta, binomial,

Erlang, exponential, gamma, lognormal, normal,
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Poisson, triangular, uniform, or Weibull) are often the

immediate choices in the selection of a distribution for

the input data. These standard distributions can be

classified as discrete and continuous, or with bounded

and unbounded ranges. Detailed treatments of standard

discrete and continuous distributions are available,

respectively, in Johnson, Kemp and Kotz (2005) and

Johnson, Kotz and Balakrishnan (1995).

The identification of the best fit (i.e., the probability

distribution that provides the best representation for the

underlying input process) often requires not only the use

of historical data for model fitting but also a good

understanding of the source of randomness in the

system. Most probability distributions are invented to

present a particular physical situation. If the physical

basis for a distribution is well understood, that

knowledge can be used to match it to the situation

being modeled. For example, if the number of patient

visits to an emergency room satisfies the assumptions of

the Poisson process (i.e., the patients arrive one at a time,

the number of arrivals in a time interval is independent

of the number of arrivals in an earlier time interval and

the times at which these arrivals occur, and the arrival

rate of patients does not depend on the time of day), then

the exponential distribution can be selected for

modeling the interarrival times between patient

arrivals. The lognormal distribution would be

a potential input model to represent the rate of return

on an investment when interest is compounded, because

the rate of return in this particular case can be thought of

as the product of a number of component processes. The

use of the physical basis for distribution selection in this

manner is especially important for input modeling in the

absence of historical data.

Inmany practical situations, however, it is not easy to

choose and justify an input distribution based on the

source of randomness in the system. Moreover, the

standard families of distributions might not adequately

represent the probabilistic behavior of the input

processes. In such cases, the use of flexible families of

distributions for input modeling might allow the

simulation practitioner to capture the key

characteristics of the available data by fine-tuning the

shape of the fitted input distribution. Some well-known

flexible distribution systems include the curves

proposed by Pearson (1895), the generalized lambda

distribution (Ramberg and Schmeiser 1974), and the

Schmeiser-Deutsch class of distributions (Schmeiser

and Deutsch 1977). Other widely-used distribution

systems for input modeling are the generalized beta

family of distributions and the Bézier distribution

family, along with the Johnson translation system; see

Kuhl et al. (2010) for a review of these distribution

systems with a focus on stochastic simulation.

Independent of whether a standard distribution or

a flexible distribution is chosen, the next step in input

modeling is to obtain Ĉ, an estimate of the unknown

parameter vector C, which minimizes the distance

between the hypothesized distribution function

Fhð�; ĈÞ and the empirical distribution function of

the historical data. Assuming that the functional form

of Fhð�; ĈÞ is known, the methods of maximum

likelihood, least squares, and moment matching are

the three widely-used estimation techniques for

predicting a value for Ĉ. Specifically, the maximum

likelihood method estimates Ĉ by maximizing the

likelihood function of the historical data, while the

least-squares method minimizes the sum of squared

residuals, each of which is a difference between an

observed value and a fitted quantile. The method of

moment matching, on the other hand, predicts Ĉ by

matching themoments of the hypothesized distribution

Fhð�; ĈÞ to the sample moments of the historical data

set; a good resource for details on these estimation

techniques is Rohatgi and Saleh (2001).

In situations where no parametric distribution

provides a good fit for the historical data, the

empirical distribution function can be chosen as the

input model. Specifically, the empirical distribution

function F̂ is the c.d.f. constructed by assigning

probability 1/n to each of the n data points. It is an

unbiased, consistent, and asymptotically normal

estimator of the c.d.f. F (Rohatgi and Saleh 2001).

A limitation of the empirical distribution is that it

ignores the possibility of a realization that does not

appear in the historical data set. The common practice

is to fill such gaps by linearly interpolating between the

sorted values of the historical data. Also, the range of

the empirical distribution is limited to that of the

historical data set. However, this limitation can

be overcome by extending one or both of the

empirical-distribution tails with known distribution

functions. A distribution that is often used for this

purpose is the exponential distribution. A more

detailed presentation of the empirical distribution

function with a focus on simulation input modeling

can be found in Vincent (1998).
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Assessing the Goodness of the Fit

After the estimation of the distribution parameters, the

next step is to assess how well the resulting fit captures

the key distributional characteristics of the historical

data. This can be accomplished by using the statistical

goodness-of-fit tests and the graphical (heuristic)

techniques.

Chi-square, Kolmogorov-Smirnov, and

Anderson-Darling tests are the three of the statistical

goodness-of-fit tests available in simulation software

packages for input modeling. Specifically, the

chi-square test provides a formal comparison between

the histogram (or the line graph) of the historical data

and the fitted density (or mass) function. The major

drawback of this test is its sensitivity to the number of

intervals (data groups) used for the construction

of the histogram. The Kolmogorov-Smirnov and

Anderson-Darling tests compare the empirical

distribution function to the fitted distribution

function. Neither of these tests require the grouping

of the data, while the Anderson-Darling test with the

higher power detects, in particular, the discrepancies in

the distribution tails. It is important to note that each of

these tests is unlikely to reject any distribution when

there is little data, and is likely to reject every

distribution when there is a lot of data. Keeping this

caveat in mind, the goodness-of-fit test statistics

should be interpreted as a recommendation to accept

or reject an input model, but not as a definite rule to be

strictly followed.

In addition to the use of goodness-of-fit tests for

input modeling, graphical methods are recommended

as advisory devices to examine the fits. The graphical

tools that can be used for this purpose include

the frequency comparison plot, the density-

function-differences plot, the probability-probability

(P-P) plot, and the quantile-quantile (Q-Q) plot.

Specifically, the frequency comparison plot is

a graphical comparison of the histogram of the

historical data with the estimated density function,

while the density-function-differences plot compares

the empirical distribution function to the fitted

distributed function by plotting their differences over

the available data range. The P-P plot, on the other

hand, plots the hypothesized (estimated) distribution

function FhðxðiÞ; ĈÞ against (i � 0.5)/n with x(i)
denoting the ith smallest historical data point, while

F�1
h ðði� 0:5Þ n= ; ĈÞ is plotted against x(i) in the Q-Q

plot for i ¼ 1,2,. . .,n. Thus, the Q-Q plot (P-P plot)

amplifies the differences between the tails (middles) of

the hypothesized and sample distribution functions.

Both the P-P plot and the Q-Q plot are expected to be

approximately linear when the hypothesized

distribution function Fhð�; ĈÞ is a good fit. Since it is

important that the input model adequately captures the

tail behavior of the historical input data, the use of the

Q-Q plot is highly recommended for input-model

building.

To summarize, identification of a good input model

starts with the preliminary analysis of the historical

input data, continues with the use of an estimation

method for determining the distribution function and

its parameters, and ends with the evaluation of the

goodness of the resulting fit. The proprietary

simulation software packages often include built-in

modules that follow these steps to identify the input

distribution that best fits the historical data; see Swain

(2011) for a survey on such simulation software and

their input-modeling capabilities; this survey is usually

updated biennially in OR/MS Today. Nevertheless, the

simulation practitioner should not just rely on the best

fit identified by the software; if there is a strong

physical basis for a particular distribution choice,

then its selection as the input model should be

seriously considered even if it is not the best fit.

Input Modeling in the Absence of Historical Data

The setting where no data are available to select

a distribution or assess the fit is now considered. This

might occur due to time and budget restrictions and/or

the challenges in data collection. It might also be the

case that the goal of the simulation study is to

investigate the impact of design changes on the

system performance, so that the (proposed) system

does not exist yet. Therefore, the input model has to

be developed by using any available information about

the underlying input process. For example, if

a distributor receives orders from a large number of

independent retailers, then the Central Limit Theorem

suggests the selection of the normal distribution as the

input model for representing the total demand.

Similarly, the number of defective items in

a shipment of fixed size can be modeled by

a binomial distribution when the probability of being

defective is the same for each item. In the absence of

historical data, the physical limitations of the
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underlying process can also be useful for input

modeling. For example, if the repair of a machine

requires at least 6 hours to run a diagnostic check and

the machine is replaced by a new one if it cannot be

repaired in 3 days, then the input model for the

machine repair time should assume values between

6 hours and 3 days.

The knowledge and experience of the experts (i.e.,

the people familiar with the system being studied) are

called expert opinion. It is an important source of

subjective information necessary for developing an

input model in the absence of historical data. A way

of extracting expert opinion is to use breakpoints; i.e.,

the numerical values that the input random variable

can take and the chances of the random variable being

higher or lower than the breakpoints. In this case, the

input model is built using as many breakpoints as can

be confidently obtained, especially near the extreme

values of X. The breakpoints method is useful for

modeling inputs with many possible outcomes.

However, it is possible that the expert can only provide

limited information about the properties of the input

random variables such as the lower/upper bound, the

most likely value, and the mean value. A way of

building an input model in such a case is to consider

the use of uniform, triangular, PERT, and beta

distributions for incorporating expert opinion into the

input-model development. Specifically, the uniform

distribution can be used when the expert provides both

a lower bound and an upper bound to the values the

random variable can take. However, the expert can also

provide a most likely value which can be incorporated

into the input model as the mode of the triangular or

PERT distribution. If the expert additionally provides an

average value for the input, then all of the available

expert opinion can be used for constructing a beta

distribution. A drawback of using the beta distribution

for input modeling is that it might be difficult for the

expert to differentiate between the most likely and

average values, but this difficulty can be overcome by

modeling the input with a lognormal or Weibull

distribution. The construction of these two distributions

requires expert opinion about the location parameter, the

most likely value, and the q-quantile of the input

distribution. While the location parameter can be

interpreted as the lower bound to the values the input

randomvariable can take, the scale and shape parameters

are functions of the mean and the q-quantile.

Autocorrelated Input Process

The focus switches now to an autocorrelated input

process that exhibits temporal dependence,

specifically to input modeling for the stationary

univariate time series denoted by {Xt; t ¼ 1, 2, . . .}.

An example of such an input process is the sequence of

week-to-week quantities ordered by a distributor,

when modeling the weekly orders as independent

random variables misses the week-to-week

dependence (autocorrelation) in the demand process.

Autocorrelation in an input process can have

a substantial effect on system performance and hence

should not be ignored; see Livny, Melamed and

Tsiolis (1993) for a well-known simulation study

demonstrating the significant impact of interarrival

and service-time autocorrelations on queueing system

performance.

Input modeling for a univariate time series of order

p refers to the selection of a probability distribution

for the random variable Xt and the specification of

the autocorrelation structure up to lag p; i.e.,

Corr Xt;Xtþl½ � ¼ E XtXtþl½ � � m2ð Þ s2
�

for ‘ ¼ 1, 2, . . ., p,

where m and s2 are the mean and variance of Xt. An

input model that is widely used for representing such

an autocorrelated time series is the AutoRegressive

Moving Average (ARMA) process. Specifically, the

ARMA(p,q) process is represented by

Xt ¼
Pp

h¼1 ahXt�h þ Yt þ
Pq

i¼1 biYt�i for t ¼ p + 1,

p + 2, . . ., where the ah, h ¼ 1, 2, . . ., p are fixed

autoregressive coefficients and the bi, i ¼ 1, 2, . . ., q

are fixed moving average coefficients that jointly

determine the autocorrelation structure of the time

series Xt, t ¼ 1, 2, . . ., while Yt, t ¼ p + 1, p + 2, . . .

are independent and normally distributed random

variables each of which has a mean of zero. A good

resource for input modeling with ARMA is Box,

Jenkins and Reinsel (1994). The major limitation of

the linear ARMA model is the restriction of the

marginal distribution of Xt to normal, limiting the use

of the model for time series with arbitrary marginal

distributions. Motivated by this drawback, there has

been considerable research on modeling time

series with marginals from non-normal families, such

as exponential, gamma, geometric, or general discrete

marginal distributions. For example, Lewis, McKenzie

and Hugus (1989) relax the normal-distribution

assumption of the ARMA model by constructing

a time series with a gamma marginal distribution.
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However, this model allows only limited control of the

dependence structure, and a different model is required

for each type of marginal distribution.

The Transform-Expand-Sample (TES) process

introduced by Melamed (1991) differs from the

previous time-series models by its ability to match an

arbitrary marginal distribution and a lag-one

correlation by applying the inverse-transformation

method to a series of autocorrelated uniform random

variables. However, the TES process does not

guarantee the representation of the autocorrelation

structure beyond the first lag, and extreme jumps may

appear in its sample paths. In addition, the TES process

is limited to the modeling of univariate time series;

it cannot be extended to capture the joint distribution

of correlated input random variables. The

AutoRegressive-To-Anything (ARTA) process

developed by Cario and Nelson (1996), on the other

hand, allows the modeling of a time series with any

marginal distribution and an autocorrelation structure

specified up to lag p (� 1). Unlike TES, ARTA can

represent autocorrelation structures beyond lag one

with no extreme jumps in the sample paths.

Furthermore, ARTA can be easily extended to model

multivariate time series.

Specifically, the ARTA model builds on the

autoregressive process of order p; i.e., the ARMA(p,q)

process with q ¼ 0, which serves as the base process

with the following representation:

Zt ¼
Xp

h¼1

apZt�h þ Yt; t ¼ pþ 1; pþ 2; . . .

The autocorrelation structure of the base process Zt,

t ¼ 1, 2, . . . is uniquely determined by the

autoregressive coefficients ah, h ¼ 1, 2, . . ., p and the

variance of the random variables Yt, t¼ p + 1, p + 2, . . .

that ensure the standard normality of the base process.

This allows one to obtain the input random variable Xt

from the transformation Xt ¼ F�1 F Ztð Þ;Cð Þ, where
F-1(�;C) is the inverse c.d.f. of the marginal

distribution function F(�;C), and F is the c.d.f. of the

standard normal random variable. Cario and Nelson

(1998) develop the ARTAFACTS software that

specifies the autocorrelation structure of the base

process Zt, t ¼ 1, 2, . . . to obtain the autocorrelation

structure of the input process Xt, t ¼ 1, 2, . . .. Building

on the input-modeling techniques described earlier,

Biller and Nelson (2005) introduce an automated and

statistically valid algorithm called ARTAFIT to fit an

ARTA process with a marginal distribution from the

Johnson translation system to historical data of limited

length. It is reported that the ARTAFIT algorithm,

which jointly estimates the marginal distribution and

the autocorrelation structure of a time series, provides

better fits than those obtained under the assumption of

an independent input process; it also performs better

than the separate estimation of the marginal

distribution and the autocorrelation structure. The

extension of this univariate time-series input model to

multivariate time series is discussed later.

Multivariate Input Modeling

The objective of this section is to describe how to

select a multivariate input model for a random vector

composed of K correlated random variables. Examples

of such a random vector include the demands of K

different items in a retailer’s product line, the

processing times of a product at K different

machines, and the financial defaults of K different

suppliers in a supply-chain network. First, it is

assumed that the K � dimensional random vectors

Xt ¼ (X1,t, X2,t, . . ., XK,t)
0, t � 1 are independent over

time to focus on capturing the dependence among the

K component random variables Xk,t, k ¼ 1, 2, . . ., K.

Then the temporal independence assumption is relaxed

to consider multivariate time-series models that

additionally account for the autocorrelations within

the time series Xt, t � 1.

Capturing the Joint Distribution of Correlated

Inputs

Due to the analytical tractability in parameter

estimation and the ease in random-vector generation,

multivariate normal distribution has been a

widely-used input model for correlated random

variables. This model, however, assumes a normal

marginal distribution for each input random variable,

limiting its use for multivariate input modeling. This

has motivated the multivariate extension of various

standard distributions for input modeling; see

Johnson, Kotz and Balakrishnan (1997) and Kotz,

Balakrishnan and Johnson (2000) for a presentation

of the resulting multivariate distributions.

The focus of recent multivariate input-modeling

research has been on developing flexible input
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models with arbitrary marginal distributions and

positive definite correlation matrices. More

specifically, the goal has been to construct

a K-dimensional random vector X ¼ (X1, X2, . . ., XK)
0

with marginal distribution functions Fk(�;Ck), k ¼ 1,

2, . . ., K and input correlation matrix ∑X � [r(i, j);

i, j ¼ 1, 2, . . ., K], where r i; jð Þ ¼ Corr Xi;Xj

� �

for

i ¼ 1, 2, . . ., K and j ¼ 1, 2, . . ., K. The joint

distribution function of the random vector X is

given by

H x1;x2; . . . ;xkð Þ ¼ Pr X1 � x1;X2 � x2; . . . ;XK � xKð Þ:

The application of the probability-integral

transformation Fk(�;Ck) to the random variable Xk

results in the uniform random variable Uk in (0, 1);

i.e., Fk Xk;Ckð Þ � Uk, and the standard normal

random variable Zk is obtained by applying the

inverse c.d.f. F�1 of the standard normal random

variable to Uk, i.e., Zk ¼ F�1 Fk Xk;Ckð Þð Þ.
Therefore, the joint distribution function H of the

random vector X can be alternatively written as

follows:

H x1;x2; . . . ;xKð Þ
¼Pr Fk Xk;Ckð Þ�Fk xk;Ckð Þ;k¼ 1;2; . . . ;Kð Þ
¼Pr Uk � uk;k¼ 1;2; . . . ;Kð Þ
¼Pr F�1 Ukð Þ�F�1 ukð Þ;k¼ 1;2; . . . ;K

� �

¼Pr Zk �F�1 Fk xk;Ckð Þð Þ;k¼ 1;2; . . . ;K
� �

¼FSZ F�1 F1 x1;C1ð Þð Þ;F�1 F2 x2;C2ð Þð Þ; . . . ;F�1 FK xK;CKð Þð Þ
� �

In this representation, FSZ
is the joint c.d.f. of the

base random vector Z ¼ (Z1, Z2, . . ., ZK)
0 with the

correlation matrix SZ � rZði; jÞ; i; j ¼ 1; 2; . . . ;K½ �,
where rZ i; jð Þ ¼ Corr Zi; Zj

� �

for i ¼ 1, 2, . . ., K and

j ¼ 1, 2, . . ., K. FSZ
allows the joint distribution

function of X ¼ (X1, X2, . . ., XK) to be written as

a function of the marginal c.d.f.’s Fk(Xk;Ck) , k ¼ 1,

2, . . ., K. This function is known as the K-dimensional

normal copula, which can be considered as

a multivariate function that couples the arbitrary

marginal c.d.f.’s Fk(Xk;Ck), k ¼ 1, 2, . . ., K with the

correlation matrix SZ to obtain the joint distribution

function H. This joint distribution is also known as the

Normal-To-Anything (NORTA) distribution in the

stochastic input-modeling literature (Cario and

Nelson 1997). Therefore, the dependence structure of

theK – dimensional NORTA distribution is captured in

a K � dimensional normal copula. Since the

transformation F�1
k F�1 Zkð Þ;Ck

� �

ensures that the

input random variable Xk has the marginal

distribution Fk �;Ckð Þ, the main challenge in the

construction of the NORTA distribution with the

input correlation matrix SX is to determine the base

correlation matrix SZ that matches the input

correlation matrix SX. The identification of the base

correlation matrix requires the solution of K(K � 1)/2

individual correlation-matching problems of the form

rX i; jð Þ ¼ Corr F�1
i F Zið Þ;Cið Þ;F�1

j FðZjÞ;Cj

� �

� 

¼
�
Z 1

�1

Z 1

�1
F�1
i F Zið Þ;Cið ÞF�1

j F Zj
� �

;Cj

� �

#rZ i;jð Þ zi; zj
� �

dzidzj � mimj

�

sisj
� ��

¼ cij rZ i; jð Þð Þ

for rZ(i, j), where #rZ i;jð Þ is the standard bivariate

normal probability density function with correlation

rZ(i, j), and mi and si
2 are the mean and variance of

Xi. The function cij(rZ(i, j)) is nondecreasing, lies on

the origin for rZ(i, j) ¼ 0, and satisfies |cij(rZ(i, j))| �
|rZ(i, j)| for rZ(i, j) ∊ [�1, 1]. Furthermore, the function

cij(rZ(i, j)) is continuous under mild conditions on the

marginal distribution functions Fi(�;Ci) and Fj(�;Cj).

These properties of the function cij(rZ(i, j)) allow

the simulation practitioner to perform a numerical

search to find the base correlation rZ(i, j) within

a predetermined precision; see Cario and Nelson

(1997) for further details on the function cij(rZ(i, j))

and the solution of the correlation-matching problem.

However, the solution of the correlation-matching

problems might lead to a base correlation matrix that

is not positive definite. Therefore, there exist sets of

marginal distributions with a feasible input

correlation matrix that are not representable by

the NORTA transformation. If, after solving the

correlation-matching problems, the base correlation

matrix is not positive definite, then the procedures

introduced by Lurie and Goldberg (1998) and Ghosh

and Henderson (2002) can be used for obtaining

a symmetric, positive definite approximation of the

base correlation matrix. Nevertheless, the failure of

the transformation-based method is relatively rare

in moderate dimensions of random vectors, and

the method fails when the correlations are on the
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boundary or within close proximity to the correlation

values achievable for the specified marginals of the

input process.

Next, consider the problem of estimating the

unknown marginal distribution parameters Ck, k ¼ 1,

2, . . ., K and the base correlation matrix SZ from the

historical data set {xk,t; k¼ 1, 2, . . ., K, t¼ 1, 2, . . ., n}

of length n. The marginal-copula representation of the

distribution function H(x1, x2, . . ., xK) allows the joint

density function to be written in terms of the normal

copula density function fSZ
(i.e., the Kth-order

derivative of the normal copula FSZ
with respect to

Fk(Xk;Ck), k ¼ 1, 2, . . ., K) and the marginal density

functions fk(xk;Ck), k ¼ 1, 2, . . ., K:

fSZ
F1 x1;C1ð Þ;F2 x2;C2ð Þ; . . . ;FK xK;CKð Þð Þ



YK

k¼1

fk xk;Ckð Þ:

Therefore, the log-likelihood function of the

historical data can be written as the sum of the K

log-likelihood functions for the marginal distribution

functions Fk (�;Ck), k ¼ 1, 2, . . ., K, i.e.,

Lk Ckð Þ ¼
Xn

t¼1

log fk xk;t;Ck

� �

; k ¼ 1; 2; . . . ;K;

and the log-likelihood function for the copula density

function; i.e.,

LcðSZÞ¼
X

n

t¼1

log fSZ
F1 x1;t;C1

� �

;F2 x2;t;C2

� �

. . . ;FK xK;t;CK

� �� �

:

The structure of the log-likelihood function allows

the use of a multi-stage estimation method known as

the Inference ForMargins (IFM). Specifically, the IFM

method obtains the parameter estimate Ĉk by

maximizing the log-likelihood function Lk Ckð Þ for

k ¼ 1, 2, . . ., K, followed by the maximization of the

log-likelihood function Lc SZð Þ to estimate the

correlation matrix ŜZ using Ĉk , k ¼ 1, 2, . . ., K

obtained in the first K stages. This procedure is

computationally simpler than the maximum

likelihood estimation which estimates all parameters

Ck, k¼ 1, 2, . . .,K, andSZ from the full log-likelihood

function Lc SZð Þ þ
PK

k¼1 Lk Ckð Þ. The IFM estimators

are different from the maximum likelihood estimators

unless the marginal distributions are normal. The IFM

estimators are also less efficient than the maximum

likelihood estimators, but they are strongly consistent

and asymptotically normal under certain regularity

conditions (Joe 1997).

The common feature of the multivariate input

models presented in this section is the use of

correlation as the measure of dependence. Correlation

is also the most widely used dependence measure in

multivariate input modeling. However, it is not the

only dependence measure available for input

modeling. A measure of dependence, which has been

of particular interest in recent years, is tail dependence;

i.e., the amount of dependence in the lower-quadrant

tail or upper-quadrant tail of a bivariate distribution.

The multivariate input models of this section can be

easily extended to work for dependence structures with

positive tail dependencies by simply replacing the

normal copula with the appropriate multivariate

copula; see Biller (2009) for the use of copula theory

to extend the transformation-based methods to

represent positive tail dependencies. An excellent

review of the alternative dependence measures

together with the copula theory is available in

Joe (1997).

Autocorrelation

In settings with multiple sources of randomness,

a correlation might exist not only between the input

random variables of the system but also over time. An

input model that can be used for representing

a stationary multivariate time-series process is

the Vector-AutoRegressive-To-Anything (VARTA)

model (Biller and Nelson 2003). The measure of

dependence assumed in this model is also correlation

whose limitations are further inherited by VARTA.

Biller (2009) shows that this multivariate time-series

model fails to capture the dependencies in the tails of

the joint distributions of its K component series, and

generalizes VARTA to work for dependence structures

with positive tail dependencies by using appropriate

families of multivariate copulas.

Specifically, VARTA pulls together the theory

behind the ARTA and NORTA input models and

extends it to the K – dimensional time series

Xt ¼ X1;t;X2;t; . . . ;XK;t

� �0
; t ¼ 1; 2; . . .

n o
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by taking the inverse transformation of the following

vector autoregressive process of order p:

Zt ¼
Xp

h¼1
ahZt�h þ Yt; t ¼ pþ 1; pþ 2; . . . :

In this representation, the ah, h ¼ 1, 2, . . ., p are

fixed K-dimensional autoregressive coefficient

matrices and {Yt; t ¼ p + 1, p + 2, . . .} is a sequence

of K-dimensional normal random vectors with zero

mean and the covariance matrix that ensures that

each component of Zt ¼ (Z1,t, Z2,t, . . ., ZK,t)
0 is

marginally standard normal. Notice that if K ¼ 1,

then the VARTA process reduces to an ARTA

process; and if K > 1 and p ¼ 0, the VARTA process

corresponds to a NORTA vector. The major challenge

in the construction of a VARTA process (and hence,

for the ARTA and NORTA processes) is to specify the

autocorrelation structure of the autoregressive base

process {Zt; t ¼ 1, 2, . . .} so that the input process

{Xt; t ¼ 1, 2, . . .} exhibits a prespecified

autocorrelation structure. Specifically, the base

correlation rZ i; j; hð Þ ¼ Corr Zi;t; Zj;tþh

� �

depends only

on the input correlation rX i; j; hð Þ ¼ Corr Xi;t;Xj;tþh

� �

for i, j ¼ 1, 2, . . ., K and h ¼ 0, 1, 2, . . ., p, and the

determination of the autocorrelation structure for

the base process is equivalent to solving

pK2 þ KðK � 1Þ=2 individual correlation-matching

problems; see Biller and Nelson (2003) for

a discussion of solving correlation-matching

problems in a multivariate time-series setting.

Concluding Remarks

Practical and theoretical issues for developing input

models in both univariate and multivariate settings

have been presented. Also considered was the

situation where univariate input models fall short of

capturing the correlations among different sources of

randomness in the input environment of the stochastic

system under study. Much research in the last decade

has focused on multivariate input modeling to develop

flexible input models in correlated settings. Most of the

recent developments in input modeling is reported in

the annual Proceedings of the Winter Simulation

Conference, which are publicly available on the

World Wide Web.

See

▶Distribution Selection for Stochastic Modeling

▶ Simulation of Stochastic Discrete-Event Systems

▶Time Series Analysis
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Stochastic Model

A mathematical model in which some data and

parameters are random variables.

See

▶Deterministic Model

▶Mathematical Model

Stochastic Optimization

Optimization in which the objective function and/or

constraint functions are “noisy,” i.e., involve random

variables (e.g., expected values) that cannot be

evaluated analytically and thus require estimation,

such as through simulation of a stochastic system.

Sometimes the term is also used to refer to

deterministic optimization problems that introduce

randomness in the search process, i.e., the resulting

procedures are randomized algorithms for optimization.

See

▶ Simulation Optimization

Stochastic Process

A set of random variables indexed over a parameter set

that is either discrete or continuous and often

represents some concept of time.

See

▶ Inventory Modeling

▶Markov Chains

▶Markov Processes

▶ Point Stochastic Processes

▶Queueing Theory

▶Random Field

▶Reliability

▶Renewal Process

▶ Simulation of Stochastic Discrete-Event Systems
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Introduction

Stochastic programming (SP) deals with a class of

optimization models and algorithms in which some of

the data may be subject to significant uncertainty. Such

models are appropriate when data evolve over time,

and decisions need to be made prior to observing the

entire data stream. For instance, investment decisions

in portfolio planning must be implemented before

stock performance can be observed. Similarly,

utilities must plan power generation before the

demand for electricity is realized. Such inherent

uncertainty is amplified by technological innovation

and market forces.

As an example, consider electric power supply.

Most states in the U.S. have adopted Renewable

Portfolio Standards, which mandate far greater use of

renewable resources in the future. However, renewable

sources of energy (e.g., wind and solar) are intermittent
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resources, because they are governed by highly

variable forces of nature. Including such generators

into a deterministic generation planning model would

require accurate predictions of natural phenomena

(i.e., wind and sunshine). Of course, requiring

accurate predictions is tantamount to having a crystal

ball into the future – an untenable assumption.

SP provides a formal approach in which events of the

future can be modeled using random variables

(or stochastic processes) modeling the future.

Because of the wide variety of applications where

data uncertainty plays a critical role, this paradigm

has also attracted researchers from a variety of

academic domains, as well as government and

industry. For instance, the area of supply chain

management (e.g., Fisher et al. 1997) was an early

adopter of SP. More recently, the 2011 report of the

Defense Science Board has strongly recommended the

use of SP for long-term trade studies carried out for

military planning. Indeed, the volume by Wallace and

Ziemba (2005) provides an entire collection of papers

that are based on applications ranging from airline

revenue management, homeland security, network

planning and many more. Nevertheless, SP models

remain some of the more challenging optimization

problems.

While SP grew out of the need to incorporate

uncertainty in linear and other optimization models

(see Birge and Louveaux 1997), it also has close

connections with other paradigms for decision-making

under uncertainty. For instance, decision theory,

dynamic programming and simulation-optimization,

all share some common themes with SP. To explore

these connections recall that one of the main strengths

of decision theory is its emphasis on decision-maker’s

preferences, and ideas such as stochastic dominance

emerged from the decision-theoretic segment of the

OR/MS literature. It turns out that ideas such as

stochastic dominance have made significant in-roads

into the SP literature (Dentcheva and Ruszczyński

2003). Similarly, there are growing connections

between dynamic programming (DP) and SP through

new thrusts such as Approximate DP (Powell 2010).

SP has a long tradition of creating approximations that

provide asymptotic results and many SP methods

provide bounds on deviations from optimality when

terminated in finite time. The section on

Computational Issues provides some examples.

Finally, consider the connections between SP and

simulation-optimization. The latter category supports

models that are reasonably realistic in their description

of the system, because they inherit the expressiveness

of computer programming within the modeling

framework. However, simulation-optimization models

are relatively difficult to optimize because of the

generality associated with non-convex noisy “Black

Box” functions. Accordingly, simulation-optimization

often attempts to combine statistical tools with global

optimization. The connections between SP and

simulation-optimization however are clearest in the

context of sampling-based algorithms for SP.

The latter draw upon several concepts from

simulation-optimization (e.g., importance sampling,

Latin hypercube sampling). The interplay between the

different paradigms presents fascinating possibilities.

SP provides a general framework for modeling

stochastic processes within constrained optimization

models. Furthermore, it permits uncountably many

states and actions, together with constraints, time

lags, etc. One of the important distinctions that

should be highlighted is that SP separates the model

formulation activity from the solution algorithm. One

advantage of this separation is that users need not be

intimately familiar with SP algorithms in order to use

them. This separation also promotes algorithmic

developments that are based on specialized structures

(e.g., linear, integer etc.), which may help algorithms

to scale up by using special structures. On the

downside of the ledger, SP formulations can lead to

very large-scale problems, and methods based on

approximation and decomposition become

paramount. This article provides a road map for these

methods and points to fruitful research directions along

the way.

Mathematical Models and Properties

General Purpose SP Models

Consider a model in which the design/decision

associated with a system is specified via vector x1.

Under uncertainty, the system operates in an

environment in which there are uncontrollable

parameters that are modeled using random variables.

Consequently, the performance of such a system can

also be viewed as a random variable. Accordingly, SP

models provide a framework in which designs (x1)

can be chosen to optimize some measure of
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performance (random variable). It is therefore natural

to consider measures such as the worst-case

performance, expectation and other moments of

performance, or even the probability of attaining

a predetermined performance goal. Furthermore,

measures of performance must reflect the decision

maker’s attitudes towards risk. For example in the

finance literature, it is common to model risk

aversion through maximizing expected utility.

However, alternative risk models have also become

common in the SP literature. These include measures

like conditional value at risk (Rockafellar and Uryasev

2000), semi-deviation (Ogryczak and Ruszczyński

2001), and others. The mathematical structure

presented below begins with a traditional SP

formulation, and a discussion of risk is revisited

subsequently.

The following mathematical model represents

a general SP formulation in which the design/

decision variable x1 is restricted to the set X1 and ~o1

denotes a multi-dimensional random variable:

min
x12X1

f1 x1ð Þ þ E h2 x1; ~o1ð Þ½ � (1a)

s:t: Prfg1 x2; ~o1ð Þ � 0g � p1 (1b)

Here E[] denotes the expectation with respect to ~o1

and Pr[] is the probability of the event g1 x1; ~o1ð Þ � 0:.

The function g1 is often modeled as a linear form and

h2 is the value function of another optimization

problem stated as follows:

h2 x1;o1ð Þ ¼ min
x22X2 x1;o1ð Þ

f2 x2; x1;o1ð Þ

In this notation, the subscripts are intended to

designate the stage in which the relevant calculations

are carried out. Thus f1 reflects the initial cost in stage 1,

whereas, h2 reflects the cost-to-go in stage 2. In the SP

literature, the function h2 is used to reflect costs

associated with adapting to information revealed

through an outcome o1. For instance, in financial

applications, this function may reflect the utility

associated with costs of rebalancing the portfolio.

Because the function E[h2] is associated with

a recourse action x2, it is referred to as the recourse

function, although the use of the term value function is

not uncommon either. Constraint (1b) is called

a probabilistic (or chance) constraint. Such

a constraint may be used to model system reliability.

Note that formulation (1) is somewhat more general

than one usually finds in the SP literature. Historically,

the probabilistic constraint (1b) is treated separately

from models using the recourse functions (1a).

However, including both types of functions within

one model allows a more cohesive statement of SP

problems.

Multi-stage Stochastic Programming — While

model (1) appears somewhat static, it is not difficult

to glean a dynamic element in the formulation: note

that the function h2 is realized only after the design x1
is in place. This sequential nature is an essential

element of decision making under uncertainty.

Indeed, if h2 is defined recursively, problem (1) may

be looked upon as the first-stage problem of a more

extensive multi-stage formulation. To present this

generalization of (1), consider an N-stage problem.

Let the boundary conditions be given by hNþ1 � 0,

and let o0 denote a degenerate random variable

reflecting the deterministic information available

prior to decisions of stage 1. For t ¼ 1,. . ., N, let xt

denote the history prior to stage t [i.e.,

xt ¼ o0; . . . ;o t�1ð Þ
� �

]. Note that the decision

variables in stage t depend on the history of the data

process. Hence these variables are functions of random

variables, and will be denoted xt(x
t). The entire

history of decisions until stage t will then

be represented as a superscripted vector

xt xtð Þ ¼ x1 x1
� �

; x2 x2
� �

; . . . ; xt x
tð Þ

� �

, or simply xt. For

t ¼ 2,. . ., N, define the value functions

ht x
t�1; xt

� �

¼ min
xt2Xt xt�1;xtð Þ

ft xt; x
t�1; xt

� �

þ E htþ1 xt; ~xtþ1 xtj
� h i

s:t Pr gt xt; x
tþ1 xtj

� �

� 0g � p1
�

(2)

where hNþ1 � 0, and E and Pr[] denote the conditional

expectation and the conditional probability

(respectively) associated with the appropriate

evolutionary state of the random variables. Using

these recursively defined functions in (1) yields

a multi-stage SP formulation.

While (1) and (2) present a DP-type recursion to

state the SP problem, it is important to note that all

random variables are path dependent, and furthermore,
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the statement of the model does not constitute the

algorithm. In fact, alternative statements of the

multi-stage problem are also possible. Consider

a formulation in which the decisions are

allowed to depend on the entire realization xN. Let

xN ~xN
� 

denote a sequence of random vectors

x1 ~xN
� 

; x2 ~xN
� 

; . . . ; xN ~xN
� � 

. It is important to

note that such a policy cannot be implemented since

decisions in stage t require the knowledge of the entire

realization! Hence, the plans xN ~xN
� 

cannot be

feasible, unless the decisions are such that xt depends

only on data available until stage t � 1. As shown

below, such information constraints can be

incorporated explicitly.

Letot¼ (ot, . . .,oN ). Since anyoutcomexN¼ (xt,ot )

for any t, the decisions in stage t can be represented

as a random vector denoted xt ~ot xtjð Þ. Then the

information constraints (also called the

nonanticipativity constraints) may be stated as

xt ~ot xtjð Þ � E xt ~ot xtjð Þ½ � ¼ 0, almost surely.

Since an objective function that is non-separable by

stage can be written as E f xN ~xN
� 

; ~xN
� h i

, the

inclusion of information (nonanticipativity) constraints

provides a legitimate multi-stage model which does not

appeal to either separability or recursion. However,

multi-stage stochastic programming algorithms are far

less advanced than two-stage models.

The formulations presented above impose very few

restrictions. Perhaps the most important restriction

imposed in an SP formulation arises from the

assumption that randomness is exogenous and cannot

be affected by decisions. In certain design problems,

such an assumption may not be valid, and in these

cases, the models outlined above may not be

adequate. However, in cases where the impact of

decisions on the probability distribution can be

reflected via a binary switching variable, then

one may be able to introduce binary variables to

represent the evolution of the distribution based on

prior decisions. Naturally, such a model will lead to

a Stochastic Mixed-Integer Program (SMIP) for which

there has been considerable interest since 2000.

Nevertheless, note that there is a large class

of applications where randomness is exogenous

(e.g., weather, loads, prices of financial instruments,

market demands, etc.), and SP models provide

an attractive approach, especially when faced

with a continuum of choices in the presence of

constraints.

The main challenge in designing algorithms for SP

problems arises from the need to calculate conditional

expectation and/or conditional probability associated

with multi-dimensional random variables. For all but

the smallest of problems, one resorts to

approximations. The study of SP algorithms has

therefore led to alternative ways of approximating

problems, some of which satisfy certain asymptotic

properties. This reliance on approximations has

prompted researchers to study conditions for the

convergence of approximations, and/or the

convergence of solutions of approximate problems

(to a solution of the original). Of course, conditions

ensuring the former imply the latter, but the converse

does not hold. Issues related to convergence of

approximations can be addressed through the theory

of epi-convergence, whereas issues pertaining to

convergence of solutions of approximations

(to a solution of the original) can be addressed

through the notion of epigraphical nesting

(see Rockafellar and Wets 1998).

Properties of Specific SP Models

Computational challenges associated with SP

problems vary a great deal with the class of problems

being addressed. As with any large-scale optimization

problem, exploiting properties and the structure of

problems provides the key to effective algorithms.

This subsection presents properties associated with

some important classes of SP problems, and related

computational issues will be presented in the following

section.

Some Properties of Stochastic Linear Programs

with Recourse — For this class of problems, all

functions and constraints are defined by linear/affine

functions, and the probabilistic constraints are absent.

This remains one of the more widely studied models,

and most of the applications reported in the literature

belong to this category (including the applications

mentioned earlier). Problems of this type can be

shown to be convex optimization problems, and the

full power of convex analysis can be brought to bear on

such problems. Notwithstanding such mathematical

attractiveness, SLP problems lack one of the more

desirable numerical properties, namely, smoothness.
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Only under very special circumstances (absolute

continuity of random variables) can one expect

(1a) to be differentiable. Accordingly, many of

the more successful algorithms for these problems

draw upon non-differentiable optimization methods

such as Regularized Decomposition (Ruszczyński

1986), as well as Regularized SD (Higle and Sen

1994), both of which are closely tied to bundle-trust

algorithms.

Some Properties of Stochastic Mixed Integer

Programs — As in the previous paragraph, suppose

that probabilistic constraints are set aside. In

a stochastic mixed integer linear program (SMIP), if

only the first-stage decisions include integer

restrictions, then the remaining problem inherits the

properties of a SLP. This class of problems (with

first-stage integer variables) is similar to the problems

originally envisioned by Benders (1962). In general,

though (i.e., when integer variables appear in future

stages), SMIP is much more challenging. For such

problems, convexity of the objective function is far too

much structure to expect. Indeed, the objective function

(1a) can be discontinuous. However, by assuming that

any setting of decision variables yields a finite objective

value (i.e., complete recourse), and assuming a weak

covariance condition (Schultz 1993), the objective

function can be shown to be lower semicontinuous. As

with continuous SP algorithms, scalability is a key

requirement, and decomposition-coordination methods

remain the basis for effective algorithms.

Some Properties of Probabilistically-Constrained

Problems — These models are widely used to reflect

grade of service constraints (e.g., Medova 1998). One

of the simpler probabilistically-constrained problems

arises in cases where the function g1 used in (1b)

assumes values in ℜ and is separable (i.e.,

g1 x1;o1ð Þ ¼ y1 x1ð Þ þ o1). In this case a

deterministic constraint requiring y1 x1ð Þ to exceed

the quantile (level p1) is equivalent to the chance

constraint. There are a few other cases that are easily

handled. Prékopa (1971) showed that a much larger

class of random variables yield the convexity property;

he showed that if the function g (see (1b)) is linear/

affine in x and randomness only appears additively,

and the random variable has a log-concave

probability density function, then the resulting

feasible region is convex. However, for discrete

random variables this is no longer true, and in this

case, the set of feasible solutions can be represented

as a disjunctive set. Algorithmic work on

probabilistically constrained models also allows MIP

models to be extended with probabilistic constraints

(see following section).

Risk Modeling in Stochastic Programming—Since

2000, the SP approach has grown enormously in its

ability to incorporate risk. One approach, namely the

notion of Conditional Value at Risk (CVaR), is

discussed next. Recall from (1) that both the

objective function and constraints are defined in

terms of the first-stage decision x1, as well as random

variables ~o1. For the sake of brevity, the sub/super

scripts are dropped and consider any one of the

functions, g x; ~oð Þ, say. In order to model risk, one

typically wishes mitigate the negative impacts of

variability (referred to as risk). The real-valued

function g may be looked upon as a loss

(random variable), and let c x; zð Þ ¼ Pr g x; ~oð Þ � z½ �.
Given p ∈ (0,1), define zpðxÞ :¼ min z cj x; zð Þ � pf g.
This quantity is known as Value at Risk (VaRp), a term

that is popular in the financial world. Thus, for a given

p∈ (0,1), VaRp ensures that a decision x satisfies (1b).

However, this constraint does not measure the

consequences of outcomes beyond zp(x). Thus when

tail losses are very high, VaRp is unable to distinguish

between decisions that are more risky at the same

confidence level p. In addition, as indicated in the

subsection on Probabilistic Constraints, these models

can be mathematically difficult due to non-convex

feasible sets. Due to these difficulties, Rockafellar

and Uryasev (2000) suggested an alternative to VaRp,

known as CVaRp, or Conditional Value at Risk.

CVaRp is defined as the conditional mean of the loss

random variable in the tail to the right of zp(x) in case

of continuous random variables. In other words, if

cp(x,z) denotes the distribution of the random

variable Max g x; ~oð Þ� zpðxÞ; 0
� �

, then the

expectation of this random variable gives the mean

excess loss. For cases in which g x; ~oð Þ is a discrete

random variable, the definition of CVaRp can be shown

to be a convex combination of VaRp and CVaRþ
p ,

which is the conditional mean (of the loss random

variable) strictly to the right of zp(x). One important

feature of CVaRp is its convexity, and is therefore

computationally tractability too. For further attractive

properties of CVaRp and other coherent measures of

risk, see Rockafellar (2007).

Robust Optimization — The term robust

optimization has been used for several different
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classes of models, all of which share the goal of

providing decisions that are feasible and reasonably

good for an entire set of model parameters, rather than

one specific instance of parameters. This approach to

decision-making is different from other stochastic

optimization approaches in at least two substantive

ways: (a) the goal of robust optimization is to

immunize decisions in case of imperfect information

(or data), and (b) the decisions themselves do not

evolve as better information becomes available. Such

models are useful in applications such as engineering

design. For example, in designing a truss, an engineer

assumes nominal values for properties of each member

of the truss. However, due to manufacturing and

material variability, some of the properties may vary

from those nominal values. Of course, the design

should be such that the truss is able to perform so

long as all members satisfy the required properties

within some acceptable tolerance. Moreover, in such

applications, the design (i.e., the decision) cannot

change with the specific realization of parameters,

although the objective as well as constraint values

(i.e., performance) will vary. This is reflected in

items (a) and (b) above.

Robust optimization models, first proposed by

Soyster (1973), are distribution-free formulations in

which an uncertainty set replaces the notion of

a probability space. For the sake of definiteness,

consider the approach of Bertsimas and Sim (2004).

In their paper the authors start with a nominal

deterministic LP, and augment it by incorporating

certain protection functions that represent extreme

values of constraint coefficients which are allowed to

belong to given intervals of uncertainty. The cross

product of these intervals forms the uncertainty set.

By using LP duality, these protection functions can be

shown to have a very simple structure, and the

resulting Robust LP is simply another larger LP

whose size is only modestly larger than the nominal

LP. Similar results have also been obtained for IP

formulations (Bertsimas and Sim 2003), and they

show that when uncertainty only affects cost

coefficients, and the nominal problem is

polynomially solvable (e.g., shortest path), then the

Robust IP also inherits polynomially solvability.

Other approaches to robust optimization, (e.g., using

ellipsoidal uncertainty sets leading to conic quadratic

programs) have been proposed by Ben-Tal and

Nemirovski (1998).

Computational Issues

The main computational challenges for stochastic

programming may be attributed to the fact that

uncertainty must be quantified every step of the way:

input data and model development, algorithmic

methods for optimization, and finally, output

analysis. It has been suggested that such effort

(especially knowledge of distributions), may be far

too demanding, thus leading to slower adoption of SP

methodology within the modeling and optimization

community. Advances in statistical computing,

machine learning etc. are making such activities (e.g.,

estimating/approximating distributions) much less

onerous than in the past. Since many tools in OR/MS,

e.g., stochastic discrete-event simulation and decision

analysis, are deeply steeped in the use of probabilistic

knowledge, the need to provide probabilistic

description should not be a bottleneck for SP. The

challenge is to provide an end-to-end software

environment in which decisions under uncertainty

can be modeled, processed and analyzed in a manner

that distills uncertainty down to statistically quantified

reports to support decision-making. In the remainder

of this section current approaches towards statistical

quantification for SP are summarized, but not before

the more traditional deterministic decomposition

algorithms.

Deterministic Decomposition Algorithms for SP

Deterministic Algorithms for Stochastic Linear

Programs (SLP) — The design of algorithms for SLP

is intimately tied to the universe of outcomes reflected

in the model. For instances in which the future is

encapsulated using only a few outcomes/scenarios,

the deterministic equivalent formulation (DEF) can

be solved using deterministic decomposition methods

that are extensions of Benders’ decomposition

(e.g., Regularized Decomposition of Ruszczyński

1986). Others (e.g., Linderoth and Wright 2003) are

more direct extensions of bundle-trust methods of

non-smooth optimization (e.g., Kiwiel 1990).

Another class of deterministic decomposition

algorithms is based on relaxing the information/

nonanticipativity constraints (Rockafellar and Wets

1991). This approach is particularly promising for

parallelizing algorithms for multi-stage problems. An

overview of all of these methods can be found in the

text by Birge and Louveaux (1997). In any event, since
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the entire collection of DEF formulations use

deterministic methods, the need for statistical

quantification of outputs does not apply to them.

However, in cases where an instance is created by

sampling the original problem, statistical analysis of

output is essential.

Algorithms for Stochastic MIPs—One of the major

thrusts in the SMIP literature calls for algorithms that

go beyond Benders’ decomposition so that one can

address models in which the second-stage (recourse)

decision variables are also restricted to be integer. In

cases where the first stage has binary variables, and the

second-stage has general mixed-integer variables,

Laporte and Louveaux (1993) have proposed an

extension of the L-shaped method. Unfortunately, it

requires that the second stage problem (possibly

a mixed-integer linear program (MIP)) is solved to

optimality for all scenarios. It is not difficult to see

that solving many MIPs in each iteration can become

a major bottleneck. To overcome this, several

algorithms have been proposed so that each iteration

only requires the solution of an LP relaxation of the

scenario problems. In order to achieve asymptotic

convergence of such schemes, it becomes necessary

to generate cutting planes in a sequential manner so

that the approximations become stronger as the

algorithm proceeds, and obtains an optimal solution

(or a near-optimal solution) in the limit. Since 2000,

several algorithms of this genre have been proposed.

Some of these are based on parametric Disjunctive

Programming where cuts depend parametrically on

binary first-stage decisions (e.g., Sen and Higle 2005;

Sen and Sherali 2006; Sherali and Fraticelli 2003).

A similar approach based on parametric Gomory cuts

is presented in Gade et al. (2012) Computational

results for parametric disjunctive cuts are given in

Yuan and Sen (2009). For a more complete

exposition of these algorithms and computations, see

Sen (2010).

Successive Approximation Algorthms for SP

Unlike the deterministic decomposition methods

mentioned above, there are many realistic instances

for which the sample space is so large that

enumerating every outcome may be impossible. In

such cases, one resorts to successive approximation

methods. In the following the focus is on alternative

ways to construct approximations.

Bound-based Approximations for SLP

Problems — For two-stage models, there are

essentially two major approaches to generating

approximations. One is based on aggregating data

points, and another based on selecting data points.

Algorithms in the former class of lead to successive

approximation methods in which finer discretizations

of the sample space are created based on the solution

of an aggregated stochastic program. These successive

approximation schemes (e.g., Frauendorfer 1992;

Edirisinghe and Ziemba 1996) are able to provide

bounds on the optimality gap, thus providing the

decision-maker some guarantees. Similar bounds on

the gap are also possible for multi-stage models as

suggested in Casey and Sen (2005). Unfortunately

the scalability of these methods has remained

unresolved, and the literature has moved steadily

towards sample-based methods, which are presented

next.

Sampling-based Approximations for SLP

Problems — Sampling in SP includes both

Monte-Carlo as well as quasi-Monte Carlo methods.

The latter draws upon the numerical integration

literature, and its application to SP appears in

Pennanen and Koivu (2005). However, one of the

main distinctions to bear in mind for SP is that the

expectation (integrand) depends on the decisions. For

the most part, SP algorithms tend to generate a sample

prior to optimization, so that the approximation does not

typically adapt to the decision. This is also true for most

Monte-Carlo approaches such as Sample Average

Approximation (Shapiro and Homem-de-Mello 1998).

The separation between generation of the sample, and

the application of an optimization algorithm tends to

preclude inexact optimization, which has been a very

powerful concept in many areas of optimization

(e.g., inexact Newton’s method). The concept of

inexact optimization between samples is highlighted in

the Stochastic Decomposition (SD) algorithm for

two-stage SLP (Higle and Sen 1996). Such inexact

optimization is also adopted in a robust stochastic

approximation (RSA) algorithm (Nemirovski

et al. 2009), where the adaptation of stochastic

approximation generates excellent solutions with

a fraction of the computational effort required by SAA.

In defense of SAA, however, one is able to obtain

relatively low variance lower bound estimates at the

end of an experiment with a few runs using a relatively

large sample approximation (Linderoth et al. 2006).
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Such lower bound estimates are difficult to obtain for

RSA, and further post-processing becomes necessary.

Moreover, RSA computations presented in Nemirovski

et al. (2009) do not include computational times for post-

processing. It is interesting to note that SD is, in some

ways, a compromise between RSA and SAA: as with

RSA, SD works with inexact subgradients that are

observed dynamically as the algorithm proceeds, and

as with SAA, it provides a capability for estimating

sampled lower bound as well as its variability. In

addition, both SAA and SD are also capable of

providing reasonable estimates of the first-stage dual

multipliers, which may be useful in certain pricing

applications of SP (Higle 2007).

Sampling-based Approximations in SMIP

Problems — For cases where the integer variables

only appear in the first stage, algorithms based on

Benders’ decomposition are generally sufficient,

although for cases in which a large number of

scenarios arise, one may have to combine ideas from

Benders’ decomposition with those from sampling as

discussed above. Such a method has been presented in

Norkin et al. (1996). Sampling has also been part of the

motivation for MIP with chance constraints, where

Leudtke and Ahmed (2008) provide performance

guarantees by setting up a convex approximation by

sampling. In related work on jointly chance

constrained MIPs, Kucukyavuz (2012) presents

strong valid inequalities by using mixing sets with

cardinality constraints (for the sampled case), as well

as a knapsack constraint for the more general case.

Compact extended formulations are also suggested

for obtaining strong relaxations for solving chance

constrained MIPs.

Multi-stage SP: Scenario Generation and

Sampling — Two early approaches to scenario tree

generation were Hoyland and Wallace (2001) and

Pflug (2001). The former is designed to match certain

known moments of a stochastic process using

optimization, where as the latter generates a scenario

tree using a simulation model, coupled with

a stochastic approximation algorithm. Other

approaches combining Monte Carlo sampling and

clustering have also been proposed in Gulpinar

et al. (2004). These methods are independent of the

solution algorithm used to solve the multi-stage SP,

and it is likely that the scenario tree generated by any

one exceeds the capability of most solution algorithms.

In order to allow users to formulate a smaller SP

model, Dupacova et al. (2003) (see also Heitsch and

Romisch 2007) present a scenario reduction scheme

based on the nearest discretization for a prescribed

number of scenarios. This approach, which also

incorporates some heuristics to enhance scalability, is

now available through GAMS.

As for combining both sampling in solution

algorithms for multi-stage SLP, the idea of stochastic

dual decomposition, originating with Pereira and Pinto

(1991), has continued to attract attention. Asymptotic

results are provided by Philpott and Guan (2008). In

Shapiro (2011), the author suggests that in many

previously reported papers, the quality of solutions

reported for multi-stage models were unclear. In

order to give the reader a sense of what the future of

multi-stage SP may hold, the special case of statistical

quantification for two-stage SLP is discussed below.

Statistical Quantification of SP Output: Two-Stage

Models

Sampling methods for two-stage SLPs (i.e., SAA as

well as SD) have been tested on several test instances

of varying sizes. Unlike deterministic optimization

where the size of an optimization model is

unambiguous (because the size of the input is well

defined), this is not necessarily the case for SP. To

appreciate this, note that instances that are defined by

continuous random variables should be looked upon as

infinite-dimensional problems, although the first-stage

(here-and-now) decisions may be finite dimensional.

As a result, an exact representation of an SP instance

may be difficult, and in fact, an exact solution as well

as the exact optimal value may also be elusive. For

these reasons, it is important to report the degree of

accuracy of both the objective function estimate, as

well as any lower bound estimate that may provide

a sense of the quality of one or more feasible

solutions. Simply reporting the objective function

value of an approximation (using a few scenarios)

without providing an estimate of errors can be

misleading!

Bayraksan and Morton (2009) discuss a framework

which highlights the need for reporting variability of

objective value estimates by replicating the

optimization process using independent samples. The

estimated sample mean obtained after multiple runs

then provides an estimated lower bound on the

optimal value of the original (unsampled) model

(Mak et al. 1999). It is not difficult to see that the
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estimated sample mean increases with sample size and

asymptotically approaches the optimal value of the SP

problem. As for estimated upper bounds, the obvious

strategy is to fix a first-stage decision, and use i.i.d.

sampling to estimate an upper bound. However, the

reader should bear in mind that a low variance upper

bound estimate is often computationally as demanding

as solving an approximation that yields a lower bound.

Striking a reasonable balance between these is

important for overall efficiency.

Table 1 presents some characteristics of a few test

instances that have been used for computational

experiments in the literature. These instances are

listed in increasing order of random variables, and are

useful in illustrating statistically quantifiable bounds

for SP problems whose sample space may contain so

many outcomes that they are best described as being

infinite dimensional. Again, if one uses sampling to

provide approximate solutions for any of these

instances, it is important to report errors with respect

to the original SP instance.

The SAA estimates of Table 2 appear in

Linderoth et al. (2006), and these are compared

with computational results from Regularized SD

(Higle and Sen 1994). In addition to the four

instances above, Linderoth et al. (2006) also include

a test instance named “gbd”. This instance has not been

included here because it is a simple-recourse model

with independent random variables; for such instances,

bounds-based approximation (see the previous

subsection) provides a more accurate and scalable

approach.

For the SAA experiment of Table 2, Linderoth et al.

(2006) report solving SAA experiments with several

different sample sizes. In the interest of brevity, as well

as best accuracy in estimates, their results are

summarized for a sample size of 5,000 using Latin

hypercube sampling. In the SAA-(Average Values)

column of Table 2, the entries in rows OBJ-LB for

each instance correspond to the average value from

solving 7-10 SAA replications in which each

replication contained 5,000 sampled scenarios. The

authors used a grid-enabled bundle-trust algorithm

presented in Linderoth and Wright (2003) to solve

each replication. The computational grid was

managed by Condor, and consisted of hundreds of

Linux PCs at several locations around the U.S.

However, the runs apparently used only 100 PCs at

any given time. One might recall that Pentium IV

processors, with average clock speeds of 2.0–2.4 Ghz

were average PC processors in 2005. In any event, the

wall clock time for an instance like SSN was reported

to be about 30-45 min per SAA instance, suggesting

a total wall clock time of about 3.5 h for seven

replications (@30 min/replication) and 7.5 h for ten

replications (@ 45min/replication). Once the solutions

to these 7–10 instances were obtained, they were each

evaluated to some degree of accuracy using a sample

size of 20,000 for each SAA solution. From this

preliminary estimate, the authors chose the solution

with the lowest (preliminary) estimate of the

objective value, and sampled further 50 batches, with

each batch consisting of 20,000 outcomes. The

OBJ-UB estimates reported in the SAA-(Average

Values) column is the estimate obtained from this

upper bounding exercise. It is important to note that

with each upper bounding entry, one associates exactly

one primal solution – a solution that is recommended

for decision-making.

In Table 2, the set of columns adjacent to the SAA

columns is data from the SD experiment. For the

SD-(Average Values) column, the OBJ-LB entries

correspond to the average value from solving 20 SD

replications of the Regularized SD algorithm (Higle

and Sen 1994). The reader might observe that there is

no sample size reported for SD, because it samples

until a non-parametric stopping rule (based on

bootstrapping) terminates a replication of the

algorithm. In any event, these calculations were

carried out on a laptop-grade platform: MacBook Air

with 1.8 GHz Intel Core i5 processor, 4 GB of

1,600 MHz DDR3 Memory.

The last column of Table 2 summarizes the

differences in average values obtained from these two

experiments. For the most part, the differences in

average bounds are less than a small fraction of 1%.

The only bound whose difference (with SAA) is close

to 1% is the lower bound for SSN. Considering that the

Stochastic Programming, Table 1 SP test instances

Problem
name

No. of first
stage
variables

No. of
second stage
variables

No. of
random
variables

Universe of
scenarios

LandS 4 12 3 O(106)

20TERM 63 764 40 O(1012)

SSN 89 706 86 O(1070)

STORM 121 1,259 117 O(1081)
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upper bound for SSN is only 0.03% different from the

average reported in Linderoth et al. (2006), it is fair to

suggest that the average bounds produced by SAAwith

5,000 samples and SD are comparable. However it is

difficult to make precise comparisons of computational

effort between algorithms implemented and tested

using software and hardware from different eras. To

give the reader a sense of the computational time for

SD, note that all 20 SD replications for SSN were

completed within 50 min. Suffice to say that using

SD on computing platforms of today provides

a widely accessible approach for realistic stochastic

programming models (e.g., SSN – see Sen et al. 1994).

Software for SP

Since 2000, there have been significant advances in the

development of modeling environments for SP.

Watson, Woodruff, and Hart (2010) have developed

a Python-based modeling environment for Stochastic

Programming (PySP). In addition to its modeling

capabilities, PySP also provides an implementation of

the scenario aggregation (progressive hedging)

algorithm for SP. Other notable developments

include the implementation of the scenario reduction

framework within GAMS. This has the potential to

move multi-stage SP into a higher level of usage, and

perhaps, there will be reports of accuracy of

multi-stage models in the same manner that Table 2

presents confidence intervals for both upper as well as

lower bounds. In 2012, Frontline Systems released

their platform (Risk Solver Platform) for Robust

Optimization as well as two-stage Stochastic

Decomposition. Similarly, a product named Portfolio

Safeguard (by AORDA) uses SP for portfolio

optimization. Two-stage SLP is at the cusp of

breaking into a new segment of the modeling world

that brings together risk analysis and optimization. In

other words, the time for two-stage SLP as a practical

modeling tool has arrived.

Concluding Remarks

Several prevailing trends in SP are expected to continue.

For instance, it is expected that there will be continued

growth in modeling risk; greater emphasis on

multi-stage models and methods; greater focus on

scalable (e.g., decomposition) methods for SMIP

models; greater visibility for strategic models under

uncertainty (e.g., stochastic games and stochastic

variational inequalities). Nevertheless, it is also

important to recognize some important challenges:

(a) As pointed out in the introduction, there are several

areas of OR/MS that address decision-making under

uncertainty. In this sense, there is a relatively large

community of researchers from DP, Decision Theory,

and Simulation-Optimization with significant overlaps

with SP. It is a challenge to put these areas on a common

unified footing. Such a development would allow

greater cross-fertilization between the areas. (b) Most

approaches to multi-stage SP (see (2)) are unable to

address models driven by continuous stochastic

processes. A statistically quantifiable approach to such

models would be very satisfying; however, such

a capability is not available yet. By emphasizing

statistical quantification for similar two-stage models,

it is hoped that this article provided a sense of the types

of outputs that are necessary for multi-stage models.

Finally, SP computations are not difficult to perform

on today’s hardware environment. What is holding SP

Stochastic Programming,

Table 2 Statistical
quantification with SAA
and SD

Instance
name

Upper (UB)
and lower
bounds (LB)

SAA estimates using
a computational grid

SD estimates using
a laptop Percentage

difference in
Average values

Average
values 95% CI’s

Average
values 95% CI’s

LandS OBJ-UB 225.624 0.005 225.54 0.64 0.037

OBJ-LB 225.62 0.02 225.24 0.64 0.168

20TERM OBJ-UB 254311.55 5.56 254476.87 1005.86 0.065

OBJ-LB 254298.57 38.74 253905.44 162.49 0.154

SSN OBJ-UB 9.913 0.022 9.91 0.05 0.03

OBJ-LB 9.84 0.10 9.76 0.16 0.813

STORM OBJ-UB 15498739.41 19.11 15498624.37 48176.76 0.0007

OBJ-LB 15498657.8 73.9 15496619.98 4615.85 0.013
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back is the lack of end-to-end software support. Given

the new breed of SP software that is becoming popular,

it is expected that there will be a full-fledged SP

environment before too long.

See

▶Approximate Dynamic Programming

▶Benders Decomposition Method

▶Chance-Constrained Programming

▶Decision Analysis

▶Dynamic Programming

▶Linear Programming

▶ Portfolio Theory: Mean-Variance Model

▶Risk Assessment

▶ Sample Average Approximation

▶ Simulation Optimization

▶Variance Reduction Techniques in Monte Carlo

Methods
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Ruszczyński, A. (1986). A regularized decomposition method

for minimizing a sum of polyhedral functions.Mathematical

Programming, 35, 309–333.
Schultz, R. (1993). Continuity properties of expectation

functions in stochastic integer programming. Mathematics

of Operations Research, 18, 578–589.
Sen, S. (2010). Stochastic integer programming algorithms:

Beyond benders’ decomposition. In J. J. Cochran
(Editor-in-Chief), Wiley encyclopedia of operations

research and management science. Hoboken: Wiley.
Sen, S., Doverspike, R. D., & Cosares, S. (1994). Network

planning with random demand. Telecommunication

Systems, 3, 11–30.
Sen, S., & Higle, J. L. (2005). The C3 theorem and a D2

algorithm for large scale stochastic integer programming.
Mathematical Programming, 104, 1–20.

Sen, S., & Sherali, H. D. (2006). Decomposition
with branch-and-cut approaches for two-stage stochastic
integer programming. Mathematical Programming, 106,
203–223.

Shapiro, A. (2011). Analysis of stochastic dual dynamic
programming method. European Journal of Operational

Research, 209, 63–72.
Shapiro, A., & Homem-de-Mello, T. (1998). A simulation-based

approach to stochastic programming with recourse.
Mathematical Programming, 81, 301–325.

Sherali, H. D., & Fraticelli, B. M. P. (2002). A modification of
benders’ decomposition algorithm for discrete subproblems:
An approach for stochastic programs with integer recourse.
Journal of Global Optimization, 22, 319–342.

Soyster, A. L. (1973). Convex programming with set-inclusive
constraints and applications to inexact linear programming.
Operations Research, 21, 1154–1157.

Wallace, S. W., & Ziemba, W. T. (2005). Applications of

stochastic programming. Philadelphia: SIAM and MPS
Publication.

Watson, J.-P., Woodruff, D., & Hart, W. (2010, to appear).
PySP: Modeling and solving stochastic programs in python.
Mathematical Programming Computations.

Yuan, Y., & Sen, S. (2009). Enhanced cut generation methods
for decomposition-based branch-and-cut algorithms for
two-stage stochastic mixed-integer programs. INFORMS

Journal on Computing, 21, 480–487.

Strategic Assumption Surfacing and
Testing (SAST)

A problem structuring method for use in situations

where decisive action is obstructed by internal

disagreements. Coherent sub-groups are formed with

the purpose of advocating differing strategies, and

each identifies the significant assumption on which its

preferred strategy depends. The sub-groups are then

reunited to debate the differences in assumptions, with

the aim of achieving a compromise on assumptions so

that a consensus strategy can be derived.

See

▶ Problem Structuring Methods

Strategic Choice Approach (SCA)

Strategic Choice Approach (SCA) is a problem

structuring method centered on the management of

uncertainty and commitment in strategic situations,

where strategic refers to the advisability of

considering particular decisions in the context of

others. Strategic occasions can occur at any level. For

fuller descriptions see Friend (2001), Friend and

Hickling (2004).

The structure of the planning situation is elicited

from stakeholders in a workshop format. This

structure is built up in a participatory manner, with

the aid of facilitators. SCA is a member of the

Problem Structuring Methods family; within that
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group it is notable for the variety of tools and

techniques available to make progress with the

problem. It has been widely used in diverse areas of

public planning.

There are four modes of analysis within SCA.

Switching between modes, which may be recursive,

is guided by the facilitator. The modes are:

• Shaping – in which the stakeholder group identifies

relevant areas for choice, and the linkages between

them. They select a subset of these as a problem

focus by reference to their urgency, importance and

inter-connectedness

• Designing – here the options for actionwithin each of

the selected decision areas are identified, plus any

incompatibilities between options in different

decision areas. The feasible decision schemes

(consisting of one option choice within each

decision area) are derived using the AIDA algorithm

• Comparing – criteria for choice, often

non-quantitative, are agreed by the group. A small

number of the decision schemes are short-listed,

and pairwise comparisons are made between

short-listed schemes. The group agrees the relative

advantage on each criterion between the two

schemes, commonly revealing significant

uncertainties.

• Choosing – bearing in mind the surfaced

uncertainties, a ‘progress package’ is agreed

consisting of partial commitments, explorations to

reduce key uncertainties areas, contingency plans,

and a timetable for later choices.

The progress package summarizes the outcomes of

a SCA application. Other outputs include improved

understanding of the problem area and better working

relations among group members.

See

▶ Problem Structuring Methods
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Strategic Options Development and
Analysis (SODA)

A problem structuring method for group decision

making. Individual cognitive maps are elicited for

participants, and then merged into a strategic map

which is used in workshop mode to facilitate

discussion and commitment.

See

▶ Problem Structuring Methods
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Strictly Quasi-Concave Function

A function f(x) is strictly quasi-concave over

a convex set S if for any two points x1 6¼ x2 in S

and for any 0 < a < 1, f(x2) � f(x1) implies that

f(ax1 + (1 � a) x2) > f(x1).

See

▶Concave Function

▶Convex Function

▶Quasi-Concave Function

▶Quasi-Convex Function

Strictly Quasi-Convex Function

A function f(x) is strictly quasi-convex over

a convex set S if for any two points x1 6¼ x2 in S

and for any 0 < a < 1, �f(x2) � �f(x1) implies

that � f(ax1 + (1 � a) x2) > �f(x1).
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Strong Duality Theorem

Consider the following primal linear-programming

problem and its dual problem:

Dual

Maximize bTy

subject to ATy � c

y � 0

Primal

Minimize cTx

subject to Ax � b

x � 0

The strong duality theorem is usually stated as

follows: If either the primal or the dual has a finite

optimal solution, then the other problem has a finite

optimal solution, and the optimal values of their

objective functions are equal, i.e.,

minimum cTx ¼ maximum bTy

The weak duality theorem basically relaxes the

equality result to a bound by removing the optimizing

operator as in the following statement: If x is a feasible

solution to the primal problem and y is a feasible

solution to the dual problem, then bTy � cTx.

Strongly NP-Complete (NP-Hard)

▶Computational Complexity

Strongly Polynomial-time Algorithm

An algorithm whose running time is bounded

polynomially by a function only of the inherent

dimensions of the problem and is independent of the

sizes of the numerical data of the instance.

See

▶Computational Complexity

Structural Variables

The original variables of a linear-programming

problem as differentiated from slack, surplus and

artificial variables. Structural variables are usually the

variables of interest and have a physical interpretation

such as production or shipments. They appear in the

original defining inequalities or equations prior to the

conversion of the problem to all equations.

See

▶Linear Inequality

▶Linear Programming

▶Logical Variables

▶ Slack Variable

▶ Surplus Variable

Structure Function

▶ System Reliability

Structured Modeling
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Introduction

Structured modeling was developed as a

comprehensive response to perceived shortcomings

of modeling systems available in the 1980s. It is
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a systematic way of thinking about models and their

implementations, based on the idea that every

model can be viewed as a collection of distinct

elements, each of which has a definition that is either

primitive or based on the definition of other elements

in the model. Elements are categorized into five types

(so-called primitive entity, compound entity, attribute,

function, and test), grouped by similarity into any

number of classes called genera, and organized

hierarchically as a rooted tree of modules so as to

reflect the model’s high-level structure. It is natural

to diagram the definitional dependencies among

elements as arcs in a directed acyclic graph.

Moreover, this dependency graph can be

computationally active because every function and

test element has an associated mathematical

expression for computing its value.

Using a model for any specific purpose involves

subjective intentions. Structured modeling makes a

sharp distinction between the resulting user-defined

problems or tasks associated with a model, and the

relatively objective model per se. A typical problem

or task has to do with ad hoc query, drawing inferences,

evaluating model behavior with specified inputs,

determining a constrained solution, or optimization,

and requires applying a computerized model

manipulation tool (solver). For certain recurring

kinds of problems and tasks, these tools are highly

developed and readily available for incorporation into

a structured modeling software system.

The theoretical foundation of structured modeling

is formalized in Geoffrion (1989), which presents

a rigorous semantic framework that deliberately

avoids committing to a representational formalism.

The framework is semantic, because it casts

every model as a system of definitions styled to

capture semantic content. Ordinary mathematics, in

contrast, typically leaves more of the meaning

implicit. Twenty-eight definitions and eight

propositions establish the notion of model structure

at three levels of detail (so-called elemental, generic,

and modular structure), the essential distinction

between model class and model instance, certain

related concepts and constructs, and basic

theoretical properties. This framework has points in

common with certain ideas found in the computer

science literature on knowledge representation,

programming language design, and semantic

data modeling, but is designed specifically for

modeling as practiced in OR/MS and related fields

(Geoffrion 1987; Section 4).

Structured Modeling Languages

An executable model description language called

SML (Structured Modeling Language) fully supports

structured modeling’s semantic framework (Geoffrion

1992). Other languages for (at least parts of)

structured modeling also exist, including ones

that are graph-based, logic-based, SQL-oriented,

subscript- free, or object-oriented. SML can be

viewed in terms of four upwardly compatible levels

of increasing expressive power. The first level

encompasses simple definitional systems and directed

graph models such as those found in Harary et al.

(1965) The second level covers more complex

extensions of these, spreadsheet models, numeric

formulas, and propositional calculus models. The

third level encompasses mathematical programming

and predicate calculus models with simple indexing

over sets and Cartesian products. Finally, the fourth

level covers sparse versions of the above plus

relational and semantic database models.

Exhibits A and B, taken from Geoffrion (1987),

show an SML schema (third level) specifying the

general structure of the classical feedmix model, and

sample SML elemental detail tables specifying model

elements. The latter, together with the schema, yield

a specific feedmix model instance.

Space does not permit a proper description of SML’s

syntax, but a few hints are as follows. Schemas are

organized as a tree of paragraphs whose leaves are the

genera and whose interior nodes are the modules. The

boldfaced part of each paragraph is the formal definition

of the genus or module, as the case may be, and the rest

consists of documentary comments about the formal

part that are informal except for conventions about the

use of underlining and upper case. The formal definition

of a genus paragraph begins with the name of the genus,

a parenthetical statement of definitional dependencies

(if any), a slash-delimited statement of genus

type, a colon-announced statement of data type if

an attribute genus, and a semicolon-announced

mathematical expression called a generic rule if

a function or test genus. The formal definition of

a module paragraph consists only of its name.

Note that a schema is always specified independently
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of any problem or task that might be posed on it.

A common problem associated with the above schema

is to find values for all Q elements such that all

T:NLEVEL elements evaluate to true and the value of

the TOTCOST element is minimal.

The structure and sequence of the following

elemental detail tables are determined procedurally

from the schema. Each table is named, has column

names that usually coincide with genus names,

and has a row for each element of the corresponding

genus.

Figure 1 shows the so-called genus graph associated

with the above schema. It represents definitional

dependencies at the level of genera.

&NUT_DATA NUTRIENT DATA

NUTRi /pe/ There is a list of NUTRIENTS.

&MATERIALS MATERIALS DATA

MATERIALm /pe/ There is a list of MATERIALS that can be used for feed.

UCOST (MATERIALm) /a/ Each MATERIAL has a UNIT COST ($ per pound of material).

ANALYSIS (NUTRi, MATERIALm) /a/ : Real + For each NUTRIENT-MATERIAL combination,
there is an ANALYSIS (units of nutrient per pound of material).

Q (MATERIALm) /va/ : Real + The QUANTITY (pounds per day per animal) of each MATERIAL is
to be chosen.

NLEVEL (ANALYSISi., Q) /f/ ; @SUMm (ANALYSISim * Qm) Once the QUANTITIES are chosen,
there is a NUTRITON LEVLE (units per day per animal) for each NUTRIENT calculable from
the ANALYSIS.

T:NLEVEL (NLEVELi, MINi)  /t/ ; NLEVELi > = MINi For each NUTRIENT there is a
NUTRITION TEST to determine wherther the NUTRITION LEVEL is at least as large as the
MINIMUM DAILY REQUIREMENT.

TOTCOST (UCOST, Q)  /f/ ; @SUMm (UCOSTm * Qm) There is a TOTAL COST (dollars per day
per animal) associated with the chosen QUANTITIES.

MIN (NUTRi) /a/ : Real + For each NUTRIENT there is a MINIMUM DAILY REQUIRMENT
(units per day per animal).

Structured Modeling,

Exhibit A SML schema for
the classical feedmix model

NUTR

NUTR

NUTR

NUTR

NLEVEL

NLEVEL T:NLEVEL TOTCOST

TOTCOST

P Protein Standard Feed
Additive 3.00

1.2016 std
add

std
add

std 2.00
0.50add

std
add

Q

Q

4

4.00

2.00
1.00

14.00

CalciumC

P 15.00 3.90FALSE

TRUE4.50C

P
P
C
C

MATERIAL

MATERIAL

MATERIAL MATERIALANALYSIS

ANALYSIS

INTERP INTERP UCOSTMIN

Structured Modeling,

Exhibit B Sample elemental
detail tables for the feedmix
schema
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Structured Modeling Systems

Owing to the design of the underlying semantic

framework and of SML itself, SML-based modeling

systems can have certain features often lacking in

modeling systems of more conventional design,

including:

• Error checking, of the formal specification of

general model structure, that is exhaustive with

respect to the underlying semantic framework

• Detailed semantic connections among model parts,

a feature that facilitates maintaining, enhancing,

and integrating models, and that enables automatic

generation of several kinds of model reference

documents useful for communication, debugging,

model maintenance and evolution, and other

essential activities;

• The ability, owing to the generality of structured

modeling’s view of models as definitional systems,

for a single modeling system to accommodate

a wide variety of modeling paradigms, which

leads to easier model integration and many of the

benefits of standardization;

• Browsable definitional dependency graphs at three

levels of abstraction, constructs useful for

visualizing and communicating the general

structure of any model;

• The use of hierarchical organization as an approach

to managing model complexity, and also as a visual

device for model navigation;

• Automatic generation of relational data table

designs for model instance data, a feature that

facilitates exploiting relational database tools for

data management;

• Partial consistency checking of SML’s informal

sublanguage for documenting the formal model

specification, and also partial consistency and

completeness checking of formal specifications by

reference to this documentation;

• Complete independence between the general

structure of a class of models and instantiating

data, a feature that promotes the reuse of each of

these, conciseness, efficient communication, and

dimensional flexibility;

• Complete independence between models and

solvers, a feature that promotes using multiple

solvers with a single model, multiple models with

a single solver, and conceptual clarity.

A research prototype implementation exhibiting

the above features is described in Geoffrion

(1991) and Neustadter et al. (1992). The first paper

references several other research prototypes for

structured modeling with different emphases,

including: graph- based modeling, hybrid

information/mathematical modeling systems, model

management with a SQL database server in a

networked environment, optimization-based

applications, statistical analysis, and syntax-directed

model editing. Other implementations include

those of Chari and Sen (1998), Hamacher (1995), Iyer

et al. (2005), Makowski (2005), Maturana et al. (2004),

and Wright et al. (1997).

Concluding Remarks

An ample foundation has been laid for the

development of software intended for commercial

application. Experimental studies and a few real

applications have taken place in the consumer

appliance, food, industrial gases, oil, steel, and tire

industries, and there are ongoing applications to

environmental policy-making at IIASA.

Promising topics for future work include

discrete-event simulation (Lenard 1993), graph-based

modeling (Jones 1992), language-directed editors

(Vicuña 1990), object-oriented systems (Muhanna

1993), model integration (Dolk and Kottemann 1993;

Gagliardi and Spera 1995), distributed and

semantic-web-based service-oriented architectures

for model management (El-Gayar and Deokar 2008;

Deokar et al. 2010), improved languages for model

MIN

NUTR

ANALYSIS Q

NLEVEL

T:NLEVEL

MATERIAL

UCOST

TOTCOST

Structured Modeling, Fig. 1 Genus graph for the feedmix
schema
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definition and manipulation, applications to early and

late modeling life-cycle phases not supported by

conventional modeling systems, and structured

modeling-based enhancements and usage disciplines

for other modeling approaches and systems. See

Geoffrion (1999) for an extensive annotated

bibliography on structured modeling, Krishnan and

Chari (2000) for a broad survey of the literature

and research opportunities of model management

that is explicitly in accord with structured

modeling’s modeling-lifecycle worldview, and Dolk

(2010) for a thoughtful retrospective on structured

modeling.

See

▶Algebraic Modeling Languages for Optimization

▶Mathematical Model

▶Model Management
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Subderivative

For a real-valued convex function f defined on an open

interval of the real line, a subderivative at a point x0 is

any real number y that satisfies

f ðxÞ � f x0
� �

� y x� x0
� �

for all x

See

▶ Subdifferential

▶ Subgradient

Subdifferential

Set of all subderivatives or subgradients at a point.

See

▶Convex Optimization

▶Lagrangian Relaxation

▶ Subderivative

▶ Subgradient

Subgradient

For a real-valued convex function f defined on

a convex open set in Rn, a vector y is a subgradient at

a point x0 ∈ Rn if for all x ∈ Rn

f ðxÞ � f x0
� �

� y � x� x0
� �

;

where the ‘�’ operator denotes inner product.

See

▶Convex Optimization

▶Lagrangian Relaxation

▶ Subdifferential

Subjective Probability

▶Bayesian Decision Theory, Subjective Probability,

and Utility

▶Decision Analysis

Suboptimization

The finding of a solution to an optimization problem by

a procedure that does not guarantee that the solution

will be optimal. The procedure usually includes

heuristic rules that help eliminate the geneation of

poor solutions.

See

▶Heuristics

Super-Sparsity

In most large-scale mathematical-programming

problems, especially linear-programming problems,

the number of nonzero elements in the problem

matrix is quite small. Such problems are said to have

a low density. Further, it has been noted that the

number of distinct numerical values in the problem

matrix is usually much smaller than the number of

nonzero coefficients. This characteristic is known as

super-sparsity. Computational savings in storage and

processing time can be achieved by taking advantage

of super-sparsity, as follows. Each distinct numerical

value is recorded once in a value table stored in main

memory. Each nonzero coefficient is recorded in an

index array by means of a number triple: row index,

column index, and a pointer. The pointer locates the

coefficient’s numerical value in the value table.

See

▶Density

▶Large-Scale Systems

▶ Sparse Matrix
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Supplemental Variables

An analysis technique that introduces additional

variables in the process state definition to allow non-

Markovian systems to be made Markovian.

See

▶Markov Processes

▶Queueing Theory
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Introduction

Supply chain management (SCM) is the term used to

describe the operational management of the flow of

materials, information, and funds across the entire

supply chain, from suppliers to component producers

to final assemblers to distribution (warehouses and

retailers), and ultimately to the consumer. In fact, it

often includes after-sales service and returns or

recycling. Figure 1 is a schematic of a supply chain.

In contrast to multiechelon inventory management,

that coordinates inventories at multiple locations,

SCM typically involves coordination of information

and materials among multiple firms. Much of the

material in this article is based on Chapter 12 of

Silver et al. (1998) and Johnson and Pyke (2000a).

Supply chain management has generated much

interest in the OR/MS community in recent years for

a number of reasons. Many managers now realize that

actions taken by onemember of the chain can influence

the profitability of all others in the chain. Certain

industries use other terms in place of SCM. For

example, many grocery industry executives are

pursuing efficient consumer response (ECR), the

equivalent of just-in-time distribution or “continuous

replenishment.” Initiatives such as ECR are within the

purview of supply chain management.

Many firms now think of competition as pitting

their supply chain against other supply chains, rather

than their firm against other individual firms. Also, as

firms successfully streamline their own operations, the

next opportunity for improvement is through better

coordination with their suppliers and customers.

The costs of poor coordination can be extremely high.

In the Italian pasta industry, consumer demand is quite

steady throughout the year. However, because of trade

promotions, volume discounts, long lead times, full-

truckload discounts, and end-of-quarter sales

incentives, the orders seen at the manufacturers are

highly variable (Hammond 1994). In fact, the

variability increases in moving up the supply chain

from consumer to grocery store to distribution center

to central warehouse to factory, a phenomenon that is

often called the bullwhip effect (Fig. 2). The bullwhip

effect has been experienced by many students playing

the “Beer Distribution Game” (Sterman 1989; Sterman

1992; Chen and Samroengraja 2000; Jacobs 2000).

The costs of this variability are high — inefficient

use of production and warehouse resources,

high transportation costs, and high inventory costs, to

name a few. Acer America, Inc. sacrificed $20 million

in profits by paying $10 million for air freight to keep

up with surging demand, and then paying $10 million

more later when that inventory became obsolete

(Business Week 1996, p. 72; Towill and Vecchio

1994; Berry et al. 1995; Buzzell and Ortmeyer 1995).
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It seems that integration, long the dream of

management gurus, has finally been sinking into the

minds of managers. Some would argue that managers

have long been interested in integration, but the lack of

information technology made it impossible to

implement a more “systems-oriented” approach.

Clearly industrial dynamics researchers dating back

to the 1950s (Forrester 1958; Forrester 1961) have

maintained that supply chains should be viewed as

an integrated system. With the recent explosion

of inexpensive information technology, it seems

only natural that business would become more supply

chain focused. However, while technology is clearly

an enabler of integration, it alone can not explain the

radical organizational changes in both individual firms

and whole industries. Changes in both technology and

management theory set the stage for integrated supply

chain management. One reason for the change in

management theory is the power shift from

manufacturers to retailers. Wal-Mart, for instance,

has forced many manufacturers to improve their

management of inventories, and even to manage

inventories of their products at Wal-Mart.

While integration, information technology and

retail power may be key catalysts in the surge of

interest surrounding supply chains, electronic-based

business — eBusiness — is fueling even stronger

excitement. eBusiness facilitates the virtual supply

chain, and as companies manage these virtual

networks, the importance of integration is magnified.

Firms like Amazon are superb at managing the flow of

information and funds, via the Internet and electronic

funds transfer. Now, the challenge is to efficiently

manage the flow of products.

Some would argue that the language and metaphors

are wrong. “Chains” evoke images of linear,

unchanging, and powerless. “Supply” feels pushy and

reeks of mass production rather than mass

customization. Better names, like “demand networks”

or “customer driven webs” have been proposed. Yet,

for now, the name “supply chain” seems to have stuck.

And under any name, the future of supply chain

management appears bright.

Key Components of Supply Chain
Management

Supply chain management is an enormous topic

covering multiple disciplines and employing many

quantitative and qualitative tools. Within the last few

years, several textbooks on supply chain have arrived

on the market providing both managerial overviews

and detailed technical treatments. For examples of

managerial introductions to supply chain, seeby

Copacino (1997), by Fine (1998), and Handfield and

Nichols (1998), and for logistics texts, see Lambert

et al. (1997) and by Ballou (1998). For more

technical, model-based treatments, see Silver et al.

(1998) and Simchi-Levi et al. (1998). Tayur et al.

(1999) is an extensive collection of research papers,

while Johnson and Pyke (2000b) is a collection papers

on teaching supply chain management. Also, there are

several casebooks that give emphasis to global

management issues, includingby Taylor (1997),
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by Flaherty (1996), and Dornier et al. (1998).

Introductory articles include Cooper et al. (1997b),

by Davis (1993), Johnson (1998a), and Lee and

Billington (1992).

To help order the discussion, the supply chain

management is divided into twelve areas

[see Johnson and Pyke (2000a) for a list of teaching

cases and popular press articles that fit within

each area].

Each area represents a supply chain issue facing the

firm. For any particular problem or issue, managers

may apply analysis or decision-support tools. For each

of the twelve areas, a brief description of the basic

content is provided, along with a few relevant

research papers OR/MS-based tools that may aid

analysis and decision support are also mentioned. For

a more detailed review of recent research and teaching

in supply chain management, see Ganeshan et al.

(1999) and Johnson and Pyke (2000a).

The twelve categories defined are:

• location

• transportation and logistics

• inventory and forecasting

• marketing and channel restructuring

• sourcing and supplier management

• information and electronic mediated environments

• product design and new product introduction

• service and after sales support

• reverse logistics and green issues

• outsourcing and strategic alliances

• metrics and incentives

• global issues.

Location pertains to both qualitative and

quantitative aspects of facility location decisions.

This includes models of facility location, geographic

information systems (GIS), country differences, taxes

and duties, transportation costs associated with certain

locations, and government incentives (Hammond and

Kelly 1990). Exchange rate issues fall in this category,

as do economies and diseconomies of scale and scope.

Decisions at this level set the physical structure of the

supply chain and therefore establish constraints for

more tactical decisions. Binary integer programming

models play a role here, as do simple spreadsheet

models and qualitative analyses. There are many

advanced texts specially dedicated to the modeling

aspects of location (Drezner 1996) and most books on

logistics also cover the subject. Simchi-Levi et al.

(1998) presented a substantial treatment of GIS,

while Dornier et al. (1998) dedicated a chapter to

issues of taxes, duties, exchange rates, and other

global location issues (Brush et al. 1999). Ballou and

Masters (1999) examined several software products

that provide optimization tools for solving industrial

location problems.

The transportation and logistics category

encompasses all issues related to the flow of goods

through the supply chain, including transportation,

warehousing, and material handling. This category

includes many of the current trends in transportation

management including vehicle routing (Bodin 1990;

Gendreau et al. 1996; Anily and Bramel 1999),

dynamic fleet management with global positioning

systems, and merge-in-transit. Also included are topics

in warehousing and distribution such as cross docking

(Kopczak et al. 1995) and materials handling

technologies for sorting, storing, and retrieving

products (Johnson and Brandeau 1999; Johnson 1998b).

Because of globalization and the spread of

out-sourced logistics, this category has received

much attention in recent years. However, a separate

category will examine issues specifically related

to outsourcing and logistics alliances. Both

deterministic (such as linear programming and

the traveling salesman problem) and stochastic

optimization models (stochastic routing and

transportation models with queueing) often are used

here, as are spreadsheet models and qualitative

analysis. Recent management literature has examined

the changes within the logistics functions of many

firms as the result of functional integration (Greis and

Kasarda 1997) and the role of logistics in gaining

competitive advantage (Fuller et al. 1993).

Inventory and forecasting includes traditional

inventory and forecasting models. Inventory costs

are some of the easiest to identify and reduce when

at-tacking supply chain problems. Simple stochastic

inventory models can identify the potential cost

savings from, for example, sharing information with

supply chain partners (Lee and Nahmias 1993), but

more complex models are required to coordinate

multiple locations. A few years ago, multiechelon

inventory theory captured most of the research in this

area that would apply to supply chains. However, in

nearly every case, multiechelon inventory models

assume a single decision-maker. Supply chains,

unfortunately, confront the problem of multiple firms,

each with its own decision-maker and objectives.
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Of course, there are many full texts on the subject, such

as Silver et al. (1998) and Graves et al. (1993). Useful

managerial articles focusing on inventory

and forecasting includeby Davis (1993) and Fisher

et al. (1994).

Clark and Scarf (1960) performed one of the earliest

studies in serial systems with probabilistic demand.

They introduced the concept of an imputed penalty

cost, wherein a shortage at a higher echelon generates

an additional cost. This cost decomposes the

multiechelon system into a series of stages so that,

assuming centralized control and the availability of

global information, the ordering policies can be

optimized. Lee and Whang (1999a) and Chen (1996)

both proposed performance measurement schemes for

individual managers that allow for decentralized

control (so that each manager makes decisions

independently), and in certain instances, local

information only. The result is a solution that

achieves the same optimal solution as if centralized

control and global information were assumed.

Marketing and channel restructuring includes

fundamental thinking on supply chain structure (Fisher

1997) and covers the interface with marketing that

emerges from having to deal with down-stream

customers (Narus and Anderson 1996). While the

inventory category addresses the quantitative side of

these relationships, this category covers relationship

management, negotiations and even the legal

dimension. Most importantly, it examines the role of

channel management (Anderson et al. 1997) and supply

chain structure in light of the well-studied phenomena

of the bullwhip effect that was noted in the introduction.

The bullwhip effect has received enormous attention

in the research literature. Many authors have noted that

central warehouses are designed to buffer the factory

from variability in retail orders. The inventory held in

these warehouses should allow factories to smooth

production while meeting variable customer demand.

However, empirical data suggest that exactly the

opposite happens (e.g., see Blinder 1981, and Baganha

and Cohen 1998). Orders seen at the higher levels of the

supply chain exhibit more variability than those at levels

closer to the customer. In other words, the bullwhip

effect is real. Typically, causes include those noted in

the introduction, as well as the fact that retailers and

distributors often over-react to shortages by ordering

more than they need. Lee et al. (1997) showed how

four rational factors help to create the bullwhip effect:

demand signal processing (if demand increases, firms

order more in anticipation of further increases, thereby

communicating an artificially high level of demand); the

rationing game (there is, ormight be, a shortage so a firm

orders more than the actual forecast in the hope of

receiving a larger share of the items in short supply);

order batching (fixed costs at one location lead to

batching of orders); and manufacturer price variations

(which encourage bulk orders). The latter two factors

generate large orders that are followed by small orders,

which implies increased variability at upstream

locations.

Some recent innovations, such as increased

communication about consumer demand, via

electronic data interchange (EDI) and the Internet,

and everyday low pricing (EDLP) (to eliminate

forward buying of bulk orders), can mitigate the

bullwhip effect. See Bell et al. (1998a, 1998b) for

a discussion of EDLP versus High-Low pricing. They

showed with a simple model that High-Low pricers can

charge a higher average price without risking the loss

of rational customers. In addition, Baganha and Cohen

(1998) noted that, if locations that are designed to

buffer the factory from variability in retail orders

follow the optimal policy, the variance can in fact be

reduced. In particular, these locations should account

for autocorrelation in the demand process; that is, if

a retailer orders today, it is unlikely that it will order in

the next few days (Bourland et al. 1996; Srinivasan

et al. 1994; Lee et al. 1999).

In fact, the number of firms ordering, and receiving

orders, via EDI and the Internet is exploding. The

information available to supply chain partners, and

the speed with which it is available, has the potential

to radically reduce inventories and increase customer

service. For example, see Moinzadeh and Aggarwal

(1997) and Lee and Whang (1999b). Milgrom and

Roberts (1988) noted that inventory and information

are substitutes. Other initiatives can also mitigate the

bullwhip effect. For example, changes in pricing and

trade promotions (Buzzell et al. 1990) and channel

initiatives, such as vendor-managed inventory (VMI),

coordinated forecasting and replenishment (CFAR),

and continuous replenishment (Fites 1996; Verity

1996; Waller et al. 1999), can significantly reduce

demand variance. VMI is one of the most widely

discussed partnering initiatives for improving

multi-firm supply chain efficiency. Popularized in

the late 1980s by Wal-Mart and Procter and Gamble,
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VMI became one of the key programs in the grocery

industry’s pursuit of efficient consumer response and

the garment industry’s quick response. Successful

VMI initiatives have been trumpeted by other

companies in the United States, including Campbell

Soup and Johnson and Johnson, and by European firms

like the pasta manufacturer Barilla.

In a VMI partnership, the supplier — usually the

manufacturer but sometimes a reseller or

distributor — makes the main inventory replenishment

decisions for the consuming organization. This means

the supplier monitors the buyer’s inventory levels

(physically or via electronic messaging) and makes

periodic resupply decisions regarding order quantities,

shipping, and timing. Transactions customarily initiated

by the buyer (like purchase orders) are initiated by the

supplier instead. Indeed, the purchase order

acknowledgment from the supplier may be the first

indication that a transaction is taking place; an

advance shipping notice informs the buyer of materials

in transit. Thus the manufacturer is responsible for both

its own inventory and the inventory stored at is

customers’ distribution centers (Fig. 3).

Because many of these initiatives involve channel

partnerships and distribution agreements, this category

also contains important information on pricing, along

with anti-trust and other legal issues (Train 1998).

These innovations require interfirm, and often

intrafirm, cooperation and coordination that can be

difficult to achieve.

While marketing focuses downstream in the

supply chain, sourcing and supplier management

looks upstream to suppliers. Make/buy decisions

(Venkatesan 1992; Carroll 1993; Christensen 1994;

Quinn and Hilmer 1994; Kelley 1995; Robertson and

Langlois 1995) fall into this category, as does global

sourcing (Little 1995; Pyke 1994). The location

category addresses the location of a firm’s own

facilities, while this category pertains to the location

of the firm’s suppliers. Supplier relationship

management falls into this category as well

(McMillan 1990; Womack et al. 1991). Some firms

are putting part specifications on the Web so that

dozens of suppliers can bid on jobs. GE, for instance,

has developed a trading process network that allows

many more suppliers to bid than was possible before.

The automotive assemblers have developed a similar

capability. Independent Internet firms, such as Digital

Market, are providing services focused on certain

product categories. Other firms are moving in the

opposite direction by reducing the number of

suppliers, in some cases to a sole source (Helper and

Sako 1995; Cusumano and Takeishi 1991).

Determining the number of suppliers and the best
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Fig. 3 Typical VMI
implementation (adapted from
Waller et al. 1999)
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way to structure supplier relationships is becoming an

important topic in supply chains (Cohen and Agrawal

1996; Dyer 1996; Magretta 1998; Pyke (1998).

Much of the research in this area makes use of game

theory to understand supplier relationships, contracts,

and performance metrics. See, for instance, Cachon

and Lariviere (1999), by Cachon (1997), and Tsay

et al. (1999).

The information and electronic mediated

environments category addresses long-standing

applications of information technology to reduce

inventory (Woolley 1997) and the rapidly expanding

area of electronic commerce (Benjamin and Wigand

1997; Schonfeld 1998). Often this subject may take

a more systems orientation, examining the role of

systems science and information within a supply

chain (Senge 1990). Such a discussion naturally

focuses attention on integrative ERP software such as

SAP (Whang et al. 1995), Baan and Oracle, as

well as supply chain offerings such as i2’s Rhythm

and Peoplesoft’s Red Pepper. The many supply

chain changes wrought by electronic commerce are

particularly interesting to examine, including

both the highly publicized retail channel

changes (like Amazon.com) and the more substantial

business to business innovations (like the GE trading

process network). It is here that OR/MS interfaces

most directly with information technology and

strategy, which again creates opportunities for

cross-functional integration (Lee and Whang 1999b).

Product design and new product introduction deals

with design issues for mass customization, delayed

differentiation, modularity and other issues for new

product introduction. With the increasing supply

chain demands of product variety (Gilmore and Pine

1997) and customization (McCutcheon et al. 1994),

there is an increasing body of research available. One

of the most exciting applications of supply chain

thinking is the increased use of postponed product

differentiation (Feitzinger and Lee 1997).

Traditionally, products destined for world markets

would be customized at the factory to suit local

market tastes. While a customized product is

desirable, managing worldwide inventory is often

a nightmare. Using postponement, the product

is redesigned so that it can be customized for local

tastes in the distribution channel. The same generic

product is produced at the factory and held

through-out the world (Fig. 4). Thus, if the French

version selling well, but the German version is not,

the German product can be quickly shipped to France

and customized for the French market.

For these problems, there is an interface with

engineering and development, with clear implications

for product cost and inventory savings. Stochastic

inventory models are often used to identify some of

the benefits of these initiatives (Lee et al. 1993). Also

important are issues related to product design (Ulrich

and Ellison 1999; Robertson and Ulrich 1998),

managing product variety (Fisher et al. 1999) and

managing new product introduction and product

rollover (Billington et al. 1998).

The service and after sales support category

addresses the critical, but often overlooked, problem

of providing service and service parts (Cohen and Lee

1990). Some leading firms, such as Saturn and

Caterpillar, build their reputations on their ability

in this area, and this capability generates significant

sales (Cohen et al. 1997). Stochastic inventory models

for slow-moving items fall into this category, and there

are many papers on this topic related to inventory

management (Williams 1984; Cohen et al. 1986)

and forecasting (Johnston and Boylan 1996).

While industry practice still shows much room for

improvement (Cohen et al. 1997), several

well-known firms have shown how spare parts can be

managed more effectively (Cohen et al. 1990; Cohen

et al. 1992; Cohen et al. 1999).

Reverse logistics and green issues are emerging

dimensions of supply chain management (Marien

1998). This area examines both environmental issues

(Herzlinger 1994) and the reverse logistics issues of

product returns (Padmanabhan and Png 1995;

Clendenin 1997; Rudi and Pyke 1999). Because of

legislation and consumer pressure, the growing

importance of these issues is evident to most

managers. Managers are being compelled to consider

the most efficient and environmentally friendly way to

deal with product recovery and researchers have begun

significant effort in modeling these systems.

The term product recovery encompasses the

handling of all used and discarded products,

components and materials. Thierry et al. (1995) noted

that product recovery management attempts to recover

as much economic value as possible, while reducing the

total amount of waste. They also provided a framework

and a set of definitions that can help managers

think about the issues in an organized way (Fig. 5).
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These authors examine the differences among various

product recovery options including repair,

refurbishing, remanufacturing, cannibalization, and

recycling. The whole process of manufacturing

begins, of course, with product design. Firms are

beginning to consider design for the environment

(DFE) and design for disassembly (DFD) in their

product development processes. Unfortunately,

AT&T discovered that designing products for

reuse can result in more materials and complexity,

thereby violating other environmental goals.

(See Frankel 1996, who also reports on product

takeback and recycling initiatives in numerous

countries).

The analysis of the recovery situation is

considerably more complicated than that of

consumables. Normally, in a recovery situation some

items cannot be recovered, so the number of units

demanded is not balanced completely by the return of

reusable units. Thus, in addition to recovered units,

a firm must also purchase some new units from time

to time. Consequently, even at a single location,
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there are five decision variables: (1) how often to

review the stock status, (2) when to recover returned

units, (3) how many to recover at a time, (4) when to

order new units, and (5) how many to order. When

there are multiple locations, the firm must decide how

many good units to deploy to a central warehouse and

how many to deploy to each retailer or field stocking

location.

With consumable items, the lead time to the

retailers is a transportation time from the warehouse

plus a random component, depending on whether the

warehouse has stock. With recoverable items, the lead

time is the transportation time plus the time to

recovery, if the warehouse does not have stock. So in

some cases, the two systems can be treated in almost

the same way. However, if the recovery facility has

limited capacity or if the number of items in the system

is small, the systems will differ significantly.

For example, if many items have failed and are now

in recovery, they cannot be in the field generating

failures. Therefore, the demand rate at the

ware-house will decline. In a consumable system, it

is usually assumed that the demand rate does not

depend on how many items have been consumed.

Most of the research in this area concerns products

and packaging after manufacturing has been

completed. For example, a large U. S. chemical

company gained significant market share in water

treatment chemicals by delivering its products in

reusable containers. The customers (hospitals and

other large institutions, for example) need never

touch the chemicals or deal with the disposal of used

containers. This problem has been addressed by Goh

and Varaprasad (1986), Kelle and Silver (1989), and

Castillo and Cochran (1996).

Some products that are not reused “as is” can be

disassembled so that some of the parts can be used in

remanufactured products. Muckstadt and Isaac (1981)

reported on a model developed in connection

with a manufacturer of reprographic equipment.

There is a single location with two types of

inventory: serviceable and repairable. Demands for

serviceable units and returns of repairable units

occur probabilistically, specifically, according to

independent Poisson processes with rates D and fD,

respectively (where f is a fraction). In addition, repairs

are done on a continuous, first come-first served basis

(e.g., at a local machine shop). Any demands for

serviceable units, when none is available, are

back-ordered at a cost per unit short per unit time.

Purchases of new stock from outside involve a known

lead time. With respect to purchase decisions,

a continuous review (s,Q) system is used;

specifically, when the inventory position drops to s or

lower, a quantity Q is purchased.

Inderfurth (1997) extended the Muckstadt and Isaac

model to a remanufacturing problem in which there are

two decisions each period: how many returned

products to remanufacture (the remainder will be

disposed of), and how many new parts to procure. In

this system, returned products arrive probabilistically

and are either remanufactured or thrown away.

(In other words, there is no stock of returned

products). Newly procured products are stored with
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Product
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Distribution Users
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Recycle Cannibalize Remanufacture Refurbish Repair Reuse

Supply Chain Management, Fig. 5 Product recovery options (adapted from Thierry et al. 1995)
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remanufactured products in a finished goods inventory

that serves demand that arrives probabilistically. There

are per-unit costs to procure, remanufacture, and

dispose, and holding costs are charged against ending

inventory each period. For the case of equal lead times

to remanufacture and to procure, by Inderfurth (1997)

showed that the structure of the optimal policy is based

on two parameters, Lt and Ut, in each period t. To

describe the policy, define the following:

dt¼ the number of units to be disposed of in period t;

pt ¼ the number of units to procure in period t; and

IPt¼ the inventory position at the beginning of period t¼ stock
on hand (which includes products returned this period and
finished goods inventory) + procurement orders
outstanding � remanufacturing orders
out-standing � backordered demand

The optimal policy is then:

pt ¼ Lt � IPt and dt ¼ 0 for a IPt < Lt

pt ¼ 0 and dt ¼ 0 for Lt > IPt � Ut

pt ¼ 0 and dt � IPt � Ut for IPt > Ut

In words, if the inventory position is lower than the

lower limit, Lt, order-up-to Lt and do not dispose of any

units. If the inventory position is higher than the upper

limit, Ut, dispose “down to” Ut and do not procure any

units. Otherwise, do not buy or dispose. (Again, all

returned units, not disposed of, are remanufactured).

by Inderfurth (1997) pointed out that when one permits

a stock of returned units waiting for disposal or

remanufacturing, or when the lead times to procure

and remanufacture are different, the policy is similar

but more complex.

van der Laan et al. (1996) proposed a policy for

a continuous review version of this problem. Thierry

et al. (1995) looked at the strategic issues related to

product recovery. Also seeby Heyman (1977) and

Penev and de Ron (1996), who studied the

disassembly process; and van der Laan et al. (1996,

1997, 1999), by Ferrer (1995), by Richter (1996),

Guide and Spencer (1997), and Taleb et al.

(1997), who studied other aspects of the

remanufacturing process. Other reverse logistics issues

were also examined by Carter and Ellram (1998), while

Fleischmann et al. (1997) provided a review of

quantitative models for reverse logistics.

Outsourcing and strategic alliances examines

the supply chain impact of outsourcing logistics

services. With the rapid growth in third party

logistics providers, there is a large and expanding

group of technologies and services to be examined.

These include initiatives such as supplier hubs

managed by third parties. The rush to create strategic

relationships with logistics providers and the many

well-published failures have raised questions about

the future of such relationships (Bowersox 1990). In

any case, outsourcing continues to raise many

interesting issues (Cooper et al. 1997a).

Metrics and incentives examines measurement and

other organizational and economic issues. This

category includes both measurement within the

supply chain (Meyer 1997) and industry

benchmarking (Council of Logistics Management

Consortium 1994; Pittiglio, Rabin, Todd, and

McGrath 1997). Because metrics are fundamental to

business management, there are many reading

materials outside of the supply chain literature,

accounting texts, for instance. Several articles

concentrate on the link between performance

measurement and supply chain improvement

(O’Laughlin 1997; Johnson and Davis 1998).

Finally, global issues examines how all of the above

categories are affected when companies operate in

multiple countries. This category goes beyond

country specific issues to encompass issues

related to crossboarder distribution and sourcing

(Kouvelis 1999). For example, currency exchange

rates, duties and taxes, freight forwarding, customs

issues, government regulation, and country

comparisons are all included. Note that the location

category, when applied in a global context, also

addresses some of these issues (Cohen and

Huchzermeier 1999; Huchzermeier and Cohen 1996;

Arntzen et al. 1995). There are several texts devoted to

global management. Many articles also examine

challenges in specific regions of the world (e.g., Asia:

Lee and Kopczak 1997; Europe: Sharman 1997).

Concluding Remarks

Supply chain management is an expanding field, both in

research and in practice. Major international consulting

firms have developed large practices in the supply chain

field and the number of research papers in the field is

growing rapidly. The discussion covered twelve areas

often seen in supply chain research and practice.
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These areas appear to be somewhat disparate, but they

are all linked by the integrated nature of the problems at

hand. Firms operate in global environments, deal with

multiple suppliers and customers, are required to

manage inventories in new and innovative ways, and

are faced with possible channel restructuring. The field

promises to continue growing as the research advances

and as firms continue to apply new knowledge in their

global networks. Finally, as the Internet changes

fundamental assumptions about business, firms

operating in supply chains will be required to

understand this new phenomenon and respond

accordingly.

See

▶Closed-Loop Supply Chains

▶Electronic Commerce

▶ Facility Location

▶ Forecasting

▶Game Theory

▶Geographic Information Systems

▶ Inventory Modeling

▶Linear Programming

▶Logistics and Supply Chain Management

▶Material Handling

▶Network Optimization

▶Operations Management

▶ Production Management

▶Queueing Theory

▶ Simulation of Stochastic Discrete-Event Systems

▶ Spreadsheets

▶Transportation Problem

▶Traveling Salesman Problem
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Surplus Variable

A nonnegative variable that is added to a linear

inequality of the form
P

j aij xj � bi to transform

the inequality into an equation. The surplus variable

measures the difference between the left-and

right-hand-sides of the inequality.

See

▶Logical Variables

▶ Slack Variable

▶ Surplus Vector
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Surplus Vector

The column representation of a surplus variable in

a linear-programming problem.

See

▶ Surplus Variable

Swarm Intelligence

Population-based metaheuristic search approaches that

use groups of decentralized agents inspired by animal

behavior from nature; examples include Ant Colony

Optimization, Particle Swarm Optimization, and the

Bees Algorithm.

See

▶Ant Colony Optimization

▶Metaheuristics

▶ Particle Swarm Optimization
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Symmetric Matrix

A square matrix A ¼ (aij) is symmetric if aij ¼ aji.

Thus, A ¼ AT.

See

▶Matrices and Matrix Algebra

Symmetric Primal-Dual Problems

The two linear-programming problems with the

following form:

Primal

Minimize cTx

subject to Ax � b

x � 0

Dual

Maximize bTy

subject to ATy � c

y � 0

See

▶ Strong Duality Theorem

▶Unsymmetric Primal-Dual Problems

Symmetric Queueing Network

A queueing network of quasi-reversible nodes (stations)

with additional properties that make its major

performance measures (e.g., waiting times and queue

lengths) insensitive to the service-time distributions,

depending only on the mean service times.

See

▶ Insensitivity

▶Networks of Queues

▶Queueing Theory

Symmetric Zero-Sum Two-Person Game

A two-player game with a skew-symmetric payoff

matrix. The amount lost by one player is the amount

gained by the other player (zero-sum). Such a game has

a value of zero and the optimal strategies of the two

players are the same.
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See
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Introduction

System dynamics is a computer-aided approach to

policy analysis and design. It applies to dynamic

problems arising in complex social, managerial,

economic, or ecological systems – literally any

dynamic systems characterized by interdependence,

mutual interaction, information feedback, and

circular causality.

The field developed initially from the work of Jay W.

Forrester. His seminal book Industrial Dynamics

(Forrester 1961) is still a significant statement of

philosophy and methodology in the field. Within

10 years of its publication, the span of applications

grew from corporate and industrial problems to include

the management of research and development, urban

stagnation and decay, commodity cycles, and the

dynamics of growth in a finite world. It is now applied

in economics, public policy, environmental studies,

defense, theory-building in social science, and other

areas, as well as its home field, management. The name

industrial dynamics no longer does justice to the breadth

of the field, so it has become generalized to system

dynamics. The modern name suggests links to other

systems methodologies, but the links are weak and

misleading. System dynamics emerges out of

servomechanisms engineering, not general systems

theory or cybernetics (Richardson 1991).

The system dynamics approach involves:

• Defining problems dynamically, in terms of graphs

over time.

• Striving for an endogenous, behavioral view of the

significant dynamics of a system, a focus inward on

the characteristics of a system that themselves

generate or exacerbate the perceived problem.

• Thinking of all concepts in the real system as

continuous quantities interconnected in loops of

information feedback and circular causality.

• Identifying independent stocks or accumulations

(levels) in the system and their inflows and

outflows (rates).

• Formulating a behavioral model capable of

reproducing, by itself, the dynamic problem of

concern. The model is usually a computer

simulation model expressed in nonlinear

equations, but is occasionally left unquantified as

a diagram capturing the stock-and-flow/causal

feedback structure of the system.

• Deriving understandings and applicable policy

insights from the resulting model.

• Implementing changes resulting from model-based

understandings and insights.

Mathematically, the basic structure of a formal

system dynamics computer simulation model is

a system of coupled, nonlinear, first-order differential

(or integral) equations,

d

dt
xðtÞ ¼ f x, pð Þ;

where x is a vector of levels (stocks or state variables),

p is a set of parameters, and f is a nonlinear

vector-valued function.

Simulation of such systems is easily accomplished

by partitioning simulated time into discrete intervals of

length dt and stepping the system through time one dt

at a time. Each state variable is computed from its

previous value and its net rate of change

x0ðtÞ : xðtÞ ¼ x t� dtð Þ þ dt � x0 t� dtð Þ. In the earliest
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simulation language in the field (DYNAMO) this

equation was written with time scripts K (the current

moment), J (the previous moment), and JK

(the interval between time J and K):

X:K ¼ X:Jþ DT�XRATE:JK (see, e.g., Richardson

and Pugh 1981). The computation interval dt is

selected small enough to have no discernible effect

on the patterns of dynamic behavior exhibited by the

model. In more recent simulation environments, more

sophisticated integration schemes are available

(although the equation written by the user may look

like this simple Euler integration scheme), and time

scripts may not be in evidence. Important

current simulation environments include Vensim

(Ventana Systems, www.vensim.com/) STELLA and

iThink (iSee Systems, www.iseesystems.com/),

PowerSim (www.powersim.com/), and AnyLogic

(xj technologies, www.xjtek.com/).

Forrester’s original work stressed a continuous

approach, but increasingly modern applications of

system dynamics contain a mix of discrete difference

equations and continuous differential or integral

equations. Some practitioners associated with the

field of system dynamics work on the mathematics of

such structures, including the theory and mechanics

of computer simulation, analysis and simplification of

dynamic systems, policy optimization, dynamical

systems theory, and complex nonlinear dynamics and

deterministic chaos.

Themain appliedwork in the field, however, focuses

on understanding the dynamics of complex systems for

the purpose of policy analysis and design. The

conceptual tools and concepts of the field – including

feedback thinking, stocks and flows, the concept of

feedback loop dominance, and an endogenous point of

view – are as important to the field as its simulation

methods. The material in the next three sections is

abstracted from Richardson (1991a, b).

Feedback Thinking

Conceptually, the feedback concept is at the heart of

the system dynamics approach. Diagrams of loops of

information feedback and circular causality are tools

for conceptualizing the structure of a complex system

and for communicating model-based insights.

Intuitively, a feedback loop exists when information

resulting from some action travels through a system

and eventually returns in some form to its point of

origin, potentially influencing future action. If the

tendency in the loop is to reinforce the initial action,

the loop is called a positive or reinforcing feedback

loop; if the tendency is to oppose the initial action, the

loop is called a negative or balancing feedback loop.

The sign of the loop is called its polarity. Balancing

loops can be variously characterized as goal-seeking,

equilibrating, or stabilizing processes. They can

sometimes generate oscillations, as when a pendulum

seeking its equilibrium goal gathers momentum and

overshoots it. Reinforcing loops are sources of growth

or accelerating collapse; they are disequilibrating and

destabilizing. Combined, reinforcing and balancing

circular causal feedback processes can generate all

manner of dynamic patterns.

Loop Dominance and Nonlinearity

The loop concept underlying feedback and circular

causality by itself is not enough, however. The

explanatory power and insightfulness of feedback

understandings also rest on the notions of active

structure and loop dominance. Complex systems

change over time. A crucial requirement for

a powerful view of a dynamic system is the ability of

a mental or formal model to change the strengths of

influences as conditions change, that is to say, the

ability to shift active or dominant structure.

In a system of equations, this ability to shift loop

dominance comes about endogenously from

nonlinearities in the system. For example, the

S-shaped dynamic behavior of the classic logistic

growth model dP=dt ¼ aP� bP2
� �

can be seen as the

consequence of a shift in loop dominance from

a positive, self-reinforcing feedback loop (aP)

producing exponential-like growth to a negative

balancing feedback loop (-bP2) that brings the system

to its eventual goal. Only nonlinear models can

endogenously alter their active or dominant structure

and shift loop dominance. From a feedback

perspective, the ability of nonlinearities to generate

shifts in loop dominance and capture the shifting

nature of reality is the fundamental reason for

advocating nonlinear models of social system

behavior.
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The Endogenous Point of View

The concept of endogenous change is fundamental to

the system dynamics approach. It dictates aspects of

model formulation: exogenous disturbances are seen at

most as triggers of system behavior (like displacing

a pendulum); the causes are contained within the

structure of the system itself (like the interaction of

a pendulum’s position and momentum that produces

oscillations). Corrective responses are also not

modeled as functions of time, but are dependent on

conditions within the system. Time by itself is not seen

as a cause.

But more importantly, theory building and policy

analysis are significantly affected by this endogenous

perspective. Taking an endogenous view exposes the

natural compensating tendencies in social systems

that conspire to defeat many policy initiatives.

Feedback and circular causality are delayed,

devious, and deceptive. For understanding, system

dynamics practitioners strive for an endogenous

point of view. The effort is to uncover the sources of

system behavior that exist within the structure of the

system itself.

System Structure

These ideas are captured in Forrester’s (1969)

organizing framework for system structure:

Closed boundary

• Feedback loops

• Levels

• Rates

• Goal

• Observed condition

• Discrepancy

• Desired action

The closed boundary signals the endogenous point

of view. The word closed here does not refer to open

and closed systems in the general system sense, but

rather refers to the effort to view a system as causally

closed. The modeler’s goal is to assemble a formal

structure that can, by itself, without exogenous

explanations, reproduce the essential characteristics

of a dynamic problem.

The causally closed system boundary at the head of

this organizing framework identifies the endogenous

point of view as the feedback view pressed to an

extreme. Feedback thinking can be seen as

a consequence of the effort to capture dynamics

within a closed causal boundary. Without causal

loops, all variables must trace the sources of their

variation ultimately outside a system. Assuming

instead that the causes of all significant behavior in

the system are contained within some closed causal

boundary forces causal influences to feed back upon

themselves, forming causal loops. Feedback loops

enable the endogenous point of view and give it

structure.

Levels and Rates

Stocks (levels) and the flows (rates) that affect them

are essential components of system structure. Amap of

causal influences and feedback loops is not enough to

determine the dynamic behavior of a system.

A constant inflow yields a linearly rising stock;

a linearly rising inflow yields a stock rising along

a parabolic path, and so on. Stocks (accumulations,

state variables) are the memory of a dynamic system

and are the sources of its disequilibrium and dynamic

behavior.

Forrester (1961) placed the operating policies of

a system among its rates (flows), many of which

assume the classic structure of a balancing feedback

loop striving to take action to reduce the discrepancy

between the observed condition of the system and

a goal. The simplest such rate structure results in an

equation of the formNETFLOW¼ (GOAL - STOCK)/

(ADJTIM), where ADJTIM is the time over which the

level adjusts to reach the goal.

Behavior Is a Consequence of System
Structure

The importance of levels and rates appears most

clearly when one takes a continuous view of structure

and dynamics. Although a discrete view, focusing on

separate events and decisions, is entirely compatible

with an endogenous feedback perspective, the system

dynamics approach emphasizes a continuous view.

The continuous view strives to look beyond events to

see the dynamic patterns underlying them. Moreover,
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the continuous view focuses not on discrete decisions

but on the policy structure underlying decisions.

Events and decisions are seen as surface phenomena

that ride on an underlying tide of system structure and

behavior. It is that underlying tide of policy structure

and continuous behavior that is the system

dynamicist’s focus.

Therefore, there is a distancing inherent in the system

dynamics approach – not so close as to be confused by

discrete decisions and myriad operational details, but

not so far away as to miss the critical elements of policy

structure and behavior. Events are deliberately blurred

into dynamic behavior. Decisions are deliberately

blurred into perceived policy structures. Insights into

the connections between system structure and dynamic

behavior, which are the goal of the system dynamics

approach, come from this particular distance of

perspective.

Concluding Remarks

System Dynamics Review, the journal of the System

Dynamics Society, is the best source of current activity

in the field, including methodological advances and

applications. Other important journal sources include

Management Science, the European Journal of

Operational Research (EJOR), the Journal of the

Operational Research Society (JORS), and Systems

Research and Behavioral Science. For texts on the

modeling process in system dynamics, see Sterman

(2000), Maani and Cavana (2007), Ford (2009),

Morecroft (2007), Wolstenholme (1990), and

Richardson and Pugh (1981).

An early interesting collection of applications is

Roberts (1978); Richardson (1996) is a more recent

two-volume edited collection in the same spirit,

containing prize-winning work in philosophical

background, dynamic decision making, applications

in the private and public sectors, and techniques for

modeling with management.

One direction within the field is the use of

model-based insights for organizational learning,

represented most forcefully in Senge (1990) and

Morecroft and Sterman (1994). The important effort

to build models with relatively large groups of experts

and stakeholders, known as group model building, is

described in Vennix (1996) and Richardson and

Anderxsen (2010).

Richardson (1991/1999) puts the endogenous

feedback perspective of the system dynamics

approach in its historical context and includes an

extensive bibliography.
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Introduction

Systems analysis is a broad term applied to the study

of real-world processes. It involves the careful

examination of systems – entities, organisms,

organizations, beings and things. Systems analysis

breaks problems associated with entities down into

their component parts and relationships in order to

formulate a conceptual definition of the situation.

The purpose is to develop “an overall understanding

of optimal solutions to executive type problems”

(Churchman et al. 1957, p. 7). The resulting

conceptual definition is then often translated into a

Web site, a process-support system, or a mathematical

model. Systems analysis has been applied to complex,

dynamic systems— both physical and social— such as

businesses, governments, and computer software, as

well as to economic, weapons, mechanical, and

manufacturing systems. While it is ultimately

a subjective form of innovation, systems analysis is

based on a growing set of key theories: systems,

cybernetics, mathematical modeling, graphical design,

data management for knowledge management, and

computational linguistics.

Systems theory describes how related elements

can be organized to achieve a purpose. Elements

form “an interconnected complex of functionally

related components” (Churchman et al. 1957, p. 7),

each having inputs, processes, and outputs. At the

most detailed and fundamental level of analysis,

elements are generally treated as ‘black boxes.’

At a high level of abstraction, what goes into and

out of each black box is described, but the activities

within the box are not described. Each black

box is analyzed in turn to define the transformation

process through which its inputs generate its outputs.

The concepts of flow, relationship, message, initiator,

terminator, and connection are used to portray

the structure of the system being analyzed. These

terms describe the interrelationships of its elements.

The transformation processes are described in

terms including transaction, process, and problem.

Cybernetic theory integrates feedback in systems.

Feedback provides communication about the system’s

outputs, which in turn causes the system to adjust either

the inputs or the process, as necessary, to achieve

the system’s purpose. This is called control.

Mathematical system theories define a “collection

of mathematical relationships which characterize

the feasible programs” for improving a system

(Dantzig 1963). Building a mathematical model

provides insight into a system and its properties, and

the model elements can be manipulated to derive

conclusions about the system.

Mathematical models and other operations

research/management science (OR/MS) techniques

may be applied to the conceptual definition of

a system and used to determine the best possible

solution — the optimum decision, policy, or

design — for the problem the system represents.

Graphs and graph theory are the basis for

systems analysis relating to Web site and page design

for target business processes. A graph is a collection of

points and lines connecting these points used to

represent relations between sets of objects. Graph

theory is used to study some of the many possible

properties of the identified objects (Berge 1962).

Graphical theory is applied to business process

information to develop abstract presentation forms

using everyday metaphors and otherwise meaningful

renditions. Then, the abstractions are translated

into individual Web components that are compiled

into Web pages, which together comprise a Web site.

Theories on data management and knowledge

management provide a basis for data warehousing

and retrieval systems (Alavi and Leidner 2001;

Jarke and Vassiliou 1997). Like graphical theory, the

emphasis of these theories is on business practice and

use of system artifacts in addition to efficient uses of

technology resources and application functionality.

As a result, the expanded skills needed to analyze

data technology and its use add to the techniques

for systems analysis.

Churchman (1968) posed five necessary conditions

for completing any systems analysis:

1. The total system objectives or, more specifically,

the performance measures for the whole system;

2. The system’s environment of fixed constraints,

which are outside the system;
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3. System resources that are capabilities found

“inside” the system and that, therefore, can be

analyzed and possibly designed;

4. System elements, including their activities,

functions, goals, and measures of performance;

5. System management processes for allocating

resources to system elements.

Most systems contain recognizable sub-systems,

sub-sub-systems, and so on, organized in a hierarchy.

Their arrangement often involves a “Chinese box”

form of nesting that permits them to be defined by

recursion. A solution that is best for the system as a

whole is called an optimum, whereas a solution that is

best relative to the functioning of one or more elements

is called a sub-optimum or local optimum. One of the

challenges of systems analysis is to improve the

performance of a sub-system in terms of its own goals

and purposes — sub-optimization — without either

harming the total system or, worse, defeating the

system’s overall purpose.

Systems Analysis and Computer Systems

Systems analysis is the first stage in presenting any

large task to a computer (the other principle stages

being design and implementation). It is performed

by a systems analyst and consists of analyzing

the whole task in its setting and deciding how best

to arrange it for processing by a computer. It includes

estimation of how much work is involved, how

powerful a computer is required, and the quality of

the operating environment for security, recoverability,

and reliable availability of computing resources.

A problem is divided into a number of relatively

independent parts that are specified, together with

their interconnections, in sufficient detail for

a programmer to take over. Options for arrangement

of problem components can be hardware, firmware, or

software; in hierarchies, sequences, or networks; for

local, remote, or virtual computing.

Computer applications are developed through a

series of translations. The first translation, as noted

above, is from a real-world situation to a conceptual

definition of the situation. This conceptual model

is thentranslated via a design activity to an

implementation model that can still be read by human

beings and that describes the conceptual model in a

language related to the target computer environment.

The implementation model is then translated into

the specific coded language(s) of the target (hardware,

software, firmware, and data) environment. These three

translations define phases of activity that constitute an

application’s development life cycle. The translations

relate to the thinking processes involved and are called

analysis, design, and implementation, respectively.

Implementation can be divided into sub-phases for

programming, testing, and production.

Software development methodologies are used to

guide the development processes through the life

cycle. (Technically, methodology is the study of

tools, techniques, and guidelines for choosing among

them; methods are specific tools and techniques to

be chosen and applied to a given situation. The

common term for system development methods

used as a package of tools and techniques is

methodologies, and it is used here.) The different

approaches currently used are: mathematical, process,

data, object, information, and artificial intelligence.

The techniques typically use top-down strategies for

problem solving and progressively decompose a target

task area into smaller, solvable tasks for independent

solution (Laszlo 1972); however, bottom-up and

middle-out strategies can also be applied to aspects

of problems. The approaches can be further divided

into classes: mathematical, transactional, semantic,

and informational — depending on the type of

problem being solved (Fig. 1). Mathematical

methodologies solve selection and alternative analysis

problems. Process, data, and object methodologies

solve transactional processing problems. Information

methodologies solve data storage, retrieval, and

presentation problems. Semantic methodologies, in

general, deal with understanding complex information
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and artificial intelligence problems. Applications

often encompass several of these problem types,

requiring hybrid approaches to their solution.

Mathematical Methodologies

Mathematical methodologies employ mathematical

models of a system and focus on the logical

relationships within the system. They are often

formulated by interdisciplinary teams who adapt

scientific theories and methods to solve practical

problems (Ackoff and Rivett 1963). OR/MS and

cybernetic methods are applied. Classes of problems

to which mathematical methods apply include

inventory, allocation, sequencing, queueing, routing,

replacement, competition, and search. The problems

solved by OR techniques all deal with selection from

many alternatives and sensitivity analysis to develop

alternative, robust, or contingent courses of action.

Mathematical cybernetic systems seek optimal

solutions based on unambiguous but possibly

incomplete information. The inputs to mathematical

applications define the alternatives and resources

available from which an optimal selection must be

made. The tools and techniques used to develop

mathematical models include linear, network, dynamic,

and stochastic programming methods. The results of

these applications are usually presented in the form of

suggested machine schedules, resource allocations, and

so on. These problems, while the original focus of

computing in the 1950s, have mostly been reduced to

software packages and are rarely developed as custom

software. As a result, application of mathematical

methodologies has become a scarce skill.

Transactional Methodologies

Transactional methods focus on the flows of

information between the elements of a system. Three

different methodology classes have evolved to develop

transactional, information retrieval, and data

analysis applications: process, data, and object. No

single methodology currently supports all three

application types well. Further, as the demand for

client/server systems and distributed systems evolves,

improved methodologies have evolved to support

their development.

Process Methodologies — Process methods were

developed during the 1950s and 1960s to mirror von

Neumann computer architecture, which separates

inputs and outputs from processes. Since computing

was the difficult issue at the time, processing was the

initial focus of process methods. The types of problems

automated included accounting procedures, order

entry, inventory, and other back-office applications.

These applications all deal with transactions that

support the basic white-collar operations of an

organization.

The development techniques focus on data flowing

between processes, which transforms the data in some

way (DeMarco 1979; Jackson 1983; Yourdon and

Constantine 1979), or on data flows between people,

each performing different processes (Checkland 1981;

Checkland and Holwell 1998). The sample process

data flow diagram in Fig. 2 shows the processes as

circles connected via directed lines (i.e., data flows)

to external entities and data stores. External entities are

depicted on the diagram as squares and represent

people, organizations, or other computer systems

from which and to which information flows. Data

stores, depicted in the diagram as open-ended

rectangles, indicate files of information that persist

over time. The lines connecting the other icons

indicate temporary data flowing through the system,

hence the term data flow diagram.

Process methodologies and methods have

undergone several iterations of refinement to support

real-time systems development and increased

evaluation of the ethical and human aspects of

systems (Ward and Mellor 1985, 1986; Checkland

and Holwell 1998; Avison and Wood-Harper 1990).

The lack of integration of data throughout analysis

and design has led to an abandonment of process

methods per se in favor of techniques that provide

such integration.

Figure 3 shows the same order problem as that in

Fig. 2, but in the more detailed European-school view,

which shows people who act as agents involved in

the work process. This type of diagram and the related

methodologies are explicitly less mechanistic and

more humanistic than their American data-flow

diagram (DFD) counterpart. As a result, Soft

Systems Methods explicitly deal with the nature,

type, and impact of human-computer interactions

more than other methods of systems development

(Checkland and Scholes 1990).
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Data Methodologies — Data methodologies

developed as the database technologies that matured

in the 1960s and 1970s were found to require specific

attention to data design. Data methods are based on

theories of semantic modeling (Chen 1981), relational

database design (Codd 1972), and data normalization

(Kent 1983). These theories are significant in business

because they result in mathematically, provably

correct processing of data, a key in mission-critical

applications. They are also significant because

they encouraged the application of mathematical

foundations to transaction processing, which

had previously relied primarily on analyst and

programmer ingenuity and accuracy.

The essence of relational data design is that

information should look to the user as if it were

composed of rows and columns, similar to

a spreadsheet (Fig. 4). The physical implementation
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should be transparent, and entity and referential

integrity must be maintained. Entity integrity refers

to primary keys as unique identifiers of relations and

states that no component of a key may accept

null values (Date 1990). Referential integrity

guarantees that no relation contains unmatched

foreign key values. A foreign key is a primary key in

one relation that appears as an attribute in another

relation (Date 1990).

Early data methods focused only on data, with the

assumption that all primitive processing — create,

retrieve, update, and delete — followed logically

from the correct definition of data (Warnier 1981).

Demands to capture the complexities of the world

led to significant extensions of process data flow

analysis and the development of data modeling

with integration of data and process throughout the

information engineering (IE) methodology

(Martin and Finkelstein 1981). Data models in the

form of entity-relationship diagrams, process models

similar in form to data flow diagrams, and

integration models that link data and process are

all found at each stage of information engineering

(Fig. 5).

Information-engineered applications are assumed

to integrate traditional process-oriented languages

with database technologies. Computer-aided

software engineering (CASE) tools that support the

development of IE applications also generate

process program code with imbedded relational

database code (e.g., COBOL with embedded SQL).

Data methodologies assume on-line applications

but can be used for batch processing as well. They

are less adapted to real-time applications. Data

methodologies are widely used in large, U.S. Fortune

500 organizations that rely on databases containing

millions of tuples (e.g., data records that consist of

ordered lists of elements).

Object Methodologies — Object techniques were

formalized for commercial computing at Xerox PARC

in the 1970s with the development of Smalltalk and

eventual commercialization of the Apple Lisa. As

online and real-time technologies migrated from the

aerospace and defense industries to commercial

development of client–server applications, improved

methods were needed to explain the interactions of

system elements. Object-oriented analysis (OOA)

was the proposed solution. It involves development

of three models: (1) an information model describes

elements in terms of objects and attributes, (2) a state

model describes object behaviors and relationships

over time, and (3) a process model specifies object

actions in terms of elementary and reusable processes

(Schlaer and Mellor 1992).

The goal of object methods is complete integration

of data and processes in encapsulated objects (Fig. 6).

Objects may be members of classes and exhibit

inheritance, a property such that the properties, data,

and processes of related objects may be reused

without redefinition — that is, inherited. Objects may

have multiple inheritances from competing objects

throughout a hierarchy (Fig. 7). Objects may also

exhibit polymorphism, i.e., the ability to have the

same process, using one public name, take different

forms when associated with different objects (Booch

1987, 1991). Client/server technology embodies the

A row of information
in a relation is
called a tuple.

A column of information
about all tuples is an
attribute.
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concepts of object orientation. Client objects request

a process from a supplier or server; server objects

perform the requested process.

Object orientation is based on the same theories

that data methodologies are based on, carrying

normalization to the encapsulated (data + process)

object units (Kent 1983). The most visible

example of object applications is MS Windows,

which uses windows, icons, menus, and pointers in

an object-oriented human interface to personal

computers. Object-oriented methodologies are

currently adopted widely in the embedded systems

and software markets (e.g., graphical user interfaces,

or GUIs, such as MS Windows).

Object methods, which were experimental in

the late 1980s, matured considerably during the

1990s, and are applied with great success to problems

such as client-server applications. One issue with

object methods was the need for an

object broker software that interpreted requests,

forwarded requests for processing, and coordinated

the return of the response. In early object-oriented

applications, each application built its own broker.

In the late 1990s, broker software was

commercialized and popularized through services

oriented architectures (SOA). SOA applications

are suites of self-contained, loosely coupled

preprogrammed services, capable of communicating

with others. The services are compiled and made

available for applications with reusability a key

characteristic. SOA defines how two or more

computing entities such as programs are allowed to

interact so as to enable each entity to perform a unit of

work that can be passed on to another entity.

Normalized entity diagram Relational user view
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A mashup (a term from the field of music) is

a variation on SOA that combines preprogrammed

functionality derived from any number of sources

to create a new application or service. A successful

mashup removes the burdens of detailed analysis

and coding and allows the designer to simply

choose and connect to desired functions, thus

creating a new application.

The success of object methods notwithstanding,

obstacles that appeared intractable in the short run

still remain. The two problems that were the

biggest obstacles originally still remain the

biggest problems — data persistence and

standardization of object analysis and design

methods. The issue of persistence means that few

object-oriented systems are purely object oriented.

Rather, they have program code objects that revert
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Load DB Index
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Get Input
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to data methods for database interactions. The

issue with standards diminished with the integration

of the key methodologies of Booch et al. (1999),

coalescing the knowledge base.

Semantic Methodologies

Semantic refers to meaning. Semantic methods focus

on the role of knowledge and meaning in a system.

They imbed meaning in data and in the reasoning

rules used to process it by drawing on theories of

cognitive development as it applies to computer

reasoning and learning. Two types of semantic

methodology have evolved, one dealing with

artificial intelligence and the other with presentation

of World Wide Web-like business applications.

Artificial Intelligence methodologies — Artificial

intelligence (AI) methodologies are used to design

computer systems that are able to understand

languages, learn, reason, solve problems, and exhibit

other characteristics associated with intelligence in

human beings. AI methodologies differ from

mathematical and transactional methodologies in

several ways. AI methods produce a decision,

a course of action, or an answer to a question based

on the application of qualitative knowledge and

information. The more qualitative the systems

situation being examined, therefore, the more

advanced the techniques required. For instance,

whether or not you have toast for breakfast in

the morning might depend on numerous factors

such as how well you slept the night before, what you

had for dinner, and so on. This simple example

illustrates two of the many non-trivial problems

AI applications must solve: making their reasoning

sufficiently generic and identifying all of the

relevant quantitative and qualitative relationships in

the system.

AI problems deal with incomplete information,

probabilistic outcomes, and ambiguities in the

reasoning and data to be used in developing

a solution. In contrast, traditional methods assume

complete information and single outcomes with few

or no ambiguities. Similarly, AI methods differ

from OR methods. In AI problems, complexes of

potentially conflicting rules are expertly reasoned

through to a logical conclusion. OR methodologies

describe probable situational relationships to

develop an optimal solution from an unlimited

number of possible outcomes. The difference here is

that AI problems have an unknown number of relevant

inputs whereas OR problems have an unknown

number of outcomes.

A program called DENDRAL was an early result

of AI research. DENDRAL is a chemist’s assistant

that interprets data from a mass spectrograph

and infers the chemical structure of an unknown

organic compound. The program is based on an

algorithm, developed by J. Lederberg in 1964, that

generates all possible acyclic graphs given the

number of systems elements (the compound’s

chemical composition) and the number of links

(relationships) pertaining to each element (the

technical valences). The number of possibilities

generated for any given compound is enormous. To

avoid an exponential search, DENDRAL automates

rules to apply heuristics and knowledge gained

from practicing chemists to delimit radically the

number of alternatives that must be evaluated to

determine the compound’s molecular structure.

DENDRAL introduced the idea of using rules to

represent expert knowledge, a concept that has

prevailed in AI work since (Feigenbaum et al.

1971). DENDRAL outperforms expert chemists on

this task (Buchanan and Feigenbaum 1981;

Churchman 1971; Feigenbaum et al. 1971; Smith

et al. 1973).

New in the 1990s, neural networks model human

intellectual activity on a broad scale by mirroring

human brain functioning. A neuron is the smallest

possible processing element and is related to other

neurons via synapses. Objects called dendrites are

message transmitters that flow between neurons over

synaptic connections. Single neurons can have

thousands of synapses. Inputs via dendrites can either

excite (i.e., initiate) or inhibit action of a neuron. The

number and frequency of messages sent to a neuron

create an activity level that can be triggered when

some predefined threshold is reached. Each neuron

has axons through which output signals are

transmitted to the dendrite network. These terms have

parallels in the other AI methodologies but work

slightly differently in neural nets. Neural network

problems, however, are different in kind from those

solved by the other AI methodologies with

applications to machine learning, generalization

based on past reasoning success, and partial
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matching. Familiar applications include pattern

recognition of written characters, voices, or faces.

Neural net analysis is applied to problems that have

subjective outcomes, ambiguous reasoning and

components, are vague in definition, or have

contradictory results.

The techniques that constitute semantic

methodologies are not mature enough to strictly

qualify as methodologies. Rather they are

individually applied, taught in a master-apprentice

relationship, and based on practical experience with

a given set of problems.

At this time, different types of reasoning

problems require different types of methods and

approaches to automating intelligence (Winograd

and Flores 1986). The problem types that are

addressed by semantic methods include language

understanding and translation, sensory understanding

(i.e., sight, touch, etc.), memory recall and

forgetting, and coordination and control of

movement. The most common of these are expert

systems, which exhibit intelligence in selecting an

action by reasoning through numerous, sometimes

contradictory, rules. Expert systems have found

acceptance in industry and government for

applications such as surveillance of nuclear plant

operations, selection of geological drilling sites,

and diagnosis of medical problems (Kaufmann and

McCorduck 1979). Expert reasoning systems, such

as DENDRAL, are ubiquitous and are used in most

areas of human activity from basic product design,

to agriculture, appliances, medicine, and finance.

AI techniques and methodologies are in an

emergent stage, experiencing continuous refinement

and evolution. Like object-oriented methods, AI

methods are also closely coupled to the target

implementation language. For instance, some AI

languages require data integration with reasoning

rules while others require separation of data

from reasoning rules. Most languages offer one

reasoning approach that determines the nature of the

reasoning process as forward, backward, depth-first,

breadth-first, custom-defined, or other. The major

commercial promise of AI is to augment existing

applications by including reasoning about

the processes and data they maintain. Neural nets are

promising as generic reasoning systems that may

coalesce these diverse methods and techniques

some time in the future.

Information Methodologies

Data refers to elementary facts and figures that can

be used as a basis for reasoning, calculation or

discussion. Information is data that has meaning.

High quality information typically is accurate,

complete, consistent, unique, and timely. Data,

numbers and letters, becomes information (what)

which leads to knowledge (how) which, in turn,

leads to wisdom (why) (Buckland 1991; Langefors

1966). Wisdom relating to information systems is

the desired outcome of information methodologies

and technologies. As globalization increases,

multi-location and multi-national organizations

require historical data storage in a manner that

• Supports large-scale data integration from

any number of sources

• Priortizes data source for ‘official’ data

when multiple copies occur

• Stores data for simplicity and speed of retrieval

• Allows multiple views of the data

• Provides easily-used data query and retrieval

capabilities.

The first four goals are supported through

information methodologies and technologies for

information storage and retrieval. The last two

goals are supported through methods and

technologies for information presentation.

Information Storage and Retrieval – A data

warehouse is a collection of data from any number

of sources that supports analysis and decision

making. Three main areas of concern are imbedded

in information methodologies that are de facto

conventions rather than formal standards. The term

‘data warehouse’ first appeared in Inmon (1993) as

a tool supporting organizational decision-making.

A data warehouse provides for both storage and

retrieval of its contents.

The first task of data warehouse analysis is

the extract- transform-load (ETL) process through

which data is taken from multiple sources, integrated,

cleaned, and loaded into a consolidated database. If

multiple views of data are provided, this outcome is

also known as a ‘data mart.’ Data warehouses are often

referred to as a ‘cube,’ consisting of data over time and

over organizations (hence three dimensions). Design

complexity derives from multiple issues relating to

logical and physical data design and to tradeoffs

between speed, simplicity, and completeness.
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Logical design refers to design of the business data

and its characteristics, including data type, length,

name, source, and so on. Logical design decisions

relate to data relationships as hierarchic or

networked, how to prioritize data from multiple

sources, and data cleansing. Physical design refers to

design of the data warehouse within its intended

hardware infrastructure. Some key physical

design decisions include items such as whether or not

to provide in-memory indices, size of data blocks,

number and type of storage devices, managing

and synchronizing data requests, and number of data

request queues.

Data retrieval relates to development of

reports through a data warehouse. Three options for

reporting include pre-defined queries, structured

language queries, and ad hoc queries. As hoc queries

often use a capability called ‘natural language

processing’ (NLP). Though data retrieval is typically

provided through data warehouse software, the

three types of queries are not necessarily guaranteed.

These in turn have their own issues with which analysts

contend. Pre-defined queries can only be defined for

about 80% of processing that is recurring and

standardized. An example of this is a monthly report.

Structured language and ad hoc queries are useful

for the remaining 20% of queries. Both of these raise

issues relating to ambiguity, such as ‘all sales in

New York.’ The reference ‘New York’ could be the

city or the state. Thus, the software needs a means to

recognize and resolve ambiguities in real-time.

Other design issues include how to deal with

inaccurate or missing data – reporting it or not, using

it in computations or not, and so on. NLP has

given rise to one of the emerging problem areas

discussed below.

Information Presentation – With Internet

commercialization in 1994 and the advent of

sophisticated, user-friendly graphical user interface

browser software in 1993, businesses flocked to

the World Wide Web (Web). By 1996, companies

saw the potential to eliminate internal communication

bottlenecks via intranets, which also use

browser interfaces. By 1997, business-to-business

relationships were supported by private extranets and

in 1998 by virtual private networks (VPNs) on

the Internet. Web innovation was followed shortly

by unprecedented acceleration and growth in

technologies supported by Web browsers, from

text-only in 1994 to full multimedia, audio, video,

and telephony support in 1998. The increasing

population of Web users has been equally

astonishing: from two million (mostly academic

users) in the early 1990s to 100 million in 2000 to

over 4.5 billion in 2010.

The popularity of the Web as a vehicle for

electronic commerce (E-commerce) necessitated

development of advanced developer skill sets to

support the new technologies of integration and

graphical composition. The new analytical skills

focus on understanding and presenting business

information in ways that add value to users

(to keep them coming back to the Web site), and,

therefore, increase the profits of the presenting

organizations.

Information analysis methodologies, based on

systems theory evolved to provide techniques and

methods for Web presentation development (Conger

and Mason 1998). The first part of information

analysis incorporates analysis of user groups’ needs

and wants and the information the business

developing the presentation wants to provide. Then,

information analysis organizes data objects into

relational structures reflecting how the business and

the user groups view information. Information

objects are then expressed in unambiguous, concise

language for Web presentation. Once information

objects are defined, graphical design techniques and

methods are applied to identify individual Web

pages and to guide the layout of information on each

page. Hyperlink analysis is a form of systems analysis

used to determine the set of threads between pages

that will best accommodate the view of the

information objects and their interrelationships that

the business wants to present and the user want

to see. (Nelson 1981) Finally, multimedia are used to

enhance the value of information to users either

by augmenting the current presentation or by

replacing words with some other, more easily

digested representation of the information.

Concluding Remarks

The problems companies seek to solve through

automation have shifted to dealing with legacy

applications, loosely defined as any application that

has been operational in an organization for more than
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seven years, to the development of data warehouses to

support extended trend analysis. One element that is

common to analytical problems is that their solutions

will depend on the integration of different theories and

methodologies. This is a major shift in emphasis

from prior to 2000, during which problem types

were addressed by means of separate and distinct

problem-solving activities. Three problems persist in

systems analysis at present – legacy applications

integration, application quality, and universal

translation. The first two are persistent problems that

have been intractable but appear to have solutions on

the horizon. The last is a more recent issue that

exemplifies the desire to automate beyond current

technical and analytical capabilities.

Legacy Applications — Legacy applications

may have been operational anywhere from 7 to

40 years. These applications manage much valuable

corporate information and are the cash cows of the

information systems world. Legacy applications still

contain more than one trillion lines of COBOL code,

down by 50% in 10 years. COBOL was developed

in 1959 by Grace Hopper well before most current

methodologies were adopted by large corporations.

Replacement of these applications represents

a prohibitively large investment that most companies

are reluctant to make unless forced to do so.

Legacy applications are often poorly designed, poorly

coded, and undocumented. Maintaining this

inherently inefficient and bug-ridden code requires

increasingly expensive maintenance support staff

whose programming skills are essentially obsolete.

The challenge to corporations is to replace or

up-grade non-strategic legacy applications with

superior packaged software or custom-built

applications or to outsource operations without

making a huge financial reinvestment.

Application Quality — As sophisticated as systems

analysis has become, it still often leads to failed

applications. Application success and use is best

summarized by the DeLone and McLean (1992,

2003) and Petter et al. (2008), who found the

following constructs of importance in Table 1.

DeLone and colleagues built on hundreds of

other research projects to develop both

a parsimonious list of critical factors that generally

fits all applications. The details of each characteristic

is beyond the scope of this paper, but the key drivers

are of interest because they span all applications

types with many sub-factors seeming to be universal.

Three types of quality are expected of successful

applications: System, information, and service

(Conger 2011). Systems quality refers to the

application in its operational environment and

the extent to which it performs at the time needed

and in the manner expected. System quality is

important because inattention to system quality early

in the development cycle can easily result in poor

quality upon implementation.

Information quality refers to the suitability

and usefulness of the data provided to the user.

Information quality in any transactional system needs

to be complete and accurate. Similarly, relevant,

secure data seem to be universal in their

appropriateness across application types.

Service quality also may be appropriate for all

applications but in a different sense than expressed by

the sub-factors provided here. The sub-factors in the

De Lone and McLean list are from SERVQUAL,

Systems Analysis, Table 1 Key drivers of successful
information systems (DeLone and McLean 2003, p. 26)

Key driver Sub-Characteristics

Systems quality Adaptability

Availability

Reliability

Response time

Usability

Information quality Completeness

Ease of understanding

Personalization

Relevance

Security

Service quality Assurance

Empathy

Responsiveness

Use Nature of use

Navigation patterns

Number of site visits

Number of transactions executed

User satisfaction Repeat purchases

Repeat visits

User surveys

Net benefits Cost savings

Expanded markets

Incremental additional sales

Reduced search costs

Time savings
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a well-researched model of service quality in an

online environment (Parasuraman et al. 1988).

SERQUAL needs additional research to determine

characteristics that fit other arenas of IT support.

Gap analysis to evaluate expectations versus attributes

of objective product, specific characteristics of service

quality and how they are developed within IT analysis

methodologies. Further, contextualizing service

concepts may lead to more accurate service design.

For instance, in e-commerce, service and system

quality are used interchangeably and no known

research has teased out the nuances of their differences.

Thus, completing an application with technical

quality is insufficient to develop a contribution to its

using organization. Rather, the application in use

must comply with all of its needs. Yet, application

developers persist in thinking of ‘needs’ as confined

to functional requirements. Rather, functional and

non-functional requirements are necessary, as are

requirements for more ephemeral aspects of

contribution such as simplicity, learnability, usability,

and so on (Nielsen 2000). To determine value added to

an organization, application development must

attend to an application’s use in context, particularly

as it relates to the using organization’s success. Current

thinking on these operational activities is that taking

a services orientation that mirrors the services

orientation the organization seeks to perfect, will lead

to value-adding outcomes for IT. IT service

management is in its infancy as it relates to systems

analysis but promises to become an increasingly

important aspect of analysis activities (Conger 2011).

Universal Translation — The ultimate goal in

machine translation (also called computational

linguistics) is to support machine-only, seamless

translation from one language to any other without

special equipment or human intervention. Work on

universal translation dates to the 1950s and was then

conducted using semantic methods. However, as

understanding of the uses for this technology became

more global, the work focused less on software

and more on data. The idea was for language

translation technology to be imbedded in any type

of application and applied to data into and out of

the application while being stored in the original

language. With this technology, a purchase via

the Web, conducted through, e.g., a smart phone,

would identify global goods and prices all displayed

in the user’s preferred language.

For systems analysis, hybrid techniques, including

aspects of mathematical, AI, information, and

object methodologies are all required to result in

embeddable translation capabilities. In addition,

these computer-oriented methodologies must be

successfully coupled with linguistics methodologies

for morphology, syntax, semantics, and inference

understanding and automation. This is a huge task

that has had great success in limited domains, such as

automated voice response systems and online web sites

such as babelfish.com.

For the first 30 years, machine translation technology

focused on a process that decoded source language to an

intermediate, neutral language then encoded the neutral

language to target language. This approach has been

marginally successful. More recently, research that

removes the intermediate language has shown promise

but runs into language accuracy issues. Multiple

‘grammars’ have been developed to identify intra-

lingual relationships including, generative, dependency,

unification, and case. Then, hybrid methods arose that

combine elements of intermediary language with some

direct translation. Probably the most successful

translations are performed within a known domain,

such as going to a restaurant, however, no complete,

unaided translation systems have been successful to

date. The issues relating to this capability lie not only

in technology but also in linguistics knowledge and

capabilities to describe languages.

Technologies for machine translation capabilities

exist in definitional tools such as extensible

markup (XML), OWL (web ontology language), and

other World Wide Web Consortium (W3C)

developments for web services. One problem is that

vendor support for these languages imbed custom

tags and, therefore, require adherence to some

vendor’s products. In addition, attempts at reaching

agreement on a global ontology to categorize domain

information, such as health care, have not been

successful. As with all systems analyses, global

projects take time and at some point participants

become impatient, leave, and develop their own

ontology, often thinking that it will become a de facto

standard. In developing something custom, these

ontologies automatically become biased and/or

incomplete. In addition, these technologies and

lingual grammars are complex. Automating them is

even more complex, thus rendering them beyond the

reach of the average application analyst.
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The state of linguistics knowledge also

delays development of universal translation. Much is

understood about languages and language structures in

terms of their basic syntax (e.g., noun – verb-object

structures versus other orders or alternatives).

However, issues such as ambiguity, (‘the man hit the

woman with the baby’, ‘whatever’), alternative

meanings and uses of words (e.g., “hit” as subject,

verb, or object), and idioms (‘he went to town on that

steak’) all cause havoc with translators and these are

just English examples. Further, until projects such

as propbank, verbnet, and semlink are completed in

many languages, unaided, accurate machine

translation will remain elusive.
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Introduction

Tabu Search (TS) is a metaheuristic that guides a local

heuristic search procedure to explore the solution space

beyond local optimality. Widespread successes in

practical applications of optimization include finding

better solutions to problems in scheduling, sequencing,

resource allocation, investment planning,

telecommunications and many other areas. Some of

the diversity of tabu search applications is shown in

Table 1. (For a more comprehensive list of

applications, see the book by Glover and Laguna 1997.)

Tabu search is based on the premise that methods

for complex optimization problems, particularly those

arising in real world applications, can function more

effectively if they incorporate flexible and responsive

memory. Accompanying this premise is the corollary

that such memory is employed together with strategies

expressly designed for exploiting it. More broadly,

tabu search embodies the following principle:

If a problem has exploitable features, but contains

a structure sufficiently complex to prevent these

features from being known in advance, then a method

can derive advantages by monitoring its behavior in

relation to the space in which it operates. The purpose

of the monitoring is effectively to generate a map of the

regions the method has visited as a foundation for

modifying its behavior, where this map can take

multiple forms that ultimately become expressed in

the decision rules employed to negotiate the solution

space. The hallmark of a TS method is therefore

a capacity to guide its progress by reference to its

own unfolding history. Such a method evidently is

implicitly or explicitly structured to employ learning.

Based on this perspective, methods that incorporate

a significant portion of the tabu search framework are

sometimes called Adaptive Memory Programming

(AMP) methods.

The emphasis on responsive exploration (and hence

purpose) in tabu search, whether in a deterministic or

probabilistic implementation, derives from the

supposition that a bad strategic choice can yield more

information than a good random choice. In a system

that uses memory, a bad choice based on strategy can

provide useful clues about how the strategy may

profitably be changed. Even in a space with

significant randomness – which fortunately is not

pervasive enough to extinguish all remnants of order

in most real-world problems – a purposeful design can

be more adept at uncovering the imprint of structure,

and thereby at affording a chance to exploit the

conditions where randomness is not all-encompassing.

These basic elements of tabu search have several

important features that are summarized in Table 2.

Tabu search is concerned with finding new and

more effective ways of taking advantage of the

concepts embodied in Table 2, and with identifying

associated principles that can expand the foundations

S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research and Management Science,
DOI 10.1007/978-1-4419-1153-7, # Springer Science+Business Media New York 2013

http://dx.doi.org/10.1007/978-1-4419-1153-7_200770


of intelligent search. As this occurs, new strategic

mixes of the basic ideas emerge, leading to improved

solutions and better practical implementations.

Tabu Search Foundations

The basis for tabu search may be described as follows.

Given a function f(x) to be optimized over a set X, TS

begins in the same way as ordinary local search,

proceeding iteratively from one point (solution) to

another until a chosen termination criterion is

satisfied. Each x ∈ X has an associated neighborhood

N(x)� X, and each solution x0 ∈N(x) is reached from x

by an operation called a move.

TS goes beyond local search by employing

a strategy of modifying N(x) as the search progresses,

effectively replacing it by another neighborhood

N*(x). As the previous discussion intimates, a key

aspect of tabu search is the use of special memory

structures which serve to determine N*(x), and hence

to organize the way in which the space is explored.

Tabu Search, Table 2 Principal tabu search features

Adaptive Memory

Selectivity (including strategic forgetting)

Abstraction and decomposition (through explicit and attributive
memory)

Timing:

recency of events

frequency of events

differentiation between short term and long term

Quality and impact:

relative attractiveness of alternative choices

magnitude of changes in structure or constraining
relationships

Context:

regional interdependence

structural interdependence

sequential interdependence

Responsive Exploration

Strategically imposed restraints and inducements
(tabu conditions and aspiration levels)

Concentrated focus on good regions and good solution features
(intensification processes)

Characterizing and exploring promising new regions
(diversification processes)

Non-montonic search patterns (strategic oscillation)

Integrating and extending solutions (path relinking)

Tabu Search, Table 1 Illustrative tabu search applications

Scheduling Telecommunications

Flow-Time Cell
Manufacturing

Call Routing

Heterogeneous Processor Bandwidth Packing

Scheduling Hub Facility Location

Workforce Planning Path Assignment

Classroom Scheduling Network Design for Services

Machine Scheduling Customer Discount Planning

Flow Shop Scheduling Failure Immune Architecture

Job Shop Scheduling Synchronous Optical Networks

Sequencing and Batching

Design Production, Inventory and
Investment

Computer-Aided Design Flexible Manufacturing

Fault Tolerant Networks Just-in-Time Production

Transport Network Design Capacitated MRP

Architectural Space Planning Part Selection

Diagram Coherency Multi-item Inventory Planning

Fixed Charge Network Design Volume Discount Acquisition

Irregular Cutting Problems Fixed Mix Investment

Lay-Out Planning

Location and Allocation Routing

Multicommodity Location/
Allocation

Vehicle Routing

Quadratic Assignment Capacitated Routing

Quadratic Semi-Assignment Time Window Routing

Multilevel Generalized
Assignment

Multi-Mode Routing

Mixed Fleet Routing

Traveling Salesman

Traveling Purchaser

Convoy Scheduling

Logic and Artificial
Intelligence

Graph Optimization

Maximum Satisfiability Graph Partitioning

Probabilistic Logic Graph Coloring

Clustering Clique Partitioning

Pattern Recognition/
Classification

Maximum Clique Problems

Data Integrity Maximum Planner Graphs

Neural Network Trainings P-Median Problems

Neural Network Design

Technology General Combinational
Optimization

Seismic Inversion Zero–one Programming

Electrical Power Distribution Fixed Charge Optimization

Engineering Structural Design Nonconvex Nonlinear
Programming

Minimum Volume Ellipsoids All-or-None Networks

Space Station Construction Bilevel Programming

Circuit Cell Placement General Mixed Integer
OptimizationOff-Shore Oil Exploration
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The solutions admitted to N*(x) by these memory

structures are determined in several ways. One of

these, which gives tabu search its name, identifies

solutions encountered over a specified horizon

(and implicitly, additional related solutions), and

forbids them to belong to N*(x) by classifying them

tabu (The tabu terminology is intended to convey

a type of restraint that embodies a cultural

connotation – i.e., one that is subject to the influence

of history and context, and capable of being

surmounted under appropriate conditions).

The process by which solutions acquire a tabu

status has several facets, designed to promote

a judiciously aggressive examination of new points.

A useful way of viewing and implementing this

process is to conceive of replacing original

evaluations of solutions by tabu evaluations, which

introduce penalties to significantly discourage the

choice of tabu solutions (i.e., those preferably to be

excluded from N*(x), according to their dependence

on the elements that compose tabu status). In

addition, tabu evaluations also periodically include

inducements to encourage the choice of other types

of solutions, as a result of aspiration levels and longer

term influences. The following subsections describe

how tabu search takes advantage of memory (and

hence learning processes) to carry out these

functions.

Explicit and Attributive Memory – The memory

used in TS is both explicit and attributive. Explicit

memory records complete solutions, typically

consisting of elite solutions visited during the search

(or highly attractive but unexplored neighbors of such

solutions). These special solutions are introduced at

strategic intervals to enlarge N*(x), and thereby

provide useful options not in N(x).

TS memory is also designed to exert a more subtle

effect on the search through the use of attributive

memory, which records information about solution

attributes that change in moving from one solution to

another. For example, in a graph or network setting,

attributes can consist of nodes or arcs that are added,

dropped or repositioned by the moves executed. In

more abstract problem formulations, attributes may

correspond to values of variables or functions.

Sometimes attributes are also strategically combined

to create other attributes by using vocabulary building

methods (Glover and Laguna 1993; Glover 1999;

Glover et al. 2000).

Short-Term Memory and its Accompaniments – An

important distinction in TS arises by differentiating

between short-term memory and longer-term memory.

Each type of memory is accompanied by its own special

strategies. The most commonly used short-term

memory keeps track of solution attributes that have

changed during the recent past, and is called recency-

based memory. To exploit this memory, selected

attributes that occur in solutions recently visited are

designated tabu-active, and solutions that contain tabu-

active elements, or particular combinations of these

attributes, are those that become tabu. This prevents

certain solutions from the recent past from belonging

toN*(x) and hence from being revisited. Other solutions

that share such tabu-active attributes are also similarly

prevented from being revisited. The use of tabu

evaluations, with large penalties assigned to

appropriate sets of tabu-active attributes, can allow

tabu status to vary by degrees.

Managing Recency-Based Memory – The process is

managed by creating one or several tabu lists, which

record the tabu-active attributes and implicitly or

explicitly identify their current status. The duration

that an attribute remains tabu-active (measured in

numbers of iterations) is called its tabu tenure. Tabu

tenure can vary for different types or combinations

of attributes, and can also vary over different intervals

of time or stages of search. This varying tenure makes it

possible to create different kinds of tradeoffs between

short-term and longer-term strategies. It also provides

a dynamic and robust form of search. (See, e.g., Glover

1990; Taillard 1991, Glover and Laguna 1993, 1997.)

Aspiration Levels – An important element of

flexibility in tabu search is introduced by means

of aspiration criteria. The tabu status of a solution

(or a move) can be overruled if certain conditions are

met, expressed in the form of aspiration levels. In

effect, these aspiration levels provide thresholds of

attractiveness that govern whether the solutions may

be considered admissible in spite of being classified

tabu. Clearly a solution better than any previously seen

deserves to be considered admissible. Similar criteria

of solution quality provide aspiration criteria over

subsets of solutions that belong to common regions or

that share specified features (such as a particular

functional value or level of infeasibility). Additional

examples of aspiration criteria are provided later.

Candidate List Strategies – The aggressive aspect

of TS is reinforced by seeking the best available move

Tabu Search 1539 T
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that can be determined with an appropriate amount of

effort. It should be kept in mind that the meaning

of best is not limited to the objective function

evaluation. (As already noted, tabu evaluations are

affected by penalties and inducements determined by

the search history.) For situations where N*(x) is large

or its elements are expensive to evaluate, candidate list

strategies are used to restrict the number of solutions

examined on a given iteration.

Because of the importance TS attaches to selecting

elements judiciously, efficient rules for generating and

evaluating good candidates are critical to the search

process. Even where candidate list strategies are not

used explicitly, memory structures to give efficient

updates of move evaluations from one iteration to

another, and to reduce the effort of finding best

or near best moves, are often integral to TS

implementations. Intelligent updating can appreciably

reduce solution times, and the inclusion of explicit

candidate list strategies, for problems that are large,

can significantly magnify the resulting benefits.

The operation of these short-term elements is

illustrated in Fig. 1. The representation of penalties in

Fig. 1 either as large or very small expresses

a thresholding effect: either the tabu status yields

a greatly deteriorated evaluation or else it chiefly

serves to break ties among solutions with highest

evaluations. Such an effect of course can be

modulated to shift evaluations across levels other

than these extremes. If all moves currently available

lead to solutions that are tabu (with evaluations that

normally would exclude them from being selected),

the penalties result in choosing a “least tabu” solution.

The TS variant called probabilistic tabu search

follows a corresponding design, with a short-term

component that can be represented by the same

diagram. The approach additionally keeps track of

tabu evaluations generated during the process that

results in selecting a move. Based on this record, the

move is chosen probabilistically from the pool of those

evaluated (or from a subset of the best members of this

pool), weighting the moves so that those with higher

evaluations are especially favored. Fuller discussions

of probabilistic tabu search are found in Glover (1989),

Glover and Laguna (1997), Soriano and Gendreau

(1993) and Crainic et al. (1993).

Longer-Term Memory – In some applications, the

short-term TS memory components are sufficient to

produce very high quality solutions. However, in

general, TS becomes significantly stronger by

including longer-term memory and its associated

strategies.

Special types of frequency-based memory are

fundamental to longer-term considerations. These

operate by introducing penalties and inducements

determined by the relative span of time that attributes

have belonged to solutions visited by the search,

allowing for regional differentiation.

Perhaps surprisingly, the use of longer-term

memory does not require long solution runs before its

benefits become visible. Often its improvements begin

to be manifest in a relatively modest length of time,

and can allow solution efforts to be terminated

somewhat earlier than otherwise possible, due to

finding very high quality solutions within an

economical time span. The fastest methods for job

shop and flow shop scheduling problems, for

example, are based on including longer-term TS

memory. On the other hand, it is also true that the

chance of finding still better solutions as time

grows – in the case where an optimal solution is not

already found – is enhanced by using longer-term TS

memory in addition to short-term memory.

Intensification and Diversification – Two highly

important longer-term components of tabu search are

intensification strategies and diversification strategies.

Intensification strategies are based on modifying

choice rules to encourage move combinations and

solution features historically found good. They may

also initiate a return to attractive regions to search them

more thoroughly. A simple instance of this second type

of intensification strategy is shown in Fig. 2.

The strategy for selecting elite solutions is italicized

in Fig. 2 due to its importance. Two variants have proved

quite successful. One, due to, introduces a diversification

measure to assure the solutions recorded differ fromeach

other by a desired degree, and then erases all short-term

memory before resuming from the best of the recorded

solutions. The other variant, due to Nowicki and

Smutnicki (1993), keeps a bounded length sequential

list that adds a new solution at the end only if it is

better than any previously seen. The current last

member of the list is always the one chosen (and

removed) as a basis for resuming search. However, TS

short-term memory that accompanied this solution also

is saved, and the first move also forbids the move

previously taken from this solution, so that a new

solution path will be launched.
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This second variant is related to a strategy that

resumes the search from unvisited neighbors of

solutions previously generated (Glover 1990). Such

a strategy keeps track of the quality of these

neighbors to select an elite set, and restricts attention

to specific types of solutions, such as neighbors of local

optima or neighbors of solutions visited on steps

immediately before reaching such local optima. This

type of unvisited neighbor strategy has been little

examined. It is noteworthy, however, that the two

variants previously indicated have provided solutions

of remarkably high quality.

Diversification Strategies – TS diversification

strategies, as their name suggests, are designed to

drive the search into new regions. Often they are

based on modifying choice rules to bring attributes

into the solution that are infrequently used.

Alternatively, they may introduce such attributes by

partially or fully re-starting the solution process.

The same types of memories previously described

are useful as a foundation for such procedures, although

these memories are maintained over different (generally

larger) subsets of solutions than those maintained by

intensification strategies. A simple diversification

Candidate List Examination

Generate a (new) move from the candidate list, to create a trial
solution x’ from the current solution.

Tabu Test

Identify attributes of x that are changed to create x’. (e.g.,
added and dropped elements, modified values of variables

or functions). Do these attributes include a critical
set of tabu-active attributes?

Aspiration Test

Does x’ satisfy an
aspiration threshold?

Choice Update

If tabu evaluation of x’ is
the best for any candidate
examined, record this by
an appropriate update.

Completion Check

Enough moves examined
(according to candidate

list criteria)?

Create Penalized

Tabu Evaluation

Attach a large penalty
based on status of tabu-

active attributes.

Execute Chosen Move

Move from x to a best
recorded x’.

Create Unpenalized

Tabu Evaluation

Attach no penalty (or very
small penalty based on

status of tabu-active
attributes).

No

No

No

Yes

Yes

Yes

Tabu Search, Fig. 1 Tabu
evaluation (short term
memory)
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approach that keeps a frequency-based memory over all

solutions previously generated, and that has proved very

successful for machine scheduling problems, is shown

in Fig. 3. Significant improvements over the application

of short term TS memory have been achieved by this

procedure.

Diversification strategies that create partial or full

restarts are important for problems and neighborhood

structures where a solution trajectory can become

isolated from worthwhile new alternatives unless

a radical change is introduced. Diversification

strategies can also utilize a long-term form of

recency-based memory, which results by increasing

the tabu tenure of solution attributes.

The two special TS strategies called path relinking and

strategic oscillation embody aspects of both

intensification and diversification and have proved

highly effective in a variety of contexts (Glover and

Laguna 1993; Yagiura et al. 2006). The determination

of effective ways to balance the concerns of

intensification and diversification represents a promising

research area. These concerns also lie at the heart of

effective parallel processing implementations. The goal

from the TS perspective is to design patterns of

communication and information sharing across subsets

of processors in order to achieve the best tradeoffs

between intensification and diversification functions.

General analyses and studies of parallel processing with

tabu search are given in Taillard (1991, 1993), Battiti and

Tecchiolli (1992), Chakrapani and Skorin-Kapov (1993),

and Crainic et al. (1993a, 1993b).

Concluding Remarks

Complementarities among the perspectives of tabu

search and those favored by the artificial intelligence

and neural network communities raise the possibility

of creating systems that integrate their fundamental

Apply Short Term TS Memory

Apply an Elite Seclection Strategy:

Create and Keep a List of k Elite Solutions
(e.g., k = 5 to 20)

Resume Short Term TS from the Chosen Solution.

If New Solutions Found can qualify by the Selection Strategy,
add them to the list (to replace others, if the List is Full).

When Rate of Finding New Best Solutions With Short Term
TS Memory Falls Below Threshold:

     Stop if lteration Limit is Reached, or List is Empty.
     Otherwise, Choose one of the Elite Solutions (and
Remove it from the List).

Tabu Search, Fig. 2 Simple TS intensification approach

Apply Short Term TS Memory.

Keep Frequency-Based Memory of Attributes in Solutions.

When Rate of Finding New Best Solutions Falls Below
Threshold: Enter the Following Loop.

Apply Short Term TS Memory also keeping frequency
memory) until reaching a TS local optimum.

Penalize the Inclusion of frequently occuring Attributes (by
multiplying penalty factor times relative frequency)
if Iteration Limit is Reached, Stop.

Continue Applying Penalties Until a Move is Selected That
Creates a Solution Better Than its Immediate Predecessor.

Then Discontinue Penalties.

Tabu Search, Fig. 3 Simple TS diversification approach
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concerns. Examples are provided by the creation of

tabu training and learning models (de Werra and Hertz

1989; Beyer and Ogier 1991; Battiti and Tecchioli

1993; Gee and Prager 1994) and tabu machines

(Chakrapani and Skorin-Kapov 1993). The outcomes

from this work have shown promising consequences

for supplementing customary connectionist

models – as by yielding levels of performance

notably superior to that of models based on

Boltzmann machines, and by yielding processes for

modifying network linkages that give more reliable

mappings of inputs to outputs.

The practical successes of tabu search have

promoted useful research into ways to exploit its

underlying ideas more fully. At the same time, many

facets of these ideas remain to be explored. The issues

of identifying best combinations of short- and long-

term memory and best balances of intensification

and diversification strategies still contain many

unexamined corners (Glover 2007), and some of

them undoubtedly harbor important discoveries for

developing more powerful solution methods in the

future.

Fundamental advances in applications of tabu

search have been assembled in a collection of

“Tabu Search Vignettes” accessible via the Internet

at the author’s Web site. These include summaries of

key developments in a variety of areas, including:

Constraint Solving and Its Applications (Resource

Assignment, Planning and Timetabling, Integer

Programming Feasibility, Satisfiability, Mobile

Network Frequency Assignment)

Chemical Industry Applications (Computer Aided

Molecular Design (CAMD), Heat Exchanger

Network (HEN) Synthesis, Phase Equilibrium

Calculations, Gibbs Free Energy Minimization,

Optimal Component Lumping Problems)

Classification

Feature Selection

Satellite Range Scheduling

Maritime Transportation for International Trade

Conservation Area Network Design

High Level Synthesis

Graph Coloring

Delivery

Routing with Loading and Inventory Constraints

Heterogeneous Routing and Scheduling

Capacitated Facility Location

Multi-period Forest Harvesting

Manpower Scheduling

DNA Sequencing

Airline Disruption Management

Internet Traffic Engineering

Matrix Bandwidth Minimization

Generalized Assignment

Constraint Satisfaction (Work Shift Scheduling,

Set-Covering and Nurse Scheduling)

Resource-Constrained Project Scheduling

Dynamic Optimization (Trade Market Prediction,

Meteorological Forecast, Robotics Motion Control)

See

▶Artificial Intelligence

▶Heuristics

▶Metaheuristics

▶Neural Networks
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Taguchi Loss Function

▶Total Quality Management

Tail Distribution Function

For a random variable X, Pr{X>x}. For a c.d.f. F,

Fc ¼ 1 – F, also known as the complementary CDF.

Tandem Queues

Queues in series.

See

▶Networks of Queues

Technological Coefficients

The generic name given to the aij coefficients of the

constraint set of a linear-programming problem.

Telecommunication Networks

▶Communications Networks

▶Queueing Theory

Terminal

A location used by a carrier for freight consolidation,

break-bulk, interchange, and shipment and vehicle

service.

See

▶Logistics and Supply Chain Management

The Institute of Management
Sciences (TIMS)

Founded in 1953, The Institute of Management Sciences

(TIMS) was an international organization for

management science professionals and academics. It

was merged with the Operations Research Society of

America (ORSA) into the Institute for Operations

Research and the Management Sciences (INFORMS)

effective January 1, 1995. The objectives of TIMS were
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(1) to identify, extend and unify scientific knowledge

contributing to the understanding and practice of

management, (2) to promote the development of the

management sciences and the free interchange of

information about the practice of management among

managers, scientists, scholars, students, and

practitioners of the management sciences within private

and public institutions, (3) to promote the dissemination

of information on such topics to the general public, and

(4) to encourage and develop educational programs in the

management sciences. TIMS published the journal

Management Sciences (in 40 volumes) and other

publications (some jointly with ORSA). It held national

meetings (jointly with ORSA), sponsoredmeetings by its

technical colleges and geographic sections, and held

international meetings in various countries.

See

▶ Institute for Operations Research and the

Management Sciences (INFORMS)

▶Operations Research Society of America (ORSA)

Theorem of Alternatives

Many such theorems exist, with a typical one being:

either Ax ¼ b has a solution or yA ¼ 0, yb 6¼ 0 has

a solution. They can be shown to be equivalent to the

strong duality theorem of linear programming.

See

▶ Farkas’ Lemma

▶Gordan’s Theorem

▶ Strong Duality Theorem

▶Transposition Theorems

Theory of Constraints

Graham K. Rand

Lancaster University, Lancaster, UK

In the early 1980s, a novel was published which has

subsequently been read all over the world by many

executives, production planners and shop floor

workers. The Goal sets out Eli Goldratt’s ideas on

how production should be planned (Goldratt and Cox

2004). The ideas were developed in the production

planning system OPT (Optimized Production

Technology) which was marketed by Creative

Technology, Inc. (Rand 1990). These ideas were later

broadened to encompass other areas such as

marketing, distribution and project management in

two further novels, It’s Not Luck (Goldratt 1994) and

Critical Chain (Goldratt 1997), and the theory

widened to become the Theory of Constraints. In the

novel, Necessary but Not Sufficient (Goldratt et al.

2000), set in the computer software industry, it is

argued that although new technology may be

necessary for major improvements, it is not sufficient.

The theory has been applied to retailing through two

further books, first by means of a conversation between

Goldratt and his daughter, The Choice (Goldratt 2008),

and in the novel, Isn’t it Obvious? (Goldratt et al.

2009). Among the methods in his approach,

Evaporating Clouds and Current Reality Tree have

become widely used. Technical details are found in

Goldratt (1990a, b).

See

▶ Production Management
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Thickness

The minimum number of edge-disjoint planar

subgraphs into which a graph can be decomposed.

See

▶Graph Theory

Time Series Analysis

Christina M. Mastrangelo1, James R. Simpson2 and

Douglas C. Montgomery3

1University of Virginia, Charlottesville, VA, USA
2Florida State University, Tallahassee, FL, USA
3Arizona State University, Tempe, AZ, USA

Introduction

A time series is an ordered sequence of observations.

This ordering is usually through time, although

other dimensions, such as spatial ordering, are

sometimes encountered. A time series can be

continuous, as when an electrical signal such as

voltage is recorded. Typically, however, most

industrial time series are observed and recorded

at specific time intervals and are said to be discrete

time series. If only one variable is observed, the

time series is said to be univariate. However, some

time series involve simultaneous observations on

several variables. These are called multivariate

time series.

There are three general objectives for studying time

series: 1) understanding and modeling of the

underlying mechanism that generates the time series,

2) prediction of future values, and 3) control of some

system for which the time series is a performance

measure. Examples of the third application occur

frequently in industry. Almost all time series exhibit

some structural dependency. That is, the successive

observations are correlated over time, or

autocorrelated. Special classes of statistical methods

that take this autocorrelative structure into account

are required.

Figure 1 shows examples of time series with

distinctly different features. In Fig. 1a, the time series

xt appears to vary around a constant level. Such a time

series is said to be stationary in the mean. In Fig. 1b,

non-stationary behavior can be observed, i.e., the time

series xt drifts with no obvious fixed level. Some

nonstationary time series may exhibit trends, or the

variance of the series may increase as the level of

the time series increases. Seasonal variation is

illustrated in Fig. 1c.

The autocorrelation function is a very useful tool

in characterizing time series behavior. The

autocorrelation between xt and xt+k is defined as

rk ¼
covðxt; xtþkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðxtÞVðxtþkÞ

p ¼ gk
g0

where cov(xt, xt+k) ¼ E[(xt � m)(xt+k � m)]. This is

called the autocorrelation at lag k. The usual estimate

of rk, k ¼ 1, 2, . . ., K, is the sample autocorrelation

function

rk ¼
ĝk
ĝ0

¼

Pn�k

t¼1

ðxt � �xÞðxtþk � �xÞ

Pn

t¼1

ðxt � �xÞ2

Figure 2 shows the sample autocorrelation function

for the time series in Fig. 1a. The dotted lines are two

standard error limits. Notice that there is a large

positive value or spike at lag 1 and the sample

autocorrelation function decays as a damped sine

wave from lag 1. The sample autocorrelation function

is very useful in the identification of an appropriate

time series model.

The partial autocorrelation function, denoted by

fkk, is also useful in the identification process.

It can be interpreted as the simple correlation

between two random variables xt and xt�k after

adjusting for the intermediate variables xt�1,

xt�2,. . ., xt�k+1. Once the sample autocorrelation

and partial autocorrelation functions are estimated,

they may be plotted. A tentative model is then

identified by comparing the observed patterns with

the theoretical function patterns. For an

autoregressive process of order p, f is nonzero

when k is less than or equal to p and greater than

zero for k greater than p. In other words, while
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the autocorrelation function of an autoregressive

process decays in an exponential fashion, the

partial autocorrelation function cuts off after lag p.

In addition, the inverse autocorrelation function

and the extended sample autocorrelation function

are useful in time series model identification.

See Fuller (1996), Montgomery, Johnson, and

Gardiner (1990), Cleveland (1972), and Abraham

and Ledolter (1983) for definitions of these functions

and more details.
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Time Series Modeling Methods

There are several widely-used approaches for modeling

and analysis of time series data. Regression methods

play a fundamental role. If yt represents the time series

of interest and xjt, j¼ 1, 2, . . ., k are a collection of other

time series thought to be related to yt, then it is possible

to fit a regression model of the form

yt ¼ b0 þ
Xn

t¼1
bjxjt þ et; t ¼ 1; . . . ; n

using least squares or some suitable variation. Usually,

however, the errors et are autocorrelated and more

complex estimation schemes are needed. Several

estimation methods are available which result in

estimates similar to least squares estimates, but the

standard errors may be very different. Yule-Walker

estimation uses the Yule-Walker equations to

estimate the autoregressive parameters of the errors

and generalized least squares to estimate b. Harvey

(1990) gives a full description of this and other

methods.

Smoothing methods are frequently used in time

series analysis. In particular, exponential smoothing

is widely used for producing short-term forecasts of

many types of industrial time series. Much of the

original work in this area is by Brown (1962), Holt

(1957), and Winters (1960). Exponential smoothing is

often developed heuristically starting with a simple

model such as xt ¼ b + et, where et are independent

random variables and b is an unknown constant.

Simple or first-order exponential smoothing is

defined as

St ¼ axt þ ð1� aÞSt�1

where 0 � a � 1. The smoothed statistic St estimates

the constant b, so the forecast for any future

observation Xtþt made at the end of period t is

x̂tþtðtÞ ¼ St

Extensions of this methodology to forecasting

linear and quadratic trend and incorporating seasonal

behavior are described in Montgomery, Johnson and

Gardiner (1990). Goodman (1974) and Cogger (1974)

showed that exponential smoothing for a kth order

polynomial results in forecasts that are optimal in

a mean square error sense for certain classes of

non-stationary time series. McKenzie (1978)

extended these results to models that may include

transcendental terms.

The class of autoregressive integrated moving

averages (ARIMA) models proposed by Box, Jenkins

and Reinsel (2008) and Jenkins (1979) have been very

successful for time series modeling and forecasting.

The general form for this family of models is

ð1� f1b� f2B
2 � � � �� fpB

pÞð1� BÞdxt
¼ y0 þ ð1� y1B� y2B

2 � � � �� yqB
qÞet

where f i are the autoregressive parameters, yj are the

moving average parameters, B is a backshift operator

defined such that Br xt ¼ xt�r,(1 � B)d ¼ Dd is the

backward difference operator, and ∈t is an

uncorrelated sequence of random disturbances with

mean zero and variance s2. This model can also be

extended to incorporate seasonal behavior (see Box

et al. 2008; Montgomery et al. 1990). One chooses

a model by specifying the integers p, d, and q,

resulting in an ARIMA(p, d, q) model. This is usually

done by examining the sample autocorrelation

and partial autocorrelation function. For example, if

the sample autocorrelation function decays as

a damped sine wave and the partial autocorrelation

function has large spikes only at lags 1 and 2,

a tentative ARIMA model estimation with p ¼ 2 and

q ¼ 0 might be considered.
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Nonlinear regression methods are used to estimate

the parameters fi and yj. The approach requires

initial point estimates of the parameters and then uses

an iterative search technique to minimize the residual

sums of squares. Most computer packages implement

a modification of the Gauss-Newton method

suggested by Marquardt (1963). The Gauss-Newton

method first linearizes the nonlinear function with

a Taylor series expansion and then iterates to find

improved parameter estimates. Unfortunately, the

original Gauss-Newton approach will not always

converge. So Marquardt proposed a modified

search procedure that adds a small bias to the

parameter estimates to ensure convergence to the

minimum residual sums of squares. Computer

packages provide reasonable initial point estimates

making the estimation routine transparent to the user.

Finally, the residuals from the fittedmodel are studied

to test model adequacy. Generally, one should examine

the autocorrelation function of the residuals, for if the

model is adequate, the residuals should be approximately

uncorrelated. The tests on residual autocorrelations

suggested by Box and Pierce (1970) and Ljung and

Box (1978) are useful in this regard. Residual plots,

such as a plot of residuals verses the fitted xt, and

a normal probability plot of the residuals, are useful in

detecting model inadequacy. Thus model estimation is

typically iterative involving cycles of tentative model

identification, estimation, and residual analysis.

To illustrate, consider the container demand data

from Fig. 1b. It can be shown that an appropriate

choice of p, d, and q is p ¼ 0, d ¼ 1, and q ¼ 1,

resulting in the ARIMA(0,1,1) ¼ IMA(1,1) model

ð1� BÞxt ¼ ð1� yBÞet:

The least squares estimate of the parameter y in this

model is �y ¼ �0:70. Therefore, the final model is

xt ¼ xt�1 þ et þ 0:7et�1:

This model is satisfactory with respect to the

adequacy criteria cited above.

Forecasting

An important objective of any time series model is

forecasting future values. The term forecasting is

used in the time series analysis literature although

most results are based on the general theory of

linear prediction developed by Kalman (1960),

Whittle (1963), Box, Jenkins and Reinsel (2008), and

many others. The objective is to produce minimum

mean square error forecasts.

Minimum mean square error forecasts for ARIMA

models are obtained by taking the conditional

expectation EðXtþtjXt; Xt�1; . . .Þ. For example, the

minimum mean square error forecast for the ARIMA

(0,1,1) ¼ IMA(1,1) model shown earlier for the

container data is

Eðxtþtjxt; xt�1; . . .Þ � x̂tþtðtÞ ¼ xt þ 0:7et (1)

where etð1Þ ¼ xt � x̂tðt� 1Þ is the one-step ahead

forecast error. Figure 3 shows the forecasts obtained

from this model. It is usually necessary to provide

prediction intervals for forecasts as well as point

estimates. Figure 3 shows the 50% and 95%

prediction limits for the forecast of future container

demand. For details of the construction of these limits,

see Box, Jenkins and Reinsel (2008) and Montgomery,

Johnson and Gardiner (1990).

Forecasts from ARIMA models are equivalent to

forecasts produced by other methods in certain cases.

For example, the forecasts from an IMA(1,1) model,

such as that given above for the container demand data,

are identical to those produced by simple first-order

exponential smoothing. Other relationships between

exponential smoothing and ARIMA models are given

by Box, Jenkins and Reinsel (2008) and Pandit and

Wu (1974).

The form of the eventual forecast function for

ARIMA models is also of interest, because it leads in

some cases to efficient methods for forecast generation

and updating. The form of the forecast function or

several common ARIMA models is given in Box,

Jenkins and Reinsel (2008).

Transfer Functions and Related Topics

If yt and xt are two stationary time series related

through the mean filter

yt ¼ VðBÞxt þ et
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then VðBÞ ¼P1j¼�1vjB
j is called the transfer

function of the filter and et is called the noise series

of the system. Typically, xt and et are assumed

to follow ARMA ¼ ARIMA(p,0,q) models. It is

customary to write

VðBÞ ¼ oSðBÞBb

drðBÞ

where oSðBÞ � o0 � o1 B� o2 B
2 � . . .� oSB

S,

drðBÞ � d0 � d1 B� d2 B
2 � :::� drB

r and b is

a delay representing the time before the input at time

t produced an effect on the output. A transfer

function model is identified by choosing appropriate

values of s, r, b, and a model for the noise e t. Usually s,

r, and b will be no larger than 2. The cross-correlation

function is useful in model identification.

Once a suitable transfer function model is

identified, the parameters are estimated by nonlinear

regression methods, and diagnostics checks are

applied, much like in classical univariate ARIMA

modeling. Minimum mean square error forecasts are

generated using a similar approach, based on

conditional expectation at time t of ytt. For detailed

examples of identification, estimation, diagnostic

checking, and forecasting with transfer functions, see

Box, Jenkins and Reinsel (2008) and Montgomery,

Johnson and Gardiner (1990). The latter authors

presented an example showing that for relatively

short forecast lead times, the forecasts from a transfer

function model will usually be superior to those

produced by a univariate ARIMA model.

An important special case of the transfer function

occurs when the input series xt is a sequence of

indicator variables that represent the occurrence
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of identifiable, unique events that are thought to

influence the output yt. These events are called

interventions and the resulting models are called

intervention models. An intervention model is often

used to provide a statistical basis for concluding

that the identifiable event has resulted in a change in

the time series.

Box and Tiao (1975) developed the basic

intervention analysis methodology and applied it to

photo chemical pollution data from the Los Angeles

basin. They showed that the opening of the Golden

State Freeway and the adoption of a new law, that

reduced the proportion of reactive hydrocarbons

in local gasoline, reduced ozone levels, and that

required changes in automobile engines reduced

ozone levels only in warm weather months. Other

intervention studies were reported by Montgomery

and Weatherby (1980) and Wichern and Jones (1977).

Intervention models are also useful in the study of

time series outliers. Fox (1972) proposed two types

of outliers, additive and innovational. Other useful

references on this topic are Tsay (1986) and Chang,

Tiao and Chen (1988).

In some time series problems, one observes m

different variables x1t, x2t,. . ., xmt in a multivariate

framework. One way to model this structure is with

a multivariate ARIMA model of the form

FpðBÞXt ¼ YqðBÞet

where x0r ¼ x1t; x2t; . . . ; xmt½ �, Fp (B) and Yq (B) are

matrix polynomials of autoregressive and moving

average parameters, respectively, and et is a sequence

of independent multivariate random vectors each with

mean zero and covariance matrix
P

. These are

sometimes called vector time series models. Basic

references for these models include Jenkins (1979),

Granger and Newbold (1977), and Hannan (1970).

The state space modeling approach is also useful for

representing multiple series. See Hannan (1970)

and Akaike (1976) for a complete description of state

space modeling.

Computing

A number of software packages perform the time series

modeling and forecasting functions previously

described, including some spreadsheet statistical

analysis add-ins. The two high-end software support

tools commonly used by researchers and practitioners

are SAS and S-Plus. Both programs provide a wide

range of modeling options including various

smoothing alternatives and extensive ARIMA

modeling features. SAS is also capable of developing

transfer function and intervention models. S-Plus

provides the capability to model time series in the

presence of outliers. More advanced procedures are

also available from SAS and S-Plus. Several other

PC-based software programs, including MINITAB,

STATGRAPHICS, R, JMP, Autobox, and EViews,

provide high-quality time series modeling and

forecasting support. For ARIMA modeling, the

software programs provide the plots, nonlinear

estimation, and forecasting tools necessary to develop

successful models.

See

▶Exponential Smoothing

▶ Forecasting

▶Quality Control

▶Regression Analysis

References

Abraham, B., & Ledolter, J. (1983). Statistical methods for

forecasting. New York: John Wiley.
Akaike, H. (1976). Canonical correlations analysis of time series

and the use of an information criterion. In R. Mehra & D. G.
Lainiotis (Eds.), Advances and case studies in system

identification. New York: Academic Press.
Box, G. E. P., & Pierce, D. A. (1970). Distribution of residual

autocorrelations in autoregressive-integrated moving
average time series models. Journal of American Statistical

Association, 64.
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time

series analysis, forecasting and control (4th ed.). New York:
Wiley.

Box, G. E. P., & Tiao, G. C. (1975). Intervention analysis with
applications to economic and environmental problems.
Journal of the American Statistical Association, 70, 70–79.

Brown, R. G. (1962). Smoothing, forecasting and prediction of

discrete time series. Englewood Cliffs, NJ: Prentice-Hall.
Chang, I., Tiao, G. C., & Chen, C. (1988). Estimations of time

series parameters in the presence of outliers. Technometrics,
30, 193–204.

Cleveland, W. S. (1972). The inverse autocorrelations of a time
series and their applications. Technometrics, 14, 277–293.

Cogger, K. O. (1974). The optimality of general-order
exponential smoothing. Operations Research, 22, 858–867.

Time Series Analysis 1551 T

T

http://dx.doi.org/10.1007/978-1-4419-1153-7_317
http://dx.doi.org/10.1007/978-1-4419-1153-7_357
http://dx.doi.org/10.1007/978-1-4419-1153-7_840
http://dx.doi.org/10.1007/978-1-4419-1153-7_871


Fox, A. J. (1972). Outliers in time series. Journal of the Royal

Statistical Society, Series B, 43, 350–363.
Fuller, W. A. (1996). Introduction to statistical time series.

New York: John Wiley.
Goodman, J. L. (1974). A new look at higher-order exponential

smoothing for forecasting.Operations Research, 22, 880–888.
Granger, G.W. C., &Newbold, P. (1977).Forecasting economic

time series. New York: Academic Press.
Hanan, E. J. (1970). Multiple time series. New York: John

Wiley.
Harvey, A. C. (1990). The econometric analysis of time series

(2nd ed.). Cambridge, MA: MIT Press.
Holt, C. C. (1957). Forecasting trends and seasonal by

exponentially weighted moving averages. ONR
Memorandum No. 52, Carnegie Institute of Technology.

Jenkins, G. M. (1979). Practical experiences with modeling

and forecasting time series. Lancaster, England: GJM
Publications.

Kalman, R. E. (1960). A new approach to linear filtering and
prediction problems. ASME Journal of Basic Engineering for

Industry, Series D, 82, 35–45.
Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit

in time series models. Biometrika, 65, 297–303.
Marquardt, D. W. (1963). An algorithm for least squares

estimation of nonlinear parameters. Journal of the Society

of Industrial and Applied Mathematics, 2, 431–441.
McKenzie, E. (1978). The monitoring of exponentially weighted

forecasts. Journalof the Operational Research Society, 29.
Montgomery, D. C., Johnson, L. A., & Gardiner, J. S. (1990).

Forecasting and time series analysis (2nd ed.). New York:
McGraw-Hill.

Montgomery, D. C., & Weatherby, G. (1980). Modeling and
forecasting time series using transfer function and
intervention methods. AIIE Transactions, 12, 289–307.

Pandit, S. M., & Wu, S. M. (1974). Exponential smoothing as
a special case of a linear stochastic system. Operations

Research, 22, 868–879.
Tsay, R. S. (1986). Nonlinearity tests for time series. Biometrika,

73, 461–466.
Whittle, P. (1963). Prediction and regulation by linear

least-square methods. Princeton, NJ: Van Nostrand.
Wichern, D. W., & Jones, R. H. (1977). Assessing the input of

market disturbances using intervention analysis.
Management Science, 21, 329–337.

Winters, P. R. (1960). Forecasting sales by exponentially weighted
moving averages. Operations Research, 22, 858–867.

Time/Cost Trade-offs

An approach to scheduling where the project duration

is shortened with a minimum of added costs.

See

▶Network Planning

Time-stepped Simulation

A computer model in which time is incremented by

a simulated clock. Each appropriate function is

recomputed after the clock is incremented in a cyclic

manner. A model may be linearly coded and entirely

time-stepped or an event-driven simulation may use

time-stepping for some critical function with a cycle of

sub-functions.

See

▶Event-driven Simulation

▶ Simulation of Stochastic Discrete-Event Systems

Timetabling

Michael W. Carter

University of Toronto, Toronto, Ontario, Canada

Introduction

Most dictionaries do not include the word timetabling

as a single word. It is often listed as either two words

(time table) or hyphenated (as time-table). The Oxford

English Dictionary defines a timetable as:

A tabular list or schedule of times at which successive
things are to be done or happen, or of the times occupied
in the parts of some process. spec. a. A printed table or
book of tables showing the times of arrival and departure
of railway trains at and from the stations; also a similar
table of times of arrival and departure of passenger boats
or other public conveyances. b. A chart used in railway
traffic offices, showing by means of cross lines, in one
direction representing hours and minutes and in the other
miles, the position of the various trains at any given
moment. c. A time-sheet on which a record is kept of
the time worked by each employee. d. A table showing
how the schedule of a school or other educational
institution, for any day, or for a week, is allotted to the
various classes and subjects. e. Mus. A table of notes
showing their relative time value.

The Oxford dictionary also defines the verb

time-table as “To schedule, to plan or arrange

according to a timetable, to include in a timetable.

Hence time-tabled and timetabling.”
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Professor Anthony Wren, at the first Practice and

Theory of Automated Timetabling (PATAT)

conference in Edinburgh, 1995, defined timetabling

as “the allocation, subject to constraints, of resources

to objects being placed in space-time, in such a way as

to satisfy as nearly as possible a set of desirable

objectives. Examples are class and examination

time-tabling and some forms of personnel allocation,

for example manning of toll booths subject to a given

number of personnel.” In the latter case, the process is

defined in terms of developing timetables for each

individual employee.

In other words: timetabling involves deciding when

events/activities will take place in time; but it does not

involve assigning resources to those activities. For

example, a bus timetable for a particular metropolitan

bus route may require “one bus to leave the main

terminal every 30 minutes between 6:00 am and

11:00 p.m.; and every 10 minutes during rush hours

7:00 am to 9:00 am and 4:00 p.m. to 6:00 p.m.”. The

time table does not specify which buses or drivers

should be allocated to each trip. In course timetabling,

the objective is to decidewhat day and time each section

of each course should be held. It does not specify which

students will be assigned to each section.

Normally, when one sees the word timetabling in an

operations research context, people are referring to

problems relating to timetabling of courses or

examinations in a school. Furthermore, it refers to the

concept of developing algorithms, usually computer

programs, for the automatic construction of

time-tables. There are a number of other related

problems in timetabling which will be described; but

they are often referred to under different titles. As

described by McCollum and Burke (2010) in the

Preface to the Proceedings for PATAT 2010,

“computer-aided timetable generation . . . includes

personnel rostering, school timetabling, sports

scheduling, transportation timetabling and university

timetabling.”

Timetabling can also be described as a subset of the

larger discipline called scheduling. One can define

scheduling as the more general problem of

determining the times for activities and assigning the

necessary resources. In some cases, for example in

Sports Time tabling, once it is decided when a match

will occur between a pair of teams, (and who the home

team is), all major resources have already implicitly

been assigned (the two teams and the stadium). Hence

Sports Time tabling is commonly referred to as Sports

Scheduling. In this case, the terms are justifiably

interchangeable.

It will be frequently distinguished between

feasibility and optimality. A feasible solution is any

solution that satisfies all of the constraints. An optimal

solution is the (possibly unique) solution among all

feasible answers which maximizes (minimizes) some

objective function. In some timetabling problems, it is

sufficient to find a feasible solution.

Examination Timetabling

Examination Timetabling is the simplest timetabling

problem to describe, although it is not always easy to

solve. The basic problem is to assign examinations to

a limited number of available periods in such a way

that there are no conflicts or clashes. That is, no student

is required to write two examinations at the same time.

The problem is closely related to the graph coloring

problem. Each examination is represented by a node.

Two nodes are connected by an edge if there is at least

one student who is required to write the two

corresponding exams. The graph coloring problem

asks the question: Can the nodes of this graph be

colored using p colors such that no two nodes with

the same color are connected by an edge? If each color

represents an examination period, and if p is the

number of periods available, then coloring the graph

is equivalent to finding a conflict free assignment of

exams to the available periods.

In practice, the basic feasibility issue may be the

critical problem. In particular, for any given problem

instance, there is a minimum number of periods

required to allow a feasible solution. In graph theory

terminology, this is called the chromatic number of

a graph. If the number of periods provided is close to

the theoretical minimum, then you need an algorithm

that concentrates on finding a feasible solution. There

has been considerable research on good coloring

algorithms. Given plenty of periods, it is easy to find

a conflict free timetable. The coloring problem is

trivial, and efforts can be focused on searching for

a good answer using some secondary objectives.

Without enough periods, it is not possible to find

a feasible solution, and the objective must be

changed to something like minimize the number of

student conflicts.
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The most common secondary objective is to try to

spread each student’s exams as evenly as possible.

Each institution will impose a variety of additional

constraints on the basic model such as:

• Some exams may have precedence constraints

(e.g., “exam A must precede exam B”);

• Some exams must be consecutive (e.g., “exam

C must immediately precede exam D”);

• Some exams are excluded from certain periods;

• Limited available rooms and/or seats; and

• There may be special resource requirements.

For a more comprehensive description of the exam

timetabling problem and a survey of practical

approaches, refer to Carter (1986), and Qu et al. (2009).

School Timetabling

Class-Teacher timetabling is normally associated with

high schools or elementary level schools where the

students are grouped into a set of classes and each

class has a set of courses that it must take. Professor

Dominique de Werra (1985) defines the basic

class-teacher model in the following terms. Let

C ¼ {c1, c2, . . ., cm} be a set of classes and T ¼ {t1,

t2,. . ., tn} be a set of teachers. An n � m requirements

matrix, R ¼ {rij} is given where rij is the required

number of times class ci must meet with teacher tj. In

the basic model, it is assumed that all lectures are the

same length (say one period). Given a set of p periods,

the problem is to assign each meeting to some period

such that no teacher (and no class) is involved in more

than one meeting at a time. The basic problem has no

objective function, so the issue is simply to find

a feasible solution.

It can be shown that this problem is easy to solve (in

the computational complexity sense) in that there

exists a polynomial algorithm to find a solution

(using a matching algorithm) under the simple and

obvious conditions that no teacher (or class) is

required to attend more than p periods. The problem

remains easy if the basic model is extended to include

assigning meetings over a week, where limits are

imposed on the number of times each class-teacher

pair can meet on any one day.

Unfortunately, most practical problems will have

a few extra conditions, and the problem quickly

becomes computationally intractable (NP-Complete).

For example, if it is assumed that some of the teachers

(and/or classes) are not available in every period, then

the problem is no longer easy. This is also true if the

teachers and classes are available every period, but

some of the meetings have been preassigned to

specific periods. Another common complication is

that some meetings are for more than one period. For

example, some meetings may require two or three

consecutive periods.

The problem is also often complicated by adding

room availability constraints. For example, there may

be certain meetings (science, physical education,

music, etc.) which require specific rooms. This

problem can be expressed using a three dimensional

requirements matrix that specifies the number of

meetings between class i and teacher j in a room

of type k, where there are a limited number of each

type of room. This problem is also NP-Complete.

Refer to Kingston (2008) for more details.

Course Timetabling

Course timetabling is normally associated with

universities, and involves the assignment of sections

of courses (lectures, laboratories, tutorials, seminars,

etc.) to specific days of the week and times of day. In

the course-timetabling problem, unlike the class

concept, each student selects a set of courses

personally tailored to their own needs. (In practice,

many students will have very similar selection

patterns.) The primary objective is often to find

a timetable that minimizes the expected number of

student conflicts.

Strictly speaking, based on the definition given

here, course timetabling does not include the

assignment of resources (teachers, rooms, special

equipment, or even students). In many practical

instances, most teachers will be assigned to teach

specific course sections before timetabling, while

rooms, special equipment and students are assigned

after time-tabling. In large schools, many of the

courses will be offered in more than one section.

Students must be divided up into (roughly equal)

groups and assigned to separate sections. This

problem is referred to as sectioning or student

scheduling. Some packages have been designed to

attack all of these problems simultaneously.

However, due to the large number of variables

involved, most practical methods approach the
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problems sequentially. The basic course-timetabling

problem will be described here. The interested reader

can refer to Lewis (2008) for a more detailed

discussion of each of the subproblems, and references

to practical applications.

The basic course-timetabling problem usually

includes a number of side constraints. Courses and

course sections should be spread in a particular way

throughout the week. For example, an institution may

require that all sections of the same course be

timetabled at the same times. A course may be

divided into multiple meetings (two or three times

per week), and there may be restrictions on the

meeting patterns that can be used (e.g., Mon., Wed.,

Fri. at 9:00 a.m.). Some schedules include an

allowance for lunch periods, travel time between

classes, and the number of hours per day for students

and teachers.

In practice, there are two main variations of the

course-timetabling problem: the master timetable

approach, and the demand driven system.

Practitioners typically feel very strongly about

their preference for one or the other. Under a

master-time-tabling system, the institution will first

create a course timetable, and then students register

for courses (after consulting a list that describes when

each class is offered). The term master timetable refers

to the common practice of starting this year’s timetable

based on the previous year, and making any required

changes based on revisions to course offerings. With

a demand driven timetable, the institution posts a list of

(proposed) course offerings without any times, and

students pre-register for courses before timetabling is

performed.

The main advantage of a demand driven system is

that the timetable can be constructed using actual

student course requests. With a master-timetable

system, the timetable must be developed without

knowing what the students really want or need.

Individual department timetable representatives try to

build a timetable that will work for students in their

own program in each year. This is very difficult unless

the programs are highly structured. In more flexible

environments, students often have difficulty selecting

the credits that they need without conflicts. A major

problem in the U.S. today is that students in many

institutions find it impossible to complete their

program in the nominal program length due to

timetable issues.

There are several disadvantages of a demand-driven

system. It requires additional data collection effort,

since students must pre-register for courses (typically

4–5 months before term starts) and then, when they get

the results of their requests, they start making changes in

a second round. In a master-timetabling system,

students should be able to construct a conflict free

timetable on the first attempt. A demand-driven

system also puts fairly tight time constraints on the

timetabling process. In a master timetable system, the

institution can construct the timetable a year in advance,

and some schools publish the times in the course

calendar. In a demand-driven system, the students

submit course requests a few months before the term

starts, and all of the timetabling activity is compressed.

One of the curious issues in the timetabling problem

creates a bit of a paradox in the demand-driven system

when courses are taught inmultiple sections. You cannot

assign students to sections (conflict-free) until you have

timetabled the sections; but, you cannot timetable the

sections until you know which students are in each

section. One solution is to assign students to a specific

section in advance of timetabling, for the purpose of

finding good times. These assignments can be re-

evaluated in the student scheduling phase at the end.

Anyone interested in timetabling should refer to the

Web site maintained by the University of Nottingham,

on automated scheduling, optimisation and planning.

There are a number of other (less common)

problems that share the basic timetabling structure.

Sports timetabling is the problem of trying to find

a rotation for a set of teams such that each team can

play every other team twice (once at home and once

away). If there are no side constraints, there are some

elegant solutions related to tournaments, including

a mathematical construction based on permutations

(see survey by Kendall et al. 2010). There has also

been some research on Employee Timetabling/

Rostering, where you want to determine shift work

patterns for employees in order to meet a given

demand pattern. A particular well-studied variation

on this problem is the nurse-rostering problem (see

review by Burke et al. 2004).

See

▶Computational Complexity

▶Graph Theory
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▶Higher Education

▶ Scheduling and Sequencing

▶ Sports
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Tolerance Analysis

A sensitivity analysis procedure applied to a

linear-programming problem that allows for

simultaneous changes of the objective function cost

coefficients and/or right-hand-sides of the

constraints.

See

▶Hundred Percent Rule

▶ Sensitivity Analysis

Total Float

The amount of time a project work time can be delayed

without affecting the duration of the project. Total float

can be used in only one activity in a path. If no schedule

times are specified for starting and finishing the various

activities, then the float is calculated as the difference

between the latest start time and the earliest start time,

or the difference between the latest finish time and the

earliest finish time. Float can be positive, negative

or zero.

See

▶Network Planning

Total Quality Management

John S. Ramberg

Pagosa Springs, CO, USA

Introduction

During the decade of the 1980s, U.S. corporations

recognized the quality achievements of their Japanese

counterparts and began to understand the messages

being delivered by Deming, Juran and others on the

importance of quality (Deming 2000; Defeo and Juran

2010). They devised methods for obtaining,

understanding and communicating customer needs

and requirements within their organizations,

developed strategies for improving their engineering

design, development, manufacturing and delivery

processes, and created new corporate cultures that

included the formation of self-directed working

groups and encouragement of employee participation.

Through this focus on quality and the development and

adaptation of techniques for achieving customer
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satisfaction, some of these corporations have

demonstrated improvement in achieving high quality,

timely deliveries at low costs and ultimately improved

their business performance. Many of these firms called

this new management and operations philosophy Total

Quality Management or TQM.

At the outset, many TQM programs were simply

copies of Japanese efforts. As cultural differences

between the Japanese and western world were better

understood, and as other quality contributions were

recognized, many U.S. firms developed their own

unique quality programs. See Prybutok and Zhang

(2010) and Vol. 4 of Quality Management Journal

for health care agency examples.

Other firms, frustrated by false starts and

questionable implementations, began to question the

value of total quality management, and some

have given up, regarding it as just another fad

(Senge 1993). In many of these latter situations,

quality efforts have been misdirected or unfocused.

In some cases, quality improvement activities were

simply knee-jerk reactions to the customers who

complained most vehemently to the highest level of

the organization. Ramberg (1994) described some of

the scurrilous characters who proclaim TQM, while

delivering just another program; he raised the

question, “TQM: Thought Revolution or Trojan

Horse.” Three decades later, many organizations,

especially nonprofits and governmental, are still not

aware of total quality management.

While TQM connotes much more than simply the

three words total, quality and management,

nevertheless, definitions of each of the three words

seem an appropriate place to begin. A typical

dictionary definition of total is: all or whole, that is

constituting the whole; complete. The definition of

quality is a bit more difficult to comprehend as U.S.

firms have come to understand. A formal definition,

as given by the American Society for Quality (ASQ).

“The totality of features and characteristics of

a product or service that bear on its ability to

satisfy stated or implied needs.” Finally,

management is the act, be it a science, an art or

manner, of planning, directing, organizing and

controlling a firm’s decisions and actions. As an

aside, it is interesting to note that the phrase “to

manage” originated as “to train (a horse) in his

paces, or to cause to do the exercises of the manage

(Merriam-Webster, 2004)!”

A Profound Understanding of Quality

Quality is the pivotal word in TQM. A fundamental

reason for the U.S. losing world leadership in

manufacturing during the 1960s and 1970s was its

lack of a profound understanding of the Q word.

The gurus of quality, in the interest of developing

a better understanding of the importance of quality,

created shorter, more explicit, operationally

oriented definitions such as “fitness for use”

(Juran, 1988), “conformance to specifications”

(Crosby 1989), “long term loss to society” (Taguchi

1986), and “a predictable degree of uniformity and

dependability, at a low cost and suited to the market”

(Deming, as paraphrased by Gitlow, Oppenheim, and

Oppenheim, 1995).

Some have made light of the differences in these

operational definitions of quality. A few have

concluded that even the quality gurus cannot agree on

the definition of quality. They should be viewed as

being complementary, each definition emphasizing

its definer’s experience base in relation to the

customer in question. “Fitness for use” is an

appropriate operational definition of quality in the

creation and marketing of a product or service on the

production floor, where an employee may be far

removed from the customer, the translation of quality

performance measures into specific dimensions having

specified targets and specification limits seems

a necessity. Finally, if “loss to society” is thought of

as “long-term business loss,” then its relation to the

other two operational definitions becomes clearer.

Deming’s definition exhibits his emphasis on

variability and its reduction as a fundamental step in

improving quality.

A first step in attaining a profound understanding of

quality is the realization that it is customer-driven.

It not only begins with the customer, in the end, it is

judged by the customer. While the “voice of the

customer” is imperative, a customer may not be able

to fully articulate his needs and desires. Even the most

sophisticated customers are not likely to be able to

envision all of the characteristics of a product that

will satisfy and “delight” them. Expert panels can

serve an important role, but they too have their

limitations. Obtaining this information is a complex

task. Based on this input, product creators, developers

and deliverers must envision these dimensions of

quality that will satisfy and delight their customer.
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Furthermore, they must maintain a dialog with the

customer so that they will continue to understand and

respond to this dynamic “voice of the customer.”

Traditionally managers have viewed quality and

cost as a zero-sum game. That is, any improvement

in quality will occur only at a substantial additional

cost. The following quote from Vaughn

(1967) illustrates this “conventional wisdom:”

“The trade off is between the effects of less emphasis

on quality and the cost of more of it–.” The following is

a counter example. A citizens’ group discovered that

their water company was losing 40% of its treated

water, prior to delivery. This meant that they were

treating 167% more water than demanded, and hence

167% additional treatment facilities were required.

Rather than making any attempt to reduce losses, the

leadership had committed its users to millions of

dollars of debt for a land purchase to build an

un-needed reservoir.

Juran (1988) categorized quality associated costs

(and estimates of the associated percentage for one

industry) into four broad groups, those due to

Internal Failures (30%), External Failures (40%),

Appraisal (25%), and Detection and Prevention

(5%). He also discussed how these percentages are

dependent upon the maturity of the product line and

effort expended on quality improvement. Juran’s

classic model for optimum quality levels also

emphasized that there is a tradeoff between quality

and cost. He stated that “failure costs decline until

they are over-taken by the increasing costs

associated with appraisal and prevention. At this

point total costs increase.” Juran also made clear

the cost of quality through the phrase, hidden

factory, where he exhibited the additional resources

necessary to deliver products and services.

Cole (1992) made an excellent case for

a fundamental paradigm shift regarding quality and

costs and timeliness, based on the achievements of

the Japanese. His conclusions are given in Table 1.

Compare Cole’s views with the old quality paradigm,

“you get what you pay for.” The truth is that high cost,

alone, is not a guarantee that a product will be of

high quality. Indeed, some times the contrary is true,

resulting in what Consumer Reports refers to as

“best buys.” The six achievements of the Japanese,

cited by Cole, have an important impact on

conclusions drawn from quality cost models.

Specifically, they indicate that the point at which it is

no longer cost effective to improve quality is at a much

lower defective rate than previously thought.

Juran (1988) noted that many disagreements about

achieving quality result from the fact that there are two

fundamentally different quality issues, one income

oriented and the other cost oriented. Features that

produce customer satisfaction are income oriented.

They are the key to attracting new customers and

through satisfaction of retaining them. Cost oriented

quality issues are the defects and failures that incur.

They cause dissatisfaction and the loss of customers.

As customers become aware of a product and indeed

a producers track record through publications such as

Consumer Reports, they also impact the ability of

attracting and retaining customers. Furthermore, they

impact the profitability of the firm through the dollars

lost internally in defectives and rework and externally

through warranty costs and other required services.

Establishing, appraising or judging the quality of

a product are far more difficult than simply defining it.

In his highly acclaimed book Management of Quality,

Garvin (1988) elaborated eight dimensions of

quality, including performance, features, reliability,

conformance, durability, serviceability, aesthetics,

and perceived quality. Through his study on air

conditioners, he illustrated the differences in the

perception of quality of various constituencies, noting

that customers, companies (as represented by first line

supervisors), service personnel and Consumer Reports

view quality quite differently and elaborated on the

reasons for these different perceptions.

While top-level management communicates in

dollars, operations level personnel must be bilingual,

Total Quality Management, Table 1 Cole’s underlying
reasons for Japanese achievements in quality

“-realized that the costs of poor quality were far larger than had
been recognized.”

“-recognized that focusing on quality improvement as a firm-
wide effort improved a wide range of performance measures.”

“-established a system that moved toward quality improvement
and toward low-cost solutions simultaneously.”

“-focused on preventing error at the source, thereby dramatically
reducing appraisal costs.”

“-shifted the focus of quality improvement from product
attributes to operational procedures.”

“-evolved a dynamic model in which customer demands for
quality rise (along with their willingness to pay for these
improvements).”
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communicating in both dollars and things, that is, in

product units and performance measures. Taguchi

popularized the use of loss functions to provide a link

between these two languages. They provide a means

for expressing the deviation of product characteristics

from their targeted values in dollars. These loss

functions can be determined through internal costs of

a product at each stage of design, development,

manufacture and delivery.

Quality is achieved by elaborating the important

product characteristics, their targets and

specifications. The ability of a product to meet these

specifications depends upon its design, development

and the processes employed in its manufacture.

Product and process information is often gathered

through capability studies, where measurements are

obtained on important product characteristics, and

control charts are employed to address the stability of

the processes and the predictability of future

performance. These product characteristics are

frequently summarized by a statistical distribution, or

even more succinctly, by the process capability,

six sigma.

Process capability indices are typically employed to

combine this voice of the customer with the voice of

the product/process into a dimensionless measure.

Pignatiello and Ramberg (1996) reviewed this

approach, stressing the importance of an appropriate

data collection scheme and the statistical analysis and

summarization of results. These indices, which are

dimensionless quantities, are then employed in

quality improvement project selection.

Total Quality

The term quality has traditionally been associated with

manufacturing, and more explicitly, with the products,

processes, functions, and facilities associated with

manufacturing. The modern total quality viewpoint

extends this factory oriented view of quality to

encompass all products, goods and services whether

they are for sale or not.

Total quality proponents embrace training and

education as universal, in direct contrast to the Taylor

system, a system to which U.S. leadership in

productivity has been attributed. Taylor made

a strategic decision to separate planning and

execution. This decision was based on his assessment

that the then immigrant work force was uneducated

and that it was not economically feasible to educate

them in a timely manner. Amore highly educated work

force represents an untapped resource for improving

quality and productivity. Total quality proponents

recognized this improvement in the educational level,

and the responsibility for not only utilizing this

resource, but improving it through the continuing

education of the work force. Furthermore, they

recognized these workers as stakeholders, and that

by empowering these stakeholders, productivity and

quality can be further enhanced.

Total Quality Management

While neither embraced the term Total Quality

Management, its origins can be traced to the work of

W. Edwards Deming and Joseph J. Juran, and through

the implementation of their quality philosophy,

concepts and methods in Japanese industry. Kolesar

(1994, 2008) discusses the contributions of Deming

and Juran to the Japanese quality revolution

following WWII. The importance of TQM became

fully recognized in the U.S. only after its successful

Japanese implementation. The domination of their

products, as a direct result of their outstanding

quality, especially in the auto industry, could not go

unrecognized. With this recognition, Deming and

Juran gained the attention of enlightened U.S.

corporate and government leaders.

Deming is perhaps best known for the Shewhart/

Deming PDCA cycle, and his 14 point manifesto,

which is fundamental to TQM philosophy. The

PDCA cycle, now called the PDSA cycle, meaning

Plan, Do, Study, and Act, provides a fundamental

structure for achieving quality. Gitlow et al. (1995)

give an excellent discussion of Deming’s 14 points

and employed the PDSA approach for achieving

quality improvement. Scherkenbach (1986, 1991)

provides a balanced view of the key characteristics of

the philosophy of Deming given in Table 2. For

example, one of Deming 14 points is “reduce waste,”

which Scherkenbach has balanced with “add value.”

Kolesar (2008) states, “Juran’s 1954 lectures have

been credited with being seminal contributions to the

Japanese quality control movement.” Juran

(1988) recognized the importance of including

quality in the management game plan, as well as the
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need for developing managerial processes in managing

quality. He noted financial management included three

processes: financial planning (producing the budget),

financial control (assuring that the budget will be met),

and financial improvement (ways of increasing income

and decreasing costs). Translated to quality, these are

known as the Juran Trilogy: Quality Planning, Quality

Control and Quality Improvement. A major advantage

facilitating the implementation of these ideas is that

senior management already understands them in the

financial arena. Juran also stated “universal sequences

for accomplishing these processes, the quality

planning road map, quality control and the quality

improvement processes.” Fundamental to his

methodology is the recognition of the presence of

chronic quality wastes resulting from disconnected

alarm systems.

Senge (1993) presents a TQM paradigm that is

based on the three cornerstones: Guiding Ideas,

Infrastructure, and Theory, Tools and Methods. He

noted that guiding ideas are based on a vision.

Without this vision, everything is mechanical and

pedestrian. Leaders expressing this vision and these

guiding ideas must practice them. When they make

a decision differently, their colleagues and

subordinates will know! However, these ideas and the

behavior and actions of the leaders is not enough. An

infrastructure is necessary for diffusing these ideas.

Conflicts in goals must be resolved and this implies

the importance of accountability and an appropriate

reward structure. Finally, there is the theory, tools

and methods cornerstone. Again, a necessary and

important part of the structure, but certainly not

sufficient on its own. OR/MS tends to be tool oriented.

Tables 3 and 4 list these essential tools, which seem

so simple that they are frequently neglected in college

courses. These tools of TQM are communications

enhancers that assist one in listening and talking to

processes, products, systems and people. Smith

(1998) described these tools and more advanced

problem solving methods within the context of

diagnostic disciplines.

Transformation to Quality Organizations

Implementation of total quality management in a firm

requires a transformation of the organization, and any

transformation of an organization is doomed to failure

if it does not recognize the importance of the human

aspect. Scherkenbach (1991) elaborated a theory of

transformation that emphasizes this human aspect of

quality. Scherkenbach notes how differently people

view the world and why they are motivated by

different means. Some, such as management

scientists and operations researchers, live in the

logical world. They tend to proceed on the basis of

logical actions. Others, including many top-level

managers and workers alike, live in a physical world.

This is the world of policies, procedures, standards,

rewards, and punishments. They do it by the book. Still

others, such as sales personnel, marketing specialists

and artists live in the emotional world, typified by the

statement, “The force is with you.”

Total Quality Management, Table 2 Key characteristics of
the Deming philosophy, from W.W. Scherkenbach (1991)

Reduce waste Add value

Constancy of purpose Continual improvement

Improvement Innovation

Team Individual

Long-term Short-term

Inputs Outputs

Synthesis Analysis

Knowledge Action

Total Quality Management, Table 3 Quality tools — the
magnificent seven plus one

Control Charts

Check Sheets

Histograms

Pareto Diagrams

Ishikawa Fishbone Diagrams

Scatter Plots

Flow Charts or Process Diagrams

Multi-Variate Charts

Total Quality Management, Table 4 Quality
management — the seven tools

Affinity Diagram

Interrelationship Digraph

Tree Diagram

Prioritization Matrices

Matrix Diagram

Process Decision Program Chart

Activity Network Diagram
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Scherekenbach’s point is not to create stereotypes,

but to enable a better understanding of why arguments

made in one of these domains often do not have

a substantive impact on people living in another

domain, i.e., when dealing with others, it is imperative

to recognize that they may not be motivated by different

forces. To make progress in relationships with others,

one needs to be cognizant of their view and address

them in an appropriate manner. As a point of

exclamation to those of us who live in the logical

world, Scherkenbach quotes Schopenhauer: “No one

ever convinced anybody by logic; and even logicians

use logic only as a source of income.”

He goes on to describe transformation through three

process relationships: one for each world view, and all

given in terms of different mind states or attitudes

dependent, independent and interdependent. Many

people function solely in either the dependent or

independent mode. An important aspect of the quality

transformation is to facilitate the move to the

interdependent mode.

TQM and Principle-Based Management

Each of us holds an important key to any quality

transformation process in which we are involved.

Covey (2004) suggested that we begin the quality

transformation by taking action on ourselves first;

then proceed through the four steps of his inside-out

principle based management. He described these four

steps as self, interpersonal, managerial and

organizational. At the self level, he stresses the need

to carefully develop our vision, decide what our life is

about and develop those principles that will serve as

our guidelines in making all of our decisions in life.

Next is the need to act on this vision in a consistent

manner that builds an internal source of security.

Immediate or complete success should not be

expected since this is a learning process.

Incorporating and practicing the Shewhart/Deming

PDSA cycle in our own work is an important method

for improving the quality or our own work.

As we achieve some comfort with ourselves, and

create a more positive opinion of ourselves, we will be

able to move on to the interpersonal level. Covey stated

that quality at the interpersonal level means that we live

by the correct principles in our relationship with other

people. Here Covey used the analogy of a bank account,

that is, we make deposits to and withdrawals from an

emotional bank account. He stated three important

ground rules for achieving quality in interpersonal

relationships. First, when we have a problem with

a person, we should go directly to them and explain it.

The second relates to the conduct of meetings. His

ground rule is that no one is allowed to make a point

in a meeting until they restate the point of their

predecessor, and state it in a manner that is

satisfactory to that person. He notes that this

eliminates the majority of disagreements, since most

of them are simply misunderstandings. Through this

mechanism potential misunderstandings can be

quickly clarified, avoiding arguments, further

miscommunications and withdrawals from the

emotional bank account. Furthermore, having greatly

reduced the number of misunderstandings, there is

a better chance to disagree agreeably when new

disagreements take place. An important question is do

we have the courage to practice this ground rule and

continue to practice it even if the rest of group does not.

Finally, when we do make mistakes, we need to

have the courage to say that we were wrong. No

excuses. We must apologize to the person; we must

also apologize to the other people involved. At the

managerial level, quality means that we attempt to

empower people. In this way they become

increasingly independent of us. They supervise

themselves, and we become a source of help, rather

than a micromanager. Empowerment begins with

self-control and self-inspection and extends to

self-directing work teams. These teams plan

processes, establish schedules, assign personnel and

maintain discipline through peer pressure. They

accomplish the work that was once limited to

managers and specialists. Juran (1988) suggests that

this system could be the successor to the Taylor

system. It offers the opportunity to step off of the

productivity and quality plateaus, which have been

directly traced to the lack of involvement of the total

work force, a result of not questioning the assumptions

underlying Taylor’s original separation of planning

and execution. A craftsperson created a product from

start to finish, and thus recognized the impact of each

step on the following one. The production worker, as

the execution of production was broken into individual

components, had a smaller and decreasing opportunity

to comprehend his role in achieving quality. As

a result, inspection departments and later quality
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departments emerged, acting as policing units in the

goal to achieve quality.

At the organizational level, the key is in the

structures and the leadership styles. Are the leaders in

harmony with the mission statement? Was everyone

involved in the development of the mission statement?

TQM and the Malcolm Baldrige Award

The Malcolm Baldrige Award framework provides an

excellent road map for implementing TQM, as well

a method for evaluating a firm’s progress (NIST 1999).

The framework emphasizes dynamic relationships

between eleven categories of core values and concepts.

These underlying core values and concepts are:

customer-driven quality, leadership, continuous

improvement and learning, employee participation and

development, fast response, design quality and

prevention, long-range view of the future, management

by fact, partnership development, corporate

responsibility and citizenship and results orientation.

The stated goals are customer satisfaction, customer

satisfaction relative to competitors, customer retention

and market share gain as measured by product and

service quality, productivity improvement, waste

reduction/elimination, supplier performance and

financial results. Leadership is viewed as the “driver”

category of core values and concepts, driving the two

categories: business results and customer focus and

satisfaction through a system of processes. The

system of processes consists of four “well-defined

and well-designed processes” for achieving the firm’s

performance requirements and the firm’s customer

requirements. These four system categories are

information and analysis, strategic planning, human

resource development and management, and process

management. The criteria, which are updated annually,

are disseminated by the American Society for Quality

Control and the National Institute of Standards and

Technology.

TQM and Six Sigma

Six Sigma is a relatively new program for

accomplishing institutionalizing quality. The

fundamental concept was created by a Motorola

reliability engineer. Lean six sigma, a more recent

development, incorporates fundamental industrial

engineering and business “lean practices,” with six

sigma quality principles. Ramberg (2000) describes

six sigma programs, and details its history in

“Six Sigma: Fad or Fundamental.”

The Status of TQM

One of the first evaluations of TQM was conducted by

Senge. In his 1993 ASQ Annual Conference keynote

address, titled “The Health andWell Being of the TQM

Movement,” he posed the following questions:

“Are fundamental breakthroughs being made? Are

they being made in your organization?” Following

this opening, he summarized surveys by Arthur

D. Little and McKinsey, and made the following

conclusions. Out of 500 firms surveyed, less than

a third were accomplishing anything! Two thirds of

the TQM programs had ground to a halt! He went on to

diagnose TQM failures and successes. Based on his

case studies, he concluded that there were only a few

major reasons for failure. The three major ones were:

conflict between time and effort; wavering goals, and

employee perception that their job was at risk.

Even where TQM has “succeeded,” there are

questions about the measures used to judge that

success. That is, in many cases, even where the TQM

indicators improved, the health of the company

(e.g., as judged by its price) did not get any better,

even over a reasonably long term. That is, TQM did not

improve the health of the organization as judged by

its stockholders. Reporting on the root cause of

these problems, Senge concluded that a major reason

was that most organizations viewed TQM as

programmatic. Presented or implemented in this

manner, TQM is certain to be DOA.

Comparative studies measuring the impact of TQM

on a firm’s business performance also began to appear.

Jarrell and Easton (1994) reported some evidence that

long-term performance of firms adopting TQM is

improved. This result is consistent across the

accounting and stock price performance measures

examined. Similar, but overall stronger results, were

found when the analysis was limited to a subsample of

pilot firms identified as having more mature and

well-integrated TQM systems. Hendricks and Singhal

(1999) concluded that effective implementation of

TQM “pays off in a big way.” They made this
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conclusion by comparing the business performances of

firms judged to have successfully implemented TQM

with a control group of firms.

van der Wiele et al. (2000) examined TQM

through a “fad, fashion, and fit” analysis. Utilizing

a range of research studies, which began in the late

1980s, they identified three stages in the evolution by

which a fad can achiever a fit with previous

management practice. In stage 1, the fad must be

clearly defined and measurable. For TQM this

clarification was ISO 9000 and the Baldridge

Award. Stage 2 is the move to a fashion, which

happens when major pressures toward widespread

adoption of the fad are present. Again, ISO 9000

serves as an example, because suppliers experienced

a pressure from major customers to achieve

certification. van der Wiele et al. (2000) state, “As

a consequence, the ISO 9000 series became a fast-

spreading fashion.” They elaborate that “Stage 3 is

the move either from fad to fit or from fashion to fit.

Fit into normal management practice means that the

original fad will have effected the normal way of

working within whole organizations and not just

a small part such as would be the case in the

adoption of a mere fashion.” Their fieldwork shows

that such a change will only occur when there is

strong internal motivation and emotional

involvement to implement TQM. They also point

out that, “Should such a move take place from fad or

fashion to fit, then the chances are that organizational

performance will also be perceived to have been

effected in a positive way.”

Prajogo and Brown (2004) examining the

relationship between TQM practices and quality

performance in Australian organizations. They

compared organizations that adopted formal TQM

programs with those without a formal program.

They concluded that the lack of a formal program

did not necessarily mean TQM principles were not

being practiced. Their findings also showed that the

firms adopting formal TQM programs implemented

several TQM practices at a higher level than those

that did not have TQM programs. However, they did

not observe a significant difference between

organizations implementing formal TQM programs,

and those organizations simply adopting TQM

practices, suggesting that it is the adoption of

quality practices that matters rather than formal

programs per se.

While some researchers have given a rather

pessimistic view on the future of the quality

management movement, Kujala and Lillrank (2004)

note that quality management has survived the failure

of some of its success stories, such as those of

Motorola and Xerox. They affirm that TQM remains

to be properly defined, and that its scientific

foundations are still not transparent.

Cheng (2007) explored a model for integrating

TQM and Six Sigma with business strategy. He

concluded that, “Implementing Six Sigma has

become a common theme in organizations of all

sizes, within a TQM infrastructure.”

To summarize, it seems that TQM and its

derivatives are fitting into management infrastructure.

However, it is important for quality proponents that

TQM is not the only thing. TQM will continue to

require definition and structural development based

on scientific foundations. Most recent of these has

come from the Six Sigma movement, and more

recently from Lean Six Sigma. Transformational

leadership remains a requirement for continued

success.

See

▶Quality Control

▶Reliability of Stochastic Systems
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Traffic Analysis
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Introduction

Traffic analysis has flourished since the 1950s,

stimulated from the need to address the ever-growing

traffic problems of cities around the world. In true

scientific tradition, it has yielded an understanding of

the fundamental characteristics of automobile traffic,

which in turn spawned significant contributions in the

management and optimization of traffic facilities. This

article outlines some of the most important

developments in one area of traffic analysis, that of

traffic flow, including certain associated queueing

phenomena. Aspects of control of traffic networks

that are outside the scope of this article can be found

in Gazis (1992).
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A Kinematical Theory of Traffic Flow

One of the earliest, and most durable, contributions to

the understanding of traffic flowwas given by Lighthill

and Whitham (1955). They viewed the traffic as

a special fluid which obeys some basic laws

consistent with the physical nature of traffic, such as

its unidirectional influence of a vehicle only on the

traffic behind it, the constraints on flow imposed by

human limitations, etc. The Lighthill-Whitham theory

is based on two basic postulates:

1. Traffic is conserved, in the sense that traffic units by

and large are neither created nor annihilated; and

2. There is a fundamental relationship between traffic

flow and traffic density, resulting from the physical

characteristics of the traffic system.

The first postulate is expressed in the relationship

@k

@t
þ @q

@x
¼ 0 (1)

where q is the traffic flow in vehicles per unit of time t,

k is the density of traffic in vehicles per unit of distance

x, and v is the (average) speed of the traffic fluid. The

second postulate is expressed by the relationship

q ¼ f ðkÞ

between flow q and density k such as that shown in

Fig. 1. At zero density, there is zero flow. The flow is

also zero at some jam density, kj, because traffic grinds

to a halt as vehicles are packed bumper to bumper.

Between these two extremes, traffic flow builds up to

a maximum and then decreases down to zero.

A number of interesting properties of traffic can be

described on the basis of these two postulates. They

relate to observable phenomena such as wave

propagation, i.e., the movement along the traffic

stream of a transition point corresponding to a change

in traffic characteristics, the queueing caused by an

obstruction of the traffic movement, etc.

Wave Propagation — Traffic moving at

a steady-state flow rate q1 and density k1 may shift to

a different flow rate q2, and a corresponding density k2,

by a change in roadway quality, obstruction, or other

external influence. When this happens, vehicles

situated in a transition region undergo maneuvers

adjusting their speed and inter-vehicle spacing, and

this transition region generally moves either forward

or backward in space depending on the nature of the

change. The adjustments of speed and spacing are

gradual, but for the purpose of deriving the

characteristics of wave propagation may be assumed

abrupt as suggested by Lighthill and Whitham (1955).

This assumption leads to the conclusion that a change

from one steady-state flow condition to another is

associated with a “shock wave,” an expression that

pervades the traffic engineering literature.

The shock wave marks the transition from one speed

to another, and moves always backwards with respect to

the traffic stream, since vehicles exert an influence only

on vehicles behind them. (The influence of an occasional

tailgating vehicle pushing the vehicle in front is ignored

as an unimportant aberration). The speed of movement

of the shock wave along a roadway, may be obtained on

the basis of Eq. (1), and is given by

u ¼ q1 � q2

k1 � k2
(3)

It should be pointed out that the result given in

Eq. (3) depends only on the postulate of conservation

of traffic, and is totally independent of any specific

relationship between flow and concentration, or even

on the existence of such a relationship. It results

from kinematical considerations shown in Fig. 2.

The transition from one steady state flow situation

to another results in a propagation of the change of

the corresponding speed along the roadway. The

phase velocity of this propagation depends only on

the values of the initial and final pairs of flow, q, and

A

D

C

O

B

Concentration, K

F
lo

w
 q

C�

Traffic Analysis, Fig. 1 Flow vs. concentration relationship

Traffic Analysis 1565 T

T



concentration, k, and is given by Eq. (3). If, in addition,

a relationship between flow and concentration is

assumed (Fig. 1), different domains of traffic quality,

and corresponding characteristics of wave propagation,

can be defined as follows:

1. The range from zero flow at zero density to

maximum flow (Section OA, Fig. 1) corresponds

to relatively uncongested traffic flow. A small

increase in density in this domain moves forward

along the roadway;

2. The range from maximum flow to zero flow at “jam

density” (Section AB, Fig. 1) corresponds to

relatively congested, stop-and-go traffic. A small

increase of density in this domain moves

backwards along the roadway; and

3. Any transition from one steady state flow to another

(as from point C to point D, Fig. 1) is associated

with a wave propagation given by the slope of

segment CD.

Queueing — Queueing may be caused by

a reduction in roadway capacity at a fixed point on

the roadway, or by an obstruction causing traffic to

shift from the uncongested to the congested branches

of the (q, k) curve, even without reduction in flow rate,

(line CC0 in Fig. 1). The rate of growth of the queue can
be estimated using the same methodology described

above. For example, a total obstruction of flow q and

density k causes a queue formation, with the tail-end of

the queue moving backwards along the roadway with

speed equal to

u ¼ q

kj � k
(4)

Additional results from the kinematic treatment of

traffic—An extensive literature exists on applications

of the Lighthill-Whitham model to various traffic

phenomena. A word of caution is appropriate with

regard to such applications. The Lighthill-Whitham

model describes well only transitions from one steady

state to another. Any attempt to apply the model to

a sequence of traffic maneuvers that do not allow

enough relaxation time between changes of speeds

violates the basic spirit of the model.

An interesting extension of the above kinematical

treatment of traffic was applied by Gazis and Herman

(1992) for the treatment of a moving obstruction such as

that caused by a vehicle moving more slowly than the

other vehicles in the traffic stream. The character of this

“ moving bottleneck” is different from that of a fixed

bottleneck, and the Gazis-Herman treatment derives the

characteristic queueing behavior associated with it.

Gazis and Herman obtain a description of the

queueing caused by a slow vehicle on a two-lane

highway. Both lanes are affected by such a vehicle,

one by direct trapping of vehicles behind the slow one,

and the other by interference from vehicles escaping

from the queue behind this vehicle. The result is that

queueing takes place in both lanes in the vicinity of the

slow vehicle, with the affected vehicles moving at an

average speed only marginally higher than that of the

slow one, until they come abreast of this slow vehicle

and are able to escape at their normal speed. Gazis and

Herman also propose an explanation of the phenomenon

of a phantom bottleneck, the seemingly unexplainable

regions of congestion that drivers often traverse. Some

of them may be caused by a moving bottleneck caused

by a vehicle that slows down temporarily and then

resumes its normal speed; for example, a heavily

loaded truck temporarily slowing down along an uphill

portion of the roadway. The Gazis-Herman treatment

provides a rational way of estimating the minimum

allowable speed on a highway, which would not affect

its throughput.

A Boltzmann-like Model of Traffic Flow

In 1959, Prigogine suggested a model of traffic flow

founded on statistical mechanics, analogous to the

Boltzmann model of gases (Prigogine 1961). The

Prigogine model was subsequently developed

extensively by Herman, Prigogine and their

S
p
a
ce

Time

v =

T =

q1 - q2

s1 - s2

v1 - v2

v2

v1

v

T

s2

2

1

s1

1/q1

1/q2

k1 - k2

Traffic Analysis, Fig. 2 Transition from one steady-state-flow
situation to another
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collaborators (Prigogine, Herman and Anderson 1962,

1965; Prigogine and Herman 1971). They considered

a stream of traffic as an ensemble of units associated

with certain statistical properties. In particular,

a vehicle was associated with a desired speed which

it would follow as long as it was not constrained by

another vehicle in front with a lower desired speed.

Thus, traffic is described in terms of a probability

density for the speed, v, of an individual car, f(x, v, t).

This density may vary as a function of time, t, and

a coordinate x along the highway. The basic equation

for this function f is assumed to be

@f

@t
þ u

@f

@x
¼ @f

@t

� �

relaxation

þ @f

@t

� �

interaction

(5)

The first term of the righthand side of Eq. (5) is

a consequence of the fact that f(x, v, t) differs from

some desired speed distribution f 0(v). A car tries to

“relax” to its desired speed as soon as it finds an

opportunity to do so. The second term of the

righthand side corresponds to the slowing down of

a fast vehicle by a slow one. True to his tradition as

a leading expert in statistical mechanics, Prigogine

frequently referred to this second term as the

collision term — a rather unsettling choice of words

in this context!

The form for these two terms was chosen for

mathematical convenience and plausibility, leading to

the equation

@f

@t
þ u

@f

@x
¼ f � f0

t
þ ð1� pÞkðV � uÞf (6)

where t is a characteristic relaxation time, p is the

probability of a car’s passing another car, and V is the

average speed of the stream of traffic. The second term

of the right-hand side of Eq. (6) corresponds to the

interaction term, and tends to zero at very light traffic

concentration when the probability of passing is close

to unity, in which case the relaxation term is dominant.

If, in addition, a highway with constant properties

along its length is assumed, then ∂ f/∂ x ¼ 0 and the

solution of Eq. (6) is

f ðu; tÞ ¼ f 0ðuÞ þ f ðu; 0Þ � f 0ðuÞ
� �

e�t=t (7)

If interested only in solutions of Eq. (6) that are

independent of time and space, then the lefthand side

of this equation is zero. The equation may then be

solved to yield an equation of state whose general

form, for small values of the concentration,

corresponds to an approximately linear increase of

flow with concentration, e.g.,

q ¼ V0k (8)

where V0 is the average of the desired speed. As k

increases, the flow q falls below the straight line (8)

due to the increasing influence of interactions.

In the range of high concentrations, q is independent

of f 0 and depends only on t and p, according to the

equation

q ¼ 1

tð1� pÞ : (9)

The complete solution of Eq. (6) for steady-state

flow, independent of time and space, is shown in Fig. 3.

For any given f 0, the flow q rises with k, reaches

a maximum, and then decreases until it intersects

a curve corresponding to Eq. (9). This curve may be

viewed as a universal curve of collective flow,

characterized by high densities and very little

passing. One very realistic feature of this theory is

the fact that it predicts probable stoppage of

some vehicles in the domain of collective flow,

in agreement with the common experience of

stop-and-go traffic at high concentrations.

It is appropriate to make an observation

concerning the linkage of the Herman-Prigogine and

Lighthill-Whitham theories in the range of very high

densities. Since traffic at those densities is of

a stop-and-go nature, it is not really steady-state

traffic in the sense of being associated with constant

speed and density. Rather, it is associated with

alternating states of following slow platoons and

escaping from them. Given this fact, it becomes clear

that one should not try to apply the Lighthill-Whitham

method in describing shock waves and wave

propagation involving transitions into this domain of

traffic movement, since the L-W theory describes well

only clean transitions between two steady-state

situations.

Herman and Prigogine (1979), together with several

collaborators, went on to use the results of their model

to develop a two-fluid approach to town traffic. This

approach postulates that traffic in towns is a mixture of

Traffic Analysis 1567 T
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two fluids, one that moves and one that is stopped. Any

individual vehicle traverses a network in a stop-and-go

fashion, moving part of the time and being stopped part

of the time. The quality of service in a particular urban

network can be described in terms of two parameters

that can be determined by circulating a test vehicle

through the network and measuring the percentages

of time during which the vehicle is moving, or is

being stopped. Thus the two-fluid model yields

a simple description of the system-wide traffic quality

in congested urban networks. It allows comparison

between different urban networks, and it offers the

potential of identifying important elements of the

network, related to its geometry or control features,

which may be targeted for improvement of the service

quality.

A Car-following Theory of Traffic Flow

Reuschel (1950) and Pipes (1953) proposed models to

describe the detailed motion of cars proceeding close

together in a single lane. This microscopic,

car-following theory of traffic flow was extensively

developed by Herman et al. (1959). The theory is

based on the fact that when drivers do not have the

freedom to pass a vehicle in front, they follow it in

a way that is controlled by the overriding need to avoid

coinciding with the leader in space and time. In trying

to achieve this reasonable objective, drivers react to

a limited set of inputs. The postulate of the

car-following theory, confirmed by experiments, was

that drivers reacted mostly to the relative speed

between their car and that of the one in front.

Experiments showed a high correlation between the

acceleration of a car and its speed relative to that of

a leader, after a time-lag of the order of 1 second. This

led to the linear car-following model

d2xnðtþ TÞ
dt2

¼ l
dxn�1ðtÞ

dt
� dxnðtÞ

dt

� �

(10)

in which n denotes the position of a car in a line of cars

(a platoon), l is a constant gain factor, T is the reaction

time-lag, and xn is the position of the nth car on the

highway.

This model was used to investigate the stability of

a traffic platoon when a perturbation in its movement is

introduced. The movement of the platoon is said to be

locally stable if the amplitude of a perturbation, for any

given car in the platoon, decreases in time. It is

asymptotically stable if the amplitude of the

perturbation decreases as it propagates upstream. The

value of the product l T is the determinant of stability

or instability, local or asymptotic. When l T < 1/e,

a perturbation is damped exponentially as it is passed

on to the following car, signifying a very stable

situation. For l T between the values of 1/e and p/2,

the perturbation produces oscillations of decreasing

amplitude between pairs of cars, signifying still

a locally stable situation. For l T > p/2,

a perturbation produces oscillations of increasing

amplitude, signifying a locally unstable situation.

With regard to asymptotic stability, the dividing

line is at l T ¼ 1/2. For values of l T below 1/2, the

amplitude of a perturbation decreases as it propagates

backwards; for values of l T greater than 1/2, it

increases. This means that between 1/e(	0.368) and

1/2 is a situation that is locally stable but

asymptotically unstable. Any pair of cars in a platoon

is able to absorb a perturbation, but it amplifies it as it

passes it backwards, until the perturbation is so large

that it causes a collision.

The linear car-following model may be satisfactory

in describing fluctuations around a steady-state,

constant speed situation. It cannot be expected to

describe equally well transitions from one steady

state to another involving large changes of speed. For

this reason, Gazis et al. (1961) proposed a nonlinear

model in which the gain factor is not constant but

depends on the speed of the follower and the relative

spacing between leader and follower according to the

relationship

F
lo

w
 q

Transition Point

Collective Flow

Individual Flow

Concentration, k

Traffic Analysis, Fig. 3 Flow vs. concentration relationship
according to the Boltzmann-like model of traffic flow
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l ¼ unðtþ TÞ½ �t
xnþ1ðtÞ � xnðtÞ½ �m (11)

where c is a constant, v ¼ dx/dt is the speed, and (l, m)

are integer exponents identifying particular nonlinear

models.

Various values of pairs (l, m) were used to define

car-following models and investigate their predictions

concerning transitions between one steady-state flow

situation and another. Integrating over time Eq. (10),

with l described by Eq. (11), leads to the functional

relationship between changes of speed and

concentration. Together with appropriate boundary

conditions, for example the condition of zero speed at

jam density, bumper-to-bumper concentration, one can

then obtain a phenomenological relationship between

flow and concentration such as that shown in Fig. 1.

Various pairs (l,m) have been used which yielded quite

plausible relationships, consistent with observations.

The preceding discussion outlines most of the key

contributions in the car-following treatment of traffic

flow. Additional studies have been contributed by

Gazis (1965) within the framework of control

theory to account for physical constraints on the

system, such as limited acceleration or deceleration

capability of cars.

Concluding Remarks

As is the case for every scientific endeavor, much can

be done to improve the theories of traffic analysis. For

example, car-following theories ignore interaction of

cars with other than the car just in front, whereas there

is evidence that drivers are very much conscious of

happenings several cars in front of them, and this

consciousness tends to improve the stability

of traffic. Another observation that must be made

about virtually all traffic models described here is

that they effectively correspond to flat, straight,

and infinitely long highways. It is clear that the

geometry of highways, including curves and

inclination, has a strong effect on the behavior of

traffic. A systematic study of such effects would

greatly advance understanding of traffic movement,

and produce necessary tools for future improvements

in traffic management.

The analytical description of traffic flow has already

had a profound influence on traffic engineering

practice, and the advent of activities in the area of

Intelligent Transportation Systems (ITS) points to an

increasing reliance on analytical investigations of

traffic systems toward improvement of their

operation. One needs an improved understanding, and

an improved analytical description of traffic

phenomena, such as the onset of congestion,

queueing, and inter-vehicle signal propagation, in

order to create the theoretical under-pinning toward

the use of high technology for the improvement of

traffic systems, which is the central thrust of ITS.

Some improvement will come from direct application

of analytical results. For example, the development of

automatic highways will undoubtedly draw from

knowledge based on car-following models. Other

improvements may come from the improved

understanding of traffic phenomena that traffic

analysis provides, leading to improved heuristic

schemes for the control and optimization of traffic

systems.

See

▶Network Optimization

▶Networks of Queues

▶Queueing Theory

▶ Simulation of Stochastic Discrete-Event Systems
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Traffic Equations

In a queueing network, the set of linear equations that

results from balancing flow into each node with the

flow out. These traffic equations are derived by

recognizing that the total input seen at a node comes

from summing the flow of new arrivals from outside

the network with the flow of arrivals that are due to

departures from service completions at nodes within

the network:

li ¼ gi þ
X

j

ljrij

where li is the total input flow rate seen at node i, gi is

the external input rate to node i, rij is the probability

that a service completion at node i is routed to node j,

and the summation is taken over all nodes in the

network.

See

▶Conservation of Flow

▶Networks of Queues

▶Queueing Theory
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Traffic Intensity

The average load offered to each server in a queueing

system.

See

▶Offered Load

▶Queueing Theory

Traffic Process

A stochastic point or marked point process

representing the flow of customers on the arcs of

a queueing network. Marks represent some aspect of

the customer or the state of the network and the points

represent the epoch of the event.

See

▶Arrival Process

▶Departure Process

▶ Input Process

▶Networks of Queues

▶Output Process

Transfer Function

▶Time Series Analysis

Transient Analysis

The time-dependent solution of a stochastic system

(such as a queueing network), as contrasted with

a steady-state solution.

See

▶Queueing Theory

Transition Function

A function describing the transition probabilities of

a Markov process {X(t), t 2 T} into a subset A of the

state space as p(s, x; t, A) ¼ Pr{X(t) 2 A|X(s) ¼ x},

for state x and times s < t in the time domain T.

See

▶Markov Chains

▶Markov Processes

Transition Matrix

The matrix of (single-step) stationary transition

probabilities of a Markov chain {Xn}, P ¼ [pij],

where pij ¼ Pr{Xn+1 ¼ j|Xn ¼ i} is the conditional

probability that the chain moves to state j from state i

in one step.

See

▶Markov Chains

▶Markov Processes

Transition Probabilities

The conditional probabilities describing the movement

from state to state of a Markov process {X(t), t 2 T}.

In general, the transition probabilities are written as

Pr{X(t) 2 A|X(s) ¼ x} for times s < t in the time

domain T and state x and event (set) A in the state

space. For a homogeneous discrete-time Markov

chain (DTMC) {Xn, n 
 0}, the stationary transition

probabilities are Pr{Xn+1 ¼ j|Xn ¼ i} ¼ pij, for states

i and j in the space state.

See

▶Markov Chains

▶Markov Processes
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Transportation Problem

A linear-programming problem of the following form

is called a transportation problem:

Minimize
X

i

X

j

cijxij

subject to

X

j

xij ¼ aj i ¼ 1; . . . ; m ðorigins=supplyÞ
X

i

xij ¼ bj j ¼ 1; . . . ; n ðdestinations=demandÞ

xij 
 0:

The variables {xij} represent a shipment of

a homogeneous product from origin i to destination j,

where the {ai} are the amounts of the product to

be shipped from the origins i, and the {bj} are the

amounts demanded by the destinations j. The form

presented here assumes
P

i ai ¼
P

j bj, but the

problem can also be formulated with the origin

constraints as 
 inequalities and the destination

constraints as � inequalities, without the restriction

that the total supply equal the total demand. It can be

shown that if the {ai} and {bj} are integers, than an

optimal basic feasible solution exists that is all integer.

The transportation problem is a special network

problem whose network representation is called

a bipartite graph. The special case with m ¼ n and all

{ai} and {bj} equal to 1 is the assignment problem.

A transportation problem can be solved by direct

application of the simplex method, but due to its

mathematical structure, the problem can be solved by

an efficient modification of the simplex method called

the transportation (primal-dual) simplex method. It can

also be solved by specialized network algorithms.

See

▶Assignment Problem

▶Network Optimization

▶Northwest-Corner Solution

▶Transportation Simplex (Primal-Dual) Method

▶Unbalanced Transportation Problem

Transportation Problem Paradox

Some transportation problems exhibit the paradox that

an optimal solution can be improved if the total amount

of units shipped is more than the total amount shipped

by the optimal solution. In other words, one can ship

more for less.

Transportation Simplex (Primal-Dual)
Method

The dual problem to the primal equation form of the

transportation problem can be stated as follows:

Maximize
X

i

aiui þ
X

j

bjvj

subject to

ui þ vj � cij for all i; jð Þ:

Here the (m + n) set of dual variables ui and vj are

unrestricted (free) variables. Note that the primal has

a redundant equation due to the equality of the total

supply and demand. Thus, a feasible basis matrix to the

transportation problem is of dimension (m + n � 1) �

(m + n � 1). It can be shown that any feasible basis

matrix can be arranged into a triangular form. For

a given basis, the simplex method requires that the

corresponding dual constraints must hold at equality,

i.e., ui + vj ¼ cij for all variables xij in the basis. This

(m + n � 1) � (m + n) set of dual equations can be

reduced to an (m + n � 1) � (m + n � 1) system by

arbitrarily setting one of the dual variables, say u1 ¼ 0.

This corresponds to removing, as a redundant

constraint, the first equation of the transportation

problem. The resulting dual square set of equations

also has a triangular form that allows for the efficient

calculation of the {ui} and {vj} that correspond to the

current basic solution. These values of ui and vj are

used to calculate the (ui + vj) terms for the nonbasic
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variables, and if each one is less than or equal to its

corresponding cij, then by duality theory and

complementary slackness, the current basis is

optimal. If the latter condition does not hold, the usual

simplex criterion is used to select a variable to enter the

basis and a new basic feasible solution is generated by

simple adjustments to the flows in the network that

describe the current basic feasible solution. This

network is a tree that connects all origins and

destinations, and the addition of the new variable (or

arc to the tree) enables the new solution to be calculated

readily. This primal-dual process is repeated until an

optimal solution is found. Such a solution exists because

the transportation problem always has feasible solutions

and the solution set is bounded.

See

▶Network Optimization

▶Transportation Problem

Transposition Theorems

Transposition theorems deal with disjoint alternatives

of solvability of linear systems. For example,

Stiemke’s transposition theorem is the following:

For a matrix A 6¼ 0, the following statements are

equivalent: (1) Ax ¼ 0, x > 0, has no solution, and

(2) mA � 0, mA 6¼ 0 has a solution.

See

▶ Farkas’ Lemma

▶Gordan’s Theorem

▶ Strong Duality Theorem

▶Theorem of Alternatives

Transshipment Problem

▶Minimum-Cost Network-Flow Problem

▶Network Optimization
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Introduction

The traveling salesman problem (TSP) has

commanded much attention from mathematicians and

computer scientists specifically because it is so easy to

describe and so difficult to solve. The problem can

simply be stated as: if a traveling salesman wishes to

visit exactly once each of a list of m cities (where the

cost of traveling from city i to city j is cij) and then

return to the home city, what is the least costly route

the traveling salesman can take? A complete historical

development of this and related problems can be found

in Hoffman andWolfe (1985), Applegate et al. (2006),

and Cook (2011).

The importance of the TSP is that it is representative

of a larger class of problems known as combinatorial

optimization problems. The TSP problem belongs in

the class of such problems known as NP-complete.

Specifically, if one can find an efficient (i.e.,

polynomial-time) algorithm for the traveling

salesman problem, then efficient algorithms could be

found for all other problems in the NP-complete class.

To date, however, no one has found a polynomial-time

algorithm for the TSP. Does that mean that it is

impossible to solve any large instances of such

problems? To the contrary, nowadays many practical

optimization problems of truly large scale are solved to

optimality routinely. From 1992 to 2006, Concorde,

a software created by D. Applegate, R.E. Bixby,

V. Chvátal, and W.J. Cook (Applegate et al. 1995,

2006), solved (among many others) a traveling

salesman problem that models the production of

printed circuit boards having 7,397 holes (cities),

a problem over the 13,509 largest cities in the U.S.,

one over the 24,978 cities of Sweden, and, finally,

a 85,900 city problem arising from a VLSI
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application. So, although the question of what it is that

makes a problem difficult may remain open, the

computational record of specific instances of TSP

problems coming from practical applications is

optimistic.

How are such problems tackled? Obviously, one

cannot consider a brute-force approach. For example,

for a 16-city traveling salesman problem, there are

653,837,184,000 distinct routes that would need to be

evaluated. Rather than enumerating all possibilities,

successful algorithms for solving the TSP problem

eliminate most of the routes without ever explicitly

considering them.

Formulations

The first step to solving instances of large TSPs must

be to find a good mathematical formulation of the

problem. In the case of the traveling salesman

problem, the mathematical structure is a graph where

each city is denoted by a point (or node) and lines are

drawn connecting every two nodes (called arcs

or edges). Associated with every line is a distance

(or cost). When the salesman can get from every city

to every other city directly, then the graph is said to be

complete. A round-trip (route) of the cities

corresponds to some subset of the lines, and is called

a tour or a Hamiltonian cycle in graph theory. The

length of a tour is the sum of the lengths of the lines

in the round-trip.

Depending upon whether or not the direction in

which an edge of the graph is traversed matters, one

distinguishes the asymmetric from the symmetric

traveling salesman problem. To formulate the

asymmetric TSP on m cities, one introduces zero-one

variables

xij ¼
1 if the edge i! j is in the tour

0 otherwise

(

and, given the fact that every node of the graph must

have exactly one edge pointing towards it and one

pointing away from it, one obtains the classic

assignment problem. These constraints alone are not

enough since this formulation would allow subtours,

i.e., it would allow disjoint loops to occur. For this

reason, a proper formulation of the asymmetric

traveling salesman problem must remove these

subtours from consideration by the addition of

subtour-elimination constraints. The problem then

becomes

min
Xm

j¼1

Xm

i¼1
cijxij

s:t:
Xm

j¼1
xij ¼ 1 for i ¼ 1; : : :; m

Xm

j¼1
xij ¼ 1 for j ¼ 1; : : :; m

X

i 2K

X

j 2K
xij � Kj j� 1 for allK � 1; : : :;mf g

where K is any nonempty proper subset of the cities

1, . . .,m. The cost cij is allowed to be different from the

cost cji. Note that there are m(m � 1) 0–1 variables in

this formulation.

To formulate the symmetric traveling salesman

problem, one notes that the direction traversed is

immaterial, so that cij ¼ cji. Since direction does not

now matter, one can consider the graph where there is

only one arc (undirected) between every two nodes.

Thus, let xj ∈ {0,1} be the decision variable where j

runs through all edges E of the undirected graph and cj
is the cost of traveling that edge. To find a tour in this

graph, one must select a subset of edges such that every

node is contained in exactly two of the edges selected.

Thus, the problem can be formulated as a 2-matching

problem in a graph having m(m � 1)/2 0–1 variables,

that is, half of the number of the previous formulation.

As in the asymmetric case, subtours must be

eliminated through subtour elimination constraints.

The problem can therefore be formulated as

min 1=2ð Þ
Xm

j ¼1

X

k 2 JðjÞ

ckxk

s:t:
X

k 2 JðjÞ

xk ¼ 2 for all j ¼ 1; : : :;m

X

j 2 EðKÞ

xj � Kj j � 1 for all K � 1; : : :;mf g

xj ¼ 0 or 1 for all j 2 E;

where J(j) is the set of all undirected edges connected

to node j and E(K) is the subset of all undirected edges
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connecting the cities in any proper, nonempty subset K

of all cities. Of course, the symmetric problem is

a special case of the asymmetric one, but practical

experience has shown that algorithms for the

asymmetric problem perform, in general, badly on

symmetric problems. Thus, the latter need a special

formulation and solution treatment. In addition, as an

ATSP instance can be easily turned into a symmetric

one with twice the number of nodes, any algorithm for

STSP can be used to solve an ATSP.

Algorithms

Exact approaches to solving such problems require

algorithms that generate both a lower bound and an

upper bound on the true minimum value of the problem

instance. Any round-trip tour that goes through every

city exactly once is a feasible solution with a given cost

that cannot be smaller than the minimum cost tour.

Algorithms that construct feasible solutions, and thus

upper bounds for the optimum value, are called

heuristics. These solution strategies produce answers

but often without any quality guarantee as to how far

off they may be from the optimal answer. Heuristic

algorithms that find a feasible solution in a single

attempt are called constructive heuristics, while

algorithms that iteratively modify and try to improve

some given starting solution are called improvement

heuristics. When the solution one obtains is dependent

on the initial starting point of the algorithm, the same

algorithm can be used multiple times from various

(random) starting points. Often, if one needs

a solution quickly, one may settle for a well-designed

heuristic algorithm that has been shown empirically to

find near-optimal tours to many TSP problems.

Research by Golden and Stewart (1985), J€unger,

Reinelt and Rinaldi (1994), Johnson and McGeoch

(2002), and Applegate et al. (2006) describes

algorithms that find solutions to extremely large TSPs

(problems with hundreds of thousands, or even

millions of variables) to within 1 or 2% of optimality

in very reasonable times. The heuristic algorithm of

Lin and Kernighan appears so far to be the most

effective in term of solution quality, in particular

with the variant proposed by Helsgaun (2000), which

was able to find, for the first time, the optimal solution

(although without a quality guarantee) of several

instances of TSPLIB, a well known library of TSP

problems described in Reinelt (1991). For genetic

algorithmic approaches to the TSP, see Potvin

(1996); for simulated annealing approaches see Aarts,

Korst and Laarhoven (1988); for neural net

approaches, see Potvin (1993); for tabu search

approaches, see Fiechter (1990); and for a very

effective evolutionary algorithm, see Nagata (2006).

Probabilistic analysis of heuristics are discussed in

Karp and Steele (1985); performance guarantees for

heuristics are given in Johnson and Papadimitriou

(1985) and Arora (2002), where an amazing result

concerning the polynomial-time approximability is

described for Euclidean TSP instances (where the

nodes are points in the plane and the traveling costs

are the Euclidean distances between the points).

For an analysis of the heuristics for the ATSP, see

Johnson et al. (2002).

In order to know about the closeness of the upper

bound to the optimum value, one must also know

a lower bound on the optimum value. If the upper

and lower bound coincide, a proof of optimality is

achieved. If not, a conservative estimate of the true

relative error of the upper bound is provided by the

difference of the upper and the lower bound divided by

the lower bound. Thus, one needs both upper and lower

bounding techniques to find provably optimal

solutions to hard combinatorial problems or even to

obtain solutions meeting a quality guarantee.

So how does one obtain and improve the lower

bound? A relaxation of an optimization problem is

another optimization problem whose set of feasible

solutions properly contains all feasible solution of the

original problem and whose objective function value is

less than or equal to the true objective function value

for points feasible to the original problem. Thus, the

true problem is replaced by one with a larger feasible

region but that is more easily solvable. This relaxation

is continually refined so as to tighten the feasible

region so that it more closely represents the true

problem. The standard technique for obtaining lower

bounds on the TSP problem is to use a relaxation that is

easier to solve than the original problem. These

relaxations can have either discrete or continuous

feasible sets. Several relaxations have been

considered for the TSP. Among them are the n-path

relaxation, the assignment relaxation, the 2-matching

relaxation, the 1-tree relaxation, and the linear

programming relaxation. For randomly generated

asymmetric TSPs, problems having up to 7,500 cities
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have been solved, in the early 1990s, using an

assignment relaxation which adds subtours within

a branch and bound framework and which uses an

upper bounding heuristic based on subtour patching,

(Miller and Pekny 1991). For the symmetric TSP, the

1-tree relaxation and the 2-matching relaxations have

been most successful. These relaxations have been

embedded into a branch-and-bound framework.

The process of finding constraints that are violated

by a given relaxation is called a cutting plane technique

and all successes for large TSP problems have used

cutting planes to continuously tighten the formulation

of the problem. To obtain a tight relaxation the

inequalities utilized as cutting planes in many

computational approaches to the TSP are often

facet-defining inequalities.

One of the simplest classes of cuts that have been

shown to define facets of the underlying TSP polytope

is the subtour elimination cut. Besides these

constraints, comb inequalities, clique tree

inequalities, path, wheelbarrow and bicycle

inequalities, ladder, crown, domino and many other

inequalities have also been shown to define facets of

this polytope. The underlying theory of facet

generation for the symmetric traveling salesman

problem is provided in Grötschel and Padberg (1985),

J€unger, Reinelt and Rinaldi (1994) andNaddef (2002);

analogous results for the ATSP polytope are provided

in Balas and Fischetti (2002). The algorithmic

descriptions of how these inequalities are used in

cutting plane approaches are discussed in Padberg

and Rinaldi (1991), in J€unger, Reinelt and Rinaldi

(1994), and in Applegate et al. (2006) where it is also

shown how the polynomial-time equivalence between

optimization and separation can be turned into

a powerful algorithmic tool to generate inequalities

not necessarily belonging to one of the known types.

Cutting plane procedures can then be embedded

into a tree search in an algorithmic framework

referred to as branch and cut and proposed in Padberg

and Rinaldi (1991), where it is shown how such

approach made it possible to solve some still

unsolved instances of sizes up to 2,392 nodes. Some

of the largest TSP problems solved have used parallel

processing to assist in the search for optimality. This is

the case of the software Concorde, where all the known

algorithmic ideas for the TSP (and many new ones)

have been carefully implemented. With this code,

Applegate et al. (2006) managed to solve all

problems of the TSPLIB to optimality; for the largest

one, of 85,900 nodes, they used 96 workstations for

a total of 139 years of CPU time.

As understanding of the underlying mathematical

structure of the TSP problem improves, and with the

continuing advancement in computer technology, it is

likely that many difficult and important combinatorial

optimization problems will be solved using

a combination of cutting plane generation

procedures, heuristics, variable fixing through

logical implications and reduced costs, and tree

search.

Applications

One might ask, however, whether the TSP problem is

important enough to have received all of the

attention it has. Much of the attention that the

problem has received is because it is a relatively

simple problem to describe and yet a difficult (from

a complexity viewpoint) optimization problem to

solve. However, there are important cases of

practical problems that can be formulated as TSP

problems and many other problems are

generalizations of this problem. Besides the drilling

of printed circuits boards described above, problems

having the TSP structure occur in the analysis of the

structure of crystals (Bland and Shallcross 1987), in

the overhauling of gas turbine engines (Pante et al.

1987), in material handling in a warehouse (Ratliff

and Rosenthal 1981), in cutting stock problems

(Garfinkel, 1977), in the clustering of data arrays

(Lenstra and Rinooy Kan 1975), in the sequencing

of jobs on a single machine (Gilmore and Gomory

1964), in the assignment of routes for planes of

a specified fleet (Boland et al. 1994) and in genome

sequencing (Ben-Dor and Chor 1997; Ben-Dor et al.

2000). Related variations on the traveling salesman

problem include the resource-constrained traveling

salesman problem, which has applications in

scheduling with an aggregate deadline (Pekny and

Miller 1991). This paper also shows how the prize

collecting traveling salesman problem (Balas 2002)

and the orienteering problem (Golden et al. 1987;

Fischetti et al. 2002) are special cases of the resource

constrained TSP. Most importantly, the traveling

salesman problem often comes up as a subproblem

in more complex combinatorial problems, perhaps
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the best-known application being the vehicle routing

problem. This is the problem of determining for

a fleet of vehicles which customers should be

served by each vehicle and in what order each

vehicle should visit the customers assigned to it.

For relevant surveys, see Christofides (1985),

Fisher (1987), and the book The Vehicle Routing

Problem, edited by Toth and Vigo (2001).

Concluding Remarks

The seminal paper on the TSP is Dantzig, Fulkerson

and Johnson (1954). Books by Lawler et al. (1985),

Reinelt (1994) and Gutin and Punnen (2002), and the

survey and annotated bibliography by J€unger, Reinelt

and Rinaldi (1994, 1997), summarize most of the

research up through 2002 and provide extensive

references. For a deep understanding of how

algorithms for TSP work, see the book by Applegate

et al. (2006), which besides providing a wide

overview on TSP history and on its applications,

also gives a detailed description of how all the

components of the Concorde software are built:

a valuable source for algorithm designers. Finally,

the book by Cook (2011) is for a more general

audience, requiring almost no mathematical

background to read, but very nicely and completely

describing the TSP from several interesting

viewpoints. The computer program Concorde, the

TSPLIB, and many other sources of information on

the TSP are available electronically at a Web site that

can be easily located through Web search.

See

▶Assignment Problem

▶Branch and Bound

▶Chinese Postman Problem

▶ Integer and Combinatorial Optimization

▶Combinatorics

▶Computational Complexity

▶Graph Theory

▶Heuristics

▶Linear Programming

▶Network

▶NP, NP-Complete, NP-Hard

▶Tabu Search
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Tree

In a network, a tree is a subnetwork (graph) that has no

cycles and connects all nodes of a subnetwork, that is,

a unique path exists between each node. A tree that

connects all n nodes of a network is called a spanning

tree and has (n � 1) arcs.

See

▶Minimum Spanning Tree Problem

▶Network Optimization

Triangular Matrix

AsquarematrixA ¼ (aij) such that either all the elements

aij above the diagonal are 0 or all the elements below the

diagonal are 0. The former is called a lower triangular

matrix and the latter an upper triangular matrix.

Trim Problem

Problem of determining how rolls or sheets of

material should be cut to minimize the amount of

wasted material (trim) while meeting the demand

for different sizes of cuts. The problem originally

arose in the context of cutting large rolls of

newsprint into desired smaller sizes. The trim

problem can be formulated and solved as a linear or

T 1578 Tree

http://dx.doi.org/10.1007/978-1-4419-1153-7_200467
http://dx.doi.org/10.1007/978-1-4419-1153-7_664


integer program. It was the problem that motivated

column generation procedures.

See

▶Column Generation

▶Cutting Stock Problems

Trivial Solution

For the homogeneous linear equations Ax ¼ 0, the

solution x ¼ 0 is called a trivial solution.

See

▶Nontrivial Solution

▶Null Space

Truck Dispatching

The dynamic assignment of trucks (drivers) to loads

and/or customers.

See

▶Logistics and Supply Chain Management

▶Vehicle Routing

Truckload (TL) Shipment

A shipment weighing at least the minimum weight to

qualify for a TL-size rate reduction.

See

▶Logistics and Supply Chain Management

TS

▶Tabu Search

TSP

▶Traveling Salesman Problem

Tucker Tableau

A reduced simplex tableau of a linear-programming

problem that considers the tableau as representation of

both the primal and dual problems.

Two-Phase Simplex Method

Any version of the simplex method that requires the

finding of a first basic feasible solution using artificial

variables (Phase I) and then the finding of an optimal

feasible solution (Phase II).

See

▶Artificial Variables

▶ Phase I Procedure

▶ Phase II Procedure
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U

Unary NP-Complete (NP-Hard)

▶Computational Complexity

Unbalanced Transportation Problem

A transportation problem in which the total amount to

be shipped (supply) is not equal to the total demand.

The unbalanced problem can be stated as a standard

transportation problem by the addition of a fictitious

destination when the supply is greater than the

demand, or by adding a fictitious origin if the demand

is greater than the supply. In the first case, the demand

at the fictitious destination is the difference between

the total supply and total demand, while in the second

case, the supply at the fictitious origin is the difference

between the total demand and total supply.

See

▶Transportation Problem

Unbounded Optimal Solution

A solution to a constrained optimization problem in

which the objective function value can be shown to

increase (or decrease) without bound on the feasible

region. A real-world problem whose mathematical

model exhibits an unbounded optimal solution must

have an incorrect formulation.

Unconstrained Optimization

Ariela Sofer

George Mason University, Fairfax, VA, USA

Introduction

Unconstrained optimization is concerned with finding

the minimizing or maximizing points of a nonlinear

function, where the variables are free to take on any

value. Unconstrained optimization problems occur in

a wide range of applications in science and

engineering. A rich source of unconstrained

optimization problems are data-fitting problems, in

which some model function with unknown parameters

is fitted to data, using some criterion of best fit. This

criterion may be the minimum sum of squared errors, or

the maximum of a likelihood or entropy function.

Unconstrained problems also arise from constrained

optimization problems, since these are often solved by

solving a sequence of unconstrained problems.

In mathematical terms, an unconstrained

minimization problem can be written in the form

minimize f ðxÞ;

where x ¼ ðx1; . . . ; xnÞT is a vector of unrestricted

variables in the n-dimensional space <n. Ideally, one

would like to find a global minimizer of the function,

i.e., a point x� that yields the lowest value of f. Such

a solution satisfies

f ðx�Þ � f ðxÞ for all x:

S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research and Management Science,
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If the inequality above holds strictly, i.e.,

f ðx�Þ < f ðxÞ for all x, then x� is a strict global

minimizer.

In many cases, finding a global minimizer is

extremely difficult. For this reason, most algorithms

attempt only to find a local minimizer of the function,

i.e., a point x� that satisfies f ðx�Þ � f ðxÞ for all x in

some neighborhood of x�. If the objective f is a convex
function (see the next section), a local minimizer will

also be a global minimizer; however, for nonconvex

functions this property does not generally hold.

There is no inherent difference between

minimization problems and maximization problems,

since maximizing f can be accomplished by

minimizing � f and then multiplying the optimal

objective values by � 1. For this reason it is sufficient

to focus only on unconstrained minimization problems.

Background

Much of the research in unconstrained optimization

has focused on functions with continuous derivatives.

Throughout this discussion it is assumed that the

objective function f is twice-continuously

differentiable (i.e., its second partial derivatives exist

and are continuous). The gradient of f at x, denoted by

Hf ðxÞ, is the vector of first partial derivatives

@f ðxÞ=@xj, and the Hessian of f at x, denoted by

H2f ðxÞ, is the matrix of second partial derivatives

@2f ðxÞ=@xi@xj. When f is twice-continuously

differentiable, the Hessian matrix is symmetric.

If there is a single fundamental tool in optimization

of differentiable functions, it is the Taylor series,

which provides an approximation to the function in

a neighborhood of a point. The Taylor series is used

in the derivation of the optimality conditions, in the

development of solution methods and in analysis of

their convergence.

Let �x be a given point, and suppose that p is some

direction in<n. The first-order Taylor series expansion

of f at �x is

f ð�xþ pÞ ¼ f ð�xÞ þ pTHf ð�xÞ þ O pk kð Þ2;

whereOðqÞ indicates a term that goes to zero at least as

fast as q does. Ignoring the last term in the expansion

leads to a linear approximation to f in a neighborhood

of �x; the error will be of order O pk kð Þ2. Similarly, the

second-order Taylor series expansion of f is given by

f ð�xþ pÞ ¼ f ð�xÞ þ pTHf ð�xÞ þ 1
2
pTH2f ð�xÞpþ O pk kð Þ3:

Ignoring the last term in this expansion leads to

a quadratic approximation to f, with an error of order

O pk kð Þ3. This approximation is referred to as the

quadratic model.

The quantity pTHf ð�xÞ is called the directional

derivative of f along p at �x. If it is negative, then p is

termed a direction of descent. A small step e > 0 taken

in such a direction will lead to a point with a lower

objective value: f ð�xþ epÞ < f ð�xÞ. The quantity

pTH2f ð�xÞp is called the curvature of f along p. If the

curvature is positive, the function is locally convex

along the direction p at �x.

Convexity of the objective function is a desirable

property in unconstrained minimization. Geometrically,

it means that the function is locally convex in every

direction. The formal definition does not actually

require the function to be differentiable. A function f is

defined to be convex if it satisfies

f ðaxþ ð1� aÞyÞ � af ðxÞ þ ð1� aÞf ðyÞ

for all 0 � a � 1 and for all x; y. The function is strictly

convex if this inequality is strict (for 0 < a < 1 and

x 6¼ y). A function f is concave if � f is convex.

If f is twice continuously differentiable function, f

is convex if and only if its Hessian H2f ðxÞ is positive
semidefinite for all x. This means that pTH2f ðxÞp � 0

for all p, so the function is locally convex along every

direction p. If the Hessian H2f ðxÞ is positive definite

for all x, then the function f is strictly convex. However

the Hessian of a strictly convex function need not be

positive definite everywhere, as is demonstrated by

f ðxÞ ¼ x4 at the origin x ¼ 0.

Convexity is an attractive property since any local

minimizer of an unconstrained convex function is also a

global minimizer of the function. Furthermore, any local

minimizer of an unconstrained strictly convex function is

also the unique global minimizer of the function.

Optimality Conditions

Using the Taylor series approximation, it is possible to

derive conditions that must be satisfied by a local
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minimizer x� of f . The conditions state that the

function must have zero slope and nonnegative

curvature along any direction at x�, which are

summarized in the necessary conditions. The

first-order necessary condition states that the gradient

at x� must vanish, so that

Hf ðx�Þ ¼ 0:

The second-order necessary condition states the

Hessian must be positive semidefinite, so that

pTH2f ð�xÞp 8p:

(In the case of a local maximizer, the Hessian must

be negative semidefinite).

To illustrate these conditions, consider

the two-dimensional function f ðxÞ ¼ x21 þ x22.

The function attains its minimum at x� ¼ ð0; 0ÞT . The
gradient of f is Hf ðxÞ ¼ ð2x1; 2x2ÞT , and indeed

vanishes at x�; the Hessian at x� is twice the identity

matrix, and hence is positive definite. Thus, the

necessary conditions for a minimizer are satisfied at x�.
A point at which the gradient is equal to zero is

called a stationary point. Although such a point may be

a local minimizer, it may also be a local maximizer, or

neither of the above (in such case it is called a saddle

point). As an example, x� ¼ ð0; 0ÞT is a stationary

point of the functions f1ðxÞ ¼ �x21 � x22 and

f2ðxÞ ¼ x21 � x22; it is a local maximizer of f1, and

a saddle point for f2.

It is possible to develop a condition that guarantees

that a stationary point is a local minimizer. The

second-order sufficiency condition states that if

Hf ðx�Þ ¼ 0; and pTH2f ð�xÞp > 0 8p;

then x� is a strict local minimizer of f .

As an example, consider the quadratic function

f ðxÞ ¼ 1
2
xTQxþ cTx;

where Q is a symmetric invertible matrix. Any

stationary point must satisfy Hf ðxÞ ¼ Qxþ c ¼ 0.

Since Q is invertible there is a unique solution

x� ¼ �Q�1c. The point x� is a strict local (and

global)minimizer of f if Q is positive definite, and

a strict local (and global) maximizer of f if Q is

negative definite. It is a saddle point if Q is indefinite.

Methods

The vast majority of algorithms for unconstrained

minimization are iterative descent methods. At each

iteration, a direction of descent (called the search

direction) is computed at the current solution

estimate xk; a step is then taken from xk alongthe

search direction, to obtain a new point a new point

xkþ1 such that f ðxkþ1Þ < f ðxkÞ. The process is

repeated till some test for convergence is satisfied.

The effectiveness of an algorithm is, of course,

dramatically affected by the choice of the search

direction. A key question, of course, is how to obtain

a good search direction. The underlying idea of most

methods, is to compute a direction that minimizes

some local approximation to the function. Typically,

this local model is obtained from the Taylor series.

In Newton’s method, the search direction at the

current point xk is the vector pk that minimizes the

local quadratic model:

minimize
p

f ðxkÞ þ pTHf ðxkÞ þ pTH2f ðxkÞp:

If the Hessian H2f ðxkÞ is positive definite, the

minimizer of the quadratic model is the solution to

the linear system of equations

H2f ðxkÞp ¼ �Hf ðxkÞ;

known as the Newton equations. The resulting

iteration takes the form

xkþ1 ¼ xk þ pk;

where pk is the solution to the Newton equations.

If the initial point x0 is sufficiently close to a local

minimizer x�, and if H2f ðx�Þ is positive definite, then
under mild conditions the iterates generated by

Newton’s method converge to x�. Furthermore, the

rate of convergence is quadratic. This means that for

large k, the error at an iteration is proportional to the

square of the error in the previous iteration:

xkþ1 � x�k k � g xk � x�k k2

for some positive constant g. Roughly this means that

towards the end, the number of significant digits in the

iterates double at each iteration. The mild conditions
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mentioned are requirements that ensure the Hessian

matrix does not fluctuate wildly. A commonly used

condition is Lipschitz continuity of the Hessian,

namely that

H2f ðxÞ � H2f ðyÞ
�

�

�

� � L x�ykk

for all x and y in <n and some finite constant L.

The rapid convergence of Newton’s method near

the solution makes it an extremely attractive method,

and indeed, the method can be highly effective.

However, the algorithm may fail if started from an

initial point that is not sufficiently close to

a minimizer. Why? First, if the Hessian H2f ðxkÞ is

not positive definite, the Newton direction may not be

a descent direction, and if the Hessian is singular, the

method is not even defined. Second, even if pk is

a descent direction, there is no guarantee that f ðxkþ1Þ
will actually be lower than f ðxkÞ. Thus, modifications

to the basic Newton method are required to guarantee

that the method will converge regardless of the starting

point.

There are two major approaches to guarantee global

convergence (convergence from any initial point): line

search methods and trust-region methods. Both

approaches use the basic Newton method near the

solution to exploit its rapid local convergence

property. But they differ in the strategies they employ

to guarantee convergence when far from the solution.

Both approaches insist, however, on using a descent

direction at each iteration.

Line search methods update the new estimate of the

solution as xkþ1 ¼ xk þ akpk, where the step length ak
is a positive scalar chosen so that f ðxkþ1Þ < f ðxkÞ.
Ideally, this step length would be chosen to minimize

f ðxk þ apkÞ with respect to a. However, finding such

a step length is too time consuming. A more practical

approach is to use a step length that approximately

minimizes f along pk. One commonly used condition

(known as the Wolfe condition) is to accept a trial step

ak if

pTkHf xk þ akpkð Þ
�

�

�

�� y pTkHf ðxkÞ
�

�

�

�;

where y is some scalar satisfying 0 < y < 1, i.e., if

a step of length ak taken along pk yields a substantial

decrease in the magnitude of the directional derivative.

This condition alone cannot guarantee convergence,

since it does not guarantee decrease in the objective

value. It is therefore common to impose an additional

sufficient decrease condition on ak:

f ðxk þ akpkÞ � f ðxkÞ þ �akp
T
kHf ðxkÞ

where 0 < � < 1. This is known as the Armijo

condition. If the Wolfe and Armijo conditions are

used in tandem, and if � < y, then under appropriate

conditions, global convergence of the algorithm is

guaranteed.

Line search versions of Newton’s method must also

incorporate some strategy to handle the case when the

Hessian is not positive definite. One standard

technique is to modify the Hessian matrix by

a diagonal matrix, denoted Ek, whose diagonal

componentsare large enough to ensure that the

modified Hessian is indeed positive definite.

The modified Newton direction is then computed as

the solution to the system

Bkpk ¼ �Hf ðxkÞ;

where

Bk ¼ H2f ðxkÞ þ Ek:

The approach generates descent directions and can

overcome the numerical difficulties associated with

near-singular Hessians.

Trust region methods differ from line search

methods in that they determine a priori the maximum

length of the search direction, say D. The direction is

taken as the minimizer of the quadratic model, whose

length does not exceed D for the trial step pk:

minimize
p

qðpÞ ¼ f ðxkÞ þ Hf ðxkÞTpþ 1
2
pTH2f ðxkÞp

subject to pk k � D:

The motivation for this approach is that the

quadratic model obtained from the Taylor series

gives an adequate fit to the function for points that

are close to xk, but may not give an adequate fit for

points far away.

The length D is the radius of the trust region, the

region in which the quadratic model is trusted. It is

adjusted from iteration to iteration, based on the

agreement between the function f and the quadratic

model. It is increased if the agreement is considered

U 1584 Unconstrained Optimization



to be good, and decreased if it is considered to be poor.

The criterion used for determining this is the value of

r ¼ f ðxkÞ � f ðxk þ pkÞ
f ðxkÞ � qðpkÞ

;

which is the ratio of actual reduction in the function

value to that predicted by the quadratic model. If this

ratio is large, it is assumed that the quadratic model can

be trusted in a wider region and D is increased. If it is

small, the quadratic model is deemed inadequate

(hence the model cannot be trusted) andD is decreased.

Global convergence is achieved under mild

conditions. If f is twice continuously differentiable

and the set fx : f ðxÞ � f ðx0Þg is bounded, the method

converges to a stationary point. In practice, however,

the solution to the trust region problem is relatively

expensive and often only approximate solutions are

attempted.

Modified Newton’s methods (both line-search

and trust-region variants), are effective for solving

small-or moderate-sized problems. As the number of

variables increases, however, the cost of each iteration

can become prohibitive. The solution of the n� n

system of Newton equations is expensive, on the

order of n3 arithmetic operations. Furthermore,

computation of the n2 second partial derivatives can

also be expensive and is prone to human error. Thus,

the benefits of fast local convergence are offset by the

high costs of each iteration.

Some remedies for these concerns are possible. For

example, it is possible to automate the derivative

calculations Also, many large problems have sparse

Hessian matrices, and special numerical linear algebra

techniques for sparse matrices can reduce the storage

and computational costs of using Newton’s method.

Another alternative is algorithms that compromise

on Newton’s method by using first derivative only to

compute an approximate Newton direction. The

driving motivation in these algorithms is to reduce

the expensive cost per iteration of Newton’s method

while retaining reasonably good convergence rates.

While one can no longer expect a compromise on

Newton’s method to achieve a quadratic rate of

convergence, it is still possible to achieve superlinear

convergence, where

lim
k!1

xkþ1 � x�k k
xk � x�k k ¼ 0:

To achieve this, the search direction must approach

the Newton search direction in the limit, as the solution

is approached. Specifically, if H2f is Lipschitz

continuous, and if the sequence fxkg generated by

xkþ1 ¼ xk þ pk:

converges to x�, where H2f ðx�Þ is positive definite,

then fxkg converges to x� superlinearly and

Hf ðx�Þ ¼ 0 if and only if

lim
k!1

pk � pNk

�

�

�

�

pkk k ¼ 0;

where pNk is the Newton direction at xk.

These results motivate a general Newton-type

framework for unconstrained optimization

algorithms, which attempt to find an approximate

Newton direction. The search direction is obtained by

solving the system

Bkpk ¼ �Hf ðxkÞ;

where Bk is a positive definite approximation to the

Hessian.

The simplest of all such approximations sets Bk to

be the identity matrix. The resulting search direction is

pk ¼ �Hf ðxkÞ. A line search is needed, so that the

resulting iterates are xkþ1 ¼ xk � aHf ðxkÞ. The

method is known as the steepest descent method.

(Technically it is not a Newton-type method since Bk

is usually a poor approximation to the Hessian).

The method is simple, requires only one derivative

calculation, does not require the computation of

second derivatives, does not require that a system of

linear equations be solved to compute the search

direction, and does not require matrix storage. So in

every way it reduces the costs of Newton’s method—at

least, the costs per iteration.

On the negative side, it has a slower rate of

convergence than Newton’s method, only converging

at a linear rate, so that

xkþ1 � x�k k � c xk � x�k k:

The trouble is that the constant c can be very close

to 1, so that the improvements from iteration to

iteration can be imperceptible. In fact, even for the

simple quadratic function f ðxÞ ¼ 1
2
xTQx, using an
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exact line search, it can be shown that the

improvements in the objective value from one

iteration to the next are of order

1� kðQÞ � 1

kðQÞ þ 1

� �2

;

where kðQÞ is the condition number of Q. If kðQÞ is
large (close to 1, as is often the case in practice),

convergence is so slow that xkþ1 � xk is below the

precision of computer arithmetic and the method

fails. As a result, even though the costs per iteration

are low, the overall costs of solving the optimization

problem are high. The method is usually not a viable

option for large difficult problems.

Amore successfulNewton-type family ofmethods are

the quasi-Newton methods. Quasi-Newton methods are

aclassofmethods that aremotivatedbyNewton’smethod

but avoid the expense of computing second derivatives.

The search direction is obtained by solving the system

Bkp ¼ �Hf ðxkÞ;

where Bk is an approximation to the Hessian H2f ðxkÞ.
The matrix Bkþ1 is updated from Bk using gradient

information from previous iterations.

In the one-dimensional case, quasi-Newton

methods simply replace the second derivative by the

slope of the secant line to the first derivative:

f 00ðxkþ1Þ �
f 0ðxkþ1Þ � f 0ðxkÞ

xkþ1 � xk
;

so that

f 00ðxkþ1Þðxkþ1 � xkÞ � f 0ðxkþ1Þ � f 0ðxkÞ:

To make Bkþ1 resemble the Hessian in the

n-dimensional case requires that it satisfy the secant

condition

Bkþ1sk ¼ yk;

where

sk ¼ xkþ1 � xk and yk ¼ Hf ðxkþ1Þ � Hf ðxkÞ:

The secant condition, however, does not uniquely

define the matrix Bk, so numerous methods have been

proposed for updating Bkþ1 from Bk. The most

popular—and arguably most successful—of these

methods has been the BFGS (Broyden, Fletcher,

Goldfarb, Shanno) method, for which the update

formula for the Hessian approximation is given by

Bkþ1 ¼ Bk �
ðBkskÞðBkskÞT

sTkBksk
þ yky

T
k

yTk sk
:

The matrix B0 is usually set to the identity matrix.

Under appropriate conditions on the line search, it is

possible to guarantee that if the BFGS method is

applied to a bounded strictly convex function, then

the BFGS method converges superlinearly to the

unique global minimizer.

Quasi-Newton methods have been successful at

solving a wide variety of practical problems, and are

perhaps the most widely used methods for nonlinear

optimization. However, their storage requirements and

iteration costs can make them less suited for problems

that have many variables. Limited memory

quasi-Newton methods are a modification to

quasi-Newton methods that require much less storage

and much lower arithmetic costs per iteration. Rather

than store the matrix Bk, they store a few vectors that

provide the information to store a matrix close to Bk.

Another class of methods suitable for large

problems are truncated-Newton methods. These

methods are a compromise on Newton’s method.

They obtain the search direction by finding an

approximate solution to the Newton equations, using

some iterative method such as the conjugate-gradient

method. The iterative method is stopped before the

exact solution has been found, hence the name of the

method. The methods do not require explicit

computation of the Hessian, and only require the

storage of a few vectors. They have been used

successfully to solve problems with large number of

variables.

Concluding Remarks

The theory and methods of unconstrained optimization

are discussed in extensive detail in Dennis and

Schnabel (1983), Gill, Murray and Wright (1981),

Nash and Sofer (1996), Griva, Nash, and Sofer

(2008), Nesterov (2004), and Nocedal and Wright

(2006). For a guide to software for numerical
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optimization, see Moré and Wright (1993) and the

online NEOS Optimization Software Guide. This

article focused on methods for computing local

optima of differentiable functions; for a survey of

methods for optimizing nondifferentiable functions,

see Lemarechal (1989), and for a survey of

derivative-free methods, see Kolda, Lewis and

Torczon (2003). A survey of methods for global

optimization is given in Rinnooy Kan and Timmer

(1989) and in Horst, Pardalos and Thoai (2000).

See

▶Global Optimization

▶Linear Programming

▶Mathematical Programming

▶Nonlinear Programming
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Unconstrained Solution

A solution that is independent or free of constraints.

Uncontrollable Variables

In a decision problem, variables and other elements of

a decision problem that are not under the control of the

decision maker.

See

▶Decision Maker (DM)

▶Decision Problem

▶Mathematical Model

Underachievement Variable

A nonnegative variable in a goal-programming problem

constraint that measures how much the left-hand side of

the constraint is less than the right-hand side.

See

▶Goal Programming

Underdetermined System of Linear
Equations

An m � n system of linear equations Ax ¼ b in which

m < n. Such systems may have an infinite number of

solutions or be inconsistent. The equation form

of a linear-programming problem is under-determined.

Undirected Arc

In a network, an arc where flow can go in either direction.

Unimodular Matrix

An m�n matrix A such that any nonsingular square

matrix formed by columns of A has a determinant

value equal to +1 or �1. The matrix of the

transportation problem is unimodular.
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Unique Solution

The optimal solution to an optimization problem that

has one and only one optimal solution.

See

▶Multiple Optimal Solutions

Unrestricted Variable

A variable that can take on any value.

See

▶ Free Variable

Unsymmetric Primal-Dual Problems

The two linear-programming problems with the

following:

Primal

Minimize cTx

subject to Ax ¼ b x� 0

Dual

Maximize bTy

subject to ATy � c

Note that the variables of the dual problem are

unrestricted.

See

▶ Strong Duality Theorem

▶ Symmetric Primal-Dual Problems

Upper-Bounded Problems

▶Generalized Upper-Bounded (GUB) Problem

▶ Simple Upper-bounded Problem (SUB)

Urban Services

Kenneth Chelst

Wayne State University, Detroit, MI, USA

Introduction

Urban services cover a broad range of activities. These

include sanitation and water systems; street cleaning to

remove trash, snow, and ice; public housing; urban

transportation systems; libraries (Reisman and Xu

1994); public health clinics; and other local

government services. This article describes

representative applications of operations research that

improve the efficiency of these services. Emergency

services such as police, fire, and emergency medical

services are covered elsewhere in this volume.

Routing

One planning function common to many of the

services listed above is the need to design efficient

vehicle routes that minimize the cost of the service,

primarily through minimization of travel time (Laporte

2009). Garbage collectors travel up and down streets,

stopping in front of each house to pick up trash. Street

sweepers move along curbsides sweeping up garbage

while avoiding parked cars. Snowplows and salt trucks

make their way through snow-covered arteries

preparing them for smooth and safe traffic flow. This

last example is the most complicated form of routing

because highways and wide streets will require

multiple passes over the same route.

This class of routing problems is much more

complicated than designing routes to deliver mail

(see Chinese Postman Problem). In an urban context,

route planning can involve a large number of vehicles,

U 1588 Unique Solution

http://dx.doi.org/10.1007/978-1-4419-1153-7_200500
http://dx.doi.org/10.1007/978-1-4419-1153-7_200248
http://dx.doi.org/10.1007/978-1-4419-1153-7_200820
http://dx.doi.org/10.1007/978-1-4419-1153-7_200834
http://dx.doi.org/10.1007/978-1-4419-1153-7_200258
http://dx.doi.org/10.1007/978-1-4419-1153-7_200766


one- and two-way streets, and opportunities for

U-turns. The commonality of problem structure has

led to the development of GeoRoute, a software

program with separate modules to address multiple

decisions that involve traversing the streets of a region.

Snow Clearance

Langevin et al. (2006, 2007) wrote a four-part

comprehensive review of operations research models

and decision support systems designed for the planning

and management of snow clearance and removal. They

begin with an overview of issues associated with each

class of decisions: spreading chemicals or sand,

snowplowing, and snow removal. Planning for road

clearance and snow removal involves a number of

interrelated decisions. The building block for all

decisions is the establishment of service levels for

each road segment within the region. The service

level defines the degree to which snow and ice will

be removed from the road surface and over what time

frame. Regression models and cost-benefit analysis

have been used to establish service levels.

Strategic decisions include determining the size of

the fleet of vehicles and the location of chemical

storage depots and snow disposal sites. Related

decisions involve the selection of de-icing agent and

the process for disposing of snow. A linear

mixed-integer programming model has been

proposed as an integrated approach to decisions

regarding depot location and sector design.

Operational decisions focus on developing efficient

routes designed to meet service levels within specified

time constraints. The planning of routes begins by

dividing a region into sectors to be serviced by one or

more vehicles. The sectors are generally designed to

balance workloads and to be efficient in terms of travel

to and from de-icing storage facilities and snow

disposal sites. Once sectors have been defined, routes

within each sector are specified.

Salt spreaders are typically on the road in the early

stages of a snowstorm with the goal of keeping roads

free of ice as much as possible before massive amounts

of snow overwhelm the road network. Snowplows

move in next to clear larger amounts of snow. This,

too, may start before the storm has ended. The routing

of chemical dispersers and snowplows is complicated

by the need for real-time decisions. Routes need to be

adjusted as weather and road conditions evolve during

the course of the snowstorm. These routes may be

further complicated by accidents blocking access to

specific routes. The growing availability of routine

real-time road conditions and GPS on vehicles makes

the routing process more dynamic. Lastly, after large

storms, snow blowers hit the roads accompanied by

trucks that carry the snow to disposal sites. Planning

snow removal routes involves two dimensions, with

allocation of both snow blowers and snow removers.

There needs to be a steady stream of trucks

accompanying the snow blower.

A wide variety of OR models and software systems

have been developed to address different decisions

within this broad problem context. Some of the

systems are descriptive simulations linked to

mapping software that enable decision makers to

evaluate the impact of their decisions on road

clearance, capital investment, and operating costs.

Others are constructive: they design routes,

recommend storage locations, and establish

work-shift schedules. Some attempt to place many of

the decisions into a complex, large-scale optimization

model. In almost every instance, these tools are

embedded in user-friendly decision support systems

that enable the decision maker to use his experience

to make informed decisions that take into account local

conditions.

Solid Waste Collection and Disposal

Solid waste management begins with citizens

disposing of their garbage in bins to be emptied by

trucks routed through streets and neighborhoods. If the

city recycles, there will be multiple receptacles to be

emptied. Both constrained p-median and set-covering

models have been developed to optimize the locations

of these bins (Devotta et al. 2008). The next task is to

devise efficient routes (Beltrami and Bodin 1974). The

garbage collection problem has an added complexity

due to randomness in the volume of trash. As routes are

planned, it is not possible to predict exactly how many

stops a truck will make before it reaches capacity

A related strategic decision is the size of the
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collection trucks. This decision becomes more

complex with disparate recyclables. In this case, the

storage compartment must be divided to accommodate

different types and amounts of recyclables. Once the

garbage has been collected, it is transported either

directly to a final disposal site, a transfer site, or an

intermediate processing facility. Classical location

models have been used to identify both transfer sites

and end points (Eiselt 2007).

In New York City, operations research has had

a broad impact on the sanitation department that goes

beyond route planning. Workload forecasting models

were developed to plan personnel needs, reduce

overtime, shift vacations to off-peak seasons, and

plan for the hiring of new personnel. Analyses were

carried out to assess the impact of increasing the

capacity of trucks. A simulation model was

developed to understand the impact of even one

illegally parked car on the effectiveness of a street

sweeper. This information was used to help

coordinate efforts with the traffic enforcement

division. One innovation involved the creation of

Project Scorecard, a program designed to sample

6,000 blocks each month to track how dirty the

streets were and not just how much garbage was

collected. The OR group also carried out a variety of

studies to determine the impact of different regulations

for separation of trash to facilitate recycling. In

summary, operations research has fundamentally

changed the way New York City makes decisions

about street cleaning and the way the sanitation

department manages its resources (Riccio et al. 1986).

Hazardous wastes management is much broader

than just routing garbage collection trucks and

location of facilities. There are a number of policy

decisions that relate to what to recycle and how much

responsibility to place on the individual. There is also

the strategic decision of whether to send the waste to

a landfill or an incineration facility. These issues are

discussed in more detail in the article “Environmental

Systems Analysis.”

Public Housing

Operations research has much to offer urban services

that do not involve routing or collection issues. In

many urban environments, cities build and rent

subsidized housing to the poor and the elderly. One

of the first issues addressed by the Local Government

Operational Unit of Reading, England, was ranking

applicants for the 100,000 housing units owned by

the City of Manchester. A housing points scheme was

developed that captured the perspectives of housing

department officials on relative need. Through the use

of paired comparisons, they were able to answer

questions such as whether an applicant with

a medical problem should be given more points than

one living in crowded conditions (Ricthie et al. 1996).

In the U.S., operations researchers have used

queueing theory to evaluate two alternative tenant

assignment policies, namely, first available unit

versus priority assignment. They evaluated mean

waiting times and the impact of assignment policies

on racial integration. In a second study on the

redevelopment of a housing project in East Boston,

researchers used integer programming to plan the

sequential relocation of housing tenants (Kaplan and

Berman 1988).

In the 1990s, the U.S. began changing its preferred

model for public housing. Instead of concentrating the

poor in specialized housing units, the government

initiated the Federal Housing Choice Voucher

Program. Vouchers are used at the discretion of the

recipients to rent apartments in the neighborhoods of

their choice. These subsidies enable the poor to live

closer to job opportunities and benefit from a higher

communal standard of living, such as better schools

and lower crime rates. The program also affords

greater opportunity for racial integration on a modest

scale. One disadvantage, however, is that recipients are

separated from their core community and support

system.

Operations researchers have developed models to

address both policy and personal decisions. At the

policy level, they have developed a multi-objective

model to determine pareto optimal solutions for

locating clusters of subsidized rental units in

neighborhoods throughout a county or metropolitan

region. The model explicitly accounts for multiple

perspectives: those of renters of subsidized housing,

nearby residents, and employers. An objective

function assigns a weight to each perspective. The

model includes several constraints that limit the

number of units assigned to any one area.

With regard to personal decisions, OR models are

applied to the decision of where to rent. A decision

support system was developed for the Pittsburgh
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Housing Authority to facilitate this process, designed

to be used both by renters and housing authority

counselors. The system applies the concepts of

value-focused thinking to help the renter determine

his multiple objectives. It is linked to

a comprehensive GIS that includes numerous

communal measures as well as listings of housing

unit availability. This system helps the counselor and

renter rank-order the renter’s preferred housing

choices and presents him with detailed neighborhood

information. The system is also designed to help

landlords who are interested in contributing units to

the subsidized housing rental pool (Johnson 2005).

Urban Transportation Services

The issues surrounding the delivery of urban mass

transit services have been studied from a broad range

of disciplines. Economists have led the study of the

relationship between fare structure (price) and

demand. Urban and regional planners have

researched the role of mass transit in urban and

regional development. Statisticians have tackled the

complex problem of estimating the origin–destination

matrix that is critical in planning to meet route specific

demand. Civil engineers have made both road and

mass transit transportation planning a major

component of their discipline and have often used

operations research models in their studies or teamed

with operations researchers. The journal

Transportation Science is a focal point for reporting

the latest research in this and related fields. In this

review, the discussion is limited to the use of OR

models.

Transportation services can be viewed from three

perspectives, the passenger, the crew, and the

infrastructure needed to provide the service (e.g.,

vehicles and facilities). The passenger is interested in

traveling from point A to point B in the most cost- and

time-efficient ways. The journey begins with travel

from home or work to the bus stop or train station.

Set-covering models have been used to increase

accessibility to the nearest bus station (Murray 2003).

The design of transit routes and the scheduled

frequency of trains or buses (e.g., headway) are the

key management decisions that influence passenger

experiences (Szeto and Wu 2011). Probabilistic

models such as simulation in general and queueing

models in particular have been developed to estimate

passenger waiting times for both rail and bus services

under a variety of operational strategies. In Australia,

a software system called BUDI is used to address the

issue of bus dispatching (Forbes et al. 1994).

It is common in bus transit for several buses to

arrive at a particular stop within a relatively short

period of time, followed by a relatively long wait

until the next group of buses. Early research explored

a range of static policies to address this phenomenon

(Larson and Odoni 1981). The increased availability of

real-time data on the location of each bus, however,

has led to dynamic policies that recommend changes in

speed so as to maintain a consistent headway between

buses (Daganzo and Pilachowski 2011).

The elderly and handicapped have difficulty using

mass transit to meet their travel needs. Taxis are an

expensive alternative. Dial-a-Ride mini-bus systems

fill the gap by picking up passengers upon request

from multiple points and delivering them to different

locations. These routes are constrained by time

windows. Dynamic programming, clustering, and

specially designed heuristic algorithms have been

developed and used to efficiently manage the

complex dispatching operation associated with

Dial-a-Ride Cordeau and Laporte 2007).

Demand for transportation services varies

significantly by time of day. Personnel and

vehicle schedules must adjust accordingly to be

cost-effective. Operations researchers have addressed

this issue of manpower and rotation scheduling with

mathematical programming models as well as

HASTUS, a software package used to develop

schedules for both personnel and vehicles (Blais et al.

1990). The Italian Railway Corporation has worked

with the Italian Operational Research Society to

sponsor university competitions for the design of

effective heuristics. Random absences of personnel

produce an added burden on managing an already

complex system. Probabilistic models have been

developed to help transportation managers pool

resources to fill in unanticipated personnel shortages.

Garages and crew rosters are an important element of

anymunicipal bus system (Ball et al. 1984; Caprara et al.

1998). Buses and drivers start and end their shifts at

garages, and most maintenance occurs in these

facilities. The decision as to the number and location of

these garages has been analyzed by applying iteratively

aminimumcost network flowmodel. A related question,
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common to all capital-intensive systems, involves the

maintenance of capital equipment. This issue falls within

the broad range of operations research methods that

model reliability, optimal maintenance, and

replacement strategies. One statistical study of 2,000

buses in Montreal analyzed the relationship between

inspection and breakdowns and suggested that the

optimal inspection policy be changed from 5,000

kilometers to 8,000. Multi-criteria decision models

have been used to develop component maintenance

policies that focus not only on total maintenance cost

but also transit vehicle availability and component

reliability (Goplalaswamy et al. 1993).

Other Services

In an urban environment, one common problem that

cuts across a broad range of both government and

non-government services is how many facilities to

build and where they should be located. Classic

facility location models, both capacitated and

uncapacitated, have been applied to address this

decision in cities around the world. The urban setting

often requires the organization of specialized delivery

services that involve the scheduling and routing of

multiple vehicles, usually with time constraints. One

specific application area has been the delivery of

meals (Johnson et al. 2002). Traveling salesman-based

routing models have been used to develop and maintain

efficient routes for a Meal-on-Wheels program that

provides regular service to the homebound elderly.

Another application is the delivery of home-care

services to AIDS patients in Rome (De Angelis 1998).

In general, OR models can help manage the delivery of

a variety of services to the homes of an increasingly

elderly urban population (Eveborn et al. 2009).

The role of operations researchers is not limited to

model development; it also includes evaluation studies,

discussion of performance evaluation, and concerns over

equity. However, OR’s overall impact on planning and

managing urban services in cities worldwide has been

extremely limited compared to its potential. The primary

barriers to greater use are (a) an unfamiliarity among

urban leaders regarding the potential of OR models to

improve efficiency, (b) the limited availability of trained

OR professionals in city government, and (c) a no-profit

incentive or lack of accountability to drive the search for

continuous improvement.

See

▶Chinese Postman Problem

▶Crime and Justice

▶Emergency Services

▶Environmental Systems Analysis

▶ Facility Location

▶Libraries

▶Location Analysis

▶Manpower Planning

▶Network

▶Transportation Problem

▶Traveling Salesman Problem

▶Vehicle Routing
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Utility Function

▶Multiobjective Programming

▶Utility Theory

Utility Theory

Peter Fishburn

AT&T Bell Laboratories, Murray Hill, NJ, USA

Introduction

Utility theory is the systematic study of preference

structures and ways to represent preferences

quantitatively. The objects on which preferences are

defined could be potential outcomes of a decision,

decision alternatives, individual or family consumption

bundles in a fixed time period, time streams of net profits,

investment portfolios, the entrees on a restaurant menu,

or just about anything else. The preferences themselves

are usually those of an individual, but are sometimes

attributed to groups or organizations.

Let A denote the set of objects on which preferences

are defined and let � be a binary relation on A, that is,

a set of ordered pairs (x, y) of objects in A. When (x, y)

is a member of � , it is customary to write x � y and to

say that x is at least as preferred as y. If x � y and not

(y � x), then x is (strictly) preferred to y; if x � y and

y � x then x and y are equally preferred, or are

indifferent; if neither x � y nor y � x then x and y

are preferentially incomparable. Strict preference and

indifference are denoted by x � y and x	y,

respectively.

Utility theory typically regards the preference

relation � on A as deterministic and interprets

x � y as: if you have title to y you would be willing

to trade it for title to x. There are also notions of

uncertain or probabilistic preference that will not be

described here. An excellent introduction to

probabilistic preference and stochastic utility is

provided by Luce and Suppes (1965).

Two book collections offer a broad overview of

utility theory. Page (1968) contains historical essays,

including an English translation of a 1738 paper by

Daniel Bernoulli that introduced expected utility,

a philosophical piece from 1823 by Jeremy Bentham

that popularized the term utility, an excerpt from the

game theory classic by John von Neumann and Oskar

Morgenstern in 1944 that placed expected utility on

a firm axiomatic foundation, and an economist’s

account by George Stigler of the development of

utility theory from 1776 to 1915. The collection by

Eatwell, Milgate and Newman (1990) covers many

facets of utility theory, including several that are

areas of contemporary research.

Distinguishing Features

There are numerous specific theories of utility. Each is

distinguished by three features: (1) the structure of A;

(2) the assumptions made about the properties of � on

A; and (3) the quantitative representation that reflects

(A, �) in a numerical structure.

Assumptions for feature 1 are structural

assumptions, and those for feature 2 are preference
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axioms. Together they are used to deduce the

quantitative representation of feature 3. The

representation’s numerical functions are often called

utility functions. Other real-valued functions,

including probability distributions and threshold

functions, also occur in representations.

An important adjunct of a utility representation is

a description of the class of all functions that satisfy the

representation. This is the representation’s uniqueness

structure. Some representations have very demanding

uniqueness structures; others allow great latitude for

their utility functions.

Two examples illustrate these ideas. First, let

A ¼ {beef, chicken, fish, lamb} in regard to entrees

for dinner. Assume for feature 2 that � on A is a linear

(strict) order, which, for all x, y and z in A, means that

� is irreflexive: not ðx � xÞ

� is complete: x 6¼ y ! ðx � y or y � xÞ

� is transitive: ðx � y and y � zÞ ! x � z:

One realization of � on A is [beef � lamb �

chicken � fish]. This ordering is represented by

a utility function u on A which assigns a number uðxÞ
to each x in A such that [u(beef) > u(lamb) > u

(chicken) > u(fish)]. There is great latitude for u.

Every real-valued function on A whose > ordering

mirrors > is a suitable utility function for the

representation.

Second, let A ¼ [0,M]3, 0 <M, the set of all triples

(x1, x2, x3) with 0� xi�M for each i. Interpret xi as the

income an individual earns in year i hence. One

representation for feature 3 is the additive utility model

ðx1;x2;x3Þ� ðy1;y2;y3Þ !
X3

i¼1

uiðxiÞ �
X3

i¼1
uiðyiÞ;

where each ui is an increasing and continuous

real-valued function on [0, M]. This requires that �

on A be a weak order, which, for all x, y and z in A,

means that

� is strongly connected : x� y or y� x

� is transitive : ðx� y and y� zÞ ! x� z:

Another axiom that concerns additivity says that if

two triples have identical incomes in a given year, then

� between them remains unchanged if the identical

income is changed, e.g.,

ðx1;x2;x3Þ� ðx1;y2;y3Þ ! ðy1; x2; x3Þ� ðy1;y2; y3Þ:

Other axioms relate to monotonicity of utility in

income and to continuity of each utility function.

The preceding model has a very tight uniqueness

structure. In particular, when u1, u2 and u3 satisfy the

representation, then so do v1, v2 and v3 in place of u1, u2
and u3 respectively if and only if there are real numbers

a > 0 and b1, b2 and b3 so that, for all m in [0, M],

uiðmÞ ¼ auiðmÞ þ bi; i ¼ 1; 2; 3:

Hence, except for an origin and unit, each ui is

unique.

The next few sections describe utility theories

according to a three-part classification that mixes

feature 1 with extra mathematical interpretations:

• certainty: there is no explicit use of chance or

uncertainty;

• chance: chance in the form of numerical

probabilities appears in A, but unquantified

uncertainty is excluded;

• uncertainty: outcomes of decisions depend explicitly

on uncertain events with not-yet-quantified

probabilities.

Differences among classes can be illustrated by an

object (m1,m2,m3,m4) in which eachmi is an amount of

money. If the object describes a four-year income

stream, the certainty designation applies. If the object

is a gamble or risky prospect that pays offm1,m2,m3 or

m4, each with probability 1/4, then chance applies. And

if m1 through m4 are the amounts won for each dollar

bet on your favorite horse in tomorrow’s big race when

the horse wins, places, shows and finishes out of the

money, respectively, then uncertainty applies.

A differentiator for feature 2 is the extent to which

preferences are transitive. The most restrictive case

occurs when � is a weak order. Then each of � , �

and	 is transitive. A more flexible case arises when �

butnot	 is assumed transitive. Intransitive indifference is

illustrated by a sequence of indifference comparisons

x1 	 x2, x2 	 x3,. . ., xn�1 	 xn between similar

objects, the first of which is definitely preferred to the

last (x1 � xn ). The most flexible case occurs when

neither � nor 	 is assumed transitive. This allows
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preference cycles, such as x � y � z � x. Fishburn

(1991) provides access to the nontransitive preference

literature.

Certainty

A basic theorem of utility theory for (A, �) says that

a real number u(x) can be assigned to each object in A

so that, for all x and y in A,

x� y $ uðxÞ � uðyÞ;

if and only if � on A is a weak order and there is

a countable (finite or denumerable) subset B of A such

that, whenever x � y, some z in B satisfies x � z � y.

A relaxation of this ordinal utility representation that

accommodates intransitive indifference and thresholds

for preference is

x � y $ uðxÞ>uðyÞ þ sðyÞ;

where s (y)� 0 for each y. This representation assigns

a utility interval [u(x), u(x) + s (x)] to each x and has x

preferred to y if and only if the right end of y’s interval

is less than the left end of x’s interval. One of its

preference axioms is

ðx � a and y � bÞ ! ðx � b or y � aÞ:

A popular structure for preference theory

formulates A as a subset of n-tuples (x1,. . ., xn),

(y1,. . ., yn),. . ., in X1 � X2 � 


 � Xn. Index i for Xi

could refer to an attribute of objects in A or a time

period. This product structure gives rise to special

forms for the utility function u of the preceding

paragraph, including the additive decomposition

uðx1;...;xnÞ ¼
Xn

i¼1
uiðxiÞ

in which ui is a marginal utility function for the ith

attribute or time period. A generalization that does not

presume transitivity but retains additivity is

x1; . . . ; xnð Þ� y1; . . . ; ynð Þ $
Xn

i¼1
’iðxi; yiÞ � 0;

where ’i is defined on Xi � Xi and has ’i (xi, xi ) ¼ 0.

Fishburn (1970, 1991), Keeney and Raiffa (1993)

and Wakker (1989) have extensive coverage of the

preceding topics.

Chance

The primary structure for chance takes A as a set of

probability distributions on an outcome set X. For p in

A, p(x) is the probability that risky prospect pwill yield

outcome x. It is usually assumed as part of feature 1

that A is closed under convex combinations: if p and q

are in A and 0< l< 1, then lp + (1 � l)q is also in A.

Two common preference axioms for (A, �) are

weak order and the independence condition

p � q ! lpþ ð1� lÞr � lqþ ð1� lÞr

whenever p, q and r are in A and 0 < l < 1. When

an Archimedean axiom is added to weak order

and independence, the existence of a von

Neumann-Morgenstern linear utility function u on A

can be established. It has p � q $ u(p)� u(q) along

with the linearity property

uðlpþ ð1� lÞqÞ ¼ luðpÞ þ ð1þ lÞuðqÞ;

and is unique except for origin and unit, i.e., unique up

to transformations au + b with a > 0.

If A includes all distributions with finite support and

u(x) is defined as u(p) when p(x) ¼ 1, then linearity

implies the expected-utility form

uðpÞ ¼
X

x

pðxÞuðxÞ

for each finite-support distribution. Additional axioms

are needed to obtain u(p) ¼
R
u(x) dp(x) for general

probability measures.

Three variations on the expected-utility theme

involve risk attitudes such as risk aversion when

outcomes are monetary (Raiffa 1968; Wakker 1989),

multiattribute expected utility when X¼ X1� X2� 



� Xn, including additive and multiplicative

decompositions of u(x1,. . ., xn) (Fishburn 1970;

Keeney and Raiffa 1993; Wakker 1989), and

generalizations of expected utility that relax one or

more of its axioms (Fishburn 1988). A representation
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that does not presume transitivity and substantially

weakens the independence condition is p� q$ ’

(p, q) � 0, where ’ is skew symmetric [’ (p, q) + ’
(q, p) ¼ 0] and linear separately in each argument.

Uncertainty

The main structure for uncertainty (Savage 1954) takes

A as the set of functions f, g,. . ., called acts from a set S

of states into an outcome setX. If you choose f and state

s occurs, your outcome is f(s). It is presumed that one

and only one state will occur, that you are uncertain

which it will be, and that your chosen act will not affect

its occurrence.

Savage’s axioms (see also Fishburn 1970) for

(A, � ), which include weak order and independence

assumptions, imply the existence of a bounded utility

function u on X and a probability measure p on the set

of all subsets of S such that, for all acts f and g,

f � g$
Z

s

uðf ðsÞÞdp ðsÞ �
Z

s

uðgðsÞÞdpðsÞ:

Moreover, u is unique except for origin and unit,

and p is unique.

Deduced probabilities in Savage’s model are

personal or subjective probabilities. The model

itself is a subjective expected utility representation.

The art of applying it to real-world problems is

known as decision analysis (Raiffa 1968).

Multiattribute and/ or time-stream outcomes occur

in most applications.

Many other utility theories have been proposed for

structures similar to Savage’s. One strain relaxes his

model by assuming monotonicity [A � B ! p(A)

� p(B)] but not necessarily additivity

[p(A [ B) ¼ p(A) + p(B) when A and B are disjoint]

for subjective probability. Another retains Savage’s

properties for p but relaxes transitivity to obtain

f � g$

Z

s

jðf ðsÞ; gðsÞÞdpðsÞ � 0;

with ’ skew symmetric on X� X. See Fishburn (1988)

and Wakker (1989) for further details and references.

See

▶Choice Theory

▶Decision Analysis

▶Game Theory

▶ Preference Theory
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V

Vacation Model

A queueing model where the server(s) will periodically

stop serving a pool of customers for some period – take

a “vacation” – before resuming service. (Note that

during the so-called vacation, a server could possibly

be serving some other source of customers elsewhere

in the system). The vacation policy governs when

a server stops service and when service is resumed.

For example, one simple policy would be to take

a vacation whenever the queue is empty and resume

after a fixed period of time.

See

▶Cyclic Service Discipline

▶Queueing Theory

▶Vacation Time

Vacation Time

In vacationmodels, the time starting fromwhen a server

stops serving customers (goes on “vacation”) and

ending when the server resumes serving customers.

See

▶Cyclic Service Discipline

▶Vacation Model

Validation

The process of determining how well a mathematical

model of a real-world system conforms to reality for

the purposes of the study being undertaken. Two key

aspects of validity are face validity and predictive

validity. Face validity is based on an examination of

the assumptions and data going into the model for

logical consistency and the review of the results by

experts knowledgeable in the real world situation.

Predictive validity is based on examining the model’s

predictions for events that were not used in building

the model.

See

▶Verification

▶Verification, Validation, and Testing of Models

Value at Risk

Financial risk measure representing the maximum

amount that can be lost over a given horizon with

a specified probability, abbreviated as VaR.

Mathematically, a quantile (or percentile) of the

probability distribution of potential portfolio loss. For

continuous probability distributions, VaR at the (1-a)

100% level is the value x such that Pr{L > x} ¼ a,
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where L represents the loss and a is generally 0.05 or

0.01, corresponding to 95% and 99% levels of VaR,

respectively.

See

▶ Financial Engineering

Value Function

In a decision problem, let a be a feasible alternative

from the set of all feasible alternatives A.

Each alternative is measured against n attributes

(X1,. . ., Xn). The decision maker’s (DM) problem is

to choose an alternative a ∈ A that maximizes the

payoff vector of scores [X1(a), . . ., Xn(a)] ¼ X(a).

The value function is a real-valued, scalar function v

(·) with the property that v(X(a)) > v(X(b)) if and only

if the DM prefers alternative a to alternative b; and

v(X(a)) ¼ v(X(b)) if and only if the DM is indifferent

between alternative a and alternative b. A similar

concept can be found in dynamic programming and

Markov decision processes.

See

▶Approximate Dynamic Programming

▶Choice Theory

▶Decision Analysis

▶Dynamic Programming

▶Markov Decision Processes

▶Multiple Criteria Decision Making

▶ Preference Theory

▶Utility Theory

VAM

▶Vogel’s Approximation Method (VAM)

Variance Reduction Techniques in
Monte Carlo Methods
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Introduction

Monte Carlo methods are simulation algorithms to

estimate a numerical quantity in a statistical model

of a real system. These algorithms are executed by

computer programs. Variance reduction techniques

(VRT) are needed, even though computer speed has

been increasing dramatically, ever since the

introduction of computers. This increased computer

power has stimulated simulation analysts to develop

ever more realistic models, so that the net result has

not been faster execution of simulation experiments;

e.g., some modern simulation models need hours or

days for a single ‘run’ (one replication of one

scenario or combination of simulation input

values). Moreover there are some simulation

models that represent rare events which have

extremely small probabilities of occurrence), so

even modern computer would take centuries to

execute a single run—were it not that special VRT

can reduce theses excessively long runtimes to

practical magnitudes.

Preliminaries

In this contribution the focus is to estimate a quantity

‘ ¼ EðHðYÞÞ; (1)

where HðYÞ is the performance function driven by an

input vector Y with probability density function f ðyÞ.
To estimate ‘ through simulation, one generates

a random sample Yi with i ¼ 1; . . . ;N from f ðyÞ,
computes the sample function HðYiÞ, and the

sample-average estimator
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‘̂N ¼
1

N

XN

i¼1
HðYiÞ:

This is called crude Monte Carlo sampling (CMC).

The resulting sample-average estimator is an unbiased

estimator for ‘. Furthermore, as N gets large, laws of

large numbers may be invoked (assuming simple

conditions) to verify that the sample-average estimator

stochastically converges to the actual quantity to be

estimated. The efficiency of the estimator is captured

by its relative error (RE), i.e., the standard error divided

by the mean: RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð‘̂NÞ

q
=Eð‘̂NÞ. Applying the

Central Limit Theorem, one easily gets that

z1�a=2RE < e, where z1�a=2 is the ð1� a=2Þth quantile
of the standard normal distribution (typically one takes

a ¼ 0:05 so z1�a=2 ¼ 1:96) if and only if

Pðj ‘̂N �‘
‘
j < eÞ > 1� a: (2)

When (2) holds, the estimator is said to be

ð1� a; eÞ -efficient.
To illustrate, consider the one-dimensional version

of (1):

‘ ¼
Z

hðyÞf ðyÞ dy:

Monte Carlo integration is a good way to estimate

the value of the integral when the dimension is much

higher than one, but the concept is still the same. Monte

Carlo integration has become an important tool in

financial engineering for pricing financial products

such as options, futures, and swaps (Glasserman

2003). This Monte Carlo estimate samples Y1; . . . ; YN
independently from f and calculates

‘̂N ¼
1

N

XN

i¼1
hðYiÞ:

Then ‘̂N is an unbiased estimator for ‘, and the

standard error is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ‘̂N

� �r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
Var hðYÞð Þ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
E hðYÞ � ‘ð Þ2

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Z
hðyÞ � ‘ð Þ2 f ðyÞ dy

s

:

Hence, the relative error (or efficiency) of the

estimator is proportional to 1=
ffiffiffiffi
N
p

. This is a poor

efficiency in case of high-dimensional problems

where the generation of a single output vector is

costly and consumes large computing time and

memory. VRT improve efficiency if they indeed

require smaller sample sizes. To be more specific,

consider again the performance measure (1), and

assume that besides the CMC-estimator ‘̂N , a VRT

results in another unbiased estimator, denoted ‘̂�N ,
also based on a sample of N independent and identical

observations. The VRT-estimator is said to be

statistically more efficient than the CMC-estimator if

Varð‘̂�NÞ < Varð‘̂NÞ:

Then one usually computes the reduction factor for

the variance:

Varð‘̂NÞ � Varð‘̂�NÞ
Varð‘̂NÞ

� 100%:

Notice that this factor does not depend on the

sample size N. Suppose that the reduction factor is

100r%, so r ¼ 1� ðVarð‘̂�Þ=Varð‘̂ÞÞ, and suppose

that ð1� a; eÞ-efficiency is desired. The required

sample size for the CMC-estimator is N, given by

z1�a=2RE ¼ e, which holds iff

‘2e2

z2
1�a=2

¼ Varð‘̂NÞ ¼
1

N
Varð‘̂1Þ , N

¼
z21�a=2

‘2e2
Varð‘̂1Þ:

The same reasoning holds for the VRT-estimator

with a required sample size N�. Consequently, the
reduction in sample size becomes

N � N�

N
¼ Varð‘̂1Þ � Varð‘̂�1Þ

Varð‘̂1Þ
¼ r;

which is the same reduction as for the variance.

Generating samples under a VRT consumes

generally more computer time (exceptions are

antithetic and common random numbers; see next
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section). Thus to make a fair comparison with CMC,

the computing time should be incorporated when

assessing efficiency improvement. Therefore, denote

the required time to compute ‘̂N by TMð‘̂NÞ. Then the
effort of an estimator may be defined to be the product

of its variance and its computing time: EFFORT ¼
Var� TMð‘̂NÞ. Notice that the effort does not depend
on the sample size, if the computing time of N samples

equals N times the computing time of a single sample.

Then the estimator ‘̂�N is called more efficient than

estimator ‘̂N if the former requires less effort:

EFFORTð‘̂�NÞ<EFFORTð‘̂NÞ:

Again, a reduction factor for the effort can be

defined, and one can analyze the reduction in

computer time needed to obtain ð1� a; eÞ-efficiency.

Estimating the Probability of Rare Events

An important class of statistical problems assesses

probabilities of risky or undesirable events. These

problems have become an important issue in many

fields; examples are found in reliability systems

(system failure), risk management (value-at-risk),

financial engineering (credit default), insurance (ruin),

and telecommunication (packet loss); see Juneja and

Shahabuddin (2006); Rubino and Tuffin (2009). These

problems can be denoted in the format of this

contribution by assuming that a set A contains all the

risky or undesirable input vectors y, so that (1) becomes

‘ ¼ PðAÞ ¼ PðY 2 AÞ ¼ EðIAðYÞÞ;

where IA is the indicator function of the set A (and thus

in (1) H ¼ IA). The standard error of the Monte Carlo

estimator is easily computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð1� ‘Þ=N

p
. Hence,

the relative error becomes

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð1� ‘Þ

p

‘
ffiffiffiffi
N

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ‘Þ

p
ffiffiffiffiffiffi
‘N

p : (3)

This equation implies that the sample size is inverse

proportional to the target probability ‘ when requiring

a prespecified efficiency; for instance, to obtain (95%,

10%)-efficiency, the sample size should be

N � 385ð1� ‘Þ=‘. This leads immediately to the

main issue of this contribution; namely ‘ << 1 so A

is called a rare event. To illustrate, suppose

Y ¼ ðY1; . . . ; YnÞ, where Yj ( j ¼ 1; . . . ; n) are

identically and independently distributed (IID) with

finite mean m ¼ EðY1Þ and standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðY1Þ

p
. Denote their sum by

SðYÞ ¼ Y1 þ � � � þ Yn, and let the rare event be

A ¼ fSðYÞ > nðmþ dÞg for a positive d. A normal

approximation results for n ¼ 500; d ¼ 0:5; s ¼ 1

that ‘ � 2:5E-29. A (95%, 10%)-efficient

CMC-estimator would need sample size

N � 1:5Eþ31; which is impossible to realize. For

example, the practical problem might require the

daily simulation of a financial product for a period of

two years in which a single normal variate needs to be

generated per simulated day. Fast algorithms for

normal variate generation on standard PCs require

about 20 s for E+9 samples. This gives only E+5

vector samples Y per second. Note that the number of

calls of the random number generator (RNG) is at

least N � n, which in this numerical example equals

7.5E+ 33; this number is large, but modern RNGs can

meet this requirement (L’Ecuyer 2006).

In conclusion, the desired level of efficiency of the

CMC estimator for rare event problems requires

sample sizes that go far beyond available resources.

Hence, researchers have looked for ways to reduce the

variance of the estimator as much as possible for the

same amount of sampling resources. Traditional VRTs

are common random numbers, antithetic variates,

control variates, conditioning, stratified sampling and

importance sampling (Law 2007; Rubinstein and

Kroese 2008). Modern VRTs include splitting

techniques, and quasi-Mont Carlo sampling

(Asmussen and Glynn 2007; Glasserman 2003).

Antithetic and Common Random Numbers

Consider again the problem of estimating

‘ ¼ EðHðYÞÞ defined in (1). Now let Y1 and Y2 be

two input samples generated from f ðyÞ. Denote

Xi ¼ HðYiÞ with i ¼ 1; 2. Then ‘̂ ¼ ðX1 þ X2Þ=2 is

an unbiased estimator of ‘ with variance

Varð‘̂Þ ¼ 1

4
ðVarðX1Þ þ VarðX2Þ þ 2CovðX1;X2ÞÞ:

If X1;X2 would be independent (as is the case in

CMC), then Varð‘̂Þ would be 1
4
ðVarðX1Þ þ VarðX2ÞÞ.

Obviously, variance reduction is obtained if
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CovðX1;X2Þ < 0. The usual way to make this

covariance negative is as follows. Whenever the

uniform random number U is used for a particular

purpose (for example, the second service time) in

generating Y1, use the antithetic number 1� U for

the same purpose to generate Y2. Because U and

1� U have correlation coefficient � 1, it is to be

expected that CovðX1;X2Þ < 0. This can be

formalized by the following technical conditions.

(a) ThesamplevectorY ¼ ðY1; . . . ; YnÞhascomponents

Yj that are one-dimensional, independent random

variables with distribution functions Fj that are

generated by the inverse transformation method; i.e.,

Yj ¼ F�1j ðUjÞ, for j ¼ 1; . . . ; n.

(b) The performance function H is monotone.

Under these conditions, negative correlation can be

proved (Rubinstein and Kroese 2008). In condition

(a) the inverse transformation requirement can be

replaced by the assumption that all Yj-components

are Gaussian: when Y � Nðm; s2Þ, then
~Y ¼ 2m� Y � Nðm; s2Þ, and clearly Y and ~Y are

negatively correlated. This alternative assumption is

typically applied in financial engineering for option

pricing (Glasserman 2003).

The method of common random numbers (CRN) is

often applied in practice, because simulationists find it

natural to compare alternative systems under ‘the same

circumstances’; for example, they compare different

queueing disciplines (such as First-In-First-Out or

FIFO, Last-In-First-Out or LIFO, Shortest-Jobs-First

or SJF) using the same sampled arrival and service

times in the simulation.

To be more specific, letY be an input vector for two

system performances EðH1ðYÞÞ and EðH2ðYÞÞ, and the
performance quantity of interest is their difference

‘ ¼ EðH1ðYÞÞ � EðH2ðYÞÞ:

To estimate ‘, two choices produce an unbiased

estimator:

1. Generate one sequence of IID input vectors

Y1; . . . ;YN , and estimate ‘ by

‘̂
ð1Þ
N ¼ 1

N

XN

i¼1

H1ðYiÞ � H2ðYiÞð Þ:

2. Generate two independent IID sequences of input

vectors Y
ð1Þ
1 ; . . . ;Y

ð1Þ
N , and Y

ð2Þ
1 ; . . . ;Y

ð2Þ
N , and

estimate ‘ by

‘̂
ð2Þ
N ¼ 1

N

XN

i¼1

H1ðYð1Þ
i Þ � 1

N

XN

i¼1

H2ðYð2Þ
i Þ:

The first method is the CRN method, and is

intuitively prefered because it reduces variability:

Varð‘̂ ð1ÞN Þ < Varð‘̂ ð2ÞN Þ:

To prove this inequality, denote Xi ¼ HiðYiÞ. Then
‘̂ ¼ X1 � X2 is an unbiased estimator of ‘ with

variance

Varð‘̂Þ ¼ VarðX1Þ þ VarðX2Þ � 2CovðX1;X2Þ: (4)

If X1 and X2 are independent (as is the case in

the second method), then (4) becomes

VarðX1Þ þ VarðX2Þ. Hence, variance reduction is

obtained if CovðX1;X2Þ > 0 in (4). This requirement

is precisely the opposite of what was needed in

antithetic variates. To force the covariance to become

positive through CRN, the uniform random number U

used for a particular purpose in generating Y1, is used

for the same purpose to generate Y2. This can be

formalized by the technical conditions completely

analogous to those for antithetic variates.

CRN is often applied not only because it seems

‘fair’ but also because CRN is the default in many

simulation software systems; e.g., Arena compares

different scenarios using the same seed—unless, the

programmer explicitly selects different seeds to

initialize the various sampling processes (arrival

process, service time at work station 1, etc.) for

different scenarios. Detailed examples are given in

Law (2007), pp. 582–594.

So while the simulation programmers need to invest

little extra effort to implement CRN, the comparisons

of various scenarios may be expected to be more

accurate; i.e., the what-if or sensitivity analysis gives

estimators with reduced variances. However, some

applications may require estimates of the absolute

(instead of the relative) responses; i.e., instead of

sensitivity analysis the analysis aims at prediction or

interpolation from the observed responses for the

scenarios that have already been simulated. In these

applications, CRN may give worse predictions; also

see Chen, Ankenman, and Nelson (2010).
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The analysis of simulation experiments with CRN

should go beyond (4), which compares only two

scenarios. The simplest extension is to compare

a fixed set of (say) k scenarios using (4) combined

with the Bonferroni inequality so that the type-I error

rate does not exceed (say) a; i.e., in each comparison of

two scenarios the value a is replaced by a=m where m

denotes the number of comparisons (e.g., if all k

scenarios are compared, then m ¼ kðk � 1Þ=2).
Multiple comparison and ranking techniques are

discussed in Chick and Gans (2009).

However, the number of interesting scenarios may

be not fixed in advance; e.g., the scenarios differ in one

or more quantitative inputs (e.g., arrival speed, number

of servers) and the optimal input combination is

wanted. In such situations, regression analysis is

useful; i.e., the regression model is then a metamodel

that enables validation, sensitivity analysis, and

optimization of the simulation model; see Kleijnen

(2008). The estimated regression coefficients

(regression parameters) may have smaller variances

if CRN is used—because of arguments based on

(4)—except for the intercept (or the ‘grand mean’ in

Analysis of Variance or ANOVA terminology).

Consequently, CRN is not attractive in prediction, but

it is in sensitivity analysis and optimization.

A better metamodel for prediction may be a Kriging

or Gaussian Process model, assuming the scenarios

correspond with combinations of quantitative inputs;

e.g., the scenarios represent different traffic rates in

a queuing simulation. Kriging implies that the

correlation between the responses of different

scenarios decreases with the distance between the

corresponding input combinations; i.e., the Gaussian

process is stationary (Kleijnen 2008). In random

simulation (unlike deterministic simulation, which is

popular in engineering) the Kriging metamodel also

requires the estimation of the correlations between the

‘intrinsic’ noises of different scenarios caused by the

use of random numbers U; see Chen et al. (2010).

An important issue in the implementation of

Antithetics and CRN is synchronization, which is

a controlling mechanism to ensure that the same

random variables are generated by the same random

numbers from the random number generator. As an

example, consider comparing a single-server queue

GI=GI=1 with a two-server system GI=GI=2. The

two systems have statistically similar arrivals and

service times, but the single server works twice as

fast. The performance measure is the expected

waiting time per customer (which is conjectured to be

less in the two-server system). In a simulation study,

the two simulation models with CRN should have the

same arrival variates, and the same service-time

variates. Suppose that A1;A2; . . . are the consecutive

interarrival times in a simulation run of the GI=GI=1

model, and S1; S2; . . . are their associated service-time

requirements. Then, in the corresponding simulation

run of the GI=GI=2 model, these same values are used

for the consecutive interarrival times, and their

associated service times; see Kelton, Sadowski, and

Sturrock (2007); Law (2007).

Antithetic and common random numbers can be

combined. Their optimal combination is the goal of

the Schruben-Margolin strategy; i.e., some blocks of

scenarios use CRN, whereas other blocks use antithetic

variates, etc.; see Chih (2013).

Control Variates

Suppose that ‘̂ is an unbiased estimator of ‘ in the

estimation problem (1); for example, C is the arrival

time in a queueing simulation. A random variable C

is called a control variate for ‘̂ if it is correlated with

‘̂ and its expectation g is known. The linear control

random variable ‘̂ðaÞ is defined as

‘̂ðaÞ ¼ ‘̂� aðC� gÞ;

where a is a scalar parameter. It is easy to prove that the

variance of ‘̂ðaÞ is minimized by

a� ¼ �Covð‘̂;CÞ
VarðCÞ :

The resulting minimal variance is

Varð‘̂ða�ÞÞ ¼ 1� r2
‘̂C

� �
Varð‘̂Þ; (5)

where r‘̂C denotes the correlation coefficient between ‘̂

and C. Since Covð‘̂;CÞ is unknown, the optimal

control coefficient a� must be estimated from the

simulation. Estimating both Covð‘̂;CÞ and VarðCÞ
means that linear regression analysis is applied to

estimate a�. Estimation of a� implies that the

variance reduction becomes smaller than (2)

suggests, and that the estimator may become biased.
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The method can be easily extended to multiple control

variables (Rubinstein and Marcus 1985).

A well-known application of control variates is

pricing of Asian options. The payoff of an Asian call

option is given by

HðYÞ ¼ maxð0; 1
n

Xn

j¼1
Yj � KÞ;

where Yj ¼ SjT=n, the expiration date T is discretized

into n time units,K is the strike price, and St is the asset

price at time t, which follows a geometric Brownian

motion. Let r be the interest rate; then the price of the

option becomes

‘ ¼ E e�rTHðYÞ
� �

:

A control variate may be C ¼ e�rTmaxð0; ST � KÞ
whose expectation is readily available from the

Black-Scholes formula. Alternative control variates

are ST , or
1
n

Pn
j¼1 SjT=n.

Conditioning

Themethod of conditionalMonte-Carlo is based on the

following basic probability formulas. Let X and Z be

two arbitrary random variables, then

EðEðXjZÞÞ ¼ EðXÞ and

VarðXÞ ¼ EðVarðXjZÞÞ þ VarðEðXjZÞÞ: (6)

Because the last two terms are both nonnegative,

variance reduction is obvious:

VarðEðXjZÞÞ 	 VarðXÞ:

The same reasoning holds for the original problem

(1), setting X ¼ HðYÞ. Also Z is allowed to be a vector

variable. These formulas are used in a simulation

experiment as follows. The vector Z is simulated, and

the conditional expectation C ¼ EðHðYÞjZÞ is

computed. Repeating this N times gives the

conditional Monte-Carlo estimator

‘̂�N ¼ 1

N

X

N

i¼1

Ci:

A typical example is a level-crossing probability of

a random number of variables:

‘ ¼ P
X

R

j¼1

Yj > b

 !

;

where Y1; Y2; . . . are IID positive random variables,

R is a nonnegative integer-valued random variable,

independent of the Yj variables, and b is some

specified constant. Such problems are of interest in

insurance risk models for assessing aggregate claim

distributions (Glasserman 2003). CMC can be

improved by conditioning on the value of R for

which level crossing occurs. To be more specific,

denote the event of interest by A, so ‘ ¼ EðIAðYÞÞ.
Define

M ¼ min r :
X

r

j¼1

Yj > b

 !

:

Assume that the distribution of Y can be easily

sampled, and that the distribution of R is known and

numerically available (for instance, Poisson). Then it is

easy to generate a value of M. Suppose that M ¼ m.

Then EðIAðYÞjM ¼ mÞ ¼ PðR � mÞ, which can be

easily computed.

Stratified Sampling

Recall the original estimation problem ‘ ¼ EðHðYÞÞ,
and its crude Monte Carlo estimator ‘̂N . Suppose now

that there is some finite random variable Z taking

values from fz1; . . . ; zmg, say, such that

1. the probabilities pi ¼ PðZ ¼ ziÞ are known;
2. for each i ¼ 1; . . . ;m, it is easy to sample from the

conditional distribution of Y given Z ¼ zi.

Because

‘ ¼ EðEðHðYÞÞÞ ¼
X

m

i¼1

piEðHðYÞjZ ¼ ziÞ;

the stratified sampling estimator of ‘ may be

‘̂�N ¼
X

m

i¼1

pi
1

Ni

X

Ni

j¼1

HðYijÞ;
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where Ni IID samples Yi1; . . . ;YiNi
are generated from

the conditional distribution of Y given Z ¼ zi, such

that N1 þ � � � þ Nm ¼ N. Notice that the estimator is

unbiased. To assess its variance, denote the conditional

variance of the performance estimator by

s2i ¼ VarðHðYÞjZ ¼ ziÞ. The variance of the

stratified sampling estimator is then given by

Varð‘̂�NÞ ¼
Xm

i¼1

p2i s
2
i

Ni

:

Because of (6)

VarðHðYÞÞ � VarðHðYÞjZÞ ¼
Xm

i¼1

pis
2
i :

Selecting proportional strata sample sizes Ni ¼ piN

gives variance reduction:

Varð‘̂�NÞ ¼
Xm

i¼1

pis
2
i

N
	 1

N
VarðHðYÞÞ ¼ Varð‘̂NÞ:

It can be shown that the strata sample sizes Ni that

minimize this variance are

Ni ¼ N
pisiPm
j¼1 pjsj

;

see Rubinstein and Kroese (2008). A practical problem

is that the standard deviations si are usually unknown,

so these variances are estimated by pilot runs.

Stratified sampling is used in financial engineering

to get variance reductions in problems such as

value-at-risk, and pricing path-dependent options

(Glasserman 2003).

Importance Sampling

The idea of importance sampling is explained best in

case of estimating the probability of an event A. The

underlying sample space is ðO;fÞ for which A 2 f,

and the probability measure P on this space is given by

the specific simulation model. In a simulation

experiment for estimating PðAÞ, the CMC estimator

would be ‘̂N ¼PN
i¼1 I

ðiÞ
A , where I

ð1Þ
A ; . . . ; I

ðNÞ
A are IID

indicator functions of event A generated under P. On

average in only one out of 1=PðAÞ generated samples

the event A occurs, and thus for rare events (where

PðAÞ is extremely small) this procedure fails. Suppose

that there is an alternative probability measure P� on

the same ðO;fÞ such that (i) A occurs much more

often, and (ii) P is absolutely continuous with respect

to P�, meaning

8F 2 f : PðFÞ > 0 ) P�ðFÞ > 0:

Then according to the Radon-Nikodym theorem, it

holds that there is a measurable function L on O such

that
R
F
dP ¼

R
F
L dP� for all F 2 f. The function L

is called likelihood ratio and usually written as

L ¼ dP=dP�; the alternative probability measure P�

is said to be the importance sampling probability

measure, or the change of measure. Thus, by

weighting the occurrence IA of event A with the

associated likelihood ratio, simulation under the

change of measure yields an unbiased importance

sampling estimator

‘̂�N ¼
XN

i¼1

LðiÞIðiÞA :

More importantly, variance reduction is obtained

when the change of measure has been chosen

properly, as will be explained below. Importance

sampling has been applied successfully in a variety of

simulation areas, such as stochastic operations

research, statistics, Bayesian statistics, econometrics,

finance, systems biology; see Rubino and Tuffin

(2009). This section will show that the main issue in

importance sampling simulation is the question which

change of measure to consider. The choice is very

much problem dependent, however, and

unfortunately, it is difficult to prevent gross

misspecification of the change of measure P�,
particularly in multiple dimensions.

Exponential Change of Measure

As an illustration, consider the problem of estimating

the level-crossing probability

‘n ¼ PðAnÞ with An ¼ fY1 þ � � � þ Yn > nag;
(7)

where Y1; . . . ; Yn are IID random variables with finite

mean m ¼ EðYÞ<a and with a light-tailed PDF f ðy; vÞ,
in which v denotes a parameter vector, such as mean

V 1604 Variance Reduction Techniques in Monte Carlo Methods



and variance of a normal density. It is well-known

from Cramér’s Theorem that PðAnÞ ! 0

exponentially fast as n!1. Suppose that under the

importance sampling probability measure the random

variables Y1; . . . ; Yn remain IID, but with an

exponentially tilted PDF (also called exponentially

twisted), with tilting factor t:

ftðy; vÞ ¼
f ðy; vÞetyR
f ðy; vÞety dy :

Thus, in the importance sampling simulations the

Yk -samples are generated from ftðy; vÞ. Because of the
IID assumption, the likelihood ratio becomes

LðY1; . . . ; YnÞ ¼
Yn

k¼1

f ðYk; vÞ
ftðYk; vÞ

¼ exp ncðtÞ � t
Xn

k¼1
Yk

 !

; (8)

with cðtÞ ¼ log
R
f ðy; vÞety dy. Variance reduction is

obtained if

Vartð‘̂�NÞ 	 Varð‘̂NÞ , Vartð‘̂�1Þ 	 Varð‘̂1Þ

, Et½ð‘̂�1Þ
2
 	 E½ð‘̂1Þ

2

, Et½ðIALðY1; . . . ; YnÞÞ2
 	 E½ðIAÞ2
:

Because of (8), it is easy to show that the variance is

minimized for t ¼ ðc0Þ�1ðaÞ. In that case the

importance sampling estimator is logarithmically

efficient (also called asymptotically optimal; see

Rubino and Tuffin (2009; Chapter 4)):

lim
n!1

logEt ð‘̂�NÞ
2

h i

logEt ‘̂�N
h i ¼ 2;

where the subscript t means that the underlying

probability is the change of measure. Asymptotic

optimality implies that REð‘̂�NÞ grows

subexponentially as n ! 1, whereas for CMC the

relative error grows exponentially (see (3)).

The Cross-entropy Method

A general heuristic for constructing an importance

sampling algorithm is to consider only

a parameterized family of changes of measures.

Consider again problem (1), with PDF f ¼ f ðy; vÞ
where v is the parameter vector. Thus, let Y be all

feasible parameter vectors for f . For any y 2 Y, the

change of measure Py induces the (single-run)

importance sampling estimator

‘̂�y ¼ HðYÞ dP

dPy

ðYÞ ¼ HðYÞ f ðY; vÞ
f ðY; yÞ :

The optimal change of measure is found by variance

minimization. Since the estimators are unbiased, it

suffices to minimize the second moment:

min
y2Y

Ey HðYÞ f ðY; vÞ
f ðY; yÞ

� �2
" #

:

Generally, this problem is hard. A successful

approach is based on cross-entropy minimization as

explained in Rubinstein and Kroese (2004). First,

consider the optimal change of measure, resulting in

a zero-variance estimator:

dPoptðYÞ ¼ HðYÞdPðYÞ
‘

: (9)

This change of measure is not implementable as it

requires knowledge of the unknown quantity ‘. The

cross-entropy method finds Py by minimizing the

Kullback–Leibler distance (or cross-entropy) within

the class of feasible changes of measure:

min
y2Y

dðdPopt; dPyÞ;

where the cross-entropy is defined by

dðdPopt; dPyÞ ¼ Eopt log
dPopt

dPy

ðYÞ
� �	 


¼ Ev

dPopt

dP
ðYÞ log dPopt

dPy

ðYÞ
� �	 


:

Substituting expression (9), and canceling constant

terms and factors, the equivalent cross-entropy

problem becomes

max
y2Y

Ev½HðYÞlogdPyðYÞ
:
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There are several ways to solve this stochastic

optimization problem. The original description of the

cross-entropy method for such problems proposes to

solve the stochastic counterpart iteratively, see

Rubinstein and Kroese (2004). This approach has

been applied successfully to a variety of estimation

and rare-event problems.

State-dependent Importance Sampling

The importance sampling algorithms described above

were based on a static change of measure; i.e., the

samples are generated by a fixed alternative statistical

law; see (8). In specific problems, such as (7), the static

importance sampling algorithm yields an efficient

estimator. However, for many problems it is known

that efficient estimators require an adaptive or

state-dependent importance sampling algorithm

(Juneja and Shahabudding 2006). To illustrate this

concept, consider again the problem of estimating the

level-crossing probability (7). The Yk-variables are

called jumps of a random walk ðSkÞnk¼0, defined by

S0 ¼ 0, and for k � 1: Sk ¼
Pk

j¼1 Yj ¼ Sk�1 þ Yk.

Under a state-dependent change of measure, the next

jump Ykþ1 might be generated from a PDF

f ðyjk þ 1; SkÞ; i.e., it depends on jump time k þ 1 and

current state Sk. Hence, under the change of measure,

the process ðSkÞnk¼0 becomes an inhomogeneous

Markov chain. Given a generated sequence

Y1; . . . ; Yn, the associated likelihood ratio is

LðY1; . . . ; YnÞ ¼
Yn

k¼1

f ðYk; vÞ
f ðYkjk; Sk�1Þ

:

The next question is: Which time-state dependent

PDFs should be chosen for this kind of change of

measure? The criterion could be (i) variance

minimization, (ii) cross-entropy minimization, or

(iii) efficiency.

1. A small set of rare-event problems are suited to find

so-called zero-variance approximate importance

sampling algorithms, notably level-crossing

problems with Gaussian jumps, reliability

problems, and certain Markov chains problems;

see L’Ecuyer et al. (2010).

2. A cross-entropy minimization is applied after each

state Sk for determining the PDF of the next jump

(Ridder and Taimre 2011). The result is that when

the level-crossing at time n can be reached from

state Sk just by following the natural drift, no

change of measure is applied. Otherwise, the next

jump is drawn from an exponentially tilted PDF

with tilting factor t ¼ ðc0Þ�1ððan� SkÞ=ðn� kÞÞ.
This would be the static solution given before

when starting at time k ¼ 0. This approach gives

logarithmic efficiency.

3. The method developed by Dupuis andWang (2007)

considers the rare-event problem as an optimal

control problem in a differential game. Applying

dynamic programming techniques while using

large-deviations expressions, the authors develop

logarithmically efficient importance sampling

algorithms. This approach works also for rare

events in Jackson networks (Dupuis et al. 2007).

Markov Chains

Many practical estimation problems in statistical

systems (e.g., reliability, production, inventory,

queueing, communications) can be reformulated as

a Markov model to estimate a quantity

‘ ¼ PðYT 2fÞ. Let fYt : t ¼ 0; 1; . . .g denote

a discrete-time Markov chain with a state space x

with transition probabilities pðx; yÞ; f � x is

a subset of states, and T is a stopping time. A typical

example is a system of highly reliable components

where the response of interest is the probability of

a break down of the system.

Assume that the importance sampling is restricted

to alternative probability measures P� such that the

Markov chain property is preserved with transition

probabilities p�ðx; yÞ satisfying

pðx; yÞ > 0 , p�ðx; yÞ > 0:

This constraint ensures the absolute continuity

condition. Furthermore, assuming that the initial

distribution remains unchanged, the likelihood ratio

of a simulated path of the chain becomes simply

L ¼
YT�1

t¼0

pðYt;Ytþ1Þ
p�ðYt;Ytþ1Þ

:

Thus, it suffices to find the importance-sampling

transition-probabilities p�ðx; yÞ. Considering these

probabilities as parameters, the method of

cross-entropy is most convenient; Ridder (2010) gives

sufficient conditions to guarantee asymptotic
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optimality. However, many realistic systems are

modeled by Markov chains with millions of

transitions, which causes several difficulties: the

dimensionality of the parameter space, the danger of

degeneracy of the estimation, and numerical underflow

in the computations. Several approaches are proposed to

reduce the parameter space in the cross-entropy method

(de Boer and Nicola 2002; Kaynar and Ridder 2010).

Another approach to importance sampling in

Markov chains approximates the zero-variance

probability measure Popt. It is known that this Popt

implies transition probabilities of the form

poptðx; yÞ ¼ pðx; yÞ gðyÞ
gðxÞ ;

where gðxÞ ¼ PðYT 2fjY0 ¼ xÞ. As these quantities
are unknown (and in fact the subject of interest), these

zero-variance transition probabilities cannot be

implemented. However, approximations of the gðxÞ
probabilities may be considered (L’Ecuyer et al.

2010). Under certain conditions this approach leads to

strong efficiency of the importance sampling estimator.

Splitting

The splitting method may handle rare-event

probability estimation. Unlike importance sampling,

the probability laws remain unchanged, but a drift to

the rare event is constructed by splitting (cloning)

favorable trajectories, and terminating unfavorable

trajectories. This idea may be explained as follows.

Consider a discrete-time Markov chain

fYt : t ¼ 0; 1; . . .g on a state space x. Suppose that

the chain has a regeneration state or set 0, a set of

failure states f, and a starting state y0. The response
of interest is the probability that the chain hits f

before 0. More formally, if T denotes the stopping time

T ¼ infft : Yt 2 0 [fg;

then

‘ ¼ PðYT 2fÞ:

The initial state y0 62 0 [f may have either some

initial distribution, or be fixed and known. The

assumption is that ‘ is so small that CMC in

impractical. Suppose that the state space is

partitioned into sets according to

x � x1 � x2 � � � � � xm ¼ f; (10)

with 0 2 x x1= . Usually these sets are defined through

an importance function f : x !  , such that for each

k, xk ¼ fy : fðyÞ � Lkg for certain levels

L1 	 L2 	 � � � 	 Lm, with fð0Þ ¼ L0 < L1. Now

define stopping times Tk and associated events Ak by

Tk ¼ infft : XðtÞ 2 0 [xkg; Ak ¼ fYTk 2 xkg:

Because of (10), clearly A1 � A2 � � � � � Am ¼
A ¼ fYT 2 fg. Thus the rare-event probability

‘ ¼ PðAÞ can be decomposed as a telescoping product:

‘ ¼ PðA1Þ
Ym

k¼2

PðAkjAk�1Þ:

To estimate ‘, one might estimate all conditional

probabilities PðAkjAk�1Þ separately (say) by ‘̂k , which

gives the product estimator

‘̂� ¼
Ym

k¼1

‘̂k; (11)

where ‘̂1 estimates PðA1Þ. The splitting method

implements the following algorithm for constructing

the ‘̂k estimators in a way that the product estimator is

unbiased. In the initial stage (k ¼ 0), run N0

independent trajectories of the chain starting at the

initial state y0. Each trajectory is run until either it

enters x1 or it returns to 0, whatever come first. Let

R1 be the number of “successful” trajectories; i.e.,

trajectories that reach x1 before 0. Then set

‘̂1 ¼ R1=N0. Consider stage k � 1, and suppose that

Rk trajectories have entered set xk in entrance states

Y
ðkÞ
1 ; . . . ;Y

ðkÞ
Rk

(not necessarily distinct). Replicate

(clone) these states, until a sample of size Nk has

been obtained. From each of these states, run

a trajectory of the chain, independently of the others.

Each trajectory is run until either it enters xkþ1 or it

returns to 0, whatever come first. Let Rkþ1 be the

number of successful trajectories, i.e., trajectories

that reach xkþ1 before 0. Then set ‘̂kþ1 ¼ Rkþ1=Nk.

This procedure is continued until all trajectories have

entered either f or returned to 0.
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This form of the splitting method has attracted a lot

of interest (see the reference list in Rubino and Tuffin

(2009; Chapter 3)), both from a theoretical point of

view analyzing the efficiency, and from a practical

point of view describing several applications. The

analysis shows that the product estimator (11) is

unbiased. Furthermore, the analysis of the efficiency

of the splitting technique depends on the

implementation of (a) selecting the levels, (b) the

splitting (cloning) of successful trajectories, and (c)

the termination of unsuccessful trajectories.

Generally, the problem of solving these issues

optimally is like choosing an optimal change of

measure in importance sampling. In fact, Dean and

Dupuis (2008) discusses this relationship when the

model satisfies a large deviations principle.

Concerning issue (c), the standard splitting

technique terminates a trajectory that returns to the

regeneration state 0, or—in case of an importance

function—when the trajectory falls back to level L0.

This approach, however, may be inefficient for

trajectories that start already at a high level Lk.

Therefore, there are several adaptations such as

truncation (L’Ecuyer et al. 2007), RESTART

(Villen-Altamirano, and Villen-Altamirano 1994),

and Russian roulette principle (Melas 1997).

Concerning issue (b), there are numerous ways to

clone a trajectory that has entered the next level, but

the two ways implemented mostly are (i) fixed effort,

and (ii) fixed splitting. Fixed effort means that the

sample sizes Nk are predetermined, and thus each of

the Rk entrance states at setxk is cloned ck ¼ Nk=Rkb c
times. The remaining NkmodRk clones are selected

randomly. An alternative is to draw Nk times at

random (with replacement) from the Rk available

entrance states. Fixed splitting means that the

splitting factors ck are predetermined, and each of the

Rk entrance states at set xk is cloned ck times to give

sample size Nk ¼ ckRk.

For a certain class of models, Glasserman

et al. (1999) has shown that fixed splitting gives

asymptotic optimality (as ‘! 0) when the number of

levels m � �lnð‘Þ=2, with sets xk such that

PðAkjAk�1Þ are all equal (namely, roughly equal to

e�2) and splitting factors such that ckPðAkþ1jAkÞ ¼ 1.

However, since ‘ and the PðAkþ1jAkÞ are unknown in

practice, this result can only be approximated.

Moreover, one should take into account the amount

of work or computing time in the analysis; for

example, Lagnoux (2006) determines the optimal

setting under a budget constraint of the expected total

computing time.

Application to Counting

Recently, counting problems have attracted the

interest of the theoretical computer science and the

operations research communities. A standard

counting problem is model counting, or #SAT: how

many assignments to boolean variables satisfy

a given boolean formula consisting of

a conjunction of clauses? The related classical

decision problem is: does there exist a true

assignment of the formula? Because exact counting

is impracticable due to the exponential increase in

memory and running times, attention shifted to

approximate counting—notably by applying

randomized algorithms. In this randomized setting,

the counting problem is equivalent to rare event

simulation: let x� be the set of all solutions of the

problem, whose number jx�j is unknown and the

subject of study. Assume that there is a larger set of

points x � x� with two properties:

1. the number of points jxj is known;
2. it is easy to generate uniformly points x 2 x.

Because

jx�j ¼ jx�j
jxj jxj;

it suffices to estimate

‘ ¼ jx�j
jxj ¼ PðU 2 x�Þ;

where U is the uniform random vector onx. Typically

‘ is extremely small, and thus rare event techniques are

required. Splitting techniques with Markov chain

Monte Carlo (MCMC) simulations have been

developed in Botev and Kroese (2008) and

Rubinstein (2010) to handle such counting problems.

Quasi-Monte Carlo

Suppose that the performance function H in (1) is

defined on the d-dimensional unit hypercube ½0; 1Þd,
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and the problem is to compute its expectation with

respect to the uniform distribution:

‘ ¼ EðHðUÞÞ ¼
Z

½0;1Þd
HðuÞ du:

As was shown in the introduction, the variance of

the CMC estimator ‘̂Nm using a sample size N � m

equals s2=ðN � mÞ, where

s2 ¼
Z

½0;1Þd
H2ðuÞ du� ‘2:

Let PN ¼ fu1; . . . ;uNg � ½0; 1Þd be a deterministic

point set that is constructed according to a quasi-Monte

Carlo rule with low discrepancy, such as a lattice rule

(Korobov), or a digital net (Sobol’, Faure,

Niederreiter); see Lemieux (2006). The quasi-Monte

Carlo approximation of ‘ would be

XN

j¼1
HðujÞ:

This deterministic approach is transformed into

Monte Carlo simulation by applying a randomization

of the point set. A simple randomization technique is

the random shift: generate m IID random vectors

vi 2 ½0; 1Þd, i ¼ 1; . . . ;m, and compute the

quasi-Monte Carlo approximations

‘̂i ¼
XN

j¼1
Hðuj þ vi mod 1Þ:

Then the randomized quasi-Monte Carlo estimator

using sample size N � m is defined by

‘̂� ¼ 1

m

Xm

i¼1

‘̂i :

The scrambling technique is based on permuting the

digits of the coordinates uj�. Other techniques of

randomizing quasi-Monte Carlo point sets are less

used. The main property is that when the

performance function H is sufficiently smooth, these

randomized quasi-Monte Carlo methods give

considerable variance reduction (Lemieux 2006).

See

▶Cross-Entropy Method

▶ Inverse Transform Method

▶Markov Chain Monte Carlo

▶Rare Event Simulation

▶Regenerative Simulation

▶ Simulation of Stochastic Discrete-Event Systems
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Vector Maximum Problem

▶Multiobjective Programming

Vector Space

A vector n-space is a set of vectors or points, each with

n components, and rules for vector addition and

multiplication by real numbers. Euclidean 3-space is

a vector space.

Vehicle Routing

Lawrence Bodin

University of Maryland, College Park, MD, USA

Introduction

The traditional point-to-point vehicle routing problem

(K-VRP) determines a minimum cost set of routes for

a fleet of K identical vehicles where the vehicles

service a set of locations and each location has

a known demand for service. For these problems,

minimum cost can represent the 1) minimum dollars

to service the locations or 2) minimum nonproductive

operating cost to service the locations or 3) minimum

travel distance to service the locations. If the fleet size

(number of vehicles in the fleet) is known, then the

routes are formed in most cases to minimize the total

cost associated with the nonproductive travel time

(also known as deadhead travel time) associated with

the routes that are formed. If the fleet size is not known,

then the routes are formed in order to minimize the

total cost of the operation, where the total cost of the

operation is a combination of the capital cost

associated with the fleet size and the operating cost

associated with the deadhead travel time of the fleet.

Generating and Executing Routes

When the routes are generated is an important

consideration in solving these vehicle routing

problems. In some vehicle routing problems, the

routes for the vehicles are formed for a single day

and these routes are determined well in advance of

when the routes are executed. These problems are

called fixed route problems. In the preplanned vehicle

routing problems, the vehicles are assumed to carry out

different routes daily since the locations to be serviced

can differ from one day to the next but all of the
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locations to be serviced on a given day are known in

advanced. In these cases, the vehicle routing problem

is solved daily. Most of the traditional papers on

vehicle routing are concerned with variants of the

fixed route and preplanned vehicle routing problems.

These problems are the focus of this article.

However, there are other classes of vehicle routing

problems that can be defined where these classes are

based on when the routes are generated. In some cases,

the routes begin with a skeleton routes or partial routes

formed over the locations that are always serviced on

that day. Then, new locations for that day are inserted

onto these routes to determine a set of routes for that

day. Adding locations to routes as the locations are

received by the dispatcher generate a class of routing

problems called the real time vehicle routing problem

or real time dispatching problem.

Traditional Vehicle Routing Constraints

Traditional vehicle routing constraints include the

following:

1. Each route can be no longer than a specified length.

2. The volume or weight on each route can be no

larger than a specified amount, called the capacity

of the vehicle.

3. Each route begins and ends at the depot so that these

problems are called single depot vehicle routing

problems.

4. All vehicles are identical so that this vehicle routing

problem is called a homogeneous routing problem.

Time Windows

A time window at a location to be serviced is defined as

a time interval [L, U] where L is the earliest possible

time to begin the service at the location and U is the

latest possible time to begin the service at the location.

If a location has a hard time window, It is normally

assumed that the time window is hard, i.e., the service

of the location must begin between L andU. In a route,

if the vehicle can arrive at the location before L, the

hard time window forces the vehicle to wait until L to

begin service at the location. The time that the vehicle

must wait before beginning the service at L is called the

wait time of the vehicle at the location. Vehicle wait

time represents nonproductive time and can be

considered a cost to the organization. With hard time

windows, it is assumed that it is infeasible to begin to

service a location after U. If is desired that the service

at a location is to be carried out between L and U but

the service can begin before L or after U, then [L, U] is

called a soft time window at the location.

Vehicle routing problems then fall into two

classes – vehicle routing problems without time

windows and vehicle routing problems with time

windows. If the locations in a vehicle routing

problem have time windows, then the windows can

be soft or hard. Further, a location without a time

window can be assumed to be a location with a time

window where L ¼ 0 and U is very large.

Vehicle Routing Literature

Vehicle routing problems form a rich area of research

and applications. There are many vehicle routing

problems that can be defined, where the analysis of

these vehicle routing problems depend upon the

conditions placed on the problem. As such, a vast

literature on vehicle routing exists. Standard

references include Ball (1995a; 1995b), Bodin

(1990), Bodin et al. (1983), Golden and Assad (1986,

1988) and Lawler et al. (1985). Three books on vehicle

routing are Dror (1999), Hall (1999) and Toth and

Vigo (1999). Each of these books and papers include

extensive bibliographies.

Practical Vehicle Routing Problems

There are many applications of vehicle routing

problems and effective software has been developed

for solving many of these applications. Practical

vehicle routing problems include the delivery of

goods from a depot to a set of locations, residential

and containerized sanitation pickup, scheduling of

meter readers, scheduling of field maintenance

personnel, delivery of newspapers and telephone

books, scheduling of fuel deliveries such as propane

gas and gasoline, scheduling of paratransit vehicles,

and scheduling of pickups and deliveries for courier

services.

Some of the more common constraints that can be

encountered when attempting to solve practical vehicle

routing problems are as follows:

1. The length of each route must be between

a prespecified lower and upper bound.

2. Each route begins and ends at the same depot

although in some problems, there can be several

such depots. This problem is called the multiple

depot vehicle routing problem. Further, in some
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problems, the route can begin (or end) at a depot and

end (or begin) at the last (or first stop) on the route.

Problems have been encountered where vehicles

leave a depot (or storage facility), deliver items to

several locations, go to a second depot (or storage

facility), reload the vehicle, deliver items to several

locations, go to a third depot (or storage facility),

etc. These problems can involve developing routes

over several days.

The rollon-rolloff problem is an example where

(i) a tractor leaves a depot, (ii) goes to a location

with an empty container, (iii) exchanges the empty

container for a full container at the location, (iv)

brings the full container to a landfill or storage

facility, (v) exchanges the full container for an

empty container, (vi) brings the empty container to

a location, (vii) exchanges the empty container for

a full container at the location, (viii) brings the full

container to a landfill or storage facility, (ix)

exchanges the full container for an empty

container, etc. In the rollon-rolloff problem, there

can be multiple landfills and storage facilities and

the vehicle capacity is 1 (the tractor can only move

one container at a time).

3. There can be several types of vehicles in the fleet

where the vehicles can be different in terms of

capacity, size of crew, speed, etc. This problem is

called the multiple vehicle type routing and

scheduling problem.

4. If some of the locations can be serviced by some,

but not necessarily all, of the vehicle types and the

specification of the vehicle types that can service

a location can differ by location, then this problem

is called the vehicle/location or vehicle/site

dependency routing problem.

5. If demand at a location is not known in advance but

can be stochastic, then this problem is called the

stochastic vehicle routing and scheduling problem.

A variant of the stochastic vehicle routing and

scheduling problem, called the inventory routing

problem, occurs in the delivery of such items as

propane gas and fuel oil. In the case of propane

gas or fuel oil, the demand (amount of propane gas

or fuel oil needed at the location) is forecasted using

a factor such as degree-days.

6. In paratransit, courier delivery and shared cab ride

problems, each customer demanding service has

a specified pickup location and a specified

delivery location. The pickup has to be scheduled

on the route before the delivery is scheduled on the

route. Some of these problems can have

transshipments; that is to say, packages are picked

up and brought to a pre-specified drop location

where they are unloaded and another vehicle later

picks up these packages and makes the deliveries.

7. The vehicle routing problem with backhauling

occurs In some vehicle routing problems when

there are delivery locations and pickup locations

and each route has the restriction that all (or most)

of the deliveries are to be carried out before any of

the pickups are to be carried out. In this way, the

vehicle can be close to empty before it is filled up.

An example of this problem is when a vehicle

makes several deliveries and then goes to

a warehouse where it reloads the vehicle to bring

the items that has just been loaded on the vehicle to

another warehouse or depot.

A second example is the local delivery and pickup

routes for organizations like Federal Express and

UPS. In this example, the drivers make deliveries

in the morning, then make later deliveries and early

pickups in the midday, and then mostly pickups at

the end of the day. These pickups are then returned to

the depot where they are processed for delivery. This

problem involves both daily scheduled pickups and

daily real time dispatching.

Algorithms for Solving Vehicle Routing
Problems

Virtually all vehicle routing problems fall into the class

of combinatorial optimization problems called

NP-Hard. A problem is NP-Hard if the number of

computations needed to solve this problem grows

exponentially with a parameter of the problem (Garey

and Johnson (1979), Karp (1975), Lenstra and Rinnooy

Kan (1981) and Papadimitriou and Stieglitz (1982)).

Many of the algorithms for solving vehicle routing

problems can be divided into the following three

classes – heuristic approaches, metaheuristic

approaches and exact procedures.

Heuristic and Metaheuristic Algorithms

Since finding the optimal solution for reasonable size

problems and proving that the solution is optimal is

difficult, heuristic approaches are generally employed

to find a close-to-optimal solution for these problems.
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Many of the papers and books in the literature describe

various heuristic approaches for solving vehicle

routing problems. These approaches are surveyed in

Ball (1995a; 1995b), Bodin (1990), Bodin et al. (1983),

Golden and Assad (1986, 1988) and Toth and Vigo

(1999). Further, metaheuristics such as tabu search and

neural networks (Martello et al. 1999; Toth and Vigo

1999) have been applied with some success to finding

reasonable solutions to these vehicle routing problems.

A standard heuristic approach for solving many

point-to-point vehicle routing and scheduling

problems consists of the following steps:

(a) Specify K, the fleet size. The fleet size K is

generally set by the user or determined by some

estimation procedure.

When practical considerations are considered,

determining the value of K (the number of vehicles

in the fleet) may be very difficult to estimate

accurately. As such, the user may not know how

many routes to form. To overcome this issue, the

user can always repeat the heuristic approach for

different values of K and take the best solution.

(b) Tour Construction or Partitioning of the

Locations. The locations to be serviced are

aggregated into K clusters. Some of the approaches

for tour construction use single location insertion

heuristics and are sequential in nature (one location

is assigned to a cluster on each iteration). Other

approaches, such as the generalized assignment

algorithm, are based on solving a mathematical

program and are not sequential in nature.

In some cases, the locations are sequenced as

the partitions are formed. If routes and schedules

have not been formed while aggregating locations

into partitions, then a route and schedule is found

over the locations assigned to each of the K

partitions, one cluster at a time.

Depending upon the algorithm being

implemented and the constraints on the problem,

at the conclusion of this step, it is possible to have

some locations that are not assigned to routes and/

or some of the routes to violate the upper bound on

travel time.

(c) Tour Improvement. In Tour Improvement, the total

travel time of each of the routes is reduced by

reordering the locations. To accomplish this, the

following is carried out:

(i) The locations on each route are reordered, one

route at a time. There are very popular and

effective procedures designed for carrying

out this exchange process. The number of

exchanges of this type is a function of the

implementation of the algorithms used and

the amount of computer time available.

(ii) Locations are moved between routes and the

routes regenerated to reduce their lengths.

The results of exchanging locations between

routes is not nearly as effective as the within

route exchanges described in c-i. Thus, this

approach has to be used with some caution

because it could use up significant computer

time and find few route improvements.

(iii) Unassigned locations are inserted into routes

using some of the insertion procedures

described in step (b). This approach can be

integrated with the approaches in c-i and c-ii.

The tour improvement step continues until no more

improvements are found or the time allocated to tour

improvement is exhausted.

Many of the tour construction approaches (Step

B above) are sequential in nature in that one location

is assigned to one of the K routes on each iteration. As

such, a bad decision of assigning a customer to a route

made at an early step in the tour construction part of the

above approach locks in the solution being generated.

This bad decision can adversely affect the subsequent

assignment of locations to routes.

Moreover, the tour improvement procedures [Step

(c) above] can be either too time consuming or not

powerful enough to derive a close to optimal solution

when starting from an initial assignment of locations to

routes that is inferior (these routes are formed in the

tour construction approach (Step B above). Despite

these caveats, this approach, from a research

standpoint and in commercially available software,

has served as one of the ‘workhorse’ procedures for

solving vehicle routing problems.

The above approach did not explicitly mention time

windows. Adapting this approach to solve a VRP with

time windows may not be effective if the time windows

are hard and the time window duration D ¼ U-L at

some of the locations is narrow (say D < 1 hour).

Mathematical Programming Approaches

Mathematical programming approaches have been

developed for solving certain vehicle routing

problems with at least 150 locations exactly. Bodin,

Mingozzi and Maniezzo (1999) survey some of the
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more promising approaches for solving vehicle routing

exactly. Subsequent papers by Aristide Mingozzi and

his colleagues describe effective exact approaches for

solving various classes of vehicle routing problems.

The results in these papers show that the exact

approach taken in these papers get superior results to

virtually all of the test problems that have been created

for solving different and difficult vehicle routing

problems.

Classes of Vehicle Routing Problems

The above discussion has concentrated on solving

point-to-point vehicle routing problems (also known

as node routing problems). In a point-to-point vehicle

routing problem, the locations are distinct points to be

serviced and these points are scattered over a region. It

is generally assumed that in a node routing problem,

the density of the service points is not too great so that

the resulting travel path for the vehicle is reasonably

independent of the underlying street network.

Traditionally, the Euclidean distance (or travel time

based on the Euclidean distance or some other metric

based on Euclidean disatnace) is used as the deadhead

travel time metric when solving point-to-point vehicle

routing problems.

Traveling Salesman Problem

The traveling salesman problem is the one vehicle

point-to-point vehicle routing problem. The optimal

solution to the traveling salesman problem requires

the determination of a minimum deadhead time path

that services each location demanding service exactly

once. This route begins and ends at the depot.

A traveling salesman solution is displayed in Fig. 1.

The route in Fig. 1 represents a solution to a symmetric

or undirected traveling salesman problem since the

travel time between each pair of locations does not

depend on the direction of travel. An asymmetric or

directed traveling salesman problem occurs when the

travel time between each pair of locations can be

different.

There has been considerable research in developing

efficient and accurate procedures for solving the

traveling salesman problem. Helsgaun (Helsgaun

2009 and Applegate et al. 2009) has developed

extremely effective approaches for solving the

traveling salesman problem with as many as

10,000,000 nodes and has demonstrated that his

computationally efficient procedure has found

a solution to these very large traveling saleman

problems that is within .02% of the optimal solution.

Arc Routing Problems

A second class of routing problems are called

arc-routing problems. In an arc-routing problem, the

entities to be serviced are the arcs in a network, rather

than the individual locations in node routing problems

discussed earlier. The methodology for solving arc

routing problems is similar to the methodology for

solving node routing problems. Matter of fact,

a question that often arises is should one (i) convert

an arc routing problem to a node routing problem and

solve the node routing problem or (ii) convert a node

routing problem to an arc routing problem and solve

the arc routing problem (assuming that the locations to

be serviced are geocoded onto a network). At this time,

there is no definitive answer to this question although

D

E

B

C
A DEPOT

Vehicle Routing, Fig. 1 Euclidean distance route over five
points
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algorithms for solving node routing problems tend to

allow for additional constraints to be considered as

compared to arc routing problems. Dror’s book on

arc routing problems is devoted totally to the

formulation, solution methodogies and practical

applications of arc routing problems (Dror 1999).

Many of the other references cited earlier also have

sections or chapters on arc routing problems.

Chinese Postman Problems

The single vehicle version of an arc routing problem is

called the Chinese Postman Problem (given the name by

Meigu Guan orMei-KoKwan, see Kwan (1962)). In the

Chinese Postman problem, there are streets in a network

that require service and the subgraph made up of the

streets requiring service is connected. The problem is to

develop a travel path (called an Euler path) that services

all of the streets requiring service where the deadhead

time is minimzed for the additional streets added to the

required streets to allow for an Euler path to be found.

A simple approach for solving the undirected

Chinese Postman Problem (all arcs in the network are

undirected) is to sove a 1-match problem to determined

the minimum cost additional arcs to be added into the

problem to allow for an Euler path to be found over the

subgraph of required arcs and deadhead arcs. In

a similar vein, the determination of the minimum

deadhead arcs in the directed Chinese Postman

Problem is found by solving a transportation problem.

Since the algorithms for optimally solving the

1-match problem and the transportation problems are

polynomial, the undirected and directed Chinese

Postman problems are not NP-Hard. The Chinese

Postman Problem becomes NP-Hard when some of

the arcs are directed and others are not directed. In

the case where the arcs to be serviced are a subset of all

of the arcs in the network, then the problem is not

NP-Hard if all the arcs requiring service are either

directed or undirected and the network of all streets

requiring service is connected.

The famous Swiss mathematician, Leonhard Euler,

solved the first undirected Chinese Postman Problem

in the famous problem called the Seven Bridges of

Koenigsburg (Prussia). Because of this problem,

Euler is generally credited with originating Graph

Theory (Assad 2007). A special issue of Networks

was devoted to celebrating Euler’s 300th birthday

(Golden and Shier 2007). This special issue of

Networks also contained a delightful article on the

present status of the Seven Bridges of Koenigsburg

(Gribkovskaia et al. 2007).

Neighborhood Vehicle Routing Problems

A second class of vehicle routing problems are called

neighborhood routing (or arc routing) problems. In

a neighborhood vehicle routing problem, the locations

are arcs in the underlying network to be serviced. In

solving the neighborhood vehicle routing problem, the

arcs are partitioned into subsets and, within each subset,

the locations are ordered to form a minimum travel time

path. Traditionally, when solving neighborhood vehicle

routing problems, the shortest travel time path between

street segments requiring service is used as the

deadhead travel time metric.

The capacitated arc routing problem is another

example of a neighborhood routing problem. In the

undirected (directed) capacitated arc routing problem,

a network is given where every arc in this network is

either directed or undirected and the network is

connected. Moreover, each arc has a known demand

and each vehicle has the same capacityQ. The problem

is to break this network down into partitions where

each arc is assigned to a partition, the demand in each

partition is no greater thanQ, a travel path can be found

over the arcs in each partition that traverses all of the

arcs in that partition and the total deadhead travel time

over all of the vehicles is minimized.

Street Routing and Scheduling Problems

As noted earlier, the original procedures for solving the

point-to-point vehicle routing problems assumed that

Euclidean distance was used to determine the distance

or travel time between the locations to be serviced in

a point-to-point vehicle routing problem. This

assumption worked reasonably well as long as the

locations to be serviced were scattered over a region

and not too dense. However, the Euclidean distance

assumption may not be realistic when solving practical

vehicle routing problems where the locations to be

serviced are somewhat dense and/or the street

network on which the locations are geocoded have to

be taken into consideration.

A five-location traveling salesman solution,

A-B-C-D-E-A, using Euclidean distances was

displayed in Fig. 1. Assume that location A is the

depot in Figs. 2 and 3.
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In Fig. 2, the same traveling salesman solution

(A-B-C-D-E-A) is displayed but the locations to be

serviced are superimposed on a street network. In this

solution, the vehicle would drive past locations and not

service these locations and then have to service these

locations later in the route, increasing the total travel

time of the route.

The solution in Fig. 3 is generated by solving

a traveling salesman problem where the shortest

travel time path between each pair of locations is

used rather than Euclidean distances. In this solution,

no U-turns are allowed and the vehicle is forced to

traverse each street segment on the right hand side. In

this solution, the vehicle always services locations as it

drives past these locations.

A special class of practical vehicle routing problems

are called street routing and scheduling problems. Street

routing and scheduling problems consist of point-to-

point routing problems where locations to be serviced

are dense and arc routing problems. In street routing

problems, the locations to be serviced are located on

a digital map and the deadhead travel times are

computed as shortest paths rather than Euclidean

distances. In arc routing problems, most street

segments in the region are to be serviced. Street

routing and scheduling problems are described in

detail in Bodin, Mingozzi and Maniezzo (1999).

Geographic Information Systems and Digital
Street Networks

To solve street routing and scheduling problems

requires an accurate digital street networks and

Vehicle Routing, Fig. 2 Actual travel path for Euclidean
distance route in Fig. 1. (Notes for Fig. 2: Order of the
servicing the locations on the route is maintained as in Fig. 1.
No U-turns are allowed. Service is carried out on the location’s
side of the street without making a left hand turn. To get from
location A to location B without U-turns and ensuring that
service is carried out on the location’s side of the street, the
route has to go around several blocks)

Vehicle Routing, Fig. 3 Travel path when shortest paths are
computed over the street network. (Notes on Fig. 3: No U-turns
are allowed. Service is carried out on the location’s side of the
street without making a left hand turn)
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a Geographic Information System (GIS). A digital

street network is a street segment by street segment

representation of a geographic region. A GIS is

a system of computer hardware, software and

procedures designed to support the capture,

management, manipulation, analysis, modeling and

display of a digital street network. With an accurate

GIS, the user is able to address match the locations to

be serviced on the digital street network, to compute

the travel times between locations as shortest travel-

time paths, and to give accurate street-by-street travel

directions for each vehicle route. On the other hand,

the Euclidean distance approach for solving vehicle

routing problems only gives an ordering of the

locations of a route could be derived.

Most commercially available vehicle routing

systems use a digital street network and a GIS in their

routing and scheduling procedures. The generation of

accurate travel paths is essential for having these travel

paths accepted by the drivers and management. Users

do not want strange turns on their routes and they wish

to be able to give accurate locations for all of the

locations that they service. In this regard, early

procedures for solving street routing and scheduling

problems were concerned about adverse turns in their

travel paths and developed approaches for reducing

U-turns and left-hand turns on their travel paths

(assuming vehicles are driven on the right hand side

of the street) (McBride (1982)). UPS announced that

they had developed the travel paths for their drivers

that emphasized right hand turns. As a result, they

saved $600 million per year (Farber (2005)).

Concluding Remarks

Due to the increase in the capabilities of computers and

the increase in functionality and sophistication of

software, it is now possible to derive better solutions

to larger (in terms of number of locations to be served)

and more varied (in terms of the constraints that can be

considered) vehicle routing problems. Moreover, the

computer systems that solve these systems have

improved graphics, user interfaces and underlying

geographic data. Since the cost of distribution is

a major cost component of many organizations,

computerized vehicle routing systems are becoming

a necessary part of an organization’s logistics/

distribution system.
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Vehicle Scheduling

▶Vehicle Routing

Verification

For amathematical model, especially a computer-based

one such as a simulation model, verification is the

process by which the computational procedure

(computer program or software) is checked to

determine if it is error free (debugged) and the

determination that the model, as represented by

the calculations or software, does what the analyst

intended. A model is said to be verified if it

(the computation) correctly executes the intended

calculations.

See

▶Validation

▶Verification, Validation, and Testing of Models

Verification, Validation, and Testing of
Models

Osman Balci

Virginia Polytechnic Institute & State University,

Blacksburg, VA, USA

Introduction

Operations research/management science (OR/MS)

models lacking a sufficiently accurate representation

produce erroneous results that can be catastrophic

when making critical decisions based on the model

results. Thus, principles and techniques for verification,

validation and testing (VV&T) of theOR/MSmodels are

critical for their successful implementation and

utilization. After presenting some background

information, the principles are introduced and

a taxonomical brief overview of the techniques is given.

Background

A model is a representation and an abstraction of

anything such as a system, concept, problem, or

phenomena. It can have inputs, parameters, and

outputs as illustrated in Fig. 1. The term system is

used to refer to whatever the model represents.

Model Verification is substantiating that the model

is transformed from one form into another, as intended,

with sufficient accuracy. Model verification deals with

building the model right. The accuracy of transforming

a problem formulation into a model specification or the

accuracy of converting a model representation in

micro flowchart into an executable computer program

is evaluated in model verification.
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Model Validation is substantiating that the model,

within its domain of applicability, behaves with

satisfactory accuracy consistent with the study

objectives. Model validation deals with building the

right model. It is conducted by executing/running

the model under the same input conditions that drive

the system and by comparing model behavior with the

system behavior. (Note that a linear programming

model is executed and a simulation model is run).

Model Testing is demonstrating that inaccuracies

exist in the model or revealing the existence of errors in

the model. In model testing, the model is subjected to

test data or test cases to see if it functions properly.

Test failed implies the failure of the model, not the test.

Testing is conducted to perform verification and

validation. Some tests are intended to judge the

accuracy of model transformation from one form into

another (verification). Some tests are devised to

evaluate the behavioral accuracy (i.e., validity) of the

model. Therefore, the whole process is commonly

referred to as model VV&T.

Model VV&T is conducted to prevent occurrences

of three major types of errors in OR/MS modeling

studies (Balci 1998b): Type I Error is the error of

rejecting the model credibility when in fact the model

is sufficiently credible; Type II Error is the error of

accepting the model credibility when in fact the model

is not sufficiently credible; and Type III Error is the

error of solving the wrong problem. The probability of

committing the Type I Error is called Model Builder’s

Risk and probability of committing the Type II Error is

called Model User’s Risk. Committing the Type I

error increases the cost of model development.

The consequences of committing the Type II and

Type III errors may be catastrophic. Therefore,

a cost-risk analysis should be conducted whenever

possible (Balci and Sargent 1981).

Principles

The principles presented here are established based on

the experience described in the published literature and

the author’s experience (Balci 1998b, 2010). The

principles are listed below in no particular order.

Principle 1: The model VV&T must be conducted

throughout the entire modeling life cycle starting with

problem formulation and culminating with the

presentation of model results. The VV&T activities

throughout the entire life cycle are intended to reveal

and rectify quality deficiencies during the life cycle

phase in which they occur.

Principle 2: The outcome of model VV&T should

not be considered as a binary variable where the model

is absolutely correct or absolutely incorrect. Since

a model is an abstraction of an entity, perfect

representation is never expected. The outcome of

model VV&T should be considered as a degree of

credibility on a scale from 0 to 100, where

0 represents absolutely incorrect and 100 represents

absolutely correct.

Principle 3: A model is built with respect to the

study objectives and its credibility is judged with

respect to those objectives. The study objectives

dictate how representative the model should be.

Sometimes, 60% representation accuracy may be
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sufficient; sometimes, 95% accuracy may be required.

The adjective “sufficient” must be used in front of the

terms such as model credibility, model validity or

model accuracy to indicate that the judgment is made

with respect to the study objectives.

Principle 4: The model VV&T requires

independence to prevent developer’s bias. The

organization which is contracted to conduct the

modeling study is not qualified to perform the final

model VV&T (acceptance testing). The sponsor of

the modeling study should identify an independent

agent to conduct the final model VV&T. To

emphasize this principle, VV&T is called

independent VV&T or independent V&V (IV&V) by

many authors in the literature.

Principle 5: The model VV&T is difficult and

requires creativity and insight. Knowledge of the

problem domain, expertise in the modeling

methodology, and prior modeling and VV&T

experience are required. It is not possible for one

person to fully understand all aspects of a large

and complex model especially if the model is

a stochastic one containing hundreds of concurrent

activities.

Principle 6: Model credibility can be claimed

only for the prescribed conditions for which the model

is tested. The accuracy of the input–output

transformation of a simulation model is affected by

the characteristics of the input conditions. The

transformation that works for one set of input

conditions may produce absurd output when

conducted under another set of input conditions.

Principle 7: Complete model testing is not possible.

Exhaustive (complete) testing requires testing the

model under all possible inputs. Combinations of

feasible values of model input variables can generate

millions of logical paths in model execution. Due to

time and budgetary constraints, it is impossible to test

the accuracy of millions of logical paths. Therefore, in

model testing, the purpose is to increase confidence in

model credibility as much as dictated by the study

objectives rather than trying to show 100% credibility.

Principle 8: The model VV&Tmust be planned and

documented. Testing is not a phase or step in model

development life cycle; it is a continuous activity

throughout the entire life cycle. The tests should be

identified, test data or cases should be prepared, tests

should be scheduled, and the whole testing process

should be documented. All test data and cases must

be preserved for use in model maintenance and

regression testing.

Principle 9: Type I, II and III errors must be

prevented. Committing a Type I Error unnecessarily

increases the cost of model development. The

consequences of Type II and Type III Errors can be

catastrophic especially when critical decisions are

made on the basis of model results. Committing

a Type III Error implies solving the wrong problem

and causes the study results to be irrelevant.

Principle 10: Errors should be detected as early as

possible in the life cycle of a modeling study.

Correcting errors detected in later phases of the life

cycle is much more expensive. Some vital errors may

not be detectable in later phases resulting in the

occurrence of Type II or Type III error.

Principle 11: Multiple response problems must be

recognized and resolved properly. The validity of

a model with two or more output variables (responses)

cannot be tested by comparing the corresponding model

and system output variables one at a time, that is, Om
1

versus Os
1, O

m
2 versus Os

2, etc. as shown in Fig. 1.

A multivariate statistical procedure must be used to

incorporate the correlations among the output

variables in the comparison.

Principle 12: Double validation problem must

be recognized and resolved properly. If data can be

collected on both system input and output, model

validation can be conducted by comparing model and

system outputs obtained by running the model with the

same input data that drives the system. Determination of

the same is yet another validation problemwithinmodel

validation. Therefore, this is called the double

validation problem.

Principle 13: Successfully testing each submodel

(module) does not imply overall model credibility.

The credibility of each submodel is judged to be

sufficient with some error that is acceptable with

respect to the study objectives. Each submodel may be

found to be sufficiently credible, but this does not

imply that the whole model is sufficiently credible.

The allowable errors for the submodels may

accumulate to be unacceptable for the whole model.

Therefore, the whole model must be tested even if

each submodel is found to be sufficiently credible.

Principle 14: Model validity does not guarantee the

credibility and acceptability of modeling study results.

Model validity is a necessary but not a sufficient

condition for the credibility and acceptability of
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model results. Model validity is assessed with respect

to the modeling study objectives by comparing the

model with the system as it is defined. If the study

objectives are incorrectly identified and/or the system

is improperly defined, the model results will be invalid;

however, the model may still be found to be

sufficiently valid by comparing it with the improperly

defined system and with respect to the incorrectly

identified objectives.

Principle 15: Formulated problem accuracy greatly

affects the acceptability and credibility of model results.

If the problem is formulated incorrectly, no matter how

excellent the problem solution is, the modeling study

results will be irrelevant.

Techniques

Figure 2 shows a taxonomy that classifies more than 77

VV&T techniques into four primary categories:

informal, static, dynamic, and formal (Balci 1998a).

The use of mathematical and logic formalism by the

techniques in each primary category increases from

informal to formal from left to right. Likewise, the

complexity also increases as the primary category

becomes more formal. The categories and techniques in

each category are briefly described below (Balci 1998b).

Informal Techniques

These techniques are among the most commonly used

ones. They are called informal because the tools

and approaches used rely heavily on human reasoning

and subjectivity without stringent mathematical

formalism. The informal label does not imply any lack

of structure and formal guidelines for the use of the

techniques.

Audit is undertaken to assess how adequately the

modeling study is conducted with respect to

established plans, policies, procedures, standards and

guidelines. The audit also seeks to establish

trace-ability within the modeling study.

Desk Checking (also known as Self-Inspection) is

the process of thoroughly examining one’s work to

ensure correctness, completeness, consistency and

unambiguity. It is considered to be the very first step

in VV&T and is particularly useful for the early stages

of development.

Documentation Checking is conducted to ensure

correctness, completeness, consistency, and

unambiguity of all model documentation and to

justify that all documentation is up-to-date with

respect to model logic specification.

In Face Validation, the project team members,

potential users of the model, people knowledgeable

about the system under study, based on their estimates

and intuition, subjectively compare model and system

behaviors under identical input conditions and judge

whether the model and its results are reasonable.

Inspections are conducted by a team of four to six

members for any model development phase such as

model requirements specification, detailed model

design, or model code. An inspection goes through

five distinct phases: overview, preparation,

inspection, rework and follow-up.

Reviews are conducted in a similar manner as

the inspections and walkthroughs except in the way

the team members are selected. The review team also

involves managers. The review is intended to give

management and study sponsors evidence that the

model development process is being conducted

according to stated study objectives.

Turing Test is based on the expert knowledge of

people about the system under study. The experts are

presented with two sets of output data obtained,

one from the model and one from the system, under

the same input conditions. Without identifying which

one is which, the experts are asked to differentiate

between the two. If they succeed, they are asked how

they were able to do it. Their response provides

valuable information for model validation.

Walkthroughs are conducted by a team composed

of a coordinator, model developer and three to six other

members. Except the model developer, all other

members should not be directly involved in the

development effort.

Static Techniques

These techniques are concerned with accuracy

assessment on the basis of characteristics of the static

model design and source code. Static techniques do not

require machine execution of the model, but mental

execution can be used.

Cause-Effect Graphing assists model correctness

assessment by addressing the question of “what
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causes what in the model representation?” It is

performed by first identifying causes and effects in

the system being modeled and by examining if they

are accurately reflected in the model specification.

Calling Structure Analysis is used to assess model

accuracy by identifying who calls whom and who is

called by whom. The who could be a module,

procedure, subroutine, function, or a method in an

object-oriented model.

Concurrent Process Analysis is especially useful for

parallel and distributed models. Model accuracy is

assessed by analyzing the overlap or concurrency of

model components executed in parallel or as

distributed. Such analysis can reveal synchronization

problems such as deadlocks.

Control Flow Analysis requires the development of

a graph of the model where conditional branches and

model junctions are represented by nodes and the

model segments between such nodes are represented

by links. A node of the model graph usually represents

a logical junction where the flow of control changes,

while an edge represents towards which junction it

changes. This technique examines sequences of

control transfers and is useful for identifying

incorrect or inefficient constructs within model

representation.

Verification, Validation and Testing Techniques

Informal

Audit Cause-Effect Graphing InductionAcceptance Testing

Alpha Testing

Bottom-Up Testing

Comparison Testing

Authorization Testing

Performance Testing

Security Testing

Standards Testing

Fault/Failure Insertion Testing

Field Testing

Functional (Black-Box)Testing
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Verification, Validation,

and Testing of Models,
Fig. 2 A taxonomy of model
VV&T techniques
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State Transition Analysis requires the identification

of a finite number of states the model execution

goes through. A state transition diagram is created

showing how the model transitions from one state to

another. Model accuracy is assessed by analyzing the

conditions under which a state change occurs.

Data Dependency Analysis involves the

determination of what variables depend on what other

variables. For parallel and distributed models, the

data dependency knowledge is critical for assessing

the accuracy of process synchronization.

Data Flow Analysis is used to assess model

accuracy with respect to the use of model variables. It

can be used to detect undefined or unreferenced

variables and, when aided by model instrumentation,

can track minimum and maximum variable values,

data dependencies and data transformations during

model execution. It is also useful in detecting

inconsistencies in data structure declaration and

improper linkages among submodels.

In Fault/Failure Analysis, fault implies incorrect

model component and failure implies incorrect

behavior of a model component. The analysis uses

model input–output transformation descriptions to

identify how the model might logically fail. The

model design specification is examined to determine

if any failure-mode possibilities could logically occur

and in what context and under what conditions. Such

model examinations often lead to identification of

model defects.

Model Interface Analysis is conducted to examine

the (sub)model-to-(sub)model interface and determine

if the interface structure and behavior are sufficiently

accurate.

User Interface Analysis is conducted to examine the

user-model interface and determine if it is human

engineered so as to prevent occurrences of errors

during the user’s interactions with the model. It is

also used to assess how accurately the interface

is integrated with the model. This technique is

particularly useful for accuracy assessment of

interactive models used for training purposes.

Semantic Analysis is conducted by the model’s

programming language compiler and attempts to

determine the modeler’s intent in writing the code.

The compiler informs the modeler about what is

specified in the source code so that the modeler can

verify that the true intent is accurately reflected.

The compiler generates a wealth of information to

help the modeler determine if the true intent is

accurately translated into the executable code.

Structural Analysis is used to examine the model

structure and to determine if it adheres to structured

principles. It is conducted by constructing a control

flow graph of the model structure and examining the

graph for anomalies, such as multiple entry and

exit points, excessive levels of nesting within

a structure and questionable practices such as the use

of unconditional branches (i.e., GOTOs).

Symbolic Evaluation is used to assess model

accuracy by exercising the model using symbolic

values rather than actual data values for input. It is

performed by feeding symbolic inputs into the (sub)

model and producing expressions for the output which

are derived from the transformation of the symbolic

data along model execution paths.

Syntax Analysis is carried on by the model’s

programming language compiler to assure that the

mechanics of the language are applied correctly.

Traceability Assessment is used to match, one to

one, the elements of one form of the model to another.

For example, the elements of the model requirements

specification are matched one to one to the elements of

the model design specification. Unmatched elements

may reveal either unfulfilled requirements or

unintended design functions.

Dynamic Techniques

These techniques require model execution and are

intended for evaluating the model based on its

execution behavior. Most dynamic VV&T techniques

require model instrumentation. The insertion of

additional code (probes or stubs) into the executable

model for the purpose of collecting information about

model behavior during execution is called model

instrumentation. Probe locations are determined

manually or automatically based on static analysis of

model structure. Automated instrumentation is

accomplished by a preprocessor that analyzes the

model static structure (usually via graph-based

analysis) and inserts probes at appropriate places.

Dynamic VV&T techniques are usually applied using

the following three steps. In Step 1, the executable

model is instrumented. In Step 2, the instrumented

model is executed, and in Step 3, the model output is

analyzed and dynamic model behavior is evaluated.

Verification, Validation, and Testing of Models 1623 V

V



Acceptance Testing is conducted either by the model

sponsor or an independent contractor hired by the

sponsor after the model is officially delivered and

before the sponsor officially accepts the delivery. The

model is operationally tested by using the actual

hardware and actual data to determine whether all

requirements specified in the legal con-tract are satisfied.

Alpha Testing refers to the operational testing of the

alpha version of the complete model at an in-house site

which is not involved with the model development.

In Assertion Checking, an assertion is a statement

that should hold true as the model executes. Assertion

checking is a verification technique used to check what

is happening against what the modeler assumes is

happening so as to guard model execution against

potential errors. The assertions are placed in various

parts of the model to monitor model execution.

They can be inserted to hold true globally—for the

whole model; regionally—for some submodels;

locally—within a submodel; or at entry and exit of

a submodel.

Beta Testing refers to the operational testing of the

beta version of the complete model at a “beta” user site

under realistic field conditions.

Bottom-up Testing is used in conjunction with

bottom-up model development strategy under

which model construction starts with the submodels

at the leaf nodes and culminates with the submodels at

the highest level.

Comparison Testing (also known as back-to-back

testing) may be used when more than one version of

a model representing the same system is available for

testing. All versions of the model built to represent

exactly the same system are run with the same input

data and the model outputs are compared.

Differences in the outputs reveal problems with

model accuracy.

Authorization Testing is used to test how

accurately and properly different levels of access

authorization are implemented in the model and how

properly they comply with the established rules and

regulations.

Performance Testing is used to test whether (a)

all performance characteristics are measured and

evaluated with sufficient accuracy, and (b) all

established performance requirements are satisfied.

Security Testing is used to test whether all security

procedures are correctly and properly implemented in

conducting a classified experiment with the model.

Standards Testing is used to substantiate that the

model is developed with respect to the required

standards, procedures, and guidelines.

Debugging is an iterative process the purpose of

which is to uncover errors or misconceptions that

cause the model’s failure and to define and carry out

the model changes that correct the errors. This iterative

process consists of four steps. In Step 1, the model is

tested revealing the existence of errors (bugs). Given

the detected errors, the cause of each error is

determined in Step 2. In Step 3, the model changes

believed to be required for correcting the detected

errors are identified. The identified model changes

are carried out in Step 4. Step 1 is re-executed right

after Step 4 to ensure successful modification because

a change correcting an error may create another one.

This iterative process continues until no errors are

identified in Step 1 after sufficient testing.

Execution Monitoring is used to reveal errors by

examining low-level information about activities and

events that take place during model execution.

Execution Profiling is used to reveal errors by

examining high-level information (profiles) about

activities and events that take place during model

execution.

Execution Tracing is used to reveal errors by

watching the line-by-line execution of a model.

Fault/Failure Insertion Testing is used to insert

a kind of fault (incorrect model component) or a kind

of failure (incorrect behavior of a model component)

into the model and observe whether the model

produces the invalid behavior as expected.

Unexplained behavior may reveal errors in model

representation.

Field Testing places the model in an operational

situation for the purpose of collecting as much

information as possible for model validation.

Functional Testing (also known as Black-Box

Testing) is used to assess the accuracy of model

input–output transformation. It is applied by feeding

inputs (test data) to the model and evaluating the

corresponding outputs. The concern is how

accurately the model transforms a given set of input

data into a set of output data.

Graphical Comparisons is a subjective, inelegant

and heuristic, yet quite practical approach especially

useful as a preliminary approach to model VV&T.

The graphs of values of model variables over time

are compared with the graphs of values of system
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variables to investigate characteristics such as

similarities in periodicities, skewness, number and

location of inflection points, logarithmic rise and

linearity, phase shift, trend lines and exponential

growth constants.

Data Interface Testing is conducted to assess the

accuracy of data inputted into the model or outputted

from the model during execution. All data interfaces

are examined to substantiate that all aspects of data

input/output are correct.

Model Interface Testing is used to detect (sub)

model-to-(sub)model interface errors or invalid

assumptions about the interfaces. This form of testing

deals with how well the (sub)models are integrated

with each other and is particularly useful for object-

oriented and distributed models.

User Interface Testing is used to detect user-model

interface errors or invalid assumptions about the

interfaces. This form of testing is particularly

important for testing human-in-the-loop, interactive

and training models.

Object-Flow Testing is used to assess model

accuracy by way of exploring the life cycle of an

object during model execution.

Partition Testing is used for testing the model

with the test data generated by analyzing the

model’s functional representatives (partitions). It is

accomplished by: (1) decomposing both model

specification and implementation into functional

representatives (partitions), (2) comparing the

elements and prescribed functionality of each

partition specification with the elements and

actual functionality of corresponding partition

implementation, (3) deriving test data to extensively

test the functional behavior of each partition,

and (4) testing the model by using the generated

test data.

Predictive Validation requires past input and output

data of the system being modeled. The model is driven

by past system input data and its forecasts are

compared with the corresponding past system output

data to test the predictive ability of the model.

Product Testing is conducted by the model

developer after all submodels are successfully

integrated and before the acceptance testing is

performed by the model sponsor.

Regression Testing is used to substantiate that

correcting errors and/or making changes in the model

do not create other errors and adverse side-effects. It is

usually accomplished by retesting the modified model

with the previous test data sets used.

Sensitivity Analysis is performed by systematically

changing the values of model input variables and

parameters over some range of interest and observing

the effect upon model behavior. Unexpected effects

may reveal invalidity.

Boundary Value Testing is employed to test model

accuracy by using test cases on the boundaries of the

model input domain.

Equivalence Partitioning Testing partitions the

model input domain into equivalence classes in such

a manner that a test of a representative value from

a class is assumed to be a test of all values in that class.

Extreme Input Testing is conducted by

running/exercising the model by using only minimum

values, only maximum values, or arbitrary mixture of

minimum and maximum values for the model input

variables.

Invalid Input Testing is performed by

running/exercising the model under incorrect input

data and cases to determine whether the model

behaves as expected. Unexplained behavior may

reveal model representation errors.

Real-Time Input Testing is particularly important

for assessing the accuracy of models built to represent

embedded real-time systems. Real-time input data

collected from a real system is used for testing the

model’s timing relationships and correlations

between input data points.

Self-Driven Input Testing is conducted by running/

exercising the model under input data randomly

sampled from probabilistic models representing

random phenomena in a real or futuristic system.

Stress Testing is intended to test the model validity

under extreme workload conditions. This is usually

accomplished by increasing the congestion in the model.

Trace-Driven Input Testing is conducted by

running/exercising the model under input trace data

collected from a real system.

Statistical Techniques can be used to conduct

model validation by comparing model and system

output data obtained by running both model and

system under the same input data. Some example

statistical techniques for model validation include

Confidence Intervals/Regions, Hotelling’s T2 Tests,

Multivariate Analysis of Variance, Nonparametric

Goodness-of-fit Tests, Nonparametric Tests of

Means, and Time Series Analysis.
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Branch Testing is conducted by executing the

model under test data so as to execute as many

branch alternatives as possible, as many times as

possible and to substantiate their accurate operations.

Condition Testing is conducted by executing the

model under test data so as to execute as many

(compound) logical conditions as possible, as many

times as possible and to substantiate their accurate

operations.

Data Flow Testing uses the control flow graph to

explore sequences of events related to the status of data

structures and to examine data-flow anomalies. For

example, sufficient paths can be forced to execute

under test data to assure that every data element and

structure is initialized prior to use or every declared

data structure is used at least once in an executed path.

Loop Testing is conducted by executing the model

under test data so as to execute as many loop structures

as possible, as many times as possible and to

substantiate their accurate operations.

Path Testing is conducted by executing the model

under test data so as to execute as many control flow

paths as possible, as many times as possible and to

substantiate their accurate operations.

Statement Testing is conducted by executing the

model under test data so as to execute as many

statements as possible, as many times as possible and

to substantiate their accurate operations.

Submodel/Module Testing requires a top-down

model decomposition in terms of submodels/

modules. The executable model is instrumented to

collect data on all input and output variables of a

sub-model. The system is similarly instrumented (if

possible) to collect similar data. Then, each submodel

behavior is compared with corresponding sub-system

behavior to judge submodel validity.

Symbolic Debugging assists in model VV&T by

employing a debugging tool that allows the modeler

to manipulate model execution while viewing the

model at the source code level.

Top-Down Testing is used in conjunction with

top-down model development strategy under which

model construction starts with the submodels at the

highest level and culminates with the submodels at

the leaf nodes

Visualization/Animation of a model greatly assists in

model VV&T. Displaying graphical images of internal

and external dynamic behavior of a model during

execution enables one to discover errors by watching.

Formal Techniques

These techniques are basedon formalmathematical proof

of correctness. If attainable, formal techniquesprovide the

most effective means of model assessment. Induction,

Inference, and Logical Deduction are acts of justifying

conclusions on the basis of premises given. Lamda

Calculus is a system of transforming the model

representation into formal expressions for which

mathematical proof techniques can be applied. Predicate

Calculus provides rules for manipulating predicates

(combinations of simple relations), which are

derived from the model representation. Predicate

Transformation is used to define the model semantics

with a mapping that transforms model output states to all

possible model input states. This definition provides the

basis for proving whether or not the model is sufficiently

correct. Proof of Correctness is employed to express the

model in a precise notation and then mathematically

proving that: (a) the executed model terminates and (b)

it satisfies the requirements of its specification.

Concluding Remarks

In modeling studies, it is well to remember the dictum

that “Nobody solves the problem. Rather, everybody

solves the model that he [or she] has constructed of the

problem” (Elmaghraby 1968). This dictum clearly

identifies the crucial importance of model credibility.

If the model does not represent the problem with

sufficient accuracy, the modeling study becomes

useless. The model VV&T principles and techniques

presented here indicate that assessment of model

credibility is an onerous task requiring multifaceted

and interdisciplinary knowledge and experience. The

applicability of the techniques should be judged with

respect to the model type (e.g., mathematical

programming model, stochastic optimization model,

simulation model). Applying VV&T techniques

increases confidence in model credibility. The

amount of credibility required or when to stop testing

is determined with respect to the study objectives.

See

▶Battle Modeling

▶Model Accreditation
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VERT

Venture evaluation and review technique. A network

simulation technique design for systematic assessment

of the risks involved in undertaking a new venture

and in resource planning, control monitoring and

overall evaluation of ongoing projects, programs and

systems.

See

▶Network Planning

▶ Project Management

▶Research and Development

Vertex

▶Extreme Point

▶Node

Virtual Reality

An extension of the simulator concept in which the

computer-simulated external physical world

is dynamic rather than static. Actions by the user(s)

may change the simulated external world in the same

way those actions would affect the real world through

the use of the real equipment. The primary sensory

environment of virtual reality systems is visual, but

sound is prevalent in many systems, with touch/feel

also found in some systems. Such systems are routinely

used for test pilots and military combat training.

Another major application is computer gaming.

See

▶Battle Modeling
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Visualization
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University of Western Ontario, London, Ontario,

Canada

Introduction

Operations research/management science (OR/MS) is

frequently involved in the development and use of

visualization techniques at various stages of the

problem-solving cycle. Jones (1994, 1996) provides

many examples, including the use of natural

language and informal diagrams at the problem

conceptualization stage; spreadsheets, and block

structured languages at the problem formulation

stage; spreadsheets and relational databases during

data collection; interactive optimization, and network

flow graphics during problem solution; objective plots

and matrix images at the solution analysis stage; and
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animation, hypertext, hypermedia, and presentation

graphics for results presentation.

The use of visualization techniques such as these is

not new: many of the earliest examples of OR/MS

problem solving made use of visual concepts. Graphs

were routinely used to summarize the results of

modeling studies, flowcharts were used to sketch out

the flow of an algorithm, and graphical techniques

have long been a mainstay of teaching about the

simplex method. However, visualization has moved

from a position at the periphery of OR/MS to being

an important driver of new developments in the field.

The emergence of visualization into the centre stage

of OR/MS parallels developments in computing, which

have seen the industry’s early emphases on number-

crunching speed and storage capacity superseded by

those of user-friendliness and marketability. These

developments have led to spreadsheet software with

a ubiquitous visual presentation based on rows and

columns, the WIMP (Windows/Icons/Mouse/Pull-

down-menu) user interface, and a large variety of user-

friendly software for the production of colorful dynamic

computer-generated pictures. Just as these

developments have proved marketable for the

computer industry, so have they proved marketable

within OR/MS, with the consequence that OR/MS

software that produces vivid visualizations is now

widely available.

Sophisticated computer-generated graphics

represent the most elaborate extreme of the spectrum

of visualization possibilities. Many other methods are

employed that use many different spatial techniques to

add information content to data. At the opposite end of

this spectrum are some very simple tools where the

picture elements are characters spatially arranged to

have limited visual characteristics. For example, text,

the arrangement of data in a table, a set of corporate

accounts, and the block structure in a computer code all

use a simple visual layout to improve understanding of

the numbers and characters. Between these two

extremes are a host of tools that have traditionally

been characterized in two main groups: presentation

graphics and iconic graphics.

Presentation Graphics

Presentation graphics are pictures (bar charts, line

graphs, or pie charts) that are used to illustrate or

summarize data. The use of these types of tools

predates the computer era. From the earliest days of

OR/MS, presentation graphics have been used to

summarize data, to illustrate the results of OR/MS

work, and to aid in communicating data or results to

decision makers or management. Considerable

research has been done that addresses issues such as

when a graph is more useful than numbers, what type

of graph is most useful in which situation, and when

the use of color adds value to a presentation graphic

(Desanctis 1984). The results of this body of research

suggest that the nature of the task is very important in

determining the appropriateness of numerical display

or various presentation graphic forms (Vessey 1991).

Iconic Graphics

Iconic graphics include picture elements that map to

elements of the real world. A road map is an iconic

graphic consisting of lines that are icons, representing

roads, and blocks that represent urban areas. Other

common iconic graphics include floor plans, PERT

charts, and network flow diagrams. Again, iconic

graphics have a long history within OR/MS, but

research on the value of iconic formats is lacking.

For many people, the value has been obvious: try

driving from New York to San Francisco using only

numeric data on road and town locations! Often,

however, there are alternative iconic representations

for a problem, but research has been slow to provide

answers to resolve these choices. As a consequence,

the market has been the determining factor in deciding

which iconic formats survive and which die, with

the result that the survivors are often high on color

and razzle-dazzle but perhaps not the most useful.

Iconic graphics can be categorized as static or

dynamic. An important application area for static

iconic graphics has been transportation systems

routing and planning. Models that link mathematical

programming models to computer-generated road or

street maps have been used to solve truck routing and

scheduling problems, mass transit system route

planning and scheduling problems, and school bus

routing problems (Florian et al. 1987; Bodin and

Levy 1994).

Dynamic iconic graphics, or animations, were first

applied to the study of operations problems by Hurrion

(1980) and have proved to be a huge market success.
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A major application area for animation is simulation

modeling, where animation is now routinely used to

illustrate the progress of a simulation code. The use of

animation seems to aid code debugging, model

verification and model validation (Sargent 2011), and

the presentation of the results of simulation studies to

decision makers. Visual interactive simulation couples

animation with interactive access to the running

simulation model to produce decision support

systems with visual user interfaces that provide

useful tools to aid problem formulation and

interactive problem solution (Bell 1991). The use of

animation and interaction with simulation models is

now so pervasive that every major simulation

modeling software package includes these capabilities.

Animated sensitivity analysis uses dynamic

graphics to illustrate the sensitivity of an optimal

solution to changes in a parameter (Jones 1992). As

the parameter is changed, a visual screen display is

updated 30 times/second to illustrate the response of

the optimal solution to the change.

Impact of New Technologies

The traditional view of visualization has been

considerably expanded by new technologies. Text is

a graphic format (the location of the characters has

meaning), as is hypertext. These tools provide a host

of visual formats, including choice of font, size, and

layout. Both text and hypertext are used as a front-end

for OR/MS models. Again, there exists a broad

spectrum of possibilities from simple examples,

such as the use of textual data on punched cards

as input to mathematical programming software,

to hypertext systems that provide the ability to

navigate through a complex optimization problem

(Kimbrough et al. 1990).

The emergence of multimedia and virtual reality

development tools at reasonable cost has driven new

developments within OR/MS. As these technologies

have become more commonplace, there have appeared

many new kinds of OR/MSmodels that take advantage

of the new delivery systems available for OR/MS work

(Lembersky and Chi 1984).

While the emergence of visualization as an important

field within OR/MS appears to have beenmarket driven,

a body of research evidence has appeared which

supports a view that visualization helps decision

makers solve problems. Surveys of model builders

(Kirkpatrick and Bell 1989) and of decision makers

who have used visual and interactive models (Bell

et al. 1995) strongly support a view that model

developers and decision makers believe that these

types of tools lead to improved decision making, and

explain the market success of software that provides

animation capability for simulation models. Task-

based behavioral research comparing dynamic iconic

graphic tools with non-visual tools has demonstrated

the superiority of the graphic tools for some specific

tasks (Bell and O’Keefe 1995; Chau and Bell 1995).

Finally, there is a growing body of evidence that

suggests that the use of visualization and interaction in

conjunction with OR/MS models and new information

technology tools will have a revolutionary effect on

OR/MS. These tools facilitate, or may even require, the

use of innovative problem-solving methodologies

(Bell and O’Keefe 1994), and the development of

areas of new theory and new algorithms to support

these methodologies (Bell 1994). Jones (1994, 1996)

are recommended for further reading.

See

▶Computational Geometry

▶Computer Science and Operations Research

Interfaces

▶ Scheduling and Sequencing

▶ Simulation of Stochastic Discrete-Event Systems

▶Vehicle Routing
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Vogel’s Approximation Method (VAM)

A method for finding a first feasible solution to

a transportation problem. The procedure begins by

finding the two lowest cost cells for each row and

column in the transportation problem array.

Subtracting the smaller of these costs from the other

produces a Vogel number for each row and column.

Select the largest Vogel number and make the first

assignment to the corresponding lowest cost cell,

where the assignment is the maximum amount that

can be sent from the corresponding origin to the

corresponding destination. After each assignment, the

Vogel numbers are recomputed based on the remaining

rows and columns in the array. The procedure is

repeated until all assignments (shipments) are made.

Although VAM tends to find a good (low cost) first

feasible solution, the extra computational work

required has proven to be a detriment to its use in

computer-based software for solving transportation

problems.

See

▶Northwest-Corner Solution

▶Transportation Simplex (Primal-Dual) Method
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Introduction

Given a finite set S of “sites” pi located in Euclidean

spaceℜd, the Voronoi polyhedron V(pj) of site pj is the

set of all points p ∈ ℜ
d which are at least as close to

site pj as to any other site pi. Such a Voronoi

polyhedron (also called Thiessen polygon or

Wigner-Seitz cell) is convex, its facets determined by

perpendicular bisectors — (hyper)planes or lines of
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equal Euclidean distance from two distinct sites. The

Voronoi polyhedra V(pi), pi ∈ S cover the space ℜ
d

and define a polyhedral cell-complex known as

a Voronoi diagram (Voronoi 1908) or Dirichlet

tesselation (Dirichlet 1850). For a survey, consult

Aurenhammer (1991); also see the texts by Okabe,

Boots, and Sugihara (1992); Goodman and O’Rourke

(2004).

The cells of the dual complex are convex and, in

general, simplicial. By partitioning nonsimplicial cells

of the dual complex into simplices, the Delaunay

triangulation results (Fig. 1). It provides a canonical

scheme for triangulating the convex hull of an arbitrary

set S � ℜ
d of sites, with these sites as vertices. Under

the assumption that sites are realizations of

a homogeneous Poisson process, statistics for

geometrical parameters of Voronoi diagrams

and Delaunay triangulations have been derived

(Miles 1970; Stoyan et al. 1987).

Delaunay Triangulation

For each site pi ∈ S, the Delaunay triangulation

contains an edge from pi to each of its nearest

Euclidean neighbors q ∈ S. In particular, edges in

that triangulation connect all pairs of points of

minimum distance in S. The 1-skeleton of the

Delaunay triangulation contains the relative

neighborhood graph, which in turn contains

a Euclidean minimum spanning tree. The Delaunay

triangulation thus provides a convenient tool for

solving various proximity problems (Shamos and

Hoey 1975). Delaunay triangulations avoid narrow

triangles (see below) as much as possible, are

essentially unique, and are readily determined. They

are often the triangulations of choice for constructing

piecewise-linear surfaces and for applications of

finite-element techniques in engineering.

Delaunay triangulations are characterized by the

empty sphere criterion: the circumsphere of a simplex

in a Delaunay triangulation does not contain any of the

triangulation vertices in its interior (Delaunay 1934).

This criterion determines a triangulation uniquely in

the absence of degeneracy, i.e., the occurrence of

several simplices sharing a circumsphere.

In two dimensions, the empty circle criterion is

equivalent to the requirement that the ascending

sequence of angles, formed by selecting a smallest

interior angle from each triangle in the triangulation,

lexicographically maximizes the corresponding

sequences for all triangulations of the same vertex set

(equiangularity). The requirement that the sequence of

all interior angles be lexicographically maximum is, in

the presence of degeneracy, stronger, and can therefore

serve in some instances as a tie-breaker in the presence

of degeneracy.

The Delaunay triangulation of a set S � ℜ
d of n

sites can be obtained as a projection of the face lattice

of the convex hull of n suitable points in ℜ
d+1. Those

points can be chosen on a sphere — stereographic

projection — or on a rotational paraboloid whose

axis is perpendicular to the space of the triangulation.

This implies that the Voronoi/Delaunay problem in

d dimensions is computationally subsumed under the

strong formulation of the convex hull problem in d + 1

dimensions.

To check whether a given triangulation satisfies the

empty sphere criterion, it is not necessary to verify that

criterion for each simplex by scanning all sites

which are not vertices of the simplex: only pairs of

facet-adjacent simplices whose union is convex need

to be examined as to whether anyone of the two

vertices not in the common facet might lie in the

interior of its opposite circumsphere. This

corresponds to establishing convexity of a (hyper)

surface by examining the angles at which adjacent

facets are joined. In two dimensions, the above

Voronoi Constructs, Fig. 1 Planar Voronoi diagram (dashed
lines) and Delaunay triangulation of nine sites. The circle around
one of the Delaunay triangles illustrates the empty circle
criterion
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criterion reduces to checking each strictly convex

quadrangle formed by edge-adjacent triangles as to

whether the correct diagonal of the quadrangle

belongs to the triangulation (Lawson 1977). Based on

this observation, several simple and efficient methods

such as the insertion method swap diagonals in

quadrangles. Alternatively, divide-and-conquer as

well as plane sweep techniques yield O(n log n)

algorithms for planar Delaunay triangulation of n

sites. Determination of Voronoi diagrams in linear

expected time is discussed in Bentley, Weide, and

Yao (1980), and Dwyer (1991).

In many applications, it is desirable to construct

a planar triangulation with some prescribed edges

while preserving the advantages — avoiding

unnecessarily narrow triangles, essential

uniqueness — of the Delaunay approach. In that case,

the empty circle criterion can be generalized by testing

for potential inclusion only those sites whose

“visibility” from any point of the triangle is not

blocked by a prescribed edge. This generalized empty

circle criterion defines a constrained Delaunay

triangulation, which is unique except for sites on the

peripheries of empty circles (De Floriani and

Puppo 1988).

A second important generalization of the Voronoi

diagram is the power diagram (see Aurenhammer

1987) or radical Voronoi diagram (Gellatly and

Finney 1982). Here sites may be enlarged to spheres

of positive radius. The intersection, real or imaginary,

of two spheres lies on and defines the “radical” (hyper)

plane of that pair. These (hyper)planes then play the

same role as the perpendicular bisectors in the classical

Voronoi diagram. The radical Voronoi diagram of site

spheres of radius ri � 0 centered at locations pi ∈ ℜ
d

respectively, can be obtained by intersecting the

classical Voronoi diagram for the sites (pi, ri ) in d + 1

dimensions with the original d-dimensional space.

Radical Voronoi diagrams are used in crystallography

in order to account for differences in atomic radii.

There are numerous other generalizations of the

Voronoi/Delaunay construct. Alternatives to the

Euclidean norm, as well as general sets instead of

single point sites, are considered. There are order-k,

furthest site, weighted, discrete, and abstract Voronoi

diagrams. Voronoi constructs based on the Euclidean

metric are instances of cell-complexes derived from

arrangements of hyperplanes. Data structures,

algorithms and combinatorial results concerning such

cell-complexes in general are presented by

Edelsbrunner, O’Rourke, and Seidel (1986) and in

the text by Agarwal (1991).

See

▶Computational Geometry

▶Graph Theory

▶Minimum Spanning Tree Problem
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VV&A

Verification, validation, and accreditation.

See

▶Battle Modeling

▶Model Accreditation

▶Model Evaluation

▶Model Management

▶Validation

▶Verification

▶Verification, Validation, and Testing of Models

VV&T

▶Verification, Validation, and Testing of Models
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W

Waiting Time

In a single queue, the time from customer entrance into

the queue until completion of service; in a queueing

network, the total elapsed time between customer

arrival to the network and final departure from the

network. Sometimes, however, waiting time refers

only to the time from arrival until the beginning of

service. These two different quantities are often

differentiated by referring to the former as the system

or sojourn time and the latter as the queueing time or

delay in queue.

See

▶Queueing Theory

War Game

A model whose object is military combat or some

aspect of combat. “War game” is used to emphasize

the competitive nature of the model, either through

human interaction on one or more sides of the

combat or automated, game-theoretic competition or

computer simulation.

See

▶Battle Modeling

Warehouse Problem

Awarehouse has a fixed capacity C and an initial stock

s0 of a certain product that is subject to known seasonal

fluctuations in selling price and cost. The problem is to

determine the optimal pattern of purchases, storage,

and sales for the next n months. The problem can be

formulated as a linear-programming problem. Its dual

has an interesting form that enables the dual solution to

be determined readily.

Water Resources

Roman Krzysztofowicz

University of Virginia, Charlottesville, VA, USA

Introduction

Methodologies and techniques of operations research

and management science have been applied to a vast

array of water resource problems since the early 1960s.

Conversely, water resource problems stimulated several

methodological developments, notably in statistics of

extremes, dynamic programming algorithms, and

multi-objective optimization methods. Four classes of

problems are discussed herein, techniques that have

been employed are noted, and exemplary models are

sketched. Fundamental to building operational models

is the science of water transport processes.
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Hydrology and Hydraulics

Variability of the quantity and quality of natural waters

and their renewability in space and time are governed

by the water cycle – a sequence of processes through

which water is transported between the atmosphere,

the land, and the ocean: precipitation, evaporation,

transpiration, infiltration, groundwater flow, and river

flow. Hydrology develops models of these natural

processes; the models can be used to describe or

predict the quantity and quality of water available in

a given place and time (Musy and Higy 2010).

This information, in turn, constitutes an input into

models of water resource systems. Hydraulics

develops models of flow in channels and lakes, and

through constructed facilities such as spillways,

sluices, fish ladders, turbines, pumps, pipelines,

aqueducts, culverts, navigation locks, and floodways

(Mays 2005). These models serve as building blocks of

control and management models.

Planning Water Resource Development

The purpose of water resource development is to alter

the natural water cycle so as to ensure the quantity and

quality of water in places and times dictated by

socioeconomic objectives of human activities.

Specific purposes are: (i) flood control, (ii)

hydroelectric power generation, (iii) water supply for

domestic, municipal, industrial and agricultural uses,

and (iv) low-flow augmentation for navigation,

recreation, water quality control (by diluting waste-

water and contaminated runoff) and aquatic life

maintenance (by increasing volume and decreasing

temperature of rivers during summer).

For comprehensive planning, the natural boundary

of a water resource system is a river basin (source of

surface water) and the underlying aquifer (source of

groundwater). Figure 1 depicts an exemplary system.

Planning involves tasks such as deciding the type,

location and size of facilities, sequencing investments,

and developing control policies; facilities may be

operated individually or conjunctively (as two

reservoirs in a cascade, or wells and reservoirs

supplying irrigation water to the same district).

The planning process begins with identification of

a time horizon (usually several decades) and objectives

(usually multiple ones). Next, the available water

resources are characterized: groundwater supply and

the rate of its recharge are estimated; river flows at

gauge sites are modeled, for example, as time series

(Hipel 1985); extreme events such as floods

(Krzysztofowicz 2002) and droughts (SHH Special

Issue 1991) are modeled stochastically. Predictive

models of water demands for various purposes are

developed. Alternative system plans are designed,

and operations of individual projects or subsystems

are described via simulation models or optimization

models (in the formof integer, linear, nonlinear, chance-

constrained, stochastic, or dynamic programming).

Finally, all models are synthesized into

a comprehensive river basin planning model, which

provides a decision support for a multi-objective

analysis (WRB Special Issue 1992). The purpose of

the analysis is to screen a large number of alternative

plans and to select a few which are Pareto-optimal. The

choice of a plan for implementation is usually left to the

political process (Loucks and van Beek 2005).
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Operation of Hydrosystems

One of the most active and challenging research areas

has been optimal control of reservoirs, aqueducts,

irrigation systems, water distribution networks, urban

drainage and sewage systems. Control policies are

almost always discrete-time (with the time interval of

an hour, day, week, month or year), but otherwise they

may be discrete- or continuous-state, finite- or

infinite-horizon, stationary or nonstationary (e.g.,

periodic as the annual regime of river flows).

In a generic single reservoir control problem, the

state xn denotes the storage at the beginning of time

interval n, the input on represents the inflow during

interval n, the control un is the release decided at the

beginning of interval n, and the output yn represents the

outflow during interval n. With any finite (n¼ 1, . . ., N)

trajectories x ¼ {xn} and y ¼ {yn}, there is associated

a performance measure g(x, y), whose form is dictated

by reservoir purposes (e.g., generated hydropower,

prevented flood damages). In a deterministic

case, inflows {on} are assumed to be known; hence

yn ¼ un, and one wishes to find a policy u∗ ¼ {u∗n}

maximizing g(x, y) subject to the state dynamics,

xn+1 ¼ xn � un + on, and constraints on storage and

release. In a stochastic case, inflows follow

a probabilistic law (usually of Markovian structure),

and one wishes to find a strategy m∗ ¼ {u∗n},

a sequence of control rules, un ¼ m∗n (xn), that

maximizes the expectation E[g(X, Y)], subject to

nonlinear state dynamics, output operators, and

possibly probabilistic constraints.

The complexity of hydrosystems is reflected in the

many control models described in the literature. They

can be classified according to these features: (i) single

reservoir vs. multi-reservoir, (ii) single purpose vs.

multi-purpose, (iii) deterministic inflows vs. stochastic

inflows, (iv) climatic statistics vs. hydrologic forecasts,

(v) linear objective functions vs. non-linear objective

functions, (vi) separable objective functions vs. non-

separable objective functions, (vii) single objective

control vs. multi-objective control, (viii) short-term

control (hourly, daily, weekly) vs. long-term control

(monthly, yearly), (ix) one-level control vs.

hierarchical control, (x) terminal condition vs. infinite

horizon.

Deterministic control problems are often

formulated as dynamic programs (DP) solved via

discrete DP, successive approximation algorithms

such as state incremental DP and differential DP

(Yakowitz 1982), or approximating linear-quadratic

controllers (Protopapas and Georgakakos 1990).

Among other techniques one finds linear programming

(Yeh et al. 1980), and its chance-constrained variations,

network flow algorithms, both linear and nonlinear

(Rosenthal 1981), and multi-objective optimization.

Stochastic control problems are almost exclusively

formulated as dynamic programs solved via discrete

DP, policy iteration methods, or approximating linear-

quadratic controllers. Various quasi-stochastic

approaches have also been tried, such as sampling DP,

simulation methods, combined simulation-optimization

methods, and heuristic control strategies (Faber and

Stedinger 2001). Despite these advances, stochastic

control of hydrosystems remains at the forefront of

research–the challenges stemming from the

dimensionality of the state space, spatial and temporal

dependence of hydrologic inputs, nonlinear state

dynamics, nonlinear and multiple objective functions.

Mitigation of Floods

Structural solutions, such as dams, diversion channels

with retention basins, and levees, offer protection

against floods up to a certain magnitude. Risk and

benefit-cost analyses have guided decisions concerning

the degree of protection and size of structures. Heuristic

rules, simulation, and optimization methods have been

employed to develop strategies for operation of

reservoirs during floods.

Nonstructural solutions, such as floodplain zoning,

flood insurance, and flood warning systems, aim at

reducing the negative consequences of floods. Risk

and decision analyses have been proposed for

delineating land use zones, setting insurance rates,

issuing flood warnings, and evaluating economic

benefits of flood forecasts (Krzysztofowicz and Davis

1984).

A decision-theoretic model of a flood warning

system provides an example (Krzysztofowicz 1993).

Having received forecast (s, t) of (H, L), the uncertain

flood crest H and time to crest L at a river gauge,

a manager must decide whether to issue (w ¼ 1) or

not to issue (w ¼ 0) a warning for a zone of the

floodplain above elevation y. Thereafter the zone is

Water Resources 1637 W
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flooded (y ¼ 1) or not (y ¼ 0). Each decision-event

vector (w, y) leads to disutility

Dwyðs; tÞ ¼
Z 1

y

Z 1

0

dwyðh; lÞf ðh; ljs; tÞdldh;

where f (·, ·|s, t) is the posterior density of (H, L),

conditional on the forecast, and dwy (h, l) is the

disutility of all economic, social, and behavioral

outcomes resulting from flood crest h occurring at

time l. The expected disutility associated with

decision w, termed the risk function, is

Rðs; t;wÞ ¼ Dw0ðs; tÞPrfy ¼ 0js; tg
þ Dw1ðs; tÞPrfy ¼ 1js; tg:

For each (s, t), the optimal warning rule W∗ prescribes

decisionw¼W∗(s, t) whichminimizes the riskR(s, t,w).

Management of Water Quality

Water pollution comes from either point sources,

which can be directly monitored (e.g., industrial

wastewater discharges), or nonpoint sources, from

which loadings can only be estimated (e.g.,

contaminated runoff from agricultural fields and

urban areas). The preference of downstream users for

clean water and the preference of upstream entities

(such as municipalities, industries, and agricultural

producers) for free discharging of contaminants

create a societal conflict whose resolution requires

legislative, economic, and institutional means.

Management models are typically formulated in

support of planning by a regional authority faced

with decisions such as locating and sizing

waste-water treatment plants and effluent disposal

fields, setting charges for release of wastewater,

locating and operating monitoring networks, and

devising enforcement policies. These decision

problems are multi-objective and hierarchical in

nature (Loucks and van Beek 2005). At the upper

level, the authority’s objectives are (i) to minimize

the total cost, (ii) to equitably allocate the cost to

entities, and (iii) to improve the quality of

waste-receiving waters. At the lower level, an entity’s

objectives are (i) to minimize its cost and (ii) to

optimize its compliance with effluent standards and

discharge regulations. Game-theoretic models are

developed to predict the compliance behavior of

entities, and thus the effectiveness of policies

(WRB Special Issue 1992). Water quality

models – simulating the physical, chemical, and

biological processes taking place in water

bodies – are employed to predict impacts of

alternative management plans on concentration of

constituents (e.g., biochemical oxygen demand,

dissolved oxygen deficit, nitrogen, phosphorus,

metals, organics, bacteria), which collectively define

water quality (Young 1993).

See

▶Dynamic Programming

▶Environmental Systems Analysis

▶Game Theory

▶Global Models

▶Linear Programming

▶Multiobjective Programming

▶Nonlinear Programming

▶ Stochastic Programming
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Weak Derivatives

A method used in stochastic simulation for deriving

unbiased gradient estimators of outputs with respect to

input parameters, usually in probability distributions;

also known as measure-valued differentiation.

See

▶ Perturbation Analysis

▶ Score Functions

▶ Simulation of Stochastic Discrete-Event Systems
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Weak Duality Theorem

▶ Strong Duality Theorem

Weakly-Coupled Systems

A linear-programming problem that has a few

variables that connect (couple) the constraints or

subsets of constraints. Such systems usually arise in

time dimensioned large-scale problems that exhibit

a block-angular structure. The dual of such systems

are weakly-coupled in the sense of having a few

constraints that tie the blocks together. Special

adaptations of the simplex method exist that take

advantage of such structures in their computations.

See

▶Dualplex Method

▶Large-Scale Systems

▶Rosen’s Partitioning Method

Weber Problem

▶Location Analysis

Wicked Problems

As first described by Professor Horst Rittel, University

of California Architecture Department, the term

wicked problem refers “to that class of social system

problems which are ill-formulated, where the

information is confusing, where there are many

clients and decision makers with conflicting values,

and where the ramifications in the whole system are

thoroughly confusing” (Churchman 1967, B141). Such

problems, however, are not restricted just to social

system problems; they are encountered especially in

systemic problems in many areas of business, industry,

and government.

In their paper, “Dilemmas in a General Theory of

Planning,” Rittel andWeber (1973, pp. 161–166) point

out that there are ten distinguishing properties of

wicked problems:

1. There is no definitive formulation of a wicked

problem.

2. Wicked problems have no stopping rule.

3. Solutions to wicked problems are not true or false

but good or bad.

4. There is no immediate and no ultimate test of

a solution to a wicked problem.

5. Every solution to a wicked problem is a “one-shot

operation,” because there is no opportunity to
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learn by trial and error, every attempt counts

significantly.

6. Wicked problems do not have an enumerable

(or an exhaustively describable) set of potential

solutions, nor is there a well-described set of

permissible operations that may be incorporated

into the plan.

7. Every wicked problem is essentially unique.

8. Every wicked problem can be considered to be

a symptom of another problem.

9. The existence of a discrepancy representing

a wicked problem can be explained in numerous

ways. The choice of explanation determines the

nature of the problem’s resolution.

10. The planner has no right to be wrong.

See

▶ Soft Systems Methodology
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Wilkinson Equivalent Random
Technique

An approximation for the blocking probability that an

overflow stream sees in an Erlang loss system. The

method is primarily used to analyze congestion in

telecommunication networks.

See

▶Queueing Theory
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WIMP

Windows/Icons/Menus/Pointers or Windows/Icons/

Mouse/Pull-down-menu. Style of graphical user

interface (GUI) first popularized in the Apple

Macintosh personal computers.

See

▶GUI

▶Visualization
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Winner’s Curse

The selection bias that occurs in an auction or other

situation in which bidders with independent estimates of

the value of an item compete to buy it. Even though all of

the competitors’ estimates are unbiased, the winner will

have tended to overestimate the value. Also used, less

precisely, to denote an expected loss by awinning bidder.

See

▶Bidding Models

Wolfe’s Quadratic-Programming
Problem Algorithm

An adaptation of the simplex method that solves

quadratic-programming problems with positive definite

or positive semidefinite quadratic forms. It is based on

the simultaneous solution of the linear constraints of

the problems and associated Karush-Kuhn-Tucker

conditions. It uses a restricted basis entry for the

solution of necessary complementarity conditions.

See

▶Quadratic Programming
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Work Schedule

A schedule of hours and days to be worked. This issue

is of special importance to emergency services which

are usually provided 24 hours-a-day, 7 days-a-week.

See

▶Emergency Services

Worst-Case Analysis

For an algorithm and associated problem, the

determination of an upper bound on the number of

steps that the algorithm can take on any instance of the

problem. For an optimization problem and an associated

heuristic or suboptimal algorithm, worst-case analysis

may include a statement regarding bounds on how far

the objective function value for the solution returned by

the algorithm can be from the true optimal value.

See

▶Computational Complexity
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X

�X Chart

A quality control chart that plots a sample average of

process output data over time, along with upper and

lower control limits, to monitor variation in the

process.

See

▶Quality Control

▶R Chart
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Y

Yield Management

Managing capacity/inventory of a fixed perishable

product such as airline seats or hotel rooms to

maximize profit or revenue. The term was coined in

the airline industry, precursor to the modern fields of

dynamic pricing and revenue management.

See

▶Revenue Management
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Z

Zero-One Goal Programming

A goal programming methodology that generates

solutions for decision variables where the variables

must be equal to one or zero.

Zero-One Variables

▶Binary Variable

Zero-Sum

A competitive or economic situation is termed

zero-sum when the total amount of money or

comparable measure that is gained by some

participants is exactly equal to the total amount of the

measure that is lost by the remaining participants.

The term is specifically associated with a game in

which the sum of the payoffs lost or gained by the

players is fixed.

See

▶Game Theory

Zero-Sum Game

A game in which one side’s gain (or loss) is exactly

offset by the total losses (or gains) of the remaining

participant(s). In a two-person game, outcomes in

which both sides win would not be possible.

See

▶Game Theory

Zero-Sum Two-Person Game

▶Game Theory
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