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Preface

A widespread liberalization process in commodity and energy markets has led over
the last 15 years or so to a fruitful and rich methodological spreading of techniques
and quantitative approaches previously proposed in financial markets into a wider
global market area. At the same time, the increasing volatility of international prices
and the introduction of regulatory frameworks on banking and insurance institutions
enhanced the research on risk theory and risk management inducing new, practically
relevant, theoretical developments. This handbook, at the time it was proposed to
Springer, aimed at elaborating on such evidence to include contributions related to
optimization, pricing and valuation problems, risk modeling, and decision-making
problems arising in nowadays global financial and commodity markets from the
perspective of operations research and management science.

The volume is structured in three parts, emphasizing common methodological
approaches arising in the areas of interest:

1. Risk modeling
2. Pricing and valuation
3. Optimization techniques

Our original aspiration, as volume editors, was to collect within such structure a
comprehensive set of recent state-of-the-art and original works addressing a variety
of management and valuation problems arising in modern financial and commodity
markets, such as:

• Risk measurement methodologies, including model risk assessment, currently
applied to energy spot and future markets and new risk measures recently
proposed to evaluate risk-reward trade-offs in global financial and commodity
markets.

• Decision paradigms, in the framework of behavioral finance or factor-based or
more classical stochastic optimization techniques, applied to portfolio selection
problems including new asset classes such as alternative investments.

v
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• Derivative portfolio hedging and pricing methods recently put forward in the
professional community in the presence of increasing instability in financial as
well as commodity markets.

• The adoption of multi-criteria and dynamic optimization approaches in financial
and insurance markets in the presence of market stress and growing systemic
risk.

Upon volume completion, we may say that most of the original research objec-
tives have been reached and the 14 chapters included in this volume span a large
and diversified variety of modeling and decision-making problems with a range
of underlying methodological implications. We eventually decided to structure the
content putting first the chapters primarily concerned with risk modeling and risk
assessment issues, then those proposing (risk) pricing techniques, and finally those
focusing on optimal risk control and decision-making paradigms.

Part I of this volume, on risk modeling, includes five chapters. The first
chapter by Malliaris–Malliaris focuses on the market dynamics of gold and silver
as commodities and analyzes in particular the directional predictability of their
daily returns. The authors propose an interesting application of cluster analysis
leading to the identification over a 15-year period of six important clusters, whose
evaluation allows the definition of strategies within this market of precious metals.
Three strategies in particular are evaluated which establish a relevant evidence
for directional strategies in commodity markets, based on their lagged negative
correlation: gold appears leading silver movements with a stable anti-correlated
dynamics. The role of commodities in global financial portfolios has been advocated
for their importance in enhancing real, inflation-adjusted returns and also due to
their diversification gain relative to fixed-income and equity investments. Here
the authors emphasize that indeed, also within commodity markets, investors and
financial agents can profit from the commodity diversified market dynamics and
their relationship with the business and economic cycle.

Sarwar et al. focus in Chap. 2 on credit-rated stocks and analyze how indeed a
different approach to investment-grade rather than speculative-grade equities may
generate significant momentum returns across business cycles with evidence of
anti-cyclical patterns. During the period 1985–2011, the authors analyze in detail
the US market and report that momentum returns from speculative-grade stocks
amount on average to 1.27% per month and are more prevailing during contraction
periods, in which they earn 1.61% per month. Furthermore investment-grade stocks
are found to earn, on average, momentum returns of 0.85% per month and 1.14%
per month during contractions. Momentum returns are in general associated with
trading strategies based on canonical buy/sell signals associated with recent past
winners vs. past losers, respectively. Interestingly, during the 2008 crisis, higher
momentum returns are not explained by macroeconomic variables. The authors’
overall conclusion is that positive momentum returns are due to high uncertainty
associated with the increased credit risk of stocks and across business cycles. Such
conclusion provides evidence of a persistent excess risk premium in speculative
markets, with companies that in trouble periods either consolidate their business or
go bankrupt.
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In the third chapter, Sannajust–Chevalier analyze from a different perspective
a developing equity market such as the emerging Asian private (rather than
exchange-based or public) one, focusing on leveraged buyout (LBO) operations
and their correlation with the target companies’ performance over short and long
term. The research spans a large set of candidate drivers (financial, governance,
macroeconomic, cultural, microeconomic, and industry variables), and the authors
base their analysis on the Capital IQ database. They focus in particular on the impact
of macroeconomic factors on the performance of LBOs in Asia during the first
decade of this century. The study, thus extending previous evidence on developed
markets, shows that GDP growth, industry growth, and market return are important
drivers that significantly contribute to create value in LBOs. It is worth recalling
that, over the last 15 years, the private equity market attracted increasing interest
due to the stable excess performance produced in the long term by this market and
its increasing role as vehicle to attract equity investors at a time in which fixed-
income returns were decreasing in developed as well as developing markets and
financial instability and systemic risk were increasing.

D’Ecclesia–Kondi in the following Chap. 4 provide an interesting and in-depth
methodological survey of the state of the art on correlation assessment methods
across financial and commodity markets: as is well known, correlations between
different asset returns represent a crucial element in asset allocation decisions as
well as exotic derivative pricing. In commodity markets where prices are reported
to be mostly nonstationary and returns are only mean stationary, a time-varying
measure of correlation is needed, and indeed it is such assumption that in the first
place leads to the emergence of correlation clustering phenomena during turbulent
market phases. According to the prevailing literature, correlations among different
markets are known to be higher during recessions than during expansion periods.
When applied to portfolio management, with an investment universe including both
financial and real assets, in order to shield investors from equity declines, portfolio
managers historically used to invest in commodities deemed poorly correlated
with stock markets. The authors clarify in their study, with an extensive data
analysis, that during the last decade, also due to an increasing speculative role
of many commodities, correlations between commodities and stock returns have
dramatically changed and an accurate risk assessment may no longer be attained
without introducing a correlation model assuming nonstationary data and structural
breaks in market variables. The authors compare the historical rolling correlation
and the dynamic conditional correlation methods and show how each estimator
can provide useful information given a specific data structure and that information
provided by the correlation measures can be used to identify structural breaks in
the original variables. The analysis performed by D’Ecclesia and Kondi contributes,
albeit indirectly, to underline the relevance of the adopted correlation model in the
solution of a generic allocation problem.

In the fifth chapter, Gianfreda–Scandolo address directly the issue of measuring
the cost generated by a wrong model. Indeed it has been shown that model risk
has an important effect on any risk measurement procedures; therefore, its proper
quantification is becoming crucial in several application domains. The authors
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analyze in particular the case of energy markets, where traders and market partici-
pants face several kinds of risks including market, liquidity, and, more importantly,
operational risk. The authors propose the assessment of model risk in the German
wholesale electricity market, looking at daily spot prices and comparing several
models presented in the literature with their possible variations. Gianfreda and
Scandolo propose a quantitative measure of model risk, namely, the relative measure
of model risk, as proposed by Barrieu and Scandolo (2015). They quantify the model
risk by studying day-ahead electricity prices in the European Energy Exchange
(EEX). Germany, indeed, decided to exit from nuclear power by 2020 focusing
on renewable energy sources and energy efficiency. This market is characterized
by a high wind penetration which has increased the complexity of the electricity
price dynamics given that wind (and solar) energy is highly variable and partially
predictable. Model risk assessment is in this study applied to a specific energy
market, but the research over possible quantitative methods to measure the impact of
inaccurate or even wrong model assumptions on pricing, as well as risk management
and decision models, is ongoing and attracting increasing interest, also through the
so-called model sensitivity analysis as well as counterfactual analysis in commodity
and financial markets. The topic is indeed becoming a specific task of many risk
management units in global financial institutions and investment banks.

Part II on pricing and valuation collects contributions in which new and valuable
techniques are introduced and described for pricing and evaluating financial prod-
ucts. This part includes four chapters in which the prevailing research focus is on
pricing and calibration methods mainly in derivative markets with again as in Part I
a variety of underlying assets, commodity or financial.

Noparumpa et al. provide in Chap. 6 a thorough analysis of the market of
wine (mainly US) futures and the determinants of price formation and decision-
making by wine producers taking into account spot vs. future price dynamics (their
basis risk). The authors move from a detailed study of the determinants of wine
prices and their dependence on seasonal and quality uncertainty to consider the
drivers of price settlements in spot and future markets. This agricultural market
represents a large and growing share of agri-markets primarily in developed but
increasingly in selected developing markets. The study takes into account wines
with different aging and production methods to infer the producer’s decisions on (1)
the sale price of her/his wine futures, (2) the quantity of wine futures to be sold in
advance, and (3) the amount of wine to be kept for retail and distribution. The study
makes two contributions to the optimization of pricing and quantity decisions by
wine managers. A stochastic optimization model that integrates uncertain consumer
valuations of wine both in the form of futures and in bottle and the uncertainty
associated with bottle scores is also proposed with a detailed empirical analysis
based on data collected from Bordeaux wineries engaging in wine futures.

In a rather different setting, Hitaj et al. discuss in Chap. 7 the important
(methodological thus general) problem of describing log return dynamics in option
pricing problems. It is well known that financial time series, increasingly in
the recent past, exhibit heavy tails, asymmetric distribution, and persistence and
clustering of volatility. The authors propose a class of discrete-time stochastic
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volatility models, starting from the affine GARCH model and assuming that the
conditional distribution of log returns is a normal variance–mean mixture. They
develop a discrete-time stochastic volatility model in a simple way, obtaining a
recursive procedure for the computation of the log price characteristic function
at option maturity. Finally, option prices are obtained via Fourier transforms. The
authors are able to extrapolate information from the VIX data and find a linear
relationship between the variance dynamics and the VIX^2. Moreover, this model is
able to generate time-varying skewness and kurtosis that standard GARCH models
cannot reproduce. Again, the issue of model risk assessment and the implications
brought about by model selection are considered as in Chaps. 4 and 5 of this volume.
The signaling power of the VIX is confirmed in the research. The authors also
investigate the ability of the proposed modeling approach to reproduce the behavior
of European option prices on SPX index. The dynamic normal inverse Gaussian-
based model provides more flexibility in capturing market dynamics especially in
turbulent periods.

Under more general assumptions, linking to the previous chapter, the important
problem of finding a sound calibration method for pricing purposes is also discussed
in Chap. 8 by Lindström–Åkerlindh. Indeed, while there is an abundance of good
option valuation models, far less attention has been given in the literature to the
key statistical problem of calibrating those models to market data and thus validate
the proposed approaches. Local volatility models fit often perfectly with in-sample
data, but the performance with out-of-sample data is less satisfactory. It is widely
acknowledged that often practical calibration methods adopted in the financial
industry reduce to some kind of least squares minimization of the difference
between the fitted and observed data. Several studies have shown however that the
weighted least squares (WLS) technique is practically infeasible when the model
complexity grows, while nonlinear filters or penalized WLS work much better. A
recent approach, proposed by one of the two authors, is based on using a nonlinear
filter with time-varying model parameters, leading to more robust estimates and
better out-of-sample forecasts. However, some tuning matrices were introduced that
had to be tuned manually. The contribution in this volume extends the proposed
methodology in two different directions: first by deriving a statistical framework
for the tuning matrices and second by extending the dynamics of the original
method from one to three different types of parameter dynamics. The proposed
methodology, applied to European call options, is evaluated on several sets of
simulated data as well as on S&P 500 index options from 2004 to 2008. The results
are encouraging and capture well the structure of the underlying process. This may
lead to improved and more effective hedging and risk management.

LIBOR-based derivatives (swaps, caps, swaptions) are the most liquid derivatives
traded in global financial markets. Due to their importance and popularity, swaption
market quotations are often used for calibration of interest rate models. However,
the calibration procedure involves the pricing of a large number of swaptions
(different option maturities, swap tenors, and strikes); then an efficient algorithm
is required here. Since a closed-form formula of swaption prices does not exist for
many popular interest rate models, then several approximate pricing methods have
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been developed in literature especially for affine interest rate models. In Chap. 9,
extending previous results, Gambaro et al. establish a lower bound which is based
on an approximation of the exercise region via an event set defined through a
function of the model factors. The resulting formula consists in the valuation of the
option on the approximate exercise region and requires a single Fourier transform
performed through the appropriate parameter. The proposed approximation has
several advantages. Indeed, by providing a lower bound, the direction of the error
is known a priori; it is very general and involves the computation of only one
Fourier inversion, independently of the number of cash flows of the underlying
swap. Finally, it can be used as a control variate to improve the accuracy of the
Monte Carlo simulation method.

Part III on optimization includes contributions in which maximization or mini-
mization approaches take a prominent role in order to establish the best investment
policies based on specific concave utility or convex risk functions, respectively.
This part includes five chapters addressing different decision problems, from
canonical one-period portfolio selection to multi-period institutional asset-liability
management and hedging problems.

Hitaj–Zambruno discuss in Chap. 10 the effects of diversification constraints
on the optimal portfolio choices by using the Herfindahl concentration index.
In order to determine the optimal investment strategies, they use the third-order
Taylor expansion of the exponential utility function to account for skewness. In
the empirical analysis, these strategies are compared with others in the “smart
beta” class and for various values of the risk aversion coefficient. The authors’
contribution extends the domain of static portfolio selection methods, allowing an
interesting comparison analysis.

In Chap. 11, Sbuelz investigates the joint effect of default risk and systemic risk
on the dynamic asset allocation strategies in a no-arbitrage continuous time setting.
This is accomplished by describing the dynamics of two representative assets as
diffusion–jump processes, one of which is exposed to systemic risk only and the
other also to default risk: the problem is formulated as a maximization problem
of the expected power utility of terminal wealth. A numerical example shows the
viability of the proposed model in the presence of systemic risk and interestingly
highlights, under the given assumptions, the influence of an agent’s time horizon.

In the following Chap. 12, Benazzoli–Di Persio focus on the implications
of market liquidity in stock markets. They determine the optimal sequence of
transactions required to sell a given amount of stock in an illiquid market, in which
the trading rate affects prices. Such market impact is modeled by combining two
effects: a permanent one, assumed linear in the trading rate, and a temporary one,
represented through a negative exponential. The objective is to minimize the risk-
adjusted expected costs of the strategy, where the control variable is represented
by the transaction flow through time: a closed-form solution is obtained using the
Lambert W function.

The issue of liquidity is also considered as a key strategy driver by Consigli et al.
in Chap. 13, in which the elements of a real-world asset-liability management model
of an occupational pension fund are considered. By adopting a multistage stochastic
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programming approach, the authors report how, from an initial underfunded status,
a pension fund manager brings the fund to a fully funded status under different
perspective scenarios over a 20-year planning horizon. The authors extend previous
methodological approaches based on scenario trees to an interesting combination
of decision stages distributed over time to annual liquidity assessments in which
however investment rebalancing is not allowed. The presence of liquid as well as
illiquid instruments in the investment universe has become a characterizing feature
of global portfolios in the quest of excess returns at a time of unprecedented poor
fixed-income returns. This chapter describes also in detail the adopted methodolog-
ical and modeling steps leading to the completion of an advanced decision support
tool for asset-liability management purposes.

In the final Chap. 14, Kallio et al. also adopt a stochastic programming approach,
which in this case is applied to a currency hedging problem familiar to companies
operating at an international scale. After an extensive review of the exchange rate
dynamic models and the formulation of hedging techniques, the authors employ
a multistage stochastic programming technique to determine the optimal hedging
policy, the one providing at the end of the planning horizon the best risk-reward
trade-off: working on actual data, they show not only that in general the model is
effective in limiting downside risk but also that in specific periods the optimized
policy can indeed improve profits from currency management by as much as 20%,
particularly when leverage strategies are adopted.

This volume, in this reflecting the wide spectrum implied by its title, includes a
variety of valuation and methodological problems emerging in different operational
contexts, from developing private equity markets in Asia to liquid derivative markets
either on commodities or on equity stocks as underlyings to again commodity
futures in precious metals or global portfolios by pension fund managers. The
volume also includes a set of dedicated contributions, primarily methodological,
focusing on model risk, correlations, and stochastic volatilities, whose role in
jeopardizing long-established results in mainstream finance has been remarked by
many authors in recent times.

Upon completion of the editorial work, the editors would like to acknowledge the
cooperation of the contributing authors and the continuing and productive assistance
of Springer to achieve and complete the work.

Bergamo, Italy Giorgio Consigli
Milano, Italy Silvana Stefani
Milano, Italy Giovanni Zambruno
March 2017
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Chapter 1
Directional Returns for Gold and Silver:
A Cluster Analysis Approach

A. G. Malliaris and Mary Malliaris

Abstract This paper considers the directional predictability of daily returns for
both gold and silver. These two metals have had a long history behaving sometimes
as complements and other times as substitutes. We use daily data from June of 2008
through February of 2015. The last 2 years were removed as a set for validation
of the model and the remainder, almost 5 years, was used as training. A cluster
analysis yields six important clusters. An evaluation of these clusters leads to the
formation of three strategies for directional predictions – up or down—for both
gold and silver returns. The results of this analysis suggest that each strategy has
its own advantages: the first strategy suggests that gold returns can be predicted
better than those of silver; the second strategy shows that predicting up for gold also
means predicting down for silver and the final strategy confirms that predicting up
for silver also validates predicting down for gold.

Keywords Gold • Silver • Directional Forecasting • Cluster Analysis • Neural
Networks

JEL Classification C5, C18, G1

1.1 Introduction and Literature Review

Milton Friedman (1990) offers a detailed historical analysis of bimetallism. He
argues that monetary systems throughout the recorded history were based on
precious metals and in particular silver and gold. Silver was used much more than

A.G. Malliaris (�)
Department of Economics and Department of Finance, Quinlan School of Business, Loyola
University Chicago, Chicago, IL, USA
e-mail: tmallia@luc.edu

M. Malliaris
Department of Information Systems and Operations Management, Quinlan School of Business,
Loyola University Chicago, Chicago, IL, USA
e-mail: mmallia@luc.edu

© Springer International Publishing AG 2018
G. Consigli et al. (eds.), Handbook of Recent Advances in Commodity and Financial
Modeling, International Series in Operations Research & Management Science 257,
DOI 10.1007/978-3-319-61320-8_1
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gold in Europe, India and Asia since it is more abundant than gold. Gold was used
for high-valued transactions. Authorities always had problems between the legal rate
of exchange of one metal for the other because market conditions were never fixed in
exactly the same ratio as proposed by the authorities. After the 1870s, U.S. and most
European countries shifted to using only gold, leaving India and China as the only
two large countries still preferring silver. After World War I, the link between gold
and national currency diminished and in August 15, 1971, the connection between
gold and the dollar in international transactions was abolished.

Aggarwal, Lucey and O’Connor (2015), give a comprehensive analysis of the
gold and silver markets as precious commodities divorced from their long history
as money. Both continue to be important commodities that play the traditional
roles of hedging, arbitrage, speculation, market efficiency and portfolio investment.
An earlier classic paper by Escribano and Granger (1998) analyzes the long-run
relationship between gold and silver. This study has been recently extended by
Baur and Tran (2014) who study the role of bubbles and financial crises in gold
and silver during the period 1970-2011. These authors find that a co-integration
relationship exists between gold and silver with gold prices driving the relationship.
They also find that these results are influenced by both bubble-like episodes and
financial crises. Ciner (2001) shows that the stable relationship between gold and
silver has disappeared in the 1990s and Batten, Ciner and Lucey (2015) establish
that precious metals markets are weakly integrated and that this degree of integration
is time varying.

In this paper we consider a speculator who wishes to take a daily position in
gold and or silver. This position can be to buy or sell in the cash market or in a
futures contract. Unlike earlier studies that analyze long-run relationships between
gold and silver our emphasis is a 1 day investment horizon. Is there an appropriate
methodology that such a speculator can employ? We propose to use a cluster
analysis during a period of about 5 years, identify and analyze certain clusters and
use the results of such an analysis over a long period of 2 years to forecast directional
returns. The benchmark to contrast our results will be the random walk paradigm
with a 50/50 chance for up and down. Thus we contribute to the gold and silver
literature by selecting a topic that has received little attention, namely short-term
speculation and secondly by employing the novel methodology of cluster analysis.

1.2 Data Collection and Preparation

The data set for this study goes from June of 2008 through February of 2015 and
consists of daily values for Gold, Silver, and a Gold Volatility Index. This period
covers the beginning of the Global Financial Crisis, few months prior to the Lehman
Brothers bankruptcy in mid-September 2008 to the a couple of months after the
termination of the third round of Quantitative Easing in late 2014. This is a highly
volatile period that is challenging to model the price behavior of both gold and silver.
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The values for Gold were downloaded from the St. Louis Fed FRED database using
the series GOLDPMGBD228NLBM, which is the Gold fixing price at 3:00 P.M.
(London time) in the London Bullion Market, based in U.S. Dollars. The Silver data
were sourced from www.quandl.com as the price per troy ounce set at the London
Fixing by the London Bullion Market Association. The Gold Volatility Index is the
CBOE Gold ETF Volatility Index©, GVZCLS, from the Chicago Board Options
Exchange, also downloaded through FRED. All data points represent daily prices.
After downloading all data sets, the calculated fields are formed, and then the sets
are matched on date.

The last 2 years of the data set is removed to be used as a set for validation of
the model. The first part of the set, corresponding to approximately 5 years of data,
is used for training purposes. The training set, from 6/9/2008 through 2/22/2013,
has 1154 rows of data, and the validation set, from 2/25/2013 through 2/25/2015,
has 493 rows of data. Gold, Silver, and the Gold Volatility index are scaled to be
between 0 and 1. For each series, we create the following calculated fields: percent
change from yesterday to today, the direction the series moved from yesterday to
today, and the number of Up movements in the last 5 days. In addition, we calculate
the difference in the Gold and Silver scaled values. This gives us a total of 13 input
variables. The target variables are the directions that Gold or Silver will move from
today to tomorrow. The variable names, their roles, and a brief description of each
are shown in Table 1.1.

The scaled prices of the three base variables for both the training and the
validation sets are shown in Figs. 1.1 and 1.2. We see that the highest values for
all three series occurred within the training set.

Table 1.1 Variables used in the models

Variables Role Description

GDirTp1 Target The direction Gold will move tomorrow
SDirTp1 Target The direction Silver will move tomorrow
Gscaled Input Gold value scaled between 0 and 1
GVolscaled Input Gold Volatility value scaled between 0 and 1
Sscaled Input Silver value scaled between 0 and 1
GPerChg Input Gold percent change yesterday to today
GVolPerChg Input Gold Volatility percent change yesterday to today
SPerChg Input Silver percent change yesterday to today
Gdir Input The direction Gold moved from yesterday to today
GVoldir Input The direction Gold Volatility moved from yesterday to today
Sdir Input The direction Silver moved from yesterday to today
GDaysUp Input Number of Up moves for Gold in last 5 days
GVolDaysUp Input Number of Up moves for Gold Volatility in last 5 days
SDaysUp Input Number of Up moves for Silver in last 5 days
GscMinSsc Input Gold scaled value minus Silver scaled value today

http://www.quandl.com
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Of the derived variables created for this study, one is the number of day each
of the base variables had been up in the last 5 days. That is, for about a week,
how strong is the upward trend? We see these results in Fig. 1.3. Even though the
training set has more values, we do note a similar spread of values across both sets.
Proportionally, we observe that the training set has a higher number of equivalent
values of 2 and 3 days up while the validation set has a higher number of 2 days up
values than that of 3 days up.

In Fig. 1.4, we see the number overall of Down, Even and Up days in each of
the sets. Again, we notice similar proportions across both sets. However, in Gold,
there are more Up days in the training set. In Silver there are fewer Up days in the
validation set, proportionally.
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1.3 Methodology: Two-Step Cluster Analysis

After the construction of the training and validation sets, the next step is to generate
clusters on the training set data. IBM’s SPSS Modeler data mining software is used
for this step. The objective in cluster analysis is to generate grouping of data where
the rows within one group are more similar to each other than they are to rows in
another group. Since you rarely know, in large data sets, the optimal number of
groups to form, the cluster methodology used here, Two-Step, tests each possible
configuration between two and fifteen groups. A silhouette measure of cohesion
and separation is calculated for each group. This measure is not meaningful in
isolation, but only in comparison to the measures generated by each of the possible
configurations. The configuration with the best measure of cohesion and separation
determines the final number of groups.

The Two-Step cluster analysis methodology can use both numeric and categorical
inputs. It does not use a target variable, but forms the clusters only on the basis of
the input variables. It processes the data in two steps. In the first step, it forms
a large number of small sub-clusters that occur naturally within the data set. In
the second step, it joins similar small sub-clusters together to make larger clusters.
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Table 1.2 Cluster size and description

Cluster-1 Cluster-5 Cluster-2 Cluster-6 Cluster-3 Cluster-4

Cluster size in rows 199 203 232 186 151 183
GDaysUp 3.2 2.21 3.13 2.02 2.23 2.85
Gdir U 100% D 100% U 98.7% D 99.5% D 96.7% U 96.2%
GPerChg 0.01 �0.01 0.01 �0.01 �0.01 0.01
GScMinSSc 0.11 0.11 0.13 0.14 0.12 0.13
GVolDaysUp 2.73 1.88 1.83 2.78 2.11 2.15
GVolDir U 100% D 100% D 100% U 100% D 60.9% D 65%
GVolPerChg 0.05 �0.04 �0.03 0.05 �0.01 �0.01
SDaysUp 3.04 2.13 3.00 2.01 2.99 2.01
Sdir U 99.5% D 99.5% U 100% D 99.5% U 99.3% D 96.2%
SPerChg 0.02 �0.02 0.02 �0.02 0.01 �0.01

This methodology uses a log-likelihood distance measure, with a probability-based
distance. The distance between any two clusters is related to the decrease in log-
likelihood as they are combined into one cluster. For details and formulas relating
to the cluster formation, see the IBM SPSS Modeler 16 Algorithms Guide (2013).

Using the Two-Step methodology, it is determined that the optimal number of
clusters in this training data set is six. These six clusters ranged in size from 151 to
232 rows. A cluster analysis creates a new column giving, for each row in the data
set, an assignment of the cluster to which the row belongs. Since the clusters are
created using only input variables, we can also run the validation set, or any new
future set, through the trained cluster model to get cluster assignments for these
new rows. The size and description of each of the clusters are given in Table 1.2.
For each of the input that is considered important by the methodology, the average
(for numeric variables) or the mode (for category variables) is used as a descriptive
picture of the cluster. These clusters have three basic types based on the movements
of Gold, Silver, and the Gold Volatility Index:

In the first type, all three base variables moved Up. This occurred in clusters 1 and 5.
The second type, seen in clusters 2 and 6, has Gold and Silver moving in the same

direction, but the Gold Volatility Index going the opposite way.
Last, we see two clusters where Gold and Silver moved in opposite directions with

Gold Volatility always Down. This occurred in clusters 3 and 4.

Using the information from the cluster analysis, we build separate decision trees
on the training set for each of these cluster groupings (1 & 5, 2 & 6, and 3 & 4). We
then evaluate the models by looking at their performance on the 2-year validation
set. The cluster number is added as an input into the models when training.

The decision tree approach selected for this analysis is the C5.0 algorithm. The
algorithm runs with Modeler, but is licensed from RuleQuest. Details can be found
at the RuleQuest website at http://www.rulequest.com/. A decision tree algorithm
uses both input variables and a target variable. In the C5.0 algorithm, the target

http://www.rulequest.com
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Fig. 1.5 Example decision tree generated by the C5.0 methodology

variable is a category-type variable, in this case the direction that Gold will move
tomorrow. (For the second part of our study, this target is changed to Silver’s
direction tomorrow.) The input consists of the input variables listed in Table 1.1
plus the cluster assignment generated by the Two-Step algorithm.

Using the target variable, the C5.0 methodology builds a set of decision rules
that determine the way each row is assigned a final value of the target variable. The
decision tree begins with all the data in one set. It tests each input variable to see
which single variable splits the training set into the most pure subsets of the target
variable. Using the single best variable, a split of the training set is formed that gives
two or more subsets, with each subset having a dominant single value of the target.
The initial process is repeated on these new subsets. That is, each input variable is
tested to see which one would optimize the purity of the target variable in subsets
generated by a split based on that variable. This process continues on each subset
until one of two things happen: Either the subset has a single value of the target,
or there is no input variable split that can improve the purity. An optimal solution
occurs when each subset is single-valued on the training set.

The C5.0 procedure generates both a tree-shaped output and a set of rules
corresponding to each path in the tree. Figure 1.5 illustrates one decision tree. The
node at the top, the root node, contains all the rows of data. As shown in the figure,
this data is split into nodes one level below that contain a more pure division of the
data on the values of the target variable. Each of the nodes at this level is then split
further. Each level shows nodes that split further into another level, or that end.
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Fig. 1.6 Relative importance chart of each input in a decision tree, generated by Modeler

Once a node stops splitting, the C5.0 methodology generates a rule that corre-
sponds to the path from the root node to that specific end node. An example rule
might be “If SPerChg <D 0.027 and $T-TwoStep in Cluster-1 and GVolDaysUp >
2 and GVolscaled <D 0.772 and GVolPerChg <D 0.145 and GVolDaysUp <D 3
and SDaysUp > 1 and GDaysUp <D 2 THEN GDirTp1 D D”. Each rule ends with
a predicted value for the target variable. There will be as many rules as there are
ending nodes. Also, for any set of values of current or future rows of data, there
will be some path through the tree that corresponds to that data. Once the rules are
generated, they can be applied to future input data to generate predicted values for
the target variable.

Each trained decision tree model also yields a set of variable relative importance
values that give us an indication of how each variable was finally valued by the
model. These relative importance values sum to 1, and larger values indicate higher
impact in determining the model forecast. Figure 1.6 shows an example of a graph
of these relative importance values.

When a variable is not used at all by the model, its impact has a value of zero.
In considering these values, there is no specific level of value by which we measure
importance, or lack of importance, to a model. Rather, we use the values simply
to compare within a model how that particular model used the input to form its
predictions.

1.4 Gold with Clusters

1.4.1 Training Set Variable Importance

Three C5.0 decision tree models are built to forecast the direction Gold will move
tomorrow, one tree for each of the cluster groupings. Table 1.3 gives the relative
importance of the input variables for each of the three decision tree models built
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to forecast Gold. We see that each of the models valued the input variables in a
different way. The numbers in this table reflect the relative importance of each input
variable in the specific model. The three variables with the most impact for each
model are shown as shaded fields.

Focusing on these three top variables for each model, we see that each model has
at least one variable from the Gold set and one from the Gold Volatility Index set of
derived variables. Two of the models show a high value on one of the Silver variables
while the model built on clusters 2 & 6 does not value any of the Silver variables
highly. In the model for clusters 1 & 5, the single variable with the most impact is the
scaled value of the Gold Volatility Index. In the model for clusters 2 & 6, the most
important single variable is the percent change in Gold, and in the model for clusters
3 & 4, it is the scaled value of Gold. Thus, we see that these models are distinctly
different in their approach to making a decision about tomorrow’s movement in
Gold. No single model would do as well as one built on separate clusters.

One way to judge the cumulative effectiveness of the three most important
input variables in each column is to add the relative importance of the three most
important variables in the three categories of clusters as presented in the last row
of Table 1.3. This last row implies that the cumulative impact of the three most
important variables differs in the three columns with the last column being the most
significant.

In building a model for the future, the basis for judging is how well it performs
on the validation set of data that the model was not trained on. The next section
demonstrates the performance of our model by applying the findings from the
training data set to the validation data set.

Table 1.3 Relative importance of each input variable to the decision tree model

Variables Importance for 
Clusters 1 & 5

Importance for 
Clusters 2 & 6

Importance for 
Clusters 3 & 4

GDaysUp 0.1321 0.0795 0.0022
Gdir 0 0.111 0.0485

GPerChg 0.0464 0.3841 0.0287
Gscaled 0 0.0194 0.5062

GVolDaysUp 0.0442 0.1645 0.0418
GVoldir 0 0 0.0695

GVolPerChg 0.108 0.0531 0.0461
GVolscaled 0.2811 0 0.0509
SDaysUp 0.089 0.0469 0.0008

Sdir 0.0391 0 0.008
SPerChg 0.0565 0.088 0.1607
Sscaled 0.1691 0.0212 0.0113

GscMinSsc 0.0344 0.0322 0.0254
Cluster Number 0 0 0

Cumulative 
Impact of 3 top 

variables
.5823 .6596 .7364
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1.4.2 Validation Set Results for the Gold Models

The validation set consists of the 2 years following the training set. Each row is run
through the trained cluster model to generate a cluster number. Following the cluster
assignment, rows are fed through the appropriate trained decision tree model to
generate a forecast. Generated forecasts are then compared to the actual directional
movement of Gold on the following day. Results are shown in Table 1.4.

We see that there are very few days with no change (even) and none of these
are identified by any model since the models were trained to recognize only Up
and Down days. The model for clusters 1 & 5 predicts Down 35 times of which 20
were correct (57.1%). It predicts Up 113 times with 66 of these correct (58.4%).
The model for clusters 2 & 6 is correct in predicting Down 62 times out of 118
(52.5%) and correct in the Up forecasts 44 of 72 times (61.1%). In the last model,
for clusters 3 and 4, there are 39 correct Down predictions out of 63 (61.9%) and 44
of 92 correct Up predictions (47.8%).

Combining the correct numbers over all directions in Table 1.5, we see that the
percent of times that the forecast matches the actual direction is about 54% in the
worst model and 58% in the best model. Forecasting over a 2-year time period
without retraining is a difficult task for any model. That these models are able to
remain as correct as they are for this extended time is an indication that they discover
some stable rules in their training sets.

Table 1.4 Validation set results, correct forecasts shown in bold

Actual direction of
gold tomorrow

Values as proportion of
total forecasts

Forecasted direction Down Even Up Total forecasts Down Even Up
Clusters 1 & 5

Down 20 15 35 0.571 0.429
Up 47 66 113 0.416 0.584

Clusters 2 & 6
Down 62 3 53 118 0.525 0.025 0.449
Up 28 0 44 72 0.389 0.611

Clusters 3 & 4
Down 39 0 24 63 0.619 0.381
Up 47 1 44 92 0.511 0.011 0.478

Table 1.5 Overall
proportion of correct
forecasts

Model for: Proportion of correct forecasts

Clusters 1 & 5 0.581
Clusters 2 & 6 0.567
Clusters 3 & 4 0.539
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1.5 Silver with Clusters

1.5.1 Training Set Variable Importance

As with the Gold forecasts, three separate decision tree models are trained, one for
each of the cluster groupings for Silver. For these decision tree models, trained to
forecast the direction Silver will move tomorrow, the input consists of the variables
listed in Table 1.1 plus the cluster assignment variable. All decision trees use the
C5.0 methodology and are built using the IBM SPSS Modeler 16 software.

The variable importance results are shown in Table 1.6 and the three most
important variable values of each model are shaded. The cluster number turns out to
be an important variable in the cluster 3 & 4 model. This is the only place, in either
the Gold or the Silver models, that the specific cluster assignment plays an important
role. We see that Silver derived variable ranks highly in the models for clusters 1 &
5 (Sdir) and for clusters 2 & 6 (SDaysUp). In these two models, of the two other
most important variables, one is based on Gold and one on the Gold Volatility Index.
So some derived variable from each of the base variables plays an important part in
the decision tree rules. The most important variables for the model built on clusters
3 & 4 are two variables based on Gold, and the cluster number itself. Both Silver
and the Gold Volatility Index have more minor roles in this model.

Table 1.6 Relative importance of input variables for Silver forecasts

Variables Importance for 
Clusters 1 & 5

Importance for 
Clusters 2 & 6

Importance for 
Clusters 3 & 4

Cluster Number 0 0 0.2272
GDaysUp 0.1226 0.0523 0.0637

Gdir 0 0.5006 0.3153
GPerChg 0.1286 0.0111 0.1387
Gscaled 0.0254 0.0468 0.0838

GVolDaysUp 0.182 0.0324 0.0158
GVoldir 0 0 0.0695

GVolPerChg 0.0757 0.0858 0.0014
GVolscaled 0.0208 0.0262 0.0061
SDaysUp 0.0864 0.1186 0.0218

Sdir 0.1866 0 0
SPerChg 0.0586 0.0811 0
Sscaled 0.0515 0.0404 0.0176

GscMinSsc 0.0617 0.0047 0.039
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Table 1.7 Validation set results, correct forecasts shown in bold

Actual direction of
silver tomorrow

Values as proportion of
total forecasts

Forecasted direction Down Even Up Total forecasts Down Even Up
Clusters 1 & 5

Down 32 0 34 66 0.485 0 0.515
Up 40 2 40 82 0.488 0.024 0.488

Clusters 2 & 6
Down 70 2 36 108 0.648 0.019 0.333
Up 41 3 38 82 0.500 0.037 0.463

Clusters 3 & 4
Down 33 0 29 62 0.532 0 0.468
Up 38 2 53 93 0.409 0.022 0.570

Table 1.8 Overall
proportion of correct
forecasts

Model for: Proportion correct

Clusters 1 & 5 0.486
Clusters 2 & 6 0.568
Clusters 3 & 4 0.555

1.5.2 Validation Set Results for the Silver Models

After running the validation set through the appropriate trained model, the number
of correct forecasts for each model are shown in Table 1.7.

As with the models for Gold, we find that no model makes any forecast for the
Even direction. This is due to the fact that there are so few Even days that the models
cannot find stable rules to apply. Here we see that the models built on clusters 1 &
5 do not perform better that 50% for either the Down or the Up direction. The
model for clusters 2 & 6 perform well in forecasting Down, but not well on Up. The
model for clusters 3 & 4 results in a performance above 50% on both Down and Up
forecasts, with a better performance on Up.

Combining the correct numbers over all directions in Table 1.8, we see the
percent of times that the forecast matches the actual direction. This is approximately
48% in the worst model and 57% in the best model. However, because of the very
different results in forecasting Down and Up, it is essential to pay attention to
direction in the case of Silver. When a model fails to remain robust on the validation
set, it is often an indication that the underlying patterns in the relationships have
altered after the training data is completed.

Comparing the overall correctness for Gold forecasts and for Silver forecasts, we
see, in Table 1.9, that on clusters 1 & 5, the model for Gold outperformed the model
for Silver. For the model on clusters 2 & 6, both performed similarly. And for the
models built on clusters 3 & 4, Silver slightly outperforms Gold.
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Table 1.9 Comparison of
Gold and Silver forecasts Model for:

Gold
correct

Silver
correct

Gold minus
silver

Clusters 1 & 5 0.581 0.486 0.095
Clusters 2 & 6 0.567 0.568 �0.001
Clusters 3 & 4 0.539 0.555 �0.016

Table 1.10 Comparison of
directions, Gold and Silver
models

Forecasted direction Down Up

Clusters 1 & 5
Down Gold
Up Gold

Clusters 2 & 6
Down Silver
Up Gold

Clusters 3 & 4
Down Gold
Up Silver

Drilling down to specific directions, Table 1.10 illustrates the performance of the
model on each set of clusters. For the models built on Clusters 1 & 5, the Gold model
performs better predicting both Down and Up days than do the Silver models. For
the models built on clusters 2 & 6, the Silver models predict Down better and the
Gold model predicts Up better. On the clusters 3 & 4 models, a reversal is observed
with the Gold model performing better on Down forecasts and the Silver model
performing better on Up days.

1.6 Summary and Conclusions

Unlike earlier studies that approach gold and silver relationships over very long
periods using time series techniques, this paper focuses on the gold and silver daily
directional returns using the Two-Step cluster methodology as a beginning point,
with C5.0 decision trees built on similar groups of clusters.

We derive data based on daily values of Gold, Silver and the Gold Volatility Index
to ultimately forecast the direction that gold and that silver will move tomorrow.
These forecasts are done with decision trees using a training set of almost 5 years
and a validation set of 2 years. The cluster analysis, based only on the training set,
finds six clusters in the base data and assigns a cluster number to each row. These six
clusters are combined into groups of two based on the behavior of the base variables.
Each decision tree is built on a specific pair of clusters that show some similarity
of behavior. Separate groups of decision trees are generated for gold and for silver
forecasts.
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We find that, by combining six clusters to form three distinctive strategies, we
can outperform the random walk 50/50 up or down prediction. The clusters show
that gold and silver follow each other closely but often deviations occur where one
price goes up while the other goes down with interchanging leadership in various
patterns.
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Abstract In this paper, we show that significant momentum returns generate from
credit-rated stocks across business cycles. The generation of momentum earned
from speculative-grade stocks is on average 1.27% per month and are more prevalent
during contraction periods in which they earn 1.61% per month. We also find
that investment-grade stocks earn on average momentum returns of 0.85% per
month and 1.14% per month during contractions. Higher momentum returns are
unexplained by macroeconomic variables during contractions such as the 2008
recession. Our findings conclude that momentum return is due to high uncertainty
associated with the increased credit risk of stocks and across business cycles.
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2.1 Introduction

It is well-established that momentum returns, that result from the trading strategy
of buying recent past winners and selling recent past losers, earn statistically and
economically significant profits of 1% per month or 12% per annum (Jegadeesh
and Titman 1993, 2001). Subsequent studies find both risk-based explanations
(e.g., see Eisdorfer 2008; Avramov et al. 2007; Cooper et al. 2004; Chordia and
Shivakumar 2002; Harvey and Siddique 2000; Jegadeesh and Titman 1993, 2001)
and behavioural models (e.g., see Chui et al. 2010; Korajczyk and Sadka 2004)
that explains momentum phenomenon. Despite this progress, the persistence of
momentum returns remains robust.

Recent studies on risk-based models report that momentum is observed more
in stocks with high information uncertainty, default risk, in periods of high market
volatility and stocks that are credit rated (e.g., see Avramov et al. 2007; Bhar and
Malliaris 2011; Jiang et al. 2005; Wang and Xu 2009; Zhang 2006; Lee 2012).
Avramov et al. (2007) show momentum returns are high among low-grade firms
and are nonexistent among high-grade firms. The findings of the study by Avramov
et al. (2007) imply that momentum returns should be higher during recessionary
periods when credit risk is high. However, their time series analysis indicates
otherwise. This is puzzling. They also advise that “future work should address”
this issue (Avramov et al. 2007, p. 2520). In this paper, we do that. We show that
momentum returns are earned by speculative-grade stocks and investment-grade
stocks during recessions, but the returns are more pronounced in speculative-
grade stocks. Speculative-grade stocks carry high uncertainty in terms of company
prospects. During recessions, credit risk is a major concern and imposes additional
uncertainty. Momentum returns compensate for both the credit risk of a company
and the state of the business cycle.

We contribute in the literature by focusing on the behaviour of different types
of credit rated stocks across business cycle. We differ from the previous study
of Avramov et al. (2007) that we have divided stocks into two broad category
of investment grade and speculative grade stocks, the two groups of stocks that
the investors are interested to invest. The purpose is to study the generation
of momentum returns of these two groups of stocks, e.g., investment-grade and
speculative-grade. Therefore, we divide credit-rated stocks into two categories,
investment-grade and speculative-grade, to understand the behaviour of momentum
returns in these categories. Investment-grade stocks have low credit risk and thus
low uncertainty. Speculative-grade stocks have higher credit risks and thus higher
uncertainty. Their default rates are as high as 6.53%. We find that momentum
returns on average are 0.85% per month for investment-grade stocks while they
are 1.27% per month for speculative-grade stocks. Momentum studies document
that momentum profits have started to disappear, the process that began in the early
1990s, was only delayed by the tech-boom, and then faded away afterwards (e.g.,
see Hwang and Rubesam 2008; Wang and Xu 2009; Bhattacharya et al. 2011). We
observe momentum returns in the US market during the tech-boom of the 2000s and
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the subprime financial crisis of 2008. We report that in the early 2000s investment-
grade stocks earned their highest returns of 1.05% per month. The returns started
to decline but earned 0.83% per month during the 2008 recession period. For
speculative-grade stocks, the returns were 1.68% per month during the 2000s and
declined to 1.13% per month during 2008. Therefore, we report that the declining
trend of momentum returns is due to the impact of the business cycles.

Next, we contribute in the literature by studying the behaviour of momentum
returns for investment-grade and speculative-grade stocks across a business cycle.
The reasoning behind this approach is that we know from previous studies which
use time series that momentum returns vary with business cycles (see e.g., Avramov
and Chordia 2006; Chordia and Shivakumar 2002). Credit risks also vary during
business cycles. We use NBER business cycle to observe how the momentum returns
of the investment grade stocks and the speculative grade stocks behave across
the NBER business cycle. We find that, in a cross section of firms, investment-
grade stocks do earn significant momentum returns during both expansion and
contraction periods. During an expansion, investment-grade stocks earn 0.80% per
month and earn 1.14% per month during contractions. We find that speculative-
grade stocks earn as much as 1.20% per month during expansions and 1.61% per
month during contractions. We report that the higher momentum returns earned
during the contractions are a result of the uncertainty imposed by the business cycle
and the uncertainty resulting from the credit ratings of these low credit-rated firms.

We provide a risk-based explanation for momentum returns among different
types of credit-rated stocks. Our reasoning is that if the market is efficient, then
we expect a risk-based model to explain momentum phenomenon. Like most
momentum studies we control for a number of factors. First, we control for the
Fama and French (1993) three factors (e.g., Grundy and Martin 2001; Avramov et
al. 2007; Jegadeesh and Titman 2001). We report that these factors cannot explain
momentum returns either in speculative-grade or in investment-grade stocks. In
investment-grade stocks and speculative-grade stocks the alphas are 0.85% and
1.27% respectively and are statistically significant. Next, we control for up and
down market states. (e.g., see Cooper et al. 2004; Wang et al. 2009). We show that
for credit-rated stocks, the market states cannot explain momentum returns either
in investment-grade or in speculative-grade stocks. In speculative-grade stocks, the
alpha remains significant and high at 1.24% per month; and for investment-grade
stocks, it remains at 0.83% per month. Also, we control for macroeconomic risk
factors (e.g., see Chordia and Shivakumar 2002; Avramov and Chordia 2006). We
report that macroeconomic risk factors can partially explain momentum returns for
both speculative-grade and investment-grade stocks when the market is less volatile.
But they do not explain the returns during the tech-boom periods in the early 2000s
and subprime financial crisis period in 2008. The empirical results have important
insights for researchers and investors; researchers can investigate the behaviour of
momentum returns during business cycles while momentum investors can benefit
from forming portfolios during market downturn.
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The rest of the paper is organized as follows. Section 2.2 presents a literature
review. Section 2.3 discusses methodology and data used in the study. Section 2.4
provides the empirical results and Sect. 2.5 concludes.

2.2 Literature Review

This section briefly discusses the studies on momentum returns, momentum among
credit-rated stocks, and momentum and common risk factors.

2.2.1 The Persistence of Momentum Returns in Different
Dimensions

The literature on momentum returns is highly influenced by the empirical study
of Jegadeesh and Titman (1993) who were the first to document that in the US
stock market, past winners outperform past losers over 3–12 month periods and
earn momentum returns of 12% per annum. Subsequent studies extend the original
research in different dimensions including over time (e.g., see Jegadeesh and Titman
1993, 2002), across markets (Chan et al. 2000; Rouwenhorst 1998; Chui et al. 2010)
and among different asset classes, such as on currencies (e.g., Okunev and White
2003; Menkhoff et al. 2011), on commodities (e.g., Miffre and Rallis 2007; Gorton
et al. 2008), international government bonds (Asness et al. 2012), residential real
estate (Beracha and Skiba 2011), and US corporate bonds (Gebhardt et al. 2005;
Jostova et al. 2010). Studies also demonstrate that momentum returns are significant
among certain subsamples of stocks. For example, Momentum are higher for stocks
that are small and low analysts coverage (Hong et al. 2000), high analysts forecast
dispersion (Zhang 2006), among large-caps stocks (Obrecht 2006), in firms with
high information uncertainty (Jiang et al. 2005; Zhang 2006), among low-credit-
rated firms (Avramov et al. 2007) and high turnover (Lee and Swaminathan 2000).

2.2.2 Momentum Returns and Credit Ratings

Avramov et al. (2007) find that momentum payoffs are high in low credit-rated
firms and are not observed otherwise. They report that momentum returns are
significant in stocks with high credit risk, and this significance remains unexplained
when controlling for firm size, firm age, value, turnover, leverage, return volatility,
analysts’ forecast dispersion, and cash flow volatility. Lee (2012) reports partial
confirmation of Avramov et al.’s (2007) results for the US market and finds a reverse
trend in the Taiwan market. They report that in Taiwan the highest momentum
returns are earned by the high investment-grade group.
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Du and Suo (2005) study the behaviour of change in credit ratings on momentum
returns and report that the duration effect on the downgrade is a result of the
downgrade momentum effect. Blume et al. (1998) study panel data on credit ratings
and suggest that the decline in credit ratings is attributable to increasingly stringent
standards applied by agencies when deciding the credit quality of corporations.
Avramov et al. (2007) demonstrate that credit cycles are crucial in explaining
the momentum return of credit-rated stocks. They show that there is a negative
relation between credit risk and momentum returns that critically depends on credit
cycles. Avramov and Hore (2008) find that momentum interacts with firm-level
informational uncertainty measures and credit statuses. Avramov and Hore (2008)
report that equilibrium momentum returns concentrate in the interaction between
risky cash flows and high credit-risk firms. Momentum returns deteriorate and
eventually disappear as leverage or cash flow risk diminishes.

2.2.3 Momentum Returns and Risk Factors

The literature on risk-based explanations shows that momentum returns cannot be
explained by Fama and French’s three factors (Fama and French 1993; Jegadeesh
and Titman 1993; 2001). Momentum literature documents the association of
momentum returns to various macroeconomic factors with disputed findings. For
example, Chordia and Shivakumar (2002) report that momentum returns can be
explained when a set of lagged macroeconomic variables are used. However,
Moskowitz and Grinblatt (1999) report that the individual momentum returns in
that study mainly come from industry momentum profits. In subsequent studies,
Griffin et al. (2003) and Cooper et al. (2004) do not confirm the results of Chordia
and Shivakumar (2002).

Chordia and Shivakumar (2002) and Avramov et al. (2007) discover that momen-
tum profits result from the predictability of macroeconomic factors. Antoniou et al.
(2007) also show that business-cycle variables and behavioural biases can explain
the profitability of momentum trading. Liu and Zhang (2008) indicate that the
growth rate of industrial production explains more than half of momentum profits.
Bhar and Malliaris (2011) study the changes in fundamental, macroeconomic,
and behavioural variables across economic regimes and find that momentum is
also highly significant across all three regimes: low, average, and above average
volatility. Cooper et al. (2004) report that the risk factor for the market states can
explain momentum returns. Defining the two states of the market as up (down) when
the lagged 3-year market return is nonnegative (negative), these authors report that
short-run momentum profits exclusively follow up periods. In a subsequent study,
Hwang and Rubesam (2008) and Lee (2012) confirm the findings of Cooper et al.
(2004) and show that momentum disappears when accounted for the market state
risk factors.
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The above literature demonstrates that the generation of momentum returns from
different types of credit-rated stocks and its association with the business cycle is
yet to develop. Our study completes this task.

2.3 Data

We use data from all of the stocks listed on the NYSE, AMEX, and NASDAQ from
the Centre for Research in Security Prices (CRSP). We use the following selection
criteria. Following Jegadeesh and Titman (2001), we include all of the stocks that
are priced above $5, have a non-missing observation at the beginning of the holding
period, and have at least six consecutive monthly return observations. We include all
stocks with S&P ratings in the Compustat database and prices in the CRSP database.
Details of S&P ratings are given in the appendix. For S&P credit ratings, we assume
that the last quarter rating will continue to the immediately following quarter, until
the new rating releases at the end of the quarter. Our research period is from January
1985 to November 2011. For NBER business cycle period we have used the period
that covers our sample period from 1985 to 2011. Therefore for NBER business
cycle period (see Table 2.4) we have used date from 1982 onward that sufficiently
covers our sample period of 1985 and onward. For the screening procedure we
apply the following criterion: Some stocks have more than one issue with the same
GVKEY. In the GVKEY some of the companies have several stocks issued in the
market (all common stocks).1 While one of them has a rating, the other might not.
For our empirical result we have considered the one that does not have rating is as
an unrated stock.

Table 2.1 presents the statistics. We start with a total of 15,373 stocks. After the
screening process described above, we have a total of 14,665 stocks of which 11,135
are not rated and 3939 are rated. Of the rated stocks, 2054 are investment grade and
2627 are speculative grade.2 The mean return is 0.05% in the sample. The mean
returns non-rated and rated stocks are 0.03% and �0.07% per month respectively.
The return volatility for all of the stocks is 12.93%; and, between non-rated and
rated stocks, the volatility is 13.22% and 12.58%. Between the two categories of
rated stocks, the return volatility is higher among the speculative-grade stocks at
14.95%, while the standard deviation of the investment-grade stocks is 11.03%. The
skewness and kourtosis show that the distribution is negatively skewed and fat tailed.

To describe different business cycles, we use the definitions from the National
Bureau of Economic Research (NBER). Our sample comprises of four expansion
and three contraction periods as defined by NBER. The expansion periods are
from November 1982 to July 1990, March 1991 to March 2001, November 2001

1Data in the Compustat records the number of issues with and without a rating.
2One stock can switch among various grades over its life time, e.g., when a stock is first graded, it
can be graded BBB, but later can be graded as B, A, AA, AAA, etc.The numbers given here are an
average only.
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Table 2.1 Summary statistics. This table presents the summary statistics for the monthly returns
across both, the stocks that are not rated and those that are rated by Standard & Poor’s (S&P).
The sample period is from January 1985 to November 2011. The returns represent the time-series
mean of the cross-sectional average return for each month in percentages. The standard deviation,
skewness, and the kurtosis are computed as the cross-sectional medians over the stocks in the
sample. The Credit Rated stocks are those rated by S&P, Investment Grade stocks are those rated
from Aaa to Bbb (numerical score 1 to 10) and Speculative Grade stocks are those rated as Bbb-
to C (numerical score from 11 to 21)

Summary statistics
All
stocks

Not credit
rated

Credit
rated

Investment
grade

Speculative
grade

Total no. of stocks after
screening (NYSE, NASDAQ,
and AMEX)

14,665 11,135 3939 2054 2627

Total no. of months 323 323 323 323 323
Mean (%) 0.05% 0.03% �0.07% �0.07% �0.07%
Standard deviation (%) 12.93% 13.22% 12.58% 11.03% 14.95%
Skewness �1.20 �0.90 �1.83 �2.84 �0.95
Kourtosis 20.52 17.31 21.92 35.31 11.05
Total no. of stocks before
screening (NYSE, NASDAQ,
and AMEX)

15,373 11,180 4193 2186 2901

No. of stocks lost due to
filtering

708 454 254 132 274

to December 2007, and June 2009 to November 2011. And the three contraction
periods are July 1990 to March 1991, March 2001 to November 2001, and
December 2007 to June 2009. The Fama-French (1993) three factors comprise the
return on the CRSP value-weighted market index in excess of the 1-month Treasury
bill rate (MKT-RF), the small-minus-big size factor (SMB), and the high-minus-
low book-to-market ratio factor (HML) that we collected from Kenneth French’s
data library. The definition of the two market states variables is the 36-month
lagged average market return (LAGMKT) and its square (LAGMKT2) from Cooper
et al. (2004). We use the following macroeconomic variables from Chordia and
Shivakumar (2002). The dividend yield (DIV) is the total dividend payment accrued
to the CRSP value-weighted market index over the past 12 months divided by the
current price level of the market index. The short rate (YLD) is the yield on the
3-month Treasury bill. The term premium (TERM) is the yield spread of a 10-year
Treasury bond over a 3-month Treasury bill. The default premium (DEF) is the yield
spread between Moody’s Baa and Aaa rated bonds. The data on the macroeconomic
variables comes from the Federal Reserve data in the Wharton Research Data
Services (WRDS). We conduct a comprehensive and detailed analysis on the
behaviour of the momentum returns from credit-rated stocks by first conducting
all of our empirical investigations over the entire sample period and then in 5-year
subperiods. The subperiod focuses on the impact of the credit risk and the business
cycle on the momentum returns.
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2.3.1 Methods

First, we calculate the raw momentum returns by following Jegadeesh and Titman
(2001). They use 6-month formation (J) and 6-month holding (K) (JxK D 6x6)
strategies.3 A month is skipped between the formation and the holding periods.
At the end of the holding period, the momentum portfolio becomes the difference
between the returns on winner and loser portfolios. We calculate momentum
returns for all credit-rated subsamples and NBER business cycles for expansions
and contractions. In order to explain the momentum returns, we use three multi-
factor regression models with three different types of risk factors. The first is
the Fama-French three factors (Fama and French 1993), the second is the market
states variables (Cooper et al. 2004), and the third is the macroeconomic variables
(Chordia and Shivakumar 2002). We estimate the following model:

MRCRt;6x6 D ˛ C
nX

jD1
ˇjft C "t; (2.1)

where MRCRt;6x6 is the momentum return generated at time t for the credit-rated
category CR (D1, 2, 3) where (1) is All Rated, (2) is Investment Grade, and (3) is
Speculative Grade. The ft (D1, 2, 3) is the vector of risk factors from (1) the Fama-
French three factors, (2) the market state variables, and (3) the macroeconomic
variables. The ˇj (j D 1, : : : ., n) represents the loading for the factors, ˛ is
the coefficient estimate for the constant, and "t is the residuals with E("t) D 0,
Cov("t, ft) D 0 and "t iid (0,�2). Using Eq. (2.1), we test whether the momentum
returns of credit-rated stocks remain after accounting for the three different types of
risk factors. If the market is efficient and the momentum returns are compensation
for risks, then we expect to see that the alpha is equal to zero.

2.4 Empirical Findings

Table 2.2 reports the monthly momentum returns of all stocks regardless of their
rating. The first three columns represent the returns on winner and loser portfolios
and momentum returns. Next, we calculate the difference between the first two.
Column four gives the average decile portfolio size. On average, these stocks

3Our sample period is from 1985 to 2011. The first cycle of NBER business cycle that covers our
sample period starts from 1982. We use the S&P Long-Term Domestic Issuer Credit Rating. Data
on this variable is available on Compustat on a quarterly basis starting from the second quarter
of 1985. Again, for stocks to be included in the empirical estimation it has to have at least six-
consecutive monthly return observations at the beginning of the holding period. Furthermore,
due to the JxK D 6x6 strategy and also skipping a month, in total J C K�1 at least 11 months
observation will be lost. Due to these criterions the sub- sample period starts from 1987.
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Table 2.2 Momentum returns of all stocks. The following table reports the monthly returns for
winner, loser, and momentum portfolios based on the JxK D 6x6 strategy (6-month historic returns
held for the following 6 months). The sample period is from January 1985 through November
2011. In each month t for all NYSE, AMEX, and NASDAQ stocks with returns from t � 6 through
t � 1 on the monthly CRSP database, the stocks are ranked into decile portfolios according to
their returns during the formation period (J). The decile portfolios are formed monthly by equally
weighting all firms in that decile ranking. Winner and Loser are the equal-weighted portfolios that
reflect 10% each of the stocks with the lowest and the highest returns over the previous 6 months
respectively. We long the Winner portfolio and short the Loser portfolio and hold the positions for
the following holding (K) months (t C 1 to t C 6). The month t is skipped between the formation
and the holding period. At the end of the holding period, the Momentum portfolio is realized as the
difference between the returns on the Winner and the Loser portfolios. Panel A reports the output
results for Not Rated and panel B reports the output results for All Rated stocks. The column
Portfolio size reports the average size of the decile portfolio during each period. The numbers in
bold fonts represent significance at the 5% and 1% levels and the t-statistics are given. The table
reports the momentum return in percentage, per month, and when excluding penny stocks from the
sample. A minimum six-month observation is required for any stocks to be included in the sample.

All stocks
Subperiod Loser Winner Momentum Portfolio Size

1985–2011 �0.60 0.48 1.08 413
t-stat �1.95 2.18 4.36
1987–1991 �0.61 0.40 1.01 279.43
t-stat �2.81 2.15 9.55

1992–1996 �0.50 0.53 1.03 379.72
t-stat �3.78 4.28 10.45

1997–2001 �0.84 0.56 1.40 476.37
t-stat �2.24 2.86 4.17

2002–2006 �0.48 0.52 1.00 456.53
t-stat �1.73 3.25 5.61

2007–2011 �0.58 0.40 0.98 472.34
t-stat �1.68 1.19 6.56

generate statistically significant momentum returns of 1.08% per month during
the sample period. All empirical analysis has been conducted on the entire sample
period and then further investigation has been made on 5-year sub-sample periods
(10-year sub-period). The choice of the sub-periods is based on the consideration
of sufficient observations and the availability of the data for the variables used in
this study so that meaningful parameter estimates can be obtained.4 In all of the
sub periods the momentum returns are on average 1% per month and 12% per
annum. This result is consistent with the findings of Jegadeesh and Titman (1993)

4The use of sub-period is common in momentum literature (see among others, Jegadeesh and
Titman 2002; Cooper et al. 2004). Studies on historical stock performance can suffer from
survivorship bias. Therefore the study of the sub-periods will help mitigate survivorship bias and
also help examine if momentum returns and its interaction with risk factors varies in different
sub-periods.
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who report that momentum returns are on average 1% per month in the US market.
We study the two subperiods of 1997–2001 for the tech-boom and the late 2000s
financial crisis of 2007–2011. We report that in the subperiod of 1997–2001, the
momentum returns are significant and the highest among all other subperiods at
1.40% per month. In the subperiod of 2007–2011, the momentum returns only
decline to 0.98% per month and are statistically significant.

Table 2.3 reports the momentum returns for all of the credit-rated stocks and for
each category of credit-rated stocks. Panel A of Table 2.3 reports the momentum
returns for all of the credit-rated stocks. On average, the momentum returns are
1.03% per month for all of the credit-rated stocks. These stocks earn the highest
momentum returns at 1.29% per month in the subperiod of 1997–2001 and 0.99%
per month in the subperiod of 2007–2011. Panel B of Table 2.3 reports the
momentum returns for the investment-grade stocks. The credit ratings of these
stocks are from AAA to BBB. They generate momentum returns of only 0.85%
per month throughout the sample period, the lowest among all categories of stocks.
In the subperiod of 1997–2001, they earn 1.05% and are significant; and in the
subperiod of 2007–2011, they earn 0.83% per month. The low momentum returns
for the investment-grade stocks are as expected as these stocks carry low credit risk
and impose less uncertainty on the investor. They have low standard deviations as
we discussed in Table 2.1. The results are consistent with those reported by (Zhang
2006) that momentum returns provide compensation for high ambiguity (Zhang
2006) and that investment-grade stocks do not impose high ambiguity.

Panel C of Table 2.3 presents the momentum returns from the speculative-grade
stocks. The credit ratings of the speculative-grade stocks are from BBB to C. The
speculative-grade stocks generate momentum returns of 1.27% per month (15.24%,
per annum). This is 42% larger than the returns of the investment-grade stocks.
In all of the subperiods, the momentum returns are more than 1%. Notably, in
the subperiods of 1997–2001 and 2007–2011, the returns are 1.68% and 1.13%
per month respectively. The momentum returns among the speculative-grade stocks
are the highest, which implies high uncertainty because of the high default rates
in this credit-rating bracket. In Table 2.1, we describe the speculative stocks as
having lower average returns and higher standard deviations. Therefore, the high
momentum returns of speculative-grade stocks provide compensation for the high
uncertainties they impose. The results are consistent with the findings of Avramov
et al. (2007) and Lee (2012) who report that momentum returns are high in high
credit risk stocks.

In sum, the unrated stocks earn momentum returns of 1.10%, higher than the
credit-rated stocks at 1.03%. The results are consistent with those of Avramov et
al. (2007) who report that momentum returns for all of the credit-rated stocks are
1.29% per month and for the unrated stocks is 1.43% per month for during the
sample period of 1985 through 2003. The difference in the results of this study and
Avramov et al. (2007) is our inclusion of the effect from the subprime financial crisis
in 2007–2011. The momentum returns of speculative-grade stocks are high, 1.27%
per month compared to the investment-grade stocks with 0.85% per month. This
difference can be attributed to the uncertainty imposed by the credit ratings.
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We next observe the momentum returns from the credit-rated stocks across
business cycles and across macroeconomic risk factors. We examine the momentum
returns during expansions and contractions as defined by the NBER business cycle.
Table 2.4 reports the momentum returns for different credit-rated stocks over
the business cycles. Panel A of Table 2.4 reports the momentum returns during
expansions for all stocks that are credit rated. On average, the credit-rated stocks
generate 0.98% momentum returns per month during the expansions with a range
between 1.04% and 0.91% per month. These returns are statistically significant. We
find significant momentum returns of 0.80% per month among the investment-grade
stocks. In the four expansion periods, the returns range from 0.72% to 0.87% per
month and are statistically significant. The momentum returns from the speculative-
grade stocks earn on average 1.20% per month and are statistically significant. They
earn more than 1% in all of the four expansion periods and range between 1.32%
and 1.09% per month. This result is consistent with the findings of Avramov et al.
(2007) who find that momentum returns are profitable among firms with high credit
risk.

Panel B of Table 2.4 reports the momentum returns during economic contrac-
tions. The credit-rated stocks generate momentum returns of 1.36% per month. The
momentum returns of the credit-rated stocks range between 1.83% and 1.08% per
month during the three contraction periods of July 1990 to March 1991, March
2001 to November 2001, and December 2007 to June 2009. The momentum returns
from the investment-grade stocks are 1.14% per month during the contractions.
They range between 0.97% and 1.38% per month in the three contraction periods.
The momentum returns from the speculative-grade stocks are on average 1.61%
per month, which is the highest among the different categories of credit-rated
stocks. And in the three contraction periods, they range between 1.23% and 2.35%
per month. This result is consistent with the findings of Lee (2012) who finds
momentum returns from middle investment-grade stocks during recessions in the
US market during the period of 1998 through 2008.

The momentum returns are significant among both investment-grade and
speculative-grade stocks during both expansions and contractions. However, the
returns are remarkable for speculative-grade stocks during contractions. Uncertainty
is higher for speculative-grade stocks that have higher credit risk during periods of
contraction when, economy-wide, credit risks increase. The possibility exists that
momentum returns are compensation for those risks. If momentum returns are a
systematic phenomenon and are just a mere compensation for bearing systematic
risk, then the momentum returns should disappear once the appropriate market-
wide, common risk factors are accounted for.
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2.4.1 Can the Fama-French Three Factors Explain
Momentum Returns in Credit-Rated Stocks?

In this subsection, we test whether the momentum returns disappear in credit-
rated stocks when we take into account the Fama-French three factors. Because the
literature reports that momentum in general cannot be explained by the Fama-French
three factors, we investigate if this conclusion holds for credit-rated stocks. Table
2.5 presents the coefficient estimates for Eq. (2.1) where f is a vector of the Fama-
French three factors. Panel A reports the results for all of the credit-rated stocks.
The momentum returns are significant at 1.03% per month for all of the credit-rated
stocks after controlling for the Fama-French three factors. The alpha for all of the
credit-rated stocks is statistically significant in the whole sample period and in all
of the other subsample periods. Panel B reports the results for the investment-grade
stocks when the Fama-French three factors are accounted for. For the investment-
grade stocks, the momentum returns are 0.85% per month after controlling for these
three risk factors. They are also significant at over 0.75% per month in all of the
subperiods. Panel C reports the results for the speculative-grade stocks. The alpha is
1.27% per month and is statistically significant. In all of the subperiods, the alphas
are significant and range between 1.102% and 1.69% per month. Our results show
that the momentum returns of the credit-rated stocks remain unexplained when the
Fama-French three factors are accounted for. The findings confirm the results of
various earlier studies in the momentum literature (e.g., Avramov et al. 2007; Fama
and French 1996; Grundy and Martin 2001).

2.4.2 Can Market States Explain the Momentum Returns
in Credit-Rated Stocks?

Table 2.6 reports the coefficient estimates for Eq. (2.1) where f is the vector of
the 36-month lagged average market return (LAGMKT) and its square (LAGMKT2).
Panel A reports the results for all of the credit-rated stocks. The alpha is significant
at 1.02% per month. Also in different subperiods, we observe significant alphas
ranging between 1% and 2.02% per month. Panel B reports the results for the
investment-grade stocks. The alpha for the investment-grade stocks is on average
0.83% per month and ranges from 0.78% to 1.48% per month in different subpe-
riods. In the subperiods of 1997 to 2001 and 2007 to 2011, the alphas are 1.48%
and 0.84% per month respectively. Panel C reports the momentum returns for the
speculative-grade stocks. They remain significant in all of the subperiods and range
between 0.86% and 2.63% per month. In the subperiods of 1997 to 2001 and 2007
to 2011, the alphas are 2.63% and 1.16% per month respectively. The results clearly
depict that the momentum returns from credit-rated stocks remain significant after
controlling for the market’s states. These results are inconsistent with those reported
by Cooper et al. (2004) and Wang et al. (2009) who report that market states
variables can explain the momentum returns in stocks that are traded in the US
market and in the Taiwan market.
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2.4.3 Can Macroeconomic Factors Explain the Momentum
Returns in Credit-Rated Stocks?

Table 2.7 reports the coefficient estimates for Eq. (2.1) when f is the vector of the
lagged macroeconomic variables. Panel A of Table 2.7 reports the results for all
of the credit-rated stocks. We report interesting findings for the momentum returns
from the credit-rated stocks when accounting for the macroeconomic variables. For
all credit-rated stocks, the alpha is significant during the sample period of 1987–
2011 at 0.96% per month. However, they are significant in only two subperiods:
1992–1996 and 1997–2001 at 0.85% and 2.21% per month respectively. The r-
squared for the subperiod of 1997–2011 is 38.94% that indicates the explanatory
power of the variables. This finding implies that macroeconomic variables can
partially explain the momentum returns and those market-wide macroeconomic
variables cannot explain momentum returns when the market is volatile.

Panel B reports the coefficient estimates for the investment-grade stocks. The
coefficient estimate for alpha is statistically significant during the entire sample
period at 0.59% per month. Among the different subperiods, it is statistically
significant in three: 1992–1996, 1997–2001, and 2007–2011 at 0.83%, 1.58%, and
0.83% respectively. Interestingly, the momentum returns are not explained by the
macroeconomic variables in the two most important crisis periods: 1997–2001 and
2007–2011. The alpha is not significant in the subperiods of 1987–1991 and 2002–
2006 when the US market was less volatile. This finding implies that, during periods
of high market volatility, the market-wide macroeconomic variables cannot capture
the effect of the momentum phenomenon and that the momentum returns from the
investment-grade stocks is a compensation for the risk or uncertainty imposed by
the business cycle.

Panel C reports the momentum returns for speculative-grade stocks. The alpha
for the speculative-grade stocks is, on average, 1.35% that is statistically significant.
In the different subperiods, the alpha is significant for the periods of 1992–1996,
1997–2001, and 2002–2006 at 0.87%, 3.11%, and 0.83% respectively. The alpha is
not significant in the subperiods of 1987–1991 and 2007–2011. We estimate the
momentum returns with f being a vector of the contemporaneous values of the
same macroeconomic variables in Eq. (2.1), and our conclusions do not change.5 In
sum, the results from Table 2.7 show that the momentum returns from credit-rated
stocks are partly explained by the macroeconomic variables. The t-statistics shows
that the two variables TERM and YLD have greater impact on the speculativegrade

5Results are available from authors upon request.
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momentum returns during different sub-periods. This finding is consistent with the
study of Chordia and Shivakumar (2002) who repost that momentum returns remain
unexplained when using macroeconomic variables and that the results are strong for
some variables particularly TERM and YLD. The momentum phenomenon is more
affected by the credit risk and the risk imposed by the uncertainty associated during
a market downturn.

2.5 Conclusions

In this paper, we demonstrate that momentum returns are robust in credit-rated
stocks and across business cycles. They are remarkable among the speculative-
grade stocks during contractions. The momentum returns from speculative-grade
and investment-grade stocks are explained when controlled for macroeconomic risk
factors and are more prevalent during market upturns and when the market is less
volatile. They remain unexplained by the macroeconomic factors during market
downturns. The momentum returns provide compensation for the uncertainties
imposed on investors because of high credit risk in individual companies and the
uncertainties imposed by the business cycle. Zhang (2006) measures ambiguity
as the arrival of public information and shows that the momentum profits in high
information, ambiguous stocks remain unexplained. Avramov et al.’s (2007) results
imply that momentum returns are higher during recessionary periods when credit
risk is high. We show that this is indeed the case. Momentum is because of the
uncertainty disclosed by the credit risk and the uncertainty imposed by the business
cycle. Studies have emphasized on the impact of investor’s behavior on momentum
returns during business cycle particularly during market downturn. Future study can
address the association between investors’ behavior and momentum returns during
market downturn.

Appendix: S&P Credit Rating

Following Avramov et al. (2007), we use the S&P Long-Term Domestic Issuer
Credit Rating that is available from Compustat on a quarterly basis starting with
the second quarter of 1985. The S&P rating are as follows:
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Credit ratings Numerical value

AAA 1
AaC 2
AA 3
Aa� 4
AC 5
A 6
A� 7
BBBC 8
BBB 9
BBB� 10
BbC 11
BB 12
Bb� 13
BC 14
B 15
B� 16
CCCC 17
CCC 18
CCC� 19
CC 20
C 21
D 22
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Chapter 3
Drivers of LBO Operating Performance:
An Empirical Investigation in Asia

Aurélie Sannajust and Alain Chevalier

Abstract We extend our worldwide research on private equity by studying the
drivers of LBO operating performance in Asia. We consider a large set of candi-
date drivers (financial, governance, macroeconomic, cultural, microeconomics and
industry variables) and study their effects on performance over the short- and long-
terms. To conduct our study, we use Capital IQ as a data base as well as a hand
collected dataset covering LBOs in Asia. We contribute to the current literature by
doing an investigation of the impact of macroeconomic factors on the performance
of LBOs in Asia. We use a sample of 156 LBO transactions which occurred between
2000 and 2010. Our results show that GDP growth, industry growth, and market
return are important drivers that significantly contribute to create value in LBOs.

Keywords Asia • Going private • Delisting • Drivers • Central state owner-
ship • Macroeconomic variables

JEL Classification G24, G34

3.1 Introduction

After the inception of the private equity in the US, this activity spread to Europe
and then to many other countries. Investors were seeking for high returns and
motivated by the attractive economic growth rates. Hence, increasing investment
capital flows into Asian Private Equity occured. According to the Emerging Markets
Private Equity Association, the number of leveraged finance transactions completed
in emerging Asia in the first 3 months of 2014 rose by 28 percent to 169 versus
the same period of 2013. Olivier Carcy, Head of private equity at Credit Agricole’s
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private banking unit, said “in Asia, the leveraged loan market will emerge quite
significantly over the next few years because companies have reached a certain
maturity over the last 15 years; entrepreneurs want to cash in and that will lead
to more transactions”.

The internationalization of LBO activities was also a result of the transmission of
investment practices and financial technologies from developed markets to emerging
Asian markets, Cumming et al. (2010). The development of the LBO market in Asia
took place in the 1990’s when private equity firms raised dedicated pools of capital
in order to maintain and/or increase the number of control investments in Asian
private companies.

Actually, there are structural differences between private equity fundraising in
Asian countries, as well as in many other emerging markets and developed coun-
tries, Oberli (2014). Unlike developed economies where the landscape is formed by
large players, Asian markets are structured around sets of fragmented industries with
a lot of small companies offering high growth rates. Hence, Asian private equity has
been driven during the last 10 years by growth financing constraints for small and
mid-sized companies, Naqi and Samanthala (2007). Seeking alternative financial
solutions was motivated by the problems of credit availability and financial squeeze
for small business, especially after the Asian currency crisis. This situation leads to
an increasing public concern and awareness on small business, Berger and Udell,
(1998).

Regarding operational changes, Asian LBOs involve acquisitions more than
divestitures, Cumming et al. (2010).

The aim of this article is to identify all the drivers that affect the performance
of a going private transaction. Our paper contributes to the literature on Private
Equity operations because we study performance of going private with financial,
capital structure, macro economic, industry level, employment drivers and the
influence of states. A large number of the available papers only focus on financial
and management factors. While several previous studies have examined the effect
of macroeconomic factors on fund-level returns, Phalippou and Zollo (2005),
Ljungqvist et al. (2008), Cumming and Walz (2010), Diller and Kaserer (2009), the
impact of macroeconomic and industry factors on portfolio firm level returns largely
remains unclear. Nikoskelainen and Wright (2007) extend the analysis to include
the effects of governance variables but employ a less-developed methodology
and do not examine macroeconomic factors. Guo et al. (2011) study the impact
of operational improvements and changes in market valuations on investment-
level returns. Nevertheless, they exclude the majority of important macroeconomic
variables and use a small size sample with limited adjustments for selection bias.
Thus, we think they do not reproduce an accurate picture of the drivers of holding
period returns in buyouts at the firm level taking into account the impact of firm-
level, industry-level and macroeconomic-level factors. Our results are based on
analyses with multiple sources of collected data of LBOs in Asia. We use Capital
IQ as main database together with a hand-collected dataset for some missed data
consulting websites of firms. We select all LBOs between 2000 and 2010. We
examine both the drivers of operating performance of LBOs before the going private
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announcement and the post-delisting performance. The post-delisting performance
is usually neglected in the literature due to the difficulties to obtain reliable data on
private companies.

The results show that GDP growth, industry growth, and market return are
important drivers that significantly contribute to value creation in LBOs. Macroe-
conomic variables have an important impact on LBOs in Asia especially as the
country growth rate is high. Governance variables present important results. These
results can be justified by the presence of information asymmetries that cause
insider-driven MBOs to benefit from a general uplift in their sector or the economy
because management has identified opportunities to exploit or reinvigorate, Wright
et al. (2000). Ownership in Asia is dominated by the large presence of governance
(Pessarossi and Weill 2013). It shows that governance (central and local) have
negative and significant results. They have a very important power in the firm’s
decision. Indeed, leverage has a positive impact on LBO performance because
buyout investors efficiently use debt to improve the equity returns of successful
transactions. Moreover, we analyze the differences between LBOs and non-LBOs.
We find that LBOs targets in the sample present higher operating performances than
non-LBOs. Non-LBOs are smaller than LBOs according to total assets. The level of
free cash-flow is also a key factor. Finally, we examine the impact of going private
transactions on employees. Going private transactions are also a way to restructure
the workforce by adjusting the number of employees. This has a positive impact on
the firm’s performance by increasing the profit per employee. This interpretation is
validated 1 year period after the transaction but we notice an increase in the number
of employees 3 years after.

Our study includes five main contributions to the literature. First, we design a
LBO sample devoted to emerging markets and especially to Asia. To the best of
our knowledge, it is the first time an empirical academic article is written on LBOs
in Asia with a long term horizon. Absence of empirical studies is explained by
the fact that data are difficult to obtain even if Asia is an interesting region for
researchers working on LBOs due to its attractiveness in terms of growth of private
equity funds. Second, to understand the value creation process in LBOs, we divided
our sample in three regions with three dummy variables to avoid a geographical
clustering. Third, we do not focus on the moment where the transaction is signed like
many studies do but on the consequences before and after the delisting. We consider
on the one hand the operating performance between year �1 and year C1 and on
the other hand between year �1 and year C3. Generally, only market reactions
around the acquisition announcement are analyzed by previous contributions. Post-
performance is not considered due to the lack of data. Fourth, we take into account
the macroeconomic effects on performance of LBOs. It is the first research dealing
with the impact of macroeconomic factors on performance of LBOs in Asia. Fifth,
we study the presence of ownership in Asia with two variables coming from
the Center of China Security Index database. They are important factors because
states and other communities have large ownerships in Asian countries. Finally, we
analyze the impact of going private decisions on employees.
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The remainder of the paper is organized as follows. In Sect. 3.2, we present a
literature review and formulate the hypotheses to be tested empirically. Section 3.3
presents the institutional background of emerging economies. Section 3.4 provides
a dataset picture and introduces to the reader the main descriptive statistics. Section
3.5 studies the change in operating performances before and after the going private
transactions and the impact of going private decisions on employees. Section 3.6
summarizes the main results and brings a few questions for future research.

3.2 Literature Review

To understand the main drivers of operating performance in LBOs, we build on
the recent literature that suggests that both buyout deals characteristics (financial
variables, capital structure variables), macroeconomic and industry influences are
co-determinants of value creation.

Agency costs are incurred by shareholders, or principals, as a result of the
separation of ownership and control, Jensen and Meckling (1976). Information
asymmetry means that managers are able to pursue objectives such as corporate
size rather than maximizing shareholder wealth. A number of corporate governance
mechanisms may be used to reduce the extent of the agency costs incurred by
the principals. There are two main categories of governance mechanisms, internal
and external. Internal mechanisms can be split into monitoring and incentive
related. Monitoring mechanisms refer to board structures, Fama (1980), Fama
and Jensen (1983), Cadbury (1992), Greenbury (1995), external shareholdings
Shivdasani (1993), and debt, Jensen (1986b). The key incentive mechanism is
internal shareholdings, Jensen and Meckling (1976). The main external corporate
governance mechanism is the market for corporate control, Manne (1965), Jensen
(1986b), which acts as the mechanism of last resort if the internal mechanisms fail.

Then the issue becomes how to explain that PTPs (public to private) reduce
agency costs. The literature on public-to-private transactions can be split into a
number of strands. In this paper, we focus on five main strands.

3.2.1 Tax Benefit

Going private transactions imply an increase in leverage. This leads to an important
deduction of interests which is a main source of expected wealth gains. It is a major
tax shield increasing the pre-recapitalization value. However, it depends of the fiscal
regime and the marginal tax rates in the country. Some researchers have opposite
opinions on this fiscal effect (Kaplan 1989b; Lowenstein 1985). Indeed a going
private transaction arouses a large amount of debt used to finance the transaction
and creates a considerable additional tax shield.

H1: Leverage and taxation have a positive impact on going private performance.
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3.2.2 Free Cash-Flow

Authors argue that for pre-PTP, agency costs are incurred because free cash-
flows are spent on projects that do not generate the required positive net present
value, Jensen (1986b). These firms will exhibit low growth opportunities and large
free cash-flows. The free cash-flows are used to achieve managerial objectives
such as increased size and greater peer group standing rather than shareholder
wealth maximization. The ability to do this implies ineffective internal corporate
governance mechanisms and management would only consider a move away from
this situation if faced with an increased threat of hostile take-over. There is an
evidence that in the UK hostile takeovers result in a significant increase in the
turnover of senior management post-acquisition, (Kennedy and Limmack 1996;
Franks and Mayer 1996; Dayha and Powell 1999). It is therefore in the interests
of the incumbent management to take a company private and experience increased
monitoring rather than risk losing their jobs. Job loss after a hostile take-over would
damage their reputation and reduce their value on the executive labor market.

US studies on free cash flow influence in the decision to go private have produced
mixed results. Lehn and Poulsen (1989) and Singh (1990) lend support to the free
cash-flow hypothesis by reporting that firms going private have greater free cash-
flows than firms remaining public. In addition, they found that PTPs exhibited lower
sales growth, indicating poorer growth prospects, further supporting Jensen (1986b).
However, Kieschnick (1998) reworked Lehn & Poulsen’s sample using a weighted
logistic regression and found free cash-flows and sales growth to be insignificant. In
addition, Opler and Titman (1993) also found no evidence that, individually, either
free cash-flows or Tobin’s Q influence the decision to go private. However, they
found that leveraged buyouts are more likely to exhibit the combined characteristics
of low Q ratio and high cash-flow than firms remaining public. Further, Halpern et al
(2000) also found no evidence to support the free cash-flow hypothesis. Thus, there
is limited evidence that US PTPs exhibit excess free cash-flow and poor growth
prospects which suggests that going private is not being driven by the need to return
free cash to the shareholders.

H2: Firms that are going private show higher Free Cash Flows than firms
remaining public.

3.2.3 Ownership Structure

One aspect of the agency problem that has received little attention is the link
between board composition, ownership structures and the PTP decision. In terms
of ownership, a US study by Maupin et al. (1984) found that the concentration
of ownership among managers and directors was significantly higher in PTPs
relative to firms that remain listed. Moreover, monitoring is more difficult with
large boards, and buyouts with large syndicates exit sooner as a result, Wright et al.
(1995). Indeed, Private Equity firms with significant concentrated ownership have
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got the incentive and mechanisms to monitor managers through board membership
and detailed reporting requirements that go beyond those available to institutional
investors in publicly listed corporations, Cumming et al.(2007). In relation to the
internal corporate governance mechanisms of listed companies, there has been an
increasing international awareness of their role and importance. In the US, the most
recent is the Sarbanes Oxley Act (2002). In the UK, number of reports specifically
addressed the issue, Cadbury (1992); Greenbury (1995), and proposed that publicly
listed companies should adopt a Code of Best Practice, a proposal supported by the
London Stock Exchange. Since June 1993, there has been a requirement that listed
companies include in their annual reports a statement explaining the extent to which
they have adopted the internal governance mechanisms recommended in the Code.
The above discussion allows us to propose a number of hypotheses, based on the
agency model, to explain the likelihood of a firm going private.

H3: A significant concentrated ownership (Achleitner et al. 2013; Croci and Del
Giudice 2014) implies a better governance and a better performance when a firm go
private.

3.2.4 Macroeconomic Factors

In addition to classical drivers (firm’s characteristics, financial ratios, ownership
structure : : : ), macroeconomic and industry factors may also have an important
impact on firm-level returns. However, there are little theoretical references. Indeed
companies are exposed to a certain amount of unavoidable economic risks because
financial performance is dependent on economic conditions. The common measure
of general economic activity is GDP growth which should be positively correlated
with buyout returns. As explained by Koller et al. (2005), a company’s valuation is
directly affected by expectations of its future economic performance.

Some recent studies suggest that industry measures of growth and returns more
accurately reflect the fundamentals driving buyout returns, Guo et al. (2011). In
addition, the growth rates of individual industries are monitored much less than
GDP, and, as a result, industry growth forecasts are likely to be less efficiently priced
in transactions than GDP growth forecasts. So, industry growth rates should have a
positive impact on buyout returns in addition to the impact of GDP growth rates.

From the study of CMBOR (Center Management for Buy Out Research),
the development of LBOs follows the economical cycle. They undergo different
financial crisis (1990, 2001–2003) and especially the last one (2007–2008) where
the number of LBOs knew a real drop (from 1200 transactions in Europe in 2008
against 400 in 2009). Consequently economic and financial conditions are important
for the development of going private transactions. This impact would be important
in Asia for different reasons: the economic growth is important (the annual growth
amounted to 8.4% in 2000 and reached 14.2% in 2007) and the going private market
is still not mature.

H4: Industry growth rates should have a positive impact on buyout returns.
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3.3 Institutional Background of Emerging Economies: The
Case of Asia

As we study in this article private equity in emerging economies, we have to
define “emerging economies”. Indeed, the meaning of these words is not the same
for researchers belonging to different fields. From Arnold and Quelch (1998),
an emerging economy can be defined as a country that satisfies two criteria: a
rapid pace of economic development and government policies favoring economic
liberalization and adoption of a free-market system. The International Finance
Corporation identifies 51 rapid-growth developing countries in Asia, Latin America,
Africa and the Middle East as emerging countries. In this article, Asia is selected and
particularly three main regions: Central Asia, Far East Asia, South East Asia where
24 countries and five main business sectors are represented (see Tables 3.1 and 3.2).

Table 3.1 Repartition of
Asian sample

Areas Countries Number

Central Asia Afghanistan 0
Armenia 0
Azerbaijan 0
Georgia 0
Iran 2
Kazakhstan 0
Kyrgyzstan 0
Tajikistan 0
Turkmenistan 0
Uzbekistan 0

Far East China 52
Korea, North 4
Macau 5
Mongolia 2
Taiwan 6

South East Brunei 1
Cambodia 2
East Timor 0
Indonesia 20
Laos 0
Malaysia 27
Philippines 11
Thailand 17
Vietnam 7
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Table 3.2 Repartition of
business sectors

Business sectors Number

Construction 11
Finance/Insurance 32
Manufacturing 35
Retail Trade 25
Services 53

3.3.1 Academic Background

Among Asian countries, the first concerned markets were China, India, Ippolito
(2007), as well as Japan, Kato and Schallheim (1993). For these three markets,
private equity has continued to experience strong capital inflows, Cumming et al.
(2010). As for China, funding for private equity deals is mainly provided through
offshore holding companies. But, with the development of the local debt market,
private equity is gradually moving from growth equity to LBO, as documented by
Xiao (2013).

As for India, which is in the midst of structural changes, there are opportunities
for a more traditional equity growth. The emphasis on growth leads to many positive
changes in management and financial structures, Fang and Leeds (2008). At the
industry level, Indian firms have a leading position in services and information
technology and a better profitability as compared to Chinese ones, Ippolito (2007).
While opportunities are attractive, the risks are high. Hence, according to Fang and
Leeds (2008), the retail and the telecom sectors in India were recently beset by
unexpected events that undermined the global performance.

As for Japan, the banking system plays an important role in reducing the costs of
financial distress, especially when companies maintain longstanding relationships
with their bank, Hoshi et al. (1990). However, Kato and Schallheim (1993)
documented a positive market reaction after the announcement of private equity
introduction. Since then, LBOs were accepted as a form of ownership, encouraged
by many elements such as shareholder demand for higher equity returns and
divestment from inefficient subsidiaries, Cumming et al. (2010).

3.3.2 Institutional Background

One of the main characteristic of Chinese Governance mechanism is the dominance
of state ownership and control (Kato and Long (2006a), (2006b) and (2006c);
Chen and AiNajjar 2012). State ownership plays a significant role in bank’s
management and influences the appointment of directors and the senior management
team in the supervisory board in particular. From Firth et al. (2009), there is a
negative relationship between government interference in appointing directors and
financial performance in China. Pessarossi and Weill (2013) argue that government
interference may limit the effectiveness of governance mechanism as this may
lead to appointing less profiled (experienced), but loyal, directors in state-owned



3 Drivers of LBO Operating Performance: An Empirical Investigation in Asia 49

companies. Lin et al. (2009) find that state ownership may lead to agency problems
and has a negative influence on the monitoring role and operating efficiency. Chen
and Al-Najjar (2012) find that the higher the level of state ownership, the lower is
the supervisory board size and independence.

Ownership structure is one of the main determinants of agency problems. It
varies according to the discrepancies in the economic and development stage of each
country. The principal-agent problem is very pronounced in the Chinese financial
sectors due to government ownership and to the political appointment of directors.
In such an environment the primary objective deviates from wealth maximization
to social welfare maximization. This may result in corruption and misallocation of
resources (Banerjee 1997).

Pessarossi, Weill (2013) find evidence in favor of the influence of central
government ownership on the financing choices of firms because central state owned
firms are more likely to issue bonds than others and to borrow uniquely on the bond
market. Consequently, LBO is not a good solution for the government.

From Li K., Yue H. & Zhao L. (2007), state ownership is positively associated
with short-term debt decisions for large firms whereas foreign ownership is strongly
and negatively associated with small firms’use of short-term debt. Indeed they show
that the negative effect of institutional development on firms’ access to long-term
debt is mitigated when the level of state or foreign ownership is high.

The attractiveness of Private Equity in China is justified by key driving forces as
Groh (2013): first it is the economic activity that explains the importance of Private
Equity. However it is not the only reason. Groh (2013) shows a detailed analysis
to find the main determinants of Private Equity Attractiveness in Asia. Apart from
the economy, the level of unemployment, the level of entrepreneurial tax incentives
and administration burden, the security of property rights are the main factors that
justify the increase of Private Equity in Asia.

H5: The presence of public authorities among the shareholders has a negative
impact on performance.

As Asia presents a specificity in the structure of ownership (a large presence
of government ownership), we introduce two variables which represent central and
local states. These two variables are coming from the China Security Index. We try
to understand if central and local states have the same ownership power.

3.4 Data Sources and Descriptive Statistics

We use several databases (Capital IQ, Worldbank, Center of China Security Index)
to analyze the drivers of LBO operating performance in Asia and also activity
reports from each firm in order to complete the missing data. We retrieved all
the deals from Capital IQ and we selected all the LBO operations with a closed
transaction status in Asia from January 2000 to December 2010. The sample period
ends in December 2010 in order to assess the performance of delisted firms as
private companies in the first 3 years after the going private transactions.
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3.4.1 Sample Description

We started with a large sample of 255 Asian companies (Central Asia, Far East,
South East) listed on Capital IQ. We added a few criteria to improve our LBO
sample analysis.

First, as we are interested in the examination of the post-acquisition performance,
it is required that the delisted companies continue operating after the stand alone
deal. Consequently, we removed from our sample all takeover targets immediately
integrated in the acquirer’s legal structure. As we are interested in the observation of
companies before and after the delisting decision, takeover targets merged with the
bidder do not allow this kind of analysis. After the screening process, 173 companies
remained in the sample.

Second, we collected information about the going private deals for all these
companies from Capital IQ. Unfortunately, we were not able to find all the needed
data for the 173 companies but only for 156 of them. Therefore, the final sample
was made of 156 transactions which occurred between 2000 and 2010.

Some regions and countries are more represented than others and provided more
data.

In Table 3.2, the most representative business sectors are “services” (34% of the
full sample), manufacturing and Finance/Insurance.

3.4.2 Benchmark Comparison

Moreover, as we analyze the impact of LBO transactions, we decided to compare
the targets of such transactions to similar companies that did not go through an
LBO. We based our peer selection on Capital IQ of listed companies and applied
the following matching algorithm to each private observation (similar to Weir et
al. 2005; North 2001; Klein and Zur 2009). A matching company i.e. a control
firm meets the two following criteria: first we select all public companies which are
headquartered in the same country as the going private firms, second we refine our
selection by industry. In a first step, we pick all companies which operate in the same
two-digit SIC industry. In case there are fewer than five potential matching firms,
we enlarge the industry criterion to the one digit SIC code. And in a second step, in
order to identify the final matching firm, we employ a size criterion. In particular,
we collect the amount of sales of all remaining firms in the fiscal year preceding the
going private announcement and the number of employees in full time equivalent in
the year prior the LBO transaction. Both criteria (total assets and employees) have
to be within the 70–130% range of total assets and number of employees of the
corresponding buyout, Barber and Lyon (1996). The firm with the smallest absolute
sales deviation from the going private firm is chosen as the matching firm. As a final
sanity check, we verify by an examination of the stock prices that our matching
firm has stayed public for at least 2 years after the going private announcement. We
obtain as the LBO sample 156 firms for the control sample.
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3.4.3 Descriptive Statistics

In Table 3.3, we present the definition of variables.
In Table 3.4 we introduce descriptive statistics about the ownership structure, the

stock price and the ownership data of our sample of firms delisted following LBO
transactions. We can notice that ownership data are collected at the end of the year
preceding the delisting announcement. We observe that the level of debt for going
private is more important than for non-LBO transactions. It can be explained by the
fact that LBO transactions use a significant amount of capital. Therefore the level
of leverage is also more important for LBO than for non-LBOs. The different cash-
flows generated by LBO operation create a higher level of free cash-flow for LBO
than for non-LBOs even if we find a significant level for non-LBOs. We identify
that a concentrated shareholder is very significant in LBO sample.

While panel A presents statistics for the full sample, Panel B compares firms
delisting following a LBO to firms delisted without LBOs. The acquisition tech-
nique is a LBO if Capital IQ considers the deal a leveraged buyout.

3.4.4 Analysis and Discussion

Table 3.4 presents means and medians for the full sample. We observe that financial
variables significantly change between year �1 and year C1 and between year �1
and year C3, suggesting a break between the past and the future. The medians
results show that delisted firms become smaller, probably due to the asset stripping.
Tangible assets decrease significantly, as expected. In fact, delisting often implies
downsizing processes to improve efficiency, Shleifer and Summers (1988), Weston
et al. (1998).

Some remarks must be mentioned for all variables. First, we observe a decrease
in total assets between year �1 and year C3 (�17%). This decrease can be justified
by the fact that managers need to reduce their debt level in order to borrow the
important amount of debt required for the LBO transaction. Of course, leverage
increases strongly. It is the direct effect of LBO transaction. We observe also an
Asian specificity in the level of taxation which decreases when a firm makes a
LBO operation. The level of free cash flows is constant overtime. However, we
notice an important reduction in the ROA level which can be explained by the high
level of debt of the LBO firm. However, we notice a constant amount of senior
debt. The global cash level decreases. The level of interest rate also decreases
and facilitates LBO transactions. We see that the presence of government in the
ownership is important, especially for the “large” Far East region. We find that
central government has a more important impact in the Far East region than in South
East Asia where local governments are determinant.

The performance measurement after the delisting relies exclusively on financial
statement data, because stock prices are no longer available once the firm is delisted.
Due to the difficulties to obtain reliable financial data, the sample size decreases
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Table 3.5 Hypothesis and
variables

Hypothesis Variables

Tax benefit Leverage
Taxation

Free Cash Flow Free cash flow
Ownership Divisional

Senior debt
Shareholders
Legal status

Macro-economic GDP growth
Industry growth
Interest rate
FDI
Market return

Governance Central State Owned
Local State Owned

substantially. As a proxy for the modifications in the firm operating performance, we
compute the difference between the ROA in the first (third) year after the delisting
and the firm’s ROA for the last full year in which the company was publicly listed
(year �1). In Table 3.6 and more, the dependent variable is the �ROA. ROA is
computed as EBIT over total assets at the beginning of the year. To put it another
way, �ROA is computed as: ROA tC1(3) – ROA t�1.

In addition to our key variables, we check the relationship with the following
financial variables measured at the end of the year before the delisting: tangible
assets, ln(total assets) and ROA. We include the pre-delisting operating performance
to measure the persistence of operating performance. We also control for the size
effect with the variable Ln (total assets), i.e. the natural logarithm of total assets at
the end of the year before the delisting.

To study the performance after the delisting, we use OLS regressions as an
econometrical method where Y, the dependent variable is �ROA and where Xi, the
independent variables are Ln (total assets), fixed assets, tangibles, LBO, leverage,
taxation, free cash flow, ROA, divisional, senior debt, shareholders, GDP growth,
industry growth, interest rate, FDI, market return, central state owned and local state
owned.

We introduce also three dummy variables which represent the three geographical
areas of our sample.

Table 3.5 summarizes hypotheses and the choice of variables.
Tables 3.6 and 3.7 present three models: model I with all variables, model II

checks if we separate ln(total assets) and fixed assets, we get an impact on the quality
of the results obtained with the model and model III checks whether ROA has an
impact on the quality of the results obtained with the model. The unit used is the
million of dollars.
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Table 3.6 Change in operating performance between year �1 and year C1

I II III

Ln (Total Assets) 0.032 0.087
(1.702)* (1.722)*

LBO 0.022 0.014 0.010
(3.142)** (3.456)** (3.521)**

Leverage 0.023 0.019 0.015
(4.654)*** (3.009)*** (2.564)***

Taxation �0.321 �0.490 �0.384
(3.654)*** (3.109)*** (3.245)***

Free Cash-flows 0.031 0.042 0.049
(2.784)** (2.926)*** (2.912)***

ROA (EBIT) 0.314 0.348
(2.674)** (2.743)**

Divisional 0.069 0.047 0.049
(2.768)** (2.905)*** (2.876)**

Senior Debt 0.261 0.298 0.306
(2.657)*** (2.731)*** (2.769)***

Shareholders 0.763 0.865 0.821
(2.113)* (2.219)* (2.198)*

Legal Status 0.095 0.087 0.092
(1.682)* (1.785)* (1.812)*

GDP growth 0.405 0.532 0.606
(2.764)** (2.805)** (2.913)**

Industry growth 0.178 0.245 0.369
(2.301)** (2.787)** (2.654)**

Interest Rate 0.507 0.514 0.546
(2.478)** (2.512)*** (2.874)***

FDI 0.154 0.276 0.198
(2.765)** (2.742)** (2.803)**

Market return 0.389 0.401 0.408
(2.331)* (2.489)** (2.594)**

Central Asia 0.875 0.903 0.894
(1.004) (1.012) (1.045)

Far East 0.453 0.448 0.418
(2.792)*** (2.714)*** (2.801)***

South East 0.621 0.615 0.613
(2.422)** (2.384)** (2.435)**

Adjusted R2 0.513 0.504 0.527
Observations 312 312 312

The table reports estimates of OLS regressions where the dependent variable is �ROA(�1,1)

.�ROA(�1,1) is computed as: ROA t+1 – ROA t�1. ROA is computed as EBIT over total assets at
the beginning of the year. Three models are designed: model I with all variables, model II checks
if total assets has an impact on the quality of the results and model III checks if ROA has an impact
on the quality of the results. The symbols ***, **, * denote statistical significance at the 1%, 5%
and 10% level, respectively
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Table 3.7 Change in operating performance between year �1 and year C3

I II III

Ln(Total Assets) 0.045 0.047
(1.546)* (1.574)*

LBO 0.162 0.157 0.145
(2.367)** (2.427)** (2.399)**

Leverage 0.035 0.043 0.041
(3.342)*** (3.297)*** (3.316)***

Taxation �0.473 �0.491 �0.502
(2.967)*** (3.122)*** (3.455)***

Free Cash-flows 0.124 0.135 0.127
(3.115)*** (3.203)*** (3.306)***

ROA (EBIT) 0.291 0.324
(2.866)*** (2.983)***

Divisional 0.065 0.112 0.063
(2.704)** (2.589)** (2.698)**

Senior Debt 0.157 0.215 0.198
(2.583)** (2.579)** (2.642)**

Shareholders 0.094 0.106 0.121
(2.512)*** (2.486)*** (2.517)***

Legal status 0.189 0.213 0.326
(2.315)** (2.416)** (2.425)**

GDP growth 0.568 0.651 0.709
(3.189)*** (3.362)*** (3.422)***

Industry growth 0.185 0.206 0.255
(2.579)** (2.675)** (2.609)**

Interest Rate 0.264 0.258 0.241
(2.345)** (2.516)** (2.611)**

FDI 0.104 0.167 0.177
(2.472)** (2.389)** (2.518)**

Market return 0.201 0.279 0.295
(3.567)*** (3.876)*** (3.906)***

Central Asia 0.773 0.802 0.813
(1.015) (1.019) (1.003)

Far East 0.369 0.379 0.353
(2.753)*** (2.705)*** (2.792)***

South East 0.548 0.551 0.542
(2.329)** (2.371)** (2.458)**

Adjusted R2 0.516 0.494 0.535
Observations 312 312 312

The table reports estimates of OLS regressions where the dependent variable is �ROA(�1,3)

.�ROA(�1,3) is computed as: ROA t+3 – ROA t�1. ROA is computed as EBIT over total assets at
the beginning of the year. Three models are designed: model I with all variables, model II checks
if total assets has an impact on the quality of the results and model III checks if ROA has an impact
on the quality of the results. The symbols ***, **, * denote statistical significance at the 1%, 5%
and 10% level, respectively
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3.5 Results

We based our measure of performance after the delisting on the difference between
the ROA in years 1 and 3 after the delisting. Therefore, the dependent variable is
the variation of ROA (�ROA): ROA tC1 – ROA t-1 when we investigate short-term
effects and ROA tC3 – ROA t-1 when we look at long-term effects.

ROA is defined as EBITDA over total assets. We study the relation
between�ROA and independent variables before the delisting in a first time and
3 years after the delisting in a second time. Candidate independent variables are:
financial variables, (ln (total assets) which is the natural logarithm of total assets
at the end of the year before the delisting, a proxy for the size of the target; fixed
assets; tangibles; leverage; taxation; free cash-flows; ROA; and cash reserves),
capital structure (divisional, senior debt, shareholders), macroeconomic variables
(GDP growth, industry growth, interest rate, foreign direct investment, market
return), government presence (central and local stakes owned) and the level of
employment (employees, profit per employee).

Two models are created:
The first model deals with the main drivers of LBO performance. We divided this

model into two parts: first the main drivers before the going private transaction and
immediately after. The second part studies the period before the transaction and 3
years after.

�ROA .�1; 1/ D ˇ1 ln .total assets/C ˇ2 LBO C ˇ3 Leverage C ˇ4 Taxation

Cˇ5 FreeCashFlowCˇ6 ROACˇ7 DivisionalCˇ8 SeniorDebt

Cˇ9 Shareholders C ˇ10 Legal Status C ˇ11GDP growth

Cˇ12 Industry growth C ˇ13 Interest rate C ˇ14 FDI

Cˇ15 Market return C ˇ16Central Asia C ˇ17Far East

Cˇ18South East C "i

�ROA .�1; 3/ D ˇ1 ln .total assets/C ˇ2 LBO C ˇ3 Leverage C ˇ4 Taxation

Cˇ5 FreeCashFlow C ˇ6 ROA C ˇ7 Divisional

Cˇ8 SeniorDebt C ˇ9 Shareholders C ˇ10 Legal Status

Cˇ11GDP growth C ˇ12 Industry growth C ˇ13 Interest rate

Cˇ14 FDICˇ15 Market returnCˇ16Central Asia C ˇ17Far East

Cˇ18South East C "i

We are interested in the effect of ownership on the performance of going
private transactions. We study the impact of central and local governments on each
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geographical area. We use all periods to get a better impact, but we don’t split the
analysis between short term (�1,C1) and long term (�1,C3).

�ROA .�1; 3/ D ˇ1CA�CSO C ˇ2 CA�LSO C ˇ3 FE�CSO C ˇ4 FE�LSO

Cˇ5 SE�CSO C ˇ6 SE�LSO C "i

where CA is Central Asia, FE is Far East, SE is South East; CSO is Central State
Owned, LSO is Local State Owned.

3.5.1 OLS Model

Table 3.6 shows the results issued from the short-term forms of OLS model
estimations. We observe that the history of the firm variable has a positive and
significant effect on performance of going private transactions. Indeed, in Asia,
we have a large number of small firms and family entrepreneurship is dominant
(Sannajust 2009). We demonstrate that when a family shareholder initiates a going
private transaction, this affects positively the firm’s operating performance. As
said by Olivier Carcy, the Geneva based Global Head of Private Equity at Crédit
Agricole’s private banking unit: “Some people say Asia isn’t primed for leveraged
buyouts because of the prevalence of family-run companies. But I think it’s just a
matter of maturity. Once the financial markets develop to support leveraged buyouts
then they’ll naturally emerge”.

Indeed this result could be interpreted as a signal of asymmetric information.
A large shareholder (in this case it is the family shareholder) takes a firm private
because it has better quality information about firm’s profitability. We can explain
this finding by the agency theory: the reduction of agency conflicts between
small and large shareholders generates an improvement in the firm’s performance.
After the delisting, family shareholders have additional incentives to run the
firm efficiently because they often invest their own financial resources to buyout
minorities and get the control of the LBO transaction, since these acquisitions
are rarely financed by a debt increase. Therefore, we can deduce that the level of
performance depends on the owner’s post-delisting situation.

3.5.2 Introduction of LBO Dummy Variable

LBO dummy shows a positive and statistically significant coefficient. Indeed LBO
as a technique of acquisition influences positively the results of performance.
Leverage presents also significant and positive results. Greater availability of debt
and lower interest rates on borrowing are associated with higher leverage in buyout
financing structure, Axelson et al. (2012). Leverage should lead to increased firms-
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level holding periods and equity returns particularly in successful buyouts, because
of pressure to meet service debt requirements. Free Cash-flow has a positive and
significant effect on performance for year 1 and especially for year 3. Indeed, LBOs
have higher levels of Free Cash-flows, in average than non-LBOs. The excess cash
owned by LBO can repay the debt. The positive relation is confirmed by other
studies Wright et al. (2006) but their results are not statistically significant. Becker
and Pollet (2008) for US sample find a positive and significant link between going
private and the level of free cash-flows. For taxation, we remark a higher level of
tax for LBOs than for non-LBOs. In general the result for taxation is not significant,
Wright et al.(2006), for Europe and the USA samples. This could be explained by
the fact it is a new trend and we also notice high growth rate for LBOs and large
flows of private equity. We can assume that the post-LBO growth can be explained
by an expansion on international markets.

As far as macroeconomic and industry variables are concerned, our findings
indicate that industry growth has a significantly positive impact on performance
which is the same results as Guo et al. (2011). As expected, GDP growth is
significant. Market return, which is measured by the market adjusted stock price
performance in the calendar year before the announcement, presents a positive and
significant result before the going private transaction and indicates that the stock
market was able to forecast future firm’s performance. Asian markets confirm their
infatuation for LBO transactions. In contrast with the USA, LBOs are new in Asia
and the market reaction is different.

In Table 3.7, we focus on the relationship between going private and long-
run performance. We use �ROA (�1,3) as a dependent variable. We confirm the
results obtained in Table 3.6; the increase in operating performance when a large
shareholder takes over the firm is permanent.

We also demonstrate that adjusted R2 which represents the quality of the model
are lower for years �1, C1 than for years �1, C3 (51.3% against 51.6% for model
I, 50.4% against 49.4% for model II and 52.7% against 53.5% for model III).
These differences do not interfere with the results of our regressions. In general
we show that the impact of operating performance is more important for 1 year
before and 1 year after the transaction. It can be explained by the fact that 1 year
after the delisting, firms are more flexible: all constraints and costs incurred by the
exchange do not apply anymore. Financial results increase. However, as we know,
LBO transactions imply the extensive use of debt. Therefore, managers are very
careful because the firm has to repay the loan in due time. This is an argument
to explain the lower results obtained for adjusted R2 during the performance years
�1 and C3. However, in Asia, the impact 3 years after the LBO is also important
for the firm. We can explain this result by the fact that LBO is central for a firm
and its managers give the same importance to create value at the beginning of the
transaction and during the three following years. In the USA and in Europe we don’t
have the same interpretation, because managers give a priority to short term results
i.e. a great importance to the beginning of the period (1 year after) and less after.
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3.5.3 Introduction of Geographical Area Dummy Variables

Tables 3.6 and 3.7 contain three geographical dummy variables that represent the
three Asian regions of our sample. We have a geographical cluster where Far East
and South East Asia are the most representative areas (Table 3.1). If we don’t
introduce these variables, our result would not represent the real picture.

We find that Central Asia has a positive but not significant impact on the
performance. It is not surprising as the number of going private is very low.
On the contrary, Far East and South East Asia present positive and significant
results. The quality of these results is explained by the large number of transactions
which occurred. China, Indonesia, Malaysia, Philippines, Thailand are the five main
countries where going private operations took place. We also notice a better level of
significance for Far East where China is the most representative country. The level
of growth, the attractiveness of the financial markets, the size of the country are such
that China has an important attractiveness factor.

Finally, these results should be interpreted taking into account the location of
going private firms. Location has a positive and significant impact on going private
performance.

3.5.4 Geographical Areas and Governance (Table 3.8)

Firms ownership in Asia is characterized by the large presence of public authorities
stakes (Pessarossi and Weill, 2013; Li K., Yue H., Zhao L., 2007). To obtain better
results in our paper we decided to use variables from the Center of China Security
Index. Central state and local states ownerships variables show if their presence by
geographical area is significant or not and if their influence is positive or negative.
We find that the large presence of public authorities has a negative and significance
influence (Firth et al. 2009; Lin et al. 2009) on the performance of going private
firms. These results are justified by the fact this presence of public authorities creates
some agency conflicts. The managers of these firms are more motivated to issue
debt on the bond market than to borrow to the banks.Moreover the location is also
an important factor. In a “large” region as Fast East, central government has a more
important impact than in the South East region where the size of regions is smaller.

3.5.5 Efficiency and Profitability Impacts (Table 3.9)

Going private transactions imply also some restructuration to improve the firm’s
efficiency. Thus, we introduce another variable, the employment. We study the
LBO’s effect on employees. As we know, a LBO transaction implies restructuration
and financial investments to be successful in the delisting process. Therefore,
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Table 3.8 Geographical
areas and public authorities

I II

Central Asia*CSO �0.352
(�1.004)

Central Asia*LSO �0.535
(�1.112)

Far East*CSO �0.233
(�2.851)***

Far East*LSO �0.301
(�2.112)**

South East*CSO �0.342
(�2.215)**

South East*LSO �0.243
(�2.421)***

Adjusted R2 0.456 0.461
Observations 156 156

The table shows the impact of the presence of public
authorities in each geographical areas in our sample.
The symbols ***, **, * denote statistical significance
at the 1%, 5% and 10% level, respectively

Table 3.9 The level of employment

Year �1 Year 1 Year 3
Mean Median Mean Median Mean Median

PANEL A: FULL SAMPLE
Employees 1245 204** 1105 183** 1389 231***
Profit per employees 198.6 59** 204.6 62*** 285.1 86***
PANEL B: LBO vs. NON-LBO
Employees 2145 457** 1987 214** 2345 632***
Profit per employees 187.2 65** 308.4 96*** 510.3 113***

The table reports mean and median of employees, profit per employees before the delisting (year
�1), the year after (year 1) and 3 years later (year C3) for the sample. Employees represent the
number of full time employees of the company. Profit per employees is the ratio between the firm’s
profits before taxes divided by the number of employees. The symbols ***, **, * denote statistical
significance at the 1%, 5% and 10% level, respectively

efficiency is the main goal of LBO transactions. Indeed going private transactions
imply the improvement of firm’s efficiency by restructuring the firm after the LBO,
Shleifer and Summers (1988), Weston et al. Kaplan (1989a). Consequently, the effi-
ciency improvements are obtained through cost cutting in assets and employment,
Kaplan (1989a), Smith (1990), Harris et al. (2005). To test this idea, we use two
variables: employee which is the number of total employees of the company and
the profit per employee ratio which is calculated with the firm’s profit before taxes
divided by the number of employees. With these two variables we can analyze the
effect of this restructuring process on the firm’s workforce and its efficiency.
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Panel A shows that there is a decrease in the number of employees after the first
year of delisting whereas the profit per employee increases. We can suggest that
a reduction of employment leads to an improvement in productivity and later as
the firm after delisting wants to reduce the incidence of the cost of employees to a
workforce reduction and/or to a decrease in the wage per hour, Kaplan (1989a),
Smith (1990), Harris et al. (2005). We conclude that firms use going private
transactions to restructure their workforce through the number of employees and
their cost.

We also notice two opposite results: we get a significant increase in profitability
per employee just after the going private whereas we find a decrease in employment
level. This result is similar to other studies about LBOs and efficiency in Europe,
Boucly et al. (2011), Harris et al. (2005), Cumming et al. (2007). We conclude that a
going private transaction as an acquisition technique allow firms to restructure their
workforce. This has a positive impact on the firm’s productivity with an increase in
the profit per employee. As Shleifer and Summers (1988) explained, it is easier to
break implicit contracts with employees for a new owner.

However, we notice another relevant result, an increase in the number of
employees 3 years after the delisting contrary to other countries where this number
decreases each year after the delisting. It is the same interpretation we already
mentioned before: managers and shareholders in Asia show a specific behavior, they
measure the performance and the quality of the management of the firm on a long
time horizon. As we confirm that the profit per employee also increases, it means, in
average, firms develop their activity and need more staff to meet a growing demand.

3.6 Conclusion

In this paper, we contribute to private equity research and more precisely to the
improvement of knowledge in Asian LBO transactions. The drivers of performance
were identified through the analysis of 156 operations. The increase in the level
of foreign investments and in the number of equity capital operations and more
generally the high growth rate of the economies explain the choice of Asian
countries for our research.

While most of the papers available on LBOs explain the operation effect around
the delisting date, we studied the impacts before and after the delisting (1 year
before and 3 years after). We included macroeconomic variables to take into account
GDP growth rates and volatility and also a control sample for non-LBO transactions
(Sannajust et al. 2015).

We found that buyouts create value, reduce agency costs, generate a shift from
a managerial to an entrepreneurship mindset and lead to an increase in growth for
the economy (Chevalier and Sannajust 2011). In the LMBO case, managers resume
the company in their own direction and are involved in the decision process and
motivated by the issue. The introduction of a “divisional variable” in the model
demonstrates that divisional buyouts create more value through acquisitions than
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integrated company buyouts. Information asymmetries between existing and new
management teams explain this difference in performance. Other analysis including
leverage, ROA, market return and shareholders characteristics variables confirm
the preceding result. We don’t validate the non-significant result obtained for the
taxation variable by several authors, Wright et al. (2006); in our analysis, taxation
has a positive impact on LBO transactions. Indeed, LBO processes imply large
financial flows and tax consolidation plays an important role.

In our model, macroeconomic variables show a positive and significant influence
on value creation (industry growth and GDP growth for example). We conclude
that a positive macroeconomic environment is necessary for the development of
LBOs and also of value creation on LBO transactions. Economic and financial
academics explain that LBOs are one of the processes used to implement drastic
“cost cutting” measures that the target management is reluctant to enforce and act
as growth engines. We validate this hypothesis because we observe the number of
employees decreases over the years while the net earnings per employee increases;
this result means that LBO transactions imply a workforce restructuration. We also
find that LBOs have higher financial performance (ROA, level of assets : : : ) than
the control sample.

The introduction of geographical dummy variables shows that Far East is the
main region as far as the number of going private transactions is concerned. This
is validated by the econometrical analysis. The South East region also shows
a significant result. Only Central Asia doesn’t have significant results. Negative
and significant results (agency conflicts and asymmetric information are the main
reasons) are explained by the presence of central and local public authorities in the
equity structure.

When we analyze the relationship between financial performances of LBOs,
our study reveals that, unlike in the USA and in Europe where the operating
performances are only important 1 year before and 1 year after the transaction,
the impact for Asian firms stays at a high level 3 years after the LBO. In Asia,
managers give the same importance to value creation any time and demonstrate a
constant behaviour different from their US or European counterparts.

To sum up, this paper brings additional evidence in favor of “the LBO better
performance argument” in another region of the world (after the USA, Europe and
Latin America) and considers new independent variables as drivers of operating
performance. Macroeconomic variables show an impact as important as governance
factors on LBO value creation. The presence of public authorities as shareholders
has a negative impact on going private operations due to the agency costs created.
The characteristics of the debts included in the balance sheets (maturity, fixed
or variable interest rates for example) are not available in our data basis. A test
including this information could bring other elements of explanation. A comparative
study between emerging countries including investigations on heterogeneities could
also be a topic for future research.
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Chapter 4
Time Varying Correlation: A Key Indicator
in Finance
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Abstract Correlations between different asset returns represent a crucial element
in assets allocation decisions and financial engineering. In commodity markets,
where prices result non stationary and returns are only mean stationary, a time
varying measure of correlation has to be used. According to the prevailing literature,
correlations among different markets are higher during recessions than during
expansion periods. Portfolio managers to shield investors from stock markets
declines used to invest in commodities which historically were considered poorly
correlated with stock markets and providing a good hedge in the long run. In the
last decade correlations between commodities and stock returns have dramatically
changed. The aim of the paper is to address the issue of the correlation measurement
in presence of non stationarity and structural breaks in market variables. We com-
pare the Historical Rolling Correlation and the Dynamic Conditional Correlation
methods and show how each estimator may provide useful information given a
specific structure of the data. Some interesting relationships are also highlighted
among markets where no correlations were expected and viceversa. We also show
that information provided by the correlation measures can be used to identify
structural breaks in the original variables.
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4.1 Introduction

Understanding how asset prices behave and interact in financial markets has
become a key issue for scholars and practitioners. Given that the economy is
an interconnected set of economic agents, sometimes modelled as a continuously
evolving general equilibrium system, we may expect that corporate earnings and
asset prices be correlated. The correlation structure across assets is a key feature
of the portfolio choice problem because it is instrumental in determining risk as
well as being a key factor for pricing exotic derivatives as inter-commodity spread
options. Estimating the correlation structure of assets traded in global markets and
using this to select superior portfolios is one of the main goal of financial investors
or hedge fund companies. It is especially difficult when it is recognized that these
correlations vary over time. The optimal hedge can be set only if price dynamics
are understood and their volatility properly measured. In addition, derivatives such
as options are now routinely traded not only on individual securities, but also on
baskets and indices. The pricing of these derivative contracts depend on the prices
of the component assets and of their correlations. A market for correlation swaps1

has recently developed that allows traders to take a position to speculate on or
hedge risks associated with the observed average correlation of a collection of
underlying products. Structured products form a very large class of derivatives that
are sensitive to correlations. In this context it is important to identify the adequate
methods for estimating correlations when stationarity of asset prices or their returns
cannot be assumed. In some cases the Historical Rolling Correlation (HRC) method
may provide a simple and accurate measure of time varying correlations, in others
the Exponential Smoothing Correlation (ESC) or the multivariate GARCH and
Dynamic Conditional Correlation (DCC) methods may result more accurate in
presence of complex structures of the data.

Recently, measuring correlations between different kind of asset classes has
become a major task for traders and fund managers. Portfolio managers who aim
to shield investors from stock markets declines invest in commodities which his-
torically were considered poorly correlated to stock markets. However, recent crisis
in the global economy, as the GFC or the downgrading of the US sovereign debt,
or the European sovereign crisis, have caused structural changes in the relationship
between the various markets. We can observea disparity in the performance of equity
and commodity markets as an indirect endorsement of the government’s efforts to
shore the domestic economy without stoking inflation. As a response to the Central
Banks (FED, ECB) bond purchasing programs, fund managers boosted exposure
to commodities amid fears that Central Banks interventions would fan inflation by
injecting excessive amounts of money into the economy.

1A correlation swap is an over-the-counter financial instrument that allows an investor to speculate
on the correlation, of underlying securities.
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The aims of this paper is twofold: first, to provide an accurate description of
the various time varying correlation measures and to identify the most adequate
estimator when dealing with assets which present complex dynamics and differ-
ent distribution features; second, to show how choosing an adequate correlation
measure may lead to a correct estimate of the relationship between markets which
present changing structure over time, for instance commodity markets and financial
markets, or assets which have been experiencing several structural changes, as well
as the crude oil and the natural gas markets.

To select the best correlation measure we need to create experimental data
and implement a known correlation structure. We compute different correlation
estimators: (1) the HRC choosing different sizes of the rolling windows, (2) the
ESC and (3) the DCC. Different error metrics, as the Mean Square Error, the Mean
Absolute Error, the Mean Absolute Percentage Error and the Normalised Mean
Square Error allow to rank the various estimators.

Using the HRC � 250 days we estimate the correlations between natural gas
and crude oil prices to show how the use of an accurate measure may provide
important information on the relationship existing between the two major fossil
fuels traditionally expected to be correlated. We also estimate the DCC to measure
the existing relationship between the commodity and the financial markets which
have shown major changes in the last decade. We find that the HRC provide an
accurate correlation measure in the case of data which present structural breaks,
while the DCC is the most adequate estimator for heteroskedastic data.

The paper is organized as follows, the second section reports some relevant
literature on the topic; Sect. 4.3 describes and compares the different correlation
estimators; Sect. 4.4 presents the measured correlation between different markets
(commodities versus stocks and bonds), and different assets (crude oil versus natural
gas). Section 4.5 provides some concluding remarks.

4.2 Recent Literature

Measuring correlation in finance is a critical task. Correlation between two asset
returns is the basis for any portfolio selection or any diversification strategy. It has
to capture the dynamic structure of the daily prices or returns. The standard Pearson
correlation coefficient is not appropiate due to the presence of non stationary
variables or only mean stationary variables. Financial series are almost always
non stationary. Their returns2 are stationary in mean but show the presence of
heteroskedasticity. Countless results of researches dealt with the problem of reliable
estimates of correlations between financial variables. Simple methods such as
the Historical Rolling Correlations and the Exponential Smoothing Correlation are
widely used. More complex methods, such as varieties of multivariate generalized

2Returns are calculated with the following formula: rt D ln.Pt=Pt�1/.
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autoregressive conditional heteroskedasticity (GARCH) or stochastic volatility, and
the Dynamic Conditional Correlation method have been extensively investigated in
the econometric literature and are largely used by practitioners. Just to cite some
among the most relevant contributions (Bollerslev et al., 1988, 1994; Bollerslev,
1990; Engle and Mezrich, 1996; Engle et al., 1990; Ding and Engle, 2001; Engle,
2002).

Several studies try to assess the correlations among various markets. A first group
of researches dealt with measuring the correlation between commodity markets and
other financial markets using data referred to periods before the Global Financial
Crisis of 2008 (Gorton et al., 2007; Erb and Campbell, 2006; Büyükşahin et al.,
2009). They find no significant correlation between the two markets, studying the
correlation between commodity indexes and equity indexes in the U.S. market for a
period of 17 years (from January 1991 through May 2008). The returns on investible
commodities showed a different pattern from that detected for equity indexes, and
the relationship had not changed significantly during the period 1991–2008. They
conclude that “commodities continue to provide benefits to equity investors in terms
of portfolio diversification”. Gorton and Rouwenhorst (2006) and Erb and Campbell
(2006) found that commodity prices show minor co-movements with equity markets
and between each other prior 2001 (in some cases commodities and stock returns
result negatively correlated). A second group led by the scientific work of Tang
and Xiong (2010) and Silvennoinen and Thorp (2012), focuses on possible co-
integration existing between the various markets and tries to verify the hypothesis
of financialization of commodities before and after 2008.

Silvennoinen and Thorp (2012) introduce the DCC structure with an explicit
treatment of expected stock volatility to analyze the integration between commodity
and stock markets and the financialization of commodities. The authors conclude
that there is an increasing correlation between the two markets in the period 1990–
2009 (from 0 to 0.5) in US, EU and Japan.

The contribution of our paper with respect to this wide literature is twofold, first
to address the issue of the most adequate correlation estimators among different
markets, and second, to show that some known correlations between specific assets,
as natural gas and crude oil, or different markets, as the stock and the commodity
markets, no longer exist.

4.3 The Correlation Measure

Asset prices and asset returns show a time varying dynamics. In particular, most
security prices result non stationary in mean and variance while returns result
stationary only in mean. In presence of time varying volatility the measure of
possible correlations between different securities represent a challenging issue.
To measure the correlation existing between non stationary variables has been a
common task among academics and practitioners. Time varying measures as HRC,
ESC or the multivariate generalized autoregressive conditional heteroskedasticity
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(MGARCH) method to generate the DCC estimator provide adequate measures
in these cases. In most cases, the applications are made to the bivariate case.
The Pearson product-moment correlation coefficient is the most used estimator to
determine the strength and the direction between two random variables. A time
varying unconditional correlation between two random variables r1 and r2 which
have zero mean is defined by:

•

�1;2It D Et�1.r1;t; r2;t/q
Et�1r21;tEt�1r22;t

(4.1)

where Et�1 is the expectation based on the observation available at time t�1. The
conditional correlation is based on the information regarding previous periods.

• A dynamic correlation estimator is the HRC which applies (4.1) to a n-days
rolling window. It gives equal weights to the n data of the interval and zero
weights to previous observations:

O�HRC
1;2It D †t�1

sDt�n�1r1;s; r2;sq
†t�1

sDt�n�1r21;s†t�1
sDt�n�1r22;s

(4.2)

• The Exponential Smoother Correlation estimator, introduced by Risk Metrics to
measure correlations between financial assets uses declining weights based on a
parameter �, which emphasizes current data but has no fixed termination point in
the past where data becomes uninformative.

Q�ES
1;2It D †t�1

sD1�t�s�1r1;s; r2;sq
.†t�1

sD1�t�s�1r21;s/.†t�1
sD1�t�s�1r22;s/

(4.3)

The � parameter allows to attribute differet weights to the various data. A crucial
issue in using this estimator is the choice of the parameter �. For � very close to
one this estimator is very close to the Pearson product-moment. Risk Metrics set
� D 0:94, values of � < 0:94 provide values of this estimator less stable.

• The Dynamic Conditional Correlation is a natural extension of the GARCH mod-
els. The relationship between conditional correlations and conditional variance
is obtained expressing the returns, ri;t as the conditional standard deviation times
the standardized disturbance "i;t

hi;t D Et�1r21;t ri;t D "i;t

p
hi;t (4.4)



74 R.L. D’Ecclesia and D. Kondi

The standardized disturbance "i;t or the returns ri;t can be used in Eq. (4.2) to
get:

�DCC
1;2It D †t�1

sD1"1;s; "2;sq
†t�1

sD1"21;s†t�1
sD1"22;s

(4.5)

and the correlation coefficient is given by:

�i;j;t D qi;j;tp
qi;tqj;t

(4.6)

Engle suggests that the qi;j;t process can be generated by a GARCH(1,1)
model:

qi;j;t D N�i;j C ˛."i;t�1"j;t�1 � N�i;j/C ˇ.qi;j;t�1 � N�i;j/ (4.7)

Where: N�i;j is the unconditional correlation between "i;t and "j;t.

4.3.1 Data Simulation

To compare the various estimators we generate a set of simulated data with a specific
correlation structure. We choose four different correlation structures (functions) for
the simulated returns.

The returns are generated using two Gaussian GARCH models, hi;tI i D 1; 2,
assuming (1) high or (2) low persistence:

h1;t D 0:02C 0:04r21;t C 0:9h1;t�1 (4.8)

h2;t D 0:4C 0:4r22;t C 0:4h2;t�1 (4.9)

n
"1;t
"2;t

o
� N

h
0;
�
0:25 �t

�t 0:25

�i

r1;t D "1;t
p

h1;t r2;t D "2;t
p

h2;t

We select four functions to build different set of correlation structures:

1. Constant

�t D 0:5 (4.10)
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2. Sine + Fast Sine

�t D
( �t D 0:4C 0:3 cos. 2� t

250
/ 0 < t < 700

�t D 0:4C 0:3 cos. 2� t
50
/ 701 < t < 1300

�t D 0:4C 0:3 cos. 2� t
250
/ 1301 < t < 2000

(4.11)

3. Constant + Log.

�t D
n�t D 0:1 0 < t < 500

�t D 25
log. t

2:5 /

log.t/ C 21:21 501 < t < 2000
(4.12)

4. Two Step

�t D
( 0:3 0 < t < 700
0:8 701 < t < 1300
0:5 1301 < t < 2000

(4.13)

• The first function shows a static correlation structure.
• The second function is built to take into account extreme events (crises)and

allows a cyclical (seasonal) correlation where for 701 � t � 1300 changes in
the correlation structure are more frequent when an extreme event for t > 1301

occurs, correlations return to their previous structure.
• The third function considers a structural change in the correlation dynamics from

poorly correlated to strongly correlated.
• The fourth correlation function accounts for strong structural changes. The

occurrence of an extreme event causes an increase in correlation and a structural
change.

We generate a 2 � 2000 matrix of observations for each function where the
columns represent the time and the rows represent the returns. We measure correla-
tion on this data using different estimators: The Pearson product-moment correlation
coefficient, �; the HRC, O�, on different rolling windows: 50 � HRC, 100 � HRC,
250 � HRC; the ESC, Q�3; and the DCC, �DCC.

Four error metrics are used to assess the estimator’s accuracy:

• The Mean Square Error (MSE) is the second moment of the error and incor-
porates the variance of the estimator and its bias. MSE enhances the large
differences, between performed variables and desired variables:

MSE D †T
tD1.�t � O�t/

2

T
(4.14)

3We use a � coefficient of 0:94 which is calibrated from Risk Metrics.
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Where �t is the function described by (4.10), (4.11), (4.12), and (4.13), O�t is
the correlation measured on the simulated data.

• The Mean Absolute Error (MAE) is the average of the absolute values of the
differences between predicted variables and desired (true) variables:

MAE D †T
tD1.j�t � O�tj

T
(4.15)

• The Mean Absolute Percentage Error (MAPE) is

MAPE D 100

T
� †

T
tD1.�t � O�t/

†T
tD1j�tj (4.16)

expresses the value of error relative to the actual value for observation t. The
concept of MAPE is simple and convincing but it has limitations in practical
application, like the possibility of zero value for actual observation results in
division by zero. MAPE is zero in case of a perfect fit. Large errors can unfairly
skew the overall error.

• The Normalized Mean Square Error (NMSE)

NMSE D †T
tD1.�t � O�t/

†T
tD1.�t � N�t/

(4.17)

generally shows the most striking differences among models. If a model has a
very low NMSE, then it is well performing both in space and time. High NMSE
values do not necessarily mean that a model is completely wrong. That case could
be due to time and/or space shifting.

4.3.2 Comparing the Correlation Estimators

The four functions described in Eqs. (4.10), (4.11), (4.12), and (4.13) are reported
in the plots of Fig. 4.1.

Each figure refers to the simulated series chosen and the various correlations
estimators are compared for each series. The black line measure the effective
correlation built for the specific simulated series. The various kind of correlation
estimators adapt differently for each specific function, for instance in the case
of the logarithmic function (Fig. 4.1c) the DCC seems to be the most accurate
estimators, while the ESC the least accurate. To choose the most adequate estimator
we compare different error metrics for each simulated series and report the values
in Tables 4.1, 4.2, 4.3, and 4.4.

In Table 4.1 the results for the constant correlation structure are reported and the
Pearson constant coefficient results the best estimator given the non time varying
nature of the generated series.
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Fig. 4.1 Estimated correlation functions compared to the real correlation functions. (a) Constant
function. (b) Sine +Fast Sine function. (c) Logarithmic function. (d) Two Step function

Table 4.1 Results for the constant correlation function

Error metric � HRC50 HRC100 HRC250 ESC DCC

MSE 0,01% 1,42% 0,75% 0,36% 6,53% 0,02%

MAPE 2,05% 19,15% 14,74% 9,95% 41,94% 2,50%

MAE 1,03% 9,58% 7,37% 4,98% 20,97% 1,25%

NMSE inf inf inf inf inf inf

In Tables 4.2 and 4.3 the results for the monotonous simulated functions are
reported. The DCC performs quite well in these cases and outperforms all the other
estimators.

In Table 4.4 the results for the simulation with structural breaks are reported
and in this case the 100 � HRC performs better than the other estimators. Given
the various error metrics it is possible to rank the various estimators in Table 4.5.
The simple Pearson product-moment results the best estimator only in the case of
constant correlation between the series. In case of monotonic time varying series
the DCC estimators results the most accurate while in the case of series showing
structural breaks the HRC results the most accurate. This suggests the use of
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Table 4.2 Results for the Sine + Fast Sine correlation function

Error metric � HRC50 HRC100 HRC250 ESC DCC

MSE 4,559% 4,54% 5,72% 4,72% 3,17% 2,49%
MAPE 73,72% 69,25% 80,96% 72,64% 58,73% 52,28%
MAE 18,89% 17,71% 20,95% 18,99% 14,36% 13,16%
NMSE 1,031 1,026 1,295 1,067 0,718 0,564

Table 4.3 Results for the logarithmic correlation function

Error metric � HRC50 HRC100 HRC250 ESC DCC

MSE 6,14% 1,33% 0,70% 0,79% 1,82% 0,35%
MAPE 76,06% 33,08% 24,13% 21,59% 38,66% 16,02%
MAE 22,20% 8,38% 6,59% 7,69% 9,83% 5,01%
NMSE 1,19 0,26 0,14 0,15 0,35 0,07

Table 4.4 Results for the Two Step correlation function

Error metric � HRC50 HRC100 HRC250 ESC DCC

MSE 3,95% 1,71% 1,34% 2,06% 1,91% 1,79%

MAPE 31,88% 17,88% 13,62% 13,98% 21,34% 19,00%

MAE 15,54% 8,04% 6,64% 8,06% 9,24% 8,57%

NMSE 1,04 0,45 0,36 0,54 0,51 0,47

Table 4.5 Ranking the estimators

Rank Constant Sine + Fast sine Logarithmic Two step

1 Simple correlation DCC DCC HRC 100

2 DCC Exp.smoother Exp. smoother HRC 50

3 HRC 250 HRC 50 HRC 100 HRC 250

4 HRC 100 HRC 250 HRC 250 DCC

5 HRC 50 HRC 100 HRC 50 Exp. smoother

6 Exp. Sm. Simple corr. Simple corr. Simple corr.

different estimators in presence of different structures of the data. The accuracy
of the HRC estimators depends on the size of the rolling windows. If there exist
a very dynamic structure with frequent changes, it is convenient to chose a small
rolling window, for more persistent structures a large window should be chosen
instead. In principle the size of the window should be set as the result of an
optimization problem aimed to find the size n which minimizes the volatility of
the HRC coefficient. This problem is not addressed here and it is discussed in
D’Ecclesia and Jotanovic (2015).

The Exponential Smoother Correlation is a particular case of the DCC, when
the parameter ˛ C ˇ D �. It can capture the dynamics when frequent and strong
changes occur but it is very unstable when a persistent correlation structure exist.
DCC get unstable for strong structural changes, it is stable for persistent correlation
structures.
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4.4 Measuring Correlation

We study the changing relationship existing between commoditiies and financial
indices using the HRC and the DCC estimators. The following set of data4 are
used:

1. Energy

(a) WTI Future Nymex (CL1) in USD/bbl
(b) Brent ICE (CO1) in USD/bbl.
(c) US Gas Henry Hub (NG) in USD/MMbtu
(d) UK NBP Gas (FN1) in GBP/therm

2. Indexes

(a) DJ UBS – Commodity index TR – Return ind. (DJ-UBS).
(b) MSCI AC WORLD USD(MSACWI) – Price index.
(c) Morningstar Global Government Bond Index (MSBI).

The data used in the research are daily data from March 2000 to December 2014.5

HRC or DCC methods are used to measure the corelations existing between the
various sectors or assets.

4.4.1 Stationarity of the Series

We first test each price series for stationarity, the Augmented Dickey Fuller test
shows that all the price series have a unit root and therefore are I.1/ variables. The
ADF test rejects the null Hypothesis H0 of unit roots for the log-returns which all
result I.0/. Engle’s test is used to verify the presence of heteroskedasticity, the test
allows to reject the null Hypothesis in favour of the presence of heteroskedasticity.
We do not report the results of the test here, they are available upon request.

4.4.2 Structural Breaks

We further investigate the occurrence of structural breaks in the price series with the
aim to analyse the correlation dynamics. The dynamics of the MS Gov Bond Index
(MSBI), the Stock Index (MSACWI) and the Commodity Index (DJ-UBS Index)
are reported in Fig. 4.2.

We use the BAI and Perron (1998) test for multiple structural changes (or breaks).
The test identifies four structural breaks for almost all the variables. In Table 4.6 the
results of the Bai Perron test for structural breaks are reported for each series.

4The database is obtained from Bloomberg and Data Streaming data platforms.
5Except for Morningstar GG Index, which was constructed in 2001, and for energy commodities
data that are available from March 2000 to January 2014.
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Fig. 4.2 Commodity, stock and bond indices (20/3/2000–21/1/2014)

Table 4.6 Structural breaks for the market indices and the energy commodities

Variables nr Date Date Date Date

MSCI-AWCI 4 18/02/2002 01/08/2005 02/09/2008 19/10/2010

MS BI 4 13/11/2003 04/01/2006 02/11/2007 02/08/2010

UBS J COMM 4 01/12/2003 11/04/2006 06/10/2008 17/11/2010

WTI 4 29/01/2003 20/06/2005 30/08/2007 01/12/2010

Brent 4 17/11/2003 03/01/2006 14/10/2008 21/12/2010

HH 4 22/10/2002 20/10/2004 20/01/2009 21/04/2011

NBP 4 16/07/2003 16/09/2005 17/10/2008 26/11/2010

The MSBI shows a constant uptrend for the entire period while MSCI ACWI is
more volatile and shows the presence of structural breaks and a strong downtrend
during the crisis periods. For this reason the log returns correlation between the two
indexes is cyclical. The structural breaks for MSCI-ACWI Stock index are identified
on January 2002, June 2005, September 2008 (when the crisis period starts) and
December 2010 right before the downgrading of the US credit rate. In the case of
the DJ-UBS Commodity index the first structural break occurs in 2003. The other
are found in 2006, 2008 and in 2010.

The energy commodity prices have the same number of structural breaks and
they are identified for crude oil in 2002, 2008, 2010 and 2012. For the natural Gas
contract the most important structural break occurred in 2005–2006. The second
in 2010, the others in 2003 and 2008–2009. A more accurate interpretation of the
various breaks see Dec Jotanovic (2015).
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4.4.3 Correlations Between Commodities and Financial
Markets

We use the DCC approach to estimate the correlation between the commodity Index
and the stock index during the period 2000–2014. In Table 4.7 the main statistics
(�,� , max, min) for the estimated conditional correlations are reported.

The correlation between the stock (MSCI-AW) and the commodity indices
(DJUBS) is important to investigate. The two indices show opposite dynamics
over the period 2000–2003 then they seem to have a common behavior until 2006
to diverge again until 2008, when the big crash of 2008 occurs and generates a
definitively different pattern over the last 6 years. A changing pattern can be detected
in the correlation dynamics: (i) a correlation coefficient swinging between �0:3 to
C0:3 in the period 2000–2003, (ii) a prevailing positive correlation for the following
5 years until the explosion of the GFC in 2008; (iii) a drop in correlation to �0.1 in
september 2008 to increase after 2 months to a positive C0:4 and to stay above 0.4
until 2011. After that a new pattern can be identified.

Correlation between the MSCI-AW and the MSGBI fluctuates in the range �0:4,
C0:4 with period of negative correlations (2000–2003), (2006–2008) alternating to
period of positive correlations. The period of negative correlations is much shorter
compared to those of positive correlations, even if it fluctuates between 0 and C0:4.
The dynamnics of the two indices show how in periods of economic recession the
dynamics of bond and stock prices behave differently: stock prices decline, interest
rates are lowered causing increases in bond prices.

Correlation between MSGBI and DJ UBS fluctuates between 0 and 0:3 showing
a low positive correlation over the entire period. The volatility of the correlation
results higher before the 2008 GFC compared to the post crisis period. It is
interesting to see that Commodity markets and Government Bond markets seem
to be poorly correlated and with a stable performance.

The analysis of the correlations dynamics could provide additional insights
for the understanding of each market behavior so we test for structural breaks
in the correlation series. Using the Bai-Perron test on the series of the correlation
coefficients we are able to find 4 structural breaks for each estimated correlation,
Figs. 4.3, 4.4, and 4.5.

The first structural change is identified at the end of 2003 which is the period
when most of scholars identify with the beginning of the financialization process
for the commodity markets. During the crisis the correlations between stock and

Table 4.7 HRC and DCC
descriptive statistics

Assets � � Min Max

DCC(DJUBS,MSCI-AW) 0.40 0.234 �0.38 0.62

DCC(DJUBS, MSGBI) 0.15 0.10 �0.02 0.32

DCC(MSCI-AW,MSGBI) 0.12 0.40 �0.48 0.41

HRC(WTI,HH) 0.10 0.01 �0.01 0.01

HRC(Brent,NBP) 0.02 0.10 �0.01 0.05
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Fig. 4.3 Structural breaks on correlation function between ACWI and DJ-UBS (20/3/2000–
21/12/2014)

Fig. 4.4 DCC correlations between MSGBI and DJUBS (20/3/2000–21/1/2014)
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Fig. 4.5 DCC correlations between MSGBI and MSCI-AW (20/3/2000–21/1/2014)

Fig. 4.6 WTI and HH daily prices (20/3/2000–21/1/2014)
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commodities markets increased (more than doubled) reaching the highest values,
almost 0:7. Before the crisis, there is a return to zero of the correlation structure.
This is due to the fact that stock prices started to drop 6 months earlier that the
commodity index (Fig. 4.2).

4.4.4 Correlations Between Energy Commodities

Crude oil and natural gas prices have experienced very volatile dynamics due to
changing features of their fundamentals (supply and demand) over the last decade.
Figures 4.6 and 4.7 illustrate the dynamics of crude oil and natural gas markets over
the period 2000–2014 in the US and European markets. They show how the two
markets have experienced large periods of fluctuations due to structural changes in
the supply and demand. The crude oil markets in the past decade have been affected
by various events.

• a renewed solidarity within OPEC
• OPEC new relationship with Russia
• China accounting for 38% of Global GDP growth
• India becoming a major importer, refiner and re-exporters of products
• the impending Chinese crude oi futures contract portend major new structural

changes

Fig. 4.7 Brent and NBP daily prices (20/3/2000–21/1/2014)
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The natural gas market, as well has witnessed major changes:

• the increasing production of unconventional gas (shale Gas) in the US started in
2009 as the EU’s domestic production peaked

• the shift toward US and Australian gas exports from Qatari dominance in
Liquefied NG

• the de-couplying of NG contracts from oil based formulas
• the development of new efficient combined cycle gas turbines with low level of

pollution emissions
• the European Community third Gas Package fostering the creation of a single

market for NG

this is only to cite some of the most important events which have affected the Oil
and Natural Gas market.

For a more accurate understanding of the recent dynamics of crude oil and natural
gas prices see Kilian (2009), Kilian and Murphy (2014), Pindyck (2004) and Rogers
(2010) only to cite some of the most relevant contributions on the topic.

Figure 4.8 shows the correlation dynamics between the Brent-crude oil log
returns and the NBP-Natural gas log returns. The HRC � 100 is estimated and
two commodities result almost no correlated, with a correlation coefficient which
fluctutaes between 0:05 and 0:10. The US natural gas market, HH, shows a
statistically significant, positive, almost constant (in average 0.13) correlation with
the crude oil market (WTI) (see Fig. 4.9).

Some structural changes are also found in the correlation pattern, showing a
stable period in the first 5 year (2000–2005), a changing pattern with a slightly

Fig. 4.8 HRC between Brent and NBP (20/3/2000–21/1/2014)
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Fig. 4.9 100-HRC between WTI and HH log returns (20/3/2000–21/1/2014)

increasing coefficient in the period 2005–2007 which is the period of large increase
of the supply of natural gas in Europe and an increasing volatility of oil prices,
see Fig. 4.9.

4.5 Concluding Remarks

Measuring correlations represents a key task for risk management and derivative
pricing in financial markets. We have shown how to identify the most adequate
correlation estimator in presence of time varying and heteroschedastic returns of
commodities and financial assets. HRC with different size rolling windows and the
DCC estimators provide accurate measures in presence, respectively, of structural
breaks or heteroskedasticity in the log returns. The DCC correctly captures the
correlations existing between the stock market, the commodity markets and the bond
market; while the HRC-100 results adequate to measure the correlation between two
energy commodities as the crude oil and the natural gas. The commodity market
has modified its role respect to the stock market becoming more integrated with it
after the Global Financial Crisis, while no changes can be identified respect to the
bond market. This allows fund managers and investors to update their investment
strategies or portfolios selections.

The relationship existing between two major energy commodities: crude oil and
natural gas in Europe and in the US has been changing dramatically. There is a
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common belief that these energy sources are correlated with each other. We found
very low or no correlation at all between the two fossil fuels in both the European
and the US market showing how recent changes in the supply and demand of these
markets have modified a well known positive relationship existing between the two
commodities.
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Chapter 5
Measuring Model Risk in the European Energy
Exchange

Angelica Gianfreda and Giacomo Scandolo

Abstract It has been shown that model risk has an important effect on any
risk measurement procedures, hence its proper quantification is becoming crucial
especially in energy markets, where market participants face several kinds of
risks (such as volumetric, liquidity, and operational risk). Therefore, relaxing the
assumption of normality and using a wide range of alternative distributions, we
quantify the model risk in the German wholesale electricity market (the European
Energy Exchange, EEX) by studying day–ahead electricity prices from 2001 to 2013
using the well-established setting of GARCH–type models. Taking advantage of
this long price history, we investigate the “time evolution” of the measured model
risk across years by adopting a rolling window procedure. Our results confirm that
the increasing complexity of energy markets has affected the stochastic nature of
electricity prices which have become progressively less normal through years, hence
resulting in an increased model risk.

Keywords VaR • Risk measures • Electricity market • Spot and day–ahead
prices • Germany • RES

5.1 Introduction and Background

It has been shown that model risk has an important effect on any risk measurement
procedures, hence its proper quantification is becoming crucial especially in energy
markets, where traders and market participants face several kinds of risks such as
volumetric, liquidity, and, more importantly, operational risk. Therefore, we propose
for the first time the assessment of model risk in the German wholesale electricity
market, looking at daily spot prices and comparing several models presented in the
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literature with their possible variations. We adopt a quantitative measure of model
risk when choosing a particular reference model within a given class: namely, the
relative measure of model risk, as proposed by Barrieu and Scandolo (2015).

The specification of a model is a crucial step mainly based on the assumption
on the reference empirical distribution. And, it has been observed that the final risk
figure is sensitive to the choice of the model. Hence, working with a potentially not
well–suited model is referred to as model risk. The study of the impact of model risk
and its quantification is an important step in the whole risk measurement procedure,
but we are not going into the issue of model uncertainty.

We quantify the model risk by studying day–ahead electricity prices in the
European Energy Exchange, EEX. Germany, indeed, decided to exit from nuclear
power by 2020 focussing on renewable energy sources and energy efficiency.
This market is characterized by an high wind penetration which has increased the
complexity of the electricity price dynamics given that wind energy (and solar)
is highly variable and partially predictable. In this context, renewables accounted
for more than 71% of total electricity capacity addictions in EU in 2011, bringing
the share of renewable energy over total electric capacity to 31.1%; with Germany
being the leading market (see REN21 2014). Given that the marginal cost of wind
production is near zero, negative pricing has been introduced in some countries
like Germany, which today is the market with the highest hourly frequency of
observed negative prices. “Negative prices” are power wholesale market signals
occurring when high inflexible power generation meets low demand. Power sources
are considered inflexible when they cannot be shut down and restarted in a
cost–efficient way. This has contributed to the profound structural changes that
occurred in Germany over the last two decades; as for the introduction of emission
trading, the nuclear power phase–out, and the growing electricity generation from
renewable energy sources (RES), also promoted by the renewable energy sources
act (Erneuerbare-Energien-Gesetz, EEG).

Model risk issues for energy markets have been recently presented by
Bannör et al. (2016) who propose the quantification of parameter uncertainty
in complex stochastic models, considering the sensitivities of a derivative value
corresponding to a specific pricing model. This setting is used to quantify model risk
in the economic evaluation of power plants. Therefore, they do not perform model
analysis and comparisons across estimation methods, empirical distributions and
consequent approximations of quantities; and, we aim at filling this gap assessing
the model risk by computing a simple measure based on Value-at-Risk (VaR). VaR
is commonly applied since it measures market risk by means of the probability
distribution of a random variable and evaluates the risk with a single real number.
As a result, VaR has become an easy, immediate and essential tool within financial
markets. More specifically, VaR measures the worst expected loss under usual
market conditions over a specific time interval at a given confidence level. As J.P.
Morgan states VaR answers the question: “how much can I lose with x% probability
over a pre–set horizon?”. In other words, VaR corresponds to a specific quantile
(of order ˛) of the distribution of the portfolio losses over the horizon T . Therefore,
T and ˛ are the two main parameters that should be chosen in a way appropriate
for the purpose of risk measurement: the time horizon T can differ from few hours
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(for an active trading desk) to a year (as for instance for a pension fund); whereas
the quantile order ˛ is typically very small (1% for regulatory requirements or 5%
for company internal risk management). We look at the VaR measure by combining
two well–known and deeply studied facts of dynamic or time–varying volatility and
non–normality of price “changes” distributions. We are forced to consider price
changes instead of logarithmic price returns since electricity prices can vanish or
even become negative.

A widespread methodology for VaR assessment is the variance–covariance
approach, according to which the portfolio VaR is computed under the assumption
that asset returns are jointly normally distributed. The computation then relies on
the historical estimation of the covariance matrix. An alternative methodology is
the historical simulation, which does not make any distributional assumptions, and
the quantiles are directly retrieved from the empirical distribution of past observed
returns. Both methodologies prove flawed: the variance-covariance approach is
based on the normality assumption, which is often a poor description of return
distributions; and, the historical simulation, though dispensing with the normality
hypothesis, is generally viewed as a too backward-looking measure, failing to
capture conditional distributions of returns.

In order to overcome these problems, the above approaches have been modified
and improved in various ways. For instance, weighted historical simulation allows
to give more weight to the most recent observations. And, within the variance-
covariance approach, different volatility dynamics specifications and/or alternative
hypotheses on the conditional distributions of returns have been proposed, as for
instance the multivariate student. These allow to better capture well-documented
empirical facts such as dynamic volatilities1 and fat tails. A non-exhaustive list in
this vein includes: exponentially weighted moving average estimates of covariances
(RiskMetrics approach), normal and student GARCH models, skewed student
APARCH and skewed student ARCH models, historical simulation with autoregres-
sive moving average forecasts (filtered historical simulation), extreme value theory
estimates of quantiles (see Bhattacharyya and Ritolia, 2008, among others).

Having observed market structural changes occurred in Germany together with
frequent negative values affecting the stochastic nature and properties of electricity
prices, (Gianfreda and Bunn, 2015) provided evidence on empirical shapes different
from the normal one, hence suggesting the use of different distributions to compute
VaR measures more suitable for electricity markets. Given that the common
assumption of standard normal distribution is still considered even if it represents
an important shortcoming in existing VaR methods, we intend to quantify model
risk and provide convincing empirical evidence when this normality assumption is
relaxed.

1The volatility dynamics within energy markets has been extensively studied and modelled by
using GARCH–type models, see for instance Fan et al. (2008) who measured risk for both the
WTI and Brent crude oil spot markets using the generalized error distribution (GED) to estimate
the extreme downside and upside VaR of oil price returns.
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Our aim is to quantify the model risk in energy markets by using a measure
proposed by Barrieu and Scandolo (2015). This type of figures can be useful to
traders, when confronted with the choice of the model to be employed. The measure
we use produces a pure number, independent from the reference currency, hence
allowing for immediate comparisons across different countries. Moreover, it takes
values in the range Œ0; 1� and vanishes precisely when there is no model risk.
It crucially depends on the choice of a reference distribution and a set of alternative
distributions. Below, we will comment on the rationale behind our choices.

Our approach for assessing model risk is very general. We consider the well-
known GARCH methodology and we compute the measure of model risk, based on
both the worst– and best–case VaR under a wide range of alternative distributions
for the innovations.

The paper is structured as follows: in Sect. 5.2 we recall the notation and the
definition of the measure of model risk that we implement; Sect. 5.3 briefly describes
the data used, and Sect. 5.4 presents the framework of the GARCH models for the
empirical analysis, and the procedure to forecast quantiles. Numerical results are
provided in Sect. 5.5, whereas Sect. 5.6 concludes discussing another methodology
with great potential applications.

5.2 The Relative Measure of Model Risk

Let us recall now the definition of the relative measure of model risk, recently
proposed by Barrieu and Scandolo (2015). This measure quantifies the model risk
we are exposed to when estimating Value–at–Risk (VaR) using different alternative
models. We will use a slightly different route to introduce this measure, perfectly
equivalent to the original one, but better suited to our framework.

If X is a random variable defined on some probability space .	;F ;P/, its
cumulative distribution function (CDF) is FX.t/ D P.X � t/ and the (upper)
quantile of order ˛ 2 .0; 1/ is q˛.X/ D infft W FX.t/ � ˛g. When X is interpreted
as a portfolio return or Profit-and-Loss variable, then the Value–at–Risk at level
˛ 2 .0; 1/ is

VaR˛.X/ D �q˛.X/

in such a way that VaR˛ is the maximum loss that can be suffered, once we exclude
the ˛ fraction of worst cases. Notice that VaR˛.aX C b/ D aVaR˛.X/ � b always
holds, with a > 0. Typical values for ˛ are 5%, 1%, or even 0:1%.

If we consider another probability on .	;F/, say Q, then the CDF of X will
change to FX;Q.t/ D Q.X � t/. Accordingly, the quantile q˛;Q and the Value–at–
Risk VaR˛;Q will vary, depending on the choice of Q. Let Q be a set of probabilities
on .	;F/ and fix Q0 2 Q. The distribution of X under Q0 acts as the reference
model, while the distributions under the other Q 2 Q are the alternative models.
For a simple example, one could select X, Q and Q0 is such a way that X � N.0; 1/
under Q0 and X has alternative (standard) distributions under other probabilities
Q 2 Q.
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Once X, Q0 and Q have been fixed, and for a given ˛ 2 .0; 1/, we define

VaR˛ D inf
Q2Q VaR˛;Q.X/ VaR˛ D sup

Q2Q
VaR˛;Q.X/ (5.1)

assuming they are both finite, with VaR˛ ¤ VaR˛ . Observe that the interval
�
VaR˛;VaR˛

�

can be interpreted as the range of possible values for VaR, under all the alternative
models in Q that we are considering; although not all internal values of the range
necessarily correspond to a given model (for instance, this occurs when Q is a
finite set).

The Relative Measure of Model Risk (RMMR) for VaR˛ associated to Q0 and Q
is then defined as

RMMR.Q0;Q/ D VaR˛ � VaR˛;0
VaR˛ � VaR˛

(5.2)

where VaR˛;0 D VaR˛;Q0 .X/ is the risk figure under the reference model. In what
follows, we will drop the two arguments Q0 and Q as they will be clear from the
context. Notice that, since VaR˛ � VaR˛;0 � VaR˛ , this measure takes values in
Œ0; 1� and this fact allows its use in various situations and across different markets.
Also, we note that enlarging the set Q does not necessarily yield to a higher RMMR
figure, as both the numerator and the denominator in (5.2) increase. In other words,
considering additional alternative models need not increase model risk. For further
properties and discussion about RMMR we refer to Barrieu and Scandolo (2015).

If we interpret the reference distribution as the model actually used in risk
forecasting, the two extreme values for RMMR can be interpreted as follows:

• RMMR D 0 whenever VaR˛ D VaR˛;0, i.e. the maximum VaR is exactly the one
computed under the reference distribution; in this case there is no model risk,
since using any alternative model provides a lower risk figure;

• RMMR D 1 whenever VaR˛ D VaR˛;0, i.e. any other assumptions apart the
reference one produce higher VaR figures; in this case there is full model risk.

In our empirical study, we consider RMMR with respect to three different
reference models, by specifying three different (standard) distributions for the
innovations of a suitable GARCH process. One of these reference models will
be the standard normal, but then we will consider two other models allowing for
asymmetry and thick tails. For all three choices of Q0, we consider the same set Q
of alternative models, including the three possible reference models and 7 additional
models.

We stress again that the measure of model risk RMMR depends on Q0 and Q.
Depending on which probability models are entered in Q, the relative position of
the reference model can in principle swing from being very conservative to being
very optimistic.
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Below, we will explain the rationale behind our choices for Q0 and Q. We will
also provide evidence that, in a sense, the qualitative conclusions we obtain do not
depend too much on the composition of the set Q.

5.3 Data and Preliminary Analysis

Our data-set consists of 24 hourly price series determined on daily basis, from
Mondays to Fridays and adjusted for holidays, as collected from Datastream from
01/01/2001 to 31/12/2013 (hence consisting of 3392 prices), denoted Sh

t , h D
1; : : : ; 24. Daily averages have been computed and they represent the daily ‘spot’
or ‘day-ahead’ electricity prices, St D 1

24

P
h Sh

t . The time series of price levels
is depicted in Fig. 5.1, and it clearly shows that null or even negative electricity
prices can be determined.2 Among stylized facts for financial asset returns, we
then confirm that German electricity price differences show little autocorrelation,

Fig. 5.1 Dynamics of “day–ahead” or “spot” daily electricity prices in Germany from 2001 to
2013

2This new empirical fact is even more evident when hourly prices are considered; and less so, when
day-ahead prices are computed as arithmetic mean of 24 hourly prices.
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Fig. 5.2 Shapiro–Francia index for departure from normality of German price changes through
years

in simple words it is not possible to (linearly) predict future price changes from
their past historical values. However, we recall that seasonality, spikes and volatility
clustering in electricity prices are empirical facts extensively investigated into
the literature.3 The variance measured by squared price changes displays positive
correlation with its own past, hence supporting the time–varying volatility property.
Finally, the unconditional distribution of daily price changes does not follow the
normal distribution. The Shapiro and Francia (1972) test for normality has been
performed given that we have more than 2000 but less than 5000 observations.
The corresponding index represented in Fig. 5.2 indicates departure from normality
when its values are large; and indeed, all its p–values across years confirm non–
normality at 1% confidence level, even if the magnitude of this index is decreasing
over time. Descriptive statistics of price levels and differences are presented in
Table 5.1. We clearly have an average of 260 observations per year, with price levels,
as well as price changes, showing values of the skewness significantly different from
zero and values of the kurtosis significantly higher than three.

After having studied the empirical autocorrelation and partial autocorrelation
functions, and accounting for the time–structure of the data, we select the autore-
gressive processes with five lagged price differences for all considered models.

3Electricity prices are affected by different forms of seasonality: as the intra–daily one (for night–
time and day–time), weekly seasonality reflecting no business activities during weekends; and the
more general calendar seasonality, with summers characterized by high electricity demand for air
conditioning. Whereas, spikes are abnormal upward and downward price movements.
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Table 5.1 Descriptive Statistics for German day–ahead price levels and differences

Year N Mean StdDev Skewness Kurtosis Max Min

Price levels

2001 261 26.69 310.82 9.16 101.70 240.26 9.83

2002 261 25.27 64.41 1.21 6.22 61.00 3.47

2003 261 33.42 174.33 4.48 40.99 163.46 3.54

2004 262 31.19 25.84 �0.53 5.37 46.61 12.06

2005 260 50.65 371.58 2.49 11.08 145.97 19.83

2006 260 57.03 661.91 4.80 40.09 301.54 19.79

2007 261 42.78 441.78 2.27 9.68 158.97 5.78

2008 262 71.70 277.92 0.17 3.70 131.40 22.70

2009 261 42.09 112.43 1.00 5.15 86.36 7.21

2010 261 47.50 52.30 0.49 4.44 72.06 21.05

2011 260 54.03 37.60 �0.98 5.27 68.30 27.67

2012 261 46.09 161.23 �3.04 30.25 98.98 �56.87

2013 261 47.85 158.01 0.66 5.12 91.89 14.20

First differences

2001 260 0.04 15.67 3.52 91.39 182.19 �131.35

2002 260 �0.05 6.58 0.53 8.61 33.07 �24.37

2003 206 0.05 14.81 1.77 60.05 148.18 �124.20

2004 261 �0.02 4.66 �0.07 4.97 15.98 �18.82

2005 259 0.07 11.10 1.42 17.04 73.46 �51.69

2006 259 0.00 24.34 0.08 39.39 200.80 �191.22

2007 260 �0.03 14.68 �1.15 10.86 62.37 �79.15

2008 261 0.05 10.43 0.58 7.93 60.04 �34.43

2009 260 �0.05 6.85 0.12 5.15 28.79 �26.96

2010 260 0.07 4.98 0.42 5.67 19.94 �17.64

2011 259 �0.03 5.23 �0.11 6.60 25.05 �23.48

2012 260 �0.12 10.24 �2.08 36.59 66.21 �95.02

2013 260 0.06 8.01 �0.57 6.37 24.16 �43.04

5.4 Model Setting and Estimation

Even if VaR analysis is based on returns, we were forced to compute simply price
differences because electricity price series can exhibit null or even negative values.
Therefore, we consider the series of daily electricity spot prices and denote the price
change between day t � 1 and day t as

Xt D �St D St � St�1:

At date t, we need to predict a (conditional) VaR for XtC1. More precisely, given
˛ 2 .0; 1/, we are interested in computing

VaR˛.XtC1 j It/;
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where It is the information at time t, by means of the GARCH–type models
which are considered a standard approach for VaR estimation, where only the
conditional mean and standard deviation of returns are estimated. The original
GARCH models assumed normal conditional distributions; recently, these models
have been expanded to account for skewness and extra-kurtosis, hence supporting
more complex distributions, but the additional estimated parameters are not time-
varying, opposite to the dynamics of the conditional mean and variance.

Also, we have decided not to include relations with fundamental drivers or addi-
tional factors affecting electricity prices in order to provide an overall quantification
of model risk. This figure will naturally include all other forms of risks that influence
electricity prices, such as those related to regulatory, structural, and fundamental
factors.

Taking advantage of the long history of prices available from 2001 to 2013,
we investigate the “time evolution” of the measure of model risk across years by
adopting a rolling window procedure, as explained in the following sections.

5.4.1 The GARCH Methodology

Let us remind that we consider a particular set of parametric models within the
GARCH framework, using the AR(5)-GARCH(1,1) specification, then for any t we
have

Xt D �t C �tZt; (5.3)

where

�t D �C
5X

iD1

iXt�i; (5.4)

is the conditional mean expressed as an AR(5) process, and

�2t D ! C ˛.Xt�1 � �t�1/2 C ˇ�2t�1 (5.5)

is the conditional variance in form of a GARCH(1,1) model. Parameters �, 
i,
!, ˛ and ˇ have to satisfy known constraints. Finally, the innovations Zt form
an IID sequence with standard (i.e. mean 0 and variance 1) common distribution.
As a consequence, �t and �2t are the conditional (on It�1) mean and variance,
respectively.

Parameters are estimated by ML, i.e. by maximizing the joint likelihood of the
variables .Xt/ on a given data window. We stress that the form of the likelihood
depends on the distribution FZ of the innovations. As a consequence, different sets
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of parameters are retrieved using different hypotheses on FZ , even if the same data
window is used for the estimation process.

A technical remark is in order. The joint distribution of a process Xt, following an
AR(5)-GARCH(1,1) model as in (5.3), (5.4), and (5.5), is completely specified only
when the common standard distribution of innovations FZ and the parameters (�,

i, etc.) are fixed. We can associate a probability measure Q to each complete spec-
ification such that the process Xt has the given joint distribution under Q. Moreover,
in view of the fact that the estimation process (Maximum Likelihood on a given
data window) and the parameters are completely determined once the distribution
is fixed, we can safely associate a completely specified AR(5)-GARCH(1,1) model
to any possible innovations distribution FZ ; hence, a probability Q on .	;F/. As
a consequence, in what follows a “model” Q will be given directly in terms of the
distribution of Z.

The following alternative distributions for Z are considered in the present
study4:

• the normal (N)
• the student–t, skew student–t, skew normal, (ST, SST, SN);
• the generalized and skew generalized error distributions, (GED and SGED);
• the Johnson’s SU, (JSU);
• the normal inverse gaussian, (NIG);
• the generalized hyperbolic and generalized hyperbolic student–t, (GHYP

and GHST).

For all the listed distributions, the standard versions (i.e. the ones having mean 0 and
variance 1) are considered. Hence, we consider the following finite set of models

Q D fNO; SN; ST; SST;GED; SGED; JSU;NIG;GHYP;GHSTg

containing the reference one, Q0, to be specified below, and the other Qs associated
to the above listed alternative distributions for Z.

We believe that the alternative models considered in this analysis constitute a
sufficiently representative range of distributions, often used in practice. In particular,
we consider distributions that are different from the normal because they account for
asymmetry and/or thick tails, two important features to be considered for proper
Risk Management. Moreover, we think that the inclusion of additional realistic
distributions would not affect much our results, even though this is our conjecture
not empirically verified.

Note that the listed distributions may depend on additional parameters: for
instance, the student–t distribution depends on the number of degrees of freedom.

4For the densities of these distributions please refer to Ghalanos (2014).
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These parameters5 are also estimated through Maximum Likelihood on a common
data window. As a consequence, we can think that once the parametric class of
distributions (ST, SST, etc.) is considered, additional parameters are implicitly
determined. In other words, a “model” Q corresponds to the unique standard
distribution in a parametric class (ST, SST, etc.), with additional parameters
determined by ML estimation. This “identification” will be tacitly understood in
what follows, particularly when presenting the estimation procedure in Sect. 5.4.2.

Making use of the GARCH models and using the basic properties of VaR, for
each model we have

VaR˛.XtC1 j It/ D � .�tC1 C �tC1q˛.Z// :

Notice that the parameters �, 
i, !, ˛ and ˇ will enter the preceding equation
through the quantities �tC1 and �tC1, while the distribution of Z, completely
specified by a parametric class, as explained above, will affect q˛.Z/. Summary
results of the estimates for the AR(5)-GARCH(1,1) models, using the entire
time series of 3391 observations, and under different innovations distributions are
reported in Table 5.2. We firstly observe that the unconditional mean, N�, is never
significant, as expected from the descriptive statistics of price changes. Secondly,
the autoregressive structure is an important fact to be included, as well as the
heteroskedasticity. On the contrary, estimates for skewness (�) and kurtosis (� ) turn
from significant to non-significant values, according to the distribution considered;
and they are definitively not important when the hyperbolic distribution is employed.
Turning our attention to the ability of each model to fit the data, we can observe
without surprise that the worst fitting models are the one with the normal (NO)
and the skew normal (SN) distributions, for which all information criteria show the
highest values. On the contrary, the best fitting model is the one with the Generalized
Error Distribution (GED), where instead all information criteria exhibit the lowest
values. As a robustness check, we estimated two variants of the AR(5)-GARCH(1,1)
model, in order to take into account two possible facts: .i/ electricity price levels
may be affected by past price variability, that is, today prices are affected by
yesterday price movements reflecting possible problems of “scarcity” in the system
(problems referred to unavailable capacity, outages, or excess of demand, among
others); and, .ii/ volatility in electricity prices is generally stronger when prices
are high. Therefore, we have verified .i/ by including the standard deviation, as
obtained from the conditional variance equation, in the conditional mean equation
hence formulating a GARCH-in-mean and estimating the AR(5)-GARCH-M(1,1)
models defined by (5.3), and (5.4) and (5.5) replaced by

5In general, there will be a parameter that controls for skewness and/or one that controls for
kurtosis. We denote them, respectively, � and � across different families. The family GHYP has a
third parameter, that we denote �.
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�t D �C
5X

iD1

iXt�i C ı�t�1;

where ı is an additional parameter, and

�2t D ! C ˛.Xt�1 � �t�1/2 C ˇ�2t�1

Also, we have tested .ii/ by including the price range of the 24 hourly prices
observed on the previous day as an explanatory variable in the conditional variance
equation of the GARCH models. The price range is given by PRt�1 D maxh.Sh

t�1/�
minh.Sh

t�1/, where Sh
t�1 represents the hourly electricity prices observed during hour

h D 1; : : : ; 24 and day t � 1. We therefore considered an AR(5)-GARCHX(1,1)
model, defined by (5.3) and (5.4), and (5.5) replaced by

�2t D ! C ˛.Xt�1 � �t�1/2 C ˇ�2t�1 C PRt�1

where  � 0 is an additional parameter.
The estimated coefficients for investigated facts are reported in Table 5.3, but

complete results are available on request. These results clearly show how both facts
are not influential and can be neglected in the following implementation of our
models.

Table 5.3 ML estimates for the Oı and O coefficients (with p-values in brackets), when respec-
tively price levels are affected by past price volatility – by means of the AR(5)-GARCH-M(1,1)
model – and when price volatility is affected by high past prices – by means of the AR(5)-
GARCHX(1,1) model. Note that � indicates that convergence was obtained with less strict criteria
of tolerance compared with those used for the other models

Innovations Oı (p-value) O (p-value)

NO �0.014 (0.286) 0.000 (1.000)

SN 0.003 (0.814) 0.000 (0.999)

ST 0.002 (0.914) 0.000 (1.000)

SST �0.005 (0.805) 0.000 (1.000)

GED �0.003 (0.368) 0.000 (1.000)

SGED �0.001� (0.281) 0.000 (1.000)

JSU �0.004 (0.853) 0.000 (0.999)

NIG 0.001 (0.970) 0.000 (0.999)

GHYP 0.003 (0.894) 0.000 (1.000)

GHST 0.003 (0.874) 0.000 (1.000)
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5.4.2 Dynamic Model Risk Quantification

Once Q0 and Q have been specified (up to additional parameters as explained
before), a rolling window procedure is recursively adopted to investigate the time
evolution of the relative measure of model risk. In particular, for any model Q 2 Q
for the innovations, at day t we estimate the parameters of the GARCH model by
ML, using a rolling window of the past 260 days. Hence, we are able to forecast the
(conditional) distribution of XtC1 and then retrieve the VaRQ;˛ , for both values of ˛,
that is 1% and 5%. Hence, we compute the RMMR measure at any date and for both
levels of ˛. Explicitly, the step-by-step procedure is as follows:

1. start at day t D 265;
2. consider the estimation window Wt D .Xt�259; : : : ;Xt/; note that when t D 265,

W265 D .X6; : : : ;X265/ as the first 5 observations have to be excluded from the
estimation step, due to the AR(5) part of the model;

3. for any model Q 2 Q for the innovations (including the reference one Q0),
estimate the parameters of the AR(5)-GARCH(1,1) model for XtC1, specified as
in Eqs. (5.3), (5.4), and (5.5), including additional parameters of the innovation
distribution (e.g. the degrees of freedom in the t–student model), using ML on
the estimation window Wt. We perform this step using the software R with the
“rugarch” package6;

4. having the (conditional) distribution FtC1;Q of XtC1 under Q, compute

VaR˛;tC1;Q D VaR˛;Q.XtC1 j It/ D � ��tC1 C �tC1q˛;Q.Z/
�

for ˛ D 1% and ˛ D 5%, and then

RMMR˛;tC1 D VaR˛;tC1 � VaR˛;tC1;Q0
VaR˛;tC1 � VaR˛;tC1

where

VaR˛;tC1 D max
Q

VaR˛;tC1;Q; VaR˛;tC1 D min
Q

VaR˛;tC1;QI

5. increment t by 1 day and go back to step 2: in particular, we have t D 266 and
W266 D .X7; : : : ;X266/ at the second iteration; and so on.

Recalling that the entire time series at our disposal has 3391 (D 3392 � 1)
observations for price changes, the procedure outlined above yields two series of
3126 measures of model risk (with respect to Q0 and Q):

RMMR˛;266; : : : ; RMMR˛;3391 ˛ D 1%; 5%

6See Ghalanos (2014) for details.
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Notice that the actual distribution associated to Q0 (or any other Q 2 Q)
will change from one day to another, due to different estimates of the GARCH
parameters and additional parameters of innovations. As a consequence, any series
.RMMR˛;t/tD266;:::;3391 will in fact describe the relative model risk of sticking, day
by day, to a given parametric family for innovations, instead of choosing one of the
9 alternative families.

5.5 Empirical Results

We have implemented the procedure just described with three different choices of
the reference model Q0, and precisely

• Normal (NO)
• Generalized Error Distribution (GED)
• Skew-t distribution (ST)

The Normal assumption for innovations, even though still employed in many
“everyday” Risk Management procedures, is a poor description of time-series
dynamics, particularly for energy variables.7 Nevertheless, we considered it as a
rough benchmark. The GED distribution is the one that best fits our data, while the
ST is a common choice in the energy literature.

The two series of RMMR (for ˛ D 1% and 5%), using the normal as the
reference model, are reported in the first row of Fig. 5.3. These two graphs can give
only a very rough idea of the dynamics of model risk, because of the high density
of points. However, it seems that model at 1% (right graph) roughly moved from
low to high model risk. A similar behaviour is shown by model risk at 1% using the
other two reference distributions (we omit the graphs, but see Fig. 5.4).

To get clearer dynamics, we have computed moving averages of daily RMMRs
on weekly (based on 5 days), monthly (based on 20 days) and yearly (based on
260 days) basis. The dynamics of these aggregations are reported in the remaining
rows of Fig. 5.3. They show the substantial difference between considering VaR5%

or VaR1%, with the model risk being substantially higher in the latter case. This
comes at no surprise, as the normal distribution has tails which are lighter than most
of the alternatives. Secondly, and more importantly, results confirm our intuition
that the increasing complexity of market mechanisms and regulation, together with
the introduction of new fundamental drivers (wind and solar), have affected the
stochastic nature of electricity prices, hence inducing more model risk given that
the data are becoming progressively less normal through years.

7However, we point out that in GARCH models with normal innovations, the variables Xt

themselves are not normal, as they always display extra-kurtosis.
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Fig. 5.3 Dynamics of the RMMR series with ˛ D 5% (left) and ˛ D 1% (right) using the
GARCH setting with normal (NO) as reference distribution. From top: daily values, weekly
averages, monthly averages, yearly averages
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Fig. 5.4 Dynamics of the yearly moving average of the RMMR series with ˛ D 5% (top) and
˛ D 1% (down) using the GARCH setting under three different reference distributions (NO,
ST, GED)

A comparison of the RMMR yearly moving averages for ˛ D 5% and 1% for the
three reference models (GED, ST and NO) is reported in Fig. 5.4. We can see that
the same rough increase of model risk at 1% is observed for the GED case.
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Table 5.4 Fraction of days in which the highest (VaR˛) or lowest (VaR˛) risk figures are attained

by a specific distribution in Q together with the average values of VaRs (̂VaR˛) and the number
of re-estimated VaRs (]Obs)

]obs ̂VaR5% VaR5% (%) VaR5% (%) ]obs ̂VaR1% VaR1% (%) VaR1% (%)

NO 3126 12.872 33.08 4.73 3126 18.226 13.95 16.31

ST 3126 9.801 1.18 18.68 3126 17.170 1.82 14.91

SST 3126 9.987 1.95 10.84 3126 17.554 3.23 6.75

SN 3126 12.191 20.51 5.34 3126 17.025 3.84 18.91

GED 3126 11.384 8.61 7.26 3126 19.668 15.23 7.07

SGED 3126 10.955 6.37 6.59 3126 18.869 7.10 4.25

JSU 3126 10.315 3.68 18.04 3126 18.661 8.77 4.38

GHST 3126 11.310 13.50 3.23 3126 19.074 16.67 1.44

GHYP 3126 10.237 2.78 9.47 3126 16.990 5.60 17.85

NIG 3126 10.348 8.35 15.80 3126 18.901 23.80 8.13

100.00 100.00 100.00 100.00

It is worth stressing that an high fitting ability of the reference distribution
does not necessarily mean a low model risk. This is clear from Fig. 5.4 where the
RMMR5% for the GED reference model is significantly higher than the one for the
normal reference model, despite the superior ability of the GED distribution in fit-
ting the considered data. Indeed, a poor fitting can yield both to an underestimation
or an overestimation of VaR: in the former case, the model risk is increased, whereas
in the latter case the model risk is decreased. For instance, it is a known fact that,
in general, VaR˛ of an equity portfolio is significantly overestimated at ˛ � 5% and
underestimated for ˛ � 5%, if a normal distribution is used for returns.

Finally, we have also computed at how many days a given model Q attains the
highest or the lowest VaR, i.e. VaRt;Q D VaRt or VaRt. For any model, the related
frequencies are presented in Table 5.4 together with the average values of VaRs.
These results clearly show that none of the alternative models attains the maximum
or minimum VaRs too frequently: this seems to suggest that the final model risk
figures are not consistently biased by any of the selected models.

5.6 Conclusions and Future Research

We provide for the first time an empirical assessment of model risk in the German
wholesale electricity market implementing a quantitative measure of model risk for
VaR, proposed by Barrieu and Scandolo (2015). The German electricity market
has undergone deep structural changes as the modification of the generation mix
required to reduce carbon emissions, and this has increased the complexity of
the energy sector and affected the stochastic nature of electricity prices, which
are characterized by new empirical distributional shapes. Therefore, relaxing the
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Fig. 5.5 German generation mix over years

assumption of normality and using a wide range of alternative distributions, we
have quantified model risk under the well-established setting of GARCH models.

These results emphasize that the distributional assumptions made in price
modelling can produce a relevant difference and then trigger substantial model
risk. In this specific case, rolling measures, computed with respect to the normal
distribution, exhibit average values very close to one for more recent years; hence,
indicating full model risk.

Indeed, it is interesting to observe that there has been a progressive increase in
model risk from 2007. This may be explained looking at the evolution of the German
generation mix, and analyzing the data collected from ENTSO–E.8 Figures 5.5
and 5.6 clearly show the important transformations occurred in this power market:
starting from 2007 there has been a progressive reduction of nuclear generation,
and a pretty constant generation from hydro, but an increasing share of wind
together with a substantial amount of electricity produced by solar. Furthermore,
it is important to recall that the negative pricing has been introduced on the intra–
day market in 2007 and on the day–ahead German/Austrian market in 2008; and
this has substantially modified the empirical properties of hourly electricity prices,
and consequently daily average prices.

8ENTSO-E is the European network of transmission system operators for electricity. More
information can be found at www.entsoe.eu.

www.entsoe.eu
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Fig. 5.6 German RES mix over years

Although our results can be considered an exploration, they clearly show that the
increasing complexity of market mechanisms and their regulation, together with the
introduction of new fundamental drivers as renewable energy sources (specifically
wind and solar), have dramatically modified the nature and statistical properties of
electricity prices. Indeed, we document a progressive increase of model risk with the
time–evolution of the generation mix, and under three different assumptions for the
reference model. This fact highlights the importance of considering the impact that
the model choice has on risk assessment, particularly when operating in complex
markets such as the energy ones.

To this aim, this analysis can be considered “preliminary” and future devel-
opments will address at least two issues. First, we plan to extract a “net model
risk” by explicitly modelling, hence excluding, other sources of risks such as the
demand, RES-induced, and fundamental risks related to fuels. Second, we aim at
implementing a more flexible methodology which takes into account time-varying
moments depending on plausible energy risk factors. We have explored the great
potential of a recent methodology (the generalized additive models for location,
scale and shape, GAMLSS9), encompassing equations for location, scale and
shape. Indeed, we have considered the simplest formulation with constant variance,

9See Rigby and Stasinopoulos (2005) for a full description with all details.
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skewness and kurtosis in a preliminary analysis, and results on RMMR obtained
within this framework recall the dynamics of those obtained with the GARCH
models, hence providing the same qualitative indications even if with obvious
different magnitudes due to differences in model formulations.10 Clearly, we expect
to get a better picture of the model risk once the other sources of electricity risk
are explicitly included in this more flexible framework, and once an autoregressive
structure is adopted in the equations of all four moments.

To conclude, we have emphasized that the risk quantification of a financial
position crucially depends on the employed model. If a set of alternative models
is fixed, including all possible distributions that is meaningful to consider, then
the measure of model risk we have considered can give useful indications about
the model which is currently implemented (i.e. the reference one). If RMMR has
been consistently close to 1 in the recent period, then it is likely that VaR will be
underestimated in the subsequent days, if we use the reference model. In this case,
proper actions can be taken, such as incrementing the VaR figure by an amount
that depends on model risk. In practice, implementing sophisticated models can
be costly, for instance, in terms of IT equipments, estimation times, and need of
skilled employees. In view of these considerations, the measure of model risk could
be computed for a limited amount of time and from time to time. Still, this would
provide risk managers with a useful figure that could be complementary to the usual
back-testing results for VaRs.
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Chapter 6
Wine Futures: Pricing and Allocation as Levers
Against Quality Uncertainty

Tim Noparumpa, Burak Kazaz, and Scott Webster

Abstract This study examines the impact of using wine futures in order to
mitigate the winemaker’s risk stemming from quality uncertainty. In each vintage,
a winemaker harvests grapes and crushes them in order to make wine. A premium
wine sits in barrels for 18–24 months. During the aging process, tasting experts take
samples and establish a barrel score; this barrel score often indicates the expert’s
perception of whether the wine will be a superior wine. Based on the barrel score,
the winemaker can sell some or all of her/his wine in the form of wine futures and
in advance of bottling. The winemaker makes three decisions: (1) the price to sell
her/his wine futures, (2) the quantity of wine futures to be sold in advance, and (3)
the amount of wine to be kept for retail and distribution. The wine continues to age
for one more year after barrel samples. The tasting experts then provide a bottle
score upon the bottling of the wine. At the time the winemaker determines the price
and quantity of wine futures, this unrealized bottle score represents the uncertainty
that influences the market price of the wine.

This study makes two contributions to the optimization of pricing and quantity
decisions and offers insightful recommendations for practicing managers. First,
it develops a stochastic optimization model that integrates uncertain consumer
valuations of wine both in the form of futures and in bottle, and the uncertainty
associated with bottle scores. Second, it provides an empirical analysis using data
collected from Bordeaux wineries engaging in wine futures. The empirical analysis
demonstrates that wine futures can be used as price and quantity levers to mitigate
the negative consequences of quality uncertainty. The results provide clues as to how
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other markets (e.g. Italy and the U.S.) can establish similar wine futures markets in
order to help their small and artisanal winemakers.

Keywords Stochastic optimization • Wine futures • Futures pricing • Quality
uncertainty

6.1 Introduction

This study shows how wine futures can be used as pricing and quantity levers in
order to mitigate the negative consequences of quality uncertainty in the process of
winemaking. Selling wine in the form of wine futures refers to the winemaker’s
decision to offer her/his wine in advance and prior to the completion of the
winemaking process. Fine wine often requires a long aging process for the liquid
resting in barrels, e.g. 18–24 months for most Bordeaux style wines. Thus, a
winemaker has her cash tied up in this inventory for a long period of time before the
wine gets bottled and distributed for retail. Wine futures can offer the winemaker the
opportunity to collect some of this cash investment earlier and transfer a proportion
of the risk stemming from uncertain bottle reviews to consumers.

The paper builds a stochastic optimization model in order to assist a winemaker
in her decisions regarding the proportion of wine to be sold in advance in the form
of wine futures and the price of wine futures. Consequently, the model determines
the proportion of the wine that should be distributed for retail sale in later periods.
The uncertainty in the life of a fine wine producer arises from the critical reviews of
tasting experts. These experts review the wine while it is still aging in barrels and
provide a score that indicates projections regarding the quality of the wine. Potential
buyers rely on this information in order to determine whether to purchase wine
futures. The same tasting experts provide a second review when the winemaking
process is completed and the wine is bottled. This bottled wine review can differ
from the review provided in the barrel phase. The model in this paper model helps
the winemaker to mitigate the negative consequences of the uncertainty stemming
from as-yet unknown bottle reviews.

We begin the discussion with the description of the winemaking process.

6.1.1 Winemaking Process and the Tasting Reviews

A fine wine producer in the US and in Europe harvests grapes in September and/or
October. After crushing grapes and shuffling the juice in a tank (wood, steel, or
concrete), red wines are then transferred to oak barrels; this marks the beginning of
the aging process. The wine continues its aging process in barrels for 18–24 months.

Tasting experts visit these fine wine producers 6–8 months after harvest (in
March and April). These tasting experts provide their reviews and assign a barrel
score, often out of 100 points. The most influential and widely-distributed magazine
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Wine Spectator, for example, describes its 100-point scoring system as follows: A
classic (great) wine receives a score between 95 and 100, and an outstanding wine (a
wine of superior character and style) 90–94, a very good wine (a wine with special
qualities) 85–89 points, a good wine (well-made wine) 80–84 points, a mediocre
wine (a drinkable wine that may have minor flaws) 75–79. A wine that receives a
score 74 or below is not recommended by Wine Spectator.

The same tasting expert provides another score, called bottle score, when the
wine completes its aging process and gets bottled. This bottle score can differ from
barrel score, and is the primary source of the risk for a fine wine producer. This
work develops a stochastic optimization model that uses the barrel scores in order
to mitigate the uncertainty in bottle reviews.

It is known that premium French wines have been sold in the form of wine
futures since the seventeenth century. “En primeur” is the French concept of selling
wine while it is still aging in the barrel. En primeur is translated into English as
“wine futures” indicating financial contracts with standardized terms. These wine
futures are traded in an electronic exchange market called the London International
Vintner’s Exchange, or shortly known as “Liv-ex.” This electronic platform is
similar to NASDAQ, however, only highly sought-after fine wines are traded both
in the form of wine futures and in bottle in Liv-ex. Figure 6.1 demonstrates a
screenshot of the trading platform in Liv-ex. Merchants, brokers, retailers, and
consumers make up the buyers of wine futures in Liv-ex.

Tasting reviews have significant impact on the quality perception of wine.
Wine Spectator is the most widely distributed magazine in the wine industry and
has a significant impact on the quality perception of wine. Masset et al. (2015)
demonstrates that a 10% increase in barrel scores provided by Wine Spectator leads
to a 4% increase in futures price.

The winemaker and wine futures consumers exhibit distinct properties that
differ from the common description of risk aversion in (the industrial organization
theory of) economics literature. According to the industrial organization theory,

Fig. 6.1 A screenshot of Liv-ex trading platform
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(large) firms can diversify their risk and do not need to behave in a risk-averse
manner. The same theory indicates that individual consumers would exhibit a risk-
averse behavior as they possess limited resources and cash. However, consumers
in the wine industry are affluent collectors and/or financially-healthy merchants
and distributors. The empirical analysis in Noparumpa et al. (2015a) does not
support a risk-averse behavior on the part of wine futures consumers. Therefore,
the consumers of wine futures in this study are considered to be risk-neutral in
order to reflect the true operating environment in this industry. Because winemakers
are often small in size with limited financial resources, they exhibit a risk-averse
behavior. These unique features are incorporated into the empirical analysis as well.

This paper develops a stochastic optimization model that maximizes the percent-
age profit improvement from using wine futures as price and quantity levers in the
presence of bottle score uncertainty. It demonstrates that these two decisions, futures
quantity and futures price, serve as effective levers against quality uncertainty.
Section 6.2 reviews the corresponding literature. Section 6.3 introduces the model;
Section 6.4 presents its analysis. Section 6.5 provides an empirical analysis using
data from Bordeaux wineries as well as one of the US artisanal winemakers. Section
6.6 presents the conclusions.

6.2 Literature Review

There are three streams of literature related with this study.

6.2.1 Pricing and Quantity Decisions Under Uncertainty

Supply chain and operations management literature focuses primarily on pricing
and quantity decisions under uncertainty. Specifically, the Price-Setting Newsvendor
Problem (PSNP) investigates the problem of determining a selling price and a
production quantity (or inventory level) under demand uncertainty: Van Mieghem
and Dada (1999), Petruzzi and Dada (1999), Dana and Petruzzi (2001), Federgruen
and Heching (1999, 2002) and Kocabıyıkoğlu and Popescu (2011) are examples of
studies that examined these two critical decisions under stochastic demand. These
studies, however, assume that supply and quality are deterministic, and thus, supply
and quality fluctuations do not influence pricing and quantity decisions. This work
differs from these earlier publications in three ways: (1) It incorporates quality
uncertainty into the joint pricing and quantity decisions under uncertainty; (2) it
develops two new levers with advance selling quantity (i.e., the amount of futures
to be sold) and the advance selling price (futures price) as levers to mitigate quality
uncertainty; and, (3) it examines a risk-averse winemaker (firm) who is interested in
transferring a proportion of her quality risk to consumers. Kazaz and Webster (2015)
incorporate supply uncertainty into PSNP, and develop a new elasticity measure
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leading to unique optimal solutions in the problem of determining price and quantity
under supply and demand uncertainty; however, their study does not feature a retail
market analysis. Finally, this study shows that advance pricing through futures
prices and advance allocation are financially viable risk mitigation techniques for
winemakers with a significant amount of cash tied up in inventory that may diminish
in value.

In addition to the PSNP literature, there is a growing body of literature that
examines the impact of supply uncertainty. Jones et al. (2001), Kazaz (2004), and
Kazaz and Webster (2011), Noparumpa et al. (2015b) demonstrate the benefits of
using a secondary source of supply in order to mitigate the negative consequences
of supply uncertainty. Rather than utilizing a secondary source, this work focuses
on the use of advance selling as a lever against uncertainty. Moreover, we examine
quality uncertainty rather than supply uncertainty. In this problem, the quality of the
final product can fluctuate during the course of the aging process.

6.2.2 Advance Selling

Marketing literature demonstrates the benefits of advance selling as consumers get
the opportunity to purchase goods or services before the time of consumption. Gale
and Holmes (1992, 1993), Shugan and Xie (2000, 2005), Xie and Shugan (2001),
Fay and Xie (2010), Boyaci and Özer (2010), Tang and Lim (2013), Cho and Tang
(2013) show that advance selling is a method where a firm can discriminate its
consumer base through differential pricing. These studies demonstrate that advance
selling helps a firm to manage fluctuations in demand. Hekimoğlu et al. (2017)
utilizes advance selling in the context of purchasing wine in advance. Their study
examines how a wine distributor can benefit by purchasing wine in the form of
futures in addition to bottled wine under a limited budget while complying with
the firm’s degree of risk aversion. In another study that employs the concept of
advance selling, Gheibi et al. (2017) investigate optimal farm leasing and purchasing
decisions on behalf of coffee processors. Our study differs from these studies by
introducing quality uncertainty at the time of consumption. This work differs from
these studies by introducing quality uncertainty at the time of consumption.

6.2.3 Wine Tasting

A wide majority of the economics literature on wine pricing has focused on
the influence of weather fluctuations in growing seasons. Ashenfelter (2010) and
Ashenfelter et al. (1995), for example, focus on the impact of climactic conditions
on the quality and price of aged wines. There is a growing literature examining
various aspects of the influence in wine tasting. Ali et al. (2008), Ashenfelter and
Jones (2013), Stuen et al. (2015), Bodington (2015), and Olkin et al. (2015) are
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examples of studies that investigate the impact of wine tasting experts in creating the
perception of quality. Masset et al. (2015) examine the influence of various tasting
experts on futures prices. However, these publications do not develop a stochastic
optimization model for the winemaker in order to determine quantity (the amount
of wine to be sold in the form of futures) or price (price of wine futures); thus, they
do not emphasize building levers to mitigate quality uncertainty.

6.2.4 Contribution over Noparumpa et al. (2015a)

This paper is similar to Noparumpa et al. (2015a) where they also build an analytical
model based on tasting expert reviews. It departs from the earlier publication in three
dimensions. First, this work removes the assumption of risk-averse consumers, and
considers risk-neutral buyers of wine futures. The considerations of risk-neutral
consumers is reflective of the operating environment as the ultimate buyers of
futures, as explained before, constitute an affluent customer base. Thus, this study
leads to more accurate estimations of the benefits that can be obtained by optimizing
the winemaker’s pricing and quantity decisions at the futures stage. Second, the
emphasis is on the research question associated with identifying and measuring
the financial benefit from using a stochastic optimization model. Noparumpa et al.
(2015a) do not even report on the benefit of their analytical model. Third, this study
employs barrel and bottle scores from Wine Spectator and Noparumpa et al. (2015a,
b) relies on Robert Parker’s reviews.

In sum, this study integrates marketing, economics and supply chain manage-
ment by studying the price and quantity decisions in the form of wine futures.
From a marketing perspective, we show that a futures price can act as a lever
to discriminate buyers through futures and retail prices. From an economics
perspective, the pricing decision helps the winemaker to extract additional surplus
from consumers. From a supply chain management perspective, selling wine in
advance of bottling enables the winemaker to transfer the risk of holding inventory
that fluctuates in value due to quality-rating uncertainty to buyers of wine futures; it
also helps the winemaker to recover some of her cash investment.

6.3 The Model

This section presents the modeling approach useful to a facing quality-rating
uncertainty and seeking an optimal supply policy in the spot and futures market.
Both the futures price and the wine supply in the futures market are endogenous.
We develop a two-stage stochastic programming model in order to formulate the
problem for the winemaker. Figure 6.2 depicts the timeline of events and decisions.
At the end of grape harvest (September of calendar year t), the winemaker obtains
a certain amount of wine described by Q of wine from vintage t. After the wine
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Fig. 6.2 Model specifications, stages in the model, and the timeline of decisions

ages for 8–10 months, tasting experts (e.g. Robert Parker Jr. of The Wine Advocate,
James Molesworth of Wine Spectator, Jancis Robinson of Financial Times) visit
the winery in order to taste the wine. The tasting expert provides a barrel score in
May of calendar year t C 1 that gets revealed to the winemaker and consumers
through a publication. We denote the realized barrel score assigned by the tasting
expert with s1. The realization of the barrel score marks the beginning of stage 1 in
the model. The winemaker then makes the following three decisions based on the
realized barrel score:

1. The price of wine futures, denoted pf , which determines the demand for wine
futures, denoted df (pf ),

2. The quantity of wine to be sold as futures, denoted qf ,
3. The quantity of wine that is reserved for retail distribution, denoted qr.

In stage 1, the winemaker sells a quantity of wine in the form of futures
equivalent to minfdf (pf ), qf g at the unit price of pf . Thus, the winemaker collects a
revenue of pf minfdf (pf ), qf g in stage 1. The remaining portion of wine is distributed
for retail sale in the second-stage of the model; we denote this quantity qr D Q –
minfdf (pf ), qf g. Although the quantity decisions might be in integer values in reality,
the model utilizes continuous values, and can be perceived as an approximation to
the ideal amount of wine that should be sold in the form of wine futures.

At the end of the aging process, in May of calendar year t C 2, the wine gets
bottled and goes through another review of the wine-tasting experts. The random
bottle score is expressed as Qs2, and its realization as s2. Because the barrel score
provides an indication of the final bottle score s2, the random variable Qs2follows a
conditional probability density function f (s2 j s1). We assume that the expectation
of the bottle score in May of calendar year t C 2 when the barrel score is revealed
in May of calendar year t C 1 is equal to the barrel score, i.e., E ŒQs2js1� D s1.

At the end of Stage 2 of the model, the wine is sold at a retail price pr that is influ-
enced by the random bottle score that gets revealed in May of calendar year t C 2
as well as the barrel score that is revealed in May of calendar year t C 1. Without
loss of generality, we normalize the bottle price of retail wine to be equivalent to
the bottle rating of the wine; specifically, we have pr D pr(s2) D s2. It follows from
E ŒQs2js1� D s1 that the expected retail price in May of calendar year t C 1 is equal
to the barrel score: E Œpr .Qs2js1/� D s1. As a consequence, the winemaker collects a
revenue equivalent to E Œpr .Qs2js1/�

�
Q � min

˚
df
�
pf
�
; qf
��

in stage 2.
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The revenues collected in stage 2 are discounted to May of calendar year t C 1
through the winemaker’s attitude towards risk under uncertainty. We adopt the risk-
adjusted discount rate that is common in the finance literature (e.g., Samuelson
1963). The value of the risk-adjusted discount rate, denoted 
, depends on the risk
of selling a bottle of wine at an uncertain retail price in the future. The higher the
uncertainty in bottle price and the more risk-averse the winemaker is, the lower the
value of 
. If the winemaker is risk-neutral, for example, then 
 D (1C r)�1. The
winemaker’s risk-adjusted expected profit for a given set of first-stage decisions (pf ,
qf ) can then be expressed as follows:

…
�
pf ; qf

� D pf min
˚
df
�
pf
�
; qf
�C 
E Œpr .Qs2js1/�

�
Q � min

˚
df
�
pf
�
; qf
��
: (6.1)

6.3.1 The Model

We develop a model that maximizes the benefits from using the optimal choices
of futures price and quantity of wine to be sold in the form of wine futures. We
describe the winemaker’s present choice of futures price and quantity with p0f and

q0f , respectively. For the futures price p0f , the demand for wine futures is df

�
p0f

�
.

Thus, the present profit level for the winemaker can be expressed as:

…
�
p0f ; q

0
f

� D p0f min
˚
df
�
p0f
�
; q0f
�C 
E Œpr .Qs2js1/�

�
Q � min

˚
df
�
p0f
�
; q0f
��
:

This model maximizes the benefits exceeding the present level of profitability.
We describe the percentage of profit improvement through the proposed modeling
approach as:

�…
�
pf ; qf

� D �
…
�
pf ; qf

� �… �
p0f ; q

0
f

��
=…

�
p0f ; q

0
f

�
: (6.2)

We can now express the model as follows:

max
.pf ;qf /�0

�…
�
pf ; qf

�
(6.3)

s.t.

qf � Q: (6.4)

It is important to observe that the winemaker’s current choice of (p0f ; q
0
f ) can

differ from the optimal decisions in the price and quantity pair (pf , qf ). Specifically,
the winemaker might have chosen a futures price to be higher (or lower) than the
optimal futures price, i.e., p0f > pf (or p0f < pf ) leading to a lower (or higher) wine
futures demand than ideal. Similarly, the winemaker’s current allotment as futures
q0f can be higher or lower than the ideal quantity of futures qf . Thus, the model in
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(6.3) – (6.4) leads to the highest benefit from a simultaneous optimization of price
and quantity decisions for the futures market. In reality, the firm might determine
integer values for its quantity decisions, however, the model uses continuous
decision variables. Therefore, the results should be perceived as an approximation
of the benefits from using the proposed modeling approach.

6.3.2 Demand for Wine Futures

We next describe how the demand for wine futures, expressed as df (pf ), is developed
as a function of futures price pf . We consider the case when each individual in
the futures market has idiosyncratic preferences. In May of calendar year t C 1,
each individual considers utility from three alternatives: purchasing a wine future,
purchasing wine at retail, and no purchase. Individuals discount the value gained in
May of calendar year t C 2 to the value in May of calendar year t C 1 using a risk-
adjusted discount rate � . Because the individuals in the futures market correspond to
an affluent population, we consider their decisions to be consistent with risk-neutral
decisions; then � D (1C r)�1 where r is the risk-free rate over the time-period from
May of calendar year t C 1 to May of calendar year t C 2. The utilities of a random
member of the futures market associated with these alternatives are as follows:

Uf D �E ŒQs2js1�C "f � pf D �s1 C "f � pf

Ur D �E ŒQs2js1�C "r � �E Œpr .Qs2/ js1� D "r

U0 D "0

where "f , "r, and "0 are i.i.d. Gumbel random variables with zero mean and scale
parameter ˇ. Gumbel distribution describing the error terms in a multinomial logit
model is widely used in literature examining the problems in the retail industry.
There are several publications that provide ample empirical support; these include
McFadden (2001), Talluri and van Ryzin (2004), and Vulcano et al. (2010).

We first explain the utility expressions Ur and U0 associated with the retail
purchase and no-purchase alternatives. For an individual in the futures market, the
value of "r is the difference between her valuation of retail wine and the retail price
(in the dollar equivalent in May of calendar year t C 1). The underlying assumption
is that this difference does not depend on the realized bottle score s2 (or equivalently,
due to the deterministic relationship between bottle score and the bottle price). Due
to this assumption, each individual knows with certainty her utility (or surplus)
from a retail purchase. Similarly, the value of "0 is the individual’s utility from
not purchasing a future or a bottle at retail, which is also known with certainty.

We now turn our attention to the expression for Uf , which is the difference
between an individual’s valuation of a future and the futures price pf . An individ-
ual’s valuation of a future is

�E ŒQs2 C s1�C "f :
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The bottle price is uncertain, though its expected value is known as s1. We
describe the market size for wine futures as M(s1), which is a non-decreasing
function of the barrel score s1 (i.e., M 0(s1) � 0). A higher barrel score increases the
market size as a consequence of the hype it creates. The demand for wine futures
can now be determined by the multinomial logit (MNL) model:

df
�
pf
� D M .s1/P

�
Uf > max fUr;U0g

� D M .s1/

"
e.�s1�pf /=ˇ

2C e.�s1�pf /=ˇ

#
: (6.5)

6.4 Analysis

We begin the analysis by establishing the optimal price and quantity coordination in
the profit function (6.1) in the absence of the futures quantity constraint (6.4). For a
given futures price pf , the following lemma establishes the optimal futures quantity
which is equivalent to the demand established in (6.5); thus, (6.5) also describes the
desirable amount of wine that should be allocated as wine futures.

Lemma 1 For a given futures price pf , the futures quantity that maximizes (6.1) is
(a) q�

f D df
�
pf
�

when pf � 
E Œpr .Qs2js1/� I (b) q�
f D 0 when pf < 
E Œpr .Qs2js1/�.

Lemma 1 indicates that the winemaker sells some of the wine in the form of
wine futures as long as the futures price pf is greater than or equal to the expected
retail price discounted to the beginning of the problem, i.e., q�

f D df
�
pf
�

only when
pf < 
E Œpr .Qs2js1/�. Otherwise, the winemaker would sell all wine in the retail
market, corresponding to Stage 2 of the model.

Aydin and Porteus (2008) show that, in the MNL model, the first-order condition
with respect to price yields the optimal price in the absence of a constraint as in (6.4).
From equation (6.5), the futures price can be described as a function of demand
for wine futures. Alternatively from Lemma 1, the futures price can be expressed
in terms of a corresponding optimal futures amount when the winemaker offers a
positive amount of futures. Equating q�

f D df
�
pf
�

and inverting (6.5) provide the
following futures price expression for a given futures quantity.

Lemma 2 For a given futures quantity qf (� Q), the futures price that maximizes
(1) is

p�
f

�
qf
� D �s1 C ˇ ln

	
M .s1/ � qf

2qf



(6.6)

Substituting (6.6) into (6.1), the profit function in (6.1) can now be expressed in
terms of a single decisions variable.

…
�
qf
� D …

�
p�

f

�
qf
�
; qf
� D

�
.� � 
/ s1 C ˇ ln

	
M .s1/ � qf

2qf


�
qf C 
s1Q:

(6.7)
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We substitute (6.7) into the objective function in (6.3), and analyze the con-
strained MNL model subject to inequality (6.4). We next develop the closed-form
expressions for the optimal price, quantity, and profit for the model in (6.3) –
(6.4). These expressions utilize the Lambert W function W(z) in Corless et al.
(1996) where W(z) describes the value of w satisfying z D wew. Let us define

r0 D e
.��
/s1=ˇ�W

 
e.��
/s1=ˇ

2e

!

2eCe
.��
/s1=ˇ�W

 
e.��
/s1=ˇ

2e

! as the optimal proportion of the wine futures market

that buys wine in the form of wine futures in the absence of a supply constraint.
Recall that the total market size for wine futures consumers is described as M(s1).
In the absence of a supply constraint, then the demand for wine futures is equal to
r0 � M(s1).

Proposition 1 The optimal futures price and futures quantity that maximize (6.3)
subject to (6.4) are

p�
f D

8
<

:

s1 C ˇ

h
1C W

�
e.��
/s1=ˇ

2e

�i
when r0 � Q

M.s1/

�s1 C ˇ ln
h

M.s1/�Q
2Q

i
when r0 > Q

M.s1/

(6.8)

q�
f D

8
ˆ̂<

ˆ̂:

M .s1/

0

@ e
.��
/s1=ˇ�W

 
e.��
/s1=ˇ

2e

!

2eCe
.��
/s1=ˇ�W

 
e.��
/s1=ˇ

2e

!

1

A when r0 � Q
M.s1/

Q when r0 > Q
M.s1/

(6.9)

and the optimal expected profit in (6.3) is

…� D
8
<

:
M .s1/

h
ˇW

�
e.��
/s1=ˇ

2e

�
C 
s1

Q
M.s1/

i
when r0 � Q

M.s1/

Q
�
�s1 C ˇ ln

h
M.s1/�Q
2Q

i�
when r0 > Q

M.s1/

(6.10)

We next provide a sensitivity analysis on the optimal values of the futures price,
quantity, and expected profit. We begin the discussion with the influence of the
relationship between the consumers’ and the winemaker’s risk-adjusted discount
rates, � and 
, respectively; note that these parameters represent the consumers’ and
winemaker’s risk perception. For example, higher variations in bottle scores imply
bigger risk for the winemaker, leading to smaller values of 
; thus, the impact of
variation in s2 can be analyzed through decreasing values of 
. It is stated earlier
that the wine industry is a unique market where the winemakers’ risk concern is
higher than that of the consumers. Departing from Noparumpa et al. (2015a), we
focus on the representative case where � > 
.

Higher values of risk aversion for the winemakers is represented with smaller
values of 
, correspondingly increasing values of � – 
. Higher degrees of risk
aversion cause the winemaker to allocate a higher percentage of wine for the futures
market. This behavior is commonly observed in practice. Small Bordeaux wineries
with smaller overall profitability and higher risk concerns (e.g. Evangile, Clos
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Fourtet, Troplong Mondot, and Cheval Blanc) allocated more than 25% of their
wine as futures on average between 2006 and 2011. During the same time interval,
smaller risk winemakers such as Cos d’Estournel and Leoville Poyferre sold less
than 15% of their wine on average early in the form of wine futures. The most
profitable winemakers with a higher degree of fluctuations in returns, Pavie and
Angelus, sold approximately 20% of their wine in the form of futures.

The behavior of the optimal futures price and expected profit, however, are not
monotone in 
 and � – 
; and they can feature an increasing or a decreasing
behavior depending on the parameter values.

How should a higher barrel score influence the winemaker’s allocation of wine
to be sold as futures? In this model, the amount of wine allocated for futures
(q�

f ) increases in s1. Similarly, higher barrel scores lead to a higher price of wine
futures (p�

f ), and an increased level of optimal expected profit. In this case, the
winemaker prefers early cash over the alternative of holding inventory in order to
exploit the retail market customers. This result is a consequence of the following two
conditions: (1) The assumption of no bias with E ŒQs2js1� D s1, and (2) risk-neutral
buyers and risk-averse winemakers, i.e., � > 
.

6.5 Empirical Analysis with Bordeaux Winery Data

This section provides an empirical analysis of the stochastic optimization model
presented in Sects. 6.3 and 6.4. The analysis considers 12 winemakers from the
Bordeaux region, six from the Right Bank and six from the Left Bank wine growing
districts. The data used in the analysis is collected from several sources.

Liv-ex is the largest source of fine wine data in the world, and the firm provided
all the information regarding the wineries included in the analysis and their futures
trades involving futures prices and quantities traded. The wineries included in the
analysis are: Angelus (Right Bank), Cheval Blanc (Right Bank), Clos Fourtet (Right
Bank), Cos d’Estournel (Left Bank), Ducru Beaucaillou (Left Bank), Duhart Milon
(Left Bank), Evangile (Right Bank), Leoville Poyferre (Left Bank), Mission Haut
Brion (Left Bank), Pavie (Right Bank), Pichon Lalande (Left Bank) and Troplong
Mondot (Right Bank). The data includes the futures of vintages from 2006 to 2011.
For the 12 wineries included in the study, there have been 307,909 cases traded in
the form of futures in a total of 32,869 futures transactions.

Barrel and bottle scores indicate the quality of the wine. The data for the
barrel and bottle scores, and the production quantities, are collected from the most
influential wine magazine, Wine Spectator.

6.5.1 Wine Futures as a Quantity Lever

This stochastic optimization model uses wine futures as a quantity lever as the
winemaker sells a proportion of the wine in the form of wine futures. In this section,
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we develop a regression model in order to predict the percentage of wine allocated
as futures based on Wine Spectator’s barrel scores. The regression analysis helps
demonstrate the robustness of this optimization model.

We describe the percentage of wine allocated as futures with rjt and barrel
scores with s1jt for winery j and vintage t, the mean and standard deviations of the
percentage of wine sold as futures and barrel scores with rj, �˛j and the mean and
standard deviations of barrel scores with s1j and �s1j , respectively. We normalize the
values of the ratio of wine allocated as futures and barrel scores and describe them
as follows:brjt D rjt�rj

�rj
andbs1jt D s1jt�s1j

�s1j
.

The first analysis regresses the normalized values of percentage of wine allocated
as futures (brjt) based on the normalized values of Wine Spectator’s barrel tasting
scores (bs1jt). Table 6.1 provides the results of this regression analysis, and shows that
barrel score is a statistically significant variable at less than 1%. Thus, we conclude
that barrel score explains a fairly large portion of the amount of wine that should
be allocated as wine futures. Figure 6.3 shows how well this regression model fits
between the actual and forecasted percentage allocation.

Figure 6.4 demonstrates the impact of barrel scores on each winery’s percentage
allocation decision during each vintage. For each vintage, given the Wine Spectator
barrel score, it shows each winery’s actual allocation (labeled as “Futures Alloca-
tion”) and the percentage of wine that should have been allocated according to the
statistical analysis reported in Table 6.1 (labeled as “Forecast Futures Allocation”).

Table 6.1 Summary of
regression results for the
normalized values of wine
allocated as futures versus the
normalized values of barrel
scores

Parameter Coefficient (p-value)

Intercept 3.48 � 10�16 (1)
Barrel score (bs1jt) 0.73 (2.16 � 10�13)a

Adjusted R2 0.53
aImplies that the variable is significant at 0.01 level

R² = 0.6219
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Fig. 6.4 Actual and forecasted percentage of wine allocated for futures predicted from the
regression model vs. barrel scores from Wine Spectator

Figure 6.5 shows, during each vintage, how each winemaker allocated its wine for
the futures market and what the regression-based model suggested as the percentage
to be sold as futures based on the barrel scores.
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Fig. 6.5 Actual and forecasted futures allocation percentage of Bordeaux wineries vs. barrel
scores during each vintage
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6.5.2 Wine Futures as a Price Lever

This stochastic optimization model describes that wine futures can be used as a
price lever in order to mitigate quality uncertainty stemming from the randomness
in bottle reviews of the tasting experts. In this section, we develop a regression
model in order to predict the futures price using Wine Spectator’s barrel scores. The
regression analysis once again helps demonstrate the robustness of this optimization
model.

Using the same 12 wineries, we denote the futures price for winery j and its
vintage t from 2006 to 2011 by fjt, the mean and standard deviations of the futures
prices for winery j with f j and �fj , respectively, and the normalized futures price

withbfjt D fjt�f j

�fj
.

The results of the regression analysis is presented in Table 6.2. It shows that
the barrel score is a statistically significant variable at less than 1%. The adjusted
R2 of 0.70 indicates that the barrel score explains a fairly large portion of the
decision regarding futures prices. Figure 6.6 shows the fit of this regression model
by comparing the actual futures price with the forecasted futures price.

Figure 6.7 demonstrates the impact of barrel scores on each winery’s futures
price decision during each vintage. For each vintage, given the Wine Spectator barrel

Table 6.2 Summary of
regression results for the
normalized values of futures
prices versus the normalized
values of barrel scores

Parameter Coefficient (p-value)

Intercept 3.63 � 10�16 (1)
Barrel score (bs1jt) 0.841 (2.18 � 10�20)a

Adjusted R2 0.70
aImplies that the variable is significant at 0.01 level

R² = 0.9513
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Fig. 6.7 Actual futures price of wine, and forecasted futures price predicted from the regression
model vs. barrel scores from Wine Spectator
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Table 6.3 The correlation coefficients barrel scores, futures allocation percentage, forecasted
futures allocation percentage, futures price, and forecasted futures price

Barrel
score (s1)

Allocation
(r)

Futures
price (pf )

Forecast
allocation (rjt)

Forecast
futures price (fjt)

Barrel score (s1) 1
Allocation (r) 0.644 1
Futures price (pf ) 0.621 0.326 1
Forecast
allocation (rjt)

0.824 0.789 0.380 1

Forecast futures
price (fjt)

0.634 0.303 0.975 0.384 1

score, it shows each winery’s actual futures price decision (labeled as “Futures
Price”) and the futures price forecasted based on the statistical analysis reported
in Table 6.2 (labeled as “Forecast Futures Price”).

Table 6.3 presents the correlation coefficient values between the Wine Spectator
barrel scores (s1), the allocation percentages assigned by winemakers (r), the futures
price (pf ), and the forecasts using the regression models for the allocation (rjt) and
for the futures price (fjt) decisions. Table 6.3 demonstrates that the barrel score
(s1) shows a 64% positive correlation with the winemaker’s allocation decision (r)
and a 62.1% positive correlation with the futures decision (pf ). These correlation
values are significant. While the percentage of wine allocated for the futures market
and the futures price exhibit relatively lower correlation (32.6%), this statistical
analysis leads to strong fit with a 78.9% positive correlation between the amount
of wine allocated for the futures market and its estimate. We obtain a strong fit
for the futures price using Wine Spectator’s barrel scores, and this can be viewed
from 97.5% positive correlation between the futures price and its estimate. As a
consequence, we conclude that there is a strong relationship between the barrel
scores, the percentage of wine allocated for the futures market and the futures price.
In conclusion, the statistical analysis provides for the foundation for using barrel
scores in the stochastic optimization model.

6.5.3 Financial Benefit from the Proposed Stochastic
Optimization Model

The analysis in this section compares the firm’s actual allocation quantity for wine
futures and the futures price (p0f ; q

0
f ) provided by Liv-ex.com with the optimal

choices (p�
f ; q

�
f ) developed from solving the model presented in (6.3) – (6.4).

Table 6.4 presents the financial benefit from utilizing the stochastic optimization
model in the 12 Bordeaux winemakers during the 2006 and 2011 vintages. In the
empirical analysis, we estimate consumers’ valuation of fine wine using the risk-free
rate in order to reflect the structure of this market that is populated with the affluent
customer base. We describe consumer’s valuation with � D (1 C rf )�1 where rf is

http://liv-ex.com
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Table 6.4 The financial benefit from the stochastic optimization model with � D 0.97561;
ˇ D 24

Winemaker 
 Minimum �… Maximum �… Average �…

Angelus 0.96936308 1.83 9.64 4.75
Cheval Blanc 0.86918809 1.34 10.59 5.18
Clos Fourtet 0.88701179 1.91 6.98 5.29
Cos d’Estournel 0.87673835 0.88 4.72 3.01
Ducru Beaucaillo 0.88961788 2.44 9.11 5.94
Duhart Milon 0.79816123 1.06 2.51 1.58
Evangile 0.85688923 2.74 11.69 7.57
Leoville Poyferre 0.9082983 0.47 2.29 1.47
Mission Haut Brion 0.94221522 2.76 8.22 4.55
Pavie 0.97247639 0.62 8.88 4.04
Pichon Lalande 0.84258235 0.74 6.71 3.26
Troplong Mondot 0.83791897 0.69 4.08 2.54
Weighted average 1.46 7.12 4.10

the risk-free rate. Using the European Central Bank interest rate of 0.025, we have
� D 0.97561.

We estimate the winemaker’s preference, the risk-adjusted discount rate 
, using
a Capital Asset Pricing Model (CAPM) perspective. We describe the winemaker’s
preference as 
 D (1C rf C  (rm – rf ))�1 where rm. is the market return, rm. – rf

is the risk premium, and  is the winemaker’s risk measure following the Capital
Asset Pricing Model (CAPM) approach. We estimate rm. D 0.104262504 through
the average annual market returns in the Liv-ex 100 index from 2006 to 2013
describing the most sought after 100 wines in the world; it is important to note
that the vintages of the most sought after 100 wines do not exist in our data set.
We estimate each winemaker’s risk premium through the covariance between the
returns of the specific winemaker and the market returns (defined as COV(rj, rm))
divided by the variance in market returns (defined as VAR(rm)), i.e.,  D COV(rj,
rm)/VAR(rm). Market size is also provided by Liv-ex. We estimate the consumer
heterogeneity parameter ˇ in the Gumbel distribution by inverting the Bordeaux
winemaker’s allocation percentages; because most of these wineries cater to the
same variety of consumer, we use the average value corresponding to ˇ D 24.

Table 6.4 demonstrates that the proposed stochastic optimization model is
expected to improve profits of the 12 Bordeaux winemakers by 4.10%. On average,
the minimum improvement is 1.46% and the maximum is 7.12%; and the overall
minimum is 0.62% and the overall maximum is 11.69%.

In sum, we conclude that the proposed stochastic optimization model is finan-
cially beneficial for the Bordeaux winemakers in determining their optimal futures
price and futures allocation as it can improve their profits by more than 4%.
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6.5.4 Financial Impact from a Wine Futures Market

We next present the benefit from establishing a futures market for winemakers. As
stated earlier, the US wine industry does not have a futures market. What would be
the benefit from establishing a wine futures market in the US? While this is hard to
demonstrate in precision, we attempt in identifying potential benefits by comparing
the optimal profit obtained from solving the proposed stochastic optimization in
in (6.3) – (6.4) with the optimal profit that can obtained from setting the futures
quantity equal to zero, i.e., qf D 0. Note that when there is no futures market, the
firm has to sell all of its wine in the retail market; we describe the profit that can
be obtained in the absence of a futures market by …0. The profit in the absence of
a futures market is calculated by substituting qf D 0 in (6.1); this provides …0 D 


s1Q. The percentage impact of wine futures on the profit of the winemaker is then
described as follows:

�…0 D �
…
�
p�

f ; q
�
f

� �…0
�
=…0 � 100%: (6.11)

The directional impact of a higher barrel score (s1) on�…0 is not monotone, and
is parameter-dependent. We can observe from (6.11) that�…0 is higher for a highly
risk-averse winemaker with smaller values of 
.

Table 6.5 demonstrates the financial benefit that can be obtained from having
a futures market. Using the 2006 – 2011 vintages of the 12 wineries employed in
the empirical analysis, and it estimates the financial benefit from having a futures
market to be 7.82% on average. The average percentage improvement in profits
from the presence of a futures market ranges from 3.19% to 17.19%. The minimum
financial benefit occurs at the low barrel scores as observed at Leoville Poyferre with
a 1.08% profit improvement; the highest benefit is observed with high barrel scores
at Cheval Blanc with a 23.57% profit improvement. It is important to note here that
Table 6.5 shows that the financial benefit from the presence of a futures market for
the Bordeaux wineries is 7.82%, and this number is smaller than the estimate of
10.10% provided in Noparumpa et al. (2015a, b). There are two differences in our
study when compared with Noparumpa et al. (2015a, b). First, this study considers
risk-neutral consumers, rather than risk-averse consumers, reflecting the operating
environment in the wine industry. Thus, we believe that this is a better estimate
representing the wine futures market. Second, we use barrel and bottle scores
established by Wine Spectator, the most widely distributed magazine in the wine
industry, and Noparumpa et al. (2015a, b) relies on Robert Parker scores. Table 6.6
provides the correlation between the barrel scores and bottle scores establishes by
Robert Parker and Wine Spectator for the 12 wineries used in the earlier analysis
during the same vintages of 2006 – 2011. It is evident that there is strong correlation
between the tasting expert reviews, the correlation coefficient between the barrel
scores of Robert Parker and Wine Spectator for the 12 winemakers in this study
is 80.3% during the 2006 – 2011 vintages. In conclusion, Table 6.5 demonstrates
that the wine futures market creates a significant financial benefit to the Bordeaux
winemakers.
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Table 6.5 The financial benefit from the presence of a wine futures market in winemaker profits
with � D 0.97561; ˇ D 24

Minimum Maximum Average Minimum Maximum Average
Winemaker r r r �…0 �…0 �…0

Angelus 9.88 62.29 27.83 3.23 18.65 8.61
Cheval Blanc 7.58 68.20 32.57 2.81 23.57 11.58
Clos Fourtet 11.05 48.88 34.07 4.12 17.21 12.19
Cos d’Estournel 4.98 32.76 18.68 1.79 11.28 6.73
Ducru Beaucaillo 15.58 66.90 40.54 5.35 22.75 14.09
Duhart Milon 8.23 23.13 13.45 3.61 9.74 5.75
Evangile 16.10 84.20 56.50 5.97 30.02 17.19
Leoville Poyferre 3.07 14.79 9.23 1.08 5.03 3.19
Mission Haut Brion 16.29 58.23 29.52 5.36 17.99 9.42
Pavie 3.46 57.11 27.03 1.10 16.67 7.74
Pichon Lalande 4.83 39.63 22.25 1.93 14.93 8.59
Troplong Mondot 6.17 34.21 22.34 2.44 12.99 9.06
Weighted average 21.90 7.82

Table 6.6 The correlation coefficients between the barrel scores and the bottle scores established
by Robert Parker and Wine Spectator for the same 12 wineries used in this study during the 2006 –
2011 vintages

Robert Parker
barrel score

Robert Parker
bottle score

Wine Spectator
barrel score

Wine Spectator
bottle score

Robert Parker
barrel score

1

Robert Parker
bottle score

0.905 1

Wine Spectator
barrel score

0.803 0.774 1

Wine Spectator
bottle score

0.752 0.731 0.860 1

Table 6.5 also demonstrates how futures quantity is a beneficial lever in miti-
gating the winemaker’s quality uncertainty. The analysis shows that these wineries
would benefit by using wine futures as a quantity lever: They should allocate on
average 21.90% of their wine as futures, with a minimum of 9.23% and a maximum
of 56.50% on average. If they get low barrel scores, the 12 winemakers allocate less
wine for wine futures; the minimum occurs at Leoville Poyferre with a 3.07% of
wine dedicated to wine futures. High barrel scores are desirable, and when a winery
receives a high barrel score, it can reserves more wine for the futures market. This
is exemplified in Evangile who allocated 84.20% of its production up for sale in the
form of wine futures. We conclude that selling wine while aging in the barrel in the
form of wine futures provides a good quantity lever to these winemakers interested
in reducing the negative consequences of bottle score uncertainty.
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Table 6.7 The financial
benefit from the presence of a
wine futures market at Heart
& Hands Wine Co. using
parameters � D 0.998801;

 D 0.76595, ˇ D 10

Varietal Vintage r �…0

Pinot noir barrel reserve 2007 45.96 11.91
2008 37.41 12.55
2009 45.03 11.33
2010 46.89 11.93

Riesling 2008 55.92 14.15
2009 59.11 14.79
2010 55.27 13.90
2011 59.60 14.99

Average 47.61 12.51

While Liv-ex is a beneficial electronic exchange platform for trading wine,
many small and artisanal winemakers cannot benefit from the presence of this
market. Wineries that are traded in Liv-ex are established winemakers with a
recognized brand name and image. We argue that artisanal and boutique wineries
would particularly benefit from establishing a futures market. In the US, most
winemakers are small and do not possess the brand recognition of Bordeaux
winemakers. Similarly, few Italian winemakers are traded in Liv-ex, and a majority
of winemakers in this country have limited resources to negate the financial
consequences from poor reviews. We expect these small and artisanal winemakers
to allocate a higher percentage of their wine to be sold in the form of wine futures;
specifically, the quantity lever would be used significantly. Similarly, we expect
them to reduce their futures price significantly, and therefore, they would engage
in using futures as a price lever. These arguments are demonstrated in Table 6.7
through the analysis of Heart & Hands Wine Co., a small and artisanal winemaker
in the Finger Lakes region in the State of New York. Heart & Hands Wine Co.
is gaining significant reputation for its stellar Pinot Noir and is in the process of
becoming a popular winemaker. We estimate the US consumers’ valuation by using
the risk-free rate of return based on the 12-month US Treasury Bond; we have
rf D 0.0012, leading to � D (1 C rf )�1 D 0.998801. We again utilize the CAPM
approach in order to estimate the winemaker’s risk preference; we have 
 D (1C rf

C  (rm – rf ))�1 D 0.76595. Because consumers in the US, and particularly for this
small winemaker, are more homogenous compared to the Bordeaux winemakers,
we describe consumer heterogeneity through a Gumbel distribution with mean of
zero and a smaller dispersion parameter at ˇ D 10. We use the scores established by
Wine Spectator in this analysis; it is also important to note that Robert Parker and
The Wine Advocate does not provide reviews of the small and artisanal winemakers
such Heart & Hands Wine Co.

Table 6.7 demonstrates that wine futures offer financially more beneficial price
and quantity levers for the small and artisanal winemakers than the Bordeaux
wineries. Heart & Hands Wine Co. improves its profit by 12.51% on average
with a minimum financial benefit of 11.33% and a maximum financial benefit of
14.99%. This winery has consistently lower scores than Bordeaux wineries, and
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the proposed model recommends to allocate a significantly larger percentage of its
wine as futures: 47.61%. Thus, the quantity lever of wine futures is an extremely
important risk mitigation tool for small and boutique winemakers.

6.6 Conclusions

This paper develops a stochastic optimization model and establishes the use of wine
futures as a price and quantity lever in order to mitigate quality uncertainty. The
winemaker financially benefits from the use of wine futures, but more importantly,
reduces the negative consequences of uncertain tasting expert reviews that get
established when the wine is bottled. Selling some of her wine in advance, the
winemaker recuperates her cash investment in a liquid that is uncertain in value;
the firm can use this money to reinvest in business, improve quality, and expand her
growth initiatives.

The study makes two sets of contributions. First, we develop an analytical model
that helps winemakers improve their profits. The proposed model incorporates
uncertain consumer valuations of wine futures and bottled wine and the random
bottle score that is assigned to the wine at the end of the production process.
The analysis leads to closed-form expressions for the optimal futures price, futures
quantity and the expected profit.

Second, we test the model by illustrating how it benefits the winemakers. We
show that the proposed stochastic model can improve the profits of Bordeaux
winemakers by 4.10% on average. We also estimate the financial benefits from
using the futures market for these Bordeaux winemakers: The futures market helps
improve their profits by 7.82% on average. Thus, the model makes a substantial con-
tribution to their bottom line profits. Finally, establishing a futures market in other
regions, e.g. the US and Italy, can be extremely beneficial for the small and artisanal
winemakers. Using one small winery from the Finger Lakes region in the US,
we demonstrate that this small winemaker would sell a higher percentage of their
wine with deeper discounts benefiting her more than the Bordeaux winemakers.
Thus, establishing a futures market would enable small and artisanal winemakers
to utilize these price and quantity levers to create a healthy and sustainable growth
opportunity.

This study also sheds light into the benefits from price efficiency over the
traditional practice of market-clearing price mechanisms. It is often believed that
winemakers, as well as many retailers, use market-clearing prices in order to sell
out the inventory of short selling season items. Wine for a specific vintage can be
perceived as a short selling season item, because winemakers need to replace the
shelf space and limited storage space (for barrels dedicated to aging the wine) with
the upcoming vintage’s bottles and barrels. This paper demonstrates that, by using
price as a lever, winemakers can increase their expected profits.
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Appendix

Proof of Lemma 1 Taking the derivative of (6.1) with respect to qf provides the
result.

@…
�
pf ; qf

�
=@qf D

�
pf � 
E Œpr .Qs2 js1 /� if qf < df

�
pf
�

0 if qf � df
�
pf
�

Because E ŒQs2js1� D s1, the expected retail price in May of calendar year t C 1
is equal to the barrel score, i.e., E Œpr .Qs2js1/� D s1. When pf � 
E Œpr .Qs2js1/�,
the derivative is positive for qf < df (pf ), and is equal to zero for qf � df (pf ). Thus,
increasing qf to df (pf ) provides a positive improvement in the expected profit. When
pf � 
E Œpr .Qs2js1/�, the winemaker sells all of the wine in Stage 2 in the retail
market. �
Proof of Lemma 2 We have E Œpr .Qs2js1/� D s1, and we take the natural log of
qf D df (pf ) where df (pf ) is expressed as in (6.5). Thus,

qf D df
�
pf
� D M .s1/

"
e.�s1�pf /=ˇ

2C e.�s1�pf /=ˇ

#
) qf

M .s1/

�
2C e.�s1�pf /=ˇ

�

D e.�s1�pf /=ˇ ) 2qf

M .s1/ � 2qf
D e.�s1�pf /=ˇ:

Taking the natural logarithm of both sides provides:

ln

	
2qf

M .s1/ � 2qf



D ˇ

�
�s1 � pf

�

Rearranging the terms, we obtain the futures price expression in (6.6).

pf
�
qf
� D �s1 � ˇ ln

	
2qf

M .s1/ � qf



D �s1 C ˇ ln

	
M .s1/ � qf

2q



:

�

http://liv-ex.com
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Lemma A1 Maximizing the objective function in (6.3) is equivalent to maximizing
the expected profit expression in (6.1).

Proof of Lemma A1 The objective function in (6.3) can be rewritten as follows:

�…
�
pf ; qf

� D �
1=…

�
p0f ; q

0
f

�� �
…
�
pf ; qf

�
–…

�
p0f ; q

0
f

�� � 100%

Because the values of p0f and q0f are given, the expected profit expression for

the winemaker’s current profit level, described with …
�

p0f ; q
0
f

�
, is constant. Thus,

maximizing �…(pf , qf ) is equivalent to maximizing the expected profit expression
…(pf , qf ) in (6.1). �
Proof of Proposition 1 From Lemma A1, we know that maximizing �…(pf , qf )
in (6.3) is equivalent to maximizing the expected profit …(pf , qf ) in (6.1). Thus, we
focus on the properties of (6.1). Moreover, we know that…(pf , qf ) can be expressed
as a single decision variable function as in (6.7). Thus, it is sufficient to show that
…(qf ) is concave in qf . Following the proof of Theorem 1 in Li and Huh (2011); it
can be shown that…

00

(qf ) < 0. Using the first-order condition and (6.6), we have the
futures price can be expressed as follows:

pf
�
qf
� D 
s1 C ˇM .s1/

M .s1/ � qf
D ˇ C 
s1 C ˇqf

M .s1/ � qf
:

Using the approach described in the derivations of Proposition 1 of Noparumpa
et al. (2015a), the optimal unconstrained futures quantity can be obtained as follows:

q0f D M .s1/

0

B@
e
.��
/s1=ˇ�W


e.��
/s1=ˇ

2e

�

2e C e
.��
/s1=ˇ�W


e.��
/s1=ˇ

2e

�

1

CA

Iff q0f � Q, then q�
f D q0f , and the optimal profit is equivalent to the unconstrained

optimal profit, and

p�
f D 
s1 C ˇ

"
1C W

 
e.��
/s1=ˇ

2e

!#

If q0f � Q, then the supply constraint is binding, i.e., q�
f D Q. In this case, the

optimal price is obtained by substituting q�
f D Q in (6.6), and the optimal profit is

obtained by substituting the revised price expression into (6.1). �
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Chapter 7
VIX Computation Based on Affine Stochastic
Volatility Models in Discrete Time

A. Hitaj, L. Mercuri, and E. Rroji

Abstract We propose a class of discrete-time stochastic volatility models that, in a
parsimonious way, capture the time-varying higher moments observed in financial
series. Three desirable results are obtained. First, we have a recursive procedure
for the log-price characteristic function which allows a semi-analytical formula
for option prices as in Heston and Nandi (Rev Financ Stud 13(3):585–625, 2000).
Second, we reproduce some features of the VIX Index. Finally, we derive a simple
formula for the VIX index and use it for option pricing.

Keywords Affine stochastic volatility • VIX • Implied volatility surface

7.1 Introduction

The Black and Scholes model (see Black and Scholes, 1973) is probably the most
famous model proposed for option pricing. Despite its success, the drawbacks
in representing real market stylized facts are well documented by an increasing
empirical literature (see Embrechts et al., 1997, and the references therein). Since
Mandelbrot (1963), empirical results have shown that the process describing log
returns is not a Brownian motion. Indeed, financial time series exhibit heavy tails,
asymmetric distribution, persistence and clustering in volatility.
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Several models have been proposed in continuous and discrete time. A first
improvement is obtained through the introduction of the Lévy processes with
jumps in finance. For instance, Merton (1976) introduced a Jump diffusion model
in the evaluation of option prices. The success of these models in finance is
justified, on one hand, by their analitycal tractability (the marginal distribution
can be determined through the characteristic function) and, on the other hand,
by the ability on reproducing asymmetry and heavy tails in financial time series
(see Cont and Tankov, 2003; Schoutens, 2003, for a general survey). A special
attention deserves the process whose distribution at time one is a Normal Variance
Mean Mixture. Particular cases widely applied in finance are the Variance Gamma
process introduced by Madan and Seneta (1990), the Normal Inverse Gaussian
(see Barndorff-Nielsen and Shephard, 2001), the Hyperbolic and the Generalized
Hyperbolic (see Barndorff-Nielsen, 1977; Eberlein and Prause, 1998). Their main
drawback is related to the independence of the increments that makes them
inadequate in capturing the dynamic of higher moments (see Iacus, 2011, for
formulas of some Lévy processes applied in option pricing).

A way to overcome these limits is by using stochastic volatility models for
describing log return dynamics. There are two sources of risk in these models: the
first drives the volatility dynamics and the second directly log returns. The main
problem is that the volatility process is not observable in the market.

In discrete time the most commonly used class for modeling financial time series
is the family of GARCH models (Engle, 1995). Despite the success in financial
econometrics and risk management, their use for option pricing is not yet very well
understood, as observed in Christoffersen et al. (2012). Monte Carlo technique is
often used to compute option prices in GARCH models (see Duan, 1995; Duan and
Simonato, 1998, for the efficiency of Monte Carlo estimator). Another approach is
using approximate formulas based on Edgeworth expansion (see Duan et al., 1999,
2006). It is well known that the Monte Carlo procedure is time consuming when
calibration exercise is considered, while the Edgeworth expansion seems to be less
accurate for option pricing with long or medium time to maturity.

A major breakthrough occurred with the paper of Heston and Nandi (2000)
where the authors derived a recursive procedure for the characteristic function
of the log price at maturity, obtaining a semi analytical formula for European
call options based on Inverse Fourier Transform, as in Carr and Madan (1999).
Following the same idea a new class of GARCH models, namely affine GARCH, has
been developed assuming different assumptions for the innovations. In particular,
Christoffersen et al. (2006) considered the Inverse Gaussian innovations while
Bellini and Mercuri (2007) Gamma innovations. Later Mercuri (2008) generalized
the class of affine GARCH models assuming that log returns are conditionally
Tempered Stable distributed (see Ornthanalai, 2008, for more details on affine
GARCH models).
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As observed in Christoffersen et al. (2006), the extreme asymmetry of the affine
GARCH models with non-normal innovations gives an advantage for options with
very short time to maturity. However, the fit is less accurate for options with medium
maturity probably due to the fact that the medium time to maturity return distribution
slowly converges to the Normal distribution.

To overcome this limit, starting from the affine GARCH model and assuming
that the conditional distribution of log returns is a Normal Variance Mean Mixture,
we construct a discrete time stochastic volatility model in a simple way. Indeed,
substituting the mixing random variable with an affine GARCH, we obtain a
recursive procedure for the computation of the characteristic function for the log-
price at maturity. Option prices are obtained via Fourier transform. The introduction
of this new class is motivated from the fact that affine models (usually in continuous
time) are quite natural for option pricing but the discrete time models are easily
estimated. Although the literature on affine stochastic volatility in continuous time
is wide, the discrete counterpart did not receive the same attention. The substitution
of the mixing r.v. with an affine GARCH process gives to our models the capability
of capturing time dependence in financial times series, for instance persistence
in squared returns. This affine GARCH process controls also the magnitude of
the return movements and plays a similar role as the variance process in the
continuous time models. Moreover, it generates time varying higher order moments.
Volatility (see Chicago Board Options Exchange, 2003) and Skew (see Chicago
Board Options Exchange, 2011) indexes cannot exist in a world with constant
higher moments since they would be useless. Time-dependence of these moments is
coherent with price movements observed in the market making our approach more
realistic.

In our model, it is possible to extrapolate information from the VIX data and
use it in option pricing. Indeed, we find a linear relation between the variance
dynamics and the VIX2. A similar result has been obtained in discrete time by
Hao and Zhang (2013) under the GARCH assumption and, for these models, the
procedure for extrapolating information from VIX in pricing Options on S&P500
has been considered recently in Kanniainen et al. (2014) while Liu et al. (2015)
analyze how to assess the risk premium in GARCH(1,1), GJR, and HestonNandi
models. However, our model is able to generate time-varying skewness and kurtosis
that standard GARCH models can not reproduce.

The paper is organized as follows. Section 7.2 explains the construction of
stochastic volatility models in discrete time. In Sect. 7.3 we prove that, in our setup,
the VIX index is an autoregressive process with heteroskedastic innovations: we
derive a linear relation between the unobservable variance and the current level
of VIX index. In Sect. 7.4 we derive explicit formulas specifying the conditional
distribution of log returns. In Sect. 7.5 empirical results using the implied volatility
surface obtained from Bloomberg data provider are given. In Sect. 7.6 we draw some
conclusions.
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7.2 General Setup

In this section we propose a class of stochastic volatility models, in discrete time,
through which we are able to price options using the information extrapolated from
the VIX index.

Given a filtered probability space .	;F ;Ft;P/, we consider a market with two
assets:

– riskless with dynamics: Bt D Bt�1 exp.r/
– risky with price dynamics:

St D St�1 exp.Xt/

Xt D r C �0ht C �1Vt C �
p

VtZt (7.1)

where r is the deterministic free rate observed in the market; �0 and �1 are real
valued model parameters while � must be non negative; Xt is a discrete time
stochastic process describing log returns; Zt � N.0; 1/; 8t D 1; : : : ;T and is
independent from Vt.

We require Vt to be an adapted positive process such that the conditional moment
generating function (m.g.f. hereafter) of Vt given the information available at time
t � 1 is:

EŒexp.cVt/jFt�1� D exp.htf .c; �// (7.2)

and 8 fixed vector � , 9 ı > 0 such that 8c 2 .�ı; ı/ the function f .c; �/ 2 C1
and f .0; �/ D 0. The vector � contains the parameters of distribution Vt given
information at time t � 1. We assume ht to be a predictable process defined as:

ht D ˛0 C ˛1Vt�1 C ˇht�1: (7.3)

The process ht is positive if the parameters ˛0; ˛1 and ˇ are non negative.
It is worth noting that if Vt is constant (i.e. Vt D NV; t D 1; 2; : : : and consequently

ht D Nh), the sequence fXtgtD1;2;::: is composed by i.i.d gaussian r.v.’ s and a general
sample path is centered in r C �0 Nh C �1 NV . The magnitude of movements depends
on the value of NV . In this case, the oscillating behaviour of returns in quiet and in
turbulent markets can not be reproduced. The same observation holds if we assume
the sequence fVtgtD1;2;::: to be composed by i.i.d. random variables.

From (7.2) we have:

EŒVtjFt�1� D @EŒexp.cVt/jFt�1�
@c

ˇ̌
ˇ̌
cD0

:
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Let g.�/ be defined as:

g.�/ WD @f .c; �/

@c

ˇ̌
ˇ̌
cD0

; (7.4)

the analytical expression for conditional mean of Vt becomes:

EŒVtjFt�1� D htg.�/: (7.5)

Adding and subtracting the quantity ˛1g.�/ht�1 in (7.3) we obtain for ht a new
representation:

ht D ˛0 C .˛1g.�/C ˇ/ht�1 C ˛1.Vt�1 � g.�/ht�1/: (7.6)

Observe that ht is an AR(1) with heteroskedastic error Vt�1 � g.�/ht�1. Therefore,
if we extrapolate from the market the realizations of ht, the generalized least square
technique gives us estimates for the quantities ˛0; ˛1; and ˛1g.�/Cˇ. In our model,
the conditional variance evolves according to the stochastic process ht:

Var ŒVtjFt�1� D ht
@2f .c; �/

.@c/2

ˇ̌
ˇ̌
cD0

:

An essential requirement, based on empirical evidence, is the negative correlation
between returns and volatility which implies:

Cov .Vt;XtjFt�1/ D �1Var.VtjFt�1/ < 0; (7.7)

meaning that �1 must be negative.
If we compute the conditional expectation of Xt we have:

E .Xt jFt�1 / D r C .�0 C �1g .�// ht: (7.8)

Looking to relation in (7.8) is natural for a financial interpretation to require �0 C
�1g .�/ > 0 since it implies a positive risk premium for the asset.

In the special case when � D 0 the process describing Xt is an affine GARCH as
in Christoffersen et al. (2006), Bellini and Mercuri (2007) and Mercuri (2008).

Our approach tries to generalize the Lévy processes built on the Normal Variance
Mean Mixtures since we introduce a dependence structure. Indeed the conditional
distribution evolves through time due to the predictable process ht.

Both ht and � are crucial for the variability of the process Xt but � does not
introduce any heteroskedasticity in the model and for obtaining time dependent
higher moments we need ht to be defined as in (7.6). Through the predictable process
ht, we are able to generalize the Lévy process built on the Normal Variance Mean
Mixture obtaining a distribuition of increments that evolves in time.
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The next step is to show how to price a European call option with maturity T
where the dynamics of the log returns for the risky asset is defined in (7.1). Here,
we provide a simple recursive procedure through which we obtain the conditional
m.g.f. of ln .ST/ using a similar approach as that introduced in Heston and Nandi
(2000).

Proposition 1 Under condition (7.2), the m.g.f. of the random variable ln ST given
the information at time t exists and is given by:

EŒexp.c ln .ST//jFt� D Sc
t expŒA.tI T; c/C B.tI T; c/htC1�:

The time-dependent coefficients A.tI T; c/ and B.tI T; c/ are:

8
<̂

:̂

A.tI T; c/ D cr C A.t C 1I T; c/C ˛0B.t C 1I T; c/
B.tI T; c/ D c�0 C ˇB.t C 1I T; c/C

f .c�1 C ˛1B.t C 1I T; c/C c2�2

2
; �/

(7.9)

with the following final conditions:

A.TI T; c/ D 0

B.TI T; c/ D 0:

(see Appendix A.1)
The existence of m.g.f. allows us to obtain the characteristic function and the
distribution function is achieved by the inverse Fourier transform.

Our aim is to price options and compute implied volatility indexes. In order to
ensure the martingale condition under Q measure, we use the following proposition.

Proposition 2 Under the assumptions E.St/ < C1 and �0 D �f .�1 C �2

2
; �/, the

discounted price is a martingale.
(see Appendix A.2)
We have obtained in Proposition 1 the m.g.f. for the underlying of a call option.

The next step is the evaluation of a European call option as in Heston (1993)

C.K;T/ D S0…1 � Ke�rT…2

…1 D 1

2
C 1

�

Z C1

0

<
 

K�iuEQ
0 ŒS

i.u�i/
T �

iuEQ
0 ŒST �

!
du

…2 D 1

2
C 1

�

Z C1

0

<
 

K�iuEQ
0 ŒS

iu
T �

iu

!
du

The exercise probabilities …1 and …2 can be computed following Feller (1968).
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7.3 VIX Index

In this Section we show how to derive the Volatility Implied Index (VIX) in
our model. In particular, the linear relation between VIX and the process ht is
derived. From a theoretical point of view, this relation implies that the VIX is a
mean-reverting autoregressive process with heteroskedastic errors. A similar result
has been proposed in Zhang and Zhu (2006) under the assumption that the SPX
dynamics is described by Heston (1993). The methodology for computing the VIX
index is based on the replication of a variance swap (see Demeterfi et al., 1999) and
the current level of VIX is related to the value of the portfolio composed by out-
of-the money call/put options on the S&P500. Assuming that the strike prices vary
continuously from 0 to C1, the VIX squared formula is the following:


VIXt

100

�2
D 2er.T�t/

T � t

"Z S�

0

1

K2
P.St;K/dK C

Z C1

S�

1

K2
C.St;K/dK




D 2er.T�t/

T � t

	
EQ

t


ST � S�

S� � ln


ST

S�

��

: (7.10)

C.St;K/ and P.St;K/ are out-of-the money call and put option prices. S� is the
forward price of the SPX index.

The main result of our model is reported in the following proposition.

Proposition 3 Under the conditions:

˛1g.�/C ˇ < 1

�1g.�/ � f
�
�1 C �2

2
; �
�

� 0

htC1 > 0
(7.11)

the VIX squared is an affine linear function of the predictable process ht:


VIXt

100

�2
D �2er.T�t/

T � t
ŒC.tI T/C D.tI T/htC1� (7.12)

where C.tI T/ and D.tI T/ are functions of the model parameters, given by:

8
ˆ̂<

ˆ̂:

C.tI T/ D ˛0 Œ�1g.�/C �0�

(
T�t�1�Œ˛1g.�/Cˇ� 1�Œ˛1g.�/Cˇ�.T�t/�1

1�Œ˛1g.�/Cˇ�

1�Œ˛1g.�/Cˇ�

)

D.tI T/ D Œ�1g.�/C �0�
1�Œ˛1g.�/Cˇ�T�t

1�Œ˛1g.�/Cˇ�

(7.13)

with T � t D 30 days.
(See Appendix A.3)
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Considering the fact that VIX is a measure of the 30 days implied volatility on
S&P500, Eq. (7.12) becomes:


VIXt

100

�2
D �2er30

30
ŒC30 C D30htC1�

where r is the one month Libor rate on daily basis.
We define the adjusted VIX as:

VIXadj
t D � 30

2er30

VIX2t
104

:

Notice that VIXadj
t < 0 8t since it is a decreasing linear transformation of the VIX

squared.
Using Proposition 3 we have:

VIXadj
t D C30 C D30htC1 ) htC1 D VIXadj

t � C30
D30

: (7.14)

The requirement htC1 > 0 implies that 0 > VIXadj
t > C30 8t.

Using the definition (7.6) of ht, we have following proposition:

Proposition 4 Under the same conditions of Proposition 3, defining the het-
eroskedastic error term �t WD ˛1.Vt �g.�/ht/D30, the VIXadj

t is an AR.1/ defined as:

VIXadj
t D int C slopeVIXadj

t�1 C �t

where

�
int D 30˛0 .�1g.�/C �0/

slope D ˛1g.�/C ˇ

(see Appendix A.4)
Given the model parameters, the current and the one-day-ahead VIX level we

have the heteroskedastic error term defined as:

�tC1 D VIXtC1 � int � slopeVIXt:

From Eq. (7.14) we extract htC1 and obtain the value of the main “unobservable”
variable of our model, i.e. VtC1:

VtC1 D g.�/C �tC1
˛1D30

:
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Once estimated int and slope we can redefine D30 and C30 in order to extrapolate a
multiple of htC1 from the quoted VIXt. In particular we get:

D30 D D�
30

˛0
D int

�
1 � slope30

�

30 � .1 � slope/

1

˛0

C30 D
2

4
29 � slope 1�slope29

1�slope

1 � slope

3

5 int

30

VIXadj
t � C30
D�
30

D htC1
˛0

> 0

The quantity htC1

˛0
can be used to compute the m.g.f. of ln.ST/jFt needed in option

pricing.
If slope < 1, VIXadj

t is mean reverting. The long term mean and the reverting
speed are respectively:

int

1 � slope
; 1 � slope:

The conditional mean of the error term is zero but we are in presence of het-
eroskedasticity:

E Œ �tjFt�1� D 0; Var Œ �tjFt�1� D ˛21D2
30Var ŒVtjFt�1� :

Although Cov Œ�tC1; �tjFt�1� D 0 and Cov
�
�tC1; �2t

ˇ̌
Ft�1

� D 0, the error time-
dependence structure is more complex than a linear one. The following quantities
are different from zero and time dependent:

Cov
�
�2tC1; �t

ˇ̌
Ft�1

� D ˛31D3
30

@2f

.@c/2

ˇ̌
ˇ̌
cD0

	
˛0 C ˛1

@2f

.@c/2

ˇ̌
ˇ̌
cD0



ht

Cov
�
�2tC1; �

2
t

ˇ̌
Ft�1

� D ˛41D30

@2f .c; �/

.@c/2

ˇ̌
ˇ̌
cD0

	
˛0 C .˛1g.�/C ˇ/

@2f .c; �/

.@c/2

ˇ̌
ˇ̌
cD0

h2t C ˛21�3




where �3 D E
�
.Vt � g.�//3

ˇ̌
Ft�1

�
.

7.4 Special Cases

The conditional distribution of log returns belongs to the family of Normal Variance
Mean Mixture since Zt in (7.1) is normally distributed. A univariate Normal
Variance Mean Mixture (see Barndorff-Nielsen et al., 1982) is a random variable
defined as:
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X
dD�C �V C �

p
VZ

where Z and V are independent univariate random variables, Z � N.0; 1/, and V
is defined on the positive real line. Below we introduce three special cases of our
approach where the conditional distribution of log returns is respectively Variance
Gamma (see Madan and Seneta, 1990), Normal Inverse Gaussian (see Barndorff-
Nielsen and Shephard, 2001) and Normal Tempered Stable (see Barndorff-Nielsen
and Shephard, 2001).

7.4.1 Dynamic Variance Gamma

Assuming that the affine GARCH process Vt is conditionally Gamma distributed
(see Bellini and Mercuri, 2007) then Xt in (7.1) follows a Dynamic Variance Gamma
model introduced by Bellini and Mercuri (2011).

The conditional m.g.f. of the Vt is:

E
�

ecVt
ˇ̌
Ft�1

� D exp Œ�ht ln .1 � c/�
f .c; �/ D � ln .1 � c/
g.�/ D 1:

System (7.9) becomes:

8
<̂

:̂

A.tI T; c/ D cr C A.t C 1I T; c/C ˛0B.t C 1I T; c/
B.tI T; c/ D c�0 C ˇB.t C 1I T; c/C

� ln
�
1 � c�1 � ˛1B.t C 1I T; c/ � c2�2

2

�
:

(7.15)

System (7.13) becomes:

8
ˆ̂<

ˆ̂:

C.tI T; c/ D ˛0 .�1 C �0/

(
.T�t/�.˛1Cˇ/ 1�.˛1Cˇ/T�t�1

1�.˛1Cˇ/

1�.˛1Cˇ/

)

D.tI T; c/ D .�1 C �0/
1�.˛1Cˇ/T�t

1�.˛1Cˇ/ :
(7.16)

with final conditions C.TI T; c/ D 0 and D.TI T; c/ D 0. We have the following
restrictions on the parameters:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�1 � 0

�0 D ln
�
1 � �1 � �2

2

�

˛1 C ˇ � 1

�1 C ln
�
1 � �1 � �2

2

�
� 0:

(7.17)
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7.4.2 Dynamic Normal Inverse Gaussian

If the affine GARCH process Vt is conditionally Inverse Gaussian distributed (see
Christoffersen et al., 2006) than log-returns Xt, given the information at time t � 1,
have a Normal Inverse Gaussian distribution (see Barndorff-Nielsen, 1997).

The density of a Inverse Gaussian distribution is:

fV.v/ D htp
2�v3

exp

"
�1
2

p
v � htp

x

�2#
:

The conditional m.g.f. of the Vt is:

E
�

ecVt
ˇ̌
Ft�1

� D exp
h
ht

�
1 � p

1 � 2c
�i

f .c; �/ D
�
1 � p

1 � 2c
�

g.�/ D 1:

System (7.9) becomes:

8
ˆ̂<

ˆ̂:

A.tI T; c/ D xr C A.t C 1I T; c/C ˛0B.t C 1I T; c/
B.tI T; c/ D c�0 C ˇB.t C 1I T; c/Cr

1 � 2
�

c�1 C ˛1B.t C 1I T; c/C c2�2
2

�
:

(7.18)

System (7.13) becomes

8
ˆ̂<

ˆ̂:

C.tI T; c/ D ˛0 .�1 C �0/

(
.T�t/�.˛1Cˇ/ 1�.˛1Cˇ/T�t�1

1�.˛1Cˇ/

1�.˛1Cˇ/

)

D.tI T; c/ D .�1 C �0/
1�.˛1Cˇ/T�t

1�.˛1Cˇ/

(7.19)

with final conditions C.TI T; c/ D 0 and D.TI T; c/ D 0. We have the following
restrictions on the parameters:

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

�1 � 0

�0 D �

1 �

r
1 � 2

�
�1 C �2

2

��

�1 � 1C
r
1 � 2

�
�1 C �2

2

�
< 0

˛1 C ˇ < 0

(7.20)
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7.4.3 Dynamic Normal Tempered Stable

Consider the affine process Vt proposed in Mercuri (2008) then log returns follow
a conditional Normal Tempered Stable as introduced in Barndorff-Nielsen and
Shephard (2001). We recall that the Normal Tempered Stable is obtained as a
Normal Variance Mean Mixture where the mixing density is a Tempered Stable
(see Tweedie, 1984) that is obtained by tempering the tail of a positively skewed ˛�
Stable distribution. The Normal Tempered Stable has as special cases the Variance
Gamma and the Normal Inverse Gaussian.

The conditional m.g.f. of VtjFt�1 is:

E
�

ecVt
ˇ̌
Ft�1

� D exp
�
htb

�
1 � .1 � 2cb�1=˛/˛

��
(7.21)

where ˛ 2 .0; 1/ and b > 0.
Comparing (7.21) with (7.2), we have:

f .c; �/ D b
�
1 � .1 � 2cb�1=˛/˛

�

and

g.�/ D 2˛b.˛�1/=˛:

Applying Proposition 1, we obtain the recursive system of equations for time
dependent coefficients:

8
<̂

:̂

A.tI T; c/ D cr C A.t C 1I T; c/C ˛0B.t C 1I T; c/
B.tI T; c/ D c�0 C ˇB.t C 1I T; c/C

b
n
1 �

h
1 � 2b� 1

˛

�
c�1 C ˛B.t C 1I T; c/C c2�2

2

�i˛o
:

(7.22)

From Proposition 2 we have the following constraint:

�0 D �b

"
1 �


1 � 2


�1 C �2

2

�
b1=˛

�˛#

and, implementing the Fast Fourier Transform, we price the European call option.
Using Proposition 3, we obtain the following time varying coefficients that allow

us to extrapolate ht from current level of VIX:

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

C.tI T/ D ˛0
�
2˛b.˛�1/=˛�1 C �0

��

�

8
<̂

:̂

.T�t/�.2˛b.˛�1/=˛˛1Cˇ/ 1�.2˛b.˛�1/=˛˛1Cˇ/
T�t�1

1�.2˛b.˛�1/=˛˛1Cˇ/
1�.2˛b.˛�1/=˛˛1Cˇ/

9
>=

>;

D.tI T/ D .2˛b.˛�1/=˛�1 C �0/
1�.2˛b.˛�1/=˛˛1Cˇ/T�t

1�.2˛b.˛�1/=˛˛1Cˇ/

: (7.23)
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In this case the condition (7.11) becomes:

(
2˛b.˛�1/=˛�1 � b

h
1 �

�
1 � 2

�
�1 C �2

2

�
b�1=˛

�˛i � 0:

˛1 C ˇ < 1
(7.24)

7.5 Empirical Analysis

We investigate in details the ability of our models to reproduce the behavior of
European option prices on SPX index. We have two main objectives: replicate the
market option volatilities and compare the theoretical VIX derived in our models
with the observed one. The dataset is composed by the implied volatility surfaces
observed each Wednesday going from May 2011 to April 2012, moneyness ranging
from 0:9 to 1:1 and time to maturity 30, 60 and 90 days (the total number of
observations is 1008). We choose Wednesday’s observations to remove possible
weekend effects as those discussed in French (1980). From Eq. (1) we see that
we need the term structure of the risk-free rate in order to compute the m.g.f of
the variable ln ST . The Libor curve can be a possible choice though we know it is
not the only one. We downloaded the needed curve from Bloomberg.

The first Wednesdays of each month are the in-sample data (231 observations).
The remaining dataset (777 observations) is used for the out-of-sample analysis. We
calibrate the model in each in-sample period. The values obtained for the parameters
are used as input for the out-of-sample analysis. The error measure considered is:

p
percMSE D

vuut
PK

kD1
PT

tD1
h
�mkt.k;t/�� theo.k;t/

�mkt.k;t/

i2

NT � NK

where �mkt.k; t/, � theo.k; t/ are respectively the implied volatilities observed in the
market and those obtained by the models. NT , NK represent respectively the number
of the available maturities and strikes.

Tables 7.1, 7.2 and 7.3 report the values of the calibrated parameters and the
corresponding in-sample errors.

Our calibration exercise takes into account the possibility of extrapolating the
latent process ht directly from the VIX index. We find that for the DNTS model
the in-sample errors are the lowest except only in one case where the DNIG model
has the best performance. This result strongly supports our initial guess that two
additional parameters would allow to better capture the market dynamics. Observe
that if b D 2a and ˛ D 1

a for a ! 0 we obtain the DVG model, while for b D 1 and
˛ D 1

2
the model is the DNIG.

The out-of-sample results suggest the use of the DNTS model in the considered
dataset. Indeed, computing the

p
percMSE on the entire out-of-sample data, we find

that the DNTS reaches an error level of 5.05% which is a reduction error of 21.10%
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Table 7.1 Calibrated parameters for the DVG model in the in-sample period

In sample calibration for DVG

Date �0 �1 � ˛0 ˛1 ˇ Perc. error

04-May-2011 0.012 �0.012 0.014 0.033 0.493 0.379 0.048

01-Jun-2011 0.036 �0.039 0.069 0.009 0.274 0.148 0.084

06-Jul-2011 0.005 �0.005 0.006 0.033 0.344 0.633 0.027

03-Aug-2011 0.034 �0.035 0.001 0.060 0.317 0.000 0.037

07-Sep-2011 0.008 �0.008 0.011 0.032 0.538 0.444 0.015

05-Oct-2011 0.051 �0.053 0.029 0.028 0.155 0.484 0.024

02-Nov-2011 0.095 �0.100 0.007 0.018 0.057 0.085 0.039

07-Dec-2011 0.060 �0.062 0.007 0.024 0.008 0.454 0.052

04-Jan-2012 0.019 �0.019 0.020 0.023 0.207 0.644 0.048

01-Feb-2012 0.036 �0.038 0.056 0.017 0.014 0.157 0.048

07-Mar-2012 0.042 �0.043 0.029 0.000 0.000 1.000 0.088

Table 7.2 Calibrated parameters for the DNIG model in the in-sample period

In sample calibration for DNIG

Date �0 �1 � ˛0 ˛1 ˇ Perc. error

04-May-2011 0.049 �0.052 0.062 0.006 0.012 0.572 0.039

01-Jun-2011 0.047 �0.050 0.061 0.006 0.016 0.604 0.029

06-Jul-2011 0.009 �0.009 0.011 0.009 0.168 0.816 0.024

03-Aug-2011 0.035 �0.036 0.042 0.029 0.212 0.059 0.022

07-Sep-2011 0.067 �0.072 0.075 0.017 0.120 0.113 0.022

05-Oct-2011 0.007 �0.008 0.010 0.028 0.427 0.564 0.007

02-Nov-2011 0.060 �0.064 0.066 0.007 0.081 0.674 0.019

07-Dec-2011 0.046 �0.048 0.057 0.005 0.008 0.867 0.024

04-Jan-2012 0.029 �0.030 0.019 0.019 0.065 0.733 0.057

01-Feb-2012 0.030 �0.031 0.042 0.023 0.269 0.109 0.034

07-Mar-2012 0.013 �0.014 0.015 0.010 0.211 0.760 0.026

with respect to DNIG (the second best model). To deeply analyse the out of sample
error, Fig. 7.1 reports the results obtained in 36 out-of-sample Wednesdays. In 72%
of the cases the DNTS shows a lower error level than the other two while the DNIG
has the lowest error level only in 14% of the cases.

We remark that in our model the square of the VIX is an autoregressive process.
The conditional expected value of the VIX is not available in a closed form formula.
However, using Jensen’s inequality, we easily derive the following upper bound that
we use in our analysis:

E ŒVIXtC1jFt� D E

	q
VIX2tC1

ˇ̌
ˇ̌Ft



�
q

E
�

VIX2tC1
ˇ̌
Ft
� D VIXub

tC1:
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Table 7.3 Calibrated parameters for the DNTS model in the in-sample period

In sample calibration for DNTS

Date �0 �1 � ˛0 ˛1 ˇ b a Perc. error

04-May-2011 0.212 �0.107 0.013 0.002 0.363 0.276 0.814 0.990 0.009

01-Jun-2011 0.066 �0.042 0.039 0.011 0.296 0.000 0.800 0.750 0.019

06-Jul-2011 0.005 �0.005 0.006 0.039 0.380 0.596 1.000 0.500 0.025

03-Aug-2011 0.052 �0.027 0.008 0.012 0.510 0.000 0.897 0.955 0.007

07-Sep-2011 0.005 �0.006 0.009 0.051 0.658 0.409 0.962 0.413 0.015

05-Oct-2011 0.012 �0.016 0.026 0.001 0.116 0.910 0.946 0.345 0.004

02-Nov-2011 0.003 �0.003 0.006 0.133 0.806 0.233 0.863 0.351 0.011

07-Dec-2011 0.085 �0.043 0.010 0.004 0.473 0.072 0.854 0.975 0.005

04-Jan-2012 0.003 �0.005 0.007 0.105 0.772 0.449 1.000 0.341 0.018

01-Feb-2012 0.100 �0.053 0.021 0.001 0.104 0.803 0.800 0.934 0.014

07-Mar-2012 0.018 �0.011 0.007 0.032 0.539 0.090 0.965 0.803 0.024

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Week

E
r
r
o
r

VG

NIG

NTS

Fig. 7.1 Out of sample weekly comparison

Using Proposition 4 and Eq. (7.14), our upper bound becomes:

VIXub
tC1 D

r
�2e30r104

30
int C slopeVIX2t

where all quantities are on daily basis and the year conversion is necessary for
comparison with its observed level.

We calibrate the model on the first Wednesday of each month (in total there are
12 calibration periods). The resulting parameters are maintained fixed until the next
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Fig. 7.2 Comparison between the predict VIX (upper bound �) and next day open, closed, min,
max VIX level using monthly calibration

in-sample day. From Figs. 7.2, 7.4 and Table 7.5 we observe that the DVG model
displays the worst performance.

Instead of having fixed parameters for the entire month we can decide to make the
recalibration period dynamic. Intuitively, if the market conditions change a lot (i.e.
we observe a jump of the implied volatility), it is reasonable to think that in order to
have a better prediction for the VIX level we must update the model parameters. This
update for us means to recalibrate the model using the option volatilities observed
after the jump has occurred.

We face the problem of defining the jump in terms of relative daily variation of
the VIX Index level. If the observed VIX level is lower than 30% we recalibrate if
the next day relative variation is higher than 30%. For example if the current level
of VIX is 15% we recalibrate the model if the next day value is higher than 20% or
lower than 10%. For higher levels of the VIX index (more than 30%) the required
daily relative variation is fixed at 25%. This decision comes from the fact that VIX
levels higher than 39% are rarely observed. In Fig. 7.3 we report a comparison
between the VIX and S&P500 for the considered dates.

The number of calibrations is reduced from 12 (when the parameters for the
entire month are fixed) to 9 (when decision is dependent on the VIX level).
Comparing the results reported in Tables 7.4 and 7.5, the error term, defined asr

E
h
.VIXmkt � VIXub/

2
i
, is reduced when the calibration time is based on VIX

index level. This is also confirmed from Figs. 7.3 and 7.4.
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Fig. 7.3 Comparison between VIX and S&P500

Table 7.4 Errors obtained
when the calibration is done
the first Wednesday of each
month

DVG (%) DNIG (%) DNTS (%)

Open 1,111 0,029 0,140

Closing 0,967 0,173 0,004

High 2,187 1,047 1,216

Low 0,028 1,167 0,999

Table 7.5 Errors obtained
when the calibration decision
depends on the VIX index
level

DVG (%) DNIG (%) DNTS (%)

Open 0,589 0,005 0,080

Closing 0,445 0,139 0,064

High 1,665 1,081 1,156

Low 0,550 1,133 1,059

The choice of the DNTS showed in the calibration exercise seems to be weaker
when we try to forecast the VIX index level. In particular, the DNIG seems to behave
better in some extreme market conditions.

7.6 Conclusions

In this paper we proposed a class of discrete time stochastic volatility models. We
started from the affine GARCH model and assumed that the conditional distribution
of log returns is a Normal Variance Mean Mixture with support the entire real line.
We obtained a recursive procedure for the computation of the characteristic function
for the log-price at maturity. Option prices were than obtained via Fourier transform.
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Fig. 7.4 Comparison between the predict VIX (upper bound �) and next day open, closed, min,
max VIX level using monthly calibration

In our model, it is possible to extrapolate information from the VIX data. The
VIX2 index resulted to be an autoregressive process and the information extracted
was used for pricing options on S&P500.

We specified some special cases for our general model. The Dynamic Normal
Inverse Gaussian based model resulted to be more flexible in capturing market
dynamics especially in turbulent periods.

A Appendix

A.1 Conditional Moment Generating Function

Following the approach proposed in Heston and Nandi (2000) we derive a system
of recursive equations for the time dependent coefficients of the conditional m.g.f.
of the random variable ln.ST/ given the available information at time t. We want to
prove that the conditional m.g.f. is given by the following formula:

Et Œexp .c ln .ST//jFt� D Sc
t exp ŒA .tI T; c/C B .tI T; c/ htC1� : (A.1)

We use the mathematical induction method.

1. We observe that relation (A.1) holds at time T since A.TI T; c/ D 0 and
B.TI T; c/ D 0:
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2. We suppose the relation (A.1) holds at time t C 1 and, by the law of iterated
expectations, we prove it at time t.

E
�

E
�

Sc
T

ˇ̌
FtC1

�ˇ̌
Ft
� D E Œexp ŒA .t C 1I T; c/C B .t C 1I T; c/ htC2�jFt�

D E Œexp Œc ln .ST/C cr C A.t C 1I T; c/
C c�0htC1 C c�1VtC1 C c�

p
VtC1ZtC1C

C˛0B .t C 1I T; c/C ˛1B .t C 1I T; c/VtC1 C ˇB .t C 1I T; c/ htC1 � jFt�

D Sc
t exp Œcr C A .t C 1I T; c/C ˛0B .t C 1I T; c/C .c�0 C ˇB .t C 1I T; c// htC1��

�E
h

exp
h�

c�1 C ˛1B .t C 1I T; c/C c2�2

2

�
VtC1

iˇ̌
ˇFt

i
:

(A.2)
Using the conditional m.g.f. of the r.v. VtC1, Eq. (A.2) becomes:

E
�

E
�
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ˇ̌
FtC1

�ˇ̌Ft
� D Sc
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c�1 C ˛1B .t C 1I T; c/C c2�2
2
; �
��

htC1

i

(A.3)

By comparing the expression obtained in Eq. (A.3) with (A.1) we obtain the
following recursive system:

8
<̂

:̂

A.tI T; c/ D cr C A.t C 1I T; c/C ˛0B.t C 1I T; c/
B.tI T; c/ D c�0 C ˇB.t C 1I T; c/C

f .c�1 C ˛1B.t C 1I T; c/C c2�2

2
; �/

(A.4)

with A.TI T; c/ D 0 and B.TI T; c/ D 0.

A.2 Martingale Condition

We want to prove that 8s � t:
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2
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(A.5)

(
.1/H))
We assume r to be constant but the proof holds even assuming r to be a

predictable process. By simple calculus, we obtain:

E

	
St

er

ˇ̌
ˇ̌Ft�1



D St�1 exp

	
�0 C f


�1 C �2

2
I �
��

ht�1



(A.6)

substituting �0 D �f .�1 C �2

2
I �/ in (A.6) we obtain the result.

(
.2/H))
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By the iterated law of conditional expectation we have:

E

	
St

er.t�s/

ˇ̌
ˇ̌Fs



D E

	
E

	
St

er.t�s/

ˇ̌
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ˇ̌
ˇ
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7775

D : : : D E

	
SsC1
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ˇ̌
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D Ss:

A.3 VIX Index: Derivation Formula

We derive an analytical formula for the VIX index when the dynamics of S&P 500
belongs to our class. Defined S� as the forward price of St with maturity T � t, we
start from the VIX definition:


VIXt

100

�2
D 2er.T�t/

T � t

2

6664EQ

	
ST � S�

S�

ˇ̌
ˇ̌Ft




„ ƒ‚ …
.�/

� EQ

	
ln


ST

S�

�ˇ̌
ˇ̌Ft




„ ƒ‚ …
.��/

3

7775 :

The quantity in .�/ is 0 since:

EQ

	
ST � S�

S�

ˇ̌
ˇ̌Ft



D 1

Ster.T�t/
EQ ŒST jFt� � 1 D 0:

Given the spot price St, we have ST D St exp
�PT

dDtC1 Xd

�
and by substituting in

.��/ we get the following expression for VIX squared:


VIXt

100

�2
D �2er.T�t/

T � t
E

"
TX

dDtC1
�1Vd C �0hd

ˇ̌
ˇ̌
ˇFt

#

„ ƒ‚ …
.�/

: (A.7)

In order to compute the quantity .�/ in (A.7) we use the mathematical induction
method. 8 l D t; : : : ;T we assume that:

E

"
TX

dDtC1
�1Vd C �0hd

ˇ̌
ˇ̌
ˇFl

#
D C.lI T/C D.lI T/hlC1 C

lX

dDtC1
�1Vd C �0hd (A.8)
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with C.TI T/ D 0 and D.TI T/ D 0. First, we notice that all the quantities on the
right side of (A.8) are known given the information at time l.

1. Since Vt and ht are respectively adapted and predictable process our assumption
is true for l D T if C.TI T/ D 0 and D.TI T/ D 0.

2. We suppose the relation holds at time l C 1 and we prove it for time l using the
property of iterated expectations.

E

"
TX

dDtC1
�1Vd C �0hd

ˇ̌
ˇ̌
ˇFl

#
D E

"
E

"
TX

dDtC1
�1Vd C �0hd

ˇ̌
ˇ̌
ˇFlC1

#ˇ̌
ˇ̌
ˇFl

#
: (A.9)

The quantity on the right hand side of Eq. (A.9) is equal to:

E

"
C.l C 1I T/C D.l C 1I T/hlC2 C

lC1X

dDtC1
�1Vd C �0hd

ˇ̌
ˇ̌
ˇFl

#
: (A.10)

Substitute in (A.10) the definition of hlC2 and get:

C.l C 1I T/C ˛0D.l C 1I T/C .ˇD.l C 1I T/C �0/htC1 CPl
dDtC1.�1Vd C �0hd/

CE Œ .˛1D.l C 1I T/C �1/VlC1jFl� :

From (7.5) we get:

C.l C 1I T/C ˛0D.l C 1I T/C Œ.�0 C �1g.�//C .ˇ C ˛1g.�//D.l C 1I T/� htC1
CPl

dDtC1 �1Vd C �0hd

and, by comparison with (A.8), we get the following system:

�
C.lI T/ D C.l C 1I T/C D.l C 1I T/˛0
D.lI T/ D Œ�1g.�/C �0�C .˛1g.�/C ˇ/D.l C 1I T/

(A.11)

with final conditions C.TI T/ D 0 and D.TI T/ D 0.
We show that if the following two conditions are satisfied:

• ˛1g.�/C ˇ < 1

• �1g.�/C �0 � 0

the right hand of the Eq. (7.12) is positive, coherently with the fact of being equal to
the squared VIX value. We notice that D.lI T/ is a linear difference equation whose
solution at time l D t; 8t � T is given by:

D.tI T/ D Œ�1g.�/C �0�„ ƒ‚ …
�0

1 � Œ˛1g.�/C ˇ�T�t

1 � Œ˛1g.�/C ˇ�„ ƒ‚ …
>0

: (A.12)
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The solution (A.12) and the positivity of ˛0 imply negative values for C.tI T/:

C.tI T/ D C.TI T/„ ƒ‚ …
D0

C D.TI T/„ ƒ‚ …
D0

C˛0
T�1X

lDtC1
D.lI T/„ƒ‚…
<0

D ˛0 Œ�1g.�/C �0�

8
<

:
T � t � 1 � Œ˛1g.�/C ˇ�

1�Œ˛1g.�/Cˇ�.T�t/�1

1�Œ˛1g.�/Cˇ�
1 � Œ˛1g.�/C ˇ�

9
=

; :

A.4 VIX Index: Autoregressive Model

In Eq. (7.6), we substitute the expression for htC1 and ht using the VIX adjusted as
in (7.14). We obtain

VIXadj
t � C30
D30

D ˛0 C .˛1g.�/C ˇ/
VIXadj

t�1 � C30
D30

C ˛1.Vt � g.�/ht/ )

VIXadj
t D ˛0D30 C C30 Œ1� .˛1g.�/C ˇ/�C .˛1g.�/C ˇ/VIXadj

t�1 C ˛1D30.Vt � g.�/ht/:

We can easily observe that VIXadj
t is an AR.1/ and it can be written as:

VIXadj
t D int C slopeVIXadj

t�1 C �t:

Trivially we have:

int D ˛0D30 C C30 Œ1 � .˛1g.�/C ˇ/�

slope D .˛1g.�/C ˇ/

�t D ˛1D30.Vt � g.�/ht/:

Using the explicit solution (7.13) for C30 and D30 and by rearranging, we get a
simple expression for int:

int D ˛0 .�1g.�/C �0/
1�slope30

1�slope C ˛0 .�1g.�/C �0/
�
29 � slope 1�slope29

1�slope

�

D 30˛0 .�1g .�/C �0/ :
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Chapter 8
Optimal Adaptive Sequential Calibration
of Option Models

Erik Lindström and Carl Åkerlindh

Abstract Option models needs to be recalibrated as new data becomes available.
The updated model parameters will depend on previous parameters and new data,
making adaptive sequential calibration a suitable choice. We introduce a method
for optimally tuning the parameter adaptivity when non-linear filters are used for
calibration, as well as extending the dynamics of the parameters.

The adaptivity is optimized by defining a statistical model, including both
the option models and the adaptivity parameters. It turns out the corresponding
(log-)likelihood function can be optimized through the EM algorithm, which
ensures that the optimization is robust.

We evaluate the method on simulated data and S&P 500 index options, seeing
that we can track variations in the model parameters well. The likelihood framework
is also used for model selection where we find support for both complex option
models as well as non-trivial adaptivity. This is made feasible with the optimal
tuning presented in this chapter.

Keywords Unscented Kalman filter • EM algorithm • Sequential option calibra-
tion • Fourier Gauss-Laguerre option pricing

8.1 Introduction

The financial turnover in 2012 of equity linked derivatives was 6251 billion USD,
while the turnover on FX derivatives markets was even greater with 67,358 billion
USD, see Lindström et al. (2015). This means that even small errors in a model, or
in the handling of that model, will have a serious economic impact.

There are nowadays an abundance of very capable option valuation models, see
e.g. Cont and Tankov (2004) or Hirsa (2012) for overviews. Far less attention has
been given to the statistical problem of calibrating these models to market data.
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Local volatility models, see Derman and Kani (1994) and Dupire (1994), were
designed to provide a perfect in-sample fit to data. However, the out-of-sample
performance is often less than stellar, cf. Dumas et al. (1998). One problem that may
occur is that the recovered local volatility surface can induce arbitrage. Lindholm
(2014a) provides an elegant, but computationally demanding solution, where the
local volatility surface is forced to fulfill certain PDE constrains that eliminates the
arbitrage opportunities. Dumas et al. (1998) showed that local volatility model rarely
outperforms a modified Black-Scholes model, while Lindholm (2014b) showed
that an ordinary Heston stochastic volatility model outperforms a tweaked Black-
Scholes model when in terms of quadratic hedging. This view is also shared by
Alexander and Kaeck (2012) who concludes that more advanced models does in fact
provide better hedges than simpler models. We are therefore focusing on parametric
models in this chapter.

The statistical problem of calibrating models to market data becomes increas-
ingly complicated when more and more complex models are being used. A single
parameter can be found using simple methods like line search, but this is not feasible
in a more general context. The calibration problem may also be multi-modal for high
dimensional data sets. The expectation maximization (EM) algorithm is one popular
solution to these problems, cf. Rydén (2008).

The market practice when it comes to calibration is some kind of least squares
minimization of the difference between market prices and model implied prices,
typically minimizing the squared difference between todays market prices and
corresponding model prices, see Hull (2009). Forbes et al. (2007), Kim and
Singleton (2012), and Hurn et al. (2015) use filtering techniques to recover constant
model parameters and risk premiums. Another approach was taken in Lindström
et al. (2008) and Lindström and Jingyi (2013), where a non-linear filter was used
to calibrate the model to market data using time varying model parameters. That
approach generally led to more robust estimates and better out-of-sample forecasts.
However, this comes at the cost of some tuning matrices, which in Lindström et al.
(2008) were manually tuned.

The contribution of this chapter is twofold. The first is to derive a statically
sound and numerically robust framework for estimating these tuning matrices. This
is done by combining non-linear filtering and smoothing techniques with the EM
algorithm introduced in Dempster et al. (1977) in a general context and by Shumway
and Stoffer (1982) in a time series context. The EM algorithm provides closed
form estimates for the tuning matrices, and is generally more robust than direct
likelihood maximizing procedures for many models, see e.g. Rydén (2008) and
Regland and Lindström (2012). The output of the algorithm will converge towards
the maximum likelihood (ML) estimate of the tuning matrix, cf. Lindström (2013),
ensuring optimality of our procedure. Our second contribution is that we extend
the dynamics in Lindström et al. (2008) from one type to three different types
of parameter dynamics. All of these share enough features so that the framework
derived in this chapter is applicable.

We will throughout the chapter work with European call options, either directly
or by converting European put options into call options through the put-call parity
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whenever the put options are more liquid. We evaluate the methodology on several
sets of simulated data as well as on S&P 500 index options from 2004 to 2008.

The remainder of the chapter is organized as follows. Section 8.2 reviews some
common calibration methods, including non-linear filters, and derives a framework
for tuning the filters by using formal statistical tools. The tuning strategy will be
evaluated in Sect. 8.3 on simulated data and in Sect. 8.4 on S&P 500 index option
data. Section 8.5 concludes the chapter.

8.2 Methods

We start by stating some facts about data that are well known, yet often neglected.
One of these is the lack of a single price. What is available are bid prices �Bid

t .Ki; �i/

and ask prices �Ask
t .Ki; �i/, as well as closing prices. A trivial consequence is

that any predicted option value between the bid and the ask price does not
introduce arbitrage.

The most common proxy for a single market price is the mid price which is
defined as the average of the bid and ask prices

�?t .Ki; �i/ D �Bid
t .Ki; �i/C �Ask

t .Ki; �i/

2
: (8.1)

Requiring that the model should provide a perfect fit to the mid price is most
likely going to result in a heavy overfit of the data.

Another real world problem is that calibrated parameters tends to change over
time (i.e. more than what is motivated by the randomness due to the bid-ask
spread). This is in contrast to the intended role of the parameters in the underlying
probabilistic models. Practitioners typically interpret this empirical fact that any
serious calibration procedure must be adaptive (seeing the parameters as locally
constant instead of globally), yet offer some predictive performance.

8.2.1 Review of Calibration Methods

The most popular calibration method today is weighted least squares (WLS), see
Bates (1996), Cont and Tankov (2004), and Hull (2009), which is defined the
parameter vector O� that minimizes the weighted sum of squared differences between
the observed mid price �? and the corresponding model price � ,

O�t D arg min
�2‚

tX

sDt0

NsX

iD1
�s;i

�
�?s .Ki; �i/ � �s.Ki; �iI �/

�2
: (8.2)
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It is common to choose the weights �s;i as a constant or proportional to the inverse
of the squared bid-ask spread (the latter is optimal from a statistical point of view),
thereby relating the size of the bid-ask spread to the quality of the quoted prices,

�s;i / 1
�
�Bid

s .Ki; �i/ � �Ask
s .Ki; �i/

�2 : (8.3)

It is often argued that a perfect fit to market data is crucial, and this translates
into using only the most recent data, i.e. t0 D t. However, this choice brings some
unpleasant philosophical implications. An implicit assumption is made that old data
does not improve the estimation results, as the summation is restricted to current
data. That means that the past is of limited use to predict the current prices, and
hence that currently available information is of limited use for predictions of the
future! It is therefore hardly surprising that the resulting estimates are noisy, see
Lindström et al. (2006) and Lindström and Jingyi (2013). Some remedy is found by
adding a (Tikhonov type) regularization term, see Cont and Tankov (2004), but this
means that the perfect fit paradigm must be abandoned. Another alternative would
be to consider exponential forgetting type algorithms, see e.g. Nystrup et al. (2016),
but that often leads to ad hoc algorithms, rather that statistically sound methods.

An approach based on non-linear filtering was introduced in Lindström et al.
(2006, 2008). This inspiration can be traced to stochastic volatility models, where
the latent volatility state can be recovered using a non-linear filter, e.g. extended
Kalman filter (EKF), unscented Kalman filter (UKF), ensemble Kalman filter
(EnKF) or particle filter. The statistical model would then take a slightly different
form

�?t .Ki; �i/ D �t.Ki; �iI �;Vt/C "t; (8.4a)

Vt � p.VtjVt�1I �/; (8.4b)

where "t is a Nt dimensional zero mean random vector with covariance matrix
VŒ"� D R. A possible design of R is to take it as a diagonal matrix, as the noise due
to the bid-ask spread is assumed to be independent between observations. Hence, we
could assign diagonal elements as Rii D c � �t;i, with �t;i being defined in Eq. (8.3).
While �t;i takes care of the scaling related to the size of the bid-ask spread, c is
related to the distributional assumption on the measurement noise. Two common
assumptions is that the real price is uniform inside the bid-ask spread, or that the bid
ask spread is a confidence interval covering the real price with some probability.
If the measurement error is assumed to be uniformly distributed c is chosen as
c D 1=12 which is the variance of a standard uniform random variable. If the
measurement error is assumed to be normally distributed and the bid-ask spread
is assumed to be a 95% confidence interval (approximately 4 standard deviations
wide) c is selected as c D 1=42. Another alternative is to estimate R from the data.

The model specified by Eq. (8.4) does not provide an easy method for estimating
the parameters. However, this can be done by including the parameters in the latent
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state equation, see Åström and Eykhoff (1971) for some early results and Lindström
et al. (2012) and Ionides et al. (2015) for recent results on convergence of this type
of estimators. The sequential (but non-adaptive) calibration model is given as

�?t .Ki; �i/ D �t.Ki; �iI �t;Vt/C "t; (8.5a)

�t D �t�1; (8.5b)

Vt � p.VtjVt�1I �t�1/: (8.5c)

This is a dynamic Bayesian method, but does not address the problem of time
varying parameters. Adaptive estimation is achieved if the state space model is
reformulated as a self-organizing state space model, adding random walk dynamics
to the latent parameter vector, cf. Anderson and Moore (1979) and Kitagawa (1998).
This defines the model as

�?t .Ki; �i/ D �t.Ki; �iI �t;Vt/C "t; (8.6a)

�t D �t�1 C �t; (8.6b)

Vt � p.VtjVt�1I �t�1/; (8.6c)

where VŒ�� D Q is the covariance matrix of the latent parameter vector error.
It can be argued that the latent volatility evolves according to the historical

measure. However, the estimated risk premiums reported in Forbes et al. (2007) was
not statistically significant, although later studies such as Hurn et al. (2015) did. The
adaptive estimation methodology introduced in this chapter will in general result in
wider confidence intervals for the parameter estimates. We therefore anticipated that
it would be unlikely to obtain statistical significance of the risk premiums and hence
assume it is zero. That implies that we approximate the historical measure with the
risk neutral measure.

The model defined in Eq. (8.6) recasts the calibration into a non-linear filtering
problem. There are many good algorithms available, both deterministic filters (EKF
or UKF) or stochastic versions (EnKF or particle filters). The additional cost is the
introduction of a tuning matrix Q. It was chosen as a diagonal matrix in Lindström
et al. (2008), with some manual tuning of the elements.

Our experience is that the non-linear filtering should not be applied directly to the
standard formulation of the option valuation model, but rather to a model where the
parameters has been transformed so that the random walk can not hit the boundary of
the parameter space. For the parameters with positive constraint we use the natural
logarithm, and for the correlation parameter we use the inverse hyperpolic tangent.

The results in Lindström et al. (2008) indicate that a reasonably well tuned filter
performs well when calibrating option models to market data. However, it is known
that some models are difficult to calibrate as there are many parameters, and possibly
competing features in the models. A structured methodology for finding a near
optimal Q matrix would therefore expand the class of statistically feasible models.
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A minor modification was introduced in Lindström and Jingyi (2013) where the
underlying asset was included as well. Doing so lead to a very minor deterioration
of the performance of the filter, but the upside was that quadratic hedging strategies
were obtained for free as the filter is computing all expected values, variances and
covariances needed for the hedging strategy.

8.2.2 Extended Parameter Dynamics

The results in Lindström et al. (2008) indicates that the parameter are changing
over time, some are varying around a fixed level while others are trending. We are
therefore considering alternative adaptive dynamics.

8.2.2.1 Random Walk Dynamics

A simple method for introducing varying parameters was intruduced by Samuelson
(1965) who argued that the parameter vector could be modeled as a random walk
(RW). Hence, the parameters are given as

�t D �t�1 C "t (8.7)

where " � N.0;Q/. This parameter dynamics was used in Lindström et al. (2008),
cf. Equation (8.6), where it was shown that it could follow trends in the parameters.
Using this dynamics however, introduces d.dC1/=2 tuning constants, where d is the
dimension of the parameter vector, recalling that the covariance matrix is symmetric.

8.2.2.2 Random Coefficient Dynamics

Another simple dynamics is the random coefficient (RC) dynamics that was used
in Schaefer et al. (1987). They treat the parameter at different time points as iid
Gaussian random variables with fixed mean �. The dynamics of the parameter
vector is then given by

�t D �C "t (8.8)

where " � N.0;Q/. The RC dynamics allows the parameters to vary (compared to
fixed parameters), but not to follow trends. This dynamics introduces d additional
tuning constants in comparison to RW, for a total of d.d C 1/=2C d.
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8.2.2.3 Mean Reversion Dynamics

A third alternative that encompasses both the RW and the RC dynamics as special
cases is the mean reversion (MR) dynamics discussed in Rosenberg (1973). The
idea is to model the parameters as a stationary VAR.1/ process

�t D �C A�t�1 C "t (8.9)

where " � N.0;Q/. The RC dynamics is recovered when A D 0, while the RW
dynamics is recovered when � D 0 and A D Id is a d-dimensional identity matrix.
The matrix A introduces d2 more constants to tune compared to the RC dynamics,
resulting in a total of d.d C 1/=2C d C d2 tuning constants.

8.2.3 Optimal Tuning

All of the proposed parameter dynamics introduce tuning constants that affect the
behaviour of the filter. We will denote the set of tuning parameters with ˆ, which in
the case of MR is given byˆ D fA; �;Qg. In this section we will derive expressions
for the optimal tuning of the parameter dynamics presented in Sect. 8.2.2.

We start with the model presented in Eq. (8.6), substituting the parameter process
with the appropriate dynamics. The first important property to note is that the
latent process Vt and the parameter process �t simultaneously satisfies the Markov
property. Assuming independence of the latent process and the parameter process,
we could see this as a hidden Markov model, and we then get the joint likelihood
function

pˆ.V0WT ; �0WT ; �?1WT/ D p.V0; �0/
TY

tD1
p.�?t jVt; �t/pˆ.�tj�t�1/p.VtjVt�1; �t�1/;

(8.10)
where it is important to note that only pˆ.�tj�t�1/ depends on the tuning parameters.
Our goal is to find an estimate for the tuning parameters, given all observed prices
�?1WT .

By making an initial guess ˆk of the tuning parameters, the EM algorithm itera-
tively maximizes the expectation of the joint log-likelihood given the observations.
It can be shown that the EM algorithm increases the value of the likelihood function
with each iteration, see Dempster et al. (1977). It is generally considered to be
a robust and typically a rapidly converging method, cf. Rydén (2008). In other
words, the estimates of the tuning parameters are gradually improved by iteratively
maximizing the objective function given by

Q.ˆjˆk/ D E
�
log pˆ.V0WT ; �0WT ; �?1WT/j�?1WT ; ˆk

�
: (8.11)
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The construction of this function is usually refered to as the E-step. Computing the
optimal updated set of tuning parameters is then done in the M-step, given by

ˆkC1 D arg max
ˆ

Q.ˆjˆk/

D arg max
ˆ

E
�
log pˆ.�tj�t�1/j�?1WT ; ˆk

�
:

(8.12)

Since �t is a Gaussian process for all of the proposed dynamics, the maximizing
values are given by solving quadratic equations, which can be done analytically.
This makes the EM algorithm a very good method of acquiring near optimal
estimates, which converges to the ML estimates as the number of iterations tend
to infinity.

However, when new data becomes available, we rarely need to iterate more than
one or two times when initializing the algorithm from an already tuned parameter
set ˆ. We believe that the set of tuning parameters ˆ is much more persistent than
the actual parameters � . This means that we do not have to updateˆ every time new
data becomes available.

In order to compute the EM estimates we need to obtain filter estimates and
variances defined as

�tjt D E
�
�t

ˇ̌
�?1Wt

�
; (8.13a)

Ptjt D V
�
�t

ˇ̌
�?1Wt

�
; (8.13b)

and smoothing estimates and variances defined as

�tjT D E
�
�tj�?1WT

�
; (8.14a)

PtjT D V
�
�tj�?1WT

�
: (8.14b)

To compute these we use the non-linear Unscented Kalman filter and smoother, see
Murata and Kashino (2013) for an overview, but other types of filters could also be
applied.

For tuning the parameters introduced by RW, RC and MR dynamics, we state
the following lemmas for optimal choices of EM updates, cf. Shumway and Stoffer
(1982).

Lemma 2.1 (Random walk dynamics) Given the random walk parameter dynam-
ics in Eq. (8.7), the optimal EM update of the tuning parameter is given by

QkC1 D 1

T

TX

tD1
.�tjT � �t�1jT/.�tjT � �t�1jT/

ᵀ

C PtjT C Pt�1jT � PtjTLᵀ
t�1 � Lt�1PtjT ;

(8.15a)
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where

Lt D Ptjt.Ptjt C Qk/
�1 (8.16)

is the Kalman smoother gain.

Lemma 2.2 (Random coefficient dynamics) Given the random coefficient param-
eter dynamics in Eq. (8.8), the optimal EM updates of the tuning parameters are
given by

�kC1 D 1

T

TX

tD1
�tjT ; (8.17a)

and

QkC1 D 1

T

TX

tD1
.�tjT � �kC1/.�tjT � �kC1/

ᵀ C PtjT : (8.17b)

Lemma 2.3 (Mean reversion dynamics) Given the mean reverting parameter
dynamics in Eq. (8.9), the optimal EM updates of the tuning parameters are given by

�
�kC1 AkC1

� D
hPT

tD1 �tjT
PT

tD1 �tjT�ᵀt�1jT C PtjTLᵀ
t�1
i

�
" PT

tD1 1
PT

tD1 �
ᵀ
t�1jTPT

tD1 �t�1jT
PT

tD1 �t�1jT�ᵀt�1jT C Pt�1jT

#�1
;

(8.18a)

and

QkC1 D 1

T

TX

tD1
.�tjT � AkC1�t�1jT � �kC1/.�tjT � AkC1�t�1jT � �kC1/ᵀ

C PtjT C AkC1Pt�1jTAᵀ
kC1

� PtjTLᵀ
t�1A

ᵀ
kC1 � AkC1Lt�1PtjT ;

(8.18b)

where

Lt D PtjtA
ᵀ
k .AkPtjtA

ᵀ
k C Qk/

�1 (8.19)

is the Kalman smoother gain.
The measurement noise variance is not always known, in which case there are

two options, guessing or estimating. Assuming a structure of the measurement noise
variance as R D R � INt we can estimate the scaling factor R at the same time as we
estimate all other tuning constants. The expression for the optimal EM update is
presented in the following lemma.
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Lemma 2.4 (Measurement noise) Assuming the noise of the measurements is
iid Gaussian, i.e. R D R � INt the optimal EM update of the scaling factor R is
given by

RkC1 D 1

T

TX

tD1

1

Nt

NtX

iD1

�
�?t .Ki; �i/ � EŒ�t.Ki; �iI �t;Vt/j�?1WT ;Rk�

�2

C VŒ�t.Ki; �iI �t;Vt/j�?1WT ;Rk�:

(8.20)

Estimating a measurement noise variance with this structure adds a single additional
tuning constant.

8.2.4 Model Selection

An additional benefit of using the EM algorithm in combination with filtering and
smoothing techniques is that we can compute the likelihood of the measurements.
This makes it possible to compare the parameter dynamics with model selection
criteria such as the Akaike information criterion (AIC) and Bayesian information
criterion (BIC). The dynamics with the lowest AIC value is the optimal choice for
prediction, while the BIC is a consistent model selection criteria. We will use both
of these to draw conclusions in our simulation and empirical study.

8.3 Simulations

To validate the performance of the tuning and model selection we simulate data
from all parameter dynamics proposed in Sect. 8.2.2. We simulate 250 weeks,
each consisting of totally 15 European call option prices, with maturity in three,
6 and 12 months and five strikes equidistantly spaced between 0:9 and 1:1 times
the current spot price. To mimic the uncertainty related to the bid-ask spread,
measurement errors are added to the simulated option prices. The errors are assumed
to be normally distributed with a known variance R D 1=16 � INt . The standard
Black-Scholes model, defined under the risk neutral measure Q, is given by

dSt D rStdt C �StdWt (8.21)

is used both for simulation and estimation, in combination with RW, RC and MR
parameter dynamics. In Table 8.1 the dynamic specific parameters are shown,
that are used for the simulations. Note that these describe the evolution of the
transformed model parameters, i.e.

�t D


log rt

log �t

�
: (8.22)
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Table 8.1 Parameter
dynamics used for simulating
from the Black-Scholes
model. These are chosen to
mimic those that are
estimated for market data

Simulated A � Q

RW – –

 
0:2 0

0 0:2

!

RC –

 
�4:6
�1:2

!  
0:2 0

0 0:2

!

MR

 
0:9 0:01

0:03 0:9

!  
�0:07
�0:06

!  
0:03 0

0 0:5

!

Fig. 8.1 Estimated and real parameters (volatility � left, interest rate r right) when calibrating to
simulated Black-Scholes data with mean reverting parameters

The model and tuning parameters is estimated using all three parameter dynamics
on each data set. We iterate the EM algorithm 100 times, which is more than enough
to reach convergence. We find that our method delivers far better results (in terms of
the log-likelihood) than what a manually tuned model would obtain, see Lindström
and Åkerlindh (2014). Finally, we discard the first 20 weeks as a burn-in when
computing the filter and EM estimates, in order to reduce the influence of the initial
values.

In Fig. 8.1 we see the parameter paths with RW, RC and MR dynamics estimated
on data generated with mean reverting parameters. We see that all dynamics track
the volatility very well, while the less informative (and thus less influential on
prices) rate parameter is harder to track perfect. It is also clear that the RC dynamics
result in noisier estimates than RW and MR.

In order to determine which model fits best in each case, we calculate the AIC
and BIC. We recall that BIC is the consistent model selection criteria while AIC
selects the model that provide the best forecasts. The results of the simulation study
are presented in Table 8.2. In all three cases the correct model is selected by the
BIC, while AIC always selects MR dynamics, regardless of the actual dynamics.
The results of the simulation study validates the effectiveness of not only the tuning,
but also the model selection properties of our method. The MR dynamics is usually
a good choice regardless of the actual dynamics, as the drawbacks of the overfitting
and additional computational cost is more than made up for by the forecasting
properties.
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Table 8.2 Comparison of models estimated using the RW, RC and MR dynamics when applied
to simulated data from each model. The consistent model selection criteria BIC selects the correct
model in all three cases, while the AIC selects MR in all cases as the dynamics that provide the
best forecasts

Simulated Estimated ` AIC BIC

RW
RW �1148.94 2303.88 2314.22
RC �2264.94 4539.89 4557.12

MR �1139.98 2297.96 2328.98

RC
RW �1460.03 2926.06 2936.40

RC �1305.77 2621.55 2638.78
MR �1296.24 2610.47 2641.49

MR
RW �1318.50 2643.01 2653.35

RC �1850.42 3710.84 3728.07

MR �1281.71 2581.42 2612.44

Fig. 8.2 S&P 500 index from early 2004 to mid 2008

8.4 Empirical Study

We also evaluate our method on S&P 500 index options from the beginning of 2004
to the middle of 2008. This data set was used in Poulsen et al. (2009). The first
part of the data set is calm, while the second part includes the opening stages of the
financial crisis. The index is presented in Fig. 8.2.

The option data set is identical to the one in our simulation studies, with options
having three, 6 or 12 months to maturity and moneyness ranging equidistantly from
0:9 to 1:1.

We calibrate two models to the market data, the Black-Scholes model and
the Heston stochastic volatility model, see Heston (1993). The Heston prices are
computed using Fourier methods, more precisely a Fourier-Gauss Laguerre method
with an adaptive choice of the integration path. A large number of methods,
including Fourier, cosine, Monte Carlo, quasi-Monte Carlo and PDE methods were
compared in von Sydow et al. (2015) where it was shown that this method is very
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Fig. 8.3 Estimated parameters (volatility � left, interest rate r right) when calibrating the Black-
Scholes model to S&P 500 index options between 2004 and 2008

fast and outperforms all other methods in terms of accuracy. We believe that the
errors when computing the prices must be dominated by the tolerance levels in the
optimization, something we obtain with this method.

All calibrations in this section uses an estimate of the measurement error
covariance matrix R, of the form presented in Lemma 2.4. This gives much better
results for the Black-Scholes model (where we can expect that the model misfit to
be substantial), but no large improvement for the Heston model.

8.4.1 The Black-Scholes Model

The risk neutral dynamics for the well known Black-Scholes model is given in
Eq. (8.21). We calibrate two parameters in this study, the volatility � and the interest
rate r. The resulting calibrated parameters, when using the RC (dotted line), RW
(solid line) and MR (dashed line) are presented in Fig. 8.3. A visual inspection
shows that the RW and MR dynamics results in similar parameters while the RC
seems noisier than the other two.

The calibrated parameters reveals that the calm period between 2004 and 2007
indeed corresponded to a low volatility (around 10%) with steadily increasing
interest rates as the bubble started to build up. The crisis changes the situation
with noticeably higher volatilities and eventually much lower rates, as government
interventions begins.

8.4.2 The Heston Model

We also calibrate the Heston model to the same set of market data. The risk neutral
formulation of the Heston model is given by

dSt D rStdt C
p

VtStdW.1/
t ; (8.23a)

dVt D �.� � Vt/dt C �
p

VtdW.2/
t ; (8.23b)
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Fig. 8.4 Estimated parameters when calibrating the Heston model to S&P 500 index options using
the RW (solid line), RC (dotted line) and MR (dashed line) parameter dynamics. The instantaneous
volatility V is presented top left, the recovered interest rate r top right, mean reversion of the
volatility � mid left, the mean reversion level � mid right, the vol-vol parameter � bottom left and
the correlation �, between the Brownian motions, bottom right

dW.1/
t dW.2/

t D �dt: (8.23c)

where S is the index level, V is the latent stochastic volatility and � is the
instantaneous correlation between the index and volatility, capturing the leverage
effect often found in financial data, see Cont (2001) and Nystrup et al. (2015) for
overviews over stylized facts. The latent volatility process is approximated using
Euler discretization, and is filtered together with the model parameters.

The calibrate parameters for all three dynamics are presented in Fig. 8.4, where
we again see that the MR and RW are reasonably similar while the RC dynamics
results in different estimates.

It can be seen that the Heston model captures the varying volatility similarly to
the Black-Scholes model, but we also find new information in Fig. 8.4 such that
the correlation nearly breaks down (close to �1) during the crisis. That meant that
delta-vega neutral risk management strategies did not work nearly as well as they
used to do before the crisis.
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Table 8.3 Comparison of the Black-Scholes and Heston models when estimated with RW, RC and
MR parameter dynamics. The MR dynamics is selected by the AIC as the best forecasting dynamics
for both models. We observe a great benefit of using MR parameter dynamics in the Heston model,
while it is enough to use RW dynamics for the simpler Black-Scholes model

Model Estimated ` AIC BIC

BS RW �8293.94 16595.87 16609.30
RC �9076.02 18164.04 18184.18

MR �8281.60 16583.20 16616.76

Heston RW �3630.97 7293.94 7347.65

RC �5952.12 11946.24 12016.72

MR �3461.99 7015.99 7170.39

8.4.2.1 Numerical Results

One of the most appealing features of the (log-)likelihood based framework is that
standard statistical tests can be carried out. We compute the AIC and BIC for
all models and parameters dynamics for the data set. The results are presented in
Table 8.3.

These results pretty much confirms the impressions from Figs. 8.3 and 8.4 with
the RW and MR dynamics behaving similarly, while the RC dynamics lags behind.
We see that while the RW is sufficient according to the BIC for the Black-Scholes
model, it is not sufficient for the more complex Heston model. The MR parameter
dynamics is better at describing the data when the complexity of the option valuation
model increases. We anticipate that there will be more dependence between the
parameters in a more complex model, and this is better captured by the MR
dynamics, cf. Figs. 8.3 and 8.4.

Selecting the parameter dynamics based on the AIC favors the MR dynamics
regardless of the model. This indicates that the MR parameter dynamics may be
preferable for a large class of models if hedging is our primary purpose of the model.

The AIC does not require models to be nested, and can therefore be used to
compared not only parameter dynamics, but also to compare the Black-Scholes
model and the Heston model. Our analysis shows a very strong support for the
Heston model in favor of the simpler Black-Scholes model.

8.5 Conclusion

Several studies have shown that the WLS technique is practically infeasible when
the model complexity grows, while non-linear filters or penalized WLS work much
better. This study introduced optimal tuning strategies for the sequential calibration
technique introduced in Lindström et al. (2008), using three different parameter
dynamics to better capture the structure of the underlying processes.
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The optimal tuning introduced in this chapter resulted in better parameter
estimates than a manually tuned filter. The framework also allowed us to extend
the class of parameter dynamics. In other words, the introduction of optimal tuning
strategies makes it possible to use more advanced models and parameter dynamics
in practice. This is something we are convinced would lead to better hedging and
risk management.

Our simulation study showed that the method which is based on the EM algo-
rithm, is a fast and numerically stable way to estimate optimal tuning parameters.
Convergence is typically reached in just a few iterations. It is possible to evaluate the
likelihood for our extended model, and this was used for model selection, where we
found that the correct underlying parameter dynamics was identified using the BIC.

It is likely that the optimal tuning parameters are persistent compared to the
parameters. It would therefore make sense to update them less frequently than the
actual parameters. For example, when used in practice the optimal tuning parameters
could be reestimated weekly or monthly, while the sequential calibration of the
option model is done daily.
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Chapter 9
Accurate Pricing of Swaptions via Lower Bound

Anna Maria Gambaro, Ruggero Caldana, and Gianluca Fusai

Abstract We propose a new lower bound for pricing European-style swaptions
for a wide class of interest rate models. This method is applicable whenever the
joint characteristic function of the state variables is either known in closed form
or can be obtained numerically via some efficient procedure. Our lower bound
involves the computation of a one dimensional Fourier transform independently of
the underlying swap length. Finally the bound can be used as a control variate to
reduce the confidence interval in the Monte Carlo simulation. We test our bound on
different affine models, also allowing for jumps. The lower bound is found to be
accurate and computationally efficient.

Keywords Pricing • Swaptions • Characteristic function • Fourier transform
• Lower bound

9.1 Introduction

Libor based derivatives (swaps, caps, swaptions) are the most liquid derivatives
traded in financial markets. In particular a European swaption is a contract that
gives the right to its owner to enter into an underlying interest rate swap, i.e. it is an
European option on a swap rate. It can be equivalently interpreted as an option on a
portfolio of zero coupon bonds.
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Let t be the current date, T be the option expiration date, T1; : : : ;Tn be the
underlying swap payment dates (by construction t < T < T1 < : : : < Tn) and
R the fixed rate of the swap. The payoff of a receiver swaption is

payoff D
 

nX

hD1
whP.T;Th/ � 1

!C
;

where wh D R�.Th�Th�1/ for h D 1; : : : ; n�1 and wn D R�.Tn�Tn�1/C1, P.T;Th/

is the price at time T of a zero coupon bond expiring at time Th. The no-arbitrage
fair price at time t is the discounted risk neutral expected value of the payoff

C.t;T; fThgn
hD1;R/ D Et

2

4e� R T
t r.X.s//ds

 
nX

hD1
whP.T;Th/ � 1

!C3

5 ; (9.1)

where r.X.s// is the short rate at time s, and X.s/ denotes the state vector at time s
of a multi-factor stochastic model.

Due to their importance and popularity, swaption market quotations are often
used for calibration of interest rate models. However calibration procedure involves
the pricing of a large number of swaptions (different option maturity, swap tenors
and strikes), so the availability of an efficient pricing algorithm is required.
Moreover Basel III accords introduced the Credit Value Adjustment (CVA) charge
for over the counter contracts.1 It is interesting to note that for the most simple and
popular kind of interest rate derivative, i.e. interest rate swap, the (unilateral) C.V.A.
can be estimated as a portfolio of forward start European swaptions.2

Since a closed-form formula of swaption price does not exist for many popular
interest rate models, then several approximated pricing method have been developed
in literature specially for affine interest rate models. The most important are those
of Munk (1999), Collin-Dufresne and Goldstein (2002), Singleton and Umantsev
(2002), and Schrager and Pelsser (2006).

1CVA of a contract price C(t) is the risk neutral expectation of the loss

CVA.t/ WD LDG

Z T

0

EŒe�

R t
0 r.s/dsmax.C.t/; 0/� dPD.t/;

where LGD is the Loss Given Default and PD.t/ is the default probability in the interval .t; t C dt/.
Risk adjusted price is: C.t/� CVA.t/.
2C.V.A. of an interest rate swap with payment dates T1; : : : ;Tn and fixed rate R, can be
approximated by the following portfolio of swaptions:

CVA.t/ ' LGD
nX

iD1

PD.Ti�1;Ti/ � SWO.t; fThgn
i�1;R/:

.
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Munk approximates the price of an option on a coupon bond by a multiple of
the price of an option on a zero-coupon bond with time to maturity equal to the
stochastic duration of the coupon bond. This method is fast but not very accurate for
out of the money options.

The method of Collin-Dufresne and Goldstein is based on a Edgeworth expan-
sion of the density of the swap rate and requires the calculation of the moments of
the coupon bond. This procedure can be very time consuming.

Singleton and Umantsev (2002) introduce the idea of approximating the exercise
region in the space of the state variables. This method has the advantage of
producing precise results for a wide range of strikes (in particular for out of the
money swaptions); however, it does not admit a simple extension to general affine
interest rate models, because it requires the knowledge in closed form of the joint
probability density function of the state variables. Moreover the Singleton and
Umantsev method requires the calculus of as many Fourier inversion as the number
of payment dates of the underlying swap contract. Hence the run time algorithm
increases with the swap length.

Similarly to Singleton and Umantsev (2002), we propose a lower bound which is
based on an approximation of the exercise region via an event set defined through a
function of the model factors

G D f! 2 	 W g.X.!/;T/ � kg; (9.2)

where X is the vector of the model factors, 	 is the state space and g is a suitably
chosen function approximating the exercise boundary.

Our pricing formula consists in the valuation of the option on the approximate
exercise region and requires a single Fourier transform, performed with respect to
the parameter k in formula (9.2).

The approximation we propose has several advantages. First of all it is a lower
bound, so the direction of the error is known a priori, further it is very general as it
can be applied to a wide class of models, provided that the characteristic function of
the state variates is known (explicitly or numerically). It involves the computation
of only one Fourier inversion, independently of the number of cash flows of the
underlying swap. Finally, it can be used as a control variate to improve the accuracy
of the Monte Carlo simulation method.

The paper is organized as follows. Section 9.2 introduces a general formula for
lower bound on swaption prices, based on an approximation of the exercise region.
Then we apply the general lower bound formula to the case of affine interest rate
models and we find an efficient algorithm to calculate analytically the approximated
swaption price. Section 9.3 describes the approximate exercise set defined by the
logarithm of the ZCBs portfolio geometric mean. Section 9.4 shows the results of
numerical tests. Conclusive remarks are presented in last section.
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9.2 A Lower Bound on Swaption Prices

In this section, we derive a general formula for lower bound on swaption prices.
The price formula (9.1), once a change of measure to the T-forward measure is
used, becomes

C.t;T; fThgn
hD1;R/ D P.t;T/ � ET

t

2

4
 

nX

hD1
whP.T;Th/ � 1

!C3

5

D P.t;T/ � ET
t

" 
nX

hD1
whP.T;Th/ � 1

!
I.A/

#
; (9.3)

where I is the indicator function and A is the exercise region seen as a subset of the
space events 	

A D f! 2 	 W
nX

hD1
whP.T;Th/ � 1g:

Indeed, we observe that for any event set G 	 	

E

T
t

2

4
 

nX

hD1
whP.T;Th/ � 1

!C3

5 � E

T
t

2

4
 

nX

hD1
whP.T;Th/ � 1

!C
I.G/

3

5

� E

T
t

" 
nX

hD1
whP.T;Th/ � 1

!
I.G/

#
:

Then by discounting we obtain

C.t;T; fThgn
hD1;R/ � LB.G/ WD P.t;T/ �ET

t

" 
nX

hD1
whP.T;Th/ � 1

!
I.G/

#
; (9.4)

i.e. LB.G/ is a lower bound to the swaption price for all possible sets G.

9.2.1 Affine Models

For affine interest rate models the price at T of a zero coupon bond with expiration
date Th can be written as the exponential of a linear combination of the state
variables

P.T;Th/ D e
Pd

jD1 bh;jXj.T/Cah D eb>

h X.T/Cah ; (9.5)
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where ah D A.Th � T/ and bh D B.Th � T/ are functions of the payment date
Th and are typical of each model. We know from Duffie and Kan (1996) and
Duffie et al. (2000) that under certain regularity conditions, the functions A.�/ and
B.�/ are the solution of a system of d C 1 ordinary differential equations that are
completely determined by the specification of the risk-neutral dynamics of the short
rate. These equations can be solved through numerical integration starting from the
initial conditions A.0/ D 0;B.0/ D 0 and the solutions are known in closed form
for most common models.

Moreover from Duffie et al. (2000), we know that for affine models the risk
neutral expected value of an exponential payoff has the form

Et

h
e� R T

t r.X.u//duei�>X.s/
i

D eQA.s�t;T�s;�/CQB.s�t;T�s;�/>X.t/;

where X and � are in R

d and the functions QA.�;T � s;�/ and QB.�;T � s;�/ are
solutions of the same ODE system of the zero coupon bond case, but with different
initial conditions ( QA.0;T � s;�/ D A.T � s/ and QB.0;T � s;�/ D i� C B.T � s/).
Then the T-forward characteristic function of the model factors X can be obtained by

E

T
t

h
ei�>X.s/

i
D 1

P.t;T/
Et

h
e� R T

t r.X.u//duei�>X.s/
i

D eQA.s�t;T�s;�/�A.T�t/C.QB.s�t;T�t;�/>�B.T�t/>/X.t/:

Since we are interested in the case s D T (forward measure at expiry date of the
option), then we define the function

ˆ.�/ D E

T
t

h
ei�>X.T/

i
D eQA.T�t;�/�A.T�t/C.QB.T�t;�/>�B.T�t/>/X.t/; (9.6)

where QA.�;�/ D QA.�; 0;�/ and QB.�;�/ D QB.�; 0;�/.
We define the set G using a linear function of the state variates

G D f! 2 	 W g.X.T// � kg D f! 2 	 W ˇ>X.T/C ˛ � kg;

where ˇ is a constant vector of length d, ˛ 2 R and k is a free parameter. k can be
chosen such that it optimizes the value of the lower bound.

Proposition 1 The lower bound to the European swaption price, for affine interest
rate models, is given by the following formula

cLB.t;T; fThgn
hD1;R/ D max

k2R LB.kI t;T; fThgn
hD1;R/; (9.7)
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where

LB.kI t;T; fThgn
hD1;R/ D P.t;T/

e�ık

�

Z C1

0

e�ik ı./d; (9.8)

and

 ı./ D
 

nX

hD1
wheahˆ.�ibh C . � iı/ˇ/ �ˆ.. � iı/ˇ/

!
e.iCı/˛

i C ı
;

(9.9)

where ı is a positive constant.

Proof See Appendix A.1.

9.3 The Geometric Average Approximate Exercise Region

The approximate exercise set is defined through the logarithm of the geometric
average of the portfolio of zero coupon bonds

G D f! 2 	 W g.X.T// � kg;

G.X.T// D
nY

hD1
P.T;Th/

wh ;

g.X.T// D ln .G.X.T/// D
nX

hD1
wh ln.P.T;Th//:

In particular G and g.X/ are given by

G D f! 2 	 W ˇ>X.T/C ˛ � kg;

where P.T;Th/ D ebh>X.T/Cah , ˇ D Pn
hD1 whbh and ˛ D Pn

hD1 whah.
Since we don’t know the optimum value of the parameter k, then the pricing

method requires the maximization of the lower bound, LB.kI t;T; fThgn
hD1;R/, seen

as a function of k.
The optimization can be accelerated looking for a good starting point. We suggest

the following

Qk D log


1Pn

hD1 wh

�
D � log

 
nX

hD1
R.Th � Th�1/

!
:
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According to this choice GQk D f! 2 	 W g.X.T// � Qkg is the greatest possible
subset of the true exercise region, A.

In fact normalizing the weights, the expression of the true exercise region can be
rewritten as

A D f! 2 	 W
nX

hD1
whP.T;Th/ � 1g D f! 2 	 W

nX

hD1
QwhP.T;Th/ � eQkg

D f! 2 	 W A.X/ � eQkg;
where A.X/ is the arithmetic mean of the ZCBs portfolio, Qwh D whPn

hD1 wh
and so

Pn
hD1 Qwh D 1.
By the arithmetic-geometric inequality we know that A.X/ � G.X/ 8X, then

8k > Qk
A 
 GQk 
 Gk:

Instead if k < Qk then it is no more guaranteed that Gk is a subset of the true
exercise region.

9.4 Models and Numerical Results

This section presents the examined models and discuss the numerical results.

9.4.1 Affine Gaussian Models

Affine Gaussian models assign the following stochastic differential equation
(S.D.E.) to the state variable X

dX.t/ D K.� � X.t// dt C† dW.t/;

X.0/ D x0;

where Wt is a standard d-dimensional Brownian motion, K is a d � d diagonal
matrix and † is a d � d triangular matrix. The short rate is obtained as a linear
combination of the state vector X; it is always possible to rescale the components
Xi.t/ and assume that

r.t/ D 
 C
dX

iD1
Xi.t/

without loss of generality (
 2 R).
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The T-forward characteristic function of X is

ˆ.�/ D E

T
t

h
ei�>X.T/

i
D ei�>�.t;T/� 1

2�>V.t;T/�;

where � is the T-forward expected value and V is the covariance matrix (assuming
K is diagonal):

�.t; s/ D E

T
t ŒX.s/� D EtŒX.s/� � .In�n � e�K.s�t//K�1††>.K�1/>

g � Ve�K>.T�s/.K�1/>g

EtŒX.s/� D e�K.s�t/.X.t/ � �/C �

Vij.t; s/ D .††>/ij

1 � e�.KiiCKjj/.s�t/

Kii C Kjj

�
:

where g D Œ1; 1; 1; : : : ; 1�> is a column vector of length d.
For this type of process, the lower bound can be calculated analytically

LB.kI t;T; fThgn
hD1;R/ D P.t;T/

 
nX

hD1
wheahCb>

h �C 1
2VhC 1

2 d2h N.dh � d/ � N.�d/

!
;

(9.10)

where

d D k � ˇ>� � ˛
q

ˇ>Vˇ

;

dh D b>
h v;

Vh D b>
h .V � vv>/bh;

v D Vˇ
q

ˇ>Vˇ

;

and N.x/ D 1p
2�

R x
�1 e� y2

2 dy is the cumulative distribution function of a standard
normal.

See details in Appendix A.2.

9.4.2 Multi-factor Cox-Ingersoll-Ross (CIR) Model

The state vector of the model evolves according to the following system of SDE

dXi.t/ D ai. �i � Xi.t//dt C �i

p
Xi.t/dWi.t/;

X.0/ D x0;
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where i D 1; : : : ; d, Wi.t/ are independent standard Brownian motions, ai, �i and �i

are positive constants. The short rate is obtained by

r.t/ D 
 C
dX

iD1
Xi.t/;

where 
 2 R.
Using the results in Collin-Dufresne and Goldstein (2002), we can calculate the

zero coupon bond price and the T-forward characteristic function. In particular we
deduce the functions A.�/, B.�/, QA.�;�/ and QB.�;�/ in formula (9.6),

A.�/ D �
 � C
dX

jD1

"
2aj�i

hj � aj
� � 2aj�j

�2j
ln

 
.aj C hj/.ehj� � 1/C 2hj

2hj

!#
;

Bj.�/ D �2 .ehj� � 1/
.aj C hj/.ehj� � 1/C 2hj

;

QA.�;�/ D �
 � C
dX

jD1

"
2aj�i

hj � aj
� � 2aj�j

�2j
ln

 
�2j ..i�j C �C

j / � .i�C ��
j /e

hj� /

2hj

!#
;

QBj.�;�/ D
i�j.�

�
j � �C

j ehj� /C 2.ehj��1/
�2j

i�j.ehj� � 1/C .��
j ehj� � �C

j /
;

where hj D
q

a2j C 2�2j and �j̇ D �aj˙hj

�2j
.

9.4.3 Gaussian Model with Double Exponential Jumps

The vector of model factors evolves according to the following S.D.E.

dX.t/ D K.� � X.t// dt C† dW.t/C dZC.t/ � dZ�.t/;

X.0/ D x0;

where Wt is a standard d-dimensional Brownian motion, K is a d � d diagonal
matrix, † is a d � d triangular matrix and Z˙ are pure jumps processes whose
jumps have fixed probability distribution � on R

d and constant intensity �˙. The
short rate is obtained as a linear combination of the state vector X. In particular Z˙
are compound Poisson processes with jump size having exponential distribution

Zl̇ D
N˙.t/X

jD1
Yj̇;l ;
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where l D 1; : : : ; d is the factor index, N˙.t/ are Poisson process with intensity �˙

d
3

and Yj̇;l , for a fixed l, are independent identically distributed exponential random

variables of mean parameters ml̇ :

Yj̇;l � �.ml̇ / D 1

ml̇

exp

 
y

ml̇

!
:

Since �˙ do not depend on X, we know from Duffie et al. (2000) that: (a) the
functions B.�/ and QB.�;�/ in formula (9.6) are independent of jumps and they are
calculated as in affine Gaussian model case; (b) the functions A.�/ and QA.�;�/ in
formula (9.6) are sum of two components, diffusive and jump: A.�/ D AD.�/ C
AJ.�/ and QA.�;�/ D QAD.�;�/C QAJ.�;�/. The diffusive part can be obtained as in
affine Gaussian model case.

Then we obtain that

ˆ.�/ D E

T
t

h
ei�>X.T/

i
D ˆD.�/ eQAJ.T�t;�/�AJ.T�t/; (9.11)

whereˆD.�/ is the T-forward characteristic function of affine Gaussian model. The
jumps component is calculated using the characteristic function of the jumps size
distribution �

�˙.c/ D
Z

Rd
ec>yd�.y/ D 1

d

dX

jD1

1

1 � mj̇ cj
D 1

d

dX

jD1

�j̇

�j̇ � cj
;

QAJ.T � t;�/ D �C
Z T

t
ds
�
�C � QB.s;�/

�
� 1

�
C ��

Z T

t
ds
�
�� � QB.s;�/

�
� 1

�
;

AJ.T � t/ D QAJ.T � t; 0/;

where c 2 C

d and �j̇ D 1

m˙

j

. The function QAJ.�;�/ is available in closed form

QAJ.�;�/ D �C

d

dX

jD1

��
1C �C

j Kjj
C �C

j

1C �C
j Kjj

log

 
.1C i�jKjj/e�Kjj� � 1 � �C

j Kjj

Kjj.i�j � �C
j /

!

C ��

d

dX

jD1

��
1 � ��

j Kjj
� ��

j

1 � ��
j Kjj

log

 
.1C i�jKjj/e�Kjj� � 1C ��

j Kjj

Kjj.i�j C ��
j /

!
:

3N˙.t/ represent the number of positive or negative jumps before the time t.
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9.4.4 Balduzzi, Das, Foresi and Sundaram Model

In the model proposed in Balduzzi et al. (1996), the interest rate follows the same
stochastic process as in CIR model, but the long-mean �.t/ and the variance V.t/
are stochastic, according to the following system of SDEs

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

dr.t/ D k .�.t/ � r.t// dt Cp
V.t/ dW.t/

d�.t/ D ˛ .ˇ � �.t// dt C � dZ.t/
dV.t/ D a .b � V.t// dt C 


p
V.t/ dY.t/

dW.t/dY.t/ D � dt
r.0/ D r0; �.0/ D �0 and V.0/ D v0

k, ˛, ˇ, �, a, b and 
 are positive constants and � 2 Œ�1; 1�. In order to align
the notation with previous sections we denote X.t/ D Œr.t/; �.t/;V.t/�>. In this
model the characteristic function of the state vector X can not be obtained in closed
form,4 but can be calculated numerically, solving the following system of ordinary
differential equations

d QA.�;�/
d�

D �˛ˇ QB2.�;�/C 1

2
�2 QB2.�;�/2 � ab QB3.�;�/;

QB1.�;�/ D �1e
�k� � 1 � e�k�

k
;

QB2.�;�/ D .k�1 C 1/
e�k� � e�˛�

˛ � k
C �2e

�˛� � 1 � e�˛�

˛
;

d QB3.�;�/
d�

D 1

2
QB1.�;�/2 C a QB3.�;�/C 1

2

2 QB3.�;�/2 C �
 QB1.�;�/ QB3.�;�/:

The functions A.�/ and B.�/ (i.e. the zero coupon bond price) can be obtained
solving the previous system and setting � D 0.

9.4.5 Numerical Results

Apart from the Vasicek model for which a simple closed form solution is available,
Monte Carlo is used as benchmark for the computation of the true swaption price.
The 97.5% mean-centered Monte Carlo Confidence Interval5 is used as measure of

4A semi-analytical solution for functions QA.�;�/ and QB3.�;�/ is available but it requires the
evaluation of Kummer’s functions of the first and second kind. Kummer’s functions are not analytic
but have series and integral representation. However we find that the numerical solution of the ODE
system is much more efficient than the evaluation of the semi analytical form.
5Note that we use the quantile function of a Student’s t distribution.
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the accuracy of the Monte Carlo method. Simulation of the affine 3-factor Gaussian
and 2-factor CIR models is implemented by sampling from the exact distribution.
The Gaussian with jumps model and the BDFS model are simulated using an Euler-
Maruyama scheme with a time step of 0.0005. The number of simulations is chosen
depending on the complexity of the model and it is specified in each table caption.
Antithetic variates technique is also used for the affine 3-factor Gaussian model and
the BDFS model.

For the Vasicek model and the 3-factor Gaussian model, lower bound is obtained
via the closed formula described in Sect. 9.4.1. For the 2-factor CIR model and the
Gaussian with jumps model, the integrals involved in the lower bound are evaluated
by a Gauss-Kronrod quadrature rule, using Matlab’s built-in function quadgk. For
the BDFS model the system of ordinary differential equations is solved numerically
using the Matlab function ode45 based on the Dormand–Prince method. Due to the
complexity of the problem we adopt a Gauss-Legendre quadrature rule. The calculus
of the lower bound with a geometric mean region G involves the optimization of the
function LB.kI t;T; fThgn

hD1;R/ with respect to the parameter k. The optimization is
performed via Matlab functions fminunc.

Another important fact is that our lower bound formula is very suitable to be
used as a control variate to reduce Monte Carlo error. The approximated formula is
easy to implement in a Monte Carlo scheme and turns out to be very effective (see
Caldana et al. (2014) for details).

Swaption prices for different tenor and maturities are reported in Tables 9.1, 9.2,
9.3, 9.4, and 9.5 with the relative overall computing time for each pricing method.

Moreover, Figs. 9.1, 9.2, 9.3, 9.4, and 9.5 compare graphically the relative error
of the three proposed pricing methods.

9.4.5.1 Vasicek Model, Three-Factors Gaussian Model and Cox-Ingersoll
and Ross Model

We verify the accuracy of our new lower bound using models and parameter values
already examined in literature6

• Vasicek model: K D 0:05, � D 0:05, † D 0:01, x0 D 0:05 and 
 D 0;

• 3-factors Gaussian model: K D
2

4
1:0 0 0

0 0:2 0

0 0 0:5

3

5, � = Œ0; 0; 0�>, � =

Œ0:01; 0:005; 0:002�>, � D
2

4
1 �0:2 �0:1

�0:2 1 0:3

�0:1 0:3 1

3

5, † = diag(� ) � chol(�),7 x0

= Œ0:01; 0:005; �0:02� and 
 = 0.06;

6Schrager and Pelsser (2006) and Duffie and Singleton (1997) for the 2-factors C.I.R. model.
7diag(� ) means the diagonalization of the vector � and chol(�) means the Cholesky decomposition
of the correlation matrix �, where � and � are the volatility vector and the correlation matrix,
respectively, of the original paper.
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Table 9.1 The three tables represent matrices of swaption prices at three different strikes for
the Vasicek model. For each swaption we report on the first line the price in basis points and on
the second line the error in basis points. The error of the lower bound is the difference from the
exact Jamshidian method (Jam.)

Vasicek model

Payer swaptions (ATMF)

Option mat. 1 2 5

Swap length LB Jam. LB Jam. LB Jam.

1
35.670 35.670 46.836 46.836 59.501 59.501

10�4 10�4 10�4

2
67.953 67.953 89.234 89.234 113.412 113.412

10�4 10�4 10�4

5
147.645 147.645 193.957 193.957 246.875 246.875

10�4 10�4 10�4

10
238.273 238.273 313.243 313.243 399.674 399.674

10�4 10�4 10�4

Payer swaptions (ITMF: 0.85 � ATMF)

Option mat. 1 2 5

Swap length LB Jam. LB Jam. LB Jam.

1
80.591 80.591 86.861 86.861 91.405 91.405

10�4 10�4 10�4

2
155.872 155.872 167.452 167.452 175.622 175.622

10�4 10�4 10�4

5
353.282 353.282 376.199 376.199 391.032 391.032

10�4 10�4 10�4

10
605.661 605.661 637.301 637.301 654.439 654.439

10�4 10�4 10�4

Payer swaptions (OTMF: 1.15 � ATMF)

Option mat. 1 2 5

Swap length LB Jam. LB Jam. LB Jam.

1
11.247 11.247 21.169 21.169 35.825 35.825

10�4 10�4 10�4

2
20.781 20.781 39.551 39.551 67.525 67.525

10�4 10�4 10�4

5
41.394 41.394 81.330 81.330 142.400 142.400

10�4 10�4 10�4

10
58.744 58.744 121.059 121.059 220.008 220.008

10�4 10�4 10�4

• 2-factors Cox-Ingersoll and Ross model: a = Œ0:5080; �0:0010�>, � =
Œ0:4005; �0:7740�>, � = Œ0:023; 0:019�>, x0 = Œ0:374; 0:258� and 
 = �0:58.

Numerical results for these models are shown in Tables 9.1, 9.2 and 9.3.
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Table 9.2 The three tables represent matrices of swaption prices at three different strikes for the
3-factors Gaussian model. The bottom line of each table provides the overall computation time for
the different pricing methods. For each swaption we report the price in basis points estimated with
the Monte Carlo method, MC, the Lower Bound approximation (LB) and the Monte Carlo method
with the control variable technique, MC (CV). Monte Carlo prices without and with control variable
method are estimated using 107 and respectively, 105 simulations, antithetic variates method and
the exact probability distribution of the state variables at the maturity date of the swaption. Below
each Monte Carlo price, the confidence interval at 97.5% is reported in basis point

Three-factor Gaussian model

Payer swaptions (ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
20.814 20.817 20.817 23.554 23.554 23.554 23.217 23.207 23.207

0.010 10�4 0.011 10�4 0.011 10�4

2
33.114 33.119 33.119 38.430 38.434 38.434 38.728 38.722 38.722

0.015 10�4 0.018 10�4 0.018 10�4

5
53.325 53.312 53.312 63.676 63.686 63.686 65.673 65.683 65.683

0.025 10�4 0.029 10�4 0.030 10�4

10
65.583 65.579 65.583 79.090 79.062 79.067 82.164 82.156 82.159

0.030 0.001 0.036 0.001 0.037 10�4

Overall MC LB MC (CV)

time (sec) 32.045 0.122 3.657

Payer swaptions (ITMF: 0.85 � ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
79.446 79.445 79.445 78.404 78.404 78.404 69.446 69.442 69.442

0.003 10�4 0.005 10�4 0.005 10�4

2
154.563 154.563 154.563 150.909 150.911 150.911 131.95 131.949 131.949

0.003 10�4 0.005 10�4 0.007 10�4

5
361.470 361.469 361.469 346.275 346.275 346.275 295.162 295.162 295.162

0.001 10�4 0.003 10�4 0.006 10�4

10
636.982 636.982 636.982 604.809 604.81 604.81 508.838 508.840 508.840

0.001 10�4 0.002 10�4 0.003 10�4

Overall MC LB MC (CV)

time (sec) 32.023 0.117 3.543

Payer swaptions (OTMF: 1.15 � ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
1.571 1.570 1.570 2.823 2.824 2.824 3.798 3.794 3.794

0.003 10�4 0.005 10�4 0.006 10�4

2
1.065 1.065 1.065 2.611 2.612 2.612 4.324 4.322 4.322

0.003 10�4 0.006 10�4 0.008 10�4

5
0.150 0.150 0.150 0.904 0.905 0.905 2.569 2.569 2.57

0.001 10�4 0.004 10�4 0.007 10�4

10
0.003 0.003 0.003 0.076 0.076 0.076 0.517 0.516 0.517

10�4 10�4 0.001 10�4 0.003 10�4

Overall MC LB MC (CV)

time (sec) 32.024 0.113 3.541
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Table 9.3 The three tables represent matrices of swaption prices at three different strikes for the
2-factor C.I.R. model. The bottom line of each table provides the overall computation time for
the different pricing methods. For each swaption we report the price in basis points estimated
with the Monte Carlo method, MC, the Lower Bound approximation (LB) and the Monte Carlo
method with the control variable technique, MC (CV). Monte Carlo prices without and with control
variable method are estimated using 107 and respectively, 105 simulations and the exact probability
distribution of the state variables at the maturity date of the swaption. Below each Monte Carlo
price, the confidence interval at 97.5% is reported in basis point

Two-factor Cox-Ingersoll-Ross model

Payer swaptions (ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
48.490 48.466 48.466 59.386 59.361 59.361 67.006 66.970 66.970

0.044 10�4 0.054 10�4 0.060 10�4

2
85.908 85.871 85.871 106.938 106.890 106.890 123.894 123.830 123.830

0.078 10�4 0.098 10�4 0.113 10�4

5
169.474 169.427 169.428 216.993 216.879 216.881 261.486 261.366 261.368

0.157 10�4 0.202 10�4 0.246 10�4

10
265.862 265.779 265.818 345.184 344.949 344.992 423.059 422.857 422.887

0.251 0.004 0.331 0.005 0.418 0.004

Overall MC LB MC (CV)

time (sec) 23.118 1.456 1.924

Payer swaptions (ITMF: 0.85 � ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
107.584 107.577 107.577 116.846 116.839 116.839 114.947 114.930 114.930

0.025 10�4 0.034 10�4 0.043 10�4

2
208.047 208.037 208.037 222.373 222.363 222.363 217.236 217.208 217.208

0.040 10�4 0.058 10�4 0.078 10�4

5
475.686 475.668 475.669 493.334 493.301 493.301 473.362 473.330 473.331

0.065 10�4 0.109 10�4 0.165 10�4

10
812.501 812.470 812.482 825.291 825.202 825.219 778.599 778.559 778.573

0.092 0.002 0.168 0.003 0.275 0.002

Overall MC LB MC (CV)

time (sec) 23.121 1.199 1.667

Payer swaptions (OTMF: 1.15 � ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
16.004 15.973 15.973 24.476 24.446 24.446 34.601 34.546 34.546

0.062 10�4 0.072 10�4 0.077 10�4

2
23.777 23.724 23.724 40.022 39.964 39.964 61.943 61.838 61.838

0.113 10�4 0.134 10�4 0.146 10�4

5
33.668 33.565 33.567 68.868 68.740 68.742 124.627 124.396 124.399

0.239 10�4 0.288 0.001 0.323 0.001

10
42.602 42.425 42.459 99.260 99.004 99.045 196.625 196.230 196.266

0.394 0.005 0.483 0.005 0.555 0.005

Overall MC LB MC (CV)

time (sec) 23.121 1.314 1.782
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Table 9.4 The three tables represent matrices of swaption prices at three different strikes for the 2-
factor Gaussian model with Double Exponential Jumps. The bottom line of each table provides the
overall computation time for the different pricing methods. For each swaption we report the price in
basis points estimated with the Monte Carlo method, MC, the Lower Bound approximation (LB) and
the Monte Carlo method with the control variable technique, MC (CV). Monte Carlo (MC) price is
estimated using four millions simulations, an Euler scheme with a time step equal to 0.0025 and the
antithetic variates technique. Monte Carlo is also performed using 105 simulations and control variates
method. Below each Monte Carlo price, the confidence interval at 97.5% is reported in basis point

Two-factor Gaussian model with Double Exponential Jumps

Payer swaptions (ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
44.013 44.046 44.046 52.773 52.766 52.766 59.145 59.204 59.204

0.063 10�4 0.074 10�4 0.082 10�4

2
82.968 83.042 83.042 102.255 102.242 102.242 119.461 119.629 119.629

0.117 10�4 0.143 10�4 0.165 10�4

5
96.950 97.030 97.031 120.664 120.652 120.652 142.807 143.021 143.021

0.137 10�4 0.169 10�4 0.196 10�4

10
97.542 97.623 97.623 121.396 121.384 121.384 143.643 143.858 143.858

0.138 10�4 0.170 10�4 0.198 10�4

Overall MC LB MC (CV)

time (sec) 5.396 � 103 2.643 84.485

Payer swaptions (ITMF: 0.85 � ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
63.821 63.878 63.878 68.253 68.267 68.267 69.103 69.164 69.164

0.074 10�4 0.084 10�4 0.088 10�4

2
138.588 138.729 138.729 148.623 148.667 148.667 153.982 154.172 154.172

0.146 10�4 0.169 10�4 0.184 10�4

5
349.841 350.150 350.150 347.712 347.888 347.888 340.988 341.320 341.320

0.214 10�4 0.250 10�4 0.275 10�4

10
904.579 904.933 904.934 887.761 887.995 887.995 856.180 856.559 856.559

0.215 10�4 0.264 10�4 0.305 10�4

Overall MC LB MC (CV)

time (sec) 5.396 � 103 2.643 84.057

Payer swaptions (OTMF: 1.15 � ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
28.669 28.679 28.679 39.757 39.729 39.729 50.158 50.215 50.215

0.051 10�4 0.065 10�4 0.076 10�4

2
44.305 44.319 44.319 66.449 66.396 66.396 90.386 90.535 90.535

0.087 10�4 0.117 10�4 0.144 10�4

5
9.461 9.449 9.449 22.651 22.573 22.573 41.176 41.275 41.275

0.041 10�4 0.072 10�4 0.105 10�4

10
0.051 0.048 0.048 0.299 0.304 0.304 1.563 1.564 1.564

0.005 10�4 0.009 10�4 0.019 10�4

Overall MC LB MC (CV)

time (sec) 5.396 � 103 2.643 84.070
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Table 9.5 The three tables represent matrices of swaption prices at three different strikes for the
BDFS. The bottom line of each table provides the overall computation time for the different pricing
methods. For each swaption we report the price in basis points estimated with the Monte Carlo
method, MC, the Lower Bound approximation (LB) and the Monte Carlo method with the control
variable technique, MC (CV). Monte Carlo (MC) price is estimated using four millions simulations,
an Euler scheme with a time step equal to 0.0005 and the antithetic variates technique. Monte Carlo
is also performed using 105 simulations and control variates method. Below each Monte Carlo price,
the confidence interval at 97.5% is reported in basis point

Balduzzi, Das, Foresi and Sundaram model

Payer swaptions (ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
85.08 85.00 85.00 102.24 102.17 102.16 97.45 97.45 97.45

0.06 10�3 0.07 10�3 0.06 10�3

2
148.39 148.27 148.26 177.40 177.28 177.27 167.37 167.38 167.38

0.10 10�3 0.11 10�3 0.09 10�3

5
250.22 250.01 250.01 296.89 296.68 296.68 276.29 276.28 276.28

0.17 10�3 0.18 10�3 0.15 10�3

10
290.96 290.71 290.72 345.34 345.10 345.10 321.69 321.68 321.68

0.19 10�3 0.21 10�3 0.17 10�3

Overall MC LB MC (CV)

time (sec) 12.256 � 103 894 1.139 � 103

Payer swaptions (ITMF: 0.85 � ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
122.53 122.44 122.44 148.64 148.57 148.57 152.26 152.25 152.25

0.05 10�3 0.06 10�3 0.04 10�3

2
234.64 234.51 234.50 277.64 277.52 277.51 277.32 277.31 277.31

0.09 10�3 0.1 10�3 0.07 10�3

5
521.94 521.72 521.72 578.32 578.11 578.11 543.71 543.68 543.68

0.11 10�3 0.12 10�3 0.08 0 0

10
881.46 881.21 881.21 908.49 908.26 908.26 799.72 799.70 799.70

0.07 10�3 0.08 10�3 0.07 10�3

Overall MC LB MC (CV)

time (sec) 12.256 � 103 930 1.176 � 103

Payer swaptions (OTMF: 1.15 � ATMF)

Opt. mat. 1 2 5

Swap length MC LB MC (CV) MC LB MC (CV) MC LB MC (CV)

1
55.91 55.84 55.84 66.35 66.29 66.28 57.30 57.30 57.30

0.06 10�3 0.07 10�3 0.06 10�3

2
85.74 85.65 85.64 104.05 103.95 103.94 90.40 90.40 90.40

0.09 10�3 0.11 10�3 0.09 10�3

5
92.5 92.38 92.38 124.12 123.99 123.98 113.7 113.69 113.69

0.13 10�3 0.16 10�3 0.13 10�3

10
48.09 48.00 48.01 81.30 81.18 81.17 86.16 86.15 86.15

0.10 10�3 0.14 10�3 0.13 10�3

Overall MC LB MC (CV)

time (sec) 12.256 � 103 928 1.172 � 103
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Fig. 9.1 Three-factor Gaussian model: relative error in percentage. The error of the lower bound
is the difference from Monte Carlo value. (a) ATMF-1 year maturity. (b) OTMF-2 years maturity
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Fig. 9.2 Two-factor Cox-Ingersoll-Ross model: relative error in percentage. The error of the lower
bound is the difference from Monte Carlo value. (a) ATMF-5 year maturity. (b) OTMF-1 years
maturity
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Fig. 9.3 Two-factor Gaussian model with Double Exponential Jumps: relative error in percentage.
The error of the lower bound is the difference from Monte Carlo value. (a) ATMF-2 year maturity.
(b) OTMF-5 years maturity
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Fig. 9.4 Balduzzi, Das, Foresi and Sundaram model: relative error in percentage. The error of the
lower bound is the difference from Monte Carlo value. (a) ATMF-2 year maturity. (b) ATMF-5
years maturity
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Fig. 9.5 Balduzzi, Das, Foresi and Sundaram model: relative error in percentage. The error of the
lower bound is the difference from Monte Carlo value. (a) OTMF-2 year maturity. (b) OTMF-5
years maturity
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9.4.5.2 Two-Factor Gaussian Model with Double Exponential Jumps

We test the affine Gaussian with Jumps interest rate model using the following
parameter values

• Gaussian parameters: K D
	
0:5 0

0 0:2



, � D Œ0; 0�>; � D Œ0:01; 0:005�>,

� D
	
1 �0:2

�0:2 1



, † = diag(� ) � chol(�), x0 = Œ0:01; 0:005� and 
 = 0.005;

• Jumps parameters: �C = 0.001, mC = [0.01, 0.01], �� = 0.001, m� = [0.01,
0.01].

Numerical results for this model are shown in Table 9.4.

9.4.5.3 Balduzzi, Das, Foresi and Sundaram Model

In order to prove the accuracy of our bounds for a wider class of models, we consider
a stochastic volatility (and long run mean) model. We use the following parameter
values, proposed in Balduzzi et al. (1996) : k D 0:25, ˛ D 0:76, ˇ D 0:12, � D
0:02, a D 0:29, b D 0:0007, 
 D 0:003 and � D �0:12.

Numerical results for this model are shown in Table 9.5.

9.5 Conclusions

This paper provides a new lower bound method for pricing of swaptions that is
accurate, fast and applicable to a wide range of interest rate models. Our algorithm
is particularly efficient because it requires the computation of only one Fourier
inversion. Existing approximations (for instance Singleton and Umantsev method)
require a number of Fourier inversions equal to the number of payment dates of
the underlying swap. An approximate exercise region defined by the log-geometric
mean of the ZCBs portfolio is tried out for the first time for swaption pricing. From
the numerical tests we find that the approximation is much faster than Monte Carlo
method and it is also very accurate across different maturities, tenors and strikes.
Numerical results are presented across a wide class of models, including model with
jumps and stochastic volatility. For all these models our lower bound is applicable
and it is accurate, instead the Singleton and Umantsev method is not applicable if
the density function is not known in analytical form. Moreover the lower bound is
very effective as control variate to reduce the computation time and the error of the
Monte Carlo. Hence, our model could be very suitable also for calibration purposes.
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A Appendix

A.1 Proof Proposition 1

We consider the lower bound to the swaption price as in formula (9.4) for affine
models:

LB.kI t;T; fThgn
hD1;R/ D P.t;T/ � ET

t

" 
nX

hD1
wh eb>

h X.T/Cah � 1
!

I.G/
#C

where the set G D f! 2 	 W g.X.T// � kg D f! 2 	 W ˇ>X.T/C ˛ � kg.
According to Carr and Madan (2000), we introduce the dampening factor eık,

then we apply the Fourier Transform with respect to the variable k to the T-forward
expected value and we obtain:

 ı./ D
Z C1

�1
eikCık

E

T
t

" 
nX

hD1
wh eb>

h X.T/Cah � 1
!

I.g.X.T// � k/

#
dk

D E

T
t

" 
nX

hD1
wh eb>

h X.T/Cah � 1
!Z C1

�1
eikCıkI.ˇ>X.T/C ˛ � k/dk

#

D E

T
t

" 
nX

hD1
wh eb>

h X.T/Cah � 1
!Z ˇ>X.T/C˛

�1
eikCıkdk

#

Since the dampening factor ı is positive, then the module of the integrand function
decays exponentially for k ! �1 and the Fourier Transform is well defined, so:

 ı./ D E

T
t

" 
nX

hD1
wheb>

h X.T/Cah � 1
!

e.iCı/.ˇ>X.T//

#
e.iCı/˛

i C ı

Using the characteristic function of X, calculated under the T-forward measure:

ˆ.�/ D E

T
t

h
ei�>X

i
, the function  ı./ can be written as:

 ı./ D
 

nX

hD1
wheahˆ.�ibh C . � iı/ˇ/ �ˆ.. � iı/ˇ/

!
e.iCı/˛

i C ı

Finally the lower bound is the maximum with respect to k of the inverse transform
of  ı./:

LB.kI t;T; fThgn
hD1;R/ D P.t;T/

e�ık

�

Z C1

0

e�ik ı./d
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A.2 Proof of the Analytical Lower Bound for Gaussian Affine
Models

X � N.�;V/ in T-forward measure and g.X.T// D ˇ>X C ˛ � N.ˇ>� C
˛; ˇ>Vˇ/

Then the approximate exercise region G becomes:

G D f! 2 	 W g.X.T// > kg D f! 2 	 W z > dg

where z is a standard normal random variable and

d D k � ˇ>� � ˛
q

ˇ>Vˇ

:

The lower bound expression can be written using the law of iterative expectation:

LB.kI t;T; fThgn
hD1;R/ D P.t;T/ ET

t

"
E

T
t

" 
nX

hD1
whebh

>X.T/Cah � 1
!

jz
#

I.z > d/

#

Conditionally to the random variable z, the variable X is distributed as a multivariate
normal with mean and variance:

E

T
t ŒXjz� D � C z � v

Var.Xjz/ D V � vv>

v D Vˇ
q

ˇ>Vˇ

We can now compute the inner expectation, using the normal distribution
property:

LB.kI t;T; fThgn
hD1;R/ D P.t;T/

 
nX

hD1
wh E

T
t

h
eb>

h �Czb>

h vC 1
2Vh I.z > d/

i
� E

T
t ŒI.z > d/�

!

where Vh D b>
h .V � vv>/bh.

Maximizing with respect to k, involved in the definition of d, we found the lower
bound:

LB.t;T; fThgn
hD1;R/ D max

k2R

 
nX

hD1
wheahCb>

h �C 1
2VhC 1

2 d2h N.dh � d/ � N.�d/

!

where dh D b>
h v and N.x/ is the cumulative distribution function of standard normal

variable.
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To make faster the optimization of the lower bound with respect to the parameter
k, we compute the first order approximation of maximum point as a starting point.
Equation for stationary points:

@LB.t; k/

@k
D P.t;T/
q

ˇ>Vˇ

 
nX

hD1
wheahCb>

h �C 1
2VhCd2h=2N0.�.d � dh// � N0.�d/

!
D 0

Taylor first order expansion:

N0.�.d � dh// D N0.�d/C dhN00.�d/C o.dh/ D N0.�d/.1C ddh/C o.dh/

We substitute the first order expansion in the derivative expression and we obtain:

nX

hD1
wheahCb>

h �C 1
2VhCd2h=2.1C ddh/ � 1 D 0

So the first order guess of the maximum point is:

dguess D 1 �Pn
hD1 wheahCb>

h �C 1
2VhCd2h=2

Pn
hD1 wheahCb>

h �C 1
2VhCd2h=2dh

kguess D
q

ˇ>Vˇ dguess C ˇ>� C ˛
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Optimization Techniques



Chapter 10
Portfolio Optimization Using Modified
Herfindahl Constraint

Asmerilda Hitaj and Giovanni Zambruno

Abstract Modern portfolio theory started with Markowitz (J Financ 7(1):77–91,
1952; Portfolio selection efficient diversification of investments. Wiley, New
York, 1959). Early works developed necessary conditions on utility function
that would result in mean-variance theory being optimal, see Tobin (Rev Econ
Stud 25(2):65–86, 1958). Recently, considering the stylized facts of asset returns,
mean-variance model has been extended to higher moments. Despite all, empirical
evidence has shown that mean-variance model and its variants often yield overly
concentrated portfolios. Portfolio diversification is still an open question. To avoid
this problem different constraints have been introduced in the portfolio optimization
procedure. In this paper we study from an empirical point of view the impact
of imposing a constraint on the Modified Herfindahl index of the portfolio, in
case of mean-variance and mean-variance-skewness optimization. We find that
imposing a constraint on the level of the portfolio diversification leads to better
out of sample performance and significant gains, despite the use of shrinkage
estimators for moments and comoments, in particular when long estimation periods
are considered.

Keywords Higher moments portfolio selection • Risk-based strategies
• Expected utility • Herfindahl index • Diversity constraint

10.1 Introduction

Markowitz (1952, 1959) is unanimously recognized as the originator of modern
portfolio theory, where the importance of portfolios, risk, correlations between
securities and diversification is emphasized. Using Quadratic Programming, he
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introduced a computation method for determining mean-variance efficient portfolios
as portfolios with minimal risk for a given return, or, equivalently, with the highest
return for a given level of risk. Merton in (1972) using Lagrange Multipliers
obtained the efficient frontier analytically. Tobin in (1958) noted that mean-variance
analysis is implied if probability distributions are Gaussian or if the user has a
quadratic utility function. Alternative portfolio theories, based on expected utility
theory and taking into account the stylized facts of asset returns, included higher
moments in portfolio allocation: among others, see Jondeau et al. (2007), Hitaj
and Mercuri (2013a), and Martellini and Ziemann (2010). Consequently, expected
utility maximization became a predominant criterion for portfolio choice. In order
to account for some of the stylized facts of asset returns, usually a Taylor expansion
of the expected utility function is considered, stopped at the second, third or
fourth order if one wishes to take into account, respectively, mean-variance, mean-
variance-skewness or mean-variance-skewness-kurtosis. Therefore a crucial point,
when dealing with portfolio choice, is the estimation of the arrays of expected
returns, co-variances, co-skewnesses and co-kurtosis, depending on the model used.
In practice their estimation is a difficult task: traditionally the historical (sample)
estimation has been used, which might not be appropriate for future data. Many
papers have shown that portfolio optimization is very sensitive to these inputs
(see, for example, Frankfurter et al. (1971), Best and Grauer (1991a), and Chopra
and Ziemba (1993), in the case of the mean-variance model). This sensitivity has
generally been attributed to the tendency for optimization to magnify the effects of
estimation error, see e.g. Michaud (1989). Moreover, empirical evidence has shown
that the mean-variance portfolio is over-concentrated in a few assets, see Best and
Grauer (1991b) and Green and Burton (1992), which goes against the idea of diver-
sification. Therefore a common problem to solve for practitioners and academics is
the portfolio robustness, namely the need to find solutions that are poorly sensitive
to variations in input values. A vast literature is now available on how to deal with
the problem. One solution is to use high frequency data, for example daily data in
place of monthly data. However this solution is not always possible: e.g. in case of
hedge fund portfolios daily observations are not available. Usually when hedge fund
portfolios are considered we have to work with monthly observations. A different
solution is the use of improved estimation procedures (see Jorion 1986; Ledoit and
Wolf 2003) and model variations (see, among others, Jagannathan and Ma 2003;
Jondeau et al. 2007; Martellini and Ziemann 2010). In Ledoit and Wolf (2003)
only the covariance matrix is obtained using the shrinkage estimator. This problem
has been extended to higher-moment portfolio allocation in Martellini and Ziemann
(2010) and applied on actual market data in Hitaj et al. (2012).

In practice, institutional investors are often forced by regulations to diversify their
portfolios. Therefore the idea of imposing diversification constraints is commonly
used in the asset management industry. Some of them, as proposed in literature, are:
upper/lower bounds on asset weights (see Peter et al. 1988); Lp-norm constraints
(see Demiguel and Nogales 2009), entropy constraint as used in Huang (2012).
Empirical studies show that, when sample estimators are used for the mean and
covariance elements, weight constraints improve portfolio efficiency out-of-sample
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(see among others Jagannathan and Ma 2003; Demiguel and Nogales 2009;
Peter et al. 1988). Notably, some diversification constraints are in the form of an
upper bound, while others are instead in the form of a lower bound.

Jagannathan and Ma in (2003) proved that weight constraints possess a
shrinkage-like effect, meaning that imposing weight constraints or using shrinkage
estimators for moments and comoments lead to similar results. In a recent paper,
Hitaj and Zambruno (2016), the authors have shown through empirical analysis
that the level of risk aversion has an important role on portfolio diversification. For
low levels of risk aversion the optimal portfolio is overly concentrated and as risk
aversion increases portfolio diversification also increases; yet, in case of non-normal
return distributions, despite the use of shrinkage estimators, the obtained portfolios
are not very diversified.

The aim of this paper is to move one step further and analyze the effects that
imposing a constraint on the level of portfolio diversification has in an out-of-
sample perspective, when shrinkage estimators are considered for moments and
comoments. To our knowledge the optimization problem that involves a constraint
on the level of portfolio diversification, when shrinkage estimators are used for
moments and comoments, has not been studied yet. Moreover, we perform a
detailed analysis not only for the mean-variance model but also for mean-variance-
skewness one. This latter model is recommended for use when assets returns are
not normally distributed. For this reason, we consider three different portfolios of
hedge fund indexes, taken from Credit Suisse Alternative indexes, Hedge Fund
Research Alternative indexes, EDHEC Alternative indexes; for sake of comparison
we consider also two equity portfolios. The overall time-series of returns spans
January 1997 to January 2013, consisting in 193 monthly observations. In the
empirical part, for portfolio allocation we use mean-variance (MV) and mean-
variance-skewness (MVS) models, as we will see in Sect. 10.3.2, and for comparison
purposes we estimate also the optimal portfolios obtained using some risk-based
strategies (explained in Sect. 10.3.1) widely used in the equity world.

We analyze the impact that the estimation window length has on the obtained
results, by considering different buy-and-hold rolling window strategies such as
24-month or 48-month in-sample and 3-month or 6-month out-of-sample. Further-
more we analyze the impact of the risk aversion parameter, by considering different
values of this. Since it has long been recognized that mean-variance efficient
portfolios established using the sample covariance matrix perform poorly out-of-
sample (see among others Best and Grauer (1991a), Jorion (1986), and Ledoit
and Wolf (2003) in case of MV allocation and Hitaj et al. (2012) in case of
MVSK model), in this work we use shrinkage toward the constant correlation for
covariances and coskewnesses and shrinkage toward the grand mean for the mean.

Our main empirical findings are: (i) Three-moment portfolio selection leads
to better out-of-sample performances than simple mean-variance also when a
constraint on the level of the portfolio diversification is imposed. (ii) key variables
in the portfolio allocation procedure are not only the level of risk aversion but also
the length of the estimation window. In general we observe that despite the use of
shrinkage estimators for moments and comoments, imposing a constraint on the
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level of portfolio diversification leads to better out-of-sample performances with
respect to only shortselling constraints. These results are more evident and become
statistically significant when long estimation windows are considered.

The paper is organized as follows: Sect. 10.2 gives a brief description of the
commonly used diversification constraints. Section 10.3 discusses the MV and the
MVS portfolio selection models under weight constraints used in the empirical
part. Section 10.4 describes the empirical analysis, where we investigate the
characteristics of the optimal portfolios and discuss the results obtained; Sect. 10.5
draws some conclusions.

10.2 Review of the Constraints About Diversification

Consider an investor who selects his portfolio from n risky assets and denote with
M the collection of all parameters used to describe the assets under analysis and let
w D .w1;w2; : : : ;wn/ be the vector of weights, where wi is the fraction of the initial
endowment invested in the i-th asset. In general, when short sales are not allowed,
the investor problem has the following form:

8
<̂

:̂

max =min
w

f .M ; w/
Pn

iD1 wi D 1

0 � wi

; (10.1)

where the first constraint,
Pn

iD1 wi D 1, requires that the whole wealth be invested;
the second constraint, 0 � wi, prevents short selling; f .M ; w/ is the objective
function that the investor should optimize. The well-known mean-variance model
belongs to this class. It has long been recognized that the MV-efficient portfolios
established using sample estimators perform poorly out-of-sample and are highly
concentrated in a few assets. Considering that, by regulations, many institutional
investors cannot concentrate their portfolios in only a few assets, different weight
constraints have been proposed in order to obtain a diversified portfolio. We briefly
describe here those most used in literature (see Jun-Lin 2013).

10.2.1 Upper-Bound Constraint

One way to avoid overly concentrated portfolios is by adding an upper-bound
constraint Uw on weights, meaning that we cannot invest more than a fraction Uw of
wealth in any asset.

max
i
.wi/ � Uw: (10.2)
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If Uw D 1
n then the feasible region in (10.1) contains only one portfolio, namely

the equally-weighted one which is the most diversified portfolio. If Uw D 1, the
constraint (10.2) becomes redundant. Therefore, Uw 2 � 1n ; 1

�
. Decreasing the value

Uw we shrink the feasible region in (10.1) forcing a higher level of diversification.

10.2.2 Lower-Bound Constraint

An alternative way to obtain a diversified portfolio is by imposing a lower bound
(Lw) constraint on weights. We impose to invest no less than Lw in each asset:

min
i
.wi/ � Lw: (10.3)

If Lw D 0, constraint (10.3) becomes redundant due to constraint in (10.1). If Lw D
1
n the feasible region in (10.1) contains only one portfolio, the equally-weighted one.
Therefore Lw 2 �0; 1n

�
. The higher Lw the more diversified is the portfolio.

Enforcing a weight lower-bound constraint automatically induces an upper-
bound constraint: if min.w/ � Lw the maximum weight invested in one asset
is necessarily 1 � .n � 1/Lw.

10.2.3 Lp-Norm Constraint

For any p > 1, the Lp-norm constraint imposes an upper bound UL on the Lp-norm
(L.w/) of a portfolio w, defined as:

L.w/ D
nX

iD1
jwijp � UL: (10.4)

For the least diversified portfolio, the one where all the wealth is invested in one
asset, we obtain the maximum value: L.w/ D 1. For the most diversified portfolio,
where wi D 1

n ; for i D 1; : : : n, L.w/ attains its lowest value L.w/ D n1�p.
Therefore UL 2 �n1�p; 1

�
. Lower values of UL shrink the feasible region in (10.1) to

more diversified portfolios.

Lemma 2.1 Imposing a Lp-norm constraint we implicitly impose an upper-bound

constraint. In particular, if L.w/ � UL then max
i
.wi/ � .UL/

1
p .

Proof Proof by contradiction. Assume w has a component wi > .UL/
1
p . Then, being

p > 1, we have wp
i > UL. Considering the no short sale constraint, wj � 0 for all j,

in (10.1),
P

j¤i wj � 0. L.w/ D wp
i CP

j¤i wj
p > UL, which contradicts (10.4).
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We remark that for p D 2 we obtain the Herfindahl index, which is often used as
a measure of portfolio diversification. The Herfindahl index is defined as:

HI D
nX

iD1
w2i :

In the case of highest diversification, where all wi D 1
n , the Herfindahl index reaches

its minimum value, HI D 1
n . In the case of highest concentration, where only one

wi D 1 and the rest are zero, the Herfindahl index reaches its maximum value 1.
Therefore, HI 2 �

1
n ; 1

�
. It is evident that the Herfindahl index, defined as such,

depends on market size n.

10.2.4 Entropy Constraint

Also the Shannon’s entropy (Sh.w/) of a portfolio w may be used, defined as:

SH.w/ D �
nX

iD1
wi ln wi:

The entropy constraint imposes a lower bound, LSH , on the Shannon’s entropy of
the portfolio w:

SH.w/ D �
nX

iD1
wi ln wi � LSH : (10.5)

SH.w/ reaches its maximum value when all wi D 1
n , in this case SH.w/ D ln.n/.

The infimum of SH.w/ is approached when wi �! 1 for one asset and wj¤i �! 0

for all the others: in this case SH.w/ �! 0. Therefore LSH 2 .0; ln.n/�. The higher
LSH the more diversified is the portfolio.

As we can observe these constraints shrink the feasible region in (10.1) in
different ways. On one extreme we obtain the equally-weighted portfolio (highest
diversification) and on the other extreme we have a portfolio invested in one asset
only (highest concentration). It would be interesting to investigate the relation
among these constraints in case of portfolio allocation both from the theoretical and
the empirical point of view. Such analysis falls beyond the scope of the present
work: rather, here we focus on one particular weight constraint, a transforma-
tion of the Lp-norm, and we analyze empirically its effect on the out-of-sample
performance.
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10.3 Portfolio Allocation Models Under Consideration

Since the pioneering work of Markowitz (1952), based on the mean-variance
framework, several portfolio selection models have been proposed. Especially
in the equity framework different strategies have been suggested in contrast to
capitalization-weighted. Some of these are: equally weighted1 (EW), global min-
imum variance (GMV), equal risk contribution2 (ERC) and maximum diversified3

(MD). They have raised great interest both from market practitioners and academic
researchers. These approaches are known as risk-based or smart beta4 strategies and
are assumed to be robust since they rely at most on the estimation of the covariance
matrix ignoring the expected returns. Several empirical analysis (see among others
DeMiguel et al. (2009); Maillard et al. (2010); Choueifaty and Coignard (2008))
have been performed in case of equity portfolios, concluding for the superiority of
these strategies with respect to those based on mean and variance. Therefore, in the
empirical part, we use these strategies as reference portfolios for the expected utility
portfolio allocation based on two (MV) and three (MVS) moments. We consider
different levels of risk aversion and two types of weight constraints; no short selling
and a modified version of the Herfindahl index.

In the following we briefly explain the strategies used in the empirical part of this
paper.

10.3.1 Risk-Based Strategies

The risk-based strategies considered in this work are:

10.3.1.1 Equally Weighted Portfolio (EW)

The equally weighted strategy consists in holding a portfolio with weight 1=n in
each component. This strategy completely ignores the data and does not require any
optimization or estimation procedure.

1DeMiguel et al. (2009) have shown through empirical analysis that the EW portfolio has never
been outperformed systematically by the other 13 strategies considered in their paper.
2Maillard et al. (2010) compared the GMV, the EW and the ERC in an asset/sector allocation
context and concluded that the ERC approach might be considered a good trade-off between the
other two methods in terms of absolute risk level, risk budgeting and diversification.
3Choueifaty and Coignard (2008) proposed the maximum diversified ratio and empirically found
that the MDP is more efficient ex post compared to the market capitalization-weighted benchmark,
the MV and the EW.
4The term smart beta is popular to denote any strategy which attempts to take advantage of
the benefits of traditional passive investment, but adds a source of outperformance in order to
beat traditional market capitalization weighted indices. For more information on the risk-based
strategies see e.g. Amenc et al. (2013) and the references therein.
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10.3.1.2 The Shortsale-Constrained Global Minimum-Variance Portfolio
(GMV)

The GMV portfolio is the one offering the minimum overall variance: therefore
it doesn’t take into account the expected returns of the assets. Mathematically the
investor problem can be written as:

8
<̂

:̂

min
w
�2P D w0 M2 w

s:t:
Pn

iD1 wi D 1

0 � wi

; (10.6)

where M2 is the covariance matrix of the portfolio components.

10.3.1.3 The Shortsale-Constrained Equal Risk Contribution Portfolio
(ERC)

Qian in (2006) introduces the equal risk contribution strategy, where weights are
such that each asset provides the same contribution to portfolio risk.

Let us recall that the marginal risk contribution of asset i is defined as:

@wi�P D @�P

@wi
D .M2 w/ip

w0 M2 w
:

Indicating with �i.w/ D wi@wi�P the risk contribution of the ith asset, the
portfolio risk can be seen as the sum of risk contributions: �P D PN

i �i.w/ (see
Maillard et al. 2010). Therefore a characteristic of the ERC strategy is that:

wi @wi�P D wj @wj�P 8 i; j

This property allows the design of an algorithm for the easy determination of the
weights: actually we can minimize the sum of all squared deviations from the
preceding equalities:

8
<̂

:̂

min
w

Pn
iD1

Pn
jD1

�
wi.M2 w/i � wj.M2 w/j

�2

s:t:
Pn

iD1 wi D 1

0 � wi

; (10.7)

and we can reach a proper equal risk contribution position only if the minimum
is zero.
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10.3.1.4 The Shortsale-Constrained Maximum Diversified Portfolio
(MDP)

The basic idea behind the maximum diversification approach is to construct a
portfolio that maximizes the benefits from diversification. Choueifaty and Coignard
proposed in (2008) the so-called diversification ratio .DR/, which is the ratio of
the weighted average volatility of the assets to the portfolio actual volatility, given

by: DR D
Pn

iD1 wi�ip
w0M2w

. Since different asset classes are not perfectly correlated with
each other, this ratio in general is greater than 1, by an amount which expresses
the reduction of total risk attributable to diversification. The investor problem in the
MDP approach is:

8
<̂

:̂

max
wi

DR D
Pn

iD1 wi�ip
w0M2w

s:t:
Pn

iD1 wi D 1

0 � wi

(10.8)

10.3.2 Taylor Approximation of the Expected Utility (EU)
with Constraints on Portfolio Diversification

Introducing higher moments in portfolio selection using the Taylor expansion of the
expected utility function is widely used in Finance (see among others Jondeau et al.
2007; Hitaj and Mercuri 2013b; Hitaj et al. 2012 etc.). In the particular case that
a negative exponential utility function is used, its Taylor expansion up to the third
order is the following:

f .w/ D �e��.�w/
	
1C �2

2
w0M2w � �3

6
w0M3.w ˝ w/



(10.9)

where � is the level of risk aversion. This function has to be maximized subject to
the constraints as in (10.1). The inputs of this problem are the vector of means �,
the co-variance and the co-skewness matrixes, M2 and M3 respectively. In the case
of the risk-based strategies (ERC, GMV and MDP) we only need to estimate the
covariance matrix, M2.

In the empirical part of this work, taking into account that sample estimators
are characterized by high estimation error5 and considering the results reported in
different empirical analysis, see among others Jorion (1986) and Ledoit and Wolf
(2003) and Martellini and Ziemann (2010), Hitaj et al. (2012), and Hitaj (2010)6

5The estimation error is high when the sample size is small. This is specifically the case of Hedge
Funds which do not have a long history.
6These papers have demonstrated that using improved estimators lead to better out-of-sample
performance compared to that obtained using sample estimators.
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we decided to use shrinkage estimators.7 In particular for the mean we use the
shrinkage toward the grand mean (see Jorion 1986) and for the co-variance and
the co-skewness we use the shrinkage toward the constant correlation approach, see
e.g. Ledoit and Wolf (2003, 2004), Martellini and Ziemann (2010), and Hitaj et al.
(2012).

10.3.2.1 Diversifying Portfolios Through Weight Constraint

In this section we briefly review portfolio allocation according to mean-variance-
skewness under shortsale-constraints and Modified Herfindahl index constraint, that
we analyze in the empirical part.

The Shortsale-Constrained for CARA Expected Utility

Under shortsale-constraints the investor has to solve the following optimization
problem:

8
ˆ̂<

ˆ̂:

max
w

� e��.�w/
h
1C �2

2
w0M2w � �3

6
w0M3.w ˝ w/

i

s:t:
Pn

iD1 wi D 1

0 � wi

; (10.10)

The constraints are the same as in (10.1) where short selling is not allowed. This is
a natural constraint since in practice short positions are difficult to implement, and
in case of hedge fund portfolios they are not allowed at all.

As has been shown in Hitaj and Zambruno (2016), despite the use of shrinkage
estimators for moments and comoments the obtained portfolios are still highly
concentrated, in particular when asset returns are not normally distributed. This can
still be a problem as by law many institutional investors cannot concentrate their
portfolios8 and usually managers do not like to invest most of their endowment in
one asset. Therefore, taking into account the fact that many institutional investors
are often restricted by law to diversify their portfolios, in this paper we move one
step further and consider the portfolio selection problem when a constraint on the
level of portfolio diversification is added.

7The shrinkage estimator is based on averaging two different models: a high-dimensional model
with low bias and high variance (the sample estimator), and a lower-dimensional model with larger
bias but smaller variance (the target estimator). The estimated co-moment using the shrinkage
approach is given by Mshrinkage

i D kF C .1�k/S, where k is a coefficient called shrinkage intensity,
S is the sample co-matrix and F is the target co-matrix. In this paper as target co-matrix (F) we use
the constant correlation, proposed by Elton and Gruber in (1973).
8This limit is easier to understand if we consider a Credit portfolio and think in terms of Credit
Risk.
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Modified Herfindahl Index Constraint for CARA Expected Utility

For an easy interpretation of the results, in this paper we consider a modified version
of the Herfindahl index called Modified Herfindahl index, which is defined as:

MHI D
Pn

iD1 w2i � 1
n

1 � 1
n

: (10.11)

In the case of the most diversified portfolio, wi D 1
n for i D 1; : : : n, the value of the

Modified Herfindahl index is MHI D 0, while in the case of highest concentration,
wi D 1 and wj¤i D 0 for i; j D 1; : : : n, MHI D 1. Therefore MHI 2 Œ0; 1� and this
index decreases as the portfolio degree of diversification increases. The reason for
using the Modified Herfindahl instead of the Herfindahl index is that the first one is
independent on the size of the portfolio n.

In order to obtain a diversified portfolio, in this paper, a limit on the Modified
Herfindahl index of the portfolio w is imposed. Therefore, the problem that we solve
in this case is:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

max
w

� e��.�w/
h
1C �2

2
w0M2w � �3

6
w0M3.w ˝ w/

i

s:t:
Pn

iD1 wi D 1

MHI � UMH

wi � 0

; (10.12)

where UMH 2 Œ0; 1�. The smaller is the UMH the more diversified the portfolio
must be.

Lemma 3.1 Imposing an upper-limit on the MHI we implicitly impose a weight
upper-bound constraint. In particular we have that if MHI � UMH then max

i
.wi/ �

�
UMH.1 � 1

n /C 1
n

� 1
2 .

Proof From definition (10.11) we have that HI D �
MHI.1 � 1

n /C 1
n

�
and from

Lemma 2.1 we have that max
i
.wi/ � .UHI /

1
2 . Therefore we have max

i
.wi/ �

�
UMH.1 � 1

n /C 1
n

� 1
2 .

As we have explained in Sect. 10.2 different constraints can be considered in order
to force portfolio diversification. The reason for adding a constraint on the MHI of
the portfolio is that in this way one fixes exante the desired level of diversification.

In the empirical part we consider different levels of risk aversion � D 0:5 W 0:5 W
25,9 meaning that we have in total 50 values and UMH D 0:1 W 0:05 W 0:5. We stress
that the values of risk aversion � that we consider are for purpose of illustration

9In what follows we use the notation (min: step: max).
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only, since it is hard to determine the appropriate values of this parameter which
represent a proper risk aversion.

Considering the fact that Problems (10.10) and (10.12) are non-convex, in the
empirical part, in order to solve these problems we use the Optimization Algorithm
global search 10 of MATLAB. In order to determine a good starting point for the
global search algorithm we split each axis in 10 equal parts and then consider all the
permutations among the n axis whose components sum to 1 for problem (10.10) and
in addition satisfy the Modified Herfindahl constraint in case of problem (10.12).
These points are candidates for the initial point of the global search algorithm. We
evaluate the objective function in each of these points and select as starting point the
one that gives the objective function the highest value. Therefore, the starting point
is not (as is usual) the EW portfolio and is not the same for all portfolios.

10.4 Empirical Analysis

We now turn to discuss the empirical analysis. First we explain the characteristics
of the datasets used and then the procedure considered in order to measure the
magnitude of potential gains or losses that can be realized by an investor when
adding a constraint on the portfolio diversification level instead of only short-sale
constraints.

10.4.1 Description of the Data Base

In this empirical analysis we consider three different portfolios of hedge fund
indexes, taken respectively from Credit Suisse Alternative indexes,11 Hedge Fund
Research Alternative indexes12 and EDHEC Alternative indexes.13 Each component
in these three sets, represents a different strategy. For the sake of comparison, we
also build two Equity portfolios. Their components are taken from S&P 500 index.
In constructing the first portfolio we selected 14 equities whose return distributions
are not normal: in particular equities with a high Jarque-Bera test value; we call this
portfolio Equity non-normal. The second portfolio is also an equity portfolio but in
this case we selected from the S&P 500 index the components that have low Jarque-
Bera test value (in this case each equity distribution is close to the normal one) and

10For more information on the Global Search algorithm see http:// it.mathworks.com/help/gads/
how-globalsearch-and-multistart-work.html .
11For more information, see www.hedgeindex.com, where monthly data of the considered Alter-
native Indexes can be downloaded.
12For more information,www.hedgefundresearch.com.
13For more information, see www.edhec-risk.com.

http://it.mathworks.com/help/gads/how-globalsearch-and-multistart-work.html
http://it.mathworks.com/help/gads/how-globalsearch-and-multistart-work.html
www.hedgeindex.com
www.hedgefundresearch.com
www.edhec-risk.com
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we call this portfolio Equity normal. The components of each portfolio are listed in
Table A.1. For all the assets the overall time-series of returns spans January 1997 to
January 2013, consisting in 193 monthly14 observations.

In Tables A.2, A.3, and A.4, we report some descriptive statistics for each time
series of returns, on the whole period under consideration, for the Credit Suisse and
the two equity portfolios. The statistics reported in these tables are ‘annual mean’,
‘annual std’, ‘skewness’, ‘kurtosis’, ‘JB-test’ and its ‘p-value’.

We find, as was expected, that most Credit Suisse hedge fund indexes, with
the notable exception of ‘Managed Futures’ are negatively skewed and display a
positive excess kurtosis (see Table A.2). At 1% significance level, we reject the null
hypothesis that the returns are normally distributed for all the hedge fund indexes
except ‘Managed Futures index’. Similar results are obtained for the other two hedge
fund portfolios; owing to space constraints they will not be reported here but will be
provided by the authors upon request.

As explained previously, the Equity Normal portfolio, see Table A.3, was
selected in such a way that the distribution of returns is close to normal. The results
reported in this table show that, at the 1% significance level, we do not reject the null
hypothesis that the returns are normally distributed for all the components except
‘SO UN’ (which has a JB � test D 16:855). In case of the Equity non-normal
portfolio, Table A.4, at the 1% significance level we reject the null hypothesis of
normality for all the components of this portfolio except ‘KR UN’.

10.4.2 Empirical Protocol

Our objective is to analyze the impact that adding a constraint on the portfolio
diversification level has on the out-of-sample performances of the MV and MVS
portfolios, when shrinkage estimators are used for moments and comoments.

We analyze the impact that the estimation window length has on the obtained
results, by considering a buy-and-hold strategy15 with different rolling window
lengths: that is 24 or 48 months in-sample and 3 or 6 months out-of-sample. In
total we have four different rolling window situations. Moreover in order to analyze
the impact that risk aversion has on the results we also consider 50 different values
for the risk aversion parameter � D 0:5 W 0:5 W 20.

14The choice of monthly returns is due to the frequency of Hedge Funds data available in the
databases from where we downloaded the returns.
15Buy and hold strategy means that we estimate the optimal weights in the in-sample period and
keep these constant in the next out-of-sample period.
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10.4.2.1 In-Sample

In an in-sample perspective we analyze the optimal portfolios in terms of diversi-
fication, using the Modified Herfindahl index (MHI) in Eq. (10.11). This index is 0
for the EW portfolio (which is deemed to be the most diversified portfolio) and is 1
if the portfolio is concentrated in one asset.

10.4.2.2 Out-of-Sample

In order to assess the magnitude of potential gains that can be attained by an
investor when using a constraint on the level of portfolio diversification in addition
to no-short selling constraints, an out-of-sample analysis of their performances is
implemented. To this purpose the Information Ratio (IR) (where the risk-based
strategies are used as reference portfolios) and the Sharpe Ratio (Sh) are employed
as Risk Adjusted Performance Measures (RAPM) in order to compare the different
portfolios. For these measures we test whether the Information (Sharpe) Ratios
of two strategies are statistically distinguishable by implementing the studentized
bootstrap procedure, proposed in Ledoit and Wolf (2008), with a block size of 6.

• The Sharpe Ratio is defined as;

Sh D RP � Rf

�P

This ratio measures the average return of a portfolio in excess of the risk-free
rate (Rf ), also called the risk premium, as a fraction of the portfolio total risk,
measured by its standard deviation.

• Considering the fact that risk-based strategies are widely used in the equity world
and different empirical analysis demonstrate that these strategies perform better
than the MV model and its variants (see among others Maillard et al. 2010;
Choueifaty and Coignard 2008; DeMiguel et al. 2009) we compare our portfolios
with some of the risk-based strategies using the Information Ratio, defined as:

IR D RP � Rref

�.RP � Rref /
:

where Rref is the average return of the reference portfolio. In the empirical part
we use as reference portfolio the four risk-based strategies described previously.
Once the reference portfolio is fixed, managers seek to maximize IR, i.e. to
reconcile a high residual return and a low tracking error. This ratio allows to
check that the risk taken by the manager in deviating from the reference portfolio
is sufficiently rewarded.

Different RAPM are used in literature and in practice to rank portfolios. Once
the RAPM is fixed, the best portfolio is the one that has the highest RAPM.
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The drawback of Sh is its dependence from Rf . As a proxy for the risk-free rate
of interest (Rf ) the literature suggests the use of 1 month or 3 month maturity U.S.
Treasury Bills (see e.g. Deguest et al. 2013) or alternatively an exogenously given
value (see e.g. Brennan (1998) who considered Rf D 5%). In the empirical part of
this paper, for illustration purposes, we set Rf D 0%.

10.4.3 Results with MHI-Constraint

When dealing with Problems (10.10) and (10.12), in this empirical analysis we
consider different levels of � D 0:5 W 0:5 W 25. For each portfolio under
analysis and for each in-sample period we find first the optimal weights solving
Problem (10.6), (10.7), (10.8), (10.10) (the equally weighted portfolio does not
require any optimization). We keep the weights constant in the next out-of-sample
period and at the end we compute the out-of-sample returns and roll-over the next
window. Moving this way we calculate all the out-of-sample portfolio returns which
are used to evaluate Sh and IR.

The case of short-sale constraints has been studied in Hitaj and Zambruno (2016)
and the main results in that paper are: (i) Despite the use of shrinkage estimators, the
MV and MVS portfolios are highly concentrated, in particular for the Hedge Fund
portfolios; (ii) the higher the risk aversion parameter the more diversified is the
portfolio. Nevertheless for all levels of risk aversion considered the GMV portfolio,
which is the least diversified among the risk-based considered, is more diversified
than every MV and MVS in all the datasets under consideration; (iii) the MV and
MVS portfolios, independently from the risk aversion parameter, allow for gains,
in terms of IR and Sh, with respect to the risk-based strategies. Moreover MVS
leads to higher out-of-sample performance than MV and this difference becomes
statistically significant when the estimation period is long.

In this paper we move one step further and analyze the impact that adding
a constraint16 on the level of portfolio diversification has on the out-of-sample
performance. For space limitations only the results obtained in case of UMH D
0:1; 0:3; 0:5 are discussed here. We indicate with MVi and MVSi, for i D 1; 2; 3

the results obtained solving Problem (10.12), where UMH is set at, respectively,
0:1; 0:3; 0:5 and with MV0 and MVS0 the results obtained in case of no-short selling,
solving problem (10.10). As explained previously, the lower the value of UMH the
more diversified is the portfolio.

For empirical illustration we report the results obtained for all the portfolios
in case of Credit Suisse and Equity Normal portfolios, respectively, in Figs. A.1
and A.2 for the rolling-window strategies 24 � 3 and 48 � 3.

In a first stage we compare the MV0 portfolios obtained using short-selling
constraints with those obtained adding a constraint on the level of portfolio
diversification, indicated with MV1, MV2 and MV3. Some results obtained in case

16We solve problem (10.12) considering different levels of UMH D 0:1 W 0:05 W 0:5.
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of the Equity Non Normal dataset are reported in Table A.6 for the rolling window
48 � 6. Moreover we compare the MV0 with the three moments portfolio selection
MVSi for i D 1; 2; 3. For illustrative purpose we report in Table results obtained
for selected levels of � for the Equity Non Normal dataset.

Commenting the results, we can first observe that for a fixed UMH and a fixed
level of risk aversion, independently from the rolling window strategy, the MVSi

portfolios in most cases display higher out-of-sample performances (IR or Sh) than
the MVi ones: this is in line with the existing literature claiming that introducing
higher moments to portfolio selection leads to better out-of-sample performances,
which seems to be true also under portfolio diversification constraint.

Moreover, comparing the portfolios obtained under short selling constraints with
those obtained adding some constraint on its diversification level, we observe that
the latter in general leads to higher out of-sample performances, in terms of IR and
Sh, when long estimation periods are considered. For empirical illustration we report
in Fig. A.1c, d the results of the Credit Suisse portfolio with rolling-window 48� 3.
From these figures it is clear that, in terms of IR and Sh, adding some constraint on
the portfolio diversification level (MVi and MVSi for i D 1; 2; 3) almost always
leads to better results with respect to the portfolios obtained with only shortsale
constraints (MV0 and MVS0) for a fixed level of risk aversion.

In case of short estimation periods, the results are not so clear for all the datasets
considered. For instance we report, for illustrative purpose, in Fig. A.1a, b the results
obtained for the Credit Suisse dataset with rolling-window is 24 � 3. Here for only
some levels of � adding a constraint on the portfolio diversification level leads to
better out-of-sample performance with respect to short-sale constraints alone.

The results of the Equity Normal portfolio are reported in Fig. A.2, where we
observe that MV0, MV2 and MV3 have close out-of-sample performances: this is not
unexpected since the Equity Normal portfolio obtained in case of only short-selling
constraints is a very diversified portfolio (see .2; 1/ in Fig. A.2a, c where MHI is
reported). In fact, in case of MV0 and MVS0, the MHI � 0:5 which means that
imposing a diversification constraint with UMH D 0:5 will not alter our results. In
contrast, for UMH D 0:1 the out-of-sample results of MV1 and MVS1 are different
from MV0 and MVS0, and in case of long estimation window the out-of-sample per-
formances of MV1 and MVS1 are almost always higher than those of MV0 and MVS0.

In order to understand if the gains (losses), in terms of IR or Sh, obtained
imposing some constraint on the portfolio diversification level in addition to only
short-selling constraints are statistically significant, we implement the studentized
bootstrap procedure, proposed in Ledoit and Wolf (2008), with a block size of 6. For

in case of Equity Non Normal dataset and rolling window 48 � 6

we report the results obtained, for selected levels of risk aversion �, where we test
if the IR of strategy MV0 is equal to that of the MViD1; 2; 3 one. In Table A.7 we
report the results obtained while testing if the IR of MV0 strategy is equal to that
of MVSiD1; 2; 3. The respective p-values are indicated in brackets and the asterisk
indicates 10% significance.

In order to have a general idea of the results obtained, in Table A.5 we report,
for each dataset and rolling-window, the relative frequencies at which the null

illustrative purposes we report in Tables A.6 and A.7 some of the results obtained
. In Table A.6,

A.7
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hypothesis (that two strategies have the same IR) cannot be accepted at a confidence
level of 10% over all the 50 levels of risk aversion considered. We observe that
the probability of not accepting the null hypothesis increases as the in-sample
and out-of-sample window lengths increase. This means that the out-of-sample
performances (Information Ratio in this case) of MV0 and MViD1; 2; 3 (MV0 and
MVSiD1; 2; 3) are statistically distinguishable at a confidence level of 10%. Putting
these results together with those obtained previously, we can say that adding some
constraints on the level of portfolio diversification in general leads to better out-of-
sample performances with respect to the portfolio obtained with only short-selling
constraints, but these gains become statistically significant in case of long estimation
window and when asset returns are not normally distributed.17

Similar results, which for space constraints are not reported, are obtained in case
the Sharpe ratio is used to measure the out-of-sample performance.

Considering the fact that imposing weight constraints has a shrinkage-like effect
as demonstrated in Jagannathan and Ma (2003), we conjecture that, when working
with monthly data and asset returns that are not normally distributed, the sampling
error associated with the estimated optimal shrinkage intensity proposed in Ledoit
and Wolf (2003) and Martellini and Ziemann (2010) is rather large in particular for
long estimation windows. To our opinion, this is due to the fact that by considering a
buy-and-hold rolling window strategy we do not take into account possible scenario
changes which are important for portfolio allocation. In case of a long estimation
window it may happen that we have an economic regime change and considering
older data in the estimation procedure may lead to estimation error of moments
and comoments also in case of the shrinkage estimators. Therefore we can say that
considering portfolio diversification constraints leads in general to financial gains in
an out-of-sample perspective, and that these gains become statistically significant in
case of long estimation windows. However these results depend on the value of the
upper bound UMH and the size of the estimation window: these parameters should
be set in accordance with the specific empirical problem at hand.

10.5 Conclusions

The aim of this paper is to shed some light on the characteristics of hedge
fund indexes portfolios and analyze the impact that imposing Modified Herfindahl
index (MHI) constraint has on the out-of-sample performance. For this purpose
three different portfolios of hedge fund indexes are considered. For the sake of
comparison, we also build two Equity portfolios, whose components are taken from
S&P 500 index. The overall time-series of returns spans January 1997 to January
2013, consisting in 193 monthly observations. For the portfolio allocation we use

17In case of Equity Normal portfolio the differences obtained, in terms of IR and Sh, between
MV0 and MViD1;2;3 ( MV0 and MVSiD1;2;3) are not statistically significant both for long and short
estimation windows. These results are not reported for space limitation but can be provided by the
authors upon request.
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the expected utility theory, considering the Taylor expansion of the second (MV)
and third (MVS) order. In order to reduce the estimation error inherent in the sample
approach we use the shrinkage estimators for moments and comoments. In particular
the shrinkage toward the grand mean is used for the estimation of the mean and the
shrinkage toward the constant correlation is used for the covariance and coskewness
elements.

We analyze the impact that risk aversion has on the results by considering 50
different values of the risk aversion coefficient �. Furthermore we investigate the
impact that the length of the estimation window has on the results by considering
a buy-and-hold strategy with different lengths for the rolling window: that is 24 or
48 months in-sample and 3 or 6 months out-of-sample. In total we have 4 different
rolling windows situations.

We find that, despite the use of improved estimators for moments and como-
ments, the optimal portfolios are concentrated on a few items, particularly when
we work with hedge funds and with low levels of risk aversion. Equity portfolios
are always more diversified than the hedge fund ones. Moreover, we find that,
when shrinkage estimators are used, portfolio selection with higher-order moments
(MVS) consistently dominates mean-variance from an out-of-sample perspective,
in terms of Information and Sharpe Ratio, also under portfolio diversification
constraints. Furthermore, we find that adding some constraint on the level of
portfolio diversification leads to better and significant gains in terms of Information
Ratio and Sharpe Ratio, with respect to the portfolio obtained in case of only
shortsale constraints, when dealing with hedge fund portfolios and long in-sample
period. However, how much we need to constrain MHI in order to get better out-
of-sample performances, is an empirical issue and depends on the dataset. These
facts lead to suspect that the sampling error associated with the estimated optimal
shrinkage intensities is still large, especially when working with long estimation
periods and non normal asset returns. In these cases, imposing some constraint on
the level of portfolio diversification leads to significant gains. The results obtained
suggest that more work is needed in improving the estimation of moments and
comoments and in understanding the effect that different parameter values have on
the results obtained.

These results are new in the literature and possess important potential implica-
tions for hedge fund investors and fund of hedge funds managers. They show that
not only an accurate analysis of the portfolio characteristics is important in order
to choose an appropriate model for portfolio allocation, but also a careful analysis
is needed in order to understand the impact that the model parameters have on the
results. In particular, the results here reported show that despite the use of shrinkage
estimators, proposed to overcome the limits of sample estimators for moments and
comoments, the obtained portfolios are still concentrated in a few assets. Moreover
adding some constraint on the level of portfolio diversification, in general leads
to gains in an out-of-sample perspective with respect to the portfolios obtained
with only shortselling constraints. These gains become statistically significant as
the estimation window increases.
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Table A.2 General statistics for Credit Suisse Hedge Fund portfolio. Almost all the components
in this portfolio are characterized by negative skewness and kurtosis greater than 3. Checking the
p-value and the JB-test we can say that the null hypothesis of normality, at a significance level of
1%, cannot be accepted for each component except the ‘Managed Futures’

Period under consideration Jan=1997 to Jan=2013

Hedge Fund Credit Suisse indexes

Ticker Annual mean Annual STD Skewness Kurtosis JB-test P-value

Hedge Fund 0.072 0.071 �0.371 6.655 111.8776 <0.001

Convertible Arbitrage 0.067 0.074 �2.920 20.733 2802.9545 <0.001

Short Bias �0.045 0.173 0.748 4.391 33.5682 <0.001

Emerging Markets 0.074 0.140 �1.338 10.051 457.3451 <0.001

Event Driven 0.077 0.065 �2.359 13.684 1096.9649 <0.001

Event Driven
Distressed

0.083 0.066 �2.505 15.638 1486.1835 <0.001

Event Driven
Multi-strategy

0.075 0.071 �1.859 10.429 555.0094 <0.001

Event Driven Risk
Arbitrage

0.049 0.043 �1.044 7.553 201.8156 <0.001

Fixed Income
Arbitrage

0.042 0.062 �4.803 37.802 10482.2108 <0.001

Global Macro 0.101 0.086 �0.208 8.544 248.5432 <0.001

Long/Short Equity 0.084 0.102 �0.080 6.266 85.9773 <0.001

Managed Futures 0.053 0.116 0.066 2.606 1.3906 0.445

Table A.3 General statistics for the Equity Normal portfolio, where its components have been
selected in such a way that their skewness is close to 0 and kurtosis to 3, therefore the distribution
of these equities approaches normality. This is confirmed by the results of the Jarque-Bera test and
its p-value which indicate that the null hypothesis of normality, at a significance level of 1%, cannot
be rejected for each asset except the ‘SO UN’. This data has been downloaded from Bloomberg

Period under consideration Jan=1997 to Jan=2013

Equity Normal portfolio

Ticker Annual mean Annual STD Skewness Kurtosis JB-test P-Value

AMD UN �0.099 0.693 �0.055 3.052 0.119 0.5000
APA UN 0.106 0.354 �0.073 3.438 1.717 0.3680
CMCSA UW 0.116 0.287 �0.240 3.051 1.872 0.3375
ED UN 0.041 0.172 �0.153 4.062 9.825 0.0158
FDX UN 0.094 0.295 0.124 3.904 7.062 0.0319
GIS UN 0.061 0.171 �0.281 3.381 3.700 0.1173
JNJ UN 0.068 0.192 �0.151 4.084 10.177 0.0145
L UN 0.063 0.269 �0.248 3.510 4.065 0.0977
NUE UN 0.080 0.361 �0.091 3.079 0.319 0.5000
PAYX UW 0.073 0.280 0.195 3.256 1.756 0.3602
PFE UN 0.042 0.237 �0.216 2.943 1.523 0.4104
SO UN 0.073 0.177 �0.022 4.447 16.855 0.0041

LUV UN 0.059 0.313 �0.183 3.239 1.540 0.4065
WAG UN 0.086 0.271 0.002 3.460 1.703 0.3708
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Table A.4 General statistics for Equity non Normal portfolio, where its component have been
selected in such a way that their skewness is faraway from 0 and kurtosis faraway from 3, therefore
the distribution of this equities is not Gaussian. This is confirmed by the results of the Jarque-Bera
test and its p-value which indicate that the null hypothesis of normality, at a significance level of
1%, cannot be accepted for each equity in this portfolio except ‘KR UN’

Period under consideration Jan=1997 to Jan=2013

Equity non normal portfolio

Ticker Annual mean Annual STD Skewness Kurtosis JB-test P-Value

FMC UN 0.117 0.323 �0.761 4.525 37.336 <0.001

XEL UN 0.012 0.302 �5.259 56.585 23980.108 <0.001

AIG UN �0.151 0.774 �2.519 34.896 8385.386 <0.001

FITB UW �0.008 0.493 �3.337 33.836 8004.620 <0.001

KR UN 0.054 0.240 �0.467 3.398 8.303 0.023
TEG UN 0.041 0.217 �3.488 33.079 7666.879 <0.001

BEAM UN 0.061 0.310 �0.357 9.604 354.854 <0.001

HBAN UW �0.059 0.445 �2.775 24.278 3888.487 <0.001

THC UN �0.025 0.606 �1.820 18.703 2089.577 <0.001

LNC UN 0.006 0.458 �1.557 17.057 1666.898 <0.001

CI UN 0.084 0.397 �2.464 17.032 1778.629 <0.001

NEM UN �0.003 0.410 0.228 5.634 57.476 <0.001

F UN �0.028 0.521 �0.416 13.417 878.205 <0.001

WMB UN 0.057 0.501 �1.696 12.285 785.845 <0.001
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Fig. A.1 Credit Suisse portfolio using expected utility approach with a rolling window of 24� 3

(in a and b) and 48 � 3 (in c and d). Subfigures (a) and (c) report RAPM of MVi and MVSi;
Sharpe in .1; 1/ and Modified Herfindahl in .2; 1/. MV0 and MVS0 are the results obtained solving
Problem (10.10), while .MV1 MVS1/, .MV2 MVS2/ and .MV3 MVS3/ are the results obtained
solving Problem (10.12), respectively, for UMH D 0:1; 0:3 and 0:5. Subfigures (b) and (d) report
IR of MVi and MVSi portfolios with respect to ERC in .1; 1/, EW in .1; 2/, MDP in .2; 1/ and GMV
in .2; 2/. As we can observe from subfigures .2; 1/ in (a) and (c) the MV0 and MVS0 portfolios are
highly concentrated portfolios, in particular for low levels of risk aversion. The MHI for these
portfolios ranges between 1 and 0:6
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Fig. A.2 S & P Normal portfolio using Expected Utility approach with a rolling window strategy
of 24� 3 (a and b) and 48� 3 (in c and d). Subfigures (a) and (c) report RAPM of MVi and MVSi;
Sharpe in .1; 1/ and Modified Herfindahl in .1; 2/. MV0 and MVS0 are the results obtained solving
Problem (10.10), while .MV1 MVS1/, .MV2 MVS2/ and .MV3 MVS3/ are the results obtained
solving Problem (10.12), respectively, for UMH D 0:1; 0:3 and 0:5. Subfigures (b) and (d) report
IR of MVi and MVSi portfolios with respect to ERC in .1; 1/, EW in .1; 2/, MDP in .2; 1/ and GMV
in .2; 2/.As we can observe from subfigures .2; 1/ in (a) and (c) the MV0 and MVS0 portfolios
are not concentrated portfolios. The MHI for these portfolios ranges between; 0:6 and 0:2 for
the rolling window 24 � 3 (Subfigures .2; 1/ in a), 0:25 and 0:1 for the rolling window 48 � 3

(Subfigures .2; 1/ in c)
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Table A.6 Comparison between MV0 and MVi: results for the rolling window 48 � 6 in case
of Equity Non Normal dataset. This table reports the monthly out-of-sample Information Ratio
of the MV, with respect to each Smart Beta as reference portfolio (indicated in bold), in case
of no-short selling (labeled with MV0) and in case of adding some constraints on the level of
portfolio diversification (labeled with MVi for i D 1; 2; 3, when the UMH is respectively, 0:1, 0:3
and 0:5). In an out-of-sample perspective, for different levels of � we compare the MV0 with the
MVi (for i D 1; 2; 3) and we also test for the null hypothesis that the Information Ratio of the
two strategies (MV0 and MVi) is equal. The respective p-value, indicated in brackets, is computed
using the studentized circular bootstrap proposed in Ledoit and Wolf (2008) with a block size of 6.
Asterisks denote 10% significance. For instance in case of � D 5 and ERC as reference portfolio,
the Information Ratio of the MV0 strategy is 0:049 while that of the MV1 is 0:117. Testing for
the null assumption that the difference between these two Information Ratios is zero we obtain a
p-value of 0:106 (at a level of 10% we do not reject the null hypothesis)

Equity Non Normal Information Ratio; comparing MV0 with MVi

ERC EW

Benchmark: MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3
� D 1 0.089 0.098 0.066 0.083 0.050 0.034 0.025 0.045

(0.894) (0.369) (0.611) (0.704) (0.341) (0.674)

� D 5 0.049 0.117 0.052 0.047 0.013 0.047 0.012 0.011

(0.106) (0.847) (0.349) (0.343) (0.958) (0.408)

� D 10 0.042 0.098 0.048 0.042 0.004 0.026 0.008 0.004

(0.129) (0.460) (0.85)3 (0.431) (0.572) (0.947)

� D 15 0.039 0.112 0.046 0.039 0.001 0.039 0.005 0.001

.0:033/� (0.412) (0.901) (0.126) (0.490) (0.963)

� D 20 0.039 0.119 0.047 0.039 0.000 0.039 0.005 0.000

(0.331) (0.289) (0.900) (0.422) (0.339) (0.956)

� D 25 0.036 0.078 0.043 0.036 �0.003 0.013 0.002 �0.003

(0.200) (0.342) (0.905) (0.459) (0.392) (0.958)

Benchmark: MDP GMV

� D 1 0.096 0.108 0.074 0.091 0.117 0.137 0.101 0.111

(0.851) (0.401) (0.784) ( 0.492) (0.534) (0.658)

� D 5 0.057 0.127 0.060 0.054 0.086 0.157 0.096 0.084

.0:09/� (0.843) (0.377) (0.110) (0.446) (0.348)

� D 10 0.050 0.113 0.056 0.050 0.095 0.143 0.102 0.095

.0:087/� (0.440) (0.850) (0.388) (0.559) (0.944)

� D 15 0.048 0.126 0.055 0.048 0.112 0.168 0.119 0.112

.0:022/� (0.402) (0.896) (0.294) (0.623) (0.954)

� D 20 0.047 0.136 0.056 0.048 0.124 0.122 0.134 0.125

(0.307) (0.286) (0.897) (0.969) (0.447) (0.962)

� D 25 0.045 0.093 0.052 0.045 0.130 0.139 0.138 0.130

(0.125) (0.334) (0.899) (0.867) (0.554) (0.959)
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Table A.7 Comparison between MV0 and MVSi: Results for the rolling window 48-6 in case of
Equity Non Normal dataset. This table reports the monthly out-of-sample Information Ratio of
the MV0 (in case of no-short selling) and MVSi (in case of imposing a constraints on portfolio
diversification level. MVSi for i D 1; 2; 3, when the UMH is respectively, 0:1, 0:3 and 0:5),
with respect to each Smart Beta as reference portfolio (indicated in bold). In an out-of-sample
perspective, for different levels of � we compare the MV0 with the MVSi (for i D 1; 2; 3) and we
also test for the null hypothesis that the Information Ratio of the two strategies (MV0 and MVSi)
is equal. The respective p-value is indicated in brackets. Asterisks denote 10% significance. For
instance in case of � D 15 and EW as reference portfolio, we have that the Information Ratio of
the MV0 strategy is 0:001 while that of the MVS2 is 0:014. Testing for the null assumption that the
difference between these two Information Ratios is zero we obtain a p-value of .0:099/�. Therefore
at a confidence level of 10% we reject the null hypothesis that the IR of the two strategies (MV0
and MVS2) are the same

Equity Non Normal Information Ratio; comparing MV0 with MVSi

ERC EW

Benchmark: MVS0 MVS1 MVS2 MVS3 MVS0 MVS1 MVS2 MVS3
� D 1 0.089 0.098 0.066 0.083 0.050 0.034 0.025 0.045

(0.854) (0.377) (0.597) (0.670) (0.340) (0.666)

� D 5 0.049 0.172 0.054 0.050 0.013 0.035 0.014 0.013

(0.224) (0.729) (0.875) (0.575) (0.936) (0.852)

� D 10 0.042 0.113 0.053 0.048 0.004 0.036 0.012 0.009

.0:075/� (0.160) .0:082/� (0.244) (0.240) (0.107)

� D 15 0.039 0.104 0.059 0.048 0.001 0.032 0.014 0.007

.0:044/� .0:061/� .0:083/� (0.172) .0:099/� (0.112)

� D 20 0.039 0.089 0.059 0.046 0.000 0.021 0.014 0.006

(0.422) .0:078/� (0.198) (0.553) (0.103) (0.216)

� D 25 0.036 0.094 0.056 0.048 �0.003 0.028 0.011 0.006

.0:052/� .0:074/� .0:051/� (0.141) (0.108) .0:064/�

Benchmark: MDP GMV

� D 1 0.096 0.105 0.074 0.090 0.117 0.137 0.102 0.111

(0.834) (0.382) (0.797) (0.495) (0.536) (0.648)

� D 5 0.057 0.125 0.063 0.057 0.086 0.154 0.099 0.087

(0.185) (0.755) (0.884) (0.247) (0.307) (0.884)

� D 10 0.050 0.128 0.062 0.057 0.095 0.163 0.109 0.103

.0:058/� (0.162) .0:098/� (0.248) (0.140) .0:082/�

� D 15 0.048 0.118 0.068 0.057 0.112 0.158 0.137 0.124

.0:035/� .0:069/� .0:090/� (0.401) (0.112) .0:081/�

� D 20 0.047 0.104 0.069 0.055 0.124 0.127 0.152 0.136

(0.383) .0:074/� (0.187) (0.981) (0.288) (0.172)

� D 25 0.045 0.106 0.065 0.057 0.130 0.167 0.159 0.150

.0:043/� .0:067/� .0:053/� (0.458) (0.254) (0.472)
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Chapter 11
Dynamic Asset Allocation with Default
and Systemic Risks

Alessandro Sbuelz

Abstract Systemic risk breeds default risk. I investigate the optimal portfolio
implications of their joint presence for non-myopic investors in arbitrage-free
markets when such risks take the form of asset value discontinuities. I contribute
to the multiple-asset jump-diffusion portfolio analysis of Das and Uppal (J Financ
59:2809–2834, 2004) by introducing default risk and its investment-horizon effects
on optimal portfolios (the optimal investment rules in Das and Uppal (J Financ
59:2809–2834, 2004) are time-invariant) and by linking excess expected returns to
risk exposures.

Keywords Strategic asset allocation • Investment-horizon effects • Investment
opportunity set • Default risk • Systemic risk • Arbitrage-free markets • Risk
premia • Jump-diffusive processes

JEL: G01, G11, G12, C61

11.1 Introduction

Default risk is closely related to systemic risk. Examples of how the default of
a number of investible securities is associated with the simultaneous downward
adjustment in the values of many tradable assets include but are not limited to
the notable events of Fall 2008. The joint impact of default risk and systemic risk
deeply affect investors. Importantly, as non-myopic rational investors anticipate
the effect on their indirect utilities of the implosion of the defaultable securities

The usual disclaimer applies.

A. Sbuelz (�)
Department of Mathematical Sciences, Mathematical Finance and Econometrics, Catholic
University of Milan, Largo Gemelli 1, 20123, Milan, Italy
e-mail: alessandro.sbuelz@unicatt.it

© Springer International Publishing AG 2018
G. Consigli et al. (eds.), Handbook of Recent Advances in Commodity and Financial
Modeling, International Series in Operations Research & Management Science 257,
DOI 10.1007/978-3-319-61320-8_11

241

mailto:alessandro.sbuelz@unicatt.it


242 A. Sbuelz

in a future systemic event, an investment-horizon effect arises even if the pre-
default investment opportunity set is constant. As importantly, no-arbitrage markets
command an additional excess-expected-return compensation for those twin risks
that modifies the investment opportunity set itself.

I explore the dynamic portfolio implications of the joint presence of default risk
and systemic risk in no-arbitrage multiple-asset markets with a constant opportunity
set. Downward jump-like value adjustments are asset-specific but systemic (happen
simultaneously). I extend the multiple-asset jump-diffusion portfolio analysis1 of
Das and Uppal (2004) in two important aspects. First, I focus on the default
risk associated with systemic events and its investment-horizon effects on optimal
portfolios (the optimal investment rules in Das and Uppal (2004) are time-invariant).
Second, my model captures the dependence of the excess expected returns on the
systemic jump sizes implied by the absence of arbitrage opportunities (Das and
Uppal (2004) do not impose no-arbitrage constraints on the asset values dynamics).

This paper is related to the applied literature2 that deals with contagion effects
in continuous-time portfolio problems. Kraft and Steffensen (2009) study the asset
allocation problem with several defaultable corporate bonds.3 They do not focus on
systemic risk as they rule out the possibility of a simultaneous downward jump-like
correction in asset values. Branger et al. (2009, 2014) consider systemic risk with
full/partial information but rule out default risk, whereas Puopolo (2015) focuses
on default risk and transaction costs in the absence of systemic risk. This is also
the case for the portfolio choice literature that characterizes contagion by means of
regime-switching models (e.g. Ang and Bekaert 2002; Kole et al. 2006; Guidolin
and Timmermann 2007, 2008) and by means of correlation risk without price
discontinuities (e.g. Buraschi et al. 2010). Pagliarani and Vargiolu (2014) restrict
the dynamic-asset-allocation analysis of default risk and systemic risk to the log-
utility investor.

Section 11.2 outlines the arbitrage-free dynamics of the risky asset values.
Section 11.3 discusses the optimal investment rule and Sect. 11.4 provides a
numerical analysis. Section 11.5 concludes.

11.2 No-Arbitrage Dynamics of the Risky Asset Values

There is a traded riskless security with constant rate of return r. There are also two
traded risky securities, whose market values are S1 and S2, respectively. Their value
dynamics load asset-specific diffusive shocks and a systemic Poisson-type shock
(its intensity under the objective probability measure P is �):

1Liu et al. (2003) carry out a single-asset optimal portfolio analysis in the presence of jump-like
event risk.
2De Donno et al. (2005) conduct a formal study of expected-utility maximization from terminal
wealth in a semimartingale model with countably many assets.
3Merton (1971) examines asset allocation when the riskless asset follows a jump-to-ruin process.



11 Dynamic Asset Allocation with Default and Systemic Risks 243

dS1
S1

D �1dt C �1dz1 � �1 .dN � �dt/ ;

dS2
S2

D �2dt C �2dz2 � �2 .dN � �dt/ ;

dz1dz2 D �dt:

The risky security 1 defaults in the wake of the first systemic event and may have
recovery value (0 < �1 � 1). The risky security 2 is hit by systemic events (0 <
�2 < 1) but survives to them. Markets are arbitrage-free with the state-price density
process f�g having the dynamics4

d�

�
D �rdt � �dz& C � .dN � �dt/ ;

dz1dz& D �1dt;

dz2dz& D �2dt;

where � is the market price of systematic diffusive risk. I assume that systemic
risk is always systematic (� > 0) and thus impacts the investment opportunity
set. Indeed, by no arbitrage, the per-annum expected returns on the risky securities
load the systemic-and-default risk parameters �, �1, and �2 via the systematic-risk
parameter �.

Proposition 1 The no-arbitrage assumption implies that

1

dt
Et

	
dS1
S1




„ ƒ‚ …
D �1

D r C ��1�1 C ��1�;

1

dt
Et

	
dS2
S2




„ ƒ‚ …
D �2

D r C ��2�2 C ��2�:

Proof By no-arbitrage, the deflated value processes f�S1g and f�S2g must be
martingales over any finite time horizon. Hence, they must be driftless:

Et

	
d .�Si/

�Si



D .�i C �i�/C.�r � ��/C.���i�i/C..1C �/ .1 � �i/ � 1/ � D 0;

for i D 1; 2. ut

4When the values of the risky securities jump at predictable dates (as at dividend dates), the state-
price density has a different structure with a distinct dynamics (e.g. Battauz 2003).
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11.3 The Optimal Investment Rule

The fraction of wealth allocated to the two risky securities are 
1 and 
2 respectively.
The investor’s time horizon and value function are � and

J .W; �/ D max

1;
2

E0

"
.W� /

1�

1 � 

#
s:t: dW D W

2

4 r C 
1

�
dS1
S1

� rdt
�

C

2

�
dS2
S2

� rdt
�

3

5 ;

respectively. The boundary condition if the first systemic event occurs immediately
is

J .W; �/ D H .W; �/ ;

where

H .W; �/ D max
�2

E0

"
.W� /

1�

1 � 

#
with dW D W

	
r C �2


dS2
S2

� rdt

�

:

Proposition 2 (Liu et al. 2003) The value function at the first systemic event is

H .W; �/ D W1�

1 �  eB.�/;

B .�/ D
 
.1 � / �r C ��

2 .��2�2 C .�C 1/ �2�/
��

1
2
 .1 � / ��2

2 �
2
2 C

��
1 � ��

2 �2
�1� � 1

�
�

!
�;

and the corresponding optimal investment rule is � -invariant:

��
2 D ��2

�2
C .�C 1/ �2�

�22
�
�
1 � ��

2 �2
��

�2�

�22
:

Proof The optimal investment problem is equivalent to the one considered by Liu
et al. (2003) with the significant addition of the no-arbitrage assumption, which
renders the speculative component of the optimal portfolio ��

2 , ��2
�2

C .�C1/�2�
�22

,

dependent on the systemic-risk parameters � and �2. ut
The optimal portfolio ��

2 embeds a negative hedging component,

�
�
1 � ��

2 �2
��

�2�

�22
< 0;
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which is meant to create a windfall whenever the value of the risky security 2 is
taken down by a systemic event. The hedging component makes sure that ��

2 always
stays below 1=�2. Notably, hedging against systemic risk is implemented even by
the myopic investor (� ! 0) and by the log-utility investor ( D 1).

While the post-default optimal portfolio ��
2 is constant, the boundary condition

at the first systemic event causes the dependence of the pre-default optimal portfolio˚

�
1 .�/ ; 


�
2 .�/

�
on the investment horizon � for any investor with  ¤ 1.

Proposition 3 The optimal investment rule
˚

�
1 .�/ ; 


�
2 .�/

�
is such that


�
1 .�/ D � .�1 � ��2/

 .1 � �2/ �1 C
�
�1 � ��1

�2
�2

�
.�C 1/ �

 .1 � �2/ �21
�

�
�1 � ��1

�2
�2

� �
1 � 
�

1 .�/ �1 � 
�
2 .�/ �2

��
e�A.�/CB.�/�

 .1 � �2/ �21


�
2 .�/ D � .�2 � ��1/

 .1 � �2/ �2 C
�
�2 � ��2

�1
�1

�
.�C 1/ �

 .1 � �2/ �22
�

�
�2 � ��2

�1
�1

� �
1 � 
�

1 .�/ �1 � 
�
2 .�/ �2

��
e�A.�/CB.�/�

 .1 � �2/ �22

where A .�/ is the � -dependent component of the investor’s value function:

J .W; �/ D W1�

1 �  eA.�/ with A .0/ D 0:

Proof The Hamilton-Jacobi-Bellman equation for the investment problem5 reads

0 D max

1;
2

0

BBBBBBBB@

�A0 C .1 � /


r C 
1 .��1�1 C .�C 1/ �1�/C

2 .��2�2 C .�C 1/ �2�/
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1
2
 .1 � / �
21�21 C 
22�

2
2 C 2
1
2�1�2�

�C
�
.1 � 
1�1 � 
2�2/1� e�ACB � 1

�
�

1

CCCCCCCCA

:

The result follows from the first order conditions. ut

5Alternative solution techniques for dynamic asset allocation problems include duality-based
methods (e.g. Battauz et al. 2015).
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When hedging against systemic risk, the investor corrects the pre-default
demands for each security,

�
�
�i� ��i

�j
�j

� �
1 � 
�

i .�/ �i � 
�
j .�/ �j

��
e�A.�/CB.�/�

 .1��2/ �2i
; iD1; 2; jD1; 2; i¤ j;

to account for the normal-times correlation � between the returns of both securities.
Importantly, the pre-default hedging demands are related to the � -dependent ratio

�
1 � 
�

1 .�/ �1 � 
�
2 .�/ �2

��
eB.�/

eA.�/

between the post-default marginal indirect utility of wealth and the pre-default one.
The pre-default hedging demands grant that the investor’s wealth at the first systemic
event remains positive.

Proposition 4 Given

Y1
�

1; 


0
1

� D 
0
1

��1.�1���2/
.1��2/�21

C 1

.1��2/
.�C1/�
�21

�
�1 � ��1

�2
�2

�
� 
1

and

Y2
�
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0
2
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0
2

��2.�2���1/
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�
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�1
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�
� 
2

;

the optimal investment rule
˚

�
1 .�/ ; 


�
2 .�/

�
is the solution to the following system

of non-linear ordinary differential equations,

8
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where Z .
1; 
2/ is quadratic in 
1 and 
2:

Z .
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Proof The first order conditions imply

A0 D 
0
1

��1.�1���2/
.1��2/�21

C 1

.1��2/
.�C1/�
�21

�
�1 � ��1

�2
�2

�
� 
1

C 

0
1�1 C 
0

2�2

.1 � 
1�1 � 
2�2/ C B0

D 
0
2

��2.�2���1/
.1��2/�22

C 1

.1��2/
.�C1/�
�22

�
�2 � ��2

�1
�1

�
� 
2

C 

0
1�1 C 
0

2�2

.1 � 
1�1 � 
2�2/ C B0;

and

1

�1

0

BBBBB@


1 � 
1�1�

2�2

�
��1�1C

.�C 1/ �1�

�
�




1 � 
1�1�

2�2

�

1�

2
1C


2�1�2�

�

1

CCCCCA
D

1 � 
1�1�

2�2

�1�
eB�A�:

ut

11.4 Numerical Analysis

When looking at the U.S. dollar monthly log returns for the developed-country
equity indexes for the United States, United Kingdom, Japan, Germany, Switzer-
land, and France over the period January 1982 to February 1997, Das and Uppal
(2004) estimate that one collective jump is expected every 20 months. This implies a
per-annum jump intensity level of 12=20. More conservatively, I shrink it to � D 1

5
,

so that one systemic event is expected every 5 years. I fix the other parameter values
to be r D 0:02, � D 1, � D 2, �1 D 0:95, �2 D 0:4, �1 D 0:5, �2 D 0:5, �1 D 0:40,
�2 D 0:20, and � D 0:5. The corresponding excess expected returns on the two
risky securities are

�1 � r D 60% and �2 � r D 28%:
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Fig. 11.1 Optimal investment versus the horizon � (in years,  D 3)

The pricing kernel is assumed to be highly impacted by systemic events (� D 2)
and more than half of the two excess expected returns come from the systemic-risk
premia (��1� D 38% and ��2� D 16%). Figure 11.1 shows the optimal investment
rule plotted against the investment horizon � for the level  D 3 of risk aversion.

The bulk of the non-myopic hedging against systemic risk takes place at short-
to-medium investment horizons. A 5-year investor subtracts about 1% of her initial
wealth from the optimal myopic total exposure to risky assets, which is 
�

1 .0/ C

�
2 .0/ D 0:59696. By having the lowest recovery rate (1��1 D 5%), the defaultable

asset is the best hedging tool against the first systemic event, that is the occurrence of
default itself. In fact, the percentage difference of the 5-year single-asset allocation
with respect to the myopic one is larger for the defaultable asset than for the non-
defaultable asset. The optimal fraction of wealth allocated to the non-defaultable
asset remains below 43% before default and leaps to more than 78% just after it (the
post-default optimal portfolio is ��

2 D 0:78136).
Figures 11.2 and 11.3 show the optimal portfolio choice of more conservative

investors ( D 5 and  D 7). On a relative basis, higher risk aversion amplifies
the optimal non-myopic hedging act and confirms the defaultable asset as the best
hedging tool.

11.5 Conclusions

Systemic events typically translate into a simultaneous drop in the value of many
of the existing tradable assets and are often accompanied by the default of some of
them. I study optimal non-myopic portfolios exposed to the joint presence of default
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risk and systemic risk in no-arbitrage multiple-asset markets with a constant pre-
default investment opportunity set. The assumption of no arbitrage brings balance
to the optimal investment analysis by connecting excess expected returns to the
parameters that express default and systemic risks. An important implication of
default risk is that the ratio between the investor’s post-default marginal indirect
utility of wealth and the pre-default one depends on the investment horizon. Such
a ratio enters the optimal intertemporal allocation of wealth. Optimal non-myopic
hedging against default and systemic risks ensues.
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Chapter 12
Optimal Execution Strategy in Liquidity
Framework Under Exponential Temporary
Market Impact

Chiara Benazzoli and Luca Di Persio

Abstract In the present work we compute the optimal liquidation strategy for an
investor who intends to entirely extinguish his position in an illiquid asset so as to
minimize a criterion involving mean and variance of the strategies implementation
shortfall. The market impact due to illiquidity is modeled by splitting it into two
different component, namely the permanent market impact, which is assumed to be
linear in the rate of trading, and the temporary market impact, which follows an
exponential-type function.

Keywords Stochastic mean-variance optimization • Non-liquid markets • Non
linear market impact factors • Lambert function

12.1 Introduction

We consider an optimal execution problem in a non-liquid market for a risky asset,
hence allowing for an agent to influence the asset price process by participating in
the market. The price variation due to the agent’s actions is called market impact,
and, usually, when large trades are executed, price moves in the trader’s unfavorable
direction, proportionally to sales volume. Therefore a common practice is to divide
a large trade into many smaller ones. The main aim of this work is indeed to find the
best strategy for a big sale, that is how to split it into smaller orders so as minimize
the corresponding implementation cost or a cost criterion stated a priori, which may
also involve risk parameters.

We solve latter problem for a model characterized by a market impact composed
by two factors: the permanent market impact and the temporary market impact.
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Let us recall that the permanent impact refers to the long lasting modifications of
prices under the action of a given sell order, otherwise such effects are considered
as temporary market impacts.

Taking into account both analytical and empirical research, see, e.g., Almgren
et al. (2005), we shall consider a model given by a linear permanent market
impact plus an exponential-type temporary market impact which is characterized
by properly chosen parameters whose meaning will be later clarified, see Sect. 12.3.

The quest for optimal selling strategies in liquidity frameworks has become a
central topic in financial mathematics during recent years. In Almgren and Chriss
(1999, 2001), Almgren and Chriss consider an asset price process following an
arithmetic random walk, with constant volatility over the strategy’s lifetime, in the
discrete-time, and an arithmetic Brownian motion (ABM), in continuous-time. In
both cases, the optimal trading strategy is, by definition, the one which minimizes a
linear combination of the expected cost and the variance of the cost of each strategy.
Moreover in Almgren and Chriss (2001) and in Almgren and Chriss (1999), the
market impact is assumed to be linear in block trades, while in Almgren (2003),
it is modeled by a nonlinear function of power-law type. It is worth to mention
that the latter results are based on the assumptions that the drift, the volatility of
the price process and the liquidity parameters are constant over all the liquidation
interval. Improvements can be achieved by modeling such parameters by stochastic
processes, see, e.g., Cheridito and Sepin (2014), where the drift of the price process
is forced equal to zero, or Benazzoli and Di Persio (2015), where the drift is a
stochastic process. In particular in Benazzoli and Di Persio (2014), although the
price process is still assumed to be an ABM, the authors replace the variance
approach by considering both Value at Risk (VaR) and Expected Shortfall (ES) as
risk parameters for which they exhibit related optimal execution strategies, hence
obtaining more realistic results.

In Gatheral and Schied (2011), resp. in Brigo and Di Graziano (2014), the same
problem outlined before is studied under the assumption that the unaffected price
process is modeled as a geometric Brownian motion, resp. as a displaced diffusion
process, when both components of the market impact are still assumed to be linear
in the trading speed. Under latter hypothesis in Schied (2013) the authors provide
a robustness property for the optimal strategies. Indeed, under a specified cost
criterion, the form of the solution is independent of the unaffected price process
as long as it is a square integrable martingale.

It is worth to mention that the market impact has emerged as a fundamental
topic in modern electronic market. Indeed, the use of computer algorithms, and
related high-frequency trading strategies, have changed a lot how transactions are
currently executed. In particular the execution’s speed has been modified with
several implications concerning the volume size of trades. Latter scenario has been
studied, e.g., in Cartea and Jaimungal (2013, 2015) and Obizhaeva and Wang (2013)
from the limit order book market point of view. The dynamic relation between
volume and returns is also studied in Llorente et al. (2002), where the authors focus
on the difference between the return dynamics generated if the investors trade to
hedge or to speculate.



12 Optimal Execution Strategy in Liquidity Framework Under Exponential. . . 253

The remainder of this paper is organized as follows. In Sect. 12.2, following
Almgren and Chriss (1999) and Almgren (2003), we state the mathematical setting
of the optimal trading problem we want to study. In Sect. 12.3, the originality of
our approach is outlined and the optimal execution strategy is computed in terms
of the Lambert W function, when the temporary market impact is modeled by
an exponential-type function. Lastly, in Appendix A, the main characteristics and
properties of the Lambert W function are summarized.

12.2 The Model Framework

The model is built following the framework given in Almgren and Chriss (1999).
A trader holds X 2 R

C shares of a non-liquid asset and he aims at completely
liquidate his position within a fixed deadline (fixed horizon), T > 0. We divide
the time interval Œ0;T� into a finite number N 2 N

C of subintervals of equal
length � WD T

N . Then at every discrete time tn�1 D .n � 1/� the trader chooses
how many shares yn to sell in the subsequent subinterval .tn�1; tn�. The N�tuple
.y1; : : : ; yN/, which is called trading list, takes into account all the sold quantities.
Notice that, since the trader sells his entire position over the whole time interval
Œ0;T�, a trading list has to satisfy the liquidation constraint

PN
nD1 yn D X. By

knowing the trading list, we can compute the execution strategy x, defined as a
.N C 1/-tuple x D .X; x1; : : : ; xN/ where xn stands for the volume of shares held
by the trader at time tn, n D 0; : : : ;N. Since the sold quantity in the time interval
.tn�1; tn� matches the difference between the quantities held at the endpoints, i.e.
yn D xn�1 � xn, then, exploiting the liquidation constraint, we have that

xn D X �
nX

kD1
yk D

NX

kDnC1
yk ;

which implies xN D 0.
In order to model the illiquid features of the asset we split the impact due to the

acting of the trader in the market, that is called market impact, into two parts, namely
the permanent, resp. the temporary, component. In particular, while the temporary
market impact refers to the asset price modification in the k-th time interval due to
the sale occurred in the immediately preceding time interval, the permanent market
impact takes into account the price variation that persists throughout the remaining
trading time.

According to well established literature, see, e.g., Almgren and Chriss (2001),
we assume that the unaffected price process S, that is the price per share of the
asset which occurs in a market impact-free world or, similarly, the one we have if
the trader does not participate in the market, follows an arithmetic random walk. It
follows that, when the initial asset price is a known value S0, the price per share at
time tn is given by
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Sn D Sn�1 C �
p
��n ;

where �1; : : : ; �N are independent and identically distributed random variables,
having zero mean and unitary variance, � being the volatility of the asset process,
which is assumed to be constant over the whole time interval Œ0;T�, as in the Black-
Scholes model.

Nevertheless, the presence of liquidity effects implies that the trader does not
receive the price St per share. Actually, the value at which the asset will be sold may
be rather different. Let us underline that the price that the trader actually receives on
each trade per share is called actual price (process, since it depends on time), and
it will be denoted by QSt. This latter price process, also depending on the unaffected
price as well as on the behaviour of the trader in the market, can be defined in two
steps:

step 1: First we consider the permanent market impact, St being redefined as
follows

Sn D Sn�1 C �
p
��n � �g.vn/ D S0 C �

p
�

nX

kD1
�k � �

nX

kD1
g.vk/ ; (12.1)

where vn is the speed of selling, i.e. it indicates the rate yn
�

, while the function
g.v/ models the permanent market impact.

step 2: Then we consider the temporary component of the market impact, which
is modeled by the function h.v/, QSn being defined by

QSn WD Sn�1 � h.vn/ ; (12.2)

for n D 1; : : : ;N:

Exploiting (12.1) and (12.2), we can explicitly provide the difference between the
two components of the market impact. In particular, at a fixed time tn > 0, the actual
price QSn depends through the temporary market impact h only on the sale executed at
this time, i.e. yn, while, vice versa, it depends through the permanent market impact
g on all the previous sold quantities y1; : : : ; yn.

The total capture, indicated by G.x/ with respect to the chosen strategy x, is
nothing but the total cash received over the strategy lifetime Œ0;T�, namely

G.x/ WD
NX

nD1
yn QSn

D
NX

nD1
ynS0 C

NX

nD1

n�1X

kD1

�
.�

p
��k � �g.vk//yn

� �
NX

nD1
ynh.vn/
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D XS0 C �
p
�

NX

nD1
xn�n � �

NX

nD1
xng.vn/ � �

NX

nD1
vnh.vn/ ;

where the last equality follows from the relation between the trading strategy x and
the related sold quantities y, as stated above. The quantity XS0 is the market-to-
market value of the trader’s initial position, hence the difference C.x/ WD XS0�G.x/
is the cost due to the illiquidity. Latter quantity is often called implementation
shortfall and it represents the ex-post measure of transaction cost. By previous
assumptions on �n, the cost related to a trading strategy x, i.e. C.x/, becomes a
random variable with mean

EŒC.x/� D �

NX

nD1
xng.vn/C �

NX

nD1
vnh.vn/ ; (12.3)

and variance

VarŒC.x/� D �

NX

nD1
�2x2n : (12.4)

In order to work in a continuous-time framework, we let the time step � go to
zero. Then a strategy is represented by a continuous function x W Œ0;T� ! R

C
0 which

satisfies the initial condition and the liquidation constraint if its boundary conditions
are x.0/ D X and x.T/ D 0. Moreover we assume that the sold quantities yn are such
that vn ! v.k�/ when � ! 0, with v.t/ D �Px.t/. All such strategies are called
admissible and the set of all the admissible strategies will be denoted by A. In this
case, the expected value and the variance of the implementation shortfall C.x/, i.e.
Eqs. (12.3) and (12.4), have the following finite limits:

EŒC.x/� D
Z T

0

x.t/g.v.t//C v.t/h.v.t// dt ;

and

VarŒC.x/� D
Z T

0

�2x.t/2 dt :

In order to decide the optimal strategy within the set A, we assume that
the trader’s goal is to find the strategy which minimizes the mean-variance cost
functional U, defined as follows

U.x/ WD EŒC.x/�C �VarŒC.x/� ;
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where � is a positive constant. We would like to underline that the mean-variance
cost criterion is one of the most popular tool used to compare different trading
strategies. Indeed, it is equivalent at fixing the highest values of risk, equivalently
of variance, the trader is willing to tolerate, say V�, and then looking for the
strategy that minimizes the expected cost, within all the admissible strategies with
variance � V�. It follows that the risk aversion of the trader can be efficiently
modeled by the parameter �.

In our case study, the trader’s problem reads as follows.

Problem 2.1 (Minimization Problem) The objective of the trader is to find,
among all the admissible strategies A, which one minimizes the cost functional
U, i.e.

x� D arg min
x2A U.x/ (12.5)

where

U.x/ D
Z T

0

x.t/g.v.t//C v.t/h.v.t//C ��2x.t/2 dt : (12.6)

In order to find the optimal trading strategy x� we argue as in Almgren (2003). First
of all, the integrand function in (12.6) reads as follows

F.x; v/ D xg.v/C vh.v/C ��2x2 :

Then, the Euler-Lagrange equation guarantees that the strategy x� in (12.5) has to
satisfy

Fx.x;�Px/C d

dt
Fv.x;�Px/ D 0 ;

that is

0 D Fx.x;�Px/C PxFvx.x;�Px/ � RxFvv.x;�Px/ :

Furthermore, this implies that

d

dt
.F.x;�Px/C PxFv.x;�Px// D Px ŒFx.x;�Px/C PxFvx.x;�Px/ � RxFvv.x;�Px/� D 0

(12.7)
and hence, integrating both sides of Eq. (12.7) from 0 to T , it follows that the optimal
strategy makes the functional F.x;�Px/ C PxFv.x;�Px/ constant. Straightforward
computations give that

F.x;�Px/C PxFv.x;�Px/ D x.g.�Px/C Pxg0.�Px// � P.�Px/ (12.8)
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where the function P in (12.8) is defined as

P.v/ WD v2h0.v/ : (12.9)

Then, if we denote by v0 the speed at which x.t/ hits x D 0, it holds that

F.0; v0/ � v0Fv.0; v0/ D �P.v0/ ;

and therefore

P.�Px/ � P.v0/ D x.g.�Px/C Pxg0.�Px//C ��2x2 : (12.10)

Remark 2.2 In order to obtain explicit solutions, we assume that the permanent
impact is linear in the trading rate v, that is g.v/ D ˇv with ˇ positive constant.
Then, no matter the strategy the trader follows, we have

x.g.�Px/C Pxg0.�Px// D x.�ˇPx C ˇPx/ D 0 ;

and then the condition stated in Eq. (12.10) reduces to

P.�Px/ D ��2x2 C P.v0/ :

By separation of variables, and assuming that P�1 is well defined and P�1.��2x2 C
P.v0// ¤ 0 for all t 2 Œ0;T�, we obtain that the optimal strategy solves the following
equation

Z X

x.t/

1

P�1.��2x2 C P.v0//
dx D t : (12.11)

12.3 Exponential Market Impact Function

In what follows we still consider a linear permanent market impact g.v/ D ˇv with
ˇ > 0, and we specify the temporary market impact as an exponential function,
namely we assume

h.v/ WD
(
e� �

v for v > 0;

0 for v D 0;
(12.12)

where  and � are strictly positive constants. The reason why h is defined only for
positive value of the trading rate will be clarified later. Through the parameters 
and � we can control the shape of the temporary market impact. Notice that the
function h.v/ is strictly increasing in its domain, it is convex on the set

�
0; �

2

�
and
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concave for v � �
2
. Experimental analysis confirms the concavity of the temporary

impact function, see Almgren et al. (2005), Obizhaeva (2012) and reference therein.
Nevertheless we choose to allow it to be convex for small values of v. In fact such
values are difficult to estimate, since they correspond to small change in the price,
moreover the system may be extremely fragile around a critical point.

Under previous assumptions, and without fixing a deadline T , we can explicitly
compute the optimal trading strategy in the case when the set of admissible strategies
is narrowed by considering only those of pure selling type. We recall that a trading
strategy is called pure selling strategy if its rate process is strictly positive, namely if
the strategy itself is strictly decreasing. From now on, a strategy x will be admissible
if, besides satisfying the conditions mentioned above, it is of pure selling type.

Theorem 3.1 Let us assume that no deadline is exogenously imposed on the sale. If
the permanent market impact is linear in the trading rate and the temporary market
impact is given as in (12.12), the optimal solution among all the admissible pure
selling strategies of the minimization Problem 2.1 is given by

x�.t/ D

8
ˆ̂̂
<

ˆ̂̂
:

exp

(
W�1

 
�
�
�
2
t C X.lnŒ�X� � 1/�

e

!
C 1

)

�
for t < 2

�
X ln

�
e
�X

�

0 for t � 2
�

X ln
�

e
�X

�

(12.13)

where W is the Lambert W function and � D
q

��2

�
, provided that

�X < 1 : (12.14)

Proof According to the considerations outlined in Sect. 12.2, the optimal trading
strategy we are looking for satisfies Eq. (12.11). Under the assumptions of the
theorem, the function P, as defined in (12.9), becomes

P.v/ D v2
d

dv
e� �v D �e� �

v ;

which has as inverse function P�1.v/ D � �
lnŒ v� �

, which is only defined for v > 0.

Therefore a necessary condition for the well-posedness of problem (12.11) is indeed
to consider strategies with strictly positive rate process, which implies to consider
only sell programs. Therefore problem (12.11) turns out to be

1

�

Z X

x.t/
� ln

"
��2x2 C e� �

v0

�

#
dx D t : (12.15)

If, as in this case, no time horizon is exogenously imposed then we obtain the longest
possible liquidation time, denoted in the following by T , by setting v0 D 0, and
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therefore the problem stated in (12.15) reduces to

Z X

x.t/
� ln

	
��2x2

�



dx D � t : (12.16)

In order to the problem be well-posed, the candidate solution has to satisfy the
constraint P�1.�2x.t/2/ ¤ 0 for all t 2 Œ0;T�, i.e. � 1

lnŒ�2x.t/2�
¤ 0 for all t 2 Œ0;T�,

then the optimal execution strategy must satisfy one, and only one, of the following
conditions

�x.t/ < 1 8t 2 Œ0;T� or �x.t/ > 1 8t 2 Œ0;T� :

Since at the final time T the strategy’s value is x.T/ D 0, i.e. �x.T/ < 1, the optimal
solution x� can only meet the first constraint. Latter condition is verified since each
admissible trading strategy x 2 A is decreasing with �X < 1 at the initial time
as required by the theorem. It can be seen that this condition is a constraint on the
model’s parameters, indeed it reads as ��2X2

�
< 1. Equation (12.16) implies that the

quantity

Z X

x.t/
� ln

	
��2x2

�



dx D 2x.t/


ln

	p
��x.t/
p
�



� 1

�
� 2X


ln

	p
��X
p
�



� 1

�

is equal to � t, and therefore the optimal strategy fulfills

x.t/.lnŒ�x.t/� � 1/ D �

2
t C X.lnŒ�x.t/� � 1/ ;

that can be rewritten as

x.t/ ln

	
�x.t/

e



D �

2
t C X.lnŒ�X� � 1/ : (12.17)

Equation (12.17) has two solutions for each t < 2
�

X ln
�

e
�X

�
. Nevertheless since

we have assumed to perform a pure selling strategy and then x is a continuous
and decreasing function, there exists a unique trading strategy which satisfies
Eq. (12.17), namely (12.13). Notice that the optimal strategy reaches x� D 0 in

a finite time T D 2
�

X ln
h p

�p
��X

e
i
.

See Appendix A for further details on the Lambert W function.

Remark 3.2 We want to directly verify that the optimal execution strategy stated in
Theorem 3.1 satisfies the initial condition x.0/ D X. By definition the initial value
of the optimal strategy is

x.0/ D eW
�1. �X�

e lnŒ �X
e �/C1

�
;
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and since W�1 is upper bounded by �1, then the initial value x.0/ belongs to the
interval

�
0; 1

�

�
. Moreover, by manipulating the previous equation, we have that x.0/

solves

�x.0/

e
D eW

�1. �X
e lnŒ �X

e �/ :

Hence, taking the logarithm of both sides and using the definition of the Lambert W
function, we obtain the equality

�x.0/

e
ln
��x.0/

e

� D �X

e
ln

	
�X

e



;

which is verified by x.0/ D X. In fact this is the unique solution of the latter
equation, since the function �y

e ln
�
�y
e

�
is strictly decreasing in the interval

�
0; 1

�

�
.

12.3.1 Evaluation of W�1

Even if the Lambert W function can not be expressed in terms of elementary
functions, we want to describe its behaviour in order to sketch the optimal trading
strategy (12.13). Since the Lambert W function is defined by mean of an inverse
relation, arbitrary-precision evaluations can be obtained by iterative root-finding
methods. Given a value z, its corresponding value w D W.z/ satisfies wew D z,
that is the root of the function f .w/ D wew � z. Notice that since the Lambert W
function W.z/ is bi-valued in

�� 1
e ; 0

�
, we have to take into account that we will find

two solutions: the one that is greater than �1 is the value of the so called principal
branch W0.z/, while the second real branch, the lower branch, is indeed W�1.z/.

Several numerical methods for the root finding problem have been developed,
which differ each other for complexity of implementation, conditions and rate of
convergence. A natural choice in our setting is to use the third-order Halley’s method
which starts with an initial guess w0 for the root, and then performs the following
iteration scheme

wnC1 D wn � 2f .wn/f 0.wn/

2.f 0.wn//2 � f .wn/f 00.wn/
D wn � .wnewn � z/

ewn.wn C 1/ � .wnewn �z/.wnC2/
2.wC1/

;

which converges to the desired value.
Figure 12.1 shows the behaviour of the optimal solution x�, see (12.13),

for different values of the parameter � , the other parameters being fixed as in
Table 12.1. Notice that Theorem 3.1 applies, in fact the parameters always satisfy
condition (12.14), i.e. ��

2

�
X < 1.



12 Optimal Execution Strategy in Liquidity Framework Under Exponential. . . 261

Time
0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f s
ha

re
s

0

10

20

30

40

50

60

70

80

90

100
θ=3
θ=4
θ=5

Fig. 12.1 Optimal solution strategy

Table 12.1 Parameters’
value

Parameter Value

X 100

� 5

� 0.02

 10.5

By the definition of function h in (12.12), it can be seen that, fixed a sales volume,
the effect on the price due to the temporary market impact is lower for a higher value
of � . This means in particular that when � is higher the decrease in price is smaller
and therefore the trader sells the illiquid asset faster.

12.4 Conclusion

We have found the explicit optimal execution strategy that minimizes a criterion
containing the expected cost and the variance of the implementation shortfall for
trading a non-liquid asset when the market impact is model by an exponential-type
function. In doing so, we extend the case studies by considering different nonlinear
impact functions from the ones introduced in Almgren (2003).
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We have also provided the optimal execution strategy under reasonable assump-
tions, in particular exploiting the Lambert W function. In particular, it is possible
to numerical treat latter result in order to obtain the solution behavior as well as its
intrinsic properties.

A Lambert W Function

In this Section, we recall the main characteristics and properties of the Lambert W
function. See Corless et al. (1996) for more details. The Lambert W function, also
called the omega function, is defined to be the function satisfying z D W.z/eW.z/,
that is the inverse function of f .w/ D wew, which is not injective, hence the relation
W is multivariate. In particular, if x is real W.x/ is double-valued on

�� 1
e ; 0

�
. Then

the Lambert W function has two real branches with a branching point located at
.�e�1;�1/. Indeed if we consider W under the constraint W � �1 or W � �1, they
are two well defined real valued functions. The branch satisfying W � 1 is called
principal branch and it is denoted by W0, or just W, if no ambiguity exists, while the
branch satisfying W � �1, the lower branch, is denoted by W�1. The Lambert W
function has the special values W.�e�1/ D �1, W.0/ D 0, and W.1/ ' 0:567143,

called the omega constant, that satisfies exp.�W.1// D W.1/, that is ln
h

1
W.1/

i
D

W.1/.

A.1 Taylor Series for �1
e < z < 0

The Lambert W function W�1.z/ is upper-bounded and infinitely differentiable in
.� 1

e ; 0/ 2 R. By differentiating the defining expression z D W.z/eW.z/, it follows
1 D W 0.z/eW.z/ C W.z/W 0.z/eW.z/, and then the first derivative of W turns out to be

W 0.z/ D 1

eW.z/.1C W.z//

provided that W.z/ ¤ �1, i.e. z ¤ � 1
e or equivalently W 0.z/ D W.z/

z.1CW.z// , with the
additional condition W.z/ ¤ 0, i.e. z ¤ 0. The nth derivative of W is

dnW.x/

dxn
D e�nW.x/Pn.W.x//

.1C W.x//2n�1 ; for n � 1 ; (A.18)

where the polynomials Pn.w/ are defined by the recurrence relation

PnC1.w/ D .1 � nw � 3n/Pn.w/C .1C w/P0.w/ for n � 2
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and the initial polynomial P1.w/ D 1. Indeed

dnC1W.z/
dxnC1 D d

dz

e�nW.z/Pn.W.z//

.1C W.z//2n�1

D Œ�nW 0.z/e�nW.z/Pn.W.z//C e�nW.z/P0
n.W.z//W

0.z/�.1C W.z//2n�1

.1C W.z//4n�2

� .2n � 1/.1C W.z//2n�2W 0.z/e�nW.z/Pn.W.z//

.1C W.z//4n�2

D e�.nC1/W.z/Œ.1C W.z//P0
n.W.z//C .�3m � nW.z/C 1/Pn.W.z//�

.1C W.z//2nC1 :

Then for any z0 and z in the domain .� 1
e ; 0/ we can write the Taylor series for

the function W�1 as

W�1.z/ D W�1.z0/C
1X

nD1

1

nŠ
W.n/

�1.z0/.z � z0/
n :

Notice that since the nth derivative of W1 in z0, i.e. W.n/
1 .z0/, can be computed just

by knowing W1.z0/, see (A.18), it is enough to estimate the function W�1 in z0 to
know also the derivatives values.

A.2 Series Expansions About the Branch Point z D �1
e

For a fixed value z 2 � � 1
e ; 0

�
, let us consider the point p D �p2.ez C 1/, which

is such that ez D p2

2
� 1. Then

W.z/eW.z/ D z H) W.z/ezC1 D p2

2
� 1 :

By expanding the exponential function in power of W.z/C 1 we have that

p2

2
� 1 D W

1X

kD0

.W.z/C 1/k

kŠ
D �1C

1X

kD1


1

.k � 1/Š � 1

kŠ

�
.1C W.z//k ;

then we have W�1.z/ D P1
kD0 �kpk ; where �k D k�1

kC1


�k�2

2
C ˛k�2

4

�
� ˛k

2
� �k�1

kC1 ,

˛k D Pk�1
jD2 �j�kC1�j, with �0 D �1; �1 D 1; ˛0 D 2, ˛1 D �1, and

the series converges in the whole domain of existence of W�1. For details, see e.g.
Chapeau-Blondeau and Monir (2002).
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A.3 Asymptotic Series for z < 0

A real-valued asymptotic series can be found when z ! 0�. Indeed, by using the
Lagrange inversion theorem, it can be found

W�1.z/ D lnŒ�z� � lnŒ� ln.z/�C
1X

kD0

1X

mD0
Ckm.lnŒ�z�/�.kCm/.lnŒ� lnŒ�z��/m ;

with

Ckm D .�1/kS.k C m; k C 1/

mŠ

where S.kCm; kC1/ is a non-negative Stirling number of the first kind. They count
the number of permutations of n elements with k disjoint cycles and also arise as
coefficients of the rising factorial

.x/.n/ D x.x C 1/ � � � .x C n � 1/ D
nX

mD0
S.n;m/xm :

Moreover they are computable via the recursive formula

S.n;m/ D S.n � 1;m � 1/C .n � 1/S.n � 1;m/ n > 1 :
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Chapter 13
Optimal Multistage Defined-Benefit Pension
Fund Management

Giorgio Consigli, Vittorio Moriggia, Elena Benincasa, Giacomo Landoni,
Filomena Petronio, Sebastiano Vitali, Massimo di Tria, Mario Skoric,
and Angelo Uristani

Abstract We present an asset-liability management (ALM) model designed to
support optimal strategic planning by a defined benefit (DB) occupational pension
fund (PF) manager. PF ALM problems are by nature long-term decision problems
with stochastic elements affecting both assets and liabilities. Increasingly PFs
operating in the second pillar of modern pension systems are subject to mark-to-
market accounting standards and constrained to monitor their risk capital exposure
over time. The ALM problem is formulated as a multi-stage stochastic program
(MSP) with an underlying scenario tree structure in which decision stages are
combined with non-decision annual stages aimed at mapping carefully the evolution
of PF’s liabilities. We present a case-study of an underfunded PF with an initial
liquidity shortage and show how a dynamic policy, relying on a set of specific
decision criteria, is able to gain a long-term equilibrium solvency condition over
a 20 year horizon.

Keywords Pension fund management • Multistage stochastic programming
• Scenario tree • Solvency ratio • Defined benefits

13.1 Introduction

Most pension systems in OECD countries rely on three pillars: a state-controlled
security system which represents the fundamental instrument for welfare policies,
a sector-specific complementary occupational pension pillar open to corporations’
and sectors’ employees and, finally, individual retirement contracts that can be
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agreed between pension funds, life insurers and individuals to provide deferred
income during retirement. The first pillar is by definition public while the second
and third pillars are mainly private. Third pillar’s individual ALM problems and
associated modeling and economic issues have attracted significant interest in
recent years and find a natural formulation as long-term consumption-investment
problems over a life-cycle (Medova et al., 2008; Consiglio et al., 2007; Consigli
et al., 2012b; Konicz et al., 2015). In this chapter we analyse instead the key
modeling and methodological issues needed to formulate and solve a second pillar
occupational PF strategic asset allocation problem relying on a multistage stochastic
program (MSP) with liabilities generated by a defined benefit (DB) scheme. ALM
developments for pension funds have a relevant record starting from early works
(Consigli and Dempster, 1998; Ziemba et al., 1998; Pflug and Świetanowski, 1999),
then increasingly relying on real-world case-studies (Mulvey et al., 2006, 2007,
2008; Geyer and Ziemba, 2008) and again, more recently, exploring alternative
modeling and optimization approaches (Aro and Pennanen, 2016; Pachamanova
et al., 2016; Consigli et al., 2016). A focus on the differences between DB and
defined contribution (DC) schemes can be traced in Dert (1998) and Consiglio et al.
(2015).

PF ALM theory originally developed from the challenges associated with the
modeling of liability streams typically extended over several decades. Those streams
carry relevant risks to the PF manager. On the liability side, indeed, a DB PF
manager faces mainly three relevant risk sources: inflation risk, interest rate risk
and longevity risk (Aro and Pennanen, 2016; Consigli et al., 2016). In this chapter
we consider a pension plan decumulation phase in which pensions are revaluated
according to the previous year recorded Consumer Price Index (CPI) annual
variation. The value of the pension fund liability, or DB obligation (DBO), is then
computed as the discounted value of all expected pension payments and will depend
on the evolution of the yield curve over the decision horizon. Such exposure is
typically compensated for hedging purposes by fixed-income holdings in the asset
portfolio. We assume that the PF manager, before any indexation, is informed by
the actuarial division of future contributions and pension payments over a very
long horizon. Longevity risk comes into the picture because upon determination of
individuals’ benefits through an annuity, the PF manager needs to assume a future
life length that might underestimate passive members’ actual future life duration
(Aro and Pennanen, 2016; Shaw, 2007). Such phenomenon is attracting increasing
interest by actuarial studies. In this chapter we assume that projected pension flows’
estimates do already take into account such risk.

A PF manager primary concern is to preserve a sufficient funding condition: as
liabilities evolve over time along random paths, the assets’ market value is expected
at least to match their value. The funding ratio (FR) is defined as the ratio of the asset
portfolio to the DBO value. A FR close to 1 suggests proper funding of all future
inflation-adjusted pension payments. A FR below 1 will indicate an under-funding
condition. Notice that a FR below 1 doesn’t necessarily imply a liquidity deficit; it
does however describe a weak financial condition. The joint dependence on interest
rates and inflation dynamics of assets and liabilities underlines the importance of
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a dynamic ALM approach to the problem and an effective risk assessment and
monitoring (Pachamanova et al., 2016; Consigli et al., 2016).

We present in this chapter a novel methodological approach, inspired by Demp-
ster et al. (2007), still in the stream of advanced applications of MSP with recourse,
in which decision nodes are a subset of nodes along a scenario tree accommodating
annual cash flows and obligations within what we refer to as intermediate nodes.
We are able in this way to monitor accurately the cash condition of the PF and
avoid anticipative portfolio rebalancing decisions. The key motivation of this work
is related to the evidence that a careful representation and discrete formulation of a
dynamic PF ALM model, including a liability-driven component and an innovative
set of decision criteria, can consistently bring a maybe severely underfunded PF
into a long-term funding equilibrium. This is what we believe will define our
contribution in the first place. The model development and the definition of a case-
study in cooperation with industry colleagues are also worth sharing.

The chapter evolves from Sect. 13.2 where we introduce the key elements of
the ALM model and specify the scenario tree convention supporting the MSP
formulation. The problem mathematical instance is introduced progressively in the
first section and over the following sections to clarify the role played by each set
of equations in the economy of a PF. In Sect. 13.3 the liability model is introduced.
In Sect. 13.4 the risk exposure of the PF to market fluctuations is analyzed before
focusing in Sect. 13.5 on funding conditions and long term PF solvency. In Sect. 13.6
we present a case study application and in Sect. 13.7 we conclude.

13.2 DB Pension Fund Management

We consider a company offering a complementary DB pension scheme to its
employees: the PF collects contributions from the PF’s sponsor, and marginally
from the employees, and pays benefits. A DB plan ensures benefits based on the
employee’s remuneration at or near the retirement date. The adjustment of pension
benefits to account for changes in costs and living standards is reflected in the fund’s
indexation rule. The level of indexation has an important impact on the income of
retirees and the pension accrual of active members in pension plans.

Under a DB scheme, the PF manager faces several risk sources: core to this
decision process is the need to keep the FR sufficiently high and monitor its
evolution over time. The FR definition differs from the funding gap which is
computed as the difference between liability and assets and coincides with the
concept of net DBO. A negative net DBO thus coincides with a surplus condition of
the fund.

A PF DBO is in general naturally affected by the ratio of active to passive
members and a deteriorating population ratio in several economic sectors has been
recorded in recent years. Furthermore survival probabilities have been increasing
leading to a surge of longevity risk (Aro and Pennanen, 2016).
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From a financial viewpoint, furthermore, since the 2008 global financial crisis,
interest rates have materially decreased in most OECD economies, reducing the
liquidity buffer generated historically by significant holdings of treasury bonds
by PF managers and increasing their liabilities, ceteris paribus. Both phenomena
motivated over the last decade or so an increasing role of less liquid and relatively
risky portfolio strategies throughout the PF industry (OECD, 2011). In this chapter,
we rely on an exogenous liability stream and focus on the definition of an
optimal portfolio policy, when the population of active members is assumed not
to increase (closed population model). The fund’s contributions are generated by
the employees, as a salary portion, and the employer, or sponsor of the pension
fund. Further to such commitment, the sponsor has an obligation to fill up the PF
resources in case of prolonged underfunding conditions. The PF wishes to minimize
the injection into the fund of those unexpected and extraordinary contributions,
comparable to undesirable recapitalization decisions. Throughout the chapter the
PF manager represents the decision maker of the ALM problem.

The need of an effective portfolio policy over a long-term horizon is a strong
motivation for the adoption of a dynamic approach: to preserve sufficient realism in
the problem description we propose in this chapter a specific scenario tree structure,
based on a distinction between decision nodes and so-called intermediate nodes,
where pension payments are recorded. Such formulation makes the mapping of
pension payments on an annual basis possible and allows the definition of an optimal
investment strategy over a 20-year horizon with non-homogeneous time stages. The
formulation of the PF ALM problem as a multistage stochastic program is shown to
provide an effective way to manage the PF risk exposure and regain a stable funding
condition at the end of the planning horizon.

We assume an extended investment universe including Treasury indices with dif-
ferent maturity, corporate indices, real estate investments, inflation-linked treasuries
(TIPS) also spanning several maturities and equity. Even if indices are known to be
almost constant-maturity financial benchmarks, they are here treated as investment
opportunities carrying a time to maturity. Accordingly fixed income assets will
generate both interests during the holding period and capital at current market prices
when expiring.

The company’s actuarial division is responsible for determining the expected
evolution of the PF’s liabilities, treated as exogenous to the definition of an optimal
investment plan. In this analysis the population of active members is assumed
closed and benefit cashflows are first inflation-adjusted and then discounted at a
prevailing term structure of interest rates forward in time. As a result both net
pension payments and the fund’s DBO are considered exogenous and scenario
dependent.

We adopt a simple multivariate Gaussian model to derive the random evolution
of price dynamics and interest rates as well as dividend payments (see the estimated
means, variances and covariances in appendix). The PF manager seeks an optimal
policy based on a combination of decision criteria, including PF liquidity, duration-
matching between assets and liabilities, risk-adjusted performance and sponsor’s
extraordinary contributions. Further at the end of the planning horizon the PF
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manager seeks a minimal, ideally null net DBO. A null net DBO, corresponding
to a unit FR, is regarded as a Fund’s equilibrium condition.

To exemplify a PF risky condition, assume for instance that a severe market shock
will impact the PF asset portfolio causing a sudden decrease of its market value
and to mitigate systemic risk, monetary authorities will decide a strong reduction of
interest rates. In case of heavy mismatching between assets’ and liabilities’ duration,
such intervention would add up to the market shock, inducing a further decrease
of the FR and a deterioration of funding conditions. Such nightmare scenario has
indeed occurred at several points of recent financial history and has deeply affected
the pension industry, leading to more rigorous risk management approaches.

From a modeling viewpoint the MSP formulation leads to the definition of the
optimal ALM strategy as a decision tree process describing the sequential interplay
between decisions and random events. The beginning of the decision horizon
coincides with the current time t D 0, while T will denote the end of the decision
horizon. A reference period defined as 0�, prior to 0, is introduced in the model to
define an input portfolio from which the optimal time 0 portfolio will be determined.
The extended time horizon is represented by bT D T [ 0�; t 2 bT . At the last stage,
no investment decisions are allowed, while cash flows due to expiring bonds and
income payments will be accounted for.

We denote with Td D f1; 2; 3; 5; 10; 20g 2 T a set of decision times expressed in
years. Time 0 is associated with the so-called here and now decision (or H&N)
and the subsequent stages have associated all scenario dependent decisions. In
addition we consider Tint D T nfTdg D f4; 6; 7; 8; 9; 11; : : : ; 19g to denote a set of
intermediate years; therefore T D Tint [ Td. At intermediate times, income returns
and the assets expiring provide random cash inflows to pay current pensions.

Random dynamics are modeled through discrete tree processes defined in an
appropriate probability space .	;F ;P/ (Dupačová et al., 2001; Dempster et al.,
2011; Consigli et al., 2012a). Following the model notation in Consigli et al.
(2012b), nodes along the tree, for t 2 T , are denoted by n 2 Nt; we distinguish
between decision nodes N d

t and intermediate nodes N int
t . Again Nt D N d

t [ N int
t .

For t D 0 the root node (associated with the partition N0 D f	;;g, corresponding
to the entire probability space) is labeled n D 0. For t > 0 every n 2 Nt has a unique
ancestor n� and, for t < T , a non-empty set of children nodes nC. We indicate with
m 2 Cn the nodes in the sub-tree originating from node n. We denote with tn the
time associated with node n.

The set of all predecessors of node n: n�; n��; : : : ; 0 is denoted by Pn.
We distinguish between ancestor decision nodes Pd

n , i.e. nd�; nd��; : : : ; 0�, and
ancestor intermediate nodes P int

n , i.e. nint�; nint��; : : :, and we define bP D Pd
n [ 0�.

The scenario tree conditional nodal structure defines the space .	;F ;P/ for the
problem. We define the probability distribution P on the leaf nodes (n 2 NT ) of the
scenario tree so that

P
n2NT

pn D 1. One scenario is identified by a sequence of
nodes from the root node to one of the leaf nodes, whose cardinality will coincide
with the number of scenarios. Scenarios S D NT are sample paths originated from
the root node defined at time 0 to the leaf nodes at T , determine the stochastic nature
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Fig. 13.1 An example of scenario tree with branching 3� .1/� 3� .1/� .1/� 2

of the problem. As represented in Fig. 13.1, scenario branching will be allowed only
at decision times (circle nodes) and not at intermediate times (squared nodes).

Accordingly we define the optimal investment policy, based on holding, buying
and selling decisions along such tree. Let Xn D P

i

P
h<n xi;h;n be the value of the

investment portfolio in node n: i refers to the asset type and h 2 Pn to a predecessor
node of n where the investment originated. We consider four asset classes: I1
for fixed-income and inflation-linked assets but corporates, I2 for securitized and
corporates, I3 for equity and I4 for real estate investments. The asset universe is
defined by I D I1[ I2[ I3[ I4. In each class we have subsets of possible allocations
for a total of 12 investment opportunities. The following decision variables are
considered:

xC
i;n investment (buying decision) in node n, of asset i (a maturity Ti is considered

for fixed-income assets);
x�

i;h;n selling decision in node n of asset i, that was bought in h W .h 2 Pd
n / < n;

tn�th D holding period. In case of fixed-income assets, at the maturity Ti,
the asset expires and it is assumed to generate a cash flow equal to the asset
market value at maturity;

xexp
i;h;n maturity (expiry) at node n, of asset i (fixed-income asset) that was bought

in h, (tn � th D Ti � th), n 2 Nt;
xi;h;n holding at node n, of asset i (with maturity Ti, for i 2 I1) that was bought in

h 2 Pd
n ;

zn cash account in node n.
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The asset value evolution in each decision node is captured by the return generated
by previous decisions and current buying and selling decisions. We denote with
�i;n the price returns at node n. Therefore, the main equations describing the PF
portfolio evolution and inventory balance constraints of the ALM model are for
t 2 T , n 2 Nt:

xi;n;n D xi;nC (13.1)

xi;h;n D xi;h;n�.1C �i;n/ � x�
i;h;n � xexp

i;h;n (13.2)

xexp
i;h;n D xi;h;n�.1C �i;n/ h < n; n � h D Ti (13.3)

xi;n D
X

h

xi;h;n (13.4)

Xn D
X

i

xi;n (13.5)

Consider the random process �i;n: for given holdings xi;h;n� of asset i in the parent
node n�, we derive the clean price return in node n. The intermediate argument
h 2 Pn, representing the buying stage, is needed as discussed below to estimate the
investment and losses over the holding period tn � th. Those returns will determine
the optimal investment allocation after paying the pensions. Unlike buying and
selling decisions which are allowed only for n 2 N d

t , bonds expiries and asset
cashflows (interests and dividends) are recorded annually for each n 2 N int

t . At the
end of the time horizon sellings and purchases are not allowed, while fixed-income
assets may expire and in this way generate cash-inflows: for n 2 N d

T ; i 2 I we have
xC

i;T D x�
i;h;T D 0.

The portfolio manager is concerned with the issue of collecting sufficient
resources to pay regularly pension obligations. In the long-run however she/he will
focus on the PF funding status, namely the ratio of her asset portfolio to the liability.
The common exposure to interest rate movements, historically, has been managed
primarily by controlling the asset-liability (A-L) duration gap. We focus next on the
ALM model liability-driven components and then analyse the funding issue.

13.3 Liabilities, Liquidity and A-L Duration Matching

The PF obligation in node n 2 Nt for each t 2 T is ƒn. We assume known
a given stream of net nominal pension payments QLt over a long horizon t � OT
where OT in insurance mathematics might be as large as several decades and such
stream is just specified as an average pension obligation: the evaluation of the
current liability implies first an inflation adjustment resulting into a tree process
for pension cashflows and then at each node in the tree the discounting of future
pension payments based on evolving term structures of interest rates. For the sake
of simplicity and without introducing formally a stochastic interest rate model, at
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each decision node the current yield curve is assumed to be generated by fitting a
term structure from the Nelson-Siegel (N-S) family (Nelson and Siegel, 1987) on the
set of interest rate benchmarks adopted in the asset return model. A 1-year inflation
rate �n is generated as described below by difference between a nominal and real
interest rates, resulting into inflation-adjusted random liabilities Ln for all n 2 Nt,
where t � OT:

Ln D QLn

Y

m2Pn

.1C �m/: (13.6)

At the 20-year horizon, the value of the net DBO Bn at leaf nodes n 2 NT defines an
end-effect capturing the PF terminal funding conditions which will reflect the time
T-forward net present value of all pension payments beyond T . Such evaluation will
be performed relying on the yield curves on each leaf node.

We have, for t 2 bT , n 2 Nt, indicating with tn the reference time of node n:

ƒn D
X

m2Cn

pm
Lm

.1C rtn;tm/
.tm�tn/

: (13.7)

In (13.7) rtn;tm denotes the interest rate quoted at tn for deposits expiring in tm, and
8m, pm define the conditional probabilities associated with the subtree originating
from node n. At each stage equally probable transitions are assumed.

Term structure of interest rates Following Eq. (13.7), the discounting at each
node relies on the fitting at time 0 and then along all scenarios, of a benchmark
interest rate curve from the N-S family whose evolution is assumed to depend on a
set of interest rate benchmarks spanning from 3-months to above 10-years durations.
The N-S parametric model at time 0 for rates with maturity t reads:

r.0; t/ D ˇ0 C .ˇ1 C ˇ2/ � ˇ3
t

�
�
1 � e� t

ˇ3

�
� ˇ2 � e� t

ˇ3 (13.8)

where ˇ0; ˇ1; ˇ2 and ˇ3 are parameters to be fitted on market curves adopting a
splining procedure. Yield curve calibration is performed relying on the N-S model
on both a nominal and real interest rate curve: their difference will determine a
term structure of (annual) inflation rates. The fitting is based on the evolution of
the 3-month EURIBOR and Treasuries or Inflation-linked Treasuries with different
maturity buckets (see below the asset return generating process). The implied 1-
year inflation rate is then used to derive the inflation-adjusted pension process in
Eq. (13.6).

The PF obligation in current terms will increase if inflation increases pushing
up future pension payments and will decrease if interest rates increase, due to a
decreasing discount factor. The two forces may offset each other as when interest
rates remain equal in real terms.
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Dedicated and duration-matching portfolios The PF manager at every node in
the scenario tree seeks an asset portfolio generating the cash flows required by the
stream (13.6). Furthermore, to neutralize undesirable effects that may be generated
by volatile interest rates the duration of the asset portfolio should over time be as
close as possible to the duration of the liability portfolio. We capture in the model
those hedging conditions by introducing explicitly a liquidity gap and what we will
refer to as ALM risk variable in the objective function.

To minimize cash imbalances in the pension service, every year those are
funded through current asset income sources (interests and dividends) and bonds’
redemptions. The income generated by bonds and equities over the decision horizon
is identified by

P
h<n;h2Pd

n
xi;h;n� � �i;n, where �i;n denote random income coefficients

along the scenario tree. Accordingly either a cash surplus will emerge, if cash
inflows exceed pension payments, or a deficit will emerge: in either cases the
resulting surplus/deficit will be compounded until the next decision stage and
included in the cash balance constraint. We use LZ

n to denote cash imbalances in
intermediate nodes, 8 t 2 T , n 2 N int

t ; h 2 Pd
n and i 2 I1 [ I2:

LZ
n D

X

h<n;h2Pd
n

xi;h;n� � �i;n C
X

h<n; n�hDTi

xexp
i;h;n � Ln (13.9)

For model accuracy we recall that, given the peculiar tree structure in Fig. 13.1,
to preserve non-anticipativity, neither buying nor selling decisions are possible in
intermediate stages. Equation (13.9) jointly with the cash balance constraint at
decision stages clarify how a dedicated portfolio approach is captured in the model
formulation. At time 0, the cash account is defined by the cash inflows due to
selling decisions x�

i;h;n and outflows due to new investments xC
i;n. Given an initial

cash balance z0� , we have z0 D z0� C P
i x�

i;0�;0 � P
i xC

i;0. Afterwards at each
decision time the cash account will depend on pension payments Ln, on compounded
cash imbalances Lz

h;n, on cash inflows generated by the investment portfolio and on
potential sponsor’s contributions ˆu. The latter, as clarified below, are regarded as
last-resort, costly liquidity injections to fund temporary liquidity deficits.

zn D zn� .1C �n/Cˆu
n C (13.10)

�Ln C
X

nd�<h<n

Lz
h;n .1C �h;n/C

C
X

i

X

h<n;h2bP
x�

i;h;n �
X

i

xC
i;n

C
X

i

X

h<n; n�hDTi

xexp
i;h;n C

X

i2InI1;I2

X

nd�<m<n; n�m�Ti

xexp
i;m;n .1C �h;n/

C…1;INV
n
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The quantity …1;INV
n represents interest and dividend income and it is computed in

the model as:

…1;INV
n D

X

i2I

X

h<n;h2Pd
n

X

nd�<m<n;m2P int
n

�
xi;nd� � .1C �i;m/ � xexp

i;h;m

� � �i;n C

C
X

i2I

X

h<n;h2Pd
n

xi;h;nd� � �i;n: (13.11)

In Eq. (13.11) we compute at decision nodes Pd
n the income generated by holdings

at the parent decision node xi;h;nd� and that generated by holdings that didn’t expire
and were held during preceding intermediate stages.

Along each scenario, consistent with the assumed tree structure, cash surpluses
and deficits will be passed forward to the following stage together with the accrual
interest. Very low positive interest rates �C

n and penalty negative interest rates ��
n

will force the investment manager to minimize cash holdings over time. The cash
surplus at the end of the horizon is part of company terminal wealth. In the adopted
problem instance we do now allow cash account deficits over the horizon. The PF
sponsor will always intervene in case of shortages.

Further to holding a portfolio generating sufficient cash to face current liabilities,
th PF manager wishes to minimize exposure to interest rate fluctuations by
maintaining a sufficiently narrow A-L duration gap. The ALM Risk in node n as
generated by an A-L duration gap in the parent node is denoted by K1

n to indicate
that it is the primary variable contributing to the definition of the PF interest rate
risk exposure:

K1
nDdrC � �tj � tj�1

� � ��x
n ��ƒ

n

�
C � dr� � �tj � tj�1

� � ��ƒ
n ��x

n

�
C (13.12)

where drC=� are positive and negative interest rate changes and�x
n ��ƒ

n defines the
difference between asset and liability durations. Only the linear first-order interest
rate sensitivity on assets and liabilities is considered here. The ALM, or interest
rate risk will increase if an exogenous positive interest rate shock occurs when asset
duration exceeds liability duration, while it will decrease in the opposite case.

Summarizing, we handle the two risk sources – liquidity and interest rate risk –
by introducing in the objective function the sum of liquidity gap and ALM risk:

‰nD	n C K1
n C‰n� (13.13)

where ‰t0 D 0, K1
n is the ALM risk, while the liquidity gap 	n is defined as:

	n D Ln �…1;INV
n �

X

h;tnd�
<h<tn;

LZ
h .1C �h/ �

X

h<n; n�hDTi

xexp
i;h;n: (13.14)

The PF manager aims at minimizing ‰n over the planning horizon. In addition she
is expected to control the portfolio market risk exposure: K1

n reflects the interest rate
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exposure, while Km
n will reflect the exposure of the asset portfolio to extreme market

losses. By extending the Sharpe ratio concept to tail risk, the PF manager is assumed
in the long-run to seek a strategy such that the portfolio return per unit Km

n risk is
maximised.

13.4 Risk Capital and Risk-Adjusted Performance

By dynamically rebalancing the portfolio the PF manager will continuously revise
the risk exposure and seek a higher risk-adjusted return. We assume a rather simple,
highly conservative, constant correlation model to clarify how such exposure is
kept under control over the decision horizon. Indeed it can be shown that under
assumptions of perfect positive correlation between assets’ risk factors, following
Consigli and Moriggia (2014), not only are we considering a worst-case scenario
from a financial viewpoint but the resulting MSP will be linear:

Kf
n D K1

n C Km
n C Kf

n� (13.15)

where Kf
t0 D 0, K1

n is the ALM risk, while Km
n evaluates the linear market risk

exposure as:

Km
n D

X

i

X

h<n;h2Pn

xi;h;n � ki � .tn � tn�/: (13.16)

The asset-specific coefficients ki describe the extreme returns-at-risk associated with
holdings in asset i over a unit period (say 1 year). These risk coefficients, focusing
on tail returns, may be determined either through an appropriate statistical approach
or by introducing regulatory-based risk charges. The latter approach is taken here
with ki expressing the 99% returns at risk associated with different asset classes.
Such approximate simple risk estimation is assumed to be roughly consistent with
the return generating processes for price and income returns, needed by the model
instantiation, as shown next. The aggregate tail risk exposure of the pension fund is
defined by the sum of the financial and the actuarial risk capital Kn D Kf

nCKl
n, where

Kl denotes an estimate of possible extreme losses generated by liability dynamics,
due to unexpected longevity records or unprecedented lump-sum pension requests.
This is assumed to be defined as a (small, say 5%) percentage of the PF obligation:
Kl

n D 
 l �ƒn. In the definition of the optimal strategy the PF manager is assumed to
seek a return per unit tail risk target based on:

Zn D …cum
n

Kf
n

: (13.17)

The portfolio’s return per unit tail risk is defined as a ratio between the total profit
generated by the investment (including the variation of unexpected gain and losses)
and the investment risk exposure. To avoid handling a nonconvex variable within the
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optimization problem, rather than maximizing the ratio we maximize the difference
Zn D …cum

n �Kf
n. The investment risk capital Kf

n at each stage is computed assuming
perfectly positively correlated asset classes and then deriving from the optimal
portfolio generated by the solution the dynamics of the risk capital. We define the
total portfolio return by cumulating period price returns, upon selling decisions, and
unrealized gain and losses from the holding portfolio.

…cum
n D …cum

n� C…INV
n C ŒUGLn � UGL0� � (13.18)

where …INV
n D …1;INV

n C Gn is the sum of portfolio income and trading profits. The
unrealized gain and losses UGL are defined by UGLn D P

i

P
h<n;h2Pn

xi;h;n � �i;h;n

with �i;h;n to denote an unrealized gain-loss coefficient in node n per unit investment
in asset i in node h. Realized gain and losses Gn are instead determined by clean
price variations upon selling and upon assets redemptions:

Gn D
X

i

X

h<n;h2Pd
n

�
x�

i;h;n C xexp
i;h;n

� � gi;h;n (13.19)

The coefficients gi;h;n quantify unit gains-losses upon sellings assets i in node n
which was bought in node h. Both realized and unrealized gains depend on the
outcome of a return process for given rebalancing decision: at the beginning of
each stage an asset allocation must be selected whose outcome at the end of the
stage will depend on realized returns. We summarize the adopted Gaussian return
model before discussing the objective function and the dynamic risk-reward tradeoff
considered in this study.

Return generating processes Assets’ random return coefficients are derived by
simulation along the scenario tree. From a methodological viewpoint we apply
first a simple Monte Carlo method to determine the risk factors evolution over
a simulation horizon, then assume a given tree process and generate the returns’
nodal realizations by sampling consistently with the conditional tree structure. We
are not applying any specific sampling method (Consigli et al., 2012a; Dempster
et al., 2011; Dupačová et al., 2001) but just focusing on a simple scenario generation
approach to evaluate the ALM model and the PF induced funding policy. For each
node n in the tree �i;n is the price return of asset i in node n, �i;n is the income return
and �n indicates the cash account return in node n. Each return type is assumed to be
associated with a specific benchmark Vj

i;n where j D 1; 2; 3 to distinguish price from
income and money market returns respectively, while i refers to the asset class. We

have vj
i;n WD V

j
i;n�V

j
i;n�

V
j
i;n�

and

vj
n D �j�tn� C†j�Wtn�

: (13.20)



13 Optimal Multistage Defined-Benefit Pension Fund Management 279

In (13.20) vj
n is a return vector whose dimension coincides with the asset universe

cardinality, with mean �j and variance-covariance matrix†j.�tn� denotes the time
increment between node n� and n while �Wtn�

denotes a white noise random
vector. We have vj � N.�j; †j/. The set of coefficients actually adopted in the
case study can be found in the appendix. The following investment opportunities
are considered: for i D 0, j D 3: the EURIBOR 3 months; for j D 1; 2,
i D 1; 2; 3; 4; 5: the Treasury indices for maturity buckets 1–3 years, 3–5 years,
5–7 years, 7–10 years and 10C years, respectively; for i D 6: the Securitised Bond
index; for i D 7: the Corporate Investment Grade index; for i D 8: the Corporate
High Yield index; for i D 9: the Real Estate Indirect index;for i D 10: the Public
equity index; for i D 11; 12: the Treasury Inflation Protected Securities (TIPS)
indices for maturity buckets 3–5 years and 10C years, respectively. Treasury indices
and TIPS are used respectively to infer annual interest rates for the nominal and real
yield curves of the N-S model in Eq. (13.8).

We consider 4 asset classes: I1 includes all fixed-income and inflation linked
assets, I2 the securitised asset and the corporate, I3 the public equity investment and
I4 the real estate.

Each asset i is characterized by a return process and in addition by a tail
risk coefficient ki. From above, leaving aside the 3-month interest rate, all other
assets have associated both a clean price return process �i;n and an income process
�i;n. We indicate with �i � N.�i; � i/ the return i marginal distribution, in what
follows we assume that the regulatory-based risk coefficient ki is determined from
Solvency II regulatory estimates by an updating based on historical estimates. As
such they will just provide a maybe conservative estimate of the 99% return-at-
risk associated with �i. The following tail risk coefficients are considered in this
study: ki D f2:5%; 4%; 5%; 4%; 7%; 20%; 39%; 25%; 4%; 3%g to identify potential
1-year price return tail losses associated with Treasuries (1–3, 3–5, above 5 years),
Securitized bonds, Investment- and Speculative-grade corporates, equity, real estate
and short- and long-term TIPS, respectively.

13.5 Funding Conditions and ALM Optimization

The ALM problem is formulated as a MSP recourse problem (Birge and Louveaux,
1997; Consigli and Dempster, 1998) over six stages. The optimal root node
decision is taken at time t0 D 0 and, from a practical viewpoint, represents the
key implementable decision. Recourse decisions occur at t1; t2; t3; t4 and t5 which
represent respectively 1st, 2nd, 3rd, 5th and 10th year. At t6, the 20 � year horizon,
no buying or selling decisions are allowed but assets expiries and income leverages
from the holding portfolio.
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The PF manager has a primary interest to run the pension plan smoothly,
match all the funds’ liabilities and allow retired employees to keep a sufficiently
good living standard during retirement. Of major concern to PF managers is any
condition of liquidity shortage that may result into extrafunding from the fund’s
sponsor. In practice this is regarded as a last-resort highly undesirable option.
The ALM problem objective function combines those elements to yield jointly a
good hedging strategy and the generation of risk-adjusted extra returns. Through
the decision horizon the portfolio manager will monitor carefully the net DBO
Bn D ƒn � Xn defined by the difference between the present value of the accrued
pension obligation ƒn and the fair value of plan assets Xn in all nodes n of the
scenario tree.

The net DBO is directly related to the FR �n D Xn
ƒn

. These two quantities
represent the key drivers of the PF long-term policy. A PF underfunding condition
is expressed by a FR below 1, above 1 for an overfunding condition. Regulators pay
now-a-day increasing attention to avoid any undesirable risk-taking by PF managers
and specifically structural underfunding conditions. In the case study we show that
the adopted ALM model formulation proves effective to drive a PF from an under to
an overfunding condition: it is of interest to study how such outcome is associated
with a given risk control strategy.

The objective function is based on a convex combination of the liquidity gap plus
the ALM risk (‰n D Y1;n), the return on plan assets per unit tail risk (Zn D Y2;n),
the plan sponsors’ unexpected contributions (ˆu

n D Y3;n), and the net defined benefit
obligation (DBO) (Bn D Y4;n):

min
x2X

2

4
X

jD1;2;3;4
�jE

�
eYj � Yj;njFj

�
3

5 (13.21)

with
P

jD1;2;3;4 �j D 1.

In (13.21) further to Yj,eYj identify the exogenous j targets, and E.Yj;njFj/ denotes
conditional expectation with respect to information sets Fj associated with targeteYj.

The optimal decision sequence x� of the problem is defined over the decision
stages x 2 X; x WD fxtgt2Td

only and will not include intermediate nodes, used
instead to manage annual pension payments. By including the above set of targets,
the PF management seeks a good trade-off between a dedication and duration-
matching strategy, as reflected in Y1;n, a goal risk-adjusted return Y2;n, a long-term
funding surplus Y4;n and avoid or minimize sponsor’s unexpected contributions Y3;n.

The ALM model develops from a canonical liability-driven investment approach
to incorporate a risk-adjusted return variable and an extended set of constraints.
Inflation and interest rate risk play a central role in determining liability dynamics.
Interest rates and market risk factors affect instead the asset portfolio.
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Overall the ALM model risk-reward trade-off considers the following risk
sources, whose control is key to the maintenance of a sufficient funding status.

• Liquidity risk: annually the asset portfolio generates cash-inflows that jointly
with incoming pension contributions are used to pay current pensions. In case
of positive asset-to-passive PF members ratio, contributions may very well be
sufficient to fund current pensions, but otherwise a liquidity gap will emerge,
defined by the difference between net pension payments and portfolio income.

• Inflation risk: DB occupational PFs’ liabilities are typically (even if not always)
inflation-adjusted and this is a primary risk source affecting PF liabilities, jointly
with interest rate risk.

• Interest rate risk: PF liabilities carry a payment term structure. The DBO joint
dependence on interest rates and inflation leads to exposure to so-called real
duration mismatching. Accordingly the PF manager will hedge such exposure
by compensating liability real duration on the asset side. Real duration may be
considered as first-order sensitivity of assets and liability values to changes of
real interest rates.

• Market (tail) risk: Increasing volatility in financial markets facilitated the pen-
etration of advanced risk management practice in the historically traditional
PF industry. Specifically in the case of occupational PFs within financial and
insurance conglomerates, underfunding risk has an impact on the sponsor’s
financial equilibrium. The PF manager, consistently with Solvency II regulations,
seeks also an optimal control of extreme market risks: this is based in the ALM
model on the introduction of a set of risk coefficients under an assumption of
perfect positive correlation between risk factors.

• Longevity risk: In case of underestimated passive members survival probabilities,
upon conversion at retirement time of the pension credit into an annuity may in
the long-run weaken the PF solvency resulting into longer than expected pension
payments. We assume that such risk is not affecting the PF and already accounted
for in the liability estimation.

A negative PF scenario may result from joint negatively correlated shocks to assets
and liabilities resulting into a sudden increase of liabilities matched by a decrease
of asset values. In presence of poor duration matching and excessive exposure to
market risk on the asset side, a shock in the equity market is often associated with
easing conditions in the money market and increasing liability values.

A poor reaction to market risk is sometimes induced by portfolio policy con-
straints, including: lower and upper bounds on asset positions, a turnover constraint
limiting portfolio revisions whatever the market condition, and liquidity constraints.
These are considered in the ALM model instance and here summarized.

For t 2 T , n 2 N d
t ; h 2 Pd

n ; and i 2 I we have:

liXn � xi;n � uiXn (13.22)
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where li and ui define the percentage lower and upper bounds on holdings in asset i
with respect to the current portfolio position.

For t 2 T , n 2 N d
t ; h 2 Pd

n ; and i 2 I, a maximum turnover constraint:

X

i2I

X

h<n

x�
i;h;nC

X

i2I

xC
i;n � #

"
X

i2I

xi;n�� � .1C �i;n/

#
(13.23)

where # is a predefined turnover coefficient. In our analysis the turnover constraint
implies that the volume of the investments and disinvestments, at each node n,
must be less than or equal to a certain percentage of the portfolio value before any
rebalancing.

Finally a liquidity bound:

X

i2I

�
Xi;n � b̀i

�
� Xn � b̀ (13.24)

where b̀is a 50% input coefficient.
After considering the set of assets’ policy constraints, we summarize the key

elements of the ALM model and their rationale from an economic viewpoint:

1. A distinctive modeling feature is represented by the introduction of intermediate
nodes between subsequent decision nodes in the scenario tree, where however,
the non-anticipativity of investment decisions is preserved and we may accom-
modate annual frequency of pension payments and liability evaluation.

2. The model integrates dedication and AL duration matching with the introduction
of a risk-adjusted return measure and a net DBO target: both determine a strong
incentive to the PF manager to maximize compounded portfolio returns and at
the same time minimize the exposure to financial risk.

3. The definition of intermediate stages allows a more accurate mapping of liquidity
conditions and by doing so a sufficiently safe estimation of the sponsor’s
extraordinary contributions, if any.

4. A perfect positive correlation between assets’ returns is assumed in the esti-
mation of the investment portfolio risk exposure, leading to a conservative risk
capital estimation (thus forcing the statistical estimates used to generate assets’
returns). The investment universe is agreed with experts from the insurance world
and includes Treasuries, TIPS, corporates, equity and real estate.

5. Fixed income benchmarks are treated in the model as carrying a maturity
and generating price as well as income returns. Real estate as well as TIPS
investments, sometimes referred to as hard assets play historically a central role
in the PF’s inflation hedging strategies.
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13.6 Case Study: A 20 Year Pension Fund ALM Problem

In this final section we analyse a case problem focusing directly on the conditions
for a DB pension fund to recover a positive funding surplus from an initial FR
severely below 1. To do this we solve the optimization problem under operational
assumptions and after ranking scenarios in terms of net DBO evolution we consider
first the FR evolution across all scenarios, then a strategy employed to achieve a FR
closed to or greater than 1 specifically under a worst-case-scenario.

Initial conditions include a discounted value of pension payments (from year
1 to the far future) ƒ0 estimated at EUR 115 million (mln), a fair value of plan
assets A0 equal to EUR 100 mln and expected net pension payments in the first
year of EUR 35 mln. Accordingly at time 0 the fund has a FR around 87%.
The initial portfolio X0� is assumed to be well-diversified across the investment
universe. The PF liquidity condition is also delicate since an annual shortage of
approximately EUR 31 mln can be anticipated assuming a portfolio income return
of 4% in the first year. Under this condition the PF manager wishes to recover
over the forthcoming 20 years a funding surplus. We assume a close fund in which
members can only decrease over time. As pensions are paid, the PF liability will
decrease: inflation scenarios and longevity will however induce a relatively slow
decreasing path. The case problem develops from an input expected stream of
future annual pension payments, provided directly by the actuarial division of an
occupational PF, by generating inflation-adjusted pension flows and then at each
node by discounting future cash-flows using nodal specific term structure of interest
rates. All data in this case-study are modified and rescaled for confidentiality reasons
but agreed with industry colleagues and representative of real-world business
conditions.

The optimal investment policy is constrained by a set of upper and lower
bounds defined with respect to the nodal portfolio values. No short positions are
allowed over the planning horizon. Treasury and TIPS are unconstrained, as well
as corporate fixed income investments. The equity holdings as well as real estate
holdings cannot exceed 30% of the portfolio and a 30% turnover constraint with a
minimum 30% liquidity bound are assumed.

The following (decision) tree is considered in Table 13.1. The current imple-
mentable decision, corresponding to the root node, is set to January 1, 2015.

Table 13.1 Pension fund case study time and space discretization

Decision stage 1 2 3 4 5 6 7

Stage distribution (years) 0 1 2 3 5 10 20

Branching degree 10 4 2 2 2 2

Scenarios 10 40 80 160 320 640
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Between two decision stages, maybe distant in time, we consider annual
intermediate times at which income returns and expiring assets are used to pay
annual pension payments. Any liquidity surplus or shortage at intermediate stages
is compounded to the next decision stage.

The objective function (13.21) of the PF ALM problem considers a trade-off
between different goals through the coefficients �1 D 0:2, �2 D 0:2 and �3 D 0:4

�4 D 0:2. We assume that the pension fund’s management will revise its strategy so
as to minimize the shortfall from given targets of (1) liquidity gap plus ALM risk,
(2) return per unit tail risk, (3) plan sponsors’ unexpected contributions and (4) net
DB. The following targets are assumed: EUR 7mln for (1), a 2% per annum for (2),
0 for (3) and a EUR 4 mln of funding surplus.

Rebalancing decisions can be taken at decision stages from time 0 up to the
beginning of the last stage; no decisions are allowed at the end of planning
horizon. The optimal decision sequence does not include intermediate decisions.
Nevertheless, pension payments and assets’ returns will affect the revenues and
asset-liability streams.

The results are generated through a set of modules combining Matlab R2011b
as the main development tool, GAMS 23.2 as the model generator and solution
algorithms interface and Excel 2010 as the input and output data collector running
under a Windows 10 operating system with 8 GB of RAM and a dual core with
four logical processors. The MSP is generated through GAMS and the CPLEX
dual simplex algorithm is used to solve it. With 640 scenarios this is a very large-
scale optimization problem with 1.344.995 rows, 1.464.345 columns and 7.659.404
nonzero coefficients, which is generated in roughly 16 min and solved in 5:29
(minutes:seconds) CPU time.

Consider along a specific representative scenario, the evolution of the net DBO
and the FR in Fig. 13.2. The net DBO over the first years is positive reflecting a
negative PF condition and accordingly the FR is deeply below 1, then between years
15 and 20 the portfolio strategy leads to a surplus at the horizon with a negative net
DBO and a FR above 1.

Fig. 13.2 Funding ratio (right Y axis) and net DBO (left Y axis, thousand EUR) mean scenario
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Fig. 13.3 Liquidity gap and ALM risk (thousand EUR)

A condition of underfunding, FR below 1, due to assets versus liabilities
cashflows, may be associated with a liquidity surplus in the short term. Here
however along the same representative scenario a condition of liquidity shortage
emerges with a positive exposure to interest rate risk. Indeed the liquidity gap is
positive over the first 3 years but then it starts decreasing until a liquidity surplus
emerges. The exposure to interest rate risk also remains low as shown in Fig. 13.3
to witness the effectiveness of the joint risk control pursed by the optimal strategy
over the planning horizon.

We see below that despite such negative initial conditions the PF will recover
a robust funding condition: such outcome is primarily induced by decreasing
liabilities and an effective disinvestment strategy leading to increasing risk-adjusted
investment profit and terminal FR above 1 across all scenarios, but at the cost of a
significant reduction of the asset portfolio. Indeed even in the worst case scenario,
a decreasing liability scenario, due to outgoing pension fund members and relevant
lump-sum payments in the first stages, is funded through income returns and asset
sellings without the need of sponsor’s intervention.

In this case study, we concentrate primarily on the FR evolution over time and
across all the scenarios. The plots in Fig. 13.2 refer as indicated to an average
scenario: this is identified, after the problem’s solution, by ranking scenarios with
respect to the evolution of the net DBO over the entire planning horizon. Out of 640
scenarios, the mean case of all is identified by considering the scenario that at each
stage remains closer in the Euclidean norm to the mean.

The chance to recover a positive funding condition depends, for given exogenous
liability scenarios, entirely on the investment strategy. Portfolio revisions take into
account the need to preserve a sufficient liquidity buffer and minimize sponsor’s
interventions. We show that indeed these goals are attained over the 20 years in all
scenarios.
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13.6.1 Evolution of Funding Conditions

We present in Fig. 13.4 the evolution of the net DBO across time and scenarios: at
the end of the first stage we show net DBO values in each of 10 nodes in decreasing
value from left to right. At the end of the second the associated descending 40
nodes and so forth until the horizon. Red colour implies positive net DBO, thus
liabilities exceeding asset values, blue colour is instead associated with a negative
net DBO with the asset portfolio now exceeding the corresponding nodal DBO
estimates.

At the end of the 10th year, already, only a limited but large portion of the
scenarios carry a negative though rather high net DBO: such evidence is of extreme
interest to the PF manager because under that condition all regulatory and long-term
financial and risk constraints are satisfied. At the 20 year horizon across all 640
scenarios the net DBO is negative: in each leaf node the terminal value of the asset
portfolio exceeds the discounted value of future pension payments. Net DBO leaf
nodal values thus depend jointly on the terminal investment portfolio and for given
future inflation scenarios on the prevailing yield curve. The EUR 4 mln funding
surplus is achieved in all scenarios as shown in Stage 6.

Fig. 13.4 Net DBO (Y axis, thousand EUR) at stage nodes (X axis)
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Fig. 13.5 Funding ratio (Y axis) at stage nodes (X axis)

The evolution of the FR can be analyzed under the same graphical structure. In
Fig. 13.5 we show the corresponding stage-by-stage FR nodal values: the constant
red line in each plot indicates an equilibrium condition: from the first to the last
stage across all scenarios the FR moves from below to above 1.

The evidence reported in Figs. 13.4 and 13.5 highlights the achievement of a
funding surplus across all scenarios. The ALM solution refers to ex-ante information
and it supports the claim that under the given initial conditions and input scenarios,
the problem solution leads to full recovery of a funding surplus consistently with
the PF managerial goals. Such surplus is achieved satisfying risk capital and policy
constraints.

We provide in Fig. 13.6 a final set of evidence on targets’ achievements over the
20 years. We indicate in light colour the percentage of scenarios at each relevant
stage where the goals were achieved or even overachieved and in dark those
scenarios for which that target wasn’t achieved. At the 1 year horizon a positive
liquidity gap and ALM risk persist in all scenarios and from the given initial shortage
condition the PF recovers a good liquidity status after 10 years. Nevertheless, as
shown on the top right plot, all liquidity deficits are funded avoiding any sponsor’s
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Fig. 13.6 Targets achievement

contributions which remain equal to 0 throughout the decision horizon and through
assets sellings (see evidence in Fig. 13.7). The 2% risk-adjusted return target is
achieved in all scenarios starting from the 3-year horizon. Finally (bottom right
plot), as already discussed, progressively over time the PF recovers a long-term
funding equilibrium condition.

Two relevant issues arise: which key elements drive the PF into such long-
term equilibrium condition? And to which extent is such outcome due to the
proposed modeling and optimization approach? Relatively in this latter case, to
other approaches currently used in the industry.

As for the first question, we analyze in Sect. 13.6.2 which portfolio policy, under
the worst possible DB scenario, leads to a full recovery of funding conditions over
the two decades. We argue that the introduced targets’ combination and a large
investment universe lead, within a dynamic formulation, to an efficient dynamic
portfolio diversification together with a very effective risk control. Extensive
computational experiments, furthermore, have shown that such outcome may have
been difficult to achieve without including in the objective function the net DBO and
the risk-adjusted return goals. Indeed, the collected evidence supports the claim that
a duration-based short-term hedging goal is consistent with a medium- to long-term
more aggressive investment policy. A tight liquidity management of the PF thanks
to the intermediate stages, also played across most experiments a relevant role.
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As for the second question, the benefits carried by a dynamic optimization
approach are undoubtable in presence of long-term liability streams. Widely in the
European and U.S. PF’s industry, and even earlier in the U.K. (Franzen et al., 2007)
investment managers started moving over the last two decades towards the
adoption of dynamic modelling approaches and long-term scenario analysis.
Either based on Monte Carlo methods often matched by policy rules optimization
(Mulvey et al., 2008) or on stochastic optimization (Dert, 1998; Consigli and
Dempster, 1998) techniques. From a recent survey (Senders, 2010) a majority of
European PF managers is now-a-days concerned with an accurate and statistically
sound liability projection based on internal risk models and increasingly with
an effective estimation of both asset and liability risk exposure estimation. The
approach here reported, however, is the first application of a multi-criteria objective
function over such long-term horizon with annual liability cash-flow matching.

13.6.2 Worst Case Scenario Analysis

We move from a mainly quantitative analysis to a more qualitative one by analyzing
the adopted optimal investment strategy along a specific, particularly negative, FR
scenario.

In Fig. 13.2 we have shown the evolution of liquidity and funding conditions
along a specific average scenario: that represented a mean-case-scenario from the
perspective of the net DBO dynamics after solution. Indeed under that scenario
the FR was around 80% for many years then decreased to less than 70%, an
already warning FR, and finally it recovered to almost 120% after 15 years and
kept increasing until the horizon.

Not only under the average scenario but along all scenarios the asset portfolio
value decreases from the initial 100 mln value over the planning horizon. In the
following we analyze the optimal portfolio strategy under worst-case FR conditions,
where however the terminal funding surplus is also achieved.

The optimal H&N solution is well-diversified at time 0with, however, equity and
real estate at their upper bounds. As shown in Fig. 13.7 over the first 3–4 years the
optimal strategy concentrates on treasuries and fixed-income investments and then
increasingly on real estate and equity beyond the 5 year horizon. Such strategy is
consistent with the achievement of a minimal shortfall with respect to liquidity gap
and ALM risk in the short term and then increasingly in search of price gains and
returns. Real assets seem to be contingently invested depending on the evolution of
the risk-bearing capacity of the PF.

In Fig. 13.8 we see that the short-term duration matching goal and the medium
term risk-adjusted performance goal rely primarily on a portfolio including assets
with no expiry (equity and real estate) plus 1–5 and 5–10 fixed income maturities.
At the 20 year horizon the portfolio includes only 10–20y Treasuries and equity.
At that stage the DBO along such scenario is very low and the current portfolio
composition is the result of buying and selling decisions taken at the beginning
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of the last stage. Extraordinary sponsor’s contributions are systematically avoided
by selling assets, preserving the asset portfolio duration, and compounding portfolio
profits to achieve a FR above 1: the introduction of a EUR �4mln net DBO target at
the 20 year horizon proves very effective even if at that point very limited resources
are left. A negative net DBO at the decision horizon provides a positive end-effect
value: from the ALM model formulation, such value does reflect the terminal ability
of the PF to fund all future liabilities.

Figures 13.7 and 13.8 provide summary information on the portfolio strategy
employed by the PF under a negative net DBO scenario, resulting nevertheless into
a slightly positive funding surplus at T . Under any other scenario the final net DBO
value improves. At the same time at the horizon, no extra resources are requested
to the sponsor and the risk-adjusted return target is achieved. The latter depends
directly on the assumptions on the correlation matrix introduced in the risk capital
model: namely that all assets’ underlying risk factors are perfectly correlated. We
will provide in a separate study a range of relevant results for the cases of market or
regulatory based correlation matrices.

All the analyses have been conducted relying on a simple multivariate normal
asset returns model and a set of exogenous liabilities generated by the actuarial
division of an occupational PF.

13.7 Conclusion

In this chapter we have presented the key elements of an ALM model formulated
so as to effectively incorporate several relevant PF short-, medium- and long-term
features and be consistent with recently introduced regulatory (e.g. Solvency II) and
industry standards.

From a modeling viewpoint the combination along the scenario tree of decision
nodes – where buying and selling decisions are allowed in the face of residual uncer-
tainty – with intermediate nodes – from which no multiple branching originates
and where pension payments and portfolio income are required to match–, allows a
more flexible and effective portfolio and liquidity hedging policy without leading to
a curse-of-dimensionality problem.

The adopted combination of liquidity and interest rate risk hedging in the short
run, a sufficient risk-adjusted return in the medium term and long-term funding
surplus goals, with the explicit inclusion of sponsor’s contributions in the model
proves very effective to recover a funding equilibrium for a DB pension fund. This
framework is indeed at the grounds of an ongoing development of ALM methods
and related tools for PF management.
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Appendix

In Tables 13.2 and 13.3 we show the estimated statistical parameters adopted to
generate correlated quarterly returns through a Monte Carlo simulation (Glasser-
man, 2003; Consigli et al., 2012a) for each benchmark i and node n. Once the return
scenarios are aggregated in tree form, they are passed to an algebraic language
deterministic model generator, to produce the stochastic program deterministic
equivalent instance (Consigli and Dempster, 1998). The returns’ statistics have been
estimated on an historical window composed of 63 observations starting from the
first quarter of 1999 till the third quarter of 2014.

Table 13.2 Average annual price (�) and income (�) returns of the entire asset universe. These
parameters are estimated as the historical mean value of time series from January 1, 1999 to
December 31, 2014. Data are in percentage

� �

EURIBOR 3m 2:41

Treasury (T) 1–3y �0:78 4:25

Treasury (T) 3–5y 0:13 4:38

Treasury (T) 5–7y 0:75 4:56

Treasury (T) 7–10y 1:35 4:28

Treasury (T) 10+y 1:73 4:87

Secururitized (S) 0:70 4:16

Corporate Investment Grade (IG) 0:23 4:78

Corporate High Yield (HY) �0:93 8:05

Real Estate (R-E) 6:72 3:24

Equity (E) 6:00 3:67

TIPS 3–5y 1:53 1:74

TIPS 10+y 3:29 2:52
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Chapter 14
Currency Hedging for a Multi-national Firm

Markku Kallio, Matti Koivu, and Rudan Wang

Abstract This paper develops a multi-stage stochastic programming (SP) approach
aiding a European company in currency hedging. While cash management concerns
several major currencies, our pilot model deals with US$ and e only. Equilibrium
correction models, Taylor rule based models and a random walk model are com-
pared for exchange rate prediction. Risks related to exchange rate and sales forecast
errors are hedged. Numerical results indicate that the current hedging policy roughly
amounts to the same as no hedging at all. We demonstrate how repeated hedging
activity reduces risk and thereby suggests avoid excessive risk averse behavior.
Out-of-sample tests over the period 2004–2013 indicate that optimized hedging
can increase net profits before taxes by about 20% over current policy. Average
performance improvement of the random walk model is outperformed in terms of
profit improvement by all other models we considered. Out-of-sample results show
that single-stage SP yields approximately the same average improvement as multi-
stage SP but the latter is more robust in terms of reduced variance.

Keywords Exchange rate • Currency hedging • Financial modeling • Stochastic
programming
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14.1 Introduction

Exchange rate hedging is an important problem for multi-national firms. Over the
years, economics has suggested a number of theories as a basis for forecasting the
exchange rates. For example, the widely known purchasing power parity theory
(PPP) which links exchange rates to price levels, the flexible price monetary
model (Frenkel, 1976), the sticky-price monetary model (Dornbusch, 1976) and
the portfolio balance approach (Branson, 1977). These models have dominated the
literature on the exchange rate during the 1970s and 1980s. More recent literature
has pointed to equilibrium correction models (Engle and Granger, 1987) and to a
new direction in macroeconomics by incorporating endogenous Taylor’s (Taylor,
1993) rules into exchange rate models; unlike the earlier models, this more recent
approach reflects how monetary policy is actually conducted or evaluated and offers
a different explanation of exchange rate dynamics.

In this article we employ multi-stage stochastic programming (SP), for choosing
favorable hedging strategies employing standard instruments. The approach is
developed for a multi-national company1 to aid the CFO to explore alternatives to
the current hedging practice. The headquarters and major production plants of this
electronics firm are located in an EU country within Eurozone. The parent company
is listed on a domestic stock exchange only. There are subsidiaries elsewhere within
EU as well as in North America, Brazil, Asia (e.g., China, India, South Korea,
Japan) and Australia. Many of them are acquired through acquisitions. Most of the
subsidiaries are only engaged in sales and services but some also in production.
The firm serves customers in more than 100 countries. Financial management is
centralized to parent company. The centralized cash management concerns several
major currencies, e being the base currency and US$ the main foreign revenue
currency. Therefore, at the present stage we deal with US$ and e only.

We develop a multi-stage SP model employing equilibrium correction models,
Taylor rule based models and a random walk benchmark model for exchange rate
prediction. Risks related to exchange rate and sales forecast errors are hedged. To
find a favorable hedging strategy, first, alternative objectives and hedging policy
constraints are considered. Numerical experiments concerning year 2004 indicate
that the current practice of the firm hedging 50% of dollar revenues using forwards
barely results in improvement over no hedging at all.2 Instead, alternative optimized
hedging can bring improvements. We suggest avoid excessive risk aversion by
demonstrating how repeated hedging activity over months and years reduces risk
in average hedging performance. Second, we provide out-of-sample tests for
2004–2013. The results show that optimized hedging can provide increase in net

1The CFO participated actively in the development and analysis of numerical tests of the EqC
model. The optimization software was implemented using an Excel interface, a familiar tool for
the CFO. For confidentiality reasons we suppress the name of the firm and modify data concerning
costs and revenues.
2This policy was chosen by the board and communicated to the shareholders.
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profits by about 20%. Average performance improvement over current policy for
the random walk model is outperformed by all other models considered. Out-of-
sample results show that a single-stage SP model, which is easier to understand and
implement, yields approximately the same average improvement as multi-stage SP
but the latter is more robust in terms of reduced variance.

The rest of the paper is organized as follows. Section 14.2 presents a brief
review of exchange rate studies as well as introduces the models for exchange
rate prediction which are used in our numerical analysis. In Sect. 14.3 an opti-
mization model with restrictions for hedging policies and criteria for evaluation is
developed. In Sect. 14.4 a number of numerical tests illustrate the performance of
hedging strategies in terms of probability distribution of terminal asset value, the
preferred criterion of the CFO for comparing alternative strategies. Most impor-
tantly, Sect. 14.5 presents out-of-sample performance comparisons of equilibrium
correction models, Taylor rule based models and random walk model. Performance
of each model and hedging policy is measured by terminal asset value in a 12 month
out-of-sample tests. Section 14.6 concludes.

14.2 Exchange Rate Models

Following a review of exchange rate studies, this section presents models which
we use to generate exchange rate scenarios for stochastic programming. The first
model is an equilibrium correction model employing historical exchange rate data
for prediction. The second model employs both historical data as well as current
economic outlook based on macro-economic fundamentals serving as leading
indicators for exchange rate predictions. The third model is a random walk model
to be used as a benchmark.

14.2.1 Review of Exchange Rate Studies

The collapse of the Bretton-Woods fixed exchange-rate system in the early 1970s
marked the start of the modern research on exchange-rate determination. Testing
exchange rate models became popular after the major industrialized economies
adopted floating exchange rates.

Studies of 1970s and early 1980s were mainly focused on asset market models
(for example, Branson 1977; Frenkel 1976; Lewis 1988). Most found evidence
supporting the exchange rate models of the 1970s. The landmark paper by Meese
and Rogoff (1983a) challenged these findings by demonstrating that a simple
random walk model performed as well as any of the tested structural exchange rate
models in out-of-sample forecasting of the main US dollar exchange rates.

Since Meese and Rogoff (1983a, b) numerous studies have been devoted to
developing exchange rate prediction models that could beat the random walk.
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Studies by e.g. Mark (1995) and MacDonald and Taylor (1994) find that the
exchange rate predictability of monetary models can be improved by extending
the forecast horizon. The comprehensive study by Cheung et al. (2005) survey the
literature of the 1990s and conclude that accuracy of exchange rate forecasts is very
dependent on the assumptions of the data generating process and that there is no
single model that would work well in all situations. Sweeney (2006) finds strong
support for mean reversion in real and nominal exchange rates and demonstrates
that the mean reversion models outperform random walk in out of sample forecast
accuracy.

The use of Taylor rule based monetary policy functions in forecasting exchange
rates have been extensively studied in recent years; see e.g. Engel and West (2005)
and Molodtsova et al. (2011). Results of various studies indicate that variants of the
Taylor rule perform reasonably well in exchange rate forecasting, for example, Mark
(2009), Molodtsova and Papell (2009), and Ince (2014) using time series data, as
well as Engel et al. (2007, 2015), Mark and Sul (2011), and Galimberti and Moura
(2013) using panel data. All these papers have found that the Taylor rule based
exchange rate models improve the forecasting ability of exchange rates.

Based on these findings, we utilize three different types of models for forecasting
exchange rates in our hedging applications. First, the random walk model is used
as the simplest possible benchmark model against which the performance of the
other models will be evaluated. Second, we use a mean reverting autoregressive
model (equilibrium correction model), which is a relatively simple extension of
the random walk model, because Sweeney (2006) finds strong support for mean
reversion models in forecasting exchange rates. Third, we employ two versions
of Taylor rule based models which have been shown to work well in forecasting
studies.

14.2.2 An Equilibrium Correction Model

Let Z� denote the (average) exchange rate (e/$) for month � , and define

x� D log.1=Z� /:

To ensure stationary time series, we deal with increments �x� D x� � x��1: The
equilibrium correction model EqC for x� is

�x�C1 D A�x� C ˛.x� � �/C �� ; (14.1)

where random error terms �� are assumed independent with identical normal
distributions of zero mean. Parameter � D log � is the logarithm of the equilibrium
exchange rate �, and parameters A, ˛ as well as the variance �2 of error �� are
subject to estimation.
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Fig. 14.1 Monthly $/e exchange rate in 1987–2003

Using monthly data from 1987 to 2003 parameter estimates A D 0:359, ˛ D
�0:0272, and � D 0:0234 were obtained for EqC. Based on Fig. 14.1 and using
management judgment, the chosen equilibrium exchange rate is � = 1.10 $/e is so
that� D log.1:10/ in (14.1). We analyze sensitivity of this assumption in Sects. 14.4
and 14.5

14.2.3 Taylor Rule Based Models

The link between the interest rate and the macro fundamentals originates with the
central banks approach to monetary policy. In this study, we use the extended
form of Taylor rule by including real exchange rate, assuming inertial hypothesis
regarding the conduct of monetary policy and adopting stock price index to represent
wealth effect. We consider the baseline specification for monetary policy-makers’
interest rate of month � as:

i� D .1 � �0/.� C ��� C y� C �w� C 
q� /C �0i��1 C �� (14.2)

where i� is the actual observable short-term nominal interest rate, �� is the inflation
rate, y� is the output gap (percentage deviation of actual real GDP from an estimate
of its potential level), q� is the logarithm of the real exchange rate, w� is the
logarithm stock price index, �0 denotes the degree of interest rate smoothing, � is a
constant and �� is the error term also known as the interest rate smoothing shock.
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Model (14.2) is used for the US. Taking Germany as the benchmark country for euro
region, the monetary policy reaction function for the euro is as equation (14.2) with

 D 0. Parameter values and levels of economic fundamentals are country specific.
We let subscript d refer to the US and e to Germany, respectively.

We assume uncovered interest rate parity (UIP) holds with rational expectations.
Then given interest rates id� and ie� at stage � , saving 1 e at � yields at � C 1

an amount equal to the expected yield of saving 1=Z� $ in a dollar account; i.e.,
exp.ıie� / D exp.ıid� /EŒZ�C1�=Z� where ı D 1=12 is the time increment. Taking
logarithms on both sides, recalling that Z� D exp.�x� / and assuming that the
monthly logarithmic increment �x�C1 D x�C1 � x� of the nominal exchange
rate $/e is normally distributed with variance �2T , independent of � , we obtain
ı.ie� � id� / D log EŒexp.��x�C1/� D �EŒ�x�C1�C �2T=2 where the latter equality
follows from expected value formula for a log-normal random variable. Hence,
EŒ�x�C1� D ı.id� � ie� / C �2T=2, and subtracting the Taylor rule (14.2) for the
US multiplied by ı from that of Germany, the exchange rate forecasting model TrE
with Taylor rule fundamentals follows:

�x�C1 D �� C  

C e��e� C  eyye� C  ewwe� C �eie;��1
� d��d� �  dyyd� �  dwwd� � �did;��1 �  qq� (14.3)

where error terms �� are assumed i.i.d. N.0; �2T / and  is a constant. Suppressing
subscripts e and d, the other parameters can be expressed in terms of parameters in
(14.2) as follows:  � D �.1 � �/ı,  y D .1 � �/ı,  w D �.1 � �/ı and � D �0ı
for both countries, and  q D 
.1��/ı for the US. We also consider a nested model
TrN which results when a component ˇs� is added to the right hand side of (14.3).
Here s� is a trend obtained by exponential smoothing from the history of increments
�x� with smoothing weight 0.5. Table 14.1 shows estimated parameter values and
standard deviation of the error term based on monthly data from 1993–2003.

14.2.4 Random Walk Model

For the random walk model RW the monthly log-increments of exchange rate are
independent random variables with identical normal distributions of zero mean.
Hence for all � , we have

�x�C1 D �0
� ; (14.4)

where random error terms �0
� have mean zero and variance � 02. Using monthly data

from 1993 to 2003 the standard deviation is estimated to � 0 D 0:0266.
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Table 14.1 Parameter
estimates and standard
deviation of the error term for
the Taylor rule based models
TrE and TrN

Estimated value

Variable Parameter TrE TrN

Inflation ��  e� �0.000503 0.000429

 d� �0.0005545 0.00227

GDP gap y�  ey 0.0005442 0.00193

 dy 0.000716 �0.00853

Wealth w�  ew 0.002856 0.00983

 dw 0.00442 0.00735

Interest rate i��1 �e �0.000419 �0.00090

�d �0.0001190 0.00579

Real exch. rate q�  q 0.000910 �0.0479

Trend s� ˇ n.a. �0.283

Constant  0.00821 0.00826

Error �� �T 0.0267 0.0239

14.3 A Dynamic Hedging Model

We now develop a model for multi-stage stochastic optimization of hedging
strategies. First, we define the scenario tree for exchange rates. Second, we introduce
sales revenues and direct production costs, and update the scenario tree to be
employed in stochastic optimization. Third, we discuss currency forwards and
options to be used as hedging instruments. Finally, decision variables are defined
for the model, different types of hedging constraints are introduced and alternative
objective functions are considered.

14.3.1 Exchange Rate Scenarios

The company employs a rolling planning and control process. Each month a forecast
is produced on sales over the coming 12 month period. Consequently, a 12 month
horizon is adopted to our model as well. The horizon is subdivided into a number
of stages t D 0; 1; : : : ;T . The length Tt of period t (ending at stage t, t D 1; : : : ;T)
in this subdivision is variable: we subdivide the 12 month time horizon into T D 5

time steps of 1C 1C 1C 3C 6 D 12 months.
Based on each of the exchange rate models, randomized Sobol sequences are

used to generate scenario trees. Branches per node vary by stage: for each node
at stage t = 0, 1, 2, 3 and 4, respectively, there are 10, 6, 4, 4 and 2 branches.
For each branch, exchange rates are generated month by month. For each month,
the models (EqC, TrE, TrN and RW) employ the exchange rates generated for the
preceding months. For TrE and TrN to determine the expected monthly increment
we use levels of economic fundamentals observed at the initial stage t D 0. The
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Fig. 14.2 Exchange rate scenarios ($/e) over 12 months in 2004 based on models EqC with � D
1:1$/e and TrE

10� 6� 4� 4� 2 D 1920 scenarios in the entire scenario trees for EqC and TrE in
2004 are depicted in Fig. 14.2.

14.3.2 Revenues and Expenditures

Let Rf
� and Ra

� denote the monthly US$ sales forecast and the actual monthly sales,
respectively, for month � . The logarithmic monthly forecast error is then given by

Re
� D ln Ra

� � ln Rf
� : (14.5)

The monthly values of Re
� during 2001–2003 are displayed in Fig. 14.3.

Annual US$ sales forecasts are made once a year. As can be seen from Fig. 14.3,
the forecast error has zero mean on average and longer horizon forecast errors
are not significantly larger than the short horizon forecast errors. Based on these
observations we model the development of the sales error with a time series model

�Re
� D ˛eRe

��1 C �� ; �� � N.0; �e/: (14.6)

We estimate the model for the sales error using the data displayed in Fig. 14.3. The
estimated parameter values are ˛e D �0:757 and �e D 0:225.

We assume that sales over nearest three months is known with certainty so that
R� D Ra

� , for � � 3. For � > 3, using the monthly US$ sales forecast for the year
2004, the stochastic US$ sales R� is given by

R� D Rf
�e

Re
� : (14.7)
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Fig. 14.4 Scenarios of a monthly US$ sales forecast in Me (left) and of simulated monthly US$
sales in Me (right) for 2004 using exchange rate model EqC with � D 1:1$/e

Based on Fig. 14.3, the forecast error of December 2003 is 0:4. Hence, when
(14.6) is applied for January 2004 with � D 1 we have Re

0 D 0:4. Using exchange
rate model EqC with � D 1:1$/e, Fig. 14.4 (left) illustrates the simulated scenarios
of sales forecast in Me based on a deterministic monthly US$ sales forecast for
2004. In Fig. 14.4 (right) simulated monthly US$ sales based on (14.6) and (14.7)
are converted to Me using simulated exchange rates. Approximately 30% of the
uncertainty in e sales is caused by the exchange rate fluctuations while the majority
of the uncertainty results from the sales forecast errors.

With a profit margin 1 � c, the euro expenditure of production (Me) in
month � is
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E� D cR�Z��! (14.8)

where ! is the delay between production and delivery. Hence, the profit of month
� in e is Z�R� � E� D R� .Z� � cZ��!/. For numerical tests we use c D 0:55

and ! D 3 months. To construct a scenario tree for stochastic optimization, a
natural approach would be to construct an independent scenario tree for dollar sales
revenues and adopt the product tree of exchange rates and revenues for optimization.
However, even with a small number of scenarios for revenues, the product tree
quickly becomes too large for our computing facilities. To cope with the curse of
dimensionality, we adopt an approach where the scenario tree is constructed by
sampling realizations for the USD/EURO exchange rate and sales forecast error
from a two dimensional randomized Sobol sequence. For each arc joining stages t
and t C 1 in the tree for exchange rates, we generate realizations of sales R� and
costs E� for the months � of period t C 1. Thereby we obtain 1920 scenarios for
revenues and costs as well. We believe this is sufficient to take into account sales
forecast errors.

The risks to be hedged concern dollar revenues Rt and costs Et which are obtained
summing up monthly revenues and costs of months � in period t. Given stochastic
revenue and cost streams fRtg and fEtg, a hedging strategy is chosen over 12 months
at stage t D 0.

14.3.3 Forwards and Options

For numerical tests we use simplifying assumptions for interest rates, forward rates
and option prices which for our purposes adequately approximate market rates and
prices. For the nominal interest rates, let rets and rdts be the euro and dollar interest
return, respectively, from time t to time s. The interest rate curves are assumed flat
and the rates are taken as observed three month rates prevailing at the beginning of
the year.

For t D 0; 1; : : : ;T �1, consider currency contracts made at stage t and maturing
at stage s > t. The forward rate Fts in e/$ is (see Hull 2002)

Fts D Zt exp.rets � rdts/: (14.9)

Let Xts D .Xxts/ be the vector of exercise prices in e/$ for options. Here indices
x refer to alternative exercise prices. We use exercise rates which are 90, 100 and
110% of the current exchange rate Zt; hence, Xts D .Xxts/ D .0:9; 1:0; 1:1/ � Zt.
We approximate the option prices using theoretical prices of the Garman-Kohlhagen
model (see e.g., Hull 2002). Then the price of a European put option with an exercise
price Xxts, is

Pxts D ŒXxtsN.�d2/ � FtsN.�d1/� exp.�rets/: (14.10)
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and the price of a European call option is

Cxts D ŒFtsN.d1/ � XxtsN.d2/� exp.�rets/; (14.11)

where N.�/ is the cumulative probability distribution function of the standard normal
distribution, and d1 D d2 C �ts D Œlog.Fts=Xxts/ C �2ts=2�=�ts with �ts being the
exchange rate volatility over the period from t to s.

The proportional transaction cost is Tf D 0:001 for forwards and To D 0:01

for options as suggested by the CFO. Currency exchange costs are assumed zero.
Estimated annual exchange rate volatility is �0T D 0:092. For numerical analysis in
Sects. 14.4 and 14.5 we assume that no derivatives acquired before the initial stage
t D 0 remain to mature during the subsequent 12-month period.

14.3.4 Model Formulation

To state the optimization model, we introduce (i) accounting and hedging variables,
(ii) hedging policy constraints and (iii) alternative hedging objectives; for applica-
tions of SP, see e.g., Ziemba and Mulvey (1998).

(i) Accounting and hedging variables. Choice of currency portfolios, including
long position in each currency, as well as choice of portfolios of derivatives
determine a hedging strategy. No hedging takes place at the terminal stage T .
Hence, we define the following decision variables for the currency portfolios, for
t D 0; : : : ;T � 1: et is cash (Me) and dt is cash (M$) at stage t after hedging.
Initial currency positions at t D 0 are e0 D 10 Me and d0 D 0 M$. The
amounts of forward contracts made at stage t, maturing at s, and options with
exercise prices Xxst, for t D 0; : : : ;T � 1 and s > t, are as follows: sts is forward
contracts to sell dollars (M$), bts is forward contracts to buy dollars (M$), pxts is
European put options (M$) and cxts is European call options (M$). Additionally, for
all t D 0; 1; : : : ;T we define accounting variables wt (Me) such that wt is the total
asset value prior to hedging actions at stage t. Hence, initially w0 D c0 C Z0d0 is
a constant. For each stage t > 0, depending on the state of the currency market
(in particular nodes of the scenario tree), different values may be chosen for the
variables, and therefore, the variables ct, dt, wt, sts, bts, pxts and cxts are stochastic.

(ii) Hedging constraints. The model constraints include policy based simple
bounds (upper and lower limits on decision variables) and other restrictions
concerning the use of derivatives to be employed as well as accounting equations
for assets.

Simple bounds on variables account for possible policies on positions in each
currency and on quantities of derivatives employed. For instance, short positions
in options may be prohibited or use of some instruments may be excluded; see
numerical illustrations in Sect. 14.4 where all lower limits are set to zero, thus
prohibiting short positions. The use of an instrument may also be fixed to a given
level, to zero, for instance.
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There are additional policy restrictions on contracts for selling dollars (i.e., on
forwards and puts). In particular, the total quantity of contracts maturing at time t
are limited by revenue Rt. Let indices x refer to exercise prices of options. Then

X

s<t

.sst C
X

x

pxst/ � Rt for t D 1; : : : ;T: (14.12)

Similarly, we restrict contracts for buying dollars (i.e., forwards and calls). In
numerical tests such upper limit is set to revenues Rt as well.

The accounting equations concern the cash balance at stage t, for t D
0; 1; : : : ;T �1, and the dynamics of the total value wt, for t D 0; 1; : : : ;T . Recalling
the initial value w0 D c0 C Z0d0, the total cash value plus expenditures in options
and transaction costs is equal to the total asset value wt for all t; i.e., cash et (Me)
satisfies the following budget balance requirement for all t

et C Ztdt C
X

s>t

ŒTf .sts C bts/C
X

x

.1C To/.Cxtscxts C Pxtspxts/� D wt:

Given euro and dollar returns rets and rdts from time t to time s, the total asset
value wt at t > 0 prior to hedging is determined by cash at the beginning of period t,
interests from the period t, revenues and expenditures of period t, as well as profits
from currency derivatives acquired in stages s < t. Hence, the total asset value wt

(Me) prior to hedging actions at stage t is given by

wt D .1C re;t�1;t/et�1 C ZtŒ.1C rd;t�1;t/dt�1 C Rt� � Et

C
X

s<t

.Fst � Zt/.sst � bst/C
X

x;s<t

Œmax.0;Xxst � Zt/pxst

Cmax.0;Zt � Xxst/cxst�

(iii) Hedging objectives. Our aim is to explore alternatives for risk profiles.
Therefore, we consider several objective functions, each one being determined by
the total asset value wT at terminal stage T . First, we state the standard expected
utility criterion employing a negative exponential utility function. If the risk aversion
parameter approaches zero or infinity we obtain the expected value criterion or
the worst case criterion, respectively. Finally, the weighted sum of the expected
value and the worst case is proposed. In practical applications, the chosen hedging
objective aims to reflect true preferences of the decision maker, such as the CFO
of the firm.3 However, as in Sect. 14.4, different objectives may be explored
for learning purposes in a decision support process. – Below, EŒ�� refers to the
expectation operator.

3Preferences of the CFO are tied to the incentive system, which for the CFO and other senior staff
at the headquarters is based 1- and 3-year profit and growth of the firm.
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An expected utility criterion of a risk averse decision maker is to

max EŒ� exp.�wT/�: (14.13)

where  > 0 is the Arrow-Pratt absolute risk aversion coefficient. This criterion
aims to balance good and poor levels of wT . The utility function may be interpreted
as a penalty which increases progressively as the terminal value decreases. Alterna-
tively, the marginal payoff decreases with increasing terminal value.

For small  , (14.13) approaches the expected terminal wealth criterion to

max EŒwT �: (14.14)

This criterion is attributed to a risk neutral decision maker. However, also for a risk
averse person the expected value can be an appropriate criterion if similar decision
problems repeat over time.4

As  increases without limit, (14.13) approaches the worst case criterion to
max f l j l � wT g. In addition to the standard criteria above, we consider a weighted
sum of the expected value and the worst case using a weight coefficient � with
0 < � < 1:

max f �EŒwT �C .1 � �/l j l � wT g: (14.15)

14.4 Comparison of Hedging Strategies Over a Single Year

The primary concern of the CFO is the probability distribution of the asset value
wT at the end of the 12 month period. This represents a risk and return profile
where preferences are subjectively formed based on the distributions of wT . For this
reason, we consider a number of runs with the model exploring alternatives for such
distribution for year 2004. Case 0 is without hedging. Case 1 mimics the current
hedging practice. It is advanced in Case 2 relaxing previous hedging restrictions
and using expected utility maximization. Speculative hedging with expected value
maximization is presented in Case 3 and maximization of a weighted average of the
worst case and the expected value is the objective in Case 4. We discuss the results

4As a simple example, consider two alternative choices A and B. Alternative A is risk less with
wT D 50 Me. In case B there is an 80% chance for wT D 60 Me and a 20% chance for wT D 40

Me with an expected value EŒwT � D 56 Me. If the choice is not repeated, a risk averse manager
may prefer A to B. If such identical choices are repeated in n consecutive years with independent
outcomes, then the expected terminal value for B is at 56 Me per annum and for A the average
is 50 Me, for all n. However, the probability of the annual average in case B being less than 50
Me is only 4.0%, 2.7% and 0.6%, for n = 2, 4 and 10, respectively. Therefore, a person preferring
A to B in a single trial might prefer B to A in repeated trials.
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basd on EŒwT � and the pdf of wT . Expected hedging levels and asset values by time
stage for Cases 0–2 are shown in Table 14.4 of the Appendix.

Case 0: No hedging. Consider the case without derivatives and $ positions fixed
to zero. The distribution of the terminal value wT is shown in Fig. 14.5 (blue curves)
using exchange rate models EqC (left) and TrE (right). Expected terminal value
EŒwT � is 27.5 Me for EqC and is 26.9 Me for TrE.

Case 1: Current hedging policy. This case mimics the current hedging practice:
We prohibit both put and call options as well as forwards to buy dollars. Cash in
dollars is kept at zero. Hence, we restrict cash dt, forwards bst put options pxst and
call options cxst to zero. For t � 3, 50% of dollar revenues Rt are hedged using
forwards. For t > 3, we require that at most 50% of dollar revenues are hedged.
Furthermore, revenues at stages T and T � 1 can only be hedged at the preceding
stages T � 1 and T � 2, respectively. Because revenues at stage 3, for instance,
can be alternatively hedged at stages 0, 1 and 2, there is some freedom to choose.
Therefore, we choose the hedging strategy employing the expected terminal value
criterion (14.14).

Figure 14.5 (top, red curves) shows the distribution of the terminal value wT with
EqC (left) and TrE (right). We observe that the distributions of Cases 0 and 1 quite
similar, and expected terminal value wT increases from Case 0 by 0.1 Me only.
Such similarity may be explained by the fact that an unhedged dollar amount in
Case 0 yields a loss if the dollar weakens and a gain in the opposite case compared
with Case 1. When we take into account all scenarios and all dollar revenues over
time, such gains and losses tend to cancel each other, and consequently at the end
at stage T , the outcome in Case 0 without hedging is approximately the same as in
Case 1 employing hedging with forwards.

Case 2: Optimal hedging with expected utility. Case 1 is advanced by allowing
(but not requiring) all dollar revenues Rt be hedged with forwards sst and puts
pst, and forwards bst and calls cst to buy are available as well. Hence, in this case
constraint (14.12) applies to selling dollars. Similarly, buying dollars using forwards
and calls is limited to Rt. Expected utility criterion (14.13) is used with risk aversion
coefficient  D 0:5/Me. Figure 14.5 (second row, red curves) show the distributions
of wT with EqC (left) and TrE (right). Expected terminal value wT increases from
Case 0 by 0.9 Me for EqC and 0.7 Me for TrN.

Case 3: Speculative hedging. Next, we consider an increasingly speculative
hedging strategy. We take Case 2 to begin with allowing all hedging instruments
to be employed and use criterion (14.14) of maximizing expected terminal value
wT . Figure 14.5 (third row, red curves) show the distributions of wT with EqC (left)
and TrE (right). Expected terminal value wT increases from Case 0 by 1.5 Me for
EqC and 0.9 Me for TrN.

As discussed in Sect. 14.3.4, expected value maximization can be an appropriate
criterion if similar decision problems repeat over time. To illustrate, consider two
and five independent 12 month hedging problems, each one being identical to the
case above. If the optimal hedging strategy for a single year is adopted in each year,
then the distribution of the average terminal value per annum has the same expected
value as above. However, the variance decreases. Figure 14.6 shows the results of a
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Fig. 14.6 Probability distribution of terminal asset value wT (Me) in Case 3. Results are shown
both for a single year (blue), as well as for two (red) and for five (green) independent repetitions

single year (blue curve) as well as for its two and five independent repetitions (red
and green curves, respectively).

Case 4: Weighted objective. This case is obtained from Case 2 by switching
to criterion (14.15), where the objective is to maximize the weighted average of the
expected value and the worst case of the terminal value wT . We use equal weights so
that � D 0:5 in (14.15). Figure 14.5 (bottom row, red curves) show the distributions
of wT with EqC (left) and TrE (right). Expected terminal value wT increases from
Case 0 by 1.4 Me for EqC and 0.7 Me for TrN.

14.5 Out-of-Sample Tests

In this section we compare EqC models with alternative equilibrium rates �, Taylor
rule based models TrE and TrN, and the random walk model RW using out-of-
sample tests for 2004–2013. In each test we consider three hedging alternatives:
Case 0 (without hedging), Case 1 (current hedging policy) and Case 2 (optimized
hedging using expected utility maximization in (14.13) with risk aversion coefficient
 to be specified below).

Out-of-sample tests are carried out separately for 12-month periods starting at
1/2004, 7/2004, 1/2005, : : : , until 1/2013. The beginning of the first month of each
period is denoted by t0 for t0 D 0; 6; 12; : : : ; tmax, where tmax D 108. Hence,
t0 D 0 refers to the beginning of January 2004, t0 D 6 refers to the beginning
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of July 2004, etc. For the tests we assume rolling levels of sales forecasts as
well as actual sales. Hence for any month � , we have sales forecast Rf

� D Rf
��12

and actual sales Ra
� D Ra

��12. For each of the 1 C tmax 12-month periods, we
assume that the initial asset value is 10 Me and there are no derivatives to be
taken into account from the past, similarly as we assumed in Sect. 14.4 at the
beginning of 2004.

For each t0 D 0; 6; : : : ; tmax we solve 12 optimization tasks over a period of
12 months starting at t0 C � , for � D 0; 1; 2; : : : ; 11 as follows. For each t0 C � ,
only derivative contracts chosen by the optimal solution at the root node (at t0 C � )
are accepted for implementation. Given t0 and � , we observe the realized exchange
rates, sales revenues and economic fundamentals up to and including stage t0 C � ,
and set up the scenario tree for exchange rates, revenues and costs. For EqC we
employ the most recent history of exchange rates. For TrE and TrN we employ
additionally the realized levels of economic fundamentals at t0 C � and these levels
are applied to the entire 12 month period starting at t0C� . Observed interest rates at
t0 C � are adopted and forward rates, option prices as well as option exercise prices
are updated. For � > 0, the initial asset value w0 at stage t0 C � is determined by
preceding optimization starting at t0 C � � 1 and observed realizations of exchange
rate and sales at t0C� . For � > 0, in the optimization over 12-month period starting
at t0 C � we take as given the derivative contracts which were accepted already at
t0 C � 0, for all 0 � � 0 < � , and which mature after stage t0 C � . Recall that only
derivative contracts chosen in the root node at stage t0C� 0 are accepted. Figure 14.7
illustrates the models TrN and EqC with � D 1:1 $/e for t0 D 0; i.e., for the year
2004.

For each t0, after solving the 12 optimization problems over one year starting
at t0 C � , � D 0; 1; : : : ; 11 we calculate the asset value at t0 C 12, at the end of
the year starting at stage t0. This terminal value V is the sum of the realized cash
value at t0 C 12 and the value of those derivative contracts which are accepted at t0,
t0 C 1,: : : ,t0 C 11 but not matured by t0 C 12. Terminal value V is the out-of-sample
performance indicator of hedging strategies. We denote by V0, V1 and V2 terminal
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Fig. 14.7 Exchange rate scenarios in 2004 of out-of-sample simulation with t0 D 0 over the first
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Table 14.2 Out-of-sample test results for 2004–2013 using multi-stage and single-stage optimiza-
tion. Average terminal values (Me): V0 is without hedging, V1 is based on current hedging policy,
V2 is based on optimized hedging ( D 0:5/Me); std is standard deviation and t-stat the t-statistic
of V2 � V1 in 19 tests

Model

EqC1.3 EqC1.2 EqC1.1 EqC1.0 EqC0.9 TrE TrN RW

Multi-stage optimization

V2 � V0 1.00 1.04 0.84 0.81 0.80 0.49 0.71 0.29

V1 � V0 0.06 0.04 -0.01 0.02 0.03 0.02 0.09 0.02

V2 � V1 0.94 1.00 0.84 0.80 0.77 0.47 0.62 0.28

std 1.04 1.29 1.61 1.09 0.86 0.82 2.17 0.65

t-st 3.93 3.38 2.29 3.17 3.87 2.47 1.25 1.84

Single-stage optimization

V2 � V0 1.02 1.03 0.96 0.82 0.84 0.59 0.65 0.49

V1 � V0 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

V2 � V1 0.93 0.94 0.87 0.73 0.76 0.50 0.57 0.40

std 1.19 1.36 1.84 1.16 1.04 1.08 2.04 0.96

t-st 3.41 3.02 2.07 2.77 3.17 2.02 1.21 1.83

values with hedging strategies of Case 0 (unhedged), Case 1 (current policy) and
Case 2 (optimized policy using expected utility maximization with risk aversion
coefficient shown by tables of results), respectively. Values V1 and V2 depend on the
exchange rate model as well and the results are shown in Tables 14.2 and 14.3.

Out-of-sample results for the period 2004–2013 are shown in Table 14.2 (top).
The tests indicate that optimized hedging can provide increase in net profits over
current policy5 by 6–23% – a statistically significant improvement for all except
one model. Taylor rule based model TrN yielding a 14% performance improve-
ment suffers from large variance, and thereby, its improvement lacks statistical
significance. The base case model EqC1.1 yields an average improvement of 19%;
however, judging from Figs. 14.1 and 14.8, EqC1.2 might have been chosen equally
well, in which case the improvement is 23% in profits.6 Improvement due to current
policy over unhedged case is insignificant. Average performance improvement over
current policy for the RW model is outperformed by all other models considered.
Figure 14.9 shows the improvement V2 � V1 over time of optimized hedging for
models EqC1.1, EqC1.2, TrE and RW.

An interesting question is to analyze what additional value does multi-stage
stochastic optimization bring compared to single-stage optimization where hedging
takes place at the root node only. For potential users of hedging models, the single-
stage approach would be much easier to understand and implement. A multi-stage

5The estimate is based on 10% profit margin without hedging.
6Further tests with EqC1.1 indicate that the autoregressive component in (14.1) is more important
than the mean reverting component; however, for the best result both components are needed.
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Table 14.3 Sensitivity analysis of out-of-sample test in 2004–2007. Average results using single-
stage optimization (top), moving risk aversion coefficient up and down by factor 2 (middle), and
doubling the number of branches per node at stage t D 4 resulting in 3840 scenarios. Average
terminal values (Me): V0 is without hedging, V1 is based on current hedging policy, V2 is based on
optimized hedging; std is standard deviation and t-stat the t-statistic of V2 � V1 in 7 tests

Model

EqC1.3 EqC1.2 EqC1.1 EqC1.0 EqC0.9 TrE TrN RW

Multi-stage optimization,  D0.5/Me

V2 � V0 0.88 0.73 0.42 0.55 0.68 0.46 1.49 0.56

V1 � V0 0.16 0.15 0.11 0.14 0.13 0.07 0.24 0.07

V2 � V1 0.72 0.58 0.31 0.41 0.56 0.38 1.25 0.48

std 0.99 0.69 0.68 0.54 0.74 0.73 2.06 0.58

t-st 1.92 2.23 1.22 2.05 1.99 1.40 1.60 2.19

Single-stage optimization,  D0.5/Me

V2 � V0 1.03 0.81 0.41 0.59 0.80 0.66 1.39 0.80

V1 � V0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

V2 � V1 0.78 0.56 0.17 0.35 0.56 0.42 1.15 0.55

std 1.24 0.92 0.71 0.72 0.94 1.09 1.91 0.92

t-st 1.67 1.62 0.63 1.30 1.58 1.02 1.59 1.60

Risk aversion coefficient  D1.0/Me

V2 � V0 0.99 0.87 0.65 0.74 0.85 0.71 1.73 0.77

V1 � V0 0.16 0.15 0.11 0.14 0.13 0.07 0.24 0.07

V2 � V1 0.83 0.72 0.54 0.60 0.72 0.64 1.49 0.70

std 1.12 0.89 0.64 0.81 0.96 1.10 2.28 1.03

t-st 1.95 2.15 2.26 1.98 1.98 1.53 1.73 1.79

Risk aversion coefficient  D0.25/Me

V2 � V0 0.78 0.41 �0.06 0.11 0.33 0.04 1.50 0.07

V1 � V0 0.16 0.15 0.11 0.14 0.13 0.07 0.24 0.07

V2 � V1 0.61 0.26 �0.17 �0.03 0.20 �0.03 1.26 �0.01

std 0.75 0.71 1.39 0.85 0.49 0.30 2.07 0.14

t-st 2.17 0.98 �0.33 �0.08 1.07 �0.30 1.61 �0.13

Increased number of scenarios,  D0.5/Me

V2 � V0 0.85 0.70 0.33 0.52 0.68 0.43 1.52 0.49

V1 � V0 0.16 0.15 0.11 0.14 0.13 0.07 0.24 0.07

V2 � V1 0.69 0.55 0.23 0.38 0.56 0.36 1.28 0.42

std 0.95 0.70 0.78 0.52 0.74 0.68 2.06 0.50

t-st 1.92 2.10 0.77 1.96 1.99 1.39 1.64 2.21
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Fig. 14.8 Monthly $/e exchange rate 2004–2014. Horizontal axis shows months t0 from the
beginning of January 2004

Fig. 14.9 Difference V2 � V1 (Me per annum) in out of sample simulations for 2004–2013.
Terminal value V1 is based on current hedging policy, V2 is based on optimized hedging ( D
0:5/Me). Horizontal axis t0 is months from the beginning of January 2004
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formulation is justified if it produces improvement over single-stage model in out-
of-sample tests. To test this question, we use our multi-stage model and restrict all
hedging activities to take place at the root node. Thereby we obtain a single-stage
formulation. Table 14.2 (bottom) shows that a single-stage SP model, yields for
2004–2013 approximately the same average improvement as multi-stage SP, but the
multi-stage approach is more robust in terms of reduced variance. However, most
of average performance improvements using a single-stage model are statistically
significant.

For sensitivity analysis we study the period 2004–2007 as well. The results are
summarized in Table 14.3. On the top it shows that optimized hedging can provide
increase in net profits by 7–29% over current policy – an improvement which is
statistically significant for half of the models. However, a Taylor rule based model
TrN yielding the highest average performance improvement suffers from the worst
variance, and thereby, it lacks statistical significance. The base case model EqC1.1
of Sect. 14.2.2 yields the lowest average improvement of 7%; however, judging from
Figs. 14.1 and 14.8, EqC1.2 might have been chosen as the base case, in which case
the improvement is 14% in profits.

The results for single-stage formulation are shown next in Table 14.3 (second
block). Again, it shows that a single-stage SP model, yields approximately the same
average improvement as multi-stage SP but the latter is more robust in terms of
reduced variance. None of average performance improvements using a single-stage
model is statistically significant.

Table 14.3 (middle) shows sensitivity analysis concerning the risk aversion
coefficient. An increase in risk aversion coefficient  by factor 2 appears to improve
the hedging performance while a decrease by the same factor does the opposite.

One suspectible issue with our multi-stage model is the potentially significant
approximation errors when presenting the exchange rate and sales uncertainty with
only two scenarios (per node) in the later stage in the scenario tree. For this
reason we tested the case where branches per node were doubled at each node
in stages t D 4, thereby resulting in 3840 scenarios. Otherwise the test follows
the assumptions underlying results in Table 14.3 (bottom) shows that doubling the
number of scenarios does not result in significant changes in hedging performance.

14.6 Conclusions

In this article we employ multi-stage stochastic optimization for choosing favorable
hedging strategies employing standard instruments. The approach is developed for
a European company to aid the CFO to explore alternatives to the current hedging
practice. In this company US$ is the main foreign revenue currency wherefore we
deal with US$ and e only.
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We develop a multi-stage SP (stochastic programming) model employing equi-
librium correction models, Taylor rule based models and a random walk benchmark
model for exchange rate prediction. Risks related to exchange rate and sales forecast
errors are hedged. In numerical tests preferences of alternative hedging strategies
is based on the terminal asset value. To find a favorable hedging strategy, first,
alternative objectives and hedging policy constraints are considered. Numerical
experiments indicate that the current practice of the firm hedging 50% of dollar
revenues using forwards does not provide significant improvement over no hedging
at all. We suggest avoid excessive risk aversion by demonstrating how repeated
hedging activity over months and years reduces risk in average hedging perfor-
mance. Second, we provide out-of-sample tests for 2004–2013. The results show
that optimized hedging can provide increase in net profits over current hedging
practice by about 20%. Average performance improvement over current policy for
the random walk model is outperformed by all other models considered. Out-of-
sample results show that a single-stage SP model yields approximately the same
average improvement as multi-stage SP but the latter is more robust in terms of
reduced variance. Because the single-stage SP model is easier to understand and
implement, the user might begin with a single-stage SP.

The methodology of this study may be extended to cash management in dif-
ferent multinational group structures with central decision making on hedging, for
example, with a holding company organizing cash pooling and risk compensation
system between the different subsidiaries. For multi-national companies, there is a
variety of internal ownership structures serving for different purposes. Extensions
employing alternative hedging policies or aiming to fair taxation of the company are
also possible. While this article deals with operational risk, future research might
focus on long term financial risk, on investments abroad – financed, for instance, is
USD – and on consolidation risk.

Future research tasks might also include further exploration of Taylor rule
like models, which include macro indicators as predictors for exchange rates
development. Of course, multi-currency hedging would be a subject of interest. In
the spirit of ongoing popular discussion on the use of “big data”, we might consider
use of the vastly increasing supply of digital data, both numeric and non-numeric.

Finally, we raise an important question: Can SP help the CFO? In view of our
out-of-sample tests, the answer is likely to be positive. However, there are several
important issues to be considered prior to adoption of SP in practice. Some of them
are as follows: First, is there an acceptable exchange rate model? Second, what is
an acceptable level of speculation both from the point of view of the firm and the
CFO. Third, how communicate the SP approach to the CFO, the CEO and the board
of the firm?
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Appendix: Hedging Results with Exchange Rate Model EqC
and TrE

Table 14.4 Expected levels of contracts and assets in Cases 0–2. For contracts in (M$), sts and bts

are forwards to sell and buy; pxts and cxts are put and call options. For assets, et is cash (Me), dt

is cash (M$) and wt is the total cash value (Me). Contracts made are shown by month 0; 1; 2; 3; 6
and contracts maturing are shown by month 1; 2; 3; 6; 12. Assets are shown initially and at the end
of months 1; 2; 3; 6; 12

Case Month ! 0 1 2 3 6 12 1 2 3 6 12

Variable # Contract and asset level Contract maturing

EqC

0 E.wt/ 10.8 10.7 11.5 13.1 17.6 27.4

1 E.sts/ 4.5 0.0 -0.0 1.1 1.6 1.2 1.1 2.2 1.1 1.6

E.pxts/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

E.et/ 10.0 10.8 11.5 13.1 17.7 27.5

E.wt/ 10.8 10.8 11.5 13.1 17.7 27.5

2 E.sts/ 10.0 0.2 0.6 1.7 1.9 0.0 0.0 0.0 5.6 8.8

E.bts/ 0.0 0.7 2.1 3.8 2.7 0.0 0.0 0.0 3.2 6.1

E.pxts/ 13.6 0.0 0.4 2.0 3.0 2.3 2.3 4.5 3.3 6.6

E.cxts/ 0.0 1.6 4.1 6.4 4.9 0.0 0.5 3.7 4.1 8.8

E.et/ 8.9 8.6 8.6 10.1 14.8 28.4

E.dt/ 0.0 1.4 2.4 2.8 2.8 0.0

E.wt/ 9.9 9.9 10.8 12.7 17.5 28.4

TrE

0 E.wt/ 10.8 10.8 11.6 13.2 17.6 26.8

1 E.sts/ 1.2 2.7 0.7 2.6 2.7 1.2 1.1 2.2 2.6 2.7

E.pxts/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

E.et/ 10.0 10.8 11.6 13.2 17.6 26.9

E.wt/ 10.8 10.8 11.6 13.2 17.6 26.9

2 E.sts/ 5.0 6.4 3.8 3.9 2.3 0.0 0.0 0.0 5.3 16.1

E.bts/ 0.0 0.0 0.1 2.1 1.9 0.0 0.0 0.0 1.3 2.8

E.pxts/ 5.4 2.3 1.6 2.5 2.0 0.0 2.3 4.4 3.0 3.9

E.cxts/ 0.0 0.5 1.4 3.6 3.6 0.0 0.5 1.3 2.5 4.9

E.et/ 9.6 9.3 9.4 11.1 15.5 27.5

E.dt/ 0.0 1.0 1.9 1.9 2.1 0.0

E.wt/ 10.4 10.3 11.1 13.0 17.5 27.5
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