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PREFACE

This book deals with the exploration and optimization of response surfaces. This is a
problem faced by experimenters in many technical fields, where, in general, the response
variable of interest is y and there is a set of predictor variables x1, x2,… , xk. For example,
y might be the viscosity of a polymer and x1, x2, and x3 might be the process variables
reaction time, reactor temperature, and the catalyst feed rate in the process. In some systems
the nature of the relationship between y and the x’s might be known “exactly,” based on
the underlying engineering, chemical, or physical principles. Then we could write a model
of the form y= g(x1, x2,… , xk)+ 𝜀, where g is a known (often nonlinear) function and 𝜀
represents the “error” in the system. This type of relationship is often called a mechanistic
model. We consider the more common situation where the underlying mechanism is not
fully understood, and the experimenter must approximate the unknown function g with an
appropriate empirical model y= f(x1, x2,… , xk)+ 𝜀. Usually the function f is a low-order
polynomial, typically either a first-order or second-order polynomial. This empirical model
is called a response surface model.

Identifying and fitting an appropriate response surface model from experimental data
requires some knowledge of statistical experimental design fundamentals, regression mod-
eling techniques, and elementary optimization methods. This book integrates all three of
these topics into what has been popularly called response surface methodology (RSM). We
assume that the reader has some previous exposure to statistical methods and matrix alge-
bra. Formal coursework in basic principles of experimental design and regression analysis
would be helpful, but are not essential, because the important elements of these topics are
presented early in the text. We have used this book in a graduate-level course on RSM for
statisticians, engineers, and chemical/physical scientists. We have also used it in industrial
short courses and seminars for individuals with a wide variety of technical backgrounds.

This fourth edition is a substantial revision of the book. We have rewritten many sections
to incorporate new topics and material, ideas, and examples and to more fully explain some
topics that were only briefly mentioned in previous editions and added a new chapter. We
have also continued to integrate the computer tightly into the presentation, replying on JMP

xiii



xiv PREFACE

and Design-Expert for much of the computing, but also continuing to employ SAS for a
few applications.

Chapters 1 through 4 contain the preliminary material essential to studying RSM. Chapter
1 is an introduction to the general field of RSM, describing typical applications such as (a)
finding the levels of process variables that optimize a response of interest or (b) discovering
what levels of these process variables result in a product satisfying certain requirements or
specifications on responses such as yield, molecular weight, purity, or viscosity. Chapter
2 is a summary of regression methods useful in response surface work, focusing on the
basic ideas of least squares model fitting, diagnostic checking, and inference for the linear
regression model. Chapters 3 and 4 describe two-level factorial and fractional factorial
designs. These designs are essential for factor screening or identifying the correct set of
process variables to use in the RSM study. They are also basic building blocks for many
of the response surface designs discussed later in the text. New topics in these chapters
include additional information on analysis of unreplicated design and the use of nonregular
fractional factorial designs in factor screening experiments.

Chapter 5 presents the method of steepest ascent, a simple but powerful optimization
procedure used at the early stages of RSM to move the process from a region of rel-
atively poor performance to one of greater potential. Chapter 6 introduces the analysis
and optimization of a second-order response surface model. Both graphical and numerical
techniques are presented. A new chapter, Chapter 7, describes techniques for the simul-
taneous optimization of several responses, a common problem in the application of RSM
when experimenters want to extract information about several different characteristics of
the process or product.

Chapters 8 and 9 present detailed information on the choice of experimental designs
for fitting response surface models. Chapter 8 considers suitable metrics for evaluating
the quality of estimation and prediction of a design and focuses on standard designs,
including the central composite and Box–Behnken designs, and the important topic of
blocking a response surface design. A new topic in this chapter is the important new class
of designs called Definitive Screening Designs. Chapter 9 covers small response surface
designs, design optimality criteria, and methods for evaluation of the prediction properties of
response surface models constructed from various designs. We focus on variance dispersion
graphs and fraction of design space plots, which are very important ways to summarize
prediction properties. The section on computer generated designs has been expanded to
describe some of the common algorithms used to generate designs as well as how to
incorporate qualitative factors and multiple design criteria.

Chapter 10 contains more advanced RSM topics, including the use of mean square error
as a design criterion, the effect of errors in controllable variables, split-plot type designs
in a response surface setting, and the use of generalized linear models in the analysis
of response surface experiments. The section on design and analysis of experiments for
computer models has been updated to reflect new developments in this growing area.
Chapter 11 describes how the problem of robust parameter design originally proposed by
Taguchi can be efficiently solved in the RSM framework. We show how RSM not only
makes the original problem posed by Taguchi easier to solve, but also provides much more
information to the analyst about process or system performance. This chapter also contains
much information on robust parameter design and process robustness studies. Chapters 12
and 13 present techniques for designing and analyzing experiments that involve mixtures.
A mixture experiment is a special type of response surface experiment in which the design
factors are the components or ingredients of a mixture, and the response depends on the
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proportions of the ingredients that are present. Some new design techniques are introduced
in these chapters.

We have provided expanded end-of-chapter problems and an updated reference section.
The previous three editions of the text were written to emphasize methods that are useful
in industry and that we have found useful in our own consulting experience. We have
continued that applied focus in this new edition, though much new material has been added.
We develop enough of the underlying theory to allow the reader to gain an understanding
of the assumptions and conditions necessary to successfully apply RSM.

We are grateful to many individuals that have contributed meaningfully to this book. In
particular, Dr. Bradley Jones, Mr. Pat Whitcomb, Dr. Geoff Vining, Dr. Soren Bisgaard,
Dr. Connie Borror, Dr. Rachel Silvistrini, Dr. Scott Kowalski, Dr. Dennis Lin, Dr. George
Runger, Dr. Enrique Del Castillo, Dr. Lu Lu and Dr. Jessica Chapman made many useful
suggestions. Dr. Matt Carlyle and Dr. Enrique Del Castillo also provided some figures that
were most helpful. We also thank the many classes of graduate students that have studied
from the book, as well as the instructors that have used the book. They have made many
helpful comments and suggestions to improve the clarity of the presentation. We have tried
to incorporate many of their suggestions. We also thank John Wiley & Sons for permission
to use and adapt copyrighted material.

Blacksburg, Virginia Raymond H. Myers
Tempe, Arizona Douglas C. Montgomery
Los Alamos, New Mexico Christine M. Anderson-Cook





1
INTRODUCTION

1.1 RESPONSE SURFACE METHODOLOGY

Response surface methodology (RSM) is a collection of statistical and mathematical tech-
niques useful for developing, improving, and optimizing processes. It also has important
applications in the design, development, and formulation of new products, as well as in the
improvement of existing product designs.

The most extensive applications of RSM are in the industrial world, particularly in
situations where several input variables potentially influence performance measures or
quality characteristics of the product or process. These performance measures or quality
characteristics are called the response. They are typically measured on a continuous scale,
although attribute responses, ranks, and sensory responses are not unusual. Most real-
world applications of RSM will involve more than one response. The input variables are
sometimes called independent variables, and they are subject to the control of the engineer
or scientist, at least for purposes of a test or an experiment.

Figure 1.1 shows graphically the relationship between the response variable yield (y) in a
chemical process and the two process variables (or independent variables) reaction time (𝜉1)
and reaction temperature (𝜉2). Note that for each value of 𝜉1 and 𝜉2 there is a corresponding
value of yield y and that we may view these values of the response yield as a surface lying
above the time–temperature plane, as in Fig. 1.1a. It is this graphical perspective of the
problem environment that has led to the term response surface methodology. It is also
convenient to view the response surface in the two-dimensional time–temperature plane,
as in Fig. 1.1b. In this presentation we are looking down at the time–temperature plane and
connecting all points that have the same yield to produce contour lines of constant response.
This type of display is called a contour plot.

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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2 INTRODUCTION

Figure 1.1 (a) A theoretical response surface showing the relationship between yield of a chemical
process and the process variables reaction time (𝜉1) and reaction temperature (𝜉2). (b) A contour plot
of the theoretical response surface.

Clearly, if we could easily construct the graphical displays in Fig. 1.1, optimization of
this process would be very straightforward. By inspection of the plot, we note that yield is
maximized in the vicinity of time 𝜉1 = 4 hr and temperature 𝜉2 = 525◦C. Unfortunately,
in most practical situations, the true response function in Fig. 1.1 is unknown. The field
of response surface methodology consists of the experimental strategies for exploring
the space of the process or independent variables (here the variables 𝜉1 and 𝜉2), empirical
statistical modeling to develop an appropriate approximating relationship between the yield
and the process variables, and optimization methods for finding the levels or values of the
process variables 𝜉1 and 𝜉2 that produce desirable values of the responses (in this case that
maximize yield).

1.1.1 Approximating Response Functions

In general, suppose that the scientist or engineer (whom we will refer to as the experi-
menter) is concerned with a product, process, or system involving a response y that depends
on the controllable input variables 𝜉1, 𝜉2,… , 𝜉k. These input variables are also sometimes
called factors, independent variables, or process variables. The actual relationship can be
written

y = f (𝜉1, 𝜉2,… , 𝜉k) + 𝜀 (1.1)

where the form of the true response function f is unknown and perhaps very complicated, and
𝜀 is a term that represents other sources of variability not accounted for in f. Thus 𝜀 includes
effects such as measurement error on the response, other sources of variation that are
inherent in the process or system (background noise, or common/special cause variation
in the language of statistical process control), the effect of other (possibly unknown)
variables, and so on. We will treat 𝜀 as a statistical error, often assuming it to have a
normal distribution with mean zero and variance 𝜎 2. If the mean of 𝜀 is zero, then

E(y) ≡ 𝜂 = E[f (𝜉1, 𝜉2,… , 𝜉k)] + E(𝜀)
= f (𝜉1, 𝜉2,… , 𝜉k)

(1.2)
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Figure 1.2 (a) Response surface for the first-order model 𝜂 = 50 + 8x1 + 3x2. (b) Contour plot for
the first-order model.

The variables 𝜉1, 𝜉2,… , 𝜉k in Equation 1.2 are usually called the natural variables,
because they are expressed in the natural units of measurement, such as degrees Celsius
(◦C), pounds per square inch (psi), or grams per liter for concentration. In much RSM work
it is convenient to transform the natural variables to coded variables x1, x2,… , xk, which
are usually defined to be dimensionless with mean zero and the same spread or standard
deviation. In terms of the coded variables, the true response function (1.2) is now written as

𝜂 = f (x1, x2,… , xk) (1.3)

Because the form of the true response function f is unknown, we must approximate it.
In fact, successful use of RSM is critically dependent upon the experimenter’s ability to
develop a suitable approximation for f. Usually, a low-order polynomial in some relatively
small region of the independent variable space is appropriate. In many cases, either a first-
order or a second-order model is used. For the case of two independent variables, the
first-order model in terms of the coded variables is

𝜂 = 𝛽0 + 𝛽1x1 + 𝛽2x2 (1.4)

Figure 1.2 shows the three-dimensional response surface and the two-dimensional con-
tour plot for a particular case of the first-order model, namely,

𝜂 = 50 + 8x1 + 3x2

In three dimensions, the response surface for y is a plane lying above the x1, x2 space. The
contour plot shows that the first-order model can be represented as parallel straight lines of
constant response in the x1, x2 plane.

The first-order model is likely to be appropriate when the experimenter is interested in
approximating the true response surface over a relatively small region of the independent
variable space in a location where there is little curvature in f. For example, consider a small
region around the point A in Fig. 1.1b; the first-order model would likely be appropriate
here.
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Figure 1.3 (a) Response surface for the first-order model with interaction 𝜂 = 50 + 8x1 + 3x2 −
4x1x2. (b) Contour plot for the first-order model with interaction.

The form of the first-order model in Equation 1.4 is sometimes called a main effects
model, because it includes only the main effects of the two variables x1 and x2. If there is
an interaction between these variables, it can be added to the model easily as follows:

𝜂 = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 (1.5)

This is the first-order model with interaction. Figure 1.3 shows the three-dimensional
response surface and the contour plot for the special case

𝜂 = 50 + 8x1 + 3x2 − 4x1x2

Notice that adding the interaction term −4x1x2 introduces curvature into the response
function. This leads to different rates of change of the response as x1 is changed for
different fixed values of x2. Similarly, the rate of change in y across x2 varies for different
fixed values of x1.

Often the curvature in the true response surface is strong enough that the first-order
model (even with the interaction term included) is inadequate. A second-order model
will likely be required in these situations. For the case of two variables, the second-order
model is

𝜂 = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽11x2
1 + 𝛽22x2

2 + 𝛽12x1x2 (1.6)

This model would likely be useful as an approximation to the true response surface in a
relatively small region around the point B in Fig. 1.1b, where there is substantial curvature
in the true response function f.

Figure 1.4 presents the response surface and contour plot for the special case of the
second-order model

𝜂 = 50 + 8x1 + 3x2 − 7x2
11 − 3x2

22 − 4x1x2

Notice the mound-shaped response surface and elliptical contours generated by this model.
Such a response surface could arise in approximating a response such as yield, where we
would expect to be operating near a maximum point on the surface.
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Figure 1.4 (a) Response surface for the second-order model 𝜂 = 50 + 8x1 + 3x2 − 7x1
2 − 3x2

2 −
4x1x2. (b) Contour plot for the second-order model.

The second-order model is widely used in response surface methodology for several
reasons. Among these are the following:

1. The second-order model is very flexible. It can take on a wide variety of functional
forms, so it will often work well as an approximation to the true response surface.
Figure 1.5 shows several different response surfaces and contour plots that can be
generated by a second-order model.

Figure 1.5 Some examples of types of surfaces defined by the second-order model in two variables
x1 and x2. (Adapted with permission from Empirical Model Building and Response Surfaces, G. E.
P. Box and N. R. Draper, John Wiley & Sons, New York, 1987.)
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2. It is easy to estimate the parameters (the 𝛽’s) in the second-order model. The method
of least squares, which is presented in Chapter 2, can be used for this purpose.

3. There is considerable practical experience indicating that second-order models work
well in solving real response surface problems.

In general, the first-order model is

𝜂 = 𝛽0 + 𝛽1x1 + 𝛽2x2 +⋯ + 𝛽kxk (1.7)

and the second-order model is

𝜂 = 𝛽0 +
k∑

j=1

𝛽jxj +
k∑

j=1

𝛽jjx
2
j +

∑ k∑
i<j=2

𝛽ijxixj (1.8)

In some situations, approximating polynomials of order higher than two are used. The
general motivation for a polynomial approximation for the true response function f is
based on the Taylor series expansion around the point x10, x20,… , xk0. For example, the
first-order model is developed from the first-order Taylor series expansion

f ≅ f (x10, x20,… , xk0) + 𝜕f
𝜕x1

||||x=x0

(x1 − x10)

+ 𝜕f
𝜕x2

||||x=x0

(x2 − x20) +⋯ + 𝜕f
𝜕xk

||||x=x0

(xk − xk0)
(1.9)

where x refers to the vector of independent variables and x0 is the vector of inde-
pendent variables at the specific point x10, x20,… , xk0. In Equation 1.9 we have only
included the first-order terms in the expansion, so if we let 𝛽0 = f(x10, x20,… , xk0),
𝛽1 = (𝜕f∕𝜕x1)||x=x0

,… , 𝛽k = (𝜕f∕𝜕xk)||x=x0
, we have the first-order approximating model

in Equation 1.7. If we were to include second-order terms in Equation 1.9, this would lead
to the second-order approximating model in Equation 1.8.

Finally, note that there is a close connection between RSM and linear regression
analysis. For example, consider the model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 +⋯ + 𝛽kxk + 𝜀

The 𝛽’s are a set of unknown parameters. To estimate the values of these parameters,
we must collect data on the system we are studying. Regression analysis is a branch of
statistical model building that uses these data to estimate the 𝛽’s. Because, in general,
polynomial models are linear functions of the unknown 𝛽’s, we refer to the technique
as linear regression analysis. We will also see that it is very important to plan the data
collection phase of a response surface study carefully. In fact, special types of experimental
designs, called response surface designs, are valuable in this regard. A substantial part of
this book is devoted to response surface designs. Note that analyses and designs need to be
carefully matched. If we are planning to analyze data from our planned experiment using
a first order model, then the design that we select should be well suited for this analysis.
Similarly, if we anticipate curvature similar to what can be modeled with a second-order
model, then a different design should be selected.
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Good response surface designs have been constructed to perform well based on a par-
ticular assumed model, but also have been structured so that they are able to evaluate the
assumptions of the model being analyzed to determine if the experimenter’s initial impres-
sions of the system under study match the true underlying relationship which produced the
data to be analyzed. Hence the experimenter should think carefully about the goals of a
particular experiment and what the anticipated analysis will involve before selecting the
design for data collection.

1.1.2 The Sequential Nature of RSM

Most applications of RSM are sequential in nature. That is, at first some ideas are generated
concerning which factors or variables are likely to be important in the response surface
study. This usually leads to an experiment designed to investigate these factors with a view
toward verifying the role of the factors in influencing the response and eliminating the
unimportant ones. This type of experiment is usually called a screening experiment. Often
at the outset of a response surface study there is a rather long list of variables that could
be important in explaining the response. The objective of factor screening is to reduce this
list of candidate variables to a relative few so that subsequent experiments will be more
efficient and require fewer runs or tests. We refer to a screening experiment as phase zero of
a response surface study. Since interest in a screening experiment lies in understanding the
gross behavior of the system and how factors are related to the response, a first-order model
is commonly selected. The class of response surface designs which are used for screening
experiments are well suited for gaining understanding about the main effects from different
independent variables and comparing their relative contributions to changes in the response
values. Since this represents an early stage in the planned sequence of experiments, the
goal is to determine which of the factors are more influential on the response while using as
small a fraction of the total experimental budget as possible. You should never undertake a
response surface analysis until a screening experiment has been performed to identify the
important factors.

Once the important independent variables are identified, phase one of the response
surface study begins. In this phase, the experimenter’s objective is to determine where the
collected data lie relative to an ideal response. Often, there are two possible outcomes with
the current levels or settings of the independent variables resulting in a value of the response
that is near the optimum (such as the point B in Fig. 1.1b), or the process is operating in
some other region that is (possibly) remote from the optimum (such as the point A in
Fig. 1.1b). If the current settings or levels of the independent variables are not consistent
with optimum performance, then the experimenter must determine a set of adjustments to
the process variables that will move the process toward the optimum. This phase of response
surface methodology makes considerable use of the first-order model and an optimization
technique called the method of steepest ascent. These techniques will be discussed and
illustrated in Chapter 5.

Phase two of a response surface study begins when the process is near the optimum.
At this point the experimenter usually wants a model that will accurately approximate
the true response function within a relatively small region around the optimum. Because
the true response surface usually exhibits curvature near the optimum (refer to Fig. 1.1),
a second-order model (or very occasionally some higher-order polynomial) will be used.
Once an appropriate approximating model has been obtained, this model may be analyzed
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to determine the optimum conditions for the process. Chapter 6 will present techniques for
the analysis of the second-order model and the determination of optimum conditions.

Response surface designs for modeling the response near the optimum are again selected
to match the anticipated analysis. Often, the plan is to characterize the relationship between
the response and the key independent variables using the second-order model of the form
in Equation 1.8. Designs are constructed to be able to estimate the response for input
factor combinations around the expected optimum, where curvature in the relationship is
common. Since this stage of experimentation is focused on determining a best set of input
values for which the process to operate, a generous portion of the experimental budget is
generally reserved for this portion of the process.

A final stage of experimentation, which generally does not require sophisticated response
surface designs or a large portion of the experimental budget, is a confirmatory experi-
ment. This data collection is generally simple and small, but is designed to confirm that
the identified optimum that was obtained in phase two can be achieved by setting the
independent variables at the designated settings.

This sequential experimental process is usually performed within some region of the
independent variable space called the operability region. For the chemical process illus-
trated in Fig. 1.1, the operability region is 0 hr < 𝜉1 ≤ 7 hr and 100◦C ≤ 𝜉2 ≤ 800◦C.
Suppose we are currently operating at the levels 𝜉1 = 2.5 hr and 𝜉2 = 500◦C, shown as
point A in Fig. 1.6. Now it is unlikely that we would want to explore the entire region of
operability with a single experiment. Instead, we usually define a smaller region of interest
or region of experimentation around the point A within the larger region of operability.
Typically, this region of experimentation is either a cuboidal region, as shown around the
point A in Fig. 1.6, or a spherical region, as shown around point B. The choice of response
surface design matches the specified region of experimentation.

Figure 1.6 The region of operability and the region of experimentation.
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The sequential nature of response surface methodology allows the experimenter to learn
about the process or system under study as the investigation proceeds. This ensures that
over the course of the RSM application the experimenter will learn the answers to questions
such as (1) the location of the region of the optimum, (2) the type of approximating function
required, (3) the proper choice of experimental designs, (4) how much replication is neces-
sary, and (5) whether or not transformations on the responses or any of the process variables
are required. Because the nature of a response surface study has multiple stages with dif-
ferent goals, there are several improtant aspects that need to be managed throughout the
process. First, many studies have budget constraints that will dicate how much and what data
can be collected. It is important to plan for all of the stages of the study and to allow for ade-
quate resources to be available to effectively answer the important questions in each phase.

Second, since the knowledge gained in early phases of the study help to determine
what subsequent experiments will study, it is important to plan how the different phases
will connect to each other, and what information can be leveraged from early phases.
Thirdly, the selection of a model for the analysis of the data from each phase is based on
current understanding of the underlying process. It is important to think of the sequence of
experiments as a mechanism for not having to make too many assumptions at any stage,
Running a large complicated experiment that has many untested assumptions can lead to
costly errors and wasting of resources. Hence, a series of smaller experiments can verify
some assumptions early in the sequence and can allow the experimenter to proceed in later
stages with greater confidence.

Lastly, we again mention the connection between the choice of experiment and the
planned analysis. Before jumping in to collect data, the goals of each phase should be
clearly defined, and the nature of the response surface design selected should reflect the
goals and the planned analysis. Since there are often surprises when collecting and analyzing
data, it is helpful to consider what could go wrong with the experiment and to have a plan
for how to deal with some of these surprises. A substantial portion of this book—Chapters
3, 4, 8, and 9—is devoted to designed experiments useful in RSM.

1.1.3 Objectives and Typical Applications of RSM

Response surface methodology is useful in the solution of many types of industrial prob-
lems. Generally, these problems fall into three categories:

1. Mapping a Response Surface over a Particular Region of Interest. Consider the
chemical process in Fig. 1.1b. Normally, this process would operate at a particular
setting of reaction time and reaction temperature. However, some changes to these
normal operating levels might occasionally be necessary, perhaps to produce a prod-
uct that meets other specific customer requirements. If the true unknown response
function has been approximated over a region around the current operating condi-
tions with a suitable fitted response surface (say a second-order surface), then the
process engineer can predict in advance the changes in yield that will result from any
readjustments to the input variables, namely, time and temperature.

2. Optimization of the Response. In the industrial world, a very important problem is
determining the conditions that optimize the process. In the chemical process of
Fig. 1.1b, this implies determining the levels of time and temperature that result in
maximum yield. An RSM study that began near point A in Fig. 1.1b would eventually
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lead the experimenter to the region near point B. A second-order model could then be
used to approximate the yield response in a narrow region around point B, and from
examination of this approximating response surface the optimum levels or condition
for time and temperature could be chosen.

3. Selection of Operating Conditions to Achieve Specifications or Customer Require-
ments. In most response surface problems there are several responses that must be
simultaneously considered. For example, in the chemical process of Fig. 1.1, suppose
that in addition to yield, there are two other responses: cost and concentration. We
would like to maintain yield above 70%, while simultaneously keeping the cost below
$34/pound; however, the customer has imposed specifications for concentration such
that this important physical property must be 65±3 g/liter.

One way that we could solve this problem is to obtain response surfaces for all three
responses—yield, cost, and concentration—and then superimpose the contours for these
responses in the time–temperature plane, as illustrated in Fig. 1.7. In this figure we have
shown the contours for yield = 70%, cost = $34/pound, concentration = 62 g/liter, and con-
centration = 68 g/liter. The unshaded region in this figure represents the region containing
operating conditions that simultaneously satisfy all requirements on the process.

In practice, complex process optimization problems such as this can often be solved
by superimposing appropriate response surface contours. However, it is not unusual to
encounter problems with more than two process variables and more complex response
requirements to satisfy. In such problems, other optimization methods that are more effective
than overlaying contour plots will be necessary, and can often not only identify a region
which satisfies the minimal customer requirements, but also find an optimal combination
of input variables to achieve ideal performance. We will discuss methodology for solving
these types of problems in Chapter 7.

Figure 1.7 The unshaded region showing the conditions for which yield ≥70%, cost ≤$34/pound,
and 62 g/liter ≤ concentration ≤ 68 g/liter.
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1.1.4 RSM and the Philosophy of Quality Improvement

During the last few decades, industrial organizations in the United States and Europe
have become keenly interested in quality and process improvement. Statistical methods,
including statistical process control (SPC) and design of experiments, play a key role in
this activity. Quality improvement is most effective when it occurs early in the product and
process development cycle. It is very difficult, expensive, and inefficient to manufacture
a poorly designed product. Industries such as semiconductors and electronics, aerospace,
automotive, biotechnology and pharmaceuticals, medical devices, chemical, and process
industries are all examples where experimental design methodology has resulted in shorter
design and development time for new products, as well as products that are easier to
manufacture, have higher reliability, have enhanced field performance, and meet or exceed
customer requirements.

RSM is an important branch of experimental design in this regard. RSM is a critical
technology in developing new processes, optimizing their performance, and improving the
design and/or formulation of new products. It is often an important concurrent engineering
tool, in that product design, process development, quality, manufacturing engineering,
and operations personnel often work together in a team environment to apply RSM. The
objectives of quality improvement, including reduction of variability and improved product
and process performance, can often be accomplished directly using RSM.

1.2 PRODUCT DESIGN AND FORMULATION (MIXTURE PROBLEMS)

Many product design and development activities involve formulation problems, in which
two or more ingredients are mixed together. For example, suppose we are developing a
new household cleaning product. This product is formulated by mixing several chemical
surfactants together. The product engineer or scientist would like to find an appropriate
blend of the ingredients so that the grease-cutting capability of the cleaner is good, and so
that it generates an appropriate level of foam when in use. In this situation the response
variables—namely, grease-cutting ability and amount of foam—depend on the percentages
or proportions of the individual chemical surfactants (the ingredients) that are present in
the product formulation.

There are many industrial problems where the response variables of interest in the
product are a function of the proportions of the different ingredients used in its formulation.
This is a special type of response surface problem called a mixture problem.

While we traditionally think of mixture problems in the product design or formula-
tion environment, they occur in many other settings. Consider plasma etching of silicon
wafers, a common manufacturing process in the semiconductor industry. Etching is usually
accomplished by introducing a blend of gases inside a chamber containing the wafers. The
measured responses include the etch rate, the uniformity of the etch, and the selectivity
(a measure of the relative etch rates of the different materials on the wafer). All of these
responses are a function of the proportions of the different ingredients blended together in
the etching chamber.

There are special response surface design techniques and model-building methods for
mixture problems. These techniques are discussed in Chapters 12 and 13.
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1.3 ROBUST DESIGN AND PROCESS ROBUSTNESS STUDIES

It is well known that variation in key performance characteristics can result in poor product
and process quality. During the 1980s, considerable attention was given to this problem, and
methodology was developed for using experimental design, specifically for the following:

1. For designing products or processes so that they are robust to environment conditions.

2. For designing or developing products so that they are robust to component variation.

3. For minimizing variability in the output response of a product around a target value.

By robust, we mean that the product or process performs consistently on target and is
relatively insensitive to factors that are difficult to control.

Professor Genichi Taguchi used the term robust parameter design (or RPD) to describe
his approach to this important class of industrial problems. Essentially, robust parameter
design methodology strives to reduce product or process variation by choosing levels of
controllable factors (or parameters) that make the system insensitive (or robust) to changes
in a set of uncontrollable factors that represent most of the sources of variability. Taguchi
referred to these uncontrollable factors as noise factors. These are the environmental factors
such as humidity levels, changes in raw material properties, how the customer will use the
product, product aging, and component variability referred to in 1 and 2 above. We usually
assume that these noise factors are uncontrollable in the field, but can be controlled during
product or process development for purposes of a designed experiment.

Considerable attention has been focused on the methodology advocated by Taguchi,
and a number of flaws in his approach have been discovered. However, there are many
useful concepts in his philosophy, and it is relatively easy to incorporate these within the
framework of response surface methodology. In Chapter 11 we will present the response
surface approach to robust design and process robustness studies.

1.4 USEFUL REFERENCES ON RSM

The origin of RSM is the seminal paper by Box and Wilson (1951). They also describe the
application of RSM to chemical processes. This paper had a profound impact on industrial
applications of experimental design, and was the motivation of much of the research in the
field. Many of the key research and applications papers are cited in this book.

There have also been five review papers published on RSM: Hill and Hunter (1966),
Mead and Pike (1975), Myers et al. (1989), Myers et al. (2004) and Anderson-Cook et al.
(2009a). The paper by Myers (1999) on future directions in RSM offers a view of research
needs in the field. There are also two other full-length books on the subject: Box and Draper
(1987) and Khuri and Cornell (1996). A second edition of the Box and Draper book was
published in 2007 with a slightly different title [Box and Draper (2007)]. An edited volume
by Khuri (2006) considers some specialized RSM topics. The monograph by Myers (1976)
was the first book devoted exclusively to RSM.
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BUILDING EMPIRICAL MODELS

2.1 LINEAR REGRESSION MODELS

The practical application of response surface methodology (RSM) requires developing an
approximating model for the true response surface. The underlying true response surface
is typically driven by some unknown physical mechanism. The approximating model is
based on observed data from the process or system and is an empirical model. Multiple
regression is a collection of statistical techniques useful for building the types of empirical
models required in RSM.

As an example, suppose that we wish to develop an empirical model relating the effective
life of a cutting tool to the cutting speed and the tool angle. A first-order response surface
model that might describe this relationship is

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝜀 (2.1)

where y represents the tool life, x1 represents the cutting speed, and x2 represents the tool
angle. This is a multiple linear regression model with two independent variables. We
often call the independent variables predictor variables or regressors. The term “linear”
is used because Equation 2.1 is a linear function of the unknown parameters 𝛽0, 𝛽1, and 𝛽2.
The model describes a plane in the two-dimensional x1, x2 space. The parameter 𝛽0 fixes
the intercept of the plane. We sometimes call 𝛽1 and 𝛽2 partial regression coefficients,
because 𝛽1 measures the expected change in y per unit change in x1 when x2 is held constant,
and 𝛽2 measures the expected change in y per unit change in x2 when x1 is held constant.

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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In general, the response variable y may be related to k regressor variables. The model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 +⋯ + 𝛽kxk + 𝜀 (2.2)

is called a multiple linear regression model with k regressor variables. The parameters
𝛽 j, j= 0, 1,… , k, are called the regression coefficients. This model describes a hyperplane
in the k-dimensional space of the regressor variables {xj}. The parameter 𝛽 j represents the
expected change in response y per unit change in xj when all the remaining independent
variables xi (i ≠ j) are held constant.

Models that are more complex in appearance than Equation 2.2 may often still be ana-
lyzed by multiple linear regression techniques. For example, consider adding an interaction
term to the first-order model in two variables, say

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝜀 (2.3)

If we let x3 = x1x2 and 𝛽3 = 𝛽12, then Equation 2.3 can be written as

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝜀 (2.4)

which is a standard multiple linear regression model with three regressors. As another
example, consider the second-order response surface model in two variables:

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽11x2
1 + 𝛽22x2

2 + 𝛽12x1x2 + 𝜀 (2.5)

If we let x3 = x1
2, x4 = x2

2, x5 = x1x2, 𝛽3 = 𝛽11, 𝛽4 = 𝛽22, and 𝛽5 = 𝛽12, then this becomes

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽4x4 + 𝛽5x5 + 𝜀 (2.6)

which is a linear regression model. In general, any regression model that is linear in
the parameters (the 𝛽-values) is a linear regression model, regardless of the shape of the
response surface that it generates.

In this chapter we will present and illustrate methods for estimating the parameters in
multiple linear regression models. This is often called model fitting. We will also discuss
methods for testing hypotheses and constructing confidence intervals for these models, as
well as for checking the adequacy of the model fit. Our focus is primarily on those aspects
of regression analysis useful in RSM. For more complete presentations of regression, refer
to Montgomery, Peck, and Vining (2012) and Myers (1990).

2.2 ESTIMATION OF THE PARAMETERS IN LINEAR
REGRESSION MODELS

The method of least squares is typically used to estimate the regression coefficients in a
multiple linear regression model. Suppose that n> k observations on the response variable
are available, say y1, y2,… , yn. Along with each observed response yi, we will have an
observation on each regressor variable, and let xij denote the ith observation or level of
variable xj. Table 2.1 shows the data layout. We assume that the error term 𝜀 in the model
has E(𝜀)= 0 and Var(𝜀)= 𝜎2 and that the {𝜀i} are uncorrelated random variables.
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TABLE 2.1 Data for Multiple Linear Regression

y x1 x2 … xk

y1 x11 x12 … x1k

y2 x21 x22 … x2k

⋮ ⋮ ⋮ ⋮
yn xn1 xn2 … xnk

We may write the model equation (Eq. 2.2) in terms of the observations in Table 2.1 as

yi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 +⋯ + 𝛽kxik + 𝜀i

= 𝛽0 +
k∑

j=1

𝛽jxij + 𝜀i, i = 1, 2,… , n (2.7)

The method of least squares chooses the 𝛽’s in Equation 2.7 so that the sum of the squares
of the errors, 𝜀i, are minimized. The least squares function is

L =
n∑

i=1

𝜀2
i

=
n∑

i=1

(
yi − 𝛽0 −

k∑
j=1

𝛽jxij

)2

(2.8)

The function L is to be minimized with respect to 𝛽0, 𝛽1,… , 𝛽k. The least squares
estimators, say b0, b1,… , bk, must satisfy

𝜕L
𝜕𝛽0

||||b0, b1,…, bk

= −2
n∑

i=1

(
yi − b0 −

k∑
j=1

bjxij

)
= 0 (2.9a)

and

𝜕L
𝜕𝛽j

|||||b0, b1,…, bk

= −2
n∑

i=1

(
yi − b0 −

k∑
j=1

bjxij

)
xij = 0, (2.9b)

where j= 1, 2, … , k. Simplifying Equation 2.9, we obtain

nb0 + b1

n∑
i=1

xi1 + b2

n∑
i=1

xi2 +⋯ + bk

n∑
i=1

xik =
n∑

i=1

yi

b0

n∑
i=1

xi1 + b1

n∑
i=1

x2
i1 + b2

n∑
i=1

xi1xi2 +⋯ + bk

n∑
i=1

xi1xik =
n∑

i=1

xi1yi

b0

n∑
i=1

xik + bi

n∑
i=1

xikxi1 + b2

n∑
i=1

xikxi2 +⋯ + bk

n∑
i=1

x2
ik =

n∑
i=1

xikyi (2.10)
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These equations are called the least squares normal equations. Note that there are p= k+
1 normal equations, one for each of the unknown regression coefficients. The solution to
the normal equations will be the least squares estimators of the regression coefficients b0,
b1,… , bk.

It is simpler to solve the normal equations if they are expressed in matrix notation. We
now give a matrix development of the normal equations that parallels the development of
Equation 2.10. The model in terms of the observations, Equation 2.7, may be written in
matrix notation as

y = Xβ + 𝜀

where

y =
⎡⎢⎢⎢⎣

y1
y2
⋮
yn

⎤⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎣

1 x11 x12 ⋯ x1k
1 x21 x22 ⋯ x2k
⋮ ⋮ ⋮ ⋮
1 xn1 xn2 ⋯ xnk

⎤⎥⎥⎥⎦
, β =

⎡⎢⎢⎢⎣

𝛽0
𝛽1
⋮
𝛽k

⎤⎥⎥⎥⎦
, and 𝜀 =

⎡⎢⎢⎢⎣

𝜀1
𝜀2
⋮
𝜀n

⎤⎥⎥⎥⎦

In general, y is an n× 1 vector of the observations, X is an n× p model matrix consisting
of the levels of the independent variables expanded to model form, β is a p× 1 vector of the
regression coefficients, and 𝜀 is an n× 1 vector of random errors. Notice that X consists of
the columns containing the independent variables from Table 2.1 plus an additional column
of 1s to account for the intercept term in the model.

We wish to find the vector of least squares estimators, b, that minimizes

L =
n∑

i=1

𝜀2
i = 𝜀′𝜀 = (y − Xβ)′(y − Xβ)

Note that L may be expressed as

L = y′y − β′X′y − y′Xβ + β′X′Xβ

= y′y − 2β′X′y + β′X′Xβ (2.11)

since β′X′y is a 1×1 matrix, or a scalar, and its transpose (β′X′y)′ = y′Xβ is the same
scalar. The least squares estimators must satisfy

𝜕L
𝜕β

||||b = −2X′y + 2X′Xb = 0

which simplifies to

X′Xb = X′y (2.12)
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Equation 2.12 is the set of least squares normal equations in matrix form. It is identical to
Equation 2.10. To solve the normal equations, multiply both sides of Equation 2.12 by the
inverse of X′X. Thus, the least squares estimator of β is

b = (X′X)−1X′y (2.13)

It is easy to see that the matrix form of the normal equations is identical to the scalar form.
Writing out Equation 2.12 in detail, we obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
n∑

i=1
xi1

n∑
i=1

xi2 ⋯
n∑

i=1
xik

n∑
i=1

xi1

n∑
i=1

x2
i1

n∑
i=1

xi1xi2 ⋯
n∑

i=1
xi1xik

⋮ ⋮ ⋮ ⋮
n∑

i=1
xik

n∑
i=1

xikxi1

n∑
i=1

xikxi2 ⋯
n∑

i=1
x2

ik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

⋮

bk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

yi

n∑
i=1

xi1yi

⋮
n∑

i=1
xikyi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

If the indicated matrix multiplication is performed, the scalar form of the normal equations
(i.e., Eq. 2.10) will result. In this form it is easy to see that X′X is a p×p symmetric matrix
and X′y is a p×1 column vector. Note the special structure of the matrix X′X. The diagonal
elements of X′X are the sums of squares of the elements in the columns of X, and the
off-diagonal elements are the sums of cross-products of the elements in the columns of X.
Furthermore, note that the elements of X′y are the sums of cross-products of the columns
of X and the observations {yi}.

The fitted regression model is

ŷ = Xb (2.14)

In scalar notation, the fitted model is

ŷi = b0 +
k∑

j=1

bjxij, i = 1, 2,… , n

The difference between the observation yi and the fitted value ŷi is a residual, say ei = yi −
ŷi. The n×1 vector of residuals is denoted by

e = y − ŷ (2.15)

Example 2.1 The Transistor Gain Data The transistor gain in an integrated circuit
device between emitter and collector (hFE) is related to two variables that can be controlled
at the deposition process, emitter drive-in time (𝜉1, in minutes), and emitter dose (𝜉2, units
of 1014 ions). Fourteen samples were observed following deposition, and the resulting data
are shown in Table 2.2. We will fit a linear regression model using gain as the response and
emitter drive-in time and emitter dose as the regressor variables.
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TABLE 2.2 Data on Transistor Gain (y) for Example 2.1

Observation
𝜉1 (drive-in

time, minutes)
𝜉2 (dose,
1014 ions) x1 x2 y (gain or hFE)

1 195 4.00 −1 −1 1004
2 255 4.00 1 −1 1636
3 195 4.60 −1 0.6667 852
4 255 4.60 1 0.6667 1506
5 225 4.20 0 −0.4444 1272
6 225 4.10 0 −0.7222 1270
7 225 4.60 0 0.6667 1269
8 195 4.30 −1 −0.1667 903
9 255 4.30 1 −0.1667 1555
10 225 4.00 0 −1 1260
11 225 4.70 0 0.9444 1146
12 225 4.30 0 −0.1667 1276
13 225 4.72 0 1 1225
14 230 4.30 0.1667 −0.1667 1321

Columns 2 and 3 of Table 2.2 show the actual or natural unit values of 𝜉1 and 𝜉2, while
columns 4 and 5 contain values of the corresponding coded variables x1 and x2, where

xi1 =
𝜉i1 − [max(𝜉i1) + min(𝜉i1)]∕2

[max(𝜉i1) − min(𝜉i1)]∕2
=
𝜉i1 − (255 + 195)∕2

(255 − 195)∕2
=
𝜉i1 − 225

30

xi2 =
𝜉i2 − [max(𝜉i2) + min(𝜉i2)]∕2

[max(𝜉i2) − min(𝜉i2)]∕2
=
𝜉i2 − (4.72 + 4.00)∕2

(4.72 − 4.00)∕2
=
𝜉i2 − 4.36

0.36

This coding scheme is widely used in fitting linear regression models, and it results in all
the values of x1 and x2 falling between −1 and +1, as shown in Table 2.2.

We will fit the model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝜀

using the coded variables. The model matrix X and vector y are

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1
1 1 −1
1 −1 0.6667
1 1 0.6667
1 0 −0.4444
1 0 −0.7222
1 0 0.6667
1 −1 −0.1667
1 1 −0.1667
1 0 −1
1 0 0.9444
1 0 −0.1667
1 0 1
1 0.1667 −0.1667

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1004
1636

852
1506
1272
1270
1269

903
1555
1260
1146
1276
1225
1321

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The matrix X′X is

X′X =
⎡⎢⎢⎣

1 1 ⋯ 1
−1 1 ⋯ 0.1667
−1 −1 ⋯ −0.1667

⎤⎥⎥⎦

⎡⎢⎢⎢⎣

1 −1 −1
1 1 −1
⋮ ⋮ ⋮
1 0.1667 −0.1667

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎣

14 0.1667 −0.8889
0.1667 6.027789 −0.02779

−0.8889 −0.02779 7.055578

⎤⎥⎥⎦
and the vector X′y is

X′y =
⎡⎢⎢⎣

1 1 ⋯ 1
−1 1 ⋯ 0.1667
−1 −1 ⋯ −0.1667

⎤⎥⎥⎦

⎡⎢⎢⎢⎣

1004
1636
⋮
1321

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎣

17, 495
2158.211

−1499.74

⎤⎥⎥⎦
The least squares estimate of β is

b = (X′X)−1X′y

or

b =
⎡⎢⎢⎣

0.072027 −0.00195 0.009067
−0.00195 0.165954 0.000408

0.009067 0.000408 0.142876

⎤⎥⎥⎦

⎡⎢⎢⎣

17, 495
2158.211

−1499.74

⎤⎥⎥⎦

=
⎡⎢⎢⎣

1242.3057
323.4366

−54.7691

⎤⎥⎥⎦
The least squares fit with the regression coefficients reported to one decimal place is

ŷ = 1242.3 + 323.4x1 − 54.8x2

This can be converted into an equation using the natural variables 𝜉1 and 𝜉2 by substituting
the relationships between x1 and 𝜉1 and x2 and 𝜉2 as follows:

ŷ = 1242.3 + 323.4

(
𝜉1 − 225

30

)
− 54.8

(
𝜉2 − 4.36

0.36

)

or

ŷ = −520.1 + 10.781𝜉1 − 152.15𝜉2
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TABLE 2.3 Observations, Fitted Values, Residuals, and Other Summary Information for
Example 2.1

Observation yi ŷii ei hii ri ti Di

1 1004.0 973.7 30.3 0.367 1.092 1.103 0.231
2 1636.0 1620.5 15.5 0.358 0.553 0.535 0.057
3 852.0 882.4 −30.4 0.317 −1.052 −1.057 0.171
4 1506.0 1529.2 −23.2 0.310 −0.801 −0.787 0.096
5 1272.0 1266.7 5.3 0.092 0.160 0.153 0.001
6 1270.0 1281.9 −11.9 0.133 −0.365 −0.350 0.007
7 1269.0 1205.8 63.2 0.148 1.960 2.316 0.222
8 903.0 928.0 −25.0 0.243 −0.823 −0.810 0.072
9 1555.0 1574.9 −19.9 0.235 −0.651 −0.633 0.043
10 1260.0 1297.1 −37.1 0.197 −1.185 −1.209 0.115
11 1146.0 1190.6 −44.6 0.217 −1.442 −1.527 0.192
12 1276.0 1251.4 24.6 0.073 0.730 0.714 0.014
13 1225.0 1187.5 37.5 0.233 1.225 1.256 0.152
14 1321.0 1305.3 15.7 0.077 0.466 0.449 0.006

Table 2.3 shows the observed values of yi, the corresponding fitted values ŷi, and the
residuals from this model. There are several other quantities given in this table that will be
defined and discussed later. Figure 2.1 shows the fitted response surface and the contour
plot for this model. The response surface for gain is a plane lying above the time–dose
space.

Computing Statistics software is usually employed to fit regression models. Table 2.4
and Fig. 2.2 present some of the output for the transistor gain data in Example 2.1 from
JMP, a widely-used software package that supports regression, experimental design, and
RSM. This model was fit to the coded variables in Table 2.2. The first portion of the display

Figure 2.1 (a) Response surface for gain, Example 2.1. (b) The gain contour plot.



2.2 ESTIMATION OF THE PARAMETERS IN LINEAR REGRESSION MODELS 21

TABLE 2.4 Regression Output From JMP

Summary of Fit

R-Square 0.979835
R-Square Adj 0.976168
Root Mean Square Error 34.92553
Mean of Response 1249.643
Observations (or Sum Wgts) 14

Analysis of Variance

Source DF Sum of Squares Mean Square F-Ratio

Model 2 651969.49 325985 267.2460
Error 11 13417.72 1220 Prob>F
C. Total 13 665387.21 <0.0001

Parameter Estimates

Term Estimate Std Error t-Ratio Prob> |t|

Intercept 1242.3181 9.373196 132.54 <0.0001
x1 323.4253 14.22778 22.73 <0.0001
x2 −54.77165 13.2001 −4.15 0.0016

in Fig. 2.2 is a plot of the values of the observed response y versus the predicted values
ŷi (see Fig. 2.2a). The pairs (yi, ŷi) lie closely along a straight line (the straight line in the
graph is a result of a least squares fit). This is usually a good indication that the model is
a satisfactory fit to the data. We will discuss other checks of model adequacy later in this
chapter. Notice that the estimates of the regression coefficients closely match those that we
have computed manually (it is not unusual to find minor differences between manual and
computer software regression calculations because of round-off). In subsequent sections we
will show how some of the other quantities in the output are obtained and how to interpret
them.

Figure 2.2 Regression output from JMP. (a) Response y whole model, actual by predicted plot.
(b) Residual by predicted plot.
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2.3 PROPERTIES OF THE LEAST SQUARES ESTIMATORS
AND ESTIMATION OF 𝝈

2

The method of least squares produces an unbiased estimator of the parameter β in the
multiple linear regression model. This property may be easily demonstrated by finding the
expected value of b as follows:

E(b) = E[(X′X)−1X′y]

= E[(X′X)−1X′(Xβ + 𝜺)]

= E[(X′X)−1X′Xβ + (X′X)−1X′
𝜺]

= β

because E(𝜺)= 0 and (X′X)−1 X′X= I. Thus b is an unbiased estimator of β. The variance
property of b is expressed by the covariance matrix

Cov(b) = E{[b − E(b)][b − E(b)]′}

The covariance matrix of b is a p× p symmetric matrix whose (j, j)th element is the variance
of bj and whose (i, j)th element is the covariance between bi and bj. The covariance matrix
of b is

Cov(b) = 𝜎 2(X′X)−1 (2.16)

It is also usually necessary to estimate 𝜎2. To develop an estimator of this parameter
consider the sum of squares of the residuals, say

SSE =
n∑

i=1

( yi − ŷi)
2

=
n∑

i=1

e2
i

= e′e

Substituting e= y− ŷ= y−Xb, we have

SSE = (y − Xb)′(y − Xb)

= y′y − b′X′y − y′Xb + b′X′Xb

= y′y − 2b′X′y + b′X′Xb

Because X′Xb=X′y, this last equation becomes

SSE = y′y − b′X′y (2.17)

Equation 2.17 is called the error or residual sum of squares, and it has n− p degrees of
freedom associated with it. It can be shown that

E(SSE) = 𝜎 2(n − p)
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so an unbiased estimator of 𝜎2 is given by

�̂� 2 =
SSE

n − p
(2.18)

Example 2.2 The Transistor Gain Data We will estimate 𝜎2 for the regression model
for the transistor gain data from Example 2.1. Because

y′y =
14∑
i=1

y2
i = 22, 527, 889.0

and

b′X′y =
[

1242.3 323.4 −54.8
] ⎡⎢⎢⎣

17,495
2158.211

−1499.74

⎤⎥⎥⎦
= 22, 514, 467.9

the residual sum of squares is

SSE = y′y − b′X′y

= 22, 527, 889.0 − 22, 514, 467.9

= 13, 421.1

Therefore, the estimate of 𝜎2 is computed from Equation 2.18 as follows:

�̂� 2 =
SSE

n − p
= 13, 421.1

14 − 3
= 1220.1

Notice that the JMP output in Table 2.4 computes the residual sum of squares (look under
the analysis of variance section of the output) as 13,417.72. The difference between the
two values is round-off. Both the manual calculations and JMP produce virtually identical
estimates of 𝜎2.

The estimate of 𝜎2 produced by Equation 2.18 is model-dependent. That is, it depends
on the form of the model that is fit to the data. To illustrate this point, suppose that we fit a
quadratic model to the gain data, say

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽11x2
1 + 𝛽22x2

2 + 𝛽12x1x2 + 𝜀

In this model it can be shown that SSE = 12,479.8. Because the number of model parameters,
p, equals 6, the estimate of 𝜎2 based on this model is

�̂� 2 = 12, 479.8
14 − 6

= 1559.975

This estimate of 𝜎2 is actually larger than the estimate obtained from the first-order model,
suggesting that the first-order model is superior to the quadratic in that there is less unex-
plained variability resulting from the first-order fit. If replicate runs are available (that is,
more than one observation on y at the same x-levels), then a model-independent estimate
of 𝜎2 can be obtained. We will show how to do this in Section 2.7.4.
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2.4 HYPOTHESIS TESTING IN MULTIPLE REGRESSION

In multiple linear regression problems, certain tests of hypotheses about the model param-
eters are helpful in measuring the usefulness of the model. In this section, we describe
several important hypothesis-testing procedures. These procedures require that the errors
𝜀i in the model be normally and independently distributed with mean zero and variance 𝜎2,
abbreviated 𝜀∼NID(0, 𝜎2). As a result of this assumption, the observations yi are normally
and independently distributed with mean 𝛽0 +

∑k
j=1 𝛽jxij and variance 𝜎2.

2.4.1 Test for Significance of Regression

The test for significance of regression is a test to determine if there is a linear relationship
between the response variable y and a subset of the regressor variables x1, x2,… , xk. The
appropriate hypotheses are

H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽k = 0

H1: 𝛽j ≠ 0 for at least one j
(2.19)

Rejection of H0 in Equation 2.19 implies that at least one of the regressor variables x1, x2,
… , xk contributes significantly to the model. The test procedure involves partitioning the
total sum of squares SST =

∑n
i=1( yi − ȳ)2 into a sum of squares due to the model (or to

regression) and a sum of squares due to residual (or error), say

SST = SSR + SSE (2.20)

Now if the null hypothesis H0: 𝛽1 = 𝛽2 =…= 𝛽k = 0 is true, then SSR/𝜎2 is distributed as
𝜒2

k , where the number of degrees of freedom for 𝜒2 is equal to the number of regressor
variables in the model. Also, we can show that SSE/𝜎2 is distributed as 𝜒2

n−k−1 and that SSE
and SSR are independent. The test procedure for H0: 𝛽1 = 𝛽2 =…= 𝛽k = 0 is to compute

F0 =
SSR∕k

SSE∕(n − k − 1)
=

MSR

MSE
(2.21)

and to reject H0 if F0 exceeds F𝛼,k,n−k−1. Alternatively, one could use the P-value approach
to hypothesis testing and, thus, reject H0 if the P-value for the statistic F0 is less than 𝛼.
The test is usually summarized in a table such as Table 2.5. This test procedure is called
an analysis of variance (ANOVA) because it is based on a decomposition of the total
variability in the response variable y.

A computational formula for SSR may be found easily. We have derived a computational
formula for SSE in Equation 2.17—that is,

SSE = y′y − b′X′y

TABLE 2.5 Analysis of Variance for Significance of Regression in Multiple Regression

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0

Regression SSR k MSR MSR/MSE

Error or residual SSE n− k− 1 MSE

Total SST n− 1
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Now because SST =
∑n

i=1 y2
i −

(∑n
i=1 yi

)2 ∕n = y′y −
(∑n

i=1 yi

)2 ∕n, we may rewrite the
foregoing equation as

SSE = y′y −

( n∑
i−1

yi

)2

n
−

⎡⎢⎢⎢⎢⎣
b′X′y −

( n∑
i=1

yi

)2

n

⎤⎥⎥⎥⎥⎦
or

SSE = SST − SSR

Therefore, the regression sum of squares is

SSR = b′X′y −

( n∑
i=1

yi

)2

n
(2.22)

the error sum of squares is

SSE = y′y − b′X′y (2.23)

and the total sum of squares is

SST = y′y −

( n∑
i=1

yi

)2

n
(2.24)

Example 2.3 The Transistor Gain Data We will test for significance of regression
using the model fit to the transistor gain data for Example 2.1. Note that

SST = y′y −

(
14∑
i=1

yi

)2

14

= 22, 527, 889.0 − (17, 495)2

14

= 665, 387.2

SSR = b′X′y −

(
14∑
i=1

yi

)2

14

= 22, 514, 467.9 − 21, 862, 501.8

= 651, 966.1
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TABLE 2.6 Test for Significance of Regression, Example 2.3

Source of
Variation

Sum of
Squares

Degrees of
Freedom Mean Square F0 P-Value

Regression 651,996.1 2 325,983.0 267.2 4.74× 10−10

Error 13,421.1 11 1220.1
Total 665,387.2 13

and

SSE = SST − SSR

= 665, 387.2 − 651, 966.1

= 13, 421.1

The analysis of variance is shown in Table 2.6. If we select 𝛼 = 0.05, then we reject
H0: 𝛽1 = 𝛽2 = 0 because F0 = 267.2>F0.05,2,11 = 3.98. Also, note that the P-value for F0
(shown in Table 2.6) is considerably smaller than 𝛼 = 0.05. Finally, compare the ANOVA
in Table 2.6 to the one in the JMP output in Table 2.4. There is a small difference in the
“regression sum of squares” in the two tables. This is due to round-off again.

The coefficient of multiple determination R2 is defined as

R2 =
SSR

SST
= 1 −

SSE

SST
(2.25)

R2 is a measure of the amount of reduction in the variability of y obtained by using
the regressor variables x1, x2,… , xk in the model. From inspection of the analysis of the
variance identity equation (Eq. 2.20) we see that 0≤R2 ≤ 1. However, a large value of R2

does not necessarily imply that the regression model is good one. Adding a variable to the
model will always increase R2, regardless of whether the additional variable is statistically
significant or not. Thus it is possible for models that have large values of R2 to yield poor
predictions of new observations or estimates of the mean response.

To illustrate, consider the first-order model for the transistor gain data. The value of R2

for this model is

R2 =
SSR

SST
= 651,966.1

665,387.2
= 0.9798

That is, the first-order model explains about 97.98% of the variability observed in the gain.
Now if we add quadratic terms to this model, we can show that the value of R2 increases to
0.9812. This increase in R2 is relatively small, suggesting that the quadratic terms do not
really improve the model. The JMP output in Table 2.4 reports the R2 statistic.

Because R2 always increases as we add terms to the model, some regression model
builders prefer to use an adjusted R2 statistic defined as

R2
adj = 1 −

SSE∕(n − p)

SST∕(n − 1)
= 1 − n − 1

n − p
(1 − R2) (2.26)
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In general, the adjusted R2 statistic will not always increase as variables are added to the
model. In fact, if unnecessary terms are added, the value of R2

adj will often decrease.

For example, consider the transistor gain data. The adjusted R2 for the first-order model
is

R2
adj = 1 − n − 1

n − p
(1 − R2)

= 1 − 13
11

(1 − 0.9798)

= 0.9762

which is very close to the ordinary R2 for the first-order model (JMP reports the adjusted R2

statistic—refer to Table 2.4). When R2 and R2
adj differ dramatically, there is a good chance

that nonsignificant terms have been included in the model. Now when the quadratic terms
are added to the first-order model, we can show that R2

adj = 0.9695; that is, the adjusted R2

actually decreases when the quadratic terms are included in the model. This is a strong
indication that the quadratic terms are unnecessary.

2.4.2 Tests on Individual Regression Coefficients and Groups of Coefficients

Individual Regression Coefficients We are frequently interested in testing hypotheses on
the individual regression coefficients. Such tests would be useful in determining the value
of each of the regressor variables in the regression model. For example, the model might
be more effective with the inclusion of additional variables, or perhaps with the deletion of
one or more of the variables already in the model.

Adding a variable to the regression model always causes the sum of squares for regression
to increase and the error sum of squares to decrease. We must decide whether the increase
in the regression sum of squares is sufficient to warrant using the additional variable in the
model. Furthermore, adding an unimportant variable to the model can actually increase the
mean square error, thereby decreasing the usefulness of the model.

The hypotheses for testing the significance of any individual regression coefficient, say
𝛽 j, are

H0: 𝛽j = 0

H1: 𝛽j ≠ 0

If H0: 𝛽 j = 0 is not rejected, then this indicates that xj can be deleted from the model. The
test statistic for this hypothesis is

t0 =
bj√
�̂� 2Cjj

(2.27)

where Cjj is the diagonal element of (X′X)−1 corresponding to bj. The null hypothesis H0:
𝛽 j = 0 is rejected if |t0|>t𝛼/2,n−k−1. A P-value approach could also be used. See Montgomery
et al. (2012) for more details. Note that this is really a partial or marginal test, because the
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regression coefficient bj depends on all the other regressor variables xi (i≠ j) that are in the
model.

The denominator of Equation 2.27,
√
�̂�2Cjj, is often called the standard error of the

regression coefficient bj. That is,

se(bj) =
√
�̂� 2Cjj (2.28)

Therefore, an equivalent way to write the test statistic in Equation 2.27 is

t0 =
bj

se(bj)
(2.29)

Example 2.4 Tests on Individual Regression Coefficients for the Transistor Gain
Data Consider the regression model for the transistor gain data. We will construct the
t-statistic for the hypotheses H0: 𝛽1 = 0 and H0: 𝛽2 = 0. The main diagonal elements of
(X′X)−1 corresponding to 𝛽1 and 𝛽2 are C11 = 0.165954 and C22 = 0.142876, respectively,
so the two t-statistics are computed as follows:

For H0: 𝛽1 = 0: t0 =
b2√
�̂� 2C11

= 323.4√
(1220.1)(0.165954)

= 323.4
14.2

= 22.73

For H0: 𝛽2 = 0: t0 =
b2√
�̂� 2C22

= −54.8√
(1220.1)(0.142876)

= −54.8
13.2

= −4.15

The absolute values of these t-statistics are compared with t0.025,11 = 2.201 (assuming that
we select 𝛼 = 0.05). The magnitudes of both of the t-statistics are larger than this criterion.
Consequently we conclude that 𝛽1 ≠ 0, which implies that x1 contributes significantly to
the model given that x2 is included, and that 𝛽2 ≠ 0, which implies that x2 contributes
significantly to the model given that x1 is included. JMP (refer to Table 2.4) provides
the t-statistics for each regression coefficient. A P-value approach is used for statistical
testing. The P-values for the two test statistics reported above are small (less than 0.05,
say) indicating that both variables contribute significantly to the model.

Tests on Groups of Coefficients We may also directly examine the contribution to the
regression sum of squares for a particular variable, say xj, given that other variables xi (i ≠ j)
are included in the model. The procedure used to do this is called the extra sum of squares
method. This procedure can also be used to investigate the contribution of a subset of the
regressor variables to the model. Consider the regression model with k regressor variables:

y = Xβ + 𝜀
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where y is n× 1, X is n× p, β is p× 1, 𝜀 is n× 1, and p = k+1. We would like to
determine if the subset of regressor variables x1, x2,… , xr (r< k) contribute significantly
to the regression model. Let the vector of regression coefficients be partitioned as follows:

β =
[
β1
β2

]

where β1 is r× 1, and β2 is (p−r)×1. We wish to test the hypotheses

H0: β1 = 0

H1: β1 ≠ 0 (2.30)

The model may be written as

y = Xβ + 𝜀 = X1β1 + X2β2 + 𝜀 (2.31)

where X1 represents the columns of X associated with β1, and X2 represents the columns
of X associated with β2.

For the full model (including both β1 and β2), we know that b = (X′X)−1 X′y. Also,
the regression sum of squares for all variables including the intercept is

SSR(β) = b′X′y ( p degrees of freedom)

and

MSE =
y′y − b′X′y

n − p

SSR(β) is called the regression sum of squares due to β. To find the contribution of the
terms in β1 to the regression, fit the model assuming the null hypothesis H0: β1 = 0 to be
true. The reduced model is found from Equation 2.31 with β1 = 0:

y = X2β2 + 𝜀 (2.32)

The least squares estimator of β2 is b2 = (X′
2X2)−1 X′

2y, and

SSR(β2) = b′
2X′

2y ( p − r degrees of freedom) (2.33)

The increase in the regression sum of squares due to β1 given that β2 is already in the
model is

SSR(β1|β2) = SSR(β) − SSR(β2) (2.34)

This sum of squares has r degrees of freedom. It is often called the extra sum of squares
due to β1. Note that SSR(β1|β2) is the increase in the regression sum of squares due to
including the variables x1, x2,… , xr in the model. Now SSR(β1|β2) is independent of MSE,
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and the null hypothesis β1 = 0 may be tested by the statistic

F0 =
SSR(β1|β2)∕r

MSE
(2.35)

If F0 >F𝛼,r,n−p, we reject H0, concluding that at least one of the parameters in β1 is not zero
and, consequently, at least one of the variables x1, x2,… , xr in X1 contributes significantly
to the regression model (one could also use the P-value approach). Some authors call the
test in Equation 2.35 a partial F-test.

The partial F-test is very useful. We can use it to measure the contribution of xj as if it
were the last variable added to the model by computing

SSR(𝛽j|𝛽0, 𝛽1,… , 𝛽 j−1, 𝛽 j+1,… , 𝛽k)

This is the increase in the regression sum of squares due to adding xj to a model that
already includes x1,… , xj−1, xj+1,… , xk. Note that the partial F-test on a single variable
xj is equivalent to the t-test in Equation 2.27. However, the partial F-test is a more general
procedure in that we can measure the effect of sets of variables. This procedure is used
often in response surface work. For example, suppose that we are considering fitting the
second-order model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽11x2
1 + 𝛽22x2

2 + 𝛽12x1x2 + 𝜀

and we wish to test the contribution of the second-order terms over and above the contri-
bution from the first-order model. Therefore, the hypotheses of interest are

H0: 𝛽11 = 𝛽22 = 𝛽12 = 0

H1: 𝛽11 ≠ 0 and∕or 𝛽22 ≠ 0 and∕or 𝛽12 ≠ 0

In the notation of this section, β′
1 = [𝛽11, 𝛽22, 𝛽12] and β′

2 = [𝛽0, 𝛽1, 𝛽2], and the columns
of X1 and X2 are the columns of the original X matrix associated with the quadratic and
linear terms in the model, respectively.

Example 2.5 Partial F-tests for the Transistor Gain Data Consider the transistor gain
data in Example 2.1. Suppose that we wish to investigate the contribution of the variable
x2 (dose) to the model. That is, the hypotheses we wish to test are

H0: 𝛽2 = 0

H1: 𝛽2 ≠ 0

This will require the extra sum of squares due to 𝛽2, or

SSR(𝛽2|𝛽1, 𝛽0) = SSR(𝛽0, 𝛽1, 𝛽2) − SSR(𝛽0, 𝛽1)

= SSR(𝛽1, 𝛽2|𝛽0) − SSR(𝛽1|𝛽0)
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Now from Example 2.3 where we tested for significance of regression, we have (from
Table 2.6)

SSR(𝛽1, 𝛽2|𝛽0) = 651, 966.1

This sum of squares has two degrees of freedom. The reduced model is

y = 𝛽0 + 𝛽1x1 + 𝜀

The least squares fit for this model is

ŷ = 1245.8 + 323.6x1

and the regression sum of squares for this model (with one degree of freedom) is

SSR(𝛽1|𝛽0) = 630, 967.9

Therefore,

SSR(𝛽2|𝛽0, 𝛽1) = 651, 966.1 − 630, 967.9

= 20, 998.2

with 2−1 = 1 degree of freedom. This is the increase in the regression sum of squares that
results from adding x2 to a model already containing x1 (or the extra sum of squares that
results from adding x2 to a model containing x1). To test H0: 𝛽2 = 0, from the test statistic
we obtain

F0 =
SSR(𝛽2|𝛽0, 𝛽1)∕1

MSE
=

20, 998.2∕1

1220.1
= 17.21

Note that MSE from the full model (Table 2.6) is used in the denominator of F0. Now
because F0.05,1,11 = 4.84, we reject H0: 𝛽2 = 0 and conclude that x2 (dose) contributes
significantly to the model.

Because this partial F-test involves only a single regressor, it is equivalent to the t-test
introduced earlier, because the square of a t random variable with v degrees of freedom is
an F random variable with 1 and v degrees of freedom. To see this, recall that the t-statistic
for H0: 𝛽2 = 0 resulted in t0 = −4.15 and that t0

2 = (−4.15)2 = 17.22 ≅ F0.

2.5 CONFIDENCE INTERVALS IN MULTIPLE REGRESSION

It is often beneficial to construct confidence interval estimates for the regression coefficients
{𝛽 j} and for other quantities of interest from the regression model. The development of a
procedure for obtaining these confidence intervals requires that we assume the errors {𝜀i}
to be normally and independently distributed with mean zero and variance 𝜎2, the same
assumption made in the section on hypothesis testing (Section 2.4).
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2.5.1 Confidence Intervals on the Individual Regression Coefficients β

Because the least squares estimator b is a linear combination of the observations, it follows
that b is normally distributed with mean vector β and covariance matrix 𝜎2(X′X)−1. Then
each of the statistics

bj − 𝛽j√
�̂� 2Cjj

, j = 0, 1,… , k (2.36)

is distributed as t with n− p degrees of freedom, where Cjj is the (j, j)th element of the
matrix (X′X)−1, and �̂�2 is the estimate of the error variance, obtained from Equation 2.18.
Therefore, a 100(1−𝛼)% confidence interval for the regression coefficient 𝛽 j, j = 0,1,… , k,
is

bj − t𝛼∕2,n−p

√
�̂� 2Cjj ≤ 𝛽j ≤ bj + t𝛼∕2,n−p

√
�̂� 2Cjj (2.37)

Note that this confidence interval can also be written as

bj − t𝛼∕2,n−pse(bj) ≤ 𝛽j ≤ bj + t𝛼∕2,n−pse(bj)

because se(bj) =
√
�̂�2Cjj.

Example 2.6 The Transistor Gain Data We will construct a 95% confidence interval
for the parameter 𝛽1 in Example 2.1. Now b1 = 323.4, and because �̂�2 = 1220.1 and C11 =
0.165954, we find that

b1 − t0.025,11

√
�̂� 2C11 ≤ 𝛽1 ≤ b1 + t0.025,11

√
�̂� 2C11

323.4 − 2.201
√

(1220.1)(0.165954)

≤ 𝛽1 ≤ 323.4 + 2.201
√

(1220.1)(0.165954)

323.4 − 2.201(14.2) ≤ 𝛽1 ≤ 323.4 + 2.201(14.2)

and the 95% confidence interval on 𝛽1 is

292.1 ≤ 𝛽1 ≤ 354.7

2.5.2 A Joint Confidence Region on the Regression Coefficients β

The confidence intervals in the previous subsection should be thought of as one-at-a-time
intervals; that is, the confidence coefficient 1 − 𝛼 applies only to one such interval. Some
problems require that several confidence intervals be constructed from the same data. In
such cases, the analyst is usually interested in specifying a confidence coefficient that
applies to the entire set of confidence intervals. Such intervals are called simultaneous
confidence intervals.
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It is relatively easy to specify a joint confidence region for the parameters β in a
multiple regression model. We may show that

(b − β)′X′X(b − β)
pMSE

has an F-distribution with p numerator and n−p denominator degrees of freedom, and this
implies that

P

{
(b − β)′X′X(b − β)

pMSE
≤ F𝛼,p,n−p

}
= 1 − 𝛼

Consequently a 100(1−𝛼)% point confidence region for all the parameters in β is

(b − β)′X′X(b − β)
pMSE

≤ F𝛼,p,n−p (2.38)

This inequality describes an elliptically shaped region, Montgomery, Peck, and Vining
(2012) and Myers (1990) demonstrate the construction of this region for p = 2. When there
are only two parameters, finding this region is relatively simple; however, when more than
two parameters are involved, the construction problem is considerably harder.

There are other methods for finding joint or simultaneous intervals on regression coef-
ficients, Montgomery, Peck, and Vining (2012) and Myers (1990) discuss and illustrate
many of these methods. They also present methods for finding several other types of
interval estimates.

2.5.3 Confidence Interval on the Mean Response

We may also obtain a confidence interval on the mean response at a particular point, say,
x01, x02,… , x0k. Define the vector

x0 =

⎡⎢⎢⎢⎢⎣

1
x01
x02
⋮
x0k

⎤⎥⎥⎥⎥⎦
The mean response at this point is

𝜇y|x0
= 𝛽0 + 𝛽1x01 + 𝛽2x02 +⋯ + 𝛽kx0k = x′0β

The estimated mean response at this point is

ŷ(x0) = x′0b (2.39)

This estimator is unbiased, because E[ŷi(x0)] = E(x′0b) = x′0β = 𝜇y|x0
, and the variance

of ŷi(x0) is

Var[ŷ(x0)] = 𝜎 2x′0(X′X)−1x0 (2.40)
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Therefore, a 100(1−𝛼)% confidence interval on the mean response at the point x01,
x02,… , x0k is

ŷ(x0) − t𝛼∕2,n−p

√
�̂�2x′0(X′X)−1x0

≤ 𝜇y|x0
≤ ŷ(x0) + t𝛼∕2,n−p

√
�̂�2x′0(X′X)−1x0 (2.41)

Example 2.7 The Transistor Gain Data Suppose that we wish to find a 95% confidence
interval on the mean response for the transistor gain problem for the point 𝜉1 = 225 min
and 𝜉2 = 4.36× 1014 ions. In terms of the coded variables x1 and x2, this point corresponds
to

x0 =
⎡⎢⎢⎣

1
0
0

⎤⎥⎥⎦

because x01 = 0 and x02 = 0. The estimate of the mean response at this point is computed
from Equation 2.39 as

ŷ(x0) = x′0b = [1, 0, 0]
⎡⎢⎢⎣

1242.3
323.4
−54.8

⎤⎥⎥⎦
= 1242.3

Now from Equation 2.40, we find Var[ŷ(x0)] as

Var[ ŷ (x0)] = 𝜎 2x′0(X′X)−1x0

= 𝜎 2[1, 0, 0]
⎡⎢⎢⎣

0.072027 −0.00195 0.009067
−0.00195 0.165954 0.000408

0.009067 0.000408 0.142876

⎤⎥⎥⎦

⎡⎢⎢⎣

1
0
0

⎤⎥⎥⎦
= 𝜎 2(0.072027)

Using �̂�2 = MSE = 1220.1 and Equation 2.41, we find the confidence interval as

ŷ(x0) − t𝛼∕2,n−p

√
�̂�2x′0(X′X)−1x0 ≤ 𝜇y|x0

≤ ŷ(x0) + t𝛼∕2,n−p

√
�̂�2x′0(X′X)−1x0

1242.3 − 2.201
√

1220.1(0.072027) ≤ 𝜇y|x0
≤ 1242.3 + 2.201

√
1220.1(0.072027)

1242.3 − 20.6 ≤ 𝜇y|x0
≤ 1242.3 + 20.6

or

1221.7 ≤ 𝜇y|x0
≤ 1262.9
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2.6 PREDICTION OF NEW RESPONSE OBSERVATIONS

A regression model can be used to predict future observations on the response y cor-
responding to particular values of the regressor variables, say x01, x02,… , x0k. If x′0 =
[1, x01, x02, … , x0k], then a point estimate for the future observation y0 at the point x01,
x02,… , x0k is computed from Equation 2.39:

ŷ(x0) = x′0b

A 100(1−𝛼)% prediction interval for this future observation is

ŷ(x0) − t𝛼∕2,n−p

√
�̂�2(1 + x′0(X′X)−1x0)

≤ y0 ≤ ŷ(x0) + t𝛼∕2,n−p

√
�̂�2(1 + x′0(X′X)−1x0) (2.42)

The additional �̂�2 term under the square root sign is due to variability of observations
around the predicted mean at that location.

In predicting new observations and in estimating the mean response at a given point
x01, x02,… , x0k, one must be careful about extrapolating beyond the region containing the
original observations. It is very possible that a model that fits well in the region of the
original data will no longer fit well outside of that region. In multiple regression it is often
easy to inadvertently extrapolate, since the levels of the variables (xi1, xi2,… , xik), i = 1,
2,… , n, jointly define the region containing the data. As an example, consider Fig. 2.3,
which illustrates the region containing the observations for a two-variable regression model.

Figure 2.3 An example of extrapolation in multiple regression.
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Note that the point (x01, x02) lies within the ranges of both regressor variables x1 and x2,
but it is outside the region of the original observations. Thus, either predicting the value of
a new observation or estimating the mean response at this point is an extrapolation of the
original regression model.

Example 2.8 A Prediction Interval for the Transistor Gain Data Suppose that we
wish to find a 95% prediction interval on the next observation on the transistor gain at the
point 𝜉1 = 225 min and 𝜉2 = 4.36 × 1014 ions. In the coded variables, this point is x01 = 0
and x02 = 0, so that, as in Example 2.7, x′0 = [1, 0, 0], and the predicted value of the gain
at this point is ŷi(x0) = x′0,b = 1242.3. From Example 2.7 we know that

x′0(X′X)−1x0 = 0.072027

Therefore, using Equation 2.42 we can find the 95% prediction interval on y0 as follows:

ŷ(x0) − t𝛼∕2,n−p

√
�̂�2(1 + x′0(X′X)−1x0) ≤ y0 ≤ ŷ(x0) + t𝛼∕2,n−p

√
�̂�2(1 + x′0(X′X)−1x0)

1242.3 − 2.201
√

1220.1(1 + 0.072027) ≤ y0 ≤ 1242.3 + 2.201
√

1220.1(1 + 0.072027)

1242.3 − 79.6 ≤ y0 ≤ 1242.3 + 79.6

or

1162.7 ≤ y0 ≤ 1321.9

If we compare the width of the prediction interval at this point with the width of the
confidence interval on the mean gain at the same point from Example 2.7, we observe that
the prediction interval is much wider. This reflects the fact that there is more uncertainty in
our prediction of an individual future value of a random variable than to estimate the mean
of the probability distribution from which that future observation will be drawn.

2.7 MODEL ADEQUACY CHECKING

It is always necessary to (a) examine the fitted model to ensure that it provides an adequate
approximation to the true system and (b) verify that none of the least squares regression
assumptions are violated. Proceeding with exploration and optimization of a fitted response
surface will likely give poor or misleading results unless the model provides an adequate
fit. In this section we present several techniques for checking model adequacy.

2.7.1 Residual Analysis

The residuals from the least squares fit, defined by ei = yi − ŷi, i = 1, 2,… , n, play an
important role in judging model adequacy. The residuals from the transistor gain regression
model of Example 2.1 are shown in column 3 of Table 2.3.

A check of the normality assumption may be made by constructing a normal probability
plot of the residuals, as in Fig. 2.4. If the residuals plot approximately along a straight
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Figure 2.4 Normal probability plot of residuals, Example 2.1.

line, then the normality assumption is satisfied. Figure 2.4 reveals no apparent problem
with normality. The straight line in this normal probability plot was determined by eye,
concentrating on the central portion of the data. When this plot indicates problems with the
normality assumption, we often transform the response variable as a remedial measure. For
more details, see Montgomery, Peck, and Vining (2012) and Myers (1990).

Figure 2.5 presents a plot of residuals ei versus the predicted response ŷi (this plot is
also shown in the JMP output in Fig. 2.2). The general impression is that the residuals
scatter randomly on the display, suggesting that the variance of the original observations is
constant for all values of y. If the variance of the response depends on the mean level of y,
then this plot will often exhibit a funnel-shaped pattern. This is also suggestive of the need
for transformation of the response variable y.

Figure 2.5 Plot of residuals versus predicted response ŷi, Example 2.1.
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It is also useful to plot the residuals in time or run order and versus each of the individual
regressors. Nonrandom patterns on these plots would indicate model inadequacy. In some
cases, transformations may stabilize the situation. See Montgomery, Peck, and Vining
(2012) and Myers (1990) and Section 2.9 for more details.

2.7.2 Scaling Residuals

Standardized and Studentized Residuals Many response surface analysts prefer to work
with scaled residuals, as these scaled residuals often convey more information than do the
ordinary least squares residuals.

One type of scaled residual is the standardized residual:

di =
ei

�̂�
, i = 1, 2,… , n (2.43)

where we generally use �̂� =
√

MSE in the computation. These standardized residuals have
mean zero and approximately unit variance; consequently, they are useful in looking for
outliers. Most of the standardized residuals should lie in the interval −3≤ di ≤ 3, and any
observation with a standardized residual outside of this interval is potentially unusual with
respect to its observed response. These outliers should be carefully examined, because they
may represent something as simple as a data recording error or something of more serious
concern, such as a region of the regressor variable space where the fitted model is a poor
approximation to the true response surface.

The standardizing process in Equation 2.43 scales the residuals by dividing them by
their average standard deviation. In some data sets, residuals may have standard deviations
that differ greatly. We now present a scaling that takes this into account.

The vector of fitted values ŷi corresponding to the observed values yi is

ŷ = Xb

= X(X′X)−1X′y

= Hy (2.44)

The n × n matrix H = X(X′X)−1X′ is usually called the hat matrix because it maps the
vector of observed values into a vector of fitted values. The hat matrix and its properties
play a central role in regression analysis.

The residuals from the fitted model may be conveniently written in matrix notation as

e = y − ŷ (2.45)

There are several other ways to express the vector of residuals e that will prove useful,
including

e = y − Xb

= y − Hy

= (I − H)y (2.46)
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The hat matrix has several useful properties. It is symmetric (H′ = H) and idempotent
(HH = H). Similarly the matrix I−H is symmetric and idempotent.

The covariance matrix of the residuals is

Var(e) = Var[(I − H)y]

= (I − H)Var(y)(I − H)′

= 𝜎 2(I − H) (2.47)

because Var(y) = 𝜎2I and I−H is symmetric and idempotent. The matrix I−H is generally
not diagonal, so the residuals are correlated and have different variances.

The variance of the ith residual is

Var(ei) = 𝜎2(1 − hii) (2.48)

where hii is the ith diagonal element of H. Because 0≤ hii ≤ 1, using the residual mean square
MSE to estimate the variance of the residuals actually overestimates Var(ei). Furthermore,
because hii is a measure of the location of the ith point in x-space, the variance of ei depends
upon where the point xi lies. Generally, residuals near the center of the x-space have larger
variance than do residuals at more remote locations. Violations of model assumptions are
more likely at remote points, and these violations may be hard to detect from inspection of
ei (or di) because their residuals will usually be smaller.

We recommend taking this inequality of variance into account when scaling the residuals.
We suggest plotting the studentized residuals:

ri =
ei√

�̂�2(1 − hii)
, i = 1, 2,… , n (2.49)

with �̂�2 = MSE instead of ei (or di). The studentized residuals have constant variance
Var(ri) = 1 regardless of the location of xi when the form of the model is correct. In
many situations the variance of the residuals stabilizes, particularly for large data sets. In
these cases there may be little difference between the standardized and studentized residuals.
Thus standardized and studentized residuals often convey equivalent information. However,
because any point with a large residual and a large hii is potentially highly influential on
the least squares fit, examination of the studentized residuals is generally recommended.

PRESS Residuals The prediction error sum of squares (PRESS) proposed by Allen
(1971, 1974) provides a useful residual scaling. To calculate PRESS, select an observation—
for example, i. Fit the regression model to the remaining n−1 observations and use this
equation to predict the withheld observation yi. Denoting this predicted value by ŷ(i), we
may find the prediction error for point i as e(i) = yi − ŷ(i). The prediction error is often called
the ith PRESS residual. This procedure is repeated for each observation i = 1, 2,… , n,
producing a set of n PRESS residuals e(1), e(2),… , e(n). Then the PRESS statistic is defined
as the sum of squares of the n PRESS residuals as in

PRESS =
n∑

i=1

e2
(i) =

n∑
i=1

[ yi − ŷ(i)]
2 (2.50)
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Thus PRESS uses each possible subset of n−1 observations as an estimation data set, and
every observation in turn is used to form a prediction data set.

It would initially seem that calculating PRESS requires fitting n different regressions.
However, it is possible to calculate PRESS from the results of a single least squares fit to
all n observations. It turns out that the ith PRESS residual is

e(i) =
ei

1 − hii
(2.51)

Thus, because PRESS is just the sum of the squares of the PRESS residuals, a simple
computing formula is

PRESS =
n∑

i=1

(
ei

1 − hii

)2

(2.52)

From Equation 2.51 it is easy to see that the PRESS residual is just the ordinary residual
weighted according to the diagonal elements of the hat matrix hii. Data points for which
hii are large will have large PRESS residuals. These observations will generally be high
influence points. Generally, a large difference between the ordinary residual and the PRESS
residual will indicate a point where the model fits the data well, but a model built without
that point predicts poorly. In the next section we will discuss some other measures of
influence.

The variance of the ith PRESS residual is

Var[e(i)] = Var

[
ei

1 − hii

]

= 1
(1 − hii)2

𝜎 2(1 − hii)

= 𝜎 2

1 − hii
(2.53)

so that standardized PRESS residual is

e(i)√
Var[e(i)]

=
ei∕(1 − hii)√
𝜎2∕(1 − hii)

=
ei√

𝜎2(1 − hii)

which, if we use MSE to estimate 𝜎2, is just the studentized residual discussed previously.
Finally, we note that PRESS can be used to compute an approximate R2 for prediction,

say

R2
prediction = 1 − PRESS

SST
(2.54)

This statistic gives some indication of the predictive capability of the regression model. For
the transistor gain model we can compute the PRESS residuals using the ordinary residuals
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and the values of hii found in Table 2.3. The corresponding value of the PRESS statistic is
PRESS = 22,225.0. Then

R2
prediction = 1 − PRESS

SST

= 1 − 22,225.0
665,387.2

= 0.9666

Therefore we could expect this model to “explain” about 96.66% of the variability in
predicting new observations, as compared to the approximately 97.98% of the variability
in the original data explained by the least squares fit. The overall predictive capability of
the model based on this criterion seems very satisfactory.

R Student The studentized residual ri discussed above is often considered an outlier
diagnostic. It is customary to use MSE as an estimate of 𝜎2 in computing ri. This is referred
to as internal scaling of the residual, because MSE is an internally generated estimate of
𝜎2 obtained from fitting the model to all n observations. Another approach would be to use
an estimate of 𝜎2 based on a data set with the ith observation removed. Denote the estimate
of 𝜎2 so obtained by S2

(i). We can show that

S2
(i) =

(n − p)MSE − e2
i ∕(1 − hii)

n − p − 1
(2.55)

The estimate of 𝜎2 in Equation 2.55 is used instead of MSE to produce an externally
studentized residual, usually called R-student, given by

ti =
ei√

S2
(i)(1 − hii)

, i = 1, 2,… , n (2.56)

Some computer packages refer to R-student as the outlier T.
In many situations, ti will differ little from the studentized residual ri. However, if the

ith observation is influential, then S2
(i) can differ significantly from MSE, and thus R-student

will be more sensitive to this point. Furthermore, under the standard assumptions, ti has a
tn−p−1-distribution. Thus R-student offers a more formal procedure for outlier detection via
hypothesis testing. One could use a simultaneous inference procedure called the Bonferroni
approach and compare all n values of [ti] with t(𝛼/2n),n−p−1 to provide guidance regarding
outliers. However, it is our view that a formal approach is usually not necessary and that
only relatively crude cutoff values need be considered. In general, a diagnostic view as
opposed to a strict statistical hypothesis-testing view is best. Furthermore, detection of
outliers needs to be considered simultaneously with detection of influential observations.

Example 2.9 The Transistor Gain Data Table 2.3 presents the studentized residuals
ri and the R-student values ti defined in Equations 2.50 and 2.56 for the transistor gain
regression model. None of these values are large enough to cause any concern regarding
outliers.
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Figure 2.6 Normal probability plot of the studentized residuals for the transistor gain data.

Figure 2.6 is a normal probability plot of the studentized residuals. It conveys exactly
the same information as the normal probability plot of the ordinary residuals ei in Fig. 2.4.
This is because most of the hii-values are similar and there are no unusually large residuals.
In some applications, however, the hii can differ considerably, and in those cases plotting
the studentized residuals is the best approach.

2.7.3 Influence Diagnostics

We occasionally find that a small subset of the data exerts a disproportionate influence on
the fitted regression model. That is, parameter estimates or predictions may depend more
on the influential subset than on the majority of the data. We would like to locate these
influential points and assess their impact on the model. If these influential points are “bad”
values, then they should be eliminated. On the other hand, there may be nothing wrong with
these points, but if they control key model properties, we would like to know it, because
it could affect the use of the model. In this subsection we describe and illustrate several
useful measure of influence.

Leverage Points The disposition of points in x-space is important in determining model
properties. In particular remote observations potentially have disproportionate leverage on
the parameter estimates, the predicted values, and the usual summary statistics.

The hat matrix H = X(X′X)−1X′ is very useful in identifying influential observations.
As noted earlier, H determines the variances and covariances of ŷ and e, because Var(ŷi) =
𝜎2 H and Var(e) = 𝜎2(I−H). The elements hij of H may be interpreted as the amount of
leverage exerted by yj on ŷi. Thus inspection of the elements of H can reveal points that
are potentially influential by virtue of their location in x-space. Attention is usually focused
on the diagonal elements hii. Because

∑n
i=1 hii = rank(H) = rank(X) = p, the average size

of the diagonal element of the matrix H is p/n. As a rough guideline, then, if a diagonal
element hii is greater than 2p/n, observation i is a high-leverage point. To apply this to the
transistor gain data in Example 2.1, note that 2p/n = 2(3)/14 = 0.43. Table 2.3 gives the hat
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diagonals hii for the first-order model; and because none of the hii exceed 0.43, we conclude
that there are no leverage points in these data. Further properties and uses of the elements of
the hat matrix in regression diagnostics are discussed by Belsley, Kah, and Welsch (1980).

Influence on Regression Coefficients The hat diagonals will identify points that are
potentially influential due to their location in x-space. It is desirable to consider both the
location of the point and the response variable in measuring influence. Cook (1977, 1979)
has suggested using a measure of the squared distance between the least squares estimate
based on all n points b and the estimate obtained by deleting the ith point, say b(i). This
distance measure can be expressed in a general form as

Di(M, c) =
(b(i) − b)′M(b(i) − b)

c
, i = 1, 2,… , n (2.57)

The usual choices of M and c are M = X′X and c = pMSE, so that Equation 2.57 becomes

Di(M, c) ≡ Di =
(b(i) − b)′X′X(b(i) − b)

pMSE
, i = 1, 2,… , n (2.58)

Points with large values of Di have considerable influence on the least squares estimates
b. The magnitude of Di may be assessed by comparing it with F𝛼,p,n−p. If Di ≃F0.5,p,n−p,
then deleting point i would move b to the boundary of a 50% confidence region for β based
on the complete data set. This is a large displacement and indicates that the least squares
estimate is sensitive to the ith data point. Because F0.5,p,n−p ≃1, we usually consider points
for which Di >1 to be influential. Practical experience has shown the cutoff value of 1
works well in identifying influential points.

The statistic Di may be rewritten as

Di =
r2

i

p

Var[ ŷ(xi)]

Var(ei)
=

r2
i

p

hii

1 − hii
, i = 1, 2,… , n (2.59)

Thus we see that, apart from the constant p, Di is the product of the square of the ith
studentized residual and hii/(l−hii). This ratio can be shown to be the distance from the
vector xi to the centroid of the remaining data. Thus Di is made up of a component that
reflects how well the model fits the ith observation yi and a component that measures how
far that point is from the rest of the data. Either component (or both) may contribute to a
larger value of Di.

Table 2.3 presents the values of Di for the first-order model fit to the transistor gain data
in Example 2.1. None of these values of Di exceed 1, so there is no strong evidence of
influential observations in these data.

2.7.4 Testing for Lack of Fit

In RSM, usually we are fitting the regression model to data from a designed experiment. It
is frequently useful to obtain two or more observations (replicates) on the response at the

∗The distance measure Di is not an F random variable, but is compared with an F-value because of the similarity
of Di to the normal theory confidence ellipsoid (Eq. 2.38).



44 BUILDING EMPIRICAL MODELS

Figure 2.7 Lack of fit of the straight-line model.

same settings of the independent or regressor variables. When this has been done, we may
conduct a formal test for the lack of fit on the regression model. For example, consider the
data in Fig. 2.7. There is some indication that the straight-line fit is not very satisfactory,
and it would be helpful to have a statistical test to determine if there is systematic curvature
present.

The lack-of-fit test requires that we have true replicates on the response y for at least
one set of levels on the regressors x1, x2,… , xk. These are not just duplicate readings or
measurements of y. For example, suppose that y is product viscosity and there is only one
regressor x (temperature). True replication consists of running ni separate experiments (usu-
ally in random order) at x = xi and observing viscosity, not just running a single experiment
at xi and measuring viscosity ni times. The readings obtained from the latter procedure
provide information mostly on the variability of the method of measuring viscosity. The
error variance 𝜎2 includes measurement error, variability in the process over time, and
variability associated with reaching and maintaining the same temperature level in different
experiments. These replicate points are used to obtain a model-independent estimate of 𝜎2.

Suppose that we have ni observations on the response at the ith level of the regressors xi,
i = 1, 2,… , m. Let yij denote the jth observation on the response at xi, i = 1, 2,… , m. and
j = 1, 2,… , ni. There are n =

∑m
i=1 ni observations altogether. The test procedure involves

partitioning the residual sum of squares into two components, say

SSE = SSPE + SSLOF

where SSPE is the sum of squares due to pure error and SSLOF is the sum of squares due to
lack of fit.
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To develop this partitioning of SSE, note that the (i, j)th residual is

yij − ŷi = ( yij − ȳi) + ( ȳi − ŷi) (2.60)

where ȳi is the average of the ni observations at xi. Squaring both sides of Equation 2.60
and summing over i and j yields

m∑
i=1

ni∑
j=1

( yij − ŷi)
2 =

m∑
i=1

ni∑
j=1

( yij − ȳi)
2 +

m∑
i=1

ni( ȳi − ŷi)
2 (2.61)

The left-hand side of Equation 2.61 is the usual residual sum of squares. The two
components on the right-hand side measure pure error and lack of fit. We see that the pure
error sum of squares

SSPE =
m∑

i=1

ni∑
j=1

( yij − ȳi)
2 (2.62)

is obtained by computing the corrected sum of squares of the repeat observations at each
level of x and then pooling over the m levels of x. If the assumption of constant variance is
satisfied, this is a model-independent measure of pure error, because only the variability of
the ys at each xi level is used to compute SSPE. Because there are ni−1 degrees of freedom
for pure error at each level xi, the total number of degrees of freedom associated with the
pure error sum of squares is

m∑
i=1

(ni − 1) = n − m (2.63)

The sum of squares for lack of fit,

SSLOF =
m∑

i=1

ni( ȳi − ŷi)
2 (2.64)

is a weighted sum of squared deviations between the mean response ȳi at each xi level and
the corresponding fitted value. If the fitted values ŷi are close to the corresponding average
responses ȳi, then there is a strong indication that the regression function is linear. If the
ŷi deviate greatly from the ȳi, then it is likely that the regression function is not linear.
There are m−p degrees of freedom associated with SSLOF, because there are m levels of x
but p degrees of freedom are lost because p parameters must be estimated for the model.
Computationally we usually obtain SSLOF by subtracting SSPE from SSE.

The test statistic for lack of fit is

F0 =
SSLOF∕(m − p)

SSPE∕(n − m)
=

MSLOF

MSPE
(2.65)
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The expected value of MSPE is 𝜎2, and the expected value of MSLOF is

E(MSLOF) = 𝜎 2 +

m∑
i=1

ni

[
E( yi) − 𝛽0 −

k∑
j=1
𝛽ixij

]2

m − 2
(2.66)

If the true regression function is linear, then E( yi) = 𝛽0 +
∑k

j=1 𝛽jxij, and the second term

of Equation 2.66 is zero, resulting in E(MSLOF) = 𝜎2. However, if the true regression
function is not linear, then E( yi) ≠ 𝛽0 +

∑k
j=1 𝛽jxij, and E(MSLOF)>𝜎2. Furthermore, if the

true regression function is linear, then the statistic F0 follows the Fm−p,n−m-distribution.
Therefore, to test for lack of fit, we would compute the test statistic F0 and conclude that
the regression function is not linear if F0 >F𝛼,m−p,n−m.

This test procedure may be easily introduced into the analysis of variance conducted for
significance of regression. If we conclude that the regression function is not linear, then the
tentative model must be abandoned and attempts made to find a more appropriate equation.
Alternatively, if F0 does not exceed F𝛼,m−p,n−m, there is no strong evidence of lack of fit,
and MSPE and MSLOF are often combined to estimate 𝜎2.

Ideally, we find that the F-ratio for lack of fit is not significant and the hypothesis
of significance of regression is rejected. Unfortunately, this does not guarantee that the
model will be satisfactory as a prediction equation. Unless the variation of the predicted
values is large relative to the random error, the model is not estimated with sufficient
precision to yield satisfactory predictions. That is, the model may have been fitted to the
errors only. Some analytical work has been done on developing criteria for judging the
adequacy of the regression model from a prediction point of view. See Box and Wetz
(1973), Ellerton (1978), Gunst and Mason (1979), Hill, Judge, and Fomby (1978), and
Suich and Derringer (1977). Box and Wetz’s work suggests that the observed F-ratio must
be at least four or five times the critical value from the F-table if the regression model is to
be useful as a predictor—that is, if the spread of predicted values is to be large relative to
the noise.

A relatively simple measure of potential prediction performance is found by comparing
the range of the fitted values ŷ (i.e., ŷmax − ŷmin) with their average standard error. It can
be shown that, regardless of the form of the model, the average variance of the fitted
values is

Var( ŷ) = 1
n

n∑
i=1

Var[ ŷ(xi)] =
p𝜎 2

n
(2.67)

where p is the number of parameters in the model. In general, the model is not likely to
be a satisfactory predictor unless the range of the fitted values ŷi is large relative to their

average estimated standard error
√

( p�̂� 2)∕n, where �̂�2 is a model-independent estimate of
the error variance.
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TABLE 2.7 Analysis of Variance for Example 2.10

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0 P-Value

Regression 234.7087 1 234.7087
Residual 252.9039 15 16.8603

Lack of fit 237.3407 8 29.6676 13.34 0.0013
Pure error 15.5632 7 2.2233

Total 487.6126 16

Example 2.10 Testing Lack of Fit The data in Fig. 2.7 are shown below:

x 1.0 1.0 2.0 3.3 3.3 4.0 4.0 4.0 4.7 5.0
y 10.84 9.30 16.35 22.88 24.35 24.56 25.86 29.46 24.59 22.25

x 5.6 5.6 5.6 6.0 6.0 6.5 6.92
y 25.90 27.20 25.61 25.45 26.56 21.03 21.46

The straight-line fit is ŷ = 13.301+ 2.108x, with SST = 487.6126, SSR = 234.7087, and
SSE = 252.9039. Note that there are 10 distinct levels of x, with repeat points at x = 1.0,
x = 3.3, x = 4.0, x = 5.6, and x = 6.0. The pure sum of squares is computed using the repeat
points as follows:

Level of x
∑

j(yij − ȳi)
2 Degrees of Freedom

1.0 1.1858 1
3.3 1.0805 1
4.0 11.2467 2
5.6 1.4341 2
6.0 0.6161 1
Total 15.5632 7

The lack-of-fit sum of squares is found by subtraction as

SSLOF = SSE − SSPE

= 252.9039 − 15.5632 = 237.3407

with m− p = 10− 2 = 8 degrees of freedom. The analysis of variance incorporating the
lack-of-fit test is shown in Table 2.7. The lack-of-fit test statistic is F0 = 13.34, and because
the P-value for this test statistic is very small, we reject the hypothesis that the tentative
model adequately describes the data.

2.8 FITTING A SECOND-ORDER MODEL

Many applications of response surface methodology involve fitting and checking the ade-
quacy of a second-order model. In this section we present a complete example of this
process.
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TABLE 2.8 Central Composite Design for the Chemical Process Example

A B

Temperature (◦C) Conc. (%)
Observation Run 𝜉1 𝜉2 x1 x2 y

1 4 200 15 −1 −1 43
2 12 250 15 1 −1 78
3 11 200 25 −1 1 69
4 5 250 25 1 1 73
5 6 189.65 20 −1.414 0 48
6 7 260.35 20 1.414 0 78
7 1 225 12.93 0 −1.414 65
8 3 225 27.07 0 1.414 74
9 8 225 20 0 0 76
10 10 225 20 0 0 79
11 9 225 20 0 0 83
12 2 225 20 0 0 81

Table 2.8 presents the data resulting from an investigation into the effect of two variables,
reaction temperature (𝜉1), and reactant concentration (𝜉2), on the percentage conversion of a
chemical process (y). The process engineers had used an approach to improving this process
based on designed experiments. The first experiment was a screening experiment involving
several factors that isolated temperature and concentration as the two most important
variables. Because the experimenters thought that the process was operating in the vicinity
of the optimum, they elected to fit a quadratic model relating yield to temperature and
concentration.

Panel A of Table 2.8 shows the levels used for 𝜉1 and 𝜉2 in the natural units of measure-
ments. Panel B shows the levels in terms of coded variables x1 and x2. Figure 2.8 shows

Figure 2.8 Central composite design for the chemical process example.
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the experimental design in Table 2.8 graphically. This design is called a central composite
design, and it is widely used for fitting a second-order response surface. Notice that the
design consists of four runs at the corners of a square, plus four runs at the center of this
square, plus four axial runs. In terms of the coded variables the corners of the square are
(x1, x2) = (−1, −1), (1, −1), (−1, 1), (1, 1); the center points are at (x1, x2) = (0, 0); and the
axial runs are at (x1, x2) = (−1.414, 0), (1.414, 0), (0, −1.414), (0,1.414).

We will fit the second-order model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽11x2
1 + 𝛽22x2

2 + 𝛽12x1x2 + 𝜀

using the coded variables. The matrix X and vector y for this model are

X =

x1 x2 x2
1 x2

2 x1x2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 1 1
1 1 −1 1 1 −1
1 −1 1 1 1 −1
1 1 1 1 1 1
1 −1.414 0 2 0 0
1 1.414 0 2 0 0
1 0 −1.414 0 2 0
1 0 1.414 0 2 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

43
78
69
73
48
76
65
74
76
79
83
81

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that we have shown the variables associated with each column above that column in
the matrix X. The entries in the columns associated with x2

1 and x2
2 are found by squaring

the entries in columns x1 and x2, respectively, and the entries in the x1x2 column are found
by multiplying each entry from x1 by the corresponding entry from x2. The matrix X′X and
vector X′y are

X′X =

⎡⎢⎢⎢⎢⎢⎢⎣

12 0 0 8 8 0
0 8 0 0 0 0
0 0 8 0 0 0
8 0 0 12 4 0
8 0 0 4 12 0
0 0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎦

, X′y =

⎡⎢⎢⎢⎢⎢⎢⎣

845.000
78.592
33.726

511.000
541.000
−31.000

⎤⎥⎥⎥⎥⎥⎥⎦

and from b = (X′X)−1X′y we obtain

b =

⎡⎢⎢⎢⎢⎢⎢⎣

79.75
10.18

4.22
−8.50
−5.25
−7.75

⎤⎥⎥⎥⎥⎥⎥⎦



50 BUILDING EMPIRICAL MODELS

Therefore the fitted model for percentage conversion is

ŷ = 79.75 + 10.18x1 + 4.22x2 − 8.50x2
1 − 5.25x2

2 − 7.75x1x2

In terms of the natural variables, the model is

ŷ = −1080.22 + 7.7671𝜉1 + 23.1932𝜉2 − 0.0136𝜉2
1 − 0.2100𝜉2

2 − 0.0620𝜉1𝜉2

Tables 2.9 and 2.10 present some of the output from Design-Expert, a popular statistics
software package for experimental design and RSM. In Table 2.9, the model-fitting proce-
dure is presented. Design-Expert attempts to fit a series of models to the data (first-order
or linear, first-order with interaction, second-order, and cubic). The significance of each
additional group of terms is assessed sequentially using the partial F-test discussed previ-
ously. Lack-of-fit tests and several summary statistics are reported for each of the models
considered. Because the central composite design cannot support a full cubic model, the
results for that model are accompanied by a statement “aliased,” indicating that not all of

TABLE 2.9 Model Fitting for the Chemical Process Example (From Design-Expert)

Sequential Model Sum of Squares [Type I]

Sum of Mean P-Value
Source Squares df Square F-Value Prob>F

Mean vs Total 59784.08 1 59784.08
Linear vs Mean 970.98 2 485.49 5.30 0.0301
2FI vs Linear 240.25 1 240.25 3.29 0.1071
Quadratic vs 2FI 546.42 2 273.21 43.98 0.0003 Suggested
Cubic vs Quadratic 10.02 2 5.01 0.74 0.5346 Aliased
Residual 27.25 4 6.81
Total 61579.00 12 5131.58

Lack-of-Fit Tests

Linear 797.19 6 132.86 14.90 0.0246
2FI 556.94 5 111.39 12.49 0.0319
Quadratic 10.52 3 3.51 0.39 0.7682 Suggested
Cubic 0.50 1 0.50 0.056 0.8281 Aliased
Pure Error 26.75 3 8.92

Model Summary Statistics

Std. Adjusted Predicted
Source Dev. R-Squared R-Squared R-Squared PRESS

Linear 9.57 0.5410 0.4390 0.1814 1469.26
2FI 8.54 0.6748 0.5529 0.2901 1274.27
Quadratic 2.49 0.9792 0.9619 0.9318 122.37 Suggested
Cubic 2.61 0.9848 0.9583 0.9557 79.56 Aliased

“Sequential Model Sum of Squares [Type I]”: Select the highest order polynomial where the additional terms are
significant and the model is not aliased.
“Lack-of-Fit Tests”: Want the selected model to have insignificant lack-of-fit.
“Model Summary Statistics”: Focus on the model maximizing the “Adjusted R-Squared” and the “Predicted
R-Squared.”
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TABLE 2.10 Design-Expert ANOVA for the Chemical Process Example

ANOVA for Response Surface Quadratic Model Analysis of Variance Table
[Partial Sum of Squares—Type III]

Sum of Mean P-Value
Source Squares df Square F-Value Prob>F

Model 1757.65 5 351.53 56.59 <0.0001
A-Temp 828.78 1 828.78 133.42 <0.0001
B-Conc 142.20 1 142.20 22.89 0.0030
AB 240.25 1 240.25 38.68 0.0008
A2 462.40 1 462.40 74.44 0.0001
B2 176.40 1 176.40 28.40 0.0018

Residual 37.27 6 6.21
Lack of Fit 10.52 3 3.51 0.39 0.7682
Pure Error 26.75 3 8.92

Cor Total 1794.92 11
Std. Dev. 2.49 R-Squared 0.9792
Mean 70.58 Adj R-Squared 0.9619
C.V. % 3.53 Pred R-Squared 0.9318
PRESS 122.37 Adeq. Precision 20.367

95% CI
Coefficient Standard

Factor Estimate df Error Low High

Intercept 79.75 1 1.25 76.70 82.80
A-Temp 10.18 1 0.88 8.02 12.33
B-Conc 4.22 1 0.88 2.06 6.37
AB −7.75 1 1.25 −10.80 −4.70
A2 −8.50 1 0.99 −10.91 −6.09
B2 −5.25 1 0.99 −7.66 −2.84

Final Equation in Terms of Coded Factors:

Conversion =

+79.75
+10.18 ∗A
+4.22 ∗B
−7.75 ∗A ∗B
−8.50 ∗A2

−5.25 ∗B2

Final Equation in Terms of Actual Factors:

Conversion =

−1080.21867
+7.76713 ∗Temp
+23.19320 ∗Conc
−0.062000 ∗Temp ∗Conc
−0.013600 ∗Temp2

−0.21000 ∗Conc2
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the cubic model parameters can be uniquely estimated. The summary statistics strongly
support selecting the quadratic model, and this is also the model selected by Design-Expert.

To illustrate the computations in Table 2.9, consider testing the significance of the linear
(first-order) terms. The regression sum of squares for this model, that is, the contribution of
x1 and x2 over the mean (intercept) is SSR (𝛽1, 𝛽2|𝛽0) = 970.98. The residual mean square
for the linear model can be shown to be MSE = 91.58. Therefore, the F-statistic for testing
the contribution of the linear terms beyond the intercept is

F0 =
SSR(𝛽1, 𝛽2|𝛽0)∕2

MSE
=

970.98∕2

91.58
= 485.99

91.58
= 5.30

for which the P-value is P = 0.0301, so we conclude that the linear terms are significant.
The analysis in Table 2.9 indicates that the linear, interaction and pure quadratic terms
contribute significantly to the model. Table 2.10 summarizes the ANOVA for the quadratic
model. In this table, the source of variation labeled “Lack of Fit” contains all of the sums
of squares for terms higher-order than quadratic. Table 2.10 also reports 95% confidence
intervals for each model parameter. None of these CIs include zero, indicating that there are
no nonsignificant terms in the model. If some of these CIs had included zero, some analysts
would drop the nonsignificant variables for the model, resulting in a reduced quadratic
model for the process. It is also possible to employ variable selection methods such as
stepwise regression to determine the subset of variables to include in the model. Generally,
we prefer to fit the full quadratic model whenever possible, unless there are large differences
between the full and the reduced model in PRESS and adjusted R2. Table 2.10 indicates
that the R2 and adjusted R2 values for this model are satisfactory. The R2

prediction based on
PRESS is

R2
prediction = 1 − PRESS

SST

= 1 − 122.37
1799.92

= 0.9318

indicating that the model will probably explain a high percentage (about 93%) of the
variability in new data.

Table 2.11 contains the observed and predicted values of percentage conversion, the
residuals, and other diagnostic statistics for this model. None of the studentized residuals
or the values of R-student are large enough to indicate any problem with outliers. Notice
that the hat diagonals hii take on only two values, either 0.625 or 0.250. The values of
hii = 0.625 are associated with the four runs at the corners of the square in the design and
the four axial runs. All eight of these points are equidistant from the center of the design;
this is why all of the hii values are identical. The four center points all have hii = 0.250.
Figures 2.9, 2.10, and 2.11 show a normal probability plot of the studentized residuals, a
plot of the studentized residuals versus the predicted values ŷi, and a plot of the studentized
residuals versus run order. None of these plots reveal any model inadequacy.

Plots of the conversion response surface and the contour plot, respectively, for the fitted
model are shown in Fig. 2.12a and b. The response surface plots indicate that the maximum
percentage conversion is at about 240◦C and 20% concentration.
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TABLE 2.11 Observed Values, Predicted Values, Residuals, and Other Diagnostics for the
Chemical Process Example

Obs. Actual Predicted Student
Order Value Value Residual hii Residual Cook’s D R-Student

1 43.00 43.96 −0.96 0.625 −0.643 0.115 −0.609
2 78.00 79.11 −1.11 0.625 −0.745 0.154 −0.714
3 69.00 67.89 1.11 0.625 0.748 0.155 0.717
4 73.00 72.04 0.96 0.625 0.646 0.116 0.612
5 48.00 48.11 −0.11 0.625 −0.073 0.001 −0.067
6 76.00 75.90 0.10 0.625 −0.073 0.001 −0.067
7 65.00 63.54 1.46 0.625 0.982 0.268 0.979
8 74.00 75.46 −1.46 0.625 −0.985 0.269 −0.982
9 76.00 79.75 −3.75 0.250 −1.784 0.177 −2.377
10 79.00 79.75 −0.75 0.250 −0.357 0.007 −0.329
11 83.00 79.75 3.25 0.250 1.546 0.133 1.820
12 81.00 79.75 1.25 0.250 0.595 0.020 0.560

In many response surface problems the experimenter is interested in predicting the
response y or estimating the mean response at a particular point in the process variable
space. The response surface plots in Fig. 2.12 give a graphical display of these quantities.
Typically, the variance of the prediction is also of interest, because this is a direct measure
of the likely uncertainty associated with the point estimate produced by the model. Recall
from Equation 2.40 that the variance of the estimate of the mean response at the point
x0 is given by Var[ŷi(x0)] = 𝜎2x′0(X′X)−1x0. Plots of the estimated standard deviation

of the predicted response,
√

̂Var[ŷ(x0)], obtained by estimating 𝜎2 by the mean square
error MSE = 5.89 for this model for all values of x0 in the region of experimentation, are
presented in Fig. 2.13a and b. Both the response surface in Fig. 2.13a and the contour plot

Figure 2.9 Normal probability plot of the studentized residuals, chemical process example.
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Figure 2.10 Plot of studentized residuals versus predicted conversion, chemical process example.

Figure 2.11 Plot of the studentized residuals versus run order, chemical process example.

Figure 2.12 (a) Response surface of predicted conversion. (b) Contour plot of predicted conversion.
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Figure 2.13 (a) Response surface plot of
√

̂Var[ŷ(x0)]. (b) Contour plot of
√

̂Var[ŷ(x0)].

of constant
√

̂Var[ŷ(x0)] in Fig. 2.13b show that the
√

̂Var[ŷ(x0)] is the same for all points
x0 that are the same distance from the center of the design. This is a result of the spacing of
the axial runs in the central composite design at 1.414 units from the origin (in the coded
variables), and is a design property called rotatability. This is an important property for a
second-order response surface design, and it will be discussed in more detail in Chapter 8.

JMP will also produce excellent results when fitting a second-order model. Table 2.12
is a portion of the JMP output for the chemical process example of this section. The
output contains similar information as in the Design-Expert output we saw earlier, but it is
organized somewhat differently. JMP will also produce response surface and contour plots
similar to those in Figure 2.12, but it also features a prediction profiler graph which is
the bottom figure in Table 2.12. This graph shows the fitted response surface as seen along
each individual coordinate axis (the solid curve), along with the prediction interval on the
response (the dotted line curves). This set of curves is interactive. If the crosshairs shown
on the plot are dragged to a new location for one variable, say x1, the response curve for
the other variable will shift due to the interaction between the two factors. For example
Figure 2.14 shows the prediction profiler after x1 is changed to a new value (237.31). Notice
the change in the shape of the response surface as a function of x2. This is a very useful
feature for visualizing the shape of response surfaces in three or more factors.

2.9 QUALITATIVE REGRESSOR VARIABLES

The regression models employed in RSM usually involved quantitative variables—that
is, variables that are measured on a numerical scale. For example, variables such as tem-
perature, pressure, distance, and age are quantitative variables. Occasionally, we need to
incorporate qualitative variables in a regression model. For example, suppose that one of
the variables in a regression model is the machine from which each observation yi is taken.
Assume that only two machines are involved. We may wish to assign different levels to the
two machines to allow for the possibility that each machine may have a different effect on
the response.



56 BUILDING EMPIRICAL MODELS

TABLE 2.12 JMP Output for the Chemical Process Example

Response Y
Actual by Predicted Plot

85

80

75

70

65

60

55

50

45

40
40 45 50 55 60

Y Predicted P <.0001 RSq = 0.98 RMSE = 2.4924

Y
 A

ct
ua

l

65 70 75 80 85

Summary of Fit

RSquare 0.979235
RSquare Adj 0.961931
Root Mean Square Error 2.492353
Mean of Response 70.58333
Observations (or Sum Wgts) 12

Analysis of Variance

Source DF
Sum of
Squares Mean Square F-Ratio

Model 5 1757.6457 351.529 56.5903
Error 6 37.2709 6.212 Prob > F
C. Total 11 1794.9167 <.0001∗

Lack of Fit

Source DF
Sum of
Squares Mean Square F-Ratio

Lack of Fit 3 10.520942 3.50698 0.3933
Pure Error 3 26.750000 8.91667 Prob > F

Source DF
Sum of
Squares Mean Square F-Ratio

Total error 6 37.270942 0.7682
Max RSq
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TABLE 2.12 (Continued)

Parameter Estimates

Term Estimate Std Error t-Ratio Prob >|t|

Intercept 79.75 1.246177 64.00 <.0001∗

X1(200,250) 10.178301 0.88118 11.55 <.0001∗

X2(15,25) 4.2159903 0.88118 4.78 0.0030∗

X1∗X2 −7.75 1.246177 −6.22 0.0008∗

X1∗X1 −8.5 0.985189 −8.63 0.0001∗

X2∗X2 −5.25 0.985189 −5.33 0.0018∗

Sorted Parameter Estimates

Term Estimate Std Error t-Ratio Prob >|t|

X1(200,250) 10.178301 0.88118 11.55 <.000
X1∗X1 −8.5 0.985189 −8.63 0.000
X1∗X2 −7.75 1.246177 −6.22 0.000
X2∗X2 −5.25 0.985189 −5.33 0.001
X2(15,25) 4.2159903 0.88118 4.78 0.003

Prediction Profiler
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The usual method of representing the different levels of a qualitative variable is by using
indicator variables. For example, to introduce the effect of two different machines into a
regression model, we could define an indicator variable as follows:

x = 0 if the observation is from machine 1

x = 1 if the observation is from machine 2
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Prediction Profiler

Figure 2.14 The prediction profiler for the chemical process example with X1 = 237.31.

In general, a qualitative variable with t levels is represented by t−1 indicator variables,
which are assigned the values either 0 or 1. Thus, if there were three machines, the different
levels would be accounted for by two indicator variables defined as follows:

x1 x2

0 0 if the observation is from machine 1

1 0 if the observation is from machine 2

0 1 if the observation is from machine 3

Indicator variables are also referred to as dummy variables. The following example illus-
trates some of the uses of indicator variables. For other applications, see Montgomery,
Peck, and Vining (2012) and Myers (1990).

Example 2.11 The Surface Finish Regression Model A mechanical engineer is inves-
tigating the surface finish of metal parts produced on a lathe and its relationship to the speed
[in revolutions per minute (RPM)] of the lathe. The data are shown in Table 2.13. Note that
the data have been collected using two different types of cutting tools. Because it is likely
that the type of cutting tool affects the surface finish, we will fit the model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝜀



2.9 QUALITATIVE REGRESSOR VARIABLES 59

TABLE 2.13 Surface Finish Data for Example 2.11

Observation Surface Type of
Number, i Finish, yi RPM Cutting Tool

1 45.44 225 302
2 42.03 200 302
3 50.10 250 302
4 48.75 245 302
5 47.92 235 302
6 47.79 237 302
7 52.26 265 302
8 50.52 259 302
9 45.58 221 302
10 44.78 218 302
11 33.50 224 416
12 31.23 212 416
13 37.52 248 416
14 37.13 260 416
15 34.70 243 416
16 33.92 238 416
17 32.13 224 416
18 35.47 251 416
19 33.49 232 416
20 32.29 216 416

where y is the surface finish, x1 is the lathe speed in RPM, and x2 is an indicator variable
denoting the type of cutting tool used; that is,

x2 =
{ 0 for tool type 302

1 for tool type 416

The parameters in this model may be easily interpreted. If x2 = 0, then the model
becomes

y = 𝛽0 + 𝛽1x1 + 𝜀

which is a straight-line model with slope 𝛽1 and intercept 𝛽0. However, if x2 = 1, the model
becomes

y = 𝛽0 + 𝛽1x1 + 𝛽2(1) + 𝜀 = (𝛽0 + 𝛽2) + 𝛽1x1 + 𝜀

which is a straight-line model with slope 𝛽1 and intercept 𝛽0 + 𝛽2. Thus, the model y =
𝛽0 + 𝛽1x+ 𝛽2x2 + 𝜀 implies that surface finish is linearly related to lathe speed and that the
slope 𝛽1 does not depend on the type of cutting tool used. However, the type of cutting
tool does affect the intercept, and 𝛽2 indicates the change in the intercept associated with a
change in tool type from 302 to 416.
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The model matrix X and vector y for this problem are as follows:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 225 0
1 200 0
1 250 0
1 245 0
1 235 0
1 237 0
1 265 0
1 259 0
1 221 0
1 218 0
1 224 0
1 212 1
1 248 1
1 260 1
1 243 1
1 238 1
1 224 1
1 251 1
1 232 1
1 216 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

45.44
42.03
50.10
48.75
47.92
47.79
52.26
50.52
45.58
44.78
33.50
31.23
37.52
37.13
34.70
33.92
32.13
35.47
33.49
32.29

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The fitted model is

ŷ = 14.27620 + 0.14115x1 − 13.28020x2

The analysis of variance for this model is shown in Table 2.14. Note that the hypothesis
H0: 𝛽1 = 𝛽2 = 0 (significance of regression) is rejected. This table also contains the sums
of squares

SSR = SSR(𝛽1, 𝛽2|𝛽0)

= SSR(𝛽1|𝛽0) + SSR(𝛽2|𝛽1, 𝛽0)

so that a test of the hypothesis H0: 𝛽2 = 0 can be made. This hypothesis is also rejected, so
we conclude that tool type has an effect on surface finish.

TABLE 2.14 Analysis of Variance of Example 2.11

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Regression 1012.0595 1 506.0297 1103.69 1.0175× 10−18

SSR(𝛽1|𝛽0) (130.6091) (1) 130.6091 284.87 4.6980− 10−12

SSR(𝛽2|𝛽1, 𝛽0) (881.4504) (1) 881.4504 1922.52 6.2439× 10−19

Error 7.7943 17 0.4508
Total 1019.8538 19
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It is also possible to use indicator variables to investigate whether tool type affects both
the slope and intercept. Let the model be reformulated as

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x1x2 + 𝜀

where x2 is the indicator variable. Now if tool type 302 is used, then x2 = 0, and the model is

y = 𝛽0 + 𝛽1x1 + 𝜀

If tool type 416 is used, then x2 = 1, and the model becomes

y = 𝛽0 + 𝛽1x1 + 𝛽2 + 𝛽3x1 + 𝜀

= (𝛽0 + 𝛽2) + (𝛽1 + 𝛽3)x1 + 𝜀

Note that 𝛽2 is the change in the intercept, and 𝛽3 is the change in slope produced by a
change in tool type.

Another method of analyzing this data set is to fit separate regression models to the data
for each tool type. However, the indicator variable approach has several advantages. First,
only one regression model must be estimated. Second, by pooling the data on both tool
types, more degrees of freedom for error are obtained. Third, tests of both hypotheses on
the parameters 𝛽2 and 𝛽3 are just special cases of the extra sum of squares method.

2.10 TRANSFORMATION OF THE RESPONSE VARIABLE

We noted in Section 2.7 that often a data transformation can be used when residual analysis
indicates some problem with underlying model assumptions, such as nonnormality or
nonconstant variance in the response variable. In this section we illustrate the use of data
transformation for a classic example from the literature. Following the example, we discuss
methods for the choice of the transformation.

Example 2.12 The Worsted Yarn Data The data in Table 2.15 [taken from Box and
Draper (1987)] show the number of cycles to failure of worsted yarn (y) and three factors
defined as follows:

Length of test specimen (mn): x1 =
Length − 300

50
Amplitude of load cycle (MM): x2 = Length − 9

Load (grams): x3 =
Length − 45

5

These factors form a 33 factorial experiment. This experiment will support a complete
second-order polynomial. The least squares fit is

ŷ = 550.7 + 660x1 − 535.9x2 − 310.8x3 + 238.7x2
1 + 275.7x2

2

−48.3x2
3 − 456.5x1x2 − 235.7x1x3 + 143x2x3
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TABLE 2.15 The Worsted Yarn Data

Run Length, Amplitude, Load, Cycles to Failure,
Number x1 x2 x3 y

1 −1 −1 −1 674
2 0 −1 −1 1414
3 1 −1 −1 3636
4 −1 0 −1 338
5 0 0 −1 1022
6 1 0 −1 1368
7 −1 1 −1 170
8 0 1 −1 442
9 1 1 −1 1140

10 −1 −1 0 370
11 0 −1 0 1198
12 1 −1 0 3184
13 −1 0 0 266
14 0 0 0 620
15 1 0 0 1070
16 −1 1 0 118
17 0 1 0 332
18 1 1 0 884
19 −1 −1 1 292
20 0 −1 1 634
21 1 −1 1 2000
22 −1 0 1 210
23 0 0 1 438
24 1 0 1 566
25 −1 1 1 90
26 0 1 1 220
27 1 1 1 360

The R2 value is 0.975. An analysis of variance is given in Table 2.16. The fit appears to be
reasonable and both the first- and second-order terms appear to be necessary.

Figure 2.15 is a plot of residuals versus the predicted cycles to failure ŷi for this model.
There is an indication of an outward-opening funnel in this plot, implying possible inequality
of variance.

TABLE 2.16 Analysis of Variance for the Quadratic Model for the Worsted Yard Data

Sum of Squares Degrees of Mean Square
Source of Variability (×10−3) Freedom (×10−3) F0

First-order terms 14,748.5 3 4,916.2 70
Added second-order terms 4,224.3 6 704.1 9.5
Residual 1,256.6 17 73.9
Total 20,229.4 26



2.10 TRANSFORMATION OF THE RESPONSE VARIABLE 63

Figure 2.15 Plot of residuals versus predicted for the worsted yarn, experiment, quadratic model.

When a natural log transformation is used for y, we obtain the following model:

ln ŷ = 6.33 + 0.82x1 − 0.63x2 − 0.38x3

ŷ = e6.33+0.82x1−0.63x2−0.38x3

This model has R2 = 0.963, and has only three model terms (apart from the intercept). None
of the second-order terms are significant. Here, as in most modeling exercises, simplicity is
of vital importance. The elimination of the quadratic terms and interaction terms with the
change in response metric not only allows a better fit than the second-order model with the
natural metric, but the effect of the design variables x1, x2, and x3 on the response is clear.

Figure 2.16 is a plot of residuals versus the predicted response for the log model. There is
still some indication of inequality of variance, but the log model, overall, is an improvement
on the original quadratic fit.

In the previous example, we illustrated the problem of nonconstant variance in the
response variable y in linear regression and noted that this is a departure from the standard
least squares assumptions. This inequality of variance problem occurs fairly often in prac-
tice, often in conjunction with a non-normal response variable. Examples include a count of
defects or particles, proportion data such as yield or fraction defective, or a response vari-
able that follows some skewed distribution (one tail of the response distribution is longer
than the other). We illustrated how transformation of the response variable can be used
for stabilizing the variance of the response. In our example we selected a log transformation
empirically, by noting that it greatly improved the appearance of the residual plots.

Generally, transformations are used for three purposes: stabilizing the response vari-
ance, making the distribution of the response variable closer to the normal distribution, and
improving the fit of the model to the data. This last objective could include model sim-
plification, say by eliminating interaction, or higher-order polynomial terms. Sometimes
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Figure 2.16 Plot of residuals predicted for the worsted yam data, log model.

a transformation will be reasonably effective in simultaneously accomplishing more than
one of these objectives.

We often find that the power family of transformations y∗ = y𝜆 is very useful, where 𝜆 is
the parameter of the transformation to be determined (e.g., 𝜆 = 1

2
means use the square root

of the original response). Box and Cox (1964) have shown how the transformation parameter
𝜆 may be estimated simultaneously with the other model parameters (overall mean and
treatment effects). The theory underlying their method uses the method of maximum
likelihood. The actual computational procedure consists of performing, for various values
of 𝜆, a standard analysis of variance on

y(𝜆) =
⎧⎪⎨⎪⎩

y𝜆−1

𝜆ẏ𝜆−1
𝜆 ≠ 0

ẏ ln y 𝜆 = 0

(2.68)

where ẏ = ln−1[(1∕n)Σ ln y] is the geometric mean of the observations. The maximum
likelihood estimate of 𝜆 is the value for which the error sum of squares, say SSE(𝜆) is a
minimum. This value of 𝜆 is usually found by plotting a graph of SSE(𝜆) versus 𝜆 and then
reading the value of 𝜆 that minimizes SSE(𝜆) from the graph. Usually between 10 and 20
values of 𝜆 are sufficient for estimation of the optimum value. A second iteration using a
finer mesh of values can be performed if a more accurate estimate of 𝜆 is necessary.

Notice that we cannot select a value of 𝜆 by directly comparing the error sums of squares
from analyses of variance on y𝜆, because for each value of 𝜆 the error sum of squares is
measured on a different scale. Furthermore, a problem arises in y when 𝜆 = 0; namely, as
𝜆 approaches zero, y𝜆 approaches unity. That is, when 𝜆 = 0, all the response values are
a constant. The component (y𝜆 −1)/𝜆 of Equation 2.68 alleviates this problem because as
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𝜆 tends to zero, (y𝜆−1)/𝜆 goes to a limit of ln y. The divisor component ẏ𝜆−1 in Equation
2.68 rescales the responses so that the error sums of squares are directly comparable.

In applying the Box–Cox method, we recommend using simple choices for 𝜆, because
the practical difference between 𝜆 = 0.5 and 𝜆 = 0.58 is likely to be small, but the square
root transformation (𝜆 = 0.5) is much easier to interpret. Obviously, values of 𝜆 close to
unity would suggest that no transformation is necessary.

Once a value of 𝜆 is selected by the Box–Cox method, the experimenter can analyze the
data using y𝜆 as the response, unless of course 𝜆 = 0, in which case use ln y. It is perfectly
acceptable to use y(𝜆) as the actual response, although the model parameter estimates will
have a scale difference and origin shift in comparison with the results obtained using y𝜆

(or ln y).
An approximate 100(1−𝛼)% confidence interval for 𝜆 can be found by computing

SS∗ = SSE(𝜆)

(
1 +

t2
𝛼∕2,𝜈

𝜈

)
(2.69)

where v is the number of degrees of freedom, and plotting a line parallel to the 𝜆-axis at
height SS∗ on the graph of SSE(𝜆) versus 𝜆. Then by locating the points on the 𝜆-axis where
SS∗ cuts the curve SSE(𝜆), we can read confidence limits on 𝜆 directly from the graph. If
this confidence interval includes the value 𝜆 = 1, this implies that the data do not support
the need for the transformation.

Several software packages have implemented the Box–Cox procedure. Figure 2.17
shows the output graphics from Design-Expert when the Box–Cox procedure is applied
to the worsted yarn data in Table 2.14. The optimum value of 𝜆 is −0.24, and the 95%
confidence interval for 𝜆 contains zero, so the use of a log transformation is indicated.

Figure 2.17 The Box–Cox procedure applied to the worsted yarn data in Table 2.5.
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EXERCISES

2.1 A study was performed on wear of a bearing y and its relationship to 𝜉1 = oil
viscosity and 𝜉2 = load. The following data were obtained:

y 𝜉1 𝜉2

193 1.6 851
230 15.5 816
172 22.0 1058
91 43.0 1201

113 33.0 1357
125 40.0 1115

(a) Fit a multiple linear regression model to these data, using coded variables x1 and
x2, defined so that −1≤ xi ≤ 1, i = 1, 2.

(b) Convert the model in part (a) to a model in the natural variables 𝜉1 and 𝜉2.

(c) Use the model to predict wear when 𝜉1 = 25 and 𝜉2 = 1000.

(d) Fit a multiple linear regression model with an interaction term to these data. Use
the coded variables defined in part (a).

(e) Use the model in (d) to predict wear when 𝜉1 = 25 and 𝜉2 = 1000. Compare this
prediction with the predicted value from part (b) above.

2.2 Consider the regression models developed in Exercise 2.1.

(a) Test for significance of regression from the first-order model in part (a) of Exer-
cise 2.1 using the analysis of variance with 𝛼 = 0.05. What are your conclusions?

(b) Use the extra sum of squares method to investigate adding the interaction term
to the model [part (d) of Exercise 2.1]. With 𝛼 = 0.05, what are your conclusions
about this term?

2.3 The pull strength of a wire bond is an important characteristic. Table E2.1 gives
information on pull strength (y), die height (x1), post height (x2), loop height (x3),
wire length (x4), bond width on the die (x5), and bond width on the post (x6).

(a) Fit a multiple linear regression model using x2, x3, x4, and x5 as the regressors.

(b) Test for significance of regression using the analysis of variance with 𝛼 = 0.05.
What are your conclusions?

(c) Use the model from part (a) to predict pull strength when x2 = 20, x3 = 30, x4 =
90, and x5 = 2.0.

2.4 An engineer at a semiconductor company wants to model the relationship between
the device gain hFE(y) and three parameters: emitter RS (x1), base RS (x2), and
emitter-to-base RS (x3). The data are shown in Table E2.2.

(a) Fit a multiple linear regression model to the data.

(b) Predict hFE when x1 = 14.5, x2 = 220, and x3 = 5.0.

(c) Test for significance of regression using the analysis of variance with 𝛼 = 0.05.
What conclusions can you draw?
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TABLE E2.1 Wire Bond Data for Exercise 2.3

y x1 x2 x3 x4 x5 x6

8.0 5.2 19.6 29.6 94.9 2.1 2.3
8.3 5.2 19.8 32.4 89.7 2.1 1.8
8.5 5.8 19.6 31.0 96.2 2.0 2.0
8.8 6.4 19.4 32.4 95.6 2.2 2.1
9.0 5.8 18.6 28.6 86.5 2.0 1.8
9.3 5.2 18.8 30.6 84.5 2.1 2.1
9.3 5.6 20.4 32.4 88.8 2.2 1.9
9.5 6.0 19.0 32.6 85.7 2.1 1.9
9.8 5.2 20.8 32.2 93.6 2.3 2.1
10.0 5.8 19.9 31.8 86.0 2.1 1.8
10.3 6.4 18.0 32.6 87.1 2.0 1.6
10.5 6.0 20.6 33.4 93.1 2.1 2.1
10.8 6.2 20.2 31.8 83.4 2.2 2.1
11.0 6.2 20.2 32.4 94.5 2.1 1.9
11.3 6.2 19.2 31.4 83.4 1.9 1.8
11.5 5.6 17.0 33.2 85.2 2.1 2.1
11.8 6.0 19.8 35.4 84.1 2.0 1.8
12.3 5.8 18.8 34.0 86.9 2.1 1.8
12.5 5.6 18.6 34.2 83.0 1.9 2.0

TABLE E2.2 Gain Data for Exercise 2.4

x1 x2 x3 y
Emitter RS Base RS E-to-B RS hFE

14.620 226.00 7.000 128.40
15.630 220.00 3.375 52.62
14.620 217.40 6.375 113.90
15.000 220.00 6.000 98.01
14.500 226.50 7.625 139.90
15.250 224.10 6.000 102.60
16.120 220.50 3.375 48.14
15.130 223.50 6.125 109.60
15.500 217.60 5.000 82.68
15.130 228.50 6.625 112.60
15.500 230.20 5.750 97.52
16.120 226.50 3.750 59.06
15.130 226.60 6.125 111.80
15.630 225.60 5.375 89.09
15.380 234.00 8.875 171.90
15.500 230.00 4.000 66.80
14.250 224.30 8.000 157.10
14.500 240.50 10.870 208.40
14.620 223.70 7.375 133.40
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TABLE E2.3 Electric Power Consumption Data for Exercise 2.5

y x1 x2 x3 x4

240 25 24 91 100
236 31 21 90 95
290 45 24 88 110
274 60 25 87 88
301 65 25 91 94
316 72 26 94 99
300 80 25 87 97
296 84 25 86 96
267 75 24 88 110
276 60 25 91 105
288 50 25 90 100
261 38 23 89 98

2.5 The electric power consumed each month by a chemical plant is thought to be related
to the average ambient temperature (x1), the number of days in the month (x2), the
average product purity (x3), and the tons of product produced (x4). The past year’s
historical data are available and are presented in Table E2.3.

(a) Fit a multiple linear regression model to the data.

(b) Predict power consumption for a month in which x1 = 75◦F, x2 = 24 days, x3 =
90%, and x4 = 98 tons.

2.6 Heat treating is often used to carburize metal parts, such as gears. The thickness of
the carburized layer is considered an important feature of the gear, and it contributes
to the overall reliability of the part. Because of the critical nature of this feature, two
different lab tests are performed on each furnace load. One test is run on a sample
pin that accompanies each load. The other test is a destructive test, where an actual
part is cross-sectioned. This test involved running a carbon analysis on the surface
of both the gear pitch (top of the gear tooth) and the gear root (between the gear
teeth). The data in Table E2.4 are the results of the pitch carbon analysis test for
32 parts.

(a) Fit a linear regression model relating the results of the pitch carbon analysis test
(PITCH) to the five regressor variables.

(b) Test for significance of regression. Use 𝛼 = 0.05.

2.7 A regression model y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝜀 has been fitted to a sample of
n = 25 observations. The calculated t-ratios bj/se(bj), j = 1, 2, 3, are as follows: for
𝛽1, t0 = 4.82; for 𝛽2, t0 = 8.21; and for 𝛽3, t0 = 0.98.

(a) Find P-values for each of the t-statistics.

(b) Using 𝛼 = 0.05, what conclusions can you draw about the regressor x3 Does it
seem likely that this regressor contributes significantly to the model?

2.8 Consider the electric power consumption data in Exercise 2.5.

(a) Estimate 𝜎2 for the model fit in Exercise 2.5.

(b) Use the t-test to assess the contribution of each regressor to the model. Using
𝛼 = 0.01, what conclusions can you draw?
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TABLE E2.4 Heat Treating Data for Exercise 2.6

TEMP SOAKTIME SOAKPCT DIFFTIME DIFFPCT PITCH

1650 0.58 1.10 0.25 0.90 0.013
1650 0.66 1.10 0.33 0.90 0.016
1650 0.66 1.10 0.33 0.90 0.015
1650 0.66 1.10 0.33 0.95 0.016
1600 0.66 1.15 0.33 1.00 0.015
1600 0.66 1.15 0.33 1.00 0.016
1650 1.00 1.10 0.50 0.80 0.014
1650 1.17 1.10 0.58 0.80 0.021
1650 1.17 1.10 0.58 0.80 0.018
1650 1.17 1.10 0.58 0.80 0.019
1650 1.17 1.10 0.58 0.90 0.021
1650 1.17 1.10 0.58 0.90 0.019
1650 1.17 1.15 0.58 0.90 0.021
1650 1.20 1.15 1.10 0.80 0.025
1650 2.00 1.15 1.00 0.80 0.025
1650 2.00 1.10 1.10 0.80 0.026
1650 2.20 1.10 1.10 0.80 0.024
1650 2.20 1.10 1.10 0.80 0.025
1650 2.20 1.15 1.10 0.80 0.024
1650 2.20 1.10 1.10 0.90 0.025
1650 2.20 1.10 1.10 0.90 0.027
1650 2.20 1.10 1.50 0.90 0.026
1650 3.00 1.15 1.50 0.80 0.029
1650 3.00 1.10 1.50 0.70 0.030
1650 3.00 1.10 1.50 0.75 0.028
1650 3.00 1.15 1.66 0.85 0.032
1650 3.33 1.10 1.50 0.80 0.033
1700 4.00 1.10 1.50 0.70 0.039
1650 4.00 1.10 1.50 0.70 0.040
1650 4.00 1.15 1.50 0.85 0.035
1700 12.50 1.00 1.50 0.70 0.056
1700 18.50 1.00 1.50 0.70 0.068

2.9 Consider the bearing wear data in Exercise 2.1.

(a) Estimate 𝜎2 for the no-interaction model.

(b) Compute the t-statistic for each regression coefficient. Using 𝛼 = 0.05, what
conclusions can you draw?

(c) Use the extra sum of squares method to investigate the usefulness of adding x2 =
load to the model that already contains x1 = oil viscosity. Use 𝛼 = 0.05.

2.10 Consider the wire bond pull strength data in Exercise 2.3.

(a) Estimate 𝜎2 for this model.

(b) Find the standard errors for each of the regression coefficients.

(c) Calculate the t-test statistic for each regression coefficient. Using 𝛼 = 0.05, what
conclusions can you draw? Do all variables contribute to the model?
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2.11 Reconsider the semiconductor data in Exercise 2.4.

(a) Estimate 𝜎2 for the model you have fitted to the data.

(b) Find the standard errors of the regression coefficients.

(c) Calculate the t-test statistic for each regression coefficient. Using 𝛼 = 0.05, what
conclusions can you draw?

2.12 Exercise 2.6 presents data on heat treating gears.

(a) Estimate 𝜎2 for the model.

(b) Find the standard errors of the regression coefficients.

(c) Evaluate the contribution of each regressor to the model using the t-test with
𝛼 = 0.05.

(d) Fit a new model to the response PITCH using new regressors x1 =
SOAKTIME×SOAKPCT and x2 = DIFFTIME×DIFFPCT.

(e) Test the model in part (d) for significance of regression using 𝛼 = 0.05. Also
calculate the t-test for each regressor and draw conclusions.

(f) Estimate 𝜎2 for the model from part (d), and compare this with the estimate of
𝜎2 obtained in part (b) above. Which estimate is smaller? Does this offer any
insight regarding which model might be preferable?

2.13 Consider the wire bond pull strength data in Exercise 2.3.

(a) Find 95% confidence intervals on the regression coefficients.

(b) Find a 95% confidence interval on mean pull strength when x2 = 20, x3 = 30,
x4 = 90, and x5 = 2.0.

2.14 Consider the semiconductor data in Exercise 2.4.

(a) Find 99% confidence intervals on the regression coefficients.

(b) Find a 99% prediction interval on hFE when x1 = 14.5, x2 = 220, and x3 =
5.0.

(c) Find a 99% confidence interval on mean hFE when x1 = 14.5, x2 = 220, and
x3 = 5.0.

2.15 Consider the heat-treating data from Exercise 2.6.

(a) Find 95% confidence intervals on the regression coefficients.

(b) Find a 95% interval on mean PITCH on TEMP = 1650, SOAKTIME = 1.00,
SOAKPCT = 1.10, DIFFTIME = 1.00, and DIFFPCT = 0.80.

2.16 Reconsider the heat treating in Exercise 2.6 and 2.12, where we fit a model to
PITCH using regressors x1 = SOAKTIME × SOAKPCT and x2 = DIFFTIME ×
DIFFPCT.

(a) Using the model with regressors x1 and x2, find a 95% confidence interval on
mean PITCH when SOAKTIME = 1.00, SOAKPCT = 1.10, DIFFTIME = 1.00,
and DIFFPCT = 0.80.

(b) Compare the length of this confidence interval with the length of the confidence
interval on mean PITCH at the same point from Exercise 2.15 part (b), where
an additive model in SOAKTIME, SOAKPCT, DIFFTIME, and DIFFPCT was
used. Which confidence interval is shorter? Does this tell you anything about
which model is preferable?
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2.17 For the regression model for the wire bond pull strength data in Exercise 2.3.

(a) Plot the residuals versus ŷ and versus the regressors used in the model. What
information is provided by these plots?

(b) Construct a normal probability plot of the residuals. Are there reasons to doubt
the normality assumption for this model?

(c) Are there any indications of influential observations in the data?

2.18 Consider the semiconductor hFE data in Exercise 2.4.

(a) Plot the residuals from this model versus ŷ. Comment on the information in this
plot.

(b) What is the value of R2 for this model?

(c) Refit the model using ln hFE as the response variable.

(d) Plot the residuals versus predicted ln hFE for the model in part (c) above. Does
this give any information about which model is preferable?

(e) Plot the residuals from the model in part (d), versus the regressor x3. Comment
on this plot.

(f) Refit the model to ln hFE using x1, x2, and 1/x3 as the regressors. Comment on
the effect of this change in the model.

2.19 Consider the regression model for the heat-treating data in Exercise 2.6.

(a) Calculate the percentage of variability explained by this model.

(b) Construct a normal probability plot for the residuals. Comment on the normality
assumption.

(c) Plot the residuals versus ŷ, and interpret the display.

(d) Calculate Cook’s distance for each observation, and provide an interpretation of
this statistic.

2.20 In Exercise 2.12 we fitted a model to the response PITCH in the heat treating
data of Exercise 2.6 using new regressors x1 = SOAKTIME×SOAKPCT and x2 =
DIFFTIME×DIFFPCT.

(a) Calculate the R2 for this model, and compare it with the value of R2 from the
original model in Exercise 2.6. Does this provide some information about which
model is preferable?

(b) Plot the residuals from this model versus ŷ and on a normal probability scale.
Comment on model adequacy.

(c) Find the values of Cook’s distance measure. Are any observations unusually
influential?

2.21 An article entitled “A Method for Improving the Accuracy of Polynomial Regression
Analysis” in the Journal of Quality Technology (1971, pp. 149–155) reported the
following data on y = ultimate shear strength of a rubber compound (psi) and x =
cure temperature (◦F).

y 770 800 840 810 735 640 590 560
x 280 284 292 295 298 305 308 315

(a) Fit a second-order polynomial to these data.
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(b) Test for significance of regression, using 𝛼 = 0.05.

(c) Test the hypothesis that 𝛽11 = 0, using 𝛼 = 0.05.

(d) Compute the residuals and use them to evaluate model adequacy.

(e) Suppose that the following additional observations are available: (x = 284, y =
815), (x = 295, y = 830), (x = 305, y = 660), and (x = 315, y = 545). Test the
second-order model for lack of fit.

2.22 Consider the following data, which result from an experiment to determine the effect
of x = test time in hours at a particular temperature to y = change in oil viscosity:

y −4.42 −1.39 −1.55 −1.89 −2.43 −3.15 −4.05 −5.15 −6.43 −7.89
x 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

(a) Fit a second-order polynomial to the data.

(b) Test for significance of regression, using 𝛼 = 0.05.

(c) Test the hypothesis that 𝛽11 = 0, using 𝛼 = 0.05.

(d) Compute the residuals and use them to evaluate model adequacy.

2.23 When fitting polynomial regression models we often subtract x̄ from each x-value
to produce a centered regressor x′ = x− x̄. This reduces the effects of dependences
among the model terms and often leads to more accurate estimates of the regression
coefficients. Using the data from Exercise 2.21, fit the model y = 𝛽∗0+𝛽

∗
1 x′+ 𝛽∗11

(x′)2 + 𝜀. Use the results to estimate the coefficients in the uncentered model y =
𝛽0 + 𝛽1x+ 𝛽11x2+𝜀.

2.24 Suppose that we use a standardized variable x′ = (x−x̄)/sx, where sx is the standard
deviation of x, in constructing a polynomial regression model. Using the data in
Exercise 2.21 and the standardized variable approach, fit the model y = 𝛽∗0𝛽 + 𝛽

∗
1 x′+

𝛽∗11 (x′)2 + 𝜀.

(a) What value of y do you predict when x = 285◦F?

(b) Estimate the regression coefficients in the unstandardized model y =
𝛽0 + 𝛽1x+ 𝛽11x2 + 𝜀.

(c) What can you say about the relationship between SSE and R2 for the standardized
and unstandardized models?

(d) Suppose that y′ = (y− ȳ)/sy is used in the model along with x′. Fit the model and
comment on the relationship between SSE and R2 in the standardized model and
the unstandardized model.

2.25 An article in the Journal of Pharmaceuticals Sciences (vol. 80, 1991, pp. 971–977)
presents data on the observed mole fraction solubility of a solute at a constant tem-
perature to the dispersion, dipolar, and hydrogen bonding Hansen partial solubility
parameters. The data are in Table E2.5, where y is the negative logarithm of the mole
fraction solubility, x1 is the dispersion Hansen partial solubility, x2 is the dipolar
partial solubility, and x3 is the hydrogen bonding partial solubility.

(a) Fit the model y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝛽13x1x3 + 𝛽23x2
x3 + 𝛽11x1

2 + 𝛽22x2
2 + 𝛽33x3

2 + 𝜀.

(b) Test for significance of regression, using 𝛼 = 0.05.
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TABLE E2.5 Data for Exercise 2.25

Obs y x1 x2 x3

1 0.22200 7.3 0.0 0.0
2 0.39500 8.7 0.0 0.3
3 0.42200 8.8 0.7 1.0
4 0.43700 8.1 4.0 0.2
5 0.42800 9.0 0.5 1.0
6 0.46700 8.7 1.5 2.8
7 0.44400 9.3 2.1 1.0
8 0.37800 7.6 5.1 3.4
9 0.49400 10.0 0.0 0.3
10 0.45600 8.4 3.7 4.1
11 0.45200 9.3 3.6 2.0
12 0.11200 7.7 2.8 7.1
13 0.43200 9.8 4.2 2.0
14 0.10100 7.3 2.5 6.8
15 0.23200 8.5 2.0 6.6
16 0.30600 9.5 2.5 5.0
17 0.09230 7.4 2.8 7.8
18 0.11600 7.8 2.8 7.7
19 0.07640 7.7 3.0 8.0
20 0.43900 10.3 1.7 4.2
21 0.09440 7.8 3.3 8.5
22 0.11700 7.1 3.9 6.6
23 0.07260 7.7 4.3 9.5
24 0.04120 7.4 6.0 10.9
25 0.25100 7.3 2.0 5.2
26 0.00002 7.6 7.8 20.7

(c) Plot the residuals, and comment on model adequacy.

(d) Use the extra sum of squares method to test the contribution of the second-order
terms, using 𝛼 = 0.05.

2.26 Below are data on y = green liquor concentration (g/liter) and x = paper machine
speed (ft/min) from a kraft paper machine (the data were read from a graph in an
article in the Tappi Journal, March, 1986).

y 16.0 15.8 15.6 15.5 14.8 14.0 13.5 13.0 12.0 11.0
x 1700 1720 1730 1740 1750 1760 1770 1780 1790 1795

(a) Fit the model y = 𝛽0 + 𝛽1x+ 𝛽2x2 + 𝜀 using least squares.

(b) Test for significance of regression using 𝛼 = 0.05. What are your conclusions?

(c) Test the contribution of the quadratic term to the model, over the contribution of
the linear term, using an F-statistic. If 𝛼 = 0.05, what conclusion can you draw?

(d) Plot the residuals from this model versus ŷ. Does the plot reveal any inadequa-
cies?

(e) Construct a normal probability plot of the residuals. Comment on the normality
assumption.
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2.27 Consider a multiple regression model with k regressors. Show that the test statistic
for significance of regression can be written as

Fk =
R2∕k

(1 − R2)∕(n − k − 1)

Suppose that n = 20, k = 4, and R2 = 0.90. If 𝛼 = 0.05, what conclusion would you
draw about the relationship between y and the four regressors?

2.28 A regression model is used to relate a response y to k = 4 regressors. What is the
smallest value of R2 that will result in a significant regression if 𝛼 = 0.05? Use the
results of the previous exercise. Are you surprised by how small the value of R2 is?

2.29 Show that we can express the residuals from a multiple regression model as

e = (I − H)y

where H = X(X′X)−1X′.

2.30 Show that the variance of the ith residual ei in a multiple regression model is
𝜎2(1−hii) and that the covariance between ei and ej is −𝜎2hij, where the hs are the
elements of H = X(X′X)−1 X′.

2.31 Consider the multiple linear regression model y = Xβ+ 𝜀. If b denotes the least
squares estimator of β, show that b = β+R𝜀 where R = (X′X)−1X′.

2.32 Constrained least squares: Suppose we wish to find the least squares estimator of
β in the model y = Xβ+ 𝜀 subject to a set of equality constraints, say Tβ = c. Show
that the estimator is

bc = b(X′X)−1T′[T(X′X)−1T′]−1(c − Tb)

where b = (X′X)−1 X′y.

2.33 In Section 2.10 we introduced transformations as a technique to handle certain types
of model inadequacy, including inequality of variance. Another technique, weighted
least squares, can also deal with inequality of variance. Suppose that the variance of
the ith observation is 𝜎2

i but that the errors in the model are uncorrelated. Weighted
least squares estimates the model parameters using the objective function

L = (y − Xβ)′W(y − Xβ)

where W is a diagonal matrix of “weights” wi = 1∕𝜎2
i .

(a) Find the weight least squares estimator of the vector of model parameters β.

(b) Find the covariance matrix of the weighted least squares estimator from part (a).

2.34 A hospital conducts surveys of patients when they are discharged to determine their
satisfaction with the care and service they have received. Table E2.6 contains a
recent sample of this data. The Surgical–Medical variable is an indicator variable,
taking on the value 0 if the patient is on the surgical service and 1 if the patient is
on the medical service. The Severity and Anxiety variables are determined based on
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TABLE E2.6 Patient Satisfaction Data

Observation Age Severity Surgical–Medical Anxiety Satisfaction

1 55 50 0 2.1 68
2 46 24 1 2.8 77
3 30 46 1 3.3 96
4 35 48 1 4.5 80
5 59 58 0 2.0 43
6 61 60 0 5.1 44
7 74 65 1 5.5 26
8 38 42 1 3.2 88
9 27 42 0 3.1 75
10 51 50 1 2.4 57
11 53 38 1 2.2 56
12 41 30 0 2.1 88
13 37 31 0 1.9 88
14 24 34 0 3.1 102
15 42 30 0 3.0 88
16 50 48 1 4.2 70
17 58 61 1 4.6 52
18 60 71 1 5.3 43
19 62 62 0 7.2 46
20 68 38 0 7.8 56
21 70 41 1 7.0 59
22 79 66 1 6.2 26
23 63 31 1 4.1 52
24 39 42 0 3.5 83
25 49 40 1 2.1 75

examination of the patient upon admission, and increase as either anxiety or severity
of illness increase.

(a) Fit a linear regression model to this data.

(b) Based on the test statistics for the fitted model are all regressor variables neces-
sary? If not, fit an appropriate model to the data.

(c) Plot the model residuals and comment on model adequacy.

2.35 The quality of Pinot Noir wine is thought to be related to the properties of clarity,
aroma, body, flavor, and oakiness. Data for 38 wines are given in Table E2.7.

(a) Fit a multiple linear regression model relating wine quality to these predictors.
Do not include the “Region” variable in the model.

(b) Test for significance of regression. What conclusions can you draw?

(c) Plot the residuals and comment on model adequacy.

(d) Discuss the contribution of each regressor to the model. Would a model with
fewer regressors be satisfactory?

2.36 Reconsider the wine quality data in Table E2.7. The “Region” predictor refers to
three distinct geographical regions where the wine was produced. Note that this is a
categorical variable.
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TABLE E2.7 Wine Quality Data (found in Minitab)

Clarity, Aroma, Body, Flavor, Oakiness, Quality,
x1 x2 x3 x4 x5 y Region

1 3.3 2.8 3.1 4.1 9.8 1
1 4.4 4.9 3.5 3.9 12.6 1
1 3.9 5.3 4.8 4.7 11.9 1
1 3.9 2.6 3.1 3.6 11.1 1
1 5.6 5.1 5.5 5.1 13.3 1
1 4.6 4.7 5 4.1 12.8 1
1 4.8 4.8 4.8 3.3 12.8 1
1 5.3 4.5 4.3 5.2 12 1
1 4.3 4.3 3.9 2.9 13.6 3
1 4.3 3.9 4.7 3.9 13.9 1
1 5.1 4.3 4.5 3.6 14.4 3
0.5 3.3 5.4 4.3 3.6 12.3 2
0.8 5.9 5.7 7 4.1 16.1 3
0.7 7.7 6.6 6.7 3.7 16.1 3
1 7.1 4.4 5.8 4.1 15.5 3
0.9 5.5 5.6 5.6 4.4 15.5 3
1 6.3 5.4 4.8 4.6 13.8 3
1 5 5.5 5.5 4.1 13.8 3
1 4.6 4.1 4.3 3.1 11.3 1
0.9 3.4 5 3.4 3.4 7.9 2
0.9 6.4 5.4 6.6 4.8 15.1 3
1 5.5 5.3 5.3 3.8 13.5 3
0.7 4.7 4.1 5 3.7 10.8 2
0.7 4.1 4 4.1 4 9.5 2
1 6 5.4 5.7 4.7 12.7 3
1 4.3 4.6 4.7 4.9 11.6 2
1 3.9 4 5.1 5.1 11.7 1
1 5.1 4.9 5 5.1 11.9 2
1 3.9 4.4 5 4.4 10.8 2
1 4.5 3.7 2.9 3.9 8.5 2
1 5.2 4.3 5 6 10.7 2
0.8 4.2 3.8 3 4.7 9.1 1
1 3.3 3.5 4.3 4.5 12.1 1
1 6.8 5 6 5.2 14.9 3
0.8 5 5.7 5.5 4.8 13.5 1
0.8 3.5 4.7 4.2 3.3 12.2 1
0.8 4.3 5.5 3.5 5.8 10.3 1
0.8 5.2 4.8 5.7 3.5 13.2 1

The wine here is Pinot Noir. Region refers to distinct geographic regions.

(a) Fit the model using the “Region” variable as it is given in Table E2.7. What
potential difficulties could be introduced by including this variable in the regres-
sion model using the three levels shown in Table E2.7?

(b) An alternative way to include the categorical variable “Region” would be to
introduce two indicator variables x1 and x2 as follows:
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Region x1 x2

1 0 0

2 1 0

3 0 1

Why is this approach better than just using the codes 1, 2, and 3?

(c) Rework Exercise 2.35 using the indicator variables defined in part b for the
variable “Region.”

2.37 Consider the simple linear regression model

y = 𝛽0 + 𝛽1x + 𝜀

where the variance of the errors 𝜀i is proportional to x2
i ; that is, Var(𝜀2

i ) = 𝜎2x2
i .

(a) Suppose we use the transformations y′ = y∕x and x′ = 1∕x. Does this stabilize
the variance?

(b) What are the relationships between the parameters in the original and trans-
formed models?

(c) Suppose that we use weighted least squares technique introduced in Exercise
2.33 with weights wi = 1∕x2

i . Is this equivalent to the transformation suggested
in part (a)?

2.38 Suppose that we want to fit a linear regression model without an intercept term, say
yi = 𝛽xi + 𝜀. Find a general formula for the least squares estimator of the slope.

Short Answer Questions

2.39 Consider the computer output from a regression model shown below.

Source Sum of Squares Degrees of Freedom Mean Square F

Model 532, 567.14 2

Error

Total 539, 534.33 14

(a) Fill in the blanks in the table.

(b) How many regressor or predictor variables are in this model?

(c) Find bounds on the P-value for the test on significance of regression.

(d) Suppose that the t-statistic for one of the predictor variables in this model is
4.22. Find bounds on the P-value.
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2.40 Consider the computer output from a regression model shown below.

Source Sum of Squares Degrees of Freedom Mean Square F

Model 534.66 133.67

Error

Total 590.25 19

(a) Fill in the blanks in the table.

(b) How many regressor or predictor variables are in this model?

(c) Compute the F-statistic for significance of regression and find bounds on the
P-value.

(d) Suppose that the t-statistic for one of the predictor variables in this model is
6.11. Find bounds on the P-value.

(e) What is the value of the R2 statistic for this model?

2.41 A regression model with 5 regressors has been built to 75 observations. The individ-
ual t-statistics for each predictor are as follows: 4.21, 2.12, 6.98, 3.55, and 2.45.

(a) Find bounds on the P-values for each predictor.

(b) Based on your answers to part (a), are all of the regressor variables currently in
the model necessary?

2.42 A regression model with 3 regressors has been fit to a sample of 45 observations.
The total sum of squares for the model is 275.60 and the model sum of squares is
245.86.

(a) Find the value of the mean square error.

(b) Find the model mean square.

(c) Compute the value of the F-statistic for significance of regression and find
bounds on the P-value. What are your conclusions?

(d) What is the value of R2 for this model?

(e) What is the value of the adjusted R2 statistic for this model?

2.43 A regression model with 4 regressors has been fit to a sample of 65 observations.
The total sum of squares for the model is 300 and the model sum of squares is 280.

(a) What is the value of R2 for this model?

(b) What is the value of the adjusted R2 statistic for this model?

(c) Suppose that one of the regressors is removed from the model and the new
model sum of squares is 250. What is the value of the adjusted R2 for this
reduced model? What is the impact on model fit of removing this regressor?

2.44 A regression model with 3 regressors has been built to a sample of 30 observations.
The individual t-statistics for each predictor are as follows: 2.12, 5.45, and 17.50.

(a) Find bounds on the P-values for each predictor.

(b) Based on your answers to part (a), are all of the regressor variables currently in
the model necessary?
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2.45 The value of the adjusted R2 statistic always increases when a new regressor variable
is added to the model. True False

2.46 The value of the ordinary R2 statistic can decrease when a new regressor variable is
added to the model. True False

2.47 The ordinary R2 statistic is a good indicator of the prediction capability of a regression
model. True False

2.48 If the P-value for the test for significance of regression is< 0.01, this is an indication
that all of the regressor variables in the model are necessary. True False

2.49 If the P-value for the test for significance of regression is< 0.01, this is an indication
that the regression model will be a good predictor of new observations. True False

2.50 A small value of the PRESS statistic is a good indication that the regression model
will be a good predictor of new observations. True False





3
TWO-LEVEL FACTORIAL DESIGNS

3.1 INTRODUCTION

Factorial designs are widely used in experiments involving several factors where it is
necessary to investigate the joint effects of the factors on a response variable. By joint
factor effects, we typically mean main effects and interactions. A very important special
case of the factorial design is that where each of the k factors of interest has only two
levels. Because each replicate of such a design has exactly 2k experimental trials or runs,
these designs are usually called 2k factorial designs. These designs are the subject of this
chapter.

The 2k factorial designs are very important in response surface work. Specifically, they
find applications in three areas:

1. A 2k design (or a fractional version discussed in the next chapter) is useful at the start
of a response surface study where screening experiments should be performed to
identify the important process or system variables.

2. A 2k design is often used to fit a first-order response surface model and to generate
the factor effect estimates required to perform the method of steepest ascent.

3. The 2k design is a basic building block used to create other response surface designs.
For example, if you augment a 22 design with axial runs and center points as in
Fig. 2.8 of Chapter 2, then a central composite design results. Historically, the
central composite design is one of the most important designs for fitting second-
order response surface models.

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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3.2 THE 22 DESIGN

The simplest design in the 2k series is one with only two factors, say A and B, each run
at two levels. This design is called a 22 factorial design. The levels of the factors may
be arbitrarily called “low” and “high.” These two levels may be quantitative, such as two
values of temperature or pressure; or they may be qualitative, such as two machines, or
two operators. In most response surface studies the factors and their levels are quantitative.

As an example, consider an investigation into the effect of the concentration of the
reactant and the feed rate on the viscosity of product from a chemical process. Let
the reactant concentration be factor A, and let the two levels of interest be 15% and
25%. The feed rate is factor B, with the low level being 20 lb/hr and the high level being
30 lb/hr. The experiment is replicated four times, and the data are as follows:

Viscosity

Factor-Level Combination I II III IV Total

A low, B low 145 148 147 140 580
A high, B low 158 152 155 152 617
A low, B high 135 138 141 139 553
A high, B high 150 152 146 149 597

The four factor-level or treatment combinations in this design are shown graphically in
Fig. 3.1. By convention, we denote the effect of a factor by the same capital Latin letter.
That is, A refers to the effect of factor A, B refers to the effect of factor B, and AB refers
to the AB interaction. In the 22 design the low and high levels of A and B are denoted by
− (or−1) and+ (or+1), respectively, on the A- and B-axes. Thus,− on the A-axis represents
the low level of concentration (15%), and+ represents the high level (25%). Similarly,− on
the B-axis represents the low level of feed rate, and+ denotes the high level.

The four factor-level combinations in the design can also be represented by lowercase
letters, as shown in Fig. 3.1. We see from the figure that the high level of any factor at a
point in the design is denoted by the corresponding lowercase letter and that the low level
of a factor at a point in the design is denoted by the absence of the corresponding letter.
Thus, a represents the combination of factor levels with A at the high level and B at the low
level, b represents A at the low level and B at the high level, and ab represents both factors

Figure 3.1 The 22 design.
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at the high level. By convention, (1) is used to denote the run where both factors are at the
low level. This notation is used throughout the 2k series.

The average effect of a factor (or the main effect) is defined as the change in response
produced by a change in the level on that factor averaged over the levels of the other factor.
Also the symbols (1), a, b, and ab now represent the totals of all n replicates taken at the
points in the design, as illustrated in Fig. 3.1. The formulas for the effects of A, B, and AB
may be easily derived. The main effect of A can be found as the difference in the average
response of the two points on the right-hand side of the square in Fig. 3.1 (call this average
ȳA+ , because it is the average response at the points where A is at the high level) and the
two points on the left-hand side (or ȳA− ). That is,

A = ȳA+ − ȳA−

= ab + a
2n

− b + (1)
2n

= 1
2n

[ab + a − b − (1)] (3.1)

The main effect of factor B is found as the difference between the average of the response
at the two points on the top of the square ( ȳB+ ) and the average of the response at the two
points on the bottom ( ȳB− ), or

B = ȳB+ − ȳB−

= ab + b
2n

− a + (1)
2n

= 1
2n

[ab + b − a − (1)] (3.2)

Finally, the interaction effect AB is the average of the responses on the right-to-left diagonal
points in the square [ab and (1)] minus the average of the responses on the left-to-right
diagonal points (a and b), or

AB = ab + (1)
2n

− a + b
2n

= 1
2n

[ab + (1) − a − b] (3.3)

Using the example data in Fig. 3.1, we may estimate the effects as

A = 1
2(4)

(597 + 617 − 553 − 580) = 10.125

B = 1
2(4)

(597 + 553 − 617 − 580) = −5.875

AB = 1
2(4)

(597 + 580 − 617 − 553) = 0.875

The main effect of A (reactant concentration) is positive; this suggests that increasing A
from the low level (15%) to the high level (25%) will increase the viscosity. The main
effect of B (feed rate) is negative; this suggests that increasing the feed rate will decrease
the viscosity. The interaction effect appears to be small relative to the two main effects.
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In many experiments involving 2k designs, we will examine the magnitude and direction
of the factor effects to determine which variables are likely to be important. The analysis
of variance can generally be used to confirm this interpretation.

In the 2k design, there are some special, efficient methods for performing the calculations
in the analysis of variance. Consider the sums of squares for the factors A, B, and AB. Note
from Equation 3.1 that a contrast is used in estimating A, namely,

ContrastA = ab + a − b − (1) (3.4)

We usually call this contrast the total effect of A. From Equations 3.2 and 3.3, we see
that contrasts are also used to estimate B and AB. Furthermore, these three contrasts are
orthogonal. The sum of squares for any contrast is equal to the contrast squared divided
by the number of observations in each total in the contrast times the sum of the squares of
the contrast coefficients. Consequently, we have

SSA = [ab + a − b − (1)]2

n × 4
(3.5)

SSB = [ab + b − a − (1)]2

n × 4
(3.6)

and

SSAB = [ab + (1) − a − b]2

n × 4
(3.7)

as the sums of squares for A, B, and AB.
Using the data in Fig. 3.1, we may find the sums of the squares from Equations 3.5, 3.6,

and 3.7 as

SSA = (81)2

4(4)
= 410.0625

SSB = (47)2

4(4)
= 138.0625

and

SSAB = (7)2

4(4)
= 3.0625

The total sum of squares is found in the usual way; that is,

SST =
2∑

i=1

2∑
j=1

n∑
k=1

y2
ijk −

y 2
…

4n
(3.8)

In general, SST has 4n− 1 degrees of freedom. The error sum of squares, with 4(n− 1)
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TABLE 3.1 Analysis of Variance for Data in Fig. 3.1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

A 410.0625 1 410.0625 49.08 1.42 × 10−5

B 138.0625 1 138.0625 16.53 0.0016
AB 3.0625 1 3.0625 0.37 0.5562
Error 100.2500 12 8.3542
Total 651.4375 15

degrees of freedom, is usually computed by subtraction as

SSE = SST − SSA − SSB − SSAB (3.9)

For the data in Fig. 3.1, we obtain

SST =
2∑

i=1

2∑
j=1

4∑
k=1

y 2
ijk −

y 2
…

4(4)

= 334, 527.0000 − 344, 275.5625 = 651.4375

and

SSE = SST − SSA − SSB − SSAB

= 651.4375 − 410.0625 − 138.0625 − 3.0625

= 100.2500

using SSA, SSB, and SSAB computed previously. The complete analysis of variance is
summarized in Table 3.1. Both main effects are statistically significant, and the interaction
is not significant. This confirms our initial interpretation of the data based on the magnitudes
of the factor effects.

It is often convenient to write down the factor level or treatment combinations in the order
(1), a, b, ab, as in the column labeled “treatment combination” in Table 3.2. This is referred
to as standard order. The columns labeled A and B in this table contain the+ and− signs
corresponding to the four runs at the corners of the square in Fig. 3.1. Note that the contrast
coefficients for estimating the interaction effect are just the products of the corresponding
coefficients for the two main effects. The column labeled I in Table 3.2 represents the total
or average of all of the observations in the entire experiment. The column corresponding to
I has only plus signs and is sometimes called the identity column. The row designators are

TABLE 3.2 Signs for Calculating Effects in the 22 Design

Factorial Effect

Treatment Combination I A B AB

(1) + − − +
a + + − −
b + − + −
ab + + + +
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the treatment combinations. To find the contrast for estimating any effect, simply multiply
the signs in the appropriate column of the table by the corresponding treatment combination
and add. For example, to estimate A, the contrast is−(1)+ a− b+ ab, which agrees with
Equation 3.l.

The Regression Model It is easy to convert the effect estimates in a 2k factorial design
into a regression model that can be used to predict the response at any point in the space
spanned by the factors in the design. For the chemical process experiment, the first-order
regression model is

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝜀 (3.10)

where x1 is the coded variable that represents the reactant concentration, x2 is the coded
variable that represents the feed rate, and the 𝛽s are the regression coefficients. The rela-
tionship between the natural variables, the reactant concentration and the feed rate, and the
coded variables is

x1 =
Conc − (Conclow + Conchigh)∕2

(Conchigh − Conclow)∕2

and

x2 =
Feed − (Feedlow + Feedhigh)∕2

(Feedhigh − Feedlow)∕2

When the natural variables have only two levels, this coding will produce the ±1 notation
for the levels of the coded variables. To illustrate this for our example, note that

x1 =
Conc − (15 + 25)∕2

(25 − 15)∕2

= Conc − 20
5

Thus, if the concentration is at the high level (Conc = 25%), then x1 = +1, whereas if the
concentration is at the low level (Conc = 15%), then x1 = −1. Furthermore,

x2 =
Feed − (20 + 30)∕2

(30 − 20)∕2

= Feed − 25
5

Thus, if the feed rate is at the high level (Feed = 30 lb/hr), then x2 = +1, whereas if the
feed rate is at the low level (Feed = 20 lb/hr), then x2 = −1.

The fitted regression model is

ŷ = 146.6875 +
(

10.125
2

)
x1 +

(
−5.875

2

)
x2

= 146.6875 + 5.0625x1 − 2.9375x2
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where the intercept is the grand average of all 16 observations, and the regression coefficients
b1 and b2 are one-half the corresponding factor effect estimates. The reason that the
regression coefficient is one-half the effect estimate is that a regression coefficient measures
the effect of a unit change in x on the mean of y, and the effect estimate is based on a two-
unit change (from −1 to +1). This model explains about 84% of the variability in viscosity,
because

R2 = SSmodel∕SST = (SSA + SSB)∕SST

= (410.0625 + 138.0625)∕651.4375

= 548.1250∕651.4375 = 0.8414

This regression model is really a first-order response surface model for the process. If
the interaction term in the analysis of variance (Table 3.1) were significant, the regression
model would have been

y = 𝛽0 + 𝛽1x2 + 𝛽2x1 + 𝛽12x1x2 + 𝜀

and the estimate of the regression coefficient 𝛽12 would be one-half the AB interaction
effect, or b12 = 0.875/2. Clearly this coefficient is small relative to b1 and b2, and so this
is further evidence that interaction contributes very little to explaining viscosity in this
process.

Regression Coefficients are Least Squares Estimates The regression coefficient esti-
mates obtained above are least squares estimates. To verify this, write out the model in
Equation 3.10 in matrix form, that is,

y = X𝛽 + 𝜀

where

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

145
148
147
140
158
152
155
152
135
138
141
139
150
152
146
149

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 1 −1
1 1 −1
1 1 −1
1 −1 1
1 −1 1
1 −1 1
1 −1 1
1 −1 1
1 1 1
1 1 1
1 1 1
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝜷 =
⎡⎢⎢⎣

𝛽0
𝛽1
𝛽2

⎤⎥⎥⎦
, 𝜺 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6
𝜀7
𝜀8
𝜀9
𝜀10
𝜀11
𝜀12
𝜀13
𝜀14
𝜀15
𝜀16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The least squares estimates of 𝛽0, 𝛽1, and 𝛽2 are found from

b = (X′X)−1X′y

or

⎡⎢⎢⎣

b0
b1
b2

⎤⎥⎥⎦
=
⎡⎢⎢⎣

16 0 0
0 16 0
0 0 16

⎤⎥⎥⎦

−1 ⎡⎢⎢⎣

2347
81

−47

⎤⎥⎥⎦

= 1
16

I3

⎡⎢⎢⎣

2347
81

−47

⎤⎥⎥⎦

where I3 is a 3× 3 identity matrix. This last expression reduces to

⎡⎢⎢⎣

b0
b1
b2

⎤⎥⎥⎦
=
⎡⎢⎢⎣

2347∕16
81∕16

−47∕16

⎤⎥⎥⎦

or b0 = 2347/16 = 146.6875, b1 = 5.0625, and b2 = −2.9375. Therefore, the least squares
estimates of 𝛽1 and 𝛽2 are exactly one-half of the factor effect estimates. This will always
be the case in any 2k factorial design with coded factors between −1 and 1.

Residual Analysis It is easy to compute the residuals from a 2k design via the regression
model. For the chemical process experiment, the regression model is

ŷ = 146.6875 +
(

10.125
2

)
x1 −

(
5.875

2

)
x2

This model can be used to generate the predicted values of y at the four points in the design.
For example, when the reactant concentration is at the low level (x1 = −1) and the feed rate
is at the low level (x2 = −1) the predicted viscosity is

ŷ = 146.6875 +
(

10.125
2

)
(−1) −

(
5.875

2

)
(−1)

= 144.563

There are four observations at this treatment combination, and the residuals are

e1 = 145 − 144.563 = 0.438

e2 = 148 − 144.563 = 3.438

e3 = 152 − 144.563 = 2.438

e4 = 140 − 144.563 = −4.563
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The remaining predicted values and residuals are calculated similarly. For the high level of
the reactant concentration and the low level of the feed rate:

ŷ = 146.6875 +
(

10.125
2

)
(+1) +

(
−5.875

2

)
(−1)

= 154.688

and

e5 = 158 − 154.688 = −3.688

e6 = 152 − 154.688 = −2.688

e7 = 155 − 154.688 = −0.313

e8 = 152 − 154.688 = −2.688

For the low level of the reactant concentration and the high level of the feed rate:

ŷ = 146.6875 +
(

10.125
2

)
(−1) +

(
−5.875

2

)
(+1)

= 138.688

and

e9 = 135 − 138.688 = −3.688

e10 = 138 − 138.688 = −0.688

e11 = 141 − 138.688 = 2.313

e12 = 139 − 138.688 = 0.313

Finally, for the high level of both factors:

ŷ = 146.6875 +
(

10.125
2

)
(+1) +

(
−5.875

2

)
(+1)

= 148.812

and

e13 = 150 − 148.812 = 1.188

e14 = 152 − 148.812 = 3.188

e15 = 146 − 148.812 = −2.813

e16 = 149 − 148.812 = 0.188
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Figure 3.2 Normal probability plot of the residuals from the chemical process experiment.

Figure 3.2 presents a normal probability plot of these residuals, and Fig. 3.3 is a plot of
the residuals versus the predicted values ŷ. These plots appear satisfactory, so we have no
reason to suspect problems with the validity of our conclusions.

The Response Surface Figure 3.4a presents a three-dimensional response surface plot
of viscosity, based on the first-order model using reactant concentration and feed rate as
the regressors, and Fig. 3.4b is the contour plot. Because the model is first-order, the fitted
response surface is a plane. Based on examination of this fitted surface, it is clear that
viscosity increases as reactant concentration increases and feed rate decreases. Often a
fitted surface such as this can be used to determine an appropriate direction of potential
improvement for a process. A formal method for doing this, called the method of steepest
ascent, will be introduced in Chapter 5.

Computer Output There are several software packages that will construct experimental
designs and analyze the resulting data. In this book, we primarily use JMP and Design-
Expert. The output from Design-Expert is shown in Table 3.3. In the upper portion of the
table an analysis of variance for the full model is presented. The format of this presentation

Figure 3.3 Plot of residual versus predicted viscocity for the chemical process experiment.
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Figure 3.4 (a) Response surface plot of viscosity from the chemical process experiment. (b) The
contour plot.

is slightly different from the analysis of variance in Table 3.1. The source called the “model”
is an analysis of variance for the full model using

SSmodel = SSA + SSB + SSAB

= 410.06 + 138.06 + 3.06

= 551.19

Thus the statistic

F0 =
MSmodel

MSE
= 183.73

8.35
= 21.99

is testing the hypotheses

H0: 𝛽1 = 𝛽2 = 𝛽12 = 0

H1: at least one 𝛽 ≠ 0.

Because F0 is large, we conclude that at least one variable has a nonzero effect. Then each
individual factorial effect is tested for significance using the F-statistic (as in Table 3.1).

The lower portion of Table 3.3 shows the analysis of variance summary for the reduced
model; that is, the model with the nonsignificant AB interactions removed. The error
or residual sum of squares is now composed of a pure error component arising from
the replicate runs and a lack-of-fit component corresponding to the AB interaction. The
regression model in terms of both actual and coded variables is given, along with confidence
intervals on each model coefficient, a summary of several regression diagnostics from
Chapter 2, and the model residuals. The column labeled “Outlier t ” is R-student.
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Figure 3.5 The 23 factorial design.

3.3 THE 23 DESIGN

Suppose that three factors, A, B, and C, each at two levels, are of interest. Then the design
is called a 23 factorial design, and the eight treatment combinations can be displayed
graphically as a cube, as shown in Fig. 3.5a. Extending the notation discussed in Section
3.2, we write the treatment combinations in standard order as (1), a, b, ab, c, ac, bc, and
abc. Remember that these symbols also represent the total of all n observations taken at
that particular treatment combinations.

Using the “+ and −” notation to represent the high and low levels of each factor, we
may list the eight runs in the 23 design in the tabular format shown in Fig. 3.5b. This is
usually called the design matrix.

The “+ and −” notation is often called the geometric notation. While other notational
schemes could be used, we prefer the geometric notation because it facilitates the translation
of the analysis of variance results into a regression model. This notation is widely used in
response surface methodology.

There are seven degrees of freedom between the eight treatment combinations in the 23

design. Three degrees of freedom are associated with the main effects of A, B, and C. Four
degrees of freedom are associated with interactions: one each with AB, AC, and BC, and
one with ABC.

Consider estimating the main effects. First, consider estimating the main effect of A.
This effect estimate can be expressed as a contrast between the four treatment combinations
in the right face of the cube in Fig. 3.6a (where A is at the high level) and the four in the
left face (where A is at the low level). That is, the A effect is just the average of the four
runs where A is at the high level (ȳA+ ) minus the average of the four runs where A is at the
low level ( ȳA− ), or

A = ȳA+ − ȳA−

= a + ab + ac + abc
4n

− (1) + b + c + bc
4n



3.3 THE 23 DESIGN 95

Figure 3.6 Geometric view of contrasts corresponding to the main effects and interaction in the 23

design. (a) Main effects. (b) Two-factor interactions. (c) Three-factor interaction.

This equation can be rearranged as

A = 1
4n

[a + ab + ac + abc − (1) − b − c − bc] (3.11)

In a similar manner, the effect of B is the difference in averages between the four
treatment combinations in the front face of the cube and the four in the back. This
yields

B = ȳB+ − ȳB−

= 1
4n

[b + ab + bc + abc − (1) − a − c − ac] (3.12)

The effect of C is the difference in averages between the four treatment combinations in
the top face of the cube and the four in the bottom; that is,

C = ȳC+ − ȳC−

= 1
4n

[c + ac + bc + abc − (1) − a − b − ab] (3.13)
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The two-factor interaction effects may be computed easily. A measure of the AB inter-
action is the difference between the average A effects at the two levels of B. By convention,
one-half of this difference is called the AB interaction. This is expressed symbolically as
follows:

B Average A Effect

High (+) (abc − bc) + (ab − b)
2n

Low (−) (ac − c) + [a − (1)]
2n

Difference abc − bc + ab − b − ac + c − a + (1)
2n

Because the AB interaction is one-half of this difference, we have

AB = [abc − bc + ab − b − ac + c − a + (1)]
4n

(3.14)

We can write Equation 3.14 as follows:

AB = abc + ab + c + (1)
4n

− bc + b + ac + a
4n

In this form, the AB interaction is easily seen to be the difference in averages between
runs on two diagonal planes in the cube in Fig. 3.6b. Using similar logic and referring to
Fig. 3.6b, the AC and BC interactions are

AC = 1
4n

[(1) − a + b − ab − c + ac − bc + abc] (3.15)

and

BC = 1
4n

[(1) + a − b − ab − c − ac + bc + abc] (3.16)

The ABC interaction is defined as the average difference between the AB interaction for
the two different levels of C. Thus,

ABC = 1
4n

{[abc − bc] − [ac − c] − [ab − b] + [a − (1)]}

= 1
4n

[abc − bc − ac + c − ab + b + a − (1)] (3.17)

As before, we can think of the ABC interaction as the difference in two averages. If the runs
in the two averages are isolated, they define the vertices of the two tetrahedra that make up
the cube in Fig. 3.6c.
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TABLE 3.4 Algebraic Signs for Calculating Effects in the 23 Design

Factorial Effect

Treatment Combination I A B AB C AC BC ABC

(1) + − − + − + + −
a + + − − − − + +
b + − + − − + − +
ab + + + + − − − −
c + − − + + − − +
ac + + − − + + − −
bc + − + − + − + −
abc + + + + + + + +

In Equations 3.11 through 3.17, the quantities in brackets are contrasts in the treatment
combinations. A table of plus and minus signs can be developed for the contrasts and is
shown in Table 3.4. Signs for the main effects are determined by associating a plus with
the high level and a minus with the low level. Once the signs for the main effects have
been established, the signs for the interaction columns can be obtained by multiplying the
appropriate preceding columns, row by row. For example, the signs in the AB column are
the products of the A and B column signs in each row. The contrast for any effect can
be obtained from this table.

Table 3.4 has several interesting properties: (1) Except for column I, every column has
an equal number of plus and minus signs. (2) The sum of the products of the signs in any
two columns is zero. (3) Column I multiplied by any column leaves that column unchanged.
That is, I is an identity element. (4) The product of any two columns yields a column in the
table. For example, A×B = AB, and

AB × B = AB2 = A

We see that the exponents in the products are formed by using modulus 2 arithmetic. (That
is, the exponent can only be zero or one; if it is greater than one, it is reduced by multiples
of two until it is either zero or one.) All of these properties result from the fact that the 23

(indeed all 2k designs) is an orthogonal design.
Sums of squares for the effects are easily computed, because each effect has a corre-

sponding single-degree-of-freedom contrast. In the 23 design with n replicates, the sum of
squares for any effect is

SS = (contrast)2

8n
(3.18)

Example 3.1 The Plasma Etch Experiment An electrical engineer is investigating a
plasma etching process used in semiconductor manufacturing. He is studying the effects
of three factors—anode–cathode gap (A), C2F6 gas flow rate (B), and power applied to
the cathode (C)—on the etch rate. Each factor is run at two levels. Two replicates of a 23

factorial design are shown in Table 3.5, along with the resulting response variable values.
The design is shown graphically in Fig. 3.7.
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TABLE 3.5 The 23 Factorial Design for Example 3.1

Etch Rate (Å/min)

A (Gap) B (C2F6 Flow) C (Power) Replicate I Replicate II Totals

−1 −1 −1 247 400 (1) = 647
1 −1 −1 470 446 a = 916

−1 1 −1 429 405 b = 834
1 1 −1 435 445 ab = 880

−1 −1 1 837 850 c = 1687
1 −1 1 551 670 ac = 1221

−1 1 1 775 865 bc = 1640
1 1 1 660 530 abc = 1190

Using the totals shown in Table 3.5 for each of the eight runs in the design, we may
calculate the effect estimates as follows:

A = 1
4n

[a − (1) + ab − b + ac − c + abc − bc]

= 1
8

[916 − 647 + 880 − 834 + 1221 − 1687 + 1190 − 1640]

= 1
8

[−601] = −75.125

B = 1
4n

[b + ab + bc + abc − (1) − a − c − ac]

= 1
8

[834 + 880 + 1640 + 1190 − 647 − 916 − 1687 − 1221]

= 1
8

[73] = 9.125

Figure 3.7 The 23 design for Example 3.1.
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C = 1
4n

[c + ac + bc + abc − (1) − a − b − ab]

= 1
8

[1687 + 1221 + 1640 + 1190 − 647 − 916 − 834 − 886]

= 1
8

[2461] = 307.625

AB = 1
4n

[ab − a − b + (1) + abc − bc − ac + c]

= 1
8

[880 − 916 − 834 + 647 + 1190 − 1640 − 1221 + 1687]

= 1
8

[−207] = −25.875

AC = 1
4n

[(1) − a + b − ab − c + ac − bc + abc]

= 1
8

[647 − 916 + 834 − 880 − 1687 + 1221 − 1640 + 1190]

= 1
8

[−1231] = −153.875

BC = 1
4n

[(1) + a − b − ab − c − ac + bc + abc]

= 1
8

[647 + 916 − 834 − 880 − 1687 − 1221 + 1640 + 1190]

= 1
8

[−229] = −28.625

and

ABC = 1
4n

[abc − bc − ac + c − ab + b + a − (1)]

= 1
8

[1190 − 1640 − 1221 + 1687 − 880 + 834 + 916 − 647]

= 1
8

[239] = 29.875

The largest effects are for the gap (A = −75.125), the power (C = 307.625), and the
gap–power interaction (AC = −153.875).

The analysis of variance may be used to confirm the magnitude of these effects. From
Equation 3.18, the sums of squares are

SSA = (−601)2

16
= 22,575.1

SSB = (73)2

16
= 333.1

SSC = (2461)2

16
= 378, 532.6
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SSAB = (−207)2

16
= 2678.1

SSAC = (−1231)2

16
= 94, 710.1

SSBC = (−229)2

16
= 3277.6

and

SSABC = (239)2

16
= 3570.1

The analysis of variance is summarized in Table 3.6. Based on the P-values shown in this
table, we concluded that gap (A) and power (C) are statistically significant effects, as is the
gap-power (AC) interaction.

The regression model for this process, based on the reduced model from the above
analysis, is

ŷ = b0 + b1x1 + b3x3 + b13x1x3

= 563.438 +
(
−75.125

2

)
x1 +

(
307.625

2

)
x3 +

(
−153.875

2

)
x1x3

= 563.438 − 37.563x1 + 153.813x3 − 76.938x1x3

where the variables x1 and x3 represent the design factors A and C, respectively, on the
coded (−1, +1) scale. This regression model can be used to generate predicted values at
each corner of the design, from which residuals can be obtained. The reader should obtain
these residuals and graphically analyze them.

The factor effect estimates (and the regression model) indicate that etch rate increases
as the gap (A) decreases and as the power (C) increases, and that these factors interact, The
two-factor interaction graph, shown in Fig. 3.8, is helpful in the practical interpretation of
the results. This graph was constructed by plotting average etch rate versus gap (A) for
each power setting and connecting the points for the low- and high-power settings to give
the two lines shown in the figure. Inspection of the interaction graph indicates that changes

TABLE 3.6 Analysis of Variance for Example 3.5

Source of Sum of Degrees Mean
Variation Squares of Freedom Square F0 P-Value

A 22,575.1 1 22,575.1 5.64 0.0448
B 333.1 1 333.1 0.08 0.7802
C 378,532.6 1 378,532.6 94.65 1.04× 10−5

AB 2678.1 1 2678.1 0.67 0.4369
AC 94,710.1 1 94,710.1 23.68 0.0012
BC 3277.6 1 3277.6 0.82 0.3918
ABC 3570.1 1 3570.1 0.89 0.3724
Error 31,995.5 8 3999.4
Total 537,671.9 15
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Figure 3.8 Gap–power (AC) interaction graph, Example 3.1.

in the anode–cathode gap produces a much larger change in etch rate at the high-power
setting than at the low-power setting. In addition, the impact of changing the gap from (−)
to (+) differs depending on the level of power.

Figure 3.9 is a response surface plot and contour plot of etch rate as a function of
gap and power setting. These plots were obtained from the fitted model. The effect of the
strong interaction on this process is very clear; notice that the response surface is now a
twisted plane (that is, the lines in the contour plot are not parallel straight lines). Thus
the interaction term in the model is a form of curvature. In processes such as this one,
the engineer is usually trying to select the appropriate factor settings (in this case gap and
power) to obtain a desired etch rate. The response surface and contour plot will be most
helpful for this analysis.

Another Method for Judging the Significance of Effects The analysis of variance is a
formal way to determine which factor effects are nonzero. However, there are other methods
that are useful. One method is to calculate the standard error of the effects and compare
the magnitudes of the effects with their standard errors.

Figure 3.9 (a) Response surface of etch rate, Example 3.1. (b) The contour plot.
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The standard error of an effect is easy to find. If we assume that there are n replicates
at each of the 2k runs or treatment combinations in the design, and if yi1, yi2,…,yin are the
observations at the ith run, then

s2
i = 1

n − 1

n∑
j=1

( yij − ȳi)
2, i = 1, 2,… , 2k

is an estimate of the variance at the ith run. The 2k variance estimates can be combined to
give an overall variance estimate:

s2 = 1
2k(n − 1)

2k∑
i=1

n∑
j=1

( yij − ȳi)
2

This is also the variance estimate given by the error mean square in the analysis of
variance. The variance of each effect estimate is

Var(Effect) = Var
(Contrast

n2k−1

)

= 1
(n2k−1)2

Var(Contrast)

Each contrast is a linear combination of 2k treatment totals, and each total consists of n
observations. Therefore,

Var(Contrast) = n2k𝜎 2

and the variance of an effect is

Var(Effect) = 1
(n2k−1)2

n2k𝜎 2

= 1
n2k−2

𝜎 2 (3.19)

The estimated standard error would be found by replacing 𝜎2 by its estimate s2 and
taking the square root of Equation 3.19.

To illustrate this method, consider the etch rate experiment in Example 3.1. The mean
square error is MSE = 3999.4. Therefore, the standard error of each effect is (using s2 =
MSE)

se(Effect) =
√

1
n2k−2

s2

=
√

1
2(23−2)

3999.4

= 31.62
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Two standard error limits on the effect estimates are then

A: −75.125 ± 63.24

B: 9.125 ± 63.24

C: 307.625 ± 63.24

AB: −25.875 ± 63.24

AC: −153.875 ± 63.24

BC: −28.625 ± 63.24

ABC: 29.875 ± 63.24

These intervals are approximate 95% confidence intervals. This analysis indicates that
A, C, and the AC interaction are important effects, because they are the only factor effect
estimates for which the intervals do not include zero.

JMP Output for Example 3.1. Table 3.7 contains the output from JMP for the plasma
etch experiment in Example 3.1. The analysis of variance for the whole model is shown
near the top of the output, and the ANOVA F-statistic indicates that at least one of the seven
model effects is active. Immediately below the ANOVA is a list of parameter estimates
and their corresponding t-tests. Note that JMP reports the model regression coefficients as
parameter estimates and not factor effect estimates. Based on the P-values, the important
factors are gap, power, and the gap–power interaction. This display is followed by the
effect tests, which are the corresponding tests on individual model terms from the ANOVA.
Notice that the individual F-test statistics are the square of the t-test statistics. Then a table
of the parameter estimates sorted in absolute magnitude is presented along with a Pareto
chart reflecting their magnitude. The final part of the display is the prediction equation
based on the full model fit.

The only active factors are gap, power, and the gap–power interaction. Table 3.8 presents
the JMP output for the reduced model, including a plot of the residuals from the reduced
model versus the fitted values of the response. This plot does not indicate any obvious
problems. The bottom portion of the table presents two views of prediction profiler. In the
upper display, both factors gap and power are at the middle level (0). In the bottom view,
the level of gap has been changed to −1. Notice that the slope of the power curve changes
in this display, reflecting the interaction between the two factors.

3.4 THE GENERAL 2k DESIGN

The methods of analysis that we have presented thus far may be generalized to the case of a
2k factorial design; that is, a design with k factors, each at two levels. The statistical model
for a 2k design will include k main effects,

( k
2

)
two-factor interactions,

( k
3

)
three-factor

interactions,… , and one k-factor interaction. That is, for a 2k design the complete model
will contain 2k −1 effects. The notation introduced earlier for treatment combinations is
also used here. For example, in a 25 design abd denotes the treatment combination with
factors A, B, and D at the high level and factors C and E at the low level. The treatment
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TABLE 3.7 JMP Output for Example 3.1.

Response Y
Actual by Predicted Plot

Summary of Fit

RSquare 0.940493
RSquare Adj 0.888423
Root Mean Square Error 63.24111
Mean of Response 563.4375
Observations (or Sum Wgts) 16

Analysis of Variance

Sum of Mean
Source DF Squares Square F-Ratio

Model 7 505676.44 72239.5 18.0624
Error 8 31995.50 3999.4 Prob > F
C. Total 15 537671.94 0.0003∗

Parameter Estimates

Term Estimate Std Error t-Ratio Prob > |t|

Intercept 563.4375 15.81028 35.64 <.0001∗

Gap −37.5625 15.81028 −2.38 0.0448∗

Flow 4.5625 15.81028 0.29 0.7802
Power 153.8125 15.81028 9.73 <.0001∗

Gap∗Flow −12.9375 15.81028 −0.82 0.4369
Gap∗Power −76.9375 15.81028 −4.87 0.0012∗

Flow∗Power −14.3125 15.81028 −0.91 0.3918
Flow∗Power∗Gap 14.9375 15.81028 0.94 0.3724
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TABLE 3.7 (Continued)

Effect Tests

Sum of
Source Nparm DF Squares F-Ratio Prob > F

Gap 1 1 22575.06 5.6446 0.0448∗

Flow 1 1 333.06 0.0833 0.7802
Power 1 1 378532.56 94.6465 <.0001∗

Gap∗Flow 1 1 2678.06 0.6696 0.4369
Gap∗Power 1 1 94710.06 23.6808 0.0012∗

Flow∗Power 1 1 3277.56 0.8195 0.3918
Flow∗Power∗Gap 1 1 3570.06 0.8926 0.3724

Sorted Parameter Estimates

Term Estimate Std Error t-Ratio t-Ratio Prob > |t|

Power 153.8125 15.81028 9.73 <.0001∗

Gap∗Power −76.9375 15.81028 −4.87 0.0012∗

Gap −37.5625 15.81028 −2.38 0.0448∗

Flow∗Power∗Gap 14.9375 15.81028 0.94 0.3724
Flow∗Power −14.3125 15.81028 −0.91 0.3918
Gap∗Flow −12.9375 15.81028 −0.82 0.4369
Flow 4.5625 15.81028 0.29 0.7802

Prediction Expression

563.4375
+−37.5625∗Gap
+ 4.5625∗Flow
+ 153.8125∗Power
+Gap∗ [Flow∗−12.9375]
+Gap∗ [Power∗−76.9375]
+Flow∗ [Power∗−14.3125]
+Flow∗

[
Power∗

[
Gap∗14.9375

]]

combinations may be written in standard order by introducing the factors, one at a time, with
each new factor being successively combined with those that precede it. For example, the
standard order for a 24 design is (1), a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, and
abcd.

To estimate an effect or to compute the sum of squares for an effect, we must first
determine the contrast associated with that effect. This can always be done by using a table
of plus and minus signs, such as Table 3.2 or Table 3.3. However, for large values of k this
is awkward. Most modern computer programs generate the effect estimates, the regression
coefficients, and the sums of squares for the analysis of variance using the method of least
squares.
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TABLE 3.8 JMP Output for Example 3.1, Reduced Model

Response Y
Actual by Predicted Plot

Summary of Fit

RSquare 0.922157
RSquare Adj 0.902696
Root Mean Square Error 59.05806
Mean of Response 563.4375
Observations (or Sum Wgts) 16

Analysis of Variance

Sum of Mean
Source DF Squares Square F-Ratio

Model 3 495817.69 165273 47.3852
Error 12 41854.25 3488 Prob > F
C. Total 15 537671.94 <.0001∗

Parameter Estimates

Term Estimate Std Error t-Ratio Prob > |t|

Intercept 563.4375 14.76451 38.16 <.0001∗

Gap −37.5625 14.76451 −2.54 0.0257∗

Power 153.8125 14.76451 10.42 <.0001∗

Gap∗Power −76.9375 14.76451 −5.21 0.0002∗

Effect Tests

Sum of
Source Nparm DF Squares F-Ratio Prob > F

Gap 1 1 22575.06 6.4725 0.0257∗

Power 1 1 378532.56 108.5288 <.0001∗

Gap∗Power 1 1 94710.06 27.1542 0.0002∗
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TABLE 3.8 (Continued)

Residual by Predicted Plot

Prediction Expression

563.4375 + −37.5625 ∗ Gap + 153.8125 ∗ Power + Gap ∗ (Power ∗ −76.9375)

Prediction Profiler
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3.5 A SINGLE REPLICATE OF THE 2k DESIGN

For even a moderate number of factors, the total number of treatment combinations in a
2k factorial design is large. For example, a 25 design has 32 treatment combinations, a 26

design has 64 treatment combinations, and a 210 design has 1024 treatment combinations.
Because resources are usually limited, the number of replicates that the experimenter can
employ may be restricted. Frequently, available resources only allow a single replicate of
the design to be run, unless the experimenter is willing to omit some of the original factors.

A single replicate of a 2k design is sometimes called an unreplicated factorial. With
only one replicate, there is no estimate of error. One approach to the analysis of an unrepli-
cated factorial is to assume that certain high-order interactions are negligible and combine
their mean squares to estimate the error. This is an appeal to the sparsity of effects prin-
ciple; that is, most systems are dominated by some of the main effects and low-order
interactions, and most high-order interactions are negligible.

When analyzing data from unreplicated factorial designs, occasionally very high-order
interactions occur. The use of an error mean square obtained by pooling high-order inter-
actions is inappropriate in these cases. A method of analysis attributed to Daniel (1959)
provides a simple and widely used way to overcome this problem. Daniel suggests con-
structing a normal probability plot of the effect estimates. The effects that are negligible are
normally distributed, with mean zero and variance 𝜎 2, and will tend to fall along a straight
line on this plot, whereas significant effects will have nonzero means and will not lie along
the straight line. We will illustrate this method in the following example.

Example 3.2 A Single Replicate of the 24 Design Montgomery (2013) describes a
factorial experiment carried out in a pilot plant to study the factors thought to influence
the filtration rate of a chemical product. The four factors are temperature (A), pressure (B),
concentration of formaldehyde (C), and stirring rate (D), Each factor is present at two levels,
and the data obtained from a single replicate of the 24 experiment are shown in Table 3.9

TABLE 3.9 Pilot Plant Filtration Rate Experiment

Factor
Treatment Filtration

Run Number A B C D Combination Rate (gal/hr)

1 − − − − (1) 45
2 + − − − a 71
3 − + − − b 48
4 + + − − ab 65
5 − − + − c 68
6 + − + − ac 60
7 − + + − bc 80
8 + + + − abc 65
9 − − − + d 43

10 + − − + ad 100
11 − + − + bd 45
12 + + − + abd 104
13 − − + + cd 75
14 + − + + acd 86
15 − + + + bcd 70
16 + + + + abcd 96
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Figure 3.10 Data from the pilot plant filtration rate experiment for Example 3.2.

and Fig. 3.10. The 16 runs are made in random order. The process engineer is interested
in maximizing the filtration rate. Current process conditions give filtration rates of around
75 gal/hr. The process also currently uses the concentration of formaldehyde, factor C,
at the high level. The engineer would like to reduce the formaldehyde concentration as
much as possible but has been unable to do so because it always results in lower filtration
rates.

We will begin the analysis of this data by constructing a normal probability plot of
the effect estimates. The plus and minus signs for the contrast constants for the 24 design
are shown in Table 3.10. From these contrasts, we obtain the 15 factorial effect estimates
shown at the foot of each column in Table 3.8. The normal probability plot of these effects
is shown in Fig. 3.11. All of the effects that lie along the line are negligible, whereas the
large effects are far from the line. The important effects that emerge from this analysis are
the main effects of A, C, and D and the AC and AD interactions. Table 3.11 summarizes
the analysis of variance for this design. In this analysis we have pooled the nonsignificant
effects to form the error term. The F-tests reveal that the effects of A, C, D, and the AC and
AD interactions are large.

The main effects of A, C, and D are plotted in Fig. 3.12a. All three effects are positive,
and if we considered only these main effects, we would run all three factors at the high level
to maximize the filtration rate. However, it is always necessary to examine any interactions
that are important. Remember that main effects do not have much meaning when they are
involved in significant interactions.

The AC and AD interactions are plotted in Fig. 3.12b. These interactions are the key to
solving the problem. Note from the AC interaction that the temperature effect is very small
when the concentration is at the high level and very large when the concentration is at the
low level, the best results being obtained with low concentration and high temperature. The
AD interaction indicates that stirring rate D has little effect at low temperature but has a
large positive effect at high temperature. Therefore, the best filtration rates would appear
to be obtained when A and D are at the high level and C is at the low level. This would also
allow the reduction of the formaldehyde concentration to a lower level, another objective
of the experimenter.

The Half-Normal Probability Plot of Effects An alternative to the normal probability
plot of the factor effects is the half-normal plot (Daniel, 1976). This is a plot of the absolute
value of the effect estimates against their cumulative normal probabilities. Fig. 3.13 presents
the half-normal plot of the effects for the pilot plant filtration rate experiment. The straight
line on the half-normal plot always passes through the origin and should also pass close to
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Figure 3.11 Normal probability plot of effects for the 24 factorial in Example 3.2.

the fiftieth percentile data value. Many analysts feel that the half-normal plot is easier to
interpret particularly when there are only a few effect estimates, as when the experimenter
has used an eight-run design. Some software packages will construct both plots.

Other Methods for Analyzing Unreplicated Factorials. As mentioned above, the nor-
mal (or half-normal) plot of the estimated factor effects has become a standard analysis
procedure for an unreplicated two-level factorial design. However, the method is not with-
out criticism. First, it is entirely subjective, and different analysts may arrive at different
conclusions from visual examination of the plot. In fact, a simple dot plot of the factor
effects is very often just as reliable as the normal probability plot. Furthermore, while the
normal probability plots usually work well when there are a few relatively large active
effects, they may not perform well when there are several effects of small or moderate
size. Because unreplicated designs are so widely used in practice, many formal analysis
procedures have been proposed to overcome the subjectivity of the normal probability plot.

TABLE 3.11 Analysis of Variance, Example 3.2

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F0 P-Value

A 1870.563 1 1870.563 95.86 1.93× 10−6

C 390.062 1 390.062 19.99 0.0012
D 855.562 1 855.562 43.85 0.0001
AC 1314.062 1 1314.062 67.34 9.42× 10−6

AD 1105.563 1 1105.563 56.66 2.00× 10−5

Error 195.125 10 19.513
Total 5730.937 15



112 TWO-LEVEL FACTORIAL DESIGNS

Figure 3.12 Main effect and interaction plots for Example 3.2. (a) Main effect plots, (b) Interaction
plots.

Figure 3.13 Half-normal plot of the factor effects from the 24 factorial in Example 3.2.
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Hamada and Balakrishnan (1998) compared some of these methods. They found that the
method proposed by Lenth (1989) has good power to detect significant effects. It is also
easy to implement, and as a result it appears in several software packages for analyzing
data from unreplicated factorials. We give a brief description of Lenth’s method.

Suppose that we have m contrasts of interest, say c1, c2,…, cm. If the design is an
unreplicated 2k factorial design, these contrasts correspond to the m = 2k −1 factor effect
estimates. The basis of Lenth’s method is to estimate the variance of a contrast from the
smallest (in absolute value) contrast estimates. Let

s0 = 1.5 × median(|cj|)

and

PSE = 1.5 × median(|cj| : |cj| < 2.5s0)

PSE is called the “pseudostandard error,” and Lenth shows that it is a reasonable estimator
of the contrast variance when there are only a few active (significant) effects. The PSE is
used to judge the significance of contrasts. An individual contrast can be compared to the
margin of error

ME = t0.025,d × PSE

where the degrees of freedom are defined as d = m/3. For inference on a group of contrasts,
Lenth suggests using the simultaneous margin of error

SME = t𝛾 ,d × PSE

where the percentage point of the t distribution used is 𝛾 = 1 − (1 + 0.951∕m)∕2.
To illustrate Lenth’s method, consider the 24 experiment in Example 3.2. The calcula-

tions result in s0 = 1.5 × | − 2.625| = 3.9375 and 2.5 × 3.9375 = 9.84375, so

PSE = 1.5 × |1.75| = 2.625

ME = 2.571 × 2.625 = 6.75

SME = 5.219 × 2.625 = 13.70

Now consider the effect estimates in Table 3.8. The SME criterion would indicate that
the four largest effects (in magnitude) are significant because their effect estimates exceed
SME. The main effect of C is significant according to the ME criterion, but not with respect
to SME. However, because the AC interaction is clearly important, we would probably
include C in the list of significant effects. Notice that in this example, Lenth’s method has
produced the same answer that we obtained previously from examination of the normal
probability plot of effects.

Several authors [see Loughin and Nobel (1997), Hamada and Balakrishnan (1998),
Larntz and Whitcomb (1998), Loughin (1998), and Edwards and Mee (2008)] have observed
that Lenth’s method results in values of ME and SME that are too conservative and have
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relatively little power to detect significant effects. Simulation methods can be used to
calibrate his procedure. Larntz and Whitcomb (1998) suggest replacing the original ME
and SME multipliers with adjusted multipliers as follows:

Number of Contrasts 7 15 31

Original ME 3.764 2.571 2.218
Adjusted ME 2.295 2.140 2.082
Original SME 9.008 5.219 4.218
Adjusted SME 4.891 4.163 4.030

These are in close agreement with the results in Ye and Hamada (2000).
The JMP software package implements Lenth’s method as part of the screening platform

analysis procedure for two-level designs. In their implementation, P-values for each factor
and interaction are computed from a “real-time” simulation. This simulation assumes that
none of the factors in the experiment are significant and calculates the observed value
of the Lenth statistic 10,000 times for this null model. Then P-values are obtained by
determining where the observed Lenth statistics fall relative to the tails of these simulation-
based reference distributions. These P-values can be used as guidance in selecting factors
for the model.

Table 3.12 shows the JMP output from the screening analysis platform for the resin
filtration rate experiment in Example 3.2. Notice that in addition to the Lenth statis-
tics, the JMP output includes a half-normal plot of the effects and a “Pareto” chart of
the effect (contrast) magnitudes. When the factors are entered into the model, the Lenth
procedure would recommend including the same factors in the model that we identified
previously.

The final JMP output for the fitted model is shown in Table 3.13. The Prediction Profiler
at the bottom of the table has been set to the levels of the factors than maximize filtration
rate. These are the same settings that we determined earlier by looking at the contour plots.

In general, the Lenth method is a clever and very useful procedure. However, we
recommend using it as a supplement to the usual normal probability plot of effects, not as
a replacement for it.

Design Projection Another interpretation of the data in Fig. 3.11 is possible. Because
B (pressure) is not significant and all interactions involving B are negligible, we may
discard B from the experiment so that the design becomes a 23 factorial in A, C, and
D with two replicates. This is easily seen from examining only columns A, C, and D in
Table 3.7 and noting that those columns form two replicates of a 23 design. The analysis of
variance for the data using this simplifying assumption is summarized in Table 3.14. The
conclusions that we would draw from this analysis are essentially unchanged from those
of Example 3.2. Note that by projecting the single replicate of the 24 into a replicated 23,
we now have both an estimate of the ACD interaction and an estimate of error based on
replication.

The technique of projecting an unreplicated factorial into a replicated factorial in fewer
factors is very useful. In general, if we have a single replicate of a 2k design and if h
(h< k) factors are negligible and can be dropped, then the original data correspond to a full
two-level factorial in the remaining k− h factors with 2h replicates.
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TABLE 3.12 JMP Screening Output for Example 3.2

Screening for Filtration Rate
Contrasts

Lenth Individual Simultaneous
Term Contrast Plot of t-Ratio t-Ratio P-Value P-Value

Temperature 10.8125 8.24 0.0006∗ 0.0046∗

Stirring Rate 7.3125 5.57 0.0022∗ 0.0187∗

Concentration 4.9375 3.76 0.0084∗ 0.0777
Pressure 1.5625 1.19 0.2292 0.9581
Temperature∗Stirring Rate 8.3125 6.33 0.0014∗ 0.0128∗

Temperature∗Concentration −9.0625 −6.90 0.0010∗ 0.0089∗

Stirring Rate∗Concentration −0.5625 −0.43 0.7009 1.0000
Temperature∗Pressure 0.0625 0.05 0.9667 1.0000
Stirring Rate∗Pressure −0.1875 −0.14 0.8978 1.0000
Concentration∗Pressure 1.1875 0.90 0.3553 0.9992
Temperature∗Stirring −0.8125 −0.62 0.5804 1.0000

Rate∗Concentration
Temperature∗Stirring

Rate∗Pressure
2.0625 1.57 0.1242 0.7607

Temperature∗Concentration∗

Pressure
0.9375 0.71 0.4592 1.0000

Stirring Rate∗Concentration∗

Pressure
−1.3125 −1.00 0.3063 0.9945

Temperature∗Stirring 0.6875 0.52 0.6424 1.0000
Rate∗Concentration∗Pressure

Half-Normal Plot
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Lenth PSE = 1.3125
P-values derived from a simulation of 10000 Lenth t-ratios.
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TABLE 3.13 Final JMP Model Fit for Example 3.2

Response Filtration Rate
Actual by Predicted Plot

F
ilt

ra
tio

n 
R

at
e 

A
ct

ua
l

Summary of Fit

RSquare 0.965952
RSquare Adj 0.948929
Root Mean Square Error 4.417296
Mean of Response 70.0625
Observations (or Sum Wgts) 16

Analysis of Variance

Source DF Sum of Squares Mean Square F-Ratio

Model 5 5535.8125 1107.16 56.7412
Error 10 195.1250 19.51 Prob > F
C. Total 15 5730.9375 <.0001∗

Lack Of Fit

Source DF Sum of Squares Mean Square F-Ratio

Lack Of Fit 2 15.62500 7.8125 0.3482
Pure Error 8 179.50000 22.4375 Prob > F
Total Error 10 195.12500 0.7162

Max RSq

Parameter Estimates

Term Estimate Std Error t-Ratio Prob > |t|

Intercept 70.0625 1.104324 63.44 <.0001∗

Temperature 10.8125 1.104324 9.79 <.0001∗

Stirring Rate 7.3125 1.104324 6.62 <.0001∗

Concentration 4.9375 1.104324 4.47 0.0012∗

Temperature∗Stirring Rate 8.3125 1.104324 7.53 <.0001∗

Temperature∗Concentration −9.0625 1.104324 −8.21 <.0001∗
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TABLE 3.13 (Continued)

Effect Tests
Source Nparm DF Sum of Squares F-Ratio Prob > F

Temperature 1 1 1870.5625 95.8648 <.0001∗

Stirring Rate 1 1 855.5625 43.8469 <.0001∗

Concentration 1 1 390.0625 19.9904 0.0012∗

Temperature∗Stirring Rate 1 1 1105.5625 56.6592 <.0001∗

Temperature∗Concentration 1 1 1314.0625 67.3447 <.0001∗

Sorted Parameter Estimates

Term Estimate Std Error t-Ratio t-Ratio Prob > |t|

Temperature 10.8125 1.104324 9.79 <.0001∗

Temperature∗

Concentration
−9.0625 1.104324 −8.21 <.0001∗

Temperature∗ Stirring
Rate

8.3125 1.104324 7.53 <.0001∗

Stirring Rate 7.3125 1.104324 6.62 <.0001∗

Concentration 4.9375 1.104324 4.47 0.0012∗

Prediction Profiler

The Regression Model and Diagnostic Checking The usual diagnostic checks should be
applied to the residuals from a 2k design. Our analysis indicates that the only significant
effect are A = 21.625, C = 9.875, D = 14.625, AC = −18.125, and AD = 16.625. If this is
true, then the predicted values of the filtration rate over the region spanned by the design
are given by the regression model

ŷ = 70.06 +
(

21.625
2

)
x1 +

(
9.875

2

)
x3 +

(
14.625

2

)
x4

−
(

18.125
2

)
x1x3 +

(
16.625

2

)
x1x4
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TABLE 3.14 Analysis of Variance for the Pilot Plant Filtration Rate Experiment in A, C,
and D

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F0 P-Value

A 1870.56 1 1870.56 83.36 1.67× 10−5

C 390.06 1 390.06 17.38 0.0031
D 855.56 1 855.56 38.13 0.0003
AC 1314.06 1 1314.06 58.56 0.0001
AD 1105.56 1 1105.56 49.27 0.0001
CD 5.06 1 5.06 0.23 0.6476
ACD 10.56 1 10.56 0.47 0.5121
Error 179.52 8 22.44
Total 5730.94 15

where 70.06 is the average response and the coded variables x1, x3, x4 take on values in the
interval from −1 to +1. For example, the predicted filtration rate at the run where all three
factors are at the low level is

ŷ = 70.06 +
(

21.625
2

)
(−1) +

(
9.875

2

)
(−1) +

(
14.625

2

)
(−1)

−
(

18.125
2

)
(−1)(−1) +

(
16.625

2

)
(−1)(−1)

= 46.22

Because the observed value is 45, the residual is e = y− ŷ = 45− 46.22 =−1.22. The values
of y, ŷ, and e = y− ŷ for all 16 observations follow:

y ŷ e = y− ŷ

(1) 45 46.22 −1.22
a 71 69.39 1.61
b 48 46.22 1.78
ab 65 69.39 −4.39
c 68 74.23 −6.23
ac 60 61.14 −1.14
bc 80 74.23 5.77
abc 65 61.14 3.86
d 43 44.22 −1.22
ad 100 100.65 3.35
bd 45 44.22 0.78
abd 104 100.65 3.35
cd 75 72.23 2.77
acd 86 92.40 −6.40
bcd 70 72.23 −2.23
abcd 96 92.40 3.60

A normal probability plot of these residuals is shown in Fig. 3.14. The points on this plot
lie reasonably close to a straight line, lending support to our conclusion that A, C, D, AC,
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Figure 3.14 Normal probability plot of residuals of Example 3.2.

and AD are the only significant effects and that the underlying assumptions of the analysis
are satisfied.

Example 3.3 Duplicate Measurements of the Response A team of engineers at a
semiconductor manufacturer ran a 24 factorial design in a vertical oxidation furnace. The
purpose of the experiment was to study the effects of the four factors in oxide thickness. Four
wafers are stacked in the furnace, and the response variable of interest is the oxide thickness
on the wafers. The four design factors are temperature (A), time (B), pressure (C), and gas
flow (D). The experiment is conducted by loading four wafers into the furnace, setting the
process variables to the test conditions required by the experimental design, processing
the wafers, and then measuring the oxide thickness on all four wafers. Table 3.15 presents
the design and the resulting thickness measurements. In this table, the four columns labeled
“Thickness” contains the oxide thickness measurements on each individual wafer, and
the last two columns contain the sample average and sample variance of the thickness
measurements on the four wafers in each run.

The proper analysis of this experiment is to consider the individual wafer thickness
measurements as duplicate measurements, and not as replicates. If they were actually
replicates, each wafer would have been processed individually on a single run of the
furnace. However, because all four wafers were processed together, they received the
treatment factors (i.e., the levels of the design variables) simultaneously, so there is much
less variability in the individual wafer thickness measurements than would have been
observed if each wafer had been a genuine replicate. Therefore, the average of the thickness
measurements is the correct response variable to consider initially.

Table 3.16 presents the effect estimates for this experiment, using the average oxide
thickness ȳ as the response variable. Note that factors A and B and the AB interaction
have large effects that together account for nearly 90% of the variability in average oxide
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TABLE 3.15 The Oxide Thickness Experiment

Standard
Order Run Order A B C D Thickness ȳ s2

1 10 −1 −1 −1 −1 378 376 379 379 378 2
2 7 1 −1 −1 −1 415 416 416 417 416 0.67
3 3 −1 1 −1 −1 380 379 382 383 381 3.33
4 9 1 1 −1 −1 450 446 449 447 448 3.33
5 6 −1 −1 1 −1 375 371 373 369 372 6.67
6 2 1 −1 1 −1 391 390 388 391 390 2
7 5 −1 1 1 −1 384 385 386 385 385 0.67
8 4 1 1 1 −1 426 433 430 431 430 8.67
9 12 −1 −1 −1 1 381 381 375 383 380 12.00

10 16 1 −1 −1 1 416 420 412 412 415 14.67
11 8 −1 1 −1 1 371 372 371 370 371 0.67
12 1 1 1 −1 1 445 448 443 448 446 6
13 14 −1 −1 1 1 377 377 379 379 378 1.33
14 15 1 −1 1 1 391 391 386 400 392 34
15 11 −1 1 1 1 375 376 376 377 376 0.67
16 13 1 1 1 1 430 430 428 428 429 1.33

thickness. Figure 3.15 is a normal probability plot of the effects. From examination of this
display, we conclude that factors A, B, and C and the AB and AC interactions are important.
The analysis of variance display for this model is shown in Table 3.17.

The model for predicting the average oxide thickness is

ŷ = 399.19 + 21.56x1 + 9.06x2 − 519x3 + 8.44x1x2 − 5.31x1x3

The residual analysis for this model is satisfactory.

TABLE 3.16 Effect Estimates for Example 3.3: Response Variable Is Average Oxide
Thickness

Model Term Effect Estimate Sum of Squares Percent Contribution

A 43.125 7439.06 67.9339
B 18.125 1314.06 12.0001
C −10.375 430.562 3.93192
D −1.625 10.5625 0.0964573
AB 16.875 1139.06 10.402
AC −10.625 451.563 4.12369
AD 1.125 5.0625 0.046231
BC 3.875 60.0625 0.548494
BD −3.875 60.0625 0.548494
CD 1.125 5.0625 0.046231
ABC −0.375 0.5625 0.00513678
ABD 2.875 33.0625 0.301929
ACD −0.125 0.0625 0.000570752
BCD −0.625 1.5625 0.0142688
ABCD 0.125 0.0625 0.000570753
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Figure 3.15 Normal probability plot of the effects for the average oxide thickness response,
Example 3.3.

TABLE 3.17 Analysis of Variance (from Design-Expert) for the Average Oxide Thickness
Response, Example 3.3

Source Sum of Squares DF Mean Square F-Value Prob>F

Model 10,774.31 LC5 2154.86 122.35 <0.0000
A 7439.06 1 7439.06 422.37 <0.000
B 1314.96 1 1314.06 74.61 <0.000
C 430.56 1 430.56 24.45 0.0006
AB 1139.06 1 1139.06 64.67 <0.000
AC 451.56 1 451.56 25.64 0.0005

Residual 176.12 10 17.61
Cor. Total 10,950.44 15

Std. Dev. 4.20 R-Squared 0.9839
Mean 399.19 Adj. R-Squared 0.9759
C.V. 1.05 Pred. R-Squared 0.9588
PRESS 450.88 Adeq. Precision 27.967

95% Cl

Factor Coefficient Estimate DF Standard Error CI Low Cl High

Intercept 399.19 1 1.05 396.85 401.53
A-Time 21.56 1 1.05 19.22 23.90
B-Temp 9.06 1 1.05 6.72 11.40
C-Pressure −5.19 1 1.05 −7.53 −2.85
AB 8.44 1 1.05 6.10 10.78
AC −5.31 1 1.05 −7.65 −2.97



122 TWO-LEVEL FACTORIAL DESIGNS

Figure 3.16 Contour plots of average oxide thickness with pressure (x3) held constant.

The experimenters are interested in obtaining an average oxide thickness of 400 Å,
and product specifications require that the thickness must lie between 390 and 410 Å.
Figure 3.16 presents two contour plots of average thickness, one with factor C (or x3),
pressure, at the low level (i.e., x3 = −1) and the other with C (or x3) at the high level (i.e.,
x3 =+1). From examining these contour plots, it is obvious that there are many combinations
of time and temperature (factors A and B) that will produce acceptable results. However, if
pressure is held constant at the low level, the operating window is shifted toward the left,
or lower end of the time axis, indicating that lower cycle times will be required to achieve
the desired oxide thickness.

It is interesting to observe the results that would be obtained in we incorrectly considered
the individual wafer oxide thickness measurements as replicates. Table 3.18 presents a full
model analysis of variance based on treating the experiment as a replicated 24 factorial.
Notice that there are many significant factors in this analysis, suggesting a much more
complex model than we found when using the average oxide thickness as the response. The
reason for this is that the estimate of the error variance in Table 3.18 is too small (�̂�2 = 6.12).
The residual mean square in Table 3.18 primarily reflects the variability between wafers
within a run and damps out the variability between runs. The estimate of error obtained from
Table 3.17 is much larger, �̂�2 = 17.61, and it is primarily a measure of the between-run
variability. This is the best estimate of error to use in judging the significance of process
variables that are changed from run to run.

A logical question to ask is: What harm results from identifying too many factors as
important?, as the incorrect analysis in Table 3.18 would certainly do. The answer is that
trying to manipulate or optimize the unimportant factors would be a waste of resources,
and it could result in adding unnecessary variability to other responses of interest.

When there are duplicate measurements on the response, there is almost always useful
information about some aspect of process variability contained in these observations. For
example, if the duplicate measurements are multiple tests by a gauge on the same experi-
mental unit; then the duplicate measurements give some insight into gauge capability. If
the duplicate measurements are made at different locations on an experimental unit, they
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TABLE 3.18 Analysis of Variance (from Design-Expert) of the Individual Wafer Oxide
Thickness Response if Duplicates are Incorrectly Treated as Replicates

Source Sum of Squares DF Mean Square F-Value Prob>F

Model 43,801.75 15 2920.12 476.75 <0.0001
A 29,756.25 1 29,756.25 4858.16 <0.001
B 5256.25 1 5256.25 858.16 <0.001
C 1722.25 1 1722.25 281.18 <0.001
D 42.25 1 42.25 6.90 0.0115
AB 4556.25 1 4556.25 743.88 <0.001
AC 1806.25 1 1806.25 294.90 <0.001
AD 20.25 1 20.25 3.31 0.0753
BC 240.25 1 240.25 39.22 <0.001
BD 240.25 1 240.25 39.22 <0.001
CD 20.25 1 20.25 3.31 0.0753
ABD 132.25 1 132.25 21.59 <0.001
ABC 2.25 1 2.25 0.37 0.5473
ACD 0.25 1 0.25 0.941 0.8407
BCD 6.25 1 6.25 1.02 0.3175
ABCD 0.25 1 0.25 0.041 0.8407
Residual 294.00 48 6.12
Lack of Fit 0.000 0
Pure Error 294.00 48 6.13
Cor. Total 44,095.75 63

may give some information about the uniformity of the response variable across that unit.
In our example, because we have one observation on each of four experimental units that
have undergone processing together, we have some information about the within-run vari-
ability in the process. The information is contained in the variance of the oxide thickness
measurements from the four wafers in each run. It would be of interest to determine if any
of the process variables influence the within-run variability.

Figure 3.17 is a normal probability plot of the effect estimates obtained using ln(s2) as
the response. As we will discuss further in Chapter 11, there is historical evidence that
the log transformation is generally appropriate for modeling variability. There are not any
strong individual effects, but factor A and the BD interaction are the largest. If we also
include the main effects of B and D to obtain a hierarchical model, then the model for ln(s2)
is

ln(s2) = 1.08 + 0.41x1 − 0.40x2 + 0.20x4 − 0.56x2x4

The model accounts for just slightly less than half of the variability in the ln(s2) response,
which is certainly not spectacular as empirical models go; but it is often difficult to obtain
exceptionally good models of variances.

Figure 3.18 is a contour plot of the predicted variance (not the log of the predicted
variance) with pressure x3 at the low level (recall that this minimizes the cycle time) and
gas flow x4 at the high level. This choice of gas flow gives the lowest values of predicted
variance in the region of the contour plot.

The experimenters here were interested in selecting values of the design variables that
gave a mean oxide thickness within the process specifications and as close to 400 Å as
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Figure 3.17 Normal probability plot of the effects using ln(s2) as the response. Example 3.3.

possible, while simultaneously making the within-run variability small, say s2 ≤ 2. One
possible way to find a suitable set of conditions is to overlay the contour plots in Figs. 3.16
and 3.18. The overlay plot is shown in Fig. 3.19, with the specifications on mean oxide
thickness and the constraint s2 ≤ 2 shown as contours. In this plot, pressure is held constant
at the low level and gas flow is held constant at the high level. The open region near the
upper left of the graph identifies a feasible region for the variables time and temperature.

Figure 3.18 Contour plot of s2 (within-run variability) with pressure at the low level and gas flow
at the high level.
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Figure 3.19 Overlay of the average oxide thickness and s2 responses with pressure at the low level
and gas flow at the high level.

This is a simple example of using contour plots to study two responses simultaneously.
We will discuss techniques for simultaneously analyzing and optimizing several responses
in more detail in Chapter 7.

3.6 2k DESIGNS ARE OPTIMAL DESIGNS

Two-level factorial designs have many interesting and useful properties. In this section, a
brief description of some of these properties is given. We showed previously in Section 3.2
that the model regression coefficients and effect estimates from a 22 design are least squares
estimates. This result generalizes to the entire 2k system. For the 22 factorial design the
model including the interaction term is

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝜀

The simplest 22 design has only N = 4 runs, and it is straightforward to show that the X′X
matrix for this design and model is

X′X =
⎡⎢⎢⎢⎣

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

⎤⎥⎥⎥⎦
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and the inverse of X′X is

(X′X)−1 =

⎡⎢⎢⎢⎢⎣

1
4

0 0 0

0 1
4

0 0

0 0 1
4

0

0 0 0 1
4

⎤⎥⎥⎥⎥⎦

It turns out that the variance of any model regression coefficient is easy to find:

V(𝛽) = 𝜎2(diagonal element of (X′X)−1)

= 𝜎2

4

All model regression coefficients have the same variance and all model regression coeffi-
cients are uncorrelated. Furthermore, there is no other four-run design on the design space
bounded by ±1 that makes the variance of the model regression coefficients smaller. In
general, the variance of any model regression coefficient in a 2k design where each design
point is replicated n times is V(𝛽) = 𝜎2∕(n2k) = 𝜎2∕N, where N is the total number of runs
in the design. This is the minimum possible variance for the regression coefficients.

For the 22 design the determinant of the X′X matrix is

|X′X| = 256

This is the maximum possible value of the determinant for a four-run design on the
design space bounded by ±1. It turns out that the volume of the joint confidence region
that contains all the model regression coefficients is inversely proportional to the square
root of the determinant of X′X. Therefore, to make this joint confidence region as small as
possible, we would want to choose a design that makes the determinant of X′X as large as
possible. This is accomplished by choosing the 22 design.

In general, a design that minimizes the variance of the model regression coefficients is
called a D-optimal design. The D terminology is used because these designs are found
by selecting runs in the design to maximize the determinant of X′X. The 2k design is a
D-optimal design for fitting the first-order model or the first-order model with interaction.
Many computer software packages, including JMP, Design-Expert, and Minitab, have algo-
rithms for finding D-optimal designs. These algorithms can be very useful in constructing
experimental designs for many practical situations. We will make use of them in subsequent
chapters.

Now consider the variance of the predicted response in the 22 design

V
[
ŷ
(
x1, x2

)]
= V

(
𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2

)

The variance of the predicted response is a function of the point in the design space where
the prediction is made (x1 and x2) and the variance of the model regression coefficients. The
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estimates of the regression coefficients are independent because the 22 design is orthogonal
and they all have variance 𝜎2/4, so

V(ŷ) = V(𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2)

= 𝜎2

4
(1 + x2

1 + x2
2 + x2

1x2
2)

The maximum prediction variance occurs when x1 = x2 = ±1 and is equal to 𝜎2. We
usually want designs that produce models that have small prediction variances. To deter-
mine how good this particular design is, we need to know the best possible value of
prediction variance that we can attain. It turns out that the smallest possible value of
the maximum prediction variance over the design space is p𝜎2/N, where p is the num-
ber of model parameters and N is the number of runs in the design. The 22 design
has N = 4 runs and the model has p = 4 parameters, so the model that we fit to the
data from this experiment minimizes the maximum prediction variance over the design
region. A design that has this property is called a G-optimal design. In general, 2k

designs are G-optimal designs for fitting the first-order model or the first-order model with
interaction.

We can also evaluate the prediction variance at any point or points of interest in the
design space. For example, when we are at the center of the design where x1 = x2 = 0, the
prediction variance is

V[ŷ(x = 0, x2 = 0)] = 𝜎2

4

and if we are interested in prediction at the point where x1 = 1 and x2 = 0, the prediction
variance is

V[ŷ(x = 1, x2 = 0)] = 𝜎2

2

An alternative to evaluating the prediction variance at a lot of different points in the
design space is to consider the average prediction variance over the design space. One
way to calculate this average prediction variance is

I = 1
A

1

∫

−1

1

∫

−1

V
[
ŷ
(
x1, x2

)]
dx1dx2

where A is the area (in general the volume) of the design space. In computing the average
variance we are summing up the variance over every point in the design space and dividing
by the area or volume of the region.

Usually I is called the average prediction variance or the integrated variance
criteria. Other terminology is the IV or Q criteria. For a 22 design the area of the
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design region is A = 4, and

I = 1
A

1

∫

−1

1

∫

−1

V
[
ŷ
(
x1, x2

)]
dx1dx2

= 1
4

1

∫

−1

1

∫

−1

𝜎2 1
4

(
1 + x2

1 + x2
2 + x2

1x2
2

)
dx1dx2

= 4𝜎2

9

It turns out that this is the smallest possible value of the average prediction variance that
can be obtained from a four-run design used to fit a first-order model with interaction on
this design space. A design with this property is called an I-optimal design. In general, 2k

designs are I-optimal designs for fitting the first-order model or the first-order model with
interaction. The JMP software will construct I-optimal designs. This can be very useful in
constructing designs when response prediction is the goal of the experiment.

It is also possible to display the prediction variance over the design space graphically.
Figure 3.20 is output from JMP illustrating three different displays of the prediction variance
from a 22 design. The first graph is the prediction variance profiler, which plots the
unscaled prediction variance

UPV =
V[(ŷ(x1, x2)

𝜎2

against the levels of each design factor. The “crosshairs” on the graphs are adjustable, so
that the unscaled prediction variance can be displayed at any desired combination of the
variables x1 and x2. Here, the values chosen are x1 =−1 and x2 =+1, for which the unscaled
prediction variance is

UPV =
V[(ŷ(x1, x2)

𝜎2

=
𝜎2

4

(
1 + x2

1 + x2
2 + x2

1x2
2

)

𝜎2

=
𝜎2

4
(4)

𝜎2

= 1

The second graph is a fraction of design space (FDS) plot, which shows the unscaled
prediction variance on the vertical scale and the fraction of design space on the horizontal
scale. This graph also has an adjustable crosshair that is shown at the 50 percent point on the
fraction of design space scale. The crosshairs indicate that the unscaled prediction variance
will be at most 0.425 𝜎2 (remember that the unscaled prediction variance divides by 𝜎2,
that’s why the point on the vertical scale is 0.425) over a region that covers 50 percent of
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Figure 3.20 JMP prediction variance output for a 22 design.

the design region. Therefore, an FDS plot gives a simple and easy way to interpret how the
prediction variance is distributed throughout the design region. An ideal FDS plot would
be flat with a small value of the unscaled prediction variance. FDS plots are an ideal way
to compare designs in terms of their potential prediction performance.

The final display in the JMP output is a surface plot of the unscaled prediction variance.
The contours of constant prediction variance for the 22 are circular; that is, all points in
the design space that are at the same distance from the center of the design have the same
prediction variance. This is the property of rotatability that we discussed briefly in the
example of fitting a second-order model using a central composite design in Section 2.8.
All orthogonal 2k factorial designs have this property.

We often use optimal design algorithms to construct designs for situations where no
standard design easily fits the experimental situation. For example, suppose that we are
studying three continuous factors and plan to fit a first-order model with the two-factor
interactions. We would like to replicate the design, which would require N = 16 runs, but
the experimental budget will only allow for 12 runs. Obviously we will conduct all of
the runs associated with the full 23, but where should we put the additional four runs? A
D-optimal design algorithm can be used to construct the desired 12 run design.
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TABLE 3.19 A 12-Run D-Optimal Design
from JMP

Run x1 x2 x3

1 −1 −1 −1
2 1 −1 −1
3 1 −1 −1
4 −1 1 −1
5 −1 1 −1
6 1 1 −1
7 −1 −1 1
8 −1 −1 1
9 1 −1 1

10 −1 1 1
11 1 1 1
12 1 1 1

Table 3.19 presents the D-optimal design from JMP. Notice that the four additional
runs are allocated to opposite corners in opposite faces of the three-dimensional cube. The
resulting 12-run design is not orthogonal. It can be shown that the correlation between any
main effect regression coefficient and any two-factor interaction coefficient is 0.333. If an
orthogonal 12-run design was available, the standard error of any regression coefficient

would be 𝜎∕
√

12 = 0.289𝜎. However, because the design is not orthogonal the standard
error of any regression is increased to 0.306𝜎. This design is not exactly D-optimal; it
is only approximately 95% D-efficient. The D-efficiency is calculated by comparing the
determinant of X′X for this design to the determinant of X′X for a 12-run orthogonal
design. The 12-run design is not G-optimal either; it is approximately 86.7% G-efficient.
The G-efficiency is computed by finding the maximum value of the prediction variance
over the design space and comparing it to the theoretical minimum possible value of the
maximum prediction variance p𝜎2/N = 7𝜎2/12 = 0.583𝜎2.

3.7 THE ADDITION OF CENTER POINTS TO THE 2k DESIGN

A potential concern in the use of two-level factorial designs is the assumption of linearity
in the factor effects. Of course, perfect linearity is unnecessary, and the 2k system will
work quite well even when the linearity assumption holds only very approximately. In fact,
we have noted that if interaction terms are added to a main effects or first-order model,
resulting in

y = 𝛽0 +
k∑

j=1

𝛽jxj +
k∑∑

i<j=2

𝛽ijxixj + 𝜀 (3.20)

then we have a model capable of representing some curvature in the response function.
This curvature, of course, results from the twisting of the plane induced by the interaction
terms 𝛽 ijxixj.
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There are going to be situations where the curvature in the response function is not
adequately modeled by Equation 3.20. In such cases, a logical model to consider is the
complete second-order response surface model:

y = 𝛽0 +
k∑

j=1

𝛽jxj +
k∑∑

i<j=2

𝛽ijxixj +
k∑

j=1

𝛽 jjx
2
j + 𝜀 (3.21)

In running a two-level factorial experiment, we usually anticipate fitting the first-order
model with interactions in Equation 3.20, but we should be alert to the possibility that
the second-order model in Equation 3.21 is really more appropriate. There is a method of
replicating certain points in a 2k factorial that will provide protection against curvature from
second-order effects as well as allow an independent estimate of error to be obtained. The
method consists of adding center points to the 2k design. These consist of n replicates run
at the points xi = 0 (i = 1, 2,… , k). One important reason for adding the replicate runs at
the design center is that center points do not affect the usual effect estimates in a 2k design.
When we add center points, we assume that the k factors are quantitative.

To illustrate the approach, consider a 22 design with one observation at each of the
factorial points (−,− ), (+,− ), (−,+ ), and (+, +) and nC observations at the center point
(0, 0). Figure 3.21 illustrates the situation. Let ȳF be the average of the four runs at the
four factorial points, and let ȳC be the average of the nC runs at the center point. If the
difference ȳF − ȳC is small, then the center points lie on or near the plane passing through
the factorial points, and there is no quadratic curvature. On the other hand, if ȳF − ȳC is
large, then quadratic curvature is present. A single-degree-of-freedom sum of squares for

Figure 3.21 A 22 design with center points.
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Figure 3.22 The 22 design with five center points for Example 3.4.

pure quadratic curvature is given by

SSpure quadratic =
nFnC( ȳF − ȳC)2

nF + nC
(3.22)

where, in general, nF is the number of factorial design points. This quantity may be
compared with the error mean square to test for pure quadratic curvature. More specifically,
when points are added to the center of the 2k design, then the test for curvature based on
Equation 3.22 actually tests the hypothesis

H0∶
k∑

j=1

𝛽 jj = 0

H1∶
k∑

j=1

𝛽 jj ≠ 0

Furthermore, if the factorial points in the design are unreplicated, one may use the nC center
points to construct an estimate of error with nC − 1 degrees of freedom.

Example 3.4 Testing for Curvature A chemical engineer is studying the yield of a
process. There are two variables of interest: reaction time and reaction temperature. Because
she is uncertain about the assumption of linearity over the region of exploration, the engineer
decides to conduct a 22 design (with a single replicate of each factorial run) augmented
with five center points. The design and the yield data are shown in Fig. 3.22.

Table 3.20 summarizes the analysis of variance for this experiment. The mean square
error is calculated from the center points as follows:

MSE =
SSE

nC − 1

=

∑
center points

( yi − ȳC)2

nC − 1
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=

5∑
i=1

( yi − 40.46)2

4

= 0.1720
4

= 0.0430

The average of the points in the factorial portion of the design is ȳF = 40.425, and the
average of the points at the center is ȳC = 40.46. The difference ȳF − ȳC = 40.425− 40.46 =
−0.035 appears to be small. The curvature sum of squares in the analysis of variance table
is computed from Equation 3.22 as follows:

SSCurvature =
nFnC(ȳF − ȳC)2

nF + nC

= (4)(5)(−0.035)2

4 + 5

= 0.0027

The analysis of variance indicates that both factors exhibit significant main effects, that
there is no interaction, and that there is no evidence of curvature in the response over the
region of exploration. That is, the null hypothesis H0∶

∑2
j=1 𝛽 jj = 0 cannot be rejected.

In Example 3.4, we concluded that there was no indication of quadratic effects; that is,
a first-order model with interaction

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝜀

is appropriate (although we probably don’t need the interaction term). There will be sit-
uations where the quadratic terms will be required. That is, we will have to assume a
second-order model such as

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛽11x 2
1 + 𝛽22x 2

2 + 𝜀

Unfortunately, we cannot estimate all of the unknown parameters (the 𝛽’s) in this model,
because there are six parameters to estimate, and the 22 design plus center points in Fig. 3.22
only has five distinct locations in the design space.

TABLE 3.20 Analysis of Variance for Example 3.4

Sum of Degrees of
Source of Variability Squares Freedom Mean Square F0 P-Value

A (time) 2.4025 1 2.4025 55.87 0.0017
B (temperature) 0.4225 1 0.4225 9.83 0.0350
AB 0.0025 1 0.0025 0.06 0.8185
Curvature 0.0027 1 0.0027 0.06 0.8185
Error 0.1720 4 0.0430
Total 3.0022 8
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Figure 3.23 Central composite designs.

A simple and highly effective solution to this problem is to augment the 22 design with
four axial runs, as shown in Fig. 3.23a. The resulting design is the central composite
design. Figure 3.23b shows a central composite design for k = 3 factors. This design has
14+ nC runs (usually 3≤ nC ≤ 5), and is a very efficient design for fitting the 10-parameter
second-order model in k = 3 factors.

As we noted in Chapter 2, central composite designs are used extensively for fitting
second-order response surface models. These designs will be illustrated and discussed in
more detail in Chapters 6 and 8.

We conclude this section with a few additional useful suggestions and observations
concerning the use of center points.

1. When a factorial experiment is conducted in an ongoing process, consider using the
current operating conditions (or recipe) as the center point in the design. This often
assures the operating personnel that at least some of the runs in the experiment are
going to be performed under familiar conditions, and so the results obtained (at least
for these runs) are unlikely to be any worse than are typically obtained.

2. When the center point in a factorial experiment correspond to the usual operating
recipe, the experimenter can use the observed responses at the center point to provide
a rough check of whether anything unusual occurred during the experiment. That is,
the center point responses should be very similar to responses observed historically
in routine process operation. Often operating personnel will maintain a control chart
for monitoring process performance. Sometimes the center point responses can be
plotted directly on the control chart as a check of the manner in which the process
was operating during the experiment.

3. Consider running the replicates at the center point in nonrandom order. Specifically,
run one or two center points at or near the beginning of the experiment, one or two
near the middle, and one or two near the end. By spreading the center points out in
time, the experimenter has a rough check on the stability of the process during the
experiment. For example, if a trend has occurred in the response while the experiment
was performed, plotting the center point responses versus time order may reveal this.

4. Sometimes experiments must be conducted in situations where there is little or no
prior information about process variability. In these cases, running two or three center
points as the first few runs in the experiment can be very helpful. These runs can
provide a preliminary estimate of variability. If the magnitude of the variability seems
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Figure 3.24 A 22 factorial design with one qualitative factor and center points.

reasonable, continue; on the other hand, if larger than anticipated (or reasonable!)
variability is observed, stop. Often it will be very profitable to study why the variability
is so large before proceeding with the rest of the experiment.

5. Usually, center points are employed when all design factors are quantitative. How-
ever, sometimes there will be one or more qualitative or categorical variables and
several quantitative ones. Center points can still be employed in these cases. To illus-
trate, consider an experiment with two quantitative factors, time and temperature,
each at two levels, and a single qualitative factor, catalyst type, also with two levels
(organic and nonorganic). Figure 3.24 shows the 23 design for these factors. Notice
that the center points are placed on the opposed faces of the cube that involve the
quantitative factors. In other words, the center points can be run at the high- and low-
level treatment combinations of the qualitative factors, just so long as those subspaces
involve only quantitative factors.

3.8 BLOCKING IN THE 2k FACTORIAL DESIGN

There are many situations in which it is impossible to completely randomize all of the
runs in the experiment. For example, we might not be able to perform all of the runs in a
factorial experiment under homogeneous conditions. As examples, these conditions might
be a single time period (such as one day), a single batch of homogeneous raw material,
using only one operator, or the like. In other cases, it might be desirable to deliberately
vary the experimental conditions to ensure that the treatments are equally effective (one
might say robust) across many situations likely to be encountered in practice. For example,
a chemical engineer may run a pilot plant experiment with several batches of raw material
because he knows that different raw material batches of different quality grades will be used
in the full-scale process. Sometimes the presence of nuisance factors prevents complete
randomization.

The design technique used in these situations is called blocking. In this section we show
how to arrange the 2k factorial design in blocks.

3.8.1 Blocking in the Replicated Design

Suppose that the 2k factorial design has been replicated n times. A simple way to incorporate
nonhomogeneous conditions or nuisance factors in this situation is to consider each set of
these conditions or nuisance factor levels as a block and to run each replicate of the design
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TABLE 3.21 The Chemical Process Experiment in Four Blocks (RCBD)

Block 1 Block 2 Block 3 Block 4

(1) = 145
a = 158
b = 135

ab = 150

(1) = 148
a = 152
b = 138

ab = 152

(1) = 147
a = 155
b = 141

ab = 146

(1) = 140
a = 152
b = 139

ab = 149

Block totals 588 590 589 580

in a separate block. The runs in each block are to be made in random order. Because each
block contains all of the runs from a complete replicate of the experiment, this type of
blocking arrangement is called a randomized complete block design (RCBD).

Example 3.5 The Chemical Process Revisited Consider the chemical process experi-
ment described in Section 3.2 Suppose that only four experimental trials could be easily be
made from a single batch of raw material. Therefore, four batches of raw material will be
required in order to run all four replicates. Table 3.21 shows the RCBD for this experiment,
assuming that each replicate is run in a single batch of material. Within each material batch,
the four runs are made in random order.

The analysis of variance for this design is shown in Table 3.22. All of the sums of
squares in this table are calculated as in a standard (unblocked) 2k factorial, except the
sum of squares for blocks. If we let Bi (i = 1, 2, 3, 4) represent the four block totals (see
Table 3.21), then

SSBlocks =
4∑

i=1

B2
i

4
−

y2
⋯

16

= (588)2 + (590)2 + (589)2 + (580)2

4
− (2347)2

16

= 15.6875

There are three degrees of freedom among the four blocks. Table 3.22 indicates that the
conclusions from this experiment are identical to those in Section 3.2 and that the block
effect is relatively small.

TABLE 3.22 Analysis of Variance for the Chemical Process Experiment in Four Blocks,
Example 3.5

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0 P-Value

Blocks 15.6875 3 5.2292
A 410.0625 1 410.0625 43.64 0.0001
B 138.0625 1 138.0625 14.69 0.0040
AB 3.0625 1 3.0625 0.33 0.5820
Error 84.5625 9 9.3959
Total 651.4375 15
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Figure 3.25 A 22 design in two blocks. (a) Geometric view. (b) Assignment of the four runs to two
blocks.

3.8.2 Confounding in the 2k Design

In many situations, it is impossible to perform a complete replicate of a factorial design in
one block. Confounding is a design technique for arranging a complete factorial experiment
in blocks, where the block size is smaller than the number of treatment combinations in
one replicate. The technique causes information about certain treatment effects (usually
high-order interactions) to be indistinguishable from, or confounded with, blocks. In this
section we introduce confounding systems for the 2k factorial design. Note that even though
the designs presented are incomplete block designs because each block does not contain
all the treatments or treatment combinations, the special structure of the 2k factorial system
allows a simplified method of design construction and analysis.

We consider the construction and analysis of the 2k factorial design in 2p incomplete
blocks, where p< k. Consequently, these designs can be run in two blocks, four blocks,
eight blocks, and so on.

Two Blocks Suppose that we wish to run a single replicate of the 22 design. Each of the
22 = 4 treatment combinations requires some quantity of raw material, for example, and
each batch of raw material is only large enough for two treatment combinations to be tested.
Thus, two batches of raw material are required. If batches of raw material are considered
as blocks, then we must assign two of the four treatment combinations to each block.

Figure 3.25 shows one possible design for this problem. The geometric view, Fig. 3.25a,
indicates that treatment combinations on opposing diagonals are assigned to different
blocks. Notice from Fig. 3.25b. that block 1 contains the treatment combinations (1) and ab
and that block 2 contains a and b. Of course the order in which the treatment combinations
are run within a block is randomly determined. We would also randomly decide which
block to run first. Suppose we estimate the main effect of A and B just as if no blocking had
occurred. The effect estimates are

A = 1
2
[ab + a − b − (1)]

B = 1
2
[ab + b − a − (1)]
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TABLE 3.23 Table of Plus and Minus Signs for the 22 Design

Factorial Effect

Treatment Combination I A B AB

(1) + − − +
a + + − −
b + − + −
ab + + + +

Note that both of the effect estimates A and B are unaffected by blocking because in each
estimate there is one plus and one minus treatment combination from each block. That is,
any difference between block 1 and block 2 will cancel out.

Now consider the AB interaction

AB = 1
2
[ab + (1) − a − b]

Because the two treatment combinations with the plus sign [ab and (1)] are in block
1 and the two with the minus sign [a and b] are in block 2, the block effect and the AB
interaction are identical. That is, AB is confounded with blocks.

The reason for this is apparent from the table of plus and minus signs for the 22 design.
This was originally given as Table 3.2, but for convenience it is reproduced as Table 3.23.
From this table, we see that all treatment combinations that have a plus on AB are assigned
to block 1, whereas all treatment combinations that have a minus on AB are assigned to
block 2. This approach can be used to confound any effect (A, B, or AB) with blocks. For
example, if (1) and b had been assigned to block 1 and a and ab to block 2, then the main
effect A would have been confounded with blocks. The usual practice is to confound the
highest-order interaction with blocks.

This scheme can be used to confound any 2k design in two blocks. As a second example,
consider a 23 design run in two blocks. Suppose we wish to confound the three-factor
interaction ABC with blocks. From the plus and minus signs shown in Table 3.3, we assign
the treatment combinations that are minus on ABC to block 1 and those that are plus on
ABC to block 2. The resulting design is shown in Fig. 3.26. Once again, we emphasize that
the treatment combinations within a block are run in random order.

Figure 3.26 A 23 design in two blocks. (a) Geometric view. (b) Assignment of the eight runs to
two blocks.
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Figure 3.27 The 24 design in two blocks for Example 3.6. (a) Geometric view. (b) Assignment of
the 16 runs to 2 blocks.

Example 3.6 A 24 Factorial in Two Blocks Consider the situation described in Example
3.2. Recall that four factors—temperature (A), pressure (B), concentration of formaldehyde
(C), and stirring rate (D)—are studied in a pilot plant to determine their effect on product
filtration rate. Suppose now that the 24 = 16 treatment combinations cannot all be run on
one day. The experimenter can make eight runs per day, so a 24 design confounded in two
blocks seems appropriate. It is logical to confound the highest-order interaction ABCD with
blocks. The design is shown in Fig. 3.27. Because the block totals are 566 and 555, the sum
of squares for blocks is

SSBlocks =
(566)2 + (555)2

8
− (1121)2

16
= 7.5625

which is identical to the sum of squares for ABCD. A normal probability plot of the
remaining effects indicates that only factors A, C, D and the AC and CD interactions are
important. Therefore, the error sum of squares is formed by pooling the remaining effects.
The resulting analysis of variance is shown in Table 3.24. The practical conclusions are
identical to those found in the original Example 3.2.

TABLE 3.24 Analysis of Variance, Example 3.6

Sum of Degrees of
Source of Variation Squares Freedom Mean Squares F0 P-Value

Blocks (ABCD) 7.563 1
A 1870.563 1 1870.563 89.76 5.60× 10−6

C 390.062 1 390.062 18.72 0.0019
D 855.562 1 855.562 41.05 0.0001
AC 1314.062 1 1314.062 63.05 2.35× 10−5

AD 1105.562 1 1105.563 53.05 4.65× 10−5

Error 187.562 9 20.840
Total 5730.937 15
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Figure 3.28 The 25 design in four blocks with ADE, BCE, and ABCD confounded.

Four or More Blocks It is possible to construct 2k factorial designs confounded in four
blocks of 2k/4 = 2k−2 observations each. These designs are particularly useful in situations
where the number of factors is moderately large, say k≥ 4, or block sizes are relatively
small.

As an example, consider the 25 design. If each block will hold only eight runs, then four
blocks must be used. The construction of this design is relatively straightforward. Select
two effects to be confounded with blocks, say ADE and BCE. Then construct a table of
plus and minus signs for the 25 design. If you consider only the ADE and BCE columns
in such a table, there will be exactly four different sign patterns for the 32 observations in
these two columns. The sign patterns are as follows:

ADE BCE

− −
+ −
− +
+ +

The design would be constructed by placing all the runs that are (−, −) in block 1, those
that are (+, −) in block 2, those that are (−, +) in block 3, and those that are (+, +) in block
4. The design is shown in Fig. 3.28.

With a little reflection we realize that another effect in addition to ADE and BCE must
be confounded with blocks. Because there are four blocks with three degrees of freedom
between them, and because ADE and BCE have only one degree of freedom each, clearly
an additional effect with one degree of freedom must be confounded. This effect is the
generalized interaction of ADE and BCE, which is defined as the product of ADE and
BCE modulo 2. Thus, in our example the generalized interaction (ADE)(BCE) = ABCDE2

= ABCD is also confounded with blocks. It is easy to verify this by referring to a table of
plus and minus signs for the 25 design. Inspection of such a table would reveal that the
treatment combinations are assigned to the blocks as follows:

Treatment Combinations in Sign on ADE Sign on BCE Sign on ABCD

Block 1 − − +
Block 2 + − −
Block 3 − + −
Block 4 + + +
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Notice that the product of signs of any two effects for a particular block (e.g., ADE and
BCE) yields the sign of the other effect for that block (in this case ABCD). Thus ADE, BCE,
and ABCD are all confounded with blocks.

The general procedure for constructing a 2k design confounded in four blocks is to
choose two effects to generate the blocks, automatically confounding a third effect that is
the generalized interaction of the first two. Then, the design is constructed by assigning
the treatment combinations that have the sign pattern (−, −), (+, +), (+, −), (−, +) in the
two original columns to four blocks. In selecting effects to be confounded with blocks,
care must be exercised to obtain a design that does not confound effects that may be of
interest. For example, in a 25 design we might choose to confound ABCDE and ABD,
which automatically confounds CE, an effect that is probably of interest. A better choice
is to confound ADE and BCE, which automatically confounds ABCD. It is preferable to
sacrifice information on the three-factor interactions ADE and BCE instead of the two-factor
interaction CE.

We can extend this procedure to even larger numbers of blocks. It is possible to construct
a 2k factorial design in 2p blocks (where p< k) of 2k−p treatment combinations each. To
do this, select p independent effects to confound with blocks, where “independent” means
that no chosen effect is the generalized interaction of the others. The plus and minus sign
patterns on these p columns are used to assign the treatment combinations to the blocks. In
addition, exactly 2p − p− 1 other effects will be confounded with blocks, these effects being
the generalized interactions of the p effects initially chosen. The choice of these p effects is
critical, because the confounding pattern in the design depends on them. Table 3.25, from
Montgomery (2013), presents a selection of useful designs for k≤ 7 factors. To illustrate
the use of this table, suppose we want to run a 26 design in 23 = 8 blocks of 26−3 = 8
runs each. Table 3.25 indicates that we should choose ABEF, ABCD, and ACE as the p = 3
independent effects to construct the blocks. Then 2p − p− 1 = 23 − 3− 1 = 4 other effects
are also confounded. These are the generalized interaction of these three, or

(ABEF)(ABCD) = A2B2CDEF = CDEF

(ABEF)(ACE) = A2BCE2F = BCF

(ABCD)(ACE) = A2BC2DE = BDE

(ABEF)(ABCD)(ACE) = A3B2C2DE2F = ADF

Notice that this design would confound three four-factor interactions and four three-factor
interactions with blocks. This is the best possible blocking arrangement for this design.

There are several computer programs for constructing and analyzing two-level factorial
designs. Most of these programs have the capability to generate the confounded versions of
these designs discussed in this section. The authors of these programs have typically used
Table 3.25, or a similar one, as the basis for their designs.

3.9 SPLIT-PLOT DESIGNS

The experimental designs we have considered so far are either completely randomized
designs (CRDs) or randomized blocks, where the randomization is restricted to within
different levels of nuisance factors (the blocks). In some experimental situations we may be
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TABLE 3.25 Suggested Blocking Arrangements for the 2k Factorial Design

Number of
Factors, k

Number of
Blocks, 2p

Block
Size, 2k−p

Effects Chosen to
Generate the Blocks

Interactions Confounded
with Blocks

3 2 4 ABC ABC
4 2 AB, AC AB, AC, BC

4 2 8 ABCD ABCD
4 4 ABC, ACD ABC, ACD, BD
8 2 AB, BC, CD AB, BC, CD, AC, BD, AD,

ABCD
5 2 16 ABCDE ABCDE

4 8 ABC, CDE ABC, CDE, ABDE
8 4 ABE, BCE, CDE ABE, BCE, CDE, AC,

ABCD, BD, ADE
16 2 AB, AC, CD, DE All 2-factor and 4-factor

interactions (15 effects)
6 2 32 ABCDEF ABCDEF

4 16 ABCF, CDEF ABCF, CDEF, ABDE
8 8 ABEF, ABCD, ACE ABEF, ABCD, ACE, BCF,

BDE, CDEF, ADF
16 4 ABF, ACF, BDF, DEF ABE, ACF, BDF, DEF, BC,

ABCD, ABDE, AD,
ACDE, CE, BDF,
BCDEF, ABCEF, AEF,
BE

32 2 AB, BC, CD, DE, EF All 2-factor, 4-factor, and
6-factor interactions
(31 effects)

7 2 64 ABCDEFG ABCDEFG
4 32 ABCFG, CDEFG ABCFG, CDEFG, ABDE
8 16 ABC, DEF, AFG ABC, DEF, AFG,

ABCDEF, DCFG,
ADEG, BCDEFG

16 8 ABD, EFG, CDE, ADG ABCD, EFG, CDE, ADG,
ABCDEFG, ABE, BCG,
CDFG, ADEF, ACEG,
ABFG, BCEF, BDEG,
ACF, BDF

32 4 ABG, BCG, CDG,
DEG, EFG

ABG, BCG, CDG, DEG,
EFG, AC, BD, DE, DF,
AE, BE, ABCD, ABDE,
ABEF, BCDE, BCEF,
CDEF, ABCDEFG,
ADG, ACDEG, ACEFG,
ABDFG, ABCEG, BEG,
BDEFG, CFG, ADEF,
ACDF, ABCF, AFG

64 2 AB, BC, CD, DE, EF,
FG

All 2-factor, 4-factor, and
6-factor interactions (63
effects)
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unable to completely randomize the order of the runs because some of the factors are hard
to change. To illustrate, suppose that it is hard to change the level for one of the factors in the
experiment. When this happens, practitioners typically fix the level of the hard-to-change
factor and run multiple combinations of the other factors at that level of the hard-to-
change factor. This results in a generalization of the factorial design called a split-plot
design.

As an example, consider a paper manufacturer who is interested in two different pulp
preparation methods (the methods differ in the amount of hardwood in the pulp mixture)
and two different cooking temperatures for the pulp and who wishes to study the effect of
these two factors on the tensile strength of the paper. Each replicate of a factorial experi-
ment requires four observations, and the experimenter has decided to run two replicates.
Therefore, the complete experiment will require eight runs. Also, the pulp preparation
method factor is hard to change in that each batch of pulp is quite large, and making up
a separate batch of pulp for each run of the experiment or eight pulp batches is imprac-
tical. Therefore, he conducts the experiment as follows. A batch of pulp is produced by
one of the two methods under study. Then this batch is divided into two samples, and
each sample is cooked at one of the two temperatures. Then a second batch of pulp is
made up using the remaining pulp preparation method. This second batch is also divided
into two samples that are tested at the two temperatures. Then a third batch is made up
using one of the two methods, it is divided into two samples and the samples are tested
using the two temperatures. Finally, another batch of pulp is prepared using the remaining
method, it is divided into two samples and both temperatures are tested. The data are shown
in Table 3.26.

Initially, we might consider this to be a factorial experiment with two levels of prepa-
ration method (factor A) and two levels of temperature (factor B). If this is the case, then
the order of experimentation should be completely randomized; that is, within a block, we
should randomly select a treatment combination (a preparation method and a temperature)
and obtain an observation, and then we should randomly select another treatment combi-
nation and obtain a second observation, and so on, until all eight treatment combinations
corresponding to the two replicates have been taken. However, the experimenter did not
conduct the experiment this way. He made up a batch of pulp and obtained observations
for both temperatures from that batch. Because of the size of the batches, this is the only
feasible way to run this experiment. A completely randomized factorial experiment would
require eight batches of pulp, which is unrealistic. The split-plot design requires only four

TABLE 3.26 Split-Plot Design for the Pulp Preparation
Method–Temperature Experiment

Whole Plots Method Temperature y

1 −1 −1 36
1 −1 1 50
2 1 −1 25
2 1 1 30
3 −1 1 46
3 −1 −1 35
4 1 −1 20
4 1 1 27
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batches. Obviously, the split-plot design has resulted in a gain in experimental efficiency
when compared to the completely randomized design.

Split-plot designs have their origin in the agricultural sciences. Suppose that we have an
agricultural field trial with two factors: irrigation method and seed variety. The irrigation
method is hard to change, in that it can only be applied over a relatively large section of the
test field, called a whole plot. The factor associated with this is therefore called a whole
plot factor. Within the whole plot, the second factor—seed variety—is applied to smaller
sections of the field, which are obtained by splitting the larger section of the field into
subplots or split plots. This factor is called the subplot factor. In the paper manufacturing
example, pulp preparation method is the whole plot factor and temperature is the subplot
factor.

The pulp preparation method–temperature experiment is fairly typical of how the split-
plot design is used in an industrial setting. Notice that the two factors were essentially
“applied” at different times. Consequently, a split-plot design can be viewed as two exper-
iments “combined” or superimposed on each other. One “experiment” has the whole plot
factor applied to the large experimental units (or it is a factor whose levels are hard to
change) and the other “experiment” has the subplot factor applied to the smaller experi-
mental units (or it is a factor whose levels are easy to change).

The statistical model for a split-plot design can be written as

yij = 𝜇 + 𝜏i + 𝜀WP + 𝛽j + (𝜏𝛽)ij + 𝜀SP

where 𝜇 is an overall mean, 𝜏 i is the whole plot factor (the pulp preparation meth-
ods), 𝜀WP is the whole plot error, 𝛽 j is the subplot factor (the temperature), (𝜏𝛽)ij is
the method–temperature interaction, and 𝜀SP is the subplot error. Notice that the model has
two error terms, 𝜀WP and 𝜀SP, because there are two different randomizations involved;
one for the whole plots, and another for the subplots. Consequently there are two vari-
ance components that represent these errors, 𝜎2

WP and 𝜎2
SP. We usually say that the split-

plot design has two different error structures. All of the whole plot factors are tested
against the whole plot error, and all of the subplot factors along with interactions between
whole plot and subplot factors are tested against the subplot error. Generally we find
that the subplot error variance is less than the whole plot error variance, because the
subplots are usually more homogeneous than the whole plots. Because the subplot treat-
ments are compared with greater precision, it is preferable to assign the factor we are
most interested in to the subplots, if possible. However, practical or economic consider-
ations of the hard-to-change versus easy-to-change nature of the factors may make this
impossible.

JMP will construct and analyze split-plot designs. Some of the JMP output for the
pulp preparation method–temperature experiment is shown in Table 3.27. In addition to
an ANOVA summary for the model (see the section in Table 3.27 labeled “Fixed Effect
Tests”) JMP also obtains estimates of the whole plot and subplot variance components
using a maximum likelihood approach (see the section labeled “REML Variance Compo-
nents Estimates”). Both factors, pulp preparation methods and temperature are significant,
and there is reasonable indication of an interaction between these factors (the P-value is
approximately 0.07). Also, we see that the whole plot error estimate �̂�2

WP = 4.75, is greater
than the subplot error estimate �̂�2

SP = 1.625.
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EXERCISES

3.1 A router is used to cut registration notches on a printed circuit board. The vibration at
the surface of the board as it is cut is considered to be a major source of dimensional
variation in the notches. Two factors are thought to influence vibration: bit size
(A) and cutting speed (B). Two bit sizes ( 1

16
and 1

8
inch) and two speeds (40 and

90 rpm) are selected, and four boards are cut at each set of conditions as shown in
Table E3.1. The response variable is vibration measured as the resultant vector of
three accelerometers (x, y, and z) on each test circuit board.

TABLE E3.1 The 22 Design for Exercise 3.1

Replicate

A B Treatment Combination I II III IV

− − (1) 18.2 18.9 12.9 14.4
+ − a 27.2 24.0 22.4 22.5
− + b 15.9 14.5 15.1 14.2
+ + ab 41.0 43.9 36.3 39.9

(a) Analyze the data from this experiment.

(b) Construct a normal probability plot of the residuals and a plot of the residuals
versus the predicted vibration level. Interpret these plots.

(c) Draw the AB interaction plot. Interpret this plot. What levels of bit size and
speed would you recommend for routine operation?

(d) Construct a contour plot of vibration as a function of speed and bit size.

3.2 An engineer is interested in the effects of cutting speed (A), tool geometry (B), and
cutting angle (C) on the life (in hours) of a machine tool. Two levels of each factor
are chosen, and two replicates of a 23 factorial design are run. The results are shown
in Table E3.2.

TABLE E3.2 The 23 Design for Exercise 3.2

Replicate

A B C Treatment Combination I II

− − − (1) 22 31
+ − − a 32 43
− + − b 35 34
+ + − ab 55 47
− − + c 44 45
+ − + ac 40 37
− + + bc 60 50
+ + + abc 39 41

(a) Estimate the factor effects. Which effects appear to be large?

(b) Use the analysis of variance to confirm your conclusions for part (a).
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(c) Analyze the residuals. Are there obvious problems or violations of the assump-
tions?

(d) What levels of A, B, and C would you recommend, based on the data from this
experiment?

3.3 An industrial engineer employed by a beverage bottler is interested in the effects of
two different types of 32-ounce bottles on the time to deliver 12-bottle cases of the
product. The two bottle types are glass and plastic. Two workers are used to perform
a task consisting of moving 40 cases of the product 50 ft on a standard type of hand
truck and stacking the cases in a display. Four replicates of a 22 factorial design are
performed, and the times observed are given in Table E3.3. Analyze the data and draw
appropriate conclusions. Analyze the residuals and comment on model adequacy.

TABLE E3.3 The 22 Design for Exercise 3.3

Time

Bottle Type Worker 1 Worker 2

Glass 5.12 6.65
4.98 5.49
4.89 6.24
5.00 5.55

Plastic 4.95 5.28
4.27 4.75
4.43 4.91
4.25 4.71

3.4 Find the two standard error limits for the factor effects in Exercise 3.1. Does the
results of this analysis agree with the conclusions from the analysis of variance?

3.5 Find the two standard error limits for the factor effects in Exercise 3.2. Does the
result of this analysis agree with the conclusions from the analysis of variance?

3.6 An experiment was performed to improve the yield of a chemical process. Four
factors were selected, and one replicate of a completely randomized experiment was
run. The results are shown in Table E3.4.

TABLE E3.4 The 23 Design for Exercise 3.6

Treatment Treatment
Combination Yield Combination Yield

(1) 90 d 98
a 64 ad 62
b 81 bd 87
ab 63 abd 75
c 77 cd 99
ac 61 acd 69
bc 88 bcd 87
abc 53 abcd 60



148 TWO-LEVEL FACTORIAL DESIGNS

(a) Estimate the factor effects. Construct a normal probability plot of these effects.
Which effects appear large?

(b) Prepare an analysis of variance table using the information obtained in part (a).

(c) Plot the residuals versus the predicted yield and on normal probability paper.
Does the residual analysis appear satisfactory?

(d) Construct a contour plot of yield as a function of the important process variables.

3.7 Consider the design of Exercise 3.6. Suppose that four additional runs were made
at the center of the region of experimentation. The response values at these center
points were 94, 90, 99, and 87. Use this additional information to test for curvature
in the response function. What are your conclusions?

3.8 An article in the AT&T Technical Journal (March/April 1986, Vol. 65, pp. 39–
50) describes the application of two-level factorial designs to integrated circuit
manufacturing. A basic processing step is to grow an epitaxial layer on polished
silicon wafers. The wafers mounted on a susceptor are positioned inside a bell jar,
and chemical vapors are introduced. The susceptor is rotated and heat is applied until
the epitaxial layer is thick enough. An experiment was run using two factors: arsenic
flow rate (A) and deposition time (B). Four replicates were run, and the epitaxial
layer thickness (in micrometers) was measured. The data from this experiment are
in Table E3.5.

(a) Estimate the factor effects.

(b) Conduct the analysis of variance. Which factors are important?

(c) Analyze the residuals. Are there any residuals that should cause concern?

(d) Discuss how you might deal with the potential outlier found in part (c).

(e) Construct a contour plot of the layer thickness response surface as a function of
flow rate and deposition time.

TABLE E3.5 The Layer Thickness Experiment from Exercise 3.8

Replicate Level

A B I II III IV Factor Low (−) High (+)

− − 14.037 16.165 13.972 13.907 A 55% 59%
+ − 13.880 13.860 14.032 13.914 B Short Long
− + 14.821 14.757 14.843 14.878
+ + 14.88 14.921 14.415 14.932

3.9 A nickel–titanium alloy is used to make components for jet turbine aircraft engines.
Cracking is a potentially serious problem in the final part, because it can lead to
nonrecoverable failure. A test is run at the parts producer to determine the effect
of four factors on cracks. The four factors are pouring temperature (A), titanium
content (B), heat treatment method (C), and amount of grain refiner used (D). A
single replicate of a 24 design is run, and the lengths (in millimeters) of three cracks
induced in a sample coupon subjected to a standard test are measured. The data are
shown in Table E3.6.
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(a) Use the average crack length as the response. Estimate the factor effects. Which
effects appear to be large?

(b) Using the results of part (a), form a tentative model and conduct an analysis of
variance.

(c) Analyze the residuals from this model.

(d) Use the logarithm of the variance of crack length as the response. Is there any
evidence that any of the design factors affect the variability in crack length?

(e) Make recommendations for process operating conditions.

TABLE E3.6 The Crack Length Experiment from Exercise 3.9

A B C D Treatment Combination Crack Length

− − − − (1) 0.011 0.015 0.013
+ − − − a 1.015 1.002 1.018
− + − − b 0.014 0.012 0.010
+ + − − ab 1.032 1.020 1.046
− − + − c 0.440 0.444 0.459
+ − + − ac 2.388 2.253 2.467
− + + − bc 1.228 1.100 1.306
+ + + − abc 2.759 2.560 2.839
− − − − d 0.010 0.013 0.008
+ − − + ad 0.593 0.542 0.631
− + − + bd 0.675 0.600 0.752
+ + − + abd 1.362 1.215 1.413
− − + + cd 0.544 0.591 0.486
+ − + + acd 2.112 2.003 2.218
− + + + bcd 1.553 1.318 1.625
+ + + + abcd 2.497 2.220 2.753

3.10 Reconsider the crack length experiment in Exercise 3.9. Factor C, a type of heat
treatment, is a categorical variable. Write down the appropriate models for the mean
case length response for each type of heat treatment.

(a) Construct the contour plots of average crack length for these two models. Com-
ment on any differences in the plots.

(b) Is there any evidence that one heat treatment method results in lower variability
in crack length than the other?

3.11 An article in Solid State Technology (“Orthogonal Design for Process Optimization
and its Application in Plasma Etching,” May 1987, pp. 127–132) describes the
application of factorial designs in developing a nitride etch process on a single-
wafer plasma etcher. The process uses C2F6 as the reactant gas. Four factors are of
interest: anode–cathode gap (A), pressure in the reactor chamber (B) C2F6 gas flow
(C), and power applied to the cathode (D). The response variable of interest is the
etch rate for silicon nitride. A single replicate of a 24 design is run, and the resulting
data are in Table E3.7.

(a) Estimate the factor effects. Construct a normal probability plot of the factor
effects. Which effects appear large?

(b) Conduct an analysis of variance to confirm your findings for part (a).
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TABLE E3.7 The Etch Rate Experiment from Exercise 3.11

Level
Run Actual Run Etch Rate
Number Order A B C D (Å/min) Factor Low (−) High (+)

1 13 − − − − 500 A (cm) 0.8 1.20
2 8 + − − − 669 B (mTorr) 4.5 550
3 12 − + − − 604 C (sccm) 125 200
4 9 + + − − 650 D (W) 275 325
5 4 − − + − 633
6 15 + − + − 642
7 16 − + + − 601
8 3 + + + − 635
9 1 − − − + 1037

10 14 + − − + 749
11 5 − + − + 1052
12 10 + + − + 868
13 11 − − + + 1075
14 2 + − + + 860
15 7 − + + + 1063
16 6 + + + + 729

(c) Analyze the residuals from this experiment. Comment on the model’s adequacy.

(d) If not all the factors are important, project the 24 design into a 2k design with
k< 4 and conduct the analysis of variance.

(e) Draw graphs to interpret any significant interactions.

(f) Plot the residuals versus the actual run order. What problems might be revealed
by this plot?

3.12 Consider the single replicate of the 24 design in Example 3.11. Suppose we had
arbitrarily decided to analyze the data assuming that all three- and four-factor inter-
actions were negligible. Conduct this analysis and compare your results with those
obtained in the example. Do you think that it is a good idea to arbitrarily assume
interactions to be negligible even if they are relatively high-order ones?

3.13 An experiment was run in a semiconductor fabrication plant in an effort to increase
the number of good chips produced per wafer. Five factors, each at two levels,
were studied. The factors (and levels) were A = aperture setting (small, large), B
= exposure time (20% below nominal), C = development time (30 sec, 45 sec),
D = mask dimension (small, large), and E = etch time (14.5 min, 15.5 min). The
unreplicated 25 design shown in Table E3.8 is run.

(a) Construct a normal probability plot of the effect estimates. Which effects appear
to be large?

(b) Conduct an analysis of variance to confirm your findings for part (a).

(c) Plot the residuals on normal probability paper. Is the plot satisfactory?

(d) Plot the residuals versus the predicted yields and versus each of the five factors.
Comment on the plots.

(e) Interpret any significant interactions.
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(f) What are your recommendations regarding process operating conditions?

(g) Project the 25 design in this problem into a 2k design in the important factors.
Sketch the design, and show the average and range of yields at each run. Does
this sketch aid in data interpretation?

(h) Construct a contour plot showing how yield changes in terms of the important
factors.

TABLE E3.8 The 25 Experiment from Exercise 3.13

(1) 15 d 16 e 14 de 12
a 20 ad 21 ae 23 ade 19
b 70 bd 65 be 71 bde 60
ab 112 abd 100 abe 110 abde 106
c 30 cd 35 ce 31 cde 32
ac 40 acd 45 ace 43 acde 39
bc 79 bcd 85 bce 90 bcde 82
abc 125 abcd 120 abce 130 abcde 128

3.14 After running a 24 factorial design, an engineer obtained the following factor effect
estimates:

A = −1.3 AB = −2.9 ABC = 0.5
B = 10.1 AC = 1.9 ABD = 1.8
C = 7.5 AD = −4.0 ACD = −2.7
D = −1.4 BC = −5.1 BCD = 2.8

BD = 2.2 ABCD = −0.6
CD = −0.2

Use a normal probability plot to interpret these effects.

3.15 Consider the data from the experiment in Exercise 3.11. Suppose that the last run
made in this experiment (run order number 16) was lost; in fact, the wafer was
broken so that no reading on etch rate could be obtained. One logical approach to
analyzing these data is to estimate the missing value that makes the highest-order
interaction effect estimate zero. Apply this technique to these data, and compare
your results with those obtained in the analysis of the full data set in Exercise 3.10.

3.16 Continuation of Exercise 3.15. Reconsider the situation described in Exercise 3.15.

(a) Analyze the data by fitting a regression model in the main effects to the 15
observations.

(b) Investigate the adequacy of this model. What are your conclusions?

(c) Build a model for the 15 observations with stepwise regression methods, using
the main effects and two-factor interactions as the candidate variables.

(d) Comment on the model obtained above, and compare it to those from Exercise
3.11 and 3.15.

3.17 Contour Plots for Exercise 3.11. Reconsider the etch rate experiment in Exercise
3.11. Construct contour plots for the etch rate response. Suppose that it is important
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to operate this process with a mean etch rate very close to 800 Å/m. What operating
conditions do you recommend?

3.18 An experiment was conducted on a chemical process that produces a polymer. The
four factors studied were temperature (A), catalyst concentration (B), time (C), and
pressure (D). Two responses, molecular weight and viscosity, were observed. The
design matrix and the resulting data are given in Table E3.9.

(a) Consider only the molecular weight response. Plot the effect estimates on a
normal probability scale. What effects appear important?

(b) Use an analysis of variance to confirm the results from part (a). Is there indication
of curvature?

(c) Write down a regression model to predict molecular weight as a function of the
important variables.

(d) Analyze the residuals and comment on model adequacy.

(e) Repeat parts (a)–(d) using the viscosity response.

TABLE E3.9 The Chemical Process Experiment, Exercise 3.18

Level
Run Actual Run Molecular
Number Order A B C D Weight Viscosity Factor Low (−) High (+)

1 18 − − − − 2400 1400 A (◦C) 100 120
2 9 + − − − 2410 1500 B (%) 4 8
3 13 − + − − 2315 1520 C (min) 20 30
4 8 + + − − 2510 1630 D (psi) 60 75
5 3 − − + − 2615 1380
6 11 + − + − 2625 1525
7 14 − + + − 2400 1500
8 17 + + + − 2750 1620
9 6 − − − + 2400 1400

10 7 + − − + 2390 1525
11 2 − + − + 2300 1500
12 10 + + − + 2520 1500
13 4 − − + + 2625 1420
14 19 + − + + 2630 1490
15 15 − + + + 2500 1500
16 20 + + + + 2710 1600
17 1 0 0 0 0 2515 1500
18 5 0 0 0 0 2500 1460
19 16 0 0 0 0 2400 1525
20 12 0 0 0 0 2475 1500

3.19 Continuation of Exercise 3.18. Use the regression models for molecular weight
and viscosity to answer the following questions.

(a) Construct a response surface contour plot for molecular weight. In what direction
would you adjust the process variables to increase molecular weight?

(b) Construct a response surface contour plot for viscosity. In what direction would
you adjust the process variables to decrease viscosity?
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(c) What operating conditions would you recommend if it is necessary to produce a
product with molecular weight between 2400 and 2500 and with low viscosity?

3.20 Consider the experiment described in Exercise 3.1. Suppose that only one replicate
(four runs) could be obtained in a single 4-hr time period, and the experimenters
were concerned about unknown factors that could vary from one time period to
another.

(a) Set up a design in four blocks that will minimize the time effects.

(b) Analyze the data assuming that the design had been run as in part (a). Compare
the results of your analysis with the original analysis in Exercise 3.1.

(c) Suppose that the experimenter’s concerns were realized and that as a result of
the time effect, the observations in replicate IV were (1) = 34.4, a = 44.5,
b = 34.2, and ab = 59.9 instead of the values shown in Exercise 3.1. Reanalyze
these new data, assuming that the blocked design from part (a) had been used.
How has the time effect influenced your conclusions?

3.21 Consider the experiment described in Exercise 3.2. Suppose that this experiment
had been run with each replicate considered as a block. Analyze the data and draw
conclusions. How do the results of your analysis compare with the analysis of the
original Exercise 3.2?

3.22 Consider only the data from the first replicate of Exercise 3.2. Set up a design to
run these observations in two blocks of four runs each with ABC confounded with
blocks. Analyze the data.

3.23 Consider the data from both replicates of Exercise 3.2. Suppose that only four runs
could be made under the same conditions, so that it was necessary to run this design
in blocks of four runs.

(a) Set up a design that confounds ABC in both replicates. Analyze the data.

(b) Set up a design that confounds ABC in the first replicate and AB in the second
replicate. Analyze this design, using the data from replicate I to draw conclusions
about the AB effect, and the data from replicate II to draw conclusions about the
ABC effect (this is a design technique called partial confounding).

3.24 Consider the data from Exercise 3.6. Construct a design with two blocks of eight
runs each, with ABCD confounded with blocks. Analyze the data as if it came from
this design.

3.25 Continuation of Exercise 3.24. Reconsider the situation in Exercise 3.24, and
assume that the block effect causes all observations in the second block to be
reduced by 20. Analyze the data that result. Is the block effect significant? How are
the other conclusions affected?

3.26 Consider the situation described in Exercise 3.13. Set up a design in two blocks for
16 observations each of this problem. Analyze the data that result.

3.27 Consider the situation described in Exercise 3.13. Set up a design in four blocks of
eight runs each, with ACDE and BCE confounded with blocks. What is the other
confounded effect? Analyze the data and draw conclusions.

3.28 Construct a 26 design in eight blocks of eight runs each. Show the complete set of
effects that are confounded with blocks.
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3.29 Suppose that an experimenter has run a 23 factorial design (eight trials) in random
order. He fits the following model to the data:

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝜀

(a) Suppose that the true model is

E(y) = 𝛽0 + 𝛽1x2 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2

Does the interaction term result in biased estimates of 𝛽0, 𝛽1, 𝛽2, and 𝛽3 in the
fitted first-order model?

(b) Suppose that the true model is

E(y) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝛽11x2
1

Determine the bias induced in the least squares estimates of 𝛽0, 𝛽1, 𝛽2, and 𝛽3
by the failure to include the terms 𝛽12x1x2 and 𝛽11x2

1 in the fitted model.

3.30 An experimenter has run a 23 design in standard order (no randomization). Unknown
to the experimenter, a fourth variable x4 takes on the values shown in Table E3.10.

Suppose that the experimenter fits the first-order model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝜀

Find the bias in the least squares estimates of 𝛽0, 𝛽1, 𝛽2, and 𝛽3 that results from not
including the term 𝛽4x4 in the model.

TABLE E3.10 The 23 Experiment for Exercise 3.30

Run x1 x2 x3 x4

1 −1 −1 −1 −4
2 1 −1 −1 −3
3 −1 1 −1 −2
4 1 1 −1 −1
5 −1 −1 1 1
6 1 −1 1 2
7 −1 1 1 3
8 1 1 1 4

3.31 Consider the runs from a 23 factorial design shown in Table E3.11, in random order.
The first four observations are subject to a block effect of 20 units.

(a) Find the effect of the block effect on the estimates of the main effects of A, B,
and C.

(b) Suppose that the design had been set up with ABC confounded with blocks, and
once again, the first 4 runs were subject to a block effect of 20 units. What is the
effect of this block effect on the estimates of A, B, and C
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TABLE E3.11 The 23 Experiment for Exercise 3.31

Run Order A B C Observation

1 + + − ab+ 20
2 + − − a+ 20
3 − − − (1)+ 20
4 + + + abc+ 20
5 − + − b
6 + − + ac
7 − − + c
8 − + + bc

3.32 Consider a 23 design with a center point that has been replicated nC times. Show that
the runs at the center do not affect the estimates of any of the factorial affects. Do the
center points affect the estimate of the overall mean? Will these results generalize
to any 2k design?

3.33 Consider the 2k design with nC center points. Show that an unbiased estimate of
the sum of the pure quadratic coefficients (

∑k
i=1 𝛽ij) in a second-order model can be

obtained from the difference between ȳF and ȳC.

3.34 Consider the 2k design with nC center points. We gave an F-test for pure quadratic
curvature. Show that the same hypothesis can be tested using a t-test.

3.35 Consider the plasma etching experiment described in Exercise 3.11. Suppose that
factor A, the anode–cathode gap, is a hard-to-change factor. Set up an appropriate
split-plot design for conducting this experiment.

3.36 Consider the chemical process experiment described in Exercise 3.18. Suppose that
temperature is a hard-to-change factor. Set up an appropriate split-plot design for
conducting this experiment.

3.37 The book by Davies (Design and Analysis of Industrial Experiments) describes an
experiment to study the yield of isatin. The factors studied and their levels are as
follows:

Factor Low (−) High (+)

A: Acid strength (%) 87 93
B: Reaction time (min) 15 30
C: Amount of acid (mL) 35 45
D: Reaction temperature (◦C) 60 70

The data from the 24 factorial is shown in Table E3.12.

(a) Fit a main-effects-only model to the data from this experiment. Are any of the
main effects significant?

(b) Analyze the residuals. Are there any indications of model inadequacy or violation
of the assumptions?
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(c) Find an equation for predicting the yield of isatin over the design space. Express
the equation in both coded and engineering units.

(d) Construct a normal probability plot of the effects and draw conclusions about a
tentative model for the data.

(e) Is there any indication that adding interactions to the model would improve the
results that you have obtained?

TABLE E3.12 The 24 factorial Experiment for Exercise 3.27

A B C D Y (Yield)

−1 −1 −1 −1 6.08

1 −1 −1 −1 6.04

−1 1 −1 −1 6.53

1 1 −1 −1 6.43

−1 −1 1 −1 6.31

1 −1 1 −1 6.09

−1 1 1 −1 6.12

1 1 1 −1 6.36

−1 −1 −1 1 6.79

1 −1 −1 1 6.68

−1 1 −1 1 6.73

1 1 −1 1 6.08

−1 −1 1 1 6.77

1 −1 1 1 6.38

−1 1 1 1 6.49

1 1 1 1 6.23

3.38 An article in Quality and Reliability Engineering International (2010, Vol. 26,
pp. 223–233) presents a 25 factorial design. The experiment is shown in
Table E3.13.

(a) Analyze the data from this experiment. Identify the significant factors and inter-
actions.

(b) Analyze the residuals from this experiment. Are there any indications of model
inadequacy or violations of the assumptions?

(c) One of the factors from this experiment does not seem to be important. If you
drop this factor, what type of design remains? Analyze the data using the full
factorial model for only the four active factors. Compare your results with those
obtained in part (a).

(d) Find settings of the active factors that maximize the predicted response.

3.39 Suppose that the 25 experiment in Exercise 3.38 had been run in two blocks with
ABCDE confounded with blocks.

(a) Set up the design.
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TABLE E3.13 The 25 Experiment for Exercise 3.38

A B C D E y

−1 −1 −1 −1 −1 8.11
1 −1 −1 −1 −1 5.56

−1 1 −1 −1 −1 5.77
1 1 −1 −1 −1 5.82

−1 −1 1 −1 −1 9.17
1 −1 1 −1 −1 7.8

−1 1 1 −1 −1 3.23
1 1 1 −1 −1 5.69

−1 −1 −1 1 −1 8.82
1 −1 −1 1 −1 14.23

−1 1 −1 1 −1 9.2
1 1 −1 1 −1 8.94

−1 −1 1 1 −1 8.68
1 −1 1 1 −1 11.49

−1 1 1 1 −1 6.25
1 1 1 1 −1 9.12

−1 −1 −1 −1 1 7.93
1 −1 −1 −1 1 5

−1 1 −1 −1 1 7.47
1 1 −1 −1 1 12

−1 −1 1 −1 1 9.86
1 −1 1 −1 1 3.65

−1 1 1 −1 1 6.4
1 1 1 −1 1 11.61

−1 −1 −1 1 1 12.43
1 −1 −1 1 1 17.55

−1 1 −1 1 1 8.87
1 1 −1 1 1 25.38

−1 −1 1 1 1 13.06
1 −1 1 1 1 18.85

−1 1 1 1 1 11.78
1 1 1 1 1 26.05

(b) Analyze the blocked design. How large is the block effect? Compare your
conclusions with the completely randomized design.

3.40 Rework Exercise 3.39, but now suppose that all of the observations in one of
the two blocks are increased by 5 units. This introduces a fairly large block
effect. Compare your results with those obtained from the completely randomized
design.

3.41 Suppose that the 25 experiment in Exercise 3.38 had been run in four blocks.

(a) Set up the design. Carefully show which effects ae confounded with blocks.

(b) Analyze the blocked design. How large is the block effect? Compare your
conclusions with the completely randomized design.
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3.42 Consider the 23 experiment shown in the figure below:

Process Variables

Pressure Conc
Run Temp (◦C) (psing) (g/l) Yield, y

Coded Variables

x1 x2 x3

1 120 40 15 −1 −1 −1 32
2 160 80 15 1 −1 −1 46
3 120 40 15 −1 1 −1 57
4 150 80 15 1 1 −1 65
5 120 40 30 −1 −1 1 36
6 150 80 30 1 −1 1 48
7 120 40 30 −1 1 1 57
8 150 80 30 1 1 1 68
9 140 60 22.5 0 0 0 50

10 140 60 22.5 0 0 0 44
11 140 60 22.5 0 0 0 53
12 140 60 22.5 0 0 0 56

x1 =
Temp − 140

20
, x2 = Pressure − 60

20
, x3 =

Conc − 22.5
7.5

57 68

57

46

65

50
44
53
56

36
48

32

When running a designed experiment, it is sometimes difficult to reach and hold the
precise factor levels required by the design. Small discrepancies are not important,
but large ones are potentially of more concern. To illustrate, the experiment presented
in Table E3.14 shows a variation of the 23 design above, where many of the test
combinations are not exactly the ones specified in the design. Most of the difficulty
seems to have occurred with the temperature variable.

Fit a first-order model to both the original data and the data in Table E3.14.
Compare the inference from the two models. What conclusions can you draw from
this simple example?

TABLE E3.14 Revised Experimental Data

Process Variables

Pressure Conc
Run Temp (◦C) (psing) (g/l) Yield, y

Coded Variables

x1 x2 x3

1 125 41 14 −0.75 −0.95 −1.133 32
2 158 40 15 0.90 −1 −1 46
3 121 82 15 −0.95 1.1 −1 57
4 160 80 15 1 1 −1 65
5 118 39 33 −1.10 −1.05 1.14 36
6 163 40 30 1.15 −1 1 48
7 122 80 30 −0.90 1 1 57
8 165 83 30 1.25 1.15 1 68
9 140 60 22.5 0 0 0 50

10 140 60 22.5 0 0 0 44
11 140 60 22.5 0 0 0 53
12 140 60 22.5 0 0 0 56
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3.43 Suppose that there are three factor each at two levels. The experimented plans to fit
a main efects plus two-factor interaction model and can use exactly 12 runs. Find a
D-optimal design for this problem.

3.44 Reconsider the situation in Exercise 3.43. Suppose that the experimenter decided to
run a single replicate of the 23 design plus four center points.

(a) Is this a D-optimal design?

(b) Compare the prediction performance of this design to the D-optimal design from
Exercise 3.43 at the corners of the cube.

3.45 Consider the 25 design in Exercise 3.38. Suppose that run abe was missing. Analyze
the remaining 15 runs and compare your results with those obtained in Exercise 3.38.

Short Answer Questions

3.46 The key concept of the phrase “Block if you can, randomize if you can’t.” means
that:

(a) It is usually better to not randomize within blocks.

(b) Blocking violates the assumption of constant variance.

(c) Create blocks by using each level of the nuisance factor as a block and randomize
within blocks.

(d) Randomizing the runs is preferable to randomizing blocks.

3.47 Suppose that a 23 factorial experiment with 2 replicates has been conducted. The
experiment has been conducted in blocks. The error sum of squares is 500 and the
block sum of squares is 250. If the experiment had been conducted as a completely
randomized design the estimate of the error variance 𝜎2 would be

(a) 25.0

(b) 25.5

(c) 35.0

(d) 38.5

(e) None of the above

3.48 Physics graduate student Laura Van Ertia has conducted a 22 factorial experiment
as a CRD (completely randomized design), hoping to solve the mystery of the
unified theory and complete her dissertation (good luck on that). The results of this
experiment are summarized in the following ANOVA table:

Source SS DF MS F

Model X X 28.57

A X 1 25.00

B 75.00 X 75.00

AB 50.00 1 X

Error X X X

Total 250.00 15
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Answer the following questions about this experiment.

(a) Fill in the blanks in the ANOVA table.

(b) The number of degrees of freedom for error is ______

(c) The estimate of 𝜎2 is _________

(d) The value of the test statistic for factor A is ______

(e) If the significance level is 0.01, your conclusions are to reject the null hypothesis
that factor A is not significant (answer either Yes or No) ______

3.49 Suppose that the experimenters from Exercise 3.37 fit the following model in the
four main effects (model shown in coded units):

ŷ = 0.25 + 1.5x1 − 2.2x2 + 3.0x3 − 1.1x4

Find the predicted value of the response at the following points:

(a) A = 89, B = 20, C = 38, D = 66

(b) A = 90, B = 16, C = 40, D = 70

(c) A = 87, B = 28, D = 42, D = 61

(d) A = 90, B = 27, D = 37, D = 69

3.50 You are conducting a 26 factorial design in 4 blocks. Which of the runs below are in
the same block as abc?

(a) a

(b) abcd

(c) cdf

(d) bcdef

(e) All of the above

(f) None of the above

3.51 In a randomized complete block design the number of treatments and blocks must
be equal. True False

3.52 The square root of the residual mean square in the ANOVA estimates the standard
deviation of an observation from any factor level. True False

3.53 In a randomized complete block design, the blocks are always chosen
randomly. True False

3.54 There is no effective way to check the validity of the assumption of normality of the
observations in a designed experiment. True False

3.55 An interaction effect in the model from a factorial experiment is a way of
incorporating curvature into the response surface model representation of the
results. True False
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TWO-LEVEL FRACTIONAL
FACTORIAL DESIGNS

4.1 INTRODUCTION

As the number of factors in a 2k factorial design increases, the number of runs required for
a complete replicate of the design rapidly outgrows the resources of most experimenters.
For example, a complete replicate of the 26 design requires 64 runs. In this design, only
6 of the 63 degrees of freedom are used to estimate the main effects, and only 15 degrees
of freedom are used to estimate the two-factor interactions. The remaining 42 degrees of
freedom are associated with three-factor and higher interactions.

If the experimenter can reasonably assume that certain high-order interactions are neg-
ligible, then information on the main effects and low-order interactions may be obtained
by running only a fraction of the complete factorial experiment. These fractional factorial
designs are among the most widely used types of design in industry.

A major use of fractional factorials is in screening experiments. These are experiments
in which many factors are considered with the purpose of identifying those factors (if any)
that have large effects. Remember that screening experiments are usually performed early
in a response surface study when it is likely that many of the factors initially considered
have little or no effect on the response. The factors that are identified as important are then
investigated more thoroughly in subsequent experiments.

The successful use of fractional factorial designs is based on three key ideas:

1. The Sparsity-of-Effects Principle. When there are several variables, the system or
process is likely to be driven primarily by some of the main effects and low-order
interactions.

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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TABLE 4.1 Plus and Minus Signs for the 23 Factorial Design

Factorial Effect

Treatment Combination I A B C AB AC BC ABC

a + + − − − − + +
b + − + − − + − +
c + − − + + − − +
abc + + + + + + + +
ab + + + − + − − −
ac + + − + − + − −
bc + − + + − − + −
(1) + − − − + + + −

2. The Projection Property. Fractional factorial designs can be projected into stronger
(larger) designs in the subset of significant factors.

3. Sequential Experimentation. It is possible to combine the runs of two (or more)
fractional factorials to assemble sequentially a larger design to estimate the factor
effects and interactions of interest.

We will focus on these principles in this chapter and illustrate them with several examples.

4.2 THE ONE-HALF FRACTION OF THE 2k DESIGN

Consider the situation in which three factors, each at two levels, are of interest, but the
experimenters do not wish to run all 23 = 8 treatment combinations. Suppose they consider
a design with four runs. This suggests a one-half fraction of a 23 design. Because the
design contains 23−1 = 4 treatment combinations, a one-half fraction of the 23 design is
often called a 23−1 design.

The table of plus and minus signs for the 23 design is shown in Table 4.1. Suppose
we select the four treatment combinations a, b, c, and abc as our one-half fraction. These
runs are shown in the top half of Table 4.1 and in Fig. 4.1a. Notice that the 23−1 design is
formed by selecting only those treatment combinations that have a plus in the ABC column.
Thus, ABC is called the generator of this particular fraction. Sometimes we will refer to a

Figure 4.1 The two one-half fractions of the 23 design. (a) The principal fraction, I = +ABC.
(b) The alternate fraction, I = −ABC.
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generator such as ABC as a word. Furthermore, the identity column I is also always plus,
so we call

I = ABC

the defining relation for our design. In general, the defining relation for a fractional factorial
will be the set of all columns that are equal to the identity column I.

The treatment combinations in the 23−1 design yield three degrees of freedom that
we may use to estimate the main effects. Referring to Table 4.1, we note that the linear
combinations of the observations used to estimate the main effects of A, B, and C are

[A] = 1
2
(a − b − c + abc)

[B] = 1
2
(−a + b − c + abc)

[C] = 1
2
(−a − b + c + abc)

It is also easy to verify that the linear combinations of the observations used to estimate the
two-factor interactions are

[BC] = 1
2
(a − b − c + abc)

[AC] = 1
2
(−a + b − c + abc)

[AB] = 1
2
(−a − b + c + abc)

Thus, [A] = [BC], [B] = [AC], and [C] = [AB]; consequently, it is impossible to differentiate
between A and BC, B and AC, and C and AB. In fact, when we estimate A, B, and C we are
really estimating A + BC, B + AC, and C + AB. Two or more effects that have this property
are called aliases. In our example, A and BC are aliases, B and AC are aliases, and C and
AB are aliases. We indicate this by the notation [A] → A + BC, [B] → B + AC, and [C] →
C + AB.

The alias structure for this design may be easily determined by using the defining relation
I = ABC. Multiplying any column by the defining relation yields the aliases for that effect.
In our example, this yields as the alias of A

A ⋅ I = A ⋅ ABC = A2BC

or, because the square of any column is just the identity I,

A = BC

Similarly, we find the aliases of B and C as

B ⋅ I = B ⋅ ABC

B = AB2C = AC

and
C ⋅ I = C ⋅ ABC

C = ABC2 = AB

This one-half fraction, with I = +ABC, is usually called the principal fraction.
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Now suppose that we had selected the other one-half fraction; that is, the treatment
combinations in Table 4.1 associated with a minus sign in the ABC column. This alternate
or complementary fraction is shown in Fig. 4.1b. Notice that it consists of the runs labeled
(1), ab, ac, and bc. The defining relation for this design is

I = −ABC

The linear combination of the observations, say [A]′, [B]′, and [C]′, from the alternate
fraction gives us the following alias relationships:

[A]′ ⟶ A − BC

[B]′ ⟶ B − AC

[C]′ ⟶ C − AB

Thus, when we estimate A, B, and C with this particular fraction, we are really estimating
A − BC, B − AC, and C − AB.

In practice, it does not matter which fraction is actually used. Both fractions belong to
the same family; that is, the two one-half fractions form a complete 23 design. This is easily
seen by referring to Fig. 4.1a and 4.1b.

Suppose that after running one of the one-half fractions of the 23 design, the other one
was also run. Thus, all eight runs associated with the full 23 are now available. We may
now obtain de-aliased estimates of all the effects by analyzing the eight runs as a full 23

design in two blocks of four runs each. This could also be done by adding and subtracting
the linear combination of effects from the two individual fractions. For example, consider
[A] → A + BC and [A]′ → A − BC. This implies that

1
2
([A] + [A]′) = 1

2
(A + BC + A − BC) ⟶ A

and
1
2
([A] − [A]′) = 1

2
(A + BC − A + BC) ⟶ BC

Thus, for all three pairs of linear combinations, we would obtain the following:

i From 1

2
([i] + [i]′) From 1

2
([i] − [i]′)

A A BC
B B AC
C C AB

Design Resolution The preceding 23−1 design is called a resolution III design. In such
a design, main effects are aliased with two-factor interactions. A design is of resolution R
if no p-factor effect is aliased with another effect containing less than R − p factors. We
usually employ a Roman numeral subscript to denote design resolution; thus, the one-half
fraction of the 23 design with the defining relation I = ABC (or I = −ABC) is a 23−1

III design.
Designs of resolution III, IV, and V are particularly important. The definitions of these

designs and an example of each follow.



4.2 THE ONE-HALF FRACTION OF THE 2k DESIGN 165

1. Resolution III Designs. These are designs in which no main effects are aliased with
any other main effect, but main effects are aliased with two-factor interactions and
two-factor interactions may be aliased with each other. The 23−1 design in Table 4.1
is of resolution III (23−1

III ).

2. Resolution IV Designs. These are designs in which no main effect is aliased with any
other main effect or with any two-factor interaction, but two-factor interactions are
aliased with each other. A 24−1 design with I = ABCD is of resolution IV (24−1

IV ).

3. Resolution V Designs. These are designs in which no main effect or two-factor
interaction is aliased with any other main effect or two-factor interaction, but two-
factor interactions are aliased with three-factor interactions. A 25−1 design with I =
ABCDE is of resolution V (25−1

V ).

In general, the resolution of a two-level fractional factorial design is equal to the smallest
number of letters in any word in the defining relation. Consequently, we could call the
preceding design types three-letter, four-letter, and five-letter designs, respectively. We
usually like to employ fractional designs that have the highest possible resolution consistent
with the degree of fractionation required. The higher the resolution, the less restrictive the
assumptions that are required regarding which interactions are negligible in order to obtain
a unique interpretation of the data.

Constructing One-Half Fractions A one-half fraction of the 2k design of the highest
resolution may be constructed by writing down a basic design consisting of the runs for a
full 2k−1 factorial and then adding the kth factor by identifying its plus and minus levels with
the plus and minus signs of the highest-order interaction ABC… (K − 1). Therefore, the
23−1

III fractional factorial is obtained by writing down the full 22 factorial as the basic design
and then equating factor C to the AB interaction. The alternate fraction would be obtained
by equating factor C to the −AB interaction. This approach is illustrated in Table 4.2.
Notice that the basic design always has the right number of runs (rows), but it is missing
one column. The generator K = ABC… (K − 1) defines the product of plus and minus signs
to use in each row to produce the levels for the kth factor.

Note that any interaction effect could be used to generate the column for the kth factor.
However, using any effect other than ABC… (K − 1) as the generator will not produce a
design of the highest possible resolution.

Another way to view the construction of a one-half fraction is to partition the runs into
two blocks with the highest-order interaction ABC…K confounded. Each block is a 2k−1

fractional factorial design of the highest resolution.

TABLE 4.2 The Two One-Half Fractions of the 23 Design

Full 22 Factorial
(Basic Design) 23−1

III , I = ABC 23−1
III , I = −ABC

Run A B A B C = AB A B C = −AB

1 − − − − + − − −
2 + − + − − + − +
3 − + − + − − + +
4 + + + + + + + −



166 TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS

Figure 4.2 Projection of a 23−1
III design into three 22 designs.

Projection of Fractions into Factorials Any fractional factorial design of resolution R
contains complete factorial designs (possibly replicated factorials) in any subset of R − 1
factors. This is an important and useful concept. For example, if an experimenter has several
factors of potential interest but believes that only R − 1 of them have important effects,
then a fractional factorial design of resolution R is the appropriate choice of design. If the
experimenter is correct, then the fractional factorial design of resolution R will project into
a full factorial in the R − 1 significant factors. This process is illustrated in Fig. 4.2 for the
23−1

III design, which projects into a 22 design in every subset of two factors.
Because the maximum possible resolution of a one-half fraction of the 2k design is R =

k, every 2k−1 design will project into a full factorial in any k − 1 of the original k factors.
Furthermore, a 2k−1 design may be projected into two replicates of a full factorial in any
subset of k − 2 factors, four replicates of a full factorial in any subset of k − 3 factors, and
so on.

Sequences of Fractional Factorials Using fractional factorial designs often leads to
great economy and efficiency in experimentation, particularly if the runs can be made
sequentially. For example, suppose that we were investigating k = 4 factors (24 = 16 runs).
It is almost always preferable to run a 24−1

IV fractional design (8 runs), analyze the results, and
then decide on the best set of runs to perform next. If it is necessary to resolve ambiguities,
we can always run the alternate fraction and complete the 24 design. When this method
is used to complete the design, both one-half fractions represent blocks of the complete
design with the highest-order interaction confounded with blocks (here ABCD would be
confounded). Thus, sequential experimentation has the result of losing information only
on the highest-order interaction. Alternatively, in many cases we learn enough from the
one-half fraction to proceed to the next stage of experimentation, which might involve
adding or removing factors, changing responses, or varying some of the factors over new
ranges. This potential saving can prove valuable, with additional resources being available
for subsequent stages of experimentation.

Example 4.1 The Filtration Rate Experiment Consider the filtration rate experiment
in Example 3.2. The original design, shown in Table 3.9, is a single replicate of the 24

design. In this example, we found that the main effects A, C, and D and the interactions
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TABLE 4.3 The 24−1
IV Design with the Defining Relation I = ABCD

Basic Design

Run A B C D = ABC Treatment Combination Filtration Rate

1 − − − − (1) 45
2 + − − + ad 100
3 − + − + bd 45
4 + + − − ab 65
5 − − + + cd 75
6 + − + − ac 60
7 − + + − bc 80
8 + + + + abcd 96

AC and AD were different from zero. We will now return to this experiment and simulate
what would have happened if a half-fraction of the 24 design had been run instead of the
full factorial.

We will use the 24−1 design with I = ABCD, because this choice of generator will
result in a design of the highest possible resolution (IV). To construct the design, we first
write down the basic design, which is a 23 design, as shown in the first three columns of
Table 4.3. Because the generator ABCD is positive, this 24−1

IV design is the principal fraction.
The design is shown graphically in Fig. 4.3.

Using the defining relation, we note that each main effect is aliased with a three-factor
interaction; that is, A = A2BCD = BCD, B = AB2CD = ACD, C = ABC2D = ABD, and
D = ABCD2 = ABC. Furthermore, every two-factor interaction is aliased with another
two-factor interaction. These alias relationships are AB = CD, AC = BD, and BC = AD.
The four main effects plus the three two-factor interaction alias pairs account for the seven
degrees of freedom for the design.

At this point, we would normally randomize the eight runs and perform the experiment.
Because we have already run the full 24 design, we will simply select the eight observed
filtration rates from Example 3.2 that correspond to the runs in the 24−1

IV design. These
observations are shown in the last column of Table 4.3 and are also shown in Fig. 4.3.

Figure 4.3 The 24−1
IV design for the filtration rate experiment of Example 4.1.
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TABLE 4.4 Estimates of Effects and
Aliases from Example 4.1

Estimate Alias Structurea

[A] = 19.00 [A] ⟶ A + BCD
[B] = 1.50 [B] ⟶ B + ACD
[C] = 14.00 [C] ⟶ C + ABD
[D] = 16.50 [D] ⟶ D + ABC
[AB] = −1.00 [AB] ⟶ AB + CD
[AC] = −18.50 [AC] ⟶ AC + BD
[BC] = 19.00 [BC] ⟶ BC + AD

aSignificant effects are shown in boldface type.

The estimates of the effects obtained from this 24−1
IV design are shown in Table 4.4.

To illustrate the calculations, the linear combination of observations associated with the A
effect is

[A] = 1
4
(−45 + 100 − 45 + 65 − 75 + 60 − 80 + 96) = 19.00 ⟶ A + BCD

whereas for the AB effect we obtain

[AB] = 1
4
(45 − 100 − 45 + 65 + 75 − 60 − 80 + 96) = −1.00 ⟶ AB + CD

From inspection of the information in Table 4.4, it is not unreasonable to conclude that the
main effects A, C, and D are large and that the AC and AD interactions are also significant.
This agrees with the conclusions from the analysis of the complete 24 design in Example 3.2.

Because factor B is not significant, we may drop it from consideration. Consequently,
we may project this 24−1

IV design into a single replicate of the 23 design in factors A, C, and
D, as shown in Fig. 4.4. Visual examination of this cube plot makes us more comfortable
with the conclusions reached above. Notice that if the temperature (A) is at the low level,
the concentration (C) has a large positive effect, whereas if the temperature is at the high
level, the concentration has a very small effect. This is likely due to an AC interaction.

Figure 4.4 Projection of the 24−1
IV design into 23 design in A, C, and D for Example 4.1.
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Furthermore, if the temperature is at the low level, the effect of the stirring rate (D) is
negligible, whereas if the temperature is at the high level, the stirring rate has a large
positive effect. This is likely due to the AD interaction tentatively identified previously.

Now suppose that the experimenter decided to run the alternate fraction, given by
I = −ABCD. It is straightforward to show that the design and the responses are as follows:

Run A B C D = −ABC Treatment Combination Filtration Rate

1 − − − + d 43
2 + − − − a 71
3 − + − − b 48
4 + + − + abd 104
5 − − + − c 68
6 + − + + acd 86
7 − + + + bcd 70
8 + + + − abc 65

The linear combinations of observations obtained from this alternate fraction are

[A]′ = 24.25 ⟶ A − BCD

[B]′ = 4.75 ⟶ B − ACD

[C]′ = 5.75 ⟶ C − ABD

[D]′ = 12.75 ⟶ D − ABC

[AB]′ = 1.25 ⟶ AB − CD

[AC]′ = −17.75 ⟶ AC − BD

[BC]′ = −14.25 ⟶ BC − AD

These estimates may be combined with those obtained from the original one-half fraction
to yield the following estimates of the effects:

i From 1

2
([A] + [A]′) From 1

2
([A] − [A]′)

A 21.63 ⟶ A −2.63 ⟶ BCD
B 3.13 ⟶ B −1.63 ⟶ ACD
C 9.88 ⟶ C 4.13 ⟶ ABD
D 14.63 ⟶ D 1.88 ⟶ ABC
AB 0.13 ⟶ AB −1.13 ⟶ CD
AC −18.13 ⟶ AC −0.38 ⟶ BD
BC 2.38 ⟶ BC 16.63 ⟶ AD

These estimates agree exactly with those from the original analysis of the data as a single
replicate of a 24 factorial design, as reported in Example 3.2.
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TABLE 4.5 A 25−1 Design for Example 4.2

Run A B C D E = ABCD Treatment Combination Resistivity

1 − − − − + e 15.1
2 + − − − − a 20.6
3 − + − − − b 68.7
4 + + − − + abe 101.0
5 − − + − − c 32.9
6 + − + − + ace 46.1
7 − + + − + bce 87.5
8 + + + − − abc 119.0
9 − − − + − d 11.3

10 + − − + + ade 19.6
11 − + − + + bde 62.1
12 + + − + − abd 103.2
13 − − + + + cde 27.1
14 + − + + − acd 40.3
15 − + + + − bcd 87.7
16 + + + + + abcde 128.3

Example 4.2 A 25−1 Design Five factors in a manufacturing process for an integrated
circuit were investigated in a 25−1 design with the objective of learning how these factors
affect the resistivity of the wafer. The five factors were A = implant dose, B = temperature,
C = time, D = oxide thickness, and E = furnace position. Each factor was run at two
levels. The construction of the 25−1 design is shown in Table 4.5. Notice that the design
was constructed by writing down the basic design having 16 runs (a 24 design in A, B, C,
and D), selecting ABCDE as the generator, and then setting the levels of the fifth factor E =
ABCD. Figure 4.5 gives a pictorial representation of the design.

The defining relation for the design is I = ABCDE. Consequently, every main effect is
aliased with a four-factor interaction:

[A] ⟶ A + BCDE

[B] ⟶ B + ACDE

[C] ⟶ C + ABDE

[D] ⟶ D + ABCE

[E] ⟶ E + ABCD

Every two-factor interaction is aliased with a three-factor interaction:

[AB] ⟶ AB + CDE [BD] ⟶ BD + ACE

[AC] ⟶ AC + BDE [BE] ⟶ BE + ACD

[AD] ⟶ AD + BCE [CD] ⟶ CD + ABE

[AE] ⟶ AE + BCD [CE] ⟶ CE + ABD

[BC] ⟶ BC + ADE [DE] ⟶ DE + ABC
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Figure 4.5 The 25−1
V design for Example 4.2.

This is a resolution V design. We would expect this 25−1
V design to provide excellent

information concerning the main effects and all two-factor interactions.
The estimates of the effects are

[A] ⟶ A + BCDE = 23.2125

[B] ⟶ B + ACDE = 68.0625

[C] ⟶ C + ABDE = 20.9125

[D] ⟶ D + ABCE = −1.4125

[E] ⟶ E + ABCD = 0.3875

[AB] ⟶ AB + CDE = 13.1625 [BD] ⟶ BD + ACE = 2.6875

[AC] ⟶ AC + BDE = 1.4125 [BD] ⟶ BE + ACD = −0.3125

[AD] ⟶ AD + BCE = 2.5875 [CD] ⟶ CD + ABE = 0.8875

[AE] ⟶ AE + BCD = 2.5875 [CE] ⟶ CE + ABD = 1.8875

[BC] ⟶ BC + ADE = 0.9675 [DE] ⟶ DE + ABC = −1.7375

The effects A, B, C, and AB seem large. Figure 4.6 presents a normal probability plot of
the effect estimates from this experiment. This plot confirms that the main effects of A, B,
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Figure 4.6 Normal probability plot of effects for Example 4.2.

and C, and the AB interaction are large. Remember that, because of aliasing, these effects
are really A + BCDE, B + ACDE, C + ABDE, and AB + CDE. However, because it seems
plausible that three-factor and higher interactions are negligible, we feel safe in concluding
that only A, B, C, and AB are important effects.

Table 4.6 summarizes the analysis of variance for this experiment. The model sum of
squares is SSmodel = SSA + SSB + SSC + SSAB = 23,127.63, and this accounts for over 99%
of the total variability in the response. The regression model that would be used to predict
resistivity over the space of the three factors A, B, and C is

ŷ = 60.65625 + 11.60625x1 + 34.03125x2 + 10.45625x3 + 6.58125x1x2

where x1, x2, and x3 are coded variables on the interval −1, +1 that represent A, B, and C.
Figure 4.7 presents a normal probability plot of the residuals from this model, and

Fig. 4.8 is a plot of the residuals versus the predicted values. Both plots are satisfactory.
The three factors A, B, and C have large positive effects. The AB or implant dose–

temperature interaction is plotted in Fig. 4.9. This plot indicates that the implant dose has
a much stronger effect on resistivity when temperature is at the high level.

The 25−1 design will collapse into two replicates of a 23 design in any three of the
original five factors. (Looking at Fig. 4.5 will help you visualize this.) Figure 4.10 is a cube

TABLE 4.6 Analysis of Variance for Example 4.2

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0

A 2155.28 1 2155.28 193.20
B 18,530.02 1 18,530.02 1791.24
C 1749.33 1 1749.33 184.61
AB 693.01 1 693.01 73.78
Error 132.59 11 12.05
Total 23,260.22 15



Figure 4.7 Normal probability plot of the residuals for Example 4.2.

Figure 4.8 Plot of residuals versus predicted resistivity, Example 4.2.

Figure 4.9 Implant dose–temperature interaction, Example 4.2.
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Figure 4.10 Projection of the 25−1
V design in Example 4.2 into two replicates of a 23 design in the

factors A, B, and C.

plot in the factors A, B, and C with the average resistivity superimposed on the eight corners.
It is clear from inspection of the cube plot that highest resistivity values are achieved with
A, B, and C all at the high level. Factors D and E have little effect on resistivity and may be
set to values that optimize other objectives (such as cost).

JMP Analysis of Example 4.2 We can also analyze the fractional factorial design in
Example 4.2 using the screening platform in JMP. Table 4.7 contains the output. The upper
part of the table shows the results from applying Lenth’s method to the data from the
experiment. The simulated P-values indicate that the same factors that we identified in
Example 4.1, the main effects of A,B, and C, and the two-factor AB interaction are active.
The bottom portion of the table contains a half-normal probability plot of the effects.
Table 4.8 is the results from fitting this model to the data. This table also includes the final
prediction equation, the prediction profiler with the levels of the active factors all set to the
middle level, and the two-factor interaction plot.

4.3 THE ONE-QUARTER FRACTION OF THE 2k DESIGN

For a moderately large number of factors, smaller fractions of the 2k design are frequently
useful. Consider a one-quarter fraction of the 2k design. This design contains 2k−2 runs and
is usually called a 2k−2 fractional factorial.

The 2k−2 design may be constructed by first writing down a basic design consisting
of the runs associated with a full factorial in k − 2 factors and then associating the two
additional columns with generators that are appropriately chosen interactions involving the
first k − 2 factors. Thus, a one-quarter fraction of the 2k design has two generators. If P and
Q represent the generators chosen, then I = P and I = Q are called generating relations
for the design. The signs of P and Q (either + or−) determine which one of the one-quarter
fractions is produced. All four fractions associated with the choice of generators ±P and
±Q are members of the same family. The fraction for which both P and Q are positive is
the principal fraction.
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TABLE 4.7 JMP Screening Output for Example 4.2

Screening for Y
Contrasts

Lenth Individual Simultaneous
Term Contrast Plot of t-Ratio t-Ratio P-Value P-Value

X2 34.0313 32.12 <0.0001∗ <0.0001∗

X1 11.6063 10.96 0.0003∗ 0.0012∗

X3 10.4563 9.87 0.0004∗ 0.0018∗

X4 −0.7063 −0.67 0.5002 1.0000
X5 0.1937 0.18 0.8682 1.0000
X2∗X1 6.5813 6.21 0.0011∗ 0.0111∗

X2∗X3 0.4813 0.45 0.6788 1.0000
X1∗X3 0.7063 0.67 0.5002 1.0000
X2∗X4 1.3438 1.27 0.1938 0.9289
X1∗X4 1.2938 1.22 0.2071 0.9480
X3∗X4 0.4438 0.42 0.7015 1.0000
X2∗X5 −0.1563 −0.15 0.8915 1.0000
X1∗X5 1.2938 1.22 0.2071 0.9480
X3∗X5 0.9438 0.89 0.3481 0.9993
X4∗X5 −0.8688 −0.82 0.3861 1.0000

Half-Normal Plot

-

Lenth PSE = 1.05938
P-Values derived from a simulation of 10,000 Lenth t-ratios.
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TABLE 4.8 Model Fitting Results for Example 4.2

Response Y
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare 0.9943
RSquare Adj 0.992227
Root Mean Square Error 3.471794
Mean of Response 60.65625
Observations (or Sum Wgts) 16

Analysis of Variance

Source DF Sum of Squares Mean Square F-Ratio

Model 4 23127.633 5781.91 479.6930
Error 11 132.587 12.05 Prob > F
C. Total 15 23260.219 <.0001∗

Lack of Fit

Source DF Sum of Squares Mean Square F-Ratio

Lack of Fit 3 23.76187 7.9206 0.5823
Pure Error 8 108.82500 13.6031 Prob > F
Total Error 11 132.58687 0.6431

Max RSq

Parameter Estimates

Term Estimate Std Error t-Ratio Prob > |t|

Intercept 60.65625 0.867948 69.88 <.0001∗

X2 34.03125 0.867948 39.21 <.0001∗

X1 11.60625 0.867948 13.37 <.0001∗

X3 10.45625 0.867948 12.05 <.0001∗

X2∗X1 6.58125 0.867948 7.58 <.0001∗
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TABLE 4.8 (Continued)

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F

X2 1 1 18530.016 1537.333 <.0001∗

X1 1 1 2155.281 178.8117 <.0001∗

X3 1 1 1749.331 145.1323 <.0001∗

X2∗X1 1 1 693.006 57.4948 <.0001∗

Residual by Predicted Plot

Prediction Expression

60.65625 + 34.03125∗X2 + 11.60625∗X1 + 10.45625∗X3 + X2∗[X1∗6.58125]

(continued)
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TABLE 4.8 (Continued)

Interaction Profiles
Y

Y

-1

-0
.5 0

0.
5 1 -1

-0
.5 0

0.
5 1

X
2

X
1

The complete defining relation for the design consists of all the columns that are equal
to the identity column I. These will consist of P, Q, and their generalized interaction PQ;
that is, the defining relation is I = P = Q = PQ. We call the elements P, Q, and PQ in the
defining relation words. The aliases of any effect are produced by the multiplication of the
column for that effect by each word in the defining relation. Clearly, each effect has three
aliases. The experimenter should be careful in choosing the generators so that potentially
important effects are not aliased with each other.

As an example, consider the 26−2 design. Suppose we choose I=ABCE and I=BCDF as
the design generators. Now the generalized interaction of the generators ABCE and BCDF
is ADEF; therefore, the complete defining relation for this design is

I = ABCE = BCDF = ADEF

Consequently, this design is of resolution IV. To find the aliases of any effect (e.g., A),
multiply that effect by each word in the defining relation. For A, this produces

A = BCE = ABCDF = DEF

It is easy to verify that every main effect is aliased by three-factor and five-factor inter-
actions, whereas two-factor interactions are aliased with each other and with higher-order
interactions. Thus, when we estimate A, for example, we are really estimating A + BCE +
DEF + ABCDF. The complete alias structure of this design is shown in Table 4.9. If three-
factor and higher interactions are negligible, this design gives clear estimates of the main
effects.

To construct the design, first write down the basic design, which consists of the 16 runs
for a full 26−2 = 24 design in A, B, C, and D. Then the two factors E and F are added by
associating their plus and minus levels with the plus and minus signs of the interactions
ABC and BCD, respectively. This procedure is shown in Table 4.10.

There are, of course, three alternate fractions of this particular 26−2
IV design. They are

the fractions with generating relationships I = ABCE and I = −BCDF; I = −ABCE and
I = BCDF; and I = −ABCE and I = −BCDF. These fractions may be easily constructed
by the method shown in Table 4.10. For example, if we wish to find the fraction for which
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TABLE 4.9 Alias Structure for the 26−2
IV Design with I=

ABCE = BCDF = ADEF

A = BCE = DEF = ABCDF AB = CE = ACDF = BDEF
B = ACE = CDF = ABDEF AC = BE = ABDF = CDEF
C = ABE = BDF = ACDEF AD = EF = ABDF = CDEF
D = BCF = AEF = ABCDE AE = BC = DF = ABCDEF
E = ABC = ADF = BCDEF AF = DE = BCEF = ABCD
F = BCD = ADE = ABCEF BD = CF = ACDE = ABEF

BF = CD = ACEF = ABDE
ABD = CDE = ACF = BEF
ACD = BDE = ABF = CEF

I = ABCE and I = −BCDF, then in the last column of Table 4.8 we set F = −BCD, and the
column of levels for factor F becomes

+ + − − − − + + − − + + + + −−

The complete defining relation for this alternative fraction is I = ABCE = −BCDF=
−ADEF. Certain signs in the alias structure in Table 4.10 are now changed; for instance,
the aliases of A are A = BCE = −DEF = −ABCDF. Thus, the linear combination of the
observations [A] actually estimates A + BCE − DEF − ABCDF.

Finally, note that the 26−2
IV fractional factorial collapses to a single replicate of a 24 design

in any subset of four factors that is not a word in the defining relation. It also collapses
to a replicated one-half fraction of a 24 in any subset of four factors that is a word in the
defining relation. Thus, the design in Table 4.10 becomes two replicates of a 24−1 in the
factors ABCE, BCDF, and ABEF, because these are the words in the defining relation.
There are 12 other combinations of the six factors, such as ABCD, ABDF, and so on, for

TABLE 4.10 Construction of the 26−2
IV Design with the Generators I= ABCE and I = BCDF

Run A B C D E = ABC F = BCD

1 − − − − − −
2 + − − − + −
3 − + − − + +
4 + + − − − +
5 − − + − + +
6 + − + − − +
7 − + + − − −
8 + + + − + −
9 − − − + − +

10 + − − + + +
11 − + − + + −
12 + + − + − −
13 − − + + + −
14 + − + + − −
15 − + + + − +
16 + + + + + +
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which the design projects to a single replicate of the 24. This design also collapses to two
replicates of a 23 in any subset of three of the six factors or four replicates of a 22 in any
subset of two factors.

In general, any 2k−2 fractional factorial design can be collapsed into either a full factorial
or a fractional factorial in some subset of r≤ k − 2 of the original factors. Those subsets
of variables that form full factorials in r = k − 2 are not words in the complete defining
relation. Any subset of r = 3 factors will give a full factorial design.

Example 4.3 The Injection Molding Experiment Parts manufactured in an injection
molding process are showing excessive shrinkage. This is causing problems in assembly
operations downstream from the injection molding area. A quality improvement team
has decided to use a designed experiment to study the injection molding process so that
shrinkage can be reduced. The team decides to investigate six factors—mold temperature
(A), screw speed (B), holding time (C), cycle time (D), gate size (E), and holding pressure
(F)—each at two levels, with the objective of learning how each factor affects shrinkage
and also something about how the factors interact.

The team decides to use the 16-run two-level fractional factorial design in Table 4.11
along with four center points, so that the linearity of the response function can be investigated
via a curvature test. The design is shown in Table 4.11, along with the observed shrinkage
(×10) for the test part produced at each of the 20 runs in the design.

A normal probability plot of the effect estimates from this experiment is shown in
Fig. 4.11. The only large effects are A (mold temperature), B (screw speed), and the AB
interaction. In light of the alias relationships in Table 4.9, it seems reasonable to adopt
these conclusions tentatively. Table 4.12 shows the analysis of variance for this experiment.

TABLE 4.11 A 26−2
IV Design for the Injection Molding Experiment in Example 4.3

Run A B C D E = ABC F = BCD Observed Shrinkage (×10)

1 − − − − − − 6
2 + − − − + − 10
3 − + − − + + 32
4 + + − − − + 60
5 − − + − + + 4
6 + − + − − + 15
7 − + + − − − 26
8 + + + − + − 60
9 − − − + − + 8

10 + − − + + + 12
11 − + − + + − 34
12 + + − + − − 60
13 − − + + + − 16
14 + − + + − − 5
15 − + + + − + 37
16 + + + + + + 52
17 0 0 0 0 0 0 29
18 0 0 0 0 0 0 34
19 0 0 0 0 0 0 26
20 0 0 0 0 0 0 30
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Figure 4.11 Normal probability plot of effects for Example 4.3.

The pure error sum of squares is computed from the replicate runs at the center, and the
lack-of-fit sum of squares is formed by pooling all the effects that appeared small on the
normal probability plot. Notice that the lack-of-fit (higher-order interaction) and curvature
(quadratic) tests have small F-ratios, so the model is correctly specified.

The plot of the AB interaction in Fig. 4.12 shows that the process is insensitive to
temperature if the screw speed is at the low level but very sensitive to temperature if the
screw speed is at the high level. With the screw speed at the low level, the process should
produce an average shrinkage of around 10% regardless of the temperature level chosen.

Based on this initial analysis, the team decides to set both the mold temperature and
the screw speed at the low level. This set of conditions will reduce the mean shrinkage
of parts to around 10%. However, the variability in shrinkage from part to part is still a
potential problem. In effect, the mean shrinkage can be substantially reduced by the above
modifications; however, the part-to-part variability in shrinkage over a production run could

TABLE 4.12 Analysis of Variance for the Injection Molding Experiment (Example 4.3)

Source of Sum of Degrees of Mean
Variation Squares Freedom Squares F0 P-Value

A 770.063 1 770.063 41.033 1.18× 10−5

B 5076.563 1 5076.563 270.505 5.25× 10−11

AB 564.063 1 564.063 30.056 0.0001
Curvature 19.012 1 19.012 1.742 0.2786
Residual 281.500 15 18.767

Lack-of-fit (248.750) (12) 20.729 1.899 0.3277
Pure error (32.750) (3) 10.917

Total 6711.200 19
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Figure 4.12 Plot of AB (mold-temperature–screw-speed) interaction for Example 4.3.

still cause problems in assembly. One way to address this issue is to see if any of the process
factors affect the variability in parts shrinkage.

Figure 4.13 presents the normal probability plot of the residuals. This plot appears
satisfactory. The plots of residuals versus each factor were then constructed. One of these
plots, that for residuals versus factor C (holding time), is shown in Fig. 4.14. The plot
reveals that there is much less scatter in the residuals at the low holding time than at the

Figure 4.13 Normal probability plot of residuals for Example 4.3.



4.3 THE ONE-QUARTER FRACTION OF THE 2k DESIGN 183

Figure 4.14 Residuals versus holding time (C) for Example 4.4.

high holding time. These residuals were obtained in the usual way from the model for
predicted shrinkage

ŷ = b0 + b1x1 + b2x2 + b12x1x2

= 27.3125 + 6.9375x1 + 17.8125x2 + 5.9375x1x2

where x1, x2, and x1x2 are the coded variables that correspond to the factors A and B and
the AB interaction. The residuals are then

e = y − ŷ

The regression model used to produce the residuals essentially removes the location effects
of A, B, and AB from the data; the residuals therefore contain information about unexplained
variability. Figure 4.14 indicates that there is a pattern in the variability and that the
variability in shrinkage of parts may be smaller when the holding time is at the low level.

Figure 4.15 shows the data from this experiment projected onto a cube in the factors A,
B, and C. The average observed shrinkage and the range of observed shrinkage are shown
at each corner of the cube. From inspection of this figure, we see that running the process
with the screw speed (B) at the low level is the key to reducing average parts shrinkage. If
B is low, virtually any combination of temperature (A) and holding time (C) will result in
low values of average part shrinkage. However, from examining the ranges of the shrinkage
values at each corner of the cube, it is immediately clear that setting the holding time (C)
at the low level is the only reasonable choice if we wish to keep the part-to-part variability
in shrinkage low during a production run.

In many response surface problems it is useful to actually build a model for both the
mean response and a measure of the variability in response (such as the range, the variance,
or the standard deviation). In fact, we illustrated this in Example 3.3. Then the optimization
problem is a tradeoff between these two criteria, such as minimizing the variability while
simultaneously moving the mean response to a desired or target value. We will present
several techniques for doing this in subsequent chapters.
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Figure 4.15 Average shrinkage (ȳ) and range of shrinkage (R) in factors A, B, and C for Example 4.3.

4.4 THE GENERAL 2k−p FRACTIONAL FACTORIAL DESIGN

A 2k fractional factorial design containing 2k−p runs is called a 1/2p fraction of the 2k design
or, more simply, a 2k−p fractional factorial design. These designs require the selection of
p independent design generators. The defining relation for the design consists of the p
generators initially chosen and their 2p − p − 1 generalized interactions. In this section we
discuss the construction and analysis of these designs.

The alias structure may be found by multiplying each effect column by the defining
relations. Care should be exercised in choosing the generators so that effects of potential
interest are not aliased with each other. Each effect has 2p − 1 aliases. For moderately large
values of k, we usually assume higher-order interactions (say, third- or fourth-order and
higher) to be negligible, and this greatly simplifies the alias structure.

It is important to select the p generators for a 2k−p fractional factorial design in such
a way that we obtain the best possible alias relationships. A reasonable criterion is to
select the generators such that the resulting 2k−p design has the highest possible resolution.
Table 4.13 presents a selection of 2k−p fractional factorial designs for k≤ 11 factors and up
to n≤ 128 runs, adapted from Montgomery (2013). The suggested generators in this table
will result in a design of the highest possible resolution. These designs are also minimum
aberration designs; that is if the design has resolution R, then it has the minimum number
of main effects aliased with interactions of order R − 1, the minimum number of two-factor
interactions aliased with interactions of order R − 2, and so on. The alias relationships for
all of the designs in Table 4.13 for which n≤ 64 are given in Appendix Table XII(a–v) of
Montgomery (2013).

Example 4.4 Selection of a Fractional Factorial To illustrate the use of Table 4.13,
suppose that we have seven factors and that we are interested in estimating the seven main
effects and getting some insight regarding the two-factor interactions. We are willing to
assume that three-factor and higher interactions are negligible. This information suggests
that a resolution IV design would be appropriate.
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TABLE 4.13 Selected 2k−p Fractional Factorial Designs

Number of Factors, k Fraction Number of Runs Design Generators

3 23−1
III 4 C = ±AB

4 24−1
IV 8 D = ±ABC

5 25−1
V 16 E = ±ABCD

25−2
III 8 D = ±AB

E = ±AC
6 26−1

VI 32 F = ±ABCDE

26−2
IV 16 E = ±ABC

F = ±BCD
26−3

III 8 D = ±AB
E = ±AC
F = ±BC

7 27−1
VII 64 G = ±ABCDEF

27−2
IV 32 F = ±ABCD

G = ±ABDE
27−3

IV 16 E = ±ABC
F = ±BCD
G = ±ACD

27−4
III 8 D = ±AB

E = ±AC
F = ±BC
G = ±ABC

8 28−2
V 64 G = ±ABCD

H = ±ABEF
28−3

IV 32 F = ±ABC
G = ±ABD
H = ±BCDE

28−4
IV 16 E = ±BCD

F = ±ACD
G = ±ABC
H = ±ABD

9 29−2
VI 128 H = ±ACDFG

J = ±BCEFG
29−3

IV 64 G = ±ABCD
H = ±ACEF
J = ±CDEF

29−4
IV 32 F = ±BCDE

G = ±ACDE
H = ±ABDE
J = ±ABCE

29−5
III 16 E = ±ABC

F = ±BCD
G = ±ACD
H = ±ABD
J = ±ABCD

(continued)
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TABLE 4.13 (Continued)

Number of Factors, k Fraction Number of Runs Design Generators

10 210−3
V 128 H = ±ABCG

J = ±ACDE
K = ±ACDF

210−4
IV 64 G = ±BCDF

H = ±ACDF
J = ±ABDE
K = ±ABCE

210−5
IV 32 F = ±ABCD

G = ±ABCE
H = ±ABDE
J = ±ACDE
K = ±BCDE

210−6
III 16 E = ±ABC

F = ±BCD
G = ±ACD
H = ±ABD
J = ±ABCD
K = ±AB

11 211−5
IV 64 G = ±CDE

H = ±ABCD
J = ±ABF
K = ±BDEF
L = ±ADEF

211−6
IV 32 F = ±ABC

G = ±BCD
H = ±CDE
J = ±ACD
K = ±ADE
L = ±BDE

211−7
III 16 E = ±ABC

F = ±BCD
G = ±ACD
H = ±ABD
J = ±ABCD
K = ±AB
L = ±AC

Table 4.13 shows that there are two resolutions IV fractions available: the 27−2
IV design

with 32 runs and the 27−3
IV with 16 runs. Consider the 16-run design. This is a one-eighth

fraction with generators E = ±ABC, F = ±BCD, and G = ±ACD, and if we choose the
principal fraction the complete defining relation is

I = ABCE = BCDF = ADEF = ACDG = BDEG = ABFG = CEFG

Now because the design is of resolution IV, it is clear that the main effects will be aliased
with at worst a three-factor interaction. So if we can safely ignore these higher-order
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interactions, this design will give excellent information on the main effects. The two-factor
interaction alias chains are

AB = CE = FG

AC = BE = DG

AD = EF = CG

AE = BC = DF

AF = DE = BG

AG = CD = BF

BD = CF = EG

when ignoring three-factor and higher interactions. Thus this design would likely be
satisfactory to satisfy the experimenter’s objectives.

The complete design is shown in Table 4.14. Notice that it was constructed by starting
with the 16-run 24 design in A, B, C, and D as the basic design and then adding the three
columns E = ABC, F = BCD, and G = ACD as suggested in Table 4.13.

Projection of the 2k−p Fractional Factorial The 2k−p design collapses into either a full
factorial or a fractional factorial in any subset of r≤ k − p of the original factors. Those
subsets of factors providing fractional factorials are subsets appearing as words in the
complete defining relation. Furthermore, a design of resolution R will project into a full
factorial in any subset of R − 1 factors. These results are particularly useful in screening
experiments when we suspect at the outset of the experiment that most of the original
factors will have small effects. The original 2k−p fractional factorial can then be projected

TABLE 4.14 A 27−3
IV Fractional Factorial Design

Basic Design

Run A B C D E = ABC F = BCD G = ACD

1 − − − − − − −
2 + − − − + − +
3 − + − − + + −
4 + + − − − + +
5 − − + − + + +
6 + − + − − + −
7 − + + − − − +
8 + + + − + − −
9 − − − + − + +

10 + − − + + + −
11 − + − + + − +
12 + + − + − − −
13 − − + + + − −
14 + − + + − − +
15 − + + + − + −
16 + + + + + + +
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into a full factorial, say, in the most interesting factors. Conclusions drawn from designs of
this type should be considered tentative and subject to further analysis. It is usually possible
to find alternative explanations of the data involving higher-order interactions.

As an example, consider the 27−3
IV design from Example 4.4. This is a 16-run design

involving seven factors. It will project into a full factorial in any four of the original seven
factors that is not a word in the complete defining relation (see Table 4.14). Thus, there
are 28 subsets of four factors that would form 24 designs. One combination that is obvious
upon inspecting Table 4.14 is A, B, C, and D. It will also form a replicated full factorial in
any subset of three of the original seven factors.

To illustrate the usefulness of this projection properly, suppose that we are conducting
an experiment to improve the performance of a chemical process and the seven factors are:

1. Concentration of reactant A

2. Temperature

3. Feed rate

4. Time

5. Agitation rate

6. Concentration of reactant B

7. Catalyst type

We are fairly certain that time, temperature, catalyst type, and concentration of reactant
A will affect performance and that these factors may interact. The role of the other three
factors is less well known, but it is likely that they are negligible. A reasonable strategy
would be to assign these four factors to columns A, B, C, and D, respectively, in Table 4.14.
The remaining three factors would be assigned to columns E, F, and G, respectively. If we
are correct and the “minor variables” E, F, and G are negligible, we will be left with a full
2k design in the key process variables.

4.5 RESOLUTION III DESIGNS

As indicated earlier, the sequential use of fractional factorial designs is very useful, often
leading to great economy and efficiency in experimentation. We now illustrate these ideas
using the class of resolution III designs. Box and Hunter (1961a,b) are excellent references
for the technical details.

It is possible to construct resolution III designs for investigating up to k = N − 1 factors
in only N runs, where N is a multiple of 4. These designs are frequently useful in industrial
experimentation. Designs in which N is a power of 2 can be constructed by the methods
presented earlier in this chapter, and these are presented first. Of particular importance are
designs requiring 4 runs for up to 3 factors, 8 runs for up to 7 factors, and 16 runs for up to
15 factors. If k = N − 1, the fractional factorial design is said to be saturated.

A design for analyzing up to three factors in four runs is the 23−1
III design, presented in

Section 4.2. Another very useful saturated fractional factorial is a design for studying up to
seven factors in eight runs—that is, the 27−4

III design. This design is a one-sixteenth fraction
of the 27. It may be constructed by first writing down as the basic design the plus and minus
levels for a full 23 design in A, B, and C and then associating the levels of four additional
factors with the interactions of the original three as follows: D = AB, E = AC, F = BC, and
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TABLE 4.15 The Saturated 27−4
III Design with the Generators I = ABD, I = ACE, I = BCF,

and I = ABCG

Run A B C D = AB E = AC F = BC G = ABC

1 − − − + + + − def
2 + − − − − + + afg
3 − + − − + − + beg
4 + + − + − − − abd
5 − − + + − − + cdg
6 + − + − + − − ace
7 − + + − − + − cdg
8 + + + + + + + abcdefg

G = ABC. Thus, the generators for this design are I = ABD, I = ACE, I = BCF, and I =
ABCG. The design is shown in Table 4.15.

The complete defining relation for this design is obtained by multiplying the four
generators ABD, ACE, BCF, and ABCG together two at a time, three at a time, and four at
a time, yielding

I = ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG

= ABEF = BEG = AFG = DEF = ADEG = CEFG = BDFG

= ABCDEFG

To find the aliases of any effect, simply multiply the effect by each word in the defining
relation. For example, the aliases of B are

B = AD = ABCE = CF = ACG = CDE = ABCDF = BCDG = AEF = EG

= ABFG = BDEF = ABDEG = BCEFG = DFG = ACDEFG

This design is a one-sixteenth fraction; and because the signs chosen for the generators
are positive, this is the principal fraction. It is also of resolution III, because the smallest
number of letters in any word of the defining contrast is three. Any one of the 16 different
27−4

III designs in this family could be constructed by using the generators with one of the 16
possible arrangements of signs in I = ±ABC, I = ±ACE, I = ±BCF, I = ±ABCG.

The seven degrees of freedom in this design may be used to estimate the seven main
effects. Each of these effects has 15 aliases; however, if we assume that three-factor and
higher interactions are negligible, then considerable simplification in the alias structure
results. Making this assumption, each of the linear combinations associated with the
seven main effects in this design actually estimates the main effect and three two-factor
interactions:

[A] ⟶ A + BD + CE + FG
[B] ⟶ B + AD + CF + EG
[C] ⟶ C + AE + BF + DG
[D] ⟶ D + AB + CG + EF
[E] ⟶ E + AC + BG + DF
[F] ⟶ F + BC + AG + DE
[G] ⟶ G + CD + BE + AF

(4.1)
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TABLE 4.16 A 26−3
III Design with the Generators I = ABD, I = ACE, and I = BCF

Run A B C D = AB E = AC F = BC

1 − − − + + + def
2 + − − − − + af
3 − + − − + − be
4 + + − + − − abd
5 − − + + − − cd
6 + − + − + − ace
7 − + + − − + bcf
8 + + + + + + abcdef

In obtaining these aliases, we have ignored the three-factor and higher-order interactions,
assuming that they will be negligible in most practical applications where a design of this
type would be considered.

The saturated 27−4
III design in Table 4.15 can be used to obtain resolution III designs for

studying fewer than seven factors in eight runs. For example, to generate a design for six
factors in eight runs, simply drop any one column in Table 4.15, for example, column G.
This produces the design shown in Table 4.16.

It is easy to verify that this design is also of resolution III; in fact, it is a 26−3
III , or a

one-eighth fraction of the 26 design. The defining relation for the 26−3
III design is equal to

the defining relation for the original 27−4
III design with any words containing the letter G

deleted. Thus, the defining relation for our new design is

I = ABD = ACE = BCF = BCDE = ACDF = ABEF = DEF

In general, when d factors are dropped to produce a new design, the new defining relation
is obtained as those words in the original defining relation that do not contain any dropped
letters. When constructing designs by this method, care should be exercised to obtain the
best arrangement possible. If we drop columns B, D, F, and G from Table 4.13, we obtain
a design for three factors in eight runs, yet the treatment combinations correspond to two
replicates of a 22 design. The experimenter would probably prefer to run a full 23 design
in A, C, and E.

It is also possible to obtain a resolution III design for studying up to 15 factors in 16
runs. This saturated 215−11

III design can be generated by first writing down the 16 treatment
combinations associated with a 24 design in A, B, C, and D and then equating 11 new factors
with the two-, three-, and four-factor interactions of the original four. In this design, each
of the 15 main effects is aliased with seven two-factor interactions. A similar procedure
can be used for the 231−26

III design, which allows up to 31 factors to be studied in 32 runs.

Sequential Use of Fractions to Separate Effects By combining fractional factorial
designs in which certain signs are switched, we can systematically isolate effects of poten-
tial interest. The alias structure for any fraction with the signs for one or more factors
reversed is obtained by making changes of sign on the appropriate factors in the alias struc-
ture of the original fraction. This general procedure is called fold-over, and it is used in
resolution III designs to break the links between main effects and two-factor interactions.
In a full fold-over, we add to a resolution III fractional a second fraction in which the
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TABLE 4.17 A 27−4
III Design for the Eye Focus Time Experiment

Run A B C D = AB E = AC F = BC G = ABC Time

1 − − − + + + − def 85.5
2 + − − − − + + afg 75.1
3 − + − − + − + beg 93.2
4 + + − + − − − abd 145.4
5 − − + + − − + cdg 83.7
6 + − + − + − − ace 77.6
7 − + + − − + − bcf 95.0
8 + + + + + + + abcdefg 141.8

signs for all the factors are reversed. We may now use the combined design to estimate all
the main effects clear of any two-factor interactions. The following example illustrates the
technique.

Example 4.5 Fold-Over of a Fractional Factorial A human performance analyst is
conducting an experiment to study eye focus time and has built an apparatus in which
several factors can be controlled during the test. The factors he initially regards as important
are acuity or sharpness of vision (A), distance from target to eye (B), target shape (C),
illumination level (D), target size (E), target density (F), and subject (G). Two levels of
each factor are considered. He suspects that only a few of these seven factors are of major
importance and that high-order interactions between the factors can be neglected. On the
basis of this assumption, the analyst decides to run a screening experiment to identify the
most important factors and then to concentrate further study on those. To screen these seven
factors, he runs the treatment combinations from the 27−4

III design in Table 4.15 in random
order, obtaining the focus times in milliseconds, as shown in Table 4.17.

Seven main effects and their aliases may be estimated from these data. From Equation 4.1,
we see that the effects and their aliases are

[A] = 20.63 ⟶ A + BD + CE + FG

[B] = 38.38 ⟶ B + AD + CF + EG

[C] = −0.28 ⟶ C + AE + BF + DG

[D] = 28.88 ⟶ D + AB + CG + EF

[E] = −0.28 ⟶ E + AC + BG + DF

[F] = −0.63 ⟶ F + BC + AG + DE

[G] = −2.43 ⟶ G + CD + BE + AF

For example,

[A] = 1
4
(−85.5 + 75.1 − 93.2 + 145.4 − 83.7 + 77.6 − 95.0 + 141.8)

= 20.63
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Figure 4.16 The 27−4
III design projected into two replicates of a 23−1

III design in A, B, and D.

The largest three effects are [A], [B], and [D]. The simplest interpretation of the data is that
the main effects of A, B, and D are all significant. However, this interpretation is not unique,
because one could also logically conclude that A, B, and the AB interaction, or perhaps B,
D, and the BD interaction, or perhaps A, D, and the AD interaction are the true effects.

Notice that ABD is a word in the defining relation for this design. Therefore, this 27−4
III

design does not project into a full 23 factorial in A, B, and D; instead, it projects into two
replicates of a 23−1 design, as shown in Fig. 4.16. Because the 23−1 design is a resolution
III design, A will be aliased with BD, B will be aliased with AD, and D will be aliased with
AB, so the interactions cannot be separated from the main effects. The analyst here may
have been unlucky. If he had assigned illumination level to column C in Table 4.15 instead
of D, the design would have projected into a 23 design.

To separate the main effects and the two-factor interactions, a second fraction is run
with all the signs reversed. This fold-over design is shown in Table 4.18 along with the
observed responses. Notice that when we fold over a resolution III design in this manner,
we (in effect) change the signs on the generators that have an odd number of letters. The
effects estimated by this fraction are

[A]′ = −17.68 ⟶ A − BD − CE − FG

[B]′ = 37.73 ⟶ B − AD − CF − EG

TABLE 4.18 Fold-over of the 27−4
III Design in Table 4.15

Run A B C D = −AB E = −AC F = −BC G = ABC Time

1 + + + − − − + abcg 91.3
2 − + + + + − − bcde 136.7
3 + − + + − + − acdf 82.4
4 − − + − + + + cefg 73.4
5 + + − − + + − abef 94.1
6 − + − + − + + bdfg 143.8
7 + − − + + − + adeg 87.3
8 − − − − − − − (1) 71.9
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[C]′ = −3.33 ⟶ C − AE − BF − DG

[D]′ = 29.88 ⟶ D − AB − CG − EF

[E]′ = 0.53 ⟶ E − AC − BG − DF

[F]′ = 1.63 ⟶ F − BC − AG − DE

[G]′ = 2.68 ⟶ G − CD − BE − AF

By combining the effect estimates from this second fraction with the effect estimates from
the original eight runs, we obtain the following estimates of the effects:

i From 1

2
([i] + [i]′) From 1

2
([i] − [i]′)

A A = 1.48 BD + CE + FG = 19.15
B B = 38.05 AD + CF + EG = 0.33
C C = −1.80 AE + BF + DG = 1.53
D D = 29.38 AB + CG + EF = −0.50
E E = 0.13 AC + BG + DF = −0.40
F F = 0.50 BC + AG + DE = −1.53
G G = 0.13 CD + BE + AF = −2.55

The largest two effects are B and D. Furthermore, the third largest effect is BD + CE +
FG, so it seems reasonable to attribute this to the BD interaction. The analyst used the two
factors distance (B) and illumination level (D) in subsequent experiments with the other
factors A, C, E, and F at standard settings and verified the results obtained here. He decided
to use subjects as blocks in these new experiments rather than ignore a potential subject
effect, because several different subjects had to be used to complete the experiment.

While the full fold-over strategy illustrated in Example 4.5 is used very frequently, there
is another variation of this technique that occasionally proves helpful. In a single-factor
fold-over we add to a fractional factorial design of resolution III a second fraction of the
same size with the signs for only one of the factors reversed. In the combined design, we
will be able to estimate the main effect of the factor for which the signs were reversed as
well as all two-factor interactions involving that factor.

To illustrate, consider the 27−4
III design in Table 4.15. Suppose that along with this

principal fraction a second fractional design with the signs reversed in the column for
factor D is also run. That is, the column for D in the second fraction is

− + + − − + +−

The effects that may be estimated from the first fraction are shown in Equation 4.1, and
from the second fraction we obtain

[A]′ ⟶ A − BD + CE + FG

[B]′ ⟶ B − AD + CF + EG

[C]′ ⟶ C + AE + BF − DG

[D]′ ⟶ D − AB − CG − EF
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that is,

[D]′ ⟶ −D + AB + CG + EF

[E]′ ⟶ E + AC + BG − DF

[F]′ ⟶ F + BC + AG − DE

[G]′ ⟶ G − CD + BE + AF

assuming that three-factor and higher interactions are insignificant. Now from the two linear
combinations of effects 1

2
([i] + [i]′) and 1

2
([i] − [i]′) we obtain

i 1

2
([i] + [i]′) 1

2
([i] − [i]′)

A A + CE + FG BD
B B + CF + EG AD
C C + AE + BF DG
D D AB + CG + EF
E E + AC + BG DF
F F + BC + AG DE
G G + BE + AF CD

Thus, we have isolated the main effect of D and all of its two-factor interactions.

The Defining Relation for a Fold-over Design Combining fractional factorial designs
via fold-over as demonstrated in Example 4.5 is a very useful technique. It is often of
interest to know the defining relation for the combined design. Fortunately, this can be
easily determined. Each separate fraction will have L + U words used as generators: L
words of like sign and U words of unlike sign. The combined design will have L + U −
1 words used as generators. These will be the L words of like sign and the U − 1 words
consisting of independent even products of the words of unlike sign. (Even products are
words taken two at a time, four at a time, and so forth.)

To illustrate this procedure, consider the design in Example 4.5. For the first fraction,
the generators are

I = ABD, I = ACE, I = BCF, and I = ABCG

and for the second fraction, they are

I = −ABD, I = −ACE, I = −BCF, and I = ABCG

Notice that in the second fraction we have switched the signs on the generators with an odd
number of letters. Also, notice that L + U = 1 + 3 = 4. The combined design will have I =
ABCG (the like-sign word) as a generator, along with two words that are independent even
products of the words of unlike sign. For example, take I = ABD and I = ACE; then I =
(ABD)(ACE) = BCDE is a generator of the combined design. Also, take I = ABD and I =
BCF; then I = (ABD)(BCF) = ACDF is a generator of the combined design. The complete
defining relation for the combined design is

I = ABCG = BCDE = ACDF = ADEG = BDFG = ABEF = CEFG
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TABLE 4.19 Plus and Minus Signs for the Plackett–Burman Designs

k = 11, N = 12++−+++ −−−+ −
k= 19, N= 20++−−++++−+ −+ −−−−++ −
k= 23, N= 24+++++ −+ −++−−++−−+ −+ −−− −
k= 35, N= 36−+ −+++ −−−+++++ −+++ −−+ −−−−+ −+ −++−−+ −

k= 27, N= 28
+−++++−−− −+ −−−+ −− + ++ −+ −++− +
++ −+++ −−− −−++−−+ −− −++++−++−
−+++++ −−− +−−−+ −−+ − +−+ −++−++
−−−+ −++++ −−+ −+ −−−− +−+++ −+ −+
−−−++−+++ +−−−−++−− ++ −−++++−
−−−−+++++ −+ −+ −−−+ − −+++ −+ −++
+++−−−+ −+ −−+ −−+ −+ − +−++−+++ −
+++−−−++− +−−+ −−−− + ++ −++−−++
+++−−−−++ −+ −−+ −+ −− −++−+++ −+

Because the defining relation for the combined design contains only four-letter words, the
combined design is of resolution IV.

Plackett–Burman Designs These designs, developed by Plackett and Burman (1946), are
two-level fractional designs for studying up to k = N − 1 variables in N runs, where N is
a multiple of 4. If N is a power of 2, these designs are identical to those presented earlier
in this section. However, for N = 12, 20, 24, 28, and 36, the Plackett–Burman designs are
sometimes of interest.

The upper half of Table 4.19 presents rows of plus and minus signs that are used to
construct the Plackett–Burman designs for N = 12, 20, 24, and 36, whereas the lower half
of the table presents blocks of plus and minus signs for constructing the design for N =
28. The designs for N = 12, 20, 24, and 36 are obtained by writing the appropriate row in
Table 4.19 as a column (or row). A second column for (or row) is then generated from this
first one by moving the elements of the column (or row) down (or to the right) one position
and placing the last element in the first position. A third column (or row) is produced from
the second similarly, and the process continued until column (or row) k is generated. A row
of minus signs is then added, completing the design. For N = 28, the three blocks X, Y, and
Z are written down in the order

X Y Z
Z X Y
Y Z X

and a row of minus signs is added to these 27 rows. The design for N = 12 runs and k = 11
factors is shown in Table 4.20, where the generator in Table 4.19 was used as a column.

The Plackett–Burman designs for N = 12, 20, 24, 28, and 36 have somewhat complex
alias structures. For example, in the 12-run design every main effect is aliased with every
two-factor interaction not involving itself. For example, the main effect of A is aliased with
the interactions BC, BD, BE, and so on. These are 45 two-factor interactions in this alias
chain (and in every main effect alias chain). However, the constants in the alias chains are
only ±1/3, not ±1. That is, A = ± 1

3
BC ± 1

3
BD ±…. This is often called partial aliasing.

Plackett–Burman designs are an example of a nonregular design—that is, a design where
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TABLE 4.20 Plackett–Burman Design for N = 12, k = 11 Using Generator in Table 4.19

Run A B C D E F G H I J K

1 + − + − − − + + + − +
2 + + − + − − − + + + −
3 − + + − + − − − + + +
4 + − + + − + − − − + +
5 + + − + + − + − − − +
6 + + + − + + − + − − −
7 − + + + − + + − + − −
8 − − + + + − + + − + −
9 − − − + + + − + + − +

10 + − − − + + + − + + −
11 − + − − − + + + − + +
12 − − − − − − − − − − −

some of the constants in the alias relationships are not ±1 or 0. In the larger designs, the
situation is even more complex. As we will see in subsequent chapters, Plackett–Burman
designs can be used in the construction of certain types of second-order response surface
designs.

The projection properties of the Plackett–Burman designs are sometimes useful. For
example, consider the 12-run design in Table 4.20. This design will project into three
replicates of a full 22 design in any two of the original 11 factors. However, in three factors,
the projected design is a full 23 factorial plus a 23−1

III fractional factorial [see Fig. 4.17a].

Figure 4.17 Projection of the 12-run Plackett–Burman design into three- and four-factor designs.
(a) Projection into three factors. (b) Projection into four factors.
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The four-dimensional projections are shown in Fig. 4.17b. Notice that these three- and four-
factor projections are not balanced designs. This would potentially complicate their analysis.
Plackett–Burman designs with N = 12, 20, 24, 28, and 36 are often called nongeometric
Plackett–Burman designs.

4.6 RESOLUTION IV AND V DESIGNS

A 2p−k fractional factorial design is of resolution IV if the main effects are clear of two-
factor interactions, but some two-factor interactions are aliased with each other. Thus, if
three-factor and higher interactions are assumed negligible and suppressed, the main effects
may be estimated directly in a 2k−p

IV design. An example is the 26−2
IV design in Table 4.11.

Furthermore, the two combined fractions of the 27−4
III design in Example 4.5 yield a 27−3

IV
design.

Any 2k−p
IV design must contain at least 2k runs. Resolution IV designs that contain exactly

2k runs are called minimal designs. Resolution IV designs may be obtained from resolution
III designs by the process of fold-over. Recall that to fold over a design, one simply adds
to the original fraction a second fraction with all the signs reversed. Then the plus signs
in the identity column I in the first fraction can be switched in the second fraction, and a
(k + 1)st factor associated with this column. The result is a 2k+1−p

IV fractional factorial
design. The process is demonstrated in Table 4.21 for the 23−1

III design. It is easy to verify
that the resulting design is a 24−1

IV design with defining relation I = ABCD.
It is also possible to fold over resolution IV designs to separate two-factor interactions

that are aliased with each other. One way to fold over a resolution IV design is to run a
second fraction in which the sign is reversed on every design generator that has an even
number of letters. To illustrate, consider the 26−2

IV design used for the injection molding
experiment in Example 4.3. The generators for the design in Table 4.13 are I = ABCE
and I = BCDF. The second fraction uses the generators I = −ABCE and I = −BCDF,
and the single generator for the combined design is I = ADEF. Thus, the combined
design is still a resolution IV fractional factorial design. However, the alias relationships
will be much simpler than in the original 26−2

IV fractional. In fact, the only two-factor

TABLE 4.21 A 24−1
IV Design Obtained by Fold-Over

D
I A B C

Original 23−1
III with I = ABC

+ − − +
+ + − −
+ − + −
+ + + +

Second 23−1
III with Signs Switched

− + + −
− − + +
− + − +
− − − −



198 TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS

interactions that will be aliased are AD = EF, AE = DF, and AF = DE. All the other
two-factor interactions can be estimated from the combined design. The approach used
often in practice is to construct the fold-over design by switching the signs on a single
column in the original design. This causes all of the alias chains involving that factor to be
broken.

Notice that when you start with a resolution III design, the fold-over procedure guarantees
that the combined design will be of resolution IV, thereby ensuring that all the main effects
can be separated from their two-factor interaction aliases. When folding over a resolution
IV design, we will not necessarily separate all the two-factor interactions. In fact, if the
original fraction has an alias structure with more than two two-factor interactions in any
alias chain, folding over will not completely separate all the two-factor interactions. Notice
that in the foregoing example, the 26−2

IV has one such two-factor interaction alias chain.
For more information on fold-over of resolution IV designs, see Montgomery and Runger
(1996) and Montgomery (2013).

Resolution V designs are fractional factorials in which the main effects and the two-factor
interactions do not have other main effects and two-factor interactions as their aliases. These
are very powerful designs, allowing the unique estimation of all the main effects and two-
factor interactions provided that all the three-factor and higher interactions are negligible.
The smallest word in the defining relation of such a design must have five letters. The 25−1

with the generating relation I = ABCDE is of resolution V. Another example is the 28−2
V

design with the generating relations I = ABCDG and I = ABEFH. Further examples of
these designs are given by Box and Hunter (1961b).

4.7 ALIAS STRUCTURES IN FRACTIONAL FACTORIAL AND
OTHER DESIGNS

We have shown how to find the alias relationships in a 2k−p fractional factorial design by
use of the complete defining relation. This method works well in simple designs, such as
the regular fractions we use most frequently, but it does not work as well in more complex
settings, such as some of the nonregular fractions and nonorthogonal designs that we will
discuss subsequently. Furthermore, there are some fractional factorials that do not have
defining relations, so the defining relation method will not work for these types of designs
at all.

Fortunately, there is a general method available that works satisfactorily in many situ-
ations. The method uses the polynomial or regression model representation of the model,
say

y = X1β1 + ε

where X1 is the design matrix for the experiment that has been conducted expanded to
model form, β1 is the vector of model parameters, and ε is the usual vector of NID(0, 𝜎2)
errors. Suppose that the true model is

y = X1β1 + X2β2 + ε
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where the columns of X2 contain additional factors not included in the original model (such
as interactions) and β2 is the corresponding vector of model parameters. We can show that
the expected value of β̂1, the least squares estimate of β1, is

E(β̂1) = β1 + (X′
1X1)−1X′

1X2β2 = β1 + Aβ2

The alias matrix A = (X′
1X1)−1X′

1X2 shows how estimates of terms in the fitted model are
biased by active terms that are not in the fitted model. Each row of A is associated with a
parameter in the fitted model. Nonzero elements in a row of A show the degree of biasing
of the fitted model parameter due to terms associated with the columns of X2.

We illustrate the application of this procedure with a familiar example. Suppose that we
have conducted a 23−1 design with defining relation I = ABC or I = x1x2x3. The model that
the experimenter plans to fit is the main-effects-only model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝜀

In the notation used above,

𝛽1 =
⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎥⎦
and X1 =

⎡⎢⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎤⎥⎥⎥⎦

Suppose that the true model contains all the two-factor interaction so that

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝛽13x1x3 + 𝛽23x2x3 + 𝜀

and

𝛽2 =
⎡⎢⎢⎣

𝛽12
𝛽13
𝛽23

⎤⎥⎥⎦
and X2 =

⎡⎢⎢⎢⎣

1 −1 −1
−1 −1 1
−1 1 −1

1 1 1

⎤⎥⎥⎥⎦

Now

X′
1X1 = 4I4 and X′

1X2 =
⎡⎢⎢⎢⎣

0 0 0
0 0 4
0 4 0
4 0 0

⎤⎥⎥⎥⎦

Therefore,

(X′
1X1)−1 = 1

4
I4
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and

E(𝛽1) = 𝛽1 + A𝛽2

E

⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎥⎦
+ 1

4
I4

⎡⎢⎢⎢⎣

0 0 0
0 0 4
0 4 0
4 0 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎣

𝛽12
𝛽13
𝛽23

⎤⎥⎥⎦

=
⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

0 0 0
0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎣

𝛽12
𝛽13
𝛽23

⎤⎥⎥⎦

=
⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

0
𝛽23
𝛽13
𝛽12

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

𝛽0
𝛽1 + 𝛽23
𝛽2 + 𝛽13
𝛽3 + 𝛽12

⎤⎥⎥⎥⎦

The interpretation of this, of course, is that each of the main effects is aliased with one of
the two-factor interpretations, which we know to be the case for this design. Notice that
every row of the alias matrix represents one of the factors in 𝜷1 and that every column
represents one of the factors in 𝜷2 while this is a very simple example, the method is very
general and can be applied to much more complex designs.

JMP will display the alias matrix for fractional factorial designs. For the 23−1 design the
JMP display of the alias matrix is

Effect X1∗X2 X1∗X3 X2∗X3

Intercept 0 0 0
X1 0 0 1
X2 0 1 0
X3 1 0 0

The 1 in the second row of the matrix indicates that the main effect of factor A (or X1) is
aliased with the X2X3 interaction.

4.8 NONREGULAR FRACTIONAL FACTORIAL DESIGNS

The 2k−p fractional factorial designs discussed in previous sections are a staple for factor
screening in modern industrial applications. In these designs if factors are aliased with other
factors, then the aliasing is complete; that is, the non-zero constants in the alias relationships
are either +1 or −1. Resolution IV designs are particularly popular because they avoid the
confounding of main effects and two-factor interactions found in resolution III designs while
avoiding the larger sample size requirements of resolution V designs. However, when the
number of factors is relatively large, say k= 9 or more, resolution III designs are widely used.
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The two-factor interaction aliasing in the resolution III and IV designs can result in
experiments whose outcomes have ambiguous conclusions. For example, suppose that in
the injection molding experiment in Example 4.3 the main effects of the factors A, B, C,
and E were found to be important along with one two-factor interaction alias chain AB +
CE. Without external process knowledge, the experimenter could not decide whether the
AB interaction, the CE interaction, or some linear combination of them represents the true
state of nature. To resolve this ambiguity requires additional runs. Fold-over could be used
to resolve this ambiguity. The fold-over design could be constructed by changing the signs
in column A to produce an additional 16-run design.

Another strategy would be to consider a partial fold-over; this approach would result in
an additional 8-run design. Montgomery (2013) provides the details of constructing partial
fold overs along with an example. Yet another approach would be to augment the original
design with additional runs selected by a D-optimal design construction algorithm, where
the model of interest would contain both the AB and the CE interaction.

While strong two-factor interactions may be less likely than strong main effects, there
are likely to be many more interactions than main effects in screening situations. As a
result, the likelihood of at least one significant interaction effect is quite high. There is often
substantial reluctance to commit additional time and material to a study with unclear results.
Consequently, experimenters often want to avoid the need for a follow-up study. In this
section we show how specific choices of nonregular two-level fractional factorial designs
can be used in experiments with between 6 and 14 factors and potentially avoid subsequent
experimentation when two-factor interactions are active. Section 4.5 introduced the class of
Plackett–Burman designs and noted that they were nonregular designs because the constants
in the alias relationships were not all ±1. Section 4.7.1 presents nonregular designs for 6,
7, and 8 factors in 16 runs. These designs have no complete confounding of pairs of
two-factor interactions. These designs are excellent alternatives for the regular minimum
aberration resolution IV fractional factorials. In Section 4.7.2 we present nonregular designs
for between 9 and 14 factors in 16 runs that have no complete aliasing of main effects and
two-factor interactions. These designs are alternative to the regular minimum aberration
resolution III fractional factorials. We also present metrics to evaluate these fractional
factorial designs, show how the recommended nonregular 16-run designs were obtained,
and discuss analysis methods.

Screening designs are primarily concerned with the discovery of active factors. This
factor activity generally expresses itself through a main effect or a factor’s involvement in
a two-factor interaction. Consider the model

y = Xβ + ε (4.2)

where X contains columns for the intercept, main effects, and all two-factor interactions, β
is the vector of model parameters, and ε is the usual vector of NID(0, 𝜎2) random errors.

Consider the case of six factors in 16 runs and a model with all main effects and two-
factor interactions. For this situation the X matrix has more columns than rows. Thus, it
is not of full rank and the usual least squares estimate for β does not exist because the
matrix X′X is singular. With respect to this model, every 16-run design is supersaturated.
Booth and Cox (1962) introduced the E(s2) criterion as a diagnostic measure for comparing
supersaturated designs, where

E(s2) = Σ2
i<j(x′i xj)

∕(k(k − 1))

and k is the number of columns in X.
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Figure 4.18 The correlation matrix for the regular 26−2 resolution IV fractional factorial design.

Minimizing the E(s2) criterion is equivalent to minimizing the sum of squared off-
diagonal elements of the correlation matrix of X. Removing the constant column from X,
the correlation matrix of the regular 26−2 resolution IV 16-run six-factor design is 21 × 21
with one row and column for each of the six main effects and 15 two-factor interactions.
Figure 4.18 shows the cell plot of the correlation matrix for the principal fraction of
this design. In Fig. 4.18 we note that the correlation is zero between all main effects and
two-factor interactions (because the design is resolution IV) and that the correlation is +1
between every two-factor interaction and at least one other two-factor interaction. These
two-factor interactions are completely confounded. If another member of the same design
family had been used, at least one of the generators would gave been used with a negative
sign in design construction and some of the entries of the correlation matrix would have
been−1. There still would be complete confounding of two-factor interactions in the design.

Jones and Montgomery (2010) introduced the cell plot of the correlation matrix as
a useful graphical way to show the aliasing relationships in fractional factorials and to
compare nonregular designs to their regular fractional factorial counterparts. In Fig. 4.18
it is a display of the confounding pattern, much like can be seen in the alias matrix. We
introduced the alias matrix earlier in this chapter. Recall that we plan to fit the model

y = X1β1 + ε

where X1 is the design matrix for the experiment that has been conducted expanded to
model form, β1 is the vector of model parameters, and ε is the usual vector of NID(0, 𝜎2)
errors but that the true model is

y = X1β1 + X2β2 + ε

where the columns of X2 contain additional factors not included in the original model
(such as interactions) and β2 is the corresponding vector of model parameters. Earlier we
observed that the expected value of β̂1, the least squares estimate of β1, is

E(β̂1) = β1 + (X′
1X1)−1X′

1X2β2 = β1 + Aβ2
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The alias matrix A = (X′
1X1)−1X′

1X2 shows how estimates of terms in the fitted model
are biased by active terms that are not in the fitted model. Each row of A is associated with
a parameter in the fitted model. Nonzero elements in a row of A show the degree of biasing
of the fitted model parameter due to terms associated with the columns of X2.

In a regular design, an arbitrary entry in the alias matrix, say Aij, is either 0 or ±1. If Aij
is 0 then the ith column of X1 is orthogonal to the jth column of X2. Otherwise if Aij, is ±1,
then the ith column of X1 and the jth column of X2 are perfectly correlated.

For nonregular designs the aliasing is more complex. If X1 is the design matrix for the
main effects model and X2 is the design matrix for the two-factor interactions, then the
entries of the alias matrix for orthogonal nonregular designs for 16 runs take the values 0,
±1 or ±0.5. A small subset of these designs have no entries of ±1.

Bursztyn and Steinberg (2006) propose using the trace of AA′ (or equivalently the
trace of A′A) as a scalar measure of the total bias in a design. They use this as a means
for comparing designs for computer simulations but this measure works equally well for
ranking competitive screening designs.

4.8.1 Nonregular Fractional Factorial Designs for 6, 7, and 8 Factors in 16 Runs

These designs were introduced by Jones and Montgomery (2010) as alternatives to the
usual regular minimum aberration fraction. Hall (1961) identified five nonisomorphic
orthogonal designs for 15 factors in 16 runs. By nonisomorphic, we mean that one cannot
obtain one of these designs from another one by permuting the rows or columns or by
changing the labels of the factor. The Jones and Montgomery designs are projections of
the Hall designs created by selecting the specific sets of columns that minimize the E(s2)
and trace AA′ criteria. They searched all of the nonisomorphic orthogonal projections of
the Hall designs. Tables 4.22 through 4.26 show the Hall designs. Table 4.27 shows the
number of nonisomorphic orthogonal 16 run designs.

TABLE 4.22 The Hall I Design

Run A B C D E F G H J K L M N P Q

1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

2 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

3 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

4 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

5 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1

6 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

7 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

8 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

9 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

10 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

11 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

12 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

13 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

14 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

15 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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TABLE 4.23 The Hall II Design

Run A B C D E F G H J K L M N P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

3 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

4 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

5 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

6 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

7 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

8 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

9 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

10 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

11 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

12 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

13 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1

14 −1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1

15 −1 −1 1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1

16 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1

TABLE 4.24 The Hall III Design

Run A B C D E F G H J K L M N P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

3 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

4 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

5 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

6 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

7 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

8 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

9 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

10 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

11 −1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1

12 −1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1 −1

13 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1

14 −1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1

15 −1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 1

16 −1 −1 1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1



TABLE 4.25 The Hall IV Design

Run A B C D E F G H J K L M N P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

3 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

4 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

5 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

6 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

7 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

8 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

9 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

10 −1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 −1 1

11 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1

12 −1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1 −1

13 −1 −1 1 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1

14 −1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1

15 −1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 1

16 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1

TABLE 4.26 The Hall V Design

Run A B C D E F G H J K L M N P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

3 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

4 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

5 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

6 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

7 1 −1 −1 −1 −1 1 1 1 −1 1 −1 1 −1 1 −1

8 1 −1 −1 −1 −1 1 1 −1 1 −1 1 −1 1 −1 1

9 −1 1 −1 1 −1 1 −1 1 1 −1 −1 −1 −1 1 1

10 −1 1 −1 1 −1 1 −1 −1 −1 1 1 1 1 −1 −1

11 −1 1 −1 −1 1 −1 1 1 −1 −1 1 −1 1 1 −1

12 −1 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1

13 −1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 −1 1

14 −1 −1 1 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1

15 −1 −1 1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1

16 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1

TABLE 4.27 Number of 16-Run
Orthogonal Nonisomorphic Designs

Number of Factors Number of Designs

6 27
7 55
8 80
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TABLE 4.28 A Nonregular Orthogonal Design for k = 6 Factors in 16 Runs

Run A B C D E F

1 1 1 1 1 1 1

2 1 1 −1 −1 −1 −1

3 −1 −1 1 1 −1 −1

4 −1 −1 −1 −1 1 1

5 1 1 1 −1 1 −1

6 1 1 −1 1 −1 1

7 −1 −1 1 −1 −1 1

8 −1 −1 −1 1 1 −1

9 1 −1 1 1 1 −1

10 1 −1 −1 −1 −1 1

11 −1 1 1 1 −1 1

12 −1 1 −1 −1 1 −1

13 1 −1 1 −1 −1 −1

14 1 −1 −1 1 1 1

15 −1 1 1 −1 1 1

16 −1 1 −1 1 −1 −1

The nonregular designs that Jones and Montgomery recommended for 6, 7, and 8 factors
are shown in Tables 4.28, 4.29, and 4.30. The six-factor design in Table 4.28 is found from
columns D, E, H, K, M and Q of Hall II. The correlation matrix for this design along
with the correlation matrix for the corresponding regular fraction is in Figure 4.19. Notice
that like the regular 26−2 the design in Table 4.28 is first-order orthogonal but unlike the

TABLE 4.29 A Nonregular Orthogonal Design for k = 7 Factors in 16 Runs

Run A B C D E F G

1 1 1 1 1 1 1 1

2 1 1 1 −1 −1 −1 −1

3 1 1 −1 1 1 −1 −1

4 1 1 −1 −1 −1 1 1

5 1 −1 1 1 −1 1 −1

6 1 −1 1 −1 1 −1 1

7 1 −1 −1 1 −1 −1 1

8 1 −1 −1 −1 1 1 −1

9 −1 1 1 1 1 1 −1

10 −1 1 1 −1 −1 −1 1

11 −1 1 −1 1 −1 1 1

12 −1 1 −1 −1 1 −1 −1

13 −1 −1 1 1 −1 −1 −1

14 −1 −1 1 −1 1 1 1

15 −1 −1 −1 1 1 −1 1

16 −1 −1 −1 −1 −1 1 −1
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TABLE 4.30 A Nonregular Orthogonal Design for k = 8 Factors in 16 Runs

Run A B C D E F G H

1 1 1 1 1 1 1 1 1

2 1 1 1 1 −1 −1 −1 −1

3 1 1 −1 −1 1 1 −1 −1

4 1 1 −1 −1 −1 −1 1 1

5 1 −1 1 −1 1 −1 1 −1

6 1 −1 1 −1 −1 1 −1 1

7 1 −1 −1 1 1 −1 −1 1

8 1 −1 −1 1 −1 1 1 −1

9 −1 1 1 1 1 1 1 1

10 −1 1 1 −1 1 −1 −1 −1

11 −1 1 −1 1 −1 −1 1 −1

12 −1 1 −1 −1 −1 1 −1 1

13 −1 −1 1 1 −1 −1 −1 1

14 −1 −1 1 −1 −1 1 1 −1

15 −1 −1 −1 1 1 1 −1 −1

16 −1 −1 −1 −1 1 −1 1 1

regular design, there are no two-factor interactions that are aliased with each other. All of
the off-diagonal entries in the correlation matrix are either zero, −0.5, or +0.5. Because
there is no complete confounding of two-factor interactions, Jones and Montgomery called
this nonregular fraction a no-confounding design.

Table 4.29 presents the recommended seven-factor 16-run design. This design was
constructed by selecting columns A, B, D, H, J, M, and Q from Hall III. The correlation
matrix for this design and the regular 27−3 fraction is shown in Figure 4.20. The no-
confounding design is first-order orthogonal and there is no complete confounding of
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Figure 4.19 Correlation matrix (a) regular 26−2 fractional factorial. (b) Nonregular no-confounding
design.
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Figure 4.20 Correlation matrix (a) regular 27−3 fractional factorial. (b) Nonregular no-confounding
design.

two-factor interactions. All off-diagonal elements of the correlation matrix are either zero,
−0.5, or +0.5.

Table 4.30 presents the recommended eight-factor 16-run design. This design was con-
structed by choosing columns A, B, D, F, H, J, M, and O from Hall IV. The correlation matrix
for this design and the regular 28−4 fraction is shown in Fig. 4.21. The no-confounding
design is orthogonal for the first-order model and there is no complete confounding of
two-factor interactions. All off-diagonal elements of the correlation matrix are either zero,
−0.5, or +0.5.

Table 4.31 compares the popular minimum aberration resolution IV designs to the non-
regular alternatives designs on the metrics described previously. As shown in the cell plots
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TABLE 4.31 Design Comparison on Metrics

N Factors Design Confounded Effect Pairs E(s2) Trace(AA′)

6 Recommended 0 7.31 6
Resolution IV 9 10.97 0

7 Recommended 0 10.16 6
Resolution IV 21 14.20 0

8 Recommended 0 12.80 10.5
Resolution IV 42 17.07 0

of the correlation matrices, the recommended designs outperform the minimum aberration
designs for the number of confounded pairs of effects. They also are substantially better
with respect to the E(s2) criterion. The recommended designs all achieve the minimum
value of the trace criterion for all of the possible nonregular designs. The price that the
Jones and Montgomery recommended designs pay for avoiding any pure confounding is
that there is some correlation between main effects and two-factor interactions.

Jones and Nachtsheim (2011a,b) have proposed an interesting and useful design opti-
mality criterion intended to trade off variance and bias in a design. Their criterion is to
choose a design to minimize

trace(A′A)
subject to
De ≥ lD

(4.3)

where De is the D-efficiency of the design and lD is a lower bound on the D-efficiency. The
bias component of the trade-off is reflected in the trace objective function, and the variance
component of the trade-off is reflected in the lower bound on the D-efficiency. Jones and
Nachtsheim give an efficient algorithm for implementing this optimality criterion. The no-
confounding designs presented above can all be constructed using this algorithm. It turns
out that all of the designs in Tables 4.28, 4.29, and 4.30 achieve the minimum value of the
trace and have a D-efficiency of 100 percent; that is, they are first-order orthogonal designs.
Johnson and Jones (2010) show how these designs can be constructed using a version of
the column generator technique.

The designs in Tables 4.28, 4.29, and 4.30 have useful projection properties. They either
project into a 16-run full factorial in groups of 4 factors or fractions with at least 12 distinct
design points. Therefore, they can fit all main effect plus two-factor interaction models
with up to k = 4 factors. For more information and examples, see Shinde, Montgomery,
and Jones (2014) and Montgomery (2013).

4.8.2 Nonregular Fractional Factorial Designs for 9 Through 14 Factors in 16 Runs

Resolution III fractional factorial designs are popular for factor screening problems in situ-
ations where there are a moderate-to-large number of factors because these designs contain
a relatively small number of runs and they are effective in identifying the unimportant
factors and elevating potentially important factors for further experimentation. Designs in
16 runs are extremely popular because the number of runs is usually within the resources
available to most experimenters.
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TABLE 4.32 Number of Nonisomorphic Nonregular 16-Run Designs

Number of Factors Number of Nonisomorphic Designs

6 27
7 55
8 80
9 87

10 78
11 58
12 36
13 18
14 10
15 5

Because the regular resolution III designs alias main effects and two-factor interac-
tions, and the aliased effects are completely confounded, experimenters often end up with
ambiguous conclusions about which main effects and two-factor interactions are important.
Resolving these ambiguities requires either additional experimentation (such as use of a
fold-over design to augment the original fraction) or assumptions about which effects are
important or external process knowledge. This is very similar to the situation encountered
in the previous section, except now main effects are completely confounded with two-
factor interactions. Just as in that section, it is possible to develop no-confounding designs
for 9–14 factors in 16 runs that are good alternatives to the usual minimum aberration
resolution III designs when there are only a few main effects and two-factor interactions
that are important. Table 4.32 is an extension of Table 4.27, showing all possible noni-
somorphic nonregular 16-run designs with 6 to 15 factors. The recommended designs in
Tables 4.33 through 4.38 are chosen from the designs in this table. They are projections

TABLE 4.33 Recommended 16-Run 9-Factor No-Confounding Design

Run A B C D E F G H J

1 −1 −1 −1 −1 −1 −1 1 −1 1

2 −1 −1 −1 1 −1 1 −1 1 −1

3 −1 −1 1 −1 1 1 1 1 −1

4 −1 −1 1 1 1 −1 −1 −1 1

5 −1 1 −1 −1 1 1 −1 1 1

6 −1 1 −1 1 1 −1 1 −1 −1

7 −1 1 1 −1 −1 −1 −1 1 −1

8 −1 1 1 1 −1 1 1 −1 1

9 1 −1 −1 −1 1 −1 −1 −1 −1

10 1 −1 −1 1 1 1 1 1 1

11 1 −1 1 −1 −1 1 −1 −1 1

12 1 −1 1 1 −1 −1 1 1 −1

13 1 1 −1 −1 −1 1 1 −1 −1

14 1 1 −1 1 −1 −1 −1 1 1

15 1 1 1 −1 1 −1 1 1 1

16 1 1 1 1 1 1 −1 −1 −1
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TABLE 4.34 Recommended 16-Run 10-Factor No-Confounding Design

Run A B C D E F G H J K

1 −1 −1 −1 −1 1 −1 −1 1 −1 1

2 −1 −1 −1 1 1 1 −1 −1 1 1

3 −1 −1 1 −1 −1 1 1 1 1 1

4 −1 −1 1 −1 1 −1 1 −1 1 −1

5 −1 1 −1 1 −1 1 1 1 −1 1

6 −1 1 −1 1 1 −1 1 −1 −1 −1

7 −1 1 1 −1 −1 −1 −1 1 −1 −1

8 −1 1 1 1 −1 1 −1 −1 1 −1

9 1 −1 −1 −1 −1 1 1 −1 −1 −1

10 1 −1 −1 1 −1 −1 −1 1 1 −1

11 1 −1 1 1 −1 −1 1 −1 −1 1

12 1 −1 1 1 1 1 −1 1 −1 −1

13 1 1 −1 −1 −1 −1 −1 −1 1 1

14 1 1 −1 −1 1 1 1 1 1 −1

15 1 1 1 −1 1 1 −1 −1 −1 1

16 1 1 1 1 1 −1 1 1 1 1

TABLE 4.35 Recommended 16-Run 11-Factor No-Confounding Design

Run A B C D E F G H J K L

1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1

2 −1 −1 1 −1 −1 −1 1 −1 1 −1 −1

3 −1 −1 1 −1 1 1 −1 1 −1 −1 −1

4 −1 −1 1 1 −1 1 1 1 −1 1 1

5 −1 1 −1 −1 −1 −1 −1 −1 −1 1 1

6 −1 1 −1 1 −1 1 1 −1 −1 −1 −1

7 −1 1 −1 1 1 1 −1 1 1 1 −1

8 −1 1 1 −1 1 −1 1 1 1 1 1

9 1 −1 −1 −1 −1 1 −1 1 1 −1 1

10 1 −1 −1 −1 1 1 1 −1 −1 1 1

11 1 −1 −1 1 −1 −1 1 1 1 1 −1

12 1 −1 1 1 1 −1 −1 −1 −1 1 −1

13 1 1 −1 −1 1 −1 1 1 −1 −1 −1

14 1 1 1 −1 −1 1 −1 −1 1 1 −1

15 1 1 1 1 −1 −1 −1 1 −1 −1 1

16 1 1 1 1 1 1 1 −1 1 −1 1
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TABLE 4.36 Recommended 16-Run 12-Factor No-Confounding Design

Run A B C D E F G H J K L M

1 −1 −1 −1 −1 1 −1 −1 1 1 −1 1 1

2 −1 −1 −1 1 −1 1 1 1 −1 −1 1 −1

3 −1 −1 1 −1 −1 −1 1 −1 1 1 −1 1

4 −1 −1 1 1 1 1 −1 −1 −1 1 −1 −1

5 −1 1 −1 1 −1 −1 −1 −1 −1 −1 −1 1

6 −1 1 −1 1 1 1 1 −1 1 1 1 1

7 −1 1 1 −1 −1 1 −1 1 1 −1 −1 −1

8 −1 1 1 −1 1 −1 1 1 −1 1 1 −1

9 1 −1 −1 −1 −1 1 −1 −1 1 1 1 −1

10 1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 −1

11 1 −1 1 1 −1 −1 −1 1 −1 1 1 1

12 1 −1 1 1 1 1 1 1 1 −1 −1 1

13 1 1 −1 −1 −1 1 1 1 −1 1 −1 1

14 1 1 −1 1 1 −1 −1 1 1 1 −1 −1

15 1 1 1 −1 1 1 −1 −1 −1 −1 1 1

16 1 1 1 1 −1 −1 1 −1 1 −1 1 −1

TABLE 4.37 Recommended 16-Run 13-Factor No-Confounding Design

Run A B C D E F G H J K L M N

1 −1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 1

2 −1 −1 1 −1 −1 −1 −1 −1 1 1 −1 −1 1

3 −1 −1 1 −1 1 1 1 1 1 −1 1 −1 −1

4 −1 −1 1 1 −1 1 1 1 −1 1 −1 1 −1

5 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 −1

6 −1 1 −1 −1 1 1 1 −1 −1 1 −1 1 1

7 −1 1 −1 1 −1 −1 1 1 1 −1 1 1 1

8 −1 1 1 1 1 −1 −1 −1 1 −1 −1 1 −1

9 1 −1 −1 −1 −1 −1 1 −1 1 1 1 1 −1

10 1 −1 −1 −1 1 −1 −1 1 −1 −1 −1 1 −1

11 1 −1 −1 1 1 1 1 −1 1 −1 −1 −1 1

12 1 −1 1 1 −1 1 −1 −1 −1 −1 1 1 1

13 1 1 −1 1 −1 1 −1 1 1 1 −1 −1 −1

14 1 1 1 −1 −1 −1 1 1 −1 −1 −1 −1 1

15 1 1 1 −1 1 1 −1 1 1 1 1 1 1

16 1 1 1 1 1 −1 1 −1 −1 1 1 −1 −1
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TABLE 4.38 Recommended 16-Run 14-Factor No-Confounding Design

Run A B C D E F G H J K L M N P

1 −1 −1 −1 −1 1 −1 1 1 −1 1 1 −1 −1 1

2 −1 −1 −1 1 −1 −1 1 −1 1 1 −1 1 1 −1

3 −1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 1 1

4 −1 −1 1 1 1 1 1 −1 −1 −1 1 −1 1 −1

5 −1 1 −1 −1 −1 1 1 −1 1 −1 1 1 −1 1

6 −1 1 −1 1 1 1 −1 1 −1 1 −1 1 −1 −1

7 −1 1 1 −1 −1 −1 −1 1 −1 −1 1 1 1 −1

8 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1

9 1 −1 −1 −1 1 1 −1 −1 −1 −1 −1 1 1 1

10 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 −1

11 1 −1 1 −1 1 −1 −1 −1 1 1 1 1 −1 −1

12 1 −1 1 1 −1 −1 1 1 −1 −1 −1 1 −1 1

13 1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 1 −1

14 1 1 −1 1 −1 −1 −1 −1 −1 1 1 −1 1 1

15 1 1 1 −1 −1 1 1 −1 −1 1 −1 −1 −1 −1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1

of the Hall designs and can also be found by the variance-bias trade-off optimization pro-
cedure developed by Jones and Nachtsheim (2011b). For more details including discussion
of projection properties, see Jones, Shinde, and Montgomery (2015) and Montgomery
(2013). The correlation matrices of the main effects with all two-factor interactions for the
designs are shown in Figures 4.22 through 4.27. All recommended designs are first-order
orthogonal (100% D-efficient) and the correlations between main effects and two-factor
interactions are ±0.5.

4.8.3 Analysis of Nonregular Fractional Factorial Designs

Forward selection regression can be a very useful approach for analyzing nonregular
designs. There are also variations of the procedure that may be helpful in some situations.

Figure 4.22 Correlations of main effects and two-factor interactions for the no-confounding design
for 9 factors in 16 runs.
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Figure 4.23 Correlations of main effects and two-factor interactions for the no-confounding design
for 10 factors in 16 runs.

Figure 4.24 Correlations of main effects and two-factor interactions for the no-confounding design
for 11 factors in 16 runs.

Figure 4.25 Correlations of main effects and two-factor interactions for the no-confounding design
for 12 factors in 16 runs.

Figure 4.26 Correlations of main effects and two-factor interactions for the no-confounding design
for 13 factors in 16 runs.
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Figure 4.27 Correlations of main effects and two-factor interactions for the no-confounding design
for 14 factors in 16 runs.

Let’s begin the discussion by identifying the types of models that may be of interest.
We assume that main effects and two-factor interactions may be important and that higher-
order interactions are negligible. Interactions may be hierarchical; that is, an interaction
AB (say) may be in the model only if both of the main effects (here both A and B) are
also in the model. This situation occurs frequently in practice, so assuming hierarchy in
analyzing data from a nonregular design is usually not a bad assumption. Interactions may
also obey only a heredity principle (some authors say weak heredity); this means that
AB can be in the model if either A or B is in the model. This situation also occurs fairly
often, although not as often as hierarchy, but ignoring this possibility could result in the
experimenter failing to identify all of the large interactions effects. Finally, there can be
situations where an interaction such as AB is active but neither main effect A or B is active.
This case is relatively uncommon.

There are several variations of forward selection regression that are useful. They are
briefly described as follows:

1. Use forward selection without concern about model hierarchy. This can result in
including too many interaction terms.

2. Use forward selection restricted to hierarchy. This means that if AB is selected for
entry, then the entire group of terms A, B, and AB are entered in the model if A and
B are not already included.

3. Consider using larger-than-“usual” P-values for entering factors. Many stepwise
regression computer programs have “default” values for entering factors, such as
P = 0.05. This may be too restrictive. Values of 0.10 or even 0.15 may work better.
The big danger in screening designs is not identifying important effects (type II
errors), so type I errors are usually a lesser concern.

4. Use forward selection in two steps. First, select terms from all the main effects. Then
run forward selection a second time using all two-factor interactions that satisfy the
heredity assumption based on the main effects identified in step 1. You could also
include any two-factor interactions that experience or process knowledge suggests
should be considered.

Another alternative to forward stepwise regression is to consider some variation of all-
possible-models regression. This is a procedure where we fit all possible regression models
of particular sizes (such as all possible one-factor models, all-possible two-factor models,
etc.) and use some criterion such as minimum mean square error, or restrict attention to
hierarchical models, or models associated with a large increase in adjusted R2, to narrow
down the set of possible models for further consideration.
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In some cases, nonregular designs have useful projection properties, and this could
suggest an appropriate analysis. For example, the 16-run no-confounding designs for 6, 7,
and 8 factors will support a model with all main effects and all two-factor interactions in
any k = 4 factors. So if up to four main effects appear large, we could analyze this design
simply by fitting the main effects plus two-factor interaction model to the four apparently
active effects. In such situations, it still may be useful to consider other possible interaction
terms for inclusion in the final model.

4.9 FRACTIONAL FACTORIAL SPLIT-PLOT DESIGNS

In Chapter 3 we introduced the split-plot design as a technique for dealing with hard-
to-change versus easy-to-change factors in an experiment. Recall that the hard-to-change
variables are changed less frequently in the experiment and placed in the whole plots, while
the easy-to-change variables are still reset for each experimental run and are placed in the
subplots. Factorial experiments with three or more factors in a split-plot structure often
tend to be rather large experiments. On the other hand, the split-plots structure often makes
it easier to conduct a larger experiment because we have reduced the number of times the
hard-to-change factors need to be reset, and it can be quite easy and inexpensive to change
the levels of the subplot variables.

As the number of factors in the experiment grows, the experimenter may consider
using a fractional factorial experiment in the split-plot setting. As an illustration, consider
an experiment involving five factors that potentially affect uniformity in a single-wafer
plasma etching process. Three of the factors on the etching tool are relatively difficult to
change from run to run: A= electrode gap, B= gas flow, and C= pressure. Two other factors
are easy to change from run to run: D = time and E = RF (radio frequency) power. For
subsequent clarity, we have used boldface letters to represent the easy-to-change factors.
The experimenters want to use a fractional factorial split-plot (FFSP) design to investigate
these five factors because the number of test wafers available is limited. The hard-to-change
factors also indicate that a split-plot design should be considered to reduce the total number
of changes required. The experimenters decide to use a 25−1 design with factors A, B, and
C in the whole plots and factors D and E in the subplots. The design generator is E =
ABCD. This produces a 16-run fractional factorial with eight whole plots. Every whole plot
contains one of the eight treatment combinations from a complete 23 factorial design in
factors A, B, and C. Each whole plot is divided into two subplots, with one of the treatment
combinations for factors D and E in each subplot. The resulting FFSP design with measured
responses of uniformity is shown in Table 4.39.

We will assume that all three-, four- and five-factor interactions are negligible. If this
assumption is reasonable, then with 16 total observations the 15 effects (5 main effect and
10 two-way interactions) can be estimated. In the whole plots all hard-to-change factors, A,
B, and C, and their two-factor interactions, AB, AC, and BC, can be estimated from the eight
whole plots. There are seven degrees of freedom available for estimating whole plot effects,
with the remaining degree of freedom from the whole plot terms being assigned to ABC =
DE. There are eight degrees of freedom available for estimating subplot terms, which are
for the two main effects, D and E, and all of the interactions involving a hard-to-change and
easy-to-change factor (AD, AE, BD, BE, CD, CE). This illustrates one of the interesting
trade-offs for using a fractional factorial split-plot design: Since we have a reduced number
of runs for the experiment, and the defining relation involves both hard-to-change and
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TABLE 4.39 The Fractional Factorial Split-Plot Design for the Plasma Etching Experiment

Whole-Plot Factors Subplot Factors

Whole Plots A B C D E Uniformity

1 − − − − + 40.85
+ − 41.07

2 + − − − − 35.67
+ + 51.15

3 − + − − − 41.80
+ + 37.01

4 + + − − + 91.09
+ − 48.67

5 − − + − − 40.32
+ + 43.34

6 + − + − + 62.46
+ − 38.08

7 − + + − + 31.99
+ − 41.03

8 + + + − − 70.31
+ + 81.03

easy-to-change factors, care needs to be taken to determine which terms can be estimated
with which degrees of freedom.

Each term in our model is confounded with one other effect. Therefore, both should be
examined to determine how the effect will be estimated. If either of the two confounded
effects involves only hard-to-change factors, then this term will need to be estimated with
a whole-plot degree of freedom. For example, since ABC = DE, the two-factor interaction
involving the two easy-to-change factors, DE, will be estimated as a whole-plot term. In
general, any main effect or interaction that involves only hard-to-change factors will need
to be compared to the whole-plot error. This also includes any terms that are aliased with
higher-order terms that involve only whole-plot factors. Terms that involve any combination
of factors that include at least one subplot factor in each term of the defining equation should
be compared to the subplot error. See Montgomery (2013) for a more thorough discussion.

In this example, all of the two-way interactions involving a hard-to-change and easy-
to-change factor are confounded with a three-way interaction involving both hard- and
easy-to-change factors, and hence are estimated with subplot terms. For example, AD =
BCE both involve at least one easy-to-change factor. Table 4.40 lists the effects and their
estimates, separated into whole- and subplot terms. Since the terms of the model use all
of the available degrees of freedom, the effects can be assessed via a normal probability
plot. Because we have two error terms in the model, one for the whole-plot and one for
the subplot, separate normal probability plots are required. Figure 4.28a is a half-normal
probability plot of the effects estimates for the whole-plot terms, A, B, C, AB, AC, BC, and
DE (=ABC). Notice that factors, A, B and the AB interaction have large effects. Figure 4.28b
is the half-normal probability plot of the subplot effects, D, E, AD, AE, BD, BE, CD, and
CE. Only the main effect of E and AE interaction are large.

The design can be constructed using the JMP software package, by specifying the number
of whole plots (8) and total observations (16) desired. The default design recommended by



218 TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS

TABLE 4.40 Effects for Plasma Etching Experiment Separated into Whole Plot and Subplot
Effects

Term Parameter Estimates Type of Term

Intercept 49.73875
Gap (A) 10.0625 Whole
Gas flow (B) 5.6275 Whole
Pressure (C) 1.325 Whole
Time (D) −2.0725 Subplot
RF power (E) 5.12625 Subplot
AB 7.34625 Whole
AC 1.83125 Whole
AD −3.00875 Subplot
AE 6.505 Subplot
BC −0.60125 Whole
BD −1.35875 Subplot
BE −0.2125 Subplot
CD 1.86625 Subplot
CE −1.485 Subplot
DE 0.34 Whole

the software is the 32-run design shown in Table 4.41. This 32-run design is actually a full
factorial split-plot design with eight whole plots and four subplots per whole plot, not a
fractional factorial split-plot. It allows estimation of both the whole-plot and subplot error
terms. It should be noted that the comparison between the two designs in Tables 4.39 and
4.41 involves considering the relative increase in cost from 16 to 32 runs, but since both

Figure 4.28 Half-normal plots of the effects from the 25−1 fractional factorial split-plot design for
the plasma etching experiment. (a) Whole-plot effects. (b) Subplot effects.
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TABLE 4.41 Default 32-Run Design from JMP for the Plasma Etching Experiment

Whole-Plot Factors Subplot Factors

Whole Plots A B C D E

1 − − − − −
− +
+ −
+ +

2 − − + − −
− +
+ −
+ +

3 − + − − −
− +
+ −
+ +

4 − + + − −
− +
+ −
+ +

5 + − − − −
− +
+ −
+ +

6 + − + − −
− +
+ −
+ +

7 + + − − −
− +
+ −
+ +

8 + + + − −
− +
+ −
+ +

designs just involve eight whole plots, they both involve the same number of changes to
the hard-to-change factors. Hence the actual cost of running the smaller design might not
be much different than the total cost of the full factorial. In this case, the restriction on the
number of test wafers available forces the choice of the FFSP.

4.10 SUMMARY

This chapter has introduced the 2k−p fractional factorial design. We have emphasized the
use of these designs in screening experiments to identify quickly and efficiently the subset
of factors that are active and to provide some information on interaction. The projection
property of these designs makes it possible in many cases to examine the active factors in
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TABLE 4.42 Useful Factorial and Fractional Factorial Designs from the 2k−p System

Number of Factors in Experiment

Design Type 4 8 16 32 runs

Full factorial 2 3 4 5
Half-fraction 3 4 5 6
Resolution IV fraction — 4 6–8 7–16
Resolution III fraction 3 5–7 9–15 17–31

more detail. Sequential assembly of these designs via fold-over is a very effective way to
gain additional information about interactions that an initial experiment may identify as
possibly important.

In practice, 2k−p fractional factorial designs with N = 4, 8, 16, and 32 runs are highly
useful. Table 4.42 summarizes these designs, identifying how many factors can be used
with each design to obtain various types of screening experiments. For example, the 16-
run design is a full factorial for 4 factors, a one-half fraction for 5 factors, resolution
IV fractional design for 6–8 factors, and a resolution III fraction for 9–15 factors. All of
these designs may be constructed using the methods discussed in this chapter. Montgomery
(2013) gives the alias relationships for many of these designs.

We also introduced nonregular designs and analysis strategies for screening for important
factors. These represent an additional set of tools for experiments with large numbers of
factors.

EXERCISES

4.1 Suppose that in the chemical process development experiment described in Exercise
3.6, it was only possible to run a one-half fraction of the 23 design. Construct the
design and perform the statistical analysis by selecting the relevant runs.

4.2 Suppose that in Exercise 3.9, only a one-half fraction of the 24 design could be run.
Construct the design and perform the analysis by selecting the relevant runs.

4.3 Consider the plasma etch experiment described in Exercise 3.10. Suppose that only
a one-half fraction of the design could be run. Set up the design and analyze the
data.

4.4 Example 4.2 describes a process improvement study in the manufacture of an inte-
grated circuit. Suppose that only eight runs could be made in this process. Set up an
appropriate 25−2 design and find the alias structure. Use the data from Example 4.2
as the observations in this design, and estimate the factor effects. What conclusions
can you draw?

4.5 Continuation of Exercise 4.4. Suppose you have made the eight runs in the 25−2

design in Exercise 4.4. What additional runs would be required to identify the factor
effects that are of interest? What are the alias relationships in the combined design?

4.6 R. D. Snee (“Experimenting with a Large Number of Variables,” in Experiments
in Industry: Design, Analysis and Interpretation of Results, by R. D. Snee, L. B.
Hare, and J. B. Trout, editors, ASQC, 1985) describes an experiment in which a 25−1
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design with I=ABCDE was used to investigate that effects of five factors on the color
of a chemical product. The factors are A = solvent/reactant, B = catalyst/reactant,
C = temperature, D = reactant purity, and D = reactant pH. The results obtained
were as follows:

e = −0.63 d = 6.79
a = 2.51 ade = 5.47
b = −2.68 bde = 3.45

abe = 1.66 abd = 5.68
c = 2.06 cde = 5.22

ace = 1.22 acd = 4.38
bce = −2.09 bcd = 4.30
abc = 1.93 abcde = 4.05

(a) Prepare a normal probability plot of the effects. Which effects seem active?

(b) Calculate the residuals. Construct a normal probability plot of the residuals and
plot the residuals versus the fitted values. Comment on the plots.

(c) If any factors are negligible, collapse the 25−1 design into a full factorial in the
active factors. Comment on the resulting design, and interpret the results.

4.7 An article in the Journal of Quality Technology (Vol. 17, 1985, pp. 198–206)
describes the use of a replicated fractional factorial to investigate the effect of
five factors on the free height of leaf springs used in a automotive application. The
factors are A = furnace temperature, B = heating time, C = transfer time, D =
hold-down time, and E = quench oil temperature. The data are shown in Table E4.1.

(a) Write out the alias structure for this design. What is the resolution of this design?

(b) Analyze the data. What factors influence the mean free height?

(c) Calculate the range and standard deviation of the free height for each run. Is
there any indication that any of these factors affects variability in the free height?

(d) Analyze the residuals from this experiment, and comment on your findings.

TABLE E4.1 The Leot Spring Experiment from Exercise 4.7

A B C D E Free Height

− − − − − 7.78 7.78 7.81
+ − − + − 8.15 8.18 7.88
− + − + − 7.50 7.56 7.50
+ + − − − 7.59 7.56 7.75
− − + + − 7.54 8.00 7.88
+ − + − − 7.69 8.09 8.06
− + + − − 7.56 7.52 7.44
+ + + + − 7.56 7.81 7.69
− − − − + 7.50 7.25 7.12
+ − − + + 7.88 7.88 7.44
− + − + + 7.50 7.56 7.50
+ + − − + 7.63 7.75 7.56
− − + + + 7.32 7.44 7.44
+ − + − + 7.56 7.69 7.62
− + + − + 7.18 7.18 7.25
+ + + + + 7.81 7.50 7.59
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(e) Is this the best possible design for five factors in 16 runs? Specifically, can you
find a fractional design for five factors in 16 runs with a higher resolution than
this one?

4.8 Reconsider the experiment in Exercise 4.6. Suppose that along with the original
16 runs the experimenter had run four center points with the following observed
responses: 5.20, 4.98, 5.26, and 5.40.

(a) Use the center points to obtain an estimate of pure error.

(b) Test for curvature in the response function and lack of fit.

(c) What type of model seems appropriate for this purpose?

(d) Can you fit the model in part (c) using the data from this experiment?

4.9 An article in Industrial and Engineering Chemistry (“More on Planning Experiments
to Increase Research Efficiency,” 1970, pp. 60–65) uses a 25−2 design to investigate
the effect of A = condensation temperature, B = amount of material 1, C = solvent
volume, D = condensation time, and E = amount of material 2 on yield. The results
obtained are as follows:

e = 23.2 ad = 16.9 cd = 23.8 bde = 16.8
ab = 15.5 bc = 16.2 ace = 23.4 abcde = 18.1

(a) Verify that the design generators used were I = ACE and I = BDE.

(b) Write down the complete defining relation and the aliases for this design.

(c) Estimate the main effects.

(d) Prepare an analysis of variance table. Verify that the AB and AD interactions are
available to use as error.

(e) Plot the residuals versus the fitted values. Also construct a normal probability
plot of the residuals. Comment on the results.

4.10 Reconsider the experiment in Exercise 4.9. Suppose that four center points were run,
and that the responses are as follows: 20.1, 20.9, 19.8, and 20.4.

(a) Use the center points to obtain an estimate of pure error.

(b) Test for lack of fit and curvature. What conclusions can you draw about the type
of model required for yield in this process?

4.11 An industrial engineer is conducting an experiment using a Monte Carlo simulation
model of an inventory system. The independent variables in her model are the order
quantity (A), the reorder point (B), the setup cost (C), the backorder cost (D), and
the carrying cost rate (E). The response variable is average annual cost. To conserve
computer time, she decides to investigate these factors using a 25−2

III design with I =
ABD and I = BCE. The results she obtains are de = 95, ae = 134, b = 158, abd =
190, cd = 92, ac = 187, bce = 155, and abcde = 185.

(a) Verify that the treatment combinations given are correct. Estimate the effects,
assuming three-factor and higher interactions are negligible.

(b) Suppose that a second fraction is added to the first. The runs in this new design
are ade = 136, e = 93, ab = 187, bd = 153, acd = 139, c = 99, abce = 191,
and bcde = 150. How was this second fraction obtained? Add these runs to the
original fraction, and estimate the effects.
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(c) Suppose that the fraction abc = 189, ce = 96, bcd = 154, acde = 135, abe = 193,
bde = 152, ad = 137, and (1) = 98 was run. How was this fraction obtained?
Add these data to the original fraction, and estimate the effects.

4.12 Carbon anodes used in a smelting process are baked in a ring furnace. An experiment
is run in the furnace to determine which factors influence the weight of packing
material that is stuck to the anodes after baking. Six variables are of interest, each at
two levels: A = pitch/fines ratio (0.45, 0.55); B = packing material type (1, 2); C =
packing material temperature (ambient, 325◦C); D = flue location (inside, outside);
E = pit temperature (ambient, 195◦C); and F = delay time before packing (zero,
24 hours). A 26−3 design is run, and three replicates are obtained at each of the
design points. The weight of packing material stuck to the anodes is measured in
grams. The data in run order are as follows: abd = (984, 826, 936); abcdef = (1275,
976, 1457); be = (1217, 1201, 890); af = (1474, 1164, 1541); def = (1320, 1156,
913); cd = (765, 705, 821); ace = (1338, 1254, 1294); and bcf = (1325, 1299, 1253).
We wish to minimize the amount of stuck packing material.

(a) Verify that the eight runs correspond to a 26−3
III design. What is the alias structure?

(b) Use the average weight as a response. What factors appear to be influential?

(c) Use the range of the weights as a response. What factors appear to be influential?

(d) What recommendations would you make to the process engineers?

4.13 A 16-run experiment was performed in a semiconductor manufacturing plant to
study the effects of six factors on the curvature, or camber, of the substrate devices
produced. The six variables and their levels are shown in Table E4.2. Each run was
replicated four times, and a camber measurement was taken on the substrate. The
data are shown in Table E4.3.

TABLE E4.2 Factors Levels for the Experiment in Exercise 4.13

Lamination Lamination Lamination Firing Firing Firing
Temperature Time Pressure Temperature Cycle Dew Point

Run (◦C) (sec) (ton) (◦C) Time (hr) (◦C)

1 55 10 5 1580 17.5 20
2 75 10 5 1580 29 26
3 55 25 5 1580 29 20
4 75 25 5 1580 17.5 26
5 55 10 10 1580 29 26
6 75 10 10 1580 17.5 20
7 55 25 10 1580 17.5 26
8 75 25 10 1580 29 20
9 55 10 5 1620 17.5 26

10 75 10 5 1620 29 20
11 55 25 5 1620 29 26
12 75 25 5 1620 17.5 20
13 55 10 10 1620 29 20
14 75 10 10 1620 17.5 26
15 55 25 10 1620 17.5 20
16 75 25 10 1620 29 26
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TABLE E4.3 Data for the Experiment in Exercise 4.13

Camber for Replicate (in./in.)

Total Mean Standard
Run 1 2 3 4 (10−4 in./in.) (10−4 in./in.) Deviation

1 0.0167 0.0128 0.0149 0.0185 629 157.25 24.418
2 0.0062 0.0066 0.0044 0.0020 192 48.00 20.976
3 0.0041 0.0043 0.0042 0.0050 176 44.00 4.0825
4 0.0073 0.0071 0.0039 0.0030 223 55.75 25.025
5 0.0047 0.0047 0.0040 0.0089 223 55.75 22.410
6 0.0219 0.0258 0.0147 0.0296 920 230.00 63.639
7 0.0121 0.0090 0.0092 0.0086 389 97.25 16.029
8 0.0255 0.0250 0.0226 0.0169 900 225.00 39.42
9 0.0032 0.0023 0.0077 0.0069 201 50.25 26.725

10 0.0078 0.0158 0.0060 0.0045 341 85.25 50.341
11 0.0043 0.0027 0.0028 0.0028 126 31.50 7.681
12 0.0186 0.0137 0.0158 0.0159 640 160.00 20.083
13 0.0110 0.0086 0.0101 0.0158 455 113.75 31.12
14 0.0065 0.0109 0.0126 0.0071 371 92.75 29.51
15 0.0155 0.0158 0.0145 0.0145 603 150.75 6.75
16 0.0093 0.0124 0.0110 0.0133 460 115.00 17.45

(a) What type of design did the experimenters use?

(b) What are the alias relationships in this design?

(c) Do any of the process variables affect average camber?

(d) Do any of the process variables affect the variability in camber measurements?

(e) If it is important to reduce mean camber as much as possible, what recommen-
dations would you make?

(f) Fit an appropriate model for both mean camber and the standard deviation of
camber. If we would like to reduce the variability in camber while keeping the
mean camber as close as possible to 100× 10−4 in./in., what recommendations
would you make?

4.14 A spin coater is used to apply photoresist to a silicon wafer. This operation usually
occurs early in the semiconductor manufacturing process, and the average coating
thickness and the variability in the coating thickness have important effects on
downstream manufacturing steps. Six variables are used in the experiment. The
variables and their high and low levels are shown in Table E4.4. The experimenter
decides to use a 26−1 design, and to make three readings on resist thickness on each
test wafer. The data are shown in Table E4.5.

(a) Verify that this is a 26−1 design. Discuss the alias relationships in this design.

(b) What factors appear to affect average resist thickness?

(c) Since the volume of resist applied has little affect on average thickness, does
this have any important practical implications for the process engineers?

(d) Project this design into a smaller design involving only significant factors. Dis-
play the result graphically. Does this aid in interpretation?
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TABLE E4.4 Factors and Levels for the Experiment in Exercise 4.14

Factor Low Level High Level

Final spin speed 7300 rpm 6650 rpm
Acceleration rate 5 20
Volume of resist applied 3 cc 5 cc
Time of spin 14 s 6 s
Resist batch variation Batch 1 Batch 2
Exhaust pressure Cover off Cover on

TABLE E4.5 Data for the Experiment in Exercise 4.14

Resist Thickness

Run A Volume B Batch C Time D Speed E Acc. F Cover Left Center Right Average

1 5 Batch 2 14 7350 5 Off 4531 4531 4515 4525.7
2 5 Batch 1 6 7350 5 Off 4446 4464 4428 4446
3 3 Batch 1 6 6650 5 Off 4452 4490 4452 4464.7
4 3 Batch 2 14 7350 20 Off 4316 4328 4308 4317.3
5 3 Batch 1 14 7350 5 Off 4307 4295 4289 4297
6 5 Batch 1 6 6650 20 Off 4470 4492 4495 4485.7
7 3 Batch 1 6 7350 5 On 4496 4502 4482 4493.3
8 5 Batch 2 14 6650 20 Off 4542 4547 4538 4542.3
9 5 Batch 1 14 6650 5 Off 4621 4643 4613 4625.7

10 3 Batch 1 14 6650 5 On 4653 4670 4645 4656
11 3 Batch 2 14 6650 20 On 4480 4486 4470 4478.7
12 3 Batch 1 6 7350 20 Off 4221 4233 4217 4223.7
13 5 Batch 1 6 6650 5 On 4620 4641 4619 4626.7
14 3 Batch 1 6 6650 20 On 4455 4480 4466 4467
15 5 Batch 2 14 7350 20 On 4255 4288 4243 4262
16 5 Batch 2 6 7350 5 On 4490 4534 4523 4515.7
17 3 Batch 2 14 7350 5 On 4514 4551 4540 4535
18 3 Batch 1 14 6650 20 Off 4494 4503 4496 4497.7
19 5 Batch 2 6 7350 20 Off 4293 4306 4302 4300.3
20 3 Batch 2 6 7350 5 Off 4534 4545 4512 4530.3
21 5 Batch 1 14 6650 20 On 4460 4457 4436 4451
22 3 Batch 2 6 6650 5 On 4650 4688 4656 4664.7
23 5 Batch 1 14 7350 20 Off 4231 4244 4230 4235
24 3 Batch 2 6 7350 20 On 4225 4228 4208 4220.3
25 5 Batch 1 14 7350 5 On 4381 4391 4376 4382.7
26 3 Batch 2 6 6650 20 Off 4533 4521 4511 4521.7
27 3 Batch 1 14 7350 20 On 4194 4230 4172 4198.7
28 5 Batch 2 6 6650 5 Off 4666 4695 4672 4677.7
29 5 Batch 1 6 7350 20 On 4180 4213 4197 4196.7
30 5 Batch 2 6 6650 20 On 4465 4496 4463 4474.7
31 5 Batch 2 14 6650 5 On 4653 4685 4665 4667.7
32 3 Batch 2 14 6650 5 Off 4683 4712 4677 4690.7
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(e) Use the range of resist thickness as a response variable. Is there any indication
that any of these factors affect the variability in resist thickness?

(f) Where would you recommend that the process engineers run the process?

4.15 Consider the leaf spring experiment in Exercise 4.7. Suppose that factor E (quench
oil temperature) is very difficult to control during manufacturing. Where would you
set factors A, B, C, and D to reduce variability in the free height as much as possible
regardless of the quench oil temperature used?

4.16 Construct a 27−2 design by choosing two four-factor interactions as the independent
generators. Write down the complete alias structure for this design. Outline the
analysis of variance table. What is the resolution of this design?

4.17 Consider the 25 design in Exercise 3.12. Suppose that only a one-half fraction could
be run. Furthermore, two days were required to take the 16 observations, and it
was necessary to confound the 25−1 design in two blocks. Construct the design and
analyze the data.

4.18 Analyze the data in the first replicate of Exercise 3.9 as if it came from a 24−1
IV design

with I = ABCD. Project the design into a full factorial in the subset of the original
four factors that appear to be significant.

4.19 Repeat Exercise 4.18 using I = −ABCD. Does use of the alternate fraction change
your interpretation of the data?

4.20 Project the 24−1
IV design in Example 4.1 into two replicates of a 22 design in the

factors A and B. Analyze the data and draw conclusions.

4.21 Construct a 26−3
III design. Determine the effects that may be estimated if a second

fraction of this design is run with all signs reversed.

4.22 Consider the 26−3
III design in Exercise 4.21. Determine the effects that may be

estimated if a second fraction of this design is run with the signs for factor A
reversed.

4.23 Fold over the 27−3
III design in Table 4.13. Verify that the resulting design is a 28−4

IV
design. Is this a minimal design?

4.24 Fold over a 25−2
III design. Verify that the resulting design is a 26−2

IV design. Compare
this design with the 26−2

IV design in Table 4.14.

4.25 Suppose that you have run a 24−1
IV design with I = ABCD, and that you have fit the

model y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽4x4 + 𝜀.

(a) Assume that the true model for the system is E(y) = 𝛽0 +
∑4

i=1 𝛽ixi + 𝛽12x1x2.
Are the least squares estimates of 𝛽0, 𝛽1, 𝛽2, 𝛽3, and 𝛽4 in the fitted model
unbiased? Is the result you obtained an “intuitive” one?

(b) Assume that the true model is E(y) = 𝛽0 +
∑4

i=1 𝛽ixi + 𝛽12x1x2 + 𝛽11x2
1 + 𝛽22x2

2.
Are the least squares estimates of 𝛽0, 𝛽1, 𝛽2, 𝛽3, and 𝛽4 biased estimates?

4.26 Reconsider the experiment described in Exercise 4.13. Suppose that “firing tem-
perature” is hard to change. Construct an appropriate fractional factorial split-plot
design for this problem.
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4.27 Reconsider the spin coating experiment from Exercise 4.14 with the factor “resist
batch variation” as hard to change. Construct an appropriate fractional factorial
split-plot design for this problem.

4.28 Consider the 25 factorial experiment given in Exercise 3.38. Suppose that only 16
runs could be made. Set up an appropriate 25-1 design for this problem and use
only the data from those 16 runs in your analysis. Compare your results with those
obtained from the full factorial in Exercise 3.38.

4.29 Reconsider the situation described in Exercise 4.28. Suppose that only 8 runs could
be made in one time period. Set up the fractional factorial in two blocks of 8 runs
each. Analyze the data from these 16 runs and comment on the results.

4.30 Consider the 25 factorial experiment given in Exercise 3.38. Suppose that only 8
runs could be made. Set up an appropriate 25−2 design for this problem and use
only the data from those 8 runs in your analysis. Compare your results with those
obtained from the full factorial in Exercise 3.38.

4.31 An article by L. B. Hare (“In the Soup: A Case Study to Identify Contributors to
Filling Variability,” Journal of Quality Technology, Vol. 20, pp. 36–43) describes a
factorial experiment used to study the filling variability of dry soup mix packages.
The factors are A = number of mixing ports through which the vegetable oil was
added (1, 2), B = temperature surrounding the mixer (cooled, ambient), C = mixing
time (60, 80 sec), D= batch weight (1500, 2000 lb), and E= number of days of delay
between mixing and packaging (1, 7). Between 125 and 150 packages of soup were
sampled over an 8-hr period for each run in the design, and the standard deviation
of package weight was used as the response variable. The design and resulting data
are shown in Table E4.6

TABLE E4.6 The Soup Experiment

A B C D E y
Std. Order Mixer Ports Temp. Time Batch Weight Delay Std. Dev

1 − − − − − 1.13
2 + − − − + 1.25
3 − + − − + 0.97
4 + + − − − 1.70
5 − − + − + 1.47
6 + − + − − 1.28
7 − + + − − 1.18
8 + + + − + 0.98
9 − − − + + 0.78

10 + − − + − 1.36
11 − + − + − 1.85
12 + + − + + 0.62
13 − − + + − 1.09
14 + − + + + 1.10
15 − + + + + 0.76
16 + + + + − 2.10
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(a) What is the generator for this design?

(b) What is the resolution of this design?

(c) Estimate the factor effects. Which effects are large? Form an appropriate model
for the response.

(d) Does a residual analysis indicate any problems with the underlying assumptions?

(e) Draw conclusions about this filling process.

4.32 A 16-run fractional factorial experiment in 10 factors on sand-casting of engine man-
ifolds was conducted by engineers at the Essex Aluminum Plant of the Ford Motor
Company and described in the article “Evaporative Cast Process 3.0 Liter Intake
Manifold Poor Sandfill Study,” by D. Becknell (Fourth Symposium on Taguchi
Methods, American Supplier Institute, Dearborn, MI, 1986, pp. 120–130). The pur-
pose was to determine which of 10 factors has an effect on the proportion of defective
castings. The design and the resulting proportion of nondefective castings observed
on each run are shown in Table E4.7. This is a resolution III fraction with generators
E = CD, F = BD, G = BC, H = AC, J = AB, and K = ABC. Assume that the number
of castings made at each run in the design is 1000.

(a) Find the defining relation and the alias relationships in this design.

(b) Estimate the factor effects and use a normal probability plot to tentatively identify
the important factors.

(c) Fit an appropriate model using the factors identified in part (b) above.

(d) Plot the residuals from this model versus the predicted proportion of nondefective
castings. Also prepare a normal probability plot of the residuals. Comment on
the adequacy of these plots.

(e) In part (d) you should have noticed an indication that the variance of the response
is not constant. (Considering that the response is a proportion, you should have

TABLE E4.7 The Sand-Casting Experiment in Exercise 4.32

Aresin F&T’s
Run A B C D E F G H J K p̂

√
p̂ Modification

1 − − − − + + + + + − 0.958 1.364 1.363
2 + − − − + + + − − + 1.000 1.571 1.555
3 − + − − + − − + − + 0.977 1.419 1.417
4 + + − − + − − − + − 0.775 1.077 1.076
5 − − + − − + − − + + 0.958 1.364 1.363
6 + − + − − + − + − − 0.958 1.364 1.363
7 − + + − − − + − − − 0.813 1.124 1.123
8 + + + − − − + + + + 0.906 1.259 1.259
9 − − − + − − + + + − 0.679 0.969 0.968

10 + − − + − − + − − + 0.781 1.081 1.083
11 − + − + − + − + − + 1.000 1.571 1.556
12 + + − + − + − − + − 0.896 1.241 1.242
13 − − + + + − − − + + 0.958 1.364 1.363
14 + − + + + − − + − − 0.818 1.130 1.130
15 − + + + + + + − − − 0.841 1.161 1.160
16 + + + + + + + + + + 0.955 1.357 1,356
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expected this.) The previous table also shows a transformation on p̂, the arcsin
square root, which is a widely used variance stabilizing transformation for pro-
portion data. Repeat parts (a) through (d) above using the transformed response
and comment on your results. Specifically, are the residual plots improved?

(f) There is a modification to the arcsin square root transformation, proposed by
Freeman and Tukey

(“Transformations Related to the Angular and the Square Root,” Annals of Mathe-
matical Statistics, Vol. 21, 1950, pp. 607–611), that improves its performance in the
tails. F&T’s modification is

[arcsin
√

np̂∕(n + 1) + arcsin
√

(np̂ + 1)∕(n + 1)]∕2

Rework parts (a) through (d) using this transformation and comment on the results.
(For an interesting discussion and analysis of this experiment, refer to “Analysis of
Factorial Experiments with Defects or Defectives as the Response,” by S. Bisgaard
and H. T. Fuller, Quality Engineering, Vol. 7, 1994–1995, pp. 429–443.)

4.33 An experimenter has conducted a 25−1 fractional factorial experiment. The test
matrix is shown in Table E4.8.

(a) What is the resolution of the design?

(b) What are the design generators that have been used to construct this design?
What is the complete defining relation?

(c) Write down the aliases, showing only main effects and two-factor interactions.

TABLE E4.8 The 25−1 Design for Exercise 4.33

Std A B C D E Block

1 −1 −1 −1 −1 −1

2 1 −1 −1 −1 1

3 −1 1 −1 −1 1

4 1 1 −1 −1 −1

5 −1 −1 1 −1 1

6 1 −1 1 −1 −1

7 −1 1 1 −1 −1

8 1 1 1 −1 1

9 −1 −1 −1 1 1

10 1 −1 −1 1 −1

11 −1 1 −1 1 −1

12 1 1 −1 1 1

13 −1 −1 1 1 −1

14 1 −1 1 1 1

15 −1 1 1 1 1

16 1 1 1 1 −1
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(d) Suppose that after analyzing the data, the two largest effects were B and E.
Dropping the negligible factors results in what type of design in the remaining
factor

(e) Suppose that after analyzing the data, the three largest effects were A, C, and E.
Dropping the negligible factors results in what type of design in the remaining
factors?

(f) Suppose that the original experimental situation would only allow eight runs to
be made on each day. You wish to consider using the two days as two blocks.
What factor (and its aliases) would you choose to confound with blocks? Use
the column labeled “Block” in the design matrix above to identify which runs
would be assigned to block 1 and which runs would be assigned to block 2.

(g) Suppose it was possible to conduct only 8 runs for the initial experiment. What
design would you recommend? What will be the resolution of the design and
what will be the alias structure?

4.34 An unreplicated 25−1 fractional factorial experiment has been run in a chemical pro-
cess. The response variable is viscosity. The engineer has used the following factors:

Factor Natural Levels Coded Levels (x’s)

A—time 40, 60 (minutes) -1, 1
B—temperature 125, 175 (◦C) -1, 1
C—catalyst amount 10, 20 (grams) -1, 1
D—concentration 60, 80 (percent) -1, 1
E—feed rate 8, 12 (g/min) -1, 1

After conducting the experiment, the engineer finds that three of the main effects
and one of the interactions are large enough to be considered significant. The effect
estimates are A = 60, B = 56, C = 40, and AC = 32. The overall average of the 16
runs in this experiment is 1500.

(a) Write down a model that could be used for predicting viscosity over the region
of exploration from this experiment. Write the model in the coded variables.

(b) Write the model in part (a) above in terms of the natural variables.

(c) Predict viscosity at the point time = 50, temperature = 165, catalyst amount =
20, concentration = 75, and feed rate = 12.

(d) In the previous question, does it matter what value is given for feed rate?

Short Answer Questions

4.35 In a resolution IV design:

(a) All main effects are aliased with three-factor interactions.

(b) All two factor interactions are aliased with at least one other two-factor interac-
tion.

(c) Main effects and two-factor interactions are clear of each other.

(d) All of the above statements are true.

(e) None of the above statements are true.
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4.36 In the 27−3 fractional factorial design with E = ABC, F = BCD, and G = ACD, if
factors A, B, and C are dropped, the remaining factors form the following:

(a) An unreplicated full factorial design.

(b) A fractional factorial design in four factors.

(c) A replicated full factorial design in 16 runs.

(d) None of the above statements are true.

4.37 In a resolution III design:

(a) At least one main effect is aliased with some two-factor interactions.

(b) Some two-factor interactions may be aliased with other two-factor interactions.

(c) A screening design with lots of factors may be a good choice.

(d) All of the above statements are true.

(e) None of the above statements are true.

4.38 When there are several variables, the system or process is likely to be driven
primarily by some of the main effects and low interactions. This idea is referred
to as:

(a) The blocking effect

(b) The projection property

(c) The sparsity of effects principle

(d) Sequential experimentation

4.39 Every 2k−p fractional factorial contains full factorials in some subsets of the original
k factors. This is called

(a) The projection property

(b) Sequential experimentation

(c) Ockham’s razor

(d) The sparsity of effects principle

(e) Design resolution

4.40 Consider a 24−1 fractional factorial design. If the principal fraction is run first
(I = ABCD) and then later augmented with the alternate fraction, the four-factor
interaction effect is confounded with blocks. True False

4.41 The resolution of a regular two-level fractional factorial design is the number of
words in the defining relation. True False

4.42 Every fractional factorial contains full factorials in some subsets of the original k
factors. This is called design projection. True False

4.43 When there are several variables, the system or process is likely to be driven primarily
by some of the main effects and low-order interactions. This idea is referred to as
sparsity of effects. True False

4.44 A 2k−p Fractional factorial design has 4 center runs. The observations are 40, 42,
38, and 4. The pure error sum of squares is

(a) 21

(b) 18
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(c) 24

(d) None of the above

4.45 Not counting the principal fraction, how many alternative fractions are there in a
2k−p as a function of p?

4.46 With a resolution R design, main effects are confounded with interactions of order
R − 1, two-factor interactions are confounded with interactions of order R − 2, and
so forth. True False

4.47 For a half fraction of a two-level factorial design the maximum resolution possible
is equal to the number of factors. True False

4.48 For a 210−2 design the best resolution attainable is 5. True False

4.49 Nongeometric Plackett-Burman designs are of resolution IV. True False

4.50 The design points of the 2k−p family are at the corners of a cube in a k-dimensional
space and they project into a cuboidal region in any subset of the original k
factors. True False



5
PROCESS IMPROVEMENT WITH
STEEPEST ASCENT

In previous chapters we dedicated considerable attention to constructing and applying
designed experiments with a view toward model building. The designs discussed are very
efficient for development of empirical equations that relate controllable factors to an impor-
tant response. Clearly these empirical regression equations serve to provide information
about the properties of the system from which the data are taken. Signs and magnitudes
of coefficients and the presence or absence of interaction in the system underscore impor-
tant pieces of information for the user. Often the primary purpose of the model is for
interpretations such as these.

There are many other situations in which a model is used for process optimization or
process improvement. The result of a model-building procedure is an equation. A statistical
analyst is armed with mathematical and analytical techniques, the purpose of which is to
optimize the process. This and other chapters that follow will deal with process optimization
for a variety of situations. Here we assume that the practitioner is experimenting with a
system (perhaps a new system) in which the goal is not to find a point of optimum response,
but to search for a new region in which the process or product is improved. Perhaps the
current working region for designed experiments is only based on an educated guess, or
on preliminary experiments on a different manufacturing scale (such as a pilot plant). It is
felt that improvement can be found. For example, in a chemical process one seeks to find a
new region where improved yields will be experienced.

The experimental design, model-building procedure, and sequential experimentation
that are used in searching for a region of improved response constitute the method of
steepest ascent. The type of designs that are must frequently used are those discussed in
Chapters 3 and 4, namely, two-level factorial and fractional factorial designs. One must
keep in mind that the strategy involves sequential movement from one region in the factors
to another. As a result the total operation may involve more than one experiment. Thus,

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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design economy and model simplicity may be very important. One begins by assuming that
a first-order model (a planar representation) is a reasonable approximation of the system
in the initial region of x1, x2,… , xk. Then the method of steepest ascent consists of the
following steps:

1. Fit a first-order model (a plane or hyperplane) using an orthogonal design. Two-level
designs are quite appropriate, although center runs are often recommended.

2. Compute a path of steepest ascent if maximizing the response is required. If minimum
response is required, one should compute the path of steepest descent. The path of
steepest ascent is computed so that one may expect the maximum increase in
response per distance moved in the design space. Steepest descent produces a path
that results in a maximum decrease in response.

3. Conduct experimental runs along the path. That is, do either single runs or replicated
runs, and observe the response value. The results will normally show improving
values of the response. At some region along the path the improvement will decline
and eventually disappear. This stems from the deterioration of the simple first-order
model once one strays too far from the initial experimental region. A good rule of
thumb is to continue experimentation along the path of steepest ascent until two
consecutive runs result in decreased response values. Often the first experimental run
should be taken near the design perimeter (at coordinates corresponding to a value
of 1.0 in an important variable) to serve as a confirming experiment.

4. At some point where an approximation of the maximum (or minimum) response is
located on the path, a base for a second experiment is chosen. The design should
again be a first-order design. It is quite likely that center runs for testing curvature, as
well as degrees of freedom for interaction-type lack of fit, are important at this point.

5. A second experiment is conducted, and another first-order model is fitted to the data.
A test for lack of fit is made. If the lack of fit is not significant, a second path based
on the new model is computed. This is often called a mid-course correction. Single
or replicated experiments along this second path are conducted. It is quite likely
that the rate of improvement will not be as strong as that enjoyed in the first path.
After improvement is diminished, or some lack of fit is detected, one typically has a
base for conducting a more elaborate experiment and a more sophisticated process
optimization.

This step-by-step procedure is meant to be only a guideline. It is quite possible that
only one stage (and hence one path) will be used. Clearly, if interaction or quadratic lack-
of-fit contributions are prominent at the second stage, the analyst will likely not conduct
experiments along a path that is based on a planar model. Augmentation of the first-order
design to allow higher-order models will be discussed in more detail in Chapter 6.

5.1 DETERMINING THE PATH OF STEEPEST ASCENT

5.1.1 Development of the Procedure

The coordinates along the path of steepest ascent depend on the signs and magnitudes
of the regression coefficients in the fitted first-order model. The following describes the
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Figure 5.1 The path of steepest ascent. (a) Contour plot. (b) Three-dimensional response surface
view.

movement in, say, xj (j= 1, 2,… , k) relative to the movement of the other factors. Remember
that the variables are in coded form with the center of the design at x1 = x2 = ⋯ = xk = 0.

The movement in xj along the path of steepest ascent is proportional to the magnitude of
the regression coefficient bj with the direction taken matching the sign of the coefficient.
Steepest descent requires the direction to be opposite the sign of the coefficient.

For example, if the experiment and the resulting first-order model analysis produces an
equation ŷ = 20 + 3x1 − 1.5x2, the path of the steepest ascent will result in x1 moving in a
positive direction and x2 in a negative direction. In addition, x1 will move twice as fast; that
is, x1 moves two units for every single unit movement in x2. Figure 5.1 indicates the nature
of the path of steepest ascent for this example. The path is indicated by the arrow. Note
that the path is perpendicular to lines of constant response. This is clearly the most rapid
movement (steepest ascent) toward large response values. For k≥ 3, these lines become
planes (or hyperplanes) and the path of steepest ascent moves perpendicular to these planes.

While a path created by moving xj a relative distance that is proportional to the regres-
sion coefficient bj is a reasonable and intuitive selection, one may appreciate and better
understand the procedure through a mathematical development of the procedure. Consider
the fitted first-order regression model

ŷ = b0 + b1x1 + b2x2 +⋯ + bkxk

By the path of steepest ascent we mean that which produces a maximum estimated
response with the constraint that

∑k
i=1 x2

i = r2. Constrained optimization must be used,
because maximizing the fitted response ŷ from the first-order model results in all of the x’s
at infinity. In other words, of all points that are a fixed distance r from the center of the
design, we seek that point x1, x2, x3,… , xk for which ŷ is maximized. Remember that in
the metric of the coded design variables the design center is (0, 0,… , 0). As a result, the
constraint given by

∑k
i=1 x2

i = r2 is that of a sphere with radius r.
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The solution to this optimization problem involves the use of Lagrange multipliers.
Maximization requires the partial derivatives with respect to xj (j = 1, 2,… , k) of

L = b0 + b1x1 + b2x2 +⋯ + bkxk − 𝜆

(
k∑

i=1

x2
i − r2

)
(5.1)

The derivative with respect to xj is

𝜕L
𝜕xj

= bj − 2𝜆xj (j = 1, 2,… , k)

Setting 𝜕L/𝜕xj = 0 gives the following coordinate of xj of the path of steepest ascent

xj =
bj

2𝜆
(j = 1, 2,… , k)

Now, the quantity 1∕2𝜆 = 𝜌 may be viewed as a constant of proportionality. That is, the
coordinates are given by

x1 = 𝜌b1, x2 = 𝜌b2,… , xk = 𝜌bk (5.2)

where, for steepest ascent, the constant 𝜌 is positive. For steepest descent, 𝜌 is taken to be
negative. Now, this implies that the choice of 𝜌, which is related to 𝜆, merely determines
the distance from the design center that the resulting point will reside. As a result, of course,
the constant 𝜌 is determined by the practitioner.

One can view the path of steepest ascent as being generated as shown in Fig. 5.2.
Suppose again that ŷ = 20 + 3x1 − 1.5x2. The points on the path are viewed as locations of

Figure 5.2 The path of steepest ascent as the path passing through the maximum value of y at a
fixed distance r from the design center.
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maximum values of ŷ at fixed radii. Each point on the path then, is a point of maximum
response for a given sized step from the center of the current design. Again, note that the
path involves a movement in a positive direction for x1 and a negative direction for x2, with
a change of two units in x1 for every single unit change in x2.

5.1.2 Practical Application of the Method of Steepest Ascent

We now give two examples illustrating the calculations to determine the path of steepest
ascent. We also give some practical guidance regarding its use.

Example 5.1 The Plasma Etch Process A common processing step in semiconductor
manufacture is plasma etching of silicon wafers. The etch rate is the typical response
of interest. Table 5.1 presents data from a 22 factorial design with four center points
used to study this process. The process variables of interest are the anode–cathode gap
(x1) and the power applied to the cathode (x2). The etch rates observed here are too
low, and the experimenter would like to move to a region where the etch rate is around
1000 Å/min.

Table 5.2 shows the condensed analysis of this experiment from Design-Expert. Notice
that the interaction term is not significant and there is no indication of lack of fit. Therefore,
we will use the first-order model

ŷ = 766.25 − 66.25x1 + 43.75x2

to construct the path of steepest ascent.
Since the sign of x1 is negative and the sign of x2 is positive, we will decrease the gap and

increase the power in order to increase the etch rate. Furthermore, for every unit of change
in the gap (x1), we will change the power by 43.75/66.25 = 0.66 units. Consequently, if we
choose the gap step size in coded units to be Δx1 = −1.0, then the power step size in coded
units is Δx2 = 0.66. In natural units the step sizes are Δgap = −0.20 cm and Δpower =
16.5 W.

Table 5.3 and Fig. 5.3 show the results of applying steepest ascent to this process. The
first point on the path of steepest ascent, denoted Base+Δ in Table 5.3, has the setting
gap = 1.20 cm and power = 316.5 W. The observed response at this point is y = 845 Å/min.
Notice that this is very close to the 840-Å/min contour passing near to this point. It is always

TABLE 5.1 The Plasma Etch Experiment

Gap (cm) Power (W) x1 x2 y (Etch Rate Å/min)

1.20 275 −1 −1 775
1.60 275 +1 −1 670
1.20 325 −1 +1 890
1.60 325 +1 +1 730
1.40 300 0 0 745
1.40 300 0 0 760
1.40 300 0 0 780
1.40 300 0 0 720
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TABLE 5.2 Analysis of the Etch Rate Experiment

Response: Etch rate
ANOVA for Selected Factorial Model

Analysis of Variance Table [Partial sum of squares]
Sum of

Source Squares DF Mean F-Value Prob>F

Model 25968.75 3 8656.25 13.53 0.0300
A 17556.25 1 17556.25 27.45 0.0135
B 7656.25 1 7656.25 11.97 0.0406
AB 756.25 1 756.25 1.18 0.3564
Curvature 450.00 1 450.00 0.70 0.4632
Pure Error 1918.75 3 639.58
Cor Total 28337.50 7

Std. Dev. 25.29 R-Squared 0.9312
Mean 758.75 Adj R-Squared 0.8624
C.V. 3.33 Adeq Precision 11.004

Coefficient Standard 95% Cl 95% Cl
Factor Estimate DF Error Low High VIF

Intercept 766.25 1 12.64 726.01 806.49
A-gap −66.25 1 12.64 −106.49 −26.01 1.00
B-Power 43.75 1 12.64 3.51 83.99 1.00
AB −13.75 1 12.64 −53.99 26.49 1.00
Center Point −15.00 1 17.88 −71.91 41.91 1.00

Final Equation in Terms of Coded Factors:

Etch rate =
+766.25
−66.25 ∗A
+43.75 ∗B
−13.75 ∗A∗B

Final Equation in Terms of Actual Factors:

Etch rate =
−450.00000
+493.75000 ∗gap
+5.60000 ∗power
−2.75000 ∗gap∗power

TABLE 5.3 Computation of the Path of Steepest Ascent for the Plasma Etch Process,
Example 5.1

Coded Variables Natural Variables

Point Gap (cm) Power (W) x1 x2 y

Base (starting point) 1.40 300 0 0
Δ −0.20 16.5 −1 0.66
Base + Δ 1.20 316.5 −1 0.66 845
Base + 2Δ 1.00 333 −2 1.32 950
Base + 3Δ 0.80 349.5 −3 1.98 1040
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Figure 5.3 The path of steepest ascent for the plasma etch experiment in Example 5.1.

a good idea to run the first point on the path near to the original experimental region as
a confirmation test, to ensure that conditions experienced during the original experiment
have not changed. At Base+2Δ the etch rate response has increased to 950 Å/min, and
at base+3Δ it has reached 1040 Å/min. Clearly we have arrived at a region close to the
desired etch rate of 1000 Å/min.

Because the plasma etch experiment in Example 5.1 has only two process variables,
an experimenter could actually implement the method of steepest ascent graphically, just
by reference to a contour plot such as Fig. 5.3. However, when there are more than k = 2
design factors, a formal procedure can be helpful.

It is easy to give a general algorithm for determining the coordinates of a point on the
path of steepest ascent. Assume that the point x1 = x2 = ⋅ ⋅ ⋅ = xk = 0 is the base or origin
point. Then

1. Choose a step size in one of the process variables, say Δxi. Usually, we select the
variable we know the most about, or we select the variable that has the largest (or
nearly the largest) absolute regression coefficient |bi|.

2. Calculate the step size in the other variables with (from Eq. 5.2)

Δxj =
bj

bi∕Δ xi
, j = 1, 2,… , k, i ≠ j (5.3)

3. Convert the Δxj from the coded variables to the natural variables.

We will illustrate this procedure with a four-variable example.
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Example 5.2 A Four-Variable Illustration of Steepest Descent Many manufacturing
companies use injection-molded parts as components of their product. Shrinkage is often
a problem in injection molding. Often a die for a part will be built larger than nominal to
allow for part shrinkage. In the following experiment a new part is being produced, and
ultimately it is important to find the proper settings to minimize shrinkage. In the following
experiment, the response values are deviations from nominal—that is, shrinkage. The factor
levels in natural and design units are as follows:

Design Units

Factor −1 +1

x1: Injection velocity (ft/sec) 1.0 2.0
x2: Mold temperature (◦C) 100 150
x3: Mold pressure (psi) 500 1000
x4: Back pressure (psi) 75 120

The design was an unreplicated 24 factorial. The response is in units of 10−4 cm. The
actual data are not given, but the first-order model fit to the data is

ŷ = 80 − 5.28x1 − 6.22x2 − 1.21x3 − 1.07x4

This linear regression model relates predicted shrinkage to the design variables in coded
design units. It appears that movement to a region with higher injection velocity and mold
temperature will be beneficial. In addition, a slight increase in mold pressure and back
pressure may be beneficial. One must keep in mind that we are searching for the path of
steepest descent. Then an increase proportional to the regression coefficient in each factor
will define the proper path for future experiments.

Suppose that we select x1 as the variable to define the step size (note that x1 has one of
the two largest regression coefficients). We will let Δx1 = 1, corresponding to 0.5 ft/sec in
injection velocity. Then from Equation 5.3 we have

Δx2 =
b2

b1
= 6.22

5.28
= 1.178 design units increase in x2

Δx3 =
b3

b1
= 1.21

5.28
= 0.23 design units increase in x3

Δx4 =
b4

b1
= 1.07

5.28
= 0.203 design units increase in x4

The corresponding change in terms of the natural units are

Δ(mold temperature) = (1.178)[(150 − 100)∕2] = (1.178)(25) = 29.45

Δ(mold pressure) = (0.23)(250) = 57.5

Δ(back pressure) = (0.203)(22.5) = 4.57
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TABLE 5.4 The Path of Steepest Descent for Example 5.2

Coded Units Natural Units

x1 x2 x3 x4 ft/sec ◦C psi psi

Base 0 0 0 0 1.5 125 750 97.50
Increment = Δ 1.0 1.178 0.23 0.203 0.5 29.45 57.5 4.57

Base + Δ 1.0 1.178 0.23 0.203 2.0 154.45 807.5 102.07
Base + 2Δ 2.0 2.356 0.46 0.406 2.5 183.90 865.0 106.64
Base + 3Δ 3.0 3.534 0.69 0.609 3.0 213.35 922.5 111.21
Base + 4Δ 4.0 4.712 0.92 0.812 3.5 242.80 980.0 115.78

Table 5.4 shows the path of steepest descent in terms of both coded (design) units and
natural units. The strategy involves making experimental runs along this path until no
further improvement in shrinkage is observed.

Practical Notes Regarding Steepest Ascent

1. Steepest ascent is a first-order gradient-based optimization technique. It works very
well when starting a long way from the optimum. When used near an extreme point on
the true response surface, steepest ascent will usually result in a very short movement
away from the starting point. This could be an indication to consider expanding the
model by adding higher-order terms.

2. We have illustrated making individual observations at each point on the path. In some
cases replicates, or repeat runs, will be useful. For example, if we are optimizing
a process such as chemical vapor deposition, the variability in layer thickness will
generally increase with the average thickness of the deposited layer. Using repeat
measurements at different sites on the unit or processing several units at the same
time and determining both the average and the standard deviation of the response can
be very useful.

3. Other first-order optimization techniques can be employed as alternatives to steep-
est descent. These more automatic hill-climbing procedures do not provide the
feedback of process information about factor effects obtained from the factorial
design.

4. Some experimenters will adjust the step size after the first few steps, depending on the
results obtained. For example, if the response is changing slowly, the step size can be
lengthened. This should be done very carefully, however, as it is easy to overshoot the
region of the optimum if the step size is too big. If no other information is available,
choosing the variable with the largest coefficient for setting Δx may be an appropriate
conservative choice.

5.2 CONSIDERATION OF INTERACTION AND CURVATURE

As we indicated earlier in this chapter, typically no more than two rounds of the steepest
ascent (or descent) procedure will be needed. This general strategy is at its best when the
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researcher begins experimentation far from the region of optimum conditions. Here one
expects the first-order approximation to be quite reasonable. As the experimental region
moves near the region of optimum conditions, it is expected that curvature will be more
prevalent and, of course, interactions among the factors will become more important. As
a result, the experimental design used to carry out the strategy should allow estimation
(and testing) of potentially important interactions. In later stages of the strategy, the design
should allow some information regarding model curvature. The use of center runs allows
a single-degree-of-freedom estimate of quadratic curvature (see Section 3.6). Clearly, if
interactions are found to be important and/or a test for curvature finds significant quadratic
terms, the researcher will suspect that the steepest ascent (descent) methodology will
become ineffective. Augmentation of the design to allow fitting a complete second-order
model should then be done.

When second-order terms describing interaction and pure quadratic curvature(
x2

1, x2
2,…

)
begin to dominate, then continuing the ascent exercise and experimentation

will be self-defeating. However, the question arises, “What do we mean by ‘dominant’?”
It is possible that second-order terms can be statistically significant, yet the first-order
approximation allows a reasonably successful experimental strategy. One must keep in
mind that “statistical significance” only implies that the effects are real in comparison with
experimental error. The second-order effects may be small in magnitude compared to their
first-order counterparts. As a result, there will certainly be situations where one should
compute the path and take experimental trials even though certain second-order effects are
significant.

Figure 5.4 shows the contour plot for the plasma etch experiment in Example 5.1 with
the interaction term included in the model. The path of steepest ascent is now the curved
path shown in the figure. Here the interaction is quite small, so the effect of ignoring it is
negligible. Even when interactions are moderately large, ignoring them will usually cause

Figure 5.4 The plasma etch experiment in Example 5.1 with the interaction term included in the
model.
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the computed path of steepest ascent to differ only modestly from the true path. In practice,
this should have little effect on the final outcome. It can lead to an extra round of steepest
ascent to compensate for the errors in estimating the path.

Example 5.3 Another Four-Variable Illustration of Steepest Ascent For this exam-
ple, we consider an illustration of a steepest ascent experiment in which it is of interest to
maximize the reaction yield. Four factors, A (amount of reactant A), B (reaction time), C
(amount of reactant C), and D (temperature), are being considered. The natural and coded
levels are given as follows:

Coded Levels

−1 +1

Natural Levels 10 15 (factor A, grams)
1 2 (factor B, minutes)

25 35 (factor C, grams)
75 85 (factor D, ◦C)

A 24−1 fractional factorial was used as the design, with the yield values given as follows:

(1): 62.0 ad: 61.8
ab: 69.0 bc: 64.7
cd: 57.0 bd: 62.2
ac: 64.5 abcd: 66.3

The fitted linear regression model is given by

ŷ = 63.44 + 1.9625x1 + 2.1125x2 − 0.3125x3 − 1.6125x4

The basis for computation of points along the path was chosen to be 1 gram of reactant
A. This corresponds to 1∕2.5 = 0.4 design units. As a result, the corresponding move-
ments in the other design variables are (2.1125∕1.9625)(0.4) = 0.4306 design units for
x2, (−0.3125∕1.9625)(0.4) = −0.0637 design units for x3, and (−1.6125∕1.9625)(0.4) =
−0.3287 design units for x4. The movement along the path will be positive for x1 and
x2, and negative for x3 and x4. Table 5.5 shows the appropriate coordinates along the
path in the natural variables. At some location along the design perimeter, experimental
runs should be made. In this case, runs were made at base+4Δ (after four increments):
Runs 9, 10, 11, and 12 indicate new experimental runs. Theoretically, one expects an
increase in response as runs are taken along the path. Eventually, of course, deteriora-
tion should occur when the first-order approximation that produced the original path is
no longer valid because the true response surface is now influenced by interaction and
quadratic curvature. In this case a reduction in yield is experienced after run 11. Any fur-
ther follow-up experiment should involve a designed experiment centered in the vicinity
of run 11.
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TABLE 5.5 Coordinates on the Path of Steepest Ascent in Natural Variables for Example 5.3

Run x1 x2 x3 x4 y

Base 12.5 1.5 30 80
Δ 1.0 (0.4306)(0.5) (−0.0637)(5) (−0.3287)(5)

= 0.215 = −0.319 = −1.643
Base + Δ 13.5 1.715 29.681 78.357
Base + 2Δ 14.5 1.930 29.362 76.714
Base + 3Δ 15.5 2.145 29.043 75.071
9 Base + 4Δ 16.5 2.360 28.724 73.428 74.0
10 Base + 6Δ 18.5 2.790 28.086 70.142 77.0
11 Base + 8Δ 20.5 3.220 27.448 73.856 81.0
12 Base + 9Δ 21.5 3.435 27.129 65.213 78.7

5.2.1 What About a Second Phase?

As we indicated earlier, one should expect that the evidence of curvature in the system
and interaction among the factors will eventually necessitate an abandonment of steepest
ascent. Any additional phases (or mid-course corrections) of the procedure beyond the first
will usually not bring about the level of success enjoyed in the initial phase. In addition,
one should be careful to use a design in the second phase that allows for testing lack of
fit that includes interaction and curvature induced by quadratic terms. In Example 5.3 a
reasonable design for the second stage is the other half of the original 24−1 design (forming
a complete 24) augmented by center runs. This allows for three degrees of freedom for
testing interaction type lack of fit and one degrees of freedom for testing curvature. If the
lack of fit is significant, one might expect little or no further success with steepest ascent.

5.2.2 What Happens Following Steepest Ascent?

It should be emphasized at this point that quality improvement through analysis of designed
experiments, when successful, is usually an iterative process. This is illustrated quite well in
dealing with the strategy of steepest ascent. In our example the investigator may well invest
in a 24 factorial with, say, five center runs for a second phase of steepest ascent. However,
if curvature and interaction are found to be quite evident, the steepest ascent procedure
will certainly soon be truncated. At this point the investigators will surely be interested in
finding optimum conditions through the use of a fitted second-order model. This allows
computation of estimated optimum conditions. The first-order two-level design with center
runs is nicely augmented to allow estimation of second-order terms. For example, a 24−1

fractional factorial (resolution IV) with five center runs is augmented with the alternate
fraction and axial runs as shown in Table 5.6.

The complete design allows for efficient estimation of the terms in the model

y = 𝛽0 +
4∑

i=1

𝛽ixi +
4∑

i=1

𝛽iix
2
i +

∑ 4∑
i<j=2

𝛽ijxixj + 𝜖

This is the second-order response surface model and it is widely used for process opti-
mization. The design is called the central composite design. Process optimization with
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TABLE 5.6 The Central Composite Design Resulting
from Augmenting an Initial 24−1 Design

x1 x2 x3 x4

−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

−1 1 1 −1
−1 1 −1 1
−1 −1 1 1 Initial design

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

1 1 1 −1
1 1 −1 1

−1 1 1 1
1 −1 1 1 Augmentation

−2 0 0 0
2 0 0 0
0 −2 0 0
0 2 0 0
0 0 −2 0
0 0 2 0
0 0 0 −2
0 0 0 2

the second-order model is discussed in Chapter 6. Designs for fitting second-order models,
including the central composite design, are discussed in Chapters 8 and 9.

The point made here is that the total strategy of product improvement or optimization can
very well involve both steepest ascent (region seeking) and more formal response surface
optimization in an iterative procedure. The transition from one to the other can be made
quite easily without any waste of experimental effort.

5.3 EFFECT OF SCALE (CHOOSING RANGE OF FACTORS)

The methodology of proceeding along the path of steepest ascent is generally a precursor
to a more elaborate experimental effort and optimization involving a more sophisticated
model and analysis. In Chapters 3 and 4, considerable attention was paid to two-level
designs, with variable screening being an important goal. It was suggested at that point that
choosing ranges on the factors is a vital decision and something that the researcher should
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not take lightly. Clearly, variable screening and steepest ascent are early steps in the process
optimization experience. Sloppy decisions with little forethought in these early stages may
lead to very inefficient process optimization at a later stage. It should be clear by now to the
reader that there is a connection between selection of ranges of the variables and the choice
of scale. For example, the coding in Example 5.2 suggests a decision in which one design
unit in injection velocity is 0.5 ft/sec. An equivalent unit in mold temperature is 25◦C.
This choice of scale is a decision that is made by the practitioner. Note that the regression
coefficient on back pressure (x4) is considerably smaller in magnitude than those or x1
and x2. Perhaps the implication is that the choice of range (and hence, choice of scale) on
back pressure was incorrect. Choosing design factor ranges certainly should improve with
increased experience with the system. If variable screening has already been accomplished,
then one would expect a more educated choice of scale for the hill-climbing exercise of
steepest ascent. One can only use the latest information available.

A change of scale does not change the direction that a factor should move along the path
of steepest ascent. However, it changes the relative magnitude of movement of the factor.
Suppose now we have an ideal situation with time (x1) and temperature (x2) in which the
true regression structure involving yield y is as follows:

E(y) = 𝛽0 + 𝛽x1 + 𝛽x2

where 𝛽 is a coefficient that corresponds to a (+1, −1) scaling for ranges of temperature
of 50◦C and time of 1.0 hr. Suppose researcher A chooses the above ranges with (+1, −1)
scaling while researcher B chooses a 50◦C range of temperature, but a 0.5 range of time,
again with (+1, −1) scaling on the true factors. The model that is relevant to researcher B
is given by

E(y) = 𝛽0 + 𝛽x1 + (𝛽∕2)x2

Thus the expected value of the time regression coefficient b2 for researcher B is one-half
that of the same coefficient for researcher A. As a result, the relative movement in x2 with
respect to x1 along the path, in design units, will be half as great. As an example, suppose
design levels are as follows for the researchers:

Researcher A

Natural Levels Coded Design Units

Temperature 200◦F 250◦F −1 +1
Time 1.0 2.0 −1 +1

Researcher B

Natural Levels Coded Design Units

Temperature 200◦F 250◦F −1 +1
Time 1.25 1.75 −1 +1
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Suppose both researchers use 22 factorial experimental plans. Let us assume that the
steepest ascent coordinates are to be based on a change of 25◦F in temperature. The steepest
ascent picture is as follows:

A B

Temperature Time Temperature Time

Base 225 1.5 225 1.5
Δ 25 0.5 25 0.125

Base + Δ 250 2.0 250 1.625
Base + 2Δ 275 2.5 275 1.750

Note that the actual change in time for researcher B is one-fourth the change incurred
by researcher A. The 0.125 incremental change for researcher B results from the fact that
the change per coded unit change in x2 is only one-half that experienced by researcher
A on the average. In addition, the computation of the coordinates for the natural variable
must take into account that the design unit described by researcher B is only one-half that
described by researcher A. As a result the reader should be able to ascertain the following
general rule that reflects the distinction between steepest ascent coordinates in a k-variable
problem.

Suppose researcher A chooses scale factor (range) r1, r2,… , rk and researcher B chooses
r′1, r′2,… , r′k, where aj = rj∕r′j . Refer to the relative movements along the path in the

natural variables as follows: Δ1,Δ2,… ,Δk and Δ′
1,Δ′

2,… ,Δ′
k for researcher A and B,

respectively; then Δj∕Δ′
j = a2

j for j = 1, 2,… , k.

This does suggest that the user of steepest ascent must use whatever knowledge of the
system is at his or her disposal to determine the range of the variable and hence the scale—
that is, the definition of a design unit. As we indicated earlier, each experimental experience
with a particular system allows for a more educated choice of intervals on the variable being
studied. One can view this general procedure as one in which there are truly many paths
of steepest ascent (or descent) that will lead to a region where the response is improved.
The method itself can be a learning device that will allow for a better choice of ranges in
future experiments, particularly those experiments in which the goal is to find optimum
process conditions. One should not let that difficulty in choosing ranges prohibit the use of
this region-seeking method. The methodology allows the user to be the beneficiary of more
appropriate regions and ranges for future experiments.

5.4 CONFIDENCE REGION FOR DIRECTION OF STEEPEST ASCENT

It is useful to take into account sampling variation in assessing the nature of the path of
steepest ascent. One must remember that the path is based on the regression coefficients
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and that these coefficients have sampling properties characterized by standard errors. As
a result, the path has sampling variation. This sampling variation can lead to a confidence
region for the path itself. The value of the confidence region may be derived by plots,
say in the case of two or three variables. A graphical analysis may indicate the amount of
flexibility the practitioner has in experiments along the path. A tighter region gives the user
confidence that the path is being estimated well.

Suppose there are k design variables and, indeed, coefficients b1, b2,… , bk provide
estimates of the relative movement of variables along the path. Assuming that the first-
order model is correct, the true path is defined by parameters 𝛽1, 𝛽2,… , 𝛽k, and

E(bi) = 𝛽i (i = 1, 2,… , k)

and the true coefficients are proportional to the relative movement along the path (i.e., Eq.
5.2) implies

𝛽i = 𝛾Xi (i = 1, 2,… , k) (5.4)

where Xi are the direction cosines of the path. In other words, X1, X2,… , Xk are constants
that, if known, could be used to compute any coordinates on the true path. We can view the
relationship in Equation 5.4 as a regression model without an intercept. The subject of the
statistical inference here will be the Xi. Though the regression structure may appear to be
rather unorthodox, we consider the model

bi = 𝛾Xi + 𝜀i (i = 1, 2,… , k) (5.5)

The variance of the bi is constant across all coefficients if one uses a standard two-level
orthogonal design. Call the estimated variance s2

b. A second variance, s2∗
b , is found from

the error mean square of the regression of Equation 5.5. The quantity s2∗
b is given by

s2∗
b =

k∑
i=1

(bi − �̂�Xi)
2

k − 1

where

�̂� =

k∑
i=1

biXi

k∑
i=1

X2
i

Then, of course, k− 1 is the number of error degrees of freedom for the regression. As a
result,

s2∗
b

s2
b

∼ Fk−1, 𝜈b
(5.6)
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where 𝜈b is the number of error degrees of freedom associated with the estimate s2
b (from the

steepest ascent experiment). Values of X1, X2,… ,Xk that fall inside the confidence region
are those for which the resulting values of s2∗

b ∕s2
b do not appear to refute Equation 5.6. In

particular, coordinates outside the confidence region are those for which s2∗
b is significantly

larger than s2
b. As a result, the 100(1− 𝛼)% confidence region is defined as the set of values

X1, X2,… , Xk for which

k∑
i=1

(bi − �̂�Xi)
2∕(k − 1)

s2
b

≤ F𝛼,k−1,𝜈b
(5.7)

where F𝛼,k−1,𝜈b
is the upper 100(1− 𝛼)% point of the Fk−1,𝜈b

distribution.

What Does the Confidence Region Mean? One must understand that specific coordinates

X1, X2,… , Xk specify the direction along the path. For example, X1 =
√

0.5, X2 =
√

0.3,

and X3 =
√

0.2 specify a direction and also represent coordinates that are a unit distance
away from the design origin. (Keep in mind that we remain in design unit scaling.) The
confidence region turns out to be a cone (or a hypercone in more than three variables) with
the apex at the design origin and all points a unit distance from the origin satisfying

k∑
i=1

b2
i −

(
k∑

i=1
biXi

)2

(k − 1)
k∑

i=1
X2

i

≤ s2
bF𝛼, k−1, 𝜈b

(5.8)

Example 5.4 An Example with k = 2 Consider the path of steepest ascent illustrated
in Fig. 5.1. The coefficients are b1 = 3 and b2 = −1.5. Suppose further that the estimates
of the variances of the coefficients are both 1

4
and there are four error degrees of freedom.

The value F0.05,2,4 = 7.71. As a result, the 95% confidence region for the path of steepest
ascent at fixed distance X2

1 + X2
2 = 1.0 is determined by solutions (X1, X2) to

9 + 2.25 − (3X1 − 1.5X2)2
≤

1
4
(7.71)

or

(3X1 − 1.5X2)2
≥ 9.3225 (5.9)

As a result, the total confidence region on the path is as illustrated in Fig. 5.5. Similar
graphical approaches to the problem are reasonable for k = 3. See Box and Draper (1987).
For k> 3 one cannot display a graphical picture of the confidence region. Of course, one
can always substitute any value (X1, X2,… , Xk) into Equation 5.7 to determine if the point
falls inside the confidence region. In general, it may be rather difficult to determine the
relative size of the confidence region, and yet the user needs to have some indication of
whether or not it is permissible to continue. Box and Draper describe an interesting analytic
procedure for determining what percentage of the possible directions was excluded by
the 95% confidence region. This then produces some impression about how “tight” the



250 PROCESS IMPROVEMENT WITH STEEPEST ASCENT

Figure 5.5 Confidence region on path of steepest ascent in Fig. 5.1.

confidence region is for any specific example. In our simple k = 2 example, this might
correspond to the determination of the angle 𝜃 in Fig. 5.5. It turns out that

𝜃 = arcsin

⎧⎪⎪⎨⎪⎪⎩

(k − 1)s2
bF𝛼, k−1, 𝜈2

k∑
i=1

b2
i

⎫⎪⎪⎬⎪⎪⎭

1∕2

(5.10)

For our example, we have

𝜃 = arcsin

{[(1
4

)
(7.71)

( 1
11.25

)]1∕2
}

= arcsin[0.413]

Thus 𝜃 ≅ 24.4◦. As a result, the confidence region illustrated by Fig. 5.5 sweeps an angle of
2𝜃 = 48.8◦. Of interest is the ratio 48.8/360 = 0.135, suggesting that 86.5% of the possible
directions taken from the design origin are excluded. Clearly, the larger the percentage
excluded, the more accurate the computed path. For k = 3 the confidence region is a cone
and the quality of the confidence region depends on the fraction of the surface area of
the total sphere that is taken up by the solid angle created by the confidence cone. Consider,
for example, Fig. 5.6. The dashed line represents the computed path. The ratio of the shaded
area to the total surface area of the sphere determines the quality of the computed path.

5.5 STEEPEST ASCENT SUBJECT TO A LINEAR CONSTRAINT

Anytime a researcher encounters a task of sequential experimentation that involves consid-
erable movement, there is the possibility that the path will move into an area of the design
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Figure 5.6 Confidence come for direction of steepest ascent for k = 3. [From Box and Draper
(1987), with permission.]

space where one or more of the variables are not in a permissible range from an engineering
or scientific point of view. For example, it is quite possible that an ingredient concentration
may exceed practical limits. As a result, in many situations it becomes necessary to build
the path of steepest ascent with a constraint imposed in the design variables. Suppose, in
fact, that we view the constraint in the form of a boundary. That is, we are bounded by

c0 + c1x1 + c2x2 +⋯ + ckxk = 0 (5.11)

This bound need not involve all k variables. For example, xj = c0 may represent a boundary
on a single design variable. One must keep in mind that in practice the constraint must
be formulated in terms of the natural (uncoded) variables and then written in the form of
coded variables for manipulation.

Figure 5.7 illustrates, for k = 2, the necessary steepest ascent procedure when a linear
constraint is to be applied. The procedure is as follows:

1. Proceed along the usual path of steepest ascent until contact is made with the con-
straining line (or plane for k> 2). Call this point of contact point O.

2. Beginning at point O, proceed along an adjusted or modified path.

3. Conduct experiments along the modified path, as usual, with the stopping rule based
on the same general principles as those discussed in Sections 5.1 and 5.2.

What Is the Modified Path? Figure 5.7 clearly outlines the modified path for the
k = 2 illustration. In general, however, the proper direction vector is one that satisfies
the constraint and still makes the greatest possible progress toward maximizing (or mini-
mizing) the response. (Clearly the modified path in our illustration is correct.)

It turns out (and is intuitively reasonable) that the modified path is given by the direction
vector

bi − dci (i = 1, 2,… , k) (5.12)
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Figure 5.7 Steepest ascent with a linear constraint.

for which

k∑
i=1

(bi − dci)
2

is minimized. That is, the direction along the constraint line (or plane) is taken so as to be
“closest” to the original path. Once again we can consider this to be a simple regression
situation in which the bi are being regressed against the ci. As a result, the quantity d plays
the role of a regression slope, and minimization of the residual sum of squares produces
the value

d =

k∑
i=1

bici

k∑
i=1

c2
i

(5.13)

Thus, the modified path begins at point O and proceeds using the direction vector b1 − dc1,
b2 − dc2,… , bk − dck.

It remains then to determine the point O, that is, the point that lies on the original path
but is also on the constrained plane. From Equation 5.2 we know that xj = 𝜌bj for j = 1,
2,… , k. But we also know that for point O, the constraint equation (Eq. 5.10) must hold.
As a result, the collision between the original path of steepest ascent and the constraint
plane must occur for 𝜌 = 𝜌0 satisfying

c0 + (c1b1 + c2b2 +⋯ + ckbk)𝜌0 = 0

Thus,

𝜌0 =
−c0

k∑
i=1

cibi

(5.14)



5.5 STEEPEST ASCENT SUBJECT TO A LINEAR CONSTRAINT 253

As a result, the modified path starts at xj,0 = 𝜌0bj (for j = 1, 2,… , k) and moves along the
modified path, being defined by

xj, m = x j, 0 + 𝜆(bj − dcj) ( j = 1, 2,… , k) (5.15)

where d is given by Equation 5.13 and 𝜆 is a proportionality constant. Note that the modified
path is like the standard path except it does not start at the origin and the regression
coefficient bj is replaced by bj − dcj in order to accommodate the constraint.

Linear constraints on design variables occur frequently in practice. In the chemical
and related fields, constraints are often imposed in situations in which the design variable
represents concentrations of components in a system. In a gasoline blending system there
will certainly be constraints imposed on the components in the system. General information
regarding designs for mixture problems will be presented in Chapters 12 and 13. In the
example that follows we illustrate steepest ascent in a situation where mixture factors are
involved and a linear constraint must be applied to modify the path of steepest ascent.

Example 5.5 The Fabric Strength Experiment Consider a situation in which the
breaking strength (in grams per square inch) of a certain type of fabric is a function of
the amount of three important components in a kilogram of raw material. We will call the
components 𝜉1, 𝜉2, and 𝜉3. The levels used in the experiment are as follows:

Amount in Grams

Material −1 +1

1 100 150
2 50 100
3 20 40

The remaining ingredients in the raw material are known to have no effect on fabric strength.
However, it is important that 𝜉1 and 𝜉2, the amounts of material 1 and 2 respectively, be
constrained by the following equation:

𝜉1 + 𝜉2 ≤ 500

The design-factor centering and scaling are given by

x1 =
𝜉1 − 125

25
, 𝜉1 = 25x1 + 125

x2 =
𝜉2 − 75

25
, 𝜉2 = 25x2 + 75

x3 =
𝜉3 − 30

10
, 𝜉3 = 10x3 + 30

As a result, the constraint reduces to

25x1 + 25x2 ≤ 300
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Suppose the fitted regression function is given by

ŷ = 150 + 1.7x1 + 0.8x2 + 0.5x3

Because it is desired to find the condition for increased fabric strength, the unconstrained
path of steepest ascent will proceed with increasing values of all three components. The
increments along the path are to correspond to changes in 𝜉1 of 25 g/in.2, or one design
unit. This corresponds to changes in x2 and x3 of 0.47 and 0.294 units, respectively.

Now, based on the above information, the standard path of steepest ascent can be
computed. But at what point does the path make contact with the constraint and with the
constraint plane? From Equation 5.14 we obtain

𝜌0 = 300
(25)(1.7) + (25)(0.8)

= 300
62.5

= 4.8

As a result, the modified path starts at

x j, 0 = 4.8bj ( j = 1, 2, 3)

which results in the coordinates (8.16, 3.84, 2.4) in design units. As a result, the coordinates
of the modified path are given by Equation 5.15; that is,

x j, m = 4.8bj + 𝜆(bj − dcj) ( j = 1, 2, 3)

where

d = (25)(1.7) + (25)(0.8)
1250

= 0.05

As a result, the modified path is given by

x1, m = 8.16 + 𝜆(0.45)

x2, m = 3.84 + 𝜆(−0.45)

x3, m = 2.4 + 𝜆(0.5)

Thus, Table 5.7 shows a set of coordinates on the path of steepest ascent, followed by points
along the modified path. For the modified path we are using 𝜆 = 1.0 for convenience. Note
that all points on the modified path satisfy the constraint.

5.6 STEEPEST ASCENT IN A SPLIT-PLOT EXPERIMENT

In previous sections we have discussed how the method of steepest ascent operates when
the experiment used to fit the first-order model is a completely randomized design (CRD).
Sometimes in the steepest ascent environment we will encounter easy-to-change and hard-
to-change factors. That is, the experimental situation in which the first-order model is fit
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TABLE 5.7 A Constrained Path of Steepest Ascent

x1 x2 x3

Base 0 0 0
Δ 1 0.47 0.294

Base + Δ 1 0.47 0.294
Base + 2Δ 2 0.94 0.598
⋮ ⋮ ⋮ ⋮
Base + 5Δ 5 2.35 1.470

Point O 8.16 3.84 2.4
8.61 3.39 2.9
9.06 2.94 3.4
9.51 2.49 3.9
⋮ ⋮ ⋮

is a split-plot. The split-plot nature of the experimental situation can necessitate some
modification of the steepest ascent procedure. This problem is discussed in detail by
Kowalski, Borror, and Montgomery (2005). Here we describe their recommendations.

We will let the hard-to-change factors be the whole-plot variables, denoted by zi, i= 1,
2,… , k1 and the easy-to-change factors as the subplot variables, denoted by xj, j = 1, 2,… ,
k2. The fitted first-order model is

ŷ = b0 +
k1∑

i=1

aizi +
k2∑
j=1

bjxj

This model is used to calculate the path of steepest ascent.
Because split-plot experiments contain two types of factors, we let Δi represent the step

size in the whole-plot factors and Δj to represent the step size in the subplot factors. There
are several reasons for the choice of two distinct Δs:

1. It is consistent with the way the experiment was carried out; that is, in a split-plot,
which separates the two types of factors.

2. The hard-to-change factors have a different standard error than the easy-to-change
factors; therefore, selecting the largest regression coefficient across all factors to
define a single step size could be misleading.

3. By their very nature, some factors are hard to change, and so choosing the step size
for the path based on the regression coefficient of an easy-to-change factor may lead
to a level that is either very difficult or not possible for one of the hard-to-change
factors.

For example, it may be easier to change temperature in steps of, say, 10◦F than to have
an easy-to-change factor dictate that temperature be changed in steps of, say, 6.42◦F. On
the other hand, having a hard-to-change factor dictate the step size in the easy-to-change
factors may require the steps to be larger than desired and may force the path to the
boundary of the region. Although the experimenter can choose to have a common step
size (Δi = Δj = Δ), we encourage the use of two separate Δs for the reasons mentioned
above.
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Let r1 represent the radius for the whole-plot factors,
∑k1

i=1 z2
i = r2

1, and let r2 represent

the radius for the subplot factors,
∑k2

j=1 x 2
j = r 2

2 . Then there are two equations involving
Lagrange multipliers:

L1 = b0 +
k1∑

i=1

aizi + 𝜆1

( k1∑
i=1

z2
i − r2

1

)

and

L 2 = b0 +
k2∑

i=1

bizi + 𝜆2

( k2∑
j=1

x2
j − r2

2

)

where 𝜆1 and 𝜆2 are the Lagrange multipliers. Because we are assuming a first-order model
with no interactions between the whole-plot and subplot factors, these two equations can
be solved separately. Therefore, taking partial derivatives of L1 with respect to each of the
zi and 𝜆1 will result in the equations

𝜕L1

𝜕zi
= ai − 2𝜆1zi = 0

and

𝜕L1

𝜕𝜆1
= −

k1∑
i=1

z2
i + r2

1 = 0

Likewise, similar equations will result from taking the partial derivatives of L2 with respect
to each xj and 𝜆2. Hence, the solutions will be z∗i = ai∕2𝜆1 and x∗j = bj∕2𝜆2. Therefore,
two variables, z∗i , and x∗j , and their amount of change must be chosen to determine the path.
There will be two centers or base points; one for the whole-plot factors (Base1) and one for
the subplot factors (Base2). Each base point will be (0, 0,… , 0) in the coded variables.

Figure 5.8 The printing press for Example 5.6.
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TABLE 5.8 Printing Press Factor Levels in the Natural Units

z1 z2 x1 x2 x3

Low 10 4 20 5 2
High 20 8 40 15 6

Example 5.6 Image Quality Kowalski et al. (2005) describe an experiment to study the
image quality of a printing process. There are five important factors: A = blanket type (in
units of thickness), B = paper type (in units of thickness), C = cylinder gap, D = ink flow,
and E = press speed. Figure 5.8 is a diagram of this part of the printing press. Changing
the cylinder gap, ink flow, and press speed is a very simple procedure simply consisting of
making an adjustment on a control panel while the printing press is still running. Therefore,
these are the easy-to-change factors in the experiment. Changing the blanket type and paper
type, on the other hand, requires the press to be stopped and a manual replacement of the
blanket and/or paper type. Thus, these two factors are hard-to-change factors. A completely
randomized full factorial design would run the 32 treatment combinations in random order,
requiring frequent stopping of the press so that the blanket type and/or paper type could
be changed. Instead, a split-plot design is used with two whole plot variables, z1 and z2
(A and B), and three subplot variables, x1, x2, and x3 (C, D, and E). The levels of these
factors in the natural units are provided in Table 5.8. Let

ŷ = 60 + 4.2z1 + 6.8z2 + 1.4x1 − 3.6x2 + 2.2x3 (5.16)

be the fitted first-order model. Suppose a change of two natural units in z2 (the whole-plot
variable with the largest effect), equivalent to one coded unit, is chosen for determining the
path in the whole-plot variables. Then 𝜆1 = 6.8/2(1) = 3.4, and the corresponding change in
z1 is 4.2/2(3.4) = 0.618. Now suppose that a change of five natural units in x2 (the subplot
variable with the greatest effect), equivalent to one coded unit, is chosen for determining
the path in the subplot variables. Then 𝜆2 = −3.6/2(1) = −1.8 and the change in xj is
bj/2(|𝜆2|). So the change in x3 is 2.2/2(1.8) = 0.611 and the change in x1 is 1.4/2(1.8) =
0.389. Table 5.9 shows the steps for the path of steepest ascent in the coded units.

When the experiment is completely randomized, runs are typically carried out one at a
time on the path of steepest ascent. This is not realistic in the split-plot setting. When setting
up the order of the split-plot runs, careful consideration has to be given to the restricted
randomization. After a setting in the whole-plot factors is determined, several subplots
should be run. One must decide how to run the various whole-plot settings as well as which
subplot settings will go in each whole plot. Kowalski et al. (2005) propose three methods
for carrying out the method of steepest ascent in a split-plot experiment. We will use the

TABLE 5.9 Steps in the Coded Variables Along the Path of Steepest Ascent for the Printing
Press Example

z1 z2 x1 x2 x3

Base1 0 0 Base2 0 0 0
Δi 0.618 1.0 Δj 0.389 −1.0 0.611

Base1 + Δi 0.618 1.0 Base2 + Δj 0.389 −1.0 0.611
Base1 + 2Δi 1.236 2.0 Base2 + 2Δj 0.778 −2.0 1.222
Base1 + 3Δi 1.854 3.0 Base2 + 3Δj 1.167 −3.0 1.833
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TABLE 5.10 First Whole-Plot Run with Setting Base1+𝚫i, Using Method 1

Subplot Runs x1 x2 x3 Response

Base2 + Δj 0.389 −1 0.611 69
Base2 + 2Δj 0.778 −2 1.222 73
Base2 + 3Δj 1.167 −3 1.833 75
Base2 + 4Δj 1.556 −4 2.444 73
Base2 + 5Δj 1.945 −5 3.055 70
Base2 + 6Δj 2.334 −6 3.666 66

model in Equation 5.16 to illustrate the methods. Also, throughout this discussion, we will
use m = 1 for the first step along the whole plot and subplot paths. Typically, there are only
4–6 steps along the path before rate of improvement for the response starts to drop off.

Method 1 This method fixes a whole plot setting and carries out the subplot path. Then,
using the result from the subplot path it carries out the whole plot path with fixed subplot
settings. Using m = 1, the first whole-plot setting is Base1 + Δi. Within this setting of the
whole-plot factors, many subplots can be used for the subplot path. For example, say we
use six subplots: Base2 + Δj, Base2 + 2Δj,… , Base2 + 6Δj run in random order. This
determines, the subplot setting with the highest response. Now steps are made along the
path in the whole-plot factors. The whole-plot path starts with Base1 + Δi and Base1 +
2Δi. In each of these whole-plot settings, some replicates, say four, of the highest response
setting in the subplot factors from the previous subplot path are run. The average of these
four subplot runs serve as the response value for the whole-plot path. Continue running new
whole-plot setting along the path until the average response values drop off. This factor
setting along the whole-plot path and the previously determined subplot settings from the
subplot path could be used as the center for any follow-up experimentation.

Consider the model fit in Equation 5.16. Then, as an example of Method 1, first the runs
in Table 5.10 are carried out in random order. The subplot path gives the setting Base2 +
3Δj because it has the highest response (75). Next, more whole-plot settings are used, all
with the same subplot setting Base2 + 3Δj. The average response of the subplots will be the
whole-plot response. From Table 5.11, the whole-plot response drops off after Base1 + 2Δi.
Thus, this example produces the setting of Base1 + 2Δi in the whole-plot variables and the
setting of Base2 + 3Δj in the subplot variables as the center of the follow-up experiment.
The design point in coded units for this setting is z1 = 1.236, z2 = 2.0, x1 = 1.167, x2 = −3,
and x3 = 1.833.

TABLE 5.11 New Whole-Plot Runs Using Subplot Setting Base2 + 3𝚫j, Using Method 1

Whole Plot Settings

Base1+Δi Base1+2Δi Base1+3Δi

Subplot Setting Response Response Response

Base2 + 3Δj 76 79 74
Base2 + 3Δj 75 77 75
Base2 + 3Δj 76 77 74
Base2 + 3Δj 75 76 73

Average 75.5 77.25 74.0
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TABLE 5.12 Whole-Plot Runs with setting Base2 + 𝚫j, Using Method 2

Whole-Plot Settings

Subplot Setting Base1 + Δi Base1 + 2Δi Base1 + 3Δi

Base2 + Δj 70 73 71
Base2 + Δj 72 75 73
Base2 + Δj 69 72 70
Base2 + Δj 69 72 70
Average 70.0 73.0 71.0

The number of steps required in this particular example, using the split-plot Method 1
approach, was five. It is important to keep in mind the split-plot nature in determining the
steps to termination of the path. In this example, even though 18 runs were carried out,
the path terminates after only two steps in the whole-plot variables and three steps in the
subplot variables.

Method 2 Method 2 essentially reverses the roles of whole and subplots from Method 1.
Instead of determining the ideal subplot setting first and then finding the whole-plot setting,
method two finds the whole-plot setting first and then determines the subplot setting.
Therefore, one would start by running two whole-plot settings, Base1 + Δi and Base1 +
2Δi, with each containing, say, four replicates of Base2 + Δj. Using the average of the
subplot runs as the response, continue running whole-plot settings along the whole-plot
path until the average response drops off. This will determine the whole-plot setting. Then,
in this whole-plot setting, say, six subplots can be run: Base2 +Δj, Base2 + 2Δj,… , Base2
+ 6Δj. These can be used to determine where the subplot responses drop off. The setting
from this subplot path and the previously determined whole-plot setting from the whole-plot
path could serve as the center for any follow-up experimentation.

Using Equation 5.16 to provide an example of Method 2, the runs in Table 5.12 are
carried out, resulting in Base1 + 2Δi as the choice for the whole-plot variables. Next,
subplot settings are run in random order, all with the same whole-plot setting Base1 + 2Δi
from the whole plot path. From Table 5.13, the subplot response drops off after Base2 +
3Δj, so Base1 + 2Δi in the whole-plot variables and Base2 + 3Δj in the subplot variables
can be used as the center for any follow-up experimentation. The design point for this
setting would be z1 = 1.236, z2 = 2.0, x1 = 1.167, x2 = −3, and x3 = 1.833. In this example,
the same termination point is achieved from Methods 1 and 2, although this will not always
be the case.

TABLE 5.13 Subplot Settings at the Best Whole-Plot Setting, Basel + 2𝚫i, Using Method 2

Subplot Runs x1 x2 x3 Response

Base2 + Δj 0.389 −1 0.611 73
Base2 + 2Δj 0.778 −2 1.222 76
Base2 + 3Δj 1.167 −3 1.833 78
Base2 + 4Δj 1.556 −4 2.444 75
Base2 + 5Δj 1.945 −5 3.055 73
Base2 + 6Δj 2.334 −6 3.666 69
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Figure 5.9 Trajectory using Method 1.

It should be noted that both Methods 1 and 2 rely heavily on the assumption of no
interaction between whole-plot and subplot factors. However, when the method of steepest
ascent is applied in the usual completely randomized RSM experiments, a strict first-order
model is assumed to be adequate. Therefore, the assumption of no interaction between
whole-plot and subplot factors is not an additional assumption, and is consistent with
typical RSM situations.

Choosing Between Methods 1 and 2 There is no simple way to choose between Methods 1
and 2 in an optimum fashion, where, by optimum, we mean choosing the method that
would result in the most rapid movement to the region of the maximum. The optimum
choice depends on the starting point in the true response surface and the shape of this
surface. These are, of course, unknown to the experimenter. Kowalski et al. (2005) report
examining many types of surfaces and used different starting points to study this question
empirically. They report that applying Methods 1 and 2 to these surfaces resulted in very
little difference in terms of the total number of runs needed. Figures 5.9 and 5.10 illustrate
the two methods on one such surface for one starting point (the bold symbols indicate
steps along the whole plot path and the + symbol indicates steps along the subplot path).
Figure 5.9 uses Method 1, while Fig. 5.10 illustrates Method 2. Both methods require two
steps along the whole plot path and 4–5 steps along the subplot path. From a practical point
of view, if the largest standardized regression coefficient (coefficient/standard error of the
coefficient) belongs to a hard-to-change factor, Method 2 seems like an obvious choice. This
would allow the experimenter to make great leaps in the hard-to-change factors toward the
optimum and then minor refinements in the easy-to-change factors. On the other hand, if the
largest standardized regression coefficient belongs to an easy-to-change factor, Method 1
seems like a better choice because movement in the easy-to-change factors should provide
the quicker ascent.
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Figure 5.10 Trajectory using Method 2.

It is possible to combine or switch between the two methods. Suppose while using
Method 1 there is very little change in the response as the steps along the path in the easy-
to-change factors are carried out. This may lead the experimenter to switch to Method 2
and implement steps along the path in the hard-to-change factors to move more quickly to
an optimum point.

Method 3 In this method, we propose running a certain number of whole plots, each with
the same number of subplots. This can be thought of as one experiment that carries out
both paths at the same time. This approach is preferred if the time to obtain responses is
lengthy and collecting data in batches is more time- or cost-effective. Suppose it is practical
to run four whole plots, each with six subplots. The whole-plot settings of Base1 + Δi,
Base1 + 2Δi, Base1 + 3Δi, and Base1 + 4Δi should be randomized. In each of these
settings, the subplot settings of Base2 + Δj, Base2 + 2Δj,… , Base2 + 6Δj should be
separately randomized for each whole-plot setting. We assume there is no whole-plot by
subplot interaction, which is consistent with RSM applications and the model in Equation
5.16. There are two ways to determine the response setting that will serve as the center of
a follow-up experiment. One approach is to first find the average of the subplot settings
for each whole-plot setting. These can be compared to determine the maximum. Next, the
average of the same subplot settings across the whole plots can be calculated to determine
the maximum in the subplot settings. Combining these two gives an appropriate point.
Another approach is to simply take the highest response from the 24 runs and make this
the new center for a follow-up experiment.

Using Equation 5.16 as an example, suppose an experiment with four whole plots and
six subplots is chosen, with the resulting runs displayed in Table 5.14. In this example,
the highest response occurs at (Base1 + 2Δi, Base2 + 3Δj). Also, the highest average
subplot setting is Base2 + 3Δj, and the highest average whole-plot setting is Base1 + 2Δi.
The design point at this setting would be z1 = 1.236, z2 = 2.0, x1 = 1.167, x2 = −3, and
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TABLE 5.14 Experimental Runs for Method 3 (Bold Numbers Indicate Highest Responses)

Subplots Base1 + Δi Base1 + 2Δi Base1 + 3Δi Base1 + 4Δi Average

Base2 + Δj 70 72 72 60 70.25
Base2 + 2Δj 74 75 73 71 73.25
Base2 + 3Δj 74 79 76 75 76.00
Base2 + 4Δj 73 75 75 71 73.50
Base2 + 5Δj 70 74 73 70 71.75
Base2 + 6Δj 67 70 70 67 68.50

Average 71.33 74.16 73.16 70.50

x3 = 1.833. This agreement between the highest overall setting and the highest average
settings may not occur in all situations. The advantage of Method 3 compared with Methods
1 and 2 is that all the data for the experiment are collected together. This can be important in
some industrial settings. For example, in semiconductor manufacturing, multiple runs may
be performed on a single-wafer tool during one time period. These runs involve changing
both hard-to-change and easy-to-change factors on the tool. The wafers are then sent to a
lab for processing, and it may take up to a week to get the response values back. Therefore,
it is important to collect all of the data at one time, and it would be impractical to attempt
to collect the measurements sequentially, as is required with Methods 1 and 2.

One possible disadvantage of Method 3 is that the response may not drop off after, say,
four steps in the hard-to-change factors and/or six steps in the easy-to-change factors. When
using any of these methods, it is useful to have a rule for deciding when to stop conducting
experiments along the path. The rule of thumb that we have suggested previously is to
continue experimenting along the path of steepest ascent until two consecutive runs have
resulted in a decrease in the response.

EXERCISES

5.1 Given the fitted response function

ŷ = 72.0 + 3.6x1 − 2.5x2

which is found to fit well in a localized region of (x1, x2).

(a) Plot contours of constant response, y, in the (x1, x2) plane.

(b) Calculate and plot the path of steepest ascent generated from this response
function. Use x1 to determine the path, with Δx1 = 1.

5.2 Suppose a fitted first-order model is given by

y = 25 + 4x1 + 3x2 − 2.5x3

Suppose that we wish to maximize the response. Calculate several points along the
path of steepest ascent.

5.3 Reconsider the model in Exercise 5.1. Construct a path of steepest ascent, using x2
to define the path, with Δx2 = 1.



EXERCISES 263

TABLE E5.1 Data for Exercise 5.5

Weight % of Phosphorus Compound

Treatment Combination Replication 1 Replication 2 Total

(1) 30.3 28.6 58.9
a 28.5 31.4 59.9
b 24.5 25.6 50.1
ab 25.9 27.2 53.1
c 24.8 23.4 48.2
ac 26.9 23.8 50.7
bc 24.8 27.8 52.6
abc 22.2 24.9 47.1
d 31.7 33.5 65.2
ad 24.6 26.2 50.8
bd 27.6 30.6 58.2
abd 26.3 27.8 54.1
cd 29.9 27.7 57.6
acd 26.8 24.2 51.0
bcd 26.4 24.9 51.3
abcd 26.9 29.3 56.2

Total 428.1 436.9 865.0

(a) Plot this path as the same graph that you constructed in Example 5.1.

(b) How different are the two paths that you have constructed?

5.4 Consider the injection molding experiment in Example 5.2.

(a) Use the coded design units to determine how far the point Base + 4Δ is from
the design center.

(b) Suppose that we had selected x2 to express the points on the path of steepest
descent with Δx2 = 1. Recompute the points in Table E5.4. Use the point Base
+ 4Δ, and compute the distance of this point from the design center.

(c) How different are the two points you have computed?

5.5 In a metallurgy experiment it is desired to test the effect of four factors and their
interactions on the concentration (percent by weight) of a particular phosphorus
compound in costing material. The variables are: A, percent phosphorus in the
refinement; B, percent remelted material; C, fluxing time, and D, holding time. The
four factors are varied in a 24 factorial experiment with two castings taken at each
factor combination. The 32 castings were made in random order, and the data are
shown in Table E5.1.

(a) Build a first-order response function.

(b) Construct a table of the path of steepest ascent in the coded design variables.

(c) It is important to constrain the percentage of phosphorus and the percentage of
remelted material. In fact, in the metric of the coded variables we obtain

x1 + x2 = 2.7
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where x1 is percent phosphorus and x2 is percent remelted material. Recalculate
the path of steepest ascent subject to the above constraint.

5.6 Consider the 22 factorial design featured in the illustration in Figure 3.1 in Chap-
ter 3. Factor A is the concentration of a reactant, factor B is the feed rate, and
the response is the viscosity of the output material. As one can tell by the com-
puted effects and the analysis of variance shown, the main effects dominate in the
Analysis.

(a) Fit a first-order model.

(b) Compute and plot the path of steepest ascent.

(c) Suppose that in the metric of the coded variables, the concentration cannot
exceed 3.5 and the feed rate cannot go below −2.7. Show the practical path of
steepest ascent—that is, the path that takes account of these constraints.

5.7 It is stated in the text that the development of the path of steepest ascent makes use of
the assumption that the model is truly first-order in nature. However, even if there is
a modest amount of curvature or interaction in the system, the use of steepest ascent
can be extremely useful in determining a future experimental region. Suppose that
in a system involving x1 and x2 the actual model is given by

E(y) = 14 + 5x1 − 10x2 + 3x1x2

Assume that x1 and x2 are in coded form.

(a) Show a plot of the path of steepest ascent (based on actual parameters) if the
interaction is ignored.

(b) Show a plot of the path of steepest ascent for the model with interaction. Note
that this path is not linear.

(c) Comment on the difference in the two paths.

5.8 If the first-order model regression coefficients are scaled to a unit vector (
∑k

j=1 b2
j =

1, then any point on the path of steepest ascent is just a multiple of that unit vector.
Use this to answer the following questions regarding the model in Exercise 5.1.

(a) Is the point x1 = 1.23 and x2 = −3.75 on the path of steepest ascent?

(b) Is the point x1 = 1.75 and x2 = −4.0 on the path of steepest ascent?

(c) Is the point x1 = 1.44 and x2 = −1.0 on the path of steepest ascent?

(d) Is the point x1 = 2.0 and x2 = −1.5 on the path of steepest ascent?

5.9 Consider Example 3.3 in Chapter 3.

(a) Using a first-order regression model plot the path of steepest ascent.

(b) Indicate expected responses in a table for various points on the path.

(c) The test for curvature indicated that no quadratic terms are significant. Sup-
pose that, instead of having center runs, four additional runs were placed on
the factorial points (one at each point). Will the steepest ascent be improved?
Explain.

(d) Refer to part (c) above. Give an argument for improvement that takes the confi-
dence region on the path of steepest ascent into account.
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TABLE E5.2 Data for Exercise 5.12

Natural Variables Coded Variables

𝜉1 𝜉2 x1 x2 Response

80 40 −1 −1 15
100 40 1 −1 32
80 60 −1 1 25
100 60 1 1 40
90 50 0 0 33
90 50 0 0 27
90 50 0 0 30

5.10 Consider Example 3.5 in Chapter 3. There are two design variables and four blocks.
The experiment involves complete blocks, and it is assumed that there is no interac-
tion between blocks and the design variables.

(a) Write the linear regression model for this experiment. Assume blocks are a part
of the model. Assume no interaction between the design variables.

(b) Show that the path of steepest ascent is the same whether or not blocking is
involved in the experiment.

(c) Suppose the block effects are extremely important. Explain how blocking will
improve the precision of the path of steepest ascent.

5.11 Consider the fractional factorial experiment illustrated in Exercise 4.9.

(a) From the analysis, write out a first-order regression model. All factors are
quantitative. Assume that the levels are centered and scaled to ±1 levels.

(b) Construct a table giving the path of steepest ascent for achieving maximum
yield.

(c) Suppose, for example, that the CE interaction is extremely important but the
analyst does not realize it. How does this effect the computed path in part (b)?
Give a qualitative explanation.

5.12 Consider the data in Table E5.2. Apply the method of steepest ascent and create an
appropriate path.

5.13 Suppose the model you fitted in Exercise 5.12 was the following:

ŷ = 28 + 8x1 − 4.5x2

(Note that this is not necessarily the model you actually found when you worked this
problem. It’s just one that we will use in this question, under the assumption that it
is the correct model.)

(a) Which variable would you use to define the step size along the path of steepest
ascent in this model, and why?

(b) Using the variable you selected in part (a), choose a step size that is large enough
to take you to the boundary of the experimental region in that particular direction.
Find and show the coordinates of this point on the path of steepest ascent in the
coded variables x1 and x2.
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TABLE E5.3 Data for Exercise 5.14

Natural Variables Coded Variables

𝜉1 𝜉2 𝜉3 x1 x2 x3

Response
y

40 10 80 −1 −1 −1 20
60 10 80 1 −1 −1 29
40 30 80 −1 1 −1 18
60 30 80 1 1 −1 32
40 10 120 −1 −1 1 29
60 10 120 1 −1 1 28
40 30 120 −1 1 1 17
60 30 120 1 1 1 25

(c) Find and show the coordinates of the point from part (c) in terms of the natural
variables.

(d) Are the points 𝜉1 = 107.4 and 𝜉2 = 59.8 on the path of steepest ascent?

5.14 Consider the data in Table E5.3, which were observed during an experiment con-
ducted to apply the method of steepest ascent (or descent) to a process.

(a) Fit a first-order model (without interaction) to these data. Show the model in
terms of the coded variables.

(b) Which variables would you retain in your model as being important? Justify
your answer.

5.15 This problem refers to the design used in Exercise 5.14. Assume that the experimenter
also included the center runs shown in Table E5.4 in his/her design.

(a) Find an estimate of 𝜎, the standard deviation of the process.

(b) Use the new observations to test for lack of fit of the first-order model. Specifi-
cally, does there seem to be an indication of curvature (either interaction or pure
second-order effects) present?

5.16 Suppose that you have fit the following model

ŷ = 20 + 10x1 − 4x2 + 12x3

(a) The experimenter decides to choose x1 as the variable to define the step size for
steepest ascent. Do you think that this is a good choice for defining step size?
Explain why or why not.

TABLE E5.4 Center Runs for the Experiment in Table E5.3

Natural Variables Coded Variables

𝜉1 𝜉2 𝜉3 x1 x2 x3

Response
y

50 20 100 0 0 0 32
50 20 100 0 0 0 36
50 20 100 0 0 0 39
50 20 100 0 0 0 33
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(b) The experimenter decides to make the step size exactly one coded unit in the x1
direction. Find the coordinates of this point from the design center on the path
of steepest ascent.

(c) Suppose that you had used x3 as the variable to define the direction of steepest
ascent. Assuming a step size of one coded unit, find the coordinates of the first
step in this direction away from the design center.

(d) Find the distance between the two points found in parts (b) and (c), respectively.

5.17 Suppose that you have fit the following response surface model in terms of coded
design variables:

ŷ = 100 + 10x1 + 15x2 − 4x3

The design used to fit this model was a 23 factorial.

(a) The experimenter is going to use the method of steepest ascent. He/she decides to
make the step size exactly one coded unit in the x2 direction. Find the coordinates
of this point from the design center on the path of steepest ascent in terms of the
coded variables.

(b) Suppose that the experimenter had chosen x3 as the variable to define the step
size for steepest ascent. Do you think that this is a good choice for defining step
size? Explain why or why not.

(c) Suppose that the levels of the natural variables 𝜉1, 𝜉2, and 𝜉3 used in the 23 design
were (100, 200), (10, 20), and (50, 80), respectively. What are the coordinates
of the point on the path of steepest ascent from part (a) in terms of the natural
variables?

(d) Find the coordinates of the unit vector defining the path of steepest ascent.

(e) Suppose that the experimenters want to run the process at the point (in the natural
variables) 𝜉1 = 204, 𝜉2 = 23.1, and 𝜉3 = 71.6. Assuming that the base point is
the design center, is this point on the path of steepest ascent?

5.18 Suppose that you have fit the following response surface model in terms of coded
design variables:

ŷ = 250 + 20x1 + 25x2 − 8x3

The design used to fit this model was a 23 factorial.

(a) The experimenter is using the method of steepest ascent. He/she decides to make
the step size exactly one coded unit in the x1 direction. Find the coordinates of
this point from the design center on the path of steepest ascent in terms of coded
design variables.

(b) Suppose that the experimenter had chosen x2 as the variable to define the step
size for steepest ascent. Once again, the length of the step is one coded unit. Do
you think that this is a better choice for defining step size than was used in part
(a)? Explain why or why not.

(c) Suppose that the levels of the natural variables 𝜉1, 𝜉2, and 𝜉3 used in the 23 design
were (100, 150), (10, 20), and (60, 80), respectively. What are the coordinates
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of the point on the path of steepest ascent from part (b) in terms of the natural
variables?

(d) Find the distance separating the two points that you found in parts (a) and (b).

5.19 Suppose that you have fit the following response surface model in terms of coded
design variables:

ŷ = 200 + 25x1 + 30x2 − 12x3

The design used to fit this model was a 23 factorial.

(a) The experimenter is using the method of steepest ascent. He/she decides to make
the step size exactly one coded unit in the x1 direction. Find the coordinates of
this point from the design center on the path of steepest ascent in terms of coded
design variables.

(b) Suppose that the experimenter had chosen x2 as the variable to define the step
size for steepest ascent. Once again, the length of the step is one coded unit. Do
you think that this is a better choice for defining step size than was used in part
(a)? Explain why or why not.

(c) Suppose that the levels of the natural variables 𝜉1, 𝜉2, and 𝜉3 used in the 23 design
were (100, 200), (10, 12), and (60, 100), respectively. What are the coordinates
of the point on the path of steepest ascent from part (b) in terms of the natural
variables?

(d) Find the distance separating the two points that you found in parts (a) and (b).

5.20 Consider Example 5.2 in the textbook. In this example, the variable with the second-
largest coefficient (in absolute value) was used to define the path of steepest ascent.
Rework this example using the factor with the largest absolute value regression
coefficient (x2).

(a) Construct a table similar to Table 5.4 in the textbook that shows the first four
steps taken along the path, assuming that the step size in coded units is Δx2 = 1.

(b) Find the distance separating the point that you have found after the fourth step
from part (a) above and the fourth step from Table 5.4 in the text. Use coded
units.

5.21 Consider the first-order model

ŷ = 100 + 5x1 + 8x2 − 3x3

This model was fit using a 23 design in the coded variables −1≤ xi ≤+1, i = 1, 2, 3.
The model fit was adequate. The region of exploration on the natural variables was

𝜉1 = temperature (100, 110◦C) 𝜉2 = time (1, 2 hr)

𝜉3 = pressure (50, 75 psi)

(a) Which variable would you choose to define the step size along the path of
steepest ascent, and why?



EXERCISES 269

(b) Using the variable in part (a), choose a step size large enough to take you to
the boundary of the experimental region in that particular direction. Find and
show the coordinates of this point on the path of steepest ascent in the coded
variables xi.

(c) Find and show the coordinates of this point on the path of steepest ascent from
part (b) using the natural variables.

(d) Find a unit vector that defines the path of steepest ascent.

(e) What step size multiplier for the unit vector in (d) above would give the same
point on the path of steepest ascent you found in parts (b) and (c)?

5.22 Consider the fitted first-order model

ŷ = 15.96 + 1.02x1 + 3.4x2 − 2.4x3

where xi is a coded variable such that −1≤ xi ≤ 1, and the natural variables are

Pressure(x1) 24–30 psig
Time(x2) 14–2 min
Amount of caustic(x3) 2–4 lb

If the step size in terms of the natural variable time is 1.5 min, find the coordinates
of a point on the path of steepest ascent.

5.23 Reconsider the model in Exercise 5.22. Are the following points on the path of
steepest ascent?

(a) x1 = 1.5, x2 = 3.9, x3 = −1.8.

(b) x2 = 3.0, x2 = 7.5, x3 = −1.0.

(c) Pressure = 22 psig, time = 1 min, amount of caustic = 2.2 pounds.

5.24 Consider the data of Exercise 5.12. Show graphically a confidence region for the
path of steepest ascent.

5.25 Reconsider the data of Exercise 5.12. Perform tests for interaction and curvature.
From these tests, do you feel comfortable doing the method of steepest ascent?
Explain why or why not.

5.26 Reconsider the situation described in Exercise 5.1. Suppose that the variance of
the regression coefficients is 0.5 and that there are four error degrees of freedom.
Find the 95% confidence region on the path of steepest ascent. What fraction of the
possible directions from the design origin are excluded by the path of steepest ascent
that you have computed?

5.27 Rework Exercise 5.26 assuming that the variance of the regression coefficients is
0.25 with four error degrees of freedom. Compare your new results with those
obtained previously. What impact does the improved precision of estimation have
on the results?

5.28 Consider the 25 design in Exercise 3.38. Fit a model using only the important main
effects. Find a path of steepest ascent for this model.
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5.29 Consider the soup experiment in Exercise 4.31. Fit a main effects model to the data
in Table E4.6 and determine an appropriate path of steepest ascent.

5.30 Consider the sand casting fractional factorial experiment in Exercise 4.32. The design
is shown in Table E4.7. Fit a main effects model in what seems to be the important
factors and determine an appropriate path of steepest ascent.

5.31 Suppose that you have conducted an experiment using a 23 factorial experiment and
fit the following model in the usual coded units:

ŷ = 100 + 25x1 − 14x2 + 20x3

The two factors x1 and x2 are continuous, but x3 is a two-level categorical factor.
How would you apply the method of steepest ascent in this situation?

Short Answer Questions

5.32 Any point on the path of steepest ascent is proportional to the unit vector of the
first-order regression coefficients. True False

5.33 Consider the first-order model ŷ = 150 + 20x1 + 12x2. If the experimenter used one
coded unit in the x1 direction as the step size, the point x1 = 1.5, x2 = 1.0 is a point
on the path of steepest ascent. True False

5.34 Consider the first-order model in Exercise 5.33. The design used to fit this model
was a 22 factorial with 3 center points. The variance of the predicted response at the
point x1 = 1.5, x2 = 1.0 is ____________.

5.35 A 23 design with 4 center points has been used to fit the first-order model ŷ = 175 +
25x1 + 10x2 − 8x3. The variance of the predicted response at any design point other
than the center point is ____________.

5.36 When conducting steepest ascent experiments, it may be a good idea to replicate
runs at some or all of the points along the path. True False

5.37 If a first-order model with interaction is used, the path of steepest ascent is a straight
line. True False

5.38 The coordinates of the points on the path of steepest ascent are proportional to the
effect estimates from the first-order model. True False

5.39 For a first-order model with three variables the variance of the predicted response
at the design center (in coded units) is 𝜎2, if an unreplicated 23 design is used to
collect the experimental data. True False

5.40 The method of steepest ascent is a gradient procedure. True False

5.41 Suppose that you have run a 23 design at the start of a steepest ascent experiment
and fit the following model:

ŷ = 15 − 9x2 + 12x3
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The experimenter has discarded x1 as unimportant and decides to choose x2 as the
variable to define the step size for steepest ascent. Do you think that this is a good
choice for defining step size? Briefly explain why or why not.

5.42 For the model in Exercise 5.41, the experimenter decides to make the step size
exactly one coded unit in the x2 direction. Find the coordinates of this point from
the design center on the path of steepest ascent in terms of the coded variables.

5.43 For the model in Exercise 5.41, find the variance of the predicted response at the
point on the path of steepest ascent computed in Exercise 5.41.

5.44 When using steepest ascent, the usual model that is employed is

(a) First order

(b) First order + interaction

(c) Reduced quadratic

(d) Full quadratic

5.45 A first-order model in four variables has been fit using a 24-1 fractional factorial
design (n = 8 runs). The variance of the predicted response at any corner of the
design is

(a) 5𝜎2

(b) 𝜎2∕2

(c) 5𝜎2∕8

(d) 𝜎2∕8

(e) None of the above

5.46 Orthogonal designs are widely used in steepest ascent experiments. They are
variance-optimal designs for

(a) The first-order model

(b) The second-order model

(c) Both first- and second-order models

(d) None of the above

5.47 Adding center points to a two-level design

(a) Provides an estimate of error

(b) Allows estimation of all second-order terms

(c) Reduces the variance of all model regression coefficients

(d) All of the above

(e) None of the above





6
THE ANALYSIS OF SECOND-ORDER
RESPONSE SURFACES

6.1 SECOND-ORDER RESPONSE SURFACE

In previous discussions we have noted the importance of matching the choice of designed
experiment to our expectation of what we believe the underlying relationship between
the factors and response to be. Recall that in many design situations we begin with an
assumed model form that is thought to be adequate to describe the shape of the underlying
relationship, but may wish to dedicate some runs of the design to evaluating this assumption.

To this point we have confined ourselves to relationships that we believe are well
described by models that either are first-order in the design variables or contain first-order
plus interaction terms. In Chapters 3 and 4, attention was focused on two-level designs.
These designs are natural choices for fitting models containing first-order main effects
and low-order interactions. Indeed, the material in Chapter 5 dealing with steepest ascent
made use of first-order models only. Nevertheless, we have often mentioned the need for
considering and fitting second-order response surface models. For example, in Chapter 3
we discussed the use of multiple center runs as an augmentation of the standard two-level
design. Interest centered on the possible existence of curvature beyond what can be captured
by the interaction terms. Hence, the inclusion of the center runs allowed for assessment
of the adequacy of the model by providing a means to detect the existence of nonzero
pure quadratic terms b11x2

1, b22x2
2,… , bkkx2

k . Recall that the use of center runs to augment
a standard two-level design allows only a single degree of freedom for the simultaneous
estimation of (and thus testing of the existence of) these second-order coefficients. As a
result, efficient estimates of b11, b22,… , bkk separately require additional design points.

In Chapter 5, we indicated that in most attempts at product improvement through the
gradient technique, called steepest ascent, the investigator will encounter situations where
the lack of fit attributable to curvature from these pure second-order terms is found to be

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
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quite significant. In these cases it is likely that the model containing first-order terms and,
say, two-factor interaction terms b12, b13, …, bk-1,k is woefully inadequate. As a result, a
second-order response surface model, discussed in the next section, is a reasonable choice.
In addition, there a many situations when the experimenter may believe that the underlying
relationship is more complex than a simple first-order or first-order plus interactions model
can describe. These are also cases when the use of a second-order model is advisable.

6.2 SECOND-ORDER APPROXIMATING FUNCTION

In Chapter 1 the notion of approximating polynomial functions was discussed. In response
surface methodology (RSM) work it is assumed that the true functional relationship

y = f (x, 𝜽) + 𝜀 (6.1)

is, in fact, unknown. Here the variables xl, x2,… , xk are in centered and scaled design units.
The genesis of the first-order approximating model or the model that contains first-order
terms and low-order interaction terms is the Taylor series approximation of Equation 6.1.
Clearly, a Taylor series expansion of Equation 6.1 through second-order terms would result
in a model of the type

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 +⋯ + 𝛽kxk + 𝛽11x2
1 +⋯ + 𝛽kkx2

k + 𝛽12x1x2

+ 𝛽13x1x3 +⋯ + 𝛽k−1, kxk−1xk + 𝜀

= 𝛽0 +
k∑

i=1

𝛽ixi +
k∑

i=1

𝛽iix
2
i +

∑ k∑
i<j=2

𝛽ijxix j + 𝜀 (6.2)

The model of Equation 6.2 is the second-order response surface model. Note that it
contains all model terms through order two. The term 𝜀 is the usual random error component.
The assumptions on the random error are those discussed in Chapters 2, 3, and 4.

6.2.1 The Nature of the Second-Order Function and Second-Order Surface

The model of Equation 6.2 is an interesting and very flexible model to describe experimental
data in which there is curvature. We do not mean to imply here that all systems containing
curvature are well accommodated by this model. There are often times in which a model
nonlinear in the parameters is necessary. In some cases one may even require the use of
cubic terms (say x2

1x2, x3
1, and so on) to achieve an adequate fit. In other cases the curvature

may be quite easily handled through the use of transformation on the response itself; for
example, in the case where k = 2,

ln y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝜀

In other situations, transformation of the design variables may lead to a satisfactory approx-
imating function—for example,

y = 𝛽0 + 𝛽1 ln x1 + 𝛽2 ln x2 + 𝜀

At times transformation of both response and design variables may be needed.
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Figure 6.1 Second-order system displaying a maximum. (a) Contour plot. (b) Response surface.

The second-order model described in Equation 6.2 is quite useful and is easily accom-
modated via the use of a wide variety of experimental designs. Families of designs for
fitting the second-order model are discussed in Chapters 8 and 9. Note from Equation 6.2
that the model contains 1 + 2k + k(k − l)/2 parameters. As a result, the experimental design
used must contain at least 1 + 2k + k(k − 1)/2 distinct design points. In addition, of course,
the design must involve at least three levels of each design variable to estimate the pure
quadratic terms.

The geometric nature of the second-order function is displayed in Figs. 6.1, 6.2, and
6.3. This will become vital in Section 6.3 as we discuss the location of estimated optimum
conditions. Figures 6.1 and 6.2 show contours of constant response for a hypothetical
situation with k = 2 variables. In Fig. 6.1 the center of the system, or stationary point, is a
point of maximum response. In Fig. 6.2 the stationary point is a point of minimum response.
In both cases the response picture displays concentric ellipses. In Fig. 6.3, a hyperbolic

Figure 6.2 Second-order system displaying a minimum. (a) Contour plot. (b) Response surface.
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Figure 6.3 Second-order system displaying a saddle point. (a) Contour plot. (b) Response surface.

system of contours is displayed. Note that the center is neither a maximum nor a minimum
point. In this case, the stationary point is called a saddle point and the system of contours
is called a saddle or minimax system. The detection of the nature of the system and the
location of the stationary point are an important part of the second-order analysis. Modern
computer graphics blend nicely with this type of analysis. Three-dimensional graphics can
be very helpful to the data analyst in the determination and understanding of the nature of
a response surface.

6.2.2 Illustration of Second-Order Response Surfaces

The nature of the response surface system (maximum, minimum, or saddle point) depends
on the signs and magnitudes of the coefficients in the model of Equation 6.2. The second-
order coefficients (interaction and pure quadratic terms) play a vital role. One must keep
in mind that the coefficients used are estimates of the 𝛽’s of Equation 6.2. As a result, the
contours (or surfaces) represent contours of the estimated response. Thus, even the system
itself (saddle, maximum, or minimum points) is part of the estimation process and subject
to its inherent uncertainty. The stationary point and the general nature of the system arise
as a result of a fitted model, not the true structure. For example, if a confidence interval for
the estimated quadratic terms of the model contains zero, then the estimated nature of the
system could change between a maximum and saddle point system.

Consider the example in Fig. 6.1, for which the fitted second-order model is given by

ŷ = 100 + 5x1 + 10x2 − 8x2
1 − 12x2

2 − 12x1x12

An analysis of this response function would determine the location of the stationary point
and the nature of the response system. Because k = 2 in this case, some simple graphics
show both issues. Figure 6.1 shows the response surface with contours of constant ŷ plotted
against x1 and x2. It shows that the system produces a stationary point that has maximum
estimated response. The stationary point is the solution to

𝜕ŷ

𝜕x1
= 0 and

𝜕ŷ

𝜕x2
= 0
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This results in the system of linear equations

𝜕ŷ

𝜕x1
= 0 → 16x1 + 12x2 = 0

𝜕ŷ

𝜕x2
= 0 → 12x1 + 24x2 = 0

yielding the solution for the stationary point

x1 = 0, x2 = 5
12

which is the center of the ellipse shown in Fig. 6.1. The estimated response at the stationary
point is given by ŷ = 102.08.

In the following sections we discuss a general approach for determining the nature of
the response surface contours and the stationary point. Understanding how the estimated
equation connects to the nature of the system can be beneficial to interpreting results from
the analysis. Graphical summaries, including contour plotting, play an important role in
describing the estimated relationship between factors and response. However, there are
many times when the formal analysis to describe the nature of the response surface is
very helpful. This is particularly true when several (k > 2) design variables are involved.
Often the nature of the system is elucidated through a combination of analytical techniques
and graphical displays. In addition, it is often necessary for the scientist or engineer to
use constrained optimization to arrive at potential operating conditions that optimize the
response to match study goals. This is particularly true when the stationary point is a
saddle point, or when the point of maximum or minimum response resides well outside the
experimental region, or when several response variables must be simultaneously considered
and optimized. It turns out that the strategy that simultaneously results in process and quality
improvement is profoundly dependent on the nature of the response system.

6.3 A FORMAL ANALYTICAL APPROACH TO THE
SECOND-ORDER MODEL

Consider again the second-order response surface model of Equation 6.2, which we now
express with the fitted model in matrix notation as

ŷ = b0 + x′b + x′B̂x (6.3)

where b0, b, and B̂ are the estimates of the intercept, linear, and second-order coefficients,
respectively. In fact x′ = [xl, x2,… , xk], b′ = [b1, b2,… , bk], and B̂ is the k × k symmetric
matrix

B̂ =
⎡⎢⎢⎢⎣

b11 b12∕2 ⋯ b1k∕2
b22 ⋯ b2k∕2

⋱ ⋮
sym. bkk

⎤⎥⎥⎥⎦
(6.4)

Note that the term x′B̂x contributes the pure quadratics from the diagonals and the two-way
interactions from the sum of two off-diagonal elements 2( 1

2
bijxix j).
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6.3.1 Location of the Stationary Point

It is straightforward to give a general expression for the location of the stationary point, say
xs. One can differentiate ŷ in Equation 6.3 with respect to x and obtain

𝜕ŷ∕𝜕x = b + 2B̂x

Setting the derivative equal to 0, one can solve for the stationary point of the system:

xs = − 1
2
B̂−1b (6.5)

The predicted response at the stationary point is

ŷs = b0 + x′sb + x′sB̂xs

= b0 + x′sb + (− 1
2
b′B̂−1)B̂xs

= b0 +
1
2
x′sb

6.3.2 Nature of the Stationary Point (Canonical Analysis)

The nature of the stationary point is determined from the signs of the eigenvalues of
the matrix B̂. The relative magnitudes of these eigenvalues can be helpful in the overall
interpretation. For example, let the k × k matrix P be the matrix whose columns are the
normalized eigenvectors associated with the eigenvalues of B̂. We know that

P′B̂P = 𝚲 (6.6)

where Λ is a diagonal matrix containing the eigenvalues of B̂ as main diagonal elements.
Now if we translate the model of Equation 6.3 to a new center, namely the stationary point,
and rotate the axes corresponding to the principal axes of the contour system, we have

z = x − xs
w = P′z

(6.7)

The process is illustrated graphically in Fig. 6.4. The translation gives

ŷ = b0 + (z + xs)
′b + (z + xs)

′B̂(z + xs)

= [b0 + x′sb + x′sB̂xs] + z′b + z′B̂z + 2x′sB̂z

= ŷs + z′B̂z

because 2x′sB̂z = −z′b from Equation 6.5. The rotation gives

ŷ = ŷs + w′P′B̂Pw
= ŷs + w′𝚲w

(6.8)
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Figure 6.4 Canonical form of the second-order model.

The w-axes are the principal axes of the contour system. Equation 6.8 can be written

ŷ = ŷs +
k∑

i=1

𝜆iw
2
i (6.9)

where ŷs is the estimated response at the stationary point and 𝜆1, 𝜆2,… , 𝜆k are the eigen-
values of B̂. The variables w1, w2,… , wk are called canonical variables.

The translation and rotation described above leads to Equation 6.9. This equation nicely
describes the nature of the stationary point and the nature of the system around the stationary
point. The signs of the 𝜆’s determine the nature of xs, and the relative magnitude of the
eigenvalues help the user gain a better understanding of the response system:

1. If 𝜆1, 𝜆2,… , 𝜆k are all negative, the stationary point is a point of maximum response.

2. If 𝜆l, 𝜆2,… , 𝜆k are all positive, the stationary point is a point of minimum response.

3. If 𝜆1, 𝜆2,… , 𝜆k are mixed in sign, the stationary point is a saddle point.

This entire translation and rotation of axes described here is called a canonical analysis
of the response system. Obviously, if a saddle system occurs, the experimenter will often
be led to an alternative type of analysis. However, even if a maximum or minimum resides
at xs, the canonical analysis can be helpful. This is true even when one is dealing with a
relatively small number of design variables. For example, suppose k = 3 and one seeks a
large value for the response. Suppose also that xs is a point of maximum response (all three
eigenvalues are negative) but |𝜆1| ≅ 0 and |𝜆2| ≅ 0. The implication here is that there is
considerable flexibility in locating an acceptable set of operating conditions. In fact, there
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is essentially an entire plane rather than merely a point where the response is approximately
at its maximum value. In fact, it is simple to see that the conditions described by

w3 = 0

may in fact describe a rich set of conditions for nearly maximum response. Now, of course,
w3 = 0 describes the plane

w3 = p′
3

⎡⎢⎢⎣

x1 − x1, s
x2 − x2, s
x3 − x3, s

⎤⎥⎥⎦
= 0

where the vector p3 is the normalized eigenvector associated with the negative
eigenvalue 𝜆3.

Example 6.1 Canonical Analysis In Section 2.8 we presented a complete example of
fitting a second-order response surface model. The example involved a chemical process in
which temperature and concentration were studied, and the response variable was conver-
sion. We used a central composite design, originally shown in Table 2.8, but repeated for
convenience in Table 6.1. The fitted model is

ŷ = 79.75 + 10.18x1 + 4.22x2 − 8.50x2
1 − 5.25x2

2 − 7.75x1x2

and the contour plot for this model is in Fig. 6.5.

The Central Composite Design Before we embark on a discussion of the analysis, we
should make a few comments about the experimental design. Notice that there are five
levels in an experimental design that involves three components. They are: (i) a 22 factorial,
at levels ± 1 in runs 1–4; (ii) a one-factor-at-a-time array in runs 5–8; and (iii) four

TABLE 6.1 Central Composite Design for Chemical Process Example

A B

Observation Temperature (◦C) 𝜉1 Conc. (%) 𝜉2 x1 x2 y

1 200 15 −1 −1 43
2 250 15 1 −1 78
3 200 25 −1 1 69
4 250 25 1 1 73
5 189.65 20 −1.414 0 48
6 260.35 20 1.414 0 76
7 225 12.93 0 −1.414 65
8 225 27.07 0 1.414 74
9 225 20 0 0 76

10 225 20 0 0 79
11 225 20 0 0 83
12 225 20 0 0 81
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Figure 6.5 Contour plot of predicted conversion for Example 6.1.

center runs in runs 9–12. A graphical depiction of this design was given in Fig. 2.8. The

design essentially consists of eight equally spaced points on a circle of radius
√

2 and
four runs at the design center. The four design points of type (ii) are called axial points.
This terminology stems from the fact that the points lie on the x1 or the x2 axis. Note also
that in the axial portion of the design the factors are not varying simultaneously but rather
in a one-factor-at-a-time array. As a result, no information regarding the x1x2 interaction
is provided by this portion of the design. However, the axial portion allows for efficient
estimation of pure quadratic terms, that is, x2

1 and x2
2. In Chapter 8, we discuss the central

composite design and several other design families in a more thorough way.

Canonical Analysis We begin the canonical analysis by determining the location of the
stationary point. Note that

B̂ =
[
−8.50 −3.875
−3.875 −5.25

]
, b =

[
10.18
4.22

]

and from Equation 6.6

xs = − 1
2
B−1b

= − 1
2

[
−0.1773 0.1309

0.1309 −0.2871

] [
10.18
4.22

]

=
[

0.6263
−0.0604

]
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The predicted response at the stationary point (x1, x2) = (0.6263,−0.0604) is ŷs = 82.81.
In the natural units, the stationary point is

Temperature = 225 + 25x1,s = 225 + 25(0.6263) = 240.7◦C

Concentration = 20 + 5x2,s = 20 + 5(−0.0604) = 19.7%

This is in close agreement with the location of the optimum obtained by visual inspection
of Fig. 6.5.

The eigenvalues of the matrix B̂ are the solutions to the equation

|B − 𝜆I| = 0

or

|||||

[
−8.50 − 𝜆 −3.875
−3.875 −5.25 − 𝜆

]|||||
= 0

This reduces to the quadratic equation

𝜆2 + 13.75𝜆 + 29.61 = 0

The roots of this equation, 𝜆1 = −11.0769 and 𝜆2 = −2.6731, are the eigenvalues. Thus the
canonical form of the second-order model is

ŷ = ŷs + 𝜆1w2
1 + 𝜆2w2

2

= 82.81 − 11.0769w2
1 − 2.6731w2

2

Since both eigenvalues are negative, the stationary point is a maximum (as is obvious from
inspection of Fig. 6.5). Furthermore, since |𝜆1| > |𝜆2|, the response changes more quickly
as we move along the w1 canonical direction. The surface is somewhat elongated in the w2
canonical direction with greater distance between the contour lines.

6.3.3 Ridge Systems

Variations of the pure minimum, pure maximum, and saddle point surfaces are fairly com-
mon. In fact, we suggested such a situation at the conclusion of the previous section, where
there were k = 3 variables and two of the eigenvalues were approximately zero (|𝜆1| ≅ 0,
|𝜆2| ≅ 0). A very small (essentially zero) eigenvalue implies considerable elongation of the
response surface in that canonical direction, resulting in a ridge system.

Stationary Ridge Consider the situation shown in Fig. 6.6 for k = 2, where 𝜆1 < 0 and
𝜆2 < 0 with |𝜆1| ≅ 0. The canonical model for this surface is

ŷ = ŷs + 𝜆2w2
2.

The stationary point is in the region of the experimental design. This type of response
surface is a stationary ridge system. The stationary point is a maximum, and yet there is
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Figure 6.6 Stationary ridge system for k = 2. (a) Response surface. (b) Contour plot.

an approximate maximum on a line within the design region. That is, there is essentially a
line maximum. Consider locations in the design region where w2 = 0; the insensitivity of
the response to movement along the w1-axis results in little change in response as we move
away from the stationary point. The contours of constant response are concentric ellipses
that are greatly elongated along the w1-axis. Sizable changes in response are experienced
along the w2-axis.

Stationary ridge systems provide an interesting opportunity when optimizing the
response. For this example, if the experimenter wished to maximize the response, there
are now many input combinations that provide essentially the same result. Hence, which
combination of inputs to select to maximize the response can be chosen based on other
considerations. Perhaps some input combinations are less expensive at which to operate,
or perhaps, as we will discuss in Chapter 7, there are other responses to simultaneously
optimize.

Rising Ridge There are other ridge systems that signal certain changes in strategy by the
analyst. While the stationary ridge suggests flexibility in choice of operating conditions, the
rising (or falling) ridge suggests that moving outside the experimental region for additional
experimentation might warrant consideration. For example, consider a k = 2 situation in
which the stationary point is remote from the experimental region. Assume also that one
needs to maximize the response. Consider the case where 𝜆1 and 𝜆2 are both negative, but
𝜆1 is near zero. This condition is displayed in Fig. 6.7. The remoteness of the stationary
point from the experimental region might suggest here that a movement (experimentally)
along the w1-axis may well result in an increase in response values. Indeed the rising (or
falling) ridge often is a signal to the researcher that he or she has perhaps made a faulty
or premature selection of the experimental design region. This is not at all uncommon in
applications of RSM. In some cases it may be possible to change the operating conditions
to expand to consider factor combinations closer to the stationary point with desirable
characteristics.

The rising ridge is signaled by a stationary point that is remote from the design region.
In addition, one of the eigenvalues is near zero. The limiting condition for three variables is
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Figure 6.7 Rising ridge system for k = 2. (a) Response surface. (b) Contour plot.

displayed in the illustration in Fig. 6.8. Here the eigenvalues for w1, w2, and w3 are (−, −,
≅0). Experimentation along the w3-axis toward the stationary point is suggested if these
represent feasible operating conditions.

Consider the data in Table 6.2 from an experiment on a square region with two factors,
A and B, using a central composite design (22 factorial, four axial runs) with three center
runs. The output from Design-Expert is shown in Table 6.3 with the estimated predicted
response of

ŷ = 50.27 − 12.42 A + 8.28 B − 4.11 A2 − 9.11 B2 + 11.13 AB

Solving for the canonical form, we find that the response can be re-expressed as

ŷ = ŷs − 0.509w2
1 − 12.71w2

2

where xs = (−5.18, −2.71) and the w1 and w2 directions are shown in Fig. 6.9b.

Figure 6.8 Rising ridge conditions in k = 3 variables.
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TABLE 6.2 Design and Data for Rising Ridge System

Standard Order Observation # A B Response

1 1 −1 −1 52.3
2 8 1 −1 5.3
3 3 −1 1 46.7
4 7 1 1 44.2
5 9 −1 0 58.5
6 11 1 0 33.5
7 2 0 −1 32.8
8 6 0 1 49.2
9 10 0 0 49.3

10 4 0 0 50.2
11 5 0 0 51.6

In this case the maximum of the system is located well outside the experimental region,
and so it may be helpful to examine both the contour plot of the response for the region
where data were observed in Fig. 6.9a and extending the region to include the stationary
point in Fig. 6.9b. Note that for each unit moved in the w1 direction, a 0.509 unit change in
the response is observed, while moving a single unit in the w2 direction results in a 12.71
unit change.

Examples of ridge systems will be seen in illustrations in other portions of this book. In
Section 6.3.4 we discuss the role of contour plots in the practical analysis of the second-order
fitted surface.

TABLE 6.3 Design-Expert Output for Rising Ridge System

Sum of Mean
Source Squares DF Square F-Value Prob > F

ANOVA for Response Surface Quadratic Model
Model 2159.04 5 431.81 750.41 <0.0001
Residual 2.88 5 0.58

Lack of fit 0.20 3 0.068 0.051 0.9813
Pure Error 2.67 2 1.34

Cor Total 2161.92 10
Root MSE 0.76 R-Squared 0.9987
Dep Mean 43.06 Adj R-Squared 0.9873
C.V. 1.76 Pred R-Squared 0.9970
PRESS 6.45 Adeq Precision 95.237 Desire > 4

Coefficient Standard t for H0

Factor Estimate DF Error Coeff = 0 Prob > |t| VIF

Intercept 50.27 1 0.39
A-A −12.42 1 0.31 −40.09 <0.0001 1.00
B-B 8.28 1 0.31 26.75 <0.0001 1.00
A2 −4.11 1 0.48 −8.63 0.0003 1.08
B2 −9.11 1 0.48 −19.12 <0.0001 1.08
AB 11.13 1 0.38 29.33 <0.0001 1.00
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Figure 6.9 Contour plot of rising ridge system for k = 2 for data in Table 6.2. (a) Experimental
region. (b) Expanded region to include stationary point.

An Alternate Canonical Form The canonical form of the second-order model given in
Equation 6.8 is usually called the B-canonical form. It is very useful for determining the
nature of the fitted response surface, particularly in identifying saddle systems and ridges.
When the fitted surface is a rising ridge, it can be useful to use a slightly different canonical
form, namely

ŷ = a0 + u′a + u′𝚲u (6.10)

This is usually called the A-canonical form. It basically assumes that the axes have been
rotated exactly as in the B-form, but not first translated to the stationary point. In the
A-canonical form, the first-order coefficients are

a = P′b

The first-order terms are useful in determining the direction of movement along the rising
ridge towards the optimum.

6.3.4 Role of Contour Plots

Contour plots, or contour maps, provide one of the most revealing ways of illustrating and
interpreting the response surface system. The contour plots are merely two-dimensional (or
sometimes three-dimensional) graphs that show contours of constant response with the axis
system being a specific pair of the design variables, say xi and xj, while the other design
variables are held constant. Modern graphics allow interesting interpretations that can be
of benefit to the user. In fact, in almost all practical response surface situations, the analysis
should be followed with a display of contour plotting, as with Example 6.1. The plots are
particularly beneficial when the stationary point is not of practical significance (a saddle
point, or, say, a maximum point when one seeks a point of minimum response) or when
the stationary point is remote from the design region. Clearly, ridge systems can only be
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Figure 6.10 Prediction Profiler in JMP for Example 6.1 response surface.

interpreted when one can observe two-dimensional systems as a set of “snapshots” of the
design region. Of course, if there are a large number of design variables, contour plotting
is more difficult, since many factors need to be held constant. The method of ridge analysis
(Section 6.4) can often aid the user in an understanding of the system.

The prediction profiler in JMP is a dynamic alternative to contour plots. Figure 6.10
illustrates a single view of the slices of the response surface which can be explored using
this tool for Example 6.1. Here we have selected scaled temperature = 0 and scaled
concentration = 0, but by moving the vertical lines, any combination of temperature and
concentration can be examined.

Each plot shows the response surface line with its associated estimation uncertainty
conditioned on the other input factor being held constant.

One cautionary note regarding contour plots must be made at this point. The investigator
must bear in mind that the contours are only estimates, and if repeated data sets were
observed using the same design, the complexion of the response system may change
slightly or drastically. In other words, the contours are not generated by deterministic
equations. Every point on a contour has a standard error. The prediction profiler includes
uncertainty bounds on the surface which are helpful reminders that the response surface
line is an estimate. This will be illustrated in a more technical way in Section 6.5.

Example 6.2 Contour Plotting of Survival Data The following data are adapted from
an experiment designed to estimate optimum conditions for storing bovine semen to obtain
maximum survival. The variables under study are percent sodium citrate, percent glycerol,
and the equilibration time in hours. The response observed is percent survival of motile
spermatozoa. The data with the design levels in coded design units are shown in Table 6.4.

The design levels relate to the natural levels in the following way:

−2 −1 0 1 2

Sodium citrate 1.6 2.3 3.0 3.7 4.4
Glycerol 2.0 5.0 8.0 11.0 14.0
Equilibration time 4.0 10.0 16.0 22.0 28.0
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TABLE 6.4 Survival Data for Example 6.2

Treatment Percent Sodium Percent Equilibrium Percent
Combination Citrate Glycerol Time (hr) Survival

1 −1 −1 −1 57
2 1 −1 −1 40
3 −1 1 −1 19
4 1 1 −1 40
5 −1 −1 1 54
6 1 −1 1 41
7 −1 1 1 21
8 1 1 1 43
9 0 0 0 60

10 0 0 0 70
11 0 0 0 62
12 0 0 0 72
13 −2 0 0 28
14 2 0 0 11
15 0 −2 0 2
16 0 2 0 18
17 0 0 −2 56
18 0 0 2 46

Note that the design consists of a 23 factorial component, four center runs and six axial or
one-factor-at-a-time experimental runs in which each factor is set at level +2 and −2, while
the other factors are set at scaled values of zero. The 18 experimental runs, involving three
factors at five evenly spaced levels, are another example of a central composite design. The
fitted second-order response function is given by

ŷ = 66.73 − 1.31x1 − 2.31x2 − 1.06x3 − 11.44x2
1 − 13.82 x2

2

−3.57x2
3 + 9.13x1x2 + 0.63x1x3 + 0.87x2x3

From Equation 6.5 the stationary point is given by

xs =
⎡⎢⎢⎣

x1,s
x2,s
x3,s

⎤⎥⎥⎦
=

⎡⎢⎢⎣

−0.112
−0.126
−0.174

⎤⎥⎥⎦
which is inside the experimental region, and the eigenvalues of the matrix B̂ are

𝜆1 = −3.508, 𝜆2 = −7.973, 𝜆3 = −17.349

The canonical and stationary point analysis indicates that the stationary point is a
point of maximum estimated response—that is, maximum estimated percent survival. The
estimated response at the maximum is ŷ = 67.041. As a result, the estimated condition
sought by the experimenters is found at the stationary point inside the experimental design
region. Figure 6.11a shows the response surface contours in the vicinity of the optimum
with equilibration time 14.96 hr.

Clearly, in this case, the researcher may be quite satisfied to operate at the conditions of
the computed stationary point. However, because of economic considerations and scientific
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Figure 6.11 Contours of constant percent survival for Example 6.2. (a) Equilibrium time 14.96
hours. (b) Equilibrium time 14 hours. (c) Equilibrium time 12 hours. (d) Equilibrium time 10 hours.

constraints of the problem, it is often of interest to determine how sensitive the estimated
response is to movement away from the stationary point. In this regard, contour plotting
can be very useful. For example, here, the stationary point xs corresponds to 2.9% sodium
citrate, 7.61 glycerol, and 14.96 hr equilibration time. The equilibration time may be viewed
as being somewhat long from a practical point of view, even though the optimum level is
inside the experimental design region. Scientific curiosity suggests the need to determine
how much is lost in estimated percent survival if equilibration time is set at 14, 12, and
10 hr. An analytical procedure would answer the question, but one gains considerably more
information from contour plotting. Figures 6.11b–d reveal the two-dimensional plots giving
contours of constant estimated percent survival for fixed values of equilibration times of 14,
12, and 10 hr, respectively. For 14-hr equilibration time, the maximum estimated survival
time is over 66%. In fact, Fig. 6.11d reveals that an equilibration time as low as 10 hr can
result in an estimated survival time that exceeds 64%. As a result, one could recommend
using values of the equilibration time considerably below the optimum and still not sacrifice
much in percent survival.

6.4 RIDGE ANALYSIS OF THE RESPONSE SURFACE

Often the analyst is confronted with a situation in which the location or nature of the
stationary point means that the point is essentially of no value. For example, the stationary
point may be a saddle point, which of course is neither a point of estimated maximum
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Figure 6.12 A ridge analysis locus of points to maximize the response for k = 2.

nor minimum response. Alternately the stationary point might be a point of maximum
or minimum response, but well outside the experimental region. In the first case, the
stationary point does not represent an important value of the response, while in this second
case it would not be advisable to suggest the stationary point as a candidate for operating
conditions, because the fitted model is not reliable outside the region of the experiment.
The use of contour plotting can be beneficial in these situations, as graphical summaries
of the analysis will help describe the nature of the system inside or on the perimeter of the
experimental region.

To help formalize information found in contour plots, a useful procedure involves a
constrained optimization algorithm. It is particularly useful when several design variables
are in the response surface model, making visualization of the response values across the
entire region difficult. The methodology, called ridge analysis, produces a locus of points,
each of which is a point of maximum (or minimum, if desired) response, with a constraint
that the point resides on the surface of a sphere of a certain radius from the center of
the design region. For example, for k = 2 design variables a typical ridge analysis might
produce the locus of points as in Fig. 6.12. The origin is x1 = x2 = 0, the design center;
a given point, say xp, is a point of maximum (or minimum) estimated response, with
the constraint being that the point must be on a sphere of radius

√
x′pxp = rp. In other

words, all points identified are constrained optima. Indeed, if the stationary point of the
system is not a maximum (or minimum) inside the experimental region, then the point
on the path at the design perimeter is the point of maximum (or minimum) estimated
response over all points on the path. This, then, may be viewed as a reasonable candidate
for recommended operating conditions, if the experimenter is constrained to stay within the
design region.

6.4.1 Benefits of Ridge Analysis

The purpose of ridge analysis is to identify a best candidate set of input values constrained
to lie inside the experimental region. The output of the analysis is the set of coordinates
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Figure 6.13 Maximum response (a) and constrained optimum conditions (b) plotted against radius
value from origin.

of the maxima (or minima) along with the predicted response, ŷ, at each computed point
on the path. From this, the analyst gains useful information regarding the roles of the
design variables inside the experimental region, as well as potential candidate locations for
suggested improved operating conditions. This approach provides a good complement to
the contour plots, since with a large number of design variables, many contour plots may be
required. Typical output of ridge analysis might simply be a set of two-dimensional plots,
regardless the value of k.

For example, consider Figs. 6.13a and 6.13b. In this case there are three design variables:

Let us assume that the perimeter of the experimental design is at radius
√

3. Figure 6.13a
shows the maximum value from the fitted response surface for each radius moving away
from the origin. Figure 6.13b shows the coordinates of each input for a given radius. If
one seeks to maximize the response, a candidate set of conditions is given by x1 ≅ 1.5,
x2 ≅ 0.4, x3 ≅ 20.7. The estimated maximum response achieved is given by ŷ ≅ 60.
Another useful feature of ridge analysis is that one obtains some guidelines regarding what
input combinations should be considered for future experiments in order to achieve more
desirable response values than those obtained in the current experiment. See Marquardt and
Snee (1975) for more details.

Ridge analysis as a formal tool is closest to ideal when the design region is spherical.
However, even if the design used is not spherical, but rather cuboidal, one can still gain
important practical information about the behavior of the response system inside the exper-
imental region, and which design variables are most influential in impacting the response
for desired changes in value.

6.4.2 Mathematical Development of Ridge Analysis

In this section we sketch the development of ridge analysis. Many of the details are similar
to those of steepest ascent. In fact, ridge analysis is steepest ascent applied to second-order
models. The reader should recall that the intent of steepest ascent was to provide a path
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to an improved product in the case of a system that had not been well studied. A rather
inexpensive first-order experiment is the usual vehicle for steepest ascent. However, ridge
analysis is generally used when the practitioner feels that he or she is in or quite near the
region of the optimum. Nevertheless, both are constrained optimization procedures.

Consider the fitted second-order response surface model of Equation 6.3:

ŷ = b0 + x′b + x′B̂x

We maximize ŷ subject to the constraint

x′x = R2

where x′ = [x1, x2,… , xk] and the center of the design region is taken to be
x1 = x2 = ⋅ ⋅ ⋅ = xk = 0. Using Lagrange multipliers, we differentiate

L = b0 + x′b + x′B̂x − 𝜇(x′x − R2) (6.11)

with respect to the vector x. The derivative 𝜕L/𝜕x is given by

𝜕L
𝜕x

= b + 2B̂x − 2𝜇x

To determine constrained stationary points we set 𝜕L/𝜕x = 0. This results in

(B̂ − 𝜇I)x = − 1
2
b (6.12)

As a result, for a fixed 𝜇, a solution x of Equation 6.12 is a stationary point on R = (x′x)1/2.
However, the appropriate solution x is that which results in a maximum ŷ on R or a minimum
ŷ on R, depending on which is desired. It turns out that the appropriate choice of 𝜇 depends
on the eigenvalues of B̂. The reader should recall the important role of these eigenvalues in
the determination of the nature of the stationary point of the response system (see Section
6.3.2). The following are rules for selection of values of 𝜇:

1. If 𝜇 exceeds the largest eigenvalue of B̂, the solution x in Equation 6.12 will result in
an absolute maximum for ŷ on R = (x′x)1/2.

2. If 𝜇 is smaller the smallest eigenvalue of B̂, the solution in Equation 6.12 will result
in an absolute minimum for ŷ on R = (x′x)1/2.

Consider the orthogonal matrix P that diagonalizes B. That is,

P′BP = 𝚲

=
⎡⎢⎢⎢⎣

𝜆1 0
𝜆2

⋱
0 𝜆k

⎤⎥⎥⎥⎦
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where the𝜆i are the eigenvalues of B. The solution x that produces locations where 𝜕L/𝜕x= 0
is given by

(B − 𝜇I)x = − 1
2
b

If we premultiply B − 𝜇I by P′ and postmultiply by P, we obtain

P′(B − 𝜇I)P = 𝚲 − 𝜇I

because P′P = Ik. If B − 𝜇I is negative definite, the resulting solution x is at least a local
maximum on the radius R = (x′x)1/2. On the other hand, if B − 𝜇I is positive definite, the
result is a local maximum. Because

(B − 𝜇I) = 𝚲 − 𝜇I

=
⎡⎢⎢⎢⎣

𝜆1 − 𝜇 0
𝜆2 − 𝜇

⋱
0 𝜆k − 𝜇

⎤⎥⎥⎥⎦

we see that if 𝜇 > 𝜆max, then B −𝜇I is negative definite, and if 𝜇 < 𝜆min, then B −𝜇I is
positive definite.

The above development illustrates but does not prove that the solutions x are absolute
maxima or minima. For further details see Draper (1963) or Myers (1976).

A computer algorithm for ridge analysis involves the substitution of 𝜇 > 𝜆k (for a
designed maximum response) and increases 𝜇 until radii near the design perimeter are
encountered. Future increases in 𝜇 results in coordinates that are closer to the design center.
The same applies for 𝜇 < 𝜆1 (for desired minimum response), with decreasing values of 𝜇
being required.

For further discussion and developments related to ridge analysis the reader is referred
to Hoerl (1959, 1964), who originated the concept, and Draper (1963), who developed the
mathematical ideas behind the concept. The paper by Hoerl (1985) and the book by Box
and Draper (2007) provide additional insights into this technique.

Example 6.3 Ridge Analysis of a Saddle Point Surface A chemical process that con-
verts 1,2-propanediol to 2,5-dimethylpiperazine is the object of an experiment to determine
optimum process conditions—that is, conditions for maximum conversion [see Myers
(1976)]. The following factors were studied:

x1 =
amount of NH3 − 102

51

x2 =
temperature − 250

20

x3 =
amount of H2O − 300

200

x4 =
hydrogen pressure − 850

350
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As in previous examples, the type of design used for fitting the second-order model was a
central composite design. The design matrix and observation vector are as follows:

D =

x1 x2 x3 x4
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1
+1 −1 −1 −1
−1 +1 −1 −1
+1 +1 −1 −1
−1 −1 +1 −1
+1 −1 +1 −1
−1 +1 +1 −1
+1 +1 +1 −1
−1 −1 −1 +1
+1 −1 −1 +1
−1 +1 −1 +1
+1 +1 −1 +1
−1 −1 +1 +1
+1 −1 +1 +1
−1 +1 +1 +1
+1 +1 +1 +1
0 0 0 0

−1.4 0 0 0
+1.4 0 0 0

0 −1.4 0 0
0 +1.4 0 0
0 0 −1.4 0
0 0 +1.4 0
0 0 0 −1.4
0 0 0 +1.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

58.2
23.4
21.9
21.8
14.3
6.3
4.5

21.8
46.7
53.2
23.7
40.3
7.5

13.3
49.3
20.1
32.8
31.1
28.1
17.5
49.7
49.9
34.2
31.1
43.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The fitted second-order model is given by

ŷ = 40.198 − 1.511x1 + 1.284x2 − 8.739x3 + 4.955x4 − 6.332x2
1

+ 2.194x1x2 − 4.292x2
2 − 0.144x1x3 + 8.006x2x3 + 0.0196x2

3

+ 1.581x1x4 + 2.806x2x4 + 0.294x3x4 − 2.506x2
4

Table 6.5 shows a computer printout of the ridge analysis of maximum response. The
accompanying plot of the response versus radius is shown in Fig. 6.14. The stationary point
(in design units) is given by x1,s = 0.265, x2,s = 1.034, x3,s = 0.291, and x4,s = 1.668. The
response at the stationary point is ŷs = 43.52, but the eigenvalues of the matrix B̂ are −7.55,
−6.01,−2.16, and+2.60, indicating a saddle point. They indicate that a ridge analysis might
reveal reasonable candidates for operating conditions, with the implied constraint that the
candidates lie inside or on the boundary of the experimental region. In this case the factorial
points are at a distance of two units from the design center. Note that among the reasonable
candidates for coordinates, we have

x1 = −0.1308, x2 = −0.7861, x3 = −1.8281, x4 = 0.1514



6.4 RIDGE ANALYSIS OF THE RESPONSE SURFACE 295

TABLE 6.5 Ridge Analysis of Data in Example 6.3

Design Factor Levels
Estimated Standard Error of

Radius Response Prediction x1 x2 x3 x4

0 40.198 8.321 0 0 0 0
0.10 41.207 8.304 −0.0125 0.0063 −0.0870 0.0470
0.20 42.195 8.254 −0.0217 −0.0012 −0.1772 0.0900
0.30 43.175 8.175 −0.0287 −0.0141 −0.2698 0.1270
0.40 44.159 8.073 −0.0345 −0.0379 −0.3640 0.1575
0.50 45.157 7.960 −0.0398 −0.0685 −0.4591 0.1814
0.60 46.176 7.848 −0.0450 −0.1044 −0.5543 0.1993
0.70 47.222 7.757 −0.0502 −0.1443 −0.6493 0.2120
0.80 48.301 7.707 −0.0556 −0.1873 −0.7438 0.2202
0.90 49.416 7.724 −0.0611 −0.2324 −0.8376 0.2247
1.00 50.571 7.832 −0.0668 −0.2793 −0.9307 0.2262
1.10 51.767 8.055 −0.0727 −0.3274 −1.0231 0.2251
1.20 53.007 8.414 −0.0787 −0.3765 −1.1147 0.2219
1.30 54.291 8.920 −0.0849 −0.4263 −1.2057 0.2170
1.40 55.621 9.581 −0.0912 −0.4767 −1.2961 0.2106
1.50 56.998 10.394 −0.0976 −0.5276 −1.3859 0.2029
1.60 58.423 11.357 −0.1041 −0.5788 −1.4752 0.1942
1.70 59.896 12.461 −0.1107 −0.6303 −1.5640 0.1846
1.80 61.418 13.698 −0.1173 −0.6820 −1.6524 0.1742
1.90 62.989 15.061 −0.1240 −0.7340 −1.7404 0.1631
2.00 64.610 16.543 −0.1308 −0.7860 −1.8281 0.1514

Figure 6.14 Maximum predicted response versus radius for data in Example 6.3.
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at a radius of two units. The estimated response is given by ŷs = 64.61. Note also that the
estimated standard error of prediction at this location is given by

sŷ = 16.543

This, of course, reflects the variability in ŷ conditioned on the given set of coordinates; that
is, given that prediction is desired at the location indicated in x1, x2, x3, and x4. Note how
this standard error begins to grow rather rapidly after a radius of 1.4. Recall that the axial
distance in the design is 1.4, and the factorial points are at a distance of 2.0. It turns out that
a better choice of axial distance would have been 2.0. This would have prevented the quick
acceleration of the standard error of prediction as one approaches the design perimeter. In
fact, in this case one might recommend conditions at radius 1.4 or 1.5, where the predicted
response is smaller but the standard error is considerably smaller. We shed more light on the
standard error of prediction in the next section and in future chapters. This criterion plays a
critical role in discussions that relate to the choice of experimental design and comparisons
among designs.

6.5 SAMPLING PROPERTIES OF RESPONSE SURFACE RESULTS

In response surface analysis, considerable focus on optimization and selecting factor com-
binations has assumed that the results from the analysis are fixed values with no associated
uncertainty. In the use of contour plots and the estimation of optimum conditions—either
absolute ones, or constrained ones as in the case of ridge analysis—it is important to
acknowledge that these are just estimated quantities based on data obtained from an exper-
iment with response values with natural variation. The temptation to offer interpretations
that treat these optimum conditions or observed contours of constant response as if the
values were scientifically exact can lead to erroneous or misleading conclusions. It is far
more helpful to have realistic expectations about what range of response values are possible
at the optimum and a region where that optimum is located.

One must bear in mind that in any RSM analysis the computer stationary point is only
an estimate, and any point on the contour as well as the contour itself possesses sampling
variability. Thus standard errors and confidence regions afford the analyst a more realistic
assessment of the quality of the point estimate, and the appropriate amount of uncertainty to
associate with it. To gain understanding about how to quantify the uncertainty in predicted
values of the response and optimal locations in the design space, we now consider sampling
properties of these quantities.

The first type of sampling property we introduce deals with the standard error of predicted
response, or standard error of estimated mean response. This concept was discussed briefly
in the development of standard regression analysis in Chapter 2.

6.5.1 Standard Error of Predicted Response

The most fundamental sampling property in any model building exercise is the standard
error of the predicted response at some point of interest x, often denoted sŷ(x), where in the
most general framework

ŷ(x) = x(m)′b
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and b = (X′X)−1X′y. Here, of course, the model matrix X is as discussed in Chapter 2.
The vector x(m) is a function of the location at which one is predicting the response; the
(m) indicates that x(m) is just x expanded to the model space; that is, the vector reflects the
form of the model as X does. For example, for k = 2 design variables and a second-order
model we have

x(2)′ = [1, x1, x2, x2
1, x2

2, x1x2]

b′ = [b0, b1, b2, b11, b22, b12]

Under the usual i.i.d. error assumptions for first- and second-order models and with the
assumption of constant error variance 𝜎2, we have

Var[ŷ(x)] = x(m)′(X′X)−1x(m)𝜎2

As a result, an estimated standard error of ŷ(x) is given by

sŷ(x) = s
√

x(m)′(X′X)−1x(m) (6.13)

where s =
√

MSE is the square root of the mean square error of the fitted response surface—
that is, for a fitted model with p parameters,

s =

√√√√ k∑
i=1

( yi − ŷi)2∕(n − p)

The standard error sŷ(x) is used in constructing confidence limits around a predicted
response. That is, for ŷ(x) = x(m)′b, a prediction at some location x, the 100(1 − 𝛼)%
confidence interval on the mean response E(y|x) is given by

ŷ(x) ± t𝛼∕2, n−ps
√

x(m)′(X′X)−1x(m) (6.14)

The standard error sŷ(x) of the predicted value and the corresponding confidence intervals
are the simplest form of sampling properties associated with an RSM analysis. The standard
error can provide the user with a rough idea about the relative quality of predicted response
values in various locations in the design region. For example, Fig. 6.15 and Table 6.5 show
how the standard error of prediction value changes as a function of where we wish to predict
in the design space for the ridge system of Example 6.3. Figure 6.15 shows three slices
of the design space for fixed values of x3 and x4. Because of the symmetry of the central
composite design, the roles of x1, x2, x3, and x4 are interchangeable in terms of the standard
error of prediction. The dotted lines on each plot indicate a radius of 2 from the center of
the design space. Note how prediction with this second-order response surface becomes
worse as one gets near the design perimeter. This may very well lead, in some cases, to
the conclusion that a reasonable choice of recommended operating conditions might be
further inside the perimeter when the predicted value at the optimum on the boundary has a
relatively large standard error. The standard error of prediction should be computed at any
point that the investigator considers a potentially useful location in the design region.
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Figure 6.15 Contour plots of standard error of predicted value for different x3 and x4 values for
Example 6.3.

Standard Error of Prediction as a Function of Design Because of the prominent role
of (X′X)−1 in Equation 6.13, it should be apparent that sŷ(x) is very much dependent
on the choice of the experimental design. In Table 6.5, the larger standard error that is
experienced close to the design perimeter is a result of the choice of design. In the case of
the central composite design, the choice of the axial distance (±1.4 in this case) and the
number of center runs have an important influence on the quality of ŷ(x) as a predictor.
In Chapter 8 we deal with properties of first- and second-order designs. Much attention is
devoted to Var[ŷ(x)]∕𝜎2 = x(m)′(X′X)−1x(m). In fact, designs are compared on the basis of
the relative distribution of values of x(m)′(X′X)−1x(m) in the design space.

What Are the Restrictions on the Standard Error of Prediction? The user of RSM can
learn a great deal about relative quality of prediction using the fitted response surface in
various locations in the design space. The prediction standard error—a function of the
model, the design, and the location x—is quite fundamental. However, it is important for
the reader to understand what the standard error of prediction is not as well as what it is.

The value sŷ(x) in Equation 6.13 is an estimate of the standard deviation of ŷ(x) over
repeated experiments in which the same design and model are employed, and thus
repeated values of ŷ are calculated at the same location x.

As a result, if the analyst calculates a stationary point xs (say, a point of maximum
estimated response) and determines the standard error of prediction at xs, it cannot be
said that the resulting confidence interval is a proper confidence interval on the maximum
response. One must keep in mind that repeated experiments would not necessarily produce
xs-coordinates at the same location. Indeed, repeated experiments may not all result in
stationary points that are maxima. The computed confidence interval here is a confidence
interval conditional on prediction at the point xs, which only happens to be a stationary point
in the present experiment. The confidence region on the location of the stationary point and
the confidence interval on the maximum response are considerably more complicated.

In addition, the confidence interval at a given point in the design space is not an interval
describing what new observations might be obtained at that combination of inputs. Instead,
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the interval describes what the mean of the underlying function is at that location. Recall
from Chapter 2 that a 100(1 − 𝛼)% prediction interval for a future observation at the
stationary point, xs, can be calculated by adding in the estimated natural variability of the
observed responses around the underlying function with an expression of the form,

ŷ(xs) ± t 𝛼
2

,n−p

√
�̂�2

(
1 + x′s(X

′X)−1xs

)

This prediction interval provides an appropriate range for what values of the response would
be obtained at that location, and not necessarily of what values are possible for the overall
optimum.

6.5.2 Confidence Region on the Location of the Stationary Point

There are instances where the computed stationary point is of considerable interest to the
user. It may be the location in the space of the design variables that represents recommended
operating conditions for the process. However, there remains the obvious question, “How
good are the estimates of these coordinates?” Perhaps there is sufficient uncertainty in the
estimator that a secondary, less costly set of conditions results in a mean response that
is not significantly different from that produced by the location of the stationary point.
These issues can be dealt with nicely through the construction of a confidence region on
the location of the stationary point.

Suppose we again consider the fitted second-order response surface model

ŷ(x) = b0 +
k∑

i=1

bixi +
k∑

i=1

biix
2
i +

∑ k∑
i<j=2

bijxix j

= b0 + x′b + x′B̂x

One should recall from Section 6.3 that the stationary point is computed from setting the
derivatives 𝜕ŷ(x)∕𝜕x to zero. We have

𝜕ŷ(x)∕𝜕x = b + 2B̂x

The jth derivative, dj(x), can be written d j(x) = b j + 2B̂′
jx, where the vector B̂′

j is the jth

row of B̂, the matrix of quadratic coefficients described by Equation 6.5. These derivatives
are simple linear functions of x1, x2,… , xk. We denote the vector of derivatives as the
k-dimensional vector d(x). Now, suppose we consider the derivatives evaluated at t =
(t1, t2,… , tk), where the coordinates of t are the coordinates of the true stationary point
of the system (which of course are unknown). If the errors around the model of Equation
6.2 are i.i.d. normal, N(0, 𝜎), then

d(t) ∼ N(0, Var[d(t)])

where Var[d(t)] is the variance–covariance matrix of d(t). As a result [see Graybill (1976),
Myers and Milton (1991)],

d′(t)[V̂ar[d(t)]]−1d(t)
k

∼ Fk,n−p (6.15)
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where Fk,n−p is the F-distribution with k and n − p degrees of freedom. It is important
to note that Var[d(t)] is a k × k matrix that contains the error variance 𝜎2 as a multiplier.
In addition, Var[d(t)] is clearly a function of t. For example, in the case of two design
variables, we have

d1(t) = b1 + 2

(
b11t1 +

b12

2
t2

)

d2(t) = b2 + 2

(
b12

2
t1 + b22t2

)

and

Var[d(t)] =
[

Var[d1(t)] Cov[d1(t), d2(t)]
Cov[d1(t), d2(t)] Var[d2(t)]

]

One can easily observe that elements in this matrix came from (X′X)−1𝜎2, the variance–
covariance matrix of regression coefficients. The role of t1 and t2 should also be apparent.
In Equation 6.15 the “̂ ” in {V̂ar[d(t)]} merely implies that 𝜎2 is replaced by the familiar
s2, the model error mean square. Now, based on Equation 6.15 we have

Pr

{
d′(t)

{
V̂ar[d(t)]

}−1
d(t) ≤ kF𝛼,k,n−p

}
= 1 − 𝛼 (6.16)

where F𝛼,k,n−p is the upper 𝛼th percentile point of the F-distribution for k and n − p degrees
of freedom. Note that while t is truly unknown, all other quantities in Equation 6.16 are
known. As a result, values t1, t2,… , tk that fall inside the 100(1−𝛼)% confidence region
for the stationary point are those that satisfy the following inequality:

d′(t)
{

V̂ar[d(t)]
}−1

d(t) ≤ kF𝛼, k, n−p (6.17)

This useful and important approach was developed by Box and Hunter (1954).

6.5.3 Use and Computation of the Confidence Region on the Location of the
Stationary Point

As one can observe from Equation 6.17, the computation of the confidence region is quite
simple. However, the display of the confidence region carries with it a clumsiness that is
similar to that of the response surface display, particularly when several design variables are
involved. For two or three design variables a graphical approach can be very informative.
The general size (or volume) of the confidence region can be visualized and the analyst
can gain some insight regarding how much flexibility is available in the recommendation
of optimum conditions.

Example 6.4 A Chemical Process with k = 2 A central composite design was used
to develop a response surface relating yield (y) to temperature and reaction time. The
experimental results are shown in Table 6.6.
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TABLE 6.6 The Central Composite Design for Example 6.4

x1 (Temp.) x2 (Time) y

−1 −1 88.55
1 −1 85.80

−1 1 86.29
1 1 80.44

−1.414 0 85.50
1.414 0 85.39
0 −1.414 86.22
0 1.414 85.70
0 0 90.21
0 0 90.85
0 0 91.31

Coded levels −1.414 −1 0 1 1.414
Temperature (◦C) 110.86 115 125 135 139.14
Time (sec) 257.58 270 300 330 342.42

The fitted second-order model is

ŷ = 90.790 − 1.095x1 − 1.045x2 − 2.781x2
1 − 2.524x2

2 − 0.775x1x2

with the stationary point at x′s = [−0.1716,−0.1806]. As shown in Fig. 6.16, this is a point
of maximum response with the predicted response at the stationary point ŷs = 90.978%.
The R2-value for this model is approximately 0.84.

The major components in the inequality of Equation 6.17 are quite simple to determine.
There are p = 6 parameters in the second-order system, and

d1(t) = −1.095 − 5.562t1 − 0.775t2

d2(t) = −1.045 − 0.775t1 − 5.048t2

Figure 6.16 The second-order model for Example 6.4. (a) Contour plot. (b) Response surface.
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The variances and covariances are obtained from the matrix (X′X)−1 with

X′X =

b0 b1 b2 b11 b22 b12

⎡⎢⎢⎢⎢⎢⎢⎣

11 0 0 8 8 0
8 0 0 0 0

8 0 0 0
12 4 0

12 0
sym. 4

⎤⎥⎥⎥⎥⎥⎥⎦
and

(X′X)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
3

0 0 − 1
6

− 1
6

0
1
8

0 0 0 0
1
8

0 0 0
0.1772 0.0521 0

0.1772 0
sym. 1

4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The error mean square from the fitted response surface is s2 = 3.1635 (with five degrees
of freedom). Apart from s2, the variances and covariances of the coefficients of the fitted
response surface are the elements of (X′X)−1 above.

As a result, elements of V̂ar[d(t)] are easily determined. For example,

V̂ar[d1(t)] = s2

𝜎2
{Varb1 + 4t21Varb11 + t22Varb12}

Note that the covariances involving b1 are zero and Cov(b11, b12) = Cov(b12, b22) = 0.
Thus

V̂ar[d2(t)] = s2

𝜎2
{Varb2 + t21Varb12 + 4t22Varb22}

Ĉov[d1(t), d2(t)] = s2

𝜎2
{4t1t2Cov(b11, b22) + t1t2Varb12}

As a result, we have

V̂ar[d1(t)] = 3.1635
{

1
8
+ 4t21(0.1772) + 1

4
t22

}

V̂ar[d2(t)] = 3.1635
{

1
8
+ 1

4
t21 + 4t22(0.1772)

}

Ĉov[d1(t), d2(t)] = 3.1635
{

4(0.0521)t1t2 +
1
4
t1t2

}

Equation 6.17 can now be used to plot the confidence region. The reader should note how
the design has a profound influence on the important elements of (X′X)−1. The confidence
region is displayed in Fig. 6.17. This graph was obtained from a Maple program written by
a student under the supervision of Dr. Enrique Del Castillo.

The display in Fig. 6.17 presents a rather bleak picture concerning the quality of estima-
tion of the stationary point. The larger, cross-hatched region is the 95% confidence region
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Figure 6.17 Confidence regions on location of stationary point for data of Example 6.4. The solid
region is a 90% confidence region while the cross-hatched region corresponds to a 95% confidence
region.

on the location of the stationary point, while the smaller, solid region is the 90% confi-
dence region. One must not forget the interpretation, which is that a true response surface
maximum at any location inside the 95% contour could readily have produced the data that
were observed. The 95% interval does not close inside the experimental design region.

Confidence regions on the location of optima like those shown in Fig. 6.17 are not
unusual. The quality of the confidence region depends a great deal on the nature of the
design and the fit of the model to the data. Recall that R2 for the fitted model is approximately
84%. One can note the role of the variances (and covariances of coefficients (and, of course,
the error mean square) in the analysis. The appearance of the confidence region shown in
Fig. 6.17 should serve as a lesson regarding the emphasis that is put on a point estimate
of optimum conditions. As we have indicated (and will continue to expound), process
improvement should be regarded as a continuing, iterative process, and any optimum found
in an experiment should perhaps not be considered as important as what one gains in process
improvement and learns about the process in general.

Consider now a second data set with the same design as the one in the previous example,
with a considerably better fit. The data are in Table 6.7. The second-order model is given by

ŷ = 90.7000 + 0.0302x1 − 0.3112x2 − 2.0316x2
1 − 1.8816x2

2 + 0.5750x1x2

The value of R2 is 0.9891.
The stationary point (maximum) is at (−0.004373, −0.08339) with ŷs = 90.7130. One

would certainly expect the confidence region to be considerably tighter in this case.
Figure 6.18 shows the 95% confidence region around the estimated stationary point. We
show the graph using the same scale as in the previous example in order to emphasize the
contrast. Clearly, the stationary point in this example is estimated very well. It should be
emphasized that a large confidence region is not necessarily bad news. A model that fits
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TABLE 6.7 Data for Second Example Showing
Confidence Region on Location of Stationary Point

x1 x2 y

−1 −1 87.6
−1 1 85.7
1 −1 86.5
1 1 86.9

−
√

2 0 86.7√
2 0 86.8

0 −
√

2 87.4

0
√

2 86.7
0 0 90.3
0 0 91.0
0 0 90.8

quite well yet generates a large confidence region on the stationary point may produce a
“flat” surface, which implies flexibility in choosing the optimum. This is clearly of interest
to the engineer or scientist.

The two examples in this section illustrate contrasting situations. One should not get
the feeling that the RSM in the first example will not produce important and interesting
results about the process. However, in many RSM situations, precise estimation of optimum
conditions is very difficult.

6.5.4 Confidence Intervals on Eigenvalues in Canonical Analysis

In our discussion of the canonical analysis, we noted that if one or more eigenvalues of
the matrix B̂ are close to zero, a ridge system of some type is present. In judging the size

Figure 6.18 Confidence region on location of stationary point for data of Table 6.7.
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of an eigenvalue it can be helpful to have a confidence interval estimate of this parameter.
Carter, Chinchilli, and Campbell (1990) and Bisgaard and Ankenman (1996) have described
procedures for doing this. Because Bisgaard and Ankenman’s procedure is simpler to
implement and is equivalent to that of Carter, Chinchilli, and Campbell, we concentrate on it.

Bisgaard and Ankenman’s procedure is usually called the double linear regression
(DLR) method, because it involves fitting an initial second-order model to the data, finding
the matrix B̂ and its eigenvalues and eigenvectors, and then fitting the canonical model in
Equation 6.10:

ŷ = â0 +
k∑

i=1

âiui +
k∑

i=2

�̂�iu
2
i (6.18)

where the variables u1, u2,… , uk are the canonical variables obtained by rotation of the
variables x1, x21,… , xk:

u = x′P (6.19)

Because Equation 6.18 is just a standard linear regression model, we can find the standard
errors of the �̂�i directly and obtain a 100(1 − 𝛼)% confidence interval on them using the
methods described in Chapter 2, namely,

�̂�i ± t𝛼∕2, n−pse(�̂�i)

when the model is assumed to have p parameters.

Example 6.5 The DLR Method In Example 6.1 we performed a complete canonical
analysis of a second-order model fitted to the chemical process data first introduced in
Section 2.8. We found that the eigenvalues of the matrix B̂ were 𝜆1 =−11.0782 and
𝜆2 =−2.6740, indicating that the response surface contains a maximum, but it is at least
moderately elongated in one direction. We find 95% confidence intervals on the eigenvalues,
using the DLR method.

The first step in the DLR procedure is to find the levels of the original coded design
variables in the new rotated canonical variables. For Example 6.1 the original design
matrix is

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
1 −1

−1 1
1 1

−1.414 0
1.414 0
0 −1.414
0 1.414
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



306 THE ANALYSIS OF SECOND-ORDER RESPONSE SURFACES

and from the estimated fitted model

ŷ = 79.75 + 10.12 x1 + 4.22 x2 − 8.50 x2
1 − 5.25 x2

2 − 7.75 x1x2

we obtain the matrix containing the corresponding eigenvectors

P =
[

0.8327 0.5538
0.5538 −0.8327

]

Hence, the new canonical-variable design matrix using Equation 6.19 gives

U = DP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.3864 −0.2789
0.2789 −1.3864

−0.2789 1.3864
1.3864 0.2789

−1.1774 0.7830
1.1774 −0.7830

−0.7830 −1.1774
0.7830 1.1774

0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The first-order terms of the fitted canonical model are obtained by calculating

b′P = (10.12, 4.22)

[
0.8327 0.5538
0.5538 −0.8327

]
= (10.8135,−2.1232)

and then fitting Equation 6.18 to obtain

ŷ = 79.75 + 10.8135u1 − 2.1232u2 − 11.0769u2
1 − 2.6731u2

2

Notice that �̂�1 and �̂�2 are identical to the original eigenvalues of B̂ (to two decimal places).
The standard errors of these estimates are

se(�̂�1) = se(�̂�2) = 0.9852

and t0.025,7 = 2.365. Therefore the 95% confidence intervals on the eigenvalues are

−11.0769 − 2.365(0.9852) ≤ 𝜆1 ≤ −11.0769 + 2.365(0.9852)

−13.4069 ≤ 𝜆1 ≤ −8.7469

and

−2.6731 − 2.365(0.9852) ≤ 𝜆2 ≤ −2.6731 + 2.365(0.9852)

−5.003 ≤ 𝜆2 ≤ −0.3431
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Because neither confidence interval includes zero, we conclude that both 𝜆1 and 𝜆2 are
indeed negative, so the true response surface is a maximum. However, note that the upper
confidence limit for 𝜆2 is quite close to zero, implying that there is potentially more
elongation in the surface in the w2-direction than is visually apparent from Fig. 6.5, and the
true response surface could actually be fairly close to a stationary ridge system.

6.6 FURTHER COMMENTS CONCERNING RESPONSE
SURFACE ANALYSIS

There are several important aspects of RSM that only become apparent after one gains a
certain level of experience. In a textbook presentation of RSM, a great deal is taken for
granted—the model, the experimental region, the proper choice of response, and, of course,
the goal of the study. All, however, need to be handled with care, and each one needs to be
a topic of discussion between statistician and scientist or engineer.

The choice of experimental region needs to be made very carefully. Choice of range in
the natural variable levels cannot be taken lightly. Ranges that are too small may result in
an important factor becoming insignificant in the analysis. This is particularly crucial in the
phase of the analysis when variable screening is being done. Often the natural sequential
deployment of RSM allows the user to make intelligent and informed choices of variable
ranges after preliminary phases of the study have been analyzed. For example, following
variable screening, the user should have improved choices of ranges for a steepest ascent
procedure. After steepest ascent is accomplished, choice of variable ranges to be used for
a second-order analysis should be easier to make.

Let us consider briefly the issue of the goal of the experiment. This textbook develops
and emphasizes the need to find optimum conditions. However, one should keep in mind
that the estimated optimum conditions from one experiment are indeed only estimates. The
next experiment may well find the estimated optimum conditions to be at a different set of
coordinates. Also, process technology changes from time to time, and a computed set of
optimum conditions may well be fleeting. What is often more important is for the analysis
to reveal important information about the process and information about the roles of the
variables. The computation of a stationary point, a canonical analysis, or a ridge analysis
may well lead to important information and deeper understanding about the process. This
in the long run will often be more valuable than a single set of coordinates representing an
estimate of optimum conditions.

EXERCISES

6.1 In a study to determine the nature of a response system that relates dry modulus of
rupture (psi) in a certain ceramic material with three important independent variables,
the following quadratic regression equation was determined [see Hackney and Jones
(1969)]:

ŷ × 10−2 = 6.88 − 0.1466x2
1 + 0.1875x1x2 + 0.2050x1x3 + 0.0325x1

− 0.0053x2
2 − 0.1450x2x3 + 0.2588x2 + 0.1359x2

3 − 0.1363x3
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The independent variables represent ratios of concentration of various ingredients
in the material.

(a) Determine the stationary point.

(b) Put the response surface into canonical form, and determine the nature of the
stationary point.

(c) Find the appropriate expressions relating the canonical variables to the indepen-
dent variables x1, x2, and x3.

(d) Generate two-dimensional plots showing contours of constant estimated modu-
lus of rupture. Use x3 = − 1, 0, 1.

6.2 In a chemical engineering experiment dealing with heat transfer in a shallow fluidized
bed, data are collected on the following four regressor variables: fluidizing gas
flow rate, lb/hr (x1); supernatant gas flow rate, lb/hr (x2); supernatant gas inlet
nozzle opening, mm (x3); supernatant gas inlet temperature, ◦F (x4). The responses
measured are heat transfer efficiency (y1) and thermal efficiency (y2). The data are
given in Table E6.1.

This is a good example of what often happens in practice. An attempt was made
to use a particular second-order design. However, errors in controlling the variables
produced a design that is only an approximation of the standard design.

(a) Center and scale the design variables. That is, create the design matrix in coded
form.

(b) Fit a second-order model for both responses.

(c) In the case of transfer efficiency (y1), do a canonical analysis and determine the
nature of the stationary point. Do the same for thermal efficiency (y2).

TABLE E6.1 Data for Exercise 6.2

Observation y1 y2 x1 x2 x3 x4

1 41.852 38.75 69.69 170.83 45 219.74
2 155.329 51.87 113.46 230.06 25 181.22
3 99.628 53.79 113.54 228.19 65 179.06
4 49.409 53.84 118.75 117.73 65 281.30
5 72.958 49.17 119.72 117.69 25 282.20
6 107.702 47.61 168.38 173.46 45 216.14
7 97.239 64.19 169.85 169.85 45 223.88
8 105.856 52.73 169.85 170.86 45 222.80
9 99.438 51.00 170.89 173.92 80 218.84

10 111.907 47.37 171.31 173.34 25 218.12
11 100.008 43.18 171.43 171.43 45 219.20
12 175.380 71.23 171.59 263.49 45 168.62
13 117.800 49.30 171.63 171.63 45 217.58
14 217.409 50.87 171.93 170.91 10 219.92
15 41.725 54.44 173.92 71.73 45 296.60
16 151.139 47.93 221.44 217.39 65 189.14
17 220.630 42.91 222.74 221.73 25 186.08
18 131.666 66.60 228.90 114.40 25 285.80
19 80.537 64.94 231.19 113.52 65 286.34
20 152.966 43.18 236.84 167.77 45 221.72
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(d) For the case of transfer efficiency, what levels (natural levels) of the
design variables would you recommend if maximum transfer efficiency is
sought?

(e) Do the same for thermal efficiency; that is, find levels of the design variables
that you recommend for maximization of thermal efficiency.

6.3 A chemical extraction process was studied using a central composite design in an
effort to find operating conditions on three variables that maximize yield. The results
are shown in Table E6.2.

(a) Fit a second-order response surface model to these data.

(b) Use contour plots to find conditions that maximize yield.

(c) Perform the canonical analysis, including finding the location of the stationary
point. Interpret the fitted surface.

TABLE E6.2 Data for Exercise 6.3

x1 x2 x3 y

−1 −1 −1 56.6
1 −1 −1 58.5

−1 1 −1 48.9
1 1 −1 55.2

−1 −1 1 61.8
1 −1 1 63.3

−1 1 1 61.5
1 1 1 64.0

−1 0 0 61.3
1 0 0 65.5
0 −1 0 64.6
0 1 0 65.9
0 0 −1 63.6
0 0 1 65.0
0 0 0 62.9
0 0 0 63.8

6.4 Rayon whiteness is an important factor for scientists dealing with fabric quality.
Whiteness is affected by pulp quality and other processing variables. Some of the
variables include: acid bath temperature, ◦C (x1); cascade acid concentration, %
(x2); water temperature, ◦C (x3); sulfide concentration, % (x4); amount of chlorine
bleach, lb/min (x5). Table E6.3 shows an experimental design involving these five
design variables. The response is a measure of whiteness.

The coding of the design variables is as follows:

x1 = temp − 45
10

, x2 = conc − 0.5
0.2

, x3 = temp − 85
3

,

x4 = conc − 0.25
0.05

, x5 = amt − 0.4
0.1
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TABLE E6.3 Data for Exercises 6.4

x1 x2 x3 x4 x5 y

−1 −1 −1 −1 −1 71.5
1 1 −1 −1 −1 76.0
1 −1 1 −1 −1 79.9
1 −1 −1 1 −1 83.5
1 −1 −1 −1 1 89.5

−1 1 1 −1 −1 84.2
−1 1 −1 1 −1 85.7
−1 1 −1 −1 1 94.5
−1 −1 1 1 −1 89.4
−1 −1 1 −1 1 97.5
−1 −1 −1 1 1 103.2

1 1 1 1 −1 108.7
1 1 1 −1 1 115.2
1 1 −1 1 1 111.5
1 −1 1 1 1 102.3

−1 1 1 1 1 108.1
−2 0 0 0 0 80.2

2 0 0 0 0 84.1
0 −2 0 0 0 77.2
0 2 0 0 0 85.1
0 0 −2 0 0 71.5
0 0 2 0 0 84.5
0 0 0 −2 0 77.5
0 0 0 2 0 79.2
0 0 0 0 −2 71.0
0 0 0 0 2 90.2
0 0 0 0 0 72.1
0 0 0 0 0 72.0
0 0 0 0 0 72.4
0 0 0 0 0 71.7
0 0 0 0 0 72.8

(a) Fit an appropriate second-order model in the metric of the coded variables.

(b) Find the stationary point, and describe the nature of the surface.

(c) Give a recommendation for operating conditions on the design variables. It is
important to maximize whiteness.

(d) Compute the standard error of prediction at the following design locations:
(i) Design center (0,0,0,0,0)

(ii) All factorial points

(iii) All axial points

(e) Comment on the relative stability of the standard error of prediction.

6.5 A client from the Department of Mechanical Engineering at Virginia Polytechnic
Institute and State University asked for help in analyzing an experiment dealing with
gas turbine generators. The voltage output of a generator was measured at various
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TABLE E6.4 Data for Exercise 6.5

y (volts) Speed x1 (in./sec) Extension x2 (in.)

1.23 5300 0.000
3.13 8300 0.000
1.22 5300 0.012
1.92 8300 0.012
2.02 6800 0.000
1.51 6800 0.012
1.32 5300 0.006
2.62 8300 0.006
1.65 6800 0.006
1.62 6800 0.006
1.59 6800 0.006

combinations of blade speed and voltage measuring sensor extension. The data are
given in Table E6.4.

(a) Write the design matrix in coded form.

(b) What type of design has been used?

(c) Fit an appropriate model.

(d) Find the stationary point, and interpret the fitted surface.

(e) It is important to determine what value of speed and extension results in a
response that exceeds 2.8 volts. Describe where in the design region this voltage
can be achieved. Use a two-dimensional contour plot to answer the question.

6.6 In Exercise 3.9 we discussed an application dealing with effects on cracking of
a titanium alloy. An additional study was made in which the same factors were
studied except the heat treatment method. The “high” or “+” method was used and
held constant. However, in this case, a second-order design was used so the analyst
could fit a second-order model involving curvature. The three factors are pouring
temperature x1; titanium content x2; and amount of grain refiner, x3. Table E6.5
gives the design points and the response data. The response is the crack length (in
millimeters) induced in a sample of the alloy.

(a) Fit an appropriate model with the data of the above central composite design.

(b) From the fitted model in (a), estimate the conditions that give rise to minimum
shrinkage. Be sure that these estimated conditions are contained in the current
experimental design.

(c) Compute the predicted value and its standard error at your recommended set of
conditions.

(d) Does this experiment give rise to suggestions for future experimental runs?
Explain.

6.7 Consider the reaction yield data shown in Table E6.6.

(a) Fit a second-order model to the data.

(b) Construct contour plots, and comment on the fitted response surface.

(c) Perform the canonical analysis.
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TABLE E6.5 Data for Exercise 6.6

x1 x2 x3 y

−1 −1 −1 0.5269
+1 −1 −1 2.6680
−1 +1 −1 1.0310
+1 +1 −1 2.3380
−1 −1 +1 3.2220
+1 −1 +1 4.0060
−1 +1 +1 3.3640
+1 +1 +1 3.2200

0 0 0 2.0280
0 0 0 1.9670
0 0 0 1.9300
0 0 0 2.0130

−1.732 0 0 1.6200
1.732 0 0 3.4510
0 −1.732 0 2.9590
0 1.732 0 2.6990
0 0 −1.732 0.9414
0 0 1.732 3.7880

TABLE E6.6 Data for Exercise 6.7

x1 x2 y

−1 −1 88.55
−1 1 86.29

1 −1 85.80
1 1 80.40
0 0 91.21
0 0 91.85

−1.414 0 85.50
1.414 0 85.39
0 −1.414 86.22
0 1.414 85.70
0 0 91.31
0 0 91.94

6.8 In the computer industry, it is important to use experimental design and response sur-
face methods to analyze performance data from integrated circuit/packet-switched
computer networks. Here, the design variables are network input variables that affect
network size, traffic load, link capacity, and so on. The response measures represent
the network performance. In this experiment [Schmidt and Launsby (1990)] the
design variables are:

CS: Circuit switch arrival rate (voice calls/min)
PS: Packet switch arrival rate (packets/sec)
SERV: Voice call service rate (sec)
SLOTS: Number of time slots per link (a capacity indicator)



EXERCISES 313

Two responses were measured. They were:

ALU: Average link utilization
BLK: Fraction of voice calls blocked

The data are given in Table E6.7.

(a) Write the design in coded form. Use the coding

x1 = (CS − 4)∕2

x2 = (PS − 300)∕150

x3 = (SERV − 180)∕60

x4 = (SLOTS − 40)∕6

(b) Fit two second-order models for the two responses.

(c) Consider the response surface for the BLK response. Can the model be improved
by a power transformation? Discuss.

(d) Use the two models above to determine optimum conditions for the two
responses separately. We need to maximize ALU and minimize BLK.

6.9 In Schmidt and Launsby (1990), a simulation program was given that simulates an
auto-bumper plating process using thickness as the response with time, temperature,
and pH as the design variables. An experiment was conducted in order that a response
surface optimization could be accomplished. The coding for the design variables is
given by

x1 = time − 8
4

x2 =
temp − 24

8

x3 = nickel − 14
4

The design in the natural units is given in Table E6.8 along with the thickness values.

(a) Write the design in coded form. Name the type of design.

(b) Fit a complete second-order model in the coded metric.

(c) Edit the model by eliminating obviously insignificant terms.

(d) Check model assumptions by plotting residuals against the design variables
separately.

(e) The purpose of this experiment was not to merely find optimum conditions
(conditions that maximize thickness) but to gain an impression about the role of
the three design variables. Show contour plots, fixing levels of nickel at 10, 14,
and 18.

(f) Use the plots to produce a recommended set of conditions that maximize thick-
ness.

(g) Compute the standard error of prediction at the location of maximum thickness.
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TABLE E6.7 Data for Exercise 6.8

OBS CS PS SERV SLOTS ALU BLK

1 2 150 120 34 0.282 0.000
2 2 150 120 46 0.194 0.000
3 2 150 240 34 0.372 0.000
4 2 150 240 46 0.275 0.000
5 2 450 120 34 0.553 0.016
6 2 450 120 46 0.396 0.000
7 2 450 240 34 0.676 0.031
8 2 450 240 46 0.481 0.003
9 6 150 120 34 0.520 0.012

10 6 150 120 46 0.386 0.000
11 6 450 120 46 0.594 0.016
12 6 300 180 40 0.231 0.000
13 4 300 180 40 0.325 0.000
14 4 300 180 52 0.427 0.000
15 4 300 180 40 0.561 0.016
16 4 300 180 40 0.571 0.005
17 4 300 180 40 0.561 0.011
18 4 300 180 40 0.581 0.020
19 4 300 180 40 0.562 0.017
20 4 300 180 40 0.608 0.036
21 4 300 180 40 0.560 0.007
22 5 400 210 43 0.739 0.070
23 5 400 210 43 0.746 0.082
24 5 400 150 37 0.725 0.067
25 5 400 150 37 0.725 0.084
26 5 400 150 43 0.615 0.027
27 5 400 210 40 0.785 0.106
28 5 400 210 40 0.782 0.125
29 4 400 210 37 0.747 0.084
30 4 400 210 37 0.745 0.101
31 4 400 210 40 0.695 0.063
32 4 400 210 40 0.667 0.057
33 4 400 180 40 0.648 0.035
34 5 400 180 40 0.722 0.074
35 5 400 180 40 0.731 0.077
36 5 400 180 37 0.775 0.110
37 5 400 180 37 0.779 0.139
38 4 400 180 37 0.712 0.057
39 4 400 180 37 0.701 0.065
40 3 400 210 37 0.652 0.017
41 3 400 210 43 0.541 0.003
42 3 400 150 37 0.570 0.003
43 3 400 150 43 0.476 0.005
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TABLE E6.8 Data for Exercise 6.9

Run Number Time Temperature Nickel Thickness

1 4 16 10 113
2 12 16 10 756
3 4 32 10 78
4 12 32 10 686
5 4 16 18 87
6 12 16 18 788
7 4 32 18 115
8 12 32 18 696
9 4 16 10 99

10 12 16 10 739
11 4 32 10 10
12 12 32 10 712
13 4 16 18 159
14 12 16 18 776
15 4 32 18 162
16 12 32 18 759
17 8 24 14 351
18 8 24 14 373
19 8 24 14 353
20 8 24 14 321
21 12 24 14 736.1
22 4 24 14 96.0
23 8 32 14 328.9
24 8 16 14 303.5
25 8 24 18 358.2
26 8 24 10 347.7

6.10 Refer to Exercise 6.9. The same simulation model was used to construct another
response surface using a different experimental design. This second design, in natural
units, is given in Table E6.9 along with the thickness data:

(a) Using the same coding as in Exercise 6.9, write out the design matrix in coded
form.

(b) Is this a central composite design?

(c) Fit and edit a second-order response surface model. That is, fit and eliminate
insignificant terms.

(d) Find conditions that maximize thickness, with the constraint that the condition
falls inside the design region. Use an appropriate software package. In addition,
compute the standard error of prediction at the location of optimum conditions.

6.11 Reconsider Exercises 6.9 and 6.10. In addition to the designs in these exercises, a
D-optimal design was used to generate data on thickness from the simulation model.
The notion of D-optimality was introduced in Chapter 3 and will be discussed in
more depth in Chapter 9. The design and data are given in Table E6.10.

(a) Using the same coding scheme as in Exercises 6.9 and 6.10, write the design in
coded units.
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TABLE E6.9 Data for Exercise 6.10

Run Number Time Temperature Nickel Thickness

1 4 16 14 122
2 12 16 14 790
3 4 32 14 100
4 12 32 14 695
5 4 24 10 50
6 12 24 10 720
7 4 24 18 118
8 12 24 18 650
9 8 16 10 330

10 8 32 10 314
11 8 16 18 302
12 8 32 18 340
13 8 24 14 364
14 8 24 14 342
15 8 24 14 404

TABLE E6.10 Data for Exercise 6.11

Run Number Time Temperature Nickel Thickness

1 12 32 10 717
2 4 16 10 136
3 12 16 18 787
4 4 32 18 78
5 4 16 18 87
6 4 32 10 80
7 12 16 10 760
8 8 24 10 282
9 8 32 14 318

10 4 24 14 96
11 12 32 18 682
12 12 24 14 747
13 12 24 14 764
14 12 24 14 742

(b) Fit a second-order model, and edit it—that is, eliminate insignificant terms.

(c) Find conditions of estimated maximum thickness. Can this be done with a two-
dimensional contour plot? Explain. Compute the standard error of prediction at
the set of optimum conditions.

6.12 Exercises 6.9, 6.10, and 6.11 illustrate the use of three different types of designs for
modeling the same system. All three designs are used because of their capability
to efficiently fit a complete second-order model, even if the edited model contains
no interactions. Another type of design that allows for estimation of linear and pure
quadratic effects is the Taguchi L27. The Taguchi approach to quality improvement
will be discussed in detail in Chapter 11. The L27 was also used to generate data
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TABLE E6.11 Data for Exercise 6.12

Run Number Time Temperature Nickel Thickness

1 4 16 10 113
2 4 16 14 152
3 4 16 18 147
4 4 24 10 65
5 4 24 14 53
6 4 24 18 130
7 4 32 10 83
8 4 32 14 40
9 4 32 18 94

10 8 16 10 339
11 8 16 14 303
12 8 16 18 381
13 8 24 10 348
14 8 24 14 342
15 8 24 18 420
16 8 32 10 327
17 8 32 14 255
18 8 32 18 322
19 12 16 10 745
20 12 16 14 780
21 12 16 18 740
22 12 24 10 772
23 12 24 14 769
24 12 24 18 755
25 12 32 10 735
26 12 32 14 726
27 12 32 18 757

on thickness as in the previous exercises. The design and response data are given in
Table E6.11.

(a) Code the design factors as in previous exercises.

(b) Form the complete matrix X for the L27 (using coded design levels).

(c) Comment on whether or not this design is adequate for a complete second-order
model (including interactions).

6.13 In this exercise we will make comparisons among the central composite, Box–
Behnken, and D-optimal designs used in Exercises 6.9, 6.10, and 6.11. We will
not deal with any particular edited model, but rather with a complete second-order
model. Compute the scaled standard error of prediction

√
N Var[ ŷ(x)]

𝜎2
=

√
N[x(2)′(X′X)−1x(2)]

at the locations given in Table E6.12 in coded design units. N is the size of the design.
Comment on comparisons among the three designs.

6.14 The experiment given in Table E6.13 uses a central composite design to study three
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TABLE E6.12 Design Location for Exercise 6.13

x1 x2 x3

−1 −1 −1
1 −1 −1

−1 1 −1
−1 −1 1

1 1 −1
1 −1 1

−1 1 1
1 1 1

−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1
0 0 0

variables in a chemical process.

(a) Fit a second-order model to the conversion response y1.

(b) Investigate the fitted surface using contour plots.

(c) Find the stationary point, and perform the canonical analysis.

6.15 Consider the viscosity response data in Table 6.8.

TABLE E6.13 Data for Exercise 6.14

x1 Time x2 Temperature x3 Catalyst y1 Conversion y2 Activity

−1 −1 −1 74.00 53.20
1 −1 −1 51.00 62.90

−1 1 −1 88.00 53.40
1 1 −1 70.00 62.60

−1 −1 1 71.00 57.30
1 −1 1 90.00 67.90

−1 1 1 66.00 59.80
1 1 1 97.00 67.80

−1.682 0 0 76.00 59.10
1.682 0 0 79.00 65.90
0 −1.682 0 85.00 60.00
0 1.682 0 97.00 60.70
0 0 1.682 55.00 57.40
0 0 1.682 81.00 63.20
0 0 0 81.00 59.20
0 0 0 75.00 60.40
0 0 0 76.00 59.10
0 0 0 83.00 60.60
0 0 0 80.00 60.80
0 0 0 91.00 58.90
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(a) Perform a canonical analysis on the second-order model for these data.

(b) Use the double linear regression method to find confidence intervals on the
eigenvalues. The design in terms of the canonical variables is

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8922 1.0972

−1.0972 0.8922

1.0972 −0.8922

−0.8922 −1.0972

1.4066 0.1449

−1.4066 −0.1449

−0.1449 1.4066

0.1449 −1.4066

0 0

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c) Interpret the fitted surface. Can you suggest a procedure for making the fitted
model more closely approximate the true response surface?

6.16 For the estimated response surface listed below, answer the following questions:

ŷ = 35 + 1.02 x1 + 1.76 x2 − 0.59 x3 − 2.66 x1x2 + 3.02 x1x3 − 0.62 x2x3

+ 5.04 x2
1 + 2.63 x2

2 + 5.33 x2
3

(a) Write the model in the canonical form.

(b) Describe what kind of stationary point the response surface has and where it is
located.

(c) If all the coded variables have range [−1,1] and the range of the actual variables
are as follows: X∗

1 ∈ [10, 30], X∗
2 ∈ [150, 200], X∗

3 ∈ [1.0, 2.0]
(i) Where is the global minimum located in terms of the original

variables?

(ii) Where is the maximum located within the observed range of the actual
variables (stay in the cube design space)?

6.17 For a given problem we obtain a second-order model, which we describe in terms
of its canonical parameterization. We obtain the following pieces for the model in
the form ŷ = 10.5 + xb + xB̂x

b =
⎛⎜⎜⎝

1
0
1

⎞⎟⎟⎠
, B̂ =

⎛⎜⎜⎝

2.04 −0.1 −0.075
−0.1 0.160 0.25
−0.075 0.25 1.15

⎞⎟⎟⎠
, xs =

⎛⎜⎜⎝

−0.23
0.85

−0.63

⎞⎟⎟⎠
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with eigenvalues and eigenvectors:

$ values:
[1] 2.05420808 1.19864128 0.09715064

$ vectors:
[, 1] [, 2] [, 3]

[1, ] 0.99276672 −0.1127446 −0.04126621
[2, ] −0.06567526 −0.2222498 −0.97277530
[3, ] −0.10050377 −0.9684491 0.22804674

(a) Write the model in standard form (y = 𝛽0 + 𝛽1X1 +⋯) with the actual coeffi-
cients listed for all main, interaction, and quadratic effects.

(b) Describe the kind of surface we have for the response.

(c) If we are using a standard cuboidal region, is the stationary point located inside
the region of study? Explain.

If the value of the function at the stationary point is 11.91, give the equation for the
model in the canonical form, ŷ = ŷs +

∑
𝜆iwi.

6.18 Martins et al. (2009) investigate the effect of several factors on a microparticle-
based DNA/DNA hybridization assay. The measured response is the four factors
considered are immobilization area (X1), probe concentration (X2), hybridization
area (X3) and target concentration (X4). A central composite design was performed
with a total of 27 runs. The data are shown with the factors already scaled in
Table. E6.14.

(a) Fit a second-order model to the response, fluorescence. What fraction of the
variability in fluorescence is explained by the full model.

(b) Find a reduced model by removing nonsignificant terms. What faction of the
variability is explained by the reduced model.

(c) Draw contour plots of the response as a function of each pair of variables
(X1 & X2, X1 & X3, …) with the other variables held fixed at their center
values. Which variables are most influential in changing the values of the
response?

(d) Where in the design region does the model predict the maximum fluorescence
value? How does this value compare to the observed value at (or closest to) this
location?

6.19 Consider the data described in Exercise 6.18 and given in Table E6.14. The following
describe the factor levels of X1–X4 in the original units.

Level
Immobilization
Area, 𝜉1 (cm2)

Probe
Concentration,
𝜉2 (μM)

Hybridization
Area, 𝜉3 (cm2)

Target
Concentration,
𝜉4 (μM)

−1 0.35 0.025 0.35 0.025
0 3.5 2.5 2.0 2.5

+1 7.0 5.0 3.5 5.0
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TABLE E6.14 Data for Exercises 6.18 and 6.19

X1 X2 X3 X4 Fluorescence

−1 −1 −1 −1 4.7
1 −1 −1 −1 4.7

−1 1 −1 −1 28
1 1 −1 −1 81.2

−1 −1 1 −1 5.7
1 −1 1 −1 3.8

−1 1 1 −1 12.2
1 1 1 −1 19.5

−1 −1 −1 1 4.4
1 −1 −1 1 2.6

−1 1 −1 1 83.7
1 1 −1 1 84.7

−1 −1 1 1 6.8
1 −1 1 1 2.4

−1 1 1 1 76
1 1 1 1 77.9

−1 0 0 0 42.6
1 0 0 0 52.3
0 −1 0 0 2.6
0 −1 0 0 72.8
0 0 −1 0 47.7
0 0 1 0 54.4
0 0 0 −1 30.8
0 0 0 1 64.8
0 0 0 0 51.6
0 0 0 0 52.6
0 0 0 0 56.1

(a) In Exercise 6.18, the authors of the study reported that the factor levels are
equally space (−1, 0, +1) for all factors. However, when the actual levels of the
experiment are shown, there are some small discrepancies in the spacing. By
matching the factor levels for 0, and +1, what are the actual scaled factor levels
for each of the factors?

(b) Reanalyze the data with the new scaled factor levels. Compare the full model
and the reduced models for the analysis in Exercise 6.18 with what is obtained.
Comment on how this might affect conclusions.

(c) Using the new analysis, compute the standard error of prediction at the following
locations:

(i) 𝜉1 = 3.5 cm2, 𝜉2 = 2.5 μM, 𝜉3 = 2.0 cm2, 𝜉4 = 2.5 μM

(ii) 𝜉1 = 7.0 cm2, 𝜉2 = 5.0 μM, 𝜉3 = 3.5 cm2, 𝜉4 = 5.0 μM

(iii) 𝜉1 = 0.35 cm2, 𝜉2 = 0.025 μM, 𝜉3 = 0.35 cm2, 𝜉4 = 0.025 μM

(iv) 𝜉1 = 3.5 cm2, 𝜉2 = 2.5 μM, 𝜉3 = 0.35 cm2, 𝜉4 = 2.5 μM

(v) 𝜉1 = 3.5 cm2, 𝜉2 = 2.5 μM, 𝜉3 = 3.5 cm2, 𝜉4 = 2.5 μM
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(d) By comparing the results of (c) ii and iii, comment on the impact of the non-
standard scaling on the standard error of prediction at the factorial locations.

(e) By comparing the results of (c) iv and v, comment on the impact of the nonstan-
dard scaling on the standard error of prediction at the axial locations for factor
X3.

(f) Why might the experimenters have not used equal spacing? (i.e., why did they
not set Xi = 0?) Comment on the trade-offs between using a standard design
with fixed levels, and adapting the design to have unequal spacing.

6.20 A five level central composite design was used in an experiment to study the ability
of different treatments to inhibit the growth of Listeria monocytogenes strains. The
results for the strain, ATCC 19114, are given in Table E6.15.

(a) Convert the factor levels to scaled factors, using first 8 observations to define a
24 factorial with scaled ranges [−1, +1].

(b) Fit a second-order model to the observed data, and find a suitable reduced model
that describes how the different factors influence the response.

(c) If the goal is to minimize growth, what location in the design space is best to
achieve this goal?

(d) What is the predicted growth amount at the location identified in (c)? Give
95% confidence interval and 95% prediction intervals for the response at this
location?

(e) A control run, which matches conditions where no preventative measures were
taken to inhibit growth, was also performed with the following levels:

Run NaCl pH MaxExtraction Growth

18 0 7 0 0.70

What does the model predict for the growth amount at this location? How well do
you think that the model fits here? (Hint: compare a 95% prediction interval to the
observation)

6.21 Consider the data described in Exercise 6.20 and given in Table E6.15.

(a) Find the region of the design space where growth for the strain, ATCC 19114,
is estimated to be greater than 0.5.

(b) If we wish to be cautious about where we might find growth values above 0.5,
we might examine the upper bound of an uncertainty region. Find the region of
the design space where the upper bound of a 95% confidence interval for growth
is estimated to be greater than 0.5.

(c) Find the region of the design space where the upper bound of a 95% prediction
interval for growth is predicted to be greater than 0.5.

(d) By comparing the results of (a), (b), and (c), discuss the role of model uncertainty
and natural variability (the variance of𝜎) on changing the size of the region where
we may be concerned about large values of growth.

(e) Describe a situation where the results from each of (a), (b), and (c) might be
used to interpret the results of the experiment.
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TABLE E6.15 Data for Exercises 6.20, 6.21, and 6.22

Run NaCl pH MaxExtraction Growth

1 1.5 6.5 0.156 0.48
2 0.5 6.5 0.156 0.52
3 1.5 6.5 0.078 0.61
4 0.5 6.5 0.078 0.62
5 1.5 5.5 0.156 0.29
6 0.5 5.5 0.156 0.30
7 1.5 5.5 0.078 0.35
8 0.5 5.5 0.078 0.40
9 1 6 0.117 0.35

10 1 7 0.117 0.58
11 1 5 0.117 0.27
12 1 6 0.195 0.00
13 1 6 0.039 0.58
14 2 6 0.117 0.32
15 0 6 0.117 0.42
16 1 6 0.117 0.37
17 1 6 0.117 0.37

6.22 Consider the data described in Exercise 6.20 and given in Table E6.15.

(a) If the experimenter has chosen to fit a first-order model with all of the two-way
interactions, find the best reduced model based on this initial assumption.

(b) Find the standard error of prediction for the best model based on a second-
order model and the best model for a first-order model with interactions at the
following locations:

(i) the center of the design space

(ii) the axial points

(iii) the factorial points

(c) Based on the model found in (a), find the region of the design space where
growth for the strain, ATCC 19114, is estimated to be greater than 0.5.

(d) By comparing the results from (c) to Exercise 6.21(a) results, discuss the trade-
off between the choice of the two models for accurate and precise estimation.

Short Answer Questions

6.23 Answer the following short answer questions:

(a) Justify why using a low-order polynomial is a helpful strategy when modeling
many relationships between input factors and responses.

(b) Describe a situation where a stationary point is beneficial for optimizing the
response.

(c) Describe a situation where a stationary point is not that helpful for optimizing
the response.

(d) When can a ridge system be advantageous when optimizing a response?
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(e) Describe how the standard error of the predicted response is connected to the
chosen designed experiment.

(f) Describe the connection between the standard error of the predicted response
and the location of the stationary point.

6.24 Answer the following True/False questions:

(a) Using a second-order model to estimate the underlying relationship is a common
approach to approximating the surface.

(b) The location of the stationary point corresponds to a global maximum or mini-
mum of the surface.

(c) Examining the canonical variables provides information about the nature of the
surface.

(d) Combining model reduction or model selection with the use of canonical vari-
ables provides flexibility in interpreting the shape of the response.

(e) Uncertainty in the model parameters can influence the nature of the response
through the values of the eigenvalues.

(f) The existence of a ridge system in the canonical variables can restrict the choice
of optimal location.

(g) Whether the location of the stationary point is inside or outside of the design
region changes the usefulness of the canonical analysis.

(h) The magnitude of the natural variability of the response influences the size of
the confidence region for location of the stationary point.

(i) If the sign of all of the eigenvalues is the same, the response surface will have a
global maximum.



7
MULTIPLE RESPONSE OPTIMIZATION

7.1 BALANCING MULTIPLE OBJECTIVES

Up to this point we have emphasized the use of response surface analyses for improvement
of the quality of products and processes. We have focused on modeling a measured response
or a function of design variables and letting the analysis indicate areas in the design region
where the process is likely to give desirable results, the term “desirable” being a function
of the predicted response. However, in many instances the term “desirable” is a function of
more than one response. Intuitively it should not be surprising that when an experimenter
dedicates the time and effort to run a thoughtfully designed experiment, that it often makes
sense to gather information on multiple characteristics that result from the manipulation
of the inputs. In addition, the quality or desirability of a product or process cannot be
simplified to a goodness of a single attribute.

In a chemical process there are almost always several properties of the product output
that must be considered in the definition of “desirable.” In many consumer products (food or
beverages), the scientist must deal with taste as a response but also consider other responses
such as color and texture, as well as undesirable by-products. In the pharmaceutical or
biomedical area, the clinician is primarily concerned with the efficacy of the drug or
remedy but must not ignore the possibility of serious side effects. In a tool life problem,
cutting speed (x1) and depth of cut (x2) influence the primary response, the life of the tool.
However, a secondary response, rate of metal removed, may also be important in the study.

As precious resources are stretched thinner and industry seeks to extract more infor-
mation from a single experiment, having sound strategies for examining and combining
multiple objectives is increasingly important. Before considering how to summarize and
optimize several responses from a designed experiment, we first discuss a more general
framework for examining the relationship between several competing goals.

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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There are several aspects to this problem that complicate the process of choosing a
best alternative when considering multiple facets to the decision-making. First, there are
almost no practical decisions where it is possible to get the optimal result for each criterion
individually in a single choice. In the rare cases where this might occur, no special methods
are needed to select the best option. Therefore, for most situations, it is necessary to make
trade-offs between the different objectives: Does it make sense to sacrifice a bit of this to
get a bit more of that?

Secondly, many of the characteristics which are being considered in the decision are
measured on different scales: How do we trade-off some additional cost in exchange for
an improvement in the quality. Cost might be measured in dollars or time, while quality is
measured on a completely different scale.

Thirdly, how these different characteristics are valued may differ depending on the
decision-maker. There is no global consensus on what trade-off might be ideal between
cost and quality, but rather many right answers for different sets of priorities. So this part of
the process inherently has a subjective component where individual priorities are integrated
into the process. For a low-end manufacturer, reducing quality to save on production costs
might be the ideal choice. For a higher-end producer, the risk of a dissatisfied customer
may trump a fractional discount on production costs.

As a result, methods for evaluating and optimizing based on multiple objectives should
provide mechanisms for incorporating the experimenter’s priorities and preferences.

Example 7.1 Choosing a Supplier In a manufacturing application, there are several
potential suppliers of a particular raw material, each with associated costs and quality. The
goal of selecting a supplier is to balance the trade-offs between these characteristics to find
a suitable source for the raw material. Table 7.1 shows the set of possible manufacturers
with their associated costs and measured quality of product. Examining the scatterplot of
alternatives in Fig. 7.1, the ideal is to be located in the bottom right corner of the plot,
where cost is minimized and quality is maximized. As is typically the case, no supplier
simultaneously offers this combination, but rather the decision-maker will need to make
trade-offs between cost and quality. However, it is also clear that some of the options do
not make sense. For example, it would not be rational to select supplier D (cost = 10.6 and

TABLE 7.1 Supplier Cost and Quality

Supplier Cost Quality

A 10.5 5.6
B 10.3 5.2
C 10.7 6.8
D 10.6 6.3
E 10.4 5.2
F 10.4 5.8
G 11.0 6.9
H 10.8 6.2
I 10.7 6.4
J 10.6 6.7
K 10.5 5.9
L 10.6 6.0
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Figure 7.1 Scatterplot of cost and quality measures for suppliers in Table 7.1. Solid circles indicate
suppliers on the Pareto front.

quality = 7.3) as a preferred choice since supplier J has the same cost but higher quality
(7.7). Similarly, supplier I would not be a reasonable choice since supplier C has the same
cost (10.7) and better quality (7.8 instead of 7.4), or supplier J has both lower cost and
better quality.

Hence only those choices shown in Fig. 7.1 with solid circles (∙) do not have a superior
choice among the available list of suppliers. These options are the ones from which the
decision-maker should select, and they are known as the Pareto front. See Lu et al. (2011)
for more details on the construction and interpretation of Pareto fronts. The suppliers with
open circles (◦) are inferior, since there is at least one choice on the Pareto front that is
at least as good on all of the criteria, and strictly better on at least one. Therefore, a good
objective first step in selecting a best supplier is to eliminate the noncontenders, or those not
found on the Pareto front. With the remaining six suppliers, B, F, K, J, C, G—ordered from
lowest (best) to highest (worst) cost and from lowest (worst) to highest (best) quality—
we can clearly see the trade-off between the two objectives. If the lowest cost is the top
priority, then supplier B is best. Alternately, if highest quality is paramount, then supplier
G is best. Suppliers F, K, J, and C offer options which balance cost and quality. In JMP,
the Pareto front for any number of numeric criteria can be found in the “Rows” option of a
data table, under “Row Selection” and “Select Dominant.” There are then options to select
which columns to consider and whether optimization requires maximizing or minimizing
the quantity.

Note that choosing the cheapest supplier seems to have a disproportionate penalty with
respect to quality: Dropping the price from 10.4 to 10.3 requires a drop in quality from 5.8
to 5.2. Similarly, to obtain the best quality of 6.9 (versus 6.8) has a large associated increase
in price (11.0 versus 10.7). This phenomenon is quite common across many applications,
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and it reflects that to optimize a single objective often requires considerable sacrifice of
other criteria. Taking a small step back from the optimal value can often achieve more
robust performance on other secondary objectives.

Once the Pareto front has been identified—here with the six suppliers—then which of
these options is best is a subjective choice based on how cost and quality are prioritized.
For one company, emphasizing cost more than quality might suggest supplier F as best,
while for another company, the higher quality of supplier J or C may warrant the additional
expense of a higher cost. Regardless of which of these final choices are made, the first step
of identifying the Pareto front eliminates the noncontenders and simplifies the number of
alternative under consideration. In addition, the Pareto front highlights the range of sensible
values for each of cost (10.3 to 11.0) and (5.2 to 6.9), which provides a frame of reference
to consider comparisons.

In addition, by examining the ranges of each of the objectives, we are able to assess
whether these represent similar or different ranges of preference. For example, the highest
cost is 6.8% larger than the smallest on the Pareto front (11.0/10.3 = 1.068), while the
highest quality is 32.7% larger than the low end of the range from the Pareto front (6.9/5.2
= 1.327). Hence moving from best to worst on the quality scale may represent more serious
changes than the change in cost. However, the percentage change does not tell the whole
story, as the decision-maker should also consider whether the range covers choices that
represent “excellent” to “poor,” or “very good” to “good.” This can change how much we
emphasize trade-offs between alternatives.

The definition of the Pareto front based on all non-inferior candidates extends to higher
dimensions with more than two criteria to be considered. For choosing between alternatives,
it provides an objective straightforward method of simplifying the set of candidates to only
those rational options. In higher dimensions, visualizing the Pareto front becomes more
challenging, but its advantages remain unchanged.

Since for most decisions, a single best option needs to be identified, some additional
tools are needed to formalize this part of the process. Which of the choices on the Pareto
front makes the most sense for a particular problem depends on how the different objectives
are valued, and hence involves some additional subjective input from the decision-maker.
One way is to use the threshold approach, which tackles the individual criteria one-by-
one based on their relative importance. Specifically, it may start with the most important
criterion, which determines the threshold below (or above) which we are unwilling to
accept values. This eliminates a subset of the choices. The process is then repeated with
the next most important criterion until all criteria are examined. The advantage of this
approach is being able to work with the raw data on their original scales. In JMP, the “Data
Filter” allows flexible specification of thresholds with visualization of the subsets of the
data. Figure 7.2 show two versions of this process. In Fig. 7.2a the decision-maker has
prioritized cost and has decided to find the best option with a price at or below 10.5. Once
this threshold has been determined, then selecting the supplier with the highest available
quality leads to supplier K. Alternately, setting an initial threshold of quality of at least 6.5
in Fig. 7.2b leads to the choice of supplier J.

Another popular choice for selecting between alternatives is to use the simultaneous
optimization technique popularized by Derringer and Suich (1980). Their procedure makes
use of desirability functions. The thinking behind this approach is that different criteria
are often measured on different scales, and a primary difficulty in knowing how to compare
them comes from the “apples to oranges” incompatibility of these attributes. The desir-
ability function suggests that we make different objectives comparable by assigning them
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(a)

(b)

Figure 7.2 Threshold approach using the data filter in JMP for (a) cost constrained to be lower than
10.5 and (b) quality constrained to be above 6.5.

a desirability score. Hence, we first convert each objective into an individual desirability
function di that varies over the range

0 ≤ di ≤ 1

where if the objective is at its goal or target, then di = 1, and if the response is outside an
acceptable region, di = 0. In this way “best” for each criterion is scored the same way (with
a score of 1), and unacceptable is also comparable (with a score of 0). Then the optimal
combination is chosen to maximize the overall desirability, where additive or multiplicative
forms of the combined desirability score are possible. For m objectives, the additive form

D =
∑m

i=1
widi (7.1)

allows for superior performance on one or more objectives to compensate for poor perfor-
mance on another. The multiplicative form

D = dw1
1 dw2

2 ⋯ d
wm
m (7.2)

places additional penalties on poor performance of a single objective which is difficult to
overcome, regardless of how other objectives perform. The weights wi, which are chosen
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TABLE 7.2 Desirability Scores for Cost and Quality for Six Suppliers on Pareto Front

Supplier Cost Scaled Cost Quality Scaled Quality

B 10.3 1.0 5.2 0.0
F 10.4 0.857 5.8 0.353
K 10.5 0.714 5.9 0.412
J 10.6 0.571 6.7 0.882
C 10.7 0.429 6.8 0.941
G 11.0 0.0 6.9 1.0

to sum to 1, allow different emphases to be placed on the different objectives to match the
priorities of the decision.

For the cost-quality example, if we scale both objectives between 0 and 1 based on the
values from the Pareto front. Table 7.2, shows the 6 suppliers on the Pareto front, sorted
from best to worst quality (and hence worst to best cost). By using a linear transformation,
we can obtain the desirability scores for each objective for each supplier. Note how small
values of cost and high values of quality have larger desirability scores to reflect the goals
of the optimization.

Depending on how the decision-maker values the different criteria, different suppliers
are identified as best. Table 7.3 shows several different choices of weights using the additive
form of the desirability function, and the best supplier for each combination. Note how the
final column matches the scaled cost column in Table 7.2, since all of the weight is place
on the cost. For the first three columns, there is some balancing of objectives being done,
with a larger weight on one objective giving a result closer to that end of the Pareto front.

The idea of synthesized efficiency [Lu and Anderson-Cook (2012)] allows comparison
between any choice and the best available choice at a specified weight combination. For
example, if we are interested in comparing how well different alternatives compared when(
wC, wQ

)
= (0.25, 0.75), then the synthesized efficiency compares the desirability function

value for a supplier to the best supplier, here supplier C with a desirability function value
of 0.8130. Hence the synthesized efficiency score for suppliers B and J are 0.25/0.8130
= 0.308 and 0.8043/0.8130 = 0.989, respectively. Hence, we can see that while supplier
J is not optimal for this weight combination, it performs extremely well compared to the
best available, and would represent only a small sacrifice from optimal. Obviously, the best
value for a given weight combination has synthesized efficiency of value 1.

TABLE 7.3 Additive Desirability Function Values for Suppliers for Different Weights with
Best Choice for Each Weight Combination Shown in Bold

wC = 0.25 wC = 0.5 wC = 0.75 wC = 1.0
Supplier wQ = 0.75 wQ = 0.5 wQ = 0.25 wQ = 0.0

B 0.2500 0.5000 0.7500 1.000
F 0.4790 0.6050 0.7310 0.857
K 0.4875 0.5630 0.6385 0.714
J 0.8043 0.7265 0.6488 0.571
C 0.8130 0.6850 0.5570 0.429
G 0.7500 0.5000 0.2500 0.000
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Figure 7.3 Best supplier for each combination of desirability function weights between 0 and 1 for
cost and quality.

Since there may be multiple decision-makers involved in choosing a supplier, each with
potentially different agendas and priorities, it is helpful to consider the robustness of a
choice of supplier to different weight combinations. Figure 7.3 shows which suppliers are
best for any weight combination. This plot can be easily calculated by examining a finely
gridded set of weights, calculating the desirability function (with either the additive or
multiplicative form) for all choices on the Pareto front, and then selecting the maximum
value for each set of weights [see Lu, Anderson-Cook, and Robinson (2011)]. Note that
five of the six suppliers on the Pareto front are best for at least one combination of weights,
with only supplier K omitted. This often occurs for choices that are recessed from the
convex hull of the Pareto front. Both suppliers B and J are best for large proportions of the
weight ranges, but which one is preferred would be determined by how cost and quality are
prioritized in importance to the decision-maker. We emphasize that it is more important to
select a solution that matches the prioritization of the objectives than to select the choice
with the largest range of weights. However, in the vicinity of the desired weighting, selecting
a robust choice can be advantageous if there is uncertainty in determining a single best
choice of weights and if multiple decision-makers are involved in the process.

In addition to looking at which choices are best for different weights, examining the
contributions to the desirability function from each criterion can help understand the trade-
offs between different potential solutions. The trade-off plot in Fig. 7.4 shows the trade-off
plot [Lu, Anderson-Cook, and Robinson (2011)] for the supplier example, with the inside
axes showing the desirability score for each of cost and quality, while the outer axes show
the original values. Again, note how the minimum (best) and maximum (worst) costs on the
Pareto front have been assigned desirability scores of 1 and 0, respectively. Similarly the
maximum and minimum quality values are mapped to 1 and 0. When combined with the plot
in Fig. 7.3, we see that the suppliers who are best for high weightings of cost, like G and
C, have excellent desirability scores for cost, but do poorly on quality. Suppliers who are
selected as best for more balanced weighting of the two objectives have good desirability
scores for both cost and quality.

The severity of the trade-off between cost and quality can be measured with the area
under the Pareto front, after scaling with the desirability scores. Lu and Anderson-Cook
(2013) describe the generalized version of this area, the hypervolume. We consider an area
for 2 objectives (volume for 3, and hypervolume for 4+), which has maximum size of 1,
since each dimension is scaled between 0 and 1. The idea is that if there are minimal trade-
offs between objectives, then it is possible to find a solution quite close to the best possible
for each objective individually, then we obtain an area close to 1. If improving one objective
requires disproportionately large sacrifice from the other objective(s), then we obtain an
area close to 0. Values close to 0.5 correspond to similar amounts of sacrifice to gain by
moving between alternatives on the Pareto front. Figure 7.5 shows the scaled Pareto front
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TABLE 7.4 Central Composite Design with Three Responses

Natural Variables Coded Variables Responses

𝜉1 𝜉2 x1 x2 y1 (yield) y2 (viscosity) y3 (molecular weight)

80 170 −1 −1 76.5 62 2940
80 180 −1 1 77.0 60 3470
90 170 1 −1 78.0 66 3680
90 180 1 1 79.5 59 3890
85 175 0 0 79.9 72 3480
85 175 0 0 80.3 69 3200
85 175 0 0 80.0 68 3410
85 175 0 0 79.7 70 3290
85 175 0 0 79.8 71 3500
92.07 175 1.414 0 78.4 68 3360
77.93 175 −1.414 0 75.6 71 3020
85 182.07 0 1.414 78.5 58 3630
85 167.93 0 −1.414 77.0 57 3150

for the cost–quality example, with the step-function between available solutions used to
calculate the area. The step-function is recommended, since it is not possible to interpolate
between adjacent solutions to find a “compromise,” and hence the area should reflect only
those choices possible. The area under the Pareto front is 0.639, which shows that the
trade-off between the objectives is not unduly severe.

Example 7.2 A Three-Response Chemical Process Often there are more than two
objectives that are considered during the optimization, and they are the result of fitting
response surface models based on a designed experiment. As an illustration, consider the
experiment shown in Table 7.4. This is a central composite design in k = 2 variables,
conducted in a chemical process [see Montgomery (2013) for more details]. The two
process variables are time and temperature, and there are three responses of interest: y1 =
yield, y2 = viscosity, and y3 = number-average molecular weight. The goal is to maximize
yield, have viscosity near 65, and minimize molecular weight.

Simultaneous consideration of multiple responses involves first building an appropriate
response surface model for each response and then trying to find a set of operating conditions
that in some sense optimizes all responses or at least keeps them in desired ranges. We focus
initially on the yield response y1. Table 7.5 presents the output from Design-Expert for this
response. From examining this table we notice that the software package first computes the
sequential or extra sums of squares for the linear, quadratic, and cubic terms in the model
(there is a warning message concerning aliasing in the cubic model because the CCD does
not contain enough runs to support a full cubic model). Based on the small P-value for
the quadratic term, we decided to fit the second-order model to the yield response. The
computer output shows the final model in terms of both the coded variables

ŷ1 = 79.94 + 0.99x1 + 0.52x2 − 1.38x2
1 − 1.00x2

2 + 0.25x1x2 (7.3)

and the natural or actual factor levels

ŷ1 = −1430.52 + 7.807𝜉1 + 13.271𝜉2 − 0.0551𝜉2
1 − 0.04005𝜉2

2 + 0.0100𝜉1𝜉2
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Figure 7.6 Contour and response surface plots of the yield response in Table 7.4.

Figure 7.6 shows the three-dimensional response surface plot and the contour plot for
the yield response in terms of the process variables time and temperature. It is relatively
easy to see from examining these figures that the optimum is very near 176◦F and 87 min
of reaction time and that the response is at a maximum at this point. From examination
of the contour plot, we note that the process may be slightly more sensitive to change in
reaction time than to changes in temperature.

We obtain models for the viscosity and molecular weight responses (y2 and y3, respec-
tively) as follows:

ŷ2 = 70.00 − 0.16x1 − 0.95x2 − 0.69x2
1 − 6.69x2

2 − 1.25x1x2 (7.4)

ŷ3 = 3386.2 + 205.1x1 + 177.4x2 (7.5)

In terms of the natural levels of time (𝜉1) and temperature (𝜉2), these models are

ŷ2 = −9028.78 + 13.394𝜉1 + 97.685𝜉2 − 0.0275𝜉2
1 − 0.2675𝜉2

2 − 0.05𝜉1𝜉2

and

ŷ3 = −6308.0 + 41.021𝜉1 + 35.47𝜉2

Figures 7.7 and 7.8 present the contour and response surface plots for these models.

7.2 STRATEGIES FOR MULTIPLE RESPONSE OPTIMIZATION

We now outline a number of different approaches to selecting an optimal operating com-
bination of the design factors. The different tools reflect that decision-makers do not all
think about how to combine several objectives into a formal decision in the same way. The
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Figure 7.7 Contour plot and response surface plot of viscosity in Table 7.4.

tools also have varying ability to handle different numbers of design factors and responses
efficiently.

7.2.1 Overlaying Contour Plots

A relatively straightforward approach to optimizing several responses that works well when
there are only a few process variables is to overlay the contour plots for each response. [For
an early illustration of this approach, see Lind, Goldin, and Hickman (1960).] Figure 7.9
shows an overlay plot for the three responses in Table 7.4, with contours for which y1
(yield) ≥ 78.5, 62 ≤ y2 (viscosity) ≤ 68, and y3 (molecular weight Mn) ≤ 3400. These are
values that were judged to be close to the optimum for each response. If these boundaries
represent important conditions that must be met by the process, then as the unshaded

Figure 7.8 Contour and response surface plot of molecular weight in Table 7.4.
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Figure 7.9 Region of the optimum found by overlaying yield, viscosity, and molecular weight
response surfaces in Table 7.4.

portion of Fig. 7.9 shows, there are a number of combinations of time and temperature that
result in a satisfactory process. The experimenter can visually examine the contour plot to
determine appropriate operating conditions, and select a region that is most desirable given
other practical considerations. For example, it is likely that the experimenter would be most
interested in the larger of the two feasible operating regions shown in Fig. 7.9.

When there are more than three design variables, overlaying contour plots becomes
awkward, because the contour plot is two-dimensional, and k − 2 of the design variables
must be held constant to construct the graph. Often a lot of trial and error is required to
determine which factors to hold constant and what levels to select to obtain the best view
of the surface. Therefore, there is practical interest in more formal optimization methods
for multiple responses.

7.2.2 Constrained Optimization

Another popular approach is to formulate and optimize as a constrained optimization
problem. To illustrate, we might formulate the problem as

Max y1
subject to 62 ≤ y2 ≤ 68

y3 ≤ 3400

Here yield, y1, was chosen as the primary focus with y2 and y3 chosen to be close enough
to their ideal values. There are many numerical techniques that can be used to solve this
problem. Sometimes these techniques are referred to as nonlinear programming methods.
The Design-Expert software package solves this version of the problem using a direct search
procedure. The two solutions found are

Time = 83.5 Temp = 177.1 ŷ1 = 79.5
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and

Time = 86.6 Temp = 172.25 ŷ1 = 79.5

Notice that the first solution is in the upper (smaller) feasible region of the design space
(refer to Fig. 7.9), whereas the second solution is in the larger region. Both solutions are
very near to the boundary of the constraints.

In addition to direct search solutions, numerical optimization algorithms can be
employed to find the optimum. Del Castillo and Montgomery (1993) describe this approach
using the generalized reduced gradient (GRG) method. Carlyle et al. (2000) overview both
direct search and numerical optimization techniques.

There are many ways to use nonlinear programming techniques to formulate and solve
the multiple response optimization problem. Del Castillo (1996) describes an interest-
ing approach involving constrained confidence regions. Optimal solutions are found that
simultaneously satisfy confidence regions for the responses.

7.2.3 Desirability Functions

Introduced in Section 7.1, we return to the desirability function approach and provide
some additional details about its implementation. To tailor the desirability to different
prioritizations and to accommodate the ranges of options available for each response, several
desirability function structures are available. The goal is to allow flexible specification of
the desirability of alternatives and to adapt how quickly the desirability retreats from the
optimal.

First, we consider the individual desirability functions for each response, shown in
Fig. 7.10. If the objective of target T for the response y is a maximum value,

d =

⎧⎪⎪⎨⎪⎪⎩

0, y < L(
y − L

T − L

)r

, L ≤ y ≤ T

1, y > T

For the weight r = 1, the desirability function is linear, as shown in Fig. 7.10a. Choosing r
> 1 places more emphasis on being close to the target value, and choosing 0 < r < 1 makes
this less important. If the target for the response is a minimum value (Fig. 7.10b), then we
obtain

d =
⎧⎪⎨⎪⎩

1, y < T(
U − y

U − T

)r

, T ≤ y ≤ U

0, y > U
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Figure 7.10 Individual desirability functions for simultaneous optimization y. (a) Objective (target)
is to maximize y. (b) Objective (target) is to minimize y. (c) Objective is for y to be as close as possible
to the target.

The two-sided desirability shown in Fig. 7.10c assumes that the target is located between
the lower (L) and upper (U) limits, and is defined as

d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, y < L(
y − L

T − L

)r1

, L ≤ y ≤ T
(

U − y

U − T

)r2

, T ≤ y ≤ U

0 y > U

Recall that the form of the desirability function to combine the different criteria can
change how much good performance by one or more of the responses can overcome the
penalty for poor performance of another. The additive form of the desirability in Equation 7.1
allows excellent performance of one response to overcome very poor performance of
another response. The multiplicative form in Equation 7.2 protects more heavily from poor
performance on any single response.

The Design-Expert software package was used to apply the desirability function
approach to the chemical problem in Table 7.4. We chose T = 80 as the target for the
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Figure 7.11 Desirability function response surface and contour plot for the problem in Table 7.4.
(a) Response surface. (b) Contour plot.

yield response, with L = 70, and we set the weight for this individual desirability equal to
unity. We set T = 65 for the viscosity response with L = 62 and U = 68 (to be consistent
with specifications), with both weights r1 = r2 = 1. Finally, we indicated that any molecular
weight between 3200 and 3400 was acceptable. A multiplicative combining desirability
function with equal weights for all three responses, D = (d1d2d3)1∕3, was selected. Two
solutions were found.

Solution 1:
Time = 86.1 Temp = 170.3 D = 0.929
ŷ1 = 78.6 ŷ2 = 65 ŷ3 = 3319

Solution 2:
Time = 80.3 Temp = 179.2 D = 0.855
ŷ1 = 77.3 ŷ2 = 65 ŷ3 = 3400

Solution 1 has the highest overall desirability. Notice that it results in on-target viscosity and
acceptable molecular weight. This solution is in the larger of the two operating regions in
Fig. 7.9, whereas the second solution is in the smaller region. Figure 7.11 shows a response
surface and contour plot of the overall desirability function D.

Design-Expert uses direct search methods to maximize the desirability function D.
Because the individual desirability functions are not differentiable, numerical optimization
methods such as the GRG cannot be used directly. However, Del Castillo, Montgomery,
and McCarville (1996) show how the individual desirability functions can be replaced with
polynomial approximations that are everywhere differentiable so that the GRG and other
derivative-based optimization algorithms can be employed.

7.2.4 Pareto Front Optimization

Introduced in Section 7.1, the Pareto front approach is commonly used in many engineering
and operations research applications to eliminate noncontenders and to provide a smaller
rational subset of candidates to consider in more detail.
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The method consists of two sequential steps: (1) an objective step, where the Pareto front
is constructed from available candidates and poor candidates (for which a solution on the
Pareto front at least as good is available) are discarded as unworthy of further consideration,
and (2) a subjective step, where solutions from the Pareto front are examined and compared
to find the best match to the goals of the study. While the initial reaction to hearing about a
step being subjective might sound undesirable, it is actually very advantageous to be able
to tailor the choice of the best conditions under which to operate to match what is important
to the decision-maker.

A solution is said to Pareto dominate another if all of its criteria values are at least as
good, and at least one is strictly better. The Pareto set is the set of all solutions that are
not Pareto-dominated by others, and the vectors of their response values form the Pareto
front in the response space. The Utopia point is defined to be the set of response values
which correspond the best available for each response. Hence, for the chemical process,
these would correspond to the maximum estimated yield, minimum molecular weight and
viscosity value closest to the target of 65. From looking at the overlaid contour plot in
Fig. 7.8, it is clear that the best values for each response lie in different regions of the
design space, and hence (as is most often the case) the Utopia point is not attainable.
Geometrically, we can think of the Pareto set as the set of points on the outer edge of all
obtainable solutions closest to the Utopia point.

Unlike the cost-quality optimization in Section 7.1 where the available choices were
already enumerated, when we are optimizing over multiple estimated responses to obtain
a best solution, we must first create a set of solutions with available response values from
which we can identify the Pareto set. Summarizing results from Chapman et al. (2014a) for
the two-factor, three-response chemical example, a grid of 630 points was created inside
the circular design region defined by the central composite design. The range of values

considered was inside a circle of radius
√

2 for scaled time and temperature. The fineness
of the grid was selected to be 0.1, to match what experimenters thought was the smallest
discernible difference that could be implemented in production. Figure 7.12 shows the grid
of points, with numeric labels (going left to right, row by row from the bottom) shown on
the left side. The scaled time and temperature values are shown on the bottom and left axes,
while the original scales are shown on the top and right.

The grid point coordinates are combined with Equations 7.3, 7.4, and 7.5 to obtain 630
sets of values that can be used to find the Pareto front, shown as the 181 solid circles
(∙) in Fig. 7.12. The remaining 449 locations shown with open circles (◦) are not in the
Pareto set and do not represent choices of design locations that should be considered
further given the optimization objectives. Hence at the conclusion of the objective step
of Pareto optimization, a substantial reduction in candidates to consider has already been
achieved.

Since the decision-maker must ultimately decide on a single location on which to
focus for future production, the subjective stage of Pareto optimization uses elements of
the desirability function approach to highlight how different locations on the Pareto front
perform for various prioritizations of the responses. Similar to Section 7.2.3, a multiplicative
desirability functional form is selected, but here the scaling of the desirability of each
response relative to the optimum was chosen based on the range of values from the Pareto
front. The best observed value was scaled to 1, while the worst value on the Pareto front
was scaled to 0.

A substantial advantage of the Pareto front approach is that with the reduced number
of candidate locations under consideration, it is possible to examine all possible weight
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Figure 7.12 Grid points in design space used to approximate yield, viscosity, and molecular weight
values. Solid circles are design locations on the Pareto front.

combinations of how to value the different responses. Figure 7.13 shows a mixture plot of
all possible weight combinations for the desirability function

D = d
wyield

yield d
wVisc
Visc d

wMW
MW (7.6)

where wYield + wVisc + wMW = 1. Details about mixtures are given in Chapter 12, but the
key features of the mixture plot for comparing the performance of different weightings of
the response optimizations are as follows: Vertices denote assigning 100% of the weight
to a single response. For example, the top vertex shows the best location when all weight
is assigned to molecular weight. Edges assign nonzero weight to the two responses on
that edge, with a zero weight assigned to the other response. Interior points have nonzero
weights for all three responses. Moving closer to a vertex increases the weighting of that
response.

From Fig. 7.13, we see that for near-equal weighting of the three responses (near the
centroid of the triangle), locations 75–79 provide the best balance of trade-offs between
responses. These locations correspond to scaled temperatures of −0.9 and scaled times
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Figure 7.13 Mixture plot identifying best design locations in Fig. 7.12 for all possible weight
combinations of response desirability scores.

ranging from −0.4 to 0. Table 7.6 shows some of the design space locations that are best
for larger proportions of the weighting space. By examining the set of all possible weights,
it allows the decision-maker to have a better understanding of which regions perform well
for different priorities. Figure 7.14 shows the trade-off plot of different solutions sorted
by yield, with the inner axes showing the desirability score and the outer axes showing
the original response values. From this plot it is clear why the locations between 75 and
79 are best for nearly equal weighting of the responses. Most other solutions have at least

TABLE 7.6 Promising Design Locations with Their Estimated Responses and Percentage of
Mixture Area

Coded Natural
Variables Variables Estimated Responses

Location x1 x2 𝜉1 𝜉2 ŷ1 ŷ2 ŷ3 % Area

73 −0.6 −0.9 82 170.5 77.70 64.61 3103.48 1.44%
74 −0.5 −0.9 82.5 170.5 77.93 64.78 3123.99 2.38%
75 −0.4 −0.9 83 170.5 78.14 64.94 3144.47 16.54%
76 −0.3 −0.9 83.5 170.5 78.31 65.08 3164.99 16.68%
77 −0.2 −0.9 84 170.5 78.46 65.21 3185.50 5.07%
78 −0.1 −0.9 84.5 170.5 78.57 65.33 3206.03 4.43%
79 0 −0.9 85 170.5 78.66 65.44 3226.54 3.04%
90 −1.1 −0.8 79.5 171 76.35 64.72 3018.62 1.26%
91 −1 −0.8 80 171 76.72 64.95 3039.13 8.16%
92 −0.9 −0.8 80.5 171 77.05 65.16 3059.69 3.70%
484 0.2 0.6 86 178 80.06 66.81 3533.60 0.29%
530 −0.1 0.8 84.5 179 79.58 65.07 3507.61 1.87%
531 0 0.8 85 179 79.71 64.96 3528.05 11.82%
532 0.1 0.8 85.5 179 79.82 64.84 3548.63 1.10%
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Figure 7.14 Trade-off plot of design locations that are best for at least one weight combination of
the desirability scores of yield, viscosity and molecular weight.

one desirability score below 0.5, while for the 75–79 locations there are no very poor
performers. For other locations in the plot, there are one or two good values, but coupled
with at least one poor value.

Recall that the overall goal is to identify a single location in the design space at which
future production will run. Hence, once we have identified several candidate locations, it is
helpful to understand their performance better. The synthesized efficiency plot introduced
in Lu and Anderson-Cook (2012) looks at how individual locations perform relative to
the best available at any given weight combination. In Section 7.1 we considered the
synthesized efficiency value for a single weight combination, while now we expand this
to look at all of these values across the various weight combinations. Figure 7.15 shows
the synthesized efficiency plots for 4 locations that are best for very different weight
combinations in Figure 7.13. For a fixed weight in Equation 7.6, the desirability function
value for the shown location is divided by the best available desirability function value
from any location, and this calculation is replicated for all possible weight combinations.
An efficiency of 100% means that this design location equals the best possible. Shades
of white, gray, and black show deterioration of performance relative to the best possible,
with each shade denoting a drop of 5%. Hence solid white means that the chosen location
is at least 95% efficient. The white region for location 76 indicates that is very close to
best for large proportions of the weightings. Location 91 is best when molecular weight
and/or viscosity are weighted heavily. Location 484 is best for heavy weighting of yield,
while location 531 favors strong weighting of yield or viscosity. The dark regions indicate
that these locations perform poorly for some weight combinations and should be avoided
if these weights represent important prioritizations of the responses.

If near-equal weighting of the responses is desired, then location 76 with coordinates(
x1, x2

)
= (−0.3,−0.9) might be a good choice. If yield were deemed more important, then

484 with
(
x1, x2

)
= (0.2, 0.6) or some location near it would provide good performance.

To summarize the performance of the selected location across the range of different weight
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Figure 7.15 Synthesized efficiency plots for some selected design locations.

combinations, the fraction of weight (FWS) space plot [Lu et al. (2013)] can be used. The
plot shown in Fig. 7.16 provides an overall, quantitative summary of the performance of
an individual location across the entire weighting space and can be used to easily compare
competing solutions. The line for each location plots the fraction of the weighting space in
the triangle shown in Fig. 7.13 for which the location’s synthesized efficiency is at least the
specified percentage. To calculate the values for the curve, the desirability function values
for all sets of weights are divided by the best available desirability function value at that
weight combination.

From Fig. 7.16, it is clear that location 76 has the more robust performance across the
entire range of weight combinations, but this does not mean that this is the better location
to select. The highest priority should be to match the objectives of the optimization to the
weight combination, and select based on this. However, the FWS plot can be helpful for
showcasing the robustness of the alternatives across a range of weight combinations of inter-
est. The FWS plot can also be used to summarize the synthesized efficiency for just a portion
of the weight space [Lu, Chapman, Anderson-Cook (2013)]. An alternate version of the
plot could show the efficiencies relative to the best available locations for just the portion of
the weight space of interest. For example, the FWS plot for location 76 could highlight per-
formance for only those weight combinations near equal weighting of the three responses.
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Figure 7.16 Fraction of weight space plot for locations 76 and 484 in Fig. 7.12.

Hence, the Pareto front approach provides a two-step process for eliminating infe-
rior choices from further consideration, and then a variety of graphical tools to allow
exploration and understanding of performance for different priorities. If several stakehold-
ers are involved in the decision-making process, having tools to visualize the trade-offs
between alternatives can be helpful to facilitate compromise and consensus. The Pareto
front approach can be applied for any number of responses, although the number of solu-
tions found tends to increase quickly if many responses are considered. In addition, the
visualization tools become more difficult to adapt with more than four responses.

7.2.5 Other Options for Optimization

In addition to the approaches illustrated above, several creative ideas have been put forth
in the literature, and some enjoy considerable use in industry. We give a brief overview of
these other methods.

Dual Response Approach In the case of two responses, a useful technique termed the
dual response approach was introduced by Myers and Carter (1973). It is assumed that
the two responses can be categorized as primary and secondary. The goal then involves
the determination of conditions x on the design variables that produces max ŷp(x) [or min
ŷ(x)] subject to a constraint on ŷs(x). Here ŷ p(x) is the primary response function and ŷs(x)
is the secondary response function. The methodology, which is not unlike ridge analysis
discussed in Chapter 6, produces a locus of coordinates in which various values of ŷs(x)
are considered. For example, in a yield–cost scenario one might let the secondary response
be yield and determine conditions on x that minimize cost for fixed satisfactory levels
of yield. This approach was the forerunner of more sophisticated nonlinear programming
procedures. Biles (1975) and Del Castillo and Montgomery (1993) discuss the extension
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of this concept to more than two responses. Del Castillo, Fan, and Semple (1997) discuss
computing global optima in dual-response systems, and Fan (2000) gives a Fortran program.
Also see Lin and Tu (1995).

Khuri–Conlon Approach Khuri and Conlon (1981) introduced a procedure that is based
on a distance function that computes the overall closeness of the response functions to their
respective optima at the same set of conditions. That is, it gives a measure of closeness to
the ideal optimum. One then finds conditions on x that minimize this distance function over
all x in the experimental region. The distance function they use is

[ŷ(x) − θ]′
∑−1

ŷ(x)
[ŷ(x) − θ]

where ŷ(x) is the vector of estimated responses at the point x, Σŷ(x) is the covariance matrix
for the estimated responses at this location, and θ is the vector of target values or ideal
optimal values for the responses. The optimum value of x would minimize this distance
function. A very nice aspect of this approach is that it considers directly the correlation
structure of the responses and the quality of the response predictions. However, it does not
allow the analyst to create appropriate priorities for the individual responses.

Squared Error Loss Approaches Several authors have recommended approaches based
on squared error loss (indeed, the Khuri–Conlon method is a squared error loss procedure).
For example, see Pignatiello (1993), Ames et al. (1997), and Vining (1998). In Vining’s
approach the squared error loss function is

L = [ŷ(x) − θ]′C[ŷ(x) − θ]

where C is a positive definite matrix of weights or costs. He minimizes the expected loss

E(L) = {E[ŷ(x)] − θ}′C{E[ŷ(x)] − θ} + Trace
[
C
∑

ŷ(x)

]

The estimated expected loss is

Ê(L) = [ŷ(x) − θ]′C[ŷ(x) − θ] + Trace
[
C
∑

ŷ(x)

]

There are several different choices for the matrix C.

7.3 A SEQUENTIAL PROCESS FOR OPTIMIZATION—DMRCS

To this point, we have described different tools for the optimization process. We now
consider how to organize a progression of steps into making a structured decision that
is defensible and rational. A five-step process was described in Anderson-Cook and Lu
(2015) to evaluate and balance competing objectives in a structured and defensible way,
while still allowing the flexibility to incorporate and evaluate different subjective weightings
of the facets of the decision. Similar to the DMAIC (Define–Measure–Analyze–Improve–
Control) process popularized by Six Sigma, this complex process is broken into distinct
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steps and highlight some of the important aspects of each. The five steps are: Define–
Measure–Reduce–Combine–Select.

DEFINE—Like with the DMAIC process, the first step is to clarify the scope of the
optimization by identifying the problem to be solved, the appropriate responses to consider,
and what the appropriate design factors and ranges over which to optimize. This step is
critical for framing the key components of the decision to ensure that the correct problem is
solved. For optimizing multiple responses, it is important to make sure that all key facets of
the decision are represented with an appropriate response. It is important to think broadly
about diverse responses that are important to the decision, and not have multiple metrics
for similar dimensions.

MEASURE—The second step that is also common to the DMAIC process is measure.
This focuses on the need to be confident that we have high-quality data on which to base
the decision. The facets of the decision, here the responses from the designed experiment,
need to be precisely and accurately measured to allow fair and consistent comparisons
between potential solutions. In addition, it is beneficial to verify that the setting of the input
factor levels is done as precisely as possible. If high-quality quantitative measures of the
responses cannot be used, then the quality of the decision may be compromised.

REDUCE—The third step focuses on reducing the optimization in several different
dimensions. First, optimizing based on too many responses may lead to mediocre values
for any response individually, as the trade-offs between responses generally increase as
the number of facets considered increases. Hence, some triage of the response may lead
to reduction in the number considered, as highly correlated responses or those measuring
secondary objectives may be set aside. The second type of reduction to consider is to
eliminate noncontending solutions from further consideration. The Pareto front described
in Section 7.2.4 is an objective and rational way to include only those options that are
suitable for further consideration. Trimming the number of solutions considered allows
more meaningful exploration of the alternatives, but it is reassuring to use an approach that
will not spuriously eliminated any worthwhile choices.

COMBINE—Next, we consider ways of combining the different metrics, often mea-
sured on different scales, into comparable forms. Many of tools described in Section 7.2
represent alternatives that merge the Reduce and Combine steps into a single operation.
Overlaying contours, constrained optimization, or the desirability function approach with
specific weights all provide ways of eliminating portions of the design space, and narrowing
the focus to more manageable numbers of alternatives, based on a specified description of
how to combine the multiple responses into a self-contained optimization goal.

The Pareto front approach separates these two steps into objective and subjective steps,
with the construction of the front objectively eliminating noncontenders, while the subjec-
tive step allows for prioritizing these choices based on the goals of the optimization and
the importance of the different responses. The Combine step allows examination of leading
contenders while incorporating and evaluating our priorities for a good final solution. Using
appropriately scaled individual desirability functions and a functional form for combining
these into a single expression is the key to understanding the important trade-offs. An
advantage of the Pareto front approach is that it has straightforward tools for examining
the robustness of the result across several different priorities with quick examination of the
impact of different weighting, scaling, and metric forms on the decision.

SELECT—At the conclusion of the Select step, the goal is to have identified a best
location in the design space that suitably optimizes the response values in a way that best
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matches the priorities of the study. Using graphical tools to help understand the relative
merits and weaknesses of the alternatives can help build a team consensus if the goals of
multiple decision-makers are divergent. In addition, it provides tools to formally justify
the particular choice. If several choices perform similarly, an effective way of choosing
between these options is to compare their performance on the supplementary criteria, such
as cost and ease of implementation.

Once a final decision has been made, it is appropriate to verify that the results obtained
from a particular combination of design factor levels yield the desired results in full-scale
operation.

The use of a structured approach to optimization can greatly help with both its imple-
mentation and the quality of results obtained. Omitting careful definition of the optimization
to match study goals, imprecise measurement of the inputs or response, and too much of a
“black box” approach to optimization can lead to results that are not a good match for the
overall intent of the process.

7.4 INCORPORATING UNCERTAINTY OF RESPONSE PREDICTIONS
INTO OPTIMIZATION

In Section 7.2.4 solutions using the Pareto front approach were identified for the two factor
chemical process optimization for yield, viscosity and molecular weight. However, the
optimization was based on the point estimates for the responses from Equations 7.3, 7.4,
and 7.5. These equations do not take into account the natural variability associated with
each response, and hence the predicted values for each of the responses as the selected
optimum design location might not be attained in production when implemented.

We now consider two alternatives for optimization which take into account the natural
variability in the responses, and how they might impact our choice of where to operate. The
first approach is a conservative one that replaces the point estimates of the responses with
the worst-case result based on the response’s prediction interval at any location. Recall
from Section 2.6 that the equation for a prediction interval of a new observation using the
model parameter estimates is

ŷ(x0) ± t 𝛼
2

,n−p

√
�̂�2

(
1 + x′0(X′X)−1x0

)

where ŷ(x0) = x′0𝛽 is the point estimate from Equation 7.3–7.5 for each of the responses
at a given design location, and t 𝛼

2
,n−p is a quantile from the t-distribution. Suppose interest

lies in basing results on the 95% prediction intervals for the responses. First, we define
the worst-case outcome for each of the three responses. Since we want to maximize yield,
the least desirable outcome is the lower bound of the 95% prediction interval, since this is
furthest away from the maximum. Similarly, for minimizing molecular weight, we select
the upper bound of the prediction interval to be conservative. For viscosity, where the goal
is to be as close to the target of 65 as possible, we find the maximum distance from 65, by
looking at how far either the upper or lower bound is from the target.

These values are obtained for each response for all 630 grid locations shown in Fig. 7.12,
and they are used as the basis for constructing the Pareto front. Details of this optimization
are given in Chapman et al. (2014a), with the grid locations identified as in the Pareto
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set being quite similar to those selected with the point estimates. However, depending on
the relative size of the natural variability between the different responses, the Pareto front
locations could change. With this optimization, the values identified for the chosen location
in the design space correspond to the worst-case bound of the 95% prediction interval
values. Hence when the solution is implemented, the user should be confident in at least
attaining these values, with a good probability of exceeding them.

A second, more comprehensive approach is described in Chapman et al. (2014b), which
uses simulation of the estimated model parameters for each of the responses to characterize
performance of the Pareto front and its optimizing results. In the initial stage, the results
of the regression analysis shown in Table 7.5 and corresponding versions for the other
responses are used to generate a large number of sets of model parameter values consistent
with the observed data. These values are then used to obtain response surfaces representative
of the plausible relationship between the inputs and the responses. Recall from Chapter 2
that for each of the responses the model parameter estimates have a Normal distribution
centered at the true but unknown model parameters, �̂� ∼ MVN(𝜷, 𝜎2(X′X)−1) and that we
can estimate the variability with �̂�2 = MSE = SSE

n−p
.

To generate new response surfaces, we repeatedly simulate new �̂�
∗’s consistent with the

model parameter estimates, with the following process:

1. Identify and fit the appropriate model of the form yr = Xr𝜷r + 𝜺r for each response
variables.

2. For each of the m response variables, randomly generate 𝜷r
∗

from
MVN(𝜷r, �̂�2

r (X′
rXr)

−1), r = 1,… , m.

3. For each of the m response variables, use the simulated coefficients to approximate
the response surface over a grid of points in the design region of interest. In the
chemical process example, we use a grid of 630 locations inside the circle of radius√

2. This collection of response surfaces serves as the basis for understanding of the
impact of estimation uncertainty.

In the next objective stage, the goal is to summarize how the uncertainty from individual
responses propagates to changes in the Pareto fronts. Using the fronts for each simulated
surface, a variation of the plot shown in Fig. 7.12 can be used to summarize the frequency
with which design locations appear on the front. Combinations that appear infrequently
can be eliminated from further consideration. Figure 7.17 shows how often different points
in the grid appear on the collection of 500 simulated Pareto fronts, with larger points
corresponding to most frequently chosen locations. Note that the general shape of the
locations identified matches those identified when using the �̂� point estimates, but with
some calibration of how often we might expect those locations to be selected if the same
experiment were repeated and slightly different results obtained.

With an understanding of the Pareto front, the next step involves incorporating subjective
choices about the relative weighting of the different objectives and making a final selection
of a best location to operate to match the study goals. This process can be broken into several
substeps, including: (a) highlighting promising general solutions that are robust across a
larger number of weight combinations, (b) finding promising solutions for a more focused
region of the weight space, and (c) making a final choice after comparison of competitive
alternatives.
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Figure 7.17 Grid points in design space used to approximate yield, viscosity and molecular weight
values, with the size of the circle proportional to the frequency with which the location appears on
Pareto fronts in the simulation.

To start this step, a desirability function for converting each response to the desirabil-
ity score is selected, where now it is recommended to consider the complete range of
observed values from throughout the design space, as well as across all the simulated sets
of responses. With each of these individual desirability functions, a desirability function
form for combining them into a single measure is selected. Again, we select the multi-
plicative form for the chemical process example. An adapted trade-off plot is shown in
Fig. 7.18 for some of the solutions with larger areas in Fig. 7.13 with uncertainty intervals
obtained from the simulated values. This helps highlight what results might be expected
under regular operating conditions.

Once more specific weight combinations are selected to match the overall goal of the
study, then a more detailed examination of the alternatives can be performed. If weight
combinations with near-equal weights for the desirability of all three responses are of
interest, then Table 7.7 shows the most frequently selected location across all the simulation
for a selected weight combinations with weights between 0.2 and 0.4 for all responses. The
locations for a given label number are shown in Fig. 7.17. The choice for equal weights for
all responses is shown in bold.
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Figure 7.18 Trade-off plot of three responses with associated uncertainty derived from simulated
responses.

Alternatively, if weighting the desirability of yield is more important, then results for
the most commonly selected location in the design space for these priorities can be found.
Table 7.8 shows the most commonly selected locations when yield is weighted between
60 and 80% and the other responses are weighted between 10 and 20%. Note how which
region of the design space is preferred changes with different prioritizations. Chapman
et al. (2014b) provide additional details about how these choices can be compared and
evaluated.

To gain understanding about how the selected location performs for different weight
combinations, we can adapt the FWS plot shown in Fig. 7.16 for the analysis without

TABLE 7.7 Most Commonly Selected Design Location for Different Weight Combinations
with Near-Equal Weighting of Response Desirability

Weight Vector Top Location Weight Vector Top Location

(0.33, 0.4, 0.27) 79 (0.23, 0.4, 0.37) 76
(0.37, 0.37, 0.27) 80 (0.27, 0.33, 0.4) 77
(0.37, 0.4, 0.23) 508 (0.27, 0.37, 0.37) 77
(0.4, 0.33, 0.27) 508 (0.27, 0.4, 0.33) 77
(0.4, 0.37, 0.23) 509 (0.3, 0.3, 0.4) 77
(0.4, 0.4, 0.2) 509 (0.3, 0.33, 0.37) 77
(0.33, 0.27, 0.4) 78 (0.3, 0.37, 0.33) 78
(0.37, 0.23, 0.4) 100 (0.3, 0.4, 0.3) 78, 79
(0.37, 0.27, 0.37) 78 (0.33, 0.3, 0.37) 78
(0.4, 0.2, 0.4) 100 (0.33, 0.33, 0.33) 78
(0.4, 0.23, 0.37) 101 (0.33, 0.37, 0.3) 79
(0.4, 0.27, 0.33) 101 (0.37, 0.3, 0.33) 79
(0.2, 0.4, 0.4) 76 (0.37, 0.33, 0.3) 78
(0.23, 0.37, 0.4) 76 (0.4, 0.3, 0.3) 101
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TABLE 7.8 Most Commonly Selected Design Location
for Different Weight Combinations with Higher
Weighting of Yield Desirability

Weight Vector Top Location

(0.73, 0.1, 0.17) 405
(0.73, 0.13, 0.13) 432
(0.73, 0.17, 0.1) 460, 486
(0.77, 0.1, 0.13) 405
(0.77, 0.13, 0.1) 432
(0.8, 0.1, 0.1) 405
(0.7, 0.1, 0.2) 376
(0.7, 0.13, 0.17) 432
(0.7, 0.17, 0.13) 432
(0.7, 0.17, 0.13) 432
(0.6, 0.2, 0.2) 485
(0.63, 0.17, 0.2) 432
(0.63, 0.2, 0.17) 485
(0.67, 0.13, 0.2) 376
(0.67, 0.17, 0.17) 432
(0.67, 0.2, 0.13) 486

taking into account the uncertainty. Figure 7.19 shows the FWS plot for location 77 with
coordinates

(
x1, x2

)
= (−0.2,−0.9) (one that shows up frequently in Table 7.7) for the

entire range of weight combinations, as well as for just those weight combinations where
the weights for all response desirabilities are between 0.2 and 0.4. Note that there are now
uncertainty values associated with the curves, which summarize the range of synthesized
efficiencies observed across the simulations.
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Figure 7.19 Fraction of weight space plot for location 77 with coordinates (x1, x2) = (−0.2,−0.9)
for (a) the entire range of weight combinations and (b) weight combinations where weights for all
responses are between 0.2 and 0.4.



EXERCISES 357

In this example, the highlighted design locations are relatively similar between the
original analysis shown in Section 7.2.4 and those shown in this section. For the weight
combinations with each weight constrained between 0.2 and 0.4 for all three responses,
adjacent locations are identified. When we look at the predicted responses directly, the best
location might be chosen to be location 76 with coordinates (x1, x2) = (−0.3,−0.9), while
when we take into account uncertainty, location 77 with coordinates (x1, x2) = (−0.2,−0.9)
seems to perform slightly better.

The similarity in best locations for a particular goal is in part due to the relative narrow
differences in the variability between the various responses. To understand where incor-
porating the uncertainty in the responses might have the greatest impact, Chapman et al.
(2015) summarize several multiple interdependent aspects that influence the changes. If
we define a signal-to-noise ratio here as the range of values observed across the design
space divided by the natural variability, then this ratio plays an important role in the
stability of the Pareto front. The results associated with responses with a small signal-
to-noise ratio (the impact of changing the input values is small relative to the natural
variability) are more likely change than for those responses where the signal dominates
the natural variability. However, the relative priorities of the user are also important for
determining if the variability of different responses is likely to be influential. Both the
objective and subjective stages can show changes depending on how the natural variability
changes.

Taking into account the uncertainty in the anticipated responses and their impact on the
selection of a best design location to operate can be helpful for gaining confidence in future
performance at that location.

EXERCISES

7.1 For the data in Table E7.1:

(a) Find the Pareto front when the goal is to maximize both criteria.

(b) Based on a scaling of the desirability functions for each of the criteria based
on the entire data set (i.e., map the maximum value to 1 and the minimum

TABLE E7.1 Data for Exercises 7.1, 7.2, and 7.3

Obs Criterion1 Criterion 2 Obs Criterion1 Criterion 2

1 16 13 11 13 12
2 11 12 12 18 15
3 13 4 13 10 20
4 14 5 14 15 11
5 15 16 15 12 16
6 17 3 16 15 12
7 12 17 17 14 8
8 13 12 18 17 6
9 12 6 19 14 17
10 11 12 20 14 4
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value to 0) and using an additive desirability function for combining the
criteria,

(i) Find the observation that best when both criteria are weighted equally.

(ii) Find the observation that is best when Criterion 1 is weighted 75%.

(iii) Construct a mixture plot (similar to Fig. 7.3) to show which observations
are best for all weight combinations of the two criteria.

(iv) Find the area under the Pareto front based on this scaling.

(c) Repeat (b) with a multiplicative desirability function for combining criteria, and
compare the results.

(d) Based on a scaling of the desirability functions for each of the criteria based on
only those values shown on the Pareto front (i.e., map the maximum value to
1 and the minimum value to 0) and using an additive desirability function for
combining the criteria,

(i) Find the observation that best when both criteria are weighted equally.

(ii) Find the observation that is best when Criterion 1 is weighted 75%.

(iii) Construct a mixture plot to show which observations are best for all weight
combinations of the two criteria.

(iv) Find the area under the Pareto front based on this scaling.

7.2 For the data in Table E7.1:

(a) Find the Pareto front when the goal is to minimize both criteria.

(b) Based on a scaling of the desirability functions for each of the criteria based on
the entire data set and using a multiplicative desirability function for combining
the criteria,
(i) Construct a mixture plot to show which observations are best for all weight

combinations of the two criteria.

(ii) Find the area under the Pareto front based on this scaling.

(c) Based on a scaling of the desirability functions for each of the criteria based on
only those values shown on the Pareto front and using a multiplicative desirability
function for combining the criteria,
(i) Construct a mixture plot to show which observations are best for all weight

combinations of the two criteria.

(ii) Find the area under the Pareto front based on this scaling.

7.3 For the data in Table E7.1:

(a) Find the Pareto front when the goal is to get as close to the target value of 15 for
criterion 1 and minimize criterion 2.

(b) Based on a scaling of the desirability functions for each of the criteria based on
the entire data set and using a multiplicative desirability function for combining
the criteria, construct a mixture plot to show which observations are best for all
weight combinations of the two criteria.

(c) Repeat (c) using an additive desirability function and compare the results.

7.4 For the data in Table E7.2:

(a) Find the Pareto front when the goal is to minimize all three criteria.

(b) Find the three pairwise Pareto fronts, and compare the number of and which
observations on each of these with the front found in (a).
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TABLE E7.2 Data for Exercises 7.4

Obs C1 C2 C3 Obs C1 C2 C3

1 5 12 23 9 10 12 20
2 2 17 28 10 3 17 26
3 4 13 27 11 6 14 27
4 5 19 25 12 4 19 24
5 3 14 23 13 6 16 27
6 7 10 24 14 8 18 22
7 9 11 26 15 9 12 24
8 2 18 30 16 5 11 30

(c) Based on a scaling of the desirability functions for each of the criteria based on
the entire data set and using a multiplicative desirability function for combining
the criteria,

(i) Find the observation that best when all criteria are weighted equally.

(ii) Find the observation that is best when the weights for the three criteria are
(wC1, wC2, wC3) = (0.55, 0.3, 0.15).

(iii) Construct a table of weights that vary in increments of 0.1, find the obser-
vation that is best for each of the weight combinations.

(iv) Construct a trade-off plot (similar to Fig. 7.4) for the observations that are
found best in (iii).

(v) Based on the results of (ii)–(iv), which observation would you select
if the goals was to optimized for weight around (wC1, wC2, wC3) =
(0.55, 0.3, 0.15).

(d) Repeat (c) using an additive desirability function and compare the results.

7.5 Theoretical results for a manufacturing process suggest that the relationships
between two inputs, x1 and x2, scaled variables in [−1, +1], and the responses
of interest are as follows:

Yield = 60 + 13x1 − 7x2 + 5x1x2

Elasticity = 10 − x1 + 2x2 − 3x1x2 + x2
1 − 2x2

2

The goal of the optimization is to maximize yield while attaining a target value
of 11 for elasticity.

(a) Ignoring elasticity, where it the best region to operate to maximize yield?

(b) Ignoring yield, where is the best region to operate to obtain a response for
elasticity of 11?

(c) Find the location in the design space where the yield is maximized, con-
ditional on the equation for elasticity specifies exactly matching the target
of 11.

(d) Find the location in the design space where the distance from the target for
elasticity of 11 is minimized, subject to yield being at least 70.

(e) By overlaying contour plots, find the region(s) in the design space where yield
is greater than 70% and elasticity is between 10 and 12.



360 MULTIPLE RESPONSE OPTIMIZATION

7.6 Using the equations for yield and elasticity from Exercise 7.5,

(a) For a grid of points in [−1, +1] for x1 and x2 spaced 0.1 units apart, find the
Pareto front to maximize yield and get close to a target of 11 for elasticity. Plot
yield and elasticity values for points on the front, and compare them to all values
possible throughout the design space. How do the ranges of values compare for
each response for those in the design space versus on the Pareto front?

(b) With a multiplicative desirability function with the desirability score of yield
scaled between [0,1] for [50,100], and the elasticity desirability score of [0, 1]
for misses from the target of [6, 0],
(i) Find the best design location when yield and elasticity are equally weighted.

What is the value of the function for each response at this location?

(ii) Find the best design location when yield and elasticity are weighted
(wYield, wElasticity) = (0.75, 0.25)

(c) Repeat (d) with an additive desirability function, and desirability scores for each
response based on the observed ranges from the Pareto front.

7.7 In their paper, Derringer and Suich (1980) illustrate their multiple-response proce-
dure with an interesting data set. The central composite design given in Table E7.3
shows data obtained in the development of a tire tread compound on four responses:
PICO Abrasion Index, y1; 200% modulus, y2; elongation at break, y3; hardness, y4.
Each column was taken at the 20 sets of conditions shown, where x1, x2, x3 are
coded levels of the variables x1 = hydrated silica level, x2 = silane coupling agent
level, and x3 = sulfur. The following inequalities represent desirable conditions on

TABLE E7.3 Data for Exercises 7.7 and 7.8

Compound Number x1 x2 x3 y1 y2 y3 y4

1 −1 −1 1 102 900 470 67.5
2 1 −1 −1 120 860 410 65
3 −1 1 −1 117 800 570 77.5
4 1 1 1 198 2294 240 74.5
5 −1 −1 −1 103 490 640 62.5
6 1 −1 1 132 1289 270 67
7 −1 1 1 132 1270 410 78
8 1 1 −1 139 1090 380 70
9 −1.633 0 0 102 770 590 76
10 1.633 0 0 154 1690 260 70
11 0 −1.633 0 96 700 520 63
12 0 1.633 0 163 1540 380 75
13 0 0 −1.633 116 2184 520 65
14 0 0 1.633 153 1784 290 71
15 0 0 0 133 1300 380 70
16 0 0 0 133 1300 380 68.5
17 0 0 0 140 1145 430 68
18 0 0 0 142 1090 430 68
19 0 0 0 145 1260 390 69
20 0 0 0 142 1344 390 70
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the responses:

y1 > 120

y2 > 1, 000

400 < y3 < 600

60 < y4 < 75

(a) Fit appropriate response surface models for all responses.

(b) Develop two-dimensional contours (at x3 =−1.6, −1, 0, 1, 1.6) of constant
response for all four responses. Can you determine sets of conditions on x1, x2,
and x3 that meet the above requirements? If so, list them.

(c) Use the desirability function procedure to determine other competing conditions.

7.8 Reconsider the experiment in Exercise 7.7. Formulate and solve the optimization
problem using:

(a) y1, as the objective function (maximize y1).

(b) y2 as the objective function (maximize y2).

(c) Compare the answers obtained in parts (a) and (b) with the answer from the
desirability function approach in Exercise 7.7.

7.9 Reconsider the experiment in Experiment 7.7, with a focus on just the first two
responses.

(a) For a grid of points in [−1, +1] for x1, x2 and x3 spaced 0.1 units apart,
find the Pareto front based on two responses when the goal is to maximize y1
and y2.

(b) Based on a scaling of the desirability functions for each of the criteria based on
the Pareto front values and using an additive desirability function for combining
the criteria,

(i) Find the observation that is best when both criteria are weighted equally.

(ii) Find the observation that is best when Criterion 1 is weighted 75%.

(iii) Construct a mixture plot to show which observations are best for all weight
combinations of the two criteria.

(c) Repeat (a) and (b), where the grid of possible locations now is contained in the

sphere of the design space with radius of
√

3.

7.10 Reconsider the experiment in Exercise 7.7.

(a) For a grid of points in [−1, +1] for x1, x2 and x3 spaced 0.2 units apart, find
the Pareto front for the 4 responses when the goal is to maximize y1 and y2,
and minimize the distance between y3 and y4 and their respective targets of 500
and 70.

(b) Based on a scaling of the desirability functions for each of the criteria based on
the Pareto front values and using an additive desirability function for combining
the criteria,
(i) Find the location in the considered ranges of x’s that is best when all four

criteria are weighted equally.
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TABLE E7.4 Data for Exercises 7.11 and 7.12

x1 Time x2 Temperature x3 Catalyst y1 Conversion y2 Activity

−1 −1 −1 74.00 53.20
1 −1 −1 51.00 62.90

−1 1 −1 88.00 53.40
1 1 −1 70.00 62.60

−1 −1 1 71.00 57.30
1 −1 1 90.00 67.90

−1 1 1 66.00 59.80
1 1 1 97.00 67.80

−1.682 0 0 76.00 59.10
1.682 0 0 79.00 65.90
0 −1.682 0 85.00 60.00
0 1.682 0 97.00 60.70
0 0 1.682 55.00 57.40
0 0 1.682 81.00 63.20
0 0 0 81.00 59.20
0 0 0 75.00 60.40
0 0 0 76.00 59.10
0 0 0 83.00 60.60
0 0 0 80.00 60.80
0 0 0 91.00 58.90

(ii) If one experimenter is not interested in the fourth response, find the
location that is best when all three of the remaining criteria are equally
weighted.

(iii) Find the location in the considered ranges of x’s that is best for

(
wY1, wY2, wY3, wY4

)
= (0.7, 0.1, 0.1, 0.1)

(c) Repeat (a) and (b), where the grid of possible locations now is contained in the

sphere of the design space with radius of
√

3.

7.11 Consider the chemical process experiment in Table E7.4. Find appropriate response
surface models for both responses.

(a) Use contour plots to find conditions where the conversion y1 is maximized and
the thermal activity y2 is between 55 and 60.

(b) Rework part (a) using a constrained optimization formulation.

(c) Rework part (a) using the desirability function approach, but assume that it is
necessary to make the thermal activity as close to 57.5 as possible.

7.12 Reconsider the experiment in Exercise 7.11.

(a) For a grid of points in the sphere of the design space with radius of
√

3 for
x1, x2 and x3 spaced 0.2 units apart, find the Pareto front for the two responses
when the goal is to simultaneously maximize conversion, y1, and minimize the
distance between y2 and its target of 57.5.
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(b) Based on a scaling of the desirability functions for each of the criteria based
on only those values shown on the Pareto front and using a multiplicative
desirability function for combining the criteria, construct a table to show which
design locations are best for all weight combinations (0, 0.1, 0.2, …) of the two
criteria.

(c) Plot a trade-off plot of the design locations identified in (b).

(d) Calculate the synthesized efficiency for all weight combinations in (b) for the
following design locations:

(i) Current operating conditions at (x1, x2, x3) = (0, 0, 0).

(ii) (x1, x2, x3) = (1, 1, 1).

(iii) The design location that is best when the weights for all three response
desirabilities are equal [use your results from (b)].

7.13 Reconsider the experiment in Exercise 6.2 and Table E6.1 involving the heat transfer.
Using the estimated responses and locations for maximizing thermal efficiency and
transfer efficiency obtained in Exercise 6.2,

(a) Obtain a point estimate the value of transfer efficiency when thermal efficiency
is maximized.

(b) Obtain a 95% prediction interval for the values of the two responses when
transfer efficiency is maximized.

(c) If the chemical engineer requires that y2 exceeds 60. Find levels (natural) of the
inputs that maximize y1 subject to the constraint that y2 > 60.

(d) Find the set of locations for the Pareto front if the goal is to maximize both
transfer and thermal efficiency.

7.14 Reconsider the experiment in Exercise 6.8 and Table E6.7 involving computer net-
works. Using the estimated responses obtained in Exercise 6.8,

(a) Use appropriate software to find conditions that maximize ALU, subject to the
constraint that BLK is less than 0.005.

(b) Use the Derringer–Suich desirability function procedure to find optimal condi-
tions when ALU cannot be less than 0.5 and BLK cannot exceed 0.10.

(c) For a grid of points covering the design space with scaled values spaced 0.2
units apart, find the Pareto front for the two responses when the goal is to
simultaneously maximize ALU and minimize BLK.

(d) Based on a scaling of the desirability functions for each of the criteria based
on only those values shown on the Pareto front and using a multiplicative
desirability function for combining the criteria, construct a table to show which
design locations are best for all weight combinations (0, 0.1, 0.2, …) of the two
criteria.

7.15 The method given in the text is only one possible way to implement the desirability
function procedure. Below are two variations of the procedure.

1. Fit a separate response surface for each of the m responses. Create d1, d2,… , dm
and then D = (

∏m
l=1 di)

1∕m at each design point according to values of the fitted
response (the ŷi). Then build a response surface with

D = f (x1, x2,… , xk)
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and find conditions on x that maximize D. One could then make use of canonical
analysis, possibly ridge analysis, and so on.

2. Compute d1, d2,… , dm and D at each design point according to the individual
observations—that is, the values y1, y2,… , ym. Then build a response surface
with the computed response D, and use appropriate methodology for rinding x
that maximizes D.

How do you think these two methods will perform as multiple-response optimization
techniques?

7.16 Admassu and Breese (1999) performed an experiment to evaluate the ability of
fishbone to sequester aqueous divalent heavy metals through absorption. The data
from a 24 factorial experiment with two replicates are given Table E7.5. The levels
for each of the three factors are 30 (−1) and 60 mg (+1) per 200 ml metal solution for
apatite, 4 (−1) and 7 (+1) for pH. The initial lead concentration was 100 (−1) and 500
parts per million (+1). The two apatite types were fishbone (−1) and hydroxyapatite
(+1). Two measurements from separate replicates for each of the responses, final
lead concentration (FLC) and pH, are listed for each factor combination.

(a) Considering only the data for the fishbone (apatite type = −1), fit a first order
model with interactions for each of the responses.

(b) Find the location in the design space where the model predicts that the final lead
concentration is minimized.

(c) Calculate the desirability score for final lead concentration if the goal is to
minimize it (desirability = 1 if FLC is 0, and 0 if FLC is 2.0).

(d) Calculate the desirability score for pH if the target value is 5.5 (desirability =
1), with values more than 2 units away being scored as 0.

(e) For different additive desirability functions weights (wFLC, wpH) = (0,1), (0.2,
0.8), …, (0.8,0.2), (1,0), find the best location in the design space based on the
estimated responses found in (a) for fishbone.

TABLE E7.5 Data for Exercises 7.16 and 7.17

Apatite pH Initial Lead Concentration Apatite Type Final Lead Concentration Final pH

1 1 1 −1 1.82, 1.81 5.22, 5.12
1 1 −1 −1 0.01, 0.00 6.84, 6.61
1 −1 1 −1 1.11, 1.04 3.35, 3.34
1 −1 −1 −1 0.00, 0.01 5.77, 6.25

−1 1 1 −1 2.11, 2.18 5.29, 5.06
−1 1 −1 −1 0.03, 0.05 5.93, 6.02
−1 −1 1 −1 1.70, 1.69 3.39, 3.34
−1 −1 −1 −1 0.05, 0.05 4.50, 4.74

1 1 1 1 0.11, 0.12 3.49, 3.46
1 1 −1 1 0.00, 0.00 5.84, 5.90
1 −1 1 1 0.80, 0.76 2.70, 2.74
1 −1 −1 1 0.03, 0.05 3.36, 3.24

−1 1 1 1 1.03, 1.05 3.22, 3.22
−1 1 −1 1 0.00, 0.00 5.53, 5.43
−1 −1 1 1 1.34, 1.26 2.81, 2.79
−1 −1 −1 1 0.06, 0.07 3.28, 3.28
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7.17 Reconsider the experiment in Exercise 7.16 and Table E7.5 involving the apatite
data.

(a) Repeat the analysis in Exercise 7.16 for the data for the hydroxyapatite (apatite
type = 1).

(b) Which of the apatite types is more effective at reducing the final lead concentra-
tion?

(c) Comment on the similarity or difference in the recommended combination of
factors between the two types of apatites for the different weight combinations
of the desirability function explored.

7.18 Modi et al. (2001) describe an experiment to compare the wear rated of two materials,
a zinc-aluminum alloy and a composite. Three different factors affecting wear were
considered: the slide distance (x1 = −1 →25m, +1 →125m), applied load (x2 = −1
→1N, +1 →7N), and abrasive size (x3 = −1 →23μm, +1 →275 μm).

(a) Fit a model of the form

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽2x2 + 𝛽12x1x2 + 𝛽13x1x3 + 𝛽23x2x3 + 𝛽123x1x2x3 + 𝜀

for the wear rate of each material.

(b) For the zinc–aluminum alloy model, find the set of contours where the wear rate
is predicted to be 0.1.

(c) For the composite material, find the set of contours where the wear rate is
predicted to be 0.1.

(d) Find the location in the design space that simultaneously provides a wear rate
as close to 0.1 for both materials as possible. Note: Consider how to define a
measure that balances the performance of both materials.

7.19 Reconsider the experiment in Exercise 7.18 and Table E7.6 involving the abrasive
wear study.

(a) Using a 95% confidence interval based on the models estimated in Exercise
7.18, find the regions in the design space where the estimated model might be
expected to produce a value for the wear rate of 0.1.

(b) Repeat (a) using a 95% prediction interval.

(c) Based on the results from (a) and (b) for the zinc–aluminum alloy and the com-
posite material, discuss how likely it is to have to two materials simultaneously
give similar results for a wear rate of 0.1.

TABLE E7.6 Data for Exercises 7.18 and 7.19

Sliding Distance Applied Load Abrasive Size Zinc Wear Rate Composite Wear Rate

1 1 1 0.192 0.112
1 1 −1 0.133 0.054
1 −1 −1 0.044 0.006

−1 −1 −1 0.049 0.011
−1 1 1 0.358 0.275
−1 −1 1 0.041 0.018

1 −1 1 0.03 0.006
−1 1 −1 0.22 0.0099



366 MULTIPLE RESPONSE OPTIMIZATION

TABLE E7.7 Data for Exercises 7.20 and 7.21

X1 X2 X3 X4 Y1 Y2

1 250 60 1 2.58 0.24
1 250 60 2 1.32 0.26
1 250 60 3 0.61 0.5
1 250 73 1 2.56 0.25
1 250 73 2 1.37 0.25
1 250 73 3 0.74 0.31
1 250 85 1 2.75 0.25
1 250 85 2 1.72 0.25
1 250 85 3 0.98 0.25
1 275 60 1 2.8 0.24
1 275 60 2 1.89 0.26
1 275 60 3 1.3 0.42
1 275 73 1 3.04 0.25
1 275 73 2 2.09 0.25
1 275 73 3 1.55 0.27
1 275 85 1 3.35 0.25
1 275 85 2 2.41 0.25
1 275 85 3 1.9 0.25
1 300 60 1 3.87 0.24
1 300 60 2 2.84 0.25
1 300 60 3 2.38 0.3
1 300 73 1 4.26 0.25
1 300 73 2 3.18 0.25
1 300 73 3 2.7 0.26
1 300 85 1 4.64 0.25
1 300 85 2 3.5 0.25
1 300 85 3 3 0.25
2 250 60 1 2.51 0.25
2 250 60 2 1.32 0.51
2 250 60 3 0.6 0.94
2 250 73 1 2.65 0.25
2 250 73 2 1.47 0.3
2 250 73 3 0.75 0.58
2 250 85 1 2.71 0.25
2 250 85 2 1.63 0.25
2 250 85 3 0.86 0.29
2 275 60 1 3.39 0.24
2 275 60 2 2.2 0.43
2 275 60 3 1.31 0.68
2 275 73 1 3.29 0.24
2 275 73 2 2.14 0.27

X1 X2 X3 X4 Y1 Y2

2 275 73 3 1.33 0.49
2 275 85 1 3.34 0.25
2 275 85 2 2.26 0.25
2 275 85 3 1.44 0.27
2 300 60 1 3.88 0.24
2 300 60 2 2.71 0.31
2 300 60 3 1.82 0.53
2 300 73 1 3.89 0.25
2 300 73 2 2.68 0.26
2 300 73 3 1.81 0.38
2 300 85 1 3.88 0.25
2 300 85 2 2.46 0.25
2 300 85 3 1.72 0.26
3 250 60 1 1.8 0.93
3 250 60 2 0.78 1.57
3 250 60 3 0.2 1.81
3 250 73 1 2.02 0.26
3 250 73 2 0.94 0.93
3 250 73 3 0.31 1.39
3 250 85 1 2.45 0.25
3 250 85 2 1.36 0.27
3 250 85 3 0.66 0.6
3 275 60 1 2.7 0.45
3 275 60 2 1.5 1.1
3 275 60 3 0.83 1.34
3 275 73 1 3.06 0.26
3 275 73 2 1.91 0.56
3 275 73 3 1.16 1.01
3 275 85 1 3.4 0.25
3 275 85 2 2.33 0.25
3 275 85 3 1.47 0.36
3 300 60 1 3.83 0.36
3 300 60 2 2.5 0.78
3 300 60 3 1.65 0.98
3 300 73 1 4.17 0.25
3 300 73 2 2.85 0.34
3 300 73 3 1.97 0.69
3 300 85 1 4.47 0.25
3 300 85 2 3.22 0.25
3 300 85 3 2.36 0.3

(d) Within the design space, for what value of wear rate are the two materials most
similar? Where in the design space does this value occur? Does this result seem
to match your intuition?

7.20 Barghash and Alkaabneh (2014) describe an experiment involving four factors each
considered at three levels to model the shrinkage (Y1) and warpage (Y2) in mil-
limeters of an injection molding process. Table E7.7 shows the data from a 34 =
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81-run experiment using a full factorial design. The four factors considered are
as follows:

−1 0 +1

X1: Filling time (sec) 1 2 3
X2: Melting temperature (◦C) 250 275 300
X3: Mold temperature (◦C) 60 72.5 85
X4: Pressure holding time (sec) 1 2 3

(a) Fit a second-order model to Y1 and find the location in the design space that
minimizes the amount of shrinkage of the injection molding process.

(b) Fit a second-order model to Y2 and find the location in the design space that
minimizes the amount of warpage.

(c) Weighting the two responses equally and scaling the additive desirability func-
tion with values of 0 and 1 for the worst and best values observed in the design
space, respectively, find the optimal combination of the factors to balance mini-
mizing the shrinkage and warpage.

(d) If the experimenters are willing to accept shrinkage of at most 2 mm, what is
the best estimated warpage that can be achieved. What combination of factors
leads to this result?

(e) If the experimenters are willing to accept warpage of at most 0.3 mm, what is
the best estimated shrinkage that can be achieved. What combination of factors
leads to this result?

7.21 Reconsider the experiment in Exercise 7.20 and Table E7.7 involving an injection
molding process.

(a) Construct the Pareto front of best values to balance minimizing shrinkage and
warpage across the design space.

(b) Using the results from (a), find the set of solutions that are best for at least one
weight combination of an additive desirability function based on the range of
shrinkage and warpage values on the Pareto front.

(c) Repeat (a) with a multiplicative desirability function.

(d) If the experimenters wish to approximately balance the shrinkage and warpage
for the chosen solution, what factor combination would you recommend?
Explain why you think this is a preferred solution.

(e) Repeat (d) if the scaling selected for each factor in the desirability function is
based on the best and worst values observed throughout the design space.

Short Answer Questions

7.22 Answer the following short answer questions:

(a) Why is it helpful to divide the process of multiple response/criteria optimization
into objective and subjective stages?

(b) Describe some of the aspects that make comparing different criteria difficult.
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(c) What are some of the limitations of looking at contour plots of all of the responses
to find a good multiple response solution.

(d) Give a situation when the threshold approach might be advantageous.

(e) Compare how the additive and multiplicative desirability functions penalize poor
results for one or more of the responses.

(f) Give a situation where two experimenters might have different priorities for their
choice of how to weight the importance of the responses.

(g) Justify why the Pareto front approach allows you to exclude some of the possible
solutions as not logical choices for optimal.

(h) Why is it important to consider the uncertainty in estimating the responses when
selecting the optimal solution for a multiple response optimization problem?

7.23 Answer the following True/False questions:

(a) The desirability function converts the response variable into a new variable that
varies over the range –1 to +1.

(b) A solution on the Pareto front is best for some combination of weights using an
additive desirability function.

(c) An optimal solution found using the threshold approach is also located on the
Pareto front.

(d) The solution found using the desirability function approach is robust to the
choice of scaling for each of the criteria.

(e) Using an additive desirability function penalizes poor values of the criterion
more than using a multiplicative desirability function with the same scaling for
each criteria.

(f) The amount of trade-off between responses can be manipulated through the
choice of design.

(g) Creating a grid of locations in the design space over which to evaluate the
estimated response surfaces is an effective way to find factor combinations to
optimize multiple responses.

(h) The synthesized efficiency plot is a graphical summary that allows comparisons
between different potential solutions.

(i) The smaller area under the Pareto front indicates a more severe trade-off between
two criteria.

(j) Using the worst-case boundary of a prediction interval for new observations is
an optimization approach to consider the uncertainty of the estimated response
surfaces of the responses.



8
DESIGN OF EXPERIMENTS FOR FITTING
RESPONSE SURFACES—I

Many of our examples in Chapter 6 displayed the fitting of second-order response surfaces
with data taken from real-life applications of response surface methodology (RSM). In those
examples, the chosen experiment design possesses properties required to fit a second-order
response surface—that is:

1. At least three levels of each design variable.

2. At least 1 + 2k + k(k − 1)∕2 distinct design points.

The above represent minimum conditions for fitting a second-order model. The reader has
also noticed the reference to the central composite design in Chapter 6. This second-order
design was the design of choice for almost all of the illustrations. The central composite
design is the most popular second-order design in use by practitioners. As a result, it will
receive considerable attention in the sections that follow. First, however, some general
discussion is presented regarding the choice of designs for response surface analysis.

8.1 DESIRABLE PROPERTIES OF RESPONSE SURFACE DESIGNS

There are many classes of designed experiments in the literature, and there are many
criteria on which designs are based. Indeed, there are many computer packages that give
optimal designs based on special criteria and input from the user. Special design criteria
and important issues associated with computer-generated design of experiments will be
discussed in a later section and in Chapter 9. However, it is important for the reader to first

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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review a set of properties that should be taken into account when the choice of a response
surface design is made. Some of the important characteristics are as follows:

1. Result in good fit of the model to the data.

2. Provide good model parameter estimates.

3. Provide a good distribution of prediction variance of the response, Var [ŷ (x)] ∕𝜎2,
throughout the region of interest.

4. Provide an estimate of “pure” experimental error.

5. Give sufficient information to allow for lack of fit test.

6. Provide a check on the homogeneous variance assumption.

7. Be insensitive (robust) to the presence of outliers in the data.

8. Be robust to errors in the control of design levels.

9. Allow models of increasing order to be constructed sequentially.

10. Allow for experiments to be done in blocks.

11. Be cost-effective.

As one can readily see, not all of the above properties are required in every RSM application.
However, most of them should be given serious consideration on each occasion in which
one designs experiments. Most of the properties are self-explanatory. To help organize our
thinking about the characteristics on this list, we can divide the list into several categories.
Items 1–4 assume that the practitioner has made good assumptions about the nature of the
underlying relationship between the inputs and the response; and under the assumption
that the model is correct, the goal is to have good estimation of model parameters and
prediction of new observations when we use the model. The reader has been exposed to the
notion of prediction variance in Chapters 2, 3, and 6. In later sections we shall discuss the
importance of stability of prediction variance. This is often the most common category on
which emphasis is focused when selecting a designed experiment.

Items 5 and 6 seek to provide ways of evaluating the assumptions of the model. All
models have associated assumptions, and it is helpful if the data collected in the experiment
can allow some feedback about the suitability of these assumptions to process under
consideration. Items 7 and 8 focus on how the experiment will be affected if something goes
wrong. The goal is to plan an experiment that can withstand some less-than-ideal outcome
and still generate useful results. Item 7 is particularly important if one expects outliers to
occur. Items 9 and 10 seek to allow flexible implementation of the experiment and leveraging
of the results as part of the sequential nature of many experimental learning cycles. Finally,
item 11 reminds us that there are often cost constraints imposed on experiments. Larger
experiments often can provide improved characteristics of the first 10 items, but at the
expense of driving up the total cost of the experiment and preventing those resources from
being used for other purposes.

There are several goals behind the introduction of the list of 11 characteristics at this point
in the text. Of primary importance is a reminder to the reader that designing an experiment
is not necessarily easy and should involve balancing multiple objectives, not just focusing
on a single characteristic. Similar to the discussions in Chapter 7 where optimization of a
product or process involved considerations of multiple aspects, designing an experiment
usually involves balancing multiple objectives. Indeed, several of the 11 items may be
important and yet the researcher may not be completely aware of their relative importance.
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Some items do conflict with each other. As a result, there are trade-offs that almost
always exist when one chooses an appropriate design. For example, good choices for where
to allocate runs under the assumption that the model selected is correct differ considerably
for where we would select runs if we are trying to evaluate if the model is correct. Similarly,
assuming that the model is correct versus wanting to protect against model misspecification
would lead to different choices of designs. Another potential trade-off involves whether we
think that the implementation of the experiment will run smoothly or whether there might
be some complications. Finally, cost trades off with most of the other categories: A larger
experiment can help improve the results for most of the first four categories, but at the cost
of using additional resources. An excellent discourse on the many considerations that one
must consider in choosing a response surface design is given by Box and Draper (1975).

8.2 OPERABILITY REGION, REGION OF INTEREST, AND METRICS FOR
DESIRABLE PROPERTIES

At the end of Chapter 6 we discussed the choice of ranges on the design variables; this
naturally leads to an introduction of the notion of the region of interest in the design
variables. As we indicated in that chapter, we are assuming that the true function relating y
to the design variables is unknown. In fact,

E (y) = f (x,𝜽)

and we are assuming that in the region of interest, R(x), f is well approximated by a low-
order polynomial. This, of course, introduced the notion of the first-order or second-order
response functions. They are approximations (justified by a Taylor series expansion of f )
in the confined region R.

It is important for the reader to understand that while the experimental design may be
confined to R, the region R may change from experiment to experiment (say, for example,
in a steepest ascent experiment, as described in Chapter 5). However, there is a secondary
region called the region of operability, O(x). This is the region in which the equipment,
electronic system, chemical process, drug, or the like, works, and it is theoretically possible
to do the experiment and observe response values. In some cases, data points in the design
may be taken outside R(x). Obviously, if we take data too far outside R(x), then the
adequacy of our response surface representation (polynomial model) may be in question.
Though the framework of the regions of interest and operability is important for the reader
to understand, assuming clear and specific knowledge of R(x) or O(x) in a given situation
may be too idealistic. The region R changes, and at times O is not truly known until much
is known about the process.

Figure 8.1 gives the reader a pictorial depiction of O and R. In this case, with two
different experiments we have R(x) and R′(x), both being considerably more confined than
O. The region R is the current best guess at where the optimum is. It is also the region in
which we feel that ŷ (x) should be a good predictor or, say, a good estimator of f (x,𝜽).
However, the user should constantly be aware of potential model inadequacy in cases where
ŷ (x) is not a sufficiently good approximation of f (x,𝜽).
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Figure 8.1 Region of operability and region of interest.

8.2.1 Metrics for Desirable Properties

The list of different criteria useful for assessing the “goodness” of a designed experiment
identified in Section 8.1 become much more useful when we associate them with quantitative
metrics which allow direct comparison between alternative designs. In this section we
focus on metrics associated with the first category of design properties, which assume
that the model appropriately reflects the underlying relationship between input variables
and the response. Our goal with this category of metrics is to capture the adequacy of the
design to estimate model parameters and predict the response value for new observations.
In Section 3.6 of Chapter 3, the concept of optimal designs was introduced. Recall that
maximizing the determinant of X′X (where X is the model matrix introduced in Section 2.2)
gives a design that provides estimates of the model parameters, 𝛽 (for the model y =
Xβ + ε) with the smallest possible variance. Known as D-optimality, this criterion focuses
on the second item in the list in Section 8.1, namely good model parameter estimates.

A key ingredient in choosing a design that minimizes the variance of the model parame-
ters involves examining orthogonality. The terms orthogonal design, orthogonal array,
and orthogonal main effect plan received considerable attention in the 1950s and 1960s.
An orthogonal design is one for which X′X is a diagonal matrix. The above definition
implies, of course, that the columns of X are mutually orthogonal. It should be clear that
if two columns are orthogonal, the levels of the two corresponding variables are linearly
independent. The implication is that the roles of the two terms in the model can be being
assessed independently of each other. This underscores the virtues of orthogonality. As we
examine particular designed experiments for various models in subsequent sections of this
chapter, we will examine their orthogonality properties.

Alternately, other optimality criteria, such as G- and I-optimality (also introduced in
Section 3.6), focus on the third item in the list of desirable properties, a good distribution of
predicted variance of the response throughout the region of interest. With a small predicted
variance value at a given combination of input values, we improve our ability to precisely
predict the value of the response at that location in the design space. Recall that unscaled
prediction variance is defined as

UPV = Var [ŷ (x)] ∕𝜎2

and can be evaluated at any location in the design space. JMP uses Fraction of Design Space
(FDS) plots to show a summary of the distribution of the unscaled prediction variance
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throughout the design region. A G-optimal design is one that minimizes the worst case, or
maximum prediction variance throughout the region of interest. Often the worst prediction
occurs near the edges of the selected design space (or occasionally at the center), and
so evaluating G-optimality requires exploring prediction variance values throughout the
design space, and particularly at the edges. Since the experimenter often does not know
where the prediction of new observations will be needed, this criterion focuses on making
sure that the least desirable prediction variance is not too bad.

Alternately, I-optimality focuses on the average prediction variance in the design space,
and it seeks to make that as small as possible. In statistics applications, we are more often
focused on the center of the distribution of values, and so I-optimality examines the average
prediction variance across all possible locations in the space where new observations might
be obtained. In Chapter 9, more details will be given about these criteria as well as how they
can be incorporated into optimization algorithms to generate tailored designs for a specific
experiment.

Also related to the characteristics of the prediction variance throughout the design space
is the concept of rotatability. Introduced in Section 2.8, the concept of rotatability focuses
on the symmetry of prediction variance in the region of interest. A rotatable design is one
that has constant prediction variance values for all locations at equal distance from the
center of the design space. For example, a rotatable design would have the same prediction
variance value for any new observation in the design space that was 1 unit away from the
origin, when examining the scaled ranges of the input variables.

8.2.2 Model Inadequacy and Model Bias

In this section, we provide details concerning the impact of specifying a response surface
model incorrectly. This is particularly important since one is almost always making use
of empirical models. Thus, in many instances, more than one empirical model may be
reasonable and some are better than others.

Consider a situation in which we assume a model of the form y = X1β1 + ε. After the
data are collected and fit, we have a vector of fitted values,

ŷ = X1b1 (8.1)

where

b1 = (X′
1X1)−1X1y

Here we implicitly make the assumption that

E( y) = X1β1

However, there may be a better approximation of E(y) given by

E( y) = X1β1 + X2β2 (8.2)

where, say, X1 is an N × p1 matrix, and X2 is N × p2. The additional term in Equation 8.2,
X2β2 contains additional linear model terms which provide more flexibility in the modeling
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of the response. Examples of this would be higher order terms or additional interaction
terms. Then the expected value of b1 is given by

E(b1) = (X′
1X1)−1X′

1E[ y]

= (X′
1X1)−1X′

1E
[
X1β1 + X2β2 + ε

]

= (X′
1X1)−1X′

1X1β1 + (X′
1X1)−1X′

1X2β2

= β1 + (X′
1X1)−1X′

1X2β2

= β1 + Aβ2

Here ε is the usual random error, and A = (X′
1X1)−1X′

1X2 is called the alias matrix
(introduced in Section 4.7). The alias matrix transmits bias errors to the estimate b1.
Understanding the effect of bias on the estimates of the model is applicable for many types
of models. There is considerable direct application to first order models, such as fractional
factorials discussed in Chapter 4 (see Exercises 8.7, 8.8, and 8.9).

As one might expect, if there is appreciable model misspecification, bias errors also
appear in the fitted values. For, in the above scenario, the expected value of the vector of
fitted values is given by

E( ŷ) = X1E(b1)

= X1(β1 + Aβ2)

= X1β1 + X1Aβ2

and thus

E( ŷ) − E(y) =
[
X1β1 + X1Aβ2

]
−
[
X1β1 + X2β2

]
= (X1A − X2)β2

(8.3)

When the true model is best approximated by Equation 8.2, bias is transmitted to both
model coefficients and fitted values. Equation 8.3 is important in that it plays a role in the
lack-of-fit test described in Chapter 6. If the model is misspecified as we have described
here, the residual mean square, s2, in the analysis of variance is also biased. Instead of
estimating 𝜎2 as expected, it has expectation

E(s2) = 𝜎2 + 1
p1

{
β′

2

[
X1A − X2

]′ [
X1A − X2

]
β2

}

The bias in s2 described above is intuitive. It is simply proportional to the sum of squares
of the biases in the fitted values. This is reasonable since the lower mean square is itself
proportional to the sum of squares of deviations between y observations and fitted values.
If we call the bias in s2

1
p1

{
β′

2R′Rβ2

}
(8.4)

where R=X1A−X2, then it becomes clear that the lack-of-fit test, when significant, is
detecting the existence of a nonzero β2 through the quadratic form β′

2R′Rβ2.
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In addition to lack of fit, the vector of biases in fitted value given in Equation 8.3 may
play an important role in the choice of an experimental design. One point of view is to
determine the design based on control of two types of error, variance error and bias error.
Thus, we have a loss function type criterion. For each observation, yj, we want to make
small the loss

E
[
ŷj − f (xj, β)

]2 = E
[
ŷj − E( ŷj) + E( ŷj) − f (xj, β)

]2

= E
[
ŷj − E( ŷj)

]2 + [E( ŷj) − f (xj, β)
]2

= Var( ŷj) +
[
Bias( ŷj)

]2
(8.5)

The term Var(ŷj) is clear. It has been discussed in Chapter 6 and will receive further
attention in this chapter. The term [Bias(ŷj)]

2 is the squared bias in the fitted values if
indeed E(y) ≠ X1β1. The bias term is related to Equation 8.4 as

1
p1

{
β′

2R′Rβ2

}
=

N∑
j=1

[
Bias( ŷj)

]2

The statistics literature contains a considerable amount of information on experimental
design for regression or response surface modeling. However, the majority of this technical
or theoretical information deals with variance-oriented design criteria—that is, the type of
design criteria that ignores model misspecification. In other words, these criteria essentially
assume that the model specified by the user is correct. In what follows, we shall initially
focus on variance-type criteria. More recently, work has been considered where designs
are evaluated not only by assessing the variance error, but also considering potential bias
error. Because the bias term contains β2, some additional assumptions for the magnitude
of these missing terms is needed to quantify the size of the bias. See Draper and Sanders
(1988), Vining and Myers (1991), Allen et al. (2003), and Anderson-Cook et al. (2009a)
for a variety of approaches to considering bias error. However, the errors associated with
model misspecification will be revisited in Chapter 10. In what follows, we begin with
experimental designs for first-order response models.

8.3 DESIGN OF EXPERIMENTS FOR FIRST-ORDER MODELS AND
FIRST-ORDER MODELS WITH INTERACTIONS

One of the primary goals of running a designed experiment aimed at fitting a first-order
model, or a first-order model with interactions, is to explore which of the factors substan-
tially impact the values of the response. Often called screening designs, these experiments
commonly focus on good estimation of the model parameters and providing a ranking of
how much the different inputs change the response. The name “screening” implies that the
experimenter is looking to divide the inputs into groups: those that definitely impact the
response, those that do not appear to have a meaningful impact on the response over the range
of input values explored, and potentially a third category where there is some ambiguity
over whether the contribution of that factor is important or not.
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This understanding of the contributions of the different inputs, through main effects and
potentially through two-factor interactions, allows the experimenter to prioritize where to
focus for subsequent experiments that seek to optimize the process or product. Reducing
a large number of potential input factors down to a more manageable few for further
exploration is a key step in many sequential design of experiments progressions.

Consider a situation in which N experimental runs are conducted on k design variables
x1, x2,… , xk and a single response y. A model is postulated of the type

yi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 +⋯ + 𝛽kxik + 𝜀i (i = 1, 2,… , N)

As a result, a fitted model is given by

ŷi = b0 + b1xi1 + b2xi2 +⋯ + bkxik

Here, of course, the bj are found by the method of least squares. An intuitive variance-
based criterion if we are interested in good estimation of the model parameters involves the
variance of the regression coefficients—that is, Var(bj)(j = 1, 2,… , k). Let us assume that
each design variable is in coded design units and that the ranges for the design levels are
such that xj ∈ [−1,+1].

8.3.1 The First-Order Orthogonal Design

In Section 8.2, the idea of orthogonality was introduced as a desirable property to incorporate
into a designed experiment, since it allowed the separate assessment of the role of two
variables. In the first-order situation, an orthogonal design in which the ranges on these
variables are set at the edges of the range results in minimizing Var(bj) on a per observation
basis. In other words,

For the first-order model and a fixed sample N, if Xj ∈ [−1,+1] for j= 1, 2,… , k, then
Var(bi)∕𝜎2 for i= 1, 2,… , k is minimized if the design is orthogonal and all xi levels in
the design are ±1 for i= 1, 2,… , k.

Thus, the elements on the diagonals of (X′X)−1 are minimized [recall that
Var(b)= 𝜎2(X′X)−1] by making off-diagonals of X′X zero and by forcing the diagonals of
X′X to be as large as possible. The notion of linear independence and variable levels at
±1 extremes as a desirable set of conditions should certainly be intuitive to the reader.

Example 8.1 Variance-Optimal First-Order Designs I Two-level factorial plans and
fractions of resolution III and higher do, in fact, minimize the variances of all coefficients
(variances scaled by 𝜎2) on a per observation basis. To illustrate this, consider the following
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24−1 fractional factorial (resolution IV) with the defining relation I=ABCD. The matrix X
is given by

x1 x2 x3 x4

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 −1
1 1 1 −1 −1
1 1 −1 1 −1
1 1 −1 −1 1
1 −1 1 1 −1
1 −1 1 −1 1
1 −1 −1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

One can easily determine that X′X= 8I5 and (X′X)−1 = 1
8
I5. Indeed, one can say that no

other design with eight experimental runs in this region can result in variances smaller
than 𝜎2∕8. It should be apparent to the reader that a full 24 factorial results in all coefficient
variances being 𝜎2∕16. In other words, if the size of the design is doubled, the variances
of coefficients are cut in half. However, both are considered optimal designs on a per
observation basis.

Example 8.2 Variance-Optimal First-Order Designs II Consider a situation in which
there are three design variables and the user wishes to use eight experimental runs but also to
have design replication. A 23−1 fractional factorial (resolution III) is used with each design
point replicated. The matrix X for the design is as follows (defining relation I=ABC):

x1 x2 x3

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that the columns are orthogonal and all levels are at ±1 extremes. Thus the design is
variance optimal for the model

ŷ = b0 + b1x1 + b2x2 + b3x3

That is, all coefficients in the above model have minimum variance over all designs with
sample size N= 8. In fact, the variance–covariance matrix is given by

Var(b) = (𝜎 2∕8)I4

It is interesting that for this situation a full 23 factorial results in the same variance–
covariance matrix. Though the two designs are quite different, from a variance point of view
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they are equivalent for the first-order model in three design variables. Obviously, in the case
of the 23−1 fraction (replicated) there are no degrees of freedom for lack of fit, whereas the
23 factorial enjoys four lack-of-fit degrees of freedom that are attributable to x1x2, x1x3,
x2x3, and x1x2x3. On the other hand, the replicated one-half fraction allows four degrees of
freedom for replication error (pure error), and, of course, the full 23 possesses no degrees
of freedom for replication error. As a result, even though they are variance-equivalent, the
two orthogonal designs would find use in somewhat different circumstances.

It should be apparent to the reader that for the use of two-level factorials or fractions for a
first-order model, orthogonality (and hence variance optimality) is obtained with resolution
at least III. In the case of resolution III, the xi columns in X will be aliased with the
xjxk columns. However, no xi column will be aliased with any xj column. In the case of
2k factorials or regular fractions, any two columns in X that are not aliased are, indeed,
orthogonal.

The notion of orthogonality and its relationship to design resolution clearly suggests
that variance-optimal designs should also be available if the fitted response model contains
first-order terms and one or more interaction terms. The following subsection addresses
this topic.

8.3.2 Orthogonal Designs for Models Containing Interaction

As we indicated earlier, it is not uncommon for the process or system to require one or
more interaction terms to accompany the linear main effect terms in a first-order model.
The two-level factorials and fractions are quite appropriate. As in the case of the first-order
model, the orthogonal design is variance-optimal—the sense again being that variances of
all coefficients are minimized on a per observation basis. Based on the discussion earlier in
Section 8.3, it should be apparent that the two-level full factorial is orthogonal for models
containing main effects and any (or all) interactions involving cross products of linear terms.
If a fraction is to be used, one must have sufficient resolution to ensure that no model terms
are aliased. For example, if two factor interaction terms appear in the model, a resolution
of at least V is appropriate.

As an illustration, suppose for k= 4 the analyst postulates a model

yi = 𝛽0 +
4∑

i=1

𝛽ixi +
∑
i<j=2

4∑
𝛽ijxixj + 𝜀

Then clearly no fractional factorial will be orthogonal, because a resolution IV fraction will
result in aliasing two factor interactions with each other. In fact, a one-half fraction in this
case would involve only eight design points, and the above model contains 11 model terms.
A full 24 factorial is an orthogonal design for the above model.

Consider a second illustration in which five design variables are varied in a study in
which the model can be written as

y = 𝛽0 +
5∑

i=1

𝛽ixi +
∑
i<j=2

5∑
𝛽ijxixj + 𝜀

In this case a complete 25 or a resolution V 25−1 serves as an orthogonal design. In this case,
linear main effects are orthogonal to each other and orthogonal to two-factor interactions,
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while all two-factor interactions are orthogonal to each other. The following matrix X
illustrates the concept of orthogonality in the case of the one-half fraction:

x1 x2 x3 x4 x5 x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + − − − − − − − − + + + + + +
+ − + − − − − + + + − − − + + +
+ − − + − − + − + + − + + − − +
+ − − − + − + + − + + − + − + −
+ − − − − + + + + − + + − + − −
+ + + + − − + + − − + − − − − +
+ + + − + − + − + − − + − − + −
+ + + − − + + − − + − − + + − −
+ + − + + − − + + − − − + + − −
+ + − + − + − + − + − + − − + −
+ + − − + + − − + + + − − − − +
+ − + + + − − − − + + + − + − −
+ − + + − + − − + − + − + − + −
+ − − + + + + − − − − − − + + +
+ − + − + + − + − − − + + − − +
+ + + + + + + + + + + + + + + +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The defining contrast I=ABCDE was used to construct the one-half fraction. It is clear that
the columns of X are orthogonal to each other and that

X′X = 16I16 with (X′X)−1 = 1
16

I16

and thus the variances of the coefficients are given by

Var(b0) = Var(bi) = Var(bij) =
𝜎2

16
(i, j = 1, 2, 3, 4, 5; i ≠ j)

The Saturated Design The reader should note that in the previous illustration there are
16 design points and 16 model terms. The result is that there are zero residual degrees of
freedom. This type of scenario deserves special attention. The absence of any lack-of-fit
degrees of freedom implies, of course, that no test can be made for lack of fit; that is, there is
no information to test for model inadequacy. In fact, this type of design will by definition fit
the data perfectly with R2 = 100%. In this situation the design is said to be saturated. While
this type of situation should generally be avoided, there certainly are practical situations
in which cost constraints only allow a saturated design. The saturated design will continue
to receive attention in future chapters. The discussion of the saturated design invites a
question regarding what form the analysis takes. Can any inferences be made regarding
model terms? The reader should recall the discussion in Chapter 3 regarding use of normal
probability plots for effects. For an orthogonal design with a first-order model or a first-
order-with-interaction model the model coefficients are simple functions of the computed
effects discussed in Chapter 3. As a result, the use of normal probability plots for detection
of active effects can be used to detect active regression coefficients. However, the reader
should understand that when at all possible, saturated designs should be avoided in favor
of designs that contain degrees of freedom for pure error and degrees of freedom for lack
of fit.
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Figure 8.2 Three designs for a first-order model in three design variables. (a) 23 factorial. (b) 23−1

fractional factorial with 4 center runs. (c) Replicated 23−1 fractional factorial.

Effect of Center Runs In Chapters 3 and 4 we discussed the utility of center runs as an
important augmentation of the two-level factorial and fraction. This was discussed again
and illustrated in Chapter 5. The addition of center runs to an orthogonal design does
not alter the orthogonality property. However, the design is no longer a variance-optimal
design; that is, the variances of regression coefficients are no longer minimized on a per
observation basis. Obviously, the requirement that all levels be at ±1 extremes is not met.
Indeed, the center runs (runs at the zero coordinates for all factors in design units) add
nothing to information about linear effects and interactions. However, let us not forget the
importance of the detection of quadratic effects (see Chapter 3), a task that is handled very
effectively and efficiently with the use of center runs.

What Design Should Be Used? The discussion of center runs and saturated designs in the
context of orthogonal designs underscores a very important point. The design that is used
in a given situation depends a great deal on the goal of the experiment and the assumptions
that one is willing to make. It should also be clear that an optimal (i.e., variance-optimal)
design is not always appropriate. Consider an example in which one is interested in fitting
the model

yi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi3 + 𝜀i (i = 1, 2, 3,… , 8)

that is, a first-order model in three design variables. Among the candidate designs are three
orthogonal designs that we will discuss and compare. All three of these designs involve
eight experimental runs. Consider the following designs illustrated in Fig. 8.2:

Design 1. The 23 factorial

Design 2. Resolution III fraction of the 23 augmented with four center runs

Design 3. Resolution III fraction of the 23 with replicate runs at each design point

Designs 1 and 3 are both variance-optimal designs. The variances of regression coeffi-
cients will be 𝜎2∕8 for Designs 1 and 3. For Design 2, the variance of the intercept term will
be 𝜎2∕8 but the variances of the linear coefficients will be 𝜎 2∕4. Comments concerning all
three designs follow:

Design 1. It does not allow for estimation of replication error (pure error). There are four
lack-of-fit degrees of freedom, but no error degrees of freedom are available
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to test lack of fit. The design is appropriate if there is strong prior information
that there is no model inadequacy from quadratic terms.

Design 2. Pure error degrees of freedom (3 df) are available for testing linear effects.
One can also test for curvature (1 df for pure quadratic terms). The linear
terms in the model are not estimated as precisely as for Designs 1 and 3. It
should be used when one accepts the possibility of quadratic terms but can
absolutely rule out interaction (the presence of pure quadratic terms with no
interaction is not particularly likely).

Design 3. The design contains four pure error degrees of freedom but no lack-of-
fit degrees of freedom associated with interaction terms or pure quadratic
terms. Tests of significance can be made on model coefficients for the first-
order model, but the design should not be used if either quadratic effects or
interaction may be present. There is no model adequacy check of any kind.

From the above description it would seem that all these candidates possess disadvantages.
However, one must keep in mind that with a sample size of eight and four model terms there
is not much room for an efficient check for model inadequacy, because both lack-of-fit and
pure error information is needed. Incidentally, a full 23 augmented with, say, three or more
center runs would provide pure error degrees of freedom that could be used to test pure
quadratic curvature and the presence of interaction.

8.3.3 Other First-Order Orthogonal Designs—The Simplex Design

The majority of applications of orthogonal designs for first-order models should suggest the
use of the two-level designs that we have discussed here and in Chapters 3 and 4. However,
it is important for the reader to be aware of a special class of first-order orthogonal designs
that are saturated. This class is called the class of simplex designs. Let it be clear that
these designs are saturated for a first-order model—a fact that implies that no information
is available at all to study interactions or to examine lack of fit.

The main feature of the simplex design is that it requires N= k+ 1 observations to fit a
first-order model in k variables. Geometrically, the design points represent the vertices of a
regular sided figure. That is, the design points, given by the rows of the design matrix

D =
⎡⎢⎢⎢⎣

x11 x21 ⋯ xk1
x12 x22 ⋯ xk2
⋮ ⋮ ⋮

x1, N x2, N ⋯ xk, N

⎤⎥⎥⎥⎦

are points in k dimensions such that the angle that any two points make with the origin is
𝜃, where

cos 𝜃 = − 1
N − 1

= −1
k

For k= 2, N= 3, cos 𝜃 = − 1
2
, and thus 𝜃 = 120◦. Thus, for this case, the points are coordi-

nates of an equilateral triangle. For k= 3 and N= 4, the design points are the vertices of a
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Figure 8.3 Design points for the simplex in two variables.

tetrahedron. For k= 2, the design matrix is given by

x1 x2

D =
⎡⎢⎢⎣

√
3∕2 −1∕

√
2

−
√

3∕2 −1∕
√

2

0 2∕
√

2

⎤⎥⎥⎦
(8.6)

Figure 8.3 reveals that the design for k= 2 contains points on the vertices of an equilateral
triangle. The three rows in the design matrix correspond to points 1, 2, and 3, respectively.
The matrix X is the design matrix augmented by a column of ones. Thus

x1 x2

X =
⎡⎢⎢⎣

1
√

3∕2 −1∕
√

2

1 −
√

3∕2 −1∕
√

2

1 −0 2∕
√

2

⎤⎥⎥⎦
(8.7)

As a result, one can readily observe the orthogonality from

X′X =

[ 3 0 0
0 3 0
0 0 3

]

For k= 3, the design involves the use of N= 4 points and any two points make an angle
𝜃 with the origin, where cos 𝜃 = − 1

3
. The appropriate design is given by

x1 x2 x3

D =
⎡⎢⎢⎢⎣

1 −1 −1
−1 1 −1
−1 −1 1

1 1 1

⎤⎥⎥⎥⎦

(8.8)
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Figure 8.4 Simplex in three design variables.

If we use X= [1|D], it is clear that

X′X = 4I4

and hence the design is orthogonal for fitting the first-order model. Figure 8.4 shows the
coordinates displayed in three dimensions. Note that any two points form the same angle
with the origin (0, 0, 0). Also note that in this special case the simplex is a one-half fraction
of a 23. The one we have chosen to display is the resolution III fraction with I=ABC as the
defining relation. Indeed, the fraction formed from I=−ABC also is a simplex.

Rotation and Construction of the Simplex For a specific value of k, there are numerous
simplex designs that can be constructed. In fact, if one rotates the rows of the design matrix
through an angle, say 𝜙, the resulting design is still a simplex and thus still possesses the
property of being first-order orthogonal. For example, a change in the orientation of the
equilateral triangle of the design in Equation 8.6 will result in a second simplex. For k= 3,
a design that is an alternative to that shown in Equation 8.8 is given by

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎣

0
√

2 −1

−
√

2 0 1

0 −
√

2 −1√
2 0 1

⎤⎥⎥⎥⎥⎦

(8.9)

It is easily seen that this design is also first-order orthogonal, although from a pragmatic
point of view the design in Equation 8.8 is usually preferable.

The construction of the matrix X for the general k-dimensional simplex is quite simple.
One merely starts with an orthogonal matrix O of order N × N with the elements of the first
column being equal. The matrix X is then

X = O ⋅N1∕2
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Thus, it is easily seen that X′X=N(O′O)=NIN. For example, the k= 2 simplex in Equa-
tion 8.7 can be constructed from the orthogonal matrix

O =

[ 1 1 −1
1 −1 −1
1 0 2

]

1∕
√

3 1∕
√

2 1∕
√

6

The values at the bottom of each column are to be multiplied by each element in the column.
We have

X = O ⋅
√

3 =
⎡⎢⎢⎣

1
√

3∕2 −1∕
√

2

1 −
√

3∕2 −1∕
√

2

1 0 2∕
√

2

⎤⎥⎥⎦

which is the matrix X in Equation 8.7. The matrix X given in the design of Equation 8.8
can be constructed from the simple orthogonal matrix

O =
⎡⎢⎢⎢⎣

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1

⎤⎥⎥⎥⎦
1∕2 1∕2 1∕2 1∕2

The reader should keep in mind that the simplex design is first-order saturated, which
implies that there is no information available for lack of fit. If the analyst expects system
interaction or pure quadratic curvature might be possible, the simplex is not an appropriate
design.

Example 8.3 Use of a Simplex Design A simplex design is used in a laboratory exper-
iment designed to build a first-order relationship between the growth (y) of a particular
organism and the percentage of glucose (x1), the percentage of yeast extract (x2), and the
time in hours (x3) allowed for organism growth. In coded form the design variables are

x1 =
glucose − 30%

1.0

x2 =
yeast − 0.5%

0.10

x3 = time − 45 hr
15

Table 8.1 gives the design in terms of the original and coded variables and indicates the
observed response.

The fitted equation is given by

ŷ = 9.54 + 0.97x1 + 0.40x2 + 1.59x3
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TABLE 8.1 Experimental Data for Organism Growth Experiment Using Simplex Design

Glucose x1 (%) Yeast x2 (%) Time, x3 (hr)

Run Number Uncoded Coded Uncoded Coded Uncoded Coded Growth (g/liter)

1 3.0 0 0.641
√

2 30 −1 8.52

2 1.586 −
√

2 0.500 0 60 1 9.76

3 3.0 0 0.359 −
√

2 30 −1 7.38

4 4.414
√

2 0.500 0 60 1 12.50

8.3.4 Definitive Screening Designs

Recall that a primary goal of a screening experiment often focuses on examining the
contributions of different inputs to changes observed in the response. Hence good estimation
of model parameters for a first-order model or a first-order model with interactions is an
important criterion for evaluating the appropriateness of a design for this purpose.

Jones and Nachtsheim (2011a) introduce an important class of screening design that
perform well for estimating first-order models with the potential to also estimate some of
their two-way interactions. The designs also have the ability to do this while also balancing
other objectives, such as allowing estimating of pure error and potential curvature from
second-order terms. A key to how these designs manage to balance multiple design goals is
to borrow from the ideas of multiple objective optimization described in Chapter 7. Recall,
that one of the lessons from looking at multiple objectives is that often a small sacrifice
on the performance of one goal (away from being optimal to near-optimal) can lead to
disproportionate improvement on others.

Definitive screening designs (DSD) differ from other common screening designs in
several important ways:

1. They use three levels of each of the factors—typically −1, 0, and +1 in the scaled
variables. This has the advantage over the traditional choice of two-level factors of
allowing estimation of curvature from second-order terms, which previously had only
been possible in a limited with the addition of center runs.

2. They use nonregular structures, as introduced in Section 4.8, that provide more
flexible aliasing structures. In contrast, a fractional factorial has a regular structure
where terms are either orthogonal or completely aliased. The nonregular structure
means that terms in the model are not orthogonal, but rather have some level of
correlation. The advantage of this approach is that it allows for more terms to be
estimated, even if they cannot be completely independently assessed.

The resulting designs require only a moderate number of runs to explore different numbers
of factors, and the analysis methods described in Section 4.9 for nonregular designs make
interpretation of results straightforward.

Consider an experiment with four factors. The experimenter wishes to fit a model capable
of examining all of the main effects and their two-factor interactions. Potentially, there may
be some curvature from one or more of the factors, and hence it would be helpful to be
able to estimate quadratic effects as well. Table 8.2 shows the levels of each factor for the
design of size 11 of a DSD. Note how each factor has three levels, and there are four pairs
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TABLE 8.2 Definitive Screening Design
for Four Factors

Run x1 x2 x3 x4

1 0 +1 −1 −1
2 0 −1 +1 +1
3 −1 0 −1 +1
4 +1 0 +1 −1
5 −1 −1 0 −1
6 +1 +1 0 +1
7 −1 +1 +1 0
8 +1 −1 −1 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0

of runs followed by three center runs. For each pair of runs (run 1–2, 3–4, etc.), one of the
factors is set at 0, while the other factors are all at +1 or −1. The second run in the pair
has the signs reversed from the first run for all nonzero entries for the remaining factors.
In general, a DSD needs to have at least one center run, where additional ones help with
improved estimation of pure error.

Recall that the experimenter wishes to estimate all of the main effects, but also consider
their two-way interactions. For the four-factor case, this represents having a primary model
of y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽4x4 + 𝜀, but with interest in being able to examine the
six two-factor interactions as well as the four quadratic terms.

To understand why this design is an advantageous one, consider the aliasing structure
discussed in Section 8.2.2. Recall that if we assume a model of the form, y = X1𝛽1 +
𝜀, but the appropriate model turns out to be y = X1𝛽1 + X2𝛽2 + 𝜀, the alias matrix A =(
X′

1X1

)−1
X′

1X2 provides information about how the estimates b1 will be biased for 𝛽1. In
this case we define X1 to be the X-matrix corresponding to the four main effects, and X2 to
be the X-matrix corresponding to the six two-factor interactions

(
x1x2, x1x3,… , x3x4

)
and

the four quadratic terms
(
x2

1,… , x2
4

)
. It is straightforward to show that A = 0 for the DSD

in Table 8.2. As a result, the main effects are independent of the two-factor interactions,
and the main effects are independent of the quadratic effects. This means that the main
effects can be estimated separately from any contributions from the other potential terms
in the models, providing good understanding of the relative contributions of the factors.

While the DSDs were originally suggested as a screening design for primarily a first-
order model, they are also powerful designs when some two-way interaction terms are
also thought to be potentially active. Suppose that the experimenter for the four-factor
experiment described in Table 8.2 wished to examine all of the main effects and their
two-factor interactions. If all of these terms were thought to be active, then the DSD with
11 runs and 9 distinct design locations (since there are three center runs) would be too small
to provide sufficient information to estimate all of the 11 terms in the model (one intercept,
four main effects, and six two-factor interactions). However, for many experiments, there
is an assumption of effect sparsity, as described in Section 3.5, which suggests that the
experimenter believes that the system under study is dominated by a subset of the potential
terms in the model, but does not know a priori which ones will be the dominant ones.
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Using the nonregular design analysis methods described in Section 4.9, the experimenter
can consider all of the main effects, two-factor interactions, and quadratic terms as can-
didates for the final model. Model selection techniques can identify the dominant terms,
and using the pure error estimate from the center run replicates, some assessment of the
statistical significance of these terms can be made. If some of the two-way interactions or
quadratic terms are important to include in the model, then the correlation structure of these
terms is moderate. See Jones and Nachtsheim (2011a) for more details.

DSDs are available for any number of factors with k ≥ 4. For any k, the designs have
the same structure with k pairs of runs plus one or more center runs. There are clearly a
large number of different combinations of ±1 that could be used for each of the nonzero
factors in a given first run of the pair. Xiao, Lin, and Bai (2012) showed that a particular
form of matrix, called a conference matrix, can be used to construct the set of k first runs
for the design. To obtain the full design, the complement of each of the first runs is created
(by reversing the sign of all nonzero entries), and one or more center runs are added. Hence
the overall design would have the form

D =
⎛⎜⎜⎝

C
−C
0

⎞⎟⎟⎠
where C is the conference matrix, −C is its complement, and 0 is the set of one or more
center runs.

The conference matrices for DSDs for k = 4, 5, 6, 7, 8 are given below. For designs
with k > 8, see Jones and Nachtsheim (2011a).

m = 4 m = 5 m = 6
0+−− 0++−− 0+−−−−
−0−+ +0−−+ +0−++−
−−0− +−0+− −−0+−−
−++0 +−+0+ −++0+−

++++0 +−+−0−
++++−0

m = 7 m = 8
0+−+−+− 0−++−+++
−0+−++− −0−++++−
+−0++++ −−0++−−+
+−−0+−− +−+0++−−
−−++0−− −−+−0−+−
−+−++0+ +−−−+0++
+++++−0 −++−++0+

+++++−+0

The reader should verify that the construction method described for D above does corre-
spond to Table 8.2 for k = 4 with three center runs. Note that the four rows shown above
correspond to runs 1, 3, 5 and 7.

Odd Versus Even Numbers of Factors One of the interesting features of the DSDs is
the different numbers of factors have different characteristics. DSDs with an even number
of factors have all of the main effect columns orthogonal to each other, allowing for
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independent estimation and evaluation of their influence on the response. To see why this
is not possible, consider the design matrix for the 5-factor DSD.

Conference Matrix Order Standardized Order

0++−− 0++−−
+0−−+ 0−−++

C +−0+− +0−−+
+−+0+ −0++−
++++0 +−0+−
0−−++ −+0−+
−0++− +−+0+

−C −+0−+ −+−0−
−+−0− ++++0
−−−−0 −−−−0
0 0 0 0 0 0 0 0 0 0

In order for any two main effects to be orthogonal to each other, there needs to be balance
between the number of entries that lead to −1 and +1 when we take the product of the
entries for the two columns. Consider whether columns 1 and 2 can be orthogonal. Looking
at the standardized order of the DSD, the first four rows and the center run all contribute 0
to the sum. The remaining six rows contribute

(−1,−1,−1,−1,+1,+1)

Notably, each pair of runs contributes the same value, since the product of (+−) or (−+)
lead to −1 and products of (++) or (−−) lead to +1. Hence for odd number of factor
cases, we will have 4 + the number of center runs that contribute zero to the sum, and the
remaining k − 2 pairs (which must be odd) contribute an uneven number of −1s and +1s.
Hence there will be a small amount of correlation between main effects in odd designs.

For even numbers of factors, there will again be k − 2 pairs of runs that contribute
nonzero values to the sum. In this case, k − 2 is even (since k is even) with an overall
design size for the non-center run rows that is a multiple of 4, and this allows for a balanced
number of −1s and +1s to give an overall total of 0 to the sum of the product of the columns,
leading to orthogonal effects.

Hence, DSDs with an even number of factors have slightly more desirable design
properties; and if an experimenter finds that they naturally are interested in an odd number
of factors, they might consider choosing a DSD with one more factor, to bump the design to
be a multiple of 4. When the experimenter assigns the factors to the columns of the design,
one of the columns can just be omitted for the missing factor.

Now consider a comparison between alternative designs for a first-order model with
interactions for k = 4. Several choices might be considered suitable:

(i) a 24 factorial (N = 16),

(ii) a 24 − 1 fractional factorial (N = 8),

(iii) a definitive screening design with 3 center runs (N = 8 + 3 = 11),

(iv) a 24 factorial with 3 center run (N = 16 + 3 = 19),

(v) a 24 − 1 fractional factorial with 3 center run (N = 11).
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We can compare these alternative designs on several criteria to see how they perform.
Table 8.3 shows a summary of some advantages and disadvantages. As highlighted in
Section 8.1, there are often noticeable trade-offs between competing alternatives. First, as
is typically the case, if we increase the design size to the largest alternative, we are able to
obtain a design able to estimate all of the terms in the first order with interactions model,
with small variances for all of the estimated model coefficients, bi and bij, and an estimate of
natural variability from the center runs. However, if we are unwilling or unable to run such a
large experiment, then we are forced to make some difficult trade-offs between alternatives.
The DSD allows us to estimate all potential terms in the model, but at the expense of increase
variances for the bis and bijs and nonorthogonality of the effects. However, these options
may well be considered superior choices to the comparably sized fractional factorials, which
have no option to de-alias pairs of two-factor interactions. The DSD is notably superior to
all of the factorial and fractional factorial designs in its ability to provide separate estimates
for curvature from the different factors. Notice how the addition of center runs provides an
estimate of 𝜎2, but does not reduce the variance of the model parameters.

The comparison between alternative designs changes as the number of factors change,
as different resolutions (IV and V) of designs become available with different aliasing
structures. The size of the DSDs remains fixed at 2k + nc, while the factorial and fractional
factorial designs fluctuates as different powers of 2 are available. For example, when k = 6,
suitable options for designs include a Resolution VI 26 − 1 (N = 32 + nc), a Resolution IV
26 − 2 (N = 16 + nc), a Resolution III 26 − 3 with or without center runs (N = 8 + nc), all
with or without center runs, and a DSD (N = 12 + nc). See Table 4.13 for more details on
the defining equation for the various factorial designs. Note that while the 26 − 2 and 26 − 3

have problematic complete aliasing of key terms in the first-order with interactions model,
the DSD is able to estimate all terms in the model, albeit with some nonorthogonality.

8.3.5 Another Variance Property—Prediction Variance

We earlier indicated that two-level orthogonal first-order designs with levels at ±1 extremes
result in variances of coefficients that are minimized on a per observation basis. This
provided the inspiration for the term “variance optimal” that we used consistently as we
discussed examples and applied the concept to models that involve interaction terms.
Criteria involving variances of coefficients are certainly important. In fact, in Chapter 9
we explain the notion of special norms on (X′X)−1 as we more formally deal with design
optimality. However, we should also be attentive to the criterion of prediction variance.
This concept was discussed in Chapter 2 in dealing with confidence intervals around ŷ(x) in
regression problems, and again in Chapter 6 as a part of the total RSM analysis. However,
the prediction variance concept is a very important aspect of the study of experimental
design. It is important for the reader to become familiar with it in what is the simplest
scenario—namely, the first-order model.

Prediction Variance for the First-Order Model Recall that the prediction variance, or
variance of a predicted value, is given by

PV(x) = Var[ ŷ (x)] = 𝜎2x(m)′(X′X)−1x(m)

where x(m) is a function of the location in the design variables at which one predicts and
also a function of the model. In fact, the (m) in x(m) reflects the model. In the case of a
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strictly first-order model, we obtain

x(1)′ = [1, x1, x2,… , xk]

For a k= 2 model containing x1, x2 and their interaction, we obtain

x(1)′ = [1, x1, x2, x1x2]

One can easily see that Var[ ŷ (x)] varies from location to location in the design space. In
addition, the presence of (X′X)−1 attests to the fact that the criterion is very much a function
of the experimental design. The reader should view the prediction variance as a reflection
of how well one predicts with the model, given a particular choice of design.

In studies that are done to compare designs, it is often convenient to scale the prediction
variance, that is, work with the scaled prediction variance

SPV(x) =
N Var[ ŷ(x)]

𝜎2
= Nx(m)′(X′X)−1x(m) (8.10)

The division by 𝜎2 makes the quantity scale-free, and the multiplication by N allows the
quantity to reflect variance on a per observation basis. That is, if two designs are being
compared, the scaling by N automatically “punishes” the design with the larger sample
size. It forces a premium on efficiency.

The scaled prediction variance in Equation 8.10 is quite simple for the case of a variance
optimal first-order orthogonal design. In fact, because (X′X)−1 = (1∕N)Ip, we have

SPV(x) = [1, x1, x2,… , xk]

⎡⎢⎢⎢⎢⎣

1
x1
x2
⋮
xk

⎤⎥⎥⎥⎥⎦
= 1 +

k∑
i=1

x2
i

= 1 + 𝜌2
x

(8.11)

where 𝜌x is the distance that the point x′ = [x1, x2,… , xk] is away from the design origin.
As a result, the SPV on N Var[ ŷ(x)]∕𝜎 2 = 1 at the design center and becomes larger as one
moves toward the design perimeter. Anyone who recalls confidence intervals on E[y(x)] in
linear regression should not be surprised at this result. As an illustration, for a 23 factorial
design, the following are values of N Var[ ŷ(x)]∕𝜎 2 at different locations where one may
wish to predict:

Location N Var[ŷ(x)]∕𝜎2

0, 0, 0 1
1

2
, 1

2
, 1

2
1.75

1

2
, 1

2
, 1 2.50

1

2
, 1, 1 3.25

1, 1, 1 4
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Thus, the scaled prediction variance increases fourfold as one moves from the design center
to the design perimeter. For, say, a 25 factorial at the perimeter [i.e., (±1, ±1, ±1, +1, ±1)],
N Var[ŷ(x)]∕𝜎2 = 6 and hence the variance increases sixfold.

In the case of a lesser design (i.e., one that is not variance-optimal, or even orthogonal),
this change in prediction variance is even more pronounced. For example, consider a one-
half fraction (resolution III) of a 23 factorial with four center runs as an alternative to a
23. We know that this design is orthogonal but not variance-optimal. Recall this design as
Design 2 in the comparisons we made in Section 8.3.2. The 23 was Design 1. For Design
2 the model matrix is

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and X′X =
⎡⎢⎢⎢⎣

8 0 0 0
4 0 0

4 0
4

⎤⎥⎥⎥⎦

with the variance–covariance matrix (apart from 𝜎2) being

(X′X)−1 =

⎡⎢⎢⎢⎢⎣

1
8

0 0 0

0 1
4

0 0

0 0 1
4

0

0 0 0 1
4

⎤⎥⎥⎥⎥⎦

Consequently,

SPV(x) = 8[1, x1, x2, x3]

⎡⎢⎢⎢⎢⎣

1
8

0 0 0

0 1
4

0 0

0 0 1
4

0

0 0 0 1
4

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1

x1

x2

xk

⎤⎥⎥⎥⎥⎦
= 1 + 2

(
x2

1 + x2
2 + x2

3

)

= 1 + 2𝜌2
x

As a result, it is apparent that SPV(x) for Design 2 increases much faster as one approaches
the design perimeter than does Design 1. In fact, at (±1, ±1, ±1), SPV(x)= 4 for Design 1
and SPV(x)= 7 for Design 2. Incidentally, Design 3, which is a resolution III fraction of a
23 with replicate runs, has prediction variance properties identical to that of Design 1; they
are both variance-optimal designs.

The reader should view prediction variance as another variance-type criterion by which
comparisons among designs can be made, where here the focus is on good prediction of
new observations. It is different than merely comparing variances of individual coefficients.
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Much more attention will be given to SPV(x) = N Var[ ŷ(x)]∕𝜎 2 later in this chapter and
in future chapters.

8.4 DESIGNS FOR FITTING SECOND-ORDER MODELS

Before we embark on the large topic of designed experiments for second-order models, we
should review for the reader some minimum design requirements and the RSM philosophy
that motivates one or two of the classes of designs that we will subsequently present in
detail. Variable screening is an essential phase of RSM that was presented at length in
Chapter 1. Here, of course, the two-level factorial designs and fractions play a major role.
Any sequential movement (region seeking, such as the Path of Steepest Ascent described in
Chapter 5) that is necessary is also accomplished with a first-order design. Of course, there
may be instances where region-seeking via steepest ascent (or descent) and/or variable
screening are not required. However, the possibility of either or both should be included in
the total sequential plan. At some point the researcher will be interested in fitting a second-
order response surface in the design variables x1, x2,… , xk. This response surface analysis
may involve optimization as discussed in Chapter 6. It may lead to even more sequential
movement through the use of canonical or ridge analysis. But, regardless of the form of the
analysis, the purpose of the experimental design is one that should allow the user to fit the
second-order model

y = 𝛽0 +
k∑

i=1

𝛽ixi +
k∑

i=1

𝛽iix
2
i +

∑ k∑
i<j=2

𝛽ijxixj + 𝜀 (8.12)

The model of Equation 8.12 contains 1+ 2k+ k(k− l)∕2 parameters. There must be at
least this number of distinct design points and at least three levels of each design variable.
Now, of course, these represent minimum conditions, and one should keep in mind the 11
desirable design characteristics listed at the beginning of this chapter. In what follows in this
chapter and in Chapter 9 we discuss important design properties for the second-order model
and specific classes of second-order designs. The reader will recall from the previous section
that in the case of first-order designs (or first-order-with-interaction designs), a dominant
property is orthogonality. In the case of second-order designs, orthogonality ceases to be
such an important issue, and estimation of individual coefficients, while still important,
becomes secondary to the scaled prediction variance, N Var[ŷ(x)]∕𝜎2. This stems from the
fact that there is often less concern with what variables belong in the model than with
the quality of ŷ(x) as a prediction or, rather, an estimator for E[y(x)]. We now introduce,
formally, the class of central composite designs.

8.4.1 The Class of Central Composite Designs

The central composite designs (CCDs) were introduced in an informal way in Chapter 6.
Some of the examples used for illustrative purposes involved the use of the CCD. The CCD
is without a doubt the most popular class of second-order designs. It was introduced by
Box and Wilson (1951).
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Much of the motivation of the CCD evolves from its use in sequential experimentation.
It involves the use of a two-level factorial or fraction (resolution V) combined with the
following 2k axial or star points:

x1 x2 … xk

−𝛼 0 … 0
𝛼 0 … 0
0 −𝛼 … 0
0 𝛼 … 0
⋮ ⋮ ⋮
0 0 … −𝛼
0 0 … 𝛼

As a result, the design involves, say, F factorial points, 2k axial points, and nc center runs.
The sequential nature of the design becomes very obvious. The factorial points represent
a variance-optimal design for a first-order model or a first-order+ two-factor interaction
model. Center runs clearly provide information about the existence of curvature in the
system. If curvature is found in the system, the addition of axial points allow for efficient
estimation of the pure quadratic terms.

While the genesis of this design is derived from sequential experimentation, the CCD
is a very efficient design in situations that call for a nonsequential batch response surface
experiment. In effect, the three components of the design play important and somewhat
different roles.

1. The resolution V fraction contributes substantially to the estimation of linear terms
and two-factor interactions. It is variance-optimal for these terms. The factorial points
are the only points that contribute to the estimation of the interaction terms.

2. The axial points contribute in a large way to estimation of quadratic terms. Without
the axial points, only the sum of the quadratic terms,

∑k
i=1 𝛽ii, can be estimated. The

axial points do not contribute to the estimation of interaction terms.

3. The center runs provide an internal estimate of error (pure error) and contribute
toward the estimation of quadratic terms.

The areas of flexibility in the use of the central composite design reside in the selection of
𝛼, the axial distance, and nc, the number of center runs. The choice of these two parameters
can be very important. The choice of 𝛼 depends to a great extent on the region of operability
and region of interest. The choice of nc often has an influence on the distribution of N
Var[ŷ(x)]∕𝜎2 in the region of interest. More will be said about the choice of 𝛼 and nc in
subsequent sections. Figures 8.5 and 8.6 show the CCD for k= 2 and k= 3. For the k= 2

case the value of 𝛼, the axial distance is
√

2. For k= 3, the value of 𝛼 is
√

3. Note that for

k= 3 the axial points come through the six faces at a distance
√

3 from the origin. For k= 2
the design represents eight points equally spaced on a circle, plus the center runs. For k= 3
the design represents 14 points all on a common sphere, plus center runs.
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Figure 8.5 Central composite design for k = 2 and 𝛼 =
√

2.

Figure 8.6 Central composite design for k = 3 and 𝛼 =
√

3.

The value of the axial distance generally varies from 1.0 to
√

k, the former placing all
axial points on the face of the cube or hypercube, the latter resulting in all points being
placed on a common sphere. There are times when two or more center runs are needed and
times when one or two will suffice. We will allocate considerable space in Chapter 9 to
comparison of the CCD with other types of designs. We will discuss the choice of 𝛼 and nc
following a numerical example of the use of a CCD.

In the example that follows we use a real-life numerical example to gain insight into the
structure of the X and X′X matrices for the general case of a CCD.

Example 8.4 The Breadwrapper Experiment An experiment was conducted to study
the response surface relating the strength of breadwrapper stock in grams per square inch
to sealing temperature (x1), cooling bar temperature (x2), and percent polyethylene additive
(x3). The definition of the design levels are [see Myers (1976)]:

x1 =
temp. − 255◦F

30
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x2 =
temp. − 55◦F

9

x3 =
polyethylene − 1.1%

0.6

Five levels of each factor are involved in this design. The coded and natural levels are given
by the following:

−1.682 −1.000 0.000 1.000 1.682

x1 204.5 225 255 285 305.5
x2 39.9 46 55 64 70.1
x3 0.09 0.5 1.1 1.7 2.11

The design matrix D and the vector y of responses are

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1
1 −1 −1

−1 1 −1
1 1 −1

−1 −1 1
1 −1 1

−1 1 1
1 1 1

−1.682 0 0
1.682 0 0

0 −1.682 0
0 1.682 0
0 0 −1.682
0 0 1.682
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.6
6.9
7.9
6.1
9.2
6.8

10.4
7.3
9.8
5.0
6.9
6.3
4.0
8.6

10.1
9.9

12.2
9.7
9.7
9.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the k= 3 CCD for this example uses 𝛼 = 1.682 with n= 6 center runs. While this
is not the axial distance that stretches to the faces of the cube it is a value to which some
importance is attached. It allows the design to possess the property of rotatability (defined
in Section 8.2) and thus the derivation of the value 𝛼 = 1.682 for the k= 3 breadwrapper
design will be discussed in Section 8.4.2. We shall use the breadwrapper design to highlight
the structure of X and X′X. For the design matrix D and the second-order model:



8.4 DESIGNS FOR FITTING SECOND-ORDER MODELS 397

x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 | | 1 1 1 1 1 1
1 | | 1 1 1 −1 −1 1
1 | | 1 1 1 −1 1 −1
1 | | 1 1 1 1 −1 −1
1 | | 1 1 1 1 −1 −1
1 | | 1 1 1 −1 1 −1
1 | | 1 1 1 −1 −1 1
1 | | 1 1 1 1 1 1
1 | D | 2.828 0 0 0 0 0
1 | | 2.828 0 0 0 0 0
1 | | 0 2.828 0 0 0 0
1 | | 0 2.828 0 0 0 0
1 | | 0 0 2.828 0 0 0
1 | | 0 0 2.828 0 0 0
1 | | 0 0 0 0 0 0
1 | | 0 0 0 0 0 0
1 | | 0 0 0 0 0 0
1 | | 0 0 0 0 0 0
1 | | 0 0 0 0 0 0
1 | | 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.13a)

b0 b1 b2 b3 b11 b22 b33 b12 b13 b23

X′X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 0 0 0 13.658 13.658 13.658 0 0 0
13.658 0 0 0 0 0 0 0 0

13.658 0 0 0 0 0 0 0
13.658 0 0 0 0 0 0

24 8 8 0 0 0
24 8 0 0 0

24 0 0 0
8 0 0

8 0
Symmetric 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.13b)

Note that in the X matrix the first four columns involving the column of ones and the linear
term columns are mutually orthogonal as one would expect since they jointly represent
columns of an orthogonal design. The same is true with the last three columns containing
the columns that reflect presence of interaction terms. In addition, these two sets of columns
are mutually orthogonal to one another. This is a result of the presence of the factorial portion
of the CCD and the fact that that axial are chosen such that orthogonality is maintained
among the linear columns. This produces a large number of zeros on the off diagonal
elements of X′X. In fact the only non-zero entries on the off diagonals, the values of 8, exist
because the “pure” quadratic terms are, of course, not mutually orthogonal. [The nonzeros
in the first row and column (i.e., 13.658) could be made zero by centering the x2

i values
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TABLE 8.4 Analysis of Variance for Breadwrapper Stock Data

Source of Variation Sum of Squares Degrees of Freedom Mean Square F

Regression (linear and quadratic) 70.3056 9 7.8117 7.87
Lack of fit 6.9044 5 1.3809 1.39
Error 4.9600 5 0.9920
Total 82.1700 19

in the model.] The presence of many zeros on the off diagonals contribute to making the
CCD a very efficient design. In addition, we will observe in later sections that the value of
nc, the number of center runs can be a very important design parameter.

The X′X matrix in Equation 8.13b is certainly specific to the conditions of the bread-
wrapper problem. However, it is important to understand that the zeros appear in the
corresponding positions for any CCD for the reasons described above. In sections that
follow we will revisit the general form of X′X as discussed for the CCD here with regard
to how it effects the variance of prediction, that is, specifically N Var[ ŷ(x)]∕𝜎2. Indeed
certain values of the diagonals and the off-diagonal elements can dramatically influence the
distribution of this scaled prediction variance quantity inside the design region of the CCD.

The least squares procedure gives the estimated second-order response function:

ŷ = 10.165 − 1.1036x1 + 0.0872x2 + 1.020x3 − 0.760x2
1

− 1.042x2
2 − 1.148x2

3 − 0.350x1x2 − 0.500x1x3 + 0.150x2x3

An analysis of variance is shown in Table 8.4. Note that there are five degrees of freedom
for lack of fit, representing contributions from third-order terms. The F-test for lack of fit
is not significant.

The stationary point is computed based on the methodology discussed in Chapter 6:

xs = − 1
2
B̂−1b

=

[−1.011
0.260
0.681

]

with the predicted response at the stationary point given by ŷ(xs)= 11.08.
The eigenvalues of the matrix B̂ are found to be

𝜆1 = −0.562, 𝜆2 = −1.271, 𝜆3 = −1.117

Thus the canonical form is given by

ŷ = 11.08 − 0.562w2
1 − 1.271w2

2 − 1.117w2
3

As a result, the stationary point is a point of estimated maximum mean strength of the bread-
wrapper. Figure 8.7 displays contour graphs that show the flexibility available around the
estimated optimum. Contours of constant response are shown for x3 (percent polyethylene)
values of −0.5, 0.00, 0.25, and 0.5. The purpose is to determine how much strength is
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Figure 8.7 Contours of constant strength at different levels of the percentage of polyethylene, x3.
(a) x3 =−0.5. (b) x3 = 0. (c) x3 = 0.25. (d) x3 = 0.5.

lost by moving percent polyethylene x3 off the optimum value of 0.681 (coded). From the
contour plots, it becomes apparent that even if the polyethylene content is reduced to a
value as low as 0.25 (coded), the estimated maximum strength is reduced to only slightly
less than 10.9 psi. A reduction to 0.500 in polyethylene will still produce a maximum that
exceeds 11.0 psi.

The objective of this section is to formally introduce the user to the CCD and to allow
more insight into its properties. However, the CCD is such an important part of the heritage
and practical use of RSM that it will be revisited frequently in the text. In the next section
we reintroduce the notion of prediction variance—that is, N Var[ ŷ(x)]∕𝜎 2 in the case of
second-order models. Simultaneously, we discuss the notion of the property of rotatability.
This will allow the discussion of the choice of 𝛼 and nc to be connected to design properties.

8.4.2 Design Moments and Property of Rotatability

Many of the properties of experimental designs are connected to the manner in which the
points are distributed in the region of experimentation. Specifically, this distribution of
points in space has a profound effect on the distribution of N Var [ ŷ(x)] ∕𝜎 2, the scaled
prediction variance. The distribution of design points is nicely quantified by its design
moments. The term moments has the same conceptual meaning as the term sample moments
that is taught in elementary statistics. We learn early in our training that the nature of the
sample of the data is well characterized by its moments—for example, sample mean (first
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moment) and sample variance (second moment). We also recall that symmetry in a sample
is quantified by the third moment. In the case of RSM, the moments that reflect important
geometry in the design must also be a function of the model being fit.

Indeed the important moments come from the moment matrix

M = X′X
N

For example, a 2k factorial or fractional factorial design for a first-order model is orthogonal
and its moment matrix is easily seen to be

M = X′X
N

=
⎡⎢⎢⎢⎣

1 0 ⋯ 0
0 1
⋮ ⋱
0 1

⎤⎥⎥⎥⎦
= Ik

The off-diagonal moments are zero due to the orthogonality of the columns of the X matrix,
and the diagonal moments are all equal to 1, since the X matrix is given by

X =
⎡⎢⎢⎢⎣

1 x11 x21 ⋯ xk1
1 x12 x22 ⋯ xk2
⋮ ⋮ ⋮ ⋱ ⋮
1 x1 N x2 N ⋯ xkN

⎤⎥⎥⎥⎦
where each of the xij entries are ±1. We then define the moments as first moments; that is,
1
N

∑N
u=1 xiu, the second mixed moments 1

N

∑N
u=1 xiux ju for i≠ j and the second pure moments

1
N

∑N
u=1 x2

iu. The first and second mixed moments are called odd moments, since they have
at least one variable with an odd power. These are clearly zero for this design. The k second
pure moments are then even moments and, of course, are equal to 1 in this case. It should be
clear that the second mixed moments are analogous to a sample covariance for the sample
moments case in basic statistics, where the first moment can be viewed like a sample mean,
and the second pure moments as sample variances.

The design moments that carry importance in characterizing variance properties of a
design are clearly a function of the order of the model. In the case of the 2k factorial or
fractional factorial design illustrated above, the moments through order 2 are important
since M=X′X∕N contains moments through order 2. However, in the case of the CCD
with the corresponding second-order design, M contains moments through order 4. This
is evident when we observe X and X′X in Equations 8.13a and 8.13b, respectively. In fact
from (8.13b), the relevant moments are

[i] = 1
N

N∑
u=1

xiu first moments

[ii] = 1
N

N∑
u=1

x2
iu second pure moments

[ij] = 1
N

N∑
u=1

xiux ju second mixed moments
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[iii] = 1
N

N∑
u=1

x3
iu third pure moments

[iij] = 1
N

N∑
u=1

x2
iux ju, [ijk] = 1

N

N∑
u=1

xiux juxku third mixed moments

[iiii] = 1
N

N∑
u=1

x4
iu fourth pure moments

[iiij] = 1
N

N∑
u=1

x3
iuxju, [iijj] = 1

N

N∑
u=1

x2
iux2

ju fourth mixed moments

[iijk] = 1
N

N∑
u=1

x2
iux juxku, [ijkl] = 1

N

N∑
u=1

xiux juxkuxlu

It is clear that for the CCD all odd moments through order four—that is, moments that
contain at least one odd power, that is, [i], [ij], [iii], [iij], [ijk], [iiij], and [iijk]—are zero
for i≠ j≠ k. Values of zero for odd moments suggest a certain design symmetry which is
certainly apparent when one observes the design in Figs. 8.5 and 8.6. In fact from the X′X
matrix in Equation 7.13b, the only nonzero moments for the k= 3 CCD are [ii], [iijj], and
[iiii] for all i≠ j.

The important variance properties of an experimental design are determined by the nature
of the moment matrix. This should be evident because the matrix (X′X)−1 and hence X′X
are so important in characterizing variance properties—that is, variances and covariances
of regression coefficients as well as prediction variance.

The importance of design moments and hence the moment matrix in characterizing
the scaled prediction variance, SPV, is easily seen by observing the definition of SPV in
Equation 8.10.

SPV(x) = Nx(m)′(X′X)−1x(m)

= x(m)′
(

X′X
N

)−1

x(m)

= x(m)′M−1x(m)

So the SPV is a quadratic form of the moment matrix, M. Thus the nature of the design
moments has a profound effect on the SPV and its distribution in the design space.

It is important for a second-order design to possess a reasonably stable distribution of
the scaled prediction variance N Var[ ŷ(x)]∕𝜎 2 throughout the experimental design region.
It must be clearly understood that the experimenter does not know at the outset where in
the design space he or she may wish to predict, or where in the design space the optimum
may lie. Thus, a reasonably stable scaled prediction variance N Var[ ŷ(x)]∕𝜎 2 provides
insurance that the quality of the ŷ(x) as a prediction of future response values is similar
throughout the region of interest. To this end, Box and Hunter (1957) developed the notion
of design rotatability.

A rotatable design is one for which N Var[ ŷ(x)]∕𝜎 2 has the same value at any two loca-
tions that are the same distance from the design center. In other words, N Var[ ŷ(x)]∕𝜎 2

is constant on spheres.
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The purpose of design rotatability was, in part, to impose a type of stability on
N Var[ ŷ(x)]∕𝜎 2. The rationale of rotatability is that at two locations in the design space x1
and x2 for which the distances from the origin are the same [i.e., (x′1x1)1∕2 = (x′2x2)1∕2],
the predicted values ŷ(x1) and ŷ(x2) should be equally good—that is, have equal vari-
ance. While rotatability itself does not ensure stability or even near-stability throughout the
design region, in many cases it provides some useful guidelines for the choice of design
parameters—for example, the choice of 𝛼 and nc in the CCD. The importance of rotata-
bility as a design property depends on many things, not the least of which is the nature
of the region of interest and region of operability. It is important to note that rotatability
or near-rotatability is often easy to achieve without the sacrifice of other important design
properties. In what follows, we present the foundation that will allow the determination of
necessary and sufficient conditions for design rotatability.

Moment Matrix for a Rotatable Design (First and Second Order) In this section we
give the moment matrix for a rotatable design for both first- and second-order models.
Additional theoretical development regarding the general case is given in Appendix 1. For
the case of a first-order model, a design is rotatable if and only if odd moments through
order two are zero and the pure second moments are all equal. In other words,

[i] = 0 (i = 1, 2,… , k)

[ij] = 0 (i ≠ j, i, j = 1, 2,… , k)

[ii] = 𝜆2 (i = 1, 2 ,… , k)

The quantity 𝜆2 is determined by the scaling of the design. As a result in the first-order
case, the moment conditions for a rotatable design are equivalent to the moment conditions
for a variance-optimal design. Indeed, with scaling that allows levels at±1 in a two-level
design of resolution III or higher, we have

[i] = 0, [ij] = 0, [ii] = 1.0 (i = 1, 2,… , k, i ≠ j)

In other words, 𝜆2 is set at 1.0 due to the standard±1 scaling. The equivalence of rotatability
to variance optimality in the first-order case should not be surprising. The reader should
recall the result of Equation 8.11. We showed that

SPV(x) = 1 + 𝜌2
x

for a first-order variance optimal design. Thus, the scaled prediction variance
N Var[ ŷ(x)]∕𝜎 2 is a function of x only through 𝜌x, the distance of x from the design
origin. This implies that N Var[ ŷ(x)]∕𝜎 2 is the same at any two locations that are the same
distance from the origin.

In the case of a second-order model, the moments that affect rotatability (or any
variance property) are moments through order four. Necessary and sufficient conditions for
rotatability are as follows:

1. All odd moments through order four are zero.

2. The ratio of moments [iiii]∕[iijj] = 3 (i ≠ j). (8.14)

The conditions are not only simple, but relatively easy to achieve, particularly with a CCD.
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8.4.3 Rotatability and the CCD

The conditions given in Equation 8.14 are achieved, at least approximately, by several
classes of designs. In the case of the CCD, rotatability is achieved by making a proper
choice of 𝛼, the axial distance. Condition 1 above will hold as long as the factorial portion
is a full 2k or a fraction with resolution V or higher. The balance between +1 and −1 in
the factorial columns and the orthogonality among certain columns in the matrix X for
the CCD will result in all odd moments being zero. For condition 2, one merely seeks 𝛼
for which

[iiii]
[iijj]

= F + 2𝛼4

F
= 3

which results in

𝛼 = 4
√

F (8.15)

where, of course, F is the number of factorial points (F= 2k if it is a full factorial). It is
important to note that rotatability is achieved by using 𝛼 as in Equation 8.15 regardless
of the number of center runs. Table 8.5 gives value of 𝛼 for a rotatable design for various
numbers of design variables.

Note that for k= 2 and k= 4 the rotatable CCD contains 8 and 24 points (apart from
center runs), respectively, that are equidistant from the design center. For k= 3, the value
𝛼 = 1.682 corresponds to the CCD used in the breadwrapper example in Section 8.4.1. For
k= 2, 3, and 4 the rotatable CCD is either exactly or very nearly a spherical design; that is,

all points (apart from center runs) are exactly (or approximately for k= 3) a distance
√

k
from the design center.

Center Runs for the Rotatable CCD The property of rotatability is an attempt at producing
stability, in the sense of constant SPV(x) on spheres. However, the presence of a rotatable
design does not imply stability throughout the design region. In fact it turns out that a
spherical design (all points on a common radius) used for fitting a second-order model has
an infinite SPV(x), since the design is singular; that is, X′X is a singular matrix [see Box
and Hunter (1957), Box and Draper (1975), and Myers (1976)]. The use of center runs can
provide reasonable stability of SPV(x) in the design region; as a result, some center runs

TABLE 8.5 Values of 𝛼 for a Rotatable Central Composite Design

k F N 𝛼

2 4 8+ nc 1.414
3 8 14+ nc 1.682
4 16 24+ nc 2.000
5 32 42+ nc 2.378
5 ( 1

2
rep) 16 26+ nc 2.000

6 64 76+ nc 2.828
6 ( 1

2
rep) 32 44+ nc 2.378

7 128 142+ nc 3.364
7( 1

2
rep) 64 78+ nc 2.828



404 DESIGN OF EXPERIMENTS FOR FITTING RESPONSE SURFACES—I

Figure 8.8 Scaled prediction variance N Var[ŷ(x)]∕𝜎2 for k= 2 CCD, 𝛼 =
√

2, nc = 1. (a) Response
surface. (b) Contour plot.

for a rotatable CCD are very beneficial. The use of a rotatable or near-rotatable CCD with
only a small number of center runs is not a good practice. An illustration of this point is
given through Figs. 8.8 and 8.9. Figure 8.8 shows contours of SPV(x) for a k= 2 CCD

(𝛼 =
√

2) and one center run. (For zero center runs the design is singular.) Figure 8.9 gives

the contours with 𝛼 =
√

2 and five center runs. Note that the design in Fig. 8.9 is preferable.
Also note that the criterion involves weighting by N, which means that the design in Fig. 8.9
has a larger weight. In spite of this, the nc = 1 design has a scaled prediction variance at the
design center that is 3.5 times as large as that of the nc = 5 design.

Guidelines regarding the use of center runs with the CCD will be given in the next
section; suffice it to say at this point that spherical or nearly spherical designs require
three to five center runs in order to avoid a severe imbalance in SPV(x) through the design

Figure 8.9 Scaled prediction variance N Var[ŷ(x)]∕𝜎2 for k= 2 CCD, 𝛼 =
√

2, nc = 5. (a) Response
surface. (b) Contour plot.
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region. The message communicated by Figs. 8.8 and 8.9 extends to larger values of k. Draper
(1982), Giovanitti-Jensen and Myers (1989), and Myers et al. (1992b) supply information
regarding center runs in the use of the CCD.

Achieving near rotatability for a design can have the desired effect of producing good
stability of prediction variance throughout the design region, even if the conditions for
rotatability were not met exactly. Consider the experiment for finding the optimal conditions
for storing bovine semen given in Example 6.2 with data shown in Table 6.4. In this example,
three factors were considered, and the design selected was a CCD with four center runs
and 𝛼 = 2. Figure 8.10 shows three slices of the spherical design region, based on fixed
values of factor X3. The dashed line on the plot shows the region of the design space that

lies within the sphere of radius
√

3 from the center. Note that this changes depending on

Figure 8.10 Contour plot of scaled prediction variance for k= 3 CCD, 𝛼 = 2, nc = 4 for Example 6.2.
(a) X3 = 0, (b) X3 = 1, (c) X3 = 1.5.
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the value of X3 considered. In this case the axial design points lie outside of the spherical
region, still within the region of operability, but outside the region of interest.

Although the axial distance was not 1.682 as recommended for a rotatable design, we
can see from Fig. 8.10 that the contours for this design are nearly circular, and hence the
design is very close to rotatable. This illustrates that the changes in the axial distance affect
rotatability relatively slowly.

How Important is Rotatability? The rotatable CCD plays an important role in RSM, from
both a historical and an operational point of view. However, it is important for the analyst
to understand that it is not necessary to have exact rotatability in a second-order design.
In fact:

If the desired region of the design is spherical, the CCD that is most effective from a

variance point of view is to use 𝛼 =
√

k and three to five center runs.

This design is not necessarily rotatable, but is near-rotatable. The recommendation is
based on the stability and size of SPV(x) in the spherical design region. For example, for

k = 3, 𝛼 =
√

3 does not produce a rotatable design. However, the loss in rotatability is
actually trivial, and the larger value of 𝛼 (then the rotatable value 𝛼 = 1.682), results in a
design that is slightly preferable based on improved stability and minimizing the average
and worst-case prediction variance. Numerical evidence regarding this recommendation
will be given later in this chapter and in Chapter 9. The reader is also referred to Box
and Draper (1987), Khuri and Cornell (1996), Lucas (1976), Giovannitti-Jensen and Myers
(1989), and Myers et al. (1992b) for information regarding the practical use of the CCD.

8.4.4 More on Prediction Variance—Scaled, Unscaled, and Estimated

The importance of the prediction variance or the variance of a predicted value, as
defined by

PV(x) = Var [ ŷ(x)] = 𝜎 2x(m)′(X′X)−1x(m)

has importance in several phases of the design and analysis of an experiment. The presence
of the unknown quantity, 𝜎2, needs special consideration and different treatment depending
on whether data have been collected.

During the design selection stage, no value of 𝜎2 is available. In addition, its value is
not informative to the quality of the designs being compared or assessed. Hence, the scaled
prediction variance, SPV(x)=N Var[ŷ(x)]∕𝜎 2, as defined in Equation 8.10 is a common
choice in this stage. In their epic paper in 1957, Box and Hunter used it in graphics
to compare competing designs with considerable work attached to the central composite
design and other spherical designs. In fact the term “scaled” prediction was not used in
their 1957 paper. Rather they used the term “information” to describe the concept. We now
describe the origin and reasonableness of this term.

Cost and general design efficiency are important, and it is often helpful to weigh these
relative to each other. As we discussed in Section 8.3.4, the SPV works through the use
of the information matrix, X′X∕N, also called the moment matrix. This quantity considers
quality on a per observation basis. Thus many reasonable comparisons between designs
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take cost (choice of N) into account, and balance cost with efficiency. For the SPV can
be written

SPV = x(m)′
(

X′X
N

)−1

x(m)

= Nx(m)′ (X′X
)−1

x(m)

In fact, as will be demonstrated in Chapter 9, an entire spectrum of optimality criteria,
such as D-optimality, I-optimality, G-optimality, and A-optimality, involve criteria that are
norms on X′X∕N, and hence use scaling as in the case of SPV.

However, the assumption that the cost of the design is proportional to its size, N, may
not be appropriate for all situations. For example, consider the situation where setting up
the general conditions for the experiment are more expensive than the incremental cost
of performing runs of the experiment. In this case, we are more likely to want to run an
experiment as large as possible given practical constraints, to maximize the benefit of our
set-up. Here we might choose to compare designs of different sizes without the penalty
term of N in SPV. Here the quantity, called unscaled prediction variance

UPV = Var [ ŷ(x)] ∕𝜎 2 = x(m)′ (X′X
)−1

x(m)

may be more appropriate. There is considerable discussion among statisticians about the
relative merits of the quantities, SPV and UPV. On the theoretical grounds outlined above,
SPV is a useful metric for assessing the quality of prediction in the design region taking
account of the size of the design. If cost as quantified by the size of the design is not
a consideration for selecting between designs, or if the incremental cost of increasing
the design size is not appropriately approximated by the scaling N, then UPV is a good
alternative. It gives an absolute measure of the precision of a design. From a practical
perspective, the SPV approach is similar to the Derringer-Suich (1980) desirability function
approach described in Chapter 7, which seeks to balance good prediction quality with cost
considerations. If it is more beneficial to consider these aspects of a design separately,
then the UPV may be preferred. See Anderson-Cook et al. (2009a,b) with discussion for
different perspectives on the merits of scaling or not.

To summarize, we can use SPV or UPV during the design selection phase. The division
by 𝜎 2 means that these quantities are a function of only the design matrix and do not require
data to have been collected. However, there are certainly many applications of the use of
prediction variance in which the scaling of N∕𝜎 2 for the SPV or 1∕𝜎 2 for the UPV should
not be used. After the experiment has been run, and data have been collected, the estimate
MSE for 𝜎 2 should be multiplied by the unscaled quantity x(m)′(X′X)−1x(m) with the result
being the estimated prediction variance,

EPV = MSE x(m)′(X′X)−1x(m)

Here the square root of this quantity is the familiar standard error of the estimated mean,
ŷ(x), at a given location in the design space. Students are taught that at a location, x0 (in
the model space), the 100(1− 𝛼)% confidence interval on a mean response is given by the
familiar expression

ŷ(x0) ± t𝛼∕2,df(error)

√
MSE x(m)′

0 (X′X)−1x(m)
0



408 DESIGN OF EXPERIMENTS FOR FITTING RESPONSE SURFACES—I

Of course it would make no sense to scale the quantity inside the square root by a factor
of N. In fact, the confidence region would not be correct with such scaling. Plots of this
quantity for the variance at x0 in the design region are available in several commercial
software packages including Design-Expert. For example, plots in Figs. 2.13a and b for the
data of Table 2.8 show illustrations of these plots.

From the foregoing, it should be surmised that if an experimental design has been
implemented with the data collected, the EPV should be applied for inferences to be drawn
concerning the use of the fitted model. In fact, under these conditions, the cost involved and
the efficiency (compared to other designs) are no longer issues. The questions that are now
being answered center around “How good is the fitted model that was generated from this
design?” Thus there is no need for scaling, and using the estimated value of 𝜎 2 provides
information about prediction that is specific to the experiment.

8.4.5 The Face-Centered Cube in Cuboidal Regions

In Section 8.4.2, recommendations were given for the choice of 𝛼 and nc for a central
composite design in a spherical region. However, there are many practical situations in
which the scientist or engineer specifies ranges on the design variables, and these ranges
are strict. That is, the region of interest and the region of operability are the same, and the
obvious region for the design is a square (k = 2), cube (k = 3), or hypercube (k ≥ 4).

For example, in an experimental study designed to study organism growth, the design
variables and their ranges are percent glucose [2%, 4%], percent yeast [0.4%, 0.6%], and
time [30 hr, 60 hr]. Suppose it is of interest to build a second-order response surface
model and the biologist is interested in predicting growth of the organism inside and on the
perimeter of the cuboidal region produced by the cube. In addition, for biological reasons,
one cannot experiment outside the cube, though experimentation at the extremes in the
region is permissible and, in fact, desirable. This scenario, which occurs frequently in many
scientific areas, suggests a central composite design in which the eight corners of the cube
are centered and scaled to (+1, +1, +1) and 𝛼 = 1. The final design is given (in coded
form) by

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1
−1 1 −1
−1 −1 1

1 1 −1
1 −1 1

−1 1 1
1 1 1

−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the (0, 0, 0) at the design center indicates a vector of nc center runs. Figure 8.11
shows the design, often called the face-centered cube (or FCD) because the axial points
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Figure 8.11 Face-centered cube (FCD with 𝛼 = 1.0) for k= 3.

occur at the centers of the faces, rather than outside the faces as in the case of a spherical
region.

In the case of a cuboidal design region, the face-centered cube is an effective second-
order design. When one encounters what is a natural cuboidal region, it is important that
the points be pushed to the extreme of the experimental region. This results in the most
attractive distribution of N Var[ŷ(x)]∕𝜎 2. It is important for the region to be covered in
a symmetric fashion. The face-centered cube accomplishes this. Of course, the design is
not rotatable. However, rotatability or near-rotatability is not an important priority when
the region of interest is clearly cuboidal. It is a useful option that comes from spherical
or near-spherical designs; these designs are certainly appropriate for spherical regions of
interest or regions of operability, but are less appropriate with cuboidal regions.

The face-centered cube is a useful design for any number of design variables. Again, a
resolution V fraction is used for the factorial portion. The recommendation for center runs
is quite different from that of the spherical designs. In the case of spherical designs, center
runs are a necessity in order to achieve a reasonable distribution of N Var[ ŷ(x)]∕𝜎 2, with
nc = 3−5 giving good results. In the cuboidal case (i.e., with 𝛼 = 1.0), one or two center
runs are sufficient to produce reasonable stability of N Var[ ŷ(x)]∕𝜎 2. The sensitivity of
N Var[ ŷ(x)]∕𝜎 2 to the number of center runs for the spherical design is seen in Figs. 8.8
and 8.9. The insensitivity to center runs for the face-centered cube is illustrated in Figs.
8.12, 8.13, and 8.14. Contours of values of N Var[ ŷ(x)]∕𝜎 2 are given for nc = 0, nc = 1,
and nc = 2 for the k= 3 face-centered cube when x3 is fixed at 0. It is clear that many
center runs are not needed to stabilize the prediction variance. In fact, one center run is
quite sufficient for stability, though nc = 2 is slightly preferable. No further improvement is
achieved beyond nc = 2.

Though much has been said here about the effect of center runs on the scaled prediction
variance N Var[ ŷ(x)]∕𝜎 2 for both spherical and cuboidal designs, it should be noted that
multiple center runs or replication of exterior points may, in many cases, be desirable in
order to have a sufficient number of degrees of freedom for pure error.

Other Three-Level Designs on Cubes There are other approaches to obtaining three-
level designs on cubes for fitting the second-order model. While the complete 3k requires
too many runs, an experimenter can either use a suitable fraction of the 3k or construct
a computer-generated design based on some alphabetic optimality criterion (see Chap-
ter 9). See Hoke (1974) and Mitchell and Bayne (1978) for examples of these approaches.
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Figure 8.12 Scaled prediction variance N Var[ŷ(x)]∕𝜎2: 𝛼 = 1.0, k= 3, nc = 0 with x2 = 0.
(a) Response surface. (b) Contour plot.

Figure 8.13 Scaled prediction variance N Var[ŷ(x)]∕𝜎2: 𝛼 = 1.0, k= 3, nc = 1 with x3 = 0.
(a) Response surface. (b) Contour plot.

Figure 8.14 Scaled prediction variance N Var[ŷ(x)]∕𝜎2: 𝛼 = 1.0, k= 3, nc = 2 with x3 = 0.
(a) Response surface. (b) Contour plot.
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Recently, Morris (2000) has proposed a new class of second-order three level designs called
augmented pairs designs, which are based on minimax and maximin distance criteria. Li
et al. (2009) and Park et al. (2005) consider various designs on the cuboidal region for
different numbers of factors, with graphical summaries to compare their prediction quality.

8.4.6 Choosing between Spherical and Cuboidal Regions

As we have demonstrated in the previous sections, the central composite design is well
suited for use in either a spherical or cuboidal design region, when the experimenter has
made suitable choices about values of 𝛼 and nc to ensure good design performance.

The face center or cuboidal CCD is appropriate when a cuboidal region of interest
and region on operability are suggested for the experiment. In these cases the application
should suggest ranges of the factors where the corners of the region are anticipated to
produce meaningful responses and where it is natural to place factorial points. Then the
question regarding the design region should hinge on whether axial points outside the
ranges are scientifically permissible and should be included in the region of interest. For
example, consider Fig. 8.15. The shaded area forms the cube, but after some deliberation it
is determined not only that the nonshaded area is within the region of operability but also
that the researcher is interested in predicting response in the unshaded area as well as the
shaded area. The region of interest is a sphere circumscribed around a cube. A spherical

design (CCD with 𝛼 =
√

k) is certainly appropriate.
A second situation can occur, similar to that shown in Fig. 8.16. Ranges are chosen on

design variable, but as the planning of the experiment evolves, it is determined that several
(and perhaps all) of the vertices on the cube defined by the ranges may not be scientifically
tractible; that is, they are outside both regions of operability, and the region of interest (e.g.,
in the case of a food product, high levels of flour, shortening, and baking time) is known to
produce an unacceptable product. As a result, the corners, shaded in Fig. 8.16, are shaved
off, and the design region is formed from the unshaded region. Here, the sphere is inscribed
inside the initial cuboidal region formed from the selection of ranges, and the factorial
point locations are moved towards the center of the design space to select combinations of
factors to yield permissible results. Once this reconfiguring has been done, then selecting
a scaling of the factors to more standard scales should be performed.

Figure 8.15 Spherical region (sphere circumscribed).
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Figure 8.16 Spherical region (sphere inscribed).

Sometimes the region of operability and the region of interest are not identical. In the
case where it is possible to operate slightly outside of a cuboidal region, but primary interest
lies in the cube, it is possible to adjust the axial distance of the CCD to take advantage
of this. Li et al. (2009) show how “practical 𝛼 values” [first suggested by Oehlert and
Whitcomb (2002)] can be selected to substantially improve prediction performance in the
cuboidal region. These practical 𝛼 values are larger than 1, and hence fall outside of the
region of interest.

For larger numbers of factors, another class of potential designs to consider are called
minimum-run resolution (MinRes) V designs. They are equireplicated two-level irregular
fractions of resolution V. An equireplicated design is one in which each factor has an equal
number of high and low levels. For a complete description of the construction of these
designs, see Oehlert and Whitcomb (2002).

It is important to understand that in many situations the region of interest, design region,
and perhaps even the region of operability are not clear cut. It is often difficult enough to get
a commitment from a scientist or engineer on what are the interesting and permissible ranges
of the factors. Frequently there is just insufficient knowledge a priori to know the limits of
where meaningful responses can be obtained. Mistakes are often made, and adjustments
using this updated knowledge are adopted into future experiments. Confusion regarding
type of design or the precise region of operability should never be an excuse for not using
designed experiments. Using a spherical region when it is more naturally cuboidal, for
example, will still provide important information that will, among other things, lead to
more educated selection of regions for future experiments.

Whether the CCD is used in a spherical or cuboidal region, it is an efficient design that
is ideal for sequential experimentation and allows a reasonable amount of information for
testing lack of fit while not involving an unusually large number of design points. The
design accommodates a spherical region with five levels of each factor and a choice of

𝛼 =
√

k. The design can be a three-level design to accommodate a cuboidal region with the
choice of 𝛼 = 1. In the spherical case, the design is either rotatable or very near rotatable,
and three to five center runs should be used. In the cuboidal case, one or two center runs
will suffice. Though the cuboidal and spherical designs are natural choices depending on
the region of interest, the reader should not get the impression that the use of the CCD
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must be confined to those choices of 𝛼. There will be practical situations for which 𝛼 = 1

or 𝛼 =
√

k cannot be used. The CCD should not be ruled out in these situations.
The natural competitor for the CCD is, of course, the three-level factorial, that is, the 3k

factorial. The 32 design is, in fact, the face-centered cube and is thus a CCD. But when k
becomes moderately large, the 3k factorial design involves an excessive number of design
points. In the case of three factors and a natural cuboidal region, the 33 factorial is an
efficient design if the researcher can afford to use the required 27 design points. However,
for k > 3 the number of design points for the 3k is usually considered impractical for most
applications. A comparison of the 33 with the face-centered cube and other designs with
consideration of prediction variance is given in Chapter 9.

8.4.7 The Box–Behnken Design

Box and Behnken (1960) developed a family of efficient three-level designs for fitting
second-order response surfaces. The methodology for design construction is interesting and
quite creative. The class of designs is based on the construction of balanced incomplete
block designs. For example, a balanced incomplete block design with three treatments and
three blocks is given by

Treatment

1 2 3

Block 1 X X
Block 2 X X
Block 3 X X

The pairing together of treatments 1 and 2 symbolically implies, in the response surface
setting, that design variables x1 and x2 are paired together in a 22 factorial (scaling ±1)
while x3 remains fixed at the center (x3 = 0). The same applies for blocks 2 and 3, with a 22

factorial being represented by each pair of treatments while the third factor remains fixed
at 0. As a result, the k= 3 Box–Behnken design is given by

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0
−1 1 0

1 −1 0
1 1 0

−1 0 −1
−1 0 1

1 0 −1
1 0 1
0 −1 −1
0 −1 1
0 1 −1
0 1 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The last row in the design matrix implies a vector of center runs. In the case of k= 4 the
same methodology applies. Each pair of factors are linked in a 22 factorial. The design
matrix is given by

x1 x2 x3 x4

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0
−1 1 0 0

1 −1 0 0
1 1 0 0

−1 0 −1 0
−1 0 1 0

1 0 −1 0
1 0 1 0

−1 0 0 −1
−1 0 0 1

1 0 0 −1
1 0 0 1
0 −1 −1 0
0 −1 1 0
0 1 −1 0
0 1 1 0
0 −1 0 −1
0 −1 0 1
0 1 0 −1
0 1 0 1
0 0 −1 −1
0 0 −1 1
0 0 1 −1
0 0 1 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.16)

Note that the Box–Behnken design (BBD) is quite comparable in number of design points
to the CCD for k= 3 and k= 4. (There is no BBD for k= 2.) For k= 3, the CCD contains
14+ nc runs while the BBD contains 12+ nc runs. For k= 4 the CCD and BBD both contain
24+ nc design points. For k= 5 we have the following 40+ nc experimental runs:

x1 x2 x3 x4 x5

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

±1 ±1 0 0 0
±1 0 ±1 0 0
±1 0 0 ±1 0
±1 0 0 0 ±1

0 ±1 ±1 0 0
0 ±1 0 ±1 0
0 ±1 0 0 ±1
0 0 ±1 ±1 0
0 0 ±1 0 ±1
0 0 0 ±1 ±1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.17)
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The CCD for k= 5 involves 26+ nc runs when the 1
2

fraction is used in the factorial portion.
When the full factorial is used, the CCD makes use of 42+ nc runs. Each row in the BBD
symbolizes four design points with (±1, ±1) representing a 22 factorial.

For k= 6 the construction of the design is based on partially balanced incomplete block
designs. Thus, each treatment does not occur with every other treatment the same number
of times. In the Box–Behnken construction, this means that each factor does not occur in a
two-level factorial structure the same number of times with every factor. The design matrix,
involving N= 48+ nc runs, is given by

x1 x2 x3 x4 x5 x6

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

±1 ±1 0 ±1 0 0
0 ±1 ±1 0 ±1 0
0 0 ±1 ±1 0 ±1

±1 0 0 ±1 ±1 0
0 ±1 0 0 ±1 ±1

±1 0 ±1 0 0 ±1
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(8.18)

The CCD requires 44+ nc runs when the one-half fraction is used in the factorial portion.
Unlike the k= 3, 4, and 5 cases, the factorial structures in the BBD for k= 6 are 23

factorials involving three factors. Thus each row of the above matrix involves eight design
points.

For k= 7, the factorial structures again involve combinations of three design factors.
The N= 56+ nc design runs are given by the following design matrix:

x1 x2 x3 x4 x5 x6 x7

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ±1 ±1 ±1 0
±1 0 0 0 0 ±1 ±1

0 ±1 0 0 ±1 0 ±1
±1 ±1 0 ±1 0 0 0

0 0 ±1 ±1 0 0 ±1
±1 0 ±1 0 ±1 0 0

0 ±1 ±1 0 0 ±1 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.19)

Characteristics of the Box–Behnken Design In many scientific studies that require RSM,
researchers are inclined to require three evenly spaced levels. Thus, the Box–Behnken
design is an efficient option and indeed an important alternative to the central composite
design. As we can observe from the sample sizes, there is sufficient information available
for testing lack of fit. For example, for k= 6 the use of, say, nc = 5 would allow four degrees
of freedom for pure error and 21 degrees of freedom for lack of fit. The Box–Behnken
design does not substantially deviate from rotatability, and, in fact, for k= 4 and k= 7
the design is exactly rotatable. Verification of rotatability in both cases should be quite
simple for the reader. From the design matrix in Equation 8.16, it is easy to see that all odd
moments are zero. This is a result of the prominence of the sets of 22 factorial arrays. For
the second condition required for rotatability, note from Equation 8.16 that (iiii) = 12

24
and
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Figure 8.17 The k= 3 BBD with a center point.

(iijj) = 4
24

, for i≠j. As a result, (iiii)∕(iijj)= 3. An investigation of Equation 8.19 suggests
that the rotatability conditions hold for the k= 7 BBD as well.

Another important characteristic of the BBD is that it is a spherical design. Note, for
example, in the k= 3 case that all of the points are so-called “edge points” (i.e., points that

are on the edges of the cube); in this case, all edge points are a distance
√

2 from the design
center. There are no factorial points or face points. Figure 8.17 displays the BBD for k= 3.
Contrast this design to that depicted in Fig. 8.11 with the face-centered cube. The latter
displays face points and factorial points that are not the same distance from the design
center, though they all reside on the cube and provide good coverage of the cube. The BBD
involves all edge points, but the entire cube is not covered. In fact, there are no points on

the corner of the cube or even a distance
√

3 from the design center. The analyst should not
view the lack of coverage of the cube as a reason not to use the BBD. It is not meant to be
a cuboidal design. However, the use of the BBD should be confined to situations in which
one is not interested in predicting response at the extremes; that is, at the corners of the
cube. A quick inspection of the design matrices in Equations 8.16–8.19 further underscores
the fact that the BBD is not a cuboidal design. For example, for k= 7, the design points are

at a radius of
√

3, which is considerably smaller than the radius
√

7 of the corner of the
cube. If three levels are required and coverage of the cube is necessary, one should use a
face-centered cube rather than the BBD.

The spherical nature of the BBD, combined with the fact that the designs are rotatable
or near-rotatable, suggests that ample center runs should be used. In fact, for k= 4 and
7, center runs are necessary to avoid singularity. The use of three to five center runs is
recommended for the BBD.

Example 8.5 A BBD for Optimizing Viscosity One step in the production of a par-
ticular polyamide resin is the addition of amines. It was felt that the manner of addition
has a profound effect on the molecular weight distribution of the resin. Three variables
are thought to play a major role: temperature at the time of addition (x1,◦C), agitation
(x2, rpm), and rate of addition (x3, min−1). Because it was difficult to physically set the
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TABLE 8.6 Data for Resin Viscosity in Example 8.5 Using Box–Behnken Design

Level Temperature Agitation Rate x1 x2 x3

High 200 10.0 25 +1 +1 +1
Center 175 7.5 20 0 0 0
Low 150 5.0 15 −1 −1 −1

Standard Order x1 x2 x3 y

1 −1 −1 0 53
2 +1 −1 0 58
3 −1 +1 0 59
4 +1 +1 0 56
5 −1 0 −1 64
6 +1 0 −1 45
7 −1 0 +1 35
8 +1 0 +1 60
9 0 −1 −1 59
10 0 +1 −1 64
11 0 −1 +1 53
12 0 +1 +1 65
13 0 0 0 65
14 0 0 0 59
15 0 0 0 62

levels of addition and agitation, three levels were chosen and a BBD was used. The vis-
cosity of the resin was recorded as an indirect measure of molecular weight. The data,
including natural levels, design, and response values, are shown in Table 8.6. Figure 8.18
shows an analysis using the package JMP. Three contour plots of constant viscosity (shown
in Fig. 8.19) are given in order to illustrate what combination of the factors produce high-
and low-molecular-weight resins. Agitation was fixed at the low, medium, and high levels.
It is clear that high-molecular-weight resins are produced with low values of agitation,
whereas low-molecular-weight resins are potentially available when one uses high values
of agitation. In fact, the extremes of low rates, low temperature, and high agitation produces
low-molecular-weight resins, whereas low agitation, low temperature, and high rate results
in high-molecular-weight resins.

8.4.8 Definitive Screening Designs for Fitting Second-Order Models

In Section 8.3.4 we introduced the class of Definitive Screening Designs (DSD) as models
suitable for fitting first-order models with interactions. There, we noted that the use of three
factor levels allowed for the separate estimation of all of the quadratic terms, even though
there might not be sufficient degrees of freedom to fit the full second-order model. We now
consider these designs for fitting second-order models, with a strong cautionary note that
the experimenter is relying heavily on effect sparsity in order for this to be a successful
strategy. If too many of the terms in the second-order model are active, then it may be
difficult to identify which of the terms should be included in the final model, using the
model selection strategies such as forward stepwise regression outlined in Section 4.9.
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Figure 8.18 JMP analysis of resin viscosity data of Example 8.5.

Figure 8.19 Contour plots of viscosity from Example 8.5. (a) Addition rate x3 = 1. (b) Addition
rate x3 = 0. (c) Addition rate x3 =−1.
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An additional consideration when contemplating the use of a DSD for a combined
screening experiment with the potential to fit a second-order model is whether the experi-
menter is confident about the design region being well-located in the region of operability.
If the experimenter thinks that there is a good chance that the optimal location for the
process can be included in the current design region, then the DSD becomes even more
attractive. However, if the user thinks that the path of steepest ascent might be need to tra-
verse the region of operability to get closer to the preferred location, then a simpler design,
such as a factorial or fractional factorial design, may be better suited to the goals of the
experiment.

In the example that follows, we illustrate how a DSD can be used to explore the impact
of multiple factors on the response while still allowing a second-order model to be fit.

Example 8.6 A Definitive Screening Design for Screening and a Potential Second-
Order Model An experimenter wishes to run a designed experiment to understand a
process. Current understanding of the process suggests that three factors (A, B, and C) have
an impact on the response, Y. However, several of the engineers involved with the process
are concerned that there is some chance that one of several other factors (D, E, F, and G)
might contribute to changes in the response. Selecting a DSD for 7 factors with 17 runs
(2 × 7 + 3 center runs) allows flexibility for several potential outcomes. Table 8.7 shows
the DSD for seven factors from Section 8.3.4.

If any of factors D–G are active, then there is the opportunity to detect them, while if
the most-likely-to-be-active factors, A–C, dominate as expected, then we can achieve good
estimation and prediction with the DSD. If the experimenter ran the design in Table 8.7 and
found that a second-order model involving factors A–C was appropriate, then by examining
(X′X)−1 we can see how well the different terms in the model are estimated by looking at
a multiple of their variance.

TABLE 8.7 Definitive Screening Design for Seven Factors

Run A B C D E F G

1 0 + − + − + −
2 0 − + − + − +
3 − 0 + − + + −
4 + 0 − + − − +
5 + − 0 + + + +
6 − + 0 − − − −
7 + − − 0 + − −
8 − + + 0 − + +
9 − − + + 0 − −
10 + + − − 0 + +
11 − + − + + 0 +
12 + − + − − 0 −
13 + + + + + − 0
14 − − − − − + 0
15–17 0 0 0 0 0 0 0
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Int A B C AB AC BC A2 B2 C2

0.292 0 0 0 0.015 0.015 0.015 −0.108 −0.108 −0.108
0 0.089 0.018 0.018 0 0 0 0 0 0
0 0.018 0.089 0.018 0 0 0 0 0 0
0 0.018 0.018 0.089 0 0 0 0 0 0

(X′X)−1 = 0.015 0 0 0 0.119 −0.006 −0.006 0.040 0.040 −0.085
0.015 0 0 0 −0.006 0.119 −0.006 0.040 −0.085 0.040
0.015 0 0 0 −0.006 −0.006 0.119 −0.085 0.040 0.040

−0.108 0 0 0 0.040 0.040 −0.085 0.467 −0.158 −0.158
−0.108 0 0 0 0.040 −0.085 0.040 −0.158 0.467 −0.158
−0.108 0 0 0 −0.085 0.040 0.040 −0.158 −0.158 0.467

Note that since the design has 14 non-center runs, it is not possible for the main effects
for the three factors to be orthogonal, given the structure of the DSD being constructed
based on the foldover conference matrix structure. This was described in more detail in
Section 8.3.4. However, the zero entries in (X′X)−1 are a reminder that the main effects are
orthogonal to all of the two-way interactions and quadratic terms in the model. Based on the
size of the terms in the (X′X)−1 matrix, it is clear that the main effects are estimated with
the smallest variance, while the quadratic terms have larger associated variances. Fitting
this model involves using 10 of the 17 available degrees of freedom, so there would be
some opportunity to include an additional term in the model. Suppose that one unexpected
main effect from factors D–G (say D) suggests that it should be included in the model, then
the (X′X)−1 matrix is only minimally affected.

Int A B C D AB AC BC A2 B2 C2

0.292 0.000 0.000 0.000 0.000 0.015 0.015 0.015 −0.108 −0.108 −0.108
0 0.092 0.021 0.016 −0.016 0 0 0 0 0 0
0 0.021 0.092 0.016 −0.016 0 0 0 0 0 0
0 0.016 0.016 0.090 0.010 0 0 0 0 0 0
0 −0.016 −0.016 0.010 0.090 0 0 0 0 0 0
0.015 0 0 0 0 0.119 −0.006 −0.006 0.040 0.040 −0.085
0.015 0 0 0 0 −0.006 0.119 −0.006 0.040 −0.085 0.040
0.015 0 0 0 0 −0.006 −0.006 0.119 −0.085 0.040 0.040
−0.108 0 0 0 0 0.040 0.040 −0.085 0.467 −0.158 −0.158
−0.108 0 0 0 0 0.040 −0.085 0.040 −0.158 0.467 −0.158
−0.108 0 0 0 0 −0.085 0.040 0.040 −0.158 −0.158 0.467

It is interesting to consider the natural design space for the DSD. When all of the seven

factors are included, the points except the center runs are all located
√

7 − 1 scaled units
from the center of the design space, suggesting a spherical design region. However, when
we perform model reduction and collapse the design down to just 3 or 4 factors, then some
of the non-center runs do not include any zero levels, and hence a cuboidal region in the
projected design space is suggested. Figure 8.20 shows the geometry of the DSD in Table
8.7 when we project the design onto the three factors, A–C.

Another possible alternative for the design, would be to select the eight-factor DSD,
since with its even number of factors would allow for orthogonal estimation of all of the
main effects. If the experimenter wished to stay with an overall design size of 17 runs, then
it would be possible to use only a single center run. This sacrifices the ability to estimate
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Figure 8.20 Definitive Screening Design for seven factors projected onto 3 factor space.

pure error, but the (X′X)−1 matrix below when fitting the full second order model for factors
A-C shows that the main effects are now all orthogonal.

Int A B C AB AC BC A2 B2 C2

0.702 0 0 0 −0.033 −0.033 0.033 −0.260 −0.260 −0.260
0 0.071 0 0 0 0 0 0 0 0
0 0 0.071 0 0 0 0 0 0 0
0 0 0 0.071 0 0 0 0 0 0
−0.033 0 0 0 0.106 −0.019 0.019 −0.028 −0.028 0.097
−0.033 0 0 0 −0.019 0.106 0.019 −0.028 0.097 −0.028
0.033 0 0 0 0.019 0.019 0.106 −0.097 0.028 0.028
−0.260 0 0 0 −0.028 −0.028 −0.097 0.522 −0.103 −0.103
−0.260 0 0 0 −0.028 0.097 0.028 −0.103 0.522 −0.103
−0.260 0 0 0 0.097 −0.028 0.028 −0.103 −0.103 0.522

If we compare the performance of the DSD with a face center cube (central composite
design with 𝛼 = 1) for 3 factors with 3 center runs, we see that the designs both have 17
runs. The (X′X)−1 matrix shows that the variance estimates of the different terms are quite
comparable between the two designs.

Int A B C AB AC BC A2 B2 C2

0.183 0 0 0 0 0 0 −0.070 −0.070 −0.070
0 0.100 0 0 0 0 0 0 0 0
0 0 0.100 0 0 0 0 0 0 0
0 0 0 0.100 0 0 0 0 0 0

(X′X)−1 = 0 0 0 0 0.125 0 0 0 0 0
0 0 0 0 0 0.125 0 0 0 0
0 0 0 0 0 0 0.125 0 0 0

−0.070 0 0 0 0 0 0 0.373 −0.127 −0.127
−0.070 0 0 0 0 0 0 −0.127 0.373 −0.127
−0.070 0 0 0 0 0 0 −0.127 −0.127 0.373
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the variances of the main, quadratic and two-way interaction terms are of similar magnitude.
Notably, there are more zeros in the off-diagonals of the (X′X)−1 matrix for the CCD,
than for the seven-factor DSD, The eight-factor DSD is more comparable to the CCD,
but sacrifices the ability to examine pure error. One substantial advantage of the two
DSDs is their ability to evaluate potential contributions from the other factors, D–G. If the
experimenter were willing to consider a design of with 19 runs, then the eight-factor DSD
with three center runs might offer an ideal option, but at a slightly higher cost because of
its larger size. Again, the inherent trade–offs between alternative designs suggest that the
underlying assumption of the relationship between factors and response play an important
role in determining which of the designs would be preferred for a particular study.

What to Do if Too Many Terms Are Active Suppose that the experimenter opts to run the
17-run seven-factor DSD shown in Table 8.7. When forward selection is performed after
the experimental data have been corrected, there is confusion about what terms to include in
the model since a considerable number of terms appear to be of similar size, and all appear
to be large relative to the estimated pure error. In this case, the experimenter may need to
supplement the DSD with additional runs to clarify the results and feel more comfortable
with understanding which terms are important.

A potential design to consider comes from the class of no-confounding designs described
in Section 4.8.1. If the DSD in Table 8.7 is complemented with the seven-factor nonregular
orthogonal design in Table 4.29, the resulting design with 17 + 16 = 33 runs has some
appealing properties. While substantially larger than the original DSD alone, this design
is still considerably smaller than having fit a seven-factor central composite design, with
78 + nc runs. In addition, the projection properties of the combined 33-run design allow the
estimation of the full second-order model for all subsets of five factors chosen from the seven
possible. Hence, if the engineers were right in their concerns that some of the factors D–G
contribute to changes in the response, then there are good opportunities to correctly identify
the appropriate model. The additional degrees of freedom available provide additional
information to help disentangle which effects are active. In addition, the levels of the no-
confounding design are all −1 and +1, improving the quality of prediction of all of the
terms in the model.

This characteristic of good performance of a two-stage design with a DSD and a follow-
on no-confounding design is a good combination to consider as part of a sequential design of
experiments strategy. The initial DSD may often be adequate for identifying the appropriate
response surface model, but it is helpful to have a secondary plan for how to supplement
this design if results are not clear.

As illustrated in this section and Section 8.3.4, the class of Definitive Screening Designs
is versatile for different possible models, and it allows for efficient compact designed
experiments for first-order, first-order with interaction, and second-order models. When
possible, using DSDs with even numbers of factors is preferred for the additional benefit
of orthogonality of the main effects with each other.

8.4.9 Orthogonal Blocking in Second-Order Designs

In many RSM situations the study is too large to allow all runs to be made under homo-
geneous conditions. As a result, it is important and interesting to consider second-order
designs that facilitate blocking—that is, the inclusion of block effects. It is important that the
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assignment of the design points to blocks be done so as to minimize the effect on the model
coefficients. The property of the experimental design that we seek is that of orthogonal
blocking. To say that a design admits orthogonal blocking implies that the block effects in
the model are orthogonal to model coefficients. A simple first-order example serves as an
illustration. Consider a 22 factorial to be used for the fitting of a first-order model. Suppose
we use I=AB as the defining relation to form two one-half fractions, which are placed in
separate blocks. As a result, we have the model

yi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛿1zi1 + 𝛿 2zi2 + 𝜀i (8.20)

where 𝛿1 and 𝛿2 are block effect coefficients. Here zi1 and zi2 are dummy or indicator
variables; that is, zi1 = 1 if yi is in block 1 and zi1 = 0 otherwise. The variable zi2 = 1 if yi is
in block 2 and zi2 = 0 otherwise. The X matrix is then

x1 x2 z1 z2

X =

⎡⎢⎢⎢⎢⎣

1 −1 −1 1 0
1 1 1 1 0
. . . . . . . . . . . . . . . . . . . . .
1 −1 1 0 1
1 1 −1 0 1

⎤⎥⎥⎥⎥⎦

}
Block 1

}
Block 2

(8.21)

Note that block 1 contains the design points {(1), ab}, whereas block 2 contains {a, b}.
Now, in Equation 8.21, the matrix X is singular; the last two columns add to the first column.
This underscores the fact that the parameters 𝛿1 and 𝛿2 are not estimable. As a result, one
of the indicator variables should not be included. We eliminate the z2 column and center
z1. As a result, the model Equation 8.20 can be rewritten

yi = 𝛽∗0 + 𝛽1xi1 + 𝛽2xi2 + 𝛿1(zi1 − z̄1) + 𝜀i (8.22)

and thus X is written

𝛽1 𝛽2 𝛿1

X =

⎡⎢⎢⎢⎢⎣

1 −1 −1 1∕2
1 1 1 1∕2
. . . . . . . . . . . . . . . . . .
1 −1 1 −1∕2
1 1 −1 −1∕2

⎤⎥⎥⎥⎥⎦

}
Block 1

}
Block 2

(8.23)

Now, the concept of orthogonal blocking is nicely illustrated through the use of Equa-
tions 8.22 and 8.23. In this example the block effect is orthogonal to the regression coeffi-
cients if

4∑
u=1

(zu1 − z̄1)x1u = 0

4∑
u=1

(zu1 − z̄1)x2u = 0

(8.24)
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Thus, as the reader might have expected, the assignment of design points to blocks in this
example provides an array in which the block factor has no effect on the regression coeffi-
cients. In fact, if one considers the least squares estimator b= (X′X)−1X′y, the regression
coefficients 𝛽∗0 , 𝛽1, and 𝛽2 are estimated as if the blocks were not in the experiment. The
variances of the estimates of 𝛽1 and 𝛽2 in this variance optimal design are not changed in
the presence of blocks.

The above example serves two purposes. First, it reinforces the material in Chapter 3
regarding blocking in two-level designs. In the above illustration, the x1x2 interaction
is confounded with blocks. If one augments the matrix X with the x1x2 column, this
confounding becomes evident. The linear effects, or linear coefficients, are independent
of block effects, and this is reinforced by the fact that Equations 8.24 hold. Secondly,
the example allows us a foundation for setting up conditions for orthogonal blocking for
second-order designs.

Though we now move on to the second-order case, there are several exercises at the
end of this chapter that deal with blocking for first-order models and first-order-plus-
interaction models.

Conditions for Orthogonal Blocking in Second-Order Designs Consider a second-order
model with k design variables and b blocks. The model, then, can be written as

yu = 𝛽0 +
k∑

i=1

𝛽ixui +
k∑

i=1

𝛽iix
2
ui +

∑ k∑
i<j=2

𝛽ijxuixuj

+
b∑

m=1

𝛿m(zum − z̄m), u = 1, 2,… , N

(8.25)

Here we have used the indicator variable again, with zmu = 1 if the uth observation is in the
mth block. We have centered the indicator variables as in our earlier example. In addition,
we have included all of the block effects in the model even though it results in a singular
model. This will not affect the conditions for orthogonal blocking. From Equation 8.25,
block effects are orthogonal to regression coefficients if

N∑
u=1

xui(zum − z̄m) = 0, i = 1, 2,… , k, m = 1, 2,… , b (8.26)

N∑
u=1

xuixuj(zum − z̄m) = 0, i ≠ j, m = 1, 2,… , b (8.27)

N∑
u=1

x2
ui(zum − z̄m) = 0, i = 1, 2,… , k, m = 1, 2,… , b (8.28)

In what follows we assume that we are dealing with designs in which [i]= 0 and [ij]= 0 for
all i ≠ j, i, j= 1, 2,… , k. That is, the first moments and mixed second moments are all zero.
Recall that these conditions hold for all central composite designs, Box–Behnken designs,
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and two-level factorial designs. Now, if we consider Equations 8.26 and 8.27 for a specific
value of m (i.e., for a specific block), we have

∑
block m

xui =
∑

block m

xuixuj = 0, i, j = 1, 2,… , k, i ≠ j (8.29)

But, of course, Equation 8.28 must hold for all blocks. Equation 8.29 implies, then, that
in each block the first and second mixed moments are zero, implying that each block must
itself be a first-order orthogonal design (condition 1).

Now consider Equation 8.28. For say the mth block, this equation implies that∑N
u=1 x2

uizum = z̄m
∑N

u=1 x2
ui for i= 1, 2,… , k. The quantity z̄m is the fraction of the total

runs that are in the mth block. As a result, Equation 8.28 implies that for each design
variable, the sum of squares contribution from each block is proportional to the block size
(condition 2).

An orthogonal block design for a second-order model requires the following
conditions:

1. Each block must consist of a first-order orthogonal design

2. For each design variable, the sum of squares contribution from each block is
proportional to the size of the block.

Designs that fulfill conditions 1 and 2 above are not difficult to find. Once again, the
central composite design is prominent in that respect due to flexibility involved in the choice
of 𝛼 and nc.

Orthogonal Blocking in the CCD It may be instructive to discuss an example CCD that
does block orthogonally. Consider a k= 2 rotatable CCD in two blocks with two center
points per block. Consider the assignment of design points to blocks as follows:

Block 1 Block 2

x1 x2 x1 x2

−1 −1 −
√

2 0

−1 1 −
√

2 0

1 −1 0 −
√

2

1 1 0
√

2
0 0 0 0
0 0 0 0

The above design does block orthogonally. Each block is a first-order orthogonal design;
the first moments and mixed second moments are both zero for the design in each block,
and thus condition 1 holds. Also, the sum of squares for each design variable is 4.0, and
the block sizes are equal. Hence condition 2 regarding the proportionality relationship also
holds. In this example, notice that any even number of center runs with half assigned to
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block 1 and the other half to block 2 results in orthogonal blocking. In the example, the
factorial design points are assigned to one block and the axial points to the other block. In
this case, condition 1 will hold automatically. The values for 𝛼 and nc are chosen to achieve
condition 2.

As a second example let us consider, again, a CCD but assume k= 3 and suppose that
three blocks are required. The design is as follows:

Block 1 Block 2 Block 3

x1 x2 x3 x1 x2 x3 x1 x2 x3

−1 −1 −1 1 −1 −1 −𝛼 0 0
1 1 −1 −1 1 −1 𝛼 0 0
1 −1 1 −1 −1 1 0 −𝛼 0

−1 1 1 1 1 1 0 𝛼 0
0 0 0 0 0 0 0 0 −𝛼
0 0 0 0 0 0 0 0 𝛼

0 0 0
0 0 0
0 0 0

Here we have divided the 23 = 8 factorial points into two blocks with I=ABC as the defining
relation. The reader can again verify that condition 1 for orthogonal blocking holds. We
can solve for 𝛼 that allows condition 2 to hold:

2𝛼2

9
= 4

6

which result in 𝛼 =
√

3. As a result, we have a spherical CCD with 𝛼 =
√

3 (the recom-
mended choice for 𝛼 in Section 8.4.3), which blocks orthogonally in three blocks.

As the reader studies these two examples and the use of conditions 1 and 2, two principles
obviously emerge: When one requires two blocks, there should be a factorial block and an
axial block. In the case of three blocks, the factorial portion is divided into two blocks and
the axial portion remains a single block. The partitioning into blocks of the factorial portion
must result in a guaranteed orthogonality between blocks and the two factor interaction
terms and, of course, orthogonality between blocks and linear coefficients. The numbers of
blocks with the CCD are 2, 3, 5, 9, 17,… . There is never a subdivision of the axial block.
The axial points are always a single block. Table 8.8 provides more details of the blocking
options for the CCD with different numbers of factors. The flexibility in the choice of
center runs and the value of 𝛼 allows us to achieve orthogonal blocking or near-orthogonal
blocking in many situations. At this point, we deal briefly in the special case of two blocks
to give the reader further insight into the choice of 𝛼 and the assignment of center runs
to blocks.

Orthogonal Blocking in Two Blocks with the CCD Suppose we denote by F0 the number
of center runs in the factorial block, and by a0 the number of center runs in the axial
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TABLE 8.8 Design Details for Some Useful Central Composite Designs that Block
Orthogonally

k 2 3 4 5 5 ( 1

2
rep) 6 6 ( 1

2
rep) 7 7 ( 1

2
rep)

Total # of blocks 2 3 3 5 2 9 3 17 9
Total # of points in design 14 20 30 54 33 90 54 169 90
Factorial block(s)
F: # of points in factorial portion 4 8 16 32 16 64 32 128 64
# of blocks in factorial portion 1 2 2 4 1 8 2 16 8
# points in each block from factorial 4 4 8 8 16 8 16 8 8
F0: Number of added center points

per block
3 2 2 2 6 1 4 1 1

Total # of points per block 7 6 10 10 22 9 20 9 9
Axial block
2 k: # of axial points 4 6 8 10 10 12 12 14 14
𝛼0: # of added center points 3 2 2 4 1 6 2 11 4
Total # of points in block 7 8 10 14 11 18 14 25 18

Source: G. E. P. Box and J. S. Hunter (1957).

block. Condition 1 holds when we assign the factorial and axial points as the two blocks.
Condition 2 holds if

∑
ax. bl.

x2
iu

∑
fac. bl.

x2
iu

=
2k + a0

F + F0
, i = 1, 2,… , k (8.30)

where, of course, F= 2k or F= 2k−1 (resolution V fraction). The value for 𝛼 that results in
orthogonal blocking is developed from Equation 8.30. From Equation 8.30 we have

2𝛼2

F
=

2k + a0

F + F0

and the solution for 𝛼 is given by

𝛼 =

√
F(2k + a0)

2(F + F0)
(8.31)

General Recommendations for Blocking with the CCD There are many instances in
which the practitioner using RSM can achieve orthogonal blocking and still have designs
that contain design parameters near those recommended in Section 8.4.3 when the region
is spherical. We have already seen this to be the case with the k= 2 and k= 3 CCD. A value

of 𝛼 =
√

2 for the case of two blocks produces orthogonal blocking as long as center runs
are evenly divided between the two blocks.

The case of the cuboidal region deserves special attention. In order to achieve orthogonal
blocking for (say) a face-centered cube, one must resort to badly disproportionate block
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sizes, which may often be a problem. For example, the following face-centered cube blocks
orthogonally for k= 2:

x1 x2

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
−1 1

1 −1
1 1
0 0
0 0
0 0
0 0

. . . . . . . .
−1 0

1 0
0 −1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Block 1

⎫⎪⎬⎪⎭
Block 2

For three variables, if one requires say three blocks, the two factorial blocks require eight
center runs apiece if one requires that 𝛼 = 1.0 in a cuboidal region. As a result, when ranges
for the experiment seem to suggest the need for a cuboidal design region and orthogonal
blocking is required, one might need to consider a spherical design in order that blocking
be better accommodated.

In the case of spherical designs, many practical designs exist. Table 8.8 shows a work-
ing table of useful second-order designs that block orthogonally. For designs in which
“ 1

2
rep” is indicated, the factorial portion is a one-half fraction of the 2k. In all cases with

multiple blocks from the factorial portion, defining contrasts are chosen so that three-factor
interactions or higher are confounded with blocks.

Blocking with the Box–Behnken Design The flexibility of the CCD makes it an attractive
choice when blocking is required in an RSM analysis. However, there are other second-
order designs that block orthogonally. Included among these is the class of BBDs for k= 4
and k= 5. Consider first the design matrix in Equation 8.16 for the k= 4 BBD. Using ±1
notation to indicate the 22 factorial structure among pairs of variables, we have

x1 x2 x3 x4

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

±1 ±1 0 0
0 0 ±1 ±1
0 0 0 0

. . . . . . . . . . . . . . . . . .
±1 0 0 ±1

0 ±1 ±1 0
0 0 0 0

. . . . . . . . . . . . . . . . . .
±1 0 ±1 0

0 ±1 0 ±1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
Block 1

}
Block 2

}
Block 3
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The requirement on the vectors of center runs is that each block contain the same number
of center runs. This, of course, results in equal block sizes, a requirement that results from
the equal sum of squares for each factor in each block.

The k= 5 BBD blocks orthogonally in two blocks. Consider the design of Equation 8.17.
This design can be partitioned into two parts so that conditions for orthogonal blocking
hold. Again, the center runs should be even in number, and half of them should be assigned
to each block. The reader can easily verify that conditions 1 and 2 for orthogonal blocking
both hold (see Exercise 8.27).

Orthogonal Blocking with Definitive Screening Designs The flexibility of the Definitive
Screening Designs to fit different models and to screen a large number of potential terms in
a model has already been shown in Sections 8.3.4 and 8.4.8. Jones and Nachtsheim (2015)
describe how orthogonal blocking of DSDs can be structured depending on the nature of
the model under consideration.

If a first-order screening model is of primary importance, there are many potential DSDs
with different block sizes that can be constructed. The basic structure of the DSD with the
foldover pairs resulting from the form of the design based on the conference matrix means
that as long as the pairs of runs with the same factor set to zero are in the same block,
then the blocking effects will be orthogonal to the main effects. The inclusion of a center
run in a block does not impact this orthogonality. This flexibility allows a screening design
implementation of a DSD to be run to match almost any design constraints that the blocking
may require.

When we consider first-order with interaction or second-order models, achieving orthog-
onal blocking becomes much more difficult, because of the large number of different terms
that might be included in the final model based on common analysis strategies used for non-
regular designs. Hence, the goal of orthogonal blocking with the DSDs might be weakened
to still be able to achieve nonsingular estimation of the model terms. This would mean that
although the terms are not orthogonal, or independent of the blocking effects, they are still
estimable. For more details on options for blocking with DSDs, see Jones and Nachtsheim
(2015).

Form of Analysis with a Blocked Experiment The first and foremost topic of discussion
in this area should be the model. It is important to understand that we are assuming
that blocks enter the model as additive effects. This was outlined in the model form in
Equation 8.25. It is assumed that there is no interaction between blocks and other model
terms. This concept should be thoroughly discussed among the practitioners involved. If it
is clear that blocks interact with the factors, then it means that the analysis should involve
the fitting of a separate response surface for each block. This often results in difficulty
regarding interpretation of results. Another important issue centers around what is truly
meant by orthogonal blocking. As we indicated earlier, orthogonal means that block effects
are orthogonal to model coefficients. However, the final fitted model will obviously include
estimates of block effects. The fitted model is not at all unlike an analysis of covariance
(ANCOVA) model where blocks play the role of treatments and one is assuming that
for each block the model coefficients are the same (quite like assuming equal slopes in
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ANCOVA). But, of course, the presence of block effects implies that we have multiple
intercepts, one for each block. Thus, for, say, three blocks we have

ŷblock 1 = 𝛽0,1 + f (x)

ŷblock 2 = 𝛽0,2 + f (x)

ŷblock 3 = 𝛽0,3 + f (x)

where f(x) is a second-order function containing linear quadratic, and interaction terms,
all of which are the same for each block. Now, the coefficients (apart from the intercepts)
can be computed as if there were no blocking. As a result, the stationary point, canonical
analysis, and ridge analysis path are computed by ignoring blocking, because none of these
computations involves the intercepts. Then for the purpose of computing the predicted
response, separate intercepts are merely found from the overall intercept and block effects.
One must understand that the essence of the RSM analysis is intended to be a description
of the system in spite of blocking; and blocks are assumed to have no effect on the nature
and shape of the response surface. The following example should be beneficial.

Example 8.7 The Analysis of a Blocked CCD In a chemical process it is important
to fit a response surface and find conditions on time (x1) and temperature (x2) that give a
high yield. It is important that a yield of at least 80% be achieved. A list of natural and
coded variables appears in Table 8.9. The design requires 14 experimental runs. However,
two batches of raw materials must be used, so seven experimental runs were made for each
batch. The experiment was run in two blocks, and the order of the runs was randomized in
each block. The factorial runs plus three center runs were made in one block (batch), and
the axial runs plus three center runs were made in the second block (batch). The resulting
design does block orthogonally.

TABLE 8.9 Natural and Design Levels for Chemical Reaction Experiment

Natural Variables Design Units

Time Temperature x1 x2 Block Yield Response

80 170 −1 −1 1 80.5
80 180 −1 1 1 81.5
90 170 1 −1 1 82.0
90 180 1 1 1 83.5
85 175 0 0 1 83.9
85 175 0 0 1 84.3
85 175 0 0 1 84.0
85 175 0 0 2 79.7
85 175 0 0 2 79.8
85 175 0 0 2 79.5
92.070 175 1.414 0 2 78.4
77.930 175 −1.414 0 2 75.6
85 182.07 0 1.414 2 78.5
85 167.93 0 −1.414 2 77.0
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Figure 8.21 Contour plot of yield for Example 8.7.

A second-order analysis was performed. Table 8.10 shows the analysis produced by
Design-Expert, and Fig. 8.21 is a contour plot of the fitted model shown in the coded units.
The stationary point is a maximum. The fitted model is

ŷ = 81.87 + 0.93x1 + 0.58x2 − 1.31x1
2 − 0.93x2

2 + 0.13x1x2

Note that the P-values indicate that one model term (x1x2) is insignificant. The data
were analyzed as if no blocking had been done. This renders coefficients (and canonical
analysis, if one is performed) correct, but standard errors are inflated because of variability
due to blocks. The appropriate location of the maximum response is given by

x1, s = 0.372

x2, s = 0.335

in our design units. The predicted value at the stationary point is 82.136.
Further examination of the Design-Expert output can determine the block effects. Note

that while the overall intercept is 81.87, the estimates of block effects are 2.23 and −2.23
for block 1 and block 2, respectively. As a result, the two separate intercepts are 81.867 ±
2.23= 84.097 and 79.637, respectively.

EXERCISES

8.1 Consider the design of an experiment to fit the first-order response model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽4x4 + 𝛽5x5 + 𝜀



EXERCISES 435

The design used is a 25−2 fractional factorial with defining relations

I = ABC = x1x2x3

I = CDE = x3x4x5

The factors are quantitative, and thus we use the notation x1, x2, x3,… rather than
A, B, C,….

(a) Construct the matrix X for the first-order model using the design described
above.

(b) Is the design orthogonal? Explain why or why not.

(c) Is the design a variance-optimal design—that is, one that results in minimum
values of N Var(bi)]∕𝜎 2. Note that the weight N is used in order to take sample
size into account.

8.2 Consider the situation of Exercise 8.1. Suppose we use four center runs to augment
the 25−2 design constructed.

(a) What is the advantage of using the center runs?

(b) Will the resulting 12-run design be orthogonal? Explain.

(c) Will the resulting design be variance-optimal?

(d) If your answer to (c) is no, give a 12-run first-order design with values of
Var(bi)∕𝜎2 smaller than the 12-run design with center runs.

(e) Give the variances of regression coefficients for both designs—that is, the 25−2
III

with four center runs and your design in (d).

8.3 Consider again the design constructed in Exercise 8.1. Suppose the fitted model is
first-order and the analysis reveals significant lack of fit and a large effect for the
interaction x1x4 = x2x5. As a result, a second phase would suggest an augmentation
of the design. Suppose the second phase is a fold-over of the design in Exercise 8.1.
Is the resulting design orthogonal and thus variance-optimal for the model

yu = 𝛽0 +
5∑

i=1

𝛽ixui +
∑ 5∑

i<j=2

𝛽ijxuixuj + 𝜀u,

u = 1, 2, 3,… , 16

Explain why or why not.

8.4 Consider the L27 design (in coded form) discussed in Exercise 6.12. Suppose we
consider this design for fitting the first-order model

yu = 𝛽0 +
3∑

i=1

𝛽ixui + 𝜀u, u = 1, 2,… , 27

(a) Is the design first-order orthogonal? Explain.

(b) Is the design variance-optimal? Explain.

(c) Compare the N Var(bi)∕𝜎 2 using the L27 with a 23. Compare with a Plackett–
Burman 12-run design. Compare with a Plackett–Burman 28-run design.
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(d) Your answer to (c) above should be that the Plackett–Burman 12-run design and
23 design for a first-order model are variance-equivalent on a per observation
basis. What are extra advantages enjoyed by the 23 over the Plackett–Burman
12-run design?

8.5 Consider a situation involving seven design variables when, in fact, a first-order
model is required but only eight runs can be used. Design a saturated eight-run
design that is variance-optimal.

8.6 Consider a situation in which five factors are to be studied and a first-order model is
postulated though it is not quite clear that this is the correct model. Sixteen design
runs are to be used. The designs to be considered are as follows:

(a) 25−2
III replicated

(b) 25−1
V

(c) A Plackett–Burman 12-run design augmented with four center runs.

Discuss the advantages and disadvantages of the three designs. Use the terms
variance-optimal and model misspecification in your discussion.

8.7 Consider the “model inadequacy” material in Section 8.2.2. The material can be
used to nicely illustrate the aliasing ideas discussed in Chapter 4. Aliasing plays an
important role when one deals with fractional factorials for fitting first-order and
first-order-plus-interaction response surface models. Suppose one fits a first-order
model using a 23−1

III with defining relation

I = x1x2x3

However, suppose the true model is

E( y) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝛽13x1x3 + 𝛽23x2x3

Using Equation 8.2, we obtain

x1 x2 x3

X1 =
⎡⎢⎢⎢⎣

1 −1 1 1
1 1 −1 1
1 1 1 −1
1 −1 −1 1

⎤⎥⎥⎥⎦

,

x1x2 x1x3 x2x3

X2 =
⎡⎢⎢⎢⎣

−1 −1 1
−1 1 −1

1 −1 −1
1 1 1

⎤⎥⎥⎥⎦

β1 =

⎡⎢⎢⎢⎢⎢⎣

𝛽0

𝛽1

𝛽2

𝛽3

⎤⎥⎥⎥⎥⎥⎦

, β2 =
⎡⎢⎢⎢⎣

𝛽12

𝛽13

𝛽23

⎤⎥⎥⎥⎦

Use the expression

E(b1) = β1 + (X′
1X)−1X′

1X2y

= β1 + Ay
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to verify the following expected values:

E(b0) = 𝛽0

E(b1) = 𝛽1 − 𝛽23

E(b2) = 𝛽2 − 𝛽13

E(b3) = 𝛽3 − 𝛽12

8.8 In Exercise 8.7, if the true model is given by

E( y) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝛽13x1x3 + 𝛽23x2x3 + 𝛽123x1x2x3

show that the expected values are given by

E(b0) = 𝛽0 − 𝛽123

E(b1), E(b2), E(b3) as in Exercise 8.7

Exercises 8.7 and 8.8 illustrate the effect of aliasing in the sense of a regression
model. Thus, in the case of these two exercises, the aliasing of xl with x2x3 implies
that the coefficient b1 is not an unbiased estimator of 𝛽1 but is biased by 𝛽23, the
coefficient of x2x3. Indeed, the coefficient of the interaction described by the defining
contrast, namely 𝛽123, biases the estimated intercept 𝛽0.

8.9 Consider the same situation as in Exercise 8.7. However, the other fraction given by
I= x1x2x3 is used. If the fitted first-order model is incorrect and the true model is as
stated in Exercise 8.8, show that the biases in the coefficients are indicated by

E(b0) = 𝛽0 + 𝛽123

E(b1) = 𝛽1 + 𝛽23

E(b2) = 𝛽2 + 𝛽13

E(b3) = 𝛽3 + 𝛽12

8.10 Consider a 25−2 fractional factorial with defining relations

I = x1x2x3

I = x3x4x5

Suppose a first-order model is fitted to the data and the true model includes, addi-
tionally, all two-factor interactions. Use the expression

E(b1) = β1 + Aβ2

to develop, E(b1), E(b2), E(b3), E(b4), and E(b5) where the fitted first-order model is

ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5
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8.11 Consider Example 4.2 in Chapter 4. The strong effects are those for the factors A,
B, C, and AB, and the fitted regression is given by

ŷ = 60.65625 + 11.60625x1 + 34.03125x2 + 10.45625x3 + 6.58125x1x2

(a) Verify the above coefficients by considering this five-parameter model in the
form

y = Xβ + ε

and by using

b = (X′X)−1X′y

(b) Is the design in Table 4.5 orthogonal for the model that was fitted? If so, verify
it. Is the design variance-optimal?

(c) Is the design orthogonal for a model containing x1, x2, x3, x4, x5, x1x2, x1x3,
x1x4, x1x5, x2x3, x2x4, x2x5, x3x4, x3x5, and x4x5?

8.12 Consider the design listed in Table 4.11 with the injection molding data. Answer the
following questions.

(a) For the model that is fitted, namely

ŷ = b0 + b1x1 + b2x2 + b12x12

give the variance of each coefficient, assuming common error variance 𝜎2.

(b) Using the error mean square from Table 4.12, give the estimated standard errors
of all four coefficients.

(c) In light of the plot in Figure 4.14, why are the results in (b) somewhat precarious?

(d) Is this design orthogonal for a model containing all linear terms and the two-
factor interactions x1x2, x1x3, x1x4, x1x5, and x1x6? If so, justify it; if not, explain
why not.

8.13 In Section 4.5 of Chapter 4 the 27−4
III design is discussed. Here we may be interested

in building a regression model for studying seven factors. The design is given in
Table 4.15. Suppose one fits a first-order model but, in fact, all two factor interactions
are in the true model. Write out E(b1), E(b2), E(b3), E(b4), E(b5), E(b6), and E(b7).
Explain all your terms.

8.14 Consider Exercise 4.7 in Chapter 4.

(a) Is the design first-order orthogonal?

(b) From your answer in Exercise 4.7b, write a response surface model.

(c) Give estimated standard errors of all coefficients.

(d) From your model in Exercise 8.14b estimate the standard error of prediction at
all design locations.

(e) Compute the estimated standard error of prediction at the design center.



EXERCISES 439

8.15 Consider Exercise 4.8 in which four center runs were added to the design in Exer-
cise 4.7. Answer the questions asked in Exercise 8.14d and 8.14e again. Use the
replication error variability (3 df) in computing your mean square error.

8.16 (a) Consider Exercise 4.11 in Chapter 4. For the data in Exercise 4.11a develop a
first-order regression model. Estimate the standard error of prediction at each
design point.

(b) Do all the work in (a) again after the second fraction in Exercise 4.11b is added.
Comment on what was gained with the addition of the second fraction.

8.17 Suppose we are interested in fitting a response surface model in five design variables.
The analyst is quite sure that the form of the model should be

yi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi3 + 𝛽4xi4 + 𝛽5xi5

+ 𝛽12xi1xi2 + 𝛽13xi1xi3 + 𝜀i

The analyst can use 12 experimental runs in the design. Discuss and compare the
following candidate designs. Use the variances of individual coefficients in your
discussion. However, do not let your discussion be confined to this criterion. The
candidate designs are as follows:

D1 : 25−2
III with four center runs

D2 : Plackett–Burman with 12 runs

8.18 Equation 8.11 is a very important expression. It gives the scaled prediction variance
for a first-order orthogonal design in which all design points are at the ±1 extremes.
It also implies that this class of designs give equal prediction variance at any two
locations that are on the same sphere. This implies that this class of designs is
rotatable. Does the same property hold for orthogonal designs used to accommodate
a model containing interaction? Illustrate with a 22 factorial and the model

yi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽12xi1xi2

Compute N Var[ ŷ(x)]∕𝜎 2 at the following locations on the same sphere:

(i) 1, 1

(ii) −1, 1

(iii) 1, −1

(iv) 1, 1

(v)
√

2, 0

(vi) −
√

2, 0

(vii) 0, −
√

2

(viii) 0,
√

2

Comment on your results.



440 DESIGN OF EXPERIMENTS FOR FITTING RESPONSE SURFACES—I

8.19 A first-order orthogonal design with all points at ±1 extremes remains rotatable for
a first-order model if all points are replicated the same number of times. True or
false? Justify your answer.

8.20 A second-order rotatable design with 𝛼 = 4
√

F remains rotatable for the second-order
model if all factorial and axial runs are replicated the same number of times. True
or false? Justify your answer.

8.21 Consider the model in Exercise 8.17 along with designs D1 and D2. Which design
is superior using the scaled prediction variance criterion? Use as illustrations the
following locations:

(1, 1, 1, 1, 1)

(−1,−1,−1,−1,−1)

(1, 1,−1,−1,−1)

(1,−1,−1, 1, 1)

(1,−1,−1,−1,−1)

(−1, 1, 1, 1, 1)

8.22 Consider a central composite design with 𝛼 =
√

F. Use the result in Equation 7.14
to show that the number of center runs has no effect on the rotatability property.

8.23 It is stated in Section 8.4.9 that for second-order models, orthogonal blocking is
much more easily accommodated with the use of the spherical CCD than with
use of the face-centered cube (cuboidal CCD). However, orthogonal blocking is
accommodated with the face-centered cube when axial points are replicated. Show
that the following design blocks orthogonally in two blocks:

x1 x2

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
−1 1

1 −1
1 1
0 0
0 0
0 0
0 0

. . . . . . . .
−1 0
−1 0

1 0
1 0
0 −1
0 −1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Block 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Block 2
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8.24 Consider Table 8.5. The designs suggested in the table are those that block orthog-
onally and are rotatable or near-rotatable. For example, consider the design under
the column headed k = 5( 1

2
rep). Construct the design completely, and verify that it

meets both conditions for orthogonal blocking.

8.25 Answer the same question as in Exercise 8.23, but use the k= 5 line with four blocks
from the factorial portion and one block from the axial portion.

8.26 The designs given in Table 8.8 are not the only ones that block orthogonally and are
practical. The values for 𝛼 and nc can be altered in a very flexible manner. Suppose,
for example, that for k= 4 the run size does not allow a design that is shown in the
table. Rather, we must use

x1 x2 x3 x4

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

−1 1 1 −1
−1 1 −1 1
−1 −1 1 1

1 1 1 1
0 0 0 0

. . . . . . . . . . . . . . . . . .
1 −1 −1 −1

−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1
0 0 0 0

. . . . . . . . . . . . . . . . . .
−𝛼 0 0 0
𝛼 0 0 0
0 −𝛼 0 0
0 𝛼 0 0
0 0 −𝛼 0
0 0 𝛼 0
0 0 0 −𝛼
0 0 0 𝛼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This design can be made to block orthogonally. What value of 𝛼 results in orthogonal
blocking?

8.27 Construct a Box–Behnken design in five variables that blocks orthogonally for a
second-order model. Show the assignment of design points to blocks.
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8.28 Compare a 26−3 fractional factorial design (I=ABD=ACE=BCF) with four center
runs (total of 12 runs), or a Plackett–Burman design with 12 runs for estimating the
model

y = 𝛽0 + 𝛽1A + 𝛽2B + 𝛽3C + 𝛽4D + 𝛽5E + 𝛽6F + 𝛽12AB

Which is better for

(a) estimating effects independently?

(b) smallest variance for coefficient estimates?

(c) testing lack of fit?

(d) testing curvature?

(e) estimating pure error?

Based on (a)–(e), which design do you prefer? Explain.

8.29 We are interested in studying the main effects (A, B, C, D, E) and some two-way
interactions (AB, AC) for five factors by running a half fraction of a fractional
factorial. We also have the restriction that we can only have eight observations per
block.

(a) Suggest a suitable design that will allow all effects to be estimated independently
of each other. Give the defining equation, as well as what effect would be aliased
with the block.

(b) List the combinations of A, B, C, D, E would be run in each of the blocks.

(c) If we assume a model with terms for A, B, C, D, E, AB, AC, and Block, what
would the ANOVA table for this design look like? (Source, d.f.)

(d) Give the equation (using combinations of A, B, C, D, E) for how you would
calculate the effect for the AB interaction.

(e) If the true model had terms A, B, C, D, E, AB, AC, and Block as well as BC and
CD, would your model be adequate to estimate all of the effects? Explain.

8.30 For a full 23 factorial with two center runs, we assume a first-order model with
all two-way interactions is the correct model. If the correct model is actually, the
first-order model with two-way interactions and a quadratic effect for factor A, find
which estimates are unbiased?

8.31 For the following designs and specified models, give the appropriate design matrix,
and show whether or not they are rotatable (work with design moments where
convenient).

(a) Plackett–Burman design (12 runs) for a first-order model for effects A, B, C,
D, E

(b) Factorial design for a first-order model with interactions for effects A, B, C

(c) CCD design with half-fraction for the factorial portion, 𝛼 = 2 and nc = 3 for a
second-order model for effects A, B, C, D, E

(d) BBD design with nc = 3 for a second-order model for effects A, B, C, D, E

(e) An equiradial design with seven points for a second-order model for effects A
and B.
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8.32 Assume a second-order model with three factors (A, B, C) is the model of inter-
est. For the following designs, calculate the scaled predicted variance, SPV =
(NVar[ ŷ(x)]∕𝜎 2) along the lines (a, 0, 0), (a, a, 0), (a, −a, 0), (a, a, a), and (a,−a, a)
for different values of a. Select an appropriate range to consider and plot the results
on a graph of distance from center versus SPV. Comment on your results, referring
to rotability and desirability of the design.

(a) CCD with 𝛼 = 1, nc = 2

(b) CCD with 𝛼 = 1, nc = 4

(c) BBD with nc = 2

(d) BBD with nc = 4

8.33 For a 24−1 fractional factorial design with defining equation I=ABCD and assumed
first-order model with interactions AB, AC, and BC:

(a) What is the “alias matrix” if a better model for the relationship between factors
and response has all of the above terms as well as the interactions AD and ABC?
What coefficient estimates will not be unbiased?

(b) Now assume that the run order of the experiment was as follows:

ab, cd, ad, ac, (1), abcd, bc, bd.

If (unknown to the experimenter) conditions changed after the first four runs
(treat this as two “self-imposed” blocks), what will the “alias matrix” look like
(assume the initial model is otherwise correct)? What coefficient estimates will
be unbiased?

8.34 An experimenter wants to run a screening experiment with six factors of interest and
16 runs. She thinks a first-order model is adequate for any effects that are present.
Consider the following four designs:

D1: A 26−2
IV fractional factorial.

D2: A 26−3
III fractional factorial two reps at each location.

D3: A Plackett–Burman design with n= 12 and four center runs.

D4: A Plackett–Burman design with n= 12 and four reps chosen at random
locations.

Which is better for

(a) estimating effects independently?

(b) smallest variance for coefficient estimates?

(c) testing lack of fit?

(d) testing curvature?

(e) estimating pure error?

Based on (a)–(e), which design do you prefer? Explain.

8.35 For an experiment with four factors (A, B, C, D) in a spherical region, a CCD with
𝛼 = 2 and nc = 3 is selected. It is assumed that a second-order model is adequate.
Find the “alias matrix” if a better model for the relationship between factors and
response includes the cubic terms A3, B3, C3, D3. Which terms in the second-order
model will be unbiased?
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8.36 For an experiment with four factors (A, B, C, D) in a spherical region, a CCD with
𝛼 = 2 and nc = 3 is selected. It is assumed that a second-order model is adequate.
Find the “alias matrix” if a better model for the relationship between factors and
response includes the third-order terms ABC, ABD, ACD, BCD. Which terms in the
second-order model will be unbiased?

8.37 An experiment involving three factors in a spherical region can be run in blocks as
large as eight runs. Three competing designs with orthogonal blocking are being
considered:

D1: A three block design given in Table 8.8 with two factorial blocks of size 6 and
the axial block of size 8.

D2: A three block design with two factorial blocks and an axial block, all of size 8.

D3: A two block design with one factorial block (of size 8) and an axial block of
size 8.
(a) For design D2, find the axial distance that makes the blocks orthogonal.

(b) For design D3, find the axial distance that makes the blocks orthogonal.

(c) Based on a comparison of estimation of pure error, location of the axial
runs, and overall size of the designs, rank the different designs.

(d) Which design would you recommend for the experiment?

8.38 An experiment involving four factors in a spherical region can be run in blocks
as large as 12 runs. Three competing designs with orthogonal blocking are being
considered:

D1: A three-block design given in Table 8.8 with two factorial blocks of size 10 and
the axial block of size 10.

D2: A three-block design with two factorial blocks and an axial block, all of
size 12.

D3: A three-block design with two factorial blocks of size 12 and an axial block of
size 10.
(a) For design D2, find the axial distance that makes the blocks orthogonal.

(b) For design D3, find the axial distance that makes the blocks orthogonal.

(c) Based on a comparison of estimation of pure error, location of the axial
runs, and overall size of the designs, rank the different designs.

(d) Which design would you recommend for the experiment?

8.39 Maruyama et al. (2013) conducted a study on the impact of replacing some portion
of wheat flour in bread with other ingredients to determine the impact on several
properties of the bread. Data from the experiment is shown in Table E8.1, with the
true factor levels for the three factors (Chia seeds, Carrot leaves and Baking time)
shown in parentheses.

(a) What type of design was used for the experiment?

(b) What is the scaled prediction variance for the design, for the following design
locations:

(i) Chia seed = 1.5 g, Carrot leaves = 1.5 g, Baking time = 70 min

(ii) Chia seed = 1.0 g, Carrot leaves = 2.0 g, Baking time = 80 min

(iii) Chia seed = 1.5 g, Carrot leaves = 1.0 g, Baking time = 60 min
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TABLE E8.1 Data for Exercises 8.39, 8.40, and 8.41

Run
Chia

Seeds (g)
Carrot

leaves (g)
Baking

Time (min) Moisture Ash
Crude
Protein

Total
Lipid

1 −1 (1.0) −1 (1.0) 0 (70) 36.76 1.66 7.4 2.88
2 1 (2.0) −1 (1.0) 0 (70) 34.07 1.79 7.63 2.98
3 −1 (1.0) 1 (2.0) 0 (70) 35.15 1.73 7.48 3.5
4 1 (2.0) 1 (2.0) 0 (70) 35.76 1.99 8.12 3.97
5 −1 (1.0) 0 (1.5) −1 (60) 36.16 1.73 7.44 3.16
6 1 (2.0) 0 (1.5) −1 (60) 37.28 1.86 7.86 3.29
7 −1 (1.0) 0 (1.5) 1 (80) 33 1.69 7.43 3.19
8 1 (2.0) 0 (1.5) 1 (80) 33.43 1.94 7.85 3.6
9 0 (1.5) −1 (1.0) −1 (60) 35.36 1.68 7.48 2.91
10 0 (1.5) 1 (2.0) −1 (60) 35.66 1.89 7.76 3.05
11 0 (1.5) −1 (1.0) 1 (80) 35.22 1.73 7.47 3.02
12 0 (1.5) 1 (2.0) 1 (80) 34.36 1.9 7.73 3.24
13 0 (1.5) 0 (1.5) 0 (70) 33.89 1.85 7.6 3.35
14 0 (1.5) 0 (1.5) 0 (70) 33.2 1.84 7.61 3.31
15 0 (1.5) 0 (1.5) 0 (70) 33.57 1.84 7.6 3.28

(c) Do you have concerns about predicting the responses at any of the design
locations in (b)? Why or why not?

(d) Suppose that the experimenter had wanted to use a Central Composite design
instead. Using the same ranges of the factors and same-sized experiment as in
Table E8.1, create a face-centered CCD.

(e) Compare the scaled prediction variance values for the design locations in (b).
Which design do you prefer? Why?

(f) Create a Fraction of Design Space plot for each design. Which design do you
prefer? Why?

8.40 Reconsider the experiment in Exercise 8.39 and Table E8.1. The primary character-
istic of interest in the experiment is the amount of crude protein.

(a) Fit a second-order model for the response crude protein.

(b) At which location in the design space is the estimated amount of crude protein
maximized? Think carefully about how you define the design space.

(c) Find a 95% confidence region for the amount of crude protein at the location
found in (b).

(d) Find all of the locations in the design space for which their 95% confidence
intervals include the point estimate for the maximum amount of crude protein
found in (b).

(e) Find all of the locations in the design space for which their 95% prediction
intervals for a new observation include the point estimate for the maximum
amount of crude protein found in (b).

8.41 Reconsider the experiment in Exercise 8.40 and Table E8.1. While the primary goal
of the optimization is to maximize the amount of crude protein, secondary objectives
include having sufficient moisture and minimizing the amount of ash.
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(a) Fit second-order response surface models to both moisture and ash.

(b) Find the region in the design space where moisture is estimated to have a value
of at least 35.

(c) Find the location in the design space that minimizes the amount of ash.

(d) Based on the results of (b) and (c), comment on the amount of trade-off between
maximizing crude protein (from Exercise 8.40), maximizing moisture and min-
imizing ash.

(e) Find the location in the design space that maximizes crude protein, where
moisture has a value of at least 35.

(f) Find the Pareto front for locations in the design space that balance minimizing
ash and maximizing crude protein.

8.42 Amenaghawon et al. (2013) consider optimizing the production of citric acid with
a Box–Behnken design involving three factors. They consider carbon substrate
(Aspergillus niger) concentration (X1), broth pH (X2), and fermentation temperature
(X3) as the three factors. The ranges for each of the factors are as follows:

Carbon substrate concentration: 30–50 g/L
Broth pH: 2–5
Fermentation temperature: 25◦–35◦C

(a) Fit a second order model for citric acid based on the three factors.

(b) If the goal of the experiment is to maximize the amount of citric acid produced,
what is the optimal combination of carbon substrate concentration, broth pH
and fermentation temperature within the design region? What is the value of the
response at this location?

(c) If it were possible to expand the range of each of the factors to

Carbon substrate concentration: 25–55 g/L
Broth pH: 1–6
Fermentation temperature: 20◦–40◦C

where would the model suggest the new optimum to be located? What is the
predicted value of the response at this location?

(d) If the experimenter was interested in considering expanding the region to the
range described in (c), how would you recommend proceeding with validating
the results predicted by the model?

8.43 Reconsider the experiment in Exercise 8.42 and Table E8.2. The experimenters
selected a Box–Behnken design for their experiment.

(a) This design has all of the design points that are not center runs at the same
distance from the center of the design space in the scaled factors. How far are
the design points from the center?

(b) If the experimenters want to again use a spherical design with points the same
distance from the center of carbon substrate concentration = 37.5 g/liter, broth
pH = 3.5, fermentation temperature = 30◦C, list the runs for a central composite
design of the same design size.
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TABLE E8.2 Data for Exercises 8.42 and 8.43

X1 X2 X3 Concentration

1 1 0 20.47
1 −1 0 24.48

−1 −1 0 15.69
−1 0 −1 15.87

0 −1 −1 23.45
0 0 0 15.26
0 0 0 14.99
0 1 1 36.42

−1 0 1 13.68
−1 1 0 15.37

1 0 −1 30.72
1 0 1 14.73
0 1 −1 12.05
0 0 0 16.27
0 −1 1 12.2

(c) Compare the scaled prediction variance at the center and edges of the design
region for the original design and the in (b). Which design do you prefer? Why?

8.44 For a definitive screening design for six factors (X1–X6), with a total of 14 runs in
the design space [−1,+1]6,

(a) List the design matrix.

(b) Create a fraction of design space plot for the design assuming a first order model
for the six factors.

(c) Create a fraction of design space plot assuming the following model:

y = 𝛽0 +
6∑

i=1

𝛽iXi + 𝛽12X1X2 + 𝛽14X1X4 + 6X1X6 + 𝜀

(d) Create a fraction of design space plot assuming the following model:

y = 𝛽0 +
6∑

i=1

𝛽iXi + 𝛽12X1X2 + 𝛽14X1X4 + 𝛽14X1X6 + 𝛽11X2
1 + 𝜀

(e) Compare the results from (b), (c), and (d) to summarize the effect of an increas-
ingly complex model on scaled prediction variance.

(f) Compare the results from (d) to the fraction of design space plot for a six-
factor face-centered CCD in the same range. Describe the trade-offs between
the designs.

Short Answer Questions

8.45 Answer the following short answer questions:

(a) Why is it important to consider multiple aspects of the goodness of the design
when selecting which experimental runs to choose?
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(b) Justify why it is a good strategy to not assuming a single chosen model is correct.

(c) Describe the bias-variance trade-off and why it is important to not choose too
small a model or too large a model.

(d) Why is orthogonality an important property when choosing a designed experi-
ment?

(e) What are the required properties of a design to be variance-optimal for a first
order model?

(f) Describe how the structure of a central composite design allows estimation of
the different terms in a second order model? Which design locations help to
estimate which terms?

(g) Why is rotatability a helpful property for a designed experiment?

(h) Describe situations where it would be helpful to consider the scaled prediction
variance? The unscaled prediction variance? The estimated prediction variance?

(i) Describe how you would decide between a spherical and cuboidal design region
for a particular experiment?

(j) What are some of the trade-offs between a central composite design and a
definitive screening design when the assumed model might be second-order?

(k) Why is it important to incorporate orthogonality into the selection of the design’s
blocks?

8.46 Answer the following True/False questions:

(a) The 8-run 23 factorial design is a D-optimal design for fitting the first-order
model with two-factor interaction terms included.

(b) The face-centered cube is a rotatable design for fitting the second-order response
surface model.

(c) All second-order rotatable designs have the design points (apart from center
points) the same distance from the design center.

(d) In the face-centered cube, at least 3–5 center points are required to stabilize the
prediction variance over a large portion of the design region.

(e) A 23 factorial with four center points is variance-optimal for fitting the first-
order model in three variables.

(f) An experimenter must use at least one center run in a face-centered cube design
so that he or she can solve the least squares normal equations to fit the second-
order model.

(g) The variance of prediction contours for a rotatable central composite design are
circular even if the second-order model doesn’t include all of the terms.

(h) The necessary and sufficient conditions for rotatability for a dth order design
depend on the design moments up through order 2d.

(i) An experimenter should use at least six center runs in a response surface design
so that he or she will get a reliable estimate of experimental error.

(j) A 23 factorial with two run at each corner of the cube is a variance-optimal
design for fitting the first-order model in three variables.

(k) Box–Benken designs are orthogonal for a first order model with two-way
interactions.
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(l) The moment matrix for a design used to fit a model of order d contains moments
up through order 2d.

(m) All central composite designs can be run in three blocks.

(n) Rotatable and spherical central composite designs are always the same.

8.47 Circle the correct answer for each question:

(a) In a rotatable CCD the variance at the center of the design is
(i) Is always greater than the variance of the predicted response at the perimeter

of the design.

(ii) Is always less than the variance of the predicted response at the perimeter
of the design.

(iii) Is controlled entirely by the value of 𝛼

(iv) Depends mostly on the number of center runs

(b) You have used a 24 factorial to fit a first-order model. The variance of an
observation is 𝜎2 = 1. The variance of the predicted response at any corner of
the design is equal to

(i) 4

(ii) 8

(iii) 12

(iv) None of the above

(c) Consider a rotatable CCD in for 2 variables. The design is run two blocks. The
factorial block has four center runs. To block orthogonally the number of center
runs in the axial block should be

(i) 3

(ii) 2

(iii) 6

(iv) None of the above.

(d) Consider a CCD in for four variables. The design is run in two blocks with 2
center runs in the factorial block and four center runs in the axial block. The
value of 𝛼 that makes the design block orthogonally is

(i) 2

(ii) 4
/√

3

(iii) 5
/√

3

(iv) None of the above
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EXPERIMENTAL DESIGNS FOR FITTING
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In Chapter 8 we dealt with standard second-order response surface designs. The central
composite designs (CCDs) and Box-Behnken designs (BBDs) are extremely popular with
practitioners, and definitive screening designs (DSDs) provide a flexible alternative if fitting
a second-order model may be desired when run as part of a screening design. The popularity
of these standard designs is linked to the list of 11 important properties of response surface
designs presented in Section 8.1. The CCD and BBD rate quite well for the 11 properties
listed, particularly when they are augmented with center runs as recommended. One of the
most important features associated with these two designs deals with run size. The run size
is large enough to provide a comfortable margin for lack of fit, but not so large as to involve
wasted degrees of freedom or unnecessary experimental expense.

Despite the importance of the CCD and the BBD, there are instances in which the
researcher cannot afford the required number of runs. As a result, there is certainly a need
for design classes that are either saturated or near-saturated, in other words, second-order
designs that contain close to (but not less than) p design points where

p = 1 + 2k + k(k − 1)
2

(9.1)

Note that p is the number of terms in the second-order model with 1 intercept, k first-order, k
pure quadratic, and k(k− 1)/2 interaction terms. There are several design classes that allow
saturated or near-saturated second-order designs. These are designs that should not be used
unless cost prohibits the use of one of the standard designs. In a later section we make some
comparisons that shed light on this point. In the section that follows we introduce a few of
these design classes and make reference to others.

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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9.1 DESIGNS THAT REQUIRE A RELATIVELY SMALL RUN SIZE

9.1.1 The Hoke Designs

The Hoke designs are a class of economical designs based on subsets of all combinations
of three levels (−1, 0, and 1) for a given number of factors, and they are irregular fractions
of the 3k factorial. They consist of factorial, axial and edge points that create efficient
second-order arrays for k= 3, 4, 5, and 6. Among very small designs, several in this class
perform remarkably well and should be considered if there are restrictions on the design size
which require the experimenter to consider saturated or near-saturated designs. Developed
by Hoke (1974), the designs are suitable for a cuboidal region of interest.

For each number of factors, several versions of the Hoke designs exist and have been
labeled as D1, D2,… , D7. A good characteristic of all of the versions is symmetry of the
designs across all factors. Two popular choices are D2 and D6, since they perform well with
small variances for model parameters and prediction of new observations among the Hoke
design choices. For k= 3, we have

x1 x2 x3

D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1
1 1 −1
1 −1 1

−1 1 1
1 −1 −1

−1 1 −1
−1 −1 1
−1 0 0

0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

x1 x2 x3

D6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1
1 1 −1
1 −1 1

−1 1 1
1 −1 −1

−1 1 −1
−1 −1 1
−1 0 0

0 −1 0
0 0 −1
1 1 0
1 0 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The D2 design is saturated with 10 observations to estimate the 10 model parameters,
while the D6 design is near-saturated with a total of 13 observations. We can gain some
understanding about the estimation capability of the designs by observing the X′X for the
two designs. For the D2 design, all of the terms have non-zero correlations, which have a
strong effect on the variance of the regression coefficients. By comparison, many more of
the terms of the D6 design are mutually orthogonal, leading to improved estimation for the
terms of the model.

x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

X′XD2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 −2 −2 −2 8 8 8 −1 −1 −1
8 −1 −1 −2 −1 −1 −1 −1 −1

8 −1 −1 −2 −1 −1 −1 −1
8 −1 −1 −2 −1 −1 −1

8 7 7 −1 −1 −1
8 7 −1 −1 −1

8 −1 −1 −1
7 −1 −1

7 −1
7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

X′XD6
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13 0 0 0 10 10 10 0 0 0
10 0 0 0 0 0 0 0 −1

10 0 0 0 0 0 −1 0
10 0 0 0 −1 0 0

10 8 8 0 0 −1
10 8 0 −1 0

10 −1 0 0
8 −1 −1

8 −1
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hoke Designs for k> 3 The Hoke designs exist for any number of factors, with the D1 to
D3 designs being saturated, and the D4 to D7 designs near-saturated. We can construct the
designs using symmetry for a given patterns of levels. For example, for k= 4 the saturated
D2 design is constructed by taking all combinations of the following combinations of the
three levels: (−1,−1,−1,−1), (1,1,1,−1), (1,1,−1,−1), and (−1,0,0,0). This gives 1, 4, 6,
and 4 rows for the design matrix, respectively. The D6 design is the same as the D2 design
but with the four combinations of (1,1,1,0) added.

x1 x2 x3 x4

D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1
1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

−1 −1 1 1
−1 1 −1 1
−1 1 1 −1
−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The Hoke designs are an important class of designs, which offer a good option if a satu-
rated or near-saturated design is required. In general, the use of saturated designs can be
potentially risky as no degrees of freedom are available to estimate pure error or lack-of-fit.
Hence if the assumed model is not sufficiently rich, detecting this is not possible. However,
it is inevitable that these designs will be used where cost constraints are a major obstacle. In
these cases, the Hoke designs are a good choice, and can typically be easily implemented
since only three levels for each factor are required.
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9.1.2 Koshal Design

Another class of design requiring a small run size is the family of Koshal designs. Koshal
(1933) introduced this type of design for use in an effort to solve a set of likelihood equations.
The designs are saturated for modeling of any response surface of order d(d= 1, 2,…). We
will not supply general details but will list Koshal designs for d =1 and 2.

Koshal Design for First-Order Model For the first-order model the Koshal design is
simply the one-factor-at-a-time design. For k design variables we simply have

x1 x2 … xk

D =

⎡⎢⎢⎢⎢⎣

0 0 ⋯ 0
1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ 1

⎤⎥⎥⎥⎥⎦

Thus, for the special case in which three variables are of interest we have

x1 x2 x3

D =
⎡⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎦

As a result, four coefficients can be estimated in the model

yi = 𝛽0 + 𝛽1x1i + 𝛽2x2i + 𝛽3x3i + 𝜀i

It is important to note that the Koshal design for the first-order model does not allow
estimation of any interaction terms.

First-Order Plus Interaction The Koshal family can be nicely extended to accommodate
the first-order model with interaction. One simply augments the first-order Koshal design
with interaction rows. For example, the appropriate design for k= 3 is given by

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Second-Order Koshal Design The Koshal design for fitting a second-order model must,
of course, include at least three levels. The one-factor-at-a-time idea remains the basis for
the design. For k= 3, the design is given by

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1
2 0 0
0 2 0
0 0 2
1 1 0
1 0 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The design contains three levels and 10 design points. Another form of the second-order
Koshal design is given by

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

−1 0 0
0 −1 0
0 0 −1
1 1 0
1 0 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It should be quite clear to the reader how to extend the Koshal designs to more than three
variables.

9.1.3 Hybrid Designs

Roquemore (1976) developed a set of saturated or near-saturated second-order designs
called hybrid designs. These hybrid designs are very efficient. They were created via an
imaginative idea that involves the use of a central composite design for k− 1 variables, and
the levels of the kth variable are determined in such a way as to create certain symmetries
in the design. The result is a class of designs that are economical and either rotatable or
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near-rotatable for k= 3, 4, 6, and 7. For example, for k= 3 and N= 10 we have the hybrid
310 with design matrix

x1 x2 x3

D310 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1.2906
0 0 −0.1360

− 1 −1 0.6386
1 −1 0.6386

− 1 1 0.6386
1 1 0.6386
1.736 0 −0.9273

−1.736 0 −0.9273
0 1.736 −0.9273
0 −1.736 −0.9273

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is important to note that the efficiency of the hybrid is based to a large extent on the fact
that eight of the ten design points and two center runs on x1 and x2 are a central composite
in these two variables. Then four levels are chosen on the remaining variable, x3, with
these levels chosen to make odd moments zero, all second pure moments equal, and a near-
rotatable design. The design name, 310, comes from k= 3 and 10 distinct design points.

Roquemore developed two additional k= 3 hybrid designs. The design matrices are
given by

x1 x2 x3

D311A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
√

2

0 0 −
√

2

−1 −1 1∕
√

2

1 −1 1∕
√

2

−1 1 1∕
√

2

1 1 1∕
√

2√
2 0 −1∕

√
2

−
√

2 0 −1∕
√

2

0
√

2 −1∕
√

2

0
√

2 −1∕
√

2

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x1 x2 x3

D311B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
√

6

0 0 −
√

6
−0.7507 2.1063 1

2.1063 0.7507 1

0.7507 −2.1063 1

−2.1063 −0.7507 1
0.7507 2.1063 − 1
2.1063 −0.7507 − 1

−0.7507 −2.1063 − 1
−2.1063 0.7507 − 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Both the 311A and 311B are near-rotatable. Eleven design points include a center run to
avoid near-singularity.

There are three hybrid designs for k= 4. They are given by

x1 x2 x3 x4

D416A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1.7844
0 0 0 −1.4945

−1 −1 −1 0.6444
1 −1 −1 0.6444

−1 1 −1 0.6444
1 1 −1 0.6444

−1 −1 1 0.6444
1 −1 1 0.6444

−1 1 1 0.6444
1 1 1 0.6444
1.6853 0 0 −0.9075

−1.6853 0 0 −0.9075
0 1.6853 0 −0.9075
0 −1.6553 0 −0.9075
0 0 1.6853 −0.9075
0 0 −1.6853 −0.9075

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1 x2 x3 x4

D416B =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1.7317
0 0 0 −0.2692

±1 ±1 ±1 0.6045
±1.5177 0 0 −1.0498

0 ±1.5177 0 −1.0498
0 0 ±1.5177 −1.0498

⎤⎥⎥⎥⎥⎥⎥⎦

x1 x2 x3 x4

D416C =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1.7658
0 0 0 0

±1 ±1 ±1 0.5675
±1.4697 0 0 −1.0509

0 ±1.4697 0 −1.0509
0 0 ±1.4697 −1.0509

⎤⎥⎥⎥⎥⎥⎥⎦

We have condensed the notation for 416B and 416C. The notation±1 indicates a 23 factorial
in x1, x2, and x3 with x4 fixed. The design points following the 23 factorial are axial points
in x1, x2, and x3 with x4 fixed. A center run is used in 416C to avoid near-singularity. The
notation ±1.4697 or ±1.5177 implies two axial points. When possible, one or two more
center runs should be added to the hybrid design.
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There are two hybrid designs for six design variables. Both include 28 runs, and thus
both are saturated. The 628A design is as follows:

x1 x2 x3 x4 x5 x6

D628A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 4∕
√

3

±1 ±1 ±1 ±1 ±1 1∕
√

3
±2 0 0 0 0 −2∕

√
3

0 ±2 0 0 0 −2∕
√

3
0 0 ±2 0 0 −2∕

√
3

0 0 0 ±2 0 −2∕
√

3
0 0 0 0 ±2 −2∕

√
3

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The notation±1 indicates a resolution V 25−1 in x1, x2, x3, x4, and x5, while x6 is held 1∕
√

3.
The ±2 implies two axial points A second six-variable design, the 628B, is constructed in
a manner similar to that of 628A, The components of the design are as follows:

1. Resolution V 25−1 in x1 − x5 with x6 = 0.6096

2. Axial points in x1 − x5 with 𝛼 = 2.1749 and x6 =−1.0310

3. Two additional center points with x6 = 2.397 and −1.8110

General Comments Concerning the Hybrid Designs As we indicated earlier, the hybrid
designs represent a very efficient class of saturated or near-saturated second-order designs.
The hybrid designs are quite competitive with central composite designs when the criteria
for comparison takes design size into account—for example, when one makes comparisons
using N Var[ŷ(x)]∕𝜎 2. Further discussion of design comparisons is in Sections 9.2 and 9.3.

It has been our experience that hybrid designs are not used as much in industrial
applications as they should be. As previously discussed, the use of saturated or near-
saturated response surface designs should be avoided. However, where cost constraints are
major obstacles, the hybrid design is a good choice. It is likely that potential users are
reluctant to use the hybrid designs because of the “messy levels” required of the extra
design variable—that is, the variable not involved in the central composite structure. One
must remember that the levels reported in the design matrices in this text are those solved
for by Roquemore in order to achieve certain ideal design conditions. An efficient design
will still result if one merely approximates these levels. Minor errors in control do not alter
the efficiencies of these designs. One should assign the extra design variable to a factor
that is easiest to alter and thus accommodates these levels. Of course, many practitioners
are attracted to designs that involve three evenly spaced levels or levels that provide little
difficulty when the experiment is conducted.

9.1.4 The Small Composite Design

The small composite design (Draper, 1985) is commonly available in some software pack-
ages, and is present here because of its popularity. However, we would like to discourage
the use of this design because of its poor estimation and prediction performance. More
details about its performance are given in Section 9.2. The small composite design gets its
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name from the ideas of the central composite, but the factorial portion is neither a complete
2k nor a resolution V fraction, but, rather, a special resolution III fraction in which no four-
letter word is among the defining relations. This type of fraction is often called resolution
III∗. As a result, the total run size is reduced from that of the CCD—hence the term small
composite design. For k= 3, we have

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1
1 1 −1
1 −1 1

−1 1 1
−𝛼 0 0
𝛼 0 0
0 −𝛼 0
0 𝛼 0
0 0 −𝛼
0 0 𝛼

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.2)

The factorial portion is the fraction generated using I=−ABC. Obviously, the alternative
fraction would be equally satisfactory in the construction of the small composite design. In
this case, p, the number of second-order parameters, is 10, and thus the design is one degree
of freedom above saturation. Multiple center runs allow degrees of freedom for pure error
but if the fitted model is second order, there will be one degree of freedom for lack of fit.

If we focus on the example design in Equation 9.2, it becomes obvious that in the
factorial portion linear main effect terms are aliased with two-factor interaction terms.
Hartley (1959) observed that in spite of this, all coefficients in the second-order model are
estimable because the linear coefficients benefit from the axial points, though axial points
provide no information on the estimation of interaction coefficients. One may gain some
additional insight into this by observing the matrix X′X for the k= 3 small composite design
(SCD) contrasted with that for the k= 3 full central composite (assume a single center run
for both designs):

X′XSCD =

x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 0 0 0 4 + 2𝛼2 4 + 2𝛼2 4 + 2𝛼2 0 0 0
4 + 2𝛼2 0 0 0 0 0 0 0 − 4

4 + 2𝛼2 0 0 0 0 0 −4 0
4 + 2𝛼2 0 0 0 −4 0 0

4 + 2𝛼4 4 4 0 0 0
4 + 2𝛼4 4 0 0 0

4 + 2𝛼4 0 0 0
4 0 0

4 0
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.3)
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X′XCCD =

x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 0 0 0 8 + 2𝛼2 8 + 2𝛼2 8 + 2𝛼2 0 0 0
8 + 2𝛼2 0 0 0 0 0 0 0 0

8 + 2𝛼2 0 0 0 0 0 0 0
8 + 2𝛼2 0 0 0 0 0 0

8 + 2𝛼4 8 8 0 0 0
8 + 2𝛼4 8 0 0 0

8 + 2𝛼4 0 0 0
8 0 0

8 0
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.4)

The distinction between the two designs stems from the fact that in the CCD all linear
main effects and two-factor interactions are mutually orthogonal, whereas in the SCD the
−4 values reflect the nonorthogonality of x1with x2x3, x2 with x1x3, and x3 with x1x2. The
correlation among these model terms has a strong effect on the variance of the regression
coefficients of x1, x2, x3, x1x2, x1x3, and x2x3. In fact, a comparison can be made by creating
scaled variances for the two designs, that is, N Var(bi)/𝜎

2 for i= 1, 2, 3 and N Var(bij)/𝜎
2 for

i, j= 1, 2, 3; i≠j. Table 9.1 shows these values taken from appropriate diagonals of the matrix

N(X′X)−1. In our illustration, 𝛼 was taken to be
√

3 and nc = 3 for each design. Notice
that the designs are quite similar for estimation of pure quadratic coefficients. However,
the small composite design suffers considerably in efficiency for estimation of linear and
interaction coefficients.

The efficiencies of model coefficients certainly suggest that the small composite design
should not be used, as several of the other designs, such as the Hoke and hybrid designs have
similar size and perform much better. Coefficient by coefficient comparisons of variances
is certainly not the only, nor necessarily even the best, method for comparing designs.
Graphical methods for comparing designs in terms of scaled prediction variance (i.e.,
N Var[ŷ(x)]∕𝜎 2) can be used. These methods are presented later in this chapter, and the
comparison between the CCD and SCD will be displayed prominently.

Small Composite Design for k= 2 For k= 2 there is a small composite design in which
the factorial portion is the one-half fraction of a 22. The design is given by

TABLE 9.1 Scaled Variances of Model Coefficients
for CCD and SCD

b0 bi bii bij

CCD (N= 17) 5.6666 1.2143 1.3942 2.125
SCD (AC= 13) 4.3333 2.1666 1.1074 5.4166



9.1 DESIGNS THAT REQUIRE A RELATIVELY SMALL RUN SIZE 461

x1 x2

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
1 1

−𝛼 0
𝛼 0
0 −𝛼
0 𝛼

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The defining relation for the factorial portion is given by I=AB. With six parameters to
estimate, this design affords one degree of freedom for lack of fit. For k= 2 the hexagon is a
more efficient design. This SCD design may find some use if the design region is cuboidal,
in which case 𝛼 must be 1.0.

Small Composite Designs for k> 3 The general SCD is a resolution III∗ fraction of a 2k

augmented with axial points and runs in the center of the design. This structure applies for
all k> 2. For example, for k= 4 a SCD is given by

x1 x2 x3 x4

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 +1
1 −1 −1 −1

−1 1 −1 −1
−1 −1 1 1

1 1 −1 1
1 −1 1 −1

−1 1 1 −1
1 1 1 1

−𝛼 0 0 0
𝛼 0 0 0
0 −𝛼 0 0
0 𝛼 0 0
0 0 −𝛼 0
0 0 𝛼 0
0 0 0 −𝛼
0 0 0 −𝛼
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.5)

The factorial portion of the design in Equation 9.5 is a one-half fraction of a 24 with I=
ABD as the defining relation. The design points yield 17 degrees of freedom for parameter
estimation. Thus, the design is not saturated but results in only two degrees of freedom
for lack of fit. In comparison, the CCD for k= 4 allows 10 degrees of freedom for lack
of fit. Comparisons between scaled variances of coefficients of the linear and interaction
coefficients of the SCD with that of the CCD essentially tell the same story as in the k= 3
case. The superiority of the CCD is quite apparent, and indeed other small designs also
outperform the SCD substantially.

An additional important point should be made regarding the k= 4 case. One is tempted
to use a resolution IV fraction rather than resolution III∗ for k= 4 and possibly for larger
values of k where higher fractions might be exploited. For example, for k= 6 a resolution
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IV 26− 2 fraction is available. This allows 16 factorial points plus 12 axial points plus
center runs, and the result is one degree of freedom over saturation. However, the design
cannot involve a resolution IV fraction: the result would be complete aliasing among two-
factor interactions. One must be mindful of the fact that unlike linear or pure quadratic
coefficients, all information on interaction coefficients is derived from the factorial portion.
Thus, aliasing among two-factor interaction terms in the factorial portion results in aliasing
of two-factor interactions for the entire design.

Further Comments on the Small Composite Design Despite its availability in software
packages, the small composite design is typically not a good choice when cost constraints
restrict the design size to substantially smaller than that required by the central composite
or Box–Behnken designs. If the primary goal of the experiment is to understand the second-
order model, other alternatives such as the Hoke or hybrid designs provide better estimation
and prediction with a similar small sample size.

One potential virtue of the SCD may arise in sequential experimentation. Most of the
discussion regarding sequential experimentation has centered on the transition from the first-
order fitted model to the second-order model. One should regard response surface method-
ology (RSM) as nearly always involving iterative experimentation and iterative decision-
making. A first-stage experiment with an SCD may suggest that the current region is, indeed,
the proper one. That is, there are no ridge conditions and no need to move to an alternative
region. Then a second-stage augmentation of the factorial portion is conducted; the result
is now either a full factorial or resolution V fraction that accompanies the axial points. As a
result, the second stage is more efficient than what was used in the first stage. Further infor-
mation about the SCD and comparisons with other designs will be given later in the chapter.

9.1.5 Some Saturated or Near-Saturated Cuboidal Designs

During the 1970s and early 1980s, considerable attention was given to the development
of efficient second-order designs on a cube. This movement settled down considerably in
the 1980s, and attention shifted to developments that led to general computer-generated
experimental designs. Computer-generated design will be discussed in general in Section
9.3. However, there remain several interesting design classes for a cube that have potential
use. Designs developed by Notz (1982), and Box and Draper (1974) are particularly note-
worthy. As an example, the Notz three-variable design involves seven design points from a
23 factorial plus three one-factor-at-a-time axial points. Specifically, this design is given by

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1
1 −1 −1

−1 1 −1
−1 −1 1

1 1 −1
1 −1 1

−1 1 1
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A design consisting of one additional point, namely (+1, +1, +1) to complete the 23

factorial, resulting in 11 design points, is a nice augmentation of the three-factor Notz
design. The four-variable Notz design is constructed in a similar manner, with 11 points
from the 24 factorial plus four axial points.

9.1.6 Equiradial Designs

There are some special and interesting two-factor designs that serve as alternatives to
the central composite design. They are the class of equiradial designs, beginning with a
pentagon (five equally spaced points on a circle); the pentagon, hexagon, heptagon, and so
on, do require center runs because they are designs on a common sphere and, as we shall
show, are rotatable.

The design matrix for the equiradial design can be written
x1 x2

[𝜌 cos(𝜃 + 2𝜋u∕n1), 𝜌 sin(𝜃 + 2𝜋u∕n1)], u = 0, 1, 2,… , n1 − 1
(9.6)

where 𝜌 is the design radius. Here, n1 is the number of points on the sphere, say, 5, 6, 7,
8, … . In addition to the n1 points indicated by Equation 9.6, we will assume nc center runs.
The value that one chooses for p merely determines the nature of the scaling. It turns out
that the choice of 𝜃 has no effect on X′X; that is, it has no effect on the design as far as the
variance structure is concerned. As a result, all of the equiradial second-order designs (i.e.,
using n1 = 5, 6, 7, 8,…) are such that the matrix X′X is invariant to design rotation.

A very useful and interesting special case is the hexagon—that is, six equally spaced
points on a circle. Thus n1 = 6; setting 𝜃 = 0 and 𝜌= 1, we have the following design matrix
using nc = 3:

x1 x2

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0.5

√
0.75

−0.5
√

0.75
−1 0
−0.5 −

√
0.75

0.5 −
√

0.75
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.7)

Note that x1 is at five levels and x2 is at three levels for this particular rotation. Figure 9.1
shows the design. Note the six evenly spaced points.

It is of interest to consider the important design moments for the hexagon—that is, the
moments through order four. From Equation 9.7 we have, for the hexagon,

[i] = [ij] = [iij] = [iii] = [iiij] = 0, i ≠ j = 1, 2 (odd moments zero)

[iiii] =
9∕4

N
, [iijj] =

3∕4

N
, i ≠ j = 1, 2

Because all design moments through order four are zero and [iiii]/[iijj]= 3, the hexagon
is indeed rotatable. The reader should also note that these conditions are independent of
𝜌 and 𝜃.
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Figure 9.1 Design points for the hexagon.

It turns out that all equiradial designs for n1 ≥ 5 are rotatable. Appendix 2 shows a
development of the moment conditions. The relevant moments for the equiradial designs
are as follows:

1. All odd moments through order four are zero.

2. The key even moments are

[ii] =
𝜌2n1

2N
, i = 1, 2

[iiii] =
3𝜌4n1

8N
, i = 1, 2

[iijj] =
𝜌4n1

8N
, i ≠ j = 1, 2

Of course, these conditions imply that all equiradial designs for nl ≥ 5 are rotatable.

Special Case of The Equiradial Design—The CCD for k= 2 For n1 = 8, the equiradial
design is the octagon. As one might expect, the use of Equation 9.6 for n1 = 8 produces

(using 𝜌 =
√

2)

x1 x2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
−1 1

1 −1
1 1√
2 0

−
√

2 0

0 −
√

2

0
√

2
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which, of course, is the k= 2 rotatable CCD.
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Summary Comments on the Equiradial Designs The equiradial designs are an interesting
family of designs that enjoy some usage in the case where only two design variables are
involved. One should use the CCD (the octagon) whenever possible. However, there are
situations when cost constraints do not allow the use of the octagon. The pentagon (plus
center runs) is a saturated design and thus should not be used unless absolutely necessary.
The hexagon is a nice design that allows one degree of freedom for lack of fit. The heptagon
also has its place in some applications. The octagon, hexagon, and nonagon (nine equally
spaced points) possess the added property of orthogonal blocking, which will be discussed
in the next section.

We have already indicated that the equiradial designs require the use of center runs.
Reasonable stability of N Var[ ŷ(x)]∕𝜎 2 is achieved with two to four center runs.

9.2 GENERAL CRITERIA FOR CONSTRUCTING, EVALUATING, AND
COMPARING DESIGNED EXPERIMENTS

As we indicated in Section 9.1, the 1980s began an era of using the computer for design
construction. This period encouraged many new users to consider and use designed exper-
iments, simply because it became easier to find appropriate designs. While computer-
generated designs are flexible and easy to use, there are also negative aspects. One of
the most important disadvantages is that users often treat the designs generated by a
computer package like a black box, where an “optimal” design must be evaluated rela-
tive to the criterion that was used to optimize it and how closely the design matches the
model identified by the user as appropriate to characterize the relationship between the
input factors and the response. Another substantial disadvantage of computer-generated
designs is their tendency to focus on just a single criterion. Recall from Chapter 8 that
there are numerous characteristics typically associated with good designs, and focusing
solely on a single objective can lead to poor performance on other important aspects of the
design.

Much of what is available in evaluation and comparison of RSM designs as well as
computer-generated design are the results of the work of Kiefer (1959, 1961) and Kiefer
and Wolfowitz (1959) in optimal design theory. Their work is couched in a measure
theoretic approach in which a designed experiment is viewed in terms of design measure.
Design optimality moved into the practical arena in the 1970s and 1980s as designs were put
forth as being efficient in terms of criteria inspired by Kiefer and his coworkers. Computer
algorithms were developed that allowed “best” designs to be generated by a computer
package based on the practitioner’s choice of sample size, model, ranges on variables, and
other constraints. The notion of reducing the “goodness” of a design to a single number
is often too ambitious, and so optimality should most often be considered as one of many
aspects to be balanced. Recall from Section 8.1, that there are often inherent trade-offs
between design criteria, which should be explicitly considered when selecting a design.
For example, an optimal design for a particular model likely will not have good ability to
evaluate the assumptions of the model or assess lack of fit. Hence, optimality should most
often be considered as one of many aspects to be balanced. Later in this chapter, some of
the ideas from multiple objective optimization in Chapter 7 will be introduced as a method
to formally consider several design criteria.
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There are three situations where using a computer-generated design based on a single
criterion may be highly beneficial:

1. An irregular experimental region. If the region of interest for the experiment is not
a cube or a sphere, standard designs may not be the best choice. Irregular regions of
interest occur fairly often. For example, an experimenter is investigating the properties
of a particular adhesive. The adhesive is applied to two parts and then cured at an
elevated temperature. The two factors of interest are the amount of adhesive applied
and the cure temperature. Over the ranges of these two factors, taken as −1 to +1 on
the usual coded variable scale, the experimenter knows that if too little adhesive is
applied and the cure temperature is too low, the parts will not bond satisfactorily. In
terms of the coded variables, this leads to a constraint on the design variables, say

−1.5 ≤ x1 + x2

where x1 represents the application amount of adhesive and x2 represents the temper-
ature. Furthermore, if the temperature is too high and too much adhesive is applied,
either the parts will be damaged by heat stress or an inadequate bond will result.
Thus, there is another constraint on the factor levels:

x1 + x2 ≤ 1

Figure 9.2 shows the experimental region that results from applying these constraints.
Notice that the constraints effectively remove two corners of the square, producing
an irregular experimental region. There is no standard response surface design that
will fit exactly into this region.

Figure 9.2 A constrained design region in two variables.
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2. A nonstandard model. Usually an experimenter selects a first- or second-order
response surface model, realizing that this empirical model is an approximation
to the true underlying mechanism. However, sometimes the experimenter may have
some special knowledge or insight about the process being studied that may suggest
a nonstandard model. For example, the model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛽11x2
1 + 𝛽22x2

2

+ 𝛽112x2
1x2 + 𝛽1112x3

1x2 + 𝜀

may be of interest. The experimenter would be interested in obtaining an efficient
design for fitting this reduced quartic model. As another illustration, sometimes we
encounter response surface problems where some of the design factors are categorical
variables. There may be no standard response surface designs for this situation. We
will discuss this further in Section 9.3.2.

3. Unusual sample size or block size requirements. Occasionally an experimenter may
need to reduce the number of runs required by a standard response surface design. For
example, suppose we intend to fit a second-order model in four variables. The central
composite design for this situation requires between 28 and 30 runs, depending on the
number of center points selected. However, the model has only 15 terms. If the runs
are extremely expensive or time-consuming, the experimenter may want a design
with fewer trials. Although computer-generated designs can be used for this purpose,
there may be better approaches. For example, the Hoke D6 design uses only 19 runs,
has very good properties, and a hybrid design with as few as 16 runs is also available.
These can be superior choices to using a computer-generated design to reduce the
number of trials. Unusual requirements concerning either the number of blocks or
the block size can also suggest the use of a computer-generated design.

9.2.1 Practical Design Optimality

Design optimality criteria are characterized by letters of the alphabet and, as a result,
are often called alphabetic optimality criteria. Some criteria focus on good estimation
of model parameters, while others focus on good prediction in the design region. The
best-known and most often used criterion is D-optimality.

D-Optimality and D-Efficiency D-optimality, which focuses on good model parameter
estimation, is based on the notion that the designed experiment should be chosen so as to
achieve certain properties in the moment matrix

M = X′X
N

(9.8)

The reader recalls the importance of the elements of the moment matrix in the determination
of rotatability. Also, the inverse of M, namely

M−1 = N(X′X)−1 (9.9)
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(the scaled dispersion matrix), contains variances and covariances of the regression coef-
ficients, scaled by N/𝜎2. As a result, control of the moment matrix by design implies control
of the variances and covariances.

It turns out that an important norm on the moment matrix is the determinant, that is,

|M| = |X′X|
N p

(9.10)

where p is the number of parameters in the model. Under the assumption of independent
normal model errors with constant variance, the determinant of X′X is inversely propor-
tional to the square of the volume of the confidence region on the regression coefficients.
The volume of the confidence region is relevant because it reflects how well the set of
coefficients are estimated. A small |X′X| and hence large |(X′X)−1|= 1/|X′X| implies poor
estimation of β in the model. For the response surface model which is a special case of the
general linear model

y = Xβ + ε

the 100(1− 𝛼)% confidence ellipsoid on β under the assumption ε ∼ N(0, 𝜎2I) is given by
solutions to β in

(b − β)′(X′X)(b − β)

ps2
≤ F𝛼,p,n−p

or

(b − β)′(X′X)(b − β) ≤ C

where C= ps2F𝛼,p,n−p. As a result, the volume of the confidence region is the volume of
the ellipsoid

(b − β)′(X′X)(b − β) = C

Suppose we consider the orthogonal matrix Q such that

Q′(X′X)Q =
⎡⎢⎢⎢⎣

λ∗
1 0

λ∗
2

⋱
0 λ∗

p

⎤⎥⎥⎥⎦

where the λ∗
i are the eigenvalues of X′X. We can write

X′X = Q

[
λ∗i 0

⋱
0 λ∗

p

]
Q′
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As a result, we can write

(b − β)′(X′X)(b − β) =
p∑

i=1

(bi − 𝛽i)
2λ∗

i = C

The volume of this ellipsoid is proportional to [
∏ p

i=1(1∕λ∗
i )]1∕2. The quantity

[
∏ p

i=1(1∕λ∗
i )]1∕2 = 1∕|X′X|1∕2. As a result, the volume of the ellipsoid is inversely pro-

portional to the square root of the determinant of X′X.
A D-optimal design is one in which |M|= |X′X|/Np is maximized†; that is,

Max
𝜁

|M(𝜁 )| (9.11)

where Max implies that the maximum is taken over all designs 𝜁 . As a result, it is natural
to define the D-efficiency of a design 𝜁∗ as

Deff =
(
|M(𝜁 ∗)|∕Max

𝜁
|M(𝜁 )|

)1∕p

(9.12)

Here, the 1/p power takes account of the p parameter estimates being assessed when
one computes the determinant of the variance–covariance matrix. The definition of D-
efficiency in Equation 9.12 allows for comparing designs that have different sample sizes
by comparing D-efficiencies. Since it is helpful to balance the multiple objectives of a good
design outlined in Section 8.1, D-efficiency can be a useful tool for quantifying the quality
of our estimation of model parameters.

There have been many studies that have been conducted to compare standard experi-
mental designs through the use of D-efficiency. Readers are referred to Lucas (1976) for
comparisons among some of the designs that we have discussed in this chapter and in
Chapter 8. St. John and Draper (1975) give an excellent review of D-optimality and provide
much insight into pragmatic use of design optimality. One should also read Box and Draper
(1971), Myers et al. (1989), and the text by Pukelsheim (1995).

Recall that in Chapter 8 we discussed the notion of variance-optimal designs in the
first-order and first-order-plus-interaction case. While our main objective in this chapter
is to continue to focus on second-order designs, it is natural to consider D-optimality and
D-efficiency in the case of simpler models. Consider the variance-optimal design, namely
the orthogonal design with all levels at the ±1 extremes of the experimental region. The
moment matrix is given by

M = X′X
N

= I p

It is not difficult to show that for the first-order and first-order-plus-interaction cases,
optimality extends to the determinant, that is,

Max
𝜁

|M(𝜁 )| = 1,

†Equivalently, one may minimize NP |(X′X)−1|.



470 EXPERIMENTAL DESIGNS FOR FITTING RESPONSE SURFACES—II

and thus for these simpler models, the so-called variance-optimal design is also optimal in
the determinant sense—that is, D-optimal.

Before we embark on some comparisons among standard designs and discussion of how
D-optimality affects practical tools in the use of computer-generated designs, we offer a
few other important optimality criteria and methods of comparison.

A-Optimality The concept of A-optimality, which also aims to estimate model parameters
well, deals with the individual variances of the regression coefficients. Unlike D-optimality,
it does not consider the covariances among coefficients; recall that the variances of regres-
sion coefficients appear on the diagonals of (X′X)−1. A-optimality is defined as

Min
𝜁

tr[M(𝜁 )]−1 (9.13)

where tr represents trace, that is, the sum of the variances of the coefficients (weighted by
N). Some computer-generated design packages make use of A-optimality.

Criteria Associated with Prediction Variance (G-, V-, and I-Optimality) Throughout
Chapter 8, we consistently made reference to the use of the scaled prediction variance
N Var[ŷ(x)]∕𝜎 2 = 𝜐(x) as an important measure of performance. The primary goal of many
designed experiments is to allow for good prediction throughout the design space. Hence,
focusing on 𝜐(x) makes direct assessment possible. Our feeling is that practical designers
of experiments don’t make use of this measure as they should. One clear disadvantage, of
course, is that, unlike tr(M−1) or |M|, 𝜐(x) is not a single number but rather depends on the
location x at which one is predicting. In fact, recall that

𝜐 (x) =
N Var[ŷ(x)]

𝜎 2
= Nx(m)′(X′X)−1xm

where x(m) reflects location in the design space as well as the nature of the model. In previous
discussions in Chapter 8, we focused on attempts to stabilize 𝜐(x) by proper design (choice
of center runs).

One interesting design optimality criterion that focuses on 𝜐(x) is G-optimality. G-
optimality and the corresponding G-efficiency emphasize the use of designs for which the
maximum 𝜐(x) in the region of the design is not too large. It seeks to protect against the
worst case prediction variance, since when we use the results of our analysis we may wish
to predict new response values anywhere in the design region. A G-optimal design 𝜁 is one
in which we have

Min
𝜁

[
Max
x∈R

𝜐 (x)
]

Note that this is equivalent to

Min
𝜁

[
Max
x∈R

{
x(m)′[M(𝜁 )]−1x(m)}]

because N Var[ ŷ(x)]∕𝜎 2 is a quadratic form in [M(𝜁 )]−1. Of course, the natural choices of
regions for R are the cube and sphere. The resulting G-efficiency is conceptually quite simple
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to grasp. It turns out that under the standard independence and homogeneous variance on
the model errors, there is a natural lower bound for the maximum prediction variance of

Max
x∈R

[𝜐 (x)] ≥ p (9.14)

To understand this bound, consider the expression for hat diagonals discussed in Chapter
2. Given the linear model

yi = x(m)′
i b (i = 1, 2,… , n)

the ith hat diagonal is given by

hii = x(m)′
i (X′X)−1x(m)

i (i = 1, 2,… , n)

and, indeed,

n∑
i=1

hii =
n∑

i=1

x(m)′
i (X′X)−1x(m)

i = p (number of parameters)

See Myers (1990) or Montgomery, Peck, and Vining (2012). Consider a designed experi-
ment and the corresponding scaled prediction variance

𝜐 (x) = Nx(m)′(X′X)−1x(m)

Suppose we consider the maximum value of 𝜐(x) in some region R. The average value of
𝜐(x) at the data points is p. Obviously then

Max
x∈R

𝜐 (x) ≥ p

In addition, if a design is G-optimal, all hat diagonals are equal, thus implying that 𝜐(x)= p
at all hat diagonals and

𝜐 (x) ≤ p

at all other locations in R. The result in Equation 9.14 is very important and usually
very surprising to practitioners. One must keep in mind that 𝜐 (x) = N Var[ŷ(x)]∕𝜎 2 is a
scale-free quantity. The G-efficiency is very easily determined for a design, say 𝜁 , as

Geff =
p

Max
x∈R

𝜐 (x)
(9.15)

It is always instructive to investigate efficiencies of our two-level designs of Chapters
4 and 6 with regard to first-order and first-order-plus-interaction models. Consider, for
example, a 22 factorial in the case of the first-order model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝜀
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with the region R being described by −1≤ x1 ≤1 and −1≤x2 ≤1. We know that

M = X′X∕N = I3

and

𝜐 (x) = [1, x1, x2]I3

[ 1
x1
x2

]

= 1 + x2
1 + x2

2

As a result, the maximum of 𝜐(x) occurs at the extremes of the cube, namely at x1 =±1,
x2 =±1. In addition, it is obvious that for the 22 factorial,

Max
x∈R

[𝜐 (x)] = 3 = p

Thus, the G-efficiency of the 22 design is 1.0. As a result, the design is G-optimal. In fact, it
is simple to show that for the first-order model in k design variables for the cuboidal region,
a two-level design of resolution ≥III with levels at ±1 results in

Max
x∈R

[𝜐 (x)] = p

Thus all these designs are G-optimal for the first-order model.
Another prediction-oriented optimality is V-optimality. The V-criterion considers the

prediction variance at a specific set of points of interest in the design region, say x1, x2,… ,
xm. The set of points could be the candidate set from which the design was selected, or it
could be some other collection of points that have specific meaning to the experimenter.
A design that minimizes the average prediction variance over this set of m points is a
V-optimal design.

An important design-optimality criterion that addresses prediction variance is I-
optimality, or IV (integrated variance) optimality. The attempt here is to generate a single
measure of prediction performance through an averaging process; that is, 𝜐(x) is averaged
over some region of interest R. The averaging is accomplished via the integration over R.
The corresponding division by the volume of R produces an average. Thus, the I-criterion
is clearly related to the V-criterion. The I-optimal design is given by

Min
𝜁

1
K ∫R

𝜐 (x)dx = Min
𝜁

I(𝜁 ) (9.16)

where K = ∫R dx. Notice, then, that we can write the criterion for a design 𝜁 as

Min
𝜁

{
1
K ∫R

x(m)′[M(𝜁 )]−1x(m)dx
}

= Min
𝜁

I(𝜁 ) (9.17)

In this way the I-optimal, or IV-optimal, design is that in which the average scaled prediction
variance is minimized. Strictly speaking, the I-criterion given in Equation 9.17 is a special
case of a more general criterion in which the scaled prediction variance is multiplied by a
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weight function w(x). The utility of the weight function is to weight more heavily certain
parts of R. Of course, in most practical situations w(x)= 1.0.

The I-optimality criterion is conceptually a very reasonable device to use for choosing
experimental designs, since selecting a design with good average prediction variance should
produce satisfactory results throughout the design space. The concept in Equation 9.17 in
a different form does enjoy some use in computer-generated designs. However, neither G
nor I is used as much as D-optimality. We will shed more light on this in the next section.
The I-criterion leads nicely to a I-efficiency for design 𝜁∗ as

Ieff = Min
𝜁

[I(𝜁 )]∕I(𝜁∗)

As in previous cases, it is instructive to apply the I-criterion to a simple case, namely a
first-order model. Consider, again, the model

y = 𝛽0 +
k∑

j=1

𝛽 jx j + 𝜀

Let us assume that the region is once again given by the cuboidal region −1≤ xj ≤1. The
I-criterion can be written

I(𝜁 ) = 1
K ∫R

𝜐 (x) dx

= N
K ∫R

x(m)′(X′X)−1x(m)dx

(9.18)

where x(m)′ = [1, x1, x2,… , xk]. Here, of course, ∫R implies ∫
1
−1 ∫

1
−1 ⋯ ∫

1
−1. Because

x(m)′(X′X)−1x(m) is a scalar, we can write

I(𝜁 ) = N
K ∫R

tr[x(m)′(X′X)−1x(m)] dx

= N
K ∫R

tr[x(m)x(m)′(X′X)−1] dx

= tr

{
[X′X)−1]

[
1
K ∫R

x(m)x(m)′dx
]}

(9.19)

Now, the matrix (1∕K) ∫R x(m)x(m)′dx is a (k+ 1)×(k+ 1) matrix of region moments, that
is, the diagonal elements (apart from the initial diagonal element, which is 1.0) are the
(1∕K) ∫R x2

i dx. For the off-diagonals, we have (1∕K) ∫R xidx in the first row and first column
and (1∕K) ∫R xix j dx for i≠j as the other off-diagonal elements. Because the region R is
symmetric, ∫R xidx and ∫R xix jdx are both zero. As a result, Equation 9.19 becomes

I(𝜁 ) = tr{[M(𝜁 )]−1[DR]} (9.20)
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where DR is a diagonal matrix given by

DR =
⎡⎢⎢⎢⎣

1 0 ⋯ 0
0
⋮ 1

3
Ik

0

⎤⎥⎥⎥⎦

because (1∕K) ∫R x2
i dx = (1∕2k)(2k)( 1

3
) = 1

3
.

Now, Equation 9.20 can be written as a simple function of the variances of the least
squares estimators b0,b1,b1,… , bk of the coefficients in the first-order model. In fact, we
have

I(𝜁 ) = N

[
Var(b0) + 1

3

k∑
i=1

Var(bi)

]
(9.21)

The value of I(𝜁 ), the scaled prediction variance, averaged over the cuboidal region, is
minimized by a design for which the variances of all coefficients are simultaneously
minimized. This, as we learned in Chapter 8, is accomplished by the variance-optimal
design, namely the two-level first-order orthogonal design (resolution ≥III) with levels set
at the ±1 extremes.

If we change the region R from the cuboidal region to a spherical region, the two-level
resolution ≥III design is both D- and I-optimal. Again, the requirement remains that the
design be first-order orthogonal with two levels set at the perimeter of the experimental
region (see Exercise 9.8).

9.2.2 Use of Design Efficiencies for Comparison of Standard Second-Order
Designs

Design optimality is an extremely interesting and useful concept. Considerable interest
has been drawn to design of experiments and RSM because of the existence of computer
packages that allow the user to generate designs with the use of the notion of alphabetic
optimality. D-optimality in particular has received much usage and attention, primarily
because it lends itself to relatively simple computation and because algorithms were devel-
oped early to implement it. Both Design-Expert and JMP can generate D-optimal and
I-optimal designs.

The reader should bear in mind the 11 desirable properties of an RSM experimental
design, listed in Section 8.1. They suggest that what is required in practice, if they can
be obtained, are designs that reflect several important properties, not designs that are
optimal with respect to a single criterion. They suggest that what one desires are good
designs—that is, designs that will produce reliable results under a wide variety of possible
circumstances, not designs that are optimal under a fairly restrictive and idealized set of
conditions and assumptions. In the case of first-order models and first-order-plus-interaction
models, standard designs are optimal designs. We have seen some evidence of this in this
chapter; but, in the second-order case, standard RSM designs that we discussed in Chapter
8 are rarely optimal designs, and yet we know that they can be constructed to achieve many
desirable properties listed among the 11 given in Chapter 8.
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For purposes of an RSM analysis, the standard central composite or Box–Behnken
designs should be used whenever possible. When economical designs are needed (near-
saturated), the Hoke or hybrid designs should be used whenever possible. This does not
imply that optimal designs obtained through computer-generated designs have no value.
They can be extremely useful and perhaps necessary in many circumstances. There are many
conditions encountered by the user under which the use of a CCD or BBD is impossible. In
particular, we shall see in Chapter 13 than the use of mixture designs often necessitates the
use of computer-generated designs due to restrictions on the factor levels and design sizes.
Even in nonmixture situations, constraints or unusual design size will often rule out the use
of a standard design. We focus on optimal designs in the context of computer-generated
designs later in this chapter. But, it seems reasonable that the reader may gain some further
insight into the virtues of standard designs if we discuss the performance of these designs in
the context of design efficiencies. In what follows, we investigate the CCD, BBD, hybrid,
and certain other saturated or near-saturated designs.

It should be emphasized that because the notion of design optimality as introduced
by Kiefer considers an experimental design as a probability measure, most finite designs
(i.e., N-point designs) will naturally have design efficiencies less than 1.0. As a result, it
is natural that designs with small design size will have small efficiencies. The information
in Table 9.2 give D- and G-efficiencies for various CCD, BBD, and hybrid designs for a

spherical region. The table includes values of k from 2 through 5. For the CCD, 𝛼 =
√

k.
[Further information regarding these design efficiencies can be found in Lucas (1974, 1976)
and in Nalimov, Golikova, and Nikeshina (1970).]

The central composite and Box–Behnken designs are quite efficient. For example,
note that a CCD for k= 3 with three center points has an efficiency of 97.63%. This
means that if the design were replicated 1/0.9763≅ 1.02 times, it would be equivalent
to a D-optimal design. Obviously, this design is nearly D-optimal. Note that while the
design efficiencies are highest for nc = 2, one should not view these results as an indication
that there is no advantage in using additional center runs. The use of three to five center
runs, according to our recommendation in Chapter 8, brings stability in 𝜐(x) and provides
important pure error degrees of freedom. Note that for k= 4, the CCD and BBD have
identical efficiencies. This stems from the fact that the BBD is merely a rotation of the
CCD for k= 4. The CCD is rotatable, and the variance properties do not change with
rotation of the design.

The lack of G-efficiency in the CCD for a single center run should not be surprising.
Recall that for nc = 0 and a spherical region, X′X is either singular or near-singular. The
use of only one center run results in a large value of 𝜐(x) at the design center. As additional
center runs are added, values of 𝜐(x) grow nearer to a condition of stability; it is the
nature of the G- and D-criteria to react adversely to the use of center runs in most cases.
However, in the spirit of good balanced performance across several criteria for good designs,
this should not preclude the use of multiple center runs as they serve other important
goals.

It is natural to expect saturated or near-saturated designs to have low efficiencies. As
a result, the results for some of the hybrid designs are quite impressive, especially in the
case of the 311B and 416A, 416B, and 416C. Though we only included results for k from
2 through 5, it should be noted that the D-efficiencies and G-efficiencies for the 628A are
both 100%, while the corresponding efficiencies for the 628B with a single center run are
90.6% and 84.4%. Further comparisons of hybrid designs with other economical designs
such as the small composite design will be illustrated later. While we will not show tables
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TABLE 9.2 D- and G-Efficiencies for Some Standard Second-Order
Designs for a Spherical Region

Number of Factors Sample Size Design Dcff (%) Gcff (%)

2 9 CCD (nc = 1) 98.62 66.67
2 10 CCD (nc = 2) 99.64 96.0
2 11 CCD (nc = 3) 96.91 87.27
3 15 CCD (nc = 1) 99.14 66.67
3 16 CCD (nc = 2) 99.61 94.59
3 17 CCD (nc = 3) 97.63 89.03
3 13 BBD (nc = 1) 97.0 76.92
3 14 BBD (nc = 2) 96.53 71.43
3 15 BBD (nc = 3) 93.82 66.67
3 10 310 72.8 47.4
3 11 311A 79.1 78.6
3 11 311B 83.1 90.9
4 25 CCD (nc = l) 99.23 60.0
4 26 CCD (nc = 2) 99.92 98.90
4 27 CCD (nc = 3) 98.86 95.24
4 25 BBD (nc = 1) 99.23 60.0
4 26 BBD (nc = 2) 99.92 98.90
4 27 BBD (nc = 3) 98.86 95.24
4 16 416A 81.7 88.0
4 17 416A (nc = 1) 90.6 74.3
4 16 416B 96.3 63.1
4 17 416B (nc = 1) 95.1 70.1
4 16 416C 96.9 78.0
5 43 CCD (nc = 1) 98.6 48.84
5 44 CCD (nc = 2) 99.60 87.63
5 45 CCD (nc = 3) 99.28 85.56
5 27 CCD ( 1

2
rep) (nc = 1) 98.43 77.78

5 28 CCD ( 1

2
rep) (nc = 2) 98.10 87.64

5 29 CCD ( 1

2
rep) (nc = 3) 96.57 84.62

5 41 BBD (nc = 1) 97.93 51.22
5 42 BBD (nc = 2) 98.83 90.91
5 43 BBD (nc = 3) 98.41 88.79

of design efficiencies for the case of the cuboidal region, the following represent a synopsis
of results for the CCD, Hoke, and Box–Draper designs. Again, for specific construction
of the Hoke or Box–Draper design, one should consult Hoke (1974) or Box and Draper
(1974).

1. The CCD for 𝛼 = 1.0 is quite efficient, particularly in the D sense. For k= 3, 4, and
5, this design has D-efficiency from approximately 87% to 97% without center runs.
Center runs reduce D-efficiency and change G-efficiency very little.

2. The Hoke D2 and D6 designs have D-efficiencies that range from 80% to 97%. This
is quite good given the small design size. The G-efficiencies are considerably lower,
but this is not unexpected with small designs. In general, the Hoke designs perform
better than the Box–Draper designs.
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In the next section we focus once again on design comparison. We make use of graphical
methods in order to gain some perspective about the distribution of 𝜐(x) in the design region.
Our purpose is to compare standard designs and also point the reader toward graphical
methodology that can be used to evaluate designs in practice.

9.2.3 Graphical Procedure for Evaluating the Prediction Capability of an RSM
Design

Design efficiencies are single numbers that purport to evaluate the capabilities of a designed
experiment. In cases of interest here, the designs are RSM designs. Design efficiencies can
be beneficial. Indeed, they were of benefit to us in the previous section. They enabled the
reader to understand that standard RSM designs are often fairly close to the “best possible”
design in the D-optimality or G-optimality sense. One must remember that in almost all
cases (hybrid 628A being an exception) the best finite-sample-size designs have efficiencies
less than 100%.

When one is interested in stability of 𝜐(x) over the design region, a single-number
criterion such as a design efficiency may not capture the true design capability, which
is actually a multidimensional concept. There is useful information in methodology that
allows the user to know values of 𝜐(x) throughout the design region. Obviously, for k= 2
two-dimensional plots of 𝜐(x) can easily be constructed. This type of plot can be used to
compare designs. In addition, for a specific RSM analysis, if data have been collected, a
plot showing contours of constant ̂Var[ŷ(x)] or {Var[̂̂y(x)]}1∕2 can aid the practitioner in
visualizing confidence limits on the mean response at interesting locations in the design
region. The following example provides an illustration.

Example 9.1 Contour Plots of Prediction Variance Consider the k= 2 illustration
of Example 6.4. The design used is a second-order rotatable CCD. Contours of constant
response are shown in Fig. 6.16. Figure 9.3 is a two-dimensional plot showing the estimated

Figure 9.3 Contours of constant standard error of prediction.
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prediction standard deviation or estimated standard error of prediction

{Var[̂̂y(x)]}1∕2 = s
√

x(m)′(X′X)−1x(m)

where s is the square root of the mean square error. Note the stability of the prediction
standard error on spheres. Note also that the prediction begins to break down as one moves
outside the design region. For example, for x1 = x2 = 1.414 at the corner of the plot, we are
outside the design region and beyond where any data have been observed.

For values of k> 2, contours of prediction variance are, of course, considerably more
awkward. However, there are other graphical procedures that allow comparison of the
distribution of 𝜐(x) among RSM designs for any number of design variables. These graphical
procedures make use of variance dispersion graphs and fraction of design space plots.
The following sub-subsections define both types of plots and illustrate their use.

Variance Dispersion Graphs (VDGs) Giovannitti-Jensen and Myers (1989) and Myers
et al. (1992b) developed the variance dispersion graph and produced case studies that
allowed for interesting comparisons between standard designs. Rozum (1990) and Rozum
and Myers (1991) extended the work from spherical to cuboidal regions.

A variance dispersion graph for an RSM design displays a “snapshot” that allows the
practitioner to gain an impression regarding the stability of 𝜐 (x) = N Var[ ŷ(x)]∕𝜎 2 and
how the design compares to an ideal. Let us first consider a spherical design region. The
VDG contains three graphical components:

1. A line of the spherical variance Vr against the radius r. The spherical variance is
essentially 𝜐(x) averaged over the surface of a sphere of radius r, namely,

Vr = N𝜓

𝜎 2 ∫Ur

Var[ŷ(x)] dx (9.22)

where Ur implies integration over the surface of a sphere of radius r and 𝜓 =
(∫Ur

dx)−1.

2. A line of the maximum 𝜐(x) on a radius r against r. That is,

max
x∈Ur

[
N Var[ŷ(x)]

𝜎2

]
= max

x∈Ur

[𝜐 (x)]

3. A line of the minimum 𝜐(x) on a radius r against r.

In addition to the above three lines, which offer information about 𝜐(x) for the design being
evaluated, the result of Equation 9.14 is used to provide some sense of closeness to ideal. A
horizontal line at 𝜐(x)= p is added. Obviously, if the design is rotatable, the entire VDG will
involve only the spherical variance and the horizontal line, since the maximum, minimum,
and average 𝜐(x) will be identical at any radius r.
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It is of interest to discuss briefly the computations associated with the spherical variance.
It turns out that the integral in Equation 9.22 can be written as

Vr = N𝜓

𝜎 2 ∫𝜐r

Var[ŷ(x)] dx

= N𝜓

𝜎 2 ∫𝜐r

x(m)′(X′X)−1x(m) dx

= N𝜓

𝜎 2 ∫𝜐r

tr[x(m)′(X′X)−1x(m)] dx

= N𝜓

𝜎 2 ∫𝜐r

tr[(X′X)−1x(m)x(m)′]dx

= tr(X′X)−1
[

N𝜓

𝜎2 ∫𝜐r

x(m)x(m)′dx
]

= tr(X′X)−1S (9.23)

where S is the p× p matrix of region moments, with the region being the hypersphere given
by Ur.

Fraction of Design Space (FDS) Plots Zahran et al. (2003) developed the fraction of
design space plots as a complement to the variance dispersion graph. While the variance
dispersion plot shows where in the design space various values of 𝜐(x) are observed, the
fraction of design space plots summarizes the prediction performance for the entire design
space with a single curve. The stability of 𝜐(x), its minimum, maximum, and quantiles can
all be extracted from the summary curve, allowing for easy assessment of the prediction
of a design or comparisons between competing designs. The FDS for an ideal design will
have a large fraction of the design space with small 𝜐(x) values and be relatively flat, which
corresponds to stability of 𝜐(x) throughout the region.

The curve of an FDS plots matches the value of 𝜐(x) against the fraction of the design
space that has prediction variance less than or equal to the given value. A graph of the
cumulative fraction provides the user with a sketch of the prediction variance throughout
the appropriate design region. The plot can be constructed by taking a random sample of
design locations throughout the design space, and calculating 𝜐(x) at these locations. These
values are then sorted and plotted against the quantiles from 0 to 1, in a manner similar to a
cumulative distribution function for a statistical distribution. Both JMP and Design-Expert
can construct FDS plots for a given design.

By using VDGs and FDS plots in combination, we can make comparisons between
different potential designs before any data are collected. It is important when we compare
competing designs to make sure that the same design regions are being compared, and
that these represent the area of interest for the experiment. The FDS plot allows for direct
comparisons of which design has a larger proportion of the design space at or below a
particular value, or for a fixed fraction, which design has the smaller 𝜐(x) value. Each
design is summarized with a single curve, which helps make comparisons straightforward.
The maximum 𝜐(x) value is shown in both VDG and FDS plots allowing for easy observation
of the G-efficiency. The VDGs allow us to see where the good and bad regions of prediction
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are relative to the distance from the center of the design, as well as assess if the design
is rotatable or near-rotatable. One disadvantage of the VDGs is that the relative emphasis
of different regions of the design space are not proportionate to the fraction of the design
space that they represent. Small values of the radius (namely those close to zero) where
only a small proportion of the design space is located are given greater visual emphasis
than the edge of the region. This effect becomes increasingly dramatic as the number of
factors, k, increases.

The goal of using graphical summaries to compare different designs is to gain better
understanding of where the designs predict well or poorly in the design space of interest,
as well as to see how well we might expect to predict future observations based on the
experiment that we will have run.

In the following example we illustrate the use of the VDG and FDS plots in a study to
determine the utility of center runs with a rotatable CCD for k= 5.

Example 9.2 Choosing the Number of Center Runs in a CCD Consider a central
composite design in five design variables with the factorial portion being the resolution V
fraction of a 25. The value of 𝛼 is 2.0, so that the design is rotatable. As a result, 𝜐(x) is
constant on spheres, and hence maxx∈R[𝜐 (x)] = minx∈R[𝜐 (x)] = Vr. The plot in Fig. 9.4a
shows five VDGs for the number of center runs nc = 1 through nc = 5. The horizontal line
is at p= 21. Recall that the maximum value of 𝜐(x) in the design region can be no smaller
than p, and if this value is attained, we have a G-optimal design. Figure 9.4b shows the
corresponding FDS plot for the same five designs.

The plot in Fig. 9.4a reflects values in the region 0 ≤ r ≤

√
5 because the factorial points

are at radius
√

5. The VDG shows how additional center runs lower 𝜐(x) at the center of

Figure 9.4 Plots showing the effect of center runs for a k= 5 rotatable CCD with a 25−1 as the
factorial portion (a), VDG (b) FDS plot with SPV, (c) FDS plot with UPV.
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the design space at the cost of slightly worsening prediction at the edge of the design space.
This worsening is a function of 𝜐(x) penalizing larger designs. The rate of improvement at
the center is diminishing and becomes marginal for additional center runs after nc = 4. The
FDS shows the same information in a different way, with the minimum 𝜐(x) shown at the
left of the plot, and the maximum 𝜐(x) at the right for each design. In terms of G-efficiency,
the best design is the CCD with nc =1, but this has the largest minimum 𝜐(x) value. Notice
how the VDG accentuates the improvement at the center of the design space, even though
this is proportionately a much smaller fraction of the design region than at the edge of the
design space.

In Fig. 9.4c, a FDS plot is shown for the unscaled prediction variance. As discussed in
Chapter 8, the unscaled prediction variance is useful to consider when we are interested in
the raw improvement in prediction variance for additional runs of our experiment. In this
plot, we see the effect of the additional center runs on the overall prediction performance.
With the scaled prediction variance, there was a trade-off in prediction performance on a
per observation basis, with improvements at the center of the design space resulting in a
slightly worse 𝜐(x) at the edge of the design space. With the unscaled prediction variance,
we see that the additional center runs (and corresponding increase in design size) can only
improve the prediction. There are slight gains throughout a majority of the design space,
but the maximum unscaled prediction variance at the edge of the design space is unaffected
by additional observations at the center of the design space.

Example 9.3 Comparison of the CCD and the BBD In this illustration we use the
variance dispersion graph and fraction of design space plot to show a comparison of the
distribution of 𝜐(x) in the design region between a CCD and a BBD. The reader should recall
that both of these very popular designs are spherical designs. Both designs involve three

design variables, with the CCD having 𝛼 =
√

3 and nc = 3, while the BBD also contains
three center runs. One must keep in mind that the total sample sizes are 17 and 15 for the
CCD and BBD, respectively. A plot with both VDGs is in Fig. 9.5a. Note that both designs
contain three lines in the VDG; the min 𝜐(x), average 𝜐(x), and max 𝜐(x) are shown because

neither design is rotatable. The plots stop at radius
√

3. Both designs have been scaled so

that points are at a radius
√

3 from the design center. Figure 9.5b shows the FDS plot for
the same two designs.

Figure 9.5 Variance dispersion graphs (a) and fraction of design space plots (b) for CCD (C) and
Box–Behnken design (B) for k= 3. Both designs contain three center runs.
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The following are observations and conclusions from the plots.

1. The combination of the VDG and FDS plots provide a wealth of information about
the two designs being compared. From the FDS plot it is easy to see that the BBD
has better minimum prediction than the CCD, but at the cost of worse maximum
prediction at the edge of the design space. The minimum 𝜐(x) for both designs occurs
at a radius between 0.8 and 1.0.

2. The values of 𝜐(x) become much larger for the BBD at the very edge of the region,
but only a very small proportion of the region has these very large 𝜐(x) values. Hence
G-efficiency, which considers only the maximum 𝜐(x) can be somewhat deceptive
about what is happening with the majority of the design space.

3. Comparison with the ideal design is readily seen for both designs. The maximum
𝜐(x) in the design region is roughly 15 for the BBD and 11.2 for the CCD. Thus
the G-efficiencies for the two designs are (10/11.2) × 100= 89% for the CCD and
(10/15) × 100= 67% for the BBD. These numbers correspond to those given in
Table 9.2.

4. Comparing the two designs is somewhat easier using the FDS plot since each design
is summarized with a single curve, while the non-rotatability of the designs makes
comparing using the three curves with the VDG a bit more difficult. However, being
able to see where the good and bad 𝜐(x) values occur is only available using the
VDGs.

5. The 𝛼 =
√

3 CCD is nearly rotatable. This is not surprising because 𝛼 = 1.682
results in exact rotatability. The slight deviation from rotatability occurs close to
the design perimeter. The BBD shows a more pronounced deviation from rotatability
that becomes greater near the edge of the design space.

6. The values of 𝜐(x) are very close for the two designs near the design center. In fact
the difference at the center is accounted for by the difference in the sample sizes.

7. For prediction from radius 1.0 to
√

3 the CCD is the better design. The stability in
𝜐(x) is greater with the CCD, and the max 𝜐(x) is smaller than that of the BBD. This
is also reflected in the FDS plot where for all fractions along the x-axis greater than
0.4, the CCD has the smaller 𝜐(x) value.

The illustration in this example nicely underscores the usefulness of graphical methods
for comparing competing designs. It also illustrates how a single-number efficiency, while
useful, cannot capture design performance. For example, the clear distinction between the
two designs in terms of prediction errors is not captured in the comparison of D-efficiencies
(97.63% and 93.82%) from Table 9.2. In addition, the G-efficiencies accurately reflect the
differences that exist in 𝜐(x), but only at the design perimeter. Almost without exception
(completely without exception in the first-order case), max 𝜐(x) in a design region for a
second-order design occurs at the design perimeter. Thus G-efficiency usually reflects what
is occurring at the design perimeter.

Example 9.4 Comparison of Different Axial Values of the CCD In Fig. 9.6 we show
the graphical summaries for three CCDs with k= 5 in a spherical region with maximum

radius
√

5. The 𝛼-values compared are 1.5, 2.0, and
√

5. In each case the factorial portion
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Figure 9.6 VDG and FDS for three CCDs for k= 5. Design A sets 𝛼 = 1.5, design R sets 𝛼 = 2.0,

and design S sets 𝛼 =
√

5. Each contains a 25−1 and three center runs.

is a resolution V fraction. Each design contains three center runs, and thus the total design
size is N= 29. The 𝛼 = 1.5 design is not expected to predict as well near the edge of the
design space, because the axial points are not placed at or near the region perimeter. The

𝛼 = 2.0 design is rotatable because 𝛼 = 4
√

16 = 4
√

F = 2.0.
The following are conclusions drawn from Fig. 9.6.

1. The use of 𝛼 = 1.5 does result in a loss in efficiency compared to the other two designs.
While the prediction is better in the design center, it suffers at the perimeter. The FDS
plot shows that this benefit occurs for less than 10% of the total design space. In fact,
one gains some insight into how much efficiency is lost with 𝛼 = 1.5 by observing
that the value of max 𝜐(x) at the design perimeter is roughly 65. The two horizontal
lines in the VDG are at p and 2p, representing G-efficiencies of 100% and 50%, The
G-efficiency for the 𝛼 = 1.5 design is roughly (21/65)×100≅ 32%.

2. While 𝛼 = 2.0 is the rotatable value, the use of 𝛼 =
√

5 and the resulting loss of
rotatability do not produce severe instability in 𝜐(x). The same appeared to be true

for the 𝛼 =
√

3 CCD in Fig. 9.5. Again, this VDG reflects the fact that for the CCD,
allowing the value of 𝛼 to be pushed to the edge of the design perimeter, namely to√

k, is preferable, even if rotatability is compromised. Clearly the loss in rotatability
is a trivial matter here and for the CCD in Fig. 9.5. The max 𝜐(x) plot for design S or
design R reflects a G-efficiency of roughly 85%, which is consistent with the results
in Table 9.2.

3. The choice of 𝛼 =
√

5 improves estimation not only at the edge of the design space,
but also throughout most of the region. By comparing the lines of the FDS plot, we

can see that the lower line for the 𝛼 =
√

5 CCD represents a helpful improvement in
reducing 𝜐(x).

One pragmatic point needs to be made here regarding design S in Fig. 9.6. For k= 5

and other large values, the “best” CCD requires 𝛼 =
√

k. This requires the levels set by
the investigator to be −2.236, −1, 0, 1, 2.236. This design may, in fact, produce practical
problems because the axial level is much larger than the factorial level. Indeed, the evenly
spaced levels of design R may be more reasonable. For k= 2, 3, and 4, this is not a serious
problem.
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Figure 9.7 Variance dispersion graphs and fraction of design space plots for hybrid 416B and SCD
(S). Design B is hybrid 416B. N= 19 for the SCD and N= 20 for 416B.

Example 9.5 Hybrid Designs and SCDs In previous sections we mentioned the impor-
tance of the class of hybrid designs in cases where the researcher requires the use of a
small design size. The efficiencies of the hybrid design in Table 9.2 are quite good for
saturated or near-saturated designs, though this may not be apparent, because we showed
no comparisons with other designs of small sample size. In Fig. 9.7a we show overlaid
VDGs of a hybrid 416B with four center runs and a k= 4 SCD with three center runs. The
small composite contains a resolution III 24−1 with axial value 𝛼 = 2.0. Figure 9.7b shows
the corresponding FDS plot for the two designs.

From the p and 2p lines it is clear that the 416B is considerably more efficient. The G-
efficiency of the 416B is roughly 60%, while the G-efficiency for the SCD is only slightly
above 25%. More importantly, the max 𝜐(x) for the SCD becomes large very quickly. The
discrepancy between the designs is not only at the design perimeter. The FDS plot shows
that the 416B design has a smaller minimum 𝜐(x), is competitive with the SCD for most
fraction of the design, and far superior with a much smaller maximum 𝜐(x). As the number
of factors increases, the maximum 𝜐(x) of the SCD rises very rapidly making this a poor
choice of design for good prediction.

Example 9.6 Adding Center Runs to Hybrid Designs Figure 9.8 gives overlaid VDGs
for the hybrid 310 with a center run added and for the hybrid 311B. One should note from
the efficiency table (Table 9.2) that both the D- and G-efficiency for the 311B are quite good

Figure 9.8 VDGs and FDS for 310 plus one center run and for 311B. Design B is hybrid 311B, and
design H is hybrid 310.
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Figure 9.9 VDGs for 310 plus one center run and for 311B plus one center run.

compared to the 310. Indeed, from Fig. 9.8a it is clear that the 311B is nearly rotatable with
high G-efficiency. However, what the efficiency figures do not reflect is that the prediction
variance is much smaller for the 310 near the design center. The FDS plot of Fig. 9.8b helps
clarify the relative proportion of the design space affected by the poorer prediction at the cen-
ter by 311B. The apparent advantage of better prediction by 310 represents only a small frac-
tion of the total volume of the design space. The better prediction of the 311B at the perimeter
is much more dominant than is highlighted by the VDG. Again, the combination of the
VDG and FDS plot allows for improved understanding of 𝜐(x) throughout the design region.

Incidentally, the plots suggests that an additional center run for the 311B would
substantially reduce 𝜐(x) at the center. This, in fact, is the case. An additional run in the
center reduces 𝜐(x) to approximately the value achieved by the 310. Interestingly, this
increases 𝜐(x) at the perimeter slightly, thereby reducing the G-efficiency. Thus, we have
often seen situations of a design (311B+ one center run) that has a smaller G-efficiency
(and D-efficiency in this case) than does a clearly inferior design (311B). Figure 9.9 shows
a VDG to compare the same two designs as in Fig. 9.8 with the additional center run given
to the 311B.

VDGs for Cuboidal Designs All of the preceding discussion and illustrations deal with
variance dispersion graphs for spherical regions. In this case it is natural to observe values
of 𝜐(x) averaging over the surfaces of spheres. Then the minimum and maximum of 𝜐(x)
is taken over the surfaces of spheres. However, it is not natural to deal with surfaces of
spheres when the design is cuboidal, and hence the natural region of interest is a cube. As
a result, the cuboidal variance dispersion graph contains the following components:

1. A plot of the cuboidal variance Vr∗ against r, the half edge of a cube: Vr∗ is defined
as

Vr∗ = N𝜓∗

𝜎2 ∫U∗
r

[
Var[ ŷ(x)]

𝜎2

]
dx
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Figure 9.10 Nested cubes of the VDG for cuboidal designs.

where U∗
r is the surface area of the cube with half edge r and ∫U∗

r
implies integration

over the surface area of the same cube. In our illustrations r is called the radius. We
define 𝜓∗ = (∫U∗

r
dx)−1.

2. maxx∈U∗
r
[𝜐 (x)].

3. minx∈U∗
r
[𝜐 (x)].

As a result, the average and range of 𝜐(x) are depicted over the surface of cubes that
are nested inside the cube defined by the design region. Figure 9.10 gives the reader an
impression of what is displayed by the VDG. Averages, maxima, and minima are computed
for half edges from 0 to 1.0. These values are plotted in a two-dimensional graph. Spheres
nested inside the design cube can be used as the media for the graphs. See Myers et al.
(1992b). However, cubes nested inside the design cube are more natural, just as rotatability
[i.e., constant 𝜐(x) on spheres] is a more important criterion for spherical regions of interest
than for cuboidal regions.

FDS Plots for Cuboidal Regions The adaption of the FDS plot needed for cuboidal
regions is much simpler than for the VDGs. Indeed for any shaped design region, the FDS
plot remains unchanged. The x-axis still is from 0 to 1, and the interpretation of the quantiles
is the same. For calculating the values of 𝜐(x), we sample uniformly from our newly shaped
region, calculate 𝜐(x), and plot the sorted values against the appropriate quantiles.

Comparison of 33 Factorial with Face-Centered Cube Although the CCD involves con-
siderably fewer design points than the three-level factorial design for k= 3, they are natural
rival designs when the design region is a cube. Of course, the scaled prediction variance
will involve a sample size weighting of N= 27 for the factorial design and N=15 for the
𝛼 =1 CCD, that is the face-centered cube (FCC). Figure 9.11 shows the VDGs for the two
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Figure 9.11 Variance dispersion graphs for the 33 factorial and the face-centered cube (FCC).

designs, and Fig. 9.12 shows the corresponding FDS plot. The FCC design predicts consid-
erably better near the center of the design space, and has very stable prediction for points
of radius 0.6 or less. From the FDS plot we can see that the 33 factorial design is being
heavily penalized for its large design size with poorer performance at both the minimum and
maximum 𝜐(x) values. The stability of prediction for the 33 factorial design is quite good
for most of the region, with only a small fraction of the region (less than 2%) having much
larger 𝜐(x) values. The G-efficiency of the FCC is better than that of the 33 factorial design.
Certainly the face-centered cube is an important design for cuboidal regions. However, if
cost-considerations allow for a design of size N= 27, the full 33 factorial design is a good
alternative.

Variance dispersion graphs for cuboidal regions are no less important than those for
spherical regions. Both are useful tools for comparing competing designs. The VDG and
FDS plot will surface again later in this chapter as we focus on computer-generated designs.
Information regarding software for construction of VDGs can be found in Vining (1993),
Rozum and Myers (1991), and Borror (1998).

Figure 9.12 Fraction of design space plot for comparing 33 factorial and the face-centered cube
(FCC).
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Extensions and Alternatives to the VDG and FDS Plots There have been a number of
very useful extensions of the VDG. Trinca and Gilmour (1998) extend the VDG to situations
where the response surface design has been run in blocks. They point out that allocation of
runs to the blocks can have serious effects on the prediction properties of a design. Vining
and Myers (1991) extend the VDG to plots of the average mean square error, which is the
sum of prediction variance and squared bias (use of mean square error and bias in design
selection is discussed in Chapter 10). Borror, Montgomery, and Myers (2002) construct
VDGs for experiments containing noise variables. These designs are used extensively
in process robustness studies (see Chapter 11). Vining, Cornell, and Myers (1993) show
how to develop VDGs for mixture designs (see Chapters 12 and 13 for an introduction to
experiments with mixtures).

Goldfarb et al. (2004a) developed three-dimensional VDGs for mixture-process exper-
iments, where interest lies in understanding differences in 𝜐(x) separately for the mixture
and process variables. Goldfarb et al. (2004b) also adapted FDS plots for mixture and
mixture-process experiments. Liang et al. (2006a, 2006b) created VDGs and FDS plots for
split-plot designs, where the whole plot and split-plot characteristics could be examined
separately. Ozol-Godfrey et al. (2005) and Anderson-Cook et al. (2009) adapted FDS plots
to predict when the assumed model may not be correct. Liang et al. (2007) consider alterna-
tive FDS plots which adjust for different cost structures for split-plot designs, which allow
for flexible comparison of quality of prediction versus the cost of running the experiment.

Khuri et al. (1996) describe a method for describing the entire distribution of prediction
variance over the design region. They do this by plotting quantiles of the prediction variance
distribution. They note that quantile plots give more information than VDGs and present
an example where the VDGs of the competing designs are quite similar yet the quantile
plots of prediction variance are very different. Khuri, Harrison, and Cornell (1999) extend
this technique to experiments with mixtures.

A dynamic graphical tool for visualizing the prediction variance is available in JMP.
This allows the user to interactively examine the unscaled prediction variance of a design.
Figure 9.13 shows the prediction variance for the face-centered cube for k= 3 at both
the center (0,0,0) and corner (1,1,1) of the design region. When used in JMP, any com-
bination of factor levels in the design region can be explored. Note that the maximum
unscaled prediction variance value of 0.797222 obtained at any corner of the design space
matches with the maximum values of 0.797222× 15=11.958 in the VDG and FDS plots of
Figs. 9.11 and 9.12.

9.3 COMPUTER-GENERATED DESIGNS IN RSM

As we described in Section 9.2, computer-generated designs can provide a flexible com-
plement to classic response surface designs like the Central Composite, Box–Behnken,
and Definitive Screening designs. Whereas the classic designs have fixed structure, shapes
of design regions, and design sizes, computer-generated designs can be adapted and tai-
lored to different design regions, different numbers of runs, and different priorities. The
choice between whether to use a classic response surface design and a computer-generated
design for a particular study is not always obvious. The CCD, BBD, and DSD designs have
good performance for estimation of model parameters and prediction of new observations.
They also often have some other built-in properties of the ability to estimate lack of fit
and pure error, which adds robustness to their overall utility. However, if the design size,
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Figure 9.13 Prediction profiler from JMP to show the prediction variance for the face-centered
cube for k= 3 at the center (a) and corner (b) of the design region.

assumed model, or experimental region for the classical designs do not match well with
study requirements, then a computer-generated design can provide useful alternatives.

Computer-generated design of experiments was the natural extension of design optimal-
ity as the computer era in statistics unfolded in the late 1960s and early 1970s. Algorithms
exist to efficiently find a best design for a specified situation.

Today many computer packages generate designs for the user. Historically, the focus
has been on a single criterion, and the criterion most often used is D-optimality or rather,
D-efficiency. In addition, some computer packages offer a criterion that involves the use
of y(x), the scaled prediction variance. Common choices are to focus on either I- or G-
efficiency. The computer is used to aid the researcher in designing RSM experiments in
several ways. Some of these are as follows:

1. To design an experiment from scratch.

2. To augment or repair a current designed experiment.

3. To replace points in a current design.

4. To construct an “ideal” standard experimental design for a particular region of interest
or to satisfy certain constraints.

There were many important papers that provided the fundamental theory that led to the
current state of technology in computer-generated design. The work of Dykstra (1966),
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Covey-Crump and Silvey (1970), and Hebble and Mitchell (1972) represent only a few
important contributions. Initially, we consider some options if the user chooses to focus
on just a single criterion, such as D-, I-, or G-efficiency. These criteria focus on good
estimation and prediction under the assumption that the specified model is adequate for the
underlying relationship between the input variables and the response, and they reflect the
most common focus for design construction based on good design properties described in
Section 8.1.

There is a recent movement to formally consider multiple objectives when creating a
computer-generated design. Similar to the multiple response optimization choices described
in Chapter 7, the common approaches for considering several objectives for a good design
involve either (a) conditionally optimizing one criterion subject to satisfying some minimal
threshold for performance of another or (b) using Pareto front optimization. Some of these
choices are described in Section 9.4.

Typically, the user is required to specify a number of items before a single criterion
optimal computer-generated design can be created:

(i) An assumed model, where some software packages (such as JMP) allow for a
designation of model terms as “necessary” or “if possible”, to provide flexibility in
the set of models under consideration.

(ii) The required sample size, where some number of runs may be designated to be
replicates.

(iii) Ranges on the design variables.

(iv) A set of candidate points.

(v) Optionally, other possible constraints (e.g., blocking information).

(vi) The criterion to be optimized.

We note several important aspects about the items that the user must specify. First,
perhaps obviously, the computer-generated design will be a direct reflection of these choices.
Hence careful thought should be given to ensure that the design is an appropriate reflection
of the intended study. Specifying an appropriate model has direct consequences for which
locations will be included in the design. Second, the selected sample size can play a
substantial role in the quality of estimation and prediction. The user should aim to include
sufficient runs to avoid saturated designs whenever possible, as this typically leads to
improved design characteristics, and offers some protection if there are problems with the
implementation of the design. Next, with a computer-generated design, the software can
often incorporate the natural ranges of the variables, while for classic designs the user
typically does the translation between the coded and natural variables. One should notice
the reference to a list of candidate points. The implication is that the computer picks from
this list for design construction or augmentation. If the candidate list is not supplied, often
the computer package will use a default grid of points of its choice. Thus, the design chosen
certainly is a discrete design, and the goal is to select the design with the highest efficiency,
say D-efficiency, for the specified criterion. We emphasize the importance of understanding
and specifically choosing the criterion over which the optimization will be performed. An
“optimal design” having used an undesirable or irrelevant criterion will not necessarily
provide a useful solution for the user. With increased computer power, finding optimal
designs has become more tractable and timely.
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9.3.1 Important Relationship Between Prediction Variance and Design
Augmentation for D-Optimality

An important relationship exists between the coordinates of points that augment an existing
design via D-optimality and the concept of prediction variance. In fact, it is this relationship
that is the foundation of computer-aided design of experiments. The result has to do with
the selection of the (r+ 1)th point in an existing design containing r points. The coordinates
to be chosen will be those such that |M| is maximized. As a result, the (r+ 1)th point chosen
is that which produces a conditional D-optimality—that is, that which gives D-optimality
given the initial r-point design. The result is as follows:

Given an r-point design with design and model characterized by Xr, the point xr+1 that
maximizes |X′

r+1Xr+1| is that for which x(m)′
r+1 (X′

rXr)
−1x(m)

r+1 is maximized. Hence Xr+1
is the X-matrix containing the (r+ 1)th point.

To understand this result, let us begin with a well-known result dealing with the deter-
minant of a matrix. Given a square matrix

A =
[A11 A12

A21 A22

]

then if A22 is nonsingular,

|A| = |A22||A11 − A12A−1
22 A21|

and if A11 is nonsingular,

|A| = |A11||A22 − A21A−1
11 A12|

Now let

Xr+1 =

[ X
⋯

x′r+1

]

denote the X-matrix after xr+1 has been selected. Obviously, X is Xr+1 apart from the
selected point. It is easy to show that

(X′X) = X′
r+1Xr+1 − xr+1x′r+1

and hence

|X′
r+1Xr+1 − xr+1X′

r+1| =
|||||
X′

r+1Xr+1 xr+1

x′r+1 1

|||||
= |X′

r+1Xr+1||1 − x′r+1(X′
r+1Xr+1)−1xr+1|
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Now the above implies that

|X′X| = |X′
r+1Xr+1||1 − x′r+1(X′

r+1Xr+1)−1xr+1|

Thus, because 1 − x′r+1(X′
r+1Xr+1)−1xr+1 is a scalar, we have

|X′
r+1Xr+1|
|X′X| = 1

1 − x′r+1(X′
r+1Xr+1)−1xr+1

A well-known result for regression analysis relates x′r+1(X′
r+1Xr+1)−1xr+1 to

x′r+1(X′X)−1xr+1. Keep in mind that the former relates to the variance of a predicted
value at the location defined by xr+1, whereas the latter relates to the prediction variance at
xr+1 for a fitted model before the new point was placed in the data set. From Myers (1990)
or Montgomery et al. (2012) we have

x′r+1(X′X)−1xr+1 =
x′r+1(X′

r+1Xr+1)−1xr+1

1 − x′r+1(X′
r+1Xr+1)−1xr+1

One desires to select xr +1 in order to maximize |X′
r+1Xr+1| for D-optimality. Because

x′r+1(X′
r+1Xr+1)−1xr+1 is a hat diagonal, we obtain x′r+1(X′

r+1Xr+1)−1xr+1 ≤ 1. One then

must choose xr+1 so that x′r+1(X′
r+1Xr+1)−1xr+1 is maximized. From the above equa-

tion, maximizing x′r+1(X′
r+1Xr+1)−1xr+1 is equivalent to maximizing x′r+1(X′X)−1 xr+1.

Thus one should choose the next point xr+1 at which the prediction variance (i.e.,
Var[ ŷ(xr+1)]∕𝜎2) is maximized.

The above result is not only interesting but also very useful. It essentially says that for
design augmentation, the next point that is most appropriate in a D-optimality sense is that
for which the prediction is worse when one uses the current design for prediction. In other
words, xr+1 is a type of “soft spot,” and putting this spot in the design produces the design
that is conditionally D-optimal.

Example 9.7 An Example with k= 2 Consider an initial design containing a 22

factorial:

x1 x2

−1 −1
−1 1

1 −1
1 1

The model is a first-order model in two design variables. Now, suppose the candidate
list of points are those of a 32 factorial design. The next point to be chosen is that for
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which x(1)′(X′X)−1x(1) is largest. Here, of course, x(1)′ = [1, x1, x2] and (X′X)−1 = 1
4
I3,

reflecting the fact that the initial design is first-order orthogonal. As a result, the expression
Var[ ŷ(x)]∕𝜎 2 = x(1)′(X′X)−1x(1) is given by

[1, x1, x2]
⎡⎢⎢⎣

1
4

0 0

0 1
4

0

0 0 1
4

⎤⎥⎥⎦

[ 1
x1
x2

]

= 1
4

[
1 + x2

1 + x2
2

]

As a result, the values of Var[ ŷ(x)]∕𝜎 2 for the candidate list are

x1 x2 Var[ŷ(x)]∕𝜎 2

−1 −1 3

4

−1 1 3

4

1 −1 3

4

1 1 3

4

0 −1 1

2

0 1 1

2

−1 0 1

2

1 0 1

2

0 0 1

4

Thus the best augmentation of the 22 factorial is another factorial point, and it makes no
difference which one of the four is added. An interesting point here is that if the center run
is added, the design remains orthogonal; but a five-run nonorthogonal design is preferable
(in the D-optimal sense). This is an example that points out a shortcoming of a D-optimal
design. Many experimenters would prefer to add the center run to provide some information
about lack of fit. However, the optimal design will never include the center point, because
it is based on the assumption is that the model is correct and D-optimality seeks to improve
the estimation of terms in the model.

Example 9.8 An Irregular Fraction with k= 3 Consider a situation in which one
wishes to fit the model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝜀

The initial design is the irregular fraction
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x1 x2 x3

−1 −1 −1
1 1 −1
1 −1 1

−1 1 1
1 1 1

This is a five-point design and all parameters are estimable. Suppose the list of candidate
points includes the complete 23 design. Computation of Var[ ŷ(x)]∕𝜎 2 is given below for
the candidate list:

x1 x2 x3 Var[ ŷ(x)]∕𝜎 2

−1 −1 −1 1.0
−1 −1 1 3.0
−1 1 −1 3.0
−1 1 1 1.0

1 −1 −1 3.0
1 −1 1 1.0
1 1 −1 1.0
1 1 1 1.0

As a result, the best augmentation of the initial design involves the use of any one of the
points (−1, −1, 1), (−1, 1, −1), and (1, −1, −1). Nearly all of the software algorithms make
use of conditional optimization given the existing points. It is obvious how it is used for
design augmentation. In this regard, one must keep in mind that a candidate list of points
is used; as a result, the augmentation is chosen, sequentially one at a time, from points in
the candidates list. When a design is chosen from scratch, the same result applies.

9.3.2 Algorithms for Computer-Generated Designs

While many computer packages now provide the capability to generate designs using one
of several criteria, it is still helpful for the user to have at least a notional idea of how the
algorithms approach the optimization. Two of the most popular types of algorithms are
point exchange and coordinate exchange.

In the point exchange algorithm, a random design of the appropriate size is created from
the set of candidate points that can estimate the assumed model. Then new designs are
created by iteratively replacing individual points with the best replacement available from
the candidates, conditional on the other points in the design. This is repeated for all points
in the design until no improvements are possible. The entire process is repeated multiple
times for different initial random designs, and the best overall design from all the starts is
selected.
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Example 9.9 Consider a simple illustration of the point exchange algorithm for creating a
screening design for three factors. Recall that the experimenter needs to provide information
about the goals of the optimization. At the start of Section 9.3, we describe what needs to
be specified:

(i) An assumed model: y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝜀
(ii) The required sample size: 6

(iii) Ranges on the design variables: [−1,1] for each factor

(iv) A set of candidate points: the 8 2-level factorial points (±1,±1,±1)

(v) Other constraints: no required replicates

(vi) Criterion to optimize: D-optimality

First, we highlight a number of points from the specification of the design to be created and
optimized. Note that this is a nonstandard model with just a single two-factor interaction
included, perhaps chosen by the experimenter based on some additional information from
experts about which terms in a standard first-order model with interactions are likely to
be present. The motivation for restricting the terms in the model may have been driven
by the requirement for a very small design with only six runs. In general, it is better to
include additional terms in the model, in case the experts are unaware of some relationships
between factors and the response. The choice of the range of design variables and the
candidate points should naturally be complementary, with the candidate points filling the
defined design region. Finally, since this is a screening design, selecting D-optimality that
focuses on good estimation of model parameters, is a good choice for the subsequent model
selection in the analysis phase.

The point exchange algorithm would begin by selecting six design points by sampling
with replacement from the eight factorial points. A check would be performed to verify that
the selected points can estimate the specified model; and the D-criterion, |M| = ||X′X|| ∕Np,
in Equation 9.10 is evaluated to establish a value for comparison. Perhaps for the first
iteration, the original design created is as given below:

Run X1 X2 X3

1 1 −1 −1
2 1 1 −1
3 −1 −1 −1
4 1 −1 1
5 −1 1 −1
6 1 −1 −1

Then for the first row in the design matrix, a comparison between the designs with the
current candidate point (1, −1, −1) and each of the seven alternate candidate points is
made, with |M| evaluated each time. The candidate that improves the criterion the most is
selected and becomes the new first run. Next, the second run (1,1,−1) is evaluated the same
way, and potentially updated with a better alternative. This process is repeated for all of the
six runs of the design, and then the algorithm returns to the first run, and so on. The search
continues until no improvements can be made for this design.
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This process is then repeated for multiple random starting designs, with the best design
from each start being compared to the best |M| value found so far. The final “optimal”
design is the best found from all of the iterations of the algorithm. When JMP was used to
generate a design satisfying the specified requirements, the resulting design is listed below:

Run X1 X2 X3

1 −1 −1 1
2 −1 1 1
3 −1 −1 −1
4 1 −1 1
5 1 −1 −1
6 1 1 −1

It is helpful to note that the “optimal design” is not unique. If the roles of −1 and
+1 for one or more columns were reversed, the resulting design would still have the
same D-efficiency properties. In addition, there may be multiple designs that all have the
same best D-efficiency, and so it can be helpful to consider supplementary characteristics
to distinguish between alternatives. See Robinson and Anderson-Cook (2011) for more
discussion about selecting between tied D-optimal designs.

The coordinate exchange algorithm is a candidate-free approach, which begins similarly
to the point exchange algorithm with a random design of the appropriate size. Then instead
of focusing on a row of the design matrix, it examines each of the entries individually.
Each coordinate for each factor for each design point is sequentially adjusted to its optimal
value within the range of that factor, conditional on all other coordinates and points in the
design. If we assume the same initial design as in Example 9.9, this would mean that the
algorithm would look at the entry for X1 in run 1, and try to improve the design while
keeping all of the other entries fixed. Then it would move to the entry for X2 in run 1, and
so on, throughout all 18 entries in the design matrix. This is repeated for all coordinates
in the design until no further improvements exist. As with the point exchange algorithm,
multiple random initial designs are considered and the best overall design from all starts is
chosen.

The algorithms for D- or I-optimality leverage computationally efficient methods for
updating the effect of changing a single point within a design. Hence, these algorithms
can be used quickly and easily, and can consider a large number of initial designs in a
timely manner. Until recently, G-optimality was considerably more time-consuming and
computationally intensive to use as the criterion for optimal designs. Rodriguez et al. (2010)
utilize Brent’s algorithm [Brent (1973)] to dramatically improve the speed with which these
designs can be generated.

Because construction of an alphabetically optimal design is essentially a combinatorial
optimization problem, methods for solving these types of problems could also be employed.
Indeed, some authors have used branch and bound techniques [Welch (1982)] to construct
optimal designs. Simulated annealing [Meyers and Nachtsheim (1988) and Drain et al.
(2004)] and genetic algorithms [Heredia-Langner et al. (2003) and Lin et al. (2015)] have
also been used.
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It should be strongly emphasized that the goal of the computer-generated design algo-
rithms is to produce a design that gives approximately the best performance for the criterion
selected. Different packages may, indeed, produce different designs with the same input
information. Additionally, there are often choices about the running of the algorithm in the
software, such as the number of random starts to use, which should be examined. For most
experiments, the cost, time, and effort to set up and run the experiment is considerably
greater than spending some additional time with the computer software to ensure that the
best possible design has been found to match the study goals.

9.3.3 Comparison of D-, G-, and I-Optimal Designs

Since efficient algorithms exist for finding optimal designs for each of the three primary
criteria for good estimation (D) and prediction (G and I), it is helpful to look at a comparison
of the performance of the best designs relative to each other for all three criteria. Rodriguez
et al. (2010) examine designs for second-order models in a cuboidal design space. Table
9.3 shows the relative efficiency of each design, where clearly the D-optimal design will be
100% D-efficient, as will each of the other optimal designs for their own criterion. What
is of interest is to see how the designs perform for the other two criteria, as this will help
show their robustness if multiple characteristics are being considered when selecting which
designed experiment to perform.

We note a number of patterns in the table. First, all of the designs are more similar for
their D-efficiency than for the other criteria. In other words, G- and I-optimal designs tend
to have D-efficiencies that are higher than when we consider the performance of all three
designs for G- or I-efficiency. This says that if we focus exclusively on G- or I-optimality
while generating the design, we will likely still see pretty good performance on D-efficiency.

If the focus is on characteristics of the prediction variance, we see that there are sub-
stantial trade-offs between G- and I-efficiency. This should make some intuitive sense, as
whether we focus on an extreme of a distribution (like the maximum, for G-efficiency) or
a measure of its center (like the average, for I-efficiency) reflects very different emphases
on what to optimize. Typically, the center of distributions has been a more common focus
in the study of statistics, so this would suggest that I-optimality might be a better choice.
However, protecting against the worst-case prediction variance and keeping that more mod-
erate, also has some appeal, since often the user does not know a priori where there will be
interest in making new predictions.

There is no consistent pattern of which of the G- or I-optimal designs performs better
on the other criterion, and looking at the single number summaries is not that helpful for
understanding what the tradeoffs between the designs look like. A new plot, the Variance
Ratio Fraction of Design Space (VRFDS) plot, looks at the values of the prediction variance
at a number of locations for different designs. For locations throughout the design space,
the prediction variance values are calculated for all of the designs to be compared, and the
ratios of these values at each location are calculated, with one design being chosen as the
reference design. Hence, for our three designs, we might select the G-optimal design as the
reference distribution and then calculate

VRD =
PVD(x)

PVG(x)
and VRI =

PVI(x)

PVG(x)
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TABLE 9.3 Comparison of Optimal Designs for Second-Order Models in a Cuboidal
Region

n
Optimal
Design G-eff. D-eff. I-eff. n

Optimal
Design G-eff. D-eff. I-eff.

2 Factors 3 Factors

6

G 100.00 94.60 92.40

10

G 100.00 91.40 79.06

D 71.82 100.00 93.67 D 77.40 100.00 96.84

I 57.96 91.17 100.00 I 69.38 97.56 100.00

7

G 100.00 88.06 75.10

11

G 100.00 93.27 74.97

D 78.29 100.00 86.93 D 78.30 100.00 70.97

I 56.41 85.11 100.00 I 63.67 91.51 100.00

8

G 100.00 97.55 81.05

12

G 100.00 93.04 69.39

D 75.61 100.00 88.45 D 69.33 100.00 70.38

I 64.94 89.70 100.00 I 59.91 87.66 100.00

9

G 100.00 93.86 81.28

13

G 100.00 98.50 68.90

D 95.87 100.00 94.76 D 95.78 100.00 72.77

I 70.44 90.71 100.00 I 65.17 86.80 100.00

10

G 100.00 94.31 75.45

14

G 100.0 99.95 98.21

D 88.40 100.00 84.29 D 93.28 100.00 76.78

I 87.54 97.37 100.00 I 53.08 86.10 100.00

11

G 100.00 93.93 70.88

15

G 100.00 99.57 90.17

D 82.25 100.00 78.14 D 93.16 100.00 72.63

I 79.77 92.81 100.00 I 99.65 97.14 100.00

12

G 100.00 89.21 73.90

16

G 100.00 96.94 95.39

D 78.30 100.00 75.78 D 92.14 100.00 71.03

I 74.39 87.56 100.00 I 98.97 93.65 100.00

4 Factors 5 Factors

15

G 100.00 98.01 75.89

21

G 100.00 98.89 65.20

D 98.28 100.00 78.23 D 92.86 100.00 63.04

I 76.44 87.01 100.00 I 54.35 78.26 100.00

20

G 100.00 93.75 73.40

26

G 93.08 99.34 80.86

D 95.18 100.00 65.63 D 86.41 100.0 61.06

I 82.11 85.48 100.00 I 64.50 82.69 100.00

24

G 99.97 96.59 87.00

30

G 100.00 99.93 60.04

D 90.71 100.00 61.82 D 98.65 100.00 60.15

I 55.38 87.79 100.00 I 71.06 87.08 100.00

at a large number of design locations. The FDS plot is then obtained by sorting the ratios
from smallest to largest. Recall that the goal is have small prediction variance values
throughout the design space, so the reference design is better if the ratio is greater than one,
and the comparison design (here D- or I-optimal designs) if the ratio is less than one.

For example, consider two scenarios, say three factors with 10 and 15 runs, respectively.
For the three factor and 10-run design, the G-optimal design seems more robust across
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Figure 9.14 Variance Ratio Fraction of Design Space plots for three-factor designs fitting a second-
order model for (a) 10 and (b) 15 runs.

criteria with an I-efficiency of 79.06%, while the I-optimal design with G-efficiency of
69.38%. The reverse pattern is true for the 3 factor and 15-run design scenario has the
G-optimal design with I-efficiency of 90.17%, and the I-optimal design with G-efficiency
of 99.65%. Figure 9.14 shows the VRFDS plots for the two scenarios, with all three designs
shown and the G-optimal design selected as the reference design.

From Figure 9.14, it is clear that the single number summary of the design may be too
simplistic. For both scenarios, for the majority of the design space (nearly 90% or 95%
of the region), the I-optimal design has a smaller prediction variance than the G-optimal
design. Only for a very small fraction of the design space does the G-optimal design perform
better. This is striking, because our impression of the three-factor 10-run design from Table
9.3 was that it seemed that the G-optimal design was more robust across the criteria. The
performance of the D-optimal design differs much more between the scenarios, but perhaps
it is to be expected that it would be less consistent, given that it was chosen as optimal with
a focus on estimation of the model parameters.

As noted by Rodriguez et al. (2010), this pattern of better prediction variance from
the I-optimal designs for the vast majority of design locations is consistent across the
different scenarios included in Table 9.3. Hence, justifying the choice of G-optimal designs
as a preferred option is difficult and in general, if good prediction in the design region
is a primary goal of the experiment, then I-optimal designs generally have better overall
performance. Since the D-optimal designs have quite inconsistent results relative to the I-
optimal designs, it is best to think carefully about whether estimation of model parameters
or prediction are more important for a particular experiment.

9.3.4 Illustrations Involving Computer-Generated Design

In this section we focus on a few illustrations of computer-generated designs with emphasis
on the use of JMP and Design-Expert. This does not mean to imply that these are the only or
even the best computer packages. Our first example is a fairly simple one where, based on
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our discussions in this and other chapters, the reader likely could have correctly identified
the most appropriate design.

Example 9.10 D- and I-Optimal Designs for a Nonstandard Model Suppose there
are k= 3 design variables, and an intelligent “guess” gives the appropriate model as

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽11x2
1 + 𝜀

The ranges being considered by the researcher are [−1, +1] (coded) for all three variables
and the experimenter wishes to have 12 runs. Using the “Custom Design” option under
“DOE” in JMP, we specify the model with three continuous factors and the model
given above. Figure 9.15 shows the dialog boxes for creating the design, while Fig. 9.16
shows the created design. Under the red arrow for Custom Design show in Fig. 9.15,
the “Optimality Criterion” selected was “Make D-Optimal Design” and the “Number of
starts” was set to 100.

Figure 9.15 Custom Design dialog box from JMP to create design with 12 runs for the nonstandard
model.
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Figure 9.16 Result of Custom Design for D-optimal design for the nonstandard model, with table
of design points, Prediction Variance Profiler and FDS plot.
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Note that the design in the output is a 3 × 2 × 2 factorial. As the reader might expect,
three levels were selected for x1, since the experimenter wishes to estimate a quadratic term,
while only two levels were selected for each of x2 and x3. The design chosen is D-optimal.
It turns out that the G-efficiency of the design is 100%. In fact, the maximum value of
N Var[ ŷ(x)]∕𝜎 2 is five, the total number of model parameters. This can be evaluated by
using the FDS plot or the Prediction Variance Profiler to find that the maximum value of
𝜐 (x) = Var[ŷ(x)]∕𝜎 2 is 0.4167. Note that JMP gives the unscaled prediction variance in the
output which is not scaled by the sample size, and 5= 12 × 0.4167.

As a result the design is G-optimal. Note that the I-efficiency of the design is difficult
to assess, since this value is not provided in the output. By looking at the 0.5 fraction of
the FDS plot, we can estimate the median value of the prediction variance, but this value
is likely not a good approximation of the average prediction variance since the distribution
of the prediction variance throughout the design space is skewed.

If instead of focusing on D-optimality, we had been interested in using the I-optimality
criterion, we could specify this option in JMP with the “Optimality Criterion” selected as
“Make I-Optimal Design.” The design obtained is as follows:

x1 x2 x3

−1 −1 1
−1 1 1
−1 1 −1

0 1 1
0 1 1
0 −1 −1
0 −1 −1
0 1 −1
0 1 −1
1 1 1
1 1 −1
1 −1 1

This design places more emphasis on good prediction at the center of the design space
with additional points allocated for x1 = 0. This comes at the expense of the worst prediction
in the region being inflated to 0.6667, which would lead to a G-efficiency of 5/(12 ×
0.6667)= 62.5%. This result matches what was noted in the previous section that optimizing
good average prediction in the entire region often comes at the cost of making the worst
prediction variance larger. In addition, using an I-optimal design improves prediction for
large portions of the design region.

Example 9.11 Use of Additional Runs Consider the same scenario as in the previous
example except that the user can afford to use N= 15 runs. Using the “Augment Design”
option under “DOE” in JMP, we can add three additional runs to the design created in
Example 9.10. Figure 9.17 shows the dialog box used to create the new design.

Figure 9.18 shows the resulting design, with the three additional runs. Note that we have
adjusted the Prediction Variance Profiler to show the maximum prediction variance value
at one of the corners of the design space. This design has a lower maximum 𝜐(x) value
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Figure 9.17 Dialog box to augment the 12-run design of Example 9.10 to a 15-run design.

of 0.375, which makes this a better design for prediction. However, if we are using scaled
prediction variance, then the maximum N Var[ŷ(x)]∕𝜎 2 = 15 × 0.375 = 5.625. This gives
a G-efficiency of 5/5.625= 89%. Hence this design is not superior to the 12-run design on
a per observation basis, but will improve prediction if we consider the unscaled prediction
variance.

The use of D-efficiency under constraints on lack-of-fit and pure error degrees of freedom
via computer packages is a continuing attempt to make the “automated design” concept
practical. Quite often the constraints revolve around total sample size, levels, and so on.
However, there are algorithms that generate a most D-efficient design where the constraints
are built around pure error and lack-of-fit degrees of freedom. For example, suppose that
in a k= 3 situation it is of interest to design an experiment with two lack-of-fit degrees of
freedom and two pure error degrees of freedom. For a second-order model this corresponds
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Figure 9.18 Augmented design for nonstandard model with N= 15.

to 12 distinct design points and 15 total runs. The resulting design, produced by Design-
Expert, is given in Table 9.4.

Note from Table 9.4 that the design allows a single center run and has replication at
two distinct factorial points. While we are accustomed to seeing designs with center runs
replicated, there are certainly advantages to having replication at different points so some
examination of the homogeneous variance assumption can be made.
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TABLE 9.4 Output from Design-Expert for D-Optimal
Design with k= 3, Two Lack-of-Fit Degrees of Freedom,
and Two Pure Error Degrees of Freedom

x1 x2 x3

−1.0 −1.0 −1.0
1.0 −1.0 −1.0
1.0 −1.0 −1.0
0.0 0.0 −1.0

−1.0 1.0 −1.0
−1.0 1.0 −1.0

1.0 1.0 −1.0
−1.0 0.0 0.0

0.0 0.0 0.0
0.0 1.0 0.0

−1.0 −1.0 1.0
−1.0 −1.0 1.0
−1.0 1.0 1.0

1.0 1.0 1.0
−0.5 −0.5 −0.5

Example 9.12 A Nonstandard Model with k = 4 Variables In this example we provide
another illustration of the use of computer-generated designs. This example serves as
an illustration of some of the disadvantages of computer-generated design and design
optimality in general.

Suppose we have four design variables and the input involves three levels on each,
coded to −1, 0, +1. Thus, the candidate list will be the 34 = 81 design points. Suppose
the practitioner has difficulty choosing a model for purpose of design construction but
decides on

E(y) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽4x4

+ 𝛽12x1x2 + 𝛽23x2x3 + 𝛽11x2
1 + 𝛽44x 2

4 (9.24)

The practitioner can afford N= 25 runs. The D-optimal design is

Observation x1 x2 x3 x4

1 −1 −1 −1 −1
2 −1 −1 −1 0
3 −1 −1 −1 0
4 −1 −1 1 −1
5 −1 −1 1 1
6 −1 1 −1 −1
7 −1 1 −1 0
8 −1 1 1 1
9 −1 1 1 1

10 0 −1 −1 1

(continued)
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Observation x1 x2 x3 x4

11 0 −1 1 0
12 0 −1 1 1
13 0 1 −1 −1
14 0 1 −1 0
15 0 1 1 −1
16 0 1 1 0
17 1 −1 −1 −1
18 1 −1 −1 0
19 1 −1 −1 1
20 1 −1 1 −1
21 1 −1 1 0
22 1 1 −1 1
23 1 1 −1 1
24 1 1 1 −1
25 1 1 1 0

The D-efficiency is 62.35%, and the G-efficiency is 94.13%.
It is of interest to compare this design with a standard design. In fact, a CCD with

𝛼 = 1.0 and one center run satisfies the N= 25 requirements. Of course, the CCD is totally
symmetric, requires three levels of each variable, and estimates coefficients for all six two-
factor interactions equally well. In addition, all pure quadratic coefficients are estimated
equally well. As one would expect, the CCD is not as efficient for the incomplete second-
order model listed above. In fact, the efficiencies are

Deff = 52.13%
Geff = 94.09%

How often, however, is the practitioner certain of the model prior to designing an experiment,
particularly in an RSM scenario when most (or all) factors are continuous? Suppose we
consider a situation in which, after the data are collected, the model that is fitted to the data
is given by

E( y) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽4x4

+ 𝛽12x1x2 + 𝛽34x3x4
(9.25)

Of course, the constructed design is no longer D-optimal. In fact, a highly efficient two-level
design could be constructed with the computer. However, one must live with the design
chosen. Now, the CCD was also not designed for the model of Equation 9.25, particularly
because there are no quadratic terms. The efficiencies are:

D A G

Computer-generated 75.88 67.86 82.07
CCD 72.96 72.31 85.04

As a result, the CCD is just as efficient as (if not more so than) the computer-generated
design. Now, suppose the actual model, unknown to the practitioner, involves a quadratic
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TABLE 9.5 A D-Optimal Design for
the Constrained Region in Fig. 9.1

Standard Order x1 x2 y

1 −0.50 −1.00 173.9
2 1.00 0.00 195.9
3 −0.08 −0.08 201.2
4 −1.00 1.00 199.3
5 1.00 −1.00 190.3
6 0.00 1.00 198.5
7 −1.00 0.25 190.5
8 0.25 −1.00 179.5
9 −1.00 −0.50 176.7

10 1.00 0.00 198.1
11 0.00 1.00 200.5
12 −0.08 −0.08 197.1

term in either x2 or x3. Here, the computer-generated design of Equation 9.24 is a singular
design; that is, the coefficients of x2

2 and x2
3 are not estimable. The point here is that

the CCD has a high D-efficiency and G-efficiency for the full second-order model and is
often reasonably robust to model mis-specification, in contrast with a computer-generated
design. One cannot always be certain that a computer-generated D-optimal design will
allow estimation of all coefficients if the model that is eventually fitted differs from that
used in the input information.

Example 9.13 The Adhesive Bonding Experiment Consider the adhesive bonding
experiment described in Section 9.2 that led to the constrained region of interest in Fig. 9.1.
Recall that the two variables are x1 = amount of adhesive and x2 = cure temperature, and
that the feasible design region is

−1.5 ≤ x1 + x2 ≤ 1.0

Suppose that the response of interest is the pulloff force and we want to fit a second-order
model to this response. Table 9.5 and Fig. 9.19a show a 12-run D-optimal design for this
problem, generated with Design-Expert. We required that N= 12, and that there would be
three replicated runs to provide an estimate of pure error. Notice that one of the replicates
is at the center of the region, and two are at corners, or vertices. Figure 9.19a shows
the contours of

√
Var[ŷ(x)]∕𝜎 2 for this design, and Fig. 9.19b shows the corresponding

response surface.
Table 9.6 is a summary of the fit of a second-order model for the design in Table 9.5

using Design-Expert. The fitted model is

ŷ = 199.10 + 4.51x1 + 9.56x2 − 9.57x1x2 − 6.19x2
1 − 9.00x2

2

Figure 9.20 shows the contour plot and the response surface for the estimated response for
this model. The point giving the maximum pulloff force is x1 = 0.08 and x2 = 0.52.
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Figure 9.19 A D-optimal design for the constrained design region in Fig. 9.1. (a) The design and
contours of constant

√
Var[ŷ(x)]∕𝜎 2. (b) The response surface plot.

9.3.5 Computer-Generated Designs Involving Qualitative Variables

Quite often in practice, response surface studies need to be conducted even though at least
one factor is qualitative in nature. For example, in a manufacturing environment, there
may be different machines or lines that nominally do the same function, or there may be
different suppliers of a given ingredient. In these cases there are set levels of the factor, and
the factor is categorical. Recall in Chapter 3 that qualitative factors required changes to the
design, in particular for center runs where center runs were included at each level of the
qualitative factors, as in Fig. 3.24.

In an RSM study involving qualitative variables, it stands to reason that the goal of the
experiment for these variables is no different from that of the quantitative variables. That is,
they must be included in the model and designs, and they must be involved in any response
prediction or optimization using the model. The reader should bear in mind that qualitative
variables in an RSM study are not like blocks. They are not nuisance factors. Indeed one
must allow for possible interaction between qualitative factors and standard RSM terms
involving quantitative factors.

Careful consideration should be given to what relationships between the other factors
and the response are anticipated to remain the same across the levels of the qualitative
factor, and which are expected to change. If no interaction terms are included between the
qualitative and quantitative factors, then the assumption is that the relationship between
quantitative factors and the response remains the same, but with just a fixed shift between
the levels of the qualitative factor. With the addition of interaction terms, the model can
accommodate increasing departures from this assumption. If all interaction terms between
the qualitative and quantitative factors are included, then completely different relationships
between the quantitative factors and the response can be modeled for each level of the
qualitative factor.

Consider a simple example with two quantitative factors (x1, x2) and one qualitative
factor with two levels. One possible model for the response might be

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛿3z3 + 𝜀
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Figure 9.20 Plots of predicted pulloff force, Example 9.13. (a) Response surface. (b) Contour plot,
showing location of the stationary point.

where z3 is an indicator variable that has a value of 0 for the first level of the qualitative
factor and has a value of 1 for the second level. For this model, the assumption is that the
shape of contour plots describing the relationship between x1, x2 and the response is the
same for both levels of the qualitative factor, except for a potential constant shift up or
down between levels.

An alternate model might be

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛿3z3 + 𝛿13x1z3 + 𝛿23x2z3 + 𝜀

where the additional interaction terms now allow the main effects for x1 and x2 to be
different for each level of the qualitative factor, but the interaction effect involving x1 and
x2 is expected to be the same.

A final model that allows maximum flexibility would be

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛿3z3 + 𝛿13x1z3 + 𝛿23x2z3 + 𝛿123x1x2z3 + 𝜀

where the 𝛿123x1x2z3 terms allows completely separate first-order with interaction models
to be fit for each of the two levels of the qualitative factor. In general, if the experimenter
does not know which of these models is most appropriate, it is helpful to assume the largest
model when selecting a design, as this will allow the estimation and assessment of all terms
in this model. However, protecting against the largest possible model will in general lead
to larger designs.

When evaluating the prediction variance characteristics of a design, some adjustments
are also needed for models including qualitative factors. For example, when the FDS plot
is calculated, design locations cover the continuous range of all of the qualitative factors,
but only examine the set levels of the qualitative factor(s). In this way, we can think of
the design region as a series of separate subregions—one for each level of the qualitative
factor. The possible design locations are selected throughout each subregion.
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Example 9.14 In an extraction experiment an engineer wishes to model the amount of
extraction against temperature and time. The eventual goal may be to determine temper-
ature and time values that maximize extraction. However, it is natural to consider a third
factor: type of extraction solvent. One may view this qualitative factor as having three
levels, because three potential candidate solvents exist, each with a distinctive chemical
composition.

Computer-generated designs are a powerful tool when one encounters qualitative vari-
ables that must be modeled with the usual continuous quantitative design variables. Here,
of course, the user must be concerned about the interaction that exists between continuous
and qualitative factors. It is believed that the effect of temperature or time may change
depending on which of the solvents is being considered.

Consider the situation in which we would like to model the amount of extraction as
a function of type of solvent (with solvents A, B, and C) in addition to temperature and
time, two standard continuous design variables. The model assumed is second order in x1
(temperature) and x2 (time) and the qualitative variable (solvent) interacts with x1 and x2.
The required design size is N = 15. Formally the model is written

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛽11x2
1

+ 𝛽22x2
2 + 𝛾1z1 + 𝛾2z2 + 𝛿11z1x1 + 𝛿21z2x1 + 𝛿12z1x2 + 𝛿22z2x2 + 𝜀

Here

z1 =
{ 1 if A is the discrete level

0 elsewhere

z2 =
{ 1 if B is the discrete level

0 elsewhere

Notice that indicator variables are used to represent the qualitative factor, type of solvent.
The N= 15 computer generated design using D-optimality is given by

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 C
−1 −1 B
−1 −1 A
−1 1 C
−1 1 B
−1 1 A

1 −1 C
1 −1 B
1 −1 A
1 1 C
1 1 B
1 1 A
0 0 A
0 1 B

−1 0 B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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TABLE 9.7 Design Expert D-Optimal Design for Three
Quantitative and Two Qualitative Variables

Obs x1 x2 x3 z1 z2

1 −1 −1 1 L1 L1
2 −0.5 0 0 L1 L1
3 1 1 1 L1 L1
4 1 1 1 L1 L1
5 1 1 −1 L1 L1
6 1 −1 1 L1 L1
7 1 −1 −1 L1 L1
8 −1 1 −0.33 L1 L2
9 −1 0.33 −1 L1 L2

10 −1 0.33 −1 L1 L2
11 −1 0.33 1 L1 L2
12 0 −1 0 L1 L2
13 0.33 1 −1 L1 L2
14 1 0 0 L1 L2
15 1 −1 −1 L1 L2
16 −1 −1 −1 L1 L2
17 −1 1 1 L2 L1
18 −1 1 −0.33 L2 L1
19 −1 0.33 1 L2 L1
20 −0.33 1 −1 L2 L1
21 0 −1 0 L2 L1
22 1 1 −1 L2 L1
23 1 1 −1 L2 L1
24 −1 1 0 L2 L2
25 −1 −1 0 L2 L2
26 0 −1 1 L2 L2
27 0 0 0 L2 L2
28 1 1 0 L2 L2
29 1 0 1 L2 L2
30 1 −1 −0.33 L2 L2

Note the crossing of the 22 factorial points with the three levels A, B, and C in order to
capture the interactions x1z1, x1z2, x2z1, x2z2, and x1x2. The center and two axial points in
x1 and x2 allow further information for estimation of x1

2 and x2
2 terms.

Example 9.15 Designs for Three Quantitative and Two Qualitative Variables Con-
sider a situation in which there are three quantitative variables x1, x2, and x3 and two
qualitative variables z1 and z2, each at two levels. Assume that the practitioner wishes to
fit a full second-order model in the three quantitative variables as well as the terms z1, z2,
z1xj, z2xj, z1x2

j , and z2x2
j for j= 1, 2, 3. There are 24 model terms to be fitted, including

𝛽0. Using Design-Expert, a D-optimal design was created with 30 runs, specifying that the
additional six degrees of freedom should be allocated with three degrees of freedom for
lack of fit and three replicates. Table 9.7 shows the design.

The reader should note that in this example we are not assuming a separate response
surface for all four combinations of the qualitative variables. We are in fact assuming that
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TABLE 9.8 JMP I-Optimal Design for Three Quantitative and
Two Qualitative Variables

Obs x1 x2 x3 z1 z2

1 −1 0 0 L1 L1
2 −1 −1 1 L1 L1
3 0 0 −1 L1 L1
4 0 −1 0 L1 L1
5 1 −1 −1 L1 L1
6 1 1 −1 L1 L1
7 1 1 1 L1 L1
8 −1 1 1 L1 L2
9 −1 1 −1 L1 L2

10 0 1 0 L1 L2
11 0 0 1 L1 L2
12 1 1 −1 L1 L2
13 1 0 0 L1 L2
14 1 −1 1 L1 L2
15 −1 −1 −1 L2 L1
16 −1 1 1 L2 L1
17 0 0 1 L2 L1
18 0 0 0 L2 L1
19 0 −1 0 L2 L1
20 1 −1 1 L2 L1
21 1 1 −1 L2 L1
22 1 0 0 L2 L1
23 −1 −1 0 L2 L2
24 −1 1 −1 L2 L2
25 0 −1 −1 L2 L2
26 0 0 0 L2 L2
27 0 1 0 L2 L2
28 0 0 1 L2 L2
29 1 1 1 L2 L2
30 1 0 0 L2 L2

the xixj (i≠ j) terms are the same at the four combinations. Indeed, a model assuming
separate response surfaces would require 16 additional model terms containing xixjzk terms
(i≠ j), z1z2xi terms, z1z2xi

2 terms and z1z2xixj terms (i≠ j). Thus, in our model we assume
stability of xixj across z1 and z2 and no interaction among z1 and z2.

Note some of the symmetry in the design: all four of the combinations of the qualitative
variables have seven or eight observations, and the three replicates are spread with one pair
in three of the four combinations.

Table 9.8 shows the I-optimal design generated by JMP, with no restrictions placed
on the degrees of fit allocated for lack of fit or replication. This design also has seven or
eight observations for each of the qualitative variables. Note how more of the continuous
variable levels are selected with a value of 0 to give better prediction near the center and
to lower the average prediction variance value. When no degrees of freedom are allocated
for estimating lack of fit, then only three levels of each of the quantitative variables are
selected. In addition, no replicates are selected if they are not requested.
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Computer-generated designs are particularly useful for situations with a combination of
qualitative and quantitative variables, as they provide great flexibility for accommodating
the model structure required.

Definitive Screen Designs with Two-level Qualitative Variables As we saw in Section
8.4.8, Definitive Screening Designs can provide good screening designs for first-order with
interaction models with the ability also estimate second-order effects. However, one of the
limitations of the original DSDs is that they involve three levels for all of the factors. Jones
and Nachtsheim (2013) describe two search-based algorithms to create DSDs suitable for
including one or more qualitative factors with two levels. Both methods involve adding
supplemental runs to the design that are chosen to have desirable properties for estimating
the model of the form

y = 𝛽0 +
∑

𝛽ixi +
∑∑

𝛽ijxixj +
∑

𝛿kzk +
∑∑

𝛿ikxizk +
∑∑

𝛿klzkzl + 𝜀

where the xi’s are the quantitative factors and the zk’s are the qualitative factors. Note that
the assumed model allows for all of the second-order interactions to be considered.

The first method, called the DSD-augment method, produces designs where all of the
estimates of the main effects and second-order effects are independent, with some partial
aliasing between two-factor interaction and the intercept. The designs are highly D-efficient.
Below two such designs are shown for m = 4 continuous factors with c = 1 or 2 qualitative
factors. The first four columns define the levels for the continuous variables, and the final
1 or 2 columns are for the qualitative factors.

m = 4, c = 1 m = 4, c = 2

1 0++++ 0+++++
2 0−−−− 0−−−−−
3 +0+−− +0+−−+
4 −0−++ −0−++−
5 ++0+− ++0+−−
6 −−0−+ −−0−++
7 +−+0+ +−+0+−
8 −+−0− −+−0−+
9 +−−++ +−−+++

10 −++−− −++−−−
11 ++−−+ ++−−++
12 −−++− −−++−−
13 0 0 0 0+ 0 0 0 0−−
14 0 0 0 0− 0 0 0 0++

The second method, called the ORTH-augment method, provides D-optimal designs.
A disadvantage of this method is that there is particle aliasing between main effects and
two-factor interactions for those terms involving the categorical factors. The corresponding
designs for the scenarios listed above are given here.
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m = 4, c = 1 m = 4, c = 2

1 0++++ 0+++++
2 0−−−− 0−−−−−
3 +0+−− +0+−−+
4 −0−++ −0−++−
5 ++0+− ++0+−−
6 −−0−+ −−0−++
7 +−+0+ +−+0+−
8 −+−0− −+−0−+
9 +−−++ +−−+++

10 −++−+ −++−+−
11 ++−−+ ++−−++
12 −−++− −−++−+
13 0 0 0 0− 0 0 0 0−−
14 0 0 0 0− 0 0 0 0−−
15 0 0 0 0−+
16 0 0 0 0+−

When comparing the results from the DSD-augment and Orth-augment methods, there
are only subtle differences in the designs. For the m = 4, c = 1 case, only runs 10 and
14 differ, with run 10 not being the negative complement of run 9, and both of the center
runs being place in the same level of the categorical factor. Similarly for the m = 4, c =
1 case, only runs 10 and 12 differ, plus there is a need for two additional center runs. For
designs from both methods for other scenarios involving 4 or 5 quantitative factors with 1
to 4 categorical factors, see Jones and Nachtsheim (2013).

9.4 MULTIPLE OBJECTIVE COMPUTER-GENERATED DESIGNS FOR RSM

In Section 7.2.4, Pareto front optimization was described for multiple responses. A similar
approach can be used for finding an optimal design when considering several different
design criteria. In Section 8.1, eleven desirable properties of design for consideration were
described. They can be divided into several categories, one of which considers good esti-
mation and prediction. In previous sections we have spend considerable time investigating
designs that were generated using D-, G-, and I-optimality as the criterion for computer-
generated designs. Recall that one of the cautions against using computer-generated designs
was their excusive focus on a single objective, which often sacrificed performance in other
areas that the Central Composite, Box–Behnken and Definitive Screening Designs naturally
accounted for.

In this section, we describe an approach that allows the primary objectives captured in
the alphabetic optimality criteria to be considered in conjunction with other aspects of good
design. Other aspects that might be natural to try to include are the ability to investigate
lack of fit or protect against bias introduced from model misspecification. This allows the
experimenter to cope with model uncertainty, while still pursuing a design that performs
well for the assumed model. Another aspect that might be considered as a complementary
criterion is the ability to estimate pure error. All of the tests of hypothesis about the
significance of model terms are based on having a good estimate of natural variation, and
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the use of replicates allows for an estimate of this that is independent of the model specified.
Lastly, there may be some flexibility in the size of the design to be run—and looking at the
trade-offs between cost and the improvements in estimation and prediction is an effective
way to determine what size of experiment makes the most sense. However, the approach is
general and can be applied to any set of quantitative measures that summarize the desirable
aspects of a designed experimenter that the user wishes to formally incorporate into design
construction or augmentation.

9.4.1 Pareto Front Optimization for Selecting a Design

When using a single criterion for constructing or augmenting an optimal design, a single
solution is typically identified at the conclusion of the search. While this is comfortingly
straightforward to determine how to proceed, it does mask the fact that there often might
be other contenders that were near-optimal, which might have provided practically the
same performance had they been used. The Pareto front approach seeks to provide a set
of alternatives that can be considered in more detail to determine what the best choice is
for a particular scenario. Most often, we acknowledge that the selection of a best design
should be based on multiple criteria that characterize the “goodness” of the design. Hence,
the Pareto front approach with its identification of a set of solutions provides context for
examining alternatives and deciding on their relative merits.

In Section 7.3, the DMRCS process for structured decision-making was described which
involved two general stages. In the first, the set of all solutions (those located on the Pareto
front) that are objectively best are identified, and they are said to dominate all of the other
possible designs. Hence designs not on the Pareto front can be discarded from further
consideration, as long as the user feels confident that they have identified the correct set
of criteria on which to focus. The second stage is subjective and consists of examining
the alternatives on the Pareto front identified in the first stage to choose the best one that
balances the criteria in a way best suited to the goals of the experiment. In this stage,
graphical methods are commonly used to help visualize the tradeoffs between alternatives.
The Pareto front approach is flexible to handle different numbers of criteria, with a general
rule of thumb of restricting the optimization to a moderate number (2–4) of objectives. If
too many criteria are simultaneously considered, then the number of possible solutions can
become unmanageable, and it becomes difficult to balance too many trade-offs.

In many data collection exercises using designed experiments, the goal is to provide
information for several engineers or several purposes. Hence allowing for different user
priorities to be considered can lead to improved choices for the best design to select.
There are several key differences between using the Pareto front approach for responses
described in Chapter 7 and when the methods are used for the construction and augmentation
of designed experiments:

1. Most responses are naturally quantitative. For designed experiments, there may be
an informal sense of wanting a design to have a general characteristic, but there may
not be an automatic quantitative measure that summarizes this. Hence, it may require
some work to identify metrics for a particular characteristic, such as the ability to
assess lack of fit or protect against bias, that appropriately reflect the priorities of the
study.

2. The metrics for a design should not have uncertainty associated with them. Recall for
responses that were estimated from observed data, there was uncertainty associated
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with what values might be obtained for new observations. This needed to be incor-
porated into the optimization strategy to provide realistic summaries about which
combination of factor values might lead to an optimal solution. For the designed
experiment assessment and optimization, each design will have a single value of the
selected metric to be optimized, and so incorporating uncertainty is not needed. This
is a helpful simplification.

3. In Chapter 7, the optimization was based on discretizing the design locations into
a grid of possible choices, and then the Pareto front was constructed from the set
of alternatives. For multiple objective optimization of designs, there is rarely an
itemized list of choices from which to select. Hence, a search algorithm is needed
to efficiently explore the vast number of possible designs to find the Pareto front of
desirable solutions. Section 9.4.2 describes one algorithm that can be used to find the
set of designs on the Pareto front.

4. With responses modeled using low-order polynomials, the surfaces summarizing the
relationship between inputs and responses are continuous and smooth. This is helpful
as adjacent points in the design space share similar predicted response values. Hence
when optimizing responses, as in Chapter 7, the key is to identify regions of good
performance. When we consider optimizing designs, we find that changing a single
run can dramatically alter the characteristics of the design. This is because the runs
in a design are very much interdependent and estimating the model parameters relies
on information from multiple observations. Hence the search for an optimal design
will need to take into account the potentially very different characteristics of similar
designs. Nearly identical designs can perform very differently for some criteria, and
very different designs can sometimes give similar performance across the criteria of
interest.

As noted in item 3 above, an efficient search algorithm is a key part of the success of using
the DMRCS process for selecting a design based on several objectives. In the next section,
we describe a possible algorithm for finding the Pareto front of nondominated solutions.

9.4.2 Pareto Aggregating Point Exchange Algorithm

The set of possible designs for even moderately small design problems can become large
very quickly. As a simple illustration, imagine that an experimenter wishes to consider a
12-run design for an experiment involving three factors. Since there is interest in fitting a
second-order model in a cuboidal region, each factor is restricted to just 3 levels (-1, 0, +1
in coded variables). Then there are 33 = 27 candidate points for each run, as well as 12
runs. The total number of possible designs then is 2712 ≈ 1.5 × 1017. If the assumed model
is a first-order model and we consider two levels with 23 = 8 candidate points, there are still
812 ≈ 6.9 × 1010 possible designs. It should be noted that many of these design possibilities
would be nonsensical choices—for example, choosing all 12 runs to be the same candidate
point—but the search algorithm still needs to navigate and evaluated a vast set of options.

The Pareto Aggregating Point Exchange(PAPE) algorithm [Lu, Anderson-Cook, and
Robinson (2011) and Lu and Anderson-Cook (2013)] is an adaptation of point exchange
algorithms described in Section 9.3.2, with several key differences. First, the common
aspects are that the algorithm requires the user to specify the same aspects of the design as
before: the assumed model, the required sample size, the ranges on the design variables,
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the candidate points, and any additional constraints. In addition, the algorithm also requires
the user to specify two or more quantitative metrics used to evaluate the designs.

One important difference between this as a standard point exchange algorithm is the
overall goal of the algorithm. When optimizing is based on a single criterion, the final result
is a single solution. With this framework, it is easy to evaluate a new candidate solution:
Does it perform better than the current best choice? If it is better, then we keep this value
and discard the previous best solution. If it is not better, then we keep the current solution
and move on to evaluate another candidate.

However, with the PAPE algorithm (or any multiple objective optimization), the goal is
to construct the Pareto front of nondominated solutions. Hence the result of the algorithm is
not a single solution, but a set of solutions. In the point exchange algorithm, updates occur
when the current candidate point for different runs of the design are compared to the other
available candidates to look for improvements. But what does improvement mean here?
What mechanism should be used to decide if we keep the current run or update to a new
candidate? The PAPE algorithm uses a grid of fixed weights from a desirability function
(as described in Section 7.2.3) to define different directions for the search algorithm. For
example, suppose that an experimenter wishes to create a Pareto front of designs that balance
optimizing D- and I-optimality. Then the PAPE algorithm might run six parallel searches
from each random start: The first optimizes based on only D-efficiency, the second optimizes
based on 0.8∗D-efficiency + 0.2∗I-efficiency. The remaining searches would use (0.6,0.4),
(0.4,0.6), (0.2,0.8), (0,1) as the weights for the two criteria. This allows for quick decisions
based on a single number from the desirability function about whether a new design is
better or worse than the current candidate, and it spreads out the directions of the search.
Lu, Anderson-Cook, and Lin (2014) describe an approach for looking at a more focused
set of weights if the experimenter knows a priori how to prioritize the different criteria.

The second major difference between a standard point exchange algorithm and the
PAPE algorithm results from wanting a set of solutions instead of a single choice. As
different candidate points are evaluated as part of the search, each new design is compared
to the existing Pareto front to determine if it should be included. This means that for a
single random start, many possible designs could potentially be added to the front. Since
the calculation of all of the criteria has already been done as part of the search, this can
dramatically speed how quickly the final Pareto front is populated.

The algorithm can be adapted to different numbers and types of quantitative design
criteria. While this optimization typically takes considerably longer than optimizing over a
single objective, it is still relatively short compared to the time, effort, and cost of the actual
running of the experiment.

9.4.3 Using DMRCS for Design Optimization

When constructing or augmenting a design using multiple objectives, the experimenter has
many choices about what to prioritize as important for the design criteria. Some potential
criteria used as one of the objectives for optimizing multiple facets of a good design include:

Assuming the chosen model is correct

(a) D-efficiency—maximize for good parameter estimation

(b) I-efficiency—maximize for good average prediction variance

(c) G-efficiency—maximize for good worst case prediction variance
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Wanting some protection in case the chosen model is incorrect

(d) tr(AA’)—minimize to protect model terms from bias (tr(AA’) where A =
(X′

1X1)−1(X′
1X2) was introduced in Section 8.2.2)

(e) tr(R’R)—minimize to protect SSE (sum of squares error) from bias (tr(R’R) where
R = X1A − X2 was introduced in Section 8.2.2)

Estimating pure error with more degrees of freedom

(f) # of replicates

Estimating lack-of-fit terms

(g) tr(R’R)—maximize to provide estimates of lack of fit

Cost

(h) total # of runs

Example 9.16 A Nonstandard Five-Factor Experiment For a very expensive screen-
ing experiment, an engineer has sufficient funds to run a 14-run experiment with five-factors
(A–E). Based on expertise from some colleagues, the proposed model to fit is a specialized
first-order model with interactions of the form

Y = 𝛽0 + 𝛽AA + 𝛽BB + 𝛽CC + 𝛽DD + 𝛽EE

+ 𝛽ABAB + 𝛽ACAC + 𝛽BDBD + 𝛽CECE + 𝜀 (9.26)

where the interactions selected represent current understanding of the underlying process.
Since the experiment must be necessity be restricted to 14 runs, it is not possible to
simultaneously estimate all of the 10 two-factor interactions if they had been included.
Hence the goal is to construct a design using two levels for each of the factors (−1,+1) that
allows good estimation of the model. A natural choice of metric for this criterion is to look
at D-efficiency and try to maximize |M| = ||X′X|| ∕Np. However, the engineer is concerned
that at least one of the excluded two-factor interactions might be active, and she wishes
to include a metric that considers the bias that may be introduced into the estimation of
the model parameters in Equation 9.26. One option to balance D-efficiency with protection
against bias is to try to minimize tr(AA′) where A = (X′

1X1)−1(X′
1X2) and X1 is the 14 × 10

matrix with a column for the intercept, the five main effects, and the four selected two-way
interactions (AB, AC, BD, and CE). X2 is the 14 × 6 matrix with a column for the omitted
two-factor interactions (AD, AE, BC, BE, CD, and DE).

The PAPE algorithm is used to find the Pareto front with nine nondominated designs.
Figure 9.21 shows a scatterplot of the values of ||X′X|| ∕Np and tr(AA′), with the D-optimal
design shown in the top right corner of the plot. The design with the smallest value of tr(AA′)
is in the bottom left. The Utopia point (the combination of the best ||X′X|| ∕Np and tr(AA′)
is shown in the top left corner, but there is no design that is able to achieve this combination
of values. From the plot, it is possible to gain some understanding about the trade-offs
between the two criteria. If D-optimality is the only objective, then the best design (labeled
1) has the potential to introduce considerable bias into the model parameter estimates if the
model has been incorrectly specified. At the other extreme, if the design that minimizes
tr(AA’) is selected (labeled 9), then the engineer will have larger associated variances for
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Figure 9.21 Pareto front for Example 9.16 with nine nondominated designs. The designs on the
convex hull of the Pareto front are shown with a solid line. The Utopia point is marked with an “×” .

the model parameters if the model is correct. Either extreme seems undesirable, but before
the experiment is run, it is unknown whether the assumed model is correct or not.

The Pareto front allows for several alternatives that provide better balance between the
extremes of the optimizing just a single objective. Clearly, design 2 feels like a superior
choice to design 1, since for virtually no change in ||X′X|| ∕Np, the potential bias can be
reduce. This is again a reminder of the danger of blindly looking for an optimal design
based on a single criterion.

The designs labeled 3 or 6 may be suitable choices for the experiment, since they provide
good estimation of the model parameters while still reducing the amount of potential bias
if the model is incorrectly specified. Designs 4 and 5 seem less appealing than either 3 or 6,
since they are not on the convex hull of the Pareto front, and hence it feels like there is more
sacrifice from one criterion relative to the improvement realized by the other. Which of the
designs makes the most sense for the engineer depends on the relative prioritization that
she wishes to make about the importance of the two criteria: How likely is the model to be
correct? What are the consequences of having bias introduced into the model parameters?
The graphical tools such as the best solutions for different weights in a desirability function
(Fig. 7.3) and the trade-off plot (Fig. 7.4) can provide more quantitative tools for comparing
alternatives. Recall that there is no single universal best answer, but rather the goal of using
the Pareto front approach is to gain perspective on what alternatives are available and to
determine which one is the best fit for study goals.

Example 9.17 Adding a Third Criterion to Design Optimization We now reconsider
the same experiment described in Example 9.16, but include an additional criterion (Lu,
Anderson-Cook, and Robinson, 2011). Previously the goal was to seek large values of
|M| = ||X′X|| ∕Np for good D-efficiency and small values of tr(AA′) to reduce the bias in
the parameter estimates of the model parameters. Now in addition to these two criteria,
we add the goal of minimizing the bias in estimating the natural variability of the process.
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Figure 9.22 Mixture plot of designs from Example 9.17 with criteria D-efficiency, tr(AA′) and
tr(R′R).

Having a good estimate of the error term variability helps with the calibration of test statistics
to assess the terms included in the model. One potential choice of quantitative metric for
this objective is to find models with small values of tr(R′R), where R = X1A − X2 and
A = (X′

1X1)−1(X′
1X2). The X-matrices are defined as before in Example 9.16.

When the Pareto front is found using the PAPE algorithm for the three criteria, there
are 351 nondominated designs. Since this is an unmanageable number of designs to try
to understand, a mixture plot similar to Fig. 7.13 is created to identify designs that are
best for some combination of desirability function weights using an additive desirability
function with scaling for the individual desirability scores based on the best and worst
values for each criterion on the Pareto front. Figure 9.22 shows the mixture plot with 17
designs that are best for at least one combination of weights. (The numbers for the designs
are not the same as the numbering used for Example 9.16.) Focusing on only those designs
which are best for some weight combination reduces the number of designs to consider
to a more manageable number. Notice how the design labeled 1 in Fig. 9.21 is best for a
large proportion of the weight combinations, and it is best for several potentially natural
weight combinations: The centroid of the mixture space corresponds to choosing weights
of (wD, wtr(AA′), wtr(R′R)) = (1∕3, 1∕3, 1∕3) for each of the criteria. If the engineer wanted
to give equal weight to assuming the model was correct and protecting against bias, one
weight combination that reflects that is (1/2,1/4,1/4).

Figure 9.23 shows the trade-off plot of these designs, sorted from highest to lowest
D-efficiency. The design labeled 1 is notable in the trade-off plot as the only solution that
has an individual desirability score at or above 0.5 for all three criteria. In selecting where to
place priorities between the three criteria, the engineer decides that it makes sense to place
more weight on assuming that the model is correct and therefore weights D-efficiency
higher. Using synthesized efficiency plots, similar to those introduced in Fig. 7.15, she
examines the designs labeled 1, 3, and 4 in Figure 9.24. Given the high efficiency (white
and light shades of gray) shown for most regions of the weight plot for the design labeled
1, she selects this as the best design for the intended experiment. Table 9.9 lists the 14 runs
in the chosen design.
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Figure 9.24 Synthesized efficiency plots of leading design candidates (a) design 1, (b) design 3,
and (c) design 4 from Example 9.17 based on criteria D-efficiency, tr(AA′) and tr(R′R).

TABLE 9.9 Selected Best Design (Labeled Design 1 in Figs.
9.22 and 9.23) Using Pareto Front Optimization Based on
D-Efficiency, tr(AA′) and tr(R′R) for Example 9.17

Run (A, B, C, D, E) Run (A, B, C, D, E)

1 (−1,−1,+1,−1,−1) 8 (+1,−1,−1,−1,+1)
2 (−1,−1,−1,−1,−1) 9 (+1,+1,−1,−1,+1)
3 (−1,+1,−1,−1,−1) 10 (+1,−1,+1,−1,+1)
4 (+1,−1,−1,+1,−1) 11 (+1,+1,+1,−1,+1)
5 (+1,−1,+1,+1,−1) 12 (−1,−1,−1,+1,+1)
6 (+1,+1,−1,+1,−1) 13 (−1,−1,+1,+1,+1)
7 (+1,+1,+1,+1,−1) 14 (−1,+1,+1,+1,+1)
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9.5 SOME FINAL COMMENTS CONCERNING DESIGN OPTIMALITY AND
COMPUTER-GENERATED DESIGN

As we indicated earlier in this chapter, the current status of computer-generated design
began as a result of the theoretical work of Keifer and coworkers. This foundation was
extended with decades of work by many who made the concept usable by practitioners.
There is no question that computer-aided design of experiments can be of value. However,
in RSM work there are several reasons to proceed with caution. Those who successfully use
design computer packages to aid in constructing RSM designs are those who do not use it
as a “black box.” Computer-aided designs can be useful if the user allows it to complement
the available arsenal of standard RSM designs. The user who is likely to fail with computer-
aided designs is the one who thinks too narrowly about what should be considered as a good
design and is not armed with important knowledge about design optimality and standard
RSM designs.

The development of optimal design theory is based on the use of a continuous design
measure that determines the proportion of runs that should be made at a number of points in
a predetermined design space. In practice, of course, the concept of continuous designs is
impractical because each run must be uniquely specified. However, the idea is to determine
discrete designs that are close approximations of the optimal continuous designs. The
ideas of candidate lists and sequential formation of the design according to the important
augmentation relationship of Section 9.3.1 provide computational ease and make computer-
aided design practical. However, perhaps because of this useful relationship, D-optimality
or, rather, the maximization of D-efficiency remains a commonly used criterion. One must
keep in mind that the D-criterion is necessarily quite narrow, based on crucial and often
oversimplified assumptions, and does not address many of the 11 important goals of RSM
designs discussed in Chapter 8. It focuses solely on the good estimation of model parameters
for a single model that is assumed to be correct.

With the development of improved algorithms for finding I- and G-optimality, there are
more choices for criteria based on good properties of prediction variance. As we saw in
Section 9.3.3, I-optimality with its focus on the average prediction variance tends to yield
overall better characteristics for the prediction variance throughout the entire design space.
Hence, in most situations where precise estimation of new observations or optimization of
the response(s) is important, I-optimality is a good choice.

Many of the remaining 11 characteristics of good designs address the notion of design
robustness—that is, robustness to model misspecification, robustness to errors in control,
and so on. The following are some items that should be a reminder for caution among
practitioners in the use of computer-generated designs:

1. For D-, I-, and G-optimality, the user must indicate a model on which to base the
optimization. Typically a large model with terms that are thought to potentially exist is
specified, since the model is not known ahead of time, and model editing or reduction
is part of any modeling strategy. If the fitted model is not that which is input to the
computer for the optimization, the computer-generated design is no longer optimal,
and, indeed, it may not be a good design at all. Heredia-Langner et al. (2004) present
strategies for generating designs that are robust to model choice, while Ozol-Godfrey
et al. (2005) present graphical tools to evaluate prediction variance for different edited
models.
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2. Designs generated from the D-criterion do not address prediction variance. In some
cases, a D-efficient design may not have ideal properties for prediction. Similarly,
an I-optimal design does not focus on good prediction of the model parameters, and
hence may not have ideal properties for estimation.

3. Optimization based on a single criterion is by necessity a simplification of the goal of
estimation. The D-optimality criterion |M| = ||X′X|| ∕Np considers a single number
summary of good model parameter estimation combining all terms in the model.
Similarly, I-optimality looks at just a global summary of a distribution of prediction
variance values across a multi-dimensional design space. While search algorithms
benefit from focusing on single number summaries, the experimenter should look
more closely at the details of what characteristics a design delivers. Graphical meth-
ods such as the Variance Dispersion Graph, Fraction of Design Space plots, and
the Prediction Variance profiler in JMP can provide the experimenter with richer
understanding of the design’s performance.

4. One strategy for increasing the robustness of the design is to begin with a D- or
I-optimal design and then augment them with additional runs targeting additional
desirable characteristics of good designs. Including replicates or center runs can help
improve overall performance, and both JMP and Design-Expert provide an option
for adding additional runs after an optimal design has been created.

5. Another strategy for building robust designs is to begin with several quantitative
design criteria and use the Pareto front approach to find the set of all nondominated
designs. Having a collection of good designs with different trade-offs between the
formal criteria shows the range of performance possible for each objective, as well
as the degree of trade-off needed to achieve good performance. By using graphi-
cal tools and different desirability function weightings, most promising designs can
be highlighted for deeper investigation. Choosing a best design is made easier by
having several promising candidates to compare, and the Pareto front allows exper-
imenters’ priorities to be included in the decision-making process. The Pareto front
approach is flexible for the number and type of characteristics that can be considered
simultaneously.

In RSM analyses, the natural starting point for selecting a design should be to search
for an appropriate standard design discussed in Chapters 8 and 9. Nevertheless, there will
be circumstances under which a computer-generated design will be helpful. Constraints
regarding sample sizes, the use of qualitative variables, and cases where the user must deal
with an unusual combination of ranges or constraints are situations where computer-aided
design may be helpful. Augmenting computer-generated designs with additional runs can
help make designs perform better in many of the 11 criteria listed in Chapter 8. Drain et al.
(2004) and Lin et al. (2015) present general methodology for constructing optimal RSM
designs using a genetic algorithm. However, the user should be cautious regarding focusing
too narrowly on a single objective, as well as with regard to being unduly confident in the
assumed model.

Performing an experiment generally has multiple goals and associated uncertainty about
the underlying assumptions of the model. The process used to select the appropriate design
for the experiment should acknowledge the complexity of the goals and assumptions and
should incorporate multiple facets of a good design into the selection.
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EXERCISES

9.1 There is considerable interest in the use of saturated or near saturated second-order
designs. One interesting comparison involves the hexagon (k= 2) and the small
composite design. Both involve six design points (plus center runs). In this exercise,
we make comparisons that take into account variances of coefficients and prediction
variance. However, before any two designs can be compared, they must be adjusted
so they have the same scale. Consider the hexagon and the k= 2 small composite
design. For proper comparisons we have

x1 x2

DSCD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
1 1

−
√

2 0√
2 0

0 −
√

2

0
√

2
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1 x2

DHEX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 0√
2∕2

√
3∕2

−
√

2∕2
√

3∕2√
2 0

−
√

2∕2 −
√

3∕2√
2∕2 −

√
3∕2

0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For this scaling, both designs are on spheres of radius

√
2 (apart from center runs).

(a) Compute N Var(b0)/𝜎2, NVar(bii)/𝜎
2, NVar(bi)/𝜎

2, NVar(bij)/𝜎
2 for both designs.

Comment.

(b) Compute N Var[ ŷ(x)]∕𝜎2 at the design center and at all design points for both
designs. Is this an illustration of rotatability?

(c) Construct FDS plots and VDGs for both designs. Comment on which design
you prefer and why.

(d) From part (b), is there an illustration of the rotatability of the hexagon?

(e) Is the small composite design rotatable? Explain.

9.2 Consider a comparison between the k= 4 SCD of Equation 9.5 with the k= 4 CCD
(N= 24+ nc). Use nc = 4 center runs for each design, and use 𝛼 = 2 for both designs.

(a) Do the designs need to be rescaled? Explain.

(b) Make the same type of comparisons as in Exercise 9.1.

9.3 Perhaps you noticed some evidence in Exercise 9.1 that the k = 2 SCD was not
rotatable. Actually the conditions required for rotatability cannot be met for any
SCD that involves a resolution III∗ fraction of a 2k. Prove this result. Hint: Look at
odd moments.

9.4 Create FDS and VDG plots for the Hoke D2 and D6 designs for k = 3. Compare their
prediction variance to the CCD with two center runs on a cuboidal region. Which
design seems preferable? Explain.

9.5 The Koshal design is an interesting experimental plan that was not derived with
statistical analysis in mind. Analysts are often surprised at the applicability and the
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efficiency of the design, particularly when information regarding interaction is either
known or considered to be unimportant. The Koshal design is a natural competitor
of the saturated or near-saturated SCD. Compare the k= 3 Koshal design with the
k= 3 (N= 10+ nc) SCD. Again, use scaled variances of regression coefficients. In
addition, use N Var[ŷ(x)]∕𝜎2 at the following locations in the scaled design units:

(0, 0, 0)
(1, 0, 0)
(−1, 0, 0)
(1.5, 0, 0)
(−1.5, 0, 0)
(1, 1, 1)
(−1, −1, −1)

The design scaling should be as follows:

x1 x2 x3
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Comment on your results.

9.6 Compare, in terms of scaled regression coefficients, the k= 3 311B (use nc = 3) with
the CCD and SCD values in Table 9.1. The 311B must, of course, be scaled properly.

Thus, divide it by
√

2. Comment on your results.

9.7 Consider the following first-order design

x1 x2 x3

D =
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(a) Is the design first-order orthogonal? Explain?

(b) Give the D-efficiency of this design.

(c) Give the I-efficiency of the design.

(d) Give the A-efficiency of the design. Hint: The A-efficiency of a design is given
by

Min
𝜁

tr[M(𝜁 )]−1

N tr(X′X)−1

Now, of course, for a first-order model with range [−1, +1] on each design
variable we have

Min
𝜁

tr[M(𝜁 )]−1 = p

9.8 Consider a model containing first-order and two-factor interaction terms in three
design variables—that is,

ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3

In Section 9.2.1 we demonstrated that a resolution III two-level design is D-, A-, G-,
and I-optimal for a first-order model. The levels must be at ±1 extremes.

(a) Show that all variances of coefficients are minimized with a resolution IV two-
level design with levels at ±1 extremes.

(b) Using the result in (a), show that the members of the same resolution IV class
are I-optimal.

(c) Show that these designs are also G-optimal. The region R is, of course, the unit
cube. Make use of the result (Eq. 9.14)

Max
x∈R

[𝜐 (x)] ≥ p

and show that, for the class of designs in question,

Max
x∈R

[𝜐 (x)] = p

where, of course, p= 7.

9.9 Consider the Hoke D2 design for k= 4 assuming a second order model.

(a) Calculate the X′X matrix for this design.

(b) Is the design rotatable? Explain.

(c) Generate an FDS plot for the design.

(d) Is the design G-optimal? If not, what is its G-efficiency?
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9.10 Consider the following Koshal design for k= 3:

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Assume that the region of design operability is [−1, +1] on each design variable.
Consider the model

ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3

(a) Compute the D-efficiency for this design for the above model.

(b) Compute the A-efficiency.

(c) Compute the G-efficiency.

9.11 Often a standard second-order design is planned because the practitioner expects
that the fitted model will, indeed, be second-order. However, when the analysis is
conducted, it is determined that the model is considerably less than order 2. As an
example, suppose a k= 2 CCD with 𝛼 = 1.0 and two center runs is used and all
second-order effects (quadratic and interaction) are very insignificant. The design is
used eventually for a first-order model.

(a) What is the D-efficiency for a k = 2 CCD with 𝛼 = 1.0 and two center runs for
a first-order model? Comment.

(b) How does the D-efficiency change if there are no center runs?

(c) Is the difference between the results in (a) and (b) expected?

(d) Give the A-efficiency for both designs.

9.12 Refer to Exercise 9.11. Give the D-efficiency of a k= 3 BBD for the model

ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3

9.13 Consider the following experimental design:

x1 x2 x3

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1
1 −1 −1

−1 1 −1
−1 −1 1

1 1 −1
1 −1 1

−1 1 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A second stage is used, as it becomes obvious that the model is quadratic. Use
a computer-generated design package to augment the above design with six more
design points in order to accommodate a complete second-order model.

9.14 Consider a first-order orthogonal design with ±1 levels. Show that the addition of
center runs must lower the D-efficiency. Show that the same is true for A-efficiency
and for G-efficiency.

9.15 Consider a k= 4 scenario. The practitioner plans to use 20 design points in order to
accommodate a complete second-order model. However, it is not clear what the true
model is prior to conducting the experiment. As a result, the design selected should
be one that is fairly robust—that is, one that will be reasonably efficient even if the
model on which the design is based is not correct.

(a) Using the 34 factorial as the candidate list, construct the D-optimal design using
a second-order model as the basis.

(b) Suppose the edited model contains all linear terms and the interactions x1x2 and
x1x3. Give the D-efficiency of the design for this model.

(c) Suppose, rather than use the computer-generated design, the practioner uses a
SCD containing

(i) A PBD with 12 design points

(ii) Eight axial points with 𝛼 = 1.0
Give the D-efficiency of this design for a second-order model.

(d) Give the D-efficiency of this design for the reduced model given in (b).

(e) Comment on the above.

9.16 Consider Table 9.2. Notice that the CCD has high D-efficiencies but low G-
efficiencies when the design has small numbers of center runs. Then when the
number of center runs increases, the G-efficiency increases substantially. Explain
why this is happening. Look at the variance dispersion graphs.

9.17 Consider a second-order model with four design variables and levels −2, −1, 0, 1,
2 for each design variable. However, due to experimental constraints the candidate
list should include:

(i) A 34 factorial with levels −1, 0, 1

(ii) Eight axial points at 𝛼 = 2

(iii) A center point

Suppose 30 runs are to be used.

(a) Using a computer-generated design package, give the D-optimal design.

(b) Compare your design in (a) with a CCD with 𝛼 = 2 and nc = 6. Use
N Var[ ŷ(x)]∕𝜎 2 at the center of the design for your comparison.

(c) Compare again, using the variances of the predicted values averaged over all of
the candidate points.

(d) Using VDG and FDS plots, compare where prediction is best and worst in each
region, and determine which design is pereferable.

9.18 Consider again the two designs compared in Exercise 9.17. Suppose that the “true”
model involves all linear main effects and two-factor interactions only. Compare the
D-efficiencies and the A-efficiencies.
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9.19 Consider a hybrid 311B with three center runs. As an alternative, consider a BBD
for k= 3 with n0 = 3 center runs. Answer the following questions:

(a) Which has the higher D-efficiency for a second-order model?

(b) Which has the higher D-efficiency if, in fact, the true model is first-order First-
order with two-factor interactions?

9.20 Show that for the case of a first-order model in k variables and spherical region of
interest, a resolution III design with levels at ±1 extremes is a I-optimal design.
Hint: For this region, (1∕K) ∫R xidx and (1∕K) ∫R xix jdx are both zero.

9.21 Consider the D-optimal design in Table 9.5 for the constrained region shown in
Fig. 9.2. Suppose that you were to move all three replicates to the center of the
design.

(a) Generate a graph of prediction standard errors similar to those in Fig. 9.18. What
effect has moving the replicates to the center on those quantities?

(b) Compute the D-efficiency of this new design relative to the one used in Example
9.13 (Table 9.5).

9.22 Reconsider the adhesive force experiment in Example 9.13. Find a D-optimal design
with N= 10 runs. Use two runs as replicates. Compare the D-efficiency of this design
with that of 12-run design in Table 9.5.

9.23 Consider a response surface design problem in k= 3 factors where the region is
constrained so that x1 + x2 + x3 ≤ 2. Find a D-optimal design for fitting a second-
order model with N= 15 runs, assuming that two runs are to be used as replicates.
Generate plots of the standard deviation of the predicted response.

9.24 Rework Exercise 9.23 assuming that the constrained region is defined by −1.5≤
x1 + x2 + x3 ≤ 2.

9.25 Consider the three experimental designs considered in Exercises 6.9, 6.10, and 6.11
for the auto-bumper plating process, assuming a full second-order model.

(a) Find the relative D-efficiencies of the designs in 6.10 and 6.11 relative to that in
6.9. Which design is best?

(b) Find the G-efficiencies of the three designs.

(c) Construct FDS plots for the three designs.

(d) Based on the results of parts (a), (b), and (c), which design would you recom-
mend?

9.26 Consider three competitors to the 22 factorial design, all operating on the same
design space (using coded variables: x1 and x2 in [−1, 1])

XA =
⎡⎢⎢⎢⎣

1 0.5 1
1 −0.5 1
1 1 −1
1 −1 −1

⎤⎥⎥⎥⎦
XB =

⎡⎢⎢⎢⎣

1 0.5 0.5
1 −0.5 0.5
1 1 −0.5
1 −1 −0.5

⎤⎥⎥⎥⎦
XC =

⎡⎢⎢⎢⎣

1 0.5 0.5
1 −0.5 1
1 1 −1
1 −1 −0.5

⎤⎥⎥⎥⎦

For a first-order model, y= 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝜀, compare the three models and the
22 factorial design based on
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(a) orthogonality

(b) variance of the model coefficients

(c) scaled predicted variance (using some graphical summary)

Based on your findings in (a)–(c) rank them for each of the criteria.

9.27 Consider a situation in which there are two design variables and one is interested in
fitting a second-order model. A curious and interesting comparison surfaces when
one considers the central composite design (octagon) and a design with points
placed at the vertices of a hexagon. Both are equiradial designs. The beauty of the
hexagon (plus center runs)—or even the pentagon (plus center runs)—lies in its high
relative efficiency in spite of its small design size. One should always choose the
octagon unless it is too costly. However, it is interesting to compare the two on a per
observation basis. Consider a comparison between a hexagon and a rotatable CCD.
To make a valid comparison, one should scale the designs so they are comparable,
that is, reside on the same radius (keep in mind that scaling is really arbitrary). The

factorial points on the CCD are at radius
√

2. As scaled in Equation 9.7, the hexagon
lies on a circle of radius 1. As a result, for proper comparison the hexagon should

be multiplied by
√

2. Thus we have

x1 x2

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 0√

2∕2
√

3∕2

−
√

2∕2
√

3∕2

−
√

2 0

−
√

2∕2 −
√

3∕2√
2∕2 −

√
3∕2

0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(hexagon)

and, of course,

x1 x2

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
−1 1

1 −1
1 1

−
√

2 0√
2 0

0 −
√

2

0
√

2
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(CCD)
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Use D1 and D2 to construct scaled prediction variances. Both designs are rotatable,
so a rather complete comparison can be made by filling in the following table:

𝜌 N Var[ ŷ(x)]∕𝜎 2 for D1 N Var[ ŷ(x)]∕𝜎 2 for D2

0
0.5
1.0
1.5√

3

Comment on your study.

9.28 Consider the comparison of the CCD and BBD shown in Fig. 9.5. Suppose that the
total cost of the experiment is not critical to the decision of which design to select.
Construct the VDG and FDS plots for the 17 run CCD and the 15 run BBD using the
unscaled prediction variance UPV = x(m)′(X′X)−1x(m)/𝜎2 to compare the designs.
Which design would be preferred now?

9.29 Consider the hybrid designs 310 and 311B. By plotting FDS plots of both SPV
and UPV for different numbers of center runs, determine what a suitable number of
center runs would be for each design.

9.30 Consider the comparison of the 33 factorial design (N= 27) and the face-centered
cube (N= 15) shown in Figs. 9.10 and 9.11. Construct the VDG and FDS plots for
these designs using the unscaled prediction variance UPV= x(m)′(X′X)−1x(m)/𝜎2

which does not penalize for design size to compare the designs. Which design
would be preferred now? When would it be appropriate to use this comparison
rather than the one based on the SPV?

9.31 Consider the comparison of the five-factor CCD on a cuboidal region using either
the full factorial or the 1

2
fraction. Based on their relative D-, G-, and I-efficiencies,

and the FDS plot for scaled prediction variance, which design is better?

9.32 Consider the hybrid designs 416A, 416B, and 416C, each with one center run. By
plotting FDS plots of SPV, which design seems preferable?

9.33 Consider the Hoke D2 (N=15) and D6 (N=19) designs for four factors in a cuboidal
region described in 8.1.1. Based on their relative D-, G-, and I-efficiencies, and the
FDS plot for scaled prediction variance, which design is better?

9.34 For the same four factor cuboidal region described in Exercise 9.33, find I-optimal
optimal designs of size N= 15 and N= 19 using a statistical software package. Based
on their relative D-, G-, and I-efficiencies, and the FDS plot for scaled prediction
variance, which design do you prefer? How do these designs compare to the Hoke
D2 and D6 designs of Example 9.33?

9.35 An experiment was conducted to study the effect of temperature and type of oven
on the life of a particular component being tested. Four types of ovens and three
temperature levels were used in the experiment. Twenty-four pieces were assigned
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TABLE E9.1 The Experimental Design for Exercise 9.35

Life
Temperature
(degrees) Oven O1 O2 O3 O4

500 227 214 225 260
221 259 236 229

550 187 181 232 246
208 179 198 273

600 174 198 178 206
202 194 213 219

randomly, two to each combination of treatments, and the results in Table E9.1 were
recorded:

(a) Fit an appropriate response surface model using −1, 0, 1 coding for temperature.
Be sure to determine if interaction exists among ovens arid the response surface
terms in temperature.

(b) Find the estimated optimum temperature—that is, that which maximizes oven
life. Does it depend on oven type?

9.36 To estimate the degree of a suspension polyethylene, we extract polyethylene by
using a solvent, and we compare the gel contents (gel proportion). This method is
called the gel proportion estimation method. In the book Design of Experiments
for Quality Improvement published by the Japanese Standards Association (1989), a
study is reported on the relationship between the amount of gel generated and three
factors (solvent, extraction temperature, and extraction time) that influence amount
of gel. The data are provided in Table E9.2.

(a) Build (and state) an appropriate response surface model in terms of coded
temperature and time. Write a separate model for each solvent if necessary.

(b) Give an estimate of the conditions that maximize the amount of gel generated.
Is there any indication of conditions for future experiments?

9.37 Consider a situation in which one is interested in three levels of each of two quantita-
tive design variables. These levels are −1, 0, 1. In addition, there are three levels of a

TABLE E9.2 The Experimental Design for Exercise 9.36

Amount of Gel

Solvent Temperature Time: 4 8 16

Ethanol 120 94.0 93.8 91.1
94.0 94.2 90.5

80 95.3 94.9 92.5
95.1 95.3 92.4

Toluene 120 94.6 93.6 91.1
94.5 94.1 91.0

80 95.4 95.6 92.1
95.4 96.0 92.1
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single qualitative factor. It is felt that the design should accommodate a second-order
model in the quantitative variables and interaction between the linear terms and the
qualitative variable.

(a) Write out the model to be fitted.

(b) Using 18 experimental runs, construct, using a computer-generated design pack-
age, an appropriate design.

9.38 The following data was taken on two quantitative design variables and one two-level
qualitative variable:

x1 x2 z y

−1 1 −1 17.5
1 1 −1 22.1
0 0 −1 25.2
0 0 −1 26.5
0 0 +1 29.4
0 0 +1 31.3

−1 −1 +1 19.2
1 −1 +1 13.4

(a) Fit a model of the type

ŷ = b0 + c1z + b1x1 + b2x2 + b12x1x2

(b) Edit the model, and give recommendations on levels of x1 and x2 that maximize
the response.

9.39 In Section 6.3.3, the method of ridge analysis is used to optimize a process that
is designed to convert 1,2-propanediol to 2,5-dimethyl-piperazine. The design is
a central composite design with k= 4 and 𝛼 =1.4. Suppose, in addition, that two
different catalysts are being used. The design and response values are in Table E9.3.

(a) Construct an appropriate response surface model taking into account the two
catalysts (z=+1, −1).

(b) Obtain a separate response surface model for each catalyst.

9.40 Consider Exercise 3.9 in Chapter 3. Four factors were varied, and their effects were
measured on alloy cracking. One of the factors is the type of heat treatment method
(factor C) at two levels. This is a good example of a mix of qualitative and quantitative
variables. Use the coding −1 and +1 for all factors, including factor C.

(a) Write out an appropriate model for relating the design variables to the response.
Be sure the model is edited if necessary.

(b) Use your result in (a) to develop two response surface models, one for each heat
treatment method.

9.41 Consider Exercise 4.12. A 26−3 fractional factorial is used to fit a first-order model

(a) Write out the first-order model using −1, +1 coding on the material type as the
qualitative variable.

(b) Write out separate models for material type 1 and material type 2.

(c) What assumptions are you making in your developments in (b) above?
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TABLE E9.3 The Experiment in Exercise 9.39

x1 x2 x3 x4 z y

−1 −1 −1 −1 −1 68.4
1 −1 −1 −1 1 28.5

−1 1 −1 −1 1 22.0
−1 −1 1 −1 1 15.7
−1 −1 −1 1 1 48.5

1 1 −1 −1 −1 28.5
1 −1 1 −1 −1 18.7
1 −1 −1 1 −1 65.8

−1 1 1 −1 −1 9.2
−1 1 −1 1 −1 32.9
−1 −1 1 1 −1 12.5
−1 1 1 1 1 49.8

1 −1 1 1 1 12.9
1 1 −1 1 1 30.9
1 1 1 −1 1 22.9
1 1 1 1 −1 28.2

−1.4 0 0 0 −1 32.1
1.4 0 0 0 −1 18.2

0 −1.4 0 0 −1 19.2
0 1.4 0 0 −1 50.5
0 0 −1.4 0 1 52.1
0 0 1.4 0 1 39.2
0 0 0 −1.4 1 30.7
0 0 0 1.4 1 40.7
0 0 0 0 1 39.5
0 0 0 0 1 38.2

9.42 Consider the data in Exercise 4.14. Two qualitative variables appear.

(a) Fit a model containing all main effects and two-factor interactions.

(b) Edit the model to contain only significant terms.

(c) Use your model in (b) to write separate models for each combination of the
qualitative variables.

9.43 There are 27 nonisomorphic fractional factorial designs for 16-run experiments
involving six factors. The appendix of Johnson and Jones (2010) lists the defining
equations of the different choices. The results from Lu, Johnson, and Anderson-
Cook (2014) evaluating two design criteria, E(s2) and tr(AA′), for all of the possible
designs are shown in Table E9.4. Recall E(s2) looks at the correlation between all of
the main and two-factor interactions among the six factors and tr(AA′) considers the
amount of bias on the main effects, if some of the two-factor interactions are active.

(a) Which is the best design for minimizing E(s2)? Why might an experimenter
select this design?

(b) Which design is best for minimizing tr(AA′)? Why might an experimenter prefer
this design?
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TABLE E9.4 Comparison of Six-Factor 16-Run Experiments

Design # E(s2) tr(AA′) Design # E(s2) tr(AA′)

1 25.6 12 15 9.14 4.5
2 10.97 6 16 18.29 6
3 7.31 6 17 10.97 6
4 7.31 3 18 7.31 6
5 10.97 0 19 9.14 3
6 7.31 3.75 20 9.14 4.5
7 9.14 4.5 21 14.63 7.5
8 9.14 1.5 22 10.97 4.5
9 9.14 5.25 23 9.14 5.25

10 18.29 9 24 9.14 4.5
11 10.97 6 25 14.63 6
12 10.97 3 26 10.97 6
13 7.31 3 27 12.8 6
14 7.31 3

(c) Examine a scatterplot of the two design criteria and use it to construct the Pareto
front described in Chapter 7 with the set of best designs based on E(s2) and
tr(AA′)?

(d) If an experimenter wanted to have balance between the two criteria, which design
would you recommend?

(e) If an experimenter wanted to select design 10 to run, how would you convince
him that this was not a sensible choice based on these two criteria? Which design
might be a better alternative?

9.44 Consider Exercise 9.43. Designs 1, 2, 3, 4, 5, 10, 16, 21, 25 are regular designs
(standard fractional factorials, or replicated fractional factorials) and the remainder
of the designs are nonregular (see Section 4.8). Looking at separate scatterplots for
the two classes of designs,

(a) Identify the Pareto front based on E(s2) and tr(AA′) for the regular designs.

(b) Identify the Pareto front based on E(s2) and tr(AA′) for the nonregular
designs.

(c) If an experimenter wanted to choose a best design from between regu-
lar and nonregular designs, which class of designs would you recommend?
Explain.

(d) Based on your answer in (c), which design would you select to run if you had
an experiment with 16 runs and six factors?

9.45 Consider Exercise 9.43. Using the constrained optimization described in Section
7.2.3 to select best designs

(a) with the best E(s2), conditional on tr(AA′) being no worse than 2.5.

(b) with the best tr(AA′), conditional on E(s2) being no worse than 8.

(c) with the best tr(AA′), conditional on E(s2) being within 30% of the best possible
value.
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TABLE E9.5 Comparison of Seven-Factor 16-Run Experiments

Design # Regular E(s2) tr(AA′) Design # Regular E(s2) tr(AA′)

1 Y 28.44 21 29 N 10.67 8.25
2 Y 14.22 12 30 N 10.16 7.5
3 Y 12.19 9 31 N 12.19 6
4 Y 10.16 9 32 N 10.16 6
5 Y 10.16 6 33 N 10.16 6
6 Y 14.22 0 34 N 11.17 9
7 N 10.16 7.5 35 N 10.67 8.25
8 N 10.67 8.25 36 N 10.67 6.75
9 N 12.19 9 37 N 10.16 7.5

10 N 10.16 9 38 N 12.19 9
11 N 10.16 6 39 N 10.16 9
12 N 12.19 3 40 N 12.19 10.5
13 N 10.16 9 41 Y 16.25 12
14 N 12.19 10.5 42 Y 14.22 12
15 N 10.16 7.5 43 N 10.16 7.5
16 Y 20.32 15 44 N 14.22 9
17 N 14.22 12 45 N 12.19 9
18 N 12.19 9 46 N 10.16 7.5
19 N 10.16 9 47 N 10.16 9
20 N 14.22 6 48 N 11.17 9
21 N 10.16 6 49 N 11.17 6
22 N 10.16 6 50 N 11.17 9
23 N 10.67 6.75 51 Y 14.22 10.5
24 N 12.19 9 52 Y 14.22 10.5
25 N 10.16 9 53 N 10.16 7.5
26 N 11.17 4.5 54 N 10.67 8.25
27 N 11.17 7.5 55 N 10.67 6.75
28 N 11.17 4.5

9.46 There are 55 nonisomorphic fractional factorial designs for 16-run experiments
involving seven factors. Lu, Johnson, and Anderson-Cook (2014) evaluated two
design criteria, E(s2) and tr(AA′), and the results for all of the possible designs are
shown in Table E9.5.

(a) Using a scatterplot of the two criteria E(s2) and tr(AA′), is the best design to
minimize E(s2) regular or nonregular? What about for tr(AA′)?

(b) Construct the Pareto front based on all of the designs based on (s2) and tr(AA′).

(c) Are there more regular or nonregular designs on the Pareto front?

(d) What are some of the worst performing designs based on these criteria? How
much worse are they than choices on the Pareto front? Describe how this would
impact the results of the experiment if one of the suboptimal designs wee
selected.

(e) There are several ties on the Pareto front (different designs with the same
E(s2) and tr(AA′) values). How would you suggest that an experimenter choose
between the alternatives?
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9.47 Consider Exercise 9.46. Using the Pareto front obtained in 9.45(b), use the desir-
ability function approach of Section 7.2.3 to select a best design.

(a) If the experimenter scales the individual desirability functions so that the best
value on the Pareto front has value 1 and the worst value on the front has value
0, which design would be identified as best if the experimenter wanted to use an
additive desirability function to combine the two criteria with equal weight the
contributions?

(b) Repeat (a) with the individual desirability scales chosen so the best and worst
values in Table E9.5 define 1 and 0, respectively.

(c) Suppose that the experimenter wanted to prioritize E(s2) and give it twice the
weight of tr(AA′). What would be the best design using the same scaling as
described in (a)? Using the scaling in (b)?

(d) Describe which of the scaling seems more appealing and how you would rec-
ommend the experimenter choosing a best scale.

9.48 Consider the two Definitive Screening Designs (m = 4, c = 2) for 4 continuous
variables (A, B, C, D) and two categorical (or qualitative) factors (E, F) in Section
9.3.5. The DSD-augment design has fewer runs than then ORTH-augment design.

(a) Calculate the determinant of the moment matrix, |M| = ||X′X|| ∕Np for each
design assuming that a first order model is fit for all six factors. Which design
has a higher D-efficiency? What is the relative efficiency of the poorer design,||M1

||/||M2
||?

(b) The criterion |M| penalizes larger designs. If this penalty is removed, by looking
at only the numerator, what is the relative efficiency of the poorer design now?

(c) Suppose that after model fitting is performed, the final model includes the terms,
A, B, C, E, F, AB, AE, BF, CE, EF. Calculate |M| = ||X′X|| ∕Np for this model.

(d) By examining X′X, can all of the terms in the model in (a) be estimated inde-
pendently for each design? What is the consequence of this result?

(e) By examining X′X, can all of the terms in the model in (b) be estimated inde-
pendently for each design? What is the consequence of this result?

Short Answer Questions

9.49 Answer the following short answer questions:

(a) What are some of the trade-offs between using a central composite design and
a design with a smaller run size?

(b) Justify why a D-optimal design is a good choice for designed experiment? What
is the primary attribute of the design that this criterion focuses on?

(c) What are the trade-offs between focusing on G- and I-optimality for good
prediction variance properties of a design?

(d) Describe the impact of changing the number of center runs in a central composite
or Box–Behnken design.

(e) Describe the difference between the variance dispersion graph and the fraction
of design space plot for summarizing prediction variance.
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(f) Describe a situation where using a computer-generated design might lead to a
better choice than using a standard choice of design.

(g) To use an algorithm to create a computer-generated design, what choices does
the experimenter need to specify?

(h) Describe the difference between point exchange and coordinate exchange search
algorithms.

(i) Describe why different strategies and criteria are needed when qualitative factors
are considered as part of a designed experiment.

(j) Justify why using a Pareto front approach to design optimization might be
advantageous in many situations.

9.50 Answer the following True/False questions:

(a) If the Max Var[ŷ(x)] = 30 for a second-order model in five variables, the
G-efficiency of the experimental design is 0.75 or 75%.

(b) Any design that is D-optimal is also G-optimal.

(c) A variance dispersion graph is a two-dimensional representation of the predic-
tion variance properties of an experimental design when that design is used to
fit a specific model.

(d) Small composite designs for fitting response surfaces can be made rotatable by
proper choice of 𝛼.

(e) Small composite designs generally have inferior prediction variance properties
in comparison to hybrid designs.

(f) Fraction of design space plots can be constructed for any shaped design region.

(g) Variance dispersion graphs can be adapted for any shaped design region.

(h) A design is G-optimal if the maximum value of the scaled prediction variance
over the design region is exactly equal to the number of runs in the design, n.

(i) Point exchange and coordinate exchange are two methods for finding D-optimal
designs.

(j) D-optimal designs are usually found by exchange algorithms, which are guar-
anteed to produce a globally-optimal design.

(k) A design is used to fit a second-order model in five variables. The maximum
scaled prediction variance over the design region for the model is 24. The
G-efficiency for this design is 85%.

(l) I-optimality (or Q or IV optimality) is a better criterion than D-optimality for
selecting a second-order response surface design.

(m) Consider two competing 20-run designs. For design 1, we have found that
|(X′X)−1|= 5E-9, and for design 2 we have found that |(X′X)−1|= 4E-9. Both
designs are for k= 4 variables and will be used to fit a model with 15 parameters.
The relative efficiency of design 1 to design 2 is 80%.

(n) A design is A-optimal if the maximum value of the scaled prediction variance
over the design region is exactly equal to the number of model parameters, p.

(o) A primary disadvantage of hybrid designs for fitting response surfaces is that
they require unusual levels for the design factors.

(p) Adding one or two center runs to a hybrid design is a good idea because it
stabilizes the prediction variance over the design region.
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(q) Designs which are perfectly spherical (all design points equidistant from the
design center), with no center runs, do not give good prediction variance at the
center of the region.

(r) The “messy levels” associated with hybrid designs are a real problem as even
minor deviations from specified levels results in poor design efficiency.

9.51 Circle the correct answer for each question:

(a) The variance dispersion graph for a design
(i) Always only has one line to represent the prediction variance.

(ii) Can only be used with second-order rotatable designs.

(iii) Deals with the scaled prediction variance on a sphere of radius r but ignore
the volume associated with this information.

(iv) None of (i)–(iii) are correct statements.

(v) All of (i)–(iii) are correct statements.

(b) The fraction of design space plot for a design
(i) Always only has one line to represent the prediction variance.

(ii) Can only be used with second order rotatable designs.

(iii) Can only be constructed for cuboidal design regions.

(iv) None of (i)–(iii) are correct statements.

(v) All of (i)–(iii) are correct statements.



10
ADVANCED TOPICS IN RESPONSE
SURFACE METHODOLOGY

In this chapter we deal with several more advanced response surface topics. This chapter
focuses on the effects of bias in the fitting of response surface models, the effects of errors
in the design variables, experiments with computer models, minimum-bias estimation as
an alternative to the method of least squares, the role of artificial neural networks in RSM,
response surface designs in a split-plot structure, and how to deal with non-normal responses
through the use of generalized linear models.

10.1 EFFECTS OF MODEL BIAS ON THE FITTED MODEL AND DESIGN

In Chapter 8 we discussed the role of model bias on the test of lack of fit and the estimate
of the error variance 𝜎2. We learned that if the fitted polynomial approximation is given by

ŷ = X1b1 (10.1)

and the true model for the expected response E(y) is better approximated by

E(y) = X1β1 + X2β2 (10.2)

then the estimator b1 is biased, and the estimator of 𝜎2, the error mean square in the analysis
of variance, is biased upward. In fact, it is the bias in the mean squared error that one is
detecting in a standard lack-of-fit test. This is the result of the mean squared error being
a combination of bias introduced from a misspecified model and pure error, if the design
contains replicates.

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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The important point here is that there are two types of model errors. In the postulated
model

y = X1β1 + 𝜀

X1β1 is merely an approximation; errors associated with the model can be put into two
categories:

1. Random errors—that is, elements in 𝜀 (with variance 𝜎2)

2. Systematic errors—that is, bias errors of the type X1β1 −E(y)

Apart from the simple lack-of-fit test, the entire emphasis in design and analysis has been
placed on variability produced by random variation. In particular, all of experiment design
assessment criteria in Chapter 9 deal with variance oriented criteria; that is, D, G, A, V, and
I (or IV) optimality all deal with criteria that relate to X′X or the moment matrix X′X/N for
a particular model that is assumed to be correct. In what follows we link the I-optimality
criterion with another involving model bias.

What Effect Does Design Have on Variance and Bias? The most effective way to
demonstrate the effect of design on variance and bias is to illustrate with a simple scenario.
Suppose that k= 1 and the true model f(x) is given by

f (x) = 𝛽0 + 𝛽1x + 𝛽11x2 = 1 + x + x2 (10.3)

and it is approximated by a straight line with the formal fitted model

ŷ(x) = b0 + b1x

For simplicity we assume that the region of interest and region of operability are the same,
namely, the interval [−1, +1]. In addition, suppose the design contains a single run at each
of the endpoints, −1 and +1. As a result, the variance transmitted to the predicted value,
namely 𝜐 (x) = N Var[ŷ(x)], is given by (assuming 𝜎 = 1)

𝜐(x) = 2[Var(b0) + x2Var(b1)]

= 2
[1

2
+ x2Var(b1)

]
(10.4)

= 2

[
1
2
+ x2

2

]

because Var(b1) = 𝜎2∕
∑2

i=1(xi)
2 = 1

2
. As a result,

𝜐 (x) = 1 + x2 (10.5)

The measure of bias that is consistent in units with 𝜐(x) is given by

d(x) = N[Eŷ(x) − f (x)]2 (10.6)
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We have E[ ŷ(x)] = E(b0) + xE(b1). Recall from Chapter 8 that if one fits an incomplete
model ŷ = X1β1, when in fact E(y)=X1β1 +X2β2, then

E(b1) = β1 + (X′
1X1)−1X′

1X2β2

Indeed, in our case

β =
[ 1

1

]
, (X′

1X1)−1 =
[ 1

2
0

0 1
2

]
, and

X′
1X2 =

[ 1 1
1 −1

] [ (1)2

(−1)2

]
=
[ 2

0

]

Thus, because β2 = 𝛽11 = 1, we obtain

E
[ b0

b1

]
=
[
𝛽0 + 1
𝛽1

]

As a result, in this case the bias is transmitted only to the intercept estimate. Thus E[ŷ(x)] =
𝛽0 + 1 + 𝛽1x = 2 + x. From Equation 10.6 we obtain

d(x) = 2[𝛽0 + 1 + 𝛽1x − (𝛽0 + 𝛽1x + x2)]2

= 2[1 − x2]2 (10.7)

The results in Equations 10.5 and 10.7 represent the two components that contribute to
error in predicted values ŷ(x) in the region [−1, +1]. Now, consider Fig. 10.1. The actual
function f(x) is plotted along with E[ŷ(x)] = 2 + x. The differences, or vertical deviations,
represent model bias values that are incurred with this endpoint design, namely, the two-
point design at −1 and +1.

Figure 10.1 True function f(x) and E[ ŷ(x)] for design with points at −1, +1.
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Now, suppose we consider an alternative design, namely, a two-point design at the points
−0.6 and +0.6. Again, in the fitted model ŷ(x) = b0 + b1x, b1 is found to be unbiased for
𝛽1, but b0 is biased. Following the same steps as before, we have

E

[
b0

b1

]
=

[
𝛽0

𝛽1

]
+
⎡⎢⎢⎢⎣

1
2

0

0
0.5

(0.6)2

⎤⎥⎥⎥⎦

[
1 1

−0.6 0.6

][
(−0.6)2

(0.6)2

]
𝛽11 =

[
𝛽0 + 0.36

𝛽1

]

Note that the bias in the intercept is not as great as in the case of the previous endpoint
design. Thus the squared bias d(x) is given by

d(x) = 2[E(b0 + b1x) − (𝛽0 + 𝛽1x + 𝛽11x2)]2

= 2[𝛽0 + 0.36 + 𝛽1x − 𝛽0 − 𝛽1x − 𝛽11x2]2

= 2[0.36 − x2]2

The expected value of the fitted approximation, namely E[ ŷ(x)], is given by

E[ ŷ(x)] = 1.36 + x

Figure 10.2 displays f(x) and E[ ŷ(x)] in the case of the second two-point design.
Figures 10.1 and 10.2 reveal how the structure of the bias values E[ ŷ(x)] − f (x) are

affected by the two designs in different ways. In the case discussed here the endpoint
design results in rather small bias errors only near the endpoints where the design points
are located. Near the design center, very large bias errors occur because there are no data
there. As a result, it would appear reasonable that if design points are taken closer to the
center, as in the case of the second design, the bias errors should be smaller. In the case
of the second design, very small errors occur near the design points and moderate errors
are experienced near the design center and at the design perimeter. Clearly, designs with
points that are pushed closer to the center of the design afford considerably more protection
against bias errors than does the endpoint design, though of course the latter is a minimum
variance design. This suggests that when one fears model inadequacy, perhaps there is a

Figure 10.2 True function f(x) and E[ ŷ(x)] for design at points −0.6, 0.6.
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need to consider some type of compromise design, because a strategy involving protection
against bias errors works counter to a strategy designed to minimize variance.

This trade-off between the variance of a design and potential bias is often referred to
as the bias-variance trade-off. Recall in Section 8.1 we discussed 11 desirable properties
of response surface designs. We divided the properties into different categories, where the
first was based on the assumption that the experimenter had made an appropriate choice of
model on which to base the choice of design. If the model is correct (or closely approximates
the true underlying relationship between the response and factors), then focusing on good
estimation and prediction based on that model is the right priority.

However, if the model is not correct (or is a poor approximation to the true underlying
relationship), then the second category described in Section 10.1 becomes much more
important. In this case, the focus is on minimizing the consequences of the misspecified
model, by protecting against bias and having the opportunity to discover that the assumed
model does not perform well.

Where this becomes important for the experimenter is that decisions about the assumed
model must be made before any data are collected. Hence, this highlights the need to think
carefully about the choice of model, as much depends on this choice throughout the analysis
of data obtained. We should note that both the designs shown in Figs. 10.1 and 10.2 do
not have any opportunity to detect the curvature of the true underlying relationship defined
in Equation 10.3. A third possible design might be to collect data at three locations −1,
0, +1 or −0.6, 0, +0.6. Either of these designs would now provide information about the
curvature and could provide the opportunity to update the model. However, including this
additional design location does require an additional observation to be collected. Hence, in
addition to thinking about the bias–variance trade-off, some consideration of cost now has
also been added.

It should be increasingly clear to the reader that selecting a good design has many
facets to balance and that naively assuming that the chosen model is correct can have
negative consequences, if that assumption later proves to be incorrect. An approach such
as that described in Section 9.4 might be considered to formally examine the bias–variance
trade-off if there is model uncertainty.

10.2 A DESIGN CRITERION INVOLVING BIAS AND VARIANCE

The scientist or engineer who applies RSM may not always be aware when he or she
should fit a second-order model. However, very often only a moderate amount of model
inadequacy (in magnitude less than is detectable by a lack-of-fit test) can lead to errors that
are as sizeable as variation due to random errors.

It is natural to consider combining bias and variance through the mean squared error
criterion

E[ŷ(x) − f (x)]2 (10.8)

Here x is a vector to allow for multiple design variables. Box and Draper (1959, 1963)
introduced an average mean squared error criterion in which the mean squared error in
Equation 10.8 is averaged over a region of interest in the design variables. They also
showed some compelling evidence that bias due to model misspecification should not be
ignored when one chooses an experimental design for response surface exploration. Indeed,
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there are situations when model bias is the dominant component in the mean squared error
formulation. As we saw in the development in Section 10.1, it often occurs that the minimum
variance approach applies a premium to pushing points to the edge of the region of interest
(much as in a D-optimal approach), whereas a minimum bias approach calls for more
placement of points that are at an intermediate distance from the design center. The details
depend a great deal on (a) the model that one is fitting and (b) the model that one chooses
to protect against. The latter model usually involves model terms that are of order higher
than that of the assumed model.

Generalization of the Average Mean Squared Error Consider the mean squared error of
Equation 10.8. This average squared error loss criterion is written so as to be a function
of x, the location at which one is predicting the response with ŷ(x). Now, the mean squared
error in Equation 10.8 can be partitioned as

E[ŷ(x) − f (x)]2 = E{[ ŷ(x) − E[ŷ(x)]] + [E[ŷ(x)] − f (x)]}2

= E{ŷ(x) − E[ ŷ(x)]} + {E[ ŷ(x)] − f (x)}2 (10.9)

The cross-product term in the above squaring operation is zero. The two terms on the
right-hand side of Equation 10.9 are, respectively, the variance and the squared bias
of ŷ(x).

It should be clear from the foregoing and other developments in this text that there is
a tradeoff in dealing with variance and bias. It should also be apparent that Equation 10.9
does not afford the user a single-number criterion, because the mean squared error depends
on x, the point at which one predicts. However, Box and Draper suggested the use of an
average mean squared error (AMSE), where the quantity E[ ŷ(x) − f (x)]2 in Equation
10.9 is averaged over x in a preselected region of interest. In other words, a quantity

AMSE = NK
𝜎2 ∫R

E[ŷ(x) − f (x)]2 dx (10.10)

was offered as a single-number criterion. The integral ∫R, along with the multiplication by
K = 1∕∫R dx, the reciprocal of the volume of the region, implies that the quantity AMSE
is an average of the MSE over R. The quantity N/𝜎2 is a scale factor in the same spirit
as that provided by the scaled prediction variance N Var[ ŷ(x)]∕𝜎 2, which has been used
throughout the text. The AMSE can be subdivided as follows:

AMSE = NK
𝜎2 ∫R

E{ ŷ(x) − E[ ŷ(x)]}2dx + NK
𝜎2 ∫R

{E[ ŷ(x)] − f (x)}2dx

= APV + ASB (10.11)

where APV stands for average prediction variance and ASB stands for average squared
bias. Here, of course, the averaging is done over the region of interest R. In what follows
we focus heavily on designs that minimize APV and ASB, with strong emphasis on the
latter. Note that minimization of APV is equivalent to the I-optimality criterion discussed
in Chapter 9.
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The partition of mean squared error into variance and squared bias should bring to mind
the material in Chapter 8 dealing with lack of fit. The structure of bias stems from the
assumption that the model

ŷ = X1b1

is fitted and the true model is a polynomial of a higher degree. The matrix X1 contains
model terms of a low-order approximation of the true structure, and the matrix X2 contains
additional higher-order terms that one wishes to protect against in designing the experiment.
Thus

f = E(y) = X1β1 + X2β2

Here, of course, y is the N × 1 vector of observations. From material in Chapter 8, we know
that the estimator b1 is biased, namely,

E(b1) = β1 + Aβ2 (10.12)

where

A = (X′
1X1)−1X′

1X2

As a result, the bias portion of AMSE, namely ASB, can be written

ASB = NK
𝜎2 ∫R

{x′1E(b1) − [(x′1β1 + x′2β2)]}2dx (10.13)

where x1 contains the p1 model terms that are fitted, and x2 contains the p2 terms that are
ignored. On invoking Equation 10.12, Equation 10.13 reduces to

ASB = NK
𝜎2 ∫

R

[(x′1A − x′2)β2]2dx

= NK
𝜎2 ∫

R

β′
2[A′x1 − x2][x′1A − x′2]β2

= NK
𝜎2 ∫

R

[β′
2A′x1x′1Aβ2 − 2β′

2x2x′1Aβ2 + β′
2x2x′2β2]dx (10.14)

For the case of APV we have

APV = NK
𝜎2 ∫

R

x′1(X′
1X1)−1x1dx
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10.2.1 The Case of a First-Order Fitted Model and Cuboidal Region

For the situation where the fitted model is first-order, we have

ŷ(x) = b0 +
k∑

i=1

bixi

and hence x′1 = [l, x1,… , xk]. If we further assume that we are interested in protecting
against a true model that is of second order, then

X1 =

⎡⎢⎢⎢⎢⎣

1 x11 ⋯ x1k

1 x21 ⋯ x2k

⋮ ⋮ ⋮

1 xN,1 ⋯ xN,k

⎤⎥⎥⎥⎥⎦

and

X2 =

⎡⎢⎢⎢⎢⎢⎣

x2
11 ⋯ x2

1k x11x12 ⋯ x1,k−1 x1,k

⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮

x2
N,1 ⋯ x2

N,k xN,1xN,2 ⋯ xN,k−1 xN,k

⎤⎥⎥⎥⎥⎥⎦

(10.15)

Assume that both the region of interest and the region of operability on the design variables is
−1≤ xi ≤ 1 for i= 1, 2,… , k. If we consider variance alone, we can borrow from Chapter 9,
where we learned that the I-optimal design is an orthogonal design in which all levels are
set at the ±1 extremes. However, for the case of bias, one would expect from the discussion
in Section 10.1 that levels should be placed inward from the ±1 extremes.

Suppose we consider the minimization of ASB in Equation 10.14 by choice of design.
Using the fact that A= (X′

1X1)−1(X′
1X2)=M11

−1 M12, where M11 =X′
1X1/N and

M12 =X′
1X2/N are moment matrices. We have

ASB = NK
𝜎2 ∫

R

β′
2[M′

12M−1
11 x1x′1M−1

11 M12 − 2x2x′1M−1
11 M12 + x2x′2]β2 dx

At this point it is convenient to introduce the concept of region moments. Letting α2 =√
Nβ2∕𝜎, ASB can be written as

ASB = α′
2[M′

12M−1
11 μ11M−1

11 M12 − 2μ′
2M−1

11 M12 + μ22]α2 (10.16)

where

μ11 = K
∫R

x1x′1 dx, μ22 = K
∫R

x2x′2 dx and μ12 = K
∫R

x1x′2.
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The quantities μ11, μ22, and μ12 are region moment matrices. The matrix μ11 contains
first and second moments. In fact,

μ11 = K
∫R

x1x′1 = K
∫R

⎡⎢⎢⎢⎢⎣

1
x1
x2
⋮
xk

⎤⎥⎥⎥⎥⎦
[1, x1, x2,… , xk] dx

Because ∫R implies ∫ 1
−1 ∫

1
−1 ⋯ ∫

1
−1, this first- and second-order region moment matrix μ11

is given by

μ11 =

⎡⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0

0
0
⋮ 1

3
Ik

0

⎤⎥⎥⎥⎥⎥⎦
The matrix μ22, in a similar fashion, displays region moments through order four, while
μ12 contains region moments through order three.

An easy prescription for the form of the design that minimizes ASB is obtained by
writing the average squared bias in Equation 10.15 as

ASB = α′
2[(μ22 − μ′

12μ
−1
11 μ12) + (M−1

11 M12 − μ−1
11 μ12)′μ11(M−1

11 M12 − μ−1
11 μ12)]α2

(10.17)

In the second term in Equation 10.17 the matrix μ11 is positive definite. [see Box and
Draper (1987) and Myers (1976)]. As a result, a sufficient condition for a minimum bias
design (i.e., a design that minimizes ASB) is to let

M11 = μ11 and M12 = μ12 (10.18)

that is, the design moment matrices M11 and M12 should be equal to the corresponding
region moment matrices μ11 and μ12. As a result, the minimum bias design is one in which
ASB=α2

′[μ22 −μ′
12μ11

−1μ12]α2. Note that selection of an appropriate design reduces
to the selection of design moment matrices M11 and M12. In the case where a first-order
model is being fitted and one seeks to protect against a second-order model, M11 contains
moments through order two and M12 contains moments through order three. However, note
that Equation 10.17 allows for the minimum ASB in general—that is, if one fits a model
with the form ŷ = X1b1 and protection is sought against a model y = X1β1 + X2β2.

Single Design Variable—Minimum Bias Design It is useful to write one of the general
expressions in Equation 10.18 for the special case of a single design variable. Here, of
course, the design becomes the selection of the spacing of points in the interval [−1, +1]
in the design variable. As a result, we assume a fitted first-order model

ŷ(x) = b0 + b1x
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when the true structure is best approximated by

E[y(x)] = 𝛽0 + 𝛽1x + 𝛽11x2

We have an experiment that results in

X1 =
⎡⎢⎢⎢⎣

1 x1
1 x2
⋮ ⋮
1 xN

⎤⎥⎥⎥⎦

with

X2 =

⎡⎢⎢⎢⎢⎢⎣

x2
1

x2
2

⋮

x2
N

⎤⎥⎥⎥⎥⎥⎦

.

The relevant moment matrices are

M11 =
X′

1X1

N
=
[

1 [1]

[1] [11]

]

and

M12 =
[ [11]

[111]

]

where [11] = (1∕N)
∑

u x2
u, [1] = (1∕N)

∑
u xu, and [111] = (1∕N)

∑
u x3

u. Now, the region
moment matrices μ11 and μ12 are of the same dimension and structure as their design
moment counterparts M11 and M12. In fact,

μ11 = 1
2 ∫

1

−1

[ 1
x

]
[ 1 x ] dx =

[
1 0

0 1
3

]

and

μ12 = 1
2 ∫

1

−1

[ 1
x

]
[x2] dx =

[ 1
3

0

]
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For the interval [−1, +1], which represents the region of interest in x, the odd region
moments are all zero. The quantity 1

3
in μ11 and μ12 is the value of the second pure region

moment 1
2
∫

1
−1 x2dx. As a result, a very simple application of the results in Equation 10.18

suggests:

A minimum bias (minimum ASB) design for a fitted first-order model with protection
against a model of second order can be achieved by having [1]= 0, [11] = 1

3
and

[111]= 0.

The above result is not at all counterintuitive and, in fact, is certainly the kind of result
one expects from the discussion in Section 10.1. Clearly the minimum variance design
(i.e., the design that minimizes APV for this case) will have [1]= 0 and [11]= 1.0 (all points
pushed to the ±1 levels). The minimum bias design requires levels to be placed inward
from the ±1 extremes.

For the case of the single design variable, there are many designs that meet the moment
conditions that result in minimum bias—that is, minimum average squared bias. The
requirement of zero first and third moments requires only an equal sample size design with
levels spaced symmetrically around the center of the design interval. It is interesting, then,
that the design that best protects against the quadratic model can take many forms. For
example, a two-level design with, say, N observations (N even) requires

N∕2 observations at x =
√

1
3
= 0.58

N∕2 observations at x = −
√

1
3
= −0.58

Of course there are obvious advantages in using more than two levels. The extra degrees
of freedom for lack of fit are certainly useful. Thus, for three levels and N/3 runs at each
level, the design is given by

N
3

at x = a,
N
3

at x = 0,
N
3

at x = −a

where, to allow [11] = 1
3
, we have

2
3
a2 = 1

3

and thus

a =
√

1
2
≅ 0.707

This demonstrates the considerable flexibility in constructing the minimum bias design.
One can have various numbers of center runs and divide the remaining runs between two
levels symmetric around x= 0. For example, suppose 15 runs are allowed. Suppose, also,
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that three runs are to be used in the center. The remaining 12 runs are then evenly divided
between −a and a, where

(
4
5

)
a2 = 1

3

and thus

a =
√

5
12

≅ 0.644

Thus, it is important to be sure that all three moment conditions hold. The minimum bias
design need not have equally spaced levels. For example, consider the design with levels
−a2, −a1, a1, and a2 (no center runs) with N∕4 runs at each level. The values a1 and a2 are
such that

a2
1 + a2

2

2
= 1

3

There are many choices for a1 and a2 and thus many four-level designs. One example is

a1 =
√

1
6

and a2 =
√

1
2

and another is a1 = 1
2

and a2 =
√

5
12

.

Multiple Design Variables—Minimum Bias Design The use of Equation 10.18 is general
and applies in the case of the fitted model

ŷ(x) = b0 + b1x1 + b2x2 +⋯ + bkxk

Suppose we wish to protect against a full second-order model characterized by X2 in
Equation 10.15. Suppose the region of interest is a cuboidal region with −1 < xi ≤ 1 for
i= 1, 2,… , k. The pertinent region moments are

μ11 =

⎡⎢⎢⎢⎢⎣

1 0 ⋯ 0

0 1
3
Ik

⋮
0

⎤⎥⎥⎥⎥⎦

μ12 =

[ 1
3

1
3
⋯ 1

3
0 0 ⋯ 0

0

]

As a result, if we again accomplish minimum ASB by equating design moments to region
moments through order three, we require M11 =μ11 and M12 =μ12. This results in setting



10.2 A DESIGN CRITERION INVOLVING BIAS AND VARIANCE 555

all odd moments through order three equal to zero. It should be noted that

μ12 = 1
K ∫R

⎡⎢⎢⎢⎢⎣

1
x1
x2
⋮
xk

⎤⎥⎥⎥⎥⎦

[
x2

1, x2
2,… , x2

k , x1x2,… , xkxk−1

]
dx

and thus μ12 is a k+ 1 by k+ k(k− 1)∕2 matrix containing second and third moments. The
moment matrix M12 has the same dimension and structure. As a result, the minimum ASB
can be obtained by setting

[i] = 0 i = 1, 2,… , k
[ii] = 1

3
, i = 1, 2,… , k

[iii] = 0, i = 1, 2,… , k
[iij] = 0, i ≠ j
[ij] = 0, i ≠ j

[ijk] = 0, i ≠ j ≠ k

(10.19)

The two-level full factorial design in k variables contains the type of symmetries that result
in the above odd moments being zero. In order to achieve a design with each second pure

moment equal to 1
3
, the level of the factorial points must be ±g, where g =

√
1
3
= 0.58.

What About Fractional Factorials and Center Runs? It is clear that complete 2k factorials
with levels brought in considerably from the ±1 extremes in the case of a cuboidal region
satisfy the moment conditions given in Equation 10.19 for a minimum bias design. But will
fractional factorials suffice? For the case of odd design moments, the regular 2k− p fractional
factorial of resolution ≥III, or even the Plackett–Burman designs, produce moments [i],
[iii], [iij], and [iij] that are zero. However, the resolution III design does not result in
[ijk]= 0. This should be obvious, because all xi will not be orthogonal to all xjxk (i ≠ j ≠ k)
for the case of resolution III. However, the following statement can be made:

A minimum bias design in a cuboidal region for a first-order model with protection
against a model of second order is achieved with a 2k factorial design or a 2k−p fraction
with resolution≥IV. If the extremes of the cuboidal region are scaled to ±1, the design
levels will be at ±0.58.

Center runs are very useful when one desires to afford protection against curvature. The
conditions in Equation 10.19 on the odd moments are not altered by the use of center runs,
and the condition on the second pure moment is achieved with the intuitively appealing
result that the design levels can be moved closer to the ±1 extremes. This will likely be
an attractive alternative. For example, suppose one uses a 1

2
fraction of a 24 factorial with
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n0 = 4 center runs. The extremes for the region of interest are scaled to ±1, and a minimum
bias design is given by

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4
−g −g −g −g

g g −g −g
g −g g −g
g −g −g g

−g g g −g
−g g −g g
−g −g g g

g g g g
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with g determined so that [ii] = 1
3
. In fact,

g =
√(

12
8

)(
1
3

)
= 0.707

As a second example consider a 1
2

fraction of a 25 factorial with nc = 8 center runs. Using
±g notation to indicate design levels, a minimum bias design is produced for a cuboidal
region of interest scaled to ±1 by using a resolution V fraction with

g =
√(

24
16

)(
1
3

)
= 0.707

It should be clear that the selection of the region of interest is important. Minimizing the
bias due to an underspecification of the model requires that points be placed inward from
the extremes of that region, but the criterion (i.e., squared bias) is integrated, or averaged,
over the entire region. Anderson-Cook et al. (2009) consider several examples of comparing
designs on cuboidal regions for protecting against higher order models. While the cuboidal
region of interest is certainly quite common in practice, there are still instances in which
a spherical region is the operative region of interest. In the next section we discuss the
protection against bias due to the presence of a second-order model when the region of
interest is spherical.

10.2.2 Minimum Bias Designs for a Spherical Region of Interest

Consider again a fitted first-order model with protection against a second-order model, but
the squared bias in prediction is average over a spherical region. That is, there are ranges
in the variables that aid in structuring the region of interest, but locations that represent
simultaneous extremes in the variables are not included. As we discussed at length in
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Chapter 8, this condition suggests a region not unlike a sphere. For simplicity in what
follows, we will assume that the region of interest is a unit sphere—that is, the region

k∑
i=1

x2
i ≤ 1 (10.20)

Thus the variables are centered so that the center of the region is (0,0,… , 0) and the radius
of the sphere is 1.0.

As in the case of the cuboidal region, the minimum bias design for the spherical region
can be obtained by achieving moment conditions that are governed by Equation 10.18.
Again this involves equating design moments to region moments through order three. For
the region given by Equation 10.20, all odd region moments are zero and the second pure
region moment is given by K ∫R x2

i dx = 1∕(k + 2). Notice that for the special case in which

k= 1, the value is 1
3
. The minimum bias design for the spherical region of Equation 10.20

is achieved by a design with moment conditions:

[i] = [ij] = [iii] = [iij] = [ijk] = 0 (i ≠ j ≠ k)

[ii] = 1
k + 2

(i = 1, 2,… , k) (10.21)

Again it becomes clear that the points that produce the minimum bias design are set in from
the perimeter of the sphere. In addition, the symmetry of the region, like that of the cube,
requires a design symmetry that forces odd design moments through order three to be zero.
Once again the two-level factorial meets all design requirements, with the [ii]= l/(k+ 2)
produced by the choice of the specific factorial levels ±g.

Example 10.1 It is important to understand the importance of the scaling specified by the
region

∑k
i=1 x2

i = 1.0. This implies that the factorial points that are placed at the perimeter

of the region reside at ±1∕
√

k. The points ±1 are outside the region of interest in the metric
invoked by the region. Suppose then that k= 4 and a 24 factorial with nc = 5 center runs
is employed. The zero odd moments satisfy the requirements of a minimum bias design
according to Equation 10.21. The second pure moment [ii] should be

[ii] = 1
k + 2

= 1
6

As a result, with nc = 5 center runs, the 24 factorial contains the design levels ±g at

g =
√(

1
6

)
21
16

=
√

0.21

≅ 0.46

Therefore, the minimum bias design requires factorial points that are placed at 0.46, whereas

the factorial points at the perimeter of the design region are scaled to 1∕
√

4 = 0.5.
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10.2.3 Simultaneous Consideration of Bias and Variance

Early in Section 10.2 we introduced the notion of average mean squared error (AMSE) and
the partition of Equation 10.11 into APV and ASB. From that point on we have focused
strictly on bias and thus the minimization of ASB. At this point let us consider the use of
the entire AMSE. From Equations 10.l1 and 10.16 we have

AMSE = α′
2[(μ22 − μ′

12μ
−1
11 μ12)

+ (M−1
11 M12 − μ−1

11 μ12)′μ11(M−1
11 M12 − μ−1

11 μ12)]α2

+ NK
𝜎2 ∫R

Var[ŷ(x)]dx

(10.22)

As before, we are assuming, in this general formulation, that we are fitting a model ŷ = x′1b1
and the true model is given by E(y) = x′1β1 + x′2β2. Of course our emphasis focuses on
x′1β1 representing a first-order model, while x′2β2 contains second-order terms. The average
prediction variance can be written

NK
𝜎2 ∫R

Var[ ŷ(x)]dx = K
∫R

x′1M−1
11 x1dx = tr[M−1

11 μ11] (10.23)

Clearly a desirable design criterion is to select the design that minimizes AMSE. AMSE is a
function of design moments, region moments, and α2, a standardized vector of parameters.
It was clear in the previous section that the bias component can be minimized in spite of α2.
However, AMSE cannot be minimized with respect to design moments without knowledge
of α2.

As a result, the practical use of AMSE is difficult at best. However, it is of interest to
determine what role bias plays in the AMSE and, in particular, how effective the minimum
bias design is in controlling AMSE. The following subsection deals with these matters and
discusses the use of compromise designs—that is, designs that are not minimum AMSE
but are approximately minimum AMSE.

10.2.4 How Important Is Bias?

Let us consider the relative performance of the minimum variance and minimum bias
designs for k= 1 for various magnitudes of bias. In other words, let us ask which design is
able to more closely emulate the performance of the optimal design; that is, the design that
minimizes AMSE. In Table 10.1, various degrees of bias are listed in the form of

√
N𝛽11∕𝜎,

the standardized regression coefficient of the quadratic term. Here we are assuming a fitted
model

ŷ = b0 + b1x

and a true model

E( y) = 𝛽0 + 𝛽1x + 𝛽11x2
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TABLE 10.1 Values of Optimal [11] and AMSE for Optimal Design, Minimum Variance
Design, and Minimum Bias Design

[11] AMSE AMSE AMSE√
N𝛽11∕𝜎 APV/ASB (Optimum) (Optimum) ([11]= 1.0) ([11] = 1

3
)

0 1.0 1.333 1.333 2.0
0.50 10 0.999 1.466 1.466 2.022
1.0 7 0.687 1.699 1.867 2.088
1.5 5 0.565 1.910 2.533 2.205
2.0 3.7 0.500 2.133 3.466 2.352
2.5 3 0.462 2.382 4.672 2.551
3.0 2 0.432 2.666 6.135 2.805
4.0 1.5 0.399 3.333 9.872 3.422
4.5 1.0 0.388 3.718 11.521 3.798
5.0 0.9 0.379 4.153 14.677 4.222
7.0 0.4 0.359 6.316 27.465 6.355

with R scaled to [−1, +1]. For each value of
√

N𝛽11∕𝜎, the optimal design (minimizing
AMSE) was computed and thus the minimum value of AMSE was also computed. In
addition, the AMSE for the minimum bias ([11] = 1

3
) design and the AMSE for the min-

imum variance design ([11]= 1.0) were computed. These quantities are listed as well as√
N𝛽11∕𝜎. The degree of bias is quantified by the ratio APV/ASB—that is, the ratio of the

variance portion of the AMSE to the bias contribution in the case of the optimal design.
Study of Table 10.1 makes it clear that bias is an important consideration. Even when

the bias makes a relatively small contribution—for example, when APV/ASB= 5 or
APV/ASB= 3.7—the minimum bias design results in a smaller AMSE than that which
results from the minimum variance design. In addition, it is clear that the minimum bias
approach is considerably more robust than the minimum variance design. The minimum
bias design is never far from optimal (in terms of mean squared error), whereas the mini-
mum variance design performs quite poorly when the bias present is such that APV/ASB
< 5.

Table 10.1 suggests that perhaps a compromise design for which [11] is slightly larger
than the minimum bias value of 1

3
might be appropriate, because it should be extremely

robust—that is, very close in AMSE to that of the optimal design. A design with a second
moment [11] of 0.40–0.45 is in fact extremely robust. An impression can be obtained from
Table 10.2, which shows the performance of the design with [11]= 0.40. Obviously, the
use of [11]= 0.45 or 0.5 would produce even better performance for very small values of
the bias parameter

√
N𝛽11∕𝜎.

Tables similar to Tables 10.1 and 10.2 for k > 1 design variables can be constructed. The
results teach essentially the same lesson: if there is any suspicion at all that there is curvature
in the system, the minimum variance design is very likely to be counterproductive. In fact,
a reasonable rule of thumb to allow for possible model bias is to use a design with zero
moments through order three and second pure moments [ii] that are 20–25% higher than
that suggested by the minimum bias design. This design prescription serves as a reasonable
compromise and will provide a design that will not be far away in performance from the
optimal (minimum mean squared error) design over a wide range of bias in the system.
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TABLE 10.2 AMSE Values for the Optimal Design and
Compromise Design of [11]= 0.4
√

N𝛽11∕𝜎 AMSE (Optimal) AMSE ([11]= 0.40)

0 1.33 1.833
0.5 1.467 1.86
1.0 1.699 1.927
1.5 1.910 2.043
2.0 2.133 2.206
2.5 2.382 2.416
3.0 2.666 2.67
4.0 3.333 3.327
5.0 4.153 4.167
7.0 6.316 6.406

The above design moment recommendations can sometimes be a bit difficult to imple-
ment in practice. The problem often stems from uncertainty regarding what is truly the
region of interest. Even in the case of what might be perceived to be a cuboidal region, the
exact locations, in the design variables, of the corners of the region are not always known.
Certainly in preliminary studies where variable screening is involved, choices of ranges of
variables often require much thought. As a result, the recommendations made here should
be confined to situations in which the researcher is not engaged in variable screening but is
reasonably certain regarding the relative importance of design variables and the region in
which prediction or predicted values are sought. Thus, of course, protection is achieved by
designing an experiment that has resolution at least IV, and the design levels are brought in
from the perimeter of the region in which one is required to predict response.

10.3 ERRORS IN CONTROL OF DESIGN LEVELS

In practical situations one plans to design experiments according to some master plan that
entails the choice of a combination of design levels and a random assignment of these
design levels to experimental units. However, it is often difficult to control design levels.
This is true even in laboratory situations. This suggests a need to determine how one can
assess the effects of errors in control of design levels. For an excellent account see Box
(1963). Recall that this is one of the 11 desirable properties of response surface designs
described in Section 8.1.

The approach to assessment of errors in design levels in an RSM setting depends on the
structure of the error. In some (perhaps most) instances there is a chosen level according to
the design plan. This aimed at level is reported and used in the analysis even though it is
known that it is subject to error. The actual level that is experienced by the process is not
known. We call this the fixed design level case.

Fixed Design Level Case One must keep in mind that the actual levels are not observed
in this case. The deviation between the actual and the planned level is a random variable.
That is, for the uth run of the jth design variable we have

wju = xju + 𝜃ju (u = 1, 2,… , N, j = 1, 2,… , k) (10.24)
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where wju is the actual level, xju is the fixed and planned level, and 𝜃ju is a random error in
control. It may be assumed that

E(𝜃ju) = 0

Var(𝜃ju) = 𝜎 2
j (u = 1, 2,… , N, j = 1, 2,… , k)

For the case of multiple design levels, the variances of, 𝜎1
2, 𝜎2

2,… , 𝜎k
2 are the variances

of the errors in control.

First-Order Model Consider the fixed level case when one fits a first-order model. The
model, in terms of the true (yet unknown) levels, is given by

y = 𝛽0 + 𝛽1w1 + 𝛽2w2 +⋯ + 𝛽kwk + 𝜀 (10.25)

Because the analysis will be done on the planned levels, it is instructive to write the model
in Equation 10.25 as

y = 𝛽0 + 𝛽1(x1 + 𝜃1) + 𝛽2(x2 + 𝜃2) +⋯ + 𝛽k(xk + 𝜃k) + 𝜀

= 𝛽0 +
k∑

j=1

𝛽jxj +

{
𝜀 +

k∑
j=1

𝛽j𝜃j

}

= 𝛽0 +
k∑

j=1

𝛽jxj + 𝜀∗ (10.26)

The 𝜃j are random variables as described by Equation 10.24, but the xj are fixed (prede-
termined by the design choice). As a result, Equation 10.26 represents an almost standard
RSM model with model error

𝜀∗ = 𝜀 +
k∑

j=1

𝛽j𝜃j (10.27)

It becomes obvious from Equation 10.27 that the errors associated with controlling design
variables are transmitted to the model error and the result is an inflated error variance. As
a result, if the model in Equation 10.26 is used and least squares is used to estimate 𝛽0, 𝛽1,
𝛽2,… , 𝛽k with ordinary least squares, we have the following:

1. The regression coefficients are unbiased.

2. The variance–covariance matrix of b= (X′X)−1X′y is given by (X′X)−1𝜎∗2, where
𝜎∗2 = 𝜎2 +

∑k
j=1 𝛽

2
j 𝜎

2
j , assuming that the 𝜃j are independent. This results in inflated

error variances. Depending on the magnitude of the 𝜎j
2, the inflation may be severe.

3. Standard RSM (e.g., variable screening) and steepest ascent are valid, although they
may be rendered considerably less effective if the 𝜎j

2 are large. Of course, if the 𝜎j
2

are extremely small compared to the model variance 𝜎2, these errors will not result
in major difficulties.
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We emphasized that the conclusions drawn in 1 and 2 above do depend on the assumptions
made regarding the 𝜃j. Of particular interest is the assumption that the 𝜃j are unbiased—that
is, E(𝜃j)= 0. This assumption is certainly a reasonable one in most cases. However, if it
does not hold, the least squares estimator of 𝛽0 becomes biased.

Second-Order Model In the case of the second-order model, errors in control result in
more difficulties than one experiences in the first-order case if the error variances are not
negligible. Consider again Equation 10.24 and the second-order model given by

y = 𝛽0 +
k∑

j=1

𝛽jwj +
k∑

j=1

𝛽jjw
2
j +
∑ k∑

i<j=2

𝛽ijwiwj + 𝜀

= 𝛽0 +
k∑

j=1

𝛽j(xj + 𝜃j) +
k∑

j=1

𝛽jj(xj + 𝜃j)
2 +
∑ k∑

i<j=2

𝛽ij(xi + 𝜃i)(xj + 𝜃j) + 𝜀

= 𝛽0 +
k∑

j=1

𝛽jxj +
k∑

j=1

𝛽jjx
2
j +
∑ k∑

i<j=2

𝛽ijxixj

+

{
𝜀 +

k∑
j=1

𝛽j𝜃j +
k∑

j=1

𝛽jj𝜃j(2xj + 𝜃j) +
∑ k∑

i<j=2

𝛽ij[𝜃ixj + xi𝜃j + 𝜃i𝜃j]

}

= 𝛽0 +
k∑

j=1

𝛽jxj +
k∑

j=1

𝛽jjx
2
j +
∑ k∑

i<j=2

𝛽ijxixj + 𝜀∗ (10.28)

The model in Equation 10.28 is best analyzed by considering the expectation and variance
of 𝜀∗. Once again we have a standard RSM model with error 𝜀∗. However, in this case the
properties of 𝜀∗ are more complicated. The expected value of 𝜀∗ is given by

E(𝜀∗) =
k∑

j=1

𝛽jj𝜎
2
j

Because E(𝜀∗) ≠ 0 and the error bias
∑k

j=1 𝛽jj𝜎
2
j is independent of the xj, the least squares

estimator of 𝛽0 is biased by
∑k

j=1 𝛽jj𝜎
2
j .

In order to better illustrate the result in the case of the second-order model, we rewrite
𝜀∗ in Equation 10.28 as

𝜀∗ = 𝜀 +
∑ k∑

i<j=2

𝜃i(𝛽ijxj) +
∑ k∑

i<j=2

𝜃j𝛽ijxi +
∑ k∑

i<j=2

𝛽ij𝜃i𝜃j

+
k∑

j=1

𝜃j𝛽j + 2
k∑

j=1

𝛽jj𝜃jxj +
k∑

j=1

𝛽jj𝜃
2
j

(10.29)
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If one considers the variance of 𝜀∗ in Equation 10.29, it becomes apparent that:

1. The error variance is inflated by errors in control transmitted to 𝜀∗ just as in the
first-order case.

2. The error variance will no longer be homogeneous. Rather, Var(𝜀∗) depends on design
levels.

While we will not display 𝜎∗2 =Var 𝜀∗, it should be apparent that terms such as∑k
j=1 𝛽

2
j 𝜎

2
j ,
∑k

j=1 𝛽
2
ij[E(𝜃4

j ) − 𝜎4
j ], and

∑∑
i<1 𝛽

2
ij𝜎

2
i 𝜎

2
j inflate the error variance, whereas

terms such as 4
∑k

j=1 𝛽
2
ijx

2
j 𝜎

2
j ,
∑∑

i<j 𝛽
2
ijx

2
j 𝜎

2
i , and

∑∑
i<j 𝛽

2
ijx

2
i 𝜎

2
j render the error variance

nonhomogeneous.

Further Comments The degree of difficulty caused by errors in control obviously depends
on the model complexity and on the size of the error variances 𝜎1

2, 𝜎2
2,… , 𝜎k

2. If the
latter are dominated by the model error variance 𝜎2, then the effect of errors in control is
negligible.

10.4 EXPERIMENTS WITH COMPUTER MODELS

We customarily think of applying RSM to a physical process, such as chemical vapor
deposition in semiconductor manufacturing, wave soldering, or machining. However, RSM
can also be successfully applied to computer simulation models of physical systems. Com-
puter models are becoming increasingly common, and they can be used as proxies for
many complex processes that are difficult or expensive to manipulate. In some applica-
tions, there are restrictions on what conditions can be explored with a physical experiment
because of cost, safety, or regulations. In other cases, having a computer model (or code)
allows for much more rapid exploration of alternatives, development of prototypes and new
products—increasing competitive advantage and speed to market. Computer models can
often have a large number of inputs and result in multiple responses, which can be either
scalar (a single value) or functional (a collection of values connected over time or space).
Hence design of experiments has an important role to play in the selection of a preferred
set of input combinations to explore.

In such computer modeling applications, the role of RSM is different, as the data obtained
from runs of the computer model can be used to build a model of the system being modeled
by the computer simulation, called a metamodel or emulator. Since for some computer
models, obtaining one observation from the code may take considerably computer runtime,
understanding about the characteristics of the system can be gleaned from exploring the esti-
mated model and optimization is carried out on the metamodel. The assumption is that if the
computer simulation model is a faithful representation of the real system, then the RSM opti-
mization will result in adequate determination of the optimum conditions for the real system.

Generally, there are two types of simulation models, stochastic and deterministic. In a
stochastic simulation model, the output responses are random variables. Examples include
(a) systems simulations such as the factory planning and scheduling models used in the
semiconductor industry and traffic flow simulators employed by civil engineers and (b)
Monte Carlo simulations that sample from probability distributions to study complex
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mathematical phenomena that do not have direct analytical solutions. See Fang and
Sudjianto (2006) for more discussion.

In deterministic simulation models, the output responses are not random variables; they
are entirely deterministic quantities whose values are determined by the (often highly
complex) mathematical models upon which the computer model is based. Deterministic
simulation models are often used by engineers and scientists as computer-based design
tools. Typical examples are circuit simulators used for designing electronic circuits and
semiconductor devices, finite element analysis models for mechanical and structural design,
and computational models for physical phenomena such as fluid dynamics. These are often
very complex models, requiring considerable computer resources and time to run.

Before considering what designs and analyses to use when studying computer models,
it is helpful to compare data obtained from physical experiments versus from computer
models. Data from both types of experiments can be expensive: for physical experiments,
the cost comes from set-up and running the experiment as well as measuring the response
values. For computer experiments, the development of the codes is labor- and time-intensive
and often requires subject matter expertise. But here we assume that the computer model
is already available and we wish to use it to explore the underlying relationship of interest.
Obtaining the data itself is also often expensive. Because of the complexity of the code, it
may require substantial amounts of computer power and runtime to obtain results even for
a moderate number of input combinations. Hence, for both types of experiments, the ability
to obtain a good estimate of the relationship efficiently from small to moderate amounts of
data is important.

A key difference between physical and computer experiments is the range over which
experimentation may take place. For physical experiments, the goal is often to restrict the
region of interest to a local region where the relationship between inputs and response
are well characterized by a low-order polynomial. However, for computer experiments,
an experiment might be sought to characterize the relationship over much larger regions
of the input space, since there are not the physical limitations often imposed by where
admissible values may be obtained in the region of operability. The boundaries for where
observations can be obtained from a computer code are often dictated by changing science
or engineering mechanisms that have been built into the code.

Data from physical experiments represents observations from the actual process and
typically are thought to be unbiased, conditional on having a good measurement device
to measure the response. However, because of imperfect measurement devices, small dif-
ferences in how the input settings might be set, and the natural variability of the process,
we typically do not expect to observe identical values for replicate runs of the experiment.
In this way, our statistical models for physical processed are defined with an error term to
capture and estimate these differences.

On the other hand, data from computer models is the result of a man-made charac-
terization of the relationship, based on the best available science and engineering of the
mechanisms driving the process. Depending on the maturity of the code and the depth of
underlying knowledge, these codes can range from very accurate to just coarse representa-
tions of the main mechanisms. As a result, the user should remain aware that the results from
any experiment to explore a computer model are only as good as the underlying knowledge
that was available to build the code. Hence, bias or systematic differences between the code
and the true process that it is intended to represent are possible.

If the computer model is deterministic, then replicated runs with the same inputs
will result in identical values, making this feature undesirable for this type of computer
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Figure 10.3 Estimated models with associated uncertainty for data from (a) a physical experiment
and (b) from a deterministic computer experiment.

experiments. In these cases, it is helpful to have any estimated metamodel or emulator for
the code interpolate between observed points. This makes sense since we believe that the
results from the code represent the best available knowledge of the underlying process, and
we want to use this information directly. The goal of the emulator is to allow for estimation
of other locations in the input space that have not been directly evaluated. If the computer
model is stochastic, then there may be some value in obtaining replicates to understand the
natural variability.

Another key aspect to consider when comparing physical experiments and computer
models is the nature of the underlying relationship being characterized. As we have said
throughout previous chapters, RSM is predicated on the assumption that many physical
systems are smooth and continuous and can be well approximated, at least in the region
of interest, by low-order polynomials. This assumption might not be appropriate for many
complex computer codes. For example, sometimes polynomials of higher-order than the
usual quadratic response surface models are used. Johnson et al. (2010) compare the
performance of different designs when analysis uses higher-order polynomials. Because
different options are sometimes needed to describe the underlying relationship, strategies for
designed experiments based on different models may require some specialized techniques.

Figure 10.3 illustrates some of the differences between the data and models from physical
and computer experiments. Both Figs. 10.3a and 10.3b show the same data for a very
simple situation where we are estimating the response from a single input factor. Because
the underlying assumptions about the nature of the data differ, this leads to different
choices for models and the estimation with associated uncertainty. For data from a physical
experiment in Fig. 10.3a, the assumed model is a linear regression line with estimated
intercept and slope. Since the observations do not lie directly on the best-fitting line, the
magnitude of each miss is used to estimate the natural variation in the data.

If, on the other hand, the data come from a deterministic computer experiment, as shown
in Fig. 10.3b, then the selected model is an interpolator, with the best estimated value for an
input value with an observed data point matches what was obtained form the computer code.
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Figure 10.4 Finite element model for compressor containment analysis of a turbine engine and
partial parts list.

Since we have an exact value for the computer code results at that location, the uncertainty
for the emulator is zero at that point, and the uncertainty bands around the function shrink
to zero. Note that the uncertainty for the estimated curve increases as we move away from
any observation. As a result, a strategy to minimize the worst-case prediction variance of a
deterministic computer code anywhere in the design space is to try to have points as spread
out as possible throughout the design space. This will minimize the distance between any
new location where we wish to predict and an observed observation.

As an example of a situation where a finite element analysis model may be employed,
consider the problem of designing a turbine engine to contain a compressor rotor if it fails.
Many factors may influence the design, such as engine operating conditions as well as the
location, size, and material properties of surrounding parts. Figure 10.4 shows a cutaway
view of a typical compressor containment model. Many parameters for each component
are potentially important. The thickness, material type, and geometric feature (bend radius,
bolt hole size and location, stiffening ribs or gussets, etc.) are engineering design param-
eters and, potentially, experimental factors that could be included in a response surface
model.

One can see that large numbers of factors are potentially important in the design of
such a product. Furthermore, the sign or direction of the effect of many of these factors is
unknown. For instance, setting factors that increase the axial stiffness of a backface (such
as increasing the thickness of the transition duct) may help align a rotor fragment, centering
the impact on the containment structure. On the other hand, the increased stiffness may
nudge the fragment too much, causing it to miss the primary containment structure. From
experience, the design engineers may confidently assume that only a small number of these
potentially important factors have a significant effect on the performance of the design in
containing a failed part. With computer experiments, this assumption of sparsity may be
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more local: Namely, in some region of the design space, only a small number of factors
are actively influencing the response. However, in a computer experiment, it may be that as
we move throughout the design space, different subsets of the input factors play a role in
influencing the response. This is different from a physical experiment, where in the region
of experimentation it is often reasonable to assume that the same subset of factors are active.
Detailed analysis or testing of the turbine engine is needed to understand which factors are
important and to quantify their effect on the design.

The cost of building a prototype turbine engine is frequently in excess of a million
dollars, so studying the effects of these factors using a computer model is very attractive.
The type of model used is called a finite element analysis model. Simulating a containment
event with a finite element analysis model is very computationally intensive. The model
shown in Fig. 10.4 has over 100,000 elements and takes about 90 hr of computer time to
model 2 ms of event time. Frequently as much as 10 ms of event time must be modeled.
Clearly the need to limit experimentation or simulation is great. Therefore the typical RSM
approach of factor screening followed by optimization might well be applied to this scenario
to allow some streamlining of the exploration.

10.4.1 Design for Computer Experiments

The choice of design for a computer simulation experiment presents some interesting alter-
natives. If the experimenter is considering a polynomial model to describe the underlying
relationship, then an optimal design such as a D-optimal or I-optimal design for the specified
model is a possible choice. In recent years, various types of space-filling designs have been
suggested for computer experiments. There are several reasons why space-filling designs
are thought to be particularly appropriate for deterministic computer models:

1. Recall that the estimation codes methods often used for fitting models for computer
experiments from deterministic codes have the characteristic of no uncertainty at
an input location and increasing uncertainty as we move farther away from any
observation. Hence, space-filling designs are desirable since in general they spread
the design points out nearly evenly or uniformly (in some sense) throughout the
region of experimentation. This is also a desirable feature if the experimenter doesn’t
know the form of the model that is required and believes that interesting phenomena
are likely to be found throughout all regions of the experimental space.

2. Furthermore, most space-filling designs do not contain any replicate runs, even when
the design is projected into lower dimensional spaces. For a deterministic computer
model this is desirable, because a single run of the computer model at a design point
provides all of the information about the response at that point. If the design were
to contain replicates when projected into lower dimensions and some of the factors
were not active, then this could result in the same response value being obtained
for multiple runs. Since it is not known a priori which factors are active, this could
be costly duplication if obtaining those runs requires a great deal of computational
effort.

3. Some regions of the design space may be known to be inadmissible based on under-
lying science or engineering knowledge. Space-filling designs can be easily adapted
to fit into nonstandard shaped regions.
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Figure 10.5 A 10-run Latin hypercube design.

The first space-filling design proposed was the Latin hypercube design [McKay, Conover,
and Beckman (1979)]. A Latin hypercube (LHC) in n runs for k factors is an n × k matrix
where each column is a permutation of the levels 1, 2, . . ., n, which is then scaled and
centered to lie in the desired interval. JMP can create Latin hypercube designs. An example
of a 10-run Latin hypercube design in two factors from JMP on the interval −1 to +1 is
shown in Fig. 10.5. The 10 chosen levels of the design are −1, −7/9, −5/9, −3/9, −1/9, …,
7/9, 1. An arbitrary permutation of these levels for each factor might yield an undesirable
filling of the space. Consider the worst-case LHC design with design locations (−1,−1),
(−7/9,−7/9), …, (1.1). This design has all locations lying along a single line and has no
data points in the remainder of the design space. Hence a secondary criterion is used to
ensure that the design selected does indeed have good space-filling properties. Two common
choices for ensuring good space-filling for an LHC (or other possible design construction
strategies) are:

� Minimax: A minimax design is one that minimizes the maximum distance between
any location in the design space and its nearest design point. This criterion directly
targets the objective of allowing a design point to never be too far away from a new
location where we may wish to predict.

� Maximin: A maximin design is one that maximizes the minimum distance between
any two design points. This criterion forces neighboring points to be as far apart
as possible, thereby filling the space. This criterion has the advantage of allowing
comparison of distances to just involve the design points, instead of all possible
locations in the design space.

The two criteria often produce similar results, with the maximin criterion being more
popular with its ease of calculation and implementation. The design shown in Fig. 10.5 is
a LHC design that achieves its optimal spacing using the maximin criterion.

A variation of the Latin hypercube design described in Santner, Williams, and Notz
(2003) allows additional flexibility in the choice of the levels of each factor selected.
Instead of using the fixed locations of 1, 2, …, n for an n run design. It partitions the factor
range for each input into n equal width intervals [0,1/n), [1/n, 2/n), …, [(n − 1)/n,1]. A good
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LHC is constructed using the maximin or minimax criterion, and to define which regions
in which to place a point, and then the particular value of each factor is selected from a
uniform distribution within each range.

Other possible space filling designs include:

1. Sphere-packing designs proposed by Johnson et al. (1990). These designs use the
maximin criterion described above, but look across the set of all possible design
locations, instead of being restricted to just those with the Latin hypercube structure.

2. Uniform designs were proposed by Fang (1980) and attempt to place the design
points so that they are uniformly scattered through the region as would a sample from
a uniform distribution. For a number of algorithms for creating these designs and
several measures of uniformity, see the book by Fang et al. (2006).

3. Maximum entropy designs were proposed by Shewry and Wynn (1987). Entropy can
be thought of as a measure of the amount of information contained in the distribution
of a data set. Suppose that the data comes from a normal distribution with mean
vector μ and covariance matrix 𝜎2R(𝜽), where R(𝜽) is a correlation matrix having
elements

rij = e
−
∑k

s=1
𝜃s(xis−xjs)2 (10.30)

The quantities rij are the correlations between the responses at two design points. The
maximum entropy design maximizes the determinant of R(𝜽).

4. Minimum potential designs are also included in JMP that have properties that can
be described based on a physics analogy. We consider the design points as electrons
jointed by springs. Their common charge forces them apart, while the springs try to
pull them together. The minimum potential design selects those points that minimize
the potential energy of the system.

5. Gaussian process IMSE designs were described by Welch et al. (1992) and Jones
and Johnson (2009). These designs minimize the integrate mean square error for
a standard Gaussian process model (described in the next section) over the design
space.

6. Fast Flexible Filling (FFF) designs are also included in JMP. These designs are highly
adaptable for nonstandard design spaces with constraints or inadmissible regions.

In lower dimensions, several of the above choices produce similar designs. Figure 10.6
shows the six alternatives for a 15-run design in two factors from JMP. As the number of
input factors increases, the distinctions between the alternatives grow. Figure 10.7 shows
the pairwise scatterplots for Latin hypercube and Fast flexible filling designs for a 40-run
design in six factors from JMP. Not how the LHC design continues to project well into
lower dimensions, while the FFF places more emphasis on placing points closer to the
edges of the design space, since in higher dimensions there is more volume there. Johnson,
Montgomery, and Jones (2011) compare the performance of different choices of computer
designs across different scenarios.
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Figure 10.6 Alternative designs for a 15-run design with two factors: (a) Sphere packing. (b)
Uniform. (c) Maximum entropy. (d) Minimum potential. (e) Gaussian process IMSE optimal. (f) Fast
flexible filling.

10.4.2 Analysis for Computer Experiments

The Gaussian process model is often used to fit the data from a deterministic computer
experiment. These models were introduced as models for computer experiments by Sacks
et al. (1989a). They are desirable because they provide an exact fit to the observations from
the experiment. Now this is no assurance that they will interpolate well at locations in the
region of interest where there is no data, and no one seriously believes that the Gaussian
process model is the correct model for the relationship between the response and the design
variables. However, the “exact fit” nature of the model and the fact that it only requires
one parameter for each factor considered in the experiment has made it quite popular. The
Gaussian process model is

y = 𝜇 + z(x)

where z(x) is a Gaussian stochastic process with covariance matrix𝜎2R(θ), and the elements
of R(θ) are defined in Equation 10.30. The Gaussian process model is essentially a spatial
correlation model, where the correlation of the response between two observations decreases
as the values of the design factors become further apart. When design points are close
together, this causes ill-conditioning in the data for the Gaussian process model, much
like multicollinearity resulting from predictors that are nearly linearly dependent in linear
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TABLE 10.3 Sphere-Packing Design and the Temperature Responses in the CFD
Experiment

x-axis R-axis Temperature

0.056 0.062 338.07
0.095 0.013 1613.04
0.077 0.062 335.91
0.095 0.061 327.82
0.090 0.037 449.23
0.072 0.038 440.58
0.064 0.015 1173.82
0.050 0.000 1140.36
0.050 0.035 453.83
0.079 0.000 1261.39

regression models. The parameters 𝜇 and 𝜃s, s= 1, 2,… , k are estimated using the method
of maximum likelihood. Predicted values of the response at the point x are computed from

ŷ(x) = �̂� + r′(x)R(θ̂)−1(y − j�̂�) (10.31)

where �̂� and θ̂ are the maximum likelihood estimates of the model parameters 𝜇 and θ,
and r′(x) = [r(x1, x), r(x2, x),… , r(xn, x)]. The prediction equation contains one model
term for each design point in the original experiment. JMP will fit and provide predictions
from the Gaussian process model.

Example 10.2 The temperature in the exhaust from a jet turbine engine at different
locations in the plume was studied using a computational fluid dynamics (CFD) model.
The two design factors of interest were the locations in the plume (x and y coordinates,
however the y axis was referred to by the experimenters as the R-axis or radial axis). Both
location axes were coded to the −1, +1 interval. The experimenters used a 10-run sphere-
packing design. The experimental design and the output obtained at these test conditions
from the CFD model are shown in Table 10.3. Figure 10.8 shows the design and response
values.

JMP was used to fit the Gaussian process model to the temperature data. Some of
the output is shown in Table 10.4 and Fig. 10.9. The surface plot in Fig. 10.9a shows
the overall surface throughout the entire design space. The plot of actual by predicted in
Fig. 10.9b is obtained by “jack-knifing” the predicted values; that is, each predicted value
is obtained from a model that doesn’t contain that observation when the model parameters
are estimated. The marginal model plots of Fig. 10.9c show that the predicted values from
the model change much more as we vary the value of the R-axis compared to the x-axis.

The prediction model obtained from JMP has a symmetric structure with a term of the
same form for each observed value in the design is shown below, with “x” and “R” denoting
the “x-axis” and “R-axis” from Table 10.3.

ŷ = 736.3228

−2090.5005 ∗ exp(−(65.7321 ∗ (x − 0.056)2 + 3360.7699 ∗ (R − 0.0622)))

+3944.7842 ∗ exp(−(65.7321 ∗ (x − 0.095)2 + 3360.7699 ∗ (R − 0.013)2))
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Figure 10.8 (a) The sphere-packing design for the CFD experiment, and (b) a 3-D plot of the
observed responses.

+3806.0602 ∗ exp(−(65.7321 ∗ (x − 0.077)2 + 3360.7699 ∗ (R − 0.062)2))

−2235.3120 ∗ exp(−(65.7321 ∗ (x − 0.095)2 + 3360.7699 ∗ (R − 0.061)2))

−1065.8557 ∗ exp(−(65.7321 ∗ (x − 0.09)2 + 3360.7699 ∗ (R − 0.037)2))

+975.0887 ∗ exp(−(65.7321 ∗ (x − 0.072)2 + 3360.7699 ∗ (R − 0.038)2))

−3074.0849 ∗ exp(−(65.7321 ∗ (x − 0.064)2 + 3360.7699 ∗ (R − 0.015)2))

+1041.2588 ∗ exp(−(65.7321 ∗ (x − 0.05)2 + 3360.7699 ∗ R2))

−69.2146 ∗ exp(−(65.7321 ∗ (x − 0.05)2 + 3360.7699 ∗ (R − 0.035)2))

−1232.2241 ∗ exp(−(65.7321 ∗ (x − 0.079)2 + 3360.7699 ∗ R2))

Other useful references for designs for computer experiments include Bettonvil and Kleijnen
(1996), Donohue (1994), Montgomery and Weatherby (1979), Sacks et al. (1989a and b),
Sacks and Welch (1989), Slaagame and Barton (1997), and the book by Santner et al.
(2003).

TABLE 10.4 JMP Output for the Gaussian Process Model for the CFD Experiment

Model Report
Column Theta Total Sensitivity Main Effect x-axis Interaction R-axis Interaction

x-axis 65.732136 0.0370478 0.0147994 0.0222485
R-axis 3360.7699 0.9852006 0.9629522 0.0222485
μ σ2

736.3228 214612.38
-2∗LogLikelihood

132.9562
Fit using the Gaussian correlation function.
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Figure 10.9 JMP output for the Gaussian process model for the CFD experiment in Table 10.3.
(a) Surface plot of the predicted response. (b) Actual by predicted plot. (c) Marginal model plots for
x-axis and R-axis.

10.4.3 Combining Information from Physical and Computer Experiments

As described at the beginning of Section 10.4, the characteristics of data from physical
experiments and computer codes are very different. In some applications, there can be
some advantages to combining data from both these sources to obtain results that leverage
the advantages of both types of data. For example, if some data from physical experiments
are available, then this can provide direct information about how the system actually
performs. However, it may be prohibitively expensive to obtain large amounts of this type
of information, particular in some parts of the region of operability. In addition, these
data will have some natural variability associated with them. Alternately, obtaining data
from computer codes can be obtained in different regions of interest and can often be
less expensive to obtain if the code is already available. The weakness of this data is that,
depending on how mature the computer code is that generates the data, there may be some
bias from what the true underlying mechanism is.
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By combining information from both sources of data, it may be possible to obtain
improved predictions for new observations as well as provide feedback to the scientists and
engineers who developed the computer code, to allow them to improve the model and make
it a closer match to reality. A common form of the model is

Y = f (x; 𝜃) + 𝛿(x) + 𝜀

where f (x; 𝜃) is the result from the computer code at an input combination, x, and 𝜀 is the
error term associated with the physical data. The discrepancy term, 𝛿 (x), is used to describe
systematic differences between the observed physical data and what is estimated from the
computer code.

The discrepancy term both corrects for systematic bias from the computer model, which
might result from incomplete knowledge of the underlying process, and provides a summary
that can be studies by the subject matter experts to suggest improvements or updates to the
model. Joseph and Yan (2014) describe a process for continuous improvement by exploring
the shape of the discrepancy to help guide the next generation of computer code.

Useful references on this topic include Kennedy and O’Hagan (2001), Higdon et al.
(2004, 2008), Williams et al. (2006), and Weaver et al. (2015).

10.5 MINIMUM BIAS ESTIMATION OF RESPONSE SURFACE MODELS

In Section 10.2 we considered a situation where the experimenter fits a model, say

ŷ = X1b (10.32)

that is of lower order than the true system model

f(x) = E(y) = X1β1 + X2β2 (10.33)

This leads to the AMSE criterion in Equation 10.11, which can be written as

AMSE = APV + ASB (10.34)

where APV is the average prediction variance and ASB is the average squared bias.
We discussed how to minimize the ASB portion of AMSE by properly selecting the
experimental design. We also discussed the important role that the bias plays in the AMSE
criterion, noting that often a design that is close to the minimum bias design comes very
close to the design that minimizes the AMSE.

Karson, Manson, and Hader (1969) proposed minimizing the average squared bias not
by design, but by estimation. Their minimum bias estimation procedure achieves the
minimum value of ASB, leaving the experimenter to select the design to satisfy other
objectives such as the minimization of average prediction variance. We now describe their
procedure. The true model is a polynomial of degree d2,

f (x) = x′1β1 + x′2β2 (10.35)
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and the fitted model is a polynomial of degree d1 < d2,

ŷ (x) = x′1b1 (10.36)

Recall from Equation 10.11 that the average squared bias is

ASB = NK
𝜎2 ∫R

{E[ŷ(x) − f (x)]}2dx (10.37)

Now E[ ŷ(x)] is a polynomial of degree d1, which we may write as

E[ ŷ(x)] = x′1α1

Consequently, the average squared bias is

ASB = NK
𝜎2 ∫R

{E[ ŷ(x) − f (x)]}2dx

= NK
𝜎2 ∫R

[x′1(α1 − β1) − x′2β2]2dx

= NK
𝜎2 ∫R

{(α1 − β1)′x1x′1(α1 − β1) − 2(α1 − β1)x1x′2β2 + β′
2x2x′2β2}dx

= N
𝜎2

[(α1 − β1)′μ11 − 2(α1 − β1)μ12β2 + β′
2μ22β2]

(10.38)

where μ11, μ12, and μ22 are the region moment matrices defined earlier. Now to minimize
the ASB with respect to α1, differentiate Equation 10.38 with respect to α1, equate the
result to 0, and solve:

𝜕ASB
𝜕α1

= 2μ11(α1 − β1) − 2μ12β2 = 0

which results in

α1 = β1 + μ−1
11 μ12β2

= Aβ
(10.39)

where A = [I |μ−1
11 μ12] and [β′

1 |β′
2]. So a necessary and sufficient condition for mini-

mization of average squared bias is that

E[ ŷ(x)] = x′1Aβ (10.40)

or

E(b1) = Aβ (10.41)

Now b1 is just a linear combination of the observations, say

b1 = T′y (10.42)
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Because E(y)=Xβ, the requirement that E(b1)=Aβ means that T′ must satisfy

T′X = A (10.43)

where X = [X1 ⋮ X2]. The minimum value of the average squared bias is

minASB = N
𝜎2

β′
2[μ22 − μ′

12μ
−1
11 μ12]β2. (10.44)

In addition to achieving the minimum value of ASB, we also want to minimize the
average prediction variance (APV) in Equation 10.11. Now the minimum variance estimator
of x′1Aβ is

ŷ(x) = x′1A(X′X)−1X′y (10.45)

The APV is minimized when Equation 10.45 is satisfied, or when

T′ = A(X′X)−1X′ (10.46)

The variance of the fitted model is

Var[ŷ(x)] = 𝜎 2x′1T′Tx1 (10.47)

Example 10.3 One Design Variable Suppose we have one design variable and we wish
to fit a first-order model using three observations taken at the points x= 0 and x=±1. The
region of interest is R= [−1, 1], and, unknown to us, the true model is quadratic. Therefore,

ŷ(x) = x′1b1 = b0 + b1x

f (x) = x′1β1 + x′2β2 = (𝛽0 + 𝛽1x) + 𝛽2x2

with x′1 = [1, x], x′2 = [x2], β′
1 = [𝛽0, 𝛽1], β′

2 = [𝛽2], and b′
1 = [b0, b1]. Also, note that

X = [X1 ⋮ X2] =
⎡⎢⎢⎣

1 −l ⋮ l2

1 0 ⋮ 0
1 l ⋮ l2

⎤⎥⎥⎦
, y =

⎡⎢⎢⎣

y1
y2
y3

⎤⎥⎥⎦

(X′X)−1 =
⎡⎢⎢⎢⎣

1 0 −l−2

0 1
2
l−2 0

−l−2 0 3
2
l−4

⎤⎥⎥⎥⎦

k = 1
2

, μ11 =
[

1 0
0 1

3

]
, μ12 =

[ 1
3
0

]
, μ22 =

[1
5

]

and

A =
[
I2 ⋮μ−1

11 μ12

]
=
[

1 0 ⋮ 1
3

0 1 ⋮ 0

]
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Therefore the minimum bias estimate of b1 is

b1 = T′y

= A(X′X)−1X′y

= 1
6l 2

[ 1 2(3l2 − 1) 1
−3l 0 3l

][ y1
y2
y3

]

The minimum bias estimator is biased, since

E(b1) = Aβ =
[
𝛽0 +

1
3
𝛽2

𝛽1

]

and the predicted values are also biased, because

E[ ŷ(x)] = 𝛽0 +
1
3
𝛽2 + 𝛽1x

The minimum value of the ASB is computed from Equation 10.44 as

Min ASB = N
𝜎2

β′
2[μ22 − μ′

12μ
−1
11 μ12]β2

=
( 3
𝜎2

) 4
45
𝛽2

2

Notice that the minimum bias is independent of where the design points −l, +l are placed
in the region −1≤ x≤+1.

The variance of the fitted model is

Var[ ŷ(x)] = 𝜎2x′1T′Tx1

= 𝜎2x′1A(X′X)−1Ax1

and we can show that the APV is

APV = Nk
𝜎2 ∫

1

−1
Var[ ŷ(x)]dx = 3 − 3

2l 2
+ 1

2l 4

The APV is minimized at l =
√

2
3
, for which value the minimum APV is 15

8
.

We can compare this with the usual least squares results. It is not difficult to show that

ASBLS =
3𝛽2

2

𝜎2

(
4l4

9
− 4l2

9
+ 1

5

)

and

APVLS = 1 + 1
2l2
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Now it turns out that APLLS is less than APV for minimum bias estimation except at

l =
√

1
2
, where they are identical. The minimum ASBLS is achieved at l =

√
2
3
, while the

ASB is minimized for any l for minimum bias estimation. However, for any value of l

satisfying
√

1
2
≤ l ≤ 1 we have APV ≤ APVLS = 2. Therefore, if we use minimum bias

estimation, the average mean squared error is less than or equal to the average mean squared

error for least squares for any design with
√

1
2
≤ l ≤ 1.

10.6 NEURAL NETWORKS

Some researchers have suggested using neural networks as an alternative to RSM; for
example, see Han et al. (1994), Himmel and May (1991), Carpenter and Barthelemy
(1993), and Hussain, Yu, and Johnson (1991). The development of neural networks, or
more accurately, artificial neural networks, has been motivated by the recognition that the
human brain processes information in a way that is fundamentally different from the typical
digital computer. The neuron is the basic structural element and information-processing
module of the brain. A typical human brain has an enormous number of them (approximately
10 billion neurons in the cortex and 60 trillion synapses or connections between them)
arranged in a highly complex, nonlinear, and parallel structure. Consequently, the human
brain is a very efficient structure for information processing, learning, and reasoning.

An artificial neural network is a structure that is designed to solve certain types of
problems by attempting to emulate the way the human brain would solve the problem. The
general form of a neural network is a “black box” model of a type that is often used to
model high-dimensional, nonlinear data. Typically, most neural networks are used to solve
prediction problems for some system, as opposed to formal model-building or development
of underlying knowledge of how the system works. For example, a computer company
might want to develop a procedure for automatically reading handwriting and converting
it to typescript. If the procedure can do this quickly and accurately, the company may have
little interest in understanding the functional form of the specific model used to do it.

Multilayer feedforward artificial neural networks are multivariate statistical models used
to relate p predictor variables x1, x2,… , xp to q response variables y1, y2,… , yq. The model
has several layers, each consisting of either the original or some constructed variables. The
most common structure involves three layers: the inputs, which are the original predictors;
the hidden layer, consisting of a set of constructed variables; and the output layer, made
up of the responses. Each variable in a layer is called a node. Figure 10.10 shows a typical
three-layer artificial neural network with inputs on the left and outputs on the right.

A node takes as its input a transformed linear combination of the outputs from the nodes
in the previous layer. Then it sends as an output a transformation of itself that becomes
one of the inputs to one or more nodes in the next layer. The transformation functions are
usually either sigmoidal (S-shaped) or linear, and are usually called activation functions
or transfer functions. Let each of the k hidden layer nodes au be a linear combination of
the input variables:

au =
p∑

j=1

w1juxj + 𝜃u
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Figure 10.10 Artificial neural network with one hidden layer.

where the w1ju are unknown parameters that must be estimated (called weights) and 𝜃u
is a parameter that plays the role of an intercept in linear regression (this parameter is
sometimes called the bias node).

Each node is transformed by the activation function g( ). Much of the neural networks
literature refers to these activation functions notationally as 𝜎 ( ) because of their S-shape
(this is an unfortunate choice of notation so far as statisticians are concerned).

Let the output of node au be denoted by zu = g(au). Now we form a linear combination
of these outputs, say bv =

∑k
u=0 w2uvzu, where z0 = 1. Finally, the vth response yv is a

transformation of the bv, say yv = g̃(bv), where g̃( ) is the activation function for the response.
This can all be combined to give

yv = g̃

[
u∑

k=1

w2uvg

(
p∑

j=1

w1juxj + 𝜃1j

)
+ 𝜃2u

]
(10.48)

The response yv is a transformed linear combination of transformed linear combinations
of the original predictors. For the hidden layer, the activation function is often chosen
to be either the logistic function g(x)= 1/(1+ e−x) or the hyperbolic tangent function
g(x)= tanh(x)= (ex − e−x)/(ex + e−x). The choice of activation function for the output layer
depends on the nature of the response. If the response is bounded or dichotomous the output
activation function is usually taken to be sigmoidal, while if it is continuous an identify
function is often used.

The model in Equation 10.48 is a very flexible form containing many parameters, and it
is this feature that gives a neural network a nearly universal approximation property. That
is, it will fit many naturally occurring functions. However, the parameters in 10.48 must be
estimated, and there are a lot of them. The usual approach is to estimate the parameters by
minimizing the overall residual sum of squares taken over all responses and all observations.
This is a nonlinear least squares problem, and a variety of algorithms can be used to solve



10.7 SPLIT-PLOT DESIGNS FOR SECOND-ORDER MODELS 581

it. Often a procedure called backpropagation (which is a variation of steepest descent)
is used, although derivative-based gradient methods have also been employed. As in any
nonlinear estimation procedure, starting values for the parameters must be specified in order
to use these algorithms. It is customary to standardize the ranges of all the input variables
so that small, essentially random values are chosen for the starting values.

With so many parameters involved in a complex nonlinear function, there is considerable
danger of overfitting. That is, a neural network will provide a nearly perfect fit to a set of
historical or training data, but it will often predict new data very poorly. Overfitting is a
familiar problem to statisticians trained in empirical model building. The neural network
community has developed various methods for dealing with this problem, such as reducing
the number of unknown parameters (this is called optimal brain surgery), stopping the
parameter estimation process before complete convergence and using cross-validation to
determine the number of iterations to use, and adding a penalty function to the residual sum
of squares that increases as a function of the sum of the squares of the parameter estimates.
There are also many different strategies for choosing the number of layers and number of
neurons and the form of the activation functions. This is usually referred to as choosing
the network architecture. Cross-validation can be used to select the number of nodes in
the hidden layer. Good references on artificial neural networks are Cheng and Titterington
(1994), Bishop (1995), Haykin (1994), and Ripley (1994a, 1994b).

Artificial neural networks are an active area of research and application, particularly
for the analysis of large, complex, highly nonlinear problems. The overfitting issue is
frequently overlooked by many users and advocates of neural networks. Because many
members of the neural network community do not have sound training in empirical model
building, they often do not appreciate the difficulties overfitting may cause. Furthermore,
many computer programs for implementing neural networks do not handle the overfitting
problem particularly well. Our view is that neural networks can be a complement to
the familiar statistical tools of regression analysis, RSM, and designed experiments, but
certainly not a replacement for them. A neural network can at best only give a prediction
model but not fundamental insight into the underlying process mechanism that produced
the data. Furthermore, there is no reason to believe that the prediction properties of these
models are superior to those that would be obtained from a well-designed RSM study.

10.7 SPLIT-PLOT DESIGNS FOR SECOND-ORDER MODELS

In Chapters 3 and 4 we introduced the split-plot design (SPD) as a technique for running
experiments more economically if some of the factors are hard to change. Time or cost
constraints lead to considering a split-plot structure rather than a completely randomized
design. For response surface models involving second-order models, practical constraints
may often dictate that a split-plot design and model be considered to accommodate some
hard-to-change factors. Recall that SPDs involve two randomizations [Letsinger et al.
(1996) and Lucas and Ju (1992)]. The hard-to-change factor combinations are randomly
assigned to whole-plot units based on the whole plot design. Within each whole plot, the
easy-to-change factors are assigned to the subplot units with a separate randomization for
each whole plot. These two levels of randomization lead to two error terms, a whole plot
error and a subplot error. Care should be taken to ensure that both types of error can be
estimated, and that the terms of the model are assessed relative to the appropriate error
term. Typically, the main, interaction, and quadratic effects involving whole plot factors
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TABLE 10.5 A Restricted Central Composite Split-Plot Design with Nine Whole Plots for
Two Hard-to-Change and Two Easy-to-Change Factors

Whole Plot # z1 z2 x1 x2 # Runs

1 −1 −1 ±1 ±1 4
2 −1 +1 ±1 ±1 4
3 +1 −1 ±1 ±1 4
4 +1 +1 ±1 ±1 4
5 −𝛼 0 0 0 1
6 +𝛼 0 0 0 1
7 0 −𝛼 0 0 1
8 0 +𝛼 0 0 1
9 0 0 ±𝛼 0 4+ #CR

0 ±𝛼
0 0

are whole-plot effects. Terms of the model involving just subplot factors or combinations
of whole and subplot factors are generally subplot effects.

Split-plot designs have practical advantages for running the experiment since the hard-
to-change factors are only reset for each whole plot, while the easy-to-change factors are
reset for each observation. Not only are these designs more economical to run, but as Goos
and Vanderbroek (2004) show, they can also sometimes be more D- and G-efficient than a
similar sized completely randomized design.

The central composite and Box–Behnken designs presented in Chapter 8 can be easily
adapted to become split-plot designs with good properties. One simple approach to adapting
these designs is to group all experimental runs with common whole-plot levels into a single
whole plot. These restricted split-plot designs have the minimal allowable number of
whole plots, with just a single whole plot for each combination of whole plot levels. Table
10.5 shows an example of a restricted central composite design for two hard-to-change
(z1 and z2) and two easy-to-change (x1 and x2) factors. Table 10.6 shows an example of a
restricted Box–Behnken design for the same set of factors. If the hard-to-change factors
are prohibitively expensive, then this approach allows us to minimize the cost of changing
these factors. One obvious weakness of this type of design is that there are no replicated
whole plots to estimate the whole-plot error term.

In Section 8.1, some important characteristics for a good response surface design are
given. With the new structure for a split-plot design, some adaptation and expansion of
the criteria are needed to consider the presence of two types of experimental units, namely
the whole-plot and subplot experimental units. A good SPD should seek to balance and
simultaneously optimize a number of varied criteria:

1. Result in good fit of the model to the data.

2. Provide good model parameter estimates.

3. Provide a good distribution of predict variance of the response, Var[ŷ(x)]
𝜎2 , throughout

the region of interest.

4. Provide an estimate of “pure” experimental error at both the the whole plot and
subplot levels.

5. Give sufficient information to allow for lack of fit test.
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TABLE 10.6 A Restricted Box–Behnken Split-Plot Design with Nine Whole Plots for Two
Hard-to-Change and Two Easy-to-Change Factors

Whole Plot # z1 z2 x1 x2 # Runs

1 −1 −1 0 0 1
2 −1 +1 0 0 1
3 +1 −1 0 0 1
4 +1 +1 0 0 1
5 −1 0 ±1 0 4

0 ± 1
6 +1 0 ±1 0 4

0 ± 1
7 0 −1 ±1 0 4

0 ± 1
8 0 +1 ±1 0 4

0 ± 1
9 0 0 ±1 ±1 4+ #CR

0 0

6. Provide a check on the homogeneity of variance in both the whole plot and subplot
portions of the design space.

7. Be insensitive (robust) to the presence of outliers in the data.

8. Be robust to errors in the control of design levels.

9. Consider the relative cost in setting hard-to-change and easy-to-change factors.

10. Consider simplicity and symmetry of the design.

11. Consider the required complexity of the analysis.

12. Be cost-effective.

Properties 4, 6, 9, and 11 have been adapted from the list in Section 8.1 to consider the
special features of split-plot designs. As with completely randomized designs, not all of
these properties are required in every split-plot application and no single design is capable
of performing best in all of these properties simultaneously. However, it is beneficial when
choosing a designed experiment to give serious consideration to the relative importance of
these criteria. Often a good design can do quite well for several of these properties.

Item 4 has been expanded to note that the two error terms now need to both be estimated.
Frequently obtaining a good estimate of the subplot error term is relatively easy, but because
of the nature of hard-to-change factors, many designs do not place adequate emphasis of
estimating the whole plot error term. Similarly for Item 6, it may be difficult to obtain
sufficient information about homogeneity of variance in the whole plot space. Item 9
deserves special emphasis as the relative cost of setting the hard-to-change and easy-to-
change factors will typically dictate what designs can be considered. Some additional
discussion of this is presented subsequently. Finally, Item 11 has added importance in the
split plot setting as some alternatives exist for the estimation and analysis, depending on
the type of design selected. Parker et al. (2008) present a thorough discussion about how to
balance several criteria in the split-plot design case.
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Example 10.4 The Adhesive Strength Experiment Consider an experiment involving
four factors that potentially affect the strength of an adhesive intended for application in
a medical device application. Two of the factors (A= cure temperature and B= percent of
resin in the adhesive) are relatively hard to change from run to run, while the other two
(C= amount of adhesive applied and D= cure time) are easy to change. A second-order
model is thought to be appropriate for the underlying relationship between strength and the
input factors. The form of the model is

Strength = 𝛽0 + 𝛽1A + 𝛽2B + 𝛽12AB + 𝛽11A2 + 𝛽22B2 + 𝛾1C + 𝛾2D

+ 𝛾12CD + 𝛾11C2 + 𝛾22D2 + 𝛼11AC + 𝛼12AD + 𝛼21BC

+ 𝛼22BD + 𝛿 + 𝜀

where the 𝛽 terms involve hard-to-change factors, the 𝛾 terms involve easy-to-change factors
and the 𝛼 terms involve both hard- and easy-to-change factors. Written in matrix form, we
have a model

y = Xβ + Z𝛿 + 𝜀

with X is the N× p design matrix expanded to model form for the p model parameters
which include the intercept; Z is an N× a classification matrix of ones and zeros where the
ijth entry is 1 if the ith observation (i= 1,… , N) belongs to the jth whole plot (j= 1,… , a).
Note the two errors terms: 𝛿 ∼ N(0, 𝜎 2

WP) for the whole plot and 𝜀∼N(0,𝜎2) for the subplot
error. We also assume 𝛿 and 𝜀 are mutually independent.

The covariance matrix of the responses in a split-plot design is

Var( y) =
∑

= 𝜎2
WPZZ′ + 𝜎2IN

= 𝜎2[dZZ′ + IN]

where IN is an N×N identity matrix and d = 𝜎2
WP∕𝜎

2 represents the variance component
ratio. This type of error structure is called compound symmetric. If we sort the observations
by whole plots, we can write

∑
= diag(

∑
1,… ,

∑
a) where each nj × nj matrix

∑
j is given

by

∑
j

=

[
𝜎 2

WP + 𝜎 2 ⋯ 𝜎 2
WP

⋮ ⋱ ⋮
𝜎 2

WP ⋯ 𝜎 2
WP + 𝜎 2

]

and
∑

j denotes the covariance matrix of responses for the jth whole plot. Note that the
variance of an individual observation is the sum of the subplot and whole plot error
variances, 𝜎 2

WP + 𝜎 2.
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TABLE 10.7 The Response Surface Design and Data for the Adhesive Strength Example

Whole Plot # A B C D Strength

1 1 −1 1 −1 15.7
−1 1 27.0

2 −1 1 −1 1 46.8
1 −1 29.9

3 −1 −1 −1 1 17.6
1 −1 45.9

4 −1 1 1 1 36.8
−1 −1 32.1

5 −1 −1 1 1 30.7
−1 −1 53.7

6 1 1 1 −1 8.1
−1 1 45.2

7 1 0 −1 −1 19.4
0 0 33.6

8 1 −1 −1 −1 18.3
1 1 19.6

9 0 −1 0 −1 42.9
−1 0 42.3

10 1 1 1 1 59.1
−1 −1 16.1

11 0 1 0 0 45.3
1 −1 31.6

12 0 0 0 1 46.7
1 0 46.2

The experimenters have a budget that will allow them to reset the hard-to-change
factors 12 times, with 2 runs of different levels of the easy-to-change factors within each
whole plot. Table 10.7 shows the I-optimal design satisfying the experimenters logistical
constraints generated in JMP with the resulting data obtained from the experiment. As
with completely randomized designs it is beneficial to explore the prediction variance
properties of the constructed design for the assumed model. Figure 10.11 shows the range
of prediction variance values throughout the design region in the fraction of design space
plot generated in JMP. Liang et al. (2006a) provide additional alternatives to this plot to allow
for more detailed examination of the prediction performance throughout the design space.
For interactive exploration of the prediction variance, the prediction profiler described in
Chapter 9 and shown in Fig. 10.12 allows for better understanding.

Because the observations are not independent and have a compound symmetric error
structure generalized least squares (GLS) is required to obtain estimates of the model
parameters. The software package JMP uses the REML (REstricted or REsidual Maximum
Likelihood) method of fitting mixed models (those which contain both fixed effects—the
factor effects, and random effects—the whole-plot error terms). See Wolfinger et al. (1994)
and Searle et al. (1992) for more details on this estimation approach.

Table 10.8 shows the output generated by JMP for the adhesive strength data. Notice that
the whole plot variance component is much larger than the subplot variance component, as
is typically the case in split-plot designs. The whole plot variance component accounts for
about 70% of the total variability.



586 ADVANCED TOPICS IN RESPONSE SURFACE METHODOLOGY

Figure 10.11 The fraction of design space plot for the adhesive strength example.

Design Considerations for Split-Plot Experiments Because of the more complex struc-
ture for split-plot designs, there are some additional considerations for selecting a design.
Adaptations of the central composite and Box–Behnken designs described in Chapter 8 are
a popular choice for this setting, since many of their desirable properties continue to exist.
Much depends on the experiment constraints as in the split-plot there are many aspects to
consider.

Optimality As with completely randomized designs, computer generated designs are
available to optimize based on various criteria. If interest lies primarily in estimating the
model parameters, then the D-optimal criterion described in Section 9.2 can be adapted
to the split-plot setting. The optimal design is strictly dependent on the ratio of the two
variance components, d = 𝜎 2

WP∕𝜎
2, although in many situations the design performance is

quite robust to a wide range of values of this ratio. Typically this ratio ranges from close to
zero, if there is little additional variability associated with the whole plots, to values as large
as 10 or 20. Goos (2002) developed methods for generating designs for a variety of specified

Figure 10.12 The prediction profiler for the adhesive strength example.
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constraints. The total number of runs, the number of whole plots, or a combination of both
can be specified for a particular experiment. The statistical software, JMP, can generate
D-optimal designs for specified numbers of run and whole plots.

If the primary goal of the experiment is to obtain good prediction throughout the design
space, then G- and I-optimality can be considered. G-optimality minimizes the worst
prediction in the design space, while I-optimality minimizes the average prediction. While
both criteria are possible, recent work has focused more on I-optimality since it is focuses
on the central tendency of prediction variance, rather than just its extreme. As with D-
optimal designs, the choice of an I-optimal design is related to the choice of 𝜎2

WP∕𝜎
2,

but generally quite robust over a range of values. The statistical software, JMP, can also
generate I-optimal designs for specified numbers of run and whole plots.

Using either D-optimality or I-optimality, it is possible to generate flexible designs
that meet the needs of particular experimental design situations. Alternately, it is possible
to adapt the levels of a central composite design to optimize it for a split-plot design.
For the restricted design of Table 10.5, different values of the factorial portion of the
design are appropriate for the hard-to-change and easy-to-change factors to optimize design
performance based on D-, G-, or I-optimality. The choice of which values should be selected
is dependent on the criteria considered as well as the ratio of the two variance components.
For more details on this approach, see Liang et al. (2006b).

Balance If changing the hard-to-change factors settings is cost- or time-intensive relative
to the easy-to-change factors settings, it may be sensible to run as many subplot runs per
whole plot as possible. This will allow for maximum use to be made of each reset of
the hard-to-change factors. For example, in the polyamide resin example (Example 8.5),
consider the scenario where the temperature at the time of addition required considerable
time to reset since this temperature was required to stabilize before experimental units could
be run. The other two factors, agitation and rate of addition, could be quickly and easily
reset. In this case, it may be sensible to consider a balanced split-plot design. A balanced
split-plot design is one that has equal number of subplot runs for each whole plot.

The restricted central composite design of Table 10.5 and the restricted Box–Behnken
design of Table 10.6 are extreme examples of unbalanced split-plot designs, since several
of the whole plots have just a single run. Vining et al. (2005) and Parker et al. (2007) give
several examples of balanced adaptations of central composite and Box–Behnken designs
for different numbers of hard-to-change and easy-to-change factors.

Cost The total cost of a split-plot experiment is a function of whole plot costs as well
as subplot costs. Bisgaard (2000) and Liang et al. (2007) formulate the cost of a split-plot
experiment as

C = CWPa + CSPN

where C denotes the total cost of the experiment, a denotes the number of whole plot
units, N is the total number of observations. CWP and CSP are the costs associated with the
individual whole plots and subplots, respectively. Note that the cost incurred for measuring
the response for each observation is considered a part of subplot costs.

In practice, it may be difficult to estimate the exact costs associated with whole plots
or subplots (i.e., precise values for CWP and CSP). It may be more feasible to specify the
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relative cost of these quantities (i.e., r=CSP/CWP). Hence, the cost of the experiment is
proportional to a+ rN with

C ∝ a + rN.

Typically we might expect CWP to be greater than CSP since this involves the hard-to-change
factors where more time/effort is required to change levels of the whole plot factors. As
CWP increases relative to CSP, r approaches zero. On the other hand, if obtaining the
measurement of the response for each observation is expensive, then CSP may become
larger compared to CWP and r will increase.

The D-, G-, and I-optimality criteria from Chapter 8 can be adapted for the split-plot
setting using this cost structure. For D-optimality, the moment matrix for split-plot designs

is
(

X′∑−1X
)

. We can define the cost-adjusted moment matrix for split-plot designs as

M =
(𝜎 2

WP + 𝜎 2)(X′∑−1 X)

C

For G- and I-optimality, cost-adjusted prediction variance (CPV) is defined as

CPV =
C Var( ŷ(x0))

𝜎 2
WP + 𝜎2

It is noteworthy that we can think of the completely randomize design as a special case
of a split-plot design where each observation can be treated as a separate whole plot (in this
case, a=N). In CRDs the number of whole plots and subplots are equal and the total cost
of the experiment is given by

C =
(
CWP + CSP

)
N = CWP (1 + r) N

This expression is proportional then to the standard penalty of N commonly used for the
D-, G-, and I-optimality criteria in completely randomized design. Parker et al. (2008) give
a detailed comparison of several designs and the trade-offs between different criteria for
a variety of cost and variance component ratios. Lu and Anderson-Cook (2014) and Lu,
Robinson, and Anderson-Cook (2014) discuss multiple criterion optimization for split-plot
designs with cost treated as one or two of these criteria.

Equivalent Estimation Split-plot designs can also be constructed such that ordinary least
squares (OLS) is equivalent to generalized least squares (GLS) for estimation. Initially
this may seem like an unintuitive goal for constructing a design, since the correct analysis
approach based on the model is GLS. However, the benefits of this class of design are
substantial.

� Design performance is independent of the variance components. As a result, no
estimate of the ratio of 𝜎WP

2∕𝜎 2 is required before selecting a design.
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TABLE 10.9 A Balanced Equivalent Estimation Central Composite Design Using the VKM
Construction Method for Two Hard-to-Change and Two Easy-to-Change Factors with Ten
Whole Plots and Four Runs per Whole Plot

Whole Plot # z1 z2 x1 x2 # Runs

1 −1 −1 ±1 ±1 4
2 −1 +1 ±1 ±1 4
3 +1 −1 ±1 ±1 4
4 +1 +1 ±1 ±1 4
5 −𝛽 0 0 0 4
6 +𝛽 0 0 0 4
7 0 −𝛽 0 0 4
8 0 +𝛽 0 0 4
9 0 0 ±𝛼 0 4

0 ±𝛼
10 0 0 0 0 4

� Model parameter estimates are independent of the variance component estimates.
Using REML, the model parameter estimates are typically dependent on the variance
components, which may not be well estimated if few degrees of freedom are available
for their estimation.

� The designs can be constructed so the equivalence property holds for any model
nested in the complete second-order model. When the data are collected and the
model parameters estimated, some terms of the model may not be significant and we
wish to reduce the model. In this case, the estimates of the new reduced model can
still be estimated using OLS.

� The model parameter estimates are the best linear unbiased estimate (BLUE), and this
property is robust to the assumption of normality of the error terms.

For more discussion on the advantages of equivalent estimation designs see Parker et al.
(2007).

Several construction techniques exist for creating these designs based on the type of
response surface design that is used for the starting point, restrictions on numbers of
whole plots, size of whole plots and the ability to select different axial values. Table 10.9
shows an adapted balanced Central Composite design for two hard-to-change and two
easy-to-change factors with twelve whole plots and four runs per whole plot. It uses the
Vining et al. (2005) (VKM) approach which allows for flexible axial values for both
the whole and subplot factors. Table 10.10 shows an adapted Box–Behnken design with
the same number and type of factors with the minimum number of allowable whole plots.
This design uses the minimum whole plot (MWP) method which allows for subplot cen-
ter runs to be added to achieve the required conditions for equivalence. Parker et al.
(2006, 2007) provide examples and details on the construction for a large number of
cases.

The replication of subplot combinations within whole plots reflects the assumption that
the cost of setting the hard-to-change factors dominates the cost of setting the easy-to-
change factors. It has the added benefit that there are many degrees of freedom available
for a pure error estimate of the subplot error, 𝜎2.
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TABLE 10.10 A Balanced Equivalent Estimation Box–Behnken Design Using the MWP
Construction Method for Two Hard-to-Change and Two Easy-to-Change Factors with Nine
Whole Plots and Five Runs per Whole Plot

Whole Plot # z1 z2 x1 x2 # Runs

1 −1 −1 0 0 5
2 −1 +1 0 0 5
3 +1 −1 0 0 5
4 +1 +1 0 0 5
5 −1 0 ±1 0 5

0 ±1
0 0

6 +1 0 ±1 0 5
0 ±1
0 0

7 0 −1 ±1 0 5
0 ±1
0 0

8 0 +1 ±1 0 5
0 ±1
0 0

9 0 0 ±1 ±1 5
0 0

10.8 RSM FOR NON-NORMAL RESPONSES—GENERALIZED
LINEAR MODELS

Generalized Linear Models are a unified collection of models that accommodate response
distributions that obey the exponential family. These response distributions include the
normal, Poisson, binomial, exponential, and gamma. The collection of models encompassed
by the GLMs include both linear and nonlinear models. The common thread is the use of a
linear predictor x′β, where the vector x is in model form. For example, important members
of the class of GLMs are given by the exponential model

E( y) = ex′β (10.49)

and the inverse polynomial model

E( y) = 1
x′β

(10.50)

While both models are nonlinear in the parameters, they contain a linear component and a
linear predictor, hence the word “linear” in their name. As one would expect, GLM applica-
tions involve using the response surface model (first-order interactive model, second-order
model, etc.) as the linear predictor. As we shall illustrate, certain models are appropriate
for certain distributions. For example, a special member of the GLM family is the standard
linear model

E( y) = x′β (10.51)

which is particularly appropriate for the case where the response is normal.
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Many of the theoretical aspects of GLMs are not be presented in this text. For further
details the reader is referred to McCullagh and Nelder (1989), Myers and Montgomery
(1997), and Myers, Montgomery, Vining, and Robinson (2011).

10.8.1 Model Framework: The Link Function

The characterization of the model is in terms of what is called a link function. The
link function describes the transformation on the response mean E(y) or 𝜇y, which is
equated to the linear predictor. In other words, it is the function that links the mean to the
linear predictor. As examples, consider the linear model, exponential model, and inverse
polynomial model mentioned in the introduction to this section.

The exponential model is derived from the log link, that is,

ln𝜇y = x′β (10.52)

and thus the model for the mean is

𝜇y = ex′β (10.53)

The inverse polynomial model comes from the use of the reciprocal link,

𝜇−1
y = x′β (10.54)

and thus the model for the mean is given by

𝜇y =
1

x′β
(10.55)

The linear model is derived from the identity link, 𝜇y = x′β, which of course leads to the
same expression for the model itself.

We can say then that if we use a link function

g(𝜇y) = x′β (10.56)

then the model for the mean 𝜇y is given by

𝜇y = g−1(x′β) (10.57)

One very important link that will be used subsequently is the logit link defined by
g(𝜇y)= ln[𝜇y/(1−𝜇y)], resulting in the model

𝜇y = g−1(x′β) = 1
1 + e−x′β

.
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10.8.2 The Canonical Link Function

For each of the members of the exponential family there is a natural canonical link
function. This does not imply that one is confined to that canonical link. But the reader
should understand that this natural link does enjoy certain theoretical as well as practical
advantages. At this point we shall give the canonical links for the binomial, Poisson,
exponential, gamma, and normal distributions. For the Poisson case the canonical link
function is the log link, giving the exponential model. This model is commonly called the
Poisson regression model. For the binomial case, the canonical link is the logit link with
the resulting model given by

𝜇y =
1

1 + e−x′β
(10.58)

often referred to as the logistic regression model. In the case of the logistic regression
model, 𝜇y is often the probability P of an event, say a defective item. Note that the right-
hand side of Equation 10.58 is bounded between 0 and 1. If the experiment involves say
n runs at each design point, and the response is the number out of the n that are defective,
then the mean is nP and the logistic model becomes

𝜇y =
n

1 + e−x′β
.

In the Poisson case note that the exponential model 𝜇y = ex′β does not allow negative
values for prediction of Poisson counts.

In the use of both the exponential and gamma distributions the canonical link is the
reciprocal link 𝜇−1

y = x′β, resulting in the inverse polynomial model 𝜇y = 1∕(x′β).

10.8.3 Estimation of Model Coefficients

When we consider the distributions in the exponential family, it becomes apparent that,
apart from the normal distribution, the variance is a function of the mean. Since the mean
is subject to change through changes in levels of the design variables or regressor levels,
the variance of the response will be nonconstant. Thus we have the nonideal conditions
described earlier in this chapter. While the observations on the responses are still assumed
to be independent, the nonconstant variance and nonlinearity necessitate consideration of
an alternative estimation procedure.

The standard operating procedure for estimation of model coefficients in the GLM
scenario is the method of maximum likelihood. We will not deal with the details of the
likelihood for the exponential family; the reader again is referred to McCullagh and Nelder
(1989) and Myers, Montgomery, Vining, and Robinson (2011). The methodology used is
easily motivated through a discussion of weighted least squares. Consider, for example, the
model

yi = 𝜇(xi, β) + 𝜀i (i = 1, 2,… , n) (10.59)

or simply

yi = 𝜇i + 𝜀i (i = 1, 2,… , n) (10.60)
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Here 𝜇i may be either linear or nonlinear in the parameters. Now if Var(yi) is nonconstant
and is denoted by

Var(yi) = vi (i = 1, 2,… , n)

and in fact the vi are known, then the method of weighted least squares involves finding the
coefficient vector β that satisfies

Min
n∑

i=1

[
yi − 𝜇(xi, β)√

vi

]2

(10.61)

Here, the vi are assumed known, and thus independent of the model coefficients themselves.
This is a reasonably straightforward nonlinear weighted least squares procedure and is
discussed in detail in Carroll and Ruppert (1988) and Myers, Montgomery, Vining, and
Robinson (2011). However, in GLMs the variance vi is a function of the mean and hence a
function of model parameters. Thus, the one-step use of weighted least squares cannot be
accomplished. Rather the procedure is iterative in nature. The resulting procedure, termed
iterative reweighted least squares (IRWLS), is described below.

A good illustration of the method of iterative reweighted least squares is provided by
the case of the Poisson distribution with the log link. The model is given by

𝜇i = ex′iβ (10.62)

and the variance 𝜐i is also ex′iβ. As a result, a weighted least squares with known β in 𝜐i
implies that the differentiation involves the numerator but the denominator remains fixed.
Thus the weighted least squares procedure is to solve (after differentiating Equation 9.61
with respect to β)

∑
i

(yi − ex′iβ)xi = 0

for β. The left side of the above equation is referred to as the score function. Solution
of this equation for β is certainly not difficult. However, keep in mind that the procedure
described can only be viewed from a conceptual point of view, because β is not known.
Thus the IRWLS is required to accomplish what is described above in an iterative fashion.

Suppose we denote the variance of the ith observation as 𝜐i(β). The procedure is as
follows:

(i) Begin with a starting value b0.

(ii) Substitute b0 into 𝜐i(β), forming 𝜐i,0.

(iii) Do weighted least squares with fixed weights 𝜐i,0.

(iv) Use the estimate b1 from (iii), and recalculate the weights, thus forming 𝜐i,1.

(v) Go back to (iii), using 𝜐i,1.

(vi) Continue until convergence.
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The above method converges to the maximum likelihood estimator for the coefficient
vector β. See McCullagh and Nelder (1989) and Myers, Montgomery, Vining, and Robinson
(2011) for details.

10.8.4 Properties of Model Coefficients

As in any maximum likelihood procedure, the model coefficients are asymptotically unbi-
ased. The variance–covariance matrix, which is used for tests on coefficients and thus is
of primary importance in variable screening, is not generally free of parameters in β. For
example, in the case of logistic and Poisson regression with canonical links, asymptotically

Var(b) = (X′VX)−1 (10.63)

where V is the diagonal variance–covariance matrix of the response observations,

V = diag{𝜐i(β)}

Thus for logistic regression and Poisson regression with the log link, we have respectively,
𝜐i(β)= niPi(1−Pi) with Pi = 1∕(1 + e−x′iβ) and 𝜐i(β) = ex′iβ. Thus any statistical infer-
ence that involves standard errors of coefficients makes use of estimated standard errors
with b substituted for β. Variable screening through tests on single coefficients makes use
of so-called Wald inference. The ratio

[ bj

se(bj)

]2

is asymptotically 𝜒 2
1, where se(bj) is the standard error of jth model parameter. Thus the

𝜒2 test statistic replaces the t-statistic used in standard least squares methodology. These
Wald 𝜒2 statistics will be illustrated in examples.

10.8.5 Model Deviance

In certain facets of RSM, tests for lack of fit are important, and residual plots can also
be beneficial in evaluating a fitted model. In the case of classical RSM, employed with
linear models with constant variance, standard F-tests are used for lack of fit. In the GLM
these F-tests are not applicable. In classical RSM either ordinary residuals or studentized
residuals are plotted. These residuals do not enjoy the same usefulness in a GLM situation,
because their values depend critically on the assumption of constant variance. In fact, the
broad notion of sums of squares (including regression and residual sums of squares) plays
no role of substance in the GLM except in the special case of a normal response with an
identity link. For the most part they are replaced by quantities that relate to the concept
of model deviance. Model deviance is an important component of likelihood inference.
Likelihood inference is rooted in the fact that, in general, a model is evaluated on the
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basis of the value of the log likelihood, computed as a function of model estimates. For
example, likelihood ratio inference allows the use of the likelihood ratio

−2 ln
[

L(br)

L(bf )

]

where L(br) is the likelihood computed for a restricted model whereas L(bf) is the likelihood
computed for the full model. The above likelihood ratio statistic is asymptotically𝜒2

Δ, where
Δ is the difference in the number of model parameters for the two models. Note that this
test statistic essentially determines whether the full model results in significantly higher
log likelihood. In the case of a linear model with normal responses, the log likelihood is, in
fact, apart from constants, the residual sum of squares.

The model deviance is technically a lack-of-fit test in which the model in question is
compared with the saturated model. The saturated model is that which has zero degrees
of freedom for residual. That is, we write the saturated model as yi =𝜇i + 𝜀i, where 𝜇i
contains no regressors. Rather there are N distinct means and thus there are N parameters
to be estimated. In fact, in the case of a binomial response, the ith binomial observation yi
is the estimator of the binomial parameter Pi. In the case of a nongrouped, or Bernoulli,
scenario, the estimator of Pi is a zero or one. Formally, then, the calculated model deviance
is given by

𝜆(b) = −2 ln
[

L(b)
L(μ̂)

]
(10.64)

where L(b) is the maximum value of the likelihood for the model in question and L(μ̂)
is the maximum value of the likelihood for the saturated model. Asymptotically 𝜆(b) is
𝜒2

N−p, where p is the number of parameters in the fitted model in question. Formally, an
insignificant value of 𝜆(b) in an upper-tail one-tailed test implies that the fit of the model
is not significantly worse than that of the saturated model. Thus, a relatively small value
of deviance is favorable for the fitted model. More discussion will be given later regarding
the deviance value as a goodness-of-fit statistic. Often the rule of thumb is applied that the
quality of the fit is reasonable if 𝜆(b)/(N− p) is not appreciably larger than 1. This rule is
prompted by the fact that N− p is the mean of the 𝜒 2

N−p distribution.
There are instances in which the asymptotic result here is not satisfactory for small

samples. For details, see Myers, Montgomery, Vining, and Robinson (2011).
Tests of nested hypotheses using the likelihood ratio criterion can be accomplished with

differences in deviance, much like the use of error sums of squares for the case of linear
models. Note that from the definition of deviance in Equation 10.64 a likelihood ratio
test statistic −2 ln[L(reduced)/L(full)] can be written as 𝜆(reduced)−𝜆(full), since L(μ̂) in
Equation 10.64 cancels out in the difference in deviances. For example, in a case with four
parameters 𝛽0, 𝛽1, 𝛽2, 𝛽3 where there is interest in testing H0 : 𝛽1 = 𝛽2 = 0, the likelihood
ratio statistic can be written

2 lnL(b0, b1, b2, b3) − 2 lnL(b∗0, b∗3) = 𝜆(b∗0, b∗3) − 𝜆(b0, b1, b2, b3).
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In fact, deviance can be used quite simply in a stepwise algorithm. The use of deviance
and thus log likelihood in nested hypotheses is not as fragile in small samples as the use of
deviance as a goodness-of-fit test.

10.8.6 Overdispersion

The concept of overdispersion is extremely important for complete understanding of the
practical aspects of the fitting of generalized linear models. The term overdispersion
implies that variability exists over and above the natural variability associated with the
distribution in question. Even if the distributional assumption is correct, there may be
extra binomial variability or extra Poisson variability. In other words, we say that the scale
parameter 𝜎2 > 1 is such that the variance of an individual observation is 𝜎2np(1− p)
rather than np(1− p). In the Poisson case with mean 𝜆, this means that the variance
is 𝜆⋅ 𝜎2.

There are reasonable explanations for overdispersion. Details regarding its possible
sources appear in Myers, Montgomery, Vining, and Robinson (2011). One may view the
overdispersion scale parameter 𝜎2 as playing the same role as the error variance in stan-
dard linear models. Certainly, sloppy or inadequate modeling in linear models increases
the estimate of the error variance, since bias due to lack of fit inflates the estimate. The
same is true in the case of the estimator of 𝜎2 in the GLM. Here the mean deviance, that
is, deviance/(N− p), plays the role of the mean square error in linear models. Overdisper-
sion often is a result of nonhomogeneity of experimental units. For example, a Poisson-
distributed response may be subject to overdispersion when the experimental materials used
are from different sources.

Effect of Overdispersion on Results The effect of overdispersion matches very closely
the effect of nonhomogeneous experimental units in linear models on the error variance.
The result is to increase the standard errors of estimates of model coefficients. For exam-
ple, in the case of models using the canonical link (e.g., logistic regression or Poisson
regression with an exponential model), the variance–covariance matrix of coefficients is
given by

Var(b) = (X′VX)−1𝜎2 (10.65)

and thus the standard errors are underestimated, since the parameter 𝜎2 > 1 will be ignored
in the computations. Obviously, in biological applications involving the use of animals
as experimental units, some overdispersion is expected. Whether or not overdispersion is
expected in an industrial application depends on the nature of the process.

Adjustments for Overdispersion It is standard procedure to adjust estimated standard
errors to allow for overdispersion. As one might expect, an estimate of the scale parameter
is given by

�̂�2 = deviance
N − p

(10.66)
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which is analogous to the error mean square in standard linear models. A second estimate
is given by the mean square of the Pearson 𝜒2 residuals. This statistic is given by

1
N − p

N∑
i=1

[
(yi − ŷi)

2

�̂�i

]
=

𝜒2

N − p
(10.67)

The intuition here is quite clear. The 𝜐i reflects the natural variance that comes from
the type of distribution based on the analysis. Clearly then the quantity inside brackets
above is the square of a standardized residual. The expression 𝜒2/(N− p) estimates unity
in a non-overdispersion scenario. It should be clear then that when overdispersion exists,
an adjustment to the computed standard error is made by multiplying the ordinary stan-
dard errors by the factor

√
𝜒2∕(N − p), or

√
deviance∕(N − p). SAS PROC GENMOD, a

software package widely used in fitting the GLM, allows for the adjustment and will be
illustrated with an example in Section 10.8.7.

10.8.7 Examples

In this section we present two examples: The first represents a designed experiment con-
taining a binomial response, and the second involves a Poisson response. For the binomial
example a logistic regression model is fitted to the data, while for the Poisson example the
canonical or log link is used, implying an exponential model.

Example 10.5 Survival of Spermatozoa This example is a spermatozoa survival
study. The endpoint, or response variable in the experiment, is survival or nonsurvival.
The spermatozoa are stored in sodium citrate and glycerol. The amounts of these sub-
stances were varied along with a third factor, equilibration time, in a 23 factorial design.
Fifty samples of the material were subjected to the conditions of each of the eight
design points. Interpretation of the effects of the factors was sought. The data appear in
Table 10.11.

TABLE 10.11 Spermatozoa Survival Data

Sodium Citrate Glycerol Equilibrium Time Number Surviving
x1 x2 x3 y

−1 −1 −1 34
1 −1 −1 20

−1 1 −1 8
1 1 −1 21

−1 −1 1 30
1 −1 1 20

−1 1 1 10
1 1 1 25



10.8 RSM FOR NON-NORMAL RESPONSES—GENERALIZED LINEAR MODELS 599

The full model to be fitted to the data contains three linear main effects and all two-factor
interactions. The binomial random variable y is the response. The logit link results in the
logistic regression model

E(y) = P

= 1
1 + e−(𝛽0+𝛽1x1+𝛽2x2+𝛽3x3+𝛽12x1x2+𝛽13x1x3+𝛽23x2x3)

where P is the probability of survival.
At this point we will give the likelihood inference designed to test the adequacy of

the entire model. This is analogous to the F-test used in standard linear models. For the
intercept-only model

P = 1
1 + e−𝛽0

we have (from PROC GENMOD)

−2 ln L(reduced) = 544.234

whereas for the full model containing seven parameters,

−2 ln L(full) = 496.055

Thus the appropriate likelihood ratio test statistic is

𝜒 2 = 2 ln
[

L(reduced)
L(full)

]

= 544.234 − 496.055

= 48.179

with 7− 1= 6 degrees of freedom. The value is significant at P < 0.0001. This implies
that the use of the full model significantly increases the log likelihood over that of the
intercept-only model. The maximum likelihood estimates, standard errors, and Wald 𝜒2

values for each coefficient appear in Table 10.12.

TABLE 10.12 Maximum Likelihood Estimates and Wald Inference on Individual
Coefficients for Data of Example 10.5

Model Term df Parameter Estimate Standard Error Wald 𝜒 2 P-Value

Intercept 1 −0.3770 0.1101 11.7198 0.0006
x1 1 0.0933 0.1101 0.7175 0.3970
x2 1 −0.4632 0.1101 17.7104 0.0001
x3 1 0.0259 0.1092 0.0563 0.8124
x1x2 1 0.5851 0.1101 28.2603 0.0001
x1x3 1 0.0544 0.1093 0.2474 0.6189
x2x3 1 0.1122 0.1088 1.0624 0.3027
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TABLE 10.13 The Reduced Model for Example 10.5

Model Term df Parameter Estimate Standard Error 𝜒 2 P-Value

Intercept 1 −0.3637 0.1081 11.3116 0.0008
x2 1 −0.4505 0.1084 17.2677 0.0001
x1x2 1 0.5747 0.1086 27.9923 0.0001

Note that 𝛽0, 𝛽2, and 𝛽12 appear to be important model terms. Any type of stepwise
algorithm using log likelihood results in the choice of the same model terms. The reduced
model was fitted to the data, and the results are shown in Table 10.13. Thus the fitted model
for estimating probability of survival is given by

P̂ = 1
1 + e−(−0.3637−0.4505x2+0.5747x1x2)

Note that fitting the reduced model results in different coefficients than those that appeared
in the full model. This is traced to the fact that, unlike the case of linear response surface
models, for this model the 23 factorial does not enjoy the property of orthogonality. Also
note that the standard errors are not equal as they would be in the case of a linear model
with standard assumptions. The contour plot and response surface plot of this model are
shown in Fig. 10.13.

Figure 10.13 Response surface and contour plot for Example 10.5. (a) Response surface.
(b) Contour plot.
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From the above fitted model and the plots in Fig. 10.13 it is easily established that when
the sodium citrate is at the low level, the amount of glycerol has a negative effect on the
probability of survival. By that we mean that a low level of glycerol produces the desired
result (P̂ close to 1.0). On the other hand, if the sodium citrate level is high, the amount
of glycerol has very little effect. The most desirable result occurs when both x1 and x2 are
simultaneously at the low level, whereas the worst case in terms of survival occurs when
sodium citrate is low and glycerol is high.

One must keep in mind that, as in any designed experiment, the conclusions drawn
here depend greatly on the chosen ranges of the design variables. In addition, standard
techniques such as residual analysis and the use of other diagnostic information should be
considered. We will discuss this later.

We now consider odds ratios and what they mean in the context of Example 10.5.
For the case where a logistic regression model is fitted, the type of interpretation that one
obtains from the factor effects that are used for linear models are replaced by odds ratios. In
the case of linear models, effect calculations discussed in Chapters 3 and 4 as the difference
between the mean response at the high level and that at the low level of a factor are quite
natural, simply because the model is in fact linear. In the case of the logistic model the type
of interpretation that is natural exploits the multiplicative component of the model. In this
example we define the odds of survival as P/(1−P), where, of course, P is the probability
of survival.

From the logistic model in Equation 10.58 we can write

P
1 − P

= ex′β

The multiplicative nature of the above equation leads to a natural interpretation of the effect
of a factor as the ratio (rather than the difference) of the odds when a factor is at x=+1
to the odds when the factor is, say, at the midpoint of the range, i.e., x= 0—that is, the
computation of the ratio of change in the odds of survival as the factor increases one unit.
If there is no interaction in the model, e𝛽2 becomes the ratio of the odds of survival at
x2 = 1 to the odds of survival at x2 = 0. So the interpretation is quite straightforward in the
no-interaction model. In fact, (e𝛽2 )2 = e2𝛽2 is the ratio of the odds of survival at x2 = 1 to
the odds at x2 =−1. However, when there is interaction in the model, as in Example 10.5,
e𝛽2 is the ratio of the odds of survival at x2 = 1 to the odds at x2 = 0 when xl = 0. Here
eb2 = 0.637, which makes a strong case for not storing the sperm with glycerol at its
high value, particularly when x1 = 0. For xl =−1 the relevant calculated odds ratio for x2
is eb2−b12 = 0.36. This number illustrates how operating at the high level is even more
destructive as far as survival is concerned if sodium citrate, is at the low level. On the
other hand, if sodium citrate is at the high level, that is, x1 =+1, the calculated odds
ratio effect of glycerol is eb2 + b12 = e0.125 = 1.136. This odds ratio near one implies that
the effect of x2 (glycerol) is rendered very small when sodium citrate is used at the high
level. So, while the maximum estimated probability of survival is achieved with both factors
simultaneously at the low level, the use of sodium citrate at the high level negates the effect of
glycerol.

It turns out that for all GLMs there is a connection to the effects used in standard linear
models. This will be evident in the next example.
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TABLE 10.14 Wave Solder Data

Factor y

Run A B C D E F G 1 2 3

1 −1 −1 −1 −1 −1 −1 −1 13 30 26
2 −1 −1 −1 +1 +1 +1 +1 4 16 11
3 −1 −1 +1 −1 −1 +1 +1 20 15 20
4 −1 −1 +1 +1 +1 −1 −1 42 43 64
5 −1 +1 −1 −1 +1 −1 +1 14 15 17
6 −1 +1 −1 +1 −1 +1 −1 10 17 16
7 −1 +1 +1 −1 +1 +1 −1 36 29 53
8 −1 +1 +1 +1 −1 −1 +1 5 9 16
9 +1 −1 −1 −1 +1 +1 −1 29 0 14
10 +1 −1 −1 +1 −1 −1 +1 10 26 9
11 +1 −1 +1 −1 +1 +1 +1 28 19
12 +1 −1 +1 +1 −1 +1 −1 100 129 151
13 +1 +1 −1 −1 −1 +1 +1 11 15 11
14 +1 +1 −1 +1 +1 −1 −1 17 2 17
15 +1 +1 +1 −1 −1 −1 −1 53 70 89
16 +1 +1 +1 +1 +1 +1 +1 23 22 7

Example 10.6 Solder Defects Consider an electronic circuit card assembly by a wave-
soldering process. The response is the number of defects in the solder joint. The process
involves baking and preheating the circuit card and passing it through a solder wave by
conveyor. Condra (1993) originally presented the results shown in Table 10.14, and Hamada
and Nelder (1997) reanalyzed them. The seven factors are (A) prebake condition, (B) flux
density, (C) conveyor speed, (D) preheat condition, (E) cooling time, (F) ultrasonic solder
agitator, and (G) solder temperature. Each factor is at two levels, and the experimental design
is a replicated 27−3 fractional factorial. Note that data point 11 has only two observations.
A third observation was reported, but strong evidence suggested that it was an outlier. See
Hamada and Nelder (1997).

Table 10.15 displays a SAS GENMOD output for the wave solder data. The response
is assumed to obey a Poisson distribution. The log link is used, and thus the model is the
exponential model

𝜇 = ex′β

with the linear predictor x′β containing seven main effects and six interaction terms. Note
from this output that the mean deviance, deviance/(N− p), exceeds unity considerably.
This signals the condition of overdispersion. The danger is the underestimation of standard
errors of coefficients. Also, we see that the mean squared error of the Pearson 𝜒2 residuals
exceeds unity considerably. Note from the “Analysis of Parameter Estimates” in the output
that all main effects are significant apart from D and F. The interactions AC, AD, BC, and
BD are also statistically significant according to the Wald 𝜒2 values.

The GENMOD output in Table 10.16 contains results in which the standard errors of
the estimated coefficients are adjusted for overdispersion. The standard errors are larger

by a factor of
√

dev∕(N − p) =
√

4.234. After the adjustment the model terms that appear
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TABLE 10.15 GENMOD Output for Full Model, Wave Solder Data, Example 10.6

The GENMOD Procedure
Model Information

Description Value

Data Set WORK, DEFECT
Distribution POISSON
Link Function LOG
Dependent Variable Y
Observations Used 47

Criteria For Assessing Goodness of Fit
Criterion DF Value Value/DF

Deviance 33 139.7227 4.2340
Scaled Deviance 33 139.7227 4.2340
Pearson Chi-Square 33 122.9190 3.7248
Scaled Pearson 𝜒 2 33 122.9190 3.7248
Log Likelihood 3837.9339

Analysis of Parameter Estimates
Parameter DF Estimate Std Err Chi Square Pr>Chi

INTERCEPT 1 3.0721 0.0344 7981.4934 0.0001
A 1 0.1126 0.0332 11.4710 0.0007
B 1 −0.1349 0.0344 15.3837 0.0001
C 1 0.4168 0.0345 146.1672 0.0001
D 1 −0.0577 0.0344 2.8118 0.0936
E 1 −0.0942 0.0334 7.9508 0.0048
F 1 −0.0176 0.0339 0.2696 0.6036
G 1 −0.3803 0.0343 122.9944 0.0001
AB 1 −0.0175 0.0334 0.2760 0.5993
AC 1 0.1741 0.0339 26.3925 0.0001
AD 1 0.0919 0.0332 7.6421 0.0057
BC 1 −0.0788 0.0343 5.2798 0.0216
BC 1 −0.2996 0.0344 75.8633 0.0001
CD 1 0.0446 0.0345 1.8275 0.1764
SCALE 0 1.0000 0.0000

significant are now C, G, AC, and BD. The conclusions concerning the results are quite
different when overdispersion is taken into account.

Finally let us consider the reduced model containing the significant model terms that
appear in Table 10.16. The fitted model is given by

�̂� = e3.0769+0.4405 C−0.4030 G+0.2821 AC−0.3113 BD

where �̂� is the estimated mean number of defects. Once again, as in the case of logistic
regression, the effects that allow interpretations of the roles of the variables must take
into account the multiplicative nature of the model. For example, consider factor G, solder
temperature. The effect e−0.4030 = 0.65 is the factor by which the number of defects is
reduced when solder temperature is changed from (coded level) G= 0 to G= 1, the high
level. Now consider factor C, conveyor speed. The effect of C obviously depends on the
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TABLE 10.16 Final Model for Wave Solder Data, Example 10.6

Link Function LOG
Dependent Variable Y
Observations Used 47

Criteria For Assessing Goodness of Fit
Criterion DF Value Value/DF

Deviance 42 241.7755 5.7566
Scaled Deviance 42 42.0000 1.0000
Pearson Chi-Square 42 237.3981 5.6523
Scaled Pearson 𝜒 2 42 41.2396 0.9819
Log Likelihood 657.8421

Analysis of Parameter Estimates
Parameter DF Estimate Std Err Chi Square Pr>Chi

INTERCEPT 1 3.0769 0.0825 1391.0260 0.0001
C 1 0.4405 0.0808 29.7429 0.0001
G 1 −0.4030 0.0808 24.8954 0.0001
AC 1 0.2821 0.0667 17.9039 0.0001
BD 1 −0.3113 0.0808 14.8557 0.0001
SCALE 0 2.3993 0.0000

NOTE: The scale parameter was estimated by the square root of DEVIANCE/DOF.

level of A, the prebake condition. If A is at the high level, an increase of conveyor speed
from coded level 0 to 1 (one unit) increases the number of defects by a factor of

e0.4405+0.2821 = e0.7226

= 2.05

On the other hand, if the prebake condition is at the low level, an increase in C from 0 to 1
will increase the number of defects by a factor of 1.17, since

e0.4405+0.2821 = 1.17

Thus the destructive effect of conveyor speed is rendered negligible if the prebake
condition is at the low level. The optimum conditions on the factors, i.e., those that result
in minimum number of defects, are given by

C = −1

G = +1

A = +1

while factors B and D are at the extremes, as long as B and D take opposite signs. The
estimated mean number of defects under these conditions is given by e1.64 = 5.16.
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10.8.8 Diagnostic Plots and Other Aspects of the GLM

As we have previously emphasized, much of the success of RSM centers around graph-
ics. These graphical displays include diagnostic plots of residuals, effect plots, and con-
tour plots. They are described in detail with illustrations, throughout this text, for RSM
under standard conditions, that is, normally distributed responses and independent errors
with constant variances. In the case of generalized linear models, similar diagnostic plots
involving residuals and effects are available, though they require some separate discussion
here.

There are two types of residuals that are available in the GLM: the Pearson 𝜒2 residual,
which has been introduced briefly in Section 10.8.6, and the deviance residual. Both the
Pearson residual and the deviance residual have as their roots a goodness-of-fit statistic.
The Pearson 𝜒2 residual is an ordinary residual yi − 𝜇i, standardized according to the
variance �̂�i at the ith data point. The sum of squares of these residuals is the Pearson 𝜒 2,
which is the basis for a goodness-of-fit statistic in SAS PROC GENMOD. The Pearson
𝜒 2 is asymptotically 𝜒2

N−p like the deviance statistic. However, like the mean deviance, the

Pearson 𝜒2/(N− p) is interpreted with the rule of thumb that a value substantially exceeding
unity implies that lack of fit is no concern.

In order to gain a sound understanding of the concept of deviance residuals, we should
review the basic structure of the deviance calculation with an example. The definition is
given in Equation 10.64. Note from this equation that the deviance is a difference in log
likelihood. In fact, apart from the factor of 2, we have

𝜆(b) = lnL(μ̂) − lnL(b)

where, of course, L(μ̂) is the likelihood for the saturated model and L(b) is the likelihood
for the model in question. Let us consider an example with a Poisson response. The log
likelihood is the log of the joint probability function of y1, y2,… , yN, which is given by the
log of

P(y1, y2,… , yN , μ) =
e−
∑N

i=1 𝜇i

N∏
i=1
𝜇

yi
i

N∏
i=1

yi

Thus

lnL(μ̂) = −
N∑

i=1

�̂�i +
N∑

i=1

yi ln �̂�i −
N∑

i=1

ln hi (10.68)

where �̂�i replaces 𝜇i in the log likelihood. For the saturated model �̂�i is replaced by yi, the
ith observation, whereas for the Poisson regression model in question, �̂�i is replaced by the



606 ADVANCED TOPICS IN RESPONSE SURFACE METHODOLOGY

maximum likelihood estimator of the mean from the regression model. As a result, for the
Poisson deviance we have

𝜆(b) = 2
N∑

i=1

[(�̂�i − yi) − yi ln �̂�i + yi ln yi]

= 2
N∑

i=1

[ yi ln(yi∕�̂�i) − (yi∕�̂�i)]

(10.69)

It can be shown (see Exercise 10.3) that for this case
∑N

i=1(yi − �̂�i) = 0 for the canonical

link. However, in general the deviance is of the form
∑N

i=1 di, where di is the portion in
brackets in Equation 10.69. This di is called the ith deviance residual. It is not exactly
what one plots, however. In order to give the residuals the characteristics that more closely
resemble those of the residuals in standard linear models, we define the adjusted deviance
residual (rD)i as

(rD)i = sgn(yi − �̂�i)
√

di.

This is for most cases the type of residual that is more appropriate to use for plotting
purposes. The sum of squares of the (rD)i is the deviance 𝜆(𝛽).

With regard to effect plots, we saw in discussions in our examples that effects are quite
often multiplicative in nature, and the interpretations are no less difficult to understand
than the linear effects that are generally observed and plotted in the case of linear models.
However, these effects often take the form eb, where b is either a regression coefficient
or a linear combination of regression coefficients. Since maximum likelihood estimators
are known to be asymptotically normal, the best results for normal probability plotting
are expected when standardized coefficients are plotted, i.e., coefficients divided by their
standard errors. It is interesting that when a two-level factorial design or regular fraction is
employed, model coefficients are often nearly asymptotically independent when a GLM is
used. This depends a great deal on the distribution and link. Indeed, if the so-called variance-
stabilizing link is used, the coefficients will have covariances that are asymptotically zero.
See Myers, Montgomery, Vining, and Robinson (2011). These links include the square root
link for the Poisson case, the log link for the exponential distribution, and the log link for
the gamma distribution.

Example 10.7 The Drill Experiment We consider a 24 unreplicated factorial that was
used to investigate the advance rate of a drill. This response exhibits a nonconstant variance
that depends on the level of the response. Daniel (1976) used this experiment to illustrate
the usefulness of normal probability plotting. The model fitted to the data here makes use of
a log link with an assumed gamma-distributed response. The data appears in Table 10.17.

The use of the log link results in an exponential model. The estimated model coefficients
are as follows:
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Term Coefficient

Intercept 1.598
x1 0.065
x2 0.290
x3 0.577
x4 0.163
x1x2 −0.017
x1x3 0.005
x1x4 0.034
x2x3 −0.025
x2x4 −0.008
x3x4 0.049
x1x2x3 0.005
x1x2x4 0.025
x1x3x4 0.027
x2x3x4 −0.017
x1x2x3x4 0.019

The coefficients divided by their standard errors were plotted on a half normal probability
plot. The plot is shown in Fig. 10.14. In this figure A= x1, B= x2, and so on.

From the normal probability plot it appears that coefficients for factors x2, x3, and x4 are
significantly different from zero. The reduced model was fitted with the resulting estimated
response function

ŷ = e1.6032+0.2895x2+0.5772x3+0.1656x4

TABLE 10.17 The Drill Experiment, Example 10.7

Run x1 x2 x3 x4 Advance Rate (Original Data)

1 − − − − 1.68
2 + − − − 1.98
3 − + − − 3.28
4 + + − − 3.44
5 − − + − 4.98
6 + − + − 5.70
7 − + + − 9.97
8 + + + − 9.07
9 − − − + 2.07
10 + − − + 2.44
11 − + − + 4.09
12 + + − + 4.53
13 − − + + 7.77
14 + − + + 9.43
15 − + + + 11.75
16 + + + + 16.30
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Figure 10.14 Half normal probability plot of effects for the drill data.

Lewis, Montgomery, and Myers (2001a) conduct a more extensive analysis of this experi-
ment. They illustrate that the use of the GLM is preferable to performing a log transformation
and using ordinary least squares, because the GLM produces shorter confidence intervals on
the mean response. Lewis, Montgomery, and Myers (2001b) show that this is a reasonable
criterion for selecting between a GLM and a standard linear least squares model following
a data transformation. Lewis (1998) is also a useful reference.

Example 10.8 Windshield Slugging This experiment involves the use of a 24−1 frac-
tional factorial in a study of windshield molding. During the operation debris carried into the
die appears as dents, or slugs, in the product. Martin, Parker, and Zenick (1987) originally
presented and analyzed the data. The purpose of the experiment is to improve slugging per-
formance. The response is the number of good parts out of 1000. The binomial distribution
is assumed, and the logit link is used. Table 10.18 gives the data.

The reduced logistic regression model includes the terms x1, x3, x4, x2x3, and xlx2. The
reader is asked to verify this in Exercise 10.13. The deviance residuals were plotted for
model diagnostic checking and appear in Fig. 10.15. They indicate that the logistic model
with the logit link is satisfactory.

TABLE 10.18 The Windshield Molding Slugging Experiment

Run x1 x2 x3 x4 Good Parts (Original Data)

1 + + + + 338
2 + + − − 826
3 + − + + 350
4 + − − − 647
5 − + + − 917
6 − + − + 977
7 − − + − 953
8 − − − + 972
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Figure 10.15 Normal probability plots of deviance residuals for logistic model windshild data.

Generalized linear models represent a useful set of techniques for conducting response
surface analysis when the response variables are clearly nonnormal and ordinary least
squares estimation is not efficient. Modern software packages, including SAS and S-PLUS,
have good GLM capability, and JMP can analyze GLMs for the binomial, Poisson, and
exponential distributions. Ozol-Godfrey et al. (2008) show how fraction of design space
plots, can be adapted to evaluate designs for GLMs. This is a useful tool to add to the kit
of a practitioner who wishes to conduct these types of analysis.

EXERCISES

10.1 Consider the two simple designs discussed in Section 10.1 namely, the following
two-point designs for fitting a first-order model:

(i) N/2 runs at x=−1; N/2 runs at x=+1

(ii) N/2 runs at x=−0.6; N/2 runs at x=+0.6

The region of interest [−1, +1] in the design variable x.

(a) Suppose the first-order model is correct. Compute

N
2𝜎2 ∫

1

−1
Var[ ŷ(x)] dx

for both designs.

(b) Suppose the true model is

y = 𝛽0 + 𝛽1x + 𝛽2x2

with
√

N𝛽2∕𝜎 = 2.0. Compute (N∕2𝜎 2) ∫ 1
−1{Var[ ŷ(x)] + [Bias ŷ(x)]2}dx for

both designs.
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10.2 Consider a fitted first-order model in four design variables:

ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4

Suppose the region of interest in the natural variables is given by the following
ranges:

𝜉1: [100, 150]

𝜉1: [1, 2]

𝜉1: [1000, 2000]

𝜉1: [0, 1]

The region is cuboidal. Suppose that the experimenter is interested in protecting
against a complete second-order model. A total of 10 runs are to be used.

(a) Give a minimum bias design in the natural variables.

(b) Suppose, instead of using the minimum variance design, the analyst achieves
protection against model mis-specification by using a scaled second moment
of 0.45. Again, two center runs are used in addition to the eight factorial points.
Give the appropriate design in the natural variables.

10.3 Consider Exercise 10.2. Suppose that a first-order model is fitted, but the practitioner
is interested in protection against the model

E( y) = 𝛽0 +
4∑

i=1

𝛽ixi +
∑ 4∑

i<j=2

𝛽ijxixj

In other words, there is no fear of pure quadratic effects in this design region; the
protection is sought against interaction terms only. Consider the use of Equation
10.18 for the determination of a minimum bias design.

(a) What are the moment requirements for the minimum bias design in this case?

(b) Give a minimum bias design with 10 runs for this case (coded levels).

(c) Give the same design in the natural variables.

10.4 Refer to Exercise 10.3. With the suggested alternative model, is there any restriction
on the second pure design moment for achieving a minimum bias design? Explain.

10.5 Consider the following general formulation: If the fitted model is first order, and
one is interested in protection against a model that contains first-order terms plus
two-factor interactions, the minimum bias design is one in which all odd moments
through order three are zero. This means that the two-level design for minimum
bias must have resolution at least IV. Prove that this statement is correct.

10.6 Prove the following statement: If the fitted model is first-order in k variables and one
is interested in protecting against a model containing linear terms and two-factor
interactions, a minimum mean squared error design is a two-level resolution≥IV
design with pure second moments (ii) as large as possible. As a result, the levels
are to be placed at ±1 extremes.
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10.7 Reconsider Example 10.2. Show that

ASBLS =
3𝛽2

2

𝜎2

(
4l4

9
− 4l2

9
+ 1

5

)

and that

APVLS = 1 + 1
2l2

What value of l results in minimum APVLS? What is the value of ASBLS at this
point? Does this design make sense if you worried about protecting against the
quadratic model?

10.8 Reconsider Example 10.2. Draw a graph of:

(a) ASB and ASBLS versus l in the range 0≤ l≤ 1.

(b) APV and APVLS versus l in the range 0≤ l≤ 1.

(c) AMSE and AMSELS versus l in the range 0≤ l≤ 1.

Discuss the graphs you have drawn and the potential utility of minimum bias
estimation if you are concerned about fitting the wrong model.

10.9 Consider the same situation described in Example 10.2; now, however, suppose
that you wish to use a design with one run at ±l1, and ±l2, with l1<l2, so that N= 4.

(a) Find the minimum bias estimator.

(b) Find ASB for the minimum bias estimator. Note that this will not be a function
of l1 and l2.

(c) Find APV for the minimum bias estimator as a function of l1 and 12. Prepare
a graph that shows how APV changes as l1 and l2 change.

(d) Suppose an experimenter uses the method of least squares with l1 =±0.5 and
l2 =±1. Find APVLS and PSBLS for this design. Can you find a design that
performs better if you use minimum bias estimation?

10.10 Consider the case of Poisson response with a log link. Show that
∑N

i=1( yi − �̂�i) = 0.

10.11 Table 10.17 shows data from an experiment used to study the advance rate of a
drill.

(a) Verify that the model coefficient estimates are as given in Example 10.7. Use
a gamma response with a log link.

(b) What are the standard errors of the model parameters?

(c) Find a 95% confidence interval on the mean response at each of the 16 design
points. Hint: SAS PROC GENMOD will produce these confidence intervals.

10.12 Analyze the drill experiment in Example 10.7 by ordinary least squares, following
a log transformation on the response.

(a) Does the prediction equation look similar to the one found using the GLM?
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(b) Construct contour plots for the least squares model and the GLM model, with
x4 =+1 and x4 =−1, Compare the plots.

(c) Find a 95% confidence interval on the mean response at each of the 16 design
points. Express the interval in terms of the original response.

(d) Compare the lengths of the confidence intervals from (c) with the lengths of
the intervals in Exercise 10.11(c). Which modeling approach would you prefer
if response prediction was the objective of the experimenter?

10.13 Consider the windshield slugging experiment in Example 10.8. Fit the GLM using
a binomial response and the logit link. Verify that the correct model includes the
factors x1, x3, x4, x1x2, and x2x3.

10.14 The experiment shown in the table below is a 27−4 fractional factorial con-
ducted to study the effect of the seven factors on nonconforming tiles. The
response variable is the percentage (out of 1000, say) of tiles that are noncon-
forming. Analyze this experiment, assuming the binomial distribution and the logit
link.

% Nonconforming
Run x1 x2 x3 x4 x5 x6 x7 (Original Data)

1 + + + + + + + 0.16
2 + + + − − − − 0.17
3 + − − + + − − 0.12
4 + − − − − + + 0.06
5 − + − + − + − 0.06
6 − + − − + − + 0.68
7 − − + + − − + 0.42
8 − − + − + + − 0.26

10.15 Example 2.12 presented the worsted yarn experiment, a 33 factorial design in which
the response variable was the number of cycles to failure of the yarn. A least squares
model was fitted to the data after a log transformation.

(a) Find a GLM for the data, assuming a gamma distribution and the log link.

(b) Compare the form of this model with the one obtained in Example 2.12. Are
they very similar?

(c) Construct 95% confidence intervals on the mean response at each of the 27
design points. (Hint: Use PROC GENMOD to do this for the GLM.) Compare
the lengths of the confidence intervals for the two modeling approaches. Based
on this comparison, which model would you prefer?

10.16 Reconsider the situation described in Exercise 10.15. Use the reciprocal link func-
tion, and repeat parts (a) and (b). How does the reciprocal link work in this
experiment?

10.17 Lewis, Montgomery, and Myers (2001a) present an experiment in a semiconductor
manufacturing process involving a CCD where the response variable is the observed
number of defects. The data are shown in the following table.
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x1 x2 x3 Number of Defects, y
√

y

1 −1 −1 −1 1 1.000
2 1 −1 −1 15 3.873
3 −1 1 −1 24 4.899
4 1 1 −1 35 5.916
5 −1 −1 1 0 0.000
6 1 −1 1 13 3.606
7 −1 1 1 16 4.000
8 1 1 1 13 3.606
9 −1.732 0 0 1 1.000
10 1.732 0 0 17 4.123
11 0 −1.732 0 7 2.646
12 0 1.732 0 43 6.557
13 0 0 −1732 14 3.742
14 0 0 1.732 3 1.732
15 0 0 0 4 2.000
16 0 0 0 7 2.646
17 0 0 0 8 2.828
18 0 0 0 6 2.450

(a) Fit a second-order model to the square root of the number of defects. Construct
contour plots of the predicted response. The objective is to find a set of operating
conditions that minimize the number of defects.

(b) How well does the least squares model perform as a predictor in the region of
interest?

(c) Repeat part (a) using a Poisson response and the log link.

(d) Is the GLM in part (c) a better model? Explain.

10.18 Repeat Exercise 10.17 using the square root link.

10.19 Reconsider the GLM from the windshield slugging experiment in Example 10.8.
Obtain the deviance residuals for the model. Construct a normal probability plot of
these residuals. Comment on your findings.

10.20 Reconsider the GLM for the worsted yarn experiment in Exercise 10.15. Obtain
the deviance residuals for the model. Construct a normal probability plot of these
residuals. Is there any indication of model inadequacy?

10.21 Reconsider the GLM for the defects experiment in Exercise 10.16. Obtain the
deviance residuals for the model. Construct a normal probability plot of the resid-
uals, and comment on the model’s adequacy.

10.22 Consider the experiment described in Exercise 4.7. Suppose that this experiment
had been conducted as a split plot, with factor A the whole plot variable. Analyze
the data, and draw appropriate conclusions.

10.23 Consider the experiment described in Example 4.2. Suppose that this experiment
had been conducted as a split plot, with factor B the whole plot variable. Analyze
the data, and draw appropriate conclusions.
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10.24 Consider the experiment described in Example 8.5. Suppose that this experiment
had been conducted as a split plot, with temperature as the whole plot variable.
Analyze the data, and draw appropriate conclusions.

10.25 Suppose that you plan to fit a second-order model in three factors. Factor A is
hard to change, but factors B and C are easy to change. Suggest an appropriate
experimental design for this problem, if the experimenter wants to minimize the
total number of runs.

10.26 An experimenter wants to fit a second-order model in five factors; factors A and B
are hard to change, and the other three factors are easy to change.

1. Find a design with the minimum number of runs (N= 21).

2. Find a design with N= 32 runs.

3. Compare these two designs.

10.27 Reconsider the adhesive strength experiment in Example 10.4. What is the
minimum number of runs that could be used to investigate the four factors
in this problem? Find the design and compare it to the one actually used in
Example 10.4.

10.28 An experimenter is interested in creating a design involving five factors in the
design region [−1,+1]5 with a total budget of 30 runs.

(a) Create a sphere packing design.

(b) Create a maximum entropy design.

(c) Create a Gaussian process I-optimal design

(d) Create a fast flexible filling design.

(e) By examining plots, determine which of the following designs:
(i) has the smallest average distance between points?

(ii) has the largest average distance from the center of the region?

(iii) has the best spacing of values for each individual factor across the range
[−1,+1]?

(f) Based on the results in (e), which design do you find most appealing? Why?

10.29 Consider a design for three factors with a total of 15 observations.

(a) Construct an arbitrary Latin hypercube design.

(b) Create an algorithm that constructs Latin hypercube designs and that evaluates
them based on the maximin criterion described in Section 10.4.1. Use the
algorithm to find an optimal design based on this criterion.

(c) Create an algorithm that constructs Latin hypercube designs and that evaluates
them based on the minimax criterion (using a grid of points inside the design
space) described in Section 10.4.1. Use the algorithm to find an optimal design
based on this criterion.

(d) Evaluate the best designs found in (b) and (c) for both the minimax and maximin
criteria. Which design do you prefer based on their relative efficiencies?

10.30 Ahmadi et al. (2005) consider a three-factor face-centered central composite design
to explore the effect of reducing the undesirable characteristics of water used in
a olive oil production facility. Table E10.1 shows the levels of the scaled factors
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TABLE E10.1 Data for Exercises 10.30, 10.31, and 10.32

COD Polyphenol Color Aromatocity
x1 x2 x3 Removal Removal Removal Removal

−1 −1 −1 3.20 7.80 1.33 2.15
1 −1 −1 41.08 99.90 17.16 9.64

−1 1 −1 1.85 4.50 0.69 0.91
1 1 −1 21.26 51.80 8.88 4.08

−1 −1 1 9.89 21.20 1.38 8.33
1 −1 1 43.94 94.13 17.72 37.44

−1 1 1 4.10 8.70 0.72 3.44
1 1 1 18.72 40.10 9.20 15.45

−1 0 0 30.23 52.35 18.50 17.52
1 0 0 55.76 99.50 34.80 32.78
0 −1 0 23.14 54.50 11.67 9.52
0 1 0 12.15 30.14 6.10 5.50
0 0 −1 30.24 70.42 12.15 6.69
0 0 1 27.55 61.32 9.12 12.20
0 0 0 38.60 71.10 19.48 17.86

and the results of the experiment on the four responses. The three factors that
were considered in the experiment were the H2O2-to-Fe(II) ratio (levels 1.67, 5,
8.33), pH (levels: 3,4,5) and olive oil mill wastewater (OMW concentration levels:
40%, 70%, 100%). The responses represent the percentage of the characteristic
removed, and hence large values are desirable as a sign of improved restoration of
the wastewater to pristine condition.

(a) Fit a second-order model to the Polyphenol response based on the three
factors.

(b) By examining a contour plot of the estimated response throughout the design
region, where are there problems? Explain why this would be problematic for
the experimenters.

(c) Using the logit link of Equation 10.58, fit a logistic regression model to the
Polyphenol response.

(d) By examining a contour plot of the estimated response in the design region,
compare the results to those obtained in (b). Does this model correct the problem
found previously? Explain.

10.31 Reconsider the experiment in Exercise 10.30 and Table E10.1.

(a) Fit a logistic regression model to the response Aromatocity removal. What is
the estimated maximum percentage of aromatocity that can be removed from
factor combinations within the design space?

(b) Where in the design space is the optimum achieved?

(c) Using the results from Exercise 10.30(d), what is the maximum estimated
percentage of Polyphenol that can be removed? Where is this optimum
achieved?

(d) Find the maximum estimated amount of Aromatocity that can be removed,
subject to the amount of Polyphenol removed being at least 95%.
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10.32 Reconsider the experiment in Exercise 10.30 and 10.31, with data in Table E10.1.

(a) Fit a logistic regression model to the response Color removal. What is the
estimated maximum percentage of color that can be removed from factor com-
binations within the design space? Where in the design space is the optimum
achieved?

(b) Based on the results from Exercise 10.31 and (a), which responses have greater
trade-offs when trying to optimize the amount removed?

(c) Construct a Pareto front based on optimizing both color and aromatocity
removal. What is the range of values for each of responses found on the Pareto
front? Which location in the design space are involved in solutions found on
the Pareto front?

(d) Using an additive desirability function with individual desirability scores based
on the range of values found on the Pareto front, which locations in the design
space are best for equal weighting of color and aromatocity?

(e) Repeat (d) using individual desirability scores based on the range of values
for each response found across the entire design space. How do the opti-
mal locations compare for the two scalings? Which scaling seems preferable?
Explain.

Short Answer Questions

10.33 Answer the following short answer questions:

(a) Justify how using a mean squared error criterion for evaluating the goodness
of a design might be beneficial.

(b) Describe the criteria for creating a minimum bias design for a first-order
model.

(c) Describe how difficulty in setting the input factors can impact the results of the
design and analysis of an experiment.

(d) Justify why it is important to consider different types of designed experiments
when the response will be obtained from a computer model. How are the data
obtained from these types of experiments different?

(e) Explain the difference between stochastic and deterministic simulation models.

(f) Explain why it is important to use a metric like minimax or maximin to evaluate
different designs within a class of designs (like Latin hypercube designs)?

(g) How does the curse of dimensionality with increasing numbers of input factors
influence the choice of designed experiments?

(h) Give a situation when it would be important to use a split-plot design rather
than a completely randomized design.

(i) Describe how the construction of a good split-plot design becomes more com-
plicated than for a completely randomized design.

(j) Explain why different designs are needed when considering a generalized linear
model.

(k) Describe the role of the link function in a generalized linear model. Why does
it make a difference which link is chosen?
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10.34 Answer the following True/False questions:

(a) Minimum bias designs are frequently the same as D-optimal designs.

(b) Designs for computer experiments and physical experiments typically use the
same design criteria for optimization.

(c) The criteria for split-plot designs need to be adapted to take into account the
different error structure of the model.

(d) Model bias can be estimated regardless of the choice of design.

(e) In general, it is better to use a higher-degree model to construct an optimal
design than to use too simple of a model.

(f) Minimax designs use only the design points to estimate the criterion value,
while maximin designs use the design space and the design points.

(g) All Latin hypercube designs for a particular design set-up will perform similarly
for estimation of the model.

(h) Using replicates for a computer experiment only makes sense if the response
is stochastic, not deterministic.

10.35 Circle the correct answer for each question:

(a) For a split-plot design
(i) Standard least squares estimation is the appropriate method to estimate the

model parameters.

(ii) The choice of best design is dependent on the relative size of the two error
terms.

(iii) The designation of hard-to-change and easy-to-change factors is random-
ized.

(iv) None of (i)–(ii) are correct statements.

(v) All of (i)–(iii) are correct statements.

(b) For a generalized linear model with binomial data,
(i) The canonical link is the logit link.

(ii) The variance of the response is dependent on its mean.

(iii) Estimation of model parameters is typically done with the method of
maximum likelihood.

(iv) None of (i)–(iii) are correct statements.

(v) All of (i)–(iii) are correct statements.
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ROBUST PARAMETER DESIGN AND
PROCESS ROBUSTNESS STUDIES

11.1 INTRODUCTION

In the 1980s, Genichi Taguchi [Taguchi and Wu (1980), Taguchi (1986, 1987)] introduced
new ideas on quality improvement in the United States. He proposed an approach he
called parameter design for reducing variation in products and processes. His methods
and philosophy generated considerable interest among quality engineers and statisticians.
During the 1980s his methodology gained usage at AT&T Bell Laboratories, Ford Motor
Company, Xerox, and many other prominent organizations. These techniques generated
much debate and controversy in the statistical community—not about Taguchi’s philosophy,
but rather about its implementation and the technical nature of data analysis. As a result,
a response surface approach evolved and has become a collection of tools that allow one
to adopt Taguchi’s robust design concept while providing a more statistically sound and
efficient approach to analysis. This RSM approach to parameter design is the subject of
this chapter.

11.2 WHAT IS PARAMETER DESIGN?

Parameter design, or robust parameter design (RPD), is essentially a principle that empha-
sizes proper choice of levels of controllable factors (parameters in Taguchi’s terminology)
in a system. The system can be a process or a product. The principle of choice of levels
focuses to a great extent on variability around a prechosen target for the output response.
These controllable factors are called control factors. It is assumed that the majority of
variability around target is caused by the presence of a second set of factors called noise

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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factors or noise variables. Noise factors are uncontrollable in the design of the product
or in the normal operation of the process. In fact, it is this lack of control that transmits
variability to the process response. As a result, the term robust parameter design entails
designing (not in the sense of experimental design) the system (selecting the levels of the
controllable variables) so as to achieve robustness (insensitively) to inevitable changes in
the noise variables. Often an RPD study in a manufacturing process is called a process
robustness study.

A significant difference between Taguchi’s view of process optimization and the tra-
ditional viewpoint centers around the notion of reducing process variability by involving
factors that cause process variability in the experimental design, modeling, and optimization
exercise. These factors, the noise factors, are often functions of environmental conditions—
for example, humidity, properties of raw materials, and product aging. In certain applications
they may involve the way the consumer handles or uses the product. Noise variables may
be, and often are, controlled at the research or development level, but of course they cannot
be controlled at the production or product use level.

11.2.1 Examples of Noise Variables

It should not be inferred that Taguchi discovered the notion of noise variables. Prior to
Taguchi, researchers certainly were aware that certain uncontrollable factors provide major
sources of variability. However, Taguchi encouraged the formal use of noise variables in
the experimental design and, as a result, allowed the analysis to involve process variability.
Table 11.1 presents some examples of noise variables and control variables in several
scenarios.

Table 11.1 gives only a few examples where the noise variables involved clearly cannot
be controlled in the process, but could be controlled in an experimental situation—that

TABLE 11.1 Some Examples of Control Variables and Noise Variables

Application Control Variables Noise Variables

Development of a cake mix Amount of sugar, flour, and
other dry ingredients

Oven temperature, baking
time, amount of milk added

Development of a gasoline Ingredients in the blend; other
processing conditions

Type of driver, driving
conditions, engine type

Operation of a tablet press to
manufacture a
pharmaceutical product

Active ingredient types and
concentrations; binder
material production speed

Relative humidity,
temperature

Large-scale chemical process Processing conditions,
including nominal ambiant
temperature

Deviations from nominal
ambient temperature;
deviations from other
processing conditions

Production of a box-filling
machine for filling boxes
of detergent

Surface area; geometry of the
machine (rectangular,
circular)

Particle size of detergent

Manufacturing a dry
detergent

Chemical formulation,
processing variables

Temperature and relative
humidity during
manufacture
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is, in a designed experiment. One important point should be made about the “large-scale
chemical process” example. Many times the most important noise variables are tolerances
in the control variables. In the chemical and some other industries, so-called controllable
variables are not controlled at all. In fact, if there is a nominal temperature of, say, 250◦F
during the large-scale production process, the temperature may vary between 235 and
265◦F, and the inability to control the process temperature produces unwanted variability
in the product. As a result, nominal temperature (or nominal pressure) becomes a control
variable, and the tolerance on temperature at levels ±15◦F (say) is a noise variable.

11.2.2 An Example of Robust Product Design

Consider a situation in which one is interested in establishing the geometry and surface
area of a box-filling machine that achieves a rate of filling that is “closest” to 14 g/sec. We
will call surface area factor A (two levels) and geometry factor B (two levels). The single
noise variable is the particle size of the detergent product. Three levels of the noise variable
were used. Suppose that we can sort the detergent by particle size into the three levels. The
data are as follows:

Particle Size 1 Particle Size 2 Particle Size 3

B B B

A −1 +1 A −1 +1 A −1 +1

−1 13.7 13.7 −1 14.9 14.2 −1 17.4 14.4
+1 14.0 11.9 +1 16.0 11.8 +1 12.0 11.7

Clearly the product that is most insensitive to the noise factor, particle size, is given by (+1,
+1). The sample standard deviation of fill rate is s= 0.1g/sec. However, the mean filling
rate across particle size is 11.8, and the target is 14.0. On the other hand, the product (+1,
−1) results in an average of 14.0, but the variability around the target is relatively large
(s= 2.0) and thus the product is not a robust product. Consider the product (−1, +1). The
average filling rate is 14.1, and the variability around the target is quite small (s= 0.36).
Thus, the optimum design among the four is (−1, +1). It produces the best combination of
bias error and variance error.

Strictly speaking, the most robust parameter design is the one that is insensitive to
changes in the noise variables. The implication of this definition is that the robust product
minimizes variance transmitted by the noise variables. However, one cannot ignore the
process mean. In this illustration, one might consider the squared error loss criterion; that
is, choose the product that minimizes

L =
∑

( y − 14)2

where the summation is taken over the levels of the particle size. In later sections where we
deal with the response surface approach to robust parameter design and process robustness
studies, the process mean and variance will be considered simultaneously.
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Figure 11.1 The 22 × 22 crossed array.

11.3 THE TAGUCHI APPROACH

11.3.1 Crossed Array Designs and Signal-to-Noise Ratios

Taguchi’s methodology for the RPD problem revolves around the use of orthogonal designs
where an orthogonal array involving control variables is crossed with an orthogonal array
for the noise variables. For example, in a 22 × 22, the 22 for the control variables is called
the inner array and the 22 for the noise variables is called the outer array. The result is a
16-run design called the crossed array. Figure 11.1 gives a graphical representation.

The corners of the inner array are represented by (−1, −1), (−1, +1), (+1, −1), and
(+ 1, +1) for the control variables. Each outer array is a 22 factorial in the noise variables.
The dots in the outer arrays represent the locations of observations. Figure 11.2 shows
another crossed array with 32 observations. The design is a 24−1 as the inner array, involving
the control variables, x’s, crossed with a 23−1 as the outer array, involving the noise
variables, z’s.

Taguchi suggested that one may summarize the observations in each outer array with a
summary statistic that provides information about the mean and variance. For example, in
Figs. 11.1 and 11.2, the summary statistic is computed across four observations. Thus, in
Fig. 11.2 there will be eight summary statistics. The summary statistic is called a signal-
to-noise ratio (SNR), and the statistical analysis is done using the SNR as the response

Figure 11.2 The 24−1 × 23−1 crossed array.
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variable. There are many different SNRs. However, there are four primary ones suggested
by Taguchi. The choice depends on the goal of the experiment. As in the case of response
surface work, there are three specific goals:

1. The smaller the better. The experimenter wishes to minimize the response.

2. The larger the better. The experimenter wishes to maximize the response.

3. The target is best. The experimenter wishes to achieve a particular target value.

The Smaller the Better Taguchi treats the smaller-the-better case as if there were a target
value of zero for the response. Thus, the quadratic- loss function Ez( y− 0)2 leads to the
performance criterion

SNRs = −10 log
n∑

i=1

y2
i

n
(11.1)

The rationale comes from the need to find x, whose elements are the levels of the control
variables that minimize the expected squared error Ez(y

2), where Ez implies expectation
across the distribution of the noise variables z. In the SNR calculation,

∑n
i=1 implies

summation over n response values at the outer array points. Thus, an SNR value will be
present at each inner array design point. Because the −10 log transformation is used, one
seeks to maximize SNRs.

The Larger the Better This case is treated in the same fashion as the smaller-the-better
case, but yi in Equation 11.1 is replaced by 1/yi. Thus, the SNR is motivated by the squared
error criterion Ez(1/y)2. As a result, the SNR is given by

SNRl = −10 log
n∑

i=1

1∕y2
i

n
(11.2)

Again, values of the control variables are sought that maximize SNR.

The Target is Best In this case, we are attempting to determine values of x that achieve
a target value for the response, namely y= t. Deviations in either direction are undesirable.
Two different SNRs are considered. The appropriate one depends on the nature of the
system. If the response mean and variance can be altered independently, Taguchi suggests
that one or more tuning factors be used to eliminate bias—that is, provide an adjustment
that results in Ez(y)= t. These tuning factors allow the analyst to alter the mean but leave
the variance unchanged. As a result, the analysis is a two-step process: Select the tuning
factors that render y= t, and then select levels of other control factors that maximize an
SNR. Assuming that this can be accomplished, the obvious squared error loss function,
Ez(y− t)2, reduces to Var(y). Thus, the SNR used by Taguchi is given by

SNRT 1
= −10 log s2 (11.3)

where s2 =
∑n

i=1( yi − ȳ)2∕(n − 1). Thus, s2 is the sample variance over the outer array
design points. Again, values of x are chosen so that SNR is maximized.
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A SNR is suggested by Taguchi for cases in which the response standard deviation is
related to the mean. It nicely accommodates situations in which the relationship is linear.
In this case adjustment or tuning factors are sought that, again, eliminate bias but leave the
coefficient of variation 𝜎y/𝜇y relatively unaffected. As a result, the natural SNR involves
the sample coefficient of variation s∕ȳ. In fact, Taguchi’s SNR for this case is given by

SNRT 2
= −10 log

(
ȳ2

s2

)
(11.4)

where the SNR is to be maximized. So, again, the two-step procedure is used. Values of the
tuning factor (or factors) are chosen that render y= t. These tuning factors have an effect
on the mean response but little or none on the SNR.

What Is the Utility of the SNR? The purpose of the SNR in Taguchi’s approach to robust
parameter design is to provide an easy-to-use performance criterion that takes the process
mean and variance into account. The terminology itself is open to criticism. Of the four
major SNR formulations, only the one in Equation 11.4 involves a true signal-to-noise
ratio (because it is the only one that is dimensionless). There is a wealth of literature in
which SNRs are criticized. See, for example, Box (1988) and Welch et al. (1990). A panel
discussion, edited by Nair (1992), provides opinions by several researchers regarding the
use of SNR. We would like to focus on one interesting characteristic of the SNRs here.
While the intention is to use them as performance characteristics that take both response
mean and variance into account, many authors have suggested the use of separate models
for the process mean and variance as a way of achieving better understanding of the process
itself. More details will be provided on this approach in a later section.

The use of a SNR does not guarantee that the subject matter scientist will secure valuable
information regarding the roles of the process mean and process variance. This uncoupling
of those control factors that affect mean (location effects) and control factors that affect
variance (dispersion effects) is very important in the understanding of the process. For
example, the SNR in Equation 11.4 can be written

SNRT2
= −10 log ȳ2 + 10 log s2

So, of course, the maximization of this SNR does not distinguish which control factors are
location effects and which are dispersion effects. As another example, consider SNRs in
Equation 11.1

SNRs = −10 log
(∑

y2
i ∕n

)

While
∑

y2
i ∕n does deal with variability around the target of zero, it is clear that an analysis

using this SNR cannot separate the location effects from dispersion effects. It is easy to see
that

∑
y2

i

n
= ȳ2 +

(
1 − 1

n

)
s2

so again, the mean and variance contributions in SNRs are confounded.
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Because the SNRs generally confound location and dispersion, they are not necessarily
unique. That is, there can be many different samples of data that will result in exactly the
same value of the SNR. Thus, it is not necessarily clear how one should interpret a particular
value of a SNR.

Crossed Array Designs A final point should be made about crossed array designs. When
they were executed it seems that many of these designs were actually run as split plots.
That is, a run (or treatment combination) in the inner array was fixed, and all outer array
runs were conducted at that setting of the control factors. Another possibility is to fix the
settings of the noise variables at a particular run in the outer array and then conduct all runs
in the inner array at that configuration of the noise variables. Either approach will produce a
split-plot structure. The latter approach is generally preferable, because the control factors
and their interactions with the noise factors would be more precisely estimated as they
reside in the subplot. For more discussion, see Box and Jones (1992, 2000). No split-plot
structure is considered in Taguchi’s analysis, which we now describe.

11.3.2 Analysis Methods

Taguchi’s notion of quality improvement places emphasis on variance reduction. His
approach to variance reduction is widely acknowledged as a very important contribu-
tion to statistics and engineering. While others had suggested the use of noise variables
before Taguchi, his idea of linking their use to variance reduction is original and has had a
profound impact. Details of his analysis ideas can be found in Taguchi (1987).

To understand the rationale behind the Taguchi analysis, one must be reminded that the
purpose of parameter design is to find the settings on the control variables that produce a
robust product or process. The control variables may be quantitative or qualitative. As a
result, the Taguchi analysis reduces to process optimization when the performance criterion
is the SNR.

The analysis method is simple and is very much linked to the crossed array concept.
There is an attempt to maximize the SNR. The modeling that is done essentially relates
the SNR to the control variables in a main-effects-only scenario. Taguchi rarely considers
interactions among the control variables. In fact, many of the designs advocated by Taguchi
do not allow estimation of these interactions. Standard ANOVA techniques are used to
identify the control factors that affect the SNR. In addition, ANOVA is done on the average
response ȳ in order to ascertain possible adjustment factors. The latter are set to levels that
bring the mean to target (in the target-is-best case), while the factors that affect the SNR are
set to levels that maximize it. This completes the two-step process where it is appropriate.
The setting of levels is accomplished by a pick-the-winner analysis in which a marginal
means approach is accomplished. To gain further insight, consider the following example.

Example 11.1 Wave Soldering Optimization In an experiment described by Schmidt
and Launsby (1990), solder process optimization is accomplished by robust parameter
design in a printed circuit board assembly plant. After the components are inserted into
a bare board, the board is put through a wave solder machine, which mechanically and
electrically connects all the components into the circuit. Boards are placed on a conveyor
and then put through the following steps: bathing in a flux mixture to remove oxide,
preheating to minimize warpage, and soldering. An experiment is designed to determine
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the conditions that give minimum numbers of solder defects per million joints. The control
factors and levels are as follows:

Factor (−1) (+1)

A, solder temperature (◦F) 480 510
B, conveyor speed (ft/min) 7.2 10
C, flux density 0.9 1.0
D, preheat temperature (◦F) 150 200
E, wave height (in.) 0.5 0.6

In this illustration, three noise factors are difficult to control in the process. These are the
solder temperature, the conveyor speed, and the assembly type. Often in such processes,
the natural noise factors are tolerances in the control variables. In other words, as these
factors vary off their nominal values, variability is transmitted to the response. It is known
that the control of temperature is within ±5◦F and that the control of conveyor speed is
within ±0.2 ft/min. Thus, it is conceivable that variability is increased substantially because
of the inability to control these two factors at nominal levels. The third noise factor is the
assembly type. One of the two types of assembly will be used. Thus, the noise factors are
as follows:

Factor (+1) (−1)

F, solder temp. (◦F) 5 −5
G, conveyor speed (ft/min) +0.2 −0.2
H, assembly type 1 2

Both the control array (inner array) and the noise array (outer array) were chosen to be
fractional factorials. The inner array is a 25−2 design, and the outer array is a 23−1. The
crossed array and the response values are shown in Table 11.2.

TABLE 11.2 The Wave Solder Experiment

Outer Array

F −1 1 1 −1
G −1 1 −1 1
H −1 −1 1 1 (SNR)s

Inner Array

A B C D E

1 1 1 −1 −1 194 197 193 275 −46.75
1 1 −1 1 1 136 136 132 136 −42.61
1 −1 1 −1 1 185 261 264 264 −47.81
1 −1 −1 1 −1 47 125 127 42 −39.51

−1 1 1 1 −1 295 216 204 293 −48.15
−1 1 −1 −1 1 234 159 231 157 −45.97
−1 −1 1 1 1 328 326 247 322 −45.76
−1 −1 −1 −1 −1 186 187 105 104 −43.59
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Figure 11.3 Plot of SNRs against level for each control factor.

Analysis The analysis in this example involves a marginal means modeling of the SNR
of Equation 11.1, namely SNRs, because it is of interest to minimize the number of solder
defects. One analytical device used frequently by Taguchi is to depict a main-effects-only
analysis through the graphs in Fig. 11.3. The mean SNRs, is plotted against levels of each
control factor. The means are taken across levels of the other factors. In addition to the
mean SNRs plot, a plot of ȳ against the levels of the control variables is also made and
appears in Fig. 11.4.

It is clear from Figs. 11.3 and 11.4 that temperature and flux density are critical control
factors that have a profound effect on SNRs and ȳ. It also appears that wave height has an
effect on SNRs but little or no effect on ȳ. Because it is of interest to maximize SNRs and
minimize ȳ, the following represent suggested operating conditions:

Solder temperature = 510◦F

Flux density = 0.9

Wave height = 0.5 in.

(11.5)

The conveyor speed and preheat temperature can be placed at the most economical settings,
presumably at low levels. The effect of wave height is marginal compared to the impact
of solder temperature and flux density. The analysis suggests that the conditions given by
Equation 11.5 are the most robust conditions, that is, in the context of this example, those
conditions that are most insensitive to changes in the noise variables.
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Figure 11.4 A plot of ȳ against the levels of control factors.

Further Comments on the Analysis In addition to earlier concerns regarding the appro-
priateness of the SNR, other comments concerning the analysis are in order. The plots in
Figs. 11.3 and 11.4 are appropriate for selecting optimum (most robust) conditions if one is
willing to assume no interaction among the control variables. Obviously, in many areas of
application this is a safe assumption, and certainly Taguchi’s success bears this out. How-
ever, there are many areas in which interactions have a very large contribution to process
or product performance. This renders the plots of main effect means highly misleading.
For example, in Fig. 11.3, consider the temperature plot. High positive slope reveals that
across levels of the other factors an increase in temperature increases SNRs. But suppose
when the density is low (which is an important level to maintain) the effect of temperature
is negligible or even negative. Then, there will be little need to use high temperature when
one operates with low density.

Many of the designs employed by Taguchi for inner arrays, where control factors reside,
do not accommodate interactions. In addition to the apparent difficulty with SNRs, this has
led to criticism of the methodology suggested by Taguchi. Many of the designs suggested
by Taguchi are saturated or near-saturated Plackett–Burman designs and thus do not allow
the experimenter to estimate interaction effects among the control variables.

A major component of the methodology of Taguchi’s robust design is to use confir-
matory trials at the recommended operating conditions. Indeed, this recommendation is
quite appropriate for any statistical procedure in which optimum operating conditions are
estimated.

Example 11.2 The Connector Pulloff Force Experiment An experiment was con-
ducted in order that a method could be found to assemble an elastometric connector to
a nylon tube that would deliver the required pulloff information for use in an automotive
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TABLE 11.3 Factors and Levels on the Connector Pulloff Force Experiment

Levels

Controllable Factors
A= Interference Low Medium High
B=Connector wall thickness Thin Medium Thick
C= Insertion depth Shallow Medium Deep
D= Percent adhesive in connector pre-dip Low Medium High

Uncontrollable Factors
E=Conditioning time 24 hr 120 hr
F=Conditioning temperature 72◦F 150◦F
G=Conditioning relative humidity 25% 75%

engine application. The objective is to maximize the pulloff force [see Byrne and Taguchi
(1987)]. Four variables were used as control variables. They are interference (A), connector
wall thickness (B), insertion depth (C), and percent adhesive in connector pre-dip (D). Three
factors were chosen as noise variables because they are difficult to control in the process
and make a major contribution to variability in the pulloff force. They are conditioning
time (E), conditioning temperature (F), and conditioning relative humidity (G). The levels
are shown in Table 11.3.

Note that the control factors are at three levels, while the noise factors are at two levels.
The experimental design and measured pulloff force are given in Table 11.4. Notice that
the inner array is a 34−2 fractional factorial design. (Taguchi refers to this as an L9.) The
outer array in the noise variables is a 23. The levels for the control variables are −1, 0, and
+1—representing low, medium, and high, respectively. The usual −1, +1 notation is used
for low and high as the noise variables. Note also that the design is a crossed array, giving a
total of 9× 8= 72 observations. The SNRl and ȳ values are given. If formal modeling were
to be done, then the fraction of the 34 could accommodate linear and quadratic terms in each
control variable. However, there are no degrees of freedom left for interaction among the
control variables. The analysis pursued is, once again, the marginal means plots for SNRl
and ȳ. Figures 11.5 and 11.6 present the marginal means plots for ȳ and SNRl, respectively.

TABLE 11.4 Inner and Outer Array for Example 11.2

Outer Array (L8)

E −1 −1 −1 −1 +1 +1 +1 +1
F −1 −1 +1 +1 −1 −1 +1 +1
C −1 +1 −1 +1 −1 +1 −1 +1

Inner Array (L9) Responses

Run A B C D ȳ SNRi

1 −1 −1 −1 −1 15.6 9.5 16.9 19.9 19.6 19.6 20.0 19.1 17.525 24.025
2 −1 0 0 0 15.0 16.2 19.4 19.2 19.7 19.8 24.2 21.9 19.475 25.522
3 −1 +1 +1 +1 16.3 16.7 19.1 15.6 22.6 18.2 23.3 20.4 19.025 25.335
4 0 −1 0 +1 18.3 17.4 18.9 18.6 21.0 18.9 23.2 24.7 20.125 25.904
5 0 0 +1 1 19.7 18.6 19.4 25.1 25.6 21.4 27.5 25.3 22.825 26.908
6 0 +1 −1 0 16.2 16.3 20.0 19.8 14.7 19.6 22.5 24.7 19.225 25.326
7 +1 −1 +1 0 16.4 19.1 18.4 23.6 16.8 18.6 24.3 21.6 19.850 25.711
8 +1 0 −1 +1 14.2 15.6 15.1 16.8 17.8 19.6 23.2 24.2 18.338 24.852
9 +1 +1 0 −1 16.1 19.9 19.3 17.3 23.1 22.7 22.6 28.6 21.200 26.152
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Figure 11.5 Plot of ȳ against levels of control variables.

As in Example 11.1, the graphs are examined and the analysis involves a pick-the-winner
approach. The following represent the optimal choices of A, B, C, and D according to the
plots:

A : Medium

B : Medium

C : Medium or deep

D : Low

In each case, we have the levels that maximize the mean response and also maximize SNRl.
Again, these choices are made under the assumption that no interaction exists among the
control factors.

Actually, when cost and other external factors were taken into account, the researchers
decided to use

A : Medium

B : Thin

C : Medium

D : Low

(11.6)

The thin level for B was much less expensive. Neither of the two conditions for A, B, C,
and D reported above was in the design. As a result, confirmatory runs were necessary. The
authors report that good results were observed. The levels used in the noise variables were
Elow, Flow, and Glow.

11.3.3 Further Comments

To this point our emphasis has been on experimental design and analysis procedures sug-
gested by Taguchi. It should be emphasized that despite criticisms put forth by statisticians

Figure 11.6 Plot of mean SNRl against levels of control variables.



11.4 THE RESPONSE SURFACE APPROACH 631

concerning his approach, the methods advocated by Taguchi have been successful, and
many practitioners have used them. While there are weaknesses in the methodology as
illustrated in the two previous examples, there are certainly many real-life situations in
which it works well. For an excellent account of Taguchi’s contributions the reader is
referred to Pignatiello and Ramberg (1991). In the sections that follow, we will discuss
areas where there are weaknesses and will point out situations in which these weaknesses
may lead to difficulties. This is designed to motivate an emphasis on response surface
methods as an alternative for solving robust parameter design problems.

Experimental Design The crossed array, or product array, begins with two experimen-
tal designs, one for the noise variables and one for the control variables. These designs are
then crossed with each other. The two individual designs are generally quite economical
because they are either saturated or near-saturated. However, the crossing of two designs
often does not produce an economical design. Indeed, often the designs are huge, as in
Example 11.2, where 72 runs were used to study only seven factors. As we will suggest
in a subsequent section, there are more economical approaches to designing an experiment
for control and noise variables.

In sections that follow we suggest economical experimental designs for handling robust
design problems in which control× control interactions are available. In addition, these
designs are compatible with a response surface approach to the solution of robust parameter
design problems.

The Taguchi Analysis Notwithstanding difficulties discussed earlier with the SNRs, the
approach taken by Taguchi and described here can work very well for determining a robust
product if control× control interactions are not important. However, the marginal means
approach, while placing emphasis on process optimization, does not allow the practitioner
to learn more about the process. Lack of an empirical model is a major flaw in the approach.
Here, the focus is on models that involve control× control and control× noise interactions
and on the determining of separate models for the process mean and variance.

11.4 THE RESPONSE SURFACE APPROACH

There are several response surface alternatives for solving the RPD problem and for con-
ducting process robustness studies. In this section we begin by emphasizing the importance
of the control× noise interactions, discuss alternative modeling and analysis strategies, and
present alternatives to the Taguchi-style crossed array experimental designs. With regard to
modeling strategies, it should be emphasized that, in general, process optimization may be
overrated. The more emphasis is placed on learning about the process, the less important
absolute optimization becomes. An engineer or scientist always can (and often does) find
pragmatic reasons why the suggested optimum conditions cannot be adopted. A thorough
study (via a response surface approach) of the control variable design space will generally
provide effective alternative suggestions for operating conditions.

11.4.1 The Role of the Control×Noise Interaction

We have emphasized the need to model control× control interactions. However, the con-
trol× noise interactions are vitally important. Indeed, the structure of these interactions
determines the nature of nonhomogeneity of process variance that characterizes the
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TABLE 11.5 Experimental Data in a Crossed Array

Inner Array Outer Array

A B C=−1 +1 Response Means

−1 −1 11 15 13.0
−1 1 7 8 7.5

1 −1 10 26 18.0
1 1 10 14 12.0

parameter design problem. As an illustration consider the case of two control variables
and one noise variable with data as shown in the crossed array design of Table 11.5.

Consider the plots displaying the control× noise interactions AC and BC in Figs. 11.7a
and 11.7b. In viewing these interaction plots, keep in mind that while C is held fixed in
the experimental design, it will vary according to some probability distribution during the
process. The probability distribution may be discrete or continuous. Here it is clear that
when we take this variability into account, the picture suggests that A=+1 and B=−1 will
result in largest product variability, whereas A=−1 and B=+1 should result in smallest
product variability. The braces on the vertical axes reflect product variability at A=+1
and B=−1. Now, of course, in this simple case, the conclusion is borne out in the data
themselves, but it may not be so easy to see in larger problems. In this illustration, we say
that A and B are both dispersion effects, that is, effects that have influence on the process
variance. In addition, both variables have location effects, namely, they have an effect
on the process mean. In fact, the illustration points out the need to compromise between
process mean and process variance. From the plots, the combination A=+1 and B=−1
produces the largest mean response, and if this is a larger-the-better case, determining the
optimum conditions will involve some type of simultaneous optimization of the process
mean and variance.

It should be apparent that control× noise interactions display the structure of the process
variance and relate which factors are dispersion effects and which are not. Consider the
example in Table 11.6. The A×C and B×C interaction plots are given in Figs. 11.8a and
11.8b. Here we have parallelism in both interaction plots. There is no AC factor interaction

Figure 11.7 Interaction plots for the data in Table 11.5. (a) AC interaction plot. (b) BC interaction
plot.
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TABLE 11.6 Experimental Data in a Crossed Array

Inner Array Outer Array

A B C=C−1 +1

−1 −1 14.5 22.5
−1 1 19 27.5

1 −1 23.5 32
1 1 28.5 37

and consequently A is not a dispersion effect. That is, the process variance is the same
at both levels of A. There is no BC interaction, so B is not a dispersion effect either.
The factor A has a greater location effect than B. If this is a larger-the-better case, then the
combination A=+1 and B=+ 1 is optimal and there is no robust parameter design problem,
because altering A and B has no effect on the variance produced by changing the noise
variable C.

Consider a third example, for which the AC and BC interaction plots appear in Figs.
11.9a and 11.9b. Figure 11.9a depicts A as a dispersion effect with A=+1 representing
the level of minimum variance. Figure 11.9b suggests that B is not a dispersion effect.
Both A and B are location effects; and for a larger-the-better scenario, A=+1 and 5=+1
represents optimum conditions. The control× noise interactions can serve as nice diagnostic
tools regarding the structure of the process variance. Note that the larger the slopes of
the interaction plots, the larger the contributions to the process variance. Here we have
discussed the diagnostic nature of the two-factor interactions. However, if there are three-
factor interactions involving control and noise factors, these too play a role.

Consider the connector pulloff force problem in Example 11.2. Here, there are four
control factors; from Fig. 11.6 factor A appears to have an effect on SNRl, and indeed
we learned that A medium is the appropriate level. In addition, A medium maximizes ȳ.
The two-factor AG interaction plot is given in Fig. 11.10. This plot implies that A medium
minimizes the variance produced by changes in relative humidity. It also reinforces that A
medium is desirable from the point of view of the mean response.

As a result, it should be clear that the control× noise interaction plot aids in the deter-
mination of which factors are dispersion effects, which are location effects, and which

Figure 11.8 Interaction plots for the data in Table 11.6. (a) AC interaction plot. (b) BC interaction
plot.
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Figure 11.9 Two-factor interaction plot. (a) AC interaction plot. (b) BC interaction plot.

levels of the dispersion effects moderate the variance produced by which noise variables.
For example, consider a situation in which we have three control factors (A, B, and C) and
two noise factors (D and E). Suppose also that interactions AD and BE are found to be
significant. In addition, A is found to be insignificant while B and C are significant.

Consider the main effect and interaction plots in Fig. 11.11. The plots indicate that C
has a strong location effect and B has a mild location effect. Factor B has a huge dispersion
effect with minimum process variance resulting from the use of the −1 level of B. Using
the −1 level of B minimizes that portion of the process variance that results from changes
in the noise variable E. Despite the fact that A interacts with the noise variable D, the use of
−1 or +1 on A results in the same process variance. However, if A is a continuous variable,
there may be other levels of A that will produce a horizontal line on the AD interaction plot
and thus dramatically reduce the portion of the process variance associated with changes
in D. (Note the dashed line on the AD interaction plot.) Because the factor C does not
interact with either noise factor, C cannot be used to control process variance. If one were

Figure 11.10 AG interaction plot for Example 11.2.
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Figure 11.11 Main effect and interaction plots.

interested in conditions that minimize mean response, say, but also result in minimizing
process variance, one would choose B=−1, C=+1, and A=−1 or +1. However, if A is
a continuous variable, the value of A that results in minimum process variance should be
sought. This latter idea will be developed in future sections.

11.4.2 A Model Containing Both Control and Noise Variables

From the discussion in the previous subsection, it becomes apparent that one may wish to
make use of a model that contains main effects and interactions involving both control and
noise variables. If the control variables are predominantly continuous variables, this type
of model will become a very useful vehicle for the eventual formation of a dual response
surface approach—that is, a response surface for the process mean and a response surface
for the process variance. In what has preceded this section, we have assumed that control
and noise factors are fixed effects. Suppose we consider x and z, the control and noise
factors respectively. The modeling of both x and z in the same model has been called a
response model approach. The following example illustrates one approach to the analysis
of the response model.

Example 11.3 The Pilot Plant Experiment Consider the experiment described in
Example 3.2, where a 24 factorial design was used to study the filtration rate of a chem-
ical product. The four factors are temperature, pressure, concentration of formaldehyde,
and stirring rate. Each factor is present at two levels. The design matrix and the response
data obtained from a single replicate of the 24 experiment are repeated for convenience in
Table 11.7. The 16 runs were made in random order.

Assume that temperature is hard to control in production. Therefore, it is the
noise variable and is denoted by z1. The other three factors are denoted x1 = pressure,
x2 = concentration, and x3 = stirring rate. Because both the control factors and the noise
factor are in the same design matrix, this type of design is called a combined array design.

Using the results from the original analysis in Example 3.2, the response model is

ŷ(x, z1) = 70.06 +
(

21.625
2

)
z1 +

(
9.875

2

)
x2 +

(
14.625

2

)
x3

−
(

18.125
2

)
x2z1 +

(
16.625

2

)
x3z1

= 70.06 + 10.81z1 + 4.94x2 + 7.31x3 − 9.06x2z1 + 8.31x3z1
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TABLE 11.7 Pilot Plant Filtration Rate Experiment

Factor
Run
Number z1 x1 x2 x3

Filtration Rate
(gal/hr)

1 − − − − 45
2 + − − − 71
3 − + − − 48
4 + + − − 65
5 − − + − 68
6 + − + − 60
7 − + + − 80
8 + + + − 65
9 − − − + 43

10 + − − + 100
11 − + − + 45
12 + + − + 104
13 − − + + 75
14 + − + + 86
15 − + + + 70
16 + + + + 96

Notice that the fitted response model contains both the control and the noise factors. Let us
assume that z1 is a random variable with mean zero and variance 𝜎2

z . Also, assume that 𝜎2
z

is known and the high and low levels of z1 are at ±𝜎z in coded form. Thus, 𝜎z = 1.
Suppose that the fitted model above is adequate to allow us to assume that the true

relationship between y, x, and z1 is

y(x, z1) = 𝛽0 + 𝛾1z1 + 𝛽2x2 + 𝛽3x3 + 𝛿12z1x2 + 𝛿13z1x3 + 𝜀

Because E(z1)= 0 and E(𝜀)= 0, a model for the process mean is

Ez1
[ y(x, z1)] = 𝛽0 + 𝛽2x2 + 𝛽3x3

Now apply a conditional variance operator across y(x, z1). This gives

Varz1
[ y(x, z1)] = Varz1

[𝛽0 + 𝛾1z1 + 𝛽2x2 + 𝛽3x3 + 𝛿12z1x2 + 𝛿13z1x3 + 𝜀]

= Varz1
[𝛽0 + 𝛽2x2 + 𝛽3x3 + (𝛾1 + 𝛿12x2 + 𝛿12x3)z1 + 𝜀]

= 𝜎 2
z (𝛾1 + 𝛿12x2 + 𝛿12x3) + 𝜎 2

This is a model for the process variance. We can replace the parameters by their estimates
to obtain

¤Ez[ y(x, z1)] = 70.06 + 4.94x2 + 7.31x3
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Figure 11.12 Contours of constant mean filtration rate (Example 11.3) with z1 = temperature= 0.

and

¤Varz[y(x, z1)] = 𝜎 2
z (10.81 − 9.06x2 + 8.31x3)2 + 𝜎 2

= 136.42 + 82.08x2
2 + 69.06x2

3 − 195.88x2 + 179.66x3 − 150.58x2x3

because 𝜎z
2=1 and �̂� 2 = 19.51 (this is the residual mean square obtained by fitting the

response model).
Figure 11.12 presents a contour plot of the response contours from the mean model.

This plot was constructed using Design-Expert. To construct this plot, we held the noise
factor (temperature) at zero and the nonsignificant controllable factor (pressure) at zero.
Notice that the mean filtration rate increases as either the concentration or the stirring rate
increases. Design-Expert will also construct plots automatically of the square root of the
variance contours, which it labels propagation of error, or POE. Obviously, the POE is
just the standard deviation of the transmitted variability in the response as a function of the
controllable variables. Figure 11.13 shows a contour plot and a three-dimensional response
surface plot of the POE, obtained from Design-Expert (in this plot the noise variable is held
constant at zero, as explained previously).

Suppose that the experimenter wants to maintain a mean filtration rate about 75 and
minimize the variability around this value. Figure 11.14 shows an overlay plot of the
contours of mean filtration rate and the POE as a function of concentration and stirring rate,
the significant controllable variables. To achieve the desired objectives, it will be necessary
to hold concentration at the high level and stirring rate very near the middle level.
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Figure 11.13 Contour plot and response surface plot of propagation of error for Example 11.3, with
z1 = temperature= 0. (a) Contour plot. (b) Response surface plot.

11.4.3 Generalization of Mean and Variance Modeling

The analysis in the previous subsection indicates that a dual response approach to the
RPD problem or a process robustness study offers considerable flexibility to the analyst.
Specifically:

1. It provides an estimate of the mean and standard deviation at any location of interest
in the control design variables.

Figure 11.14 Overlay plot of mean and POE contours for filtration rate (Example 11.3), with z1 =
temperature= 0.
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2. The engineer or scientist can gain insight regarding the roles of these variables in
controlling the process mean and variance.

3. It provides a ready source of process optimization via the use of a squared error loss
criterion such as

Ez[ y(x, z) − t]2 = {E[ y(x, z)] − t}2 + Varz[y(x, z)]

which will result in a single-number criterion appropriate for the target-is-best
scenario.

4. It allows the use of a wide variety of constrained optimization techniques.

Many authors have pointed out the advantages of mean and variance modeling and illus-
trated its use in both RPD problems and process robustness studies. Some useful references
include, Box and Jones (1989, 1992), Vining and Myers (1990), Shoemaker, Tsui, and Wu
(1991), Myers, Khuri, and Vining (1992a), Del Castillo and Montgomery (1993), Lucas
(1994), Pledger (1996), Myers, Kim, and Griffiths (1997), Khattree (1996), Montgomery
(1999), and Borror and Montgomery (2000).

The example in Section 11.4.2 involved a first-order model in the control factors. In
many situations, the model in the control and noise variables may involve quadratic, or
second-order, terms in the control variables (the x’s). Thus a plausible model would be

y(x, z) = 𝛽0 + x′β + x′Bx + z′γ + x′𝚫z + 𝜀 (11.7)

In this response model we assume linear effects in x and z, two-factor interaction and
pure quadratic terms in x (the term x′Bx), and the very important two-factor interactions
involving control and noise variables (the term x′𝚫z).

We do not rule out the use of interactions among noise variables or even quadratic terms
in noise variables. However, the model in Equation (11.17) accommodates many real-life
situations. The development of mean and variance modeling with the use of Equation 11.7
provides the machinery for more general applications. Let z in Equation 11.7 be rz × 1, and
let x be rx × 1. Then 𝚫 is an rx × rz matrix containing coefficients of the control× noise or
x× z interactions.

Assumptions Underlying Dual Response Development The 𝜀-term in Equation 11.7
plays the same role as the random error term in any response surface methodology (RSM)
model discussed in Chapters 3–10. Assumptions that 𝜀i are NID(0, 𝜎2) are often reason-
able. It should be pointed out that the constant variance assumption on 𝜀 implies that
any nonconstancy of variance of the process stems primarily from inability to control
noise variables. Detection of other sources of heterogeneous variance will be addressed in
Section 11.6.

The assumptions associated with the noise variables deserve special attention. As we
indicated in Example 11.3, we must assume that the user possesses a reasonable amount
of knowledge about the random variable z. It may be assumed that in the experiment the
natural levels of zj are centered at the mean that zj experiences in the process and that the ±1
levels are at 𝜇z j

+ 𝜎z j
. As a result, the mean of the z’s in coded metric is at 0, and ±1 levels

are one standard deviation from the mean. The latter is not a hard and fast assumption.
The experimenter may decide to let ±1 correspond to ±2𝜎z. Thus, we will demonstrate
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a development of the process variance response surface under the assumption that 𝜎z is

known, and the latter may take on values of 1, 1
2
, 1

3
and so on, in practice. For this purpose,

assume that

E(z) = 0, Var(z) = 𝜎 2
z Irz

(11.8)

Equation 11.8 implies the assumption that noise variables are uncorrelated with known
variance.

The Mean and Variance Response Surfaces We now apply conditional expectation
and variance operators to the model in Equation 11.8. Because E(z)= 0, the expectation
operation Ez gives the response surface model for the mean:

Ez[ y(x, z)] = 𝛽0 + x′β + x′Bx (11.9)

The conditional variance operator, Varz[y(x, z)] plus the error variance around
Equation 11.7 gives

Varz[ y(x, z)] = Varz(γ′ + x′𝚫)z + 𝜎 2

Here the quantity 𝛾 ′ + x′𝚫= a′ (say) is a vector of constants. As a result, we have to evaluate
Varz(a′z). Rules for applying the variance operator give

Varz(a′z) = a′Var(z)a

where Var(z) = 𝜎 2
z I is the variance-covariance matrix of z. As a result, we have

Varz(γ′ + x′𝚫)z = 𝜎 2
z (γ′ + x′𝚫)(γ′ + x′𝚫)′

so

Varz[ y(x, z)] = 𝜎 2
z (γ′ + x′𝚫)(γ + 𝚫′x) + 𝜎 2

= 𝜎 2
z l′(x)l(x) + 𝜎 2 (11.10)

where l(x)= 𝛾+𝚫′x.
Equation 11.9 is the response surface for the process mean, while Equation 11.10 is

the response surface for the process variance. Equation 11.10 deserves special attention.
Apart from 𝜎2, the model error variance, the process variance is ‖l(x)‖2, where l(x) is
simply the vector of partial derivatives of y(x, z) with respect to z. In other words,

l(x) =
𝜕y(x, z)
𝜕z

is just the slope of the response surface in the direction of the noise variables. This is
very intuitive: the larger the vector of derivatives 𝜕y/𝜕z (the slopes), the larger the process
variance. This relates very nicely to the discussion in Section 11.4.1. Recall that the flatter
the x× z interaction plots, the smaller the process variance. Clearly, flat interaction plots
result from small values of 𝜕y(x, z)/𝜕z. Also, note the important role of 𝚫, the matrix of x× z
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interaction coefficients, in the process variance response surface. If 𝚫= 0, process variance
does not depend on x, and hence one cannot create a robust process by choice of settings
of the control variables. In other words, the process variance is constant and thus there is
no robust parameter design problem. In Equation 11.10 we add the model error variance.
In many cases this variance will be negligible compared to the variance that is contributed
by variation in the noise variables. In our development here there is an implicit assumption
that the noise variables are quantitative in nature. In the case of discrete noise variables the
assumption of uncorrelated noise variables is not necessarily appropriate.

Equations 11.9 and 11.10 represent the mean and variance response surfaces developed
from the model (or response surface) that contains both control and noise variables Equation
11.7. Clearly the estimated response surfaces are obtained by replacing parameters by
estimates found in the fitted model and

ŷ(x, z) = b0 + x′b + x′B̂x + z′c + x′�̂�z (11.11)

Consequently, the estimated process mean and variance response surfaces are given by

ŸEz[y(x, z)] = �̂�z[ y(x, z)]

= b0 + x′b + x′B̂x
(11.12)

¤Varz[y(x, z)] = �̂� 2
z l̂

′
(x)l̂(x) + �̂�2

= �̂�2
z (c′ + x′�̂�)(c + �̂�′

x) + �̂�2
(11.13)

Here, �̂� 2 is the mean squared error in the fitted response surface.
It is actually possible to generalize these results a bit more. We may write the response

model involving the control and noise variables as

y(x, z) = f (x) + h(x, z) + 𝜀 (11.14)

where f(x) is the portion of the model that involves only the control variables and h (x, z)
are the terms involving the noise factors and the interactions between the controllable and
noise factors. In Equation 11.7, the structure for h(x, z) was assumed to be

h(x, z) =
rz∑

i=1

𝛾izi +
rx∑

i=1

rz∑
i=1

𝛿ijxiz j (11.15)

The structure for f(x) and h(x, z) will depend on what type of model the experimenter
thinks is appropriate. The logical choices for f(x) are the first-order model with interaction
and the second-order model. Equation 11.15 represents a reasonable choice for h(x, z); if
appropriate, however, one could include more complex functions of the noise variables.
If we assume that the noise variables have mean zero, variance 𝜎 2

z , and covariance zero,
and that the noise variables and the random errors 𝜀 have zero covariances, then the mean
model for the response is just

Ez[ y(x, z)] = f (x) (11.16)
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and the variance model for the response is

Varz[ y(x, z)] = 𝜎 2
z

r∑
i=1

[
𝜕y(x, z)
𝜕zi

]
+ 𝜎 2 (11.17)

Equation 11.17 was found by expanding y(x, z) in a first-order Taylor series about z= 0 and
applying the variance operator (this is sometimes called the delta method). Equation 11.17
is also called the transmission-of-error formula. When the noise variables are involved
linearly in h(x, z), Equation 11.17 is exactly the same as Equation 11.10.

11.4.4 Analysis Procedures Associated with the Two Response Surfaces

We saw a simple special case of a dual response surface analysis in Section 11.4.2. We were
able to find operating conditions by overlaying the response surfaces. Another approach is
to use constrained optimization, that is, select a value of Ez[y(x, z)] that one is willing to
accept. This does not imply a target on the mean but, say, a value below which one cannot
accept. In fact, several of these values may be chosen in order to add flexibility. Call this
constraint Ez[y(x, z)]=m. One then chooses x as follows:

Min
x

Varz[ y(x, z)] subject to Ez[ y(x, z)] = m

Several values of m may be used in order to provide flexibility for the user.
There are many situations in which focus is placed entirely on the variance response

surface. For example, there may be location effects that appear in the mean model but not in
the variance model, and they can be used as tuning factors. As a result, the analysis centers
around the variance model. One may be interested in determining x that minimizes, or
makes zero, the process variance in Equation 11.10. To that end, consider the computation
of the locus of points x0 for which

l(x0) = 0 (11.18)

or, in terms of the fitted surface,

c + �̂�′
x0 = 0

The condition Equation 11.18 represents rz equations in rx unknowns. If rx > rz, this result,
which produces a zero estimated process variance (apart from the model error variance 𝜎2),
will result in a line or a plane. If rx = ry there will a single point x0 that satisfies Equation
11.18. If rx < rz, Equation 11.18 may not have a solution. Of course a great deal of interest
centers on whether or not the locus of points x0 passes through the experimental design
region in the control variables.

We now present an example involving a second-order response surface model. This
example is taken from Montgomery (2013).

Example 11.4 A Process Robustness Study in Semiconductor Manufacturing An
experiment was run in a semiconductor manufacturing facility involving two controllable
variables. The combined array design used by the experimenters is shown in Table 11.8.
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TABLE 11.8 Combined Array Experiment with Two Controllable Variables and
Three Noise Variables, Example 11.4

Run Number x1 x2 z1 z2 z3 y

1 −1 −1 −1 −1 1 44.2
2 1 −1 −1 −1 −1 30.0
3 −1 1 −1 −1 −1 30.0
4 1 1 −1 −1 1 35.4
5 −1 −1 1 −1 −1 49.8
6 1 −1 1 −1 1 36.3
7 −1 1 1 −1 1 41.3
8 1 1 1 −1 −1 31.4
9 −1 −1 −1 1 −1 43.5

10 1 −1 −1 1 1 36.1
11 −1 1 −1 1 1 22.7
12 1 1 −1 1 −1 16.0
13 −1 −1 1 1 1 43.2
14 1 −1 1 1 −1 30.3
15 −1 1 1 1 −1 30.1
16 1 1 1 1 1 39.2
17 −2 0 0 0 0 46.1
18 −2 0 0 0 0 36.1
19 0 −2 0 0 0 47.4
20 0 2 0 0 0 31.5
21 0 0 0 0 0 30.8
22 0 0 0 0 0 30.7
23 0 0 0 0 0 31.0

The design is a 23-run variation of a central composition design that was created by starting
with a standard CCD for five factors (the cube portion is a 25−1) and deleting the axial runs
associated with the three noise variables. This design will support a response model that
has a second-order model in the controllable variables, the main effects of the three noise
variables, and the interactions between the control and noise factors. The fitted response
model is

ŷ(x, z) = 30.37 − 2.9x1 − 4.13x2 + 2.60x2
1 + 2.18x2

2 + 2.87x1x2 + 2.73z1

− 2.33z2 + 2.33z3 + 0.27x1z1 + 0.89x1z2 + 2.58x1z3 + 2.01x2z1

− 1.43x2z2 + 1.56x2z3

The mean and variance models are

⁄Ez[ y(x, z)] = b0 + x′b + x′B̂x

= 30.37 − 2.92x1 − 4.13x1 + 2.60x2
1

+ 2.18x2
2 + 2.87x1x2
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Figure 11.15 Contour plot of the mean model, Example 11.4.

and

¤Varz[ y(x, z)] = �̂�2
z l′(x)l(x) + 𝜎 2

= 19.26 + 3.20x1 + 12.45x2 + 7.52x2
1 + 8.52x2

2 + 2.21x1x2

where we have substituted parameter estimates from the fitted response model into the
equations for the mean and variance models and assumed that 𝜎 2

z = 1. Figures 11.15 and
11.16 present contour plots of the process mean and POE (remember that the POE is the
square root of the variance response surface) generated from these models.

In this problem it is desirable to keep the process mean below 30. From inspection of
Figs. 11.15 and 11.16 it is clear that some tradeoff will be necessary if we wish to make the
process variance small. Because there are only two controllable variables, a logical way to
accomplish this tradeoff is to overlay the contours of constant mean response and constant

Figure 11.16 Contour plot of the POE, Example 11.4.
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Figure 11.17 Overlay of the mean and POE contours for Example 11.4, with the open region
indicating satisfactory operating conditions for process mean and variance.

variance, as shown in Fig. 11.17. This plot shows the contours for which the process mean
is less than or equal to 30 and the process standard deviation is less than or equal to 5. The
region bounded by these contours would represent a typical operating region of low mean
response and low process variance.

There are other approaches to solving the robust design problem in Example 11.4. One
approach would be to differentiate the fitted response model with respect to each of the noise
variables z1, z2, and z3 (recall that the derivatives of the response model or the slope of the
response surface in the direction of the noise variables are proportional to the transmitted
variance) and force these derivatives to zero while simultaneously optimizing the levels of
the control variables x1 and x2. This approach can be executed in JMP. Figure 11.18a is the
output from the JMP prediction profiler showing the response y and the three derivatives for
each of the noise factors after this optimization is carried out using a desirability function
technique. JMP also has a simulation capability that predicts the proportion of production
outside specifications on the response variable. The proportion of the response y that is
predicted to be above 30 in this problem is about 25%. This indicates that the variability
transmitted from the noise variables is still quite high.

In some situations it may be possible to reduce the proportion of unacceptable product
by exercising some limited form of control over the noise variables. Often this control takes
the form of setting the mean value of the noise variable but still having no control over the
variability in the noise variable during routine process operation.

Suppose that in the situation of Example 11.4 we could set the mean of the noise
variables, but they would still vary randomly around these means. How much could this
additional flexibility potentially reduce the proportion of defective product (where y is
above 30)? The display in Fig. 11.18b addresses this question. This display is the defect
profiler from JMP. It provides predictions of how the defect rate is affected by changing
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Figure 11.18 Optimal solution to Example 11.4 using the response prediction profiler in JMP.
(a) Prediction profiler output from JMP. (b) Defect profiler.

the levels of the design factors. The output indicates that if the mean of the noise variable
z1 can be moved from zero towards its low level, the defect rate will be reduced. Similarly,
if the mean of the noise variable z2 can be moved from zero towards its high level and/or
the mean of the noise variable z3 can be moved from zero towards −0.5, the defect rate will
also be reduced. Therefore, if the experimenter has the additional flexibility of setting the
mean or target level of any of the noise variables in the situation, additional improvement
in process performance can be obtained.

Confidence Regions on Minimum Process Variance Conditions In the previous illus-
tration we displayed a region of low process variance, where the process variance is the
variability produced by the lack of sufficient control of noise variables in the process.
At times, what is depicted may be a line or a plane or even a point in the space of the
control variables. If minimizing process variance is important, then some characterization
of the precision of the estimates of these conditions may also be crucial. For example, a
line of minimum variance may represent a set of conditions that are unsatisfactory to the
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investigator. It would be helpful then to gain some sense of how far away from the line
the investigator can move and still maintain no significant difference from the minimum
variance conditions. The principle here is analogous to that discussed in Chapter 6, where
confidence regions were discussed for stationary points in cases where a single response
surface is considered. Consider, once again, Equation 11.18 with the solution x0 represent-
ing a locus of points or a single point of minimum process variance. Let t0 represent the
true condition of minimum variance—that is,

l(t 0) = γ + 𝚫′t 0 = 0

One must keep in mind that c is an unbiased estimate of γ, and Δ̂ is an unbiased estimate
of the matrix Δ. Now, assuming normal errors around the response model containing x and
z, we have

[l̂(t 0) − 0]′[ ◊Var l̂(t 0)]−1[l̂(t 0) − 0]

rz
∼ Frz,df(E)

where l̂(t0) = c + �̂�′
t 0, and ◊Var l̂(t0) is the variance–covariance matrix of l̂(t0) with 𝜎2

replaced by the error mean square 𝜎2. See Graybill (1976) or Myers and Milton (1991).
Here df(E) is the error degrees of freedom for the estimator s2 of 𝜎2 obtained from the fitted
response model. As a result the conditions t0 satisfying the inequality

[l̂(t 0) − 0]′[ ◊Var l̂(t 0)]−1[l̂(t 0) − 0]

rz
≤ F1−𝛼,rz,df(E) (11.19)

represent the desired 100(1− 𝛼)% confidence region. One should note that rz in Equa-
tion 11.19 denotes the number of noise variables that interact with control variables, and
F1−𝛼,rz,df(E) is the upper percentile point of Frz,df(E).

Example 11.5 Color Television Images In the transmission of color television signals
the quality of the decoded signals is determined by the PSNRs (power signal-to-noise ratios
in electronics engineering) in the image transmitted. The response here refers to the quality
(coarse versus detailed) in the reception of transmitted signals in decibels. The control
factors are x1 (number of tabs in a filter) and x2 (sampling frequency). These two factors
form an inner array, while the noise or outer array involves z1 (number of bits in an image)
and z2 (voltage applied). The design used is a 32 × 22 crossed array, and the data appear in
Table 11.9.

The model to be used is Equation 11.7. The 32 in the inner array allows for a second-
order model in the control variables. For this specific case, the model can be written as

y(x, z) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽11x2
1 + 𝛽22x2

2 + 𝛽12x1x2 + 𝛾1z1

+ 𝛾2z2 + 𝛿11x1z1 + 𝛿12x1z2 + 𝛿21x2z1 + 𝛿22x2z2 + 𝜀
(11.20)
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TABLE 11.9 Color TV Image Data for Example 11.5

Codel Levels

−1 0 1

x1 (number of tabs in a filter) 5 13 21 (tabs)
x2 (sampling frequencies) 6.25 9.875 13.5 (MHz)
z1 (number of bits of an image) 256 512 (bits)
z2 (voltage applied) 100 200 (volts)

Factor z1 −1 −1 1 1
Combination x1 x2 z2 −1 1 −1 1

(1) −1 −l 33.5021 41.2268 25.2683 31.9930
(2) −1 0 35.8234 38.0689 32.7928 34.0383
(3) −1 1 33.0773 31.8435 36.2500 34.0162
(4) 0 −1 30.4481 41.2870 15.1493 23.9883
(5) 0 0 34.8679 40.2276 27.7724 31.1321
(6) 0 1 35.2202 37.1008 33.3280 35.2085
(7) 1 −1 21.1553 34.1086 0.7917 15.7450
(8) 1 0 27.6736 38.1477 15.5132 25.9873
(9) 1 1 32.1245 38.1193 26.1673 32.1622

The process variance is determined by applying the variance operator to Equation 11.20,
namely,

Varz[ y(x, z)] = [𝛾 2
1 + 𝛾 2

2 + 𝛿 2
11x 2

1 + 𝛿 2
12x 2

1 + 𝛿 2
21x 2

2 + 𝛿 2
22x 2

2 + 2𝛾1(𝛿11x1 + 𝛿21x2)

+ 2𝛾2(𝛿12x1 + 𝛿22x2) + 2(𝛿11𝛿21 + 𝛿12𝛿22)x1x2]𝜎 2
z + 𝜎 2

= [(𝛾1 + 𝛿11x1 + 𝛿21x2) 2 + (𝛾2 + 𝛿12x1 + 𝛿22x2) 2]𝜎 2
z + 𝜎 2

=

[(
𝜕y(x, z)
𝜕z1

) 2

+
(
𝜕y(x, z)
𝜕z2

)]
𝜎 2

z + 𝜎 2

=
{

[l1(x)] 2 + [l1(x)] 2
}
𝜎 2

z + 𝜎 2

(11.21)

Note the role of the derivatives l1(x) and l2(x) in the process variance function. Again, we
seek x0 that results in minimum process variance. Here we are assuming that the± levels
of z1 and z2 are at ±𝜎z. Note that the computation of the location of estimated minimum
process variance does not depend on knowledge of 𝜎z.

The least squares fit of the model in Equation 11.20 is given by

ŷ(x, z) = 33.389 − 4.175x1 + 3.748x2 + 3.348x1x2 − 2.328x 2
1

− 1.867x 2
2 − 4.076z1 + 2.985z2 − 2.324x1z1

+ 1.932x1z2 + 3.268x2z1 − 2.073x2z2
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All coefficients are significant, and the root error mean square is 0.742 dB. The slopes in
the z1 and z2 directions are given by

l̂1(x1, x2) = −4.076 − 2.234x1 + 3.268x2

l̂2(x1, x2) = 2.985 + 1.932x1 − 2.073x2

Both x1 and x2 can be used to exert control on the process variance because both con-
trol× noise interactions are significant.

The point of minimum estimated process variance is found by setting l̂1(x) = 0 and
l̂2(x) = 0. This gives the result

x0 =
[

x1,0

x2,0

]
=

[−0.874

0.625

]

which lies in the experimental design region. For the confidence region around this value,
we have

ŸVar[l̂1(x)] = ŸVar[l̂2(x)] = 0.0154 + 0.0230x2
1 + 0.0230x2

2

This result comes from the variances of the 𝛿ij and ci values. Keep in mind that these
estimators are uncorrelated. Thus for the confidence region, Equation 11.20 becomes

l̂(t)′◊[Varl(t)]
−1

l̂(t)
2

≤ F2,24,0.05

which reduces to

(−4.076 − 2.324t1 + 3.68t2)2 + (2.985 + 1.932t1 − 2.073t2)2

0.0154 + 0.0230(t21 + t22)
≤ 6.8056

Any (t2, t2) that satisfies the above inequality falls inside the 95% confidence region
on the location of minimum process variance. See Fig. 11.19. Two lines l̂1(x) = 0 and
l̂2(x) = 0 shows intersection at x0 = (+0.874, 0.625), the point of estimated minimum
process variance. The shaded area displays the confidence region. Also included are the
contours of constant estimated mean response, whose response surface is obtained using
the expectation operator on Equation 11.20:

⁄Ez[ y(x, z)] = 33.3889 − 4.1752x1 + 3.748x2

+ 3.3485x1x2 − 2.3277x2
1 − 1.8670x2

2

The notion of a robust product here implies the choice of (x1, x2) that gives large response
with low variance. Notice that the stationary point for the mean response surface is a point
of estimated maximum response. This stationary point, however, does not fall inside the
confidence region for the location of minimum variance. The mean response surface is
fairly flat in the region of small x1 and large x2. As a result, very little is lost on the mean
if one operates at x0, the point of minimum variance. Now, consider Fig. 11.20, where
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Figure 11.19 Contours of constant mean decibels, point of estimated minimum variance, and 95%
confidence region on location of process variance for Example 11.5.

Figure 11.20 Dual response surfaces on mean and standard deviation with points of minimum
variance and maximum mean (Example 11.5).
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we have superimposed contours of constant standard deviation. Here, s is the estimated
process standard deviation. Note that the standard deviation is stable in the upper left-hand
corner. The estimated standard deviation at x0 is 0.80. Note that the standard deviation
becomes less stable as one moves away from the 95% confidence region.

From the display given in Figs. 11.19 and 11.20, the researcher learns a great deal about
the process. The most robust process will clearly be in the area of small x1 and large x2.
The trough created by the shaded area in Fig. 11.19 shows considerable flexibility as far
as optimum conditions are concerned. At x0, the estimated process mean is approximately
35 dB, and the estimated process standard deviation is 0.8.

In this example the experimenter is fortunate that the intersection of l̂1(x) = 0 and
l̂2(x) = 0 occurs inside the design region. If this does not occur, then one must use other
response surface methods in dealing with the process variance.

11.4.5 Estimation of the Process Variance

In the previous section we considered the use of a mean and variance response surface
for learning about the influence of the control and noise design variables on the process
mean and process variance. We also discussed the use of these two response surfaces for
finding robust conditions on the control variables, where some type of compromise is
chosen for accommodating goals on the mean response but achieving a sufficiently small
process variance. It can be argued that the two response surfaces can be dealt with in a
fashion similar to that discussed in Chapter 7, where we discussed multiple response surface
analysis. It is not our intention to recommend a single “best” way of blending together the
mean and variance response surfaces.

In many instances the procedure of determining the conditions that produce zero value
for the derivatives (i.e., values for which l̂1 = 0, l̂2 = 0,… , l̂rz

= 0) give coordinates that
are not practical. There is no assurance that this stationary point will fall inside the region
of the design in the control variables. As a result, ridge analysis is a reasonable approach
for handling both the mean and variance response surfaces. This could provide two loci of
points, each locus giving constrained optimum conditions, one locus for the mean and one
for the variance. In what follows we will supply a few details for the case of the variance
response surface. Before we embark on this discussion we will deal with the notion of
appropriate estimation of the process variance.

For the case where the noise variables are uncorrelated, the variance response surface
is given by Equation 11.10. In a more general setting [say, when the noise variables are
correlated and Var(z)=V, where V is an rz × rz variance–covariance matrix], the process
variance is

Varz[ y(x, z)] = l′(x)V l(x) + 𝜎2

where 𝜎2 is the error variance for the model of Equation 11.7. Now, if one merely replaces
l(x) by the estimator from the data, and 𝜎2 by the mean squared error from the fitted model,
s2, we have as an estimator of the process variance

¤Varz[ y(x, z)] = l̂
′
(x)V l̂(x) + s2 (11.22)
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The result in Equation 11.22 is not an unbiased estimator, because E[l̂
′
(x)Vl̂(x)] ≠

l′(x)Vl(x). In fact,

E{ ¤Varz[ y(x, z)]} = l′(x)V l(x) + 𝜎 2tr(VC) + 𝜎 2 (11.23)

where the matrix C is simply Var[l̂(x)]𝜎 2. In other words, C is the covariance of the l̂’s,
apart from 𝜎2. Recall the role of this matrix in the confidence region on the location of
process variance. See Equation 11.19. For standard experimental designs this matrix will
be a diagonal matrix, since the ci, and 𝛿jk will all be uncorrelated. However, it should be
noted that the diagonal elements, that is, the variances of the l̂′i(x), depend on x. Now, from
Equation 11.23 one can work out an unbiased estimator of the process variance, namely,

s2
z[ y(x, z)] = l̂

′
(x)V l̂(x) + s2(1 − tr VC) (11.24)

or, for the cases that we have dealing with in this chapter, when the noise variables are
uncorrelated with unit variances,

s2
z[ y(x, z)] = l̂

′
(x)l̂(x) + s2(1 − tr C) (11.25)

The estimator in Equation 11.25 will often differ only slightly from the simpler but biased
estimator in Equation 11.22. In fact, we used the latter in examples in previous sections.
However, there will be occasions when the difference between the two will not be negligible.
This is particularly true when the process variance is being computed on or near the design
perimeter, because tr C becomes larger as one approaches the design perimeter. As a result,
one cannot ignore s2

z [y(x, z)] as an estimator of process variance.
In a comparison of the biased estimator of Equation 11.22 and the unbiased estimator of

Equation 11.25, it can be shown that unless the error df in the fitting of the original model
in Equation 11.7 is 2 or less, the unbiased estimator in Equation 11.25 is preferable. We
will not present the details of that study here. In what follows we discuss the use of the
estimated process variance in a ridge-analysis-type procedure for the process variance.

Ridge Analysis for Process Variance The reader should recall from Chapter 6 that the
purpose of ridge analysis is to produce a locus of points that are constrained optima on
the response. This produces a ridge in the design space, which could give rise to future
experiments, or could lead to interesting conditions that are of course confined to the
experimental region. Applying the same notion to the process variance, we have

min
x

{s2
z[ y(x, z)]} subject to x′x = R2 (11.26)

That is, we will develop a locus of points that are each a point of conditionally minimum
variance. The use of Lagrange multipliers as in Chapter 6 requires

𝜕

𝜕 x

[
l̂
′
(x)l̂(x) + s2(1 − tr C) − 𝜆(x′x − R2)

]
(11.27)
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Now, if the experimental design renders the noise main effects independent of the con-
trol× noise interactions, and the control× noise interaction independent of each other, the
matrix C reduces to

C =

⎡⎢⎢⎢⎢⎣

x′D11x + Var c1 0

x′D22x + Var c2

0 ⋱

x′Drz,rz
x + Var crz

⎤⎥⎥⎥⎥⎦

where Djj is an rx × rx matrix containing Var(𝛿ij)∕𝜎2 on the ith main diagonal. Here x′ =
[x1, x2,… , xrx

]. Thus tr (C) becomes

tr (C) =
rz∑
j=1

x′D jjx +
rz∑
j=1

cj

We will not supply the details in the differentiation of Equation 11.27. However, setting the
partial derivatives in Equation 11.27 equal to 0 gives

[
�̂��̂�′ − 𝜎2

rz∑
j=1

D jj − 𝜇I

]
x = −�̂�c (11.28)

where c′ = [c1, c2,… , crz
]. To ensure that solutions are points of constrained minimum

variance, values of 𝜇, smaller than the smallest eigenvalue of �̂��̂� − s2 ∑rz
j=1 D jj are to be

used in Equation 11.28.

Example 11.6 Application of Ridge Analysis Consider a situation in which there are
two control variables and three noise variables. The design variables x1, x2, z2, and z3 are
varied in a 23-run combined array design that is similar to the one used in Example 11.3.
It is a variation of a CCD. The design and data are given in Table 11.10.

Note that as before the design is not a complete CCD. The factorial portion is a 25−1,
and there are no axial points in z1, z2, z3, because we are not fitting quadratic terms in the
z’s. The fitted response model is

ŷ = 30.382 − 2.925x1 − 4.136x2 + 2.855x1x2 + 2.596x2
1

+ 2.175x2
2 + 2.736z1 − 2.326z2 + 2.332z3

− 0.278x1z1 + 0.893x1z2 + 2.574x1z3 + 1.999x2z1

− 1.430x2z2 + 1.547x2z3

The important derivatives in the z1, z2, and z3 directions are given by

l̂(x) =
⎡⎢⎢⎢⎣

l̂1
l̂2
l̂3

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

2.736 − 0.278x1 + 1.999x2

−2.326 + 0.893x1 − 1.430x2

2.332 + 2.574x1 + 1.547x2

⎤⎥⎥⎥⎦
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TABLE 11.10 The Combined Array Design for Example 11.6

Observation x1 x2 z1 z2 z3 y

1 1 −1 1 −1 −1 30.0250
2 −1 1 −1 −1 −1 30.0007
3 −1 −1 1 −1 −1 49.8009
4 −1 −1 −1 1 −1 43.4717
5 −1 −1 −1 −1 1 44.1905
6 1 1 1 −1 −1 31.3911
7 1 1 −1 1 −1 16.0333
8 1 1 −1 −1 1 35.3823
9 1 −1 1 1 −1 30.3383

10 1 −1 1 −1 1 36.3417
11 1 −1 −1 1 1 36.1355
12 −1 1 1 1 −1 30.1289
13 −1 1 1 −1 1 41.3179
14 −1 1 −1 1 1 22.7125
15 −1 −1 1 1 1 43.2415
16 1 1 1 1 1 39.1733
17 −2 0 0 0 0 46.1502
18 2 0 0 0 0 36.0689
19 0 −2 0 0 0 47.3903
20 0 2 0 0 0 31.4659
21 0 0 0 0 0 30.8109
22 0 0 0 0 0 30.7499
23 0 0 0 0 0 30.9655

The method of ridge analysis requires the minimization of l̂
′
l̂ − s2tr(C) subject to the

constraint
∑ 2

i=1 x2
i = 2. Here we are assuming that the noise variables are uncorrelated

with 𝜎2
z = 1.0 in the coded metric of the noise variables. In this case one needs to solve

Equation 11.28 with particular values of 𝜇. The matrix
∑rz

j=1 D jj simple becomes 3
16

I2, and

s2 = 0.920 from the analysis. As a result,

s2
2∑

j=1

D jj =
[

0.1725 0

0 0.1725

]

while the matrix �̂� is the 2× 3 matrix containing the control× noise interaction coefficients
in the fitted regression. The eigenvalues of �̂��̂� − s2 ∑rz

j=1 D jj turn out to be 9.995 and 5.594.
As a result, we replace 𝜇 with values smaller than 5.594. It turns out that for 𝜇=−0.486 the

solution to Equation 11.28 falls on a circle of radius
√

2. Indeed, (−0.0156, −1.41405) is

the point of constrained minimum variance at radius
√

2. Figure 11.21 displays the result
of the ridge analysis. All points on the path in the figure are points of constrained minimum
process variance. Obviously, future experiments with x1 near zero and smaller values of x2
might be considered.

In much of what has preceded we have built mean and variance response surfaces that
are generated from a single response surface that is developed from a model with noise and
control variables in the same model. We now discuss alternative methods of constructing
the variance model.
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Figure 11.21 Locus of points of minimum constrained process variance for Example 11.6.

11.4.6 Direct Variance Modeling

Bartlett and Kendall (1946) in a classical paper showed that if some design points are
replicated, the variance can be modeled directly without serious violation of assumptions
by using a log-linear model of the

log s2
i = x′iγ + 𝜀∗i , i = 1, 2,… , d (11.29)

where s2
i is a sample variance obtained from, say, n observations taken at each of d design

points. The x′iγ portion of the model refers to a linear model in a set of design variables.
They demonstrated that if the errors are normal around the mean model; that is, if

yij = x′iβ + 𝜀ij𝜎i, i = 1, 2,… , d, j = 1, 2,… , n

where 𝜀ij ∼N(0, 1) and ln 𝜎 2
i = x′iγ, then the use of the model in Equation 11.29 leads to

approximately normal errors with constant variance. Thus ordinary least squares may be
appropriate for modeling variance in a log-linear procedure. Carroll and Ruppert (1988),
Engle (1992), Grego (1993), and Vining and Bohn (1998) discuss further details of variance
modeling.

Taguchi revived interest in variance modeling. There are many situations where the
variance can be directly modeled using the log-linear model approach. These include
replicated designs (not all design points have to be replicated) and situations where repeat
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measurements rather than true replicates are taken at the design points, Vining and Schaub
(1996) discuss how one might allocate replicate runs in designs so as to obtain a variance
model. In Example 3.3 we illustrated how a variance model could be built using duplicate
runs. In this situation, the variance reflects within-run variability, but usually that is the
portion of the total variability that is of most interest to the experimenter. Indeed, a crossed
array design also lends itself to variance modeling.

The use of the log-linear model also often results in simplicity. The log transformation
often reduces the effects of curvature and interaction, thereby making the results easier to
interpret.

Once a log-linear variance model is fitted, the mean response surface model in the control
variables can be found in the usual way as discussed in Chapter 6. Thus the dual response
surface approach for finding robust or optimum conditions can be carried out. Vining and
Myers discuss the approach, with illustrations, in their contribution to the panel discussion
edited by Nair (1992). Also see Vining and Myers (1990).

Example 11.7 The Wave Solder Experiment Consider again Example 11.1 where it
was of interest to determine conditions on the control variables that produce a low value of
response (solder defects per million joints) but also provide consistency (low variability).
The data in Example 11.1 were used to develop two models, one for the mean response
(standard linear regression model) and one for the variance via the log-linear variance
model described here. Recall that the crossed array contains a 25−2

III inner array design and a
23−1

III in the outer array. Thus, four outer array points can be used for the sample variances.
The fitted models, including significant terms, are given by

ŷ = 197.175 − 28.525x1 + 57.975x2

for the mean and

ln(s2) = 7.4155 − 0.2067x1 − 0.0309x2

for the variance. Here x1 is the solder temperature and x2 is the flux density. Figure 11.22
shows the graphical analysis involving both models. The mean and the standard deviations
are plotted. The latter was found via the expression

s =
[
e7.4155−0.2067x1−0.0309x2

]1∕2

As one would expect from the analysis in Example 11.1, high temperature and low flux
density minimize the mean number of errors and the variability simultaneously. However,
the graphical dual response surface procedure allows the user to see trade-offs for better
understanding of the process. For the example the user may be dissatisfied with the extreme
solder temperature and flux density, particularly the temperature. The graphs provide alter-
native conditions with resulting mean and variance estimates. It would be of interest to see
the results when the variance model is computed from the variance operator on a model
containing both control and noise variables—that is, the procedure discussed in Sections
11.4.3 and 11.4.4. See Exercise 11.25.
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Figure 11.22 Mean and variance models for wave soldering from Example 11.7.

11.4.7 Use of Generalized Linear Models

Much of this chapter has dealt with joint modeling of the mean and variance. These two
models can then be used simultaneously or jointly to arrive at candidates for operating
conditions. It is instructive to discuss the role of the generalized linear model (GLM)
in the formulation of the dual RSM procedure. We learned in Chapter 10 that GLMs
are an important component in RSM modeling. Often responses are clearly nonnormal,
for example, Poisson counts and binary responses. It turns out that even if the basic
response is normal, the modeling of variance, either from replication or from nonreplication
experiments, is an excellent example where the use of the GLM can be important. The reader
will note from what follows that iterative procedures can easily be developed that involve
two GLMs, one for the mean model and one for the variance model. We begin with the case
where either a replicated experiment is made, or noise variables are involved in a crossed
array.

Case of Replicated Experiments or a Crossed Array Let us assume initially that an
experimental design allows for computation of sample variances s2

i (i= 1, 2,… , d) where d
is the number of design points. The s2

i -values come either from design replication or from
variance information retrieved from an outer array. Earlier in the chapter we considered the
modeling of the response ln (s2

i ) for the variance model. The log transformation results
in approximate homogeneity of variance, and hence ordinary least squares was considered
in conjunction with a simple one-stage model development. Indeed, if the mean is to
be modeled simultaneously with the variance, weighted least squares is an appropriate
technique. Note, however, that in this approach the distribution of the s2

i was not taken into
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account. As a result the estimation procedure described in Section 11.4.6 clearly fails to
exploit the distribution of the sample variance.

The random variables s2
1, s2

2,… s2
d are independent estimates of the variances at each

design point. Consider now a typical value say s2
i . If the responses yi1, yi2,… y1n (n is the

sample size at each design point) are normal, then

s2
i (n − 1)

𝜎2
i

∼ 𝜒2
n−1

The 𝜒2
𝜈

distribution is a special case of a gamma distribution with dispersion parameter
2/𝜈. Recall that the mean and variance of 𝜒2

𝜈
are 𝜈 and 2𝜈 respectively. Thus a GLM fit for

the variance model with a gamma distribution and known dispersion parameter is indicated.
In addition, there are several attractive properties of the log-linear model for s2

i , so a log
link is certainly appropriate. As a result, an efficient procedure for the development of the
models is as follows.

1. Use a gamma GLM on the s2
i -responses with log link and dispersion parameter 2/𝜈

to fit the variance model

ln 𝜎 2
i = u′

iγ + 𝜀i, i = 1, 2,… , d

Here we use u′
iγ as opposed to x′iβ to allow for possible differences between mean

model terms and variance model terms.

2. Use vi = eu′i γ̂ as weights to compute V= diag{v1, v2,… , vd}. Here the γ̂ come from
the estimator in step 1.

3. Use V as a weight matrix to fit the mean model

E( yi) = x′iβ, i = 1, 2,… , d

with β estimated by b= (X′V−1X)−1X′V−1V−1y as a weighted least squares
estimator.

It should be understood that the matrix X contains model terms for the mean, and the model
in Equation 11.29 can in fact contain a subset of these terms.

Case of Unreplicated Experiments For unreplicated experiments more complications
arise in the case of the variance model, as was pointed out in earlier discussions in this
chapter. In fact, as before, it should be noted that the quality of the variance model is
very much dependent on a proper choice of the model for the mean, since the source of
variability is the squared residual e2

i = (yi−xi
′b)2 for i= 1, 2,… , n design runs.

For the fundamental variance model we will still deal with the log-linear structure
(Eq. 11.29). In order to motivate the use of the GLM for this case, consider the unobserved
model error 𝜀i = yi − x′iβ. As a starting point, we assume that

𝜎2
i = E(𝜀 2

i ) = eu′iγ (11.30)

where 𝜀 2
i ∼ 𝜎 2

i x 2
i .
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Maximum Likelihood Estimation of 𝜷 and 𝜸 Using GLM In the dual modeling procedure
for unreplicated experiments it is helpful to achieve efficiency of joint estimation of the mean
model coefficients β and the variance model coefficients γ through maximum likelihood
with the GLM as the analytical tool. We can write the mean model as y=Xβ+ 𝜀 with
Var(𝜀)=Vn× n and again vi = eu′iγ. Now, the MLE for β is merely weighted least squares,

b = (X′V−1X)−1X′V−1y

If we use the random vector s′ = (𝜀2
1, 𝜀2

2, ..., 𝜀2
n), we have a set of independent 𝜒2

1 random
variables with the properties shown in Equation 11.30. It is interesting, though not sur-
prising, that if we consider maximum likelihood estimation for β and γ, two separate
algorithms emerge. However, the maximum likelihood estimator of β involves γ through
the matrix V, and the maximum likelihood estimator of γ clearly involves β, since the
data in the variance model, namely the 𝜀i, involve β. As a result, an iterative procedure
is required. We will not write the likelihood function here, but details appear in Aitken
(1987). Aitken also pointed out the simplicity provided by the fact that computation of the
maximum likelihood estimator for both β and γ can be done with GLMs with an identity
link and a normal distribution on the mean model for estimation of β and a log link with a
gamma distribution on the variance model for estimation of γ. Indeed, these two procedures
can be combined into an iterative procedure. The dispersion parameter for the gamma link
is again equal to 2. We must use the squared residuals e2

i = ( yi − x′ib)2 as the data for the
gamma GLM, and raw yi-values as data for the normal GLM. The method follows:

1. Use OLS to obtain b0 for the mean model yi = x′iβ + 𝜀i.

2. Use b0 to compute n residuals ei = yi − x′ib0 for i= 1, 2,… , n.

3. Use the e2
i as data to fit the variance model with regressors u and a log link with

dispersion parameter 2. This is done via IRLS with GLM technology.

4. Use parameter estimates from step 3, namely the �̂�i, to form the matrix V.

5. Use V with weighted least squares to update b0 to b1.

6. Go back to step 2 with b1, replacing b0.

7. Continue to convergence.

The entire algorithm for the model is not difficult to construct and is a useful alternative
for dual estimation of the mean and variance models. However, it has the disadvantage
that the estimation of the parameters in the variance model will be biased because the
maximum likelihood estimation of γ does not allow for estimation of β in the formation
of the residuals. A somewhat different procedure serves as an alternative. This procedure
makes use of restricted maximum likelihood (REML), which was discussed briefly in
Chapter 10. The REML procedure does adjust nicely for the bias due to estimation of β in
the squared residuals. In addition, this procedure can also be put into a GLM framework.

Restricted Maximum Likelihood for Dual Modeling The source of the possible difficul-
ties with ordinary maximum likelihood estimation as discussed above is that the response
data for the variance model, namely the e2

i , do not truly reflect 𝜎2 unless the estimator b
is the true parameter vector β. As a result, one cannot expect the estimator of γ from the
procedure to be unbiased. Of course, the amount of bias may be quite small. We will deal
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with this subsequently. However the IRLS procedure developed for REML is quite simple
and should be considered by the practitioner.

Consider now E(e2
i ) for i= 1, 2,… , n. We know that for a weighted least squares proce-

dure with weight matrix,

Var(e) = Var

⎡⎢⎢⎢⎢⎣

e1

e2

⋮

en

⎤⎥⎥⎥⎥⎦
= Var

[
I − X(X′V−1X)−1X′V−1

]
y

=
[
I − X(X′V−1X)−1X′V−1

]
V
[
I − X(X′V−1X)−1X′V−1

]′
= V − X(X′V−1X)−1X′

(11.31)

Since E(ei)= 0, then E(ei)=Var(ei). The matrix X(X′V−1X)−1X′ may seem like a hat
matrix as defined in ordinary multiple regression. However, the matrix that is most like a
hat matrix for weighted regression is

H = V−1∕2X(X′V−1X)−1X′V−1∕2 (11.32)

The matrix H in Equation 11.32 is indempotent and plays the same role as X(X′X)−1X′

does for standard nonweighted (OLS) regression. Now, H has the same diagonal elements
as X(X′V−1X)−1X′V−1. Thus the diagonal elements in X(X′V−1X)−1X′ from Equation
11.31 are also the diagonal elements of HV. As a result, if we consider only the diagonal
element involvement in Equation 11.31 we have

E(e2
i ) = 𝜎2

i − hii𝜎
2
i . (11.33)

where hii is the ith hat diagonal, that is, the ith diagonal of H in Equation (11.32).
From Equation 11.33 the adjustment on the response is to use e2

i + hii�̂�
2
i rather than e2

i .
Here the quantity hii�̂�

2
i is a bias correction. The estimation of β and γ are interwoven and

thus an iterative scheme is used, once again with the aid of GLM. The iterative procedure
is as follows:

1. Calculate b0 from OLS.

2. Calculate the ei and a set of responses z0i = e2
i + hiis

2, where hii are the OLS hat
diagonals from X(X′X)−1X′, and s2 is the error mean square.

3. Use the z0i (i= 1, 2,… , n) as responses in GLM with a gamma distribution with
dispersion parameter 2 and log link to calculate the initial γ̂, say γ̂0.

4. Use the γ̂0 to produce weights from �̂�2
i = eu′i γ̂0 , and calculate the weight matrix V0.

Calculate a new estimate of the vector β as b1 = (X′V−1
0 X)−1X′V−1

0 y.

5. Calculate new residuals from b1 and thus new zi = e2
i + hii�̂�

2
i , where hii is the ith hat

diagonal from the matrix as written in Equation 11.32. Here V is diagonal with the
current values �̂�2

i on the main diagonal.

6. Use the new zi as responses with a gamma GLM and log link to calculate a new γ̂.
Return to step 4 with γ̂ replacing γ0.
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The procedure continues with variance fitted values being used for weights in the develop-
ment of the mean model. The mean model continues to provide the residuals from which
the zi are developed. Upon convergence, both mean and variance models emerge.

Note the close resemblance between the iterative procedure here and the maximum
likelihood estimation algorithm in the previous section. The structure is the same except that
at each iteration the gamma GLM is conducted with an adjusted response, the adjustment
coming via hii�̂�

2
i , where �̂�2

i is the estimator of 𝜎 2
i from the previous iteration. The procedure

does maximize a restricted log likelihood, which is not shown here. For more details the
reader should see Engle and Huele (1996). For computational details, consult Harvey
(1976). For further discussion of joint modeling with two interwoven GLMs see Nelder
and Lee (1991) and Lee and Nelder (1998).

Obviously the correction for bias introduced through REML may be very helpful.
However, for large experiments in which n≫p where p is the number of parameters, the
bias adjustment will often be negligible.

11.5 EXPERIMENTAL DESIGNS FOR RPD AND PROCESS
ROBUSTNESS STUDIES

Tagachi advocated the use of crossed arrays (or product arrays) in which separate designs
are used for the control and noise variables, and the final design is the cortesian product
of the inner array (control array) and the outer array (noise array). Consequently, crossed
array designs are sometimes called product array designs. The impetus for the design is
the SNR, which is used to provide a summary statistic for the data in the outer array. In the
same vein, ln s2, discussed in the previous section, is a basic response for variance modeling
that can be employed in the crossed array design. However, we have also indicated how,
in many instances, the crossed array design can be very costly, with degrees of freedom
for interaction among the control factors often being sacrificed in favor of large numbers
of degrees of freedom for control× noise interactions. If robust parameter design and
process robustness studies are to be accomplished, some control× noise interaction must
be exploited. However, a more efficient type of design is needed.

11.5.1 Combined Array Designs

The crossed array was clearly born out of the necessity of having considerable information
on which to base the SNR. However, if one focuses on the response model approach in
which a single model is constructed for both x and z, with the concomitant development of a
mean response surface via Ez[y(x, z)] and a variance response surface via Varz[y(x, z)], then
the crossed array is not needed. For this approach, the combined array, in which a design
is chosen to allow estimability of a reasonable model in x and z, is often less costly and
quite sufficient. The word “combined” implies that separate arrays are not used, but rather
one array that considers a combined x and z is the appropriate design. We have already
seen the use of combined array designs in Examples 11.3, 11.4, and 11.6. Combined array
designs have been suggested by many authors, including Welch et al. (1990), Shoemaker
et al. (1991), Montgomery (1991), Lucas (1989, 1994), Myers, Khuri, and Vining (1992),
and Box and Jones (1989).

Combined arrays offer considerably more flexibility in the estimation of effects or
regression coefficients as well as savings in run size. The designs that are chosen generally
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are those that offer the concept of mixed resolution [see Lucas (1989)]. That is, because
control× noise interactions are so vital in modeling as well as diagnostics, the resolution of
the design for these interactions is higher than that for the noise× noise interactions, which
are generally considered not as important. The resolution for the control× control interac-
tions may also be higher if they are known to be important. In what follows we consider
situations in which models are first-order (linear effects) or first-order plus interaction in
the control variables.

Example 11.8 A Mixed Resolution Design This example, from Shoemaker et al. (1991)
shows the superiority of the combined array. Suppose there are three control factors x1, x2,
x3 and three noise factors z1, z2, z3. An obvious crossed array is as follows:

23−1
III × 23−1

III (design 1)

giving a total of 16 runs. This crossed array could be viewed as a 26−2 combined array with
defining relations I= x1x2x3 = z1z2z3 = x1x2x3z1z2z3. Clearly no interactions in the control
factors can be estimated. Six main effects are estimable only if no two factor interactions are
important. In addition to six main effects, nine additional degrees of freedom are available,
and they are all control× noise interactions. These interactions are estimated at the expense
of control× control interactions.

As an alternative to design 1, a combined array offers considerably more flexibility. One
such design would be a 26−2 with defining relations

I = x1x2x3z1 = z1z2z3 = x1x2x3z2z3 (design 2)

This design illustrates nicely the concept of mixed resolution. The design is resolution III
with regard to noise× noise interactions and resolution IV with regard to other interac-
tions. Indeed, the three control× control interactions can be estimated if one is willing to
assume that x1z1, x2z1, and x3z1 are negligible. In other words, one has the option to trade
control× noise interactions for control× control interactions if appropriate assumptions are
met.

Example 11.9 A Design for Four Control and Two Noise Factors Consider a situation
in which there are four control factors x1, x2, x3, and x4 and two noise factors z1 and z2.
Assume it is known that x1x4, x2x4, and x3x4 are important. One potential crossed array
design is the 32-run design

24−1
IV × 22 (design 1)

The 31 available degrees of freedom include all six main effects and 12 two-factor interac-
tions x1x2, x1x3, x1x4, z1z2, x1z1, x2zl, x3z1, x4z1, x1z2, x2z2, x3z2, and x4z2. This represents
18 degrees of freedom. This means that 13 degrees of freedom are being used to estimate
higher-order control× noise interactions. On the other hand, a combined array 26

VI − 1 with
32 runs using

I = x1x2x3x4z1z2 (design 2)

is much more appropriate. This design allows estimation of all six main effects and all
15 two-factor interactions. Thus three higher-order interactions in design 1 are being
exchanged for three control× control interactions, which will likely be more important.
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An alternative combined array for this situation can be found using computer-generated
design algorithms. In this case the model contains six main effects and 12 two-factor
interactions. There are many designs with less than 32 runs are available. Here we show a
22-run design from Shoemaker et al. (1991):

x1 x2 x3 x4 z1 z2

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 −1

1 −1 −1 1 1 −1

1 −1 −1 −1 −1 −1

1 1 −1 1 −1 −1

1 1 1 1 −1 1

1 −1 1 1 1 1

−1 1 1 1 −1 −1

1 −1 1 −1 −1 −1

1 −1 1 −1 1 −1

−1 −1 1 −1 −1 1

1 1 −1 −1 1 1

−1 −1 −1 −1 1 1

−1 1 −1 −1 1 −1

−1 1 1 1 −1 −1

1 −1 −1 1 −1 1

−1 1 −1 1 1 1

−1 −1 −1 1 −1 −1

1 1 1 −1 −1 1

−1 −1 1 1 1 −1

−1 1 1 −1 1 1

−1 1 −1 −1 −1 1

−1 −1 1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This design allows efficient estimation of all important terms and assigns three degrees of
freedom for lack of fit.

11.5.2 Second-Order Designs

The flexibility of the combined array and the use of composite designs and computer-
generated designs extend nicely to the use of models that are second-order in the control
variables and even second-order interactions in the noise variables. Note that the pure
quadratic terms for the noise factors are typically not needed, and hence are omitted from
the model. Here the mixed resolution idea for the CCD is very important. Consider, for
example, a crossed array in the case of three control variables and two noise variables.
The control array may be a 33−1 and the noise array a 22 (36 total runs) to accommodate
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a second-order model in the control variables, the terms z1, z2, and z1z2, and appropriate
control× noise interactions. A CCD containing the components

(i) 25−1 using I= x1x2x3z1z2

(ii) axial points in the directions of the control factors

−𝛼 0 0 0 0
𝛼 0 0 0 0
0 −𝛼 0 0 0
0 𝛼 0 0 0
0 0 −𝛼 0 0
0 0 𝛼 0 0

(iii) and center runs

0 0 0 0 0

contains only 22+ center runs. This design will estimate x1, x2, x2
1, x2

2, x1x2, z1, z2, z1z2, and
six linear× linear control× noise interactions. This leaves seven lack-of-fit degrees of free-
dom. Again the crossed array often invests in a large number of higher-order control× noise
interactions. The combined array is more efficient.

To better illustrate the idea of mixed resolution, consider a situation in which there are
four control variables and three noise variables. Suppose it is important for the response
model to contain terms that are second order in the control variables (15 terms including
the intercept), z1, z2, z3, and 12 control× noise interactions. (Keep in mind the importance
of these interactions in building the variance model.) The CCD with mixed resolution in
the factorial portion is quite useful. A 27−2 design is appropriate for the factorial portion.
Consider the defining relations

I = x1x2x3z1z2 = z1z2z3x4 = x1x2x3x4z3

This design, then, involves the components

(i) 27−2 with the above defining relations,

(ii) axial points in the directions of the control factors

x1 x2 x3 x4 z1 z2 z3

−𝛼 0 0 0 0 0 0
𝛼 0 0 0 0 0 0
0 −𝛼 0 0 0 0 0
0 𝛼 0 0 0 0 0
0 0 −𝛼 0 0 0 0
0 0 𝛼 0 0 0 0
0 0 0 −𝛼 0 0 0
0 0 0 𝛼 0 0 0

(iii) and center runs.

0 0 0 0 0 0 0
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As a result, 40 observations plus center runs are used to estimate 30 model terms. Note the
careful selection of the defining relations. By definition, the factorial portion is resolution IV.
However, it is of higher resolution in the control variables, because no two xixj interactions
are aliased. In addition, it is effectively a higher-resolution design for the control× noise
interactions, because no two-factor control× noise interactions are aliased with each other,
nor are they aliased with two-factor interactions in the control variables.

11.5.3 Other Aspects of Design

Because the response surface approach puts so much emphasis on efficient estimation of the
appropriate response model in x and z, with flexibility needed in the model terms selected,
the combined array is altogether appropriate. In fact, the response model approach and the
combined array are quite compatible. Many times the crossed array will involve an exces-
sive number of experimental runs as a result of higher-order control× noise interactions.
Borkowski and Lucas (1997) discuss mixed resolution combined arrays in detail and give
a catalog of designs. Borror and Montgomery (2000) present an application of a mixed
resolution design and compare its performance with that of a conventional crossed array
design. Borror (1998) is an extensive study of crossed array designs for the robust design
problem. She suggests that optimal designs are very appropriate as alternatives to modified
versions of standard RSM designs. Borror et al. (2002) develop methodology to evaluate the
predictive performance of combined array designs for both the mean model and the slope
of the response model (recall the critical role played by the slope with respect to variability
in y transmitted from the noise variables). They point out that the prediction variance of
the response model does not tell the complete story regarding design performance and that
both the prediction variance of the mean model and the variance of the slope should be
evaluated. Variance dispersion graphs and fraction of design space plots from Chapter 9
are an ideal way to do this.

To develop the scaled prediction error variances necessary to study the mean and variance
models obtained from the response model, we first review some details concerning least
squares fitting of the response model. In general, we may write the response model in the
general linear model form

y = Xβ + ε

where the matrix X contains 1+ 2rx + rx(rx − 1)+ rz + rxrz columns representing the inter-
cept, 𝛽0, the linear effects and pure quadratic effects of the rx control variables, the two-factor
interactions among the control variables, the main effects of the rz noise variables, and the
control-by-noise variable interactions, respectively. Similarly, the vector β contains the
parameters from the mean model corresponding to these factors (the intercept 𝛽0 and
the elements of β, B, γ, and 𝚫). The usual least squares estimate of β is

β̂ = (X′X)−1X′y.

The matrix C= (X′X)−1 is made up of several important submatrices and can be written
as in Fig. 11.23. The submatrices, Ckl (k, l= 1, 2, 3) represent the variance–convariance
matrices for various subsets of the model parameters. For example, C11 represents the
variance–covariance matrix for the linear, quadratic, and interactions terms involving only
the control variables. The submatrix C22 represents the variance–covariance matrix for
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Figure 11.23 The structure with submatrices of C= (X
′
X)−1.

the linear terms of the noise variables, and C33 represents the variance–covariance matrix
for the control-by-noise interactions. The off-diagonal submatrix, C23, plays an important
role in calculations of the slope variance. Each element of the submatrix is denoted by
the subscripts i, j. For example, C33

34 is the element in the third row, fourth column of the
submatrix C33.

The fitted second-order response model for the mean is

Ê
z,𝜀

[ y(x, z)] = 𝛽0 + x′β̂ + x′β̂x = x(2)′β̂1, (11.34)

where the regression coefficient β̂0, the elements of the vector β̂, and the elements of the
matrix β̂ are contained in the vector β̂1. Here, x(2)′ is a vector of the controllable variables
expanded to “model form” (in this case a second-order model) containing the constant 1,
the first-order terms, the second-order terms, and the control-by-control factor interactions.
The vector β̂1 contains all the regression coefficients from the variables in x(2)′ .

Borror et al. (2002) develop a scaled prediction error variance for the mean model in
Equation 11.34. The general form for the variance of the prediction error is

Var
z,𝜀

[
y(x, z) − x(m)′β̂

∗]

= Var
𝜀

(
x(m)′β̂

∗) + Var
z,𝜀

(
z′γ + x′𝚫z + 𝜎 2

)

= 𝜎2
[
x(m)′C11x(m)

]
+ Var

z,𝜀

[
z′(γ + 𝚫′x)

]
+ 𝜎 2

(11.35)
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In Equation 11.35, x is a fixed set of levels of the controllable variables, z is a vector of
random variables, and γ+𝚫′x is a vector of constants. The actual observed value of y
depends on the random variables z and 𝜀 and the specified values of x. Now, when ŷ the
predicted value of the response, is computed, z is fixed at z= 0. Thus, the predicted value
varies due to the inherent random variability due to the error 𝜀 and the variability associated
with parameter estimation.

A scaled prediction error variance is an appropriate measure to employ in making
comparisons among competing experimental designs. The scaled prediction error variance
is found by multiplying an expanded form of Equation 11.35 by the number of runs in the
design (N) and dividing by 𝜎2 to give

N Var
z,𝜀

[
y(x, z)−x(m)′ β̂

∗]

𝜎2 = N
[
x(m)′ (X′X)−1x(m)

]

+Nr2k2
1 + 2Nr2k1k2x′1 + Nr2k2

2x′Jx

(11.36)

where J is a matrix of 1’s. Equation 11.36 is in a form that is appropriate for creating
VDGs for design evaluation and comparison purposes. The constants kl and k2 represent
the contribution of the noise variables and the control-by-noise interactions, respectively.
Furthermore, if there are no noise variables in the problem, then k1 = k2 = 0, and Equation
11.36 reduces to the scaled prediction error variance expression that is usually plotted on a
VDG.

The variance model assuming Var(z)= 𝜎2I is

Var
z,𝜀

[ y(x, z)] = 𝜎2
z (γ′ + x′𝚫)V(γ′ + x′𝚫)′ + 𝜎 2 (11.37)

The vector 𝛾 ′ + x′𝚫 is a vector of partial derivatives of the response surface with respect to
the noise variables z and is the slope of the response surface in the direction of the noise
variables. Thus, the variance of the slope is a direct measure of the precision of estimation
associated with the variance model in Equation 11.37. Furthermore, the slope variance is
more directly interpretable than a variance expression for Equation 11.37 because it is in
the same units as the variance for the mean model.

A general expression for the variance of the slope in direction i, (i= 1, 2,… , r2) is

Varzi
(slope) = C22

ii + x′C33
i x + 2x′C23

i , i = 1, 2,… , r2 (11.38)

where

C23
1 =

⎛⎜⎜⎜⎝

C23
11

⋮

C23
1rx

⎞⎟⎟⎟⎠

C23
i =

⎛⎜⎜⎜⎝

C23
i,(i−1)rx+1

⋮

C23
i,irx

⎞⎟⎟⎟⎠
for i > 1
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and

C33
i =

⎛⎜⎜⎜⎝

C33
(i−1)rx+1,(i−1)rx+1 ⋯ C33

(i−1)rx+1,irx

⋮ ⋱ ⋮

C33
irx(i−1)rx+1 ⋯ C33

irx,irx

⎞⎟⎟⎟⎠
i = 1, 2,… , r

Therefore, a VDG for the slope would be obtained by plotting the average of the slope
variances computed from Equation 11.38 along with the maximum and minimum slope
variance as a function of the distance of the point from the center of the design.

The VDGs constructed for the variance expressed in Equation 11.36 and Equation 11.38
can be used to make comparisons among competing designs for a process robustness study.
We now present an illustration of this process.

Example 11.10 Consider a process robustness study involving r1 = 4 controllable vari-
ables, r2 = 3 noise variables, and a design region of interest that is spherical. The designs
considered by the experimenter are:

1. A “modified” central composite design or CCD (N= 75 runs) with either

(a) 𝛼 = 2

(b) 𝛼 = 2.646
or

(c) 𝛼 = 2.83.

2. A Box–Behnken design (BBD) with N= 60 runs.

3. A modified small composite design or SCD (N= 33 runs) with either

(a) 𝛼 = 2

(b) 𝛼 = 2.646
or

(c) 𝛼 = 2.83.

4. A hybrid design with N= 48 runs.

5. A mixed resolution design (MRD) with N= 43, and either

(a) 𝛼 = 2.646
or

(b) 𝛼 = 2.83.

Notice that there is considerable disparity in the number of runs for the candidate
designs, and the experimenter would like to know if the extra runs in the larger designs are
beneficial. The values of 𝛼 were chosen based on rotatability and/or spherical properties of
either the four-variable (considering only the controllable variables) or the seven-variable
(considering all variables) design. The modified CCD and modified SCD are constructed
from a standard CCD and SCD, respectively, by removing the axial runs for the noise
variables.

The variance dispersion graphs for the scaled prediction error variance from Equation
11.36 for selected designs with various values of k1 and k2 are shown in Figs.11.24 through
11.26. The minimum, maximum, and average scaled prediction error variance and slope
variance at the furthest Euclidean distance from the center for all designs of interest to the
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Figure 11.24 Variance dispersion graph of scaled prediction error variance for modified CCD (𝛼 =
2.646) with k1 = k2 = 0 (A), k1 = k2 = 0.5 (B), and k1 = 0.5, k2 = 1 (C).

experimenter are provided in Table 11.11. As can be seen from these displays, the prediction
error increases as the values of kl and k2 increase. Also, the error increase is affected more
by the value of k2 (the factor pertaining to the control-by-noise interactions) than by the
value of k1. The variance dispersion graphs for the slope variance for the modified CCD
and modified SCD are given in Fig. 11.27. We see that the modified CCD is slope-rotatable
regardless of the value of 𝛼; that is, the slope variance is constant on spheres over the design
region. The modified SCD is not slope-rotatable.

There are several important points that should be mentioned about the results in
Table 11.11. The modified CCDs and the BBD have 75 experimental runs and 60 experimen-
tal runs, respectively. Consequently, these designs may be impractically large to implement.
The practitioner would often rely on smaller designs such as the SCD or the hybrid. For
four control variables and three noise variables, the modified SCDs have 33 experimental
runs, while the hybrid design has 48 experimental runs.

Figure 11.25 Variance dispersion graph of scaled prediction error variance for modified SCD (𝛼 =
2.646) with k1 = k2 = 0 (A), k1 = k2 = 0.5 (B), and k1 = 0.5, k2 = 1 (C).
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Figure 11.26 Variance dispersion graph of scaled prediction error variance for hybrid design with
k1 = k2 = 0 (A), k1 = k2 = 0.5 (B), and k1 = 0.5, k2 = 1 (C).

TABLE 11.11 Scaled Prediction Error Variances and Slope Variance for Designs on
Spherical Regions with Four Control Variables and Three Noise Variables

Scaled Prediction Error (k1, k2)

Variance Design N (0, 0) (0.5, 0.5) (0.5, 1) Var(Slope)

Max CCD 𝛼 = 2.83 75 38 2028 6678 9.37
𝛼 = 2.646 75 38 2030 6678 9.37

𝛼 = 2 75 64 2052 6745 9.37
SCD 𝛼 = 2.646 33 332 1089 3193 230

𝛼 = 2.83 33 306 1075 3179 222
BBD 60 204 1962 6157 50

Hybrid 48 46 1310 4200 13.6
MR 𝛼 = 2.646 43 33.5 1110 3650 10.75

𝛼 = 2.83 43 32 1116 3650 10.75
Avg CCD 𝛼 = 2.83 36 484 1661 9.37

𝛼 = 2.646 36 484 1660 9.37
𝛼 = 2 58 507 1684 9.37

SCD 𝛼 = 2.646 101 299 819 82
𝛼 = 2.83 94 292 811 79

BBD 204 564 1507 50
Hybrid 44 330 1080 12.2

MR 𝛼 = 2.646 32 290 965 10.75
𝛼 = 2.83 30 288 965 10.75

Min CCD 𝛼 = 2.83 35 36 40 9.37
𝛼 = 2.646 35 36 39 9.37

𝛼 = 2 52 55 58 9.37
SCD 𝛼 = 2.646 29 43 68 28

𝛼 = 2.83 26 39 64 28
BBD 204 221 209 50

Hybrid 42 45 50 11.5
MR 𝛼 = 2.646 30 31 31 10.75

𝛼 = 2.83 26 27 27.5 10.75



11.5 EXPERIMENTAL DESIGNS FOR RPD AND PROCESS ROBUSTNESS STUDIES 671

Figure 11.27 Slope variance for modified CCD (A) and modified SCD (B).

Table 11.11 shows that for the situation where the noise variables do not influence
the response (k1 = 0, k2 = 0), the modified SCD performance is very poor compared with
the modified CCD, hybrid, or mixed resolution designs. However, notice that when the
noise variables are introduced into the model, the modified SCD is highly competitive with
respect to scaled prediction error variance when compared with the modified CCD and the
hybrid design. Because the BBD does not estimate the interaction terms as precisely as
other designs, it does not perform well overall and would probably not be a good choice.
Therefore, it appears that the modified SCD would be a reasonable design when run size
is taken into consideration, since there is a considerable difference between N= 33 for
the SCDs and N= 75 for the CCDs. However, before deciding that the modified SCD
is the best design to use, the slope variances should be investigated. When the slope
variances are taken into consideration, the modified SCD is outperformed by all other
designs. Consequently, examining both the prediction error variance and the slope variance
indicates that the modified CCDs, modified SCDs, hybrid, and BBD are all relatively poor
performers with respect to the mean variance, slope variance, or both. In addition, we know
that the small composite designs have lower G- and D-efficiencies than the other designs,
and we recommend against using them. The mixed resolution design outperforms all other
designs under consideration with respect to the prediction error variance, the slope variance,
and the number of experimental runs. It would clearly be the recommended design in this
situation if the experimenter can afford to use 43 runs.

Fraction of design space plots are also useful in facilitating comparisons of prediction
variance for the mean and slope in a robust design setting. To illustrate, suppose that we
want to compare several designs for a situation where there are seven control variables and
five noise variables. The designs considered are a mixed resolution CCD, a modified CCD
based on a one-sixteenth fraction in the cube, a BBD, a D-optimal design, an I-optimal
design, and a CCD where the cube portion of the design is a saturated resolution V fraction.
Figure 11.28 shows FDS plots along with box plots of the prediction variance for the mean
(PVM) and the prediction variance for the slope (PVS) for these designs. The number of
runs for each design is shown in the figure and all designs have six center points. In this
scenario the CCD based on a saturated fraction performs well for the mean model but is
disastrous for the slope. The BBD is generally a good performer for the mean, except for a
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Figure 11.28 Fraction of design space plots for the mean and slope for 12 variable designs (7
control variables, 5 noise variables).

few outlying values of the prediction variance for the mean, and it performs very well with
respect to the slope. Both optimal designs and the mixed resolution CCD are reasonable
design choices.

11.6 DISPERSION EFFECTS IN HIGHLY FRACTIONATED DESIGNS

In this chapter we have dealt with the important notion of variance modeling where the
variance is derivable from the inability to control noise variables. However, there are
circumstances in which the practitioner is unable to measure noise variables or perhaps is
not aware of what the noise variables are. At any rate, there is nonhomogeneous variance
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from one or more sources, and thus there are both location and dispersion effects. Detection
of dispersion effects, positive or negative, is often vital, particularly if the experiment is a
pilot experiment and directions are sought for future experiments. For example, consider
a 23 factorial experiment with factors A, B, and C. In addition, suppose we wish to move
to a different experimental region via steepest ascent or some other sequential procedure.
Suppose the calculated effects are as follows:

A∶ +7.5

B∶ +4.7

C∶ −3.5

Now, these calculated effects are location effects; that is, they reflect the change in the
mean response as one moves from low to high. In this case, future experiments will involve
an increase in A, an increase in B, and a decrease in C. However, suppose an increase in A
results in a profound increase in variance in the response. We say that A is a dispersion
effect as well as a location effect, and thus we are left with a mean–variance tradeoff if we
are to consider moving A to the high level.

In this section the concept of a dispersion effect has not changed. In previous sections a
dispersion effect was discovered in a factor if it had a certain type of interaction with a noise
variable. Here we are assuming that there are not necessarily any noise variables in the
problem, and yet there is a need to detect the existence of factors that influence dispersion.
Plots and numerical computation of dispersion effects are useful.

11.6.1 The Use of Residuals

We know that much diagnostic information is gained from the use of residuals—that is,
the values ei = yi − ŷi, where ŷi, is the predicted or fitted value from a regression analysis.
Residuals provide considerable information about unexplained variability. For example,
when residuals are plotted, one expects to see random scatter around zero. Patterns in
residuals suggest that some assumption that has been made is being violated. The two most
prominent violations are:

1. Functional form of model mis-specified

2. Nonhomogeneous variance

It is violation 2 that concerns us here. It is of interest to determine if the signals from residual
plots reflect a type of pattern that would identify certain factors as dispersion effects.

For example, consider a plot of the residuals against the two levels of a factor xj
shown in Fig. 11.29a. In this case there is no evidence that factor xj is a dispersion effect.
On the other hand, suppose the plot of residuals takes the form shown in Fig. 11.29b.
Now, while one must take considerable care not to read too much into residual plots
for small experiments, there is certainly some evidence in Fig. 11.29b that at the high
level of xj the model error variance is larger than at the low level. While the fitted model
here suggests that all three factors are location effects, it appears that xj is a dispersion
effect, with xj =−1 favored for a consistent product; that is, one with less variability in the
response.
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Figure 11.29 Plots of residuals versus factor xj.

Importance of the Fitted Mean Model It should be understood that the use of residuals,
residual plots, and other diagnostic tools for determining dispersion effects is profoundly
affected by the fitted mean model, because the residuals used are the residuals from the
mean model. If the mean model is not correctly specified, residuals will be clouded by model
mis-specification. Thus the detection of dispersion effects depends on the presumption that
the fitted model for the mean is a good one. In this regard, the detection of dispersion effects
will be most successful when there are only a few well-defined effects to be used in the
mean model—that is, when there is sparsity of effects.

11.6.2 Further Diagnostic Information from Residuals

It should be clear from the illustration in Section 11.6.1 that one is attempting to determine
if the product or process variance depends on the design locations, rather than being
homogeneous. In the example, we might conclude from the plots that the error variance
is constant except when x3 =+1. When this type of result is detected, it is hoped that the
engineer or scientist has, at least in retrospect, some scientific explanation. However, there
still remains the issue surrounding what is meant by a “significant change in variance.” Can
we say with assurance that the plots in Section 11.6.1 indicate that x3 is a dispersion effect?
Are there other diagnostic pieces of information apart from the plots?

An important diagnostic for determining if a specific factor, say factor i, is a dispersion
effect is the statistic

F∗
i = ln

(
s2

i+

s2
i−

)
(11.39)

See Box and Meyer (1986). Here s2
i+ is the sample variance of the residuals when factor i

is at the high level, and si−2 is the sample variance of the residuals when factor i is at the
low level. Obviously a value close to zero is evidence that the spread in the residuals is
not significantly different for the two levels, whereas a value large in magnitude (positive
or negative) is a signal that the variable has a dispersion effect. A large positive value
indicates that 𝜎 2

i+ > 𝜎
2
i−, whereas a large negative effect indicates 𝜎 2

i+ > 𝜎
2
i−. While there

should be no intention of using the Fi
∗-value in Equation 11.39 as a formal test statistic,

it can be a very useful diagnostic because it has been found that under H0 ∶ 𝜎 2
i+ = 𝜎 2

i−, the
F∗-values are approximately normally distributed with mean 0 and common variance. This
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TABLE 11.12 Injection Molding Data

Actual Observed
Standard Run x1 x2 x3 x4 x5 x6 x7 Shrinkage
Order Order A B C D E (=ABC) F (=BCD) G (=ACD) (×10)

1 9 − − − − − − − 6
2 16 + − − − + − + 10
3 18 − + − − + + − 32
4 17 + + − − − + + 60
5 3 − − + − + + + 4
6 5 + − + − − + − 15
7 10 − + + − − − + 26
8 2 + + + − + − − 60
9 9 − − − + − + + 8
10 15 + − − + + + − 12
11 12 − + − + + − + 34
12 6 + + − + − − − 60
13 13 − − + + + − − 16
14 19 + − + + − − + 5
15 11 − + + + − + − 37
16 1 + + + + + + + 52
17 20 0 0 0 0 0 0 0 25
18 4 0 0 0 0 0 0 0 29
19 14 0 0 0 0 0 0 0 24
20 7 0 0 0 0 0 0 0 27

may be exploited as a numerical diagnostic, and the Fi
∗-values may be studied via normal

probability plots.

Example 11.11 Dispersion Effects In an injection molding experiment it is often impor-
tant to determine conditions in which shrinkage is minimized. In the present experiment
[see Montgomery (1991)] seven factors were varied in a 27−3 with four center runs. It was
felt that there might be curvature in the system. The factors are x1 (mold temperature), x2
(screw speed), x3 (holding time), x4 (gate size), x5 (cycle time), x6 (moisture content), and
x7 (holding pressure). The defining relations are

x1x2x3x5 = x2x3x4x6 = x1x3x4x7 = I

The data appear in Table 11.12. It is of interest to determine settings (within the region of
the experiment) that minimize shrinkage. In addition, any dispersion effect that is found
must be dealt with, because the variability in the shrinkage must also be taken into account.

The individual location effects of interest were first placed on a normal probability plot
to gain some impression of what model terms are important. Table 11.13 gives the reader
a clear indication of what effects are estimable. Fifteen effects, including all main effects
and two-factor interactions (and aliases), were plotted on the normal probability plot in
Fig. 11.30. The x1, x2, and x1x2 effects are found to be important from the plot. All three are
positive effects. The x1x2 interaction plot in Fig. 11.31 is particularly revealing. The use of
the screw speed x2 at the low level minimizes shrinkage regardless of the level of the mold
temperature xl. In addition, if the mold temperature is difficult to control in the process, the
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TABLE 11.13 Alias Structure for the 27−3 Design in Table 11.12

A=BCE=DEF=CDG=BFG AB=CE=FG
B=ACE=CDF=DEG=AFG AC=BE=DG
C=ABE=BDF=ADG=EFG AD=EF=CG
D=BCG=AEF=ACG=BEG AE=BC=DF
E=ABC=ADF=BDG=CFG AF=DE=BG
F=BCD=ADE=ABG=CEG AG=CD=BG
G=ACD=BDE=ABF=CEF BD=CF=EG

ABD=CDE=ACF=BEF=BCG=AEG=DEF

Figure 11.30 Normal probability plot of location effects for Example 11.11.

Figure 11.31 AB= x1x2 interaction plot for Example 11.11.



11.6 DISPERSION EFFECTS IN HIGHLY FRACTIONATED DESIGNS 677

TABLE 11.14 Regression and ANOVA for Data of Example 11.11

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F Probability>F

Model 6410.687500 3 2136.8958333 121.645 0.0001
Curvature 3.612500 1 3.6125000 0.206 0.6567
Error 263.500000 15 17.5666667

Residual 248.750000 12 20.7291667
Pure error 14.750000 3 4.9166667

Corrected total 6677.800000 19
Root mean squared

error
4.191261 R-squared 0.9605

Dependent mean 27.312500 Adjusted
R-squared

0.9500

CV 15.35%

Parameter Degrees of Sum of t for H0:
Variable Estimate Freedom Squares Parameter= 0 Probability> [t]

Intercept 27.312500 1
A 6.937500 1 7700.062500 6.621 0.0001
B 17.812500 1 5076.562500 17.000 0.0001
AB 5.937500 1 564.062500 5.667 0.0001

–1 level of the screw speed is also a robust choice. So at this point in the analysis it would
seem that x2 =−1 is absolutely necessary.

The next step in the analysis is to consider possible curvature. Table 11.14 summarizes
a regression analysis with the model

ŷ = 27.3125 + 6.9375x1 + 17.8125x2 + 5.9375x1x2 (11.40)

and an analysis of variance that reveals no evidence of curvature. The curvature term in
the ANOVA is a result of center points being used in the design (only a single degree
of freedom). There is no actual curvature in the system. At this point it would appear
that x1 =−1 and x2 =−1 are proper settings. It turns out that this would reduce the mean
shrinkage by roughly 10%. But what about variability? The regression in Equation 11.40
was used to compute the residuals. The normal probability plot of residuals in Fig. 11.32
do not reveal anything out of the ordinary. However, the residuals were also plotted against
levels of the main effects, and the residual plot involving x3 shown in Fig. 11.33 was
particularly enlightening. It seems clear that variability in the residuals is greater at high
holding time than at low holding time. The s(i−) and s(i+) values as well as the Fi

∗ in
Equation 11.39 were computed. They appear, along with the residuals themselves, in
Table 11.15. Note that the single Fi

∗-value that stands out is that of F∗ = 2.50. To gain more
diagnostic insight, a normal probability plot of the F∗-values appears in Fig. 11.34. Clearly,
x3 stands out. It would not be unreasonable to conclude that x3 has a significant dispersion
effect.

It is of interest now to provide a summary picture of the mean and variability of the
shrinkage response. This is particularly easy to do because there appears to be only three
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Figure 11.32 Normal probability plot of residuals for Example 11.11.

“main players,” x1, x2, and x3. The analysis suggests that low x1, low x2, and low x3 are the
settings that produce, simultaneously, minimum mean shrinkage and minimum variance in
shrinkage. That is, the optimum conditions are

x1 = −1, x2 = −1, x3 = −1

Figure 11.33 Plot of residuals against holding time for Example 11.11.
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Figure 11.34 Normal probability plots of dispersion effects Fi
∗ for Example 11.11.

11.6.3 Further Comments Concerning Variance Modeling

In this chapter we have focused on the importance of considering process variability. The
major sources of process variability are often noise variables; and when this is the case,
the modeling can be handled conveniently through the use of a combined array and of
the resulting response surface in x and z and response surfaces that result for both mean
and variance. Another source of variance modeling is the log-linear model discussed in
Section 11.4.6, where ln(s2) becomes the response. In this context, the s2 was viewed as
the sample variance associated with the outer array in a crossed array, but this need not
be the case. The s2 may be computed from replicated observations or even from repeated
measurements on the same experimental unit in, say, a two-level design; in other words,
there may be no noise variables in the design and yet a nonconstant variance may be evident
through replication (n runs at each of d design points) and the use of the model

ln(s2
i ) = f (xi) + 𝜀i, i = 1, 2,… , d (11.41)

Additional levels of variance modeling and/or the computation of dispersion effects can be
accomplished for cases such as Example 11.11. The experiment contains a large number
of factors, and because of cost constraints the design is a highly fractionated two-level
design with no replication. Here, formal variance modeling is not necessarily a good
practice, due to lack of sufficient information on variability. However, the use of residuals
can highlight dispersion effects as in the example. The reader should be aware of the
possibility of obtaining variance information and dispersion effects at different levels of
experimentation and analysis. In addition, more discussion is needed regarding different
methods of calculating dispersion effects.

What Is a Dispersion Effect? (Case of Replicated Observations) Box and Meyer (1986)
and Nair and Pregibon (1986) discuss the notion of dispersion effects for various types of
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scenarios. Consider a situation in which the design is a two-level factorial or fraction and n
observations appear at each data point. The fitted model may be a log-linear model with

ln(s2
i ) = 𝛾0 + 𝛾1xi1 + 𝛾2xi2 +⋯ + 𝛾kxik + 𝜀i, i = 1, 2,… , d (11.42)

In this case, the replication variance is more reliable as process variance information than
that obtained from residuals. In the latter case, the reliability of the variance information
depends to a great extent on the quality of the mean model that created the residuals.

The least squares estimators of the 𝛾 i in Equation 11.42 are derived from

γ̂ = (X′X)−1X′e (11.43)

where e is a vector of log s2 values. Because the rows of X′ contain +1 and −1 values
depending on whether the specific factor is high or low, and because (B′X)−1 = (1/d)I, the
parameter estimates for the model 11.42 become

�̂�0 = ln(s2)

�̂�i =

∑
j=i+

ln s2
i −

∑
j=i−

ln s2
j

d
, i = 1, 2, … , k

(11.44)

Here
∑

j=i+ implies that the sum is taken over the ln s2 values for which the ith variable

is at the +1 level, while
∑

j=i− implies that sum is over the −1 level. In addition, ln(s2)

is the average of the ln s2 values over the experiment. One could, of course, extend what
we know about the relationship between effects and regression coefficients for the mean
model. Thus the computed dispersion effect for the ith variable can be written

(Dispersion effect)i =
[
ln(s2)i+ − ln(s2)i−

]
, i = 1, 2,… , k (11.45)

where, obviously ln(s2)i+ is the average ln(s2) value when variable i is at the high level,

and ln(s2)i− is the same for variable i at the lower level. Now, what is done with those
dispersion effects or regression coefficients? Normal probability plots can certainly be
used to highlight important dispersion effects. The assumption of normality with constant
variance for these effects is certainly justified. We suggested earlier that work by Bartlett
and Kendall (1946) and others indicates that ln(s2) is approximately normal, and the
averaging process strengthens the assumption. Of course, it is quite likely that in most
applications where replications are involved, the number of design points and, hence, the
number of variables will not be large. As a result, there may not be many effects being
studied (including interactions), so the normal probability plot may not contain a very large
“sample size.” However, t- or F-tests in which lack of fit is used as the “error” for testing
main effect dispersion effects will certainly supply useful information.
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In addition to the dispersion effects given in Equation 11.45, another one, representing a
slight variation, has been suggested. Rather than summing the log variances, the alternative
dispersion effects takes sums first—that is,

(Dispersion effect∗)i = ln

[
∑
j=i+

s2
j

]
− ln

[
∑
j=i−

s2
j

]

= ln
⎡⎢⎢⎣

s2
i+

s2
i−

⎤⎥⎥⎦

(11.46)

This, of course, is closer in concept to the F∗ dispersion effect discussed earlier for unrepli-
cated experiments.

The Unreplicated Case We have already discussed the F∗ dispersion effect calculation
and illustrated it with an extensive case study in injection molding. However, it may be
of interest to determine the genesis of this dispersion effect, which was developed by Box
and Meyer (1986). Consider first an experiment with a two-level unreplicated factorial.
Consider the mean model of N observations,

yi = x′iβ + 𝜀∗i 𝜎i, i = 1, 2,… , N (11.47)

where the 𝜀i
∗ are independent N(0, 1) and

ln(𝜎 2
i ) = x′iγ (11.48)

Now, clearly the standard deviation changes as x moves. The model in Equation 11.48
need not imply that all the variables in the mean model are in the variance model. In fact,
the mean model often will contain interactions (or even main effects) not contained in the
variance model. We noticed that in our injection molding example.

Consider now the distribution of an error in the mean model—that is, the distribution of

𝜀i = yi − xi′β

We know that

𝜀2
i ∼ 𝜎 2

i 𝜒
2

1

and thus

ln 𝜀 2
i = ln 𝜎 2

i + ln𝜒 2
1 (11.49)

Thus, one could view Equation 11.49 as a model for the log of the ith squared residual. Keep
in mind however, that we are assuming in Equation 11.49 that the mean is known—that
is, 𝜀i is not an observed residual yi − ŷi, but rather yi − x′iβ. As a result, one can view an
approximate model of the log squared residual as

ln e 2
i ≅ ln 𝜎 2

i + ln𝜒 2
1
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with ln𝜒2 representing an approximately normal random variable with mean approximately
zero and constant variance. From Equation 11.49 we have

ln e 2
i = x′iγ + �̃�i (11.50)

[it can be shown that Var(ln𝜒2
𝜈

)≅ 2/𝜈], where �̃�i has approximately mean 0 and variance 2.
At this point one should consider least squares estimation in Equation 11.50. The

parameter estimates from which dispersion effects can be are given by

�̃�0 = ln e 2

�̂�1 =

∑
j=i+

ln e 2
j −

∑
j=i−

ln e 2
j

N

As a result, an obvious dispersion effect will be 2�̂�i, which is given by

(Dispersion effect)i =
[
ln e 2

]
i+
−

[
ln e 2

]
i−

(11.51)

where ln e 2 indicates the average of the log of the squared residual. Again a normal
probability plot, once a mean model of high quality has been chosen, is certainly a reasonable
diagnostic procedure. In fact, dispersion effects will be approximately normal with mean
zero (assuming a zero dispersion effect) and constant variance. Thus, any dispersion effect
off the straight line is diagnosed as having mean not zero and, thus, being an important
dispersion effect.

From the foregoing it should be evident to the reader why Fi
∗, is also a reasonable

dispersion effect. As in the case with replicated factorials, the Fi
∗, in Equation 11.39 is

much like that in Equation 11.51 except that the
∑

j operation occurs before taking logs. In
this regard, another possible dispersion effect is given by

Fi =
ln

∑
j=i+

e 2
j − ln

∑
j=i−

ln e 2
j

N
= ln

⎡⎢⎢⎢⎣

∑
j=i+

e 2
j

∑
j=i−

e 2
j

⎤⎥⎥⎥⎦
Of course this is motivated through the use of the 𝜀j rather than the ej. It is reasonable to
correct the ej for their respective means, so one is using estimates of 𝜎 2

i+ and 𝜎 2
i−. Keep in

mind that the existence of a nonzero 𝛾 i in the model of Equation 11.48 presumes that the
variances at xi = +1 and xi = −1 are distinct. As a result, a useful dispersion effect is given
by

F∗
i = ln

[
s 2

i+

s 2
i−

]

which was introduced without motivation in Equation 11.39. It is important for the user to
understand that the practical use of dispersion effects in unreplicated factorials or fractional
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factorials should include diagnostic plots (e.g., normal probability plots) and not formal
significance testing.

EXERCISES

11.1 Consider Exercise 3.11 in Chapter 3. It is of interest to maximize the etch rate. As
a result, it is a larger-the-better scenario. Suppose that C (gas flow) and D (power
applied to the cathode) are difficult to control in the process.

(a) Treating C and D as noise variables, illustrate, with a drawing, that this design
is a crossed array.

(b) Analyze the data and use the standard larger-the-better SNR. Do pick-the-
winner analysis and thus determine optimum values of A (anode–cathode gap)
and B (pressure in the reactor chamber).

11.2 Consider Example 4.2 in Chapter 4. Suppose, in this process for manufacture
of integrated circuits, that the temperature is very difficult to control. There is
some concern over variability in wafer resistivity due to uncontrolled variability in
temperature. Consider the other factors as control variables.

(a) From the analysis given in Chapter 4, can any of the control variables be used
to exert some influence over this variability? Explain.

(b) It is of interest to maximize wafer resistivity and still minimize variability
produced by changes in temperature. Can this be done? Explain.

11.3 Consider Exercise 11.2.

(a) Estimate the process variance as a function of x1, the implant dose.

(b) What assumptions were made in constructing this variance function? Discuss
the variance–mean tradeoff here. If we use �̂� − 2𝜎 as a criterion, give optimal
values of implant dose and time.

11.4 Consider Exercise 11.3. Because E (furnace position) and D (oxide thickness)
are unimportant, reduce the design to a 23 factorial with duplicate runs. Using
temperature as a single noise variable, determine the optimal values of implant
dose and time. Use a Taguchi analysis with the appropriate SNR ratio for a larger-
the-better situation.

11.5 Consider Exercise 3.9. Use the concept of dispersion effects to determine if any
factors affect the process variance. Comment on your results.

11.6 Consider Example 11.1 dealing with solder process optimization.

(a) Construct and edit a response model involving all control and noise variables.

(b) Generate an estimated mean model as functions of the control variables.

(c) Generate an estimated process variance function as a function of the control
variables.

11.7 Consider Example 11.2. The design is criticized for not allowing interaction among
the control variables to be studied.

(a) What design would be a good candidate to replace the crossed array in this
example? Do not allow your design to admit a run size any greater than the
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design listed in the example. Use a design that allows quadratic effects in the
control factors and allows construction of a response model that can be used to
generate the process mean and variance models.

(b) Explain why your design is better than that used in the example.

11.8 Consider the filtration rate data in Example 11.3. Suppose that the filtration rate
should be maximized. Suppose, however, that temperature must be treated as a
noise variable.

(a) What factors can be used to control the variability in filtration rate due to
random fluctuation in temperature in the range [−1,+ 1]?

(b) What levels (high or low) of formaldehyde and stir rate result in minimum
process variance? (Study interaction plots.)

11.9 Consider Exercise 11.8.

(a) Again, consider temperature as a noise variable. Use the fitted regression model
as a response model to produce a variance model assuming that one design unit
in temperature is 2𝜎z, where 𝜎z is the standard deviation of temperature in the
process.

(b) What levels of C and D result in a minimum process variance?

(c) Discuss the mean–variance trade-off here. Give a quantitative discussion. What
are reasonable levels of C and D?

11.10 Consider a 24 factorial design. Suppose all six two-factor interaction effects are
found to be important. Suppose, in addition, that A and B are control variables and
C and D are noise variables. Suppose 𝜎z1

= 𝜎z2
= 1.0

(a) Write out the form of the mean model.

(b) Write out the form of the variance model.

11.11 Consider an experimental situation with A(x1), B(x2), and C(z)—that is, two control
variables and a single noise variable. Suppose the response model that is fitted is
given by

ŷ = b0 + b1x1 + b2x2 + cz + b12x1x2 + b1zx1z + b2zx2z + b12zx1x2z

Suppose all terms are significant in the analysis.

(a) Write out the form of the mean model.

(b) Write out the form of the variance model.

(c) What assumptions are being made in the construction of the models in (a) and
(b)?

11.12 Suppose a study is conducted with three control variables and two noise variables.
A 25−1 fractional factorial is used as the experimental design. Only the main effects
and the x1z1, x2z1, and x2z2 interactions are found to be important. The interaction
plots are shown in Fig. E11.1. The main effect plots are shown in Fig. E11.2. The
purpose of the experiment is to determine condition on the control variables that
minimize mean response.

(a) Give approximate conditions on x1, x2, and x3 that result in minimum mean
response.
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Figure E11.1 Interaction plots for Exercises 11.12 and 11.13.

(b) Give approximate conditions on x1, x2, and x3 that give approximate minimum
process variance.

(c) Is there a trade-off between optimum conditions? Explain.

11.13 Consider Exercise 11.12. Write out the form of the variance model.

11.14 A 24 factorial design is used to study a nitride etch process in a single-wafer plasma
etcher. The response of interest is the etch rate, and the design factors are

A, or x1: Spacing (gap) between anode and cathode (control factor)

B, or x2: Pressure in the reactor chamber (control factor)

C, or z1: Flow rate of the reactant gas (noise factor)

D, or z2: Power applied to the cathode (noise factor)

The factor levels are given by

x1 x2 z1 z2

Low(−l) 0.80 450 125 275
High(+1) 1.20 550 200 325

The design and observed results are given in Table E11.1.

(a) Fit a response model to the etch rate data.

(b) Find appropriate models for the mean and variance.

(c) Suppose that it is important to keep the standard deviation of the etch rate
below 150◦. What operating conditions would you recommend?

Figure E11.2 Main effect plots for Exercises 11.12 and 11.13.
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TABLE E11.1 Data for Exercise 11.14

A= x1 B= x2 C= z1 D= z2 y (etch rate, Å/min)

−1 −1 −1 −1 550
1 −1 −1 −1 669

−1 1 −1 −1 604
1 1 −1 −1 650

−1 −1 1 −1 633
1 −1 1 −1 642

−1 1 1 −1 601
1 1 1 −1 635

−1 −1 −1 1 1037
1 −1 −1 1 749

−1 1 −1 1 1052
1 1 −1 1 868

−1 −1 1 1 1075
1 −1 1 1 860

−1 1 1 1 1063
1 1 1 1 729

11.15 Consider the etch rate data in Exercise 11.14. Show that the condition for minimum
process variance is

x1 = 153.0625
76.8125

= 1.99

To minimize the variance, the constraint induced by the experimental region forces
the recommendation that one should operate at x1 = 1.0.

(a) Find a confidence region on the location (in x1) of minimum process variance.
Does the region cover x1 = 1.0?

(b) Comment on your findings in (a).

11.16 Consider Exercise 3.9. Investigate the data set for dispersion effects by fitting a log
variance model. Comment.

11.17 Suppose a crossed array of the type

26−3
III × 23−1

III

is being proposed. Suppose you wish to use two levels on each variable but you
wish to have access to more two-factor interactions among control variables. In
addition, you wish to fit a response model involving control and noise variables.
Suggest an alternative design that better suits the experimenter’s priorities.

11.18 Consider a situation with three control variables and three noise variables. In
order to construct an appropriate response model, the design should contain linear
main effects, two-factor interactions among the control variables, and two-factor
interactions between control and noise variables.

(a) What is the minimum number of design points required?

(b) Give a 22-point design that is efficient for fitting this response function.

(c) Give an efficient 25-point design.
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11.19 There are situations in which two-factor interactions involving the noise variables
are important, though response models involving these interactions are not empha-
sized in this text. Consider the fitted model

ŷ = b0 + b1x1 + b2x2 + b12x1x2 + c1z1 + c2z2 + c12z1z2

Assume that 𝜎z1
and 𝜎z2

are both 1.0. In addition, assume that z1 and z2 are
uncorrelated in the process.

(a) Using the notation in the above fitted model, What is the estimate of the mean
model?

(b) What is the estimate of the variance model?

(c) Are there any additional assumptions made in (b)?

11.20 Reconsider Exercise 11.18. Suppose it is known that factor A (control factor) is
very likely to interact with noise variables D and E. All control variables A, B,
and C are likely to be involved in two-factor interactions. Design a combined array
that allows for an appropriate robust parameter design. Use 16 observations with a
regular fraction of a 26. Give appropriate defining relations.

11.21 Consider the data in Example 6.15 with the use of the conversion response. Suppose,
in fact, that time and catalyst are control variables and temperature is a noise
variable. Use a response model to produce the following:

(a) A process mean model

(b) A process variance model

What assumptions did you make in developing the above models?

11.22 As we indicated in Section 11.4.4, the CCD can be very useful. Suppose there are
four control variables and four noise Variables. Give a CCD that is a combined
array and allows for estimation of a second-order model in the control variables, all
control× noise interactions and noise main effect terms. This design should contain
64 factorial points and eight axial points, plus center runs. Use 𝛼 = 1.0.

11.23 Construct a D-optimal design to accommodate the scenaries described in Exercise
11.22. Use 45 total design points. Repeat using an I-optimal design. Compare the
two designs.

11.24 Consider a situation with the three control and two noise variables to accommodate
a model that is second-order in the control variables and involves linear noise
variable terms as well as all control× noise interactions.

(a) Give an appropriate CCD (𝛼 = 1.0) containing 22 points plus center runs.

(b) Give an appropriate D-optimal design.

(c) Give an appropriate I-optimal design.

11.25 Consider Example 11.1.

(a) Fit an appropriate response model.

(b) Use the response model to generate a model for the process mean and a model
for the process variance.

(c) Compare your results with those in Example 11.1 and with the direct variance
modeling approach in Example 11.7
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TABLE E11.2 Data for Exercise 11.26

Noise Variables for the Following
Values of z1 and z2

z1 =−1,
z2 =−1

z1 =+1,
z2 =−1

z1 =−1,
z2 =+1

z1 = 1,
z2 =+1

Control
Variables

x1 x2 x3

Response
Average

Response
Standard
Deviation

Type I
Signal-to-

Noise
Ratio

−1 −1 −1 118.9 65.7 95.3 92.4 93.08 21.77 29.06
+1 −1 −1 153.7 229.4 119.9 251.5 188.63 62.07 31.35
−1 +1 −1 196.7 170.9 234.2 166.6 192.10 31.06 36.44
+1 +1 −1 211.1 245.7 241.0 252.6 237.60 18.30 51.28
−1 −1 +1 145.2 132.2 167.1 137.9 145.60 15.29 45.07
+1 −1 +1 125.3 201.6 185.5 267.3 194.93 58.36 24.11
−1 +1 +1 283.0 251.1 263.4 190.4 246.98 39.94 36.44
+1 +1 +1 184.2 279.5 247.2 259.2 242.53 41.11 35.50

11.26 Montgomery (1999) describes an experiment performed in a semiconductor factory
to determine how five factors influence the transistor gain for a particular device.
It is desirable to hold the gain as close as possible to a target value of 200 (the
specifications are actually 200± 20). Three of the variables are relatively easy to
control: x1 (implant dose), x2 (drive-in time), and x3 (vacuum level). Two variables
are difficult to control in routine manufacturing and are considered as noise factors:
z1 (oxide thickness) and z2 (temperature). The crossed array design they used is
shown in Table E11.2. Conduct a Taguchi-type analysis to determine the operating
conditions.

11.27 Reconsider the experiment described in Example 11.26. Treat the outer array runs
as replicates, and fit models for the mean and variance using the control variables.
Find the optimum operating conditions for the process. How do they compare with
the results from the Taguchi-type analysis in Exercise 11.26?

11.28 Reconsider the experiment described in Exercise 11.26. Fit a response model to the
data involving both the control and noise variables. Derive the mean and variance
models, and find optimum operating conditions. Compare your results with those
obtained in Exercises 11.26 and 11.27.

11.29 The experiment in Exercise 11.26 is a 23 × 22 crossed array. Viewed as a combined
array, the design is a 25. Using only the runs that correspond to a 25−1, rework
Exercise 11.28. Does this tell you anything useful about combined array designs?

11.30 Consider the experiment in Exercise 6.15. Suppose that temperature is a noise
variable (𝜎 2

z = 1 in coded units). Fit response models for both responses. Is there
a robust design problem with respect to both responses? Find a set of conditions
that maximize conversion with activity between 55 and 60 and that minimize the
variability transmitted from temperature.

11.31 An experiment has been run in a process that applies a coating material to a
wafer. Each run in the experiment produced a wafer, and the coating thickness
was measured several times at different locations on the wafer. Then the mean y1
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TABLE E11.3 Data for Exercise 11.31

Run Speed Pressure Distance Mean y1 Std. Dev. y2

1 −1 −1 −1 24.0 12.5
2 0 −1 −1 120.3 8.4
3 1 −1 −1 213.7 42.8
4 −1 0 −1 86.0 3.5
5 0 0 −1 136.6 80.4
6 1 0 −1 340.7 16.2
7 −1 1 −1 112.3 27.6
8 0 1 −1 256.3 4.6
9 1 1 −1 271.7 23.6

10 −1 −1 0 81.0 0.0
11 0 −1 0 101.7 17.7
12 1 −1 0 357.0 32.9
13 −1 0 0 171.3 15.0
14 0 0 0 372.0 0.0
15 1 0 0 501.7 92.5
16 −1 1 0 264.0 63.5
17 0 1 0 427.0 88.6
18 1 1 0 730.7 21.1
19 −1 −1 1 220.7 133.8
20 0 −1 1 239.7 23.5
21 1 −1 1 422.0 18.5
22 −1 0 1 199.0 29.4
23 0 0 1 485.3 44.7
24 1 0 1 673.7 158.2
25 −1 1 1 176.7 55.5
26 0 1 1 501.0 138.9
27 1 1 1 1010.0 142.4

and standard deviation y2 of the thickness measurement were obtained. The data
[adapted from Box and Draper (1987)] are shown in Table E11.3.

(a) What type of design did the experimenters use? Is this a good choice of design
for fitting a quadratic model?

(b) Build models of both responses.

(c) Find a set of optimum conditions that result in a mean as large as possible with
the standard deviation less than 60.

11.32 In Example 11.3 we found that one of the process variables (B= pressure) was not
important. Dropping this variable produces two replicates of a 23 design. The data
are shown below:

C D A(+) A(−) ȳ s2

− − 45, 48 71, 65 57.75 121.19
+ − 68, 80 60, 65 68.25 72.25
− + 43, 45 100, 104 73.00 1124.67
+ + 75, 70 86, 96 81.75 134.92
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Assume that C and D are controllable factors and that A is a noise variable.

(a) Fit a model to the mean response.

(b) Fit a log model to the variance.

(c) Find operating conditions that result in the mean filtration rate response exceed-
ing 75 with minimum variance.

(d) Compare your results with those from Example 11.3, which used the response
model approach. How similar are the two answers?

11.33 Consider the response model

ŷ = 24 + 16x1 + 12x2 + 4z − 2x1z + 3x2z − 2x1x2z

The design used to fit the model was a 23 factorial in the usual coded units. All
terms in the model are significant.

(a) Write out the mean model

(b) Write out the variance model.

(c) What value of z will minimize the transmitted variance?

11.34 Consider the response model

ŷ = 10 + 8x1 + 6x2 + 3z + 2x1z + 1x2z

The design used to fit the model was a 23 factorial in the usual coded units.
All terms in the model are significant. The experimenter wants to find levels of
the design variables and the noise variable that maximize the response and make
the transmitted variablility from the noise variable z as small as possible. What
operating conditions do you recommend?

11.35 Consider the response model

ŷ = 15 + 6x1 + 10x2 + 6z − 2x1z + 5x2z − 2x1x2z + 3x2
1

The design used to fit the model was a central composite design in the usual coded
units. The original model was a full quadratic and it was reduced leaving only the
terms in the model above.

(a) Write out the model for the mean.

(b) Write out the model for the transmitted variance.

(c) Suppose that the objective is to maximize the response while making the
transmitted variance s small as possible. What set of operating conditions do
you recommend?

11.36 We have assumed that noise variables are controllable for purposes of an experi-
ment. What strategy would you recommend if the noise variables were not con-
trollable but their values could be observed while the experiment in terms of the
controllable process variables was being conducted?
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Short Answer Questions

11.37 Signal-to-noise factors generally confound location and dispersion effects.
True False

11.38 A crossed array design allows estimation of the control-by-noise factor interactions.
True False

11.39 If a 33-1 design is used as the inner array and a 23 is used as the outer array, all
interactions can be estimated. True False

11.40 Suppose that the response model is ŷ = 6 + 4x1 + 3x2 + 3z + 2x1z + 2x2z. The
value of the controllable factor x1 that minimizes the transmitted variance is

(a) −1

(b) +1

(c) −0.5

(d) None of the above

11.41 Consider the response model in Exercise 11.40. The value of the controllable factor
x2 that minimizes the transmitted variance is

(a) −1

(b) +1

(c) −0.5

(d) None of the above

11.42 A design that allows estimation of control-by-control factor and control-by-noise
factor interactions but may not allow estimation of noise-by-noise factor interac-
tions is called a mixed resolution design. True False

11.43 Residuals can sometimes be used to estimate dispersion effects in unreplicated
and/or fractionated designs. True False

11.44 A log transformation is frequently useful in directly modeling the variance as a
response. True False

11.45 Computer-generated optimal designs can be a useful approach for designing com-
bined array experiments with both control and noise variables. True False



12
EXPERIMENTS WITH MIXTURES

12.1 INTRODUCTION

In the response surface examples discussed previously, the levels chosen for any factor in the
experimental design are independent of the levels chosen for the other factors. For example,
suppose that there are three variables—stirring rate, reaction time, and temperature—
that affect the yield of a chemical process. The levels of temperature may be chosen
independently of the levels of reaction time and stirring rate, and consequently we may
think of the region of experimentation as either a cube or a sphere. The experimental design
will consist of an appropriate set of points over this cuboidal or spherical region (such as a
factorial design or a central composite design).

A mixture experiment is a special type of response surface experiment in which the
factors are the ingredients or components of a mixture, and the response is a function of the
proportions of each ingredient. These proportional amounts of each ingredient are typically
measured by weight, by volume, by mole ratio, and so forth.

For example, consider chemical etching of semiconductor wafers. The process consists
of placing the wafers in a solution composed of several acids—say nitric acid, hydrochloric
acid, and phosphoric acid—and observing the etch rate. In such a process, we wish to
determine if a combination of these acids is more effective in etching the wafers than any
of the three acids by themselves. Because the volume of the etching chamber is fixed, an
experiment might consist of testing various combinations of these acids, where all mixes
or blends have the same volume. If x1, x2, and x3 represent the proportions by volume of
the three acids, then some of the blends that might be of interest are as follows:

Blend 1: x1 = 0.3, x2 = 0.3, x3 = 0.4
Blend 2: x1 = 0.2, x2 = 0.5, x3 = 0.3

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Blend 3: x1 = 0.5, x2 = 0.5, x3 = 0.0
Blend 4: x1 = 1.0, x2 = 0.0, x3 = 0.0

Blends 1 and 2 are examples of complete mixtures; that is, they are made up of all three
of the acids. Blend 3 is a binary blend, consisting of two of the three acids, and blend 4
is a mixture that is made up of 100% by volume of only one of the three acids. Each of
these blends is called a mixture. Notice that in this example x1 + x2 + x3 = 1; and because
of this constraint, the levels of the factors cannot be chosen independently. For instance, in
blend 1 above, as soon as we indicate that acid 1 makes up 30% of the mixture by volume
(x1 = 0.3) and acid 2 makes up 30% of the mixture by volume (x2 = 0.3), it is immediately
obvious that acid 3 must make up 40% of the mixture by volume (that is, x3 = 0.4 because
x1 = x2 = 0.3 and x1 + x2 + x3 = 1.0).

In general, suppose that the mixture consists of q ingredients or components, and let
xi represent the proportion of the ith ingredient in the mixture. Then in light of the above
discussion we must require that

xi ≥ 0, i = 1, 2,… , q (12.1)

and

q∑
i=1

xi = x1 + x2 +⋯ + xq = 1 (12.2)

The constraint in Equation 12.2 makes the levels of the factors xi dependent and this
makes mixture experiments different from the usual response surface experiments we have
discussed previously.

The constraints in Equations 12.1 and 12.2 are shown graphically in Fig. 12.1 for
q = 2 and q = 3 components. For two components, the feasible factor space for the mixture
experiment includes all values of the two components for which x1 + x2 = 1, which is
the line segment connecting the two points x1 = 0, x2 = 1, and x1 = 1, x2 = 0 shown in
Fig. 12.1a. With three components, the feasible space for the mixture experiment is the
triangle in Fig. 12.1b that has vertices corresponding to the three pure blends—that is,

Figure 12.1 Constrained factor space for mixtures with (a) q = 2 components and (b) q = 3
components.



12.1 INTRODUCTION 695

Figure 12.2 Simplex coordinate system for three components.

mixtures that are made up of 100% of a single ingredient—and edges that are binary blends.
In general, the experimental region for a mixture problem with q components is a simplex,
which is a regularly sided figure with q vertices in q− 1 dimensions.

The coordinate system for mixture proportions is a simplex coordinate system. For
example, with q = 3 components, the experimental region is shown in Fig. 12.2. Each
of the three vertices in the equilateral triangle corresponds to a pure blend, and each of
the three sides of the triangle represents a binary blend mixture that has none of one of
the three components (the component labeled on the opposite vertex). The nine grid lines
in each direction mark off 10% increments in the respective components. Interior points
in the triangle represent mixtures in which all three ingredients are present at nonzero
proportionate amounts. The centroid of the triangle corresponds to the mixture with equal
proportions x1=

1
3
, x2=

1
3
, x3=

1
3

of all ingredients.
Applications of mixture experiments are found in many areas. A common application is

product formulation, in which a product is formed by mixing several ingredients together.
Examples include (a) formulation of gasoline by combining several refinery products and
other types of chemicals such as anticers, (b) formulation of soaps, shampoos, and detergents
in the consumer products industry, and (c) formulation of products such as cake mixes and
beverages in the food industry. In addition to product formulation, mixture experiments arise
frequently in process engineering and development where some property of a final product
depends on a mixture of several ingredients interacting with the product at a particular
process stage. An example is the wafer etching process described above. Other examples
include gas or plasma etching in the semiconductor industry, many joining processes such
as soldering, and chemical milling or machining.

In this chapter we discuss experimental design, data analysis, and model-building tech-
niques for the original mixture experiment defined by Equations 12.1 and 12.2. In this
problem, the entire simplex region is investigated, and the only design variables are the
mixture components x1, x2,… , xq.

There are many variations of the original mixture problem. One of these is the addition of
upper and lower bounds on some of the component proportions. These bounds occur because
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the problem may require that at least a certain minimum proportion of an ingredient be
present in the blend, or that an ingredient cannot exceed a specified maximum proportion. In
some mixture problems there are process variables z1, z2,… , zp in addition to the mixture
ingredients. For example, in the wafer etching example above, the mixture ingredients x1,
x2, and x3 are the proportions of the three acids, and two process variables could be the
temperature (z1) of the etching solution and the agitation rate (z2) of the wafers. Including
process variables in mixture experiments usually involves constructing designs that utilize
different levels of the process variables via a factorial design in combination with the
mixture variables. Finally, in some mixture problems the experimenter may be interested
in not only the formulation of the mixture but the amount of the mixture that is applied to
the experimental units. For example, the opacity of a coating depends on the ingredients
from which the coating is formulated, but it also depends upon the thickness of the coating
surface when it is applied. Some of these variations of the original mixture experiment will
be discussed in Chapter 13.

12.2 SIMPLEX DESIGNS AND CANONICAL MIXTURE POLYNOMIALS

The primary differences between a standard response surface experiment and a mixture
experiment are that (1) special types of designs must be used and (2) the form of the
mixture polynomial model is slightly different from the standard polynomial models used
in response surface methodology (RSM). In this section we introduce designs that allow an
appropriate response surface model to be fitted over the entire mixture space. Because the
mixture space is a simplex, all design points must be at the vertices, on the edges or faces,
or in the interior of a simplex.

Much of the work in this area was originated by Scheffé (1958, 1959, 1965). Cornell
(2002) is an excellent and very complete reference on the subject.

12.2.1 Simplex Lattice Designs

A simplex lattice is just a uniformly spaced set of points on a simplex. A {q, m} simplex
lattice design for q components consists of points defined by the following coordinate
settings: The proportions taken on by each component are the m+ 1 equally spaced values
from 0 to 1,

xi = 0,
1
m

,
2
m

,… , 1, i = 1, 2,… , q (12.3)

and all possible combinations (mixtures) of the proportions from this equation are used. As
an example, let q = 3 and m = 2; consequently,

xi = 0, 1
2
, 1, i = 1, 2, 3

and the simplex lattice consists of the following six points:

(x1, x2, x3) = (1, 0, 0), (0, 1, 0), (0, 0, 1),
(

1
2
, 1

2
, 0

)
,
(

1
2
, 0, 1

2

)
,
(

0, 1
2
, 1

2

)
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Figure 12.3 Simplex lattice designs for q = 3 and q = 4 components.

This is a {3, 2} simplex lattice design, and it is shown in Fig. 12.3a. The three vertices
(1, 0, 0), (0, 1, 0), and (0, 0, 1) are pure blends, and the points

( 1
2
, 1

2
, 0

)
,
( 1

2
, 0, 1

2

)
, and(

0, 1
2
, 1

2

)
are binary blends or two-component mixtures located at the midpoints of the

three edges of the triangle. These binary blends are made up of equal parts of two of the
three ingredients. Figure 12.3 also shows the {3, 3}, the {4, 2}, and the {4, 3} simplex
lattice designs. As we will subsequently see, the notation {q, m} implies a simplex lattice
design in q components that will support a mixture polynomial of degree m. In general, the
number of points in a {q, m} simplex lattice design is

N =
(q + m − 1)!
m!(q − 1)!

(12.4)

Now consider the form of the polynomial model that we might fit to data from a mixture
experiment. A first-order model is

E( y) = 𝛽0 +
q∑

i=1

𝛽ixi (12.5)

However, because of the restriction x1 + x2 +⋯ + xq = 1 we know that the parameters 𝛽0,
𝛽1,… , 𝛽q are not unique. We could, of course, make the substitution

xq = 1 −
q−1∑
i=1

xi

in Equation 12.5, removing the dependence among the xi-terms and producing unique
estimates of the parameters 𝛽0, 𝛽1,… , 𝛽q−1. Although this will work mathematically, it is
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not the preferred approach, because it obscures the effect of the qth component in that the
term 𝛽qxq is not included in the equation. Thus, in a sense, we are sacrificing information
on component q. This model is known as a slack variable model, described further in
Section 12.4.

An alternative approach is to multiply some of the terms in the original response surface
polynomial by the identity x1 + x2 +⋯+ xq = 1 and then simplify. For example, consider
Equation 12.5, and multiply the term 𝛽0 by x1 + x2 +⋯+ xq = 1, yielding

E(y) = 𝛽0(x1 + x2 +⋯ + xq) +
q∑

i=1

𝛽ixi

=
q∑

i=1

𝛽∗i xi (12.6)

where 𝛽∗i = 𝛽0 + 𝛽i. This is called the canonical or Scheffé form of the first-order mixture
model. In general, the canonical or Scheffé forms of the mixture models (with the asterisks
removed from the parameters) are as follows:

Linear:

E(y) =
q∑

i=1

𝛽ixi (12.7)

Quadratic:

E(y) =
q∑

i=1

𝛽ixi +
∑ q∑

i<j=2

𝛽ijxixj (12.8)

Full Cubic:

E(y) =
q∑

i=1

𝛽ixi +
∑ q∑

i<j=2

𝛽ijxixj +
∑ q∑

i<j=2

𝛿ijxixj(xi − xj)

+
∑∑ q∑

i<j<k=3

𝛽ijkxixjxk (12.9)

Special Cubic:

E(y) =
q∑

i=1

𝛽ixi +
∑ q∑

i<j=2

𝛽ijxixj +
∑∑ q∑

i<j<k=3

𝛽ijkxixjxk (12.10)

The terms in the canonical mixture polynomials have simple interpretations. Geometri-
cally, in Equations 12.7 through 12.10, the parameter 𝛽 i represents the expected response
for the pure mixture xi = 1, xj = 0, j≠ i, and is the height of the mixture surface at the vertex
xi = 1. The portion of each polynomial given by

q∑
i=1

𝛽ixi
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Figure 12.4 Linear mixture model in three components with 𝛽1 > 𝛽2 > 𝛽3.

is called the linear blending portion. When blending is strictly additive, then Equa-
tion 12.7 is an appropriate model. Figure 12.4 presents the case where q = 3 and
𝛽1 > 𝛽2 > 𝛽3.

Quadratic blending is illustrated in Fig. 12.5a. Notice that the quadratic term 𝛽12 x1x2
represents the excess response from the quadratic model E(y) = 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 over
the linear model. This is often called the synergism (or antagonism) due to nonlinear
blending. For example, if large positive values of y are desired and if 𝛽12 is positive,
synergistic blending is occurring, whereas if 𝛽12 is negative, antagonistic blending is
occurring. In the cubic model, terms such as 𝛿12x1x2 (x1 − x2) enable one to model both
synergistic and antagonistic blending along the x1 − x2 edge; see Fig. 12.5b. A cubic term
such as 𝛽123x1x2x3 accounts for ternary blending among the three components in the interior
of the simplex.

It is also helpful to consider the way in which the individual terms in a mixture model
contribute to the shape of the response surface. A linear term such as 𝛽1x1 only contributes
to the model when x1 > 0; and the maximum contribution occurs at x1 = 1, in which
case the maximum effect contributed by x1 is 𝛽1. The quadratic term 𝛽12x1x2 contributes
to the model at every point in the simplex where x1 > 0 and x2 > 0. The maximum
contribution occurs at the edge joining the vertices x1 and x2 and is at the point x1 = x2 = 1

2
.

Figure 12.5 Nonlinear blending. (a) Quadratic blending with 𝛽 ij > 0. (b) Cubic blending with
𝛿12 > 0.
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The maximum contribution to the model from this term is 𝛽12/4. A cubic term such as
𝛽123x1x2x3 contributes to the model at every point for which x1 > 0, x2 > 0, and x3 > 0 (in
the interior of the simplex), and the maximum contribution is of magnitude 𝛽123/27 at the
point x1= x2 = x3 = 1

3
.

Example 12.1 A Three-Component Mixture Cornell (2002) describes a mixture exper-
iment in which three components—polyethylene (x1), polystyrene (x2), and polypropylene
(x3)—were blended to form fiber that will be spun into yarn for draperies. The product
developers were interested in only the pure and binary blends of these three materials. The
response variable of interest is yarn elongation in kilograms of force applied. A {3, 2}
simplex lattice design is used to study the product. The design and the observed responses
are shown in Table 12.1. Notice that replicate observations are run, with two replicates at
each of the pure blends and three replicates at each of the binary blends. The error standard
deviation can be estimated from these replicate observations as �̂� = 0.85.

Both Design-Expert and JMP have excellent capability for design and analysis of mixture
experiments. Table 12.2 shows output from the Design-Expert computer program, which
was used to analyze the yarn elongation data. This program fits both the linear and quadratic
mixture model to the data, and the upper panel of Table 12.2 shows the sequential F-tests
for the linear blending terms and the quadratic terms. The F-test for the linear terms is
significant, and the F-test for the contribution of the quadratic terms over the linear terms is
also significant, indicating that a quadratic mixture model should be used. The middle panel
of Table 12.2 shows a lack-of-fit test for the linear mixture model. The value of F = 32.32
is very large, indicating that a linear mixture model is inadequate. Finally, the bottom panel
of Table 12.2 presents several informative summary statistics for the linear and quadratic
models. These statistics indicate that the quadratic model is superior to the linear model.

The F-test for the linear terms in the upper panel of Table 12.2 warrants some discussion.
This is a test of the hypothesis that there is no linear blending occurring in the mixture.
If there is no linear blending, then the response surface is a level plane above the simplex
region; that is, 𝛽1 = 𝛽2 = 𝛽3 = 𝛽. Expressed formally, the hypotheses to be tested are

H0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽

H1: At least one equality is false

Because from Table 12.2 the test statistic is Flinear = 4.477 with a P-value of P = 0.0353,
we would reject H0 and conclude that there is linear blending in the system, in other words
it makes a difference which fibers are used in the yarn.

TABLE 12.1 The {3, 2} Simplex Lattice Design for the Yarn Elongation Problem

Component Proportions
Design
Point x1 x2 x3

Observed
Elongation Values

Average Elongation
Value ȳ

1 1 0 0 11.0, 12.4 11.7
2 1

2

1

2
0 15.0, 14.8, 16.1 15.3

3 0 1 0 8.8, 10.0 9.4
4 0 1

2

1

2
10.0, 9.7, 11.8 10.5

5 0 0 1 16.8, 16.0 16.4
6 1

2
0 1

2
17.7, 16.4, 16.6 16.9
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TABLE 12.2 Design-Expert Output for the Yarn Elongation Data

Sequential Model Sum of Squares
Sum of Degrees of Mean

Source Squares Freedom Square F-Value Probability > F

Mean 2750.0 1 2750.0
Linear 57.6 2 28.8 4.477 0.0353
Quadratic 70.7 3 23.6 32.32 0.0001
Residual 6.6 9 0.7
Total 2884.9 15

Lack-of-Fit Tests
Sum of Degrees of Mean

Model Squares Freedom Square F-Value Probability > F

Linear 70.7 3 23.6 32.32 0.0001
Quadratic 0.0 0
Pure Error 6.6 9 0.7

ANOVA Summary Statistics of Model Fit
Residual Root

Unaliased Degrees of Mean Squared Adjusted
Source Terms Freedom Error R-Squared R-Squared PRESS

Linear 3 12 2.54 0.4273 0.3319 120.81
Quadratic 6 9 0.85 0.9514 0.9243 18.30

Table 12.3 summarizes the quadratic model fit. The analysis of variance for the quadratic
model, shown in the upper panel of Table 12.3, tests the hypothesis that the response surface
is a level plane above the simplex region. Formally, this hypothesis is

H0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽, 𝛽12 = 𝛽13= 𝛽23 = 0
H1: At least one equality is false

Because the test statistic is F = 35.2 (with a P-value of P = 0.0001), this hypothesis is
rejected. Notice that t-tests are provided for the quadratic terms on the model because tests
of the hypotheses regarding each of these individual terms (i.e., H0: 𝛽 ij = 0) are meaningful.
However, because similar tests on the linear blending terms are not meaningful (H0: 𝛽 i = 0
does not test for linear blending from component i), these t-tests are not displayed. Note
this quadratic test differ from that in Table 12.2 (upper part with F-value = 32.32) which
just tests if all 𝛽ij = 0.

The fitted quadratic mixture model is

ŷ = 11.7x1 + 9.4x2 + 16.4x3 + 19.0x1x2 + 11.4x1x3 − 9.6x2x3

Because b3 > b1 > b2, we would conclude that component 3 (polypropylene) produces
yarn with the highest elongation. Furthermore, because b12 and b13 are positive, blending
components 1 and 2 or components 1 and 3 produces higher elongation values than would
be expected just by averaging the elongations of the pure blends. This is an example
of synergistic blending effects. Components 2 and 3 have antagonistic blending effects,
because b23 is negative.

Figures 12.6 and 12.7 present a normal probability plot of the studentized residuals from
the quadratic model. These plots are satisfactory. In general, we recommend analyzing
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TABLE 12.3 Quadratic Mixture Model for the Yarn Elongation Data

ANOVA for Quadratic Model
Sum of Degrees of Mean Probability

Source Squares Freedom Square F-Value > F

Model 128.3 5 25.66 35.20 0.0001
Residual 6.6 9 0.73
Corrected total 134.9 14
Root mean

squared error
0.85 R-squared 0.9514

Dependent mean 13.54 Adjusted
R-squared

0.9243

t for H0

Independent Coefficient Degrees of Standard Coefficient Probability
Variable Estimate Freedom Error = 0 > |t|

x1 11.70 1 0.60 Not applicable
x2 9.40 1 0.60 Not applicable
x3 16.40 1 0.60 Not applicable
x1x2 19.00 1 2.61 7.285 0.0001
x1x3 11.40 1 2.61 4.371 0.0018
x2x3 −9.60 1 2.61 −3.681 0.0051

Actual Predicted Studentized Cook’s
Observation Value Value Residual hii Residual Distance R-Student

1 11.00 11.70 −0.70 0.500 −1.160 0.224 −1.185
2 12.40 11.70 0.70 0.500 1.160 0.224 1.185
3 15.00 15.30 −0.30 0.333 −0.430 0.015 −0.410
4 14.80 15.30 −0.50 0.333 −0.717 0.043 −0.696
5 16.10 15.30 0.80 0.333 1.148 0.110 1.171
6 17.70 16.90 0.80 0.333 1.148 0.110 1.171
7 16.60 16.90 −0.30 0.333 −0.430 0.015 −0.410
8 16.40 16.90 −0.50 0.333 −0.717 0.043 −0.696
9 8.80 9.40 −0.60 0.500 −0.994 0.165 −0.993
10 10.00 9.40 0.60 0.500 0.994 0.165 0.993
11 10.00 10.50 −0.50 0.333 −0.717 0.043 −0.696
12 9.70 10.50 −0.80 0.333 −1.148 0.110 −1.171
13 11.80 10.50 1.30 0.333 1.865 0.290 2.245
14 16.80 16.40 0.40 0.500 0.663 0.073 0.641
15 16.00 16.40 −0.40 0.500 −0.663 0.073 −0.641

studentized residuals (in contrast to the ordinary least squares residuals) from mixture
experiments, because the points in mixture designs can have substantial differences in their
leverage values. Studentized residuals account for leverage through the factor 1−hii that
appears in the denominator (see Eq. 2.49 in Chapter 2).

Figure 12.8 presents a contour plot of elongation and a three-dimensional response
surface plot. These plots are helpful in interpreting the results. From examining the figure,
we note that if maximum elongation is desired, a blend of components 1 and 3 should be
chosen consisting of about two-thirds component 3 and one-third component 1.
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Figure 12.6 Normal probability plot of studentized residuals for the quadratic model of yarn
elongation.

Figure 12.7 Plot of studentized residuals versus predicted yarn elongation.

Figure 12.8 (a) Contour plot of predicted yarn elongation. (b) Three-dimensional surface plot. The
solid dots on the contour plot are the design points.
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Figure 12.9 Contours of constant standard deviation of predicted response
√

Var[ŷ(x)] for the
quadratic mixture model for the yarn elongation data.

Figure 12.9 presents the contours of constant standard deviation of predicted yarn

longation
(√

Var[ ŷ(x)]
)

over the complete mixture space. This is related to the estimated

prediction variance (EPV) defined in Chapter 8. Notice that the quality of prediction is
better, in a variance sense, at points in the interior of the simplex than on the edges or at
the vertices. However, one should be very careful about making predictions at points in the
interior, because no experimental trials were performed there. The {3, 2} simplex lattice is
a boundary point design; that is, all of the design points are either binary mixtures or pure
mixtures. In this application the engineers were not interested in the ternary blends, so the
lack of interior points is not a major concern. When one is interested in prediction in the
interior, it is highly desirable to augment simplex-type designs with interior design points.
We will return to this again in Section 12.2.3.

JMP also has excellent capability to design and analyze mixture experiments. Table 12.4
contains the JMP analysis for the yarn elongation experiment in Example 12.1 a plot
of actual versus predicted values is at the top of the output display, followed by a set
of summary statistics, and an analysis of variance for the second-order model. The JMP
ANOVA output matches that from Design-Expert in Table 12.3. JMP does compute and
display t-statistic for the individual linear blending terms while Design-Expert does not.
At the bottom of the table is the JMP prediction profiler. We have set mixture component
x2 = 0 in the profiler so that all values of the other two components are formulation of the
binary mixture containing x1 and x3. The formulation shown is x1 = 0.315 and x3 = 0.685,
yielding an elongation of 17.38.

12.2.2 The Simplex-Centroid Design and Its Associated Polynomial

A q-component simplex-centroid design consists of 2q − 1 distinct design points. These
design points are the q permutations of (1, 0, 0,… , 0) or single-component blends, the(q

2

)
permutations of

(
1
2
, 1

2
, 0,… , 0

)
or all binary mixtures, the

(q
3

)
permutations of
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TABLE 12.4 JMP Output for the Yarn Elongation Experiment in Example 12.1

Response Y
Actual by Predicted Plot

Summary of Fit
RSquare 0.951356
RSquare Adj 0.924331
Root Mean Square Error 0.85375
Mean of Response 13.54
Observations (or Sum Weights) 15

Analysis of Variance
Source DF Sum of Squares Mean Square F-Ratio

Model 5 128.29600 25.6592 35.2032
Error 9 6.56000 0.7289 Prob > F
C. Total 14 134.85600 <.0001∗

Tested against reduced model: Y = mean

Parameter Estimates
Term Estimate Std Error t-Ratio Prob > |t|

X1 11.7 0.603692 19.38 <.0001∗

X2 9.4 0.603692 15.57 <.0001∗

X3 16.4 0.603692 27.17 <.0001∗

X1∗X2 19 2.608249 7.28 <.0001∗

X1∗X3 11.4 2.608249 4.37 0.0018∗

X2∗X3 −9.6 2.608249 −3.68 0.0051∗

(continued)
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TABLE 12.4 (Continued)

Effect Tests
Source Nparm DF Sum of Squares F-Ratio Prob > F

X1 1 1 273.78000 375.6128 <.0001∗

X2 1 1 176.72000 242.4512 <.0001∗

X3 1 1 537.92000 738.0000 <.0001∗

X1∗X2 1 1 38.67857 53.0651 <.0001∗

X1∗X3 1 1 13.92429 19.1034 0.0018∗

X2∗X3 1 1 9.87429 13.5470 0.0051∗

Sorted Parameter Estimates
Term Estimate Std Error t-Ratio t-Ratio Prob > |t|

X3 16.4 0.603692 27.17 <.0001∗

X1 11.7 0.603692 19.38 <.0001∗

X2 9.4 0.603692 15.57 <.0001∗

X1∗X2 19 2.608249 7.28 <.0001∗

X1∗X3 11.4 2.608249 4.37 0.0018∗

X2∗X3 −9.6 2.608249 −3.68 0.0051∗

Prediction Profiler

(
1
3
, 1

3
, 1

3
, 0,… , 0

)
, and so forth, and the overall centroid (1/q, 1/q,… , 1/q). Figure 12.10

shows the simplex-centroid designs for q = 3 and q = 4 components. Note that the design
points are located at the centroid of the (q − 1)-dimensional simplex and at the centroids
of all the lower-dimensional simplices contained within the (q − 1)-dimensional simplex.

The design points in the simplex-centroid design support the polynomial

E(y) =
q∑

i=1

𝛽ixi +
∑ q∑

i<j=2

𝛽ijxixj +
∑∑ q∑

i<j<k=3

𝛽ijkxixjxk

+ ⋯ + 𝛽12…qx1x2 ⋯ xq (12.11)
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Figure 12.10 Simplex-centroid designs with three and four components. (a) q = 3. (b) q = 4.

which is a qth-order mixture polynomial. For q = 3 components, this model is

E(y) = 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝛽13x1x3

+ 𝛽23x2x3 + 𝛽123x1x2x3

which is the special cubic polynomial from Equation 12.10. For q = 4 components, the
model is

E(y) =
4∑

i=1

𝛽ixi +
∑ 4∑

i<j=2

𝛽ijxixj +
∑∑ 4∑

i<j<k=3

𝛽ijkxixjxk

+ 𝛽1234x1x2x3x4

or the special cubic model with an additional quartic term. Because they are relatively
efficient designs for fitting the special cubic model, simplex-centroid designs are often used
when the experimenter thinks that some cubic terms may be necessary in the final model.

12.2.3 Augmentation of Simplex Designs with Axial Runs

The standard simplex-lattice and simplex-centroid designs are boundary point designs;
that is, with the exception of the overall centroid, all the design points are on the boundaries
of the simplex. For example, consider the {3, 3} lattice design shown in Fig. 12.3b. This
design has ten points: the three vertices, the six points that are at the thirds of the edges,
and the overall centroid. Thus there are three points that tell us something about the pure
blends, six points that provide information about binary blends, and only one point that
tells us anything about complete mixtures. We could say that the distribution of information
about these different types of mixtures is 3:6:1.

If one is interested in making predictions about the properties of complete mixtures, it
would be highly desirable to have more runs in the interior of the simplex. We recommend
augmenting the usual simplex designs with axial runs and the overall centroid (if the
centroid is not already a design point).

We define the axis of component i as the line or ray extending from the base point
xi = 0, xj = 1/(q − 1) for all j≠i to the opposite vertex where xi = 1, xj = 0 for all j≠i.
Figure 12.11 shows the axes for components 1, 2, and 3 in a three-component system. Notice
that the base point will always lie at the centroid of the (q− 2)-dimensional boundary of
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Figure 12.11 The axes for components x1, x2, and x3.

the simplex that is opposite the vertex xi = 1, xj = 0 for all j≠i. [The boundary is sometimes
called a (q − 2)-flat.] The length of the component axis is one unit. Axial points are
positioned along the component axes a distance Δ from the centroid. The maximum value
for Δ is (q − 1)/q. We recommend that axial runs be placed midway between the centroid
of the simplex and each vertex, so that Δ = (q− 1)/2q. Sometimes these points are called
axial check blends, because a fairly common practice is to exclude them when fitting the
preliminary mixture model, and then use the responses at these axial points to check the
adequacy of the fit of the preliminary model.

Figure 12.12 shows the {3, 2} simplex-lattice design augmented with the axial points.
This design has 10 points, with four of these points in the interior of the simplex. Thus the

Figure 12.12 An augmented simplex-lattice design.
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ASL

SL

Figure 12.13 Fraction of design space plot for the augmented (3, 2) simplex lattice (ASL) and the
(3, 3) simplex lattice (SL) design for fitting a quadratic mixture model.

distribution of information in this augmented simplex lattice is 3:3:4. Contrast this to the
10-point {3, 3} simplex lattice, for which the distribution of information is 3:6:1. Fig-
ure 12.13 is the fraction of design space plot from JMP comparing these two designs. The
prediction variance for fitting a quadratic mixture model for both designs is very similar.
However, the augmented (3, 2) simplex lattice design has slightly smaller prediction vari-
ance than the (3, 3) simplex lattice design over approximately 45% of the design space.
Cornell (1986) presents an extensive comparison of these two designs. He notes that the
{3, 3} simplex lattice will support fitting the full cubic model, while the augmented sim-
plex lattice will not; however, the augmented simplex lattice will allow the experimenter
to fit the special cubic model or to add special quadratic terms such as 𝛽1233x1x2x 2

3 to the
quadratic model. The augmented simplex lattice is superior for studying the response of
complete mixtures in the sense that it can detect and model curvature in the interior of the
triangle that cannot be accounted for by the terms in the full cubic model. The augmented
simplex lattice has more power for detecting lack of fit than does the {3, 3} lattice. This
is particularly useful when the experimenter is unsure about the proper model to use and
also plans to sequentially build a model by starting with a simple polynomial (perhaps first
order), test the model for lack of fit, then augment the model with higher-order terms, test
the new model for lack of fit, and so forth.

Example 12.2 Etching Wafers Wet chemical etching is often performed on the backs
of silicon wafers prior to metallization in the semiconductor industry. The etching solution
is a mixture of three different acids: A, B, and C. The experimenters wish to study how the
composition of this mixture affects the etch rate. The experimenters think that a quadratic
mixture model might be appropriate for modeling the relationship between etch rate and the
proportions of different acids. However, there is some uncertainty about the nature of this
relationship, so linear and special cubic models will also be considered. The experimenters
selected the augmented simplex-lattice design shown in Fig. 12.12 for the use in this study,
since it is a good choice for the quadratic model, but also performs well for the linear and
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TABLE 12.5 Augmented Simplex-Lattice Design for the Etch Rate Experiment

Etch Rate
Design Point x1 (Acid A) x2 (Acid B) x3 (Acid C) y (Å/min)

1 1 0 0 540, 560
2 0 1 0 330, 350
3 0 0 1 295, 260
4 1

2

1

2
0 610

5 0 1

2

1

2
330

6 1

2
0 1

2
425

7 2

3

1

6

1

6
710

8 1

6

2

3

1

6
640

9 1

6

1

6

2

3
460

10 1

3

1

3

1

3
800, 850

special cubic cases if either of these turn out to be appropriate. They decided to replicate the
vertices and the overall centroid so that an internal estimate of error could be obtained. Thus
the complete experimental design, shown in Table 12.5 along with the response, consists
of 14 runs at 10 distinct locations.

Figure 12.14 shows the fraction of design space (FDS) plot for the scaled prediction
variance (SPV) for the three possible models. While previously we used the FDS plots for
comparing different designs with the same assumed model, here we compare what quality
of prediction we can expect depending on which final model is selected for a single design.

Figure 12.14 Fraction of design space plot for the partially replicated augmented simplex-lattice
design for the wafer etching example.
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TABLE 12.6 Sequential Model Fitting for the Etch Rate Data

Sequential Model Sum of Squares
Sum of Degrees of Mean

Source Squares Freedom Square F-Value Probability > F

Mean 3,661,828.6 1 3,661,828.6
Linear 133,755.0 2 66,877.5 2.13 0.165
Quadratic 229,364.9 3 76,455.0 5.29 0.027
Special cubic 107,877.8 1 107,877.8 96.52 0.001
Full cubic 4,240.9 2 2,120.4 2.96 0.142
Residual 3,582.9 5 716.5
Total 4,127,850.0 14

Lack-of-Fit Tests
Sum of Degrees of Mean

Model Squares Freedom Square F-Value Probability > F

Linear 342,803.9 7 48,972.0 86.58 0.001
Quadratic 113,439.1 4 28,359.8 50.14 0.001
Special cubic 5,561.3 3 1,853.8 3.28 0.141
Full cubic 1,320.4 1 1,320.4 2.33 0.201
Pure Error 2,262.5 4 565.6

ANOVA Summary Statistics of Model Fit
Root

Residual Mean
Unaliased Degrees of Squared Adjusted

Source Terms Freedom Error R-Squared R-Squared PRESS

Linear 3 11 177.1 0.2793 0.1483 516,539.9
Quadratic 6 8 120.3 0.7584 0.6073 812,042.5
Special cubic 7 7 33.4 0.9837 0.9697 80,312.0
Full cubic 9 5 26.8 0.9925 0.9805 186,374.0

See Ozol-Godfrey et al. (2005) for more details on assessing model robustness. As we
add additional terms to the model, the SPV must necessarily increase for a given design,
hence the linear model has the lowest SPV throughout the region. However, if the true
underlying relationship between etch rate and mixture ingredients is quadratic or special
cubic, then the linear model will have large bias and will miss important features in the
relationship. Hence, we wish to select the simplest model which appropriately summarizes
the true relationship.

Table 12.6 presents the results of fitting linear, quadratic, special cubic, and full cubic
models to the data obtained in this experiment (the computations were performed using
Design-Expert). The sequential F-tests in this table indicate that the contribution of the
quadratic terms to the model (over the linear terms) is significant, as is the contribution
of the special cubic term 𝛽123x1x2x3 (over the linear and quadratic terms). Furthermore,
the quadratic model displays significant lack of fit, whereas the special cubic model
does not; and, in addition, the special cubic model has a smaller error mean square, a
larger adjusted R2, and a smaller value of the PRESS statistic than does the quadratic
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model. Terms in the full cubic model are aliased and should be ignored. On the basis
of this analysis, the experimenters selected the special cubic model. Table 12.7 presents
the results of fitting the special cubic model. The upper portion of this table is the
overall analysis of variance for this model. The F-test for the model is used to test the
hypotheses

H0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽, 𝛽12 = 𝛽13 = 𝛽23 = 𝛽123 = 0

H1: At least one equality is false

Because F0 = 70.23 (P < 0.001), the null hypothesis is rejected. The t-statistics on the
individual model terms indicate that two of the quadratic terms, x1x3 and x2x3, could be
deleted; however, the experimenters decided to retain them in order to keep the model
hierarchial. The F-statistic for lack of fit is testing for contributions of terms beyond the
special cubic. This design could support three special quartic terms. The lack-of-fit test
indicates that these terms are unnecessary. The diagnostic information at the bottom of
Table 12.7 is generally satisfactory. The center-of-edge points in this design have relatively
large leverage values (0.912), and this is responsible in part for the three large values of
Cook’s distance (1.453, 1.204, and 4.862) reported in the table.

The fitted special cubic model is

ŷ = 550.2x1 + 344.7x2 + 268.3x3 + 689.5x1x2 − 9.0x1x3

+ 58.1x2x3 + 9243.3x1x2x3

Figures 12.15 and 12.16 present the normal probability plot of the studentized residuals
and a plot of the studentized residuals versus the predicted values, respectively, for this
model. The plots are satisfactory, so we conclude that the special cubic model is adequate
to describe the etch rate response surface.

Figure 12.17 presents plots of the etch rate response surface. In this process it is important
to obtain an etch rate that is at least 750 Å/min. The contour plot in Fig. 12.17a indicates
that there are several formulations that will meet that requirement.

We would like to emphasize an important point from Example 12.2. Notice that the
experimenters originally intended to fit a quadratic mixture model; however, after the
experiment had been performed, it was clear that a higher-order model (the special cubic)
would be required to adequately model the response. This happens frequently in mixture
experiments: The order of the required model is higher than the one initially planned for
by the experimenters. If the experimenter designs the experiment without some additional
runs to measure lack of fit (and fit higher-order terms, if necessary) and the proposed
model is inadequate, then he or she is in trouble. For that reason, we recommend that the
experimenter should, whenever possible, make 8–10 additional runs beyond the minimum
required to fit the model, with about half of these runs chosen to be replicates of some
points in the design and the others chosen as new distinct points so that the lack of fit of the
model can be investigated. In this example, the tentative model was the quadratic, which
in three components is a six-parameter model. The use of the augmented simplex lattice
automatically provided four additional distinct runs. Then the experimenters decided to
replicate four runs to give an internal estimate of error. Whenever it is possible to do so, we
strongly recommend this design strategy.
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Figure 12.15 Normal probability plot of the studentized residuals.

Figure 12.16 Plot of studentized residuals versus predicted etch rate.

Figure 12.17 Etch rate response surface. (a) Contour plot. (b) Three-dimensional surface plot. The
solid dots in the contour plot are the design points.



716 EXPERIMENTS WITH MIXTURES

12.3 RESPONSE TRACE PLOTS

The response trace is a plot of the estimated response values as we move away from the
centroid of the simplex and along the component axes. More generally, we may think of
the centroid as a reference mixture with component proportions given by ri = 1/qi, i = 1,
2,… , q (in Chapter 12 we will discuss other choices for the proportions in the reference
blend). Consider the ith component, and suppose we move away from the centroid by
changing the proportion of this component by an amount Δi (note that we could make Δi
either positive or negative). Along the ith axis, as the value of xi either increases or decreases,
the values of the other component proportions xj, j≠ i, either decrease or increase, but the
relative proportions for these other components remain the same.

To illustrate, consider a q = 3 component mixture, so that ri =
1
3
, i = 1, 2, 3. Suppose that

component 1 is increased by Δ1 = 1
6

so that now x1 = r1 + Δ1 = 1
3
+ 1

6
= 3

6
= 1

2
. The new

proportions for components 2 and 3 are x1 = x3 = 1
4
. Thus the ratio of x2 to x3 is identical

at the centroid (x2∕x3 = 1
3
∕ 1

3
= 1) and at the new point along the x1-axis, because at this

point x2∕x3 = 1
4
∕ 1

4
= 1.

We may give a general equation for these results. If xi is changed by an amount Δi from
the reference mixture, then the new proportions are

xi = ri + Δi

xj = rj −
Δirj

1 − ri
, j ≠ i (12.12)

To construct a response surface trace plot, we choose some number of blends along each
component axis, calculate the coordinates of each mixture using Equation (12.12), and then
substitute these coordinates into the fitted mixture model to obtain the predicted values of
the response. Then these predicted responses are plotted against the changes made in the
xi, i = 1, 2,… , q. There will be q of these curves, and it is customary to plot them on the
same graph.

To illustrate, Fig. 12.18 is the response trace plot for the etch rate experiment described
in Example 12.2. The vertical axis is the predicted etch rate, and the horizontal axis is
the incremental change Δi made in each component. The reference mixture, which is the
overall centroid, is shown as the point 0.000 on the horizontal axis. By definition, all trace
plots must have the same etch rate at 0, since this is the reference mixture. Notice the strong
nonlinear effect of all three acids on the etch rate. Also, the etch rate increases slightly and
then decreases as we move along the x1-axis from the centroid toward the x1-vertex, and it
increases as we move away from the centroid along the x3-axis toward the base point x3 =
0, x1 = x2 = 1

2
.

In this example, the etch rate is very sensitive to changes in all three component pro-
portions. If one or more of the response traces is a horizontal line, this indicates that these
components have little effect on the response; that is, we have discovered ingredients that
are inactive. This can potentially have important economic consequences.

12.4 REPARAMETERIZING CANONICAL MIXTURE MODELS
TO CONTAIN A CONSTANT TERM (𝜷0)

It is occasionally convenient to reparameterize the Scheffé mixture polynomial so that it
contains a constant term, or intercept, 𝛽0. This can be easily done by simply deleting one
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Figure 12.18 Response trace plot of predicted etch rate along the component axes x1, x2, and x3.

of the 𝛽 ixi terms, say 𝛽qxq. Thus, instead of the linear mixture model

E(y) = 𝛽1x1 + 𝛽2x2 +⋯ + 𝛽qxq (12.13)

we would write

E(y) = 𝛽0 + 𝛽∗1 x1 + 𝛽∗2 x2 +⋯ + 𝛽∗q−1xq−1 (12.14)

and instead of the quadratic model

E(y) =
q∑

i=1

𝛽ixi +
∑ q∑

i<j=2

𝛽ijxixj (12.15)

we would write

E(y) = 𝛽0 +
q−1∑
i=1

𝛽∗i xi +
∑ q∑

i<j=2

𝛽ijxixj (12.16)

Note that only the parameters in the linear blending portion of the canonical model are
affected. Specifically, the intercept 𝛽0 takes on the role of the parameter 𝛽q corresponding
to the deleted component xq, and the remaining parameters 𝛽∗i represent the differences
𝛽∗i = 𝛽i − 𝛽q, i = 1, 2,… , q− 1.
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We use the quadratic model for yarn elongation in Example 12.1 to illustrate. The fitted
canonical model was

ŷ = 11.7x1 + 9.4x2 + 16.4x3 + 19.0x1x2 + 11.4x1x3 − 9.6x2x3

Now fit the model in Equation 12.14 with q = 3 by the method of least squares. This results
in

ŷ = 16.4 − 4.7x1 − 7.0x2 + 19.0x1x2 + 11.4x1x3 − 9.6x2x3

That is,

b0 = 16.4, b∗1 = −4.7, b∗2 = −7.0

Notice that

b0 = b3 = 16.4

b∗1 = b1 − b3 = 11.7 − 16.4 = −4.7

and

b∗2 = b2 − b3 = 9.4 − 16.4 = −7.0

and that the estimates of the quadratic terms are the same in both models.
This reparameterization of the Scheffé polynomial can be useful in analyzing mixture

data with standard multiple regression computer software. Most regression software pack-
ages will fit a model with the intercept term suppressed. This option will produce the correct
estimates of the 𝛽’s in a canonical mixture model, but it will result in an incorrect value for
the model or regression sum of squares, because the no-intercept option does not correct
this sum of squares for the overall mean. As a result, the F-test, R2, and the adjusted R2

will be incorrect. Reparameterizing the model as we have discussed will result in correct
output for the regression or model sum of squares, R2, and the adjusted R2. Then the correct
values of the linear blending coefficients can be calculated from

bi = b∗i + b0, i = 1, 2,… , q − 1

bq = b0 (12.17)

Another technique occasionally used in the analysis of mixture data is the slack variable
approach. The approach differs from the previous one in that one of the mixture components
is completely eliminated from the model. That is, if the component xq is eliminated, then
the first-order slack variable model is

E(y) = 𝛽0 + 𝛽∗1 x1 + 𝛽∗2 x2 +⋯ + 𝛽∗q−1xq−1

= 𝛽0 +
q−1∑
i=1

𝛽∗i xi (12.18)
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TABLE 12.8 Design-Expect Output for the Slack Variable Model of the Yarn Elongation
Data

Response Elongation
∗∗∗Component C is the Slack Variable.∗∗∗

ANOVA for Slack Mixture Quadratic Model
Analysis of variance table [Partial sum of squares]

Sum of Mean
Source Squares DF Square F-Value Prob > F

Model 128.30 5 25.66 32.20 < 0.0001
A 4.34 1 4.34 5.96 0.0373
B 26.67 1 26.67 36.59 0.0002
A2 13.92 1 13.92 19.10 0.0018
B2 9.87 1 9.87 13.55 0.0051
AB 12.33 1 12.33 16.91 0.0026
Pure Error 6.56 9 0.73
Cor Total 134.86 14

Std. Dev. 0.85 R-Squared 0.9514
Mean 13.54 Adj R-Squared 0.9243
C.V. 6.31 Pred R-Squared 0.8643
PRESS 18.30 Adeq Precision 13.890

Coefficient Standard 95% CI 95% CI
Component Estimate DF Error Low High VIF

Intercept 16.40 1 0.60 15.03 17.77
A-A −6.70 1 2.74 0.49 12.91 18.94
B-B −16.60 1 2.74 −22.81 −10.39 18.94
A2 −11.40 1 2.61 −17.30 −5.50 14.54
B2 9.60 1 2.61 3.70 15.50 14.54
AB 17.20 1 4.18 7.74 26.66 3.60

Final Equation in Terms of Pseudo Components:

Elongation =

+16.40
+6.70∗A
−16.60∗B
−11.40∗A2

+9.50∗B2

+17.20∗A∗B
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which is identical to Equation 12.13. However, the second-order slack variable model is

E(y) = 𝛽0 +
q−1∑
i=1

𝛽∗i xi +
q−1∑∑

i<j=2

𝛽∗ijxixj +
q−1∑
i=1

𝛽∗iix
2
i (12.19)

Note that this is a standard second-order response model in the q− 1 mixture components.
The slack variable version of the special cubic model is

E(y) = 𝛽0 +
q−1∑
i=1

𝛽∗i xi +
q−1∑∑

i<j=2

𝛽∗ijxixj +
q−1∑
i=1

𝛽∗iix
2
i

+
q−1∑∑∑

i<j<k=2

𝛽∗ijkxixjxk +
q−1∑∑

i<j=2

𝛽∗ijijxixj(xi + xj) (12.20)

It turns out that the coefficients in the slack variable model are just simple functions of the
coefficients in the original Scheffé polynomials.

Some practitioners report using the slack variable model with some success particularly
if one component does not impact the response, such as a filler ingredient like water
in a shampoo. So some software packages support it. Design-Expert is one such package.
Table 12.8 is the output from Design-Expert for the yarn elongation data from Example 12.1,
using x3 (component C) as the slack variable. Notice that all the terms are significant in the
model. Therefore, the slack variable model is completely equivalent to the original Scheffé
quadratic that we fitted to these data in Example 12.1.

Cornell (2000) points out that if we find that some terms in the slack variable model are
not significant and reduce the model (say by using stepwise regression techniques such as
we discuss in Appendix A), then the reduced slack variable model will not necessarily be
equivalent to the Scheffé model that was also reduced by eliminating nonsignificant terms.
The contour plots and hence the final conclusions from the two model can be different.
Furthermore, Cornell observes that the results one obtains can depend greatly on which
variable is chosen as the slack variable. Fortunately, Design-Expert allows the user to specify
the slack variable, so an experienced analyst can try different models and decide if the slack
variable approach is really appropriate for his or her situation. Our own recommendation
is to avoid indiscriminate use of the slack variable model in most problems and use the
standard Scheffé polynomials unless there is some overriding reason to not do so. For an
excellent discussion of the slack variable model and many more interesting details, refer to
Cornell (2000).

EXERCISES

12.1 Three different motor fuels can be blended to form a gasoline. The miles per
gallon (MPG) performance of this gasoline is the response variable. An augmented
simplex-lattice design was used to study the blending properties of these three
fuels, and the results are shown in Table E12.1:

(a) Fit a linear mixture model to these data. Is the model adequate?

(b) Fit a quadratic mixture model to these data. Is this model an improvement over
the linear model?
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TABLE E12.1 Data for Exercise 12.1

Component Proportion

Design Point x1 x2 x3 MPG y

1 1 0 0 24.5, 25.1
2 0 1 0 24.8, 23.9
3 0 0 1 22.7, 23.6
4 1

2

1

2
0 25.1

5 1

2
0 1

2
24.3

6 0 1

2

1

2
23.5

7 1

3

1

3

1

3
24.8, 24.1

8 2

3

1

6

1

6
24.2

9 1

6

2

3

1

6
23.9

10 1

6

1

6

2

3
23.7

(c) What model would you use to predict the MPG performance of the gasoline
obtained by blending these three fuels?

(d) Plot the response surface contours for the model in part (c). What blend would
you use to maximize mileage performance?

12.2 A mixture experiment was performed to determine if an artificial sweetener could
be developed for a soft drink that would minimize the aftertaste. Four different
sweeteners were evaluated, and a simplex-centroid design with q = 4 components
was used to evaluate the different blends. The response variable is aftertaste, with
low values being desirable. The data are shown in Table E12.2.

(a) Fit an appropriate mixture model to these data. Test the model for adequacy.

(b) Construct the response trace plot for this experiment. Provide a practical inter-
pretation of this plot.

(c) Construct contour plots of predicted aftertaste that would be useful to a deci-
sionmaker in choosing a blend of these four sweeteners that minimizes the
aftertaste. What blend would you recommend?

12.3 Consider the linear mixture model from Exercise 12.1a. Reparameterize this model
to the form

E( y) = 𝛽0 + 𝛽 ∗
1 x1 + 𝛽 ∗

2 x2

and fit this model using least squares. Verify that this model can be converted to
the linear mixture model you found in Exercise 12.1a using the method discussed
in Section 12.4.

12.4 A thickening agent is added to a liquid soap product to control the viscosity. This
agent usually makes up 10% of the soap by weight. There are three different salt
compounds that are blended to make up the thickener. The product formulators
have decided to investigate the combination of these ingredients using a mixture
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TABLE E12.2 Data for Exercise 12.2

Component Proportions

Design Point x1 x2 x3 x4

Aftertaste
y

1 1 0 0 0 19
2 0 1 0 0 8
3 0 0 1 0 15
4 0 0 0 1 10
5 1

2

1

2
0 0 13

6 1

2
0 1

2
0 16

7 1

2
0 0 1

2
12

8 0 1

2

1

2
0 11

9 0 1

2
0 1

2
5

10 0 0 1

2

1

2
10

11 1

3

1

3

1

3
0 14

12 1

3

1

3
0 1

3
10

13 1

3
0 1

3

1

3
14

14 0 1

3

1

3

1

3
8

15 1

4

1

4

1

4

1

4
12

experiment. Let x∗1, x∗2, and x∗3 represent the actual proportions of the three salt
compounds, with x∗1 + x∗2 + x∗3 = 0.1. Notice that if we let xi = x∗i ∕0.1, then the
design points can be expressed as proportions 0≤ xi ≤ 1 with the standard mix-
ture constraint x1 + x2 + x3 = 1. The experiments decided to use an augmented
simplex-lattice design to study the viscosity of the thickener. The design and
the viscosity data are shown in Table E12.3. The centroid was replicated three
times.

(a) Fit linear and quadratic mixture models to these data. Test both models for lack
of fit. Does either model seem adequate, based on this test?

(b) Select an appropriate mixture model for the viscosity data. Construct appro-
priate residual plots to check for model adequacy.

(c) Construct and interpret a response trace plot for this experiment.

(d) Construct a response surface contour plot for viscosity.

(e) Suppose that a desirable value for viscosity of this thickening agent is 900
centipoise. Is there a formulation that would produce the desired viscosity?

12.5 One of the authors (DCM) was a partner in a vineyard and winery in Newberg,
Oregon. The partners that operate this business are developing a new red wine that
is a blend of three different varieties of grapes: Pinot Noir–Pommard, Pinot Noir–
Wadenswil, and Gamay Noir. A three-component mixture design was used to study
the blends of these three ingredients. The design is shown in Table E12.4 where
x1 = proportion of Pinot Noir–Pommard, x2 = proportion of Pinot Noir–Wadenswil,
and x3 = proportion of Gamay Noir in the product. Each of the 10 blends was tasted
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TABLE E12.3 Data for Exercise 12.4

Component Proportions
Design Viscosity
Point x1 x2 x3 (centipoise)

1 1 0 0 410
2 0 1 0 880
3 0 0 1 1445
4 1

2

1

2
0 683

5 1

2
0 1

2
465

6 0 1

2

1

2
456

7 2

3

1

6

1

6
354

8 1

6

2

3

1

6
521

9 1

6

1

6

2

3
700

10 1

3

1

3

1

3
465

11 1

3

1

3

1

3
392

12 1

3

1

3

1

3
428

by a panel of experts and ranked on the basis of the taste-test results, with rank 1
being the best, rank 2 the next best, and so forth.

(a) Fit linear and quadratic mixture models to the averages of the rank data. Test
both of these models for lack of fit. Does either model seem adequate?

(b) Select an appropriate mixture model for the average rank response. Construct
appropriate residual plots to check for model adequacy.

TABLE E12.4 Data for Exercise 11.5

Component Taste-Test
Proportions Ranks

Design Point x1 x2 x3 DCM HPN DLB JPN

1 1 0 0 2 3 3 2
2 0 1 0 1 2 1 3
3 0 0 1 4 4 5 6
4 1

2

1

2
0 3 1 2 1

5 1

2
0 1

2
5 5 4 4

6 0 1

2

1

2
6 7 8 5

7 2

3

1

6

1

6
7 6 9 8

8 1

6

2

3

1

6
8 8 6 7

9 1

6

1

6

2

3
10 9 10 9

10 1

3

1

3

1

3
9 10 7 10



724 EXPERIMENTS WITH MIXTURES

(c) Construct and interpret a response trace plot for this experiment.

(d) Construct a response surface contour plot for the average rank response. What
blends of the three varieties of grapes would you recommend?

12.6 Reconsider the sweetener experiment in Exercise 12.2. Suppose that the experi-
menters are interested in a second response, the cost of the sweetener. For each of
the 15 formulations of the product tested in the simplex-centroid design, the cost of
the mixture of ingredients used in the formula and a manufacturing cost estimate
are combined. For the design points, listed in the same order as in the original table
in Exercise 12.2, these costs are as follows:

Design Point Cost Design Point Cost Design Point Cost

1 4 6 8 11 12
2 15 7 16 12 18
3 6 8 13 13 15
4 25 9 18 14 16
5 10 10 15 15 15

(a) Build an appropriate mixture model for the cost response.

(b) Construct a response trace plot for the cost response. Interpret this graph.

(c) Construct a response surface contour plot of the cost response. What practical
advice could you give a decision maker based on this graph?

(d) Consider both the response surface for cost and the aftertaste response surface
developed in Exercise 12.2. Suppose that your objective is to select a blend of
ingredients so that the sweetener has low aftertaste while keeping the cost of
the product below 12. What blend of sweeteners would you recommend?

12.7 Continuation of Exercise 12.6 Reconsider the cost response surface from Exer-
cise 12.6. Suppose that your objective was to minimize the cost of the sweetener
while keeping the aftertaste below 13. What formulation of ingredients would you
recommend for this product?

12.8 Consider the second-order polynomial in two variables:

E(y) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛽11x2
1 + 𝛽22x2

2

(a) Show that if the term 𝛽0 is replaced by 𝛽0(x1 + x2), if x2
1 is replaced by

x1(1− x2), and if x2
2 is replaced by x2(1− x1), the canonical form of the quadratic

mixture model results.

(b) Why are the substitutions described in (a) required in a mixture experiment?

12.9 When observations are collected only at the points of a {q, m} simplex lattice,
the estimates of the parameters in the canonical polynomial are simple functions
of the observed responses. Consider the {3, 2} lattice, let ȳi be the average of ni
observations at each vertex xi =1, xj = 0 for j≠ i, and let ȳij be the average of nij

observations at the edge midpoints or 50:50 binary blends xi = xj =
1
2
, xk = 0 for

i< j< k = 1, 2, 3.
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(a) Show that on substituting ȳi and ȳij for the expected response at each of the six
design points, the following equations result:

ȳ1 = 𝛽1, ȳ2 = 𝛽2, ȳ3 = 𝛽3

ȳ12 = 1
2
𝛽1 +

1
2
𝛽2 +

1
4
𝛽12

ȳ13 = 1
2
𝛽1 +

1
2
𝛽3 +

1
4
𝛽13

ȳ23 = 1
2
𝛽2 +

1
2
𝛽3 +

1
4
𝛽23

(b) Show that the solution to the equations given in part (a) are as follows:

b1 = ȳ1, b2 = ȳ2, b3 = ȳ3

b12 = 4ȳ12 − 2(ȳ1 + ȳ2)

b13 = 4ȳ13 − 2(ȳ1 + ȳ3)

b23 = 4ȳ23 − 2(ȳ2 + ȳ3)

Notice that the constants 4 and 2 in the last three equations do not depend
on the number of replicates at each design point, but arise instead from the
xi = xj =

1
2

values at each edge midpoint.

(c) Use the equations derived in part (b) above to calculate the parameter estimates
for the yarn elongation data in Example 12.1. Verify that the results obtained
agree with the least squares estimates of these parameters obtained in Example
12.1.

12.10 Consider the quadratic mixture model

y = 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝛽12x1x3 + 𝛽23x2x3 + 𝜀

where 𝜀 is the usual NID(0, 𝜎2) random error term. Suppose that the {3, 2} lattice
design as described in Exercise 12.8 above is run, and the resulting data are used
to estimate the coefficients in the quadratic model.

(a) Show that

E(bi) = 𝛽i

and that

E(bij) = 𝛽ij

(b) Show that

Var(bi) =
𝜎 2

ni
, i = 1, 2, 3
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and

Var(bij) =
16𝜎 2

nij
+ 4𝜎 2

ni
+ 4𝜎 2

nj
, i < j = 2, 3

(c) Show that

Cov(bi, bj) = 0, i ≠ j

Cov(bi, bij) =
−2𝜎 2

ni

Cov(bij, bik) = 4𝜎 2

ni
, j ≠ k

12.11 Consider the simplex-centroid design for three components. Let ȳi, ȳij, and ȳ123
be the averages of ni observations at the three vertices, nij observations at the edge
midpoints, and n123 observations at the design centroid. The model of interest is

E(y) =
3∑

i=1

𝛽ixi +
∑ 3∑

i<j=2

𝛽ijxixj + 𝛽123x1x2x3

(a) Show that by substituting ȳi, ȳij, and ȳ123 for the expected response at each of
the seven design points, the following equations result:

ȳi = 𝛽i, i = 1, 2, 3

ȳij =
1
2
(𝛽i + 𝛽j) +

1
4
𝛽ij, i < j = 2, 3

ȳ123 = 1
3
(𝛽1 + 𝛽2 + 𝛽3) + 1

9
(𝛽12 + 𝛽13 + 𝛽23) + 1

27
𝛽123

(b) Show that the solution to the equation given in part (a) are

bi = ȳi, i = 1, 2, 3

bij = 4ȳy − 2(ȳi + ȳj), i < j = 2, 3

b123 = 27ȳ123 − 12(ȳ12 + ȳ13 + ȳ23) + 9(ȳ1 + ȳ2 + ȳ3)

(c) What effect does the observation at the centroid have on the estimates of the
linear and quadratic terms in this model?

12.12 Consider the special cubic model

ŷ =
3∑

i=1

bixi +
∑ 3∑

i<j=2

bijxixj + b123x1x2x3
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(a) How large must the bij term be if the term b12 xi xj is to contribute as much to
the model at the edge midpoint as the linear term bi xi?

(b) How large must the cubic term b123 be if the contribution of the term b123x1x2x3
to the model at the centroid is as large as the contribution of the quadratic term
bijxixj?

12.13 Consider the quadratic model in two components:

E(y) = 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2

(a) Suppose that four observations are collected at the following points:

y1 at x1 = 1, x2 = 0

y2 at x1 = 0, x2 = 1

y3 and y4 at x1 = x2 = 1
2

Derive the estimates of the model coefficients for this design.

(b) Suppose that four observations are collected at the following points:

y1 at x1 = 1, x2 = 0

y2 at x1 = 0, x2 = 1

y3 at x1 = 1
3
, x0 = 2

3

y4 at x1 = 2
3
, x1 = 1

3

Derive the estimates of the model coefficients for this design.

(c) Which of these two designs would you prefer, if your objective was to find
minimum variance estimates of the coefficients in the quadratic model?

12.14 Reconsider the sweetener formulation problem in Exercise 12.2. Reparameterize
the problem as was discussed in Section 12.4. Fit both linear and quadratic mod-
els, and verify that they can be converted to the Scheffé models you fitted in
Exercise 12.2.

12.15 Cornell (2000) presents an example of a three-component mixture experiment used
to study the tint strength of a house paint as a function of the relative proportions
of two pigments (P1 and P2) and a solvent (S). The volume percentages of the
three ingredients are fixed at 8%, so we can write the usual mixture constraint
x1 + x2 + x3 = 1 by letting x1 = P1/8%, x2 = P2/8%, and x3 = S/8%, respectively.
This scaling produces what are often called real mixture components. The data
given by Cornell are in Table E12.5.

Fit a second-order mixture model to the data, and find a blend that maximizes
the tint strength.

12.16 Reconsider the paint experiment in Exercise 12.15. Fit a second-order slack variable
model to the data, using x1 as the slack variable. Verify that the contour plots from
this model are identical to the ones obtained from the original Scheffé polynomial
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TABLE E12.5 Data for Exercise 12.15

Blend x1 (P1) x2 (P2) x3 (S) Tint Strength

1 1 0 0 1.19
2 0 1 0 0.97
3 0 0 1 −5.68
4 1

2

1

2
0 0.13

5 1

2
0 1

2
−4.02

6 0 1

2

1

2
−4.18

7 1

3

1

3

1

3
−3.36, −3.68
−3.04

in Exercise 12.15. Fit another second-order slack variable model, this time using
x2 as the slack variable. Obtain the contour plots. Note that the model form is
different, but the contour plots are identical to the ones from the original Scheffé
polynomial.

12.17 Reconsider the paint experiment in Exercise 12.15. Fit a second-order slack variable
model to the data using x1 as the slack variable. Eliminate the interaction term from
this model, and refit. Construct a contour plot for this reduced model, and compare
it with the contour plot for the full Scheffé model. Based on this analysis, how
comfortable are you in general with the slack variable model approach?

12.18 Consider fitting a quadratic mixture model with three components. Suppose that you
are considering two different designs, the {3, 3} lattice design and the augmented
simplex lattice design in Fig. 12.12. Compare the two designs in terms of the
precision of estimation of the quadratic mixture model terms. Which design would
you prefer?

12.19 Consider fitting a quadratic mixture model with three components. Suppose that you
are considering two different designs, the {3, 3} lattice design and the augmented
simplex lattice design in Fig. 12.12. Compare the two designs in terms of the
prediction variance of the response over the mixture space. Which design would
you prefer?

12.20 Consider fitting a special cubic mixture model with three components. Suppose
that you are considering two different designs, the {3, 3} lattice design and the
augmented simplex lattice design in Fig. 12.12. Compare the two designs in terms
of the prediction variance of the response over the mixture space. Which design
would you prefer?

12.21 Consider the augmented simplex lattice design in Fig. 12.12. Suppose that the
experimenter wants to modify this design by moving the location of the axial
blends to 70% of the distance to the vertex instead of 2/3, because this corresponds
to blends that have some practical appeal to production personnel. What do you
think of this modification? Compare the modified design to the original augmented
simplex lattice design for a quadratic mixture model in terms of prediction variance
over the mixture space.
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12.22 Consider the augmented simplex lattice design in Exercise 12.21. Suppose that
you could add four more runs to this design to obtain an estimate of pure error.
One strategy would be to replicate the axial points and the centroid, a second
alternative would be to replicate the vertices and the centroid, and a third strategy
would be to replicate the edge centers and the centroid. Compare these strategies
in terms of the standard errors of the model coefficients and the variance of the
predicted response over the design region. Assume that the experimenter wants to
fit a quadratic mixture model. What approach would you recommend?

12.23 Rework Exercise 12.21 assuming that the experimenter may need to fit a special
cubic model.

12.24 Rework Exercise 12.22 assuming that the experimenter may need to fit a special
cubic model.

Short Answer Questions

12.25 In designing mixture experiments, a good rule of thumb is to assume that at least a
second-order mixture model is likely to be adequate. True False

12.26 The simplex-lattice and simplex-centroid designs have most of the design points
on the boundary of the experimental region. True False

12.27 When axial check blends are added to a simplex lattice, these blends are as far as
possible (Euclidean distance) from the other design points. True False

12.28 The (3,2) simplex-lattice design is a rotatable design for fitting a second-order
mixture model. True False

12.29 If one component has a response trace plot that is a horizontal line this implies that
this component is inactive. True False

12.30 Scheffé mixture models do not contain an intercept term because this term would
be perfectly correlated with the linear mixture terms. True False

12.31 A Scheffé mixture model can always be reparameterized to contain an intercept
term. True False

12.32 The slack variable approach to fitting mixture models eliminates one of the mixture
components from the model. True False





13
OTHER MIXTURE DESIGN AND
ANALYSIS TECHNIQUES

In Chapter 12 we focused on mixture experiments for exploring the complete simplex
region. We introduced simplex-lattice and simplex-centroid designs that would enable us to
fit response surface models over this region. In many mixture experiments there are restric-
tions, or constraints, on the component proportions that prevent us from exploring the entire
simplex region. Frequently these restrictions take the form of lower and/or upper bounds on
the component proportions. This problem is discussed in this chapter. In addition, we also
briefly discuss several other variations of the mixture problem, including the use of ratios of
components as the design variables, the inclusion of process variables in mixture experi-
ments, and screening techniques to identify the most important components in the mixture.

13.1 CONSTRAINTS ON THE COMPONENT PROPORTIONS

In many mixture experiments there are constraints on the component proportions. These are
often upper- and/or lower-bound constraints of the form Li ≤ xi ≤Ui, i= 1, 2,… , q, where
Li is the lower bound for the ith component and Ui is the upper bound for the ith component.
Essentially, Li represents a minimum proportion of the ith component, and Ui a maximum
proportion of the ith component, that must be present in the mixture. These constraints
are usually determined by practical bounds on the relative proportion of components that
produce useable results. The general form of the constrained mixture problem is

x1 + x2 +⋯ + xq = 1

Li ≤ xi ≤ Ui, i = 1, 2,… , q (13.1)

where Li ≥ 0 and Ui ≤ 1 for i= 1, 2,… , q.

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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The effect of the upper- and lower-bound restriction in Equation 13.1 is to limit the feasi-
ble space for the mixture experiment to a subregion of the simplex. Therefore, experimental
designs for constrained mixture problems must be limited to the feasible subregion of the
simplex. In this section, we present design and analysis techniques for these constrained
mixture spaces.

13.1.1 Lower-Bound Constraints on the Component Proportions

We now consider the case where only the lower bounds in Equation 13.1 are imposed, so
that the constrained mixture problem becomes

x1 + x2 +⋯ + xq = 1

Li ≤ xi ≤ 1, i = 1, 2,… , q (13.2)

To illustrate the effect that lower bounds have on the feasible mixture design space, consider
a three-component example with constraints

0.3 ≤ x1, 0.4 ≤ x2, and 0.1 ≤ x3

Figure 13.1 shows the feasible mixture space after these constraints are imposed. Notice
that the imposition of lower bounds does not affect the shape of the feasible mixture space;
it is still a simplex. In general this will be the case; if only lower bounds are imposed on
any of the component proportions, the feasible region for the mixture experiment will be a
smaller simplex inscribed inside the original (or unconstrained) region. If all lower bounds
are equal (L1 = L2 = ⋯ = Lq), the centroid of the original simplex will also be the centroid
of the smaller inscribed simplex.

Figure 13.1 The feasible mixture space for three components with lower bounds, and the redefinition
of the region as a simplex in the L-pseudocomponents. [Adapted from Cornell (2002), with the
permission of the publisher.]
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Because the feasible experimental region is still a simplex, it seems reasonable to define
a new set of components that will take on the values 0 to 1 over the feasible region.
This will make design construction and model fitting easier over the constrained region.
These redefined components are called L-pseudocomponents, or sometimes just pseudo-
components (Crosier, 1984). The pseudocomponents Xi are defined using the following
transformation:

Xi =
xi − Li

1 − L
(13.3)

where

L =
q∑

i=1

Li < 1

is the sum of all of the lower bounds. A value of Xi = 0 now corresponds to the minimum
allowable amount of the component i, while Xi = 1 is the allowable maximum (obtained by
setting all the other components at their minimum proportions). To illustrate, we may use the
situation described previously and shown graphically in Fig. 13.1. The pseudocomponents
are

X1 =
x1 − 0.3

0.2
, X2 =

x2 − 0.4

0.2
, X3 =

x3 − 0.1

0.2

because L1 = 0.3, L2 = 0.4, L3 = 0.1, L= 0.3+ 0.4+ 0.1= 0.8, and 1−L= 0.2. The factor
space in terms of pseudocomponents is shown on the right-hand side of Fig. 13.1. The
orientation of the L-pseudocomponent simplex is the same as the original simplex, and the
height of the L-pseudocomponent simplex is 1− L.

Constructing a design in the L-pseudocomponents is easy. One simply specifies the
design points in the Xi and then converts them to the settings in the original components
using

xi = Li + (1 − L)Xi (13.4)

To illustrate, suppose that we decide to use a simplex-centroid design for our experiment.
Table 13.1 shows the design points in the pseudocomponents, along with the corresponding
setting for the original components.

The original component settings in Table 13.1 were calculated by using Equation 13.4.
This becomes

x1 = 0.3 + 0.2X1

x2 = 0.4 + 0.2X2

x3 = 0.1 + 0.2X3
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TABLE 13.1 Pseudocomponent Settings and Original
Component Settings, Simplex-Centroid Design

Pseudocomponents Original Components

X1 X2 X3 x1 x2 x3

1 0 0 0.5 0.4 0.1
0 1 0 0.3 0.6 0.1
0 0 1 0.3 0.4 0.3
1

2

1

2
0 0.4 0.5 0.1

1

2
0 1

2
0.4 0.4 0.2

0 1

2

1

2
0.3 0.5 0.2

1

3

1

3

1

3
0.3667 0.4667 0.1666

For example, consider the point X1 = 1
2
, X2 = 1

2
, and X3 = 0. In terms of the original

components, this point becomes

x1 = 0.3 + 0.2
(

1
2

)
= 0.4

x2 = 0.4 + 0.2
(

1
2

)
= 0.5

x3 = 0.1 + 0.2 (0) = 0.1

as shown in Table 13.1.
We recommend using pseudocomponents to fit the mixture model. The reason for

this is that constrained design spaces usually have moderately high to high levels of
multicollinearity or ill-conditioning, and this can have serious effects on the least squares
estimators of regression coefficients in that the variances of these coefficient estimators
are inflated. In general, a mixture model in the pseudocomponents will have lower levels
of multicollinearity than will the same model in the original component proportions. For
more discussion of this point, see Montgomery and Voth (1994) and St. John (1984). It is,
of course, a relatively simple matter to convert a model in the pseudocomponents into the
corresponding model in the actual components.

Example 13.1 Formulating a Propellant We use a three-component example from
Montgomery and Voth (1994) to illustrate fitting and interpreting a model with pseudocom-
ponents. The example includes blending fuel (x1), oxidizer (x2), and binder (x3) together to
form a propellent used in aircrew escape systems. As in most mixture experiments, several
responses are of interest, including both physical and mechanical properties of the propel-
lant; however, we concentrate on three responses. The first is the burning rate (y1, cm/sec),
a critical characteristic if the escape system is to perform satisfactorily. It is measured by
testing several samples of propellant from the same run and reporting the average observed
burning rate. The second response is the standard deviation of the observed burning rates at
each run (y2, cm/sec); low variability is desirable, implying consistent performance across
different escape systems assembled from propellant grains from the same batch. The third
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response is a manufacturability index (y3) that reflects the cost and difficulty associated
with producing a particular mixture. The constraints for this mixture problem are

x1 + x2 + x3 = 0.9

0.30 ≤ x1

0.20 ≤ x2

0.20 ≤ x3

Notice that the three components must make up 90% of the mixture. The remaining 10% is a
fourth ingredient that is never varied. We model this system in terms of pseudocomponents,
say

Xi =
xi − Li

0.9 −
3∑

i=1
Li

, i = 1, 2, 3 (13.5)

This transformation yields pseudocomponents Xi such that 0≤Xi ≤ 1, i= 1, 2, 3, and
X1 +X2 +X3 = 1. Because all the constraints in this problem are lower-bound constraints,
the experimental region is a simplex. To draw this region in the usual coordinate system,
we must remember that the range of each xi on the graph is from 0 to 1. Therefore, the
constraints that should be plotted on the graph are 0.3/0.9≤ x1, 0.2/0.9≤ x2, and 0.2/0.9≤ x3
or

0.3333 ≤ x1

0.2222 ≤ x2

0.2222 ≤ x3

We can think of these constraints as the proportion of the flexible proportion of each
component after the automatic inclusion of the mandatory 10%. This constrained region is
shown in Fig. 13.2.

Figure 13.2 The constrained design region for Example 13.1.
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The experimenters decided that a quadratic mixture model would likely be adequate to
describe the relationship between the responses and the three component proportions. They
selected a 10-point design consisting of the simplex centroid augmented with the interior
axial points located midway between the centroid and the opposed vertex. They decided to
replicate each vertex twice and the centroid three times, resulting in the final 15-run design
shown in Table 13.2. The relationship between the settings in the pseudocomponents and
the actual component settings is

xi = Li + Xi

(
0.9 −

3∑
i=1

Li

)

For the first design point in Table 13.2, where X1 = 1, X2 =X3 = 0 we have x1 = 0.5, x2 = 0.2,
and x3 = 0.2.

Table 13.3 shows the results of sequentially fitting the linear, quadratic, and special
cubic models to the data in Table 13.2, using the mean burning rate response y1. Based on
the lack-of-fit test and the small P-value associated with the special cubic term, we would
recommend the special cubic model. Note also that the value of the PRESS statistic is
smallest for the special cubic model. As noted in Chapter 2, regression models with small
values of PRESS are usually good prediction equations.

In judging the relative size of PRESS, recall that it is often useful to compute the R2 for
prediction based on PRESS:

R2
prediction = 1 − PRESS

SSTotal

This statistic can be thought of as a measure of the capability of the model to predict new
data, and it can be compared with the usual R2 and R2-adjusted statistics. For the special
cubic model we have

R2
prediction = 1 − 3296.975

9557.778
= 0.6550

This is somewhat smaller than the other two R2-values (see Table 13.3).
Table 13.4 contains a summary of the special cubic model. The fitted model in the

pseudocomponents is

ŷ1 = 35.49X1 + 42.78X2 + 70.36X3 + 16.02X1X2

+ 36.33X1X3 + 136.82X2X3 + 854.98X1X2X3

By substituting the definitions of the pseudocomponents into this equation, we may obtain
a model for the mean burning rate in terms of the original (actual) components. However, it
is usually not necessary to do this, because modern software will plot the response surface
contours in either the pseudocomponents or the actual components.

From Table 13.4, notice that in the final model there are three values of the hat diagonals
hii that are large (0.91); these are associated with the centers-of-edges design points. This
has occurred because the hii are both model- and design-dependent, and the final model
here is of higher order than the one that was initially contemplated. This happens frequently
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Figure 13.3 Normal probability plot of the studentized residuals for the mean burning rate response.

in mixture experiments and often has undesirable consequences. For example, the large hii
value for design point 7 combined with a moderately large studentized residual, impacts the
Cook’s distance measure and the PRESS residual. The large PRESS residual dramatically
reduces the R2 prediction. Hence this single observation exerts disproportionate influence
on the model and its estimates.

Figure 13.3 presents a normal probability plot of the studentized residuals from the
special cubic model. We recommend plotting studentized residuals from mixture models,
because the highly nonuniform distribution of leverage in many mixture designs results in
residuals that may have very different variances. Thus, in a normal probability plot, the
studentized residuals should lie approximately along a straight line. Figure 13.4 presents a
contour plot for the mean burning rate response.

Table 13.5 summarizes the model-building activity for the other two responses: standard
deviation of burning rate (y2) and manufacturability index (y3). In both cases, we selected
the model with minimum PRESS, resulting in a quadratic model for the standard deviation

Figure 13.4 Mean burning rate: contour plot.
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TABLE 13.5 Mixture Models for Standard Deviation of Burning Rate (y2) and
Manufacturability Index (y3)

y2 y3

Model Form R2 PRESS R2 PRESS

Linear 0.4686 150.60 0.7942 39.83
Quadratic 0.9830 7.15 0.8222 69.50
Special cubic 0.9844 13.47 0.8337 140.51

ŷ2 = 3.88159X1 + 9.03873X2 + 13.63397X3

−0.19048X1X2 − 16.61905X1X3 − 27.67619X2X3

R2
prediction = 0.9575

ŷ3 = 23.13333X1 + 19.73333X2 + 14.73333X3

R2
prediction = 0.6456

of burning rate and a linear model for the manufacturability index. The values of R2
prediction

for those models, also shown in Table 13.5, are reasonably close to the ordinary R2-statistic
for the selected model. Plots of the studentized residuals for both models were satisfactory,
and the contour plots are shown in Figs. 13.5 and 13.6.

As in most mixture designs, here the experimenters are interested in formulating a
product that satisfies several customer requirements. Specifically, the mean burning rate
must exceed 95 cm/sec, the standard deviation of the burning rate should be small (less than
4.5 cm/sec, say), and the manufacturability index should not exceed 20. Figure 13.7 presents
a plot of the design region with these constraints superimposed. This graph identifies the
feasible mixtures that satisfy all three response constraints. Obviously, there are many
product formulations that will be satisfactory. The final choice between formulations could
now be made using other supplemental criteria. For example, the conclusions here are
based on predicted mean responses, and no measure of uncertainty in these predictions was
evaluated. One could use confidence or prediction intervals to represent the uncertainty.
Alternatively, the effects of tightening the constraints can be investigated. Figure 13.8
illustrates the effects of requiring the standard deviation of the burning rate to be less than

Figure 13.5 Standard deviation of burning rate: contour plot.
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Figure 13.6 Manufacturability index: contour plot.

Figure 13.7 Region of optimum solution for the propellant formulation problem.

Figure 13.8 Region of optimum solution with tighter constraints on standard deviation of burning
rate and manufacturability index.
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4 cm/sec and the manufacturability index to be less than 19. This new set of constraints
has greatly reduced the feasible mixture space, and it is approaching the practical limits of
reduction in both variability and cost for this product if the burning rate requirement is to
be met. Alternately, one could use some of the multiple response strategies in Chapter 7.

Finally, the effect of the influential point (design point 7) may be investigated. A simple
way to do this is to withhold the point, refit the model (or models) in question, and examine
the changes that occur. When this analysis is performed, similar results are obtained, but
the feasible region from this refitting is somewhat smaller. It would be prudent to select
a final formulation that falls in the feasible region from both models as this offers some
protection from the overinfluence of design point 7.

13.1.2 Upper-Bound Constraints on the Component Proportions

Sometimes only upper-bound constraints of the form xi ≤Ui are placed on the component
proportions. In these cases, a simple modification of the simplex-lattice design consists
in replacing the restricted components with mixtures consisting of combinations of the
restricted components and predetermined combinations of the unrestricted components.
This approach is discussed and illustrated in Cornell (2002). However, as is obvious from
inspection of Fig. 13.9, where a single upper-bound constraint x1 ≤ 0.75 has been imposed,
the presence of upper bounds can lead to an experimental region that is not a simplex (notice
that the JMP ternary plot has the axes labeled differently than we have done previously). In
such cases, computer-generated designs (typically based on either the D- or I-optimality
criteria) are logical design alternatives.

Table 13.6 is a 12-run D-optimal design (found using JMP) assuming a quadratic mixture
model for the mixture experiment in Fig. 13.9 having only an upper bound constraint. The
design is shown graphically in Fig. 13.10. Notice that while there are 12 runs, there are
only nine distinct design points. Runs 3 and 11, 6 and 7, and 8 and 9 are replicates. Two

Figure 13.9 A three-component mixture experiment with an upper bound constraint x1 ≤ 0.75.
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TABLE 13.6 A 12-Run D-Optimal Design
for the Mixture Experiment in Fig. 13.9

Run x1 x2 x3

1 0.75 0 0.25
2 0.75 0.25 0
3 0 0.5 0.5
4 0.4142829008 0 0.5857170992
5 0.398304425 0 0.601695575
6 0 0 1
7 0 0 1
8 0 1 0
9 0 1 0
10 0.375 0.625 0
11 0 0.5 0.5
12 0.45 0.55 0

of these pairs of runs are vertices and the third pair is at the center of the flat connecting
the x2 and x3 vertices. There are no runs in the interior of the simplex. Table 13.7 is the
12-run I-optimal design for this experiment. The design is shown graphically in Fig. 13.11.
There are 11 distinct design points. Only runs 6 and 10 are replicates. As in the D-optimal
design, these are the runs at the center of the flat connecting the x2 and x3 vertices. Notice
that in contrast to the D-optimal design, the I-optimal design has two runs in the interior
of the simplex. Figure 13.12 is a fraction of design space plot for these two designs. As
anticipated, the I-optimal design has considerably smaller prediction variance over most of
the design space in comparison to the D-optimal design. The D-optimal design only has
smaller prediction variance over the last 5% or so of the design space.

Figure 13.10 A Ternary Plot of the 12-Run D-Optimal Design for the Mixture Experiment in
Table 13.6.
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TABLE 13.7 A 12-Run I-Optimal Design for
the Mixture Experiment in Fig. 13.9

Run x1 x2 x3

1 0.26025 0.369875 0.369875
2 0.375 0.625 0
3 0 1 0
4 0.406 0.594 0
5 0.3898557404 0 0.6101442596
6 0 0.5 0.5
7 0.275 0.3625 0.3625
8 0 0 1
9 0.75 0.25 0
10 0 0.5 0.5
11 0.4231211765 0 0.5768788235
12 0.75 0 0.25

In some cases, upper-bound constraints lead to a design space that is a simplex. For
example, consider the three-component problem

x1 ≤ 0.4, x2 ≤ 0.5, and x3 ≤ 0.3

is shown in Fig. 13.13a. Notice that the feasible region for this mixture experiment is an
inverted simplex. Obviously a standard simplex-type design can be defined over this region
Fig. 13.13b shows the feasible region for the three-component problem:

x1 ≤ 0.7, x2 ≤ 0.5, and x3 ≤ 0.8

In this case, the feasible experimental region is not a simplex, and, once again, a computer-
generated design would be a logical choice.

Figure 13.11 A ternary plot of the 12-run I-optimal design for the mixture experiment in
Table 13.7.
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Figure 13.12 Fraction of design space plot for the mixture designs in Tables 13.6 and 13.7. The
D-optimal design is the dashed line and the I-optimal design is the solid line.

In general, when upper-bound constraints x1 ≤U1 are present, the feasible region will
be an inverted simplex that lies entirely within the original or unconstrained simplex if and
only if

q∑
i=1

Ui − Umin ≤ 1 (13.6)

where Umin is the smallest of the upper bounds Ui. For example, for the situation in
Fig. 13.13a we have

3∑
i=1

Ui = 0.4 + 0.5 + 0.3 = 1.2

and Umin = 0.3, so

3∑
i=1

Ui − Umin = 1.2 − 0.3 = 0.9 < 1

Figure 13.13 Three-component mixture experiments with upper-bound constraints. (a) The feasible
region is an inverted simplex. (b) The feasible region is not a simplex.
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and the feasible region is an inverted simplex. On the other hand, in Fig. 13.13b we have

3∑
i=1

Ui = 0.7 + 0.5 + 0.8 = 2.0

and Umin = 0.5, so

3∑
i=1

Ui − Umin = 2.0 − 0.5 = 1.5 > 1

and the feasible region is not a simplex.
When two or more of the component proportions are constrained by upper

bounds, Crosier (1984) suggests defining upper-bound pseudocomponents, or U-
pseudocomponents:

ui =
Ui − xi
q∑

i=1
Ui − 1

, i = 1, 2,… , q (13.7)

where

q∑
i=1

Ui > 1

The region of the U-pseudocomponents is an inverted simplex; and when this inverted
simplex lies entirely within the original simplex, it is easy to set up a standard simplex-type
design in the U-pseudocomponents. The relationship between the settings in the original
component proportions and the design points in the U-pseudocomponents Ui is

xi = Ui −

(
q∑

i=1

Ui − 1

)
ui (13.8)

One then typically fits a model in the U-pseudocomponents. However, because the orienta-
tion of this design space is inverted, one must be careful in interpreting the coefficients in
the fitted model when making inferences about the fitted surface in the original components.

13.1.3 Active Upper- and Lower-Bound Constraints

We now consider the case where there are both lower and upper bounds on the component
proportions. In these cases, the feasible mixture region is no longer a simplex. To illustrate,
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Figure 13.14 Feasible experimental region for the shampoo foam experiment.

suppose that we wish to formulate a shampoo in terms of three component proportions
x1 = lauryl sulfate, x2 = cocamide, and x3 = lauramide, and such that

x1 + x2 + x3 = 0.50

0.20 ≤ x1 ≤ 0.30

0.07 ≤ x2 ≤ 0.10

0.13 ≤ x3 ≤ 0.20

The remaining 50% of the mixture consists of water, perfume, and coloring agents whose
proportions will be held fixed. The response variable of interest is the foam height of the
shampoo.

Figure 13.14 shows the feasible region for this shampoo foam experiment. Remember
that in constructing this graph, the components must be scaled so that x1 + x2 + x3 = 1, so
the upper and lower bounds on this graph were obtained by dividing the original upper
and lower bounds by 0.5. Notice that the region is not a simplex; therefore, standard
simplex-type mixture designs cannot be used.

As another example, consider the flare experiment described by McLean and Ander-
son (1966). The objective of the experiment was to determine the formulation of a rail-
road flare so as to maximize the illumination level. The flare consists of four ingredi-
ents: x1 =magnesium, x2 = sodium nitrate, x3 = strontium nitrate, and x4 = binder. The
constraints on the four component proportions were

x1 + x2 + x3 + x4 = 1

0.40 ≤ x1 ≤ 0.60

0.10 ≤ x2 ≤ 0.50

0.10 ≤ x3 ≤ 0.50

0.03 ≤ x4 ≤ 0.08



13.1 CONSTRAINTS ON THE COMPONENT PROPORTIONS 749

Figure 13.15 Constrained experimental region for the flare experiment. [Adapted from Cornell
(2002), with permission of the publisher.]

The constrained experimental region is shown in Fig. 13.14. Notice that the feasible region
for this experiment is not a simplex, and that the actual upper bound for x2 and x3 is 0.47,
since any value larger than this would combine with the other minimum values for the other
components to violate the components summing to one.

In general, when both upper- and lower-bound constraints are active in a mixture exper-
iment, the feasible design space is an irregular hyperpolytope, and a computer-generated
design should be used in the experiment. Generally either an I-optimal or a D-optimal design
would be appropriate. Anderson and McLean suggest using an extreme vertices design,
which we now briefly describe.

The extreme vertices of the constrained region are formed by the combinations of the
upper- and lower-bound constraints. In the shampoo foam study (q= 3 components) there
are four extreme vertices shown in Fig. 13.14, and in the flare problem (q= 4 components)
there are eight extreme vertices shown in Fig. 13.15. McLean and Anderson (1966) proposed
using these points as the basis of a design along with a subset of the remaining centroids or
points that are at the centers of the edges, faces, and so forth, including the overall centroid
of the region.

McLean and Anderson (1966) demonstrated this strategy with a 15-run design for the
flare problem, assuming that a quadratic model would be adequate to describe the response.
JMP has implemented the extreme vertices strategy and the 15- run JMP design is shown
in Table 13.8.

While the extreme vertices strategy may generate an intuitively reasonable design (Snee
and Marquardt, 1974), we believe that I-optimal or D-optimal designs are superior. To
illustrate, Table 13.9 is a 15-run I-optimal design for the flair problem assuming a quadratic
model. Figure 13.16 is the fraction of design space plot comparing the prediction variance
performance of these two designs. Clearly, the I-optimal design is superior to the extreme
vertices design in this situation.
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TABLE 13.8 A 15-Run Extreme Vertices Design for the Flair
Problem

Run X1 X2 X3 X4

1 0.6 0.27 0.1 0.03
2 0.5 0.37 0.1 0.03
3 0.4 0.47 0.1 0.03
4 0.6 0.1 0.27 0.03
5 0.4 0.285 0.285 0.03
6 0.5 0.1 0.37 0.03
7 0.4 0.1 0.47 0.03
8 0.6 0.1 0.245 0.055
9 0.4 0.1 0.445 0.055
10 0.6 0.22 0.1 0.08
11 0.5 0.32 0.1 0.08
12 0.4 0.42 0.1 0.08
13 0.6 0.1 0.22 0.08
14 0.4 0.26 0.26 0.08
15 0.4 0.1 0.42 0.08

Other Design Construction Methods for Constrained Mixture Experiments There are
two other design construction techniques that can be useful for constrained mixture experi-
ments. The distance-based method attempts to spread the design points out uniformly over
the feasible region. The criterion does not depend on the model that has been assumed, it
strives to spread the points out uniformly. The algorithm is simple: Start with the point that
is as close as possible to a vertex of the unconstrained region, and then add the point for
which the Euclidean distance to the first point is a maximum. All subsequent points are
added similarly; that is, choose the point for which the minimum Euclidian distance to the
other points in the design is maximized. This method tends to fill the feasible region with

TABLE 13.9 A 15-Run I-Optimal Design for the Flair Problem

Run X1 X2 X3 X4

1 0.4 0.1 0.47 0.03
2 0.4 0.42 0.1 0.08
3 0.4 0.1 0.42 0.08
4 0.5 0.37 0.1 0.03
5 0.5 0.32 0.1 0.08
6 0.5 0.1 0.37 0.03
7 0.6 0.1 0.22 0.08
8 0.6 0.1 0.245 0.055
9 0.6 0.22 0.1 0.08
10 0.4 0.26 0.26 0.08
11 0.6 0.27 0.1 0.03
12 0.4 0.1 0.445 0.055
13 0.4 0.47 0.1 0.03
14 0.4 0.285 0.285 0.03
15 0.6 0.1 0.27 0.03
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Figure 13.16 Fraction of design space plot for the two experiments for the Flair problem. The
dashed line is the extreme vertices design and the solid line is the I-optimal design.

points and usually forces more runs into the interior of the region compared to either the
D- or I-optimal approach. Various implementations of this method can use either a set of
candidate starting points or a coordinate exchange approach.

To illustrate a distance-based design, consider the following mixture problem:

x1 + x2 + x3 = 1

0.1 ≤ x1 ≤ 0.8

0 ≤ x2 ≤ 0.75

0 ≤ x3 ≤ 0.6

A 15-run distance-based design constructed using Design-Expert is shown in Table
13.10. A point exchange approach was used to construct this design, using the vertices,
centers of edges, axial blends, the overall centroid and some additional interior check blends
as the candidate points.

Another approach that can be used to create designs that essentially fill the feasible region
is the space-filling concept that is used in many computer experiments. JMP implements
this approach for mixtures, and a 15-run space-filling design for the mixture problem above
is shown in Table 13.11.

Figures 13.17 and 13.18 show the ternary plots for the two designs in Tables 13.10 and
13.11, respectively. Both designs do a reasonable job of filling the region. The distance-
based design only has 11 distinct design points because it was constructed to have 4
replicate runs. For comparison purposes, we also constructed a 15-run I-optimal design
for this problem. This design is shown in Table 13.12 and the ternary plot is shown in
Figure 13.19. Figure 13.20 is a fraction of design space comparing all three designs for this
problem. The distance-based design performs the worst in terms of prediction variance over
the region. Interestingly, the space-filling design is slightly better than the I-optimal design
for this problem. This is likely due to the number of points in the middle of the design
region and their more nearly even spacing. Generally, we would expect the space-filling
approach to be a good competitor to the I-optimal design in many situations. However, we
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TABLE 13.10 A 15-Run Distance-Based Design

Run X1 X2 X3

1 0.1 0.75 0.15
2 0.8 0.2 0
3 0.1 0.3 0.6
4 0.8 0 0.2
5 0.1 0.75 0.15
6 0.4 0 0.6
7 0.8 0 0.2
8 0.504167 0.166667 0.329167
9 0.25 0.15 0.6
10 0.4 0 0.6
11 0.254167 0.429167 0.316667
12 0.604167 0.266667 0.129167
13 0.1 0.3 0.6
14 0.525 0.475 0
15 0.329167 0.541667 0.129167

feel that in constrained mixture problems it is a good practice to construct and evaluate
several designs before deciding on the final choice of design for the problem.

Example 13.2 The Shampoo Foam Experiment Consider the shampoo foam experi-
ment described previously. Recall that

x1 + x2 + x3 = 0.5

0.2 ≤ x1 ≤ 0.3

0.07 ≤ x2 ≤ 0.10

0.13 ≤ x3 ≤ 0.20

TABLE 13.11 A 15-Run Space-Filling Design

Run X1 X2 X3

1 0.4406387334 0.1625560436 0.396805223
2 0.7409480166 0.1905063539 0.0685456295
3 0.2921591673 0.1857187057 0.522122127
4 0.1591094659 0.3531195053 0.4877710288
5 0.3035483345 0.649635294 0.0468163715
6 0.4038409099 0.0681416985 0.5280173916
7 0.7276481003 0.0718579599 0.2004939398
8 0.2195103003 0.4832164184 0.2972732813
9 0.3356773509 0.3092710226 0.3550516265
10 0.4870841756 0.4174628314 0.095452993
11 0.1909472412 0.6432000532 0.1658527056
12 0.5796111565 0.0488024821 0.3715863614
13 0.5517950006 0.1820017602 0.2662032392
14 0.6204778129 0.2679798691 0.1115423181
15 0.3588797717 0.4749779443 0.1661422839
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Figure 13.17 Ternary plot for the distance-based design in Table 13.10.

Figure 13.14 shows the feasible region for this experiment (with the component proportions
defined as xi/0.5). The experimenter decided to use a quadratic mixture model and a
D-optimal design. They decided on a design with nine distinct runs and four replicates. The
resulting 13-run design is shown in Table 13.13 and Figure 13.21 The figure is drawn using
the L-pseudocomponents. The four vertices are the replicated runs.

Table 13.14 shows the details of model fitting. Based on the relatively small value of
PRESS, the adjusted R2, and the P-value for the special cubic term, the experimenters

Figure 13.18 Ternary plot for the space-filling design in Table 13.10.
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TABLE 13.12 A 15-Run I-Optimal Design

Run X1 X2 X3

1 0.6 0.4 0
2 0.6 0 0.4
3 0.35 0.3721027428 0.2778972572
4 0.35 0.35 0.3
5 0.34 0.06 0.6
6 0.1 0.75 0.15
7 0.35 0.4 0.25
8 0.35 0.4 0.25
9 0.4 0 0.6
10 0.1 0.48 0.42
11 0.1 0.3 0.6
12 0.25 0.75 0
13 0.35 0.3579984392 0.2920015608
14 0.6315312765 0.09649841 0.2719703135
15 0.0612139911 0.0649104104 0.8738755985

selected the special cubic model as the best model for foam height. In terms of the pseudo-
components, this model is

ŷ =146.74X1 − 370.32X2 + 94.90X3

+ 745.43X1X2 + 183.21X1X3 + 876.64X2X3 − 524.99X1X2X3

The analysis of variance for this model is shown in Table 13.15. Notice that all of the
second-order terms and the special cubic term are statistically significant (their P-values
are all less than 0.05). Residual plots from the model were satisfactory, and thus the special
cubic equation above is the final model.

Figure 13.19 Ternary plot for the I-optimal design in Table 13.11.
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Figure 13.20 Fraction of design spaced plots for the distance-based design in Table 13.11 (upper
line), the space-filling design in Table 13.11 (lower line), and the I-optimal design in Table 13.12
(central line).

Figure 13.22 shows the shampoo foam height response surface, both as a contour plot
and as a three-dimensional surface plot. The experimenters’ objective was to formulate a
product with foam height in excess of 170 mm. From inspection of the response surface
plots we note that there are many formulations that would satisfy this objective.

Figure 13.23 is the response surface trace plot. In this plot, the centroid of the constrained
region is the reference mixture, and the response trace is computed along a line connecting
the centroid to the original vertex xi = 1. This is often called Cox’s direction (see Section
13.4 for more discussion). All three components in this trace plot exhibit strong nonlinear
effects. Because all of the higher-order terms in the model were significant, this result is
not unexpected.

TABLE 13.13 D-Optimal Design for the Shampoo Foam
Experiment, Example 13.2

Observation Run Order X1 X2 X3 y1 (Height, mm)

1 11 1.00 0.000 0.000 152
2 12 1.00 0.000 0.000 140
3 3 0.70 0.300 0.000 150
4 6 0.70 0.300 0.000 145
5 5 0.00 0.300 0.700 141
6 2 0.00 0.300 0.700 138
7 10 0.30 0.000 0.700 153
8 4 0.30 0.000 0.700 147
9 8 0.85 0.150 0.000 165
10 7 0.65 0.000 0.350 170
11 1 0.35 0.300 0.350 148
12 13 0.75 0.075 0.175 175
13 9 0.40 0.075 0.525 163



756 OTHER MIXTURE DESIGN AND ANALYSIS TECHNIQUES

Figure 13.21 D-Optimal design for the shampoo foam experiment.

TABLE 13.14 Model Fitting for the Shampoo Foam Experiment, Example 13.2

Sequential Model Sum of Squares

Sum of Degrees of Mean Probability
Source Squares Freedom Square F-Value > F

Mean 303,705.3 1 303,705.3
Linear 377.4 2 188.7 1.438 0.2825
Quadratic 1008.0 3 336.0 7.730 0.0126
Special cubic 153.4 1 153.4 6.103 0.0484
Residual 150.8 6 25.1

Lack of fit (43.8) 2 21.9 0.8193 0.5033
Pure error (107.0) 4 26.8

Total 305,395.0 13

Lack-of-Fit Tests
Sum of Degrees of Mean Probability

Model Squares Freedom Square F-Value > F

Linear 1205.3 6 200.9 7.509 0.0357
Quadratic 197.3 3 65.8 2.458 0.2026
Special cubic 43.8 2 21.9 0.8193 0.5033
Pure error 107.0 4 26.8

ANOVA Summary Statistics of Models Fit

Residual Root Mean
Unaliased Degrees of Squared Adjusted

Source Terms Freedom Error R-Squared R-Squared PRESS

Linear 3 10 11.46 0.2234 0.0681 2054.97
Quadratic 6 7 6.59 0.8199 0.6913 1035.39
Special cubic 7 6 5.01 0.9107 0.8215 657.08



13.1 CONSTRAINTS ON THE COMPONENT PROPORTIONS 757

TABLE 13.15 ANOVA for the Special Cubic Model, Shampoo Foam Experiment

Sum of Degrees of Mean Probability
Source Squares Freedom Square F-Value > F

Model 1538.9 6 256.48 10.20 0.0062
Residual 150.8 6 25.14
Lack of fit (43.8) 2 21.92 0.8193 0.5033
Pure error (107.0) 4 26.75
Corrected total 1689.7 12

Root means
squared error

5.01 R-Squared 0.9107

Dependent mean 152.85 Adjusted R-squared 0.8215
Coefficient of

variation
3.28%

Independent Coefficient Degrees of Standard t for H0: Probability
Variable Estimate Freedom Error Coefficient= 0 >|t|

X1 146.74 1 3.49 Not applicable
X2 −370.32 1 130.14 Not applicable
X3 94.90 1 15.01 Not applicable
X1X2 745.43 1 185.13 4.026 0.0069
X1X3 183.21 1 43.18 4.243 0.0054
X2X3 876.64 1 187.33 4.680 0.0034
X1X2X3 −524.99 1 212.51 −2.470 0.0484

Figure 13.22 The shampoo foam height response surface, (a) Contour plot. (b) Three-dimensional
surface plot. The solid dots in the contour plot are the design points.
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Figure 13.23 Response surface trace plot for the shampoo foam experiment.

13.1.4 Multicomponent Constraints

Sometimes in addition to upper and/or lower bounds on the individual component propor-
tions, there are other linear constraints, such as

Cj ≤ A1jx1 + A2jx2 +⋯ + Aqjxq ≤ Dj (13.9)

for j= 1, 2,… , m. These types of constraints are called multicomponent constraints.
Some of the constants Aij may be zero, so that in general, not all components appear in
each constraint.

When multicomponent constraints are present, they can change the shape of the feasible
region for the experiment. That is, they can change the number of vertices, edges, and so
on, that define the feasible space. To illustrate, consider the following example:

x1 + x2 + x3 = 1

0.1 ≤ x1

x2 ≤ 0.8

x3 ≤ 0.7

0.4 ≤ x1 + 0.8x2

Figure 13.24 shows the feasible region for this design. Notice that the effect of the mul-
ticomponent constraint is to cut off part of the region that is defined by the upper- and
lower-bound constraints. As a result, both the number of vertices and the number of edges
in the feasible region are increased by one.

Piepel (1988) published an algorithm called CONVRT, which can locate the extreme
vertices of the region when multi-component constraints are active. Both Design-Expert
and JMP can handle multicomponent constraints, and generate appropriate designs for
these oddly-shaped regions.
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Figure 13.24 Three-component constrained region.

13.2 MIXTURE EXPERIMENTS USING RATIOS OF COMPONENTS

In some mixture experiments, the experimenter may wish to work with ratios of the mixture
components instead of the original component proportions. For example, in formulating
a detergent, it may be convenient or natural for the chemist to think of the ratio of an
emulsifier to water rather than the actual proportion of each ingredient in a blend. In such
an experiment, it might be natural to think of each ingredient as the ratio of the ingredient
to water.

There are usually several ways to set up the ratios. For example, if there are three
components, then one way to define the ratio variables is

r1 =
x1

x3
, r2 =

x2

x3

Another possibility is

r1 =
x2

x1
, r2 =

x2

x3

In general, each ratio r1 or r2 must contain at least one of the components used in the other
ratio. This holds true in general: If there are q components, then we may define q−1 ratios
r1, r2,… , rq−1, and each ratio should contain at least one of the components used in at least
one of the other ratios in the set. The q−1 ratio variables are independent; consequently
any type of standard response surface polynomial can be fitted to the ratios r1, r2,… , rq−1.
Obviously, standard response surface designs can be used in these situations.

Example 13.3 Gasoline Blending Cornell (2002) presents a three-component example
of blending refinery products to form gasoline. The response variable of interest is octane
number. The ratios used are

r1 =
x3

x1
, r2 =

x3

x2
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Figure 13.25 Feasible design region for Example 12.3, along with design points in the ratio
variables.

and the process currently operates at r1 = 1, r2 = 2 and at a composition of x1 = 0.4, x2 = 0.2,
and x3 = 0.4. The region of interest is constrained by

0.2 ≤ x1 ≤ 0.6

0.1 ≤ x2 ≤ 0.4

0.2 ≤ x3 ≤ 0.6

The feasible region is shown in Fig. 13.25. Note that for these models, the constraints are
still specified in terms of the proportions of each ingredient. Hence the experimenter should
track both proportions and ratios as the design is being constructed.

Suppose that the experimenter wishes to fit the quadratic model

y = 𝛽0 + 𝛽1r1 + 𝛽2r2 + 𝛽12r1r2 + 𝛽11r2
1 + 𝛽22r2

2 + 𝜀

in the ratio variables. Any type of response surface design in the two variables r1 and r2
could be used. Cornell chose values of the ratios equal to r1 = (0.5, 1.0, 1.5) and r2 = (1.0,
2.0, 3.0) and used a 32 design. The rays representing these ratios are shown in Fig. 13.25.
The nine design points are at the intersections of the six rays. Table 13.16 shows the design
in both the ratios and the original component proportions. The settings of the original
components in terms of the ratios (which are required to run the experiment) were found
by solving

r1 =
x3

x1
, r2 =

x3

x2
, x1 + x2 + x3 = 1
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TABLE 13.16 Octane Data for Example 13.3

Run r1 = x3/x1 r2 = x3/x2 x1 x2 x3 Octane Number y

1 0.5 1.0 0.50 0.25 0.25 82.8
2 1.0 1.0 0.33 0.33 0.33 87.3
3 1.5 1.0 0.25 0.37 0.37 84.9
4 0.5 2.0 0.57 0.14 0.29 85.6
5 1.0 2.0 0.40 0.20 0.40 93.0
6 1.5 2.0 0.31 0.23 0.46 89.3
7 0.5 3.0 0.60 0.10 0.30 87.2
8 1.0 3.0 0.43 0.14 0.43 89.6
9 1.5 3.0 0.33 0.17 0.50 90.6

for x1, x2, and x3, yielding

x1 =
r2

r1 + r1r2 + r2

x2 =
r1

r1 + r1r2 + r2

x3 =
r1r2

r1 + r1r2 + r2

Table 13.17 presents the analysis of variance summary for the quadratic model. The
model coefficients in this table are given in terms of coded orthogonal variables z1 and z2,
where

z1 =
r1 − 1.0

0.5
, z2 =

r2 − 2.0

1.0

TABLE 13.17 Analysis of Variance for the Quadratic Model in Example 12.3

Sum of Degrees of Mean Probability
Source Squares Freedom Square F-Value > F

Model 71.04 5 14.208 5.205 0.1025
Residual 8.19 3 2.730
Corrected total 79.23 8

Root mean square error 1.652 R-squared 0.8966
Dependent mean 87.811 Adjusted R-squared 0.7244
Coefficient of variation 1.88%

Independent Coefficient Degrees of Standard t for H0 Probability
Variable Estimate Freedom Error Coefficient= 0 >|t|

Intercept 91.456 1 1.231 74.27
A= z1 1.533 1 0.674 2.273 0.1076
B= z2 2.067 1 0.674 3.064 0.0548
A2 −3.233 1 1.168 −2.768 0.0697
B2 −2.233 1 1.168 −1.912 0.1519
AB 0.325 1 0.826 0.3934 0.7203
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Figure 13.26 Octane contour plot in terms of the ratios r1 and r2, Example 12.3.

In terms of these variables, the model is

ŷ = 91.456 + 1.533z1 + 2.067z2 + 0.325z1z2 − 3.233z2
1 − 2.233z2

2

The corresponding model in terms of the ratios r1 and r2 is

ŷ = 63.689 + 27.633r1 + 10.350r2 + 0.650r1r2 − 12.933r2
1 − 2.233r2

2

Figure 13.26 is the octane contour plot in terms of the ratios r1 and r2. If the experimenter
wants to blend gasoline with an octane number of 89, we see from this plot that several
blends will satisfy this objective. For example, r1 = 1.0 and r2 = 1.33 is a feasible set of
ratios. In terms of the original components, this point is

x1 =
r2

r1 + r1r2 + r2
= 1.33

1.0 + (1.0)1.33 + 1.33
= 0.36

x2 =
r1r2

r1 + r1r2 + r2
+ (1.0)1.33

1.0 + (1.0)1.33 + 1.33
= 0.36

x3 =
r1

r1 + r1r2 + r2
= 1.0

1.0 + (1.0)1.33 + 1.33
= 0.28

The ratio variables approach is a very useful one, and we recommend it in cases where
it is convenient or natural for the experimenters to work in terms of these variables. The
approach does have two potential disadvantages. First, the interpretation is in terms of a
function of the original component proportions (the ratios), and this may not be a natural
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framework for the experimenter to work in. The second disadvantage relates to how the
design in terms of the ratio variables fits into the feasible mixture space. By referring to
Fig. 13.25, we see that the feasible mixture space for Example 13.3 is actually larger than
the region of experimentation for the 32 design in the ratios r1 and r2. If it is important to
predict the response over this entire region, then this 32 design would not be as a good a
choice as a D-optimal or an I-optimal design in the original component proportions. See
Piepel and Cornell (1994) for other comments on the use of ratios.

13.3 PROCESS VARIABLES IN MIXTURE EXPERIMENTS

13.3.1 Mixture-Process Model and Design Basics

Process variables are factors in an experiment that are not mixture components but could
affect the blending properties of the mixture ingredients. For example, the effectiveness of
an etching solution (measured as an etch rate, say) is not only a function of the proportions
of the three acids that are combined to form the mixture, but also depends on the temperature
of the solution and the agitation rate.

In general, there may be q mixture components x1, x2,… , xq and p process variables
z1, z2,… , zp. The etching example above has q= 3 mixture components and p= 2 process
variables. The reason we consider this as a separate class of experiment is that the mixture
components are interdependent since they are constrained to sum to one, while the process
variables can be varied independently.

There are two approaches to including process variables in mixture experiments. The
first approach involves transforming the mixture variables into q−1 independent variables
and then treating all p+ q−1 factors in a conventional (nonmixture) experiment. Using
ratios of the components is one transformation of the mixture variables that is widely used
in practice. To illustrate, consider the etching solution described above, and let the ratios
be defined as

r1 =
x1

x3
, r2 =

x2

x3

The process variables are z1 = temperature and z2 = agitation rate. Then a simple model
relating these factors is

E( y) = 𝛽0 + 𝛽1r1 + 𝛽2r2 + 𝛼1z1 + 𝛼2z2

+ 𝛿11r1z1 + 𝛿12r1z2 + 𝛿21r2z1 + 𝛿22r2z2

+ 𝛽12r1r2 + 𝛼12z1z2

In this model, we may obtain information about the linear and nonlinear blending properties
of the mixture components through the parameters 𝛽1, 𝛽2, and 𝛽12; information about the
main effects and interaction of the process variables through the parameters 𝛼1, 𝛼2, and
𝛼12; and information on the relation between the mixture components and the process
variables through the parameters 𝛿ij. By using the ratios the proportions of the ingredients
have been expressed without constraints, and hence each of r1, r2, z1, and z2 can be varied
independently when choosing a design. In addition to the ratio approach, there are other
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Figure 13.27 Two different presentations of a 28-point combined design for three mixture com-
ponents and two process variables. (a) The seven-point simplex centroid constructed at each of the
22 = 4 points of the factorial arrangement. (b) A complete 22 constructed at each of the seven points
of the simplex centroid design. [From Cornell (2002), with permission of the publisher.]

transformations that could be used to convert the mixture components into a set of q−1
independent mixture-related variables. For a good discussion of these transformations, see
Cornell (2002).

The second approach is to model the mixture components directly. This involves setting
up a mixture design at each treatment combination of the factorial experiment used for
the process variables. Alternatively, we can think of this as setting up a factorial in the
process variables at each point in the mixture design. These two viewpoints are shown
in Fig. 13.27 for the etching problem described above, assuming that a 22 factorial is
used for the process variables and a simplex-centroid design is used for the three mixture
components. The combined design has 28 points, and can be used to collect response data
for fitting a combined model that includes both the mixture and the process variables. If
we wish to fit a quadratic model in the mixture variables and a model with both main effects
and the two-factor interaction in the process variables, then the combined model can be
written as

E(y) =
3∑

i=1

𝛽ixi +
2∑ 3∑
i<j=2

𝛽ijxixj

+
2∑

k=1

[
3∑

i=1

𝛼ikxi +
∑ 3∑

i<j=2

𝛼ijkxixj

]
zk

+

[
3∑

i=1

𝛿i12xi +
∑ 3∑

i<j=2

𝛿ij12xixj

]
z1z2 (13.10)

This model has 24 parameters. Fortunately, they have relatively straightforward interpre-
tations. The first six terms on the right-hand side of Equation 13.10 are the linear and
nonlinear blending portions of the model. They do not depend on the settings of the process
variables. All remaining parameters measure the effects of the process variables on the lin-
ear and nonlinear blending properties of the mixture components. Note that terms involving
just the process variables alone can not be included in the model, since the constraint on
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the mixture components restrict their inclusion. See Anderson-Cook et al. (2004) for more
details.

The usual approach to analyzing such a model is to fit the complete combined model
and then possibly reduce the model by testing hypotheses on individual parameters or
groups of parameters, using the extra-sum-of-squares method. This model would be very
useful for predicting the response of a particular mixture formulation at combinations of
the process variables that are not factorial design points. To predict at design points in the
factorial space one could also fit individual mixture models to the mixture experiments at
each factorial point. Contour plotting of the response in terms of the mixture components at
each point in the factorial array is then a reasonably effective way to interpret the response
surface.

As the numbers of mixture components and process variables increase, the size of these
combined designs becomes very large. Several authors have suggested fractionating these
combined designs, although there are no obvious best choices of the fractional design.
This is a significant problem when there are constraints on the mixture components and
the mixture space is a hyperpolytope. Either the D- or the I-optimality criteria could be
used for generating a design for these problems. Goos and Donev (2007) provide additional
details about design construction for mixture process experiments. In order to produce valid
models, we caution the experimenter to be sure that there are sufficient runs in the mixture
part of the experiment to support the mixture polynomial at each treatment combination in
the factorial design. That is, if the combined design has too many runs, we would prefer to
fractionate the process variable factorial portion of the design.

Figure 13.28 shows a design created using the D-optimality criterion in Design-Expert
where the experimenter specified the model of Equation 13.10, and a total of 28 runs, where
2 runs were allocated for estimating lack of fit and 2 for pure error. The addition of the runs
for (z1, z2)=(0, 0) are those designated for assessing lack of fit.

As with other designs, variance dispersion graphs (VDGs) and fraction of design space
(FDS) plots can be used to compare the prediction performance of mixture-process vari-
ables. Because we expect the performance to change differently as we move in the mixture
space compared to moving in the process space, Goldfarb et al. (2004a, 2004b) developed

Figure 13.28 D-optimal design generated by Design-Expert for model in Equation 13.10.
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Figure 13.29 Fraction of design space plot for designs shown in Figs. 13.27 and 13.30. (a) Simplex
centroid with factorial. (b) D-optimal.

methods for examining these features separately. Figure 13.29 shows an FDS plot for the
designs considered in Figs. 13.27 and 13.28. The additional lines for each plot show an
FDS curve for various slices of the process space.

From the FDS plots, we can see that both designs have similar maxima and minima
for SPV. Since the curves for different fixed process shrinkages are relatively flat and
the different slices are separated from each other, the location in terms of the mixture
components does not affect the SPV as much as the location in terms of the process
variables. The D-optimal design has slightly flatter FDS curves for the majority of the
design space, which makes it slightly more desirable for prediction performance. The
addition of the replicates also allows estimation of pure error for this design.

Example 13.4 Adhesive Formulation An adhesive is being formulated for use in an
aerospace application. The adhesive consists of a resin x1 and two crosslinkers, x2 and x3.
The mixture constraints for these variables are

x1 + x2 + x3 = 1

0.7 ≤ x1 ≤ 0.9

0.05 ≤ x2 ≤ 0.10

0.05 ≤ x3 ≤ 0.20

The adhesive is applied to the components, and then the entire assembly is cured for 12
hr at controlled temperature and humidity. The temperature z1 and relative humidity z2 are
process variables that can be controlled by the experimenter. The ranges of these process
variables that the experimenters thinks are appropriate are 40◦F≤ temperature≤ 100◦F
and 15%≤ relative humidity≤ 85%. The response variable of interest is the pulloff force
required to separate the components after curing. It should exceed 40 pounds.

This is a three-component mixture experiment with two process variables. A reasonable
model for the response is the combined model in Equation 13.10, and a design strategy
similar to the one illustrated in Fig. 13.27 using a 22 factorial for the process variables, is



13.3 PROCESS VARIABLES IN MIXTURE EXPERIMENTS 767

appropriate. However, since the mixture design space is not a simplex, the experimenters
cannot use a simplex-type design for the mixture components. Instead, they chose to use a
D-optimal design, and assumed that a quadratic model would be satisfactory to represent the
mixture components. The candidate set of points was taken to be the four vertices, the four
edge centers, the overall centroid, and the axial check blends for the constrained mixture
region at each of the four corners of the square in the process variable space. This produces
a total of 52 candidate design points. The model has 24 terms, and the experimenters chose
to use a design with 34 runs. There are 29 distinct design points, and five runs are replicated
to provide an estimate of error. The D- optimal design produced by Design-Expert is shown
in Table 13.18. This table contains both the actual mixture components and process variable
levels, as well as their coded levels.

Table 13.19 contains the Design-Expert output that results from fitting the complete
24-term model in Equation 13.10 to the pulloff force response data. Note that there are
several nonsignificant model terms. A stepwise regression algorithm was then employed,
resulting in the reduced model shown in Table 13.20. There is no significant lack of fit in
this model, and the residual plots are satisfactory, so we conclude that the reduced mode is
adequate.

Figure 13.30 presents contour plots of the predicted pulloff force at each of the four
combinations of the process variables, temperature and relative humidity. The design points
are shown as circles on the plot. There are many recipes for the adhesive formulation that will
produce pulloff force values in excess of 40 lb, except at low temperature and high relative
humidity. The highest values of the pulloff force are obtained when temperature is high and
relative humidity is low. The experimenters examined contour plots at several combinations
of the process variables other than the cube corners. One of these, at temperature 70◦F
and relative humidity 30%, is shown in Fig. 13.31. The experimenters selected these
levels of the process variables for the final curing conditions because they were easy to
maintain in the curing chamber. There are several combinations of the mixture components
that will produce a pulloff force that meets or exceeds the requirements at these curing
conditions.

13.3.2 Split-Plot Designs for Mixture-Process Experiments

Since the nature of the mixture and process variables are often very different, it is common
for there to be randomization restrictions on one set of these inputs. By considering a split-
plot structure, we can design an experiment which allows us to more efficiently explore the
relationship between mixture and process factors on our response. This approach combines
the mixture-process methodology with the split-plot concepts discussed in Chapters 3, 5,
and 10.

For example, it is sometimes convenient to make larger batches of mixtures. Then we
can subdivide these batches to expose them to different process variable conditions. In
this case the mixture variables are the whole plot factors, and the process variables are the
subplot factors. Alternatively, in some experimental settings making up the mixtures is not
time or resource intensive. Here we may wish to mix several different sets of mixtures, and
then expose them in groups to different process variable conditions. Since we are running
multiple sets of mixtures for each setting of the process variables, the whole plot factors in
this case are the process factors, and the mixture factors and the subplots.
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TABLE 13.19 Design-Expert Output for the Full Model, Example 13.4

Response: Force
ANOVA for Crossed Quadratic× 2FI Model

Analysis of variance table [Partial sum of squares]

Source Sum of Squares DF Mean Square F-Value Prob > F

Model 12133.68 23 527.55 24.40 <0.0001
Linear Mixture 640.41 2 320.20 14.81 0.0010
AB 29.18 1 29.18 1.35 0.2723
AC 78.10 1 78.10 3.61 0.0865
AD 371.48 1 371.48 17.18 0.0020
AB 1044.33 1 1044.33 48.30 <0.0001
BC 37.54 1 37.54 1.74 0.2170
BD 11.04 1 11.04 0.51 0.4912
BE 1.214E-003 1 1.214E-003 5.614E-005 0.9942
CD 31.91 1 31.91 1.48 0.2523
CE 8.92 1 8.92 0.41 0.5351
ADB 19.35 1 19.35 0.89 0.3665
ABE 0.55 1 0.55 0.026 0.8761
ACD 32.17 1 32.17 1.49 0.2505
ACE 3.04 1 3.04 0.14 0.7157
ADE 20.89 1 20.89 0.97 0.3488
BCD 22.32 1 22.32 1.03 0.3335
BCE 0.49 1 0.49 0.023 0.8836
BDE 4.37 1 4.37 0.20 0.6625
CDE 8.57 1 8.57 0.40 0.5431
ABDE 5.76 1 5.76 0.27 0.6171
ACDE 35.27 1 35.27 1.63 0.2304
BCDE 2.89 1 2.89 0.13 0.7221
Residual 216.20 10 21.62

Lack of Fit 74.20 5 14.84 0.52 0.7533
Pure Error 142.00 5 28.40
Cor Total 12349.88 33

Std. Dev. 4.65 R-Squared 0.9825
Mean 42.94 Adj R-Squared 0.9422
C.V. 10.83 Pred R-Squared N/A
PRESS N/A Adeq Precision 16.103

Case(s) with leverage of 1.0000: Pred R-Squared and PRESS statistic not defined

Coefficient
Component Estimate DF Standard Error 95% CI Low 95% CI High

A-Resin 41.11 1 2.23 36.15 46.07
B-CX1 −76.52 1 122.28 −348.99 195.94
C-CX2 42.32 1 4.99 31.21 53.43
AB 191.02 1 164.41 −175.31 557.35
AC −27.84 1 14.65 −60.47 4.80
AD 9.23 1 2.23 4.27 14.19
AE −15.48 1 2.23 −20.44 −10.51
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TABLE 13.19 (Continued)

Response: Force
ANOVA for Crossed Quadratic× 2FI Model

Analysis of variance table [Partial sum of squares]

Coefficient
Component Estimate DF Standard Error 95% CI Low 95% CI High

BC 214.55 1 162.81 −148.22 577.32
BD −87.39 1 122.28 −359.86 185.07
BE −0.92 1 122.28 −273.38 271.55
CD 6.06 1 4.99 −5.05 17.17
CE −3.20 1 4.99 −14.31 7.91
ABD 155.53 1 164.41 −210.81 521.86
ABE −26.29 1 164.41 −392.62 340.04
ACD 17.86 1 14.65 −14.77 50.50
ACE −5.49 1 14.65 −38.12 27.14
ADE −2.19 1 2.23 −7.15 2.77
BCD 165.44 1 162.81 −197.33 528.21
BCE −24.46 1 162.81 −387.23 338.31
BDE −55.00 1 122.28 −327.47 217.46
CDE 3.14 1 4.99 −7.97 14.25
ABDE 84.84 1 164.41 −281.50 451.17
ACDE −18.71 1 14.65 −51.34 13.93
BCDE 59.56 1 162.81 −303.21 422.33

Example 13.5 Vinyl Automobile Seat Covers Kowalski et al. (2002) present an exam-
ple of a split-plot mixture-process experiment for the production of automotive seat covers.
Interest centers on producing vinyl with the desired thickness. The mixture components x1,
x2, x3 are three plasticizers which can be varied from 0 to 100% of the proportion. The two
process variables considered were rate of extrusion, z1, and temperature of drying, z2.

Based on their initial understanding of the system, the experimenters believed that
a suitable model included a second-order model for the mixture variables with mixture-
process and process-by-process interactions. The form of the model is

E(y) = 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝛽13x1x3 + 𝛽23x2x3 + 𝛾12z1z2

+ 𝛼11x1z1 + 𝛼12x1z2 + 𝛼21x2z1 + 𝛼22x2z2 + 𝛼31x3z1 + 𝛼32x3z2
(13.11)

Note that because of the constraint on the mixture terms, it is not possible to have linear
effects for the process terms.

Since changing the rate of extrusions and temperature of drying involve reconfiguring
the manufacturing environment, the experiments did not want to change this for each
experimental run. Instead, the process variables were only reset seven times during the
course of the experiment. Each time that the manufacturing environment had been set up,
four mixtures of the plasticizers were processed, for a total of 28 runs.

Table 13.21 shows the data from the experiment, where seven different mixture combi-
nations were used and the process variables were varied at three levels. The design structure
for the process variables was a 22 factorial design with three of the whole plots selected
as center runs. The chosen mixture combinations were the pure blends of each plasticizer,
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Figure 13.30 Contour plots of predicted pulloff force for Example 13.4.

two ingredient blends with equal proportions of each component, and the three component
equal proportion blend.

Table 13.22 shows the JMP output for this example. Because of the split plot structure,
the standard error for the various terms of the model are dependent on the form of the model
and estimates of the whole and subplot error terms. By using REML (REstricted or REsidual
Maximum Likelihood) method of fitting mixed models, we are able to estimate the two
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Figure 13.31 Contour plot of predicted pulloff force when temperature= 70◦F and relative humid-
ity= 30%.

error terms based on the data. In this case, the ratio is estimated as d = 𝜎2
WP∕𝜎

2 = 0.815 or
𝜎2

WP = 0.815𝜎2. The interactive Prediction Profiler in JMP, shown in Fig. 13.32 allows for
exploration of the design space to determine ideal combinations of plasticizers and process
inputs to optimize the seat cover thickness.

The design selected for this experiment was not an ideal choice since it does not estimate
the model parameters or predict in the design space as well as possible given the constraints
of the experiment. Table 13.23 gives the I-optimal design for this experiment with the same
assumed model in Equation 13.11 which significantly improves prediction throughout the
design space. However, it should also be noted that the I-optimal design does not allocate
any degrees of freedom for estimation of the pure error for the whole plot error, nor for
lack of fit of the model.

Figure 13.32 Prediction profiler for thickness of vinyl automotive seat covers.
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TABLE 13.21 Design and Data for Vinyl Automotive Seat Cover Example

Whole Plot z1 z2 x1 x2 x3 Thickness

1 −1 1 1.00 0.00 0.00 10
0.00 1.00 0.00 8
0.00 0.00 1.00 3
0.33 0.33 0.33 8

2 1 −1 1.00 0.00 0.00 10
0.00 1.00 0.00 5
0.00 0.00 1.00 9
0.33 0.33 0.33 9

3 1 1 0.50 0.50 0.00 5
0.50 0.00 0.50 4
0.00 0.50 0.50 7
0.33 0.33 0.33 10

4 −1 −1 0.50 0.50 0.00 7
0.50 0.00 0.50 8
0.00 0.50 0.50 4
0.33 0.33 0.33 7

5 0 0 0.33 0.33 0.33 8
0.33 0.33 0.33 7
0.33 0.33 0.33 7
0.33 0.33 0.33 8

6 0 0 0.33 0.33 0.33 7
0.33 0.33 0.33 8
0.33 0.33 0.33 9
0.33 0.33 0.33 9

7 0 0 0.33 0.33 0.33 12
0.33 0.33 0.33 10
0.33 0.33 0.33 9
0.33 0.33 0.33 11

13.3.3 Robust Parameter Designs for Mixture-Process Experiments

Often some of the process variables cannot be fully controlled during normal production,
and hence we are in a robust design setting. In this case, we are interested in determining
an appropriate combination of the control factors to optimize our process when the noise
factors vary over their natural production ranges. As discussed in Chapter 11, it is customary
to fit a response model combining control and noise variables. In this case, the control
variables are likely to include both mixture and process factors. We can derive models for
both the mean response and for its variance. The variance model is directly related to the
directional derivative or slope in the directions of the noise variables. Adaptations of the
usual robust parameter designs are needed because of the constraints introduced by the
mixture components. See Steiner and Hamada (1997) and Goldfarb et al. (2003) for more
details.

Similar to the development in Chapter 11, the goal of the optimization is to find a
combination of the control factors that is close to the desired target for the mean, while
minimizing the variability transmitted to the response through the slopes in the noise factor
directions.
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TABLE 13.23 I-Optimal Design for Vinyl Automotive Seat Cover Example

Whole Plot z1 z2 x1 x2 x3

1 1 1 0 0 1
0.5 0 0.5
0 1 0
1 0 0

2 −1 1 0 0 1
1 0 0
0 1 0
0.5 0.5 0

3 −1 −1 0 0.5 0.5
1 0 0
0 1 0
0 0 1

4 −1 1 0 0.4 0.6
0 1 0
1 0 0
0.5 0 0.5

5 −1 −1 0.5 0.5 0
0 1 0
0.5 0 0.5
0 0 1

6 1 1 0 0 1
0 0.6 0.4
0.5 0.5 0
1 0 0

7 1 −1 0 0.5 0.5
0 0 1
1 0 0
0 1 0

Example 13.6 Throughput for Soap Manufacturing Goldfarb et al. (2003) consider
an example of soap manufacturing where the goal is to maximize the amount of soap
produced per hour (throughput) by the process. The soap blend is comprised of three
mixture components: soap (x1), co-surfactant (x2) and filler (x3). There are the following
restrictions on the proportions of each component:

0.20 ≤ x1 ≤ 0.80

0.15 ≤ x2 ≤ 0.50

0.05 ≤ x3 ≤ 0.30

in addition to the usual constraint that the component proportions sum to 1.
During the manufacturing process, the first process variable, mixing time (w1) is consid-

ered controllable, while the plodder temperature (z1) is difficult to control during produc-
tion, and hence is considered a noise variable. Based on understanding of the production
process, the chosen model for this study involved only linear mixture components and
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their interactions with the controllable process and noise factors. The form of the model
is

E(y) = 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛼11x1w1 + 𝛼21x2w1 + 𝛼31x3w1

+ 𝛿11x1z1 + 𝛿21x2z1 + 𝛿31x3z1 + 𝜆111x1w1z1

+ 𝜆211x2w1z1 + 𝜆311x3w1z1 (13.12)

where the 𝛽’s are the mixture model coefficients, the 𝛼’s are the interaction coefficients for
the mixture and controllable process variables, the 𝛿’s are the interaction coefficients for
the mixture and noise variables, and the 𝜆’s are the interaction coefficients for the mixture,
controllable process, and noise variables.

The two mixing times selected are 0.5 and 1 hour, as these cover the range common
mixing times considered during production. The two plodder temperature variable levels
considered are 15◦C and 25◦C, which is thought to cover about 70% of the variation in
plodder temperature around the average value of 20◦C typically observed during production.
Thus the chosen values are approximately one standard deviation from the mean, and so
we estimate that the mean of the noise variable is 0 and has variance 𝜎2

z1
= 1.

Design-Expert was used to generate a five-run D-optimal design for the linear mixture
model. The overall design was a completely randomized design where the generated mixture
design was repeated for the four factorial combinations of the two process variables, for a
total of 20 runs. Table 13.24 shows the design with the observed data.

TABLE 13.24 Design and Date for the Throughput Soap Manufacturing Example

Soap Co-Surfactant Filler Mixing Time Plodder Temperature
x1 x2 x3 w1 z1 Throughput

0.20 0.50 0.30 −1 −1 245.2
0.80 0.15 0.05 −1 −1 381.5
0.80 0.15 0.05 −1 −1 381.0
0.55 0.15 0.30 −1 −1 453.3
0.45 0.50 0.05 −1 −1 172.9
0.20 0.50 0.30 1 −1 285.4
0.80 0.15 0.05 1 −1 409.1
0.80 0.15 0.05 1 −1 411.7
0.55 0.15 0.30 1 −1 450.0
0.45 0.50 0.05 1 −1 245.8
0.20 0.50 0.30 −1 1 213.8
0.80 0.15 0.05 −1 1 378.4
0.80 0.15 0.05 −1 1 377.3
0.55 0.15 0.30 −1 1 408.8
0.45 0.50 0.05 −1 1 180.6
0.20 0.50 0.30 1 1 250.6
0.80 0.15 0.05 1 1 404.2
0.80 0.15 0.05 1 1 406.6
0.55 0.15 0.30 1 1 410.1
0.45 0.50 0.05 1 1 245.4
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The fitted model was reduced by eliminating 𝜆111x1w1z1, the only nonsignificant term
(using a cutoff of 0.05) from Equation 13.12 to obtain the final model:

ŷ = 438.36x1 − 254.01x2 + 765.78x3 + 34.55x1w1 + 263.49x2w1 − 203.75x3w1

− 0.04x1z1 + 5.27x2z1 − 18.56x3z1 − 3.90x2w1z1 + 4.69x3w1z1
(13.13)

We can estimate the mean response surface for throughput as a function of the mixture and
controllable process variables as

Ê(ŷ) = 438.36x1 − 254.01x2 + 765.78x3 + 34.55x1w1 + 263.49x2w1 − 203.75x3w1

since the mean of the noise variable is assumed to be zero in the coded variables. The
estimated response surface model for the throughput variance is calculated as the derivative
of the overall fitted model in Equation 13.13 with respect to the noise variable. In this case
it is estimated to be

Var( y) = �̂�2
z1

(−0.04x1 + 5.27x2 − 18.56x3 − 3.90x2w1 + 4.69x3w1)2 + �̂�2

with an estimate of �̂�2 = 1.07, using the mean squared error for the fitted model.
To optimize the process, we choose a combination of the mixture components and the

mixing time which simultaneously maximizes the average throughout, while also minimiz-
ing the variability. Using the desirability function optimizer in Design-Expert, we obtain
the following optimal conditions for production:

Soap (x1) = 0.80

Co-surfactant (x2) = 0.15

Filler (x3) = 0.05

Mixing Time (w1) = 1 hour (+ 1 in coded variables).

The predicted throughput at these factor settings is 408.5 with a standard deviation of 0.52.

Since robust parameter design involves simultaneously optimizing the mean and variance
of the process, different tools are needed to assess the goodness of the design for this dual
purpose. Goldfarb et al. (2004c) developed variations of the variance dispersion graphs and
fraction of designs space plots to evaluate and compare different designs based on both
of these criteria. Goldfarb et al. (2005) and Chung et al. (2007) used genetic algorithms
to generate designs which perform well for both the mean and slope models. By using a
desirability function to combine the prediction variance for both mean and slope, optimal
designs for robust parameter design experiments can be created. Similar to the robust
parameter design settings with just continuous process factors, designs that only consider
the mean model may have very poor performance for the slope. However, with only small
modifications, a design which is nearly optimal for the mean can often be adapted to
perform well for both the mean and slope prediction variances.
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13.4 SCREENING MIXTURE COMPONENTS

In some mixture experiments there are a large number of components, and the initial
objective of the experimenter is to screen these components to identify the ones that are
most important. In fact, any time there are six or more components (q≥ 6) the experimenter
should consider a screening experiment to reduce the number of components.

Screening is often done using the first-order mixture model

E( y) = 𝛽1x1 + 𝛽2x2 +⋯ + 𝛽qxq (13.14)

If the experimental region is a simplex, it is usually a good idea to make the ranges of the
components as similar as possible, because then the relative effects of the components can
be assessed by ranking the ratios of the parameter estimates 𝛽 i, i= 1, 2,… , q, relative to
their standard errors. Obviously, important components will have large values of bi/se(bi).
If the effects of two or more components are equal, then the proportions of the individual
components are summed and their sum is considered to be a new component.

An axial design in which the design points are placed only on the component axes is
often recommended for screening mixture components. The simplest type of axial design
has points positioned equidistant from the centroid toward each vertex. Generally, as the
number of components increases, the spread of these axial points should be increased in
order to increase the precision of the parameter estimates. If the vertices of the simplex
are complete mixtures, as will be the case if only upper-bound constraints are active, we
recommend placing the axial runs at the vertices. On the other hand, if the vertices are
pure blends, some experimenters prefer to run the axial check blends as the axial design,
because every run in the design will be a complete mixture.

It is, of course, still possible to examine the ratios bi/se(bi) in situations where the
constraints form a region of experimentation that is not a simplex. We usually suggest a
D-optimal design for the linear model (Eq. 13.14) in these cases.

To screen out unimportant components, it is necessary to measure the effects of the
individual components. In general, we define the effect of component i as the change in
the expected response from a change in the proportion of component i while holding the
relative proportions of the other components constant. The largest change that we can make
in component i is from 0 to 1. To keep the proportions of the other components constant,
this change must be made along the xi-axis. The estimate of the response when xi = 0 is

ŷ =
q∑

j≠i

bj

(
1

q − 1

)

= (q − 1)−1
q∑

j≠i

bj

Similarly, at the vertex where xi = 1, the predicted response is

ŷ = bi

If the first-order model is adequate, the effect of component i is just the difference in these
two predicted responses:

(effect of component i) = bi − (q − 1)−1
q∑

j≠i

bj, i = 1, 2,… , q (13.15)
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This equation can be used for model reduction. If the true surface is linear and

bi = (q − 1)−1
q∑

j≠i

bj

then the effect of component i is zero. Then the term 𝛽 ixi can be removed from the model,
and the component xi is not considered further in the experiment.

When the feasible region is constrained, then often we find that the ranges of the
individual components are not equal. This renders the estimate of an effect in Equation
13.15 less useful. A simple way to remedy this situation is to adjust the component effect
estimate as follows:

adjusted effect of component i =Ri

[
bi − (q − 1)−1

q∑
j≠i

bj

]
,

i = 1, 2,… , q
(13.16)

where Ri =Ui − Li is the range of component i. Notice that the adjustment essentially
weights the component effect by the range of the ith component. Piepel (1982) and Cornell
(2002) also discuss measuring component effects in constrained regions.

The response trace plots introduced in Chapter 12 (Section 12.3) are also very useful in
screening mixture components. If one (or more) of the curves on the response trace plot
is a horizontal line, then we have detected an inactive ingredient. In constrained regions
that are not simplexes, care must be taken in defining both the reference mixture and the
direction for measuring the component effect. Generally, the centroid of the constrained
region is chosen as the reference mixture, and the effect of the ith component is measured
along a line connecting this centroid to the vertex xi = 1. This direction was introduced by
Cox (1971) in presenting new mixture models as alternatives to those proposed by Scheffé.
Consequently, this is sometimes called Cox’s direction. The construction of the response
surface trace plot for constrained regions is then identical to the procedure discussed
in Section 12.3 for a simplex region of experimentation. The trace plot in Fig. 13.23 (the
shampoo foam experiment, Example 13.2) uses Cox’s direction. Adjusting the proportion of

Figure 13.33 Illustration of (a) Cox’s direction and (b) Piepel’s direction for the shampoo foam
experiment, Example 13.1.
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one component along Cox’s direction results in the ratio of the other components remaining
constant. Piepel (1982) introduced another direction that could be used to construct trace
plots. His direction is the line extending from a reference mixture (usually the centroid
of the constrained region) to the vertices of the L-pseudocomponent region. Figure 13.33
illustrates and compares these two directions for the shampoo foam experiment. These two
directions are closely related, and usually there is little difference in the trace plots.

EXERCISES

13.1 Suppose that you have fitted a second-order mixture model using L-
pseudocomponents for q= 3. The fitted model is

ŷ = b1X1 + b2X2 + b3X3 + b12X1X2 + b13X1X3 + b23X2X3

You wish to convert this to a model in the original components, say

ŷ = a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3

Show that the a’s can be expressed in the terms of the b’s as follows:

a1 =
b12L2(L1 − 1) + b13L3(L1 − 1) + b23L2L3

(1 − L)2
+

b1 −
i=1∑
3

biLi

1 − L

a2 =
b12L1(L2 − 1) + b13L1L3 + b23L3(L2 − 1)

(1 − L)2
+

b2 −
3∑

i=1
biLi

1 − L

a3 =
b12L1L2 + b13L1(L3 − 1) + b23L2(L3 − 1)

(1 − L)2
+

b3 −
3∑

i=1
biLi

1 − L
aij = bij∕(1 − L)2, i, j = 1, 2, 3, i < j

13.2 An article in Industrial Quality Control (“Experiments with Mixtures of Com-
ponents Having Lower Bounds,” by I. S. Kurotori, Vol. 22, 1966, pp. 592–596)
describes an experiment to investigate the formulation of a rocket propellant. The
propellent consists of fuel (x1), oxidizer (x2), and binder (x3). The restrictions
on the component proportions are 0.20≤ x1, 0.40≤ x2, and 0.20≤ x1 ≤ 0.40, with
x1 + x2 + x3 = 1. The response variable of interest is elasticity.

(a) Draw a graph of the feasible region.

(b) The data collected by Kurotori are shown in Table E13.1.
What type of experimental design has been used? Critique the choice of design.

(c) Fit an appropriate model relating elasticity to the component proportions (use
the pseudocomponents).

(d) Convert the model found in part (c) to an equivalent model in the original
component proportions.

(e) Plot the contours of constant elasticity, and interpret the fitted response surface.
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TABLE E13.1 Data for Exercise 13.2

Design Point x1 x2 x3 X1 X2 X3 Elasticity

1 0.40 0.40 0.40 1 0 0 2650
2 0.20 0.60 0.20 0 1 0 2450
3 0.20 0.40 0.40 0 0 1 2350
4 0.30 0.50 0.20 0.50 0.50 0 2950
5 0.30 0.40 0.30 0.50 0 0.50 2750
6 0.20 0.50 0.30 0 0.50 0.50 2400
7 0.27 0.46 0.27 0.333 0.33 0.333 3000
8 0.33 0.43 0.23 0.667 0.166 0.166 2980
9 0.23 0.53 0.23 0.166 0.667 0.166 2770

10 0.23 0.43 0.33 0.166 0.166 0.667 2690

13.3 Koons and Wilt (1985) describe an experiment involving the formulation of
acrylonitrile–butadiene styrene (ABS), a material used to make plastic pipe.
ABS is normally made from two materials: grafted polybutadiene (x1 = graft) and
styrene–acrylonitrile (x2 = SAN). Mixture experiments were performed to deter-
mine whether or not coal-tar pitch (x3 = pitch) could be added to the SAN–graft
combination and form a pipe that would have physical properties that met ASTM
specifications. The motive was to reduce pipe cost and utilize a by-product pro-
duced elsewhere in the plant. Experience indicated that the following constraints
(on weight) should be used:

0.45 < x1 < 0.70

0.30 < x2 < 0.55

0.0 < x3 < 0.25

The physical properties of interest for the ABS pipe are: Izod impact strength (y1,
ft-lb/in), deflection temperature under load (y2, ◦F), and yield strength (y3, psi).

(a) Graph the feasible region for this experiment.

(b) The response data obtained in the experiment performed by Koons and Wilt
are shown in Table E13.2.

TABLE E13.2 Data for Exercise 13.3

Run x1 x2 x3 X1 X2 X3 y1 y2 y3

1 0.700 0.300 0.000 1 0 0 7.4 205 4350
2 0.450 0.550 0.000 0 1 0 6.1 213 6080
3 0.450 0.300 0.250 0 0 1 0.8 183 5065
4 0.575 0.425 0.000 0.50 0.50 0 7.3 204 5280
5 0.575 0.300 0.125 0.50 0 0.50 3.9 188 5080
6 0.450 0.425 0.125 0 0.50 0.50 2.1 191 5740
7 0.535 0.380 0.085 0.34 0.32 0.34 4.4 197 5410
8 0.600 0.350 0.050 0.60 0.20 0.20 6.1 192 5035
9 0.500 0.450 0.050 0.20 0.60 0.20 4.9 202 5615

10 0.500 0.350 0.150 0.20 0.20 0.60 2.5 186 5385
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(c) What type of experimental design has been used? Comment on the experi-
menter’s choice of design.

(d) Build appropriate response surface models for all three responses. Build these
models using the pseudocomponents.

(e) Convert the models found in part (d) to equivalent models in the actual com-
ponent proportions.

(f) Construct response surface contour plots for the three response variables y1,
y2, and y3.

(g) In order to produce acceptable pipe from this modified ABS material, the
following response constraints must be satisfied: y1 > 1 ft-lb/in., y2 > 190◦F,
and y3 > 5000 psi. Is there a formulation of the modified ABS material that
will satisfy these specifications?

(h) If the objective is to include as much pitch in the formulation as possible and
still satisfy the response specifications in part (g), what formulation would you
recommend?

13.4 The following constraints are imposed on three mixture components:

0.15 ≤ x1, 0.25 ≤ x2, 0.10 ≤ x3
x1 + x2 + x3 = 1

(a) Draw a graph of the feasible region.

(b) Suppose that you could only afford to perform eight runs, and your objective
is to fit a first-order mixture model. What runs would you recommend?

(c) Suppose that your objective is to fit a quadratic mixture model. If you can
afford to perform 12 runs, what blends would you include in the design?

(d) List the points in the design from part (c) in terms of the L-pseudocomponents.

13.5 Reconsider the three component mixture problem in Exercise 13.4. What design
would you recommend if the experimenter wishes to fit a special cubic model?

13.6 Table E13.3 presents the actual values of the observed response from the shampoo
foam height experiment in Example 13.2, the predicted response from the quadratic
model, the residuals, the values of hii, and the studentized residuals.

(a) Construct a normal probability plot of the studentized residuals from this
experiment. Interpret the plot.

(b) Plot the studentized residuals versus the predicted values of foam height. What
conclusions can you show about model adequacy?

(c) Two points in the design (a) have relative high leverage (h10, 10 = 0.874,
h11, 11 = 0.909). Where are these points located in the feasible space? Discuss
the practical implications of having design points with high average.

13.7 A three-component mixture experiment is subject to the following constraints on
the component proportions:

0.3 ≤ x1 ≤ 0.6, 0.1 ≤ x2 ≤ 0.5, 0.05 ≤ x3 ≤ 0.45
x1 + x2 + x3 = 1

(a) Graph the feasible region for this experiment.
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TABLE E13.3 Data for Exercise 13.6

Run Actual Value Predicted Value Residual hii Studentized Residual

1 152.00 146.74 5.26 0.484 1.461
2 140.00 146.74 −6.74 0.484 −1.872
3 150.00 148.16 1.84 0.466 0.501
4 145.00 148.16 −3.16 0.466 −0.863
5 141.00 139.43 1.57 0.499 0.443
6 138.00 139.43 −1.43 0.499 −0.403
7 153.00 148.93 4.07 0.473 1.119
8 147.00 148.93 −1.93 0.473 −0.529
9 165.00 164.22 0.78 0.617 0.250

10 170.00 170.28 −0.28 0.874 −0.156
11 148.00 146.95 1.05 0.909 0.698
12 175.00 171.20 3.80 0.346 0.936
13 163.00 167.83 −4.83 0.409 −1.254

(b) Suppose that the experimenter wishes to fit a quadratic model to the response.
Identify a set of candidate points that the experimenter should consider in the
selected design.

(c) Find a D-optimal design for this experiment with n= 14 runs, assuming that
four of these runs must be replicates.

(d) Find an I-optimal design for this experiment with n= 14 runs.

(e) Construct an FDS plot for each of the designs in parts (c) and (d)

13.8 Reconsider the constrained mixture problem in Exercise 13.7.

(a) Find a 10-point design for this experiment using the distance criterion, assuming
that you are not required to replicate any points.

(b) Find a 14-point distance-criterion design for this experiment, assuming that
four of these points must be replicates.

13.9 Reconsider the three-component mixture experiment from Exercise 13.7. Suppose
the experimenter wishes to fit a linear mixture model to the response and is willing
to make n= 8 runs.

(a) Construct a D-optimal design for this problem.

(b) Construct a distance-criterion design for this problem.

(c) Construct an FDS plot for each design in parts (a) and (b)

(d) Compare and contrast the designs found in parts (a) and (b). Which design
would you recommend?

13.10 Suppose that the experimenter in Exercise 13.7 is interested in fitting a special
cubic model.

(a) Construct an FDS plot for the designs.

(b) Compare the prediction variance for each design using the linear model, the
quadratic model, and the special cubic.

(c) Which design would you recommend?
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13.11 A four-component mixture experiment is subject to the following constraints on
the component proportions:

0.8 ≤ x1, 0.05 ≤ x2 ≤ 0.15, 0.02 ≤ x3 ≤ 0.10, x4 ≤ 0.05
x1 + x2 + x3 + x4 = 1

(a) Suppose that the experimenter wishes to fit a quadratic model to the response.
Identify a set of candidate points that the experimenter should consider in the
selected design.

(b) Find a D-optimal design for this experiment with n= 15 runs, assuming that
you are not required to replicate any points.

(c) Find a D-optimal design for this experiment with n= 18 runs, assuming that
four of these runs must be replicates.

(d) Find I-optimal designs for this experiment with n= 15 and n= 18 runs.

(e) Construct an FDS plot for the four designs in parts (b), (c), and (d).

(f) Which design would you recommend?

13.12 Consider the constrained mixture problem in Exercise 13.11.

(a) Find a 15-point design for this experiment using the distance criterion, assuming
that you are not required to replicate any points.

(b) Find an 18-point design for this experiment using the distance criterion. Assume
that four runs must be replicates.

(c) Construct an FDS plot for the designs in parts (a) and (b).

(d) Which design would you recommend?

13.13 Consider the four-component mixture experiment from Exercise 13.11. Suppose
that the experimenter wishes to fit a linear mixture model to the response and is
willing to make n= 10 runs.

(a) Construct a D-optimal design for this problem.

(b) Construct a distance-based design for this problem.

(c) Compare and contrast the designs in parts (a) and (b). Which design would you
recommend?

13.14 Heinsman and Montgomery (1995) describe a four-component mixture experiment
used to optimize the formulation of a household detergent. The constraints on the
component proportions are:

0.5 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 0.5, 0 ≤ x3 ≤ 0.5, 0 ≤ x4 ≤ 0.05
x1 + x2 + x3 + x4 = 1

The authors measured four responses: y1 = product life (in lather units), y2 = soil
pellets, y3 = foam height, and y4 = total foam. The last three responses reflect the
grease-cutting ability of the product. All four responses should be as large as
possible. The data from the experiment is shown in Table E13.4. The design used
by the authors was generated by selecting some points with the distance criterion
and the remaining points with the D-optimal criterion.

(a) Build response surface models for all four responses.

(b) Plot contours of each response, and interpret the fitted surfaces.

(c) What formulation of these ingredients would you recommend?
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TABLE E13.5 Fish Patty Texture for Exercises 13.15 and 13.16

Process Factors Mixture Composition

z1 z2 z3 (1, 0, 0) (0, 1, 0) (0, 0, 1) ( 1

2
, 1

2
, 0) ( 1

2
, 0, 1

2
) (0, 1

2
, 1

2
) ( 1

3
, 1

3
, 1

3
)

−1 −1 −1 1.84 0.67 1.51 1.29 1.42 1.16 1.59
1 −1 −1 2.86 1.10 1.60 1.53 1.81 1.50 1.68

−1 1 −1 3.01 1.21 2.32 1.93 2.57 1.83 1.94
1 1 −1 4.13 1.67 2.57 2.26 3.15 2.22 2.60

−1 −1 1 1.65 0.58 1.21 1.18 1.45 1.07 1.41
1 −1 1 2.32 0.97 2.12 1.45 1.93 1.28 1.54

−1 1 1 3.04 1.16 2.00 1.85 2.39 1.60 2.05
1 1 1 4.13 1.30 2.75 2.06 2.82 2.10 2.32

13.15 John Cornell’s Famous Fish Patties I. Cornell (2002) describes an experiment
to optimize the texture of fish patties made from three types of fish: mullet (x1),
sheepshead (x2), and croaker (x3). The texture is measured by the amount of force
required to break the patty. Three process variables are also considered in the
experiment: oven temperature (375◦F, 425◦F), time in oven (25 sec, 40 min), and
deep fat frying time (25 sec, 40 sec). The results of this experiment are shown
in Table E13.5, where z1 = oven temperature, z2 = time in oven, and z3 = deep fat
frying time shown in the usual −1, +1 coded units. In this problem we will consider
only one of the process variables, z1 = oven temperature.

(a) Fit a special cubic model to the texture response at the high temperature level
only. Construct a contour plot of the response surface, and interpret the results.

(b) Fit a special cubic model to the texture response at the low temperature level
only. Construct a contour plot of the response surface, and interpret the results.

(c) Fit a combined model to the texture response that is a special cubic in the
mixture components. Is there a simple relationship between the parameter esti-
mates in the combined model and the parameter estimates in the two individual
models built at the low and high temperature levels? Does this relationship
seem reasonable?

(d) What process conditions and recipe produces texture readings above 2.5?

13.16 John Cornell’s Famous Fish Patties II. Reconsider the fish patty experiment
described in Exercise 13.15.

(a) Fit a combined model to the texture response data. Can this model be reduced
by eliminating apparently nonsignificant variables?

(b) Construct contour plots that explain the results of your model-building efforts.

(c) Suppose that it is desirable to have the texture above 2.5 and as close to 2.75 as
possible. Find a recipe and a set of processing conditions that all satisfy these
requirements.

13.17 An experiment was conducted to study the hardness and percentage of solids in an
automotive clear coat. There are two categorial process factors: monomer type (M1
and M2), and crosslinker type (X1, X2, X3). The experimenters want to examine
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the effect of varying the proportions of monomer, crosslinker, and resin in a mixture
process variables experiment. The constraints on the mixture components are:

Monomer 5–20%
Crosslinker 25–40%
Resin 55–70%

A D-optimal design with 38 runs was constructed for this experiment. The
experimenters assumed that only main effects of the process variables were likely
to be important, but they planned to use (up to) a special cubic model in the mixture
components. The design is shown in Table E13.6.

(a) How would you create the set of candidate points from which to construct the
D-optimal design?

(b) Analyze the data and select appropriate models for both responses: hardness
and percentage of solids.

(c) Construct contour plots of both responses.

(d) Can you find a recipe for the clear coat, a monomer type, and a crosslinker type
for which the hardness exceeds 10 and solids exceed 50%?

(e) Can you specify the mixture recipe so that the responses are robust to the type
of crosslinker?

(f) Can you specify the mixture recipe so that the responses are robust to the type
of monomer?

13.18 Reconsider John Cornell’s famous fish patty experiment described in Exercise
13.15. Suppose that only two of the process variables are considered important: z1
and z2. However, it is considered necessary to fit a model that is quadratic in the
process variables.

(a) Write down an appropriate crossed model for this problem.

(b) Set up a D-optimal design that could be used to fit the model.

13.19 Consider a three-component mixture experiment with the following constraints on
the mixture proportions:

x1 ≤ 0.5, x2 ≤ 0.6, x3 ≤ 0.6

x1 + x2 + x3 = 1

(a) Graph the feasible region for this experiment.

(b) Suppose that the experimenter considers a quadratic model to be adequate.
What type of experimental design would you recommend? Construct the
design.

13.20 Consider the following first-order mixture model in seven components:

ŷ = 35x1 + 85x2 + 140x3 + 77x4 + 90x5 + 100x6 + 120x7

(a) Assuming that all components were varied over approximately the same ranges,
calculate the effects of each component.

(b) Is there any indication that some components can be dropped from further
consideration?
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13.21 Consider a mixture experiment with the following constraints on the component
proportions:

x1 ≤ 0.2, x2 ≤ 0.6, x3 ≤ 0.15,
x4 ≤ 0.65, x5 ≤ 0.15, x6 ≤ 0.75

x1 + x2 + x3 + x4 + x5 + x6 = 1

(a) Suggest a screening design for this mixture experiment.

(b) Suppose that you have obtained the following first-order model for the response.

ŷ = 20x1 + 30x2 + 10x3 + 16x4 + 45x5 + 80x6

Calculate the adjusted effects of each component. Interpret the results of this
analysis.

13.22 Consider a mixture experiment with the following constraints on the component
proportions.

0.05 ≤ x1, 0.05 ≤ x2, 0.10 ≤ x3,

0.20 ≤ x4, 0.01 ≤ x5

x1 + x2 + x3 + x4 + x5 = 1

(a) Suggest a screening design for this mixture experiment.

(b) Suppose that you have obtained the following first-order model for the response:

ŷ = 20x1 + 65x2 + 20x3 + 90x4 + 45x5

Calculate the adjusted effects of each component. Interpret the results of this
analysis.

13.23 Consider the mixture-process experiment of Example 13.6. We now assume both
mixing time and plodder temperature are considered noise variables.

(a) Find the estimated mean response surface for throughput as a function of the
mixture variables.

(b) Find the estimated variance response surface for throughput as a function of
𝜎2

z1
and 𝜎 2

w1
.

(c) Find the combination of mixture components to simultaneously maximize
average throughput and minimize variability.

13.24 Show why the main effects for the process variables can not be included in the
model given in Equation 13.10.

13.25 Construct a contour plot of the scaled prediction variance in the design region for
the D-optimal design in Table 13.8 used for the shampoo foam experiment. Where
are the worst regions for prediction Where are the best?
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13.26 Consider the three-component mixture experiment in Exercise 13.2. Find a 10-run
I-optimal design for this problem. Compare this design to the one used in Exercise
13.2 in terms of prediction variance.

13.27 Consider the three-component mixture experiment in Exercise 13.3. Find a 10-run
I-optimal design for this problem. Compare this design to the one used in Exercise
13.3 in terms of prediction variance.

13.28 Consider the mixture problem described in Exercise 13.4, but suppose that one of
the constraints is modified as follows: 0.15 ≤ x1 ≤ 0.50. You plan to fit a quadratic
mixture model.

(a) Graph the mixture space.

(b) Suppose that you will consider using 15 runs in this experiment. Construct an
I-optimal design.

(c) Construct a 15-run D-optimal design.

(d) Construct a 15-run space-filling design.

(e) Compare these designs in terms of prediction variance. Which design do you
prefer?

13.29 Reconsider the situation in Exercise 13.28. Suppose after running the experiment
you find out that it is necessary to fit a special cubic model to the response. Evaluate
the three designs that you constructed in Exercise 13.28 with respect to fitting the
special cubic model. Is any one of the three designs preferable? Does this tell you
anything about how robust the choice of design is to the form of the model that is
actually fit to the data?

13.30 Reconsider the four-component mixture experiment described in Exercise 13.14.

(a) Construct a 20-run I-optimal design for this problem.

(b) Construct a 20-run D-optimal design for this problem.

(c) Construct a 20-run space-filling design for this problem.

(d) Compare the design you have constructed in parts (a)–(c) with the original
design in Exercise 13.14. Which design would you prefer?

Short Answer Questions

13.31 Using ratios of components to design a mixture experiment allows the experimenter
to use a standard mixture design that will fill the original mixture space. True False

13.32 Upper bound constraints in a mixture experiment always leave the original simplex
design region unchanged. True False

13.33 Using ratios of components is an approach that can be used for including process
variables in mixture experiments. True False

13.34 Rotatability is a criterion that is useful for designing mixture experiments. True
False

13.35 Response trace plots can be useful in screening mixture components. True False
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MOMENT MATRIX OF A
ROTATABLE DESIGN

In the development that follows, it is convenient in expressing the polynomial model making
use of derived power vectors and Schlaifflian matrices. If z′ = [z1, z2,… , zk], then z′[p],
the derived power vector of degree p, is defined such that

z′[p]z[p] = (z′z)p

For example if z′ = [z1, z2, z3], then

z′[2] =
[
z2

1, z2
2, z2

3,
√

2z1z2,
√

2z1z3,
√

2z2z3

]

and

z′[1] = z′

If a vector x is formed from a vector z containing k elements through the transformation

x = Hz (A.1.1)

then the Schlaifflian matrix H[p] is defined such that

x[p] = H[p]z[p]
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It is readily seen that if the transformation matrix H is orthogonal, then H[p] is also
orthogonal. One can write

x′[p]x[p] = z′[p]H′[p]H[p]z[p] (A.1.2)

the left-hand side of Equation A.1.2 is, by definition, (x′x)p. Because H is orthogonal,

(x′x) p = (z′z) p = z′[p]z[p]

and thus the Schlaifflian matrix H[p] is orthogonal. Another result that is quite useful in
what follows is that, given two vectors x and z, each having k elements, then

(x′z) p = x′[p]z[p]

For a response function of order d, the estimated response ŷ can be written in the form

ŷ = x′[d]b (A.1.3)

where for a point (x1, x2,… , xk) we have

x′ = (1, x1, x2,… , xk)

and the vector b contains the least squares estimators b0, b1,… , for the vector x[d] with
suitable multipliers. For example, for k= 2 and d= 2, x′ = [1, x1, x2], and b′ and x′[2] are
given by

b′ =
[
b0, b1∕

√
2, b2∕

√
2, b11, b22, b12∕

√
2
]

x′[2] =
[
1,

√
2x1,

√
2x2, x2

1, x2
2,

√
2x1x2

]

Thus, from Equation A.1.3 we obtain

Var[ŷ(x)] = x′[d][Var(b)]x[d]

= 𝜎 2x′[d](X′X)−1x[d] (A.1.4)

where 𝜎2(X′X)−1 is the variance–covariance matrix of the vector b.
Consider now a second point (z1, z2,… , zk), which is the same distance from the origin

as the point described by (x1, x2,… , xk). Denote by z′ the vector (1, z1, z2,… , zk). There
is, then, an orthogonal matrix R for which

z = Rx (A.1.5)



APPENDIX 1 799

where R is of the form

R =

⎡⎢⎢⎢⎢⎣

1 0 0 ⋯ 0
0
0
⋮ Hk×k

0

⎤⎥⎥⎥⎥⎦
(A.1.6)

and H is an orthogonal matrix with the dimensions indicated in Equation A.1.6. The
variance of the estimated response at the second point is then

Var[ ŷ(z)] = 𝜎 2z′[d](X′X)−1z[d]

Let R[d] be the Schlaifflian matrix of the transformation in Equation A.1.5:

Var[ ŷ(z)] = 𝜎 2x′[d]R′[d](X′X)−1R[d]x[d]

= 𝜎 2x′[d][R′[d](X′X)R[d]]−1x[d] (A.1.7)

because R[d] is orthogonal. For the design to be rotatable, Var(ŷ) is constant on spheres,
which implies that for any orthogonal matrix H we have

X′X = R′[d](X′X)R[d] (A.1.8)

where R is of the form indicated in Equation A.1.6. The requirement in Equation A.1.8
essentially means that the moment matrix remains the same if the design is rotated—that
is, if the rows of the design matrix, denoted by D in the equation

⎡⎢⎢⎢⎣

1
1
⋮ D
1

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

1 x11 x21 ⋯ xk1
1 x12 x22 ⋯ xk2
⋮ ⋮ ⋮ ⋮
1 x1N x2N ⋯ xkN

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

x′1
x′2
⋮

x′N

⎤⎥⎥⎥⎦
(A.1.9)

are rotated via the transformation

zi = R′xi

It is easily seen that the rotated design will have moment matrix (apart from the constant
N−1) equal to the right-hand side of Equation A.1.8.

Consider now a vector t′ = [1, t2, t1,… , tk] of dummy variables. The utility of these
variables is in the construction of a generating function for the design moments. Consider
the quantity

MGF = N−1t′[d]X′Xt[d] (A.1.10)
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The matrix X′X is alternatively given by

X′X =
N∑

u=1

x[d]
u x′[d]

u

where the vector x′u = [1, x1u, x2u,… , xku] refers to the uth row of the design matrix,
augmented by 1—that is, the uth row of the matrix in Equation A.1.9. Thus

MGF = N−1
N∑

u=1

{
t′[d]x[d]

u x′[d]
u t[d]}

= N−1
N∑

u=1

{t′xu}2d

(A.1.11)

From Equation A.1.11, it is seen that upon expanding t′xu we have

MGF = N−1
N∑

u=1

{1 + t1x1u + t2x2u +⋯ + tkxku}2d (A.1.12)

When Equation A.1.12 is expanded, the terms involve moments of the design through order
2d. In fact, the coefficient of t𝛿1

1 t𝛿2
2 ⋯ t

𝛿k
k is

(2d)!∏k
i=1(𝛿i)! (2d − 𝛿)!

[1𝛿1 2𝛿2 ⋯ k𝛿k ] (A.1.13)

where
∑k

i=1 𝛿i = 𝛿 ≤ 2d. For a rotatable design,

MGF = N−1t′[d](X′X)t[d] = N−1t′[d]R′[d]X′XR[d]t[d]

= N−1(t′R′)[d]X′X[Rt][d]

where R is the (k+ 1)× (k+ 1) orthogonal matrix introduced in Equation A.1.6. This
implies that for a rotatable design, an orthogonal transformation on t does not affect the
MGF Because the MGF is a polynomial in the t’s (also involving the design moments), for
a rotatable design, the MGF must be a function of

∑k
i=1 t2i . That is, it is of the form

MGF =
d∑

j=0

a2j

[
k∑

i=1

t2i

]j

(A.1.14)
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It is easily seen that the coefficient of t
𝛿t
1 t𝛿2

2 ⋯ t
𝛿k
k in Equation A.1.14 is zero if any of the 𝛿i

are odd. For the case where all 𝛿i are even, the coefficient from the multinomial expansion

of
[∑k

i=1 t2i

]j
is given by

a𝛿(𝛿∕2)!
∏k

i=1(𝛿i∕2)!
(A.1.15)

The reader should now consider Equation A.1.15 in conjunction with Equation A.1.13,
the former pertaining to the generating function for the moments in general, and the latter
pertaining to the case of a rotatable design, with the value being zero for moments with any
𝛿i odd. Upon equating the two and solving for the moment, the result is

N−1
N∑

u=1

x𝛿1
1ux𝛿2

2u ⋯ x
𝛿k
ku =

𝜆𝛿
∏k

i=1(𝛿i)!

2𝛿∕2
∏k

i=1(𝛿i∕2)!
(A.1.16)

for all 𝛿i even, and

N−1
N∑

u=1

x𝛿1
1ux𝛿2

2u ⋯ x
𝛿k
ku = 0 (A.1.17)

for any 𝛿i odd. Here, 𝜆𝛿 is given by

𝜆𝛿 =
a𝛿2

𝛿∕2(𝛿∕2)!(2d − 𝛿)!
(2d)!

(A.1.18)

If we consider Equations A.1.16 and A.1.18 for the second-order case, we have d= 2,
and thus [i]= [ij]= [ijk]= [iij]= [iii]= 0 for i≠ j≠ k, [ii]= 𝜆2 (fixed by scaling) and
[iiii]/[iijj]= 3.
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ROTATABILITY OF A SECOND-ORDER
EQUIRADIAL DESIGN

Consider first the moment of x1 of order 𝛿 (𝛿 = 1, 2, 3, 4). After multiplication by n1, we
obtain

n1−1∑
u=0

x𝛿1u =
n1−1∑
u=0

{
𝜌 cos

(
𝜃 + 2𝜋u

n1

)}𝛿

(A.2.1)

Because cos 𝜏 = [ei𝜏 + e−i𝜏 ]/2, Equation A.2.1 can be written

n1−1∑
u=0

x𝛿1u =
(
𝜌

2

)𝛿 n1−1∑
u=0

[a𝜔u + a−1𝜔−u]𝛿

where 𝜔 = e2i𝜋∕n2 and a= ei𝜃 . Using a binomial expansion,

n1−1∑
u=0

x𝛿iu =
(
𝜌

2

)𝛿 𝛿∑
t=0

(
𝛿

t

)
a𝛿−2t

n1−1∑
u=0

𝜔(𝛿−2t)u (A.2.2)

An expression similar to Equation A.2.2 for the moments of x2 can be established with little

difficulty. In considering the portion
∑n1−1

u=0 𝜔(𝛿−2t)u of Equation A.2.2 for t= 0, 1, 2,… , 𝛿,
it is first noted that

−𝛿 ≤ 𝛿 − 2t ≤ 𝛿
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The interest here is in moments of order n1−1 and less, because n1 ≥ 5. If 𝛿 − 2t = 0, then

n1−1∑
u=0

𝜔(𝛿−2t)u = n1

On the other hand, it is not difficult to show that for |𝛿 − 2t|≤ n1−1 and nonzero, we obtain

n1−1∑
u=0

𝜔(𝛿−2t)u = 0

Using Equation A.2.2 for 𝛿 = 1, 𝛿 − 2t takes on values−1 and+1 and thus
∑n1−1

u=0 x1u = 0.

Likewise, for the case of 𝛿 = 3, it is found that
∑n1−1

u=0 x3
1u = 0. In a similar fashion, it can

be shown that the odd moments of x2 are zero. For 𝛿 = 2, 𝛿−2t does that on a zero value
when t= 1. Evaluating Equation A.2.2

n1[11] =
n1

( 2
1

)
𝜌2

4

and thus

[11] = 𝜌2

2

For 𝛿 = 4, the nonzero contribution in Equation A.2.2 appears when t= 2. Thus the pure
fourth moment is given by

[1111] =

( 4
2

)
𝜌4

16

= 3𝜌4

8

Similar procedures can be used for the case of x2 to show that

n1[22] =
𝜌2n1

2
, n1[24] =

𝜌4n1

8

At this point, consider moments of the type
∑n1−1

u=0 x𝛿1
1ux𝛿2

2u, where 𝛿1 + 𝛿2 ≤ 4. One can
write

n1−1∑
u=0

x𝛿1
1ux𝛿2

2u =
n1−1∑
u=0

{
𝜌 cos

(
𝜃 + 2𝜋u

n1

)}𝛿1
{
𝜌 sin

(
𝜃 + 2𝜋u

n1

)}𝛿2

=
(
𝜌

2

)𝛿1+𝛿2
(1

i

)𝛿2
n1−1∑
u=0

{a𝜔u + a−1𝜔−u}𝛿1 {a𝜔u − a−1𝜔−u}𝛿2

(A.2.3)
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where a and 𝜔 are as before and i =
√
−1. For 𝛿1 = 1 and 𝛿2 = 1, Equation A.2.3 is easily

seen to be zero after making use of the fact that
∑n1−1

u=0 𝜔2u and
∑n1−1

u=0 𝜔−2u = 0. Likewise,
n1[112] and n1[122] are found to be zero. For n1[1112], Equation A.2.3 becomes

(
𝜌

2

)4 (1
i

) n1−1∑
u=0

{a3𝜔3u + a−3𝜔−3u + 3a𝜔u + 3a−1𝜔−u}{a𝜔u − a−1𝜔−u}

=
(
𝜌

2

)4 (1
i

)
{−3n1 + 3n1}

= 0

Similarly n1[1222] can be shown to be zero.

It remains now to develop the expression for
∑n1−1

u=0 x2
1ux2

2u. We can once again use
Equation A.2.3 to develop the following:

n1−1∑
u=0

x2
1ux2

2u =
(
𝜌

2

)4
(−1)

n1−1∑
u=0

{a2𝜔2u + 2 + a−2𝜔−2u}{a2𝜔2u − 2 + a−2𝜔−2u}

= 𝜌4

16
(−1){n1 − 4n1 + n1}

=
𝜌4n1

8

On the basis of [iiii] and [iijj] in the above developments, it is clear that the equiradial
design is rotatable.
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Scheffé, H. (1958), “Experiments with Mixtures,” Journal of the Royal Statistical Society, Series B,
20, 344–366.
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