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Preface

About	this	book
In	recent	years	risk	management	has	become	one	of	the	fastest	growing	disciplines	in	the
banking	industry.	It	is	certainly	fueled	by	the	fundamental	intermediary	role	that	banks	play	in
the	economy	that	expands	globally	with	significant	complexity.	It	is	also	driven	by	more	risk-
seeking	behavior	of	the	industry	in	order	to	achieve	more	profits.	Another	important	reason	is
the	increasing	sophistication	of	the	quantitative	capability,	including	both	methodology	and
technology.	There	have	been	many	books	on	quantitative	risk	management.	Most	of	them	focus
on	specialized	subjects.	Only	few	advanced	financial	risk	management	books	are	application-
oriented.

This	book	evolved	over	a	number	of	years	as	the	authors	worked	in	banks	and	software
companies	with	risk	management	analytics	development	and	risk	systems	implementation.	Our
experiences	with	development	and	implementation	of	risk	analytics	in	banks	globally	have
inspired	us	to	write	a	comprehensive	quantitative	oriented	risk	management	book	from	a
practitioner's	point	of	view.	The	book	discusses	models	and	applications	in	the	areas	of
market,	credit,	asset	and	liability	management,	and	firmwide	risk.	An	introductory	chapter	also
reviews	the	economic	foundation	of	modern	risk	management	and	how	it	has	reached	the
current	stage,	the	evolution	of	regulatory	practices,	the	construction	of	financial	risk	systems,
and	the	growing	importance	of	model	risk	management	as	banks	are	required	to	perform	more
and	more	complex	risk	calculations	that	involve	many	models.

After	the	introduction,	we	continue	with	two	chapters	on	market	risk	followed	by	chapters	on
portfolio	credit	risk,	counterparty	credit	risk,	liquidity	risk,	and	funds	transfer	pricing	and
profitability	analysis.	While	this	book	is	mostly	organized	around	the	traditional	market,	credit,
and	other	risk	categories	to	provide	contexts	for	the	presentation	of	the	risk	methodologies,	we
cross	reference	different	methodologies	and	risks,	and	dedicate	two	chapters	to	firmwide	risk.
These	are	the	last	chapters	in	the	book,	which	discuss	firmwide	risk	aggregation	and	firmwide
scenario	analysis	and	stress	testing.	Our	intention	is	to	provide	a	holistic	view	of	the	modern
integrated	yet	modularized	risk	management	practice.

In	the	past,	quantitative	methods	were	largely	considered	to	be	useful	for	risk	measurement
only	and	rarely	served	as	input	to	the	risk-based	decision	process.	Quantitative	methods	are
now	frequently	used	to	provide	guidance	to	the	risk	management	itself	as	well	as	assist	in	risk-
based	business	decisions.	This	is	another	aspect	of	the	comprehensiveness	that	we	wish	to
demonstrate	in	this	book.	An	important	motivation	of	the	book	is	to	bring	together	the
methodologies	that	can	be	applied	across	risk	types	and	establish	a	common	ground	of
quantitative	approaches	on	which	firmwide	risk	analysis	can	be	established.

Since	risk	regulations	have	driven	a	lot	of	the	recent	practices,	we	also	relate	the	concepts	in
the	book	to	the	most	recent	regulations	in	each	risk	area.	In	many	cases	the	relation	explains	the



risk-modeling	foundation	and	in	some	cases	also	drawbacks	of	the	risk	regulations.	However,
this	book	is	not	a	regular	textbook	overview	on	risk	analysis	in	the	sense	that	we	have	chosen
to	only	include	risk	models	and	risk	applications	where	we	have	acquired	significant
experience	from	both	our	research	and	actual	implementations	at	banks.	Hence,	the	book	is
significantly	biased	to	the	risk	methods	and	models	that	we	have	found	practically	useful.

To	put	emphasis	on	the	practical	use	of	risk	models	the	book	includes	many	application
examples	illustrating	how	the	models	are	used	in	practice.	Therefore,	our	aim	is	to	provide
enough	details	that	readers	can	actually	implement	the	methods	if	they	follow	the	discussions	in
this	book.	The	book	represents	the	collective	experience	of	not	only	the	authors	but	also	the
people	we	have	worked	with	in	the	past—both	in	banks	and	in	risk	technology.



Whom	is	this	book	for?
While	this	book	emphasizes	the	financial	risk	management	methods	and	models,	we	approach
all	the	subjects	from	application	aspects.	Because	the	book	is	written	with	application	in	mind,
we	have	skipped	a	lot	of	theoretical	derivations	and	provide	references	for	those	who	are
interested	in	finding	these	details.	The	book	still	assumes	maturity	with	mathematics	and
statistics	as	well	as	previous	exposure	to	financial	risk	analysis	concepts.	It	is	therefore	not	a
book	for	beginners.	Consistent	with	the	intended	audience	for	this	book	we	do	not	provide
background	chapters	or	appendices	that	introduce	basic	statistical	and	mathematical	concepts.
There	are	already	several	excellent	books	that	can	be	used	for	that	purpose	if	the	reader	needs
a	reminder	on	concepts.	However,	readers	with	a	strong	quantitative	background	should	find
no	trouble	following	the	details	in	the	book.	In	each	subject	we	also	include	discussions	on	the
economic	insights	behind	the	methods	for	those	who	are	interested	in	the	rationale	for	the
modern	risk	management	methods.	Therefore,	we	believe	the	book	provides	value	to
practitioners	as	well	as	researchers	and	students	who	seek	to	get	more	insights	and
implementation	details	of	risk	analytics	in	practice.	The	outline	of	the	book	that	follows	should
help	readers	navigate	through	the	book.

Outline	of	the	book
The	first	two	chapters	of	the	book,	following	the	introduction	chapter,	are	devoted	to	market
risk.	Market	risk	is	clearly	one	of	the	most	well-known	and	studied	risk	areas.	The
modernization	of	the	risk	management	concept	started	in	the	application	of	market	risk.	Even
today,	market	risk	is	still	a	major	driver	of	many	innovations	in	risk	management.	The
techniques	used	in	the	market	risk	context	can	be	often	easily	transferred	to	the	other	risks	as
well.	The	style	of	the	book	builds	on	this	history	and	introduces	many	risk	concepts	that	are
subsequently	reused	in	the	other	chapters	on	credit,	asset	and	liability	management,	and
firmwide	risks.

The	first	market	risk	chapter	focuses	on	the	once-popular	linear	and	quadratic	approach	to
portfolio	risk	management—assuming	multivariate	normal	or	log-normal	distribution	of	the
underlying	risk	factors.	It	also	focuses	on	the	multivariate	normal	or	log-normal	simulation-
based	approach	to	market	risk	analysis.	For	many	risk	practitioners	the	material	in	this	first
chapter	is	partly	known.	However,	as	we	mentioned	earlier,	the	market	risk	chapters	still	serve
as	an	introduction	where	we	also	introduce	core	concepts	that	will	be	reused	and	expanded	on
throughout	the	book.	For	example,	risk	contributions:	In	the	discussion	of	the	simulation-based
approach	to	market	risk,	key	practical	concepts	such	as	how	to	reduce	the	calculation	times	by
either	or	both	of	(i)	reducing	the	number	of	scenarios	and	(ii)	reducing	pricing	time	are	also
discussed.

The	second	market	risk	chapter	is	focused	on	more	advanced	topics,	but	is	still	of	significant
practical	importance.	Here	we	consider	extensions	of	risk	measures	to	a	general	portfolio
profit-and-loss	distribution	and	in	particular	how	one	can	decompose	risk	into	contributing
subportfolios	and	instruments	as	well	as	into	risk	factors	of	relative	importance.	It	is	by	now



well-known	that	the	multivariate	normal	or	log-normal	model	for	risk	factors	is	a	simplifying
assumption	in	practice	and	does	not	meet	the	stylized	facts	of	financial	risk	returns.	We
therefore	focus	in	depth	on	what	are	the	stylized	facts	of	returns	and	which	models	can	capture
the	stylized	facts	and	perform	well	in	terms	of	backtesting.	Other	important	practical	topics
discussed	in	this	chapter	include	how	to	scale	risk	over	time	in	risk	models	as	well	as	how	to
incorporate	market	illiquidity	in	market	risk	models.	Stress	testing	has	quickly	emerged	as	one
of	the	core	risk	activities	in	banks	and	we	discuss	a	structured	approach	to	stress	testing	as
well	as	how	to	integrate	model-	and	stress	testing–based	views.	Another	important	topic	for
risk	analysis	is	optimal	risk-based	decision	making.	This	is	one	of	the	core	activities	of	risk
managers:	specifically,	to	analyze	and	understand	optimal	portfolio	hedges	and	replicate
portfolios	for	subsequent	risk	measurement	and	management.	The	advanced	market	risk	chapter
ends	with	a	note	on	the	very	recent	developments	in	the	regulation	for	market	risk.

The	fourth	and	fifth	chapters	of	the	book	move	the	focus	to	credit	risks.	The	fourth	chapter
focuses	on	issuer	portfolio	credit	risk—for	exposures	in	both	the	trading	book	and	the	banking
book.	In	practice,	portfolio	credit	risk	economic	capital	for	large	corporate	exposures	uses
models	founded	on	the	structural	Merton	approach	to	corporate	claims.	In	the	portfolio	setting,
multifactor	models	are	often	used	to	describe	the	credit	index	of	the	corporate	and	referred	to
as	latent	variable	models	as	the	credit	index	itself	is	unobserved.	Economic	capital	and
capital	allocation	for	bond	exposures	in	the	trading	book	usually	have	to	account	for	trading
behavior	and	liquidity	horizons.	With	the	relatively	recent	regulatory	incremental	risk	charge
for	credit	exposures	in	the	trading	book,	economic	capital	models	and	regulatory	capital	are
becoming	more	aligned.

Portfolio	credit	risk	models	for	the	banking	book	are	usually	founded	in	the	reduced	form
credit	scoring	or	credit	state	transition	models	used	at	account	or	customer	level.	The	models
are	typically	calibrated	on	large	pools.	The	transition	models	can	be	dynamic	and	include
macroeconomic	variables	or	be	static	and	rely	on	an	ex-post	inclusion	of	macroeconomic
variables	describing	default	and	migration	behavior	over	time.	The	inclusion	of
macroeconomic	variables	is	a	prerequisite	for	building	an	economic	capital	model	for	credit
risk.	Consequently,	we	focus	on	extending	credit	scoring	models	to	include	time	series
information	and	how	the	models	can	be	subsequently	used	in	calculating	economic	capital.	A
specific	credit	scoring–based	portfolio	credit	risk	model	that	is	quite	popular	due	to	avoiding
simulation	is	the	CreditRisk+	model.

The	distinction	between	structural	and	reduced	form	models	is,	however,	largely	artificial	and
is	more	driven	by	a	calibration	approach	rather	than	model	formulation.	For	example,	with	a
large	portfolio	we	can	identify	the	latent	credit	index	in	the	structural	approach	with	the
historical	empirical	default	frequencies	of	the	large	portfolio.	Because	of	this	relation	between
models	and	also	because	both	models	derive	default	correlations	from	correlated
macroeconomic	drivers	the	models	can	be	easily	integrated	for	a	firmwide	portfolio	credit	risk
economic	capital	view.	The	correlated	macroeconomic	driver	approach	to	specifying
dependence	in	credit	risk	models	is	often	referred	to	as	a	conditional	independence	approach.
This	is	because	conditional	on	the	macroeconomic	factors	defaults	are	independent.	Another,
more	direct	way	to	introduce	default	correlation	is	to	link	the	default	events	explicitly,	for



example,	assigning	a	jump	in	default	probability	of	one	firm	conditional	on	default	for	another
firm.	Such	models	are	referred	to	as	contagion	or	feedback	models.

An	important	application	of	portfolio	credit	risk	models	is	stress	testing.	While	the	second
market	risk	chapter	reviews	general	structured	approaches	to	stress	testing,	applicable	also	in
the	contex	of	portfolio	credit	risk,	we	also	consider	explicit	examples	of	credit	stress	testing
with	macroeconomic	scenarios	in	the	portfolio	credit	risk	chapter.	Due	to	the	recent	firmwide
stress	testing	regulation	in	both	Europe	and	the	United	States,	the	credit	book	stress	testing	has
gained	increasing	importance.	This	has	also	called	for	an	extension	of	the	credit	portfolio
models	originally	developed	for	internal	economic	capital	calculations.

After	a	brief	discussion	on	credit	risk	mitigation	and	transfer	we	end	the	portfolio	credit	risk
chapter	with	a	recap	of	the	regulatory	capital	for	credit	risk	with	a	focus	on	the	Basel	II/III
capital	charge	for	banking	book	exposures.

The	fifth	chapter	of	the	book	is	again	focused	on	credit	risk	but	now	the	focus	is	on
counterparty	credit	risk	in	derivative	trades	and	the	associated	pricing.	While	credit	risk	in
bonds	is	usually	accounted	for	with	market	risk	spreads	in	discounting	of	bond	cash	flows	the
credit	risk	adjustment	for	derivatives	is	more	complex.	This	is	due	to	the	bilateral	nature	of
credit	risk	and	the	fact	that	exposure	is	random.	The	recent	financial	crisis	has	brought	the
counterparty	risk	in	the	trading	book	into	the	limelight.	Exposure	risk	profiling	accounting	for
netting,	margin	agreement,	and	counterparty	credit	quality	is	key	to	counterparty	credit	risk
measurement	and	pricing.	A	particularly	important	topic	is	how	to	account	for	wrong-way
risks,	that	is,	the	expectation	that	high	counterparty	default	rates	will	likely	occur	at	the	same
time	that	exposure	is	high.	Counterparty	risk	managers	and	trading	desks	not	only	need	to	price
the	credit	risk	but	also	need	to	manage	the	tail	credit	risk.	With	mitigation	tools	like	frequent
collateral	posting,	the	counterparty	credit	risk	is	reduced	but	also	creates	other	financial	risks
such	as	the	liquidity	risk	of	funding	collateral	requirements	and	potential	funding	costs	of
collateral.	Recently,	more	opportunities	for	banks	to	clear	counterparty	credit	risk	centrally	are
available	and	the	decision	whether	to	pass	a	certain	trade	or	a	set	of	trades	to	central	clearing
can	be	a	delicate	one	in	practice.	We	end	the	chapter	with	a	discussion	of	the	recent	Basel	III
regulation	for	counterparty	credit	risk.

The	sixth	and	seventh	chapters	of	the	book	are	dedicated	to	advanced	topics	in	asset	and
liability	management	with	emphasis	in	liquidity	risk	and	profitability.	There	are	already	many
books	that	give	a	good	introduction	to	the	classical	asset	and	liability	management	concepts,
such	as	liquidity	and	interest	rate	risk	measurement	with	gap	reports,	net	interest	margin
analysis,	and	economic	value	views	on	the	balance	sheet.	In	these	chapters	we	therefore
assume	the	reader	already	has	a	basic	understanding	of	classical	asset	and	liability
management.

The	sixth	chapter	is	focused	on	the	now	more	than	ever	important	topic	of	liquidity	risk.
Liquidity	risk	is	essentially	a	consequential	risk	but	by	itself	can	lead	to	insolvency	as	was
experienced	in	the	2007	financial	crisis.	Our	approach	to	liquidity	focuses	on	quantitative
methods	that	are	not	just	for	risk	measurement	and	monitoring	but	are	also	key	to	risk	hedging,
risk-based	performance	analysis,	and	optimal	decision	making.	We	discuss	both	the	rationale



and	the	practice	of	scenario-based	approaches	to	liquidity	and	how	liquidity	risk	can	be
measured	and	managed.	The	focus	is	on	the	structural	mismatch	liquidity	risk	as	well	as	the
contingency	liquidity	risk.	The	core	of	the	management	of	contingency	liquidity	risk	is	to
earmark	a	liquidity	hedging	portfolio	and	test	its	sufficiency	frequently.	The	decision	on	the
size	and	composition	of	the	liquidity	hedging	portfolio	is	of	importance.	This	is	because	the
portfolio	carries	opportunity	costs	that	can	directly	impact	the	banks'	competitiveness	in
product	pricing.	Using	advanced	analysis	and	optimal	models	of	liquidity	hedging	and
structural	liquidity	planning	is	therefore	an	emerging	core	activity	in	banks.	While	liquidity
risk	measurement	and	allocation	is	usually	more	complex	than	for	market	and	credit	risk—
largely	due	to	the	inherent	path-dependent	nature	of	solvency	liquidity	risk—it	can	still	be
allocated	consistently.	The	consistent	allocation	of	liquidity	risk	is	also	of	significant
importance	in	creating	pricing	incentives	that	reward	providers	of	liquidity	and	penalize	users
of	liquidity.	We	end	the	liquidity	risk	chapter	with	discussion	of	recent	regulatory
developments	and	regulatory-required	reporting	metrics.

The	seventh	chapter	is	dedicated	to	transfer	pricing	of	risks	and	the	associated	profitability
analysis	of	cash	flows	and	how	banks	use	transfer	pricing	in	practice	to	create	incentives	for
value	creation.	The	funds	transfer	price	includes	all	the	perceived	risk	costs	and	expenses	to
signal	the	required	spread	for	customer	profitability.	Funds	transfer	rates	are	also	key	in
expanding	banks'	traditional	asset	and	liability	management	from	an	aggregate	level	to	granular
levels,	in	particular	in	profitability	analysis	such	as	net	interest	margin	analysis	and	economic
value	views.	With	synthetic	funds	transfer	instruments	the	banks'	profit	and	loss	is	essentially
split	up	into	the	branch	net	interest	margin	and	the	residual	profit	and	loss	of	treasury.	The
treasury	manages	centrally	the	residual	portfolio	of	issued	synthetic	funds	transfer	instruments
to	branches	versus	the	actual	funding.	For	most	banks,	there	is	structural	interest	rate	risk	and
liquidity	risk	arising	in	the	residual	portfolio	due	to	the	fact	that	customers	in	general	want	both
long-term	loans	and	quick	access	to	the	deposits	they	made.	The	funds	transfer	instruments
balance	balance	sheets	and	allow	profitability	views	to	be	decomposed	to	granular	levels	such
as	account,	product	type,	and	branch.

Firmwide	risk	management	breaks	the	traditional	silo	approach	to	risk	and	allows	banks	to
have	a	holistic	view	of	the	risk.	This	is	our	focus	in	the	concluding	eighth	and	ninth	chapters	of
this	book.	The	firmwide	risk	chapters	also	serve	as	good	concluding	chapters	of	the	book	as
we	refer	back	to	the	specific	risk	models	and	methods	discussed	in	the	previous	chapters	and
apply	them	to	the	firmwide-level	risk	management.

In	Chapter	8	we	focus	on	the	firmwide	risk	aggregation,	which	enables	banks	to	measure,
allocate,	and	manage	risk	from	a	global	optimal	instead	of	a	local	optimal	view.	Risk
aggregation	methods	have	recently	developed	significantly	with	more	flexible	models	to
capture	the	exact	granular	dependence	between	risk	types	and	business	lines.

Another	aspect	of	firmwide	risk	management	is	firmwide	scenario	analysis	and	stress	testing,
which	is	our	focus	in	the	final	chapter	of	this	book.	Two	approaches	can	in	practice	be	used	for
the	firmwide	scenario	analysis	and	stress	testing.	First,	one	can	aggregate	the	results	of
different	scenarios	from	the	specific,	granular	modeling	systems	used	to	calculate	market	risk,



credit	risk,	and	so	forth.	Second,	one	can	create	a	macroeconomic	firmwide	risk	model	that
captures	the	main	risks	for	integrated	scenarios	across	risk	types	and	different	portfolios.
Usually,	in	this	second	approach,	the	firmwide	risk	is	approximated	using	the	core	risk	drivers
for	the	different	risks	and	portfolios.	The	benefit	of	the	approach	is	an	integrated	view	of
firmwide	risk	and	that	comprehensive	scenarios	across	risk	types	can	be	created	in	one	system.
The	downside	is	of	course	that	it	is	hard	to	fully	capture	all	risks	and	positions	in	the	specific
systems	such	as	the	market	risk	system.

The	firmwide	stress	testing—with	the	aim	of	forward-looking	the	banks'	balance	sheet	and
income	statement	and	thus	the	capital	adequacy	under	stress—has	picked	up	relatively	recently
with	the	introduction	of	the	Comprehensive	Capital	Analysis	and	Review	(CCAR)	and
European	Banking	Authority	(EBA)	stress	tests.	It	requires	banks	to	create	so-called	satellite
models	to	materialize	the	impact	of	the	macroeconomic	stress	on	the	specific	bank	risk	factors
impacting	the	earnings	and	balance	sheet.	The	firmwide	macroeconomic	stress	testing
approach	also	necessitates	a	close	collaboration	between	the	bank's	risk	experts	responsible
for	generating	earnings	and	loss	projection	under	stress,	as	well	as	financial	and	capital
management	experts	responsible	for	analyzing	the	bank's	available	capital	and	planning	future
capital	needs.	The	comprehensive	results	of	firmwide	risk	measurement	and	stress	testing	give
a	unique	opportunity	to	integrate	the	risk	and	finance	view	with	firmwide	projected	risk	being
used	in	forward-looking	balance	sheet	and	income	statement,	hence	being	essential	for
scenario-based	financial	planning.
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Chapter	1
Introduction

Banks	and	Risk	Management
Risk	management	has	gone	through	a	long	journey	in	the	history	of	corporate	development.
Modigliani	and	Miller	(1958)	proposed	that	in	an	environment	without	contracting	cost,
information	asymmetry,	and	taxes,	risk	management	among	other	financial	policies	is	irrelevant
to	firm	value	creation.	Sometimes	it	even	lowers	the	value	of	the	firm	because	it	is	seldom
free.	In	the	last	decades	the	topic	on	the	role	of	risk	management	in	a	value	creation–oriented
corporate	world—especially	in	banks—has	driven	the	evolution	of	the	risk	management
practice.	With	the	development	of	the	computational	technology	and	the	witness	of	several
major	financial	distresses,	a	sound	infrastructure	of	the	risk	management	systems	becomes	not
only	a	regulatory	concern	but	also	corporate	competitive	advantage	reality.	However,	the
debate	of	the	value	and	role	of	risk	management	in	a	financial	institution	still	goes	on.	Some
institutions	retain	the	thought	that	risk	management	is	just	an	answer	to	regulatory	compliance
or	a	defense	system.	The	modern	financial	theory	based	on	the	capital	asset	pricing	model	and
other	related	models	is	fundamental	to	the	no-arbitrage	principle.	That	is,	excess	returns	can
only	be	achieved	by	taking	risks.	This	principle	makes	it	necessary	to	recognize	that	risk
management	is	not	just	a	preference	but	is	accompanied	by	the	profit-chasing	mandate	of
corporations.

The	discussion	on	bank-specific	risk	management	topics	has	to	be	picked	up	from	the	existence
of	banks	as	intermediary	between	borrowers	and	investors.	The	development	of	banks	and	the
reliance	on	banks	in	the	economic	activities	show	that	banks	are	a	special	corporate	that
provide	unique	services	for	parties	from	both	sides.	Banks	in	general	provide	special	value	to
the	corporate	world	by	playing	the	role	of	three	major	intermediations:	information,	risk,	and
liquidity.	As	the	intermediary	between	borrowers	and	investors,	banks	have	more	information
about	the	type	of	resource	available	and	wanted	as	well	as	the	preferences	of	the	two	sides.
This	information	asymmetry	gives	banks	dominant	roles	in	the	resource	allocation	of	the
economy.	Banks	get	their	rewards	by	creating	efficiency	in	the	allocation	process.	In	addition,
banks	are	viewed	as	delegated	monitors	or	evaluators	of	their	borrowers.	Because	of	the	scale
of	economy	and	specialty,	banks	can	provide	monitoring	services	at	a	lower	cost	than	the	non-
bank	lenders.	A	bank	must	be	responsible	for	the	safety	of	the	money	from	their	lenders.	Banks
also	offer	insurance	against	shocks	to	a	consumer's	consumption	by	smoothing	the	resource
allocation	along	a	multihorizon	path	for	the	consumer.	When	the	consumer	has	excess	money,
themoney	can	be	lent	through	banks	to	earn	returns	for	the	future.	In	case	the	consumer	runs	into
a	money	crunch,	emergency	funds	can	be	borrowed	from	the	bank,	which	will	have	to	be	paid
back	from	future	income.	Hence,	banks'	payment	systems	effectively	connect	the	spatially	and
temporally	separated	trades.



The	primary	obligation	of	corporate	entities,	including	banks,	is	to	create	value	for	their
shareholders.	However,	through	the	intermediation	service	a	bank	provides	to	its	customers,
risk	management	in	banks	also	brings	social	benefits	as	well.	This	is	because	banks	not	only
create	value	for	their	shareholders	but	also	have	strong	impact	on	the	value	of	their	customers.
It	is	obvious	that	a	bank's	insolvency	can	bring	the	loss	of	its	creditors.	Risk	management	is	in
the	core	of	the	banking	value	creation	and	also	a	public	benefit.	Risk	management	is	not	just	a
certain	methodology	in	a	bank.	It	is	about	a	culture	and	an	end-to-end	process	that	spirally
moves	a	bank	up	into	a	value	chain	that	demonstrates	its	core	competitive	advantage	against	its
peers.	A	sound	risk	management	process	spans	from	identification,	to	measurement,	to
monitoring,	to	control,	to	optimal	decision	making,	and	back	to	identification.

As	an	information,	risk,	and	liquidity	intermediary,	banks	possess	unique	information	on	the
general	macroeconomic	condition	and	customer	and	market	status.	Hence,	banks	have	a	unique
position	in	risk	identification.	A	well-known	fact	in	any	social	science	study	is	that	past
experience	is	not	a	guaranteed	prediction	to	the	future—although	history	does	tend	to	repeat
itself	in	disguised	fashion.	One	of	the	prominent	difficulties	is	the	discovery	of	so-called
“black	swan”	risks.	In	his	famous	book	on	the	topic,	Taleb	(2007)	borrows	the	term	“black
swan”	for	the	situation	where	seemingly	impossible	or	nonexistent	events	actually	occur.
Sometime	overreliance	on	past	experience	will	lead	to	loss	of	sight	of	a	forthcoming	crisis.
One	of	the	lessons	learned	from	the	2007	financial	crisis	is	to	engage	a	forward-looking	risk
discovery	practice	that	can	identify	risks	that	may	not	have	existed	in	the	past.

Traditionally	financial	risk	measurement	has	been	categorized	into	market,	credit,	liquidity,
and	other	risks.	Market	risk	represents	the	risks	that	are	primarily	driven	by	market	variables
including	interest	rates,	foreign	exchange	rates,	equities,	and	commodity	prices.	Credit	risk	is
the	risk	underlying	the	default	risk	of	counterparties	ranging	from	retail	customers	to	trading
counterparties.	Market	risk	and	credit	risk	have	traditionally	been	separately	managed	in	most
banking	institutions.	In	traditional	asset	and	liability	management,	market	risk	and	credit	risk
have	been	separated	in	the	way	that	the	asset	and	liability	committee	manages	interest	rate	risk
impacts	on	profitability,	and	liquidity	risks	while	the	business	units	are	concerned	with	the
credit	risk.	It	is	an	increasing	trend	to	look	at	comprehensive	risks	in	a	more	holistic	way.	All
the	potential	risks	in	a	particular	business	line	or	book	are	analyzed	together	without	an
artificial	separation	into	driving	risk	types.	For	some	risks	this	is	also	a	prerequisite,	for
example,	liquidity	risk,	which	is	usually	a	consequential	risk	from	other	risks.

Risk	assessment	includes	both	qualitative	and	quantitative	measurement	of	the	risk	exposures
of	a	bank.	Such	assessments	require	a	joint	effort	of	expert	knowledge	and	scientific	discovery
techniques.	Diebold	et	al.	(2010)	provide	a	knowledge	theory	that	classifies	risks	into	known,
unknown,	and	unknowable.	From	a	measurement	point	of	view,	a	known	risk	is	both	identified
and	completely	modeled.	Note	that	a	known	risk	is	not	deterministic	but	can	be	well	measured.
Diebold	et	al.	(2010)	specifically	refer	the	models	to	fully	specified	probability	distributions
of	potential	profit	and	losses.	An	unknown	risk	is	known	to	exist	but	cannot	be	modeled
properly.	A	consumer	behavioral	risk	such	as	prepayment	risk	serves	as	a	simple	illustration	of
the	difference	between	these	two	risk	types.	The	prepayment	risk	is	certainly	a	well-identified
risk.	For	consumer	portfolios	the	well-specified	statistical	prepayment	models	can	only	be



claimed	to	be	known	to	a	pool	of	a	large	number	of	such	exposures.	But	it	is	much	harder	to
predict	the	prepayment	for	a	particular	consumer.	Unknowable	events	are	events	we
experience	as	a	surprise,	arising	from	unseen	events	that	are	not	identified.

One	important	factor	to	successful	risk	identification	and	measurement	is	data.	Data	quality	is
critical	to	identification	and	measurement	of	risks.	Statistical	analysis	methodologies	are	often
used	in	practice	to	overcome	the	issues	in	the	observed	data.	For	example,	actual	loss	data	are
often	censored	and	truncated	to	cause	only	partially	available	data	for	the	study	of	a	loss.	In
risk	measurement	the	main	target	is	often	to	estimate	the	probability	of	extreme	losses.	This	is
of	course	a	much	more	difficult	problem	than	estimating	average	losses	and	puts	strong
reliance	on	the	model	at	hand	being	approximately	a	correct	descriptor	of	potential	extreme
losses	that	can	happen.	Clearly,	in	risk	measurement	the	analysis	of	model	risk	is	central	to	the
risk	measurement	process.	In	practice,	data	scarcity	and	disparateness	also	affect	the
measurement	of	the	tail	risk	and	are	central	components	in	practice	in	validating	specific
model	assumptions.

The	risks	identified	and	assessed	by	a	bank,	as	part	of	the	financial	disclosure,	are	subject	to
monitoring	and	reporting	that	must	serve	three	different	audiences:	management,	regulator,	and
the	market.	Shareholders,	management,	and	debt	holders	are	all	motivated	to	manage	risk,	but
they	all	have	their	own	incentives,	which	are	in	some	cases	not	aligned.	For	banks,	given	the
role	they	play	as	financial	intermediary	in	the	society,	they	may	also	be	viewed	as	having	an
obligation	to	the	stability	of	the	entire	financial	system.	Due	to	the	importance	of	banking
stability	to	the	entire	economic	system,	bank	regulators	and	the	market	also	demand	risk
management	disclosure	of	banks.	Regulators	want	to	make	sure	each	individual	bank	operates
fairly	and	responsibly.	At	the	same	time,	regulators	are	also	responsible	to	make	sure	the	entire
banking	system	remains	stable	under	contagion	effects.

To	manage	the	level	of	risk	in	a	portfolio,	banks	use	risk	mitigation	tools.	For	example,	for
market	risk,	various	hedging	strategies	are	available	to	reduce	the	risk	level	in	the	portfolio.
For	credit	risk,	financial	and	physical	collaterals	and	guarantees	are	popular	risk	mitigations.
For	liquidity	risk,	the	ultimate	risk	mitigation	tool	is	cash	to	neutralize	the	funding	gap.	With
the	recent	development	of	the	financial	system	and	capital	markets	banks	also	have	more
innovative	ways	of	risk	mitigation.	This	includes	credit	derivatives	to	transfer	the	risk.
Governments	and	central	banks	can	also	offer	banks	risk	mitigation	vehicles	through	guarantees
and	liquidity	facilities.

A	bank	cannot	merely	control	risk	passively.	It	must	offer	its	expertise	in	the	risk
intermediation	area	to	remain	valuable.	One	of	the	goals	of	risk	management	is	to	find	an
efficient	way	to	mitigate	risk	so	that	the	bank	can	have	a	tolerable	risk	level.	For	each
identified	risk,	risk	measurement	helps	measure	the	risk	level	and	finds	the	right	mitigation
approach	to	protect	the	bank	from	taking	unsustainable	risk.	For	example,	traditionally	banks
borrow	short	and	lend	long	term	to	earn	the	term	premium	of	interest	rates.	In	this	practice
banks	face	both	liquidity	risk	(as	the	bank	must	guarantee	to	be	able	to	roll	over	its	short-term
funding)	and	interest	rate	risk	(as	the	bank	has	to	make	sure,	over	the	life	of	the	lending
instrument,	the	average	short-term	funding	rate	can	be	effectively	lower	than	the	long-term



lending	rate).	In	an	economy	full	of	uncertainty,	it	is	almost	impossible	to	fully	secure	any	of
these	two	guarantees.	Banks	must	use	dedicated	hedging	instruments	like	interest	rate
derivatives	and	liquidity	facilities.	Of	course,	hedging	risk	usually	comes	at	a	cost,	reducing
the	inherent	expected	term	premium	to	the	bank.

As	many	of	a	bank's	investment	decisions	are	made	under	uncertainty,	the	ultimate	decision
weighs	in	the	expected	profits	as	well	as	the	risks	associated	with	the	investment.	Traditional
value	creation	in	a	bank	focuses	on	risk-adjusted	returns	and	the	bank's	thresholds	for
investments	contributing	favorably.	However,	a	bank's	risk	appetite,	referred	to	as	the	level	of
risk	the	institution	is	willing	to	take	in	its	value	creation	process,	may	also	exclude	the	bank
from	participating	in	certain	types	of	investments	regardless	of	current	market	premiums.	To
implement	the	risk	appetite	in	the	business	operations,	a	bank	must	monitor	the	materialized
risk	level	in	the	bank	against	the	risk	limits	and	set	strategic	objectives	optimally	following	the
risk	policies,	all	established	by	the	risk	appetite.	Risk-based	performance	analysis	of	a
business	unit	should	preferably	reflect	the	risk	contribution	of	the	unit	to	the	entire
organization.

Besides	the	economic	motivations	and	regulatory	requirements,	the	fast	evolution	of	the
computation	technology	contributes	greatly	to	the	shaping	of	the	modern	risk	management
practice.	Modern	technology	allows	banks	to	reduce	risk	calculation	times	and	respond	faster
in	business	operations	to	new	risk	levels.	It	also	allows	more	granular	risk	analysis	and	risk
decompositions	to	account,	trade,	and	position	level,	enabling	more	accurate	views	on	exactly
where	in	the	bank's	books	shareholder	value	is	created.	The	modern	technology	also	allows
banks	to	adopt	more	sophisticated	approaches	to	scenario	analysis	and	risk-based	portfolio
optimization.

Although	this	book	focuses	on	the	quantitative	aspects	of	risk	management	we	must	emphasize
that	quantitative	methodology	and	risk	analytics	are	by	no	means	the	whole	spectrum.	At	the
very	core	of	risk	management	is	risk	governance.	It	governs	the	entire	risk	management
process.	At	the	same	time,	it	connects	risk	management	to	the	entire	business	operations	of	a
bank.	Transparency	is	also	an	important	factor.	The	key	stakeholders	must	understand	the
assumptions	and	business	rationale	of	the	risk	methodologies—although	they	do	not	have	to
know	mathematical	model	details.	Risk	model	development,	validation,	and	deployment	teams
have	responsibility	to	make	sure	models	are	soundly	developed,	implemented,	and	validated.
However,	they	also	have	the	important	responsibility	of	communication.

Evolution	of	Bank	Capital	Regulation
Regulation	is	of	course	a	strong	driver	for	banks'	evolution	in	risk	management	practices	and
the	implementation	of	sound	risk	management	systems.	The	costs	of	meeting	regulatory
compliance	for	banks	have	been	significantly	increasing	over	the	years.	The	costs	are	both
direct	and	operational	related	to	implementation	of	sophisticated	risk	and	compliance	systems,
disclosure	processes,	and	retaining	skilled	people.	In	addition,	there	are	significant	indirect
opportunity	costs	faced	by	banks	as	the	new	regulations	have	increased	the	minimum	regulatory



capital	buffers.	Over	the	three	generations	of	the	Basel	accord,	banks	have	seen	ever-
increasing	capital	requirements	for	the	different	risk	types.

The	first	Basel	accord	in	1988	(Basel	Committee,	1988)	did	not	have	a	substantial	impact	on
operational	costs	and	risk	systems;	it	simply	required	banks	to	slot	credit	exposures	into	gross
tiers	of	risk-weighted	assets.	The	next	generation	of	the	regulation	focused	on	amending	the
regulatory	standardized	and	internal	models	approach	to	market	risk	in	1996	(Basel
Committee,	19961996).	At	this	time,	many	banks	implemented	internal	value	at	risk	(VaR)
models	on	which	capital	requirements	were	based.	The	more	sophisticated	use	of	simulation
models	to	calculate	and	price	market	risk	for	many	banks	drove	investment	into	specialized
risk	technology	and	risk	systems	as	well	as	skilled	people.	For	the	first	time	many	banks
recruited	large	teams	of	risk	quants	to	manage	the	market	risk	models.	In	day-to-day	business
operations	traders	found	their	risk	limits	on	books	transitioning	from	simple	delta	and	gamma
limits	to	more	sophisticated	VaR	limits.

The	Basel	I	accord	had	a	very	gross	assignment	of	risk-weighted	assets	for	credits	and	had
been	criticized	by	many	banks	for	not	being	risk	sensitive	since	its	inception.	The	next	major
update	to	the	regulation	therefore	came	with	Basel	II	in	2005	(Basel	Committee,	2005a),	which
required	banks	to	report	more	sophisticated	risk-weighted	assets	for	credit	risk	than	in	the	first
accord.	Basel	II	also	brought	necessary	sophistication	into	the	regulatory	capital	paradigm	by
introducing	three	pillars	that	set	the	minimal	capital	requirement	(pillar	1),	a	supervisory
review	that	encourages	banks	to	improve	their	internal	risk	management	practice	in	credit	risk
(pillar	2),	and	proper	disclosure	and	market	disclosure	(pillar	3).	Many	banks	were	required
to	adopt	the	advanced	internal	ratings-based	approach	for	retail	and	small	and	medium-sized-
firm	credits.	For	large	corporates	the	foundation	internal	ratings–based	approach	was	usedand
was	largely	based	on	external	ratings.	With	Basel	II	the	Basel	accord	for	credit	risk	was	model
based	for	the	first	time	and	required	banks	to	estimate	model	input	parameters	such	as	the
probability	of	default,	loss	given	default,	and	exposure	at	default	for	all	its	credit	exposures.
Basel	II	hence	drove	a	significant	investment	of	banks	into	credit	scoring	models,	processes,
and	systems.	The	statistical	modeling	approach	to	analyze	credit	quality	created	a	demand	for
skilled	statisticians	in	banks.	Large	credit	scoring	model	development	and	validation	teams
were	built.	At	the	same	time	the	relative	importance	of	the	traditional	qualitative	credit	analyst
departments	in	banks	decreased	and	credit	lending	was	largely	industrialized.	The	Basel	II
accord	also	instituted	a	standard	practice	for	banks	in	risk-adjusted	pricing	of	their	credits.
Hence,	regulation	drove	significant	investment	not	only	in	risk	systems	but	also	in
implementing	processes	in	the	day-to-day	use	of	traditional	banking	systems	like	loan	systems.
Banks	were	also	looking	for	ways	to	arbitrage	on	their	required	capital,	which	contributed	to	a
rising	interest	in	packaging	and	issuing	securitization	instruments	on	some	of	the	credit
portfolios.

At	the	time	of	implementation	of	Basel	II	an	important	discussion	arose	between	banks	and
regulators	about	the	potential	countercyclicality	of	the	new	credit	capital	buffers.	This	referred
to	the	situation	that,	at	good	times,	when	the	probability	of	default	and	loss	given	default	inputs
to	the	risk-weighted	assets	model	was	low	capital	requirements	were	also	low.	At	bad	times
the	opposite	situation	would	occur	and	increase	capital	requirements.	Potentially,	this	situation



could	lead	to	banks	having	to	raise	capital	and	increase	offered	customer	rates	at	the	exact	time
of	a	recession,	contributing	to	countercyclicality.	The	regulatory	response	to	stabilize	capital
requirements	and	avoid	the	countercyclicality	was	to	demand	the	use	of	stressed	and	long-run
probability	of	defaults	and	loss	given	defaults	in	calculation	of	capital	requirements.

A	remaining	critique	of	the	Basel	II	accord	for	credit	risk	is	the	fact	that	risk-weighted	assets
are	summable	and	hence	the	regulatory	capital	does	not	take	into	account	concentration	and
diversification.	Many	banks	therefore	have	developed	their	own	economic	capital	models	for
credit	risk.	At	the	time	banks	were	implementing	the	Basel	II	accord	for	credit	risk	there	was
also	a	lively	discussion	about	whether	one	should	use	the	regulatory	risk	capital	versus	the
economic	capital	model	allocated	risk	when	pricing	credits.1

While	Basel	II	certainly	had	the	most	significant	impact	on	banks'	credit	risk	analysis	methods
and	lending	processes	the	Basel	II	accord	also	instituted	new	capital	requirements	for
operational	risk,	and	in	its	second	pillar	focused	also	on	banks'	general	process	for	capital
assessment,	with,	for	example,	general	guidelines	on	specific	topics	such	as	liquidity	risk.

In	2005	the	Basel	II	accord	also	added	more	advanced	capital	requirements	for	over-the-
counter	(OTC)	derivatives	counterparty	exposure	at	default	(BaselCommittee,	2005b).	The
original	1988	amendment	to	Basel	I	used	simplified	current	exposure	and	regulatory
prescribed	add-on	factors.	The	new	regulation	allowed	banks	to	use	either	an	updated	current
exposure	approach,	a	standardized	method,	or	an	internal	models	approach	to	estimate	the
exposure.	The	calculated	exposure	was	subsequently	used	in	the	Basel	II	prescribed	model	for
risk	capital.	In	the	internal	model	method	banks	could	use	advanced	multihorizon	simulation-
based	approaches	to	price	OTC	derivatives	at	future	times	and	subsequently	aggregate
exposure	per	netting	set	agreement.	In	addition	banks	could	take	into	account	collateral	such	as
margining	when	estimating	regulatory	exposures.	The	regulatory	exposure	measure	was
subsequently	adjusted	by	a	regulatory	assigned	or	internally	calibrated	alpha	parameter	to
control	for	wrong-way	risk	and	model	risk.	The	regulatory	assigned	alpha	was	1.4	and	the
internal	model	floor	for	alpha	was	set	at	1.2.	At	this	time	many	of	the	larger	banks	expanded
their	current	market	risk	systems	or	invested	in	completely	new	systems	to	calculate	the
regulatory	exposure	measures	for	the	OTC	derivatives	book.	Hence,	again	significant
investments	were	made	in	systems,	processes,	and	skilled	people.	It	also	became	standard
practice	to	apply	and	monitor	limits	on	counterparty	exposures	using	a	worst-case	exposure
measure—usually	referred	to	as	potential	future	exposure.	Significant	time	was	also	spent	on
calibrating	internal	estimates	of	alpha	to	bring	capital	requirements	down.	These	estimates
focused	on	deriving	an	implied	bank-specific	alpha	using	the	economic	capital	model	as
comparison	to	the	regulatory	exposure	model.

The	same	Basel	paper	that	introduced	new	capital	requirements	methods	for	OTC	derivatives
in	2005	also	opened	up	a	way	for	banks	to	more	effectively	account	for	credit	hedges	in	Basel
II.	Previously,	a	hedged	credit	exposure	could	use	the	credit	quality	of	the	credit	hedge	issuer
instead	of	the	credit	itself	in	the	Basel	II	risk-weighted	asset	formula.	This	was	of	course	only
beneficial	if	the	credit	quality	of	the	credit	hedge	issuer	was	better	than	on	the	credit	itself.	The
substitution	approach	was	criticized	for	being	too	conservative—essentially	assuming	perfect



correlation	between	default	events	of	the	credit	hedge	issuer	and	the	credit.	The	new	double
default	formula	allowed	a	more	favorable	approach	than	substitution	by	explicitly
incorporating	the	correlation	between	the	credit	and	the	credit	hedge	issuer	credit	quality.

The	next	major	change	to	the	Basel	regulation	appeared	in	2009,	called	Basel	2.5	(Basel
Committee,	2009a,	b)	and	was	focused	on	updated	capital	requirements	for	market	risk	in
trading	book	and	a	new	capital	charge	for	credit	risk	in	the	trading	book,	called	the
incremental	risk	charge.	The	new	market	risk	charge	added	a	stressed	value	at	risk	charge	to
the	current	charge	for	internal	market	risk	models,2	substantially	increasing	market	risk	capital
requirements.	The	incremental	risk	charge	was	focused	mainly	on	bonds	in	the	trading	book
with	liquidity	trading	horizons	assigned	to	credits.	No	model	was	prescribed	but	since	the
regulatory	requirement	concerned	the	trading	book	and	hence	large	counterparties,	many	banks
used	their	existing	portfolio	credit	risk	models	for	large	firms	inspired	by	the	Merton
(1974)structural	model.	A	particular	popular	implementation	was	the	multifactor	approach
describing	the	firm's	credit	quality	in	terms	of	observed	financial	indices.	Initially,	some	banks
deemed	the	new	incremental	risk	charge	model	as	too	complex,	especially	the	required
mapping	of	trading	book	credit	exposures	to	liquidity	trading	horizons.	This	was	because	many
banks'	existing	credit	portfolio	models	at	this	time	did	not	have	a	concept	of	trading	and
liquidity	horizon,	hence	meeting	the	regulation	required	enhancements	to	existing	systems.

While	Basel	2.5	was	being	implemented	in	banks	the	regulators	were	also	working	on	a	more
comprehensive	response	to	the	experiences	in	the	2007	financial	crisis.	The	new	Basel	III
accord—initiated	in	2010–2011—introduced	new,	complementary	capital	and	liquidity
requirements	(Basel	Committee,	2011a,	2013a).	On	the	firmwide	capital	side	existing	Basel	II
rules	for	capital	were	strengthened	with,	for	example,	new,	more	conservative	levels	of	Tier	1
capital	and	requirements	on	countercyclical	capital	buffers.3

In	Basel	III	a	completely	new	capital	requirement	was	introduced	for	OTC	derivatives	that
was	in	addition	to	the	2005	method,	founded	in	calculating	default	loss–based	capital	based	on
banks'	exposures.	The	new	credit	valuation	adjustment	charge	capitalized	mark-to-market
changes	in	counterparty	exposures	in	addition	to	the	2005	default	charge.4	The	rationale	was
that	during	the	2007	crisis	a	large	part	of	the	losses	observed	in	the	OTC	derivative	books	of
banks	were	due	to	mark-to-market	and	not	realized.	Still,	banks	had	to	devalue	their	OTC
books	in	the	crisis	by	substantial	amounts	due	to	sharply	increasing	market	credit	spreads	of
deal	counterparties.	The	pricing	and	hedging	of	credit	risk	valuation	adjustment	was	not	a	new
practice.	Many	of	the	large	investment	banks	had	already	adopted	special	credit	valuation
adjustment	desks	and	invested	in	cutting-edge	technology	risk	systems	to	actively	price	and
manage	credit	valuation	adjustments	after	the	2007	financial	crisis.	With	the	new	regulation	the
investment	in	new	credit	valuation	systems	also	spread	to	banks	with	smaller	OTC	books.
However,	the	need	for	dynamic	hedging	of	credit	valuation	adjustment	was	not	as	imminent	as
for	the	investment	banks	and	many	of	the	smaller	banks	still	view	credit	valuation	adjustments
as	a	reserve	component	rather	than	a	market-priced	and	hedged	component.5

Alongside	the	new	Basel	III	charge	for	credit	valuation	adjustments	the	most	significant	new
Basel	III	charge	was	the	requirement	for	banks	to	hold	dedicated	liquidity	buffers.	The	new



Basel	III	liquidity	risk	regulation	underscores	the	importance	of	managing	a	liquidity
contingency	buffer.	The	focus	is	on	maintaining	a	high-quality	liquidity	portfolio	that	can	hedge
liquidity	outflows	under	stress	scenarios,	that	is,	to	generate	sufficient	counterbalancing
capacity.	The	key	minimum	reporting	standards	in	the	Basel	III	liquidity	risk	framework	are	a
short-term,	30-dayliquidity	coverage	ratio,	and	a	longer-term	structural	ratio	to	address
structural	liquidity	mismatches.	There	are	also	metrics	for	monitoring	liquidity,	for	example,
the	monitoring	of	maturity	mismatch,	funding	concentration,	and	unencumbered	assets	available
(available	for	sale).	Holding	a	liquidity	buffer	incurs	opportunity	cost	just	as	holding	capital
does.	Hence,	one	of	the	core	activities	by	banks	in	their	approach	to	Basel	III	liquidity	risk	is
to	institute	a	pricing	of	liquidity	risk	and	hence	pass	the	buffer	costs	to	the	consumers	of	the
buffer.	Contingent	liquidity	risk—which	is	what	the	liquidity	buffer	is	held	for—is	mainly
attributed	to	off–balance	sheet	commitments	such	as	facilities	that	can	be	drawn	by	the	bank's
counterparties,	but	also	for	other	items	such	as	sudden	funding	withdrawals.

In	2012,	2013,	and	2014,	the	Basel	2.5	2009	market	risk	updates	were	further	enhanced	(Basel
Committee,	2012,	2013b,	2014a).	New	proposed	market	risk	requirements	included	a	move
from	value	at	risk	to	expected	shortfall	as	a	risk	measure	(also	referred	to	as	conditional	value
at	risk,	or	CVaR,	which	is	the	term	we	will	use	in	this	book),	introduction	of	longer	liquidity
horizons	than	the	current	10	days	for	illiquid	trades,6	and	a	newly	revised	mandatory
standardized	approach—even	for	banks	currently	using	the	internal	models	approach.	As	CVaR
is	the	expected	tail	loss	beyond	VaR	market	risk	capital	can	increase	with	this	new	measure,
although	the	regulators	tend	to	agree	to	reduce	the	confidence	level	from	99%	to	97.5%	for	the
internal	model–based	approach.7	However,	the	introduction	of	longer	liquidity	horizons	than
10	days	will	surely	increase	market	risk	capital	requirements	for	illiquid	portfolios.

In	addition	to	the	evolution	of	the	Basel	regulation	there	have	been	several	regional	initiatives
requiring	banks	to	analyze	capital	sufficiency.	These	initiatives	are	especially	focused	on
stress	testing	as	the	vehicle	for	analyzing	the	soundness	of	banks'	current	capital	base.	For
example,	in	Europe	EBA	has	required	banks	to	report	comprehensive	stress	tests,	and	in	the
United	States,	CCAR	also	requires	banks	to	stress	test	their	firmwide	capital,	in	contrast	to
model-based	charges,	where	the	stress	tests	focus	on	putting	capital	limits	under	prescribed
regulatory	stress	scenarios.	The	stress	tests	are	by	nature	macroeconomic	firmwide	and	focus
on	projected	income	and	capital	statements	under	stress.	The	relatively	recent	focus	of
regulators	on	stress	testing	as	a	key	tool	for	analyzing	risk	and	capital	sufficiency	is	founded	in
the	view	that	classical	model-based	charges	represent	mainly	a	historical	view—either	in
terms	of	calibrating	model	parameters	on	history,	or	directly	as	in	historical	simulation
approaches.	It	can	also	be	viewed	as	a	regulatory	trend	in	distrust	of	models.	Stress	testing	is
viewed	as	a	forward-looking	risk	analysis	tool	that	should	complement	risk	analysis	based	on
historically	calibrated	models.	Compared	to	model-based	risk	charges	the	stress	tests	and
scenario	analysis	impacts	can	also	be	easier	to	communicate	to	the	different	stakeholders.

The	focus	on	stress	testing	as	a	complementary	supervisory	tool	followed	quickly	after	the
2007	financial	crisis.	In	the	United	States,	the	Supervisory	Capital	Assessment	Program
(SCAP)	started	in	2009	to	focus	on	comprehensive	stress	test	programs	for	US	banks.	It	was
followed	by	today's	CCAR	stress	tests.	Both	SCAP	and	CCAR	surely	inspired	the	more



recently	introduced	European	EBA	stress	tests.	The	Basel	regulation	also	promoted	stress
testing	as	a	complement	to	model-based	charges	after	the	2007	financial	crisis.	In	2009	the
Basel	committee	paper	on	principles	for	sound	stress	testing	practices	and	supervision
promoted	a	comprehensive	stress	testing	approach	in	banks	(Basel	Committee,	2009c),	the
concept	of	reverse	stress	testing.	That	is,	identification	of	the	still	plausible	but	severe	impact
scenarios	was	made	into	stress	testing	practice	in	banks.

Guidelines	on	banks'	capital	planning	process	were	introduced	already	in	pillar	2	of	the	Basel
II	2005	accord.	However,	the	2007	financial	crisis	and	the	stress	test	initiatives	by	(for
example)	EBA	after	the	crisis	have	increased	the	importance	of	regulators	promoting	a	sound
capital	planning	process.	Basel	2014	(Basel	Committee,	2014b2014b)	focuses	on	guidelines
for	firmwide	capital	planning	and	in	particular	that	banks	take	a	forward-looking	scenario-
based	approach	to	capital	planning.	As	a	response	there	is	an	increasing	practice	in	banks	to
integrate	the	risk	view	into	traditional	financial	statements	such	as	profit-and-loss	statements
and	capital	views	(balance	sheet	views).	For	profit-and-loss	statements	this	requires	banks	to
convert	risk	systems	stress	test	outputs	such	as	scenario	expected	losses	into	effects	on	banking
book	net	interest	margins,	trading	book	profit	and	loss,	and	subsequently	into	scenario
operating	profit	from	stressed	revenues	and	expenses.	This	integration	of	risk	analysis	into	the
finance	view	is	important	as	it	explicitly	links	the	results	of	complex	risk	analysis	to	future
potential	income	and	balance	sheet	statements.	Hence,	it	enhances	the	understanding	and
communication	of	risk	analysis	impacts	on	traditional	financial	measures,	both	within	the	bank
and	with	external	stakeholders.

As	regulations	have	evolved	and	surely	will	continue	to	evolve	banks	need	to	further	invest	in
systems,	processes,	and	skilled	people	to	minimally	meet	the	regulation.	However,	regulatory
capital	requirements	are	only	the	minimal	risk	benchmarks.	Banks	must	have	a	clear	risk
appetite	definition	that	serves	as	internal	management	guidelines.	Business	policies	and	growth
strategy	must	adhere	to	these	guidelines.	A	natural	question	is	whether	a	bank	that	invests	more
in	risk	management	analytics	and	risk	management	processes	can	take	advantage	of	this	in
business	and	hence	give	a	return	on	the	added	investment.	That	is,	can	banks	compete	on	risk
analytics	and	the	embedding	of	sound	risk	analytics	in	day-to-day	processes	such	as	product
pricing?

Creating	Value	from	Risk	Management
The	use	of	sophisticated	risk	models	and	stress	tests	in	understanding	aggregate	currency
amounts	at	risk	for	the	bank's	portfolios	is	only	one	of	the	applications	of	risk	analysis.
Perhaps	of	even	more	importance	is	to	understand	the	relative	risks	of	positions	and
subportfolios.	This	is	because	relative	risks	are	important	in	the	process	of	risk-based	value
creation	for	banks.	A	clear	understanding	of	risk	costs	down	to	granular	levels	improves	the
bank's	understanding	of	which	current	products,	customers,	and	counterparties	are	profitable.
Moreover,	with	granular	knowledge	on	risk	costs	the	bank	can	be	more	competitive	in	product
pricing.	It	can	also	avoid	participation	in	markets	where	the	risk	compensation	is	not	sufficient
to	cover	the	bank's	risk	costs.	Clearly,	banks	that	invest	more	in	scientific	data	and	economic



rationale	investigations	on	their	customers	and	the	market	behavior	are	better	prepared	to
capture	such	aspects	in	their	risk	models	and	hence	subsequently	take	advantage	of	the
knowledge.

The	ultimate	value	creation	from	risk	analytics	is	realized	when	it	is	deployed	in	day-to-day
business	strategy.	As	a	result	of	regulation	but	also	driven	by	market	competitiveness	banks	are
investing	more	in	systems	and	processes	to	accurately	price	products	and	create	strong
incentives	for	value	creation	in	their	business	lines.	For	example,	branches'	loans	and	deposits
carry	funds	transfer	rates	with	associated	risk	costs	to	signal	the	minimal	customer	rate	needed
for	profitability.	For	traders,	the	fair	values	of	the	swap	deals	carry	credit	valuation
adjustments	and	funding	cost	adjustments	to	signal	to	the	trader	the	client	spread	needed	to	be
profitable.	It	is	also	an	increasing	trend	to	centralize	the	hedging	and	risk	management	of	more
and	more	of	the	risk	costs	experienced	in	business.	A	centralization	allows	banks	to	better
understand	their	exact	concentration	in	certain	markets,	counterparties,	and	products,	and,
depending	on	a	bank's	risk	appetite,	measures	can	be	taken	to	increase	internal	product	charges
or	making	changes	to	the	product	design.	However,	the	centralization	of	risk	measurement	and
management	must	also	factor	in	that	in	some	cases	at	least	part	of	the	risk	responsibility	has	to
be	decentralized,	both	because	of	information	asymmetry	and	to	create	the	right	incentives
within	the	organization	to	actively	manage	the	risk.	For	example,	branches	may	possess	unique
information	about	local	business	that	central	credit	models	cannot	capture.	Removing	the
branches'	responsibility	for	credit	risk	losses	may	therefore	not	be	optimal.

Banks'	risk	models	and	risk	analytics	cannot	be	too	simple.	They	must	capture	all	the	relevant
risks	down	to	the	relevant	level	they	are	used	and	in	particular	the	stylized	facts	that	have	been
experienced	in	the	past.	Risk	models	must	also	include	elements	of	forward-looking	behavior
—not	relying	solely	on	model	validation—based	on	history.	Since	much	of	the	business	value
from	risk	analytics	derives	from	risk-based	pricing	there	are	strong	demands	that	risk	analytics
can	appropriately	rank	the	relative	risks	of	products.	Banks	with	poor	granular-level	risk
models	and	risk	analytics	run	the	risk	of	mispricing	relative	to	the	market	and	eventually	end
up	with	the	nonprofitable	portfolios.	Banks	with	strong	granular-level	risk	analytics	and
empirically	and	economically	vetted	risk	models	can	be	more	competitive	and	can	also	avoid
creating	excessive	risks	in	portfolios.	They	also	create	more	trust	in	the	organization	for	the
use	of	risk	analytics.	It	has	become	a	practice	sometimes	to	refer	to	model	simplicity	itself	as
an	absolute	good.	The	relevant	concept	is	relative	simplicity.	For	example,	we	would	favor	a
more	simplistic	model	instead	of	a	more	complex	model	if	sufficient	evidence	is	not	available
for	the	added	complexity.	As	Albert	Einstein	once	said,	everything	should	be	kept	as	simple	as
possible	but	not	simpler	than	that.

Throughout	this	book	readers	can	find	numerous	topics	on	risk-adjusted	performance	and	risk-
constrained	optimization	methodologies	that	help	banks	create	value	from	proper	risk
management	methods	and	models.	Accurate	risk	measurement	and	monitoring	of	risk	levels	is
clearly	one	core	objective	of	risk	management	models.	Using	risk	management	models	to	also
aid	risk-based	decision	making,	especially	the	performance	analysis	and	profit	maximization,
also	makes	risk	management	models	central	to	the	business.



Financial	Risk	Systems
Besides	all	the	economic	and	business	drivers,	the	advance	in	the	modern	risk	management	is
greatly	indebted	to	innovations	in	technology.	In	fact	the	birth	of	the	financial	theories
underlying	the	modern	risk	management	practice,	including	Markowitz	portfolio	theory,
Sharpe's	capital	asset	pricing	theory,	Ross	arbitrage	pricing	theory,	and	Black-Scholes	option
pricing,	coincided	with	the	commercialization	of	the	computer	technology.	It	is	not	an
exaggeration	to	say	that	the	growth	of	risk	management	goes	hand-in-hand	with	the
development	of	computational	technology.

A	financial	risk	management	system	is	certainly	the	platform	where	the	quantitative	risk
management	methodologies	materialize	in	practice.	It	usually	refers	to	a	computer	system	that
can	be	used	to

manage	risk	models	and	risk	data,

construct	risk	scenarios,

evaluate	the	bank	portfolio	under	the	risk	scenarios,

report	on	risk	measures,	and,

in	some	cases	also	assist	in	risk	based	decision	making.

Traditionally	banks	have	employed	silo	risk	systems	to	calculate	the	different	types	of	risks
such	as	market,	credit,	and	asset	and	liability	management	risk.	Risk	aggregation	to	firmwide
capital	levels	is	then	a	post-process	on	the	silo	system's	risk	distributions	or	risk	measures.

While	the	risk	calculation	itself	is	the	core	of	a	financial	risk	management	system	the	system
capabilities	also	rely	on	its	risk	infrastructure	and	what	risk	technology	the	system	can	use.	The
risk	infrastructure	should	support	the	use	of	the	system,	for	example,	with	proper	workflows
and	configuration	capabilities.	The	risk	technology	should	be	aligned	to	the	requirements	of	the
risk	calculation.	In	many	cases	the	development	of	the	risk	calculation	algorithms	and	methods
themselves	must	also	take	into	account	the	risk	technology	to	take	full	advantage	of	the
computer	resources	such	as	processors	and	memory.	In	our	discussion	of	the	financial	risk
system's	capabilities	we	will	decompose	the	system	capabilities	into	three	components:

1.	 Risk	analytics	or	risk	calculation	capabilities

2.	 Risk	infrastructure	capabilities

3.	 Risk	technology	capabilities

While	we	hope	this	book	provides	enough	detailed	discussion	of	the	risk	analysis	methods	to
be	successfully	implemented	in	banks'	current	financial	risk	management	systems,	we	would
also	like	to	give	some	explicit	instructions	on	the	core	components	to	consider	when
constructing	or	implementing	new	financial	risk	systems.	Indeed,	constructing	or	implementing
a	new	risk	system	is	not	a	trivial	task.	Banks	often	face	many	competing	challenges,	such	as	a
balanced	decision	weighing	the	trade-off	between	cost	and	performance,	short-term	and	long-
term	needs,	regulatory	and	internal	compliance,	security	and	new	technology,	and	risk	and



finance	reconciliation.

Risk	Analytics
A	risk	system	can	be	designed	to	only	calculate	(for	example)	market	risk	or	can	be	designed
more	comprehensively	to	be	able	to	calculate	risk	across	many	risk	types.	In	general,	a
financial	risk	system	implements	a	risk	calculation	flow	where	at	each	step	in	the	flow	risk
analysts	can	assign	or	create	new	methods	or	models	that	are	used	in	the	risk	analysis.
Examples	include	pricing	functions,	market	simulation	models,	and	credit	risk	evaluation
models.	Many	modern	risk	systems	are	designed	to	be	comprehensive	in	the	analysis	of
financial	risk.	That	is,	cover	all	the	financial	risks	of	a	position	that	can	come	from	market,
credit,	and	liquidity	risks.	To	accommodate	therequired	risk	analytics	the	risk	calculation	flow
follows	a	few	core	sequential	steps:

1.	 The	calibration	of	risk	factor	models	and	joint	scenario	generation	from	risk	factor	models
such	as	models	for	equity	prices,	interest	rates,	credit	drivers,	behavioral	risk	factors,	etc.
The	scenario	generation	also	includes	the	creation	of	ad-hoc	stress	scenarios.

2.	 The	transformation	of	risk	factors	used	in	scenario	models	or	ad-hoc	stress	scenarios	to
actual	risk	factors	used	for	pricing	and	other	risk	calculations.	For	example,	transformation
of	bond	price	and	yield	curve	risk	factors	to	zero-coupon	curves	used	in	pricing	of	cash
flow	instruments	such	as	swaps,	bonds,	or	loans.	Other	examples	include	currency
triangulations	for	currency	pairs	that	can	be	derived	from	existing	currency	pair	scenarios,
and	factor	models	used	for	generating	comprehensive	risk	factor	scenarios	from	a	core
reduced	set	of	macroeconomic	risk	factor	scenarios.

3.	 The	credit	model	rating	assessment	or	probability	of	default	calculation	on	instrument
(loan),	counterparty,	or	pool	level	needed	to	price	or	assign	default	and	migration	losses.
In	case	of	credit	model	calculations	on	counterparty	or	pool	level,	all	the	associated	pool
or	counterparty	exposures	inherit	the	credit	characteristics.8

4.	 The	credit	model	rating	assessment	is	conditional	on	the	(credit)	risk	factors.

5.	 The	pricing	and	cash	flow	generation	of	the	financial	instruments,	conditional	on	rating
model	assessments	and	the	market	risk	factors.	The	pricing	and	cash	flow	generation	of
traditional	banking	book	instruments	can	also	depend	on	behavioral	risk	factors	such	as
deposit	withdrawal	behavior	and	prepayment	rates.

6.	 Aggregation	of	pricing	and	cash	flows	and	computation	of	relevant	measures	such	as
exposure.	Aggregation	examples	include	counterparty	or	netting	set.

7.	 The	application	of	collateral	agreements	or	hedge	strategies	to	reduce	instrument-level
exposures	as	well	as	aggregated	exposure	levels	such	as	at	counterparty	or	netting	sets.
Here,	the	collateral	or	hedge	can	itself	be	stochastic	and	depend	on	the	risk	factors	and
hence	be	priced	in	step	4	together	with	the	exposures.	Examples	include	market	risk	and
liquidity	hedging	portfolios	as	well	as	credit	collaterals	such	as	mortgage	property
collateral	and	other	collateral	agreements	with	counterparties.



8.	 The	application	of	risk	and	statistical	summary	measures	on	profit-and-loss	results	as	well
as	on	cash	flows—for	example,	value	at	risk	or	other	measures	on	profit-and-loss	or
traditional	cash	flow–based	asset	and	liability	management	measures	such	as	hedged	and
unhedged	interest	rate	and	liquidity	gap.

9.	 The	application	of	post-aggregation	processing	measures	such	as	risk-adjusted	returns	that
depend	on	the	computed	risk	measures.

The	eight	steps	in	the	risk	calculation	flow	in	a	financial	risk	system	are	also	illustrated	in
Figure	1.1.	Of	course,	in	this	process	we	have	assumed	the	necessary	portfolio	and	market	data
are	prepared	for	the	models	and	the	risk	analytics.	This	process	is	not	just	pure	data
management	but	rather	a	joint	effort	between	data	and	risk	modeling	teams	to	define	a
standardized	risk	data	model.

Figure	1.1	Risk	Calculation	Flow	in	a	Financial	Risk	System

Regulatory	requirements	and	the	fast	evolution	of	market	practices	in	risk	analysis	require	risk
systems	to	perform	more	and	more	risk	calculations	faster	and	faster,	cover	more	risk	types
(i.e.,	be	more	comprehensive),	and	be	able	to	communicate	results	with	other	bank	(risk)
systems.	For	example,	requirements	such	as	CCAR	and	EBA	stress	testing	exercises	promote
banks	to	analyze	firmwide	stress	results	in	the	context	of	impacts	on	projected	future	income
statements	and	balance	sheet	statements.	There	can	also	be	a	feedback	effect	to	the	risk
calculation	when	management	actions	are	taken	based	on	the	projected	income	and	balance
sheet	statements	that	affects	the	portfolios	in	the	next	risk	analysis	horizon.

Risk	Infrastructure
Apart	from	the	risk	analytics	and	the	risk	calculation	flow,	a	financial	risk	system	needs	a	risk
infrastructure.	The	risk	infrastructure	should	both	support	the	current	use	of	the	system	as	well
as	being	able	to	adapt	to	future	needs.	We	approach	the	requirements	on	a	financial	risk
management	systems	risk	infrastructure	from	a	few	core	principles	that	the	system	should
support.	These	core	principles	include:



Comprehensiveness	and	relevance

Accuracy

Timeliness

Governance

Transparency

Extensibility

The	comprehensiveness	and	relevance	principle	means	that	the	risk	system	must	be	able	to
capture	all	material	risks	that	are	in	the	scope	of	the	system.	That	is,	the	system	must	have
access	to	all	the	material	risk	data,	by	business	line,	legal	entity,	asset	type,	industry,	region,
and	other	groupings,	as	relevant	for	the	risks	in	question.	The	system	must	also	implement	the
risk	models	and	analytics	that	are	appropriate	for	the	mission	of	the	system,	adequate	to	allow
identifying	and	reporting	risk	exposures,	concentrations,	and	emerging	risks	and	adaptive	to	the
granularity	of	the	data.	The	data	comprehensiveness	should	also	encompass	the	multiple
configurationsthe	system	is	commissioned	to	do.	Oftentimes	a	risk	system	has	to	be	adaptive	to
multiple	configurations	even	for	a	single	risk	type.	Such	configuration	can	be	due	to:

Multi-jurisdictions	that	the	institution	has	to	respond	to:

This	typically	happens	to	a	multinational	institution	that	runs	business	in	different	countries
or	regions.	Any	international	accord	of	risk	regulation	like	Basel	accords	is	subject	to
local	modifications.	Sometimes	the	modification	can	be	quite	significant	due	to	the	local
business	practice.	In	this	case	institutions	have	a	choice	to	build	different	systems	for
different	jurisdictions,	which	is	not	ideal	for	economic	and	integrity	reasons,	or	have	one
system	that	can	cater	to	different	configurations	on	subset	portfolios	and	economic	data	for
the	jurisdictions.	A	good	example	is	the	Basel	II	and	Basel	III	regulations;	many
multinational	banks	that	operate	directly	or	indirectly	through	subsidiaries	in	very	diverse
regions	face	the	challenge	of	being	compliant	with	different	jurisdictions.	These
international	holding	companies	also	need	to	aggregate	and	reconcile	group	risk	measures
to	report	to	the	group	home	regulators.

Multiple	business	environments	the	institution	operates	in:

Even	for	a	non-regulatory	risk	analyses	the	need	for	multiple	configuration	settings	can	also
easily	come	up	because	of	different	local	business	environments.	First,	different	countries
have	different	governing	laws	that	forbid	a	company	doing	certain	things.	For	example,	in
the	development	and	applications	of	the	credit	assessment	models	in	some	countries	certain
private	customer	information	cannot	be	collected	or	used	in	the	internal	rating	models	even
if	the	information	is	generally	known	as	good	predictors	of	the	credit	quality	of	customers.
Another	example	is	that	the	loan	tenor	can	be	different	in	different	countries;	some	can	be
quite	long	(e.g.,	30	years	or	longer)	while	the	others	can	be	short.	Therefore,	the	analysis
horizon	can	be	of	various	length.	Business	calendars	also	vary	across	regions	that	call	for
different	payment	convention,	pricing,	and	rate	resetting	models.



Playpen,	testing,	and	production:

A	risk	system	is	not	only	designed	to	submit	a	set	of	final	production	results,	but	also	needs
to	generate	intermediate,	testing,	validation,	and	what-if	results.	Can	the	data	and	the
system	accommodate	multiple	sets	of	models,	such	as	the	champion	and	challengers?	Can
the	data	and	the	system	sustain	evolving	regulations	especially	during	the	transition	periods
when	different	versions	of	the	regulatory	settings	have	to	be	accommodated?

Obviously	accuracy	is	a	key	requirement	for	a	risk	system.	Regulators	and	a	bank's	senior
management	must	understand	the	risk	profile	of	the	bank	in	order	to	make	informed	risk-based
decisions.	Accuracy	does	not	necessarily	mean	that	every	balance	sheet	and	off–balance	sheet
item	has	to	be	evaluated	or	projected	up	to	a	certain	precision.	There	are	many	approximation-
based	risk	methodologies	still	actively	used.	However,	banks	must	be	able	justify	the	validity
of	any	approximation	methods	within	the	system.

The	timeliness	principle	is	related	to	the	fact	that	risk	analysis	should	reflect	the	current	market
situation	and	current	portfolios	to	enable	risk	decisions	to	be	taken	on	current	risk	information.
With	the	important	role	of	risk	management	in	the	value	creation	process	in	the	banks,	the
delayed	risk	analysis	is	obviously	not	good	for	a	bank	to	remain	competitive.	Meeting
timeliness	for	a	market	risk	application	in	trading	book	with	frequent	portfolio	and	market
changes	may	require	frequent	intraday	updates	of	risk	while	meeting	timeliness	for	a	credit	risk
application	on	the	retail	and	commercial	banking	side	may	require	less	frequent	updates	due	to
relatively	slowly	changing	portfolio	compositions	and	credit	conditions	of	borrowers.	Timely
analysis	of	a	customer's	risk	profile,	the	bank's	aggregated	exposure	to	the	customer,	can	help
the	bank	to	make	a	risk-based	decision	on	customer	retention	and	cross-sell	and	up-sell
strategy	based	on	the	credit	risk	analysis	and	risk-based	pricing.	Timely	monitoring	of	the
bank's	concentration,	risk	exposure,	and	cash	flow	projection	in	terms	of	regions,	products,	and
currency	can	also	help	the	bank	to	set	optimal	capital	and	liquidity	hedging	plans	to
proactively	prepare	for	the	possible	downturn	of	the	business.

A	risk	management	process	is	not	just	about	data	and	analytic	results.	The	governance	of	the
entire	risk	process	is	critical.	A	good	risk	system	should	therefore	implement	a	workflow
process	that	duly	reflects	the	bank's	risk	governance	policy.	The	workflow	should	clearly
define	the	process	and	the	staff's	responsibility	in	the	system.	The	same	requirement	also
imposes	security	policies	to	the	system.	For	example,	when	a	data	or	risk	analyst	logs	into	the
system,	what	kind	of	data	and	analysis	does	the	analyst	have	access	to?	Another	example	is	that
not	all	the	available	data	may	be	at	the	required	quality	for	risk	analytics.	Banks	usually	have
to	approve	the	variables	whose	data	can	be	used	in	modeling.	The	governance	should	also
include	approval	and	report	submission	workflows.	When	an	analyst	has	a	risk	result	ready	the
result	should	be	validated	and	approved	before	reports	are	created	and	distributed.

Transparency	is	a	core	principle	for	a	risk	system.	An	analyst	must	be	able	to	explain	what	the
system	does,	including	the	data	used,	specific	model	assumptions,	and	risk	calculations.	That
the	risk	system	is	transparent	is	a	key	requirement	for	the	bank	to	be	able	to	understand	the
specific	models	and	assumptions	used	in	the	system	and	hence	to	be	able	to	validate	them,
either	by	data,	expertise	judgment,	or	both.



Connected	to	both	the	governance	and	transparency	principles	of	the	risk	systems	are	critical
requirements	for	a	risk	system	to	be	able	to	trace,	audit,	and	reproduce	the	results:

Traceability	means	that	the	system	provides	a	way	to	trace	a	result	back	to	the	right	version
of	input	in	a	particular	incidence	of	a	process.	The	scope	of	the	traceability	depends	on
how	the	user	manages	the	input.	That	means	the	system	should	archive	the	inputs,	including
portfolio,	market	data,	configuration,	and	models.	Traceability	also	includes	lineage.	The
lineage	information	can	provide	useful	impact	analysis	results.	The	input	data	or	a	model
parameter	change	lineage	helps	to	trace	which	part	of	results	or	intermediate	results	would
be	affected.	Another	usage	of	lineage	is	to	trace	a	risk	result	to	see	how	it	is	attained.

Reproducibility	means	that	the	system	keeps	enough	information	for	the	user	to	reproduce
the	same	result	when	the	user	applies	the	exact	same	situation	where	the	result	of	interest
was	created.	Traceability	is	a	prerequisite	for	reproducibility	but	the	system	has	to	now
make	sure	all	inputs	are	correctly	restored	and	retrievable	back	to	the	system	in	order	to
reproduce	the	same	input	environment	required	by	the	result.

Auditability	for	a	system	applies	information	in	a	shared	data	space	in	terms	of	who	and
what	made	changes	to	the	system,	and	when.

Transparency,	process,	and	governance	are	certainly	critical	to	decision	making.	A	decision
must	sustain	questions,	validation,	and	examination.	Traceability,	auditability,	and
reproducibility	are	obviously	directly	applicable.	Risk-based	decision	making	and
performance	analysis	are	in	fact	the	ultimate	purpose	of	risk	management.	In	practice	two
categories	of	decision	support	are	expected	from	a	risk	system.	The	first	category	of	decision
support	is	made	almost	completely	by	the	system	with	minimal	human	intervention.	Such
decisions	are	usually	based	on	well-established	models	and	market	practice.	Decisions	in	this
category	can	include	automated	approval/rejections	of	credit	applications	based	on	credit
models	and	loan	pricing	models.	Automated	market-hedging	strategies	can	fall	into	this
category	as	well.	The	second	system-generated	decision	support	type	is	more	referential	and
provides	guidance	to	the	decision	makers.	Accuracy	and	timeliness	are	two	critical
characteristics	of	a	good	decision-making	framework.

Risk	management	is	a	quickly	evolving	discipline.	This	is	not	only	because	the	methodology
and	technology	change	rapidly	but	is	also	due	to	the	fast-changing	economic	and	market
environment	in	which	banks	are	running	business.	The	risk	system	should	be	adaptive	to	newly
identified	risks,	new	methodologies,	and	new	reporting	requirements.	For	example,	during	the
Greek	debt	crisis,	global	and	European	banks	were	demanded	to	submit	their	total	exposures
to	Greek	counterparties	and	a	few	other	European	countries	that	had	similar	debt	sizeconcerns
to	the	senior	management	and	regulators.	It	turned	out	to	be	a	difficult	task	for	many	banks.	This
was	because	the	aggregated	risk	to	such	a	level	was	never	calculated	and	reported	before.	If	a
system	cannot	support	quick	extensibility,	it	will	not	only	induce	more	operational	cost	and
risk	at	the	time	of	the	new	risk	analysis	requirement	but	also	disable	the	accuracy	and
timeliness	of	the	risk	analysis.

Risk	Technology



The	proper	use	of	the	technology	is	key	to	financial	risk	systems	and	the	actual	implementation
of	the	quantitative	methods	discussed	in	this	book.	It	is	also	decisive	for	meeting	the	timeliness
principle	we	discussed	in	the	context	of	risk	infrastructure.	Just	as	any	computer	system,	a	risk
system	faces	the	constraint	of	four	major	computer	resources:

Processor	capacity

Memory	capacity

Storage	capacity

Network	bandwidth	in	distributed	calculation	and	storage	on	a	grid	of	multiple	computer
nodes

The	first	obvious	way	to	reduce	calculation	time	for	a	risk	analysis	is	to	deploy	the	risk
calculation	on	parallel	processors.	However,	the	first	challenge	is	to	ensure	that	the	algorithm
itself,	if	possible,	is	not	deployed	as	a	sequential	calculation.	Parallel	programming	can	in
principle	be	achieved	even	in	this	case	if	multiple	such	algorithms	can	be	executed
simultaneously.	Many	portfolio	risk	analyses	are	naturally	deployed	in	parallel.	For	example,
the	pricing	of	positions	can	be	done	independently	across	a	set	of	scenarios.	For	a	fixed
number	of	processors	the	optimal	distribution	of	exposure	valuation	to	processors	may	depend
on	the	analysis	type.	For	example,	for	many	scenarios	such	as	a	model	simulation	it	may	be
optimal	to	distribute	the	scenarios	while	for	just	a	few	scenarios	such	as	a	stress	test	it	may	be
optimal	to	distribute	the	positions.	Even	so-called	nested	simulation	pricing	methods,	where
simulation	is	used	to	price	the	position	for	every	risk	scenario,	can	in	principle	be	distributed.
This	is	because,	for	a	given	risk	scenario,	the	nested	simulation	position	can	be	distributed	in
sub-positions	with	independent,	smaller,	nested	simulation	samples	that	are	eventually
aggregated	to	an	average	nested	simulation	price	for	the	position.

The	parallel	processing	can	also	be	more	complex	to	implement.	For	example,	in	credit	risk
applications	one	frequently	needs	to	first	calculate	the	credit	quality	of	the	counterparty,	then
price	the	exposures	belonging	to	the	counterparty,	aggregate	exposures,	and	then	allocate	the
collateral	to	the	exposures.	That	is,	perform	steps	3–6	in	the	risk	analytics	flow	in	the	financial
risk	system	discussed	above.	The	easiest	solution	is	to	distribute	by	counterparties	and	hence
by	all	the	exposures	and	collateral	belonging	to	a	counterparty.	However,	such	a	distribution
approach	may	not	be	optimal	as	the	pricing	time	for	counterparty	exposures	may	vary
significantly,	either	due	to	portfolio	size,	pricing	complexity,	or	both.	While	distributing
exposures	with	one	single	counterparty	onto	different	computer	threads	may	result	in
simultaneous	access	to	the	counterparty	data	the	independent	exposure	evaluation	may	still	be
optimal.	Of	course,	in	this	case,	at	the	time	of	collateral	allocation	the	counterparty	exposures
and	priced	collateral	on	different	threads	may	need	to	be	aggregated	back.	This	is	one	example
that	calls	for	full	understanding	of	the	analysis	sequence	when	designing	the	parallel
computation.

Processing	capacity	is	not	the	only	constraint.	The	second	is	on	the	memory.	Faster	processing
time	achieved	through	parallelism	increases	the	demand	on	memory.	Individual	machines	can
only	have	a	certain	amount	of	memory.	When	the	risk	calculation	requires	many	more	folds	of



memory	for	the	input	and	intermediate	data,	increasing	parallel	processing	will	run	into	the
obstacles	of	memory	requirement.	For	this	reason	traditional	systems	constantly	upload	and
unload	data	between	memory	and	the	hard	disk,	which	can	create	a	lot	of	bottlenecks.	Writing
and	reading	information	to	and	from	the	storage	trades	off	with	the	memory	usage.	However,
the	introduction	of	grid	computing	makes	available	not	only	more	processors	but	also	memory
from	a	cluster	of	multiple	computers.	Holding	data	in	memory	and	not	writing	it	to	disk	can
avoid	the	writing	and	reading	bottlenecks.	This	in-memory	technology	can	be	applied	not	only
to	a	system	with	complicated	calculation	logic	but	also	to	systems	for	large-scale	query	of	risk
results.	Holding	the	lowest	level	of	risk	data	in	memory,	such	as	profit	and	loss	per	position
for	every	scenario,	makes	the	risk	system	more	flexible	in	terms	of	the	risk	measures	and	risk
results	that	can	be	queried	on	demand.	Because	memory	is	not	an	unlimited	resource,	it	is
imperative	to	optimize	the	implementation	of	an	algorithm	to	decide	what	information	should
be	held	in	memory	for	fast	access	and	what	should	be	written	to	the	storage	and	release	the
memory	for	that	information.

Storage	technology	has	also	vastly	advanced	just	as	the	other	computing	resources.	Now	it	is
not	difficult	to	find	hard	drives	that	can	hold	terabytes	of	data	but	even	this	size	on	one	single
computer	can	easily	be	obsolete	for	a	risk	system.	In	contrast	to	the	traditional	direct	storage	to
each	individual	computer,	network	storage	has	become	the	standard	for	many	risk	systems.
However,	it	is	not	necessarily	optimal	for	the	application	if	a	large	volume	of	data	is	required
within	a	short	period	of	time	(i.e.,	high	data	velocity).	There	are	a	couple	of	solutions	to	high
velocity.	The	first	is	through	a	high-velocity,	low-latency	data	event	stream	processing
technology;	the	other	is	to	leverage	a	distributed	file	system.	Both	solutions	are	mostly
applicable	to	a	gridcomputing	setting	where	a	large	number	of	computer	nodes	are	available
for	an	application.	A	risk	application	can	interact	with	data	storage	in	several	ways.
Traditionally,	risk	systems	require	data	to	physically	move	out	of	the	storage	for	input	to	the
risk	analysis,	and	also	later	to	physically	move	the	risk	results	to	storage	for	subsequent
reporting.	The	physical	movement	of	data	not	only	can	be	time	consuming	but	can	also	create
unnecessary	staging	data	copies	that	can	quickly	fill	the	storage.	Another	approach	for	risk
systems	to	consume	and	deliver	data	is	to	leverage	in-memory.	In-memory	views	of	data	can	in
principle	also	include	transformations.	The	benefit	is	the	potential	speed	of	data	delivery	and
that	a	physical	duplicate	of	data	is	prevented.

Another	factor	that	affects	the	choice	of	distributed	calculation	and	storage	on	a	grid	of
multiple	computer	nodes	is	the	network	bandwidth.	Network	bandwidth	is	a	scarce	resource
even	when	a	dedicated	network	is	set	up	for	the	grid.	Nowadays	multigigabytes	of	data	can	be
transmitted	among	computers.	However,	oftentimes	multiple	nodes	share	one	network	cable.	If
a	lot	of	data	are	transmitted	through	the	network,	it	can	easily	saturate	the	network	bandwidth
capacity.	Therefore,	one	should	consider	the	network	factor	in	risk	system	architecture.

Model	Risk	Management
Risk	analytics	is	the	core	of	a	risk	system.	It	is	also	this	book's	focus.	In	a	book	that	focuses
heavily	on	risk	analysis	models	it	is	appropriate	to	discuss	model	risk	management	even



before	going	into	detailed	discussion	of	any	models.

A	risk	system	contains	many	different	models	used	in	the	risk	calculations.	Models	have	their
lifecycles	and	need	to	be	frequently	validated	and	tested.	The	need	for	more	risk	calculations
and	their	growing	complexity	also	means	that	banks	need	to	manage	and	validate	more	and
more	models	that	are	deployed	in	the	risk	system(s).	Sometimes	models	are	managed	on	a
firmwide	level	even	if	certain	risk	calculations	are	executed	on	a	silo	risk	system	level.	A
firmwide	model	risk	management	approach	is	motivated	by	the	firmwide	stress	test
requirements	from	CCAR	and	EBA.	Given	the	many	different	models	that	are	involved	in
banks'	regulatory	calculations,	banks'	practice	in	model	risk	management	is	also	a	serious
concern	for	regulators.	For	example,	in	2011,	the	US	Federal	Reserve	and	the	Office	of	the
Comptroller	of	the	Currency	(OCC)	issued	joint	guidance	on	model	risk	management	practices.

Model	risk	can	arise	from	many	points	in	an	analytical	risk	process.	It	cannot	be	completely
avoided	but	it	can	be	managed.	Model	risk	can	arise	and	thus	ought	to	be	managed	in	the
following	aspects:

Model	data:

The	first	source	of	model	risk	is	data.	We	are	familiar	with	the	garbage-in-garbage-out
rule.	When	the	input	data	have	major	flaws,	even	the	best	model	can	generate	misleading
results.	Data	flaws	can	occur	not	only	due	to	the	data	quality	but	also	from	a	partial
selection	of	the	data	history.	For	example,	in	the	years	preceding	the	2007	financial	crisis,
housing	price	statistics	displayed	upward	trending	for	many	years	with	only	sporadic
default	losses.	When	banks	used	this	part	of	the	historical	data	in	the	housing	price	models
and	the	credit	default	risk	models	it	was	impossible	to	obtain	tail	risk	levels	anywhere
close	to	the	losses	in	the	2007	financial	crisis.	Even	if	data	are	available	that	cover	a	full
business	cycle	with	both	up-	and	downturns	it	is	still	just	one	observation	of	a	business
cycle.	The	future	business	cycle	swings	will	most	likely	not	be	similar	to	the	last	one.	This
observation	is	relevant	not	only	in	the	context	of	using	data	for	model	calibration	such	as
how	probability	of	default	depends	on	the	business	cycle	but	also	in	selection	and	design
of	(macroeconomic)	stress	scenarios	for	the	portfolios.9	Another	well-studied	data	flaw
subject	in	the	econometrics	literature	is	the	survivorship	bias,	which	leads	to	overly
optimistic	beliefs	of	the	future.	Therefore,	in	many	institutions	there	is	strict	governance	on
the	data	that	can	be	used	for	model	development	and	application.

Model	assumptions:

A	famous	quote	from	Box	and	Draper	(1987)	is,	“All	models	are	wrong;	the	practical
question	is	how	wrong	do	they	have	to	be	to	not	be	useful.”	Every	model	is	an
approximation.	In	order	to	reach	a	parsimonious	view	of	the	world	but	still	remain	useful
proper	assumptions	have	to	be	made.	First,	it	is	important	that	the	assumptions	are
practically	reasonable.	Second,	when	the	model	is	applied	the	model	assumption	should
still	hold.	Of	course,	the	readers	of	this	book	are	urged	to	understand	the	assumptions	of	the
models	presented	in	this	book	and	validate	the	model	assumptions	against	the	specific
application	purpose	when	a	model	is	adopted.



Model	development:

There	are	many	examples	in	this	book	where	models	are	developed	with	clear	assumptions
and	sound	economic	and	mathematical	theory.	These	are	the	foundations	of	a	good	model.
As	mentioned	before,	the	design	and	choice	of	a	model	must	fit	the	actual	use	case.
Therefore,	the	model	development	is	a	collaborative	work	between	model	developers	and
the	business	experts.	Testing	the	fit	of	a	model	is	also	an	integral	part	of	the	model
development.	However,	good	model	fit	on	historical	data	is	not	necessarily	a	good
indicator	that	the	model	will	be	able	to	generate	relevant	future	risk	scenarios.	Good	model
fit	should	be	complemented	with	expert	judgment.	A	model	with	less	statistical	fit	may
outperform	as	a	risk	model.	When	fitting	models	it	is	also	important	to	be	prudent	in	what
history	is	chosen	for	the	model	fit.	Model	parameters	estimated	on	data	can	also	be
overridden	with	more	prudent	estimates.	Because	of	the	changing	business	environment	a
model	is	always	subject	to	reexamination,	redevelopment,	and	revalidation.

Model	documentation:

The	Basel	2005	document	explains	the	assumption,	insight	and	derivation	of	the	Basel	II
risk	weight	functions	for	the	internal	model–based	approaches	(Basel	Committee,	2005c).
This	document	also	sets	a	good	example	of	model	documentation.	Every	model	employed
in	a	risk	system	should	be	clearly	documented	for	its	assumptions,	economic	insights,
mathematical	justification,	and	reasons	to	be	adopted	for	a	particular	risk	analysis.	Besides
these	elements,	it	should	also	document	the	history	of	the	model	updates	to	give	information
on	how	a	model	has	evolved.	Other	information	related	to	model	governance	such	as
developer,	modification	date,	version	number,	and	so	on	can	also	be	included	in	the	model
documentation.	A	model	document	not	only	helps	explain	the	model	to	the	stakeholders,
including	the	regulators	and	senior	management,	but	also	allows	better	transition	of	the
model	knowledge	when	there	is	any	staff	change.	The	latter	is	important	because	it
warrants	the	continuation	of	the	knowledge	of	the	model.

Model	validation:

Model	validation	is	getting	more	and	more	attention	in	the	financial	institutions.
Independent	validation	groups	are	established	to	examine	the	models	from	assumption	all
the	way	to	production.	There	are	several	tasks	a	model	validation	function	is	responsible
for.	The	first	is	to	examine	the	key	elements	of	a	model	as	discussed	above.	Second,	the
model	validation	group	applies	statistical	tools	to	validate	the	model	outcome.	On	some
occasions	the	model	validation	function	also	creates	overlapping	models	to	cross-check
the	developed	models.	The	validation	group	can	also	check	the	computer	programs	and	the
documentation	of	a	model.	Techniques	familiar	to	mathematicians	and	statisticians	are
widely	used	in	model	validation.	For	example,	pricing	models	and	the	parameters	are
constantly	calibrated	to	the	market	values	and	peer	models.	In-sample	and	out-of-sample
performance	tests	are	performed	on	the	statistical	models	and	risk	measures	are	backtested.
In	many	cases,	champion	and	challengers	models	are	set	up	in	the	model	repository	to
diversify	model	risk	and	enhance	the	governance.	This	book	contains	several	examples	of
model	validation,	especially	on	backtesting.	One	example	is	the	backtesting	study	of	the



time	aggregation	of	market	risk	with	and	without	trading,	which	challenges	the	regulatory
time	scaling	risk	approach	for	the	market	risk	capital.

Model	execution:

All	the	models	are	created	to	be	used.	Therefore,	model	execution	usually	is	the	last	step	in
a	modeling	process.	This	stage	is	where	all	the	models	are	put	together	to	accomplish	a
certain	risk	analysis.	The	prerequisite	of	this	stage	is	to	make	sure	required	data	and
assumptions	of	the	model	are	suitable.	This	is	when	the	data,	the	analysis	of	interest,	and
model	assumptions	must	be	aligned.	A	common	source	of	model	execution	risk	is	the	loss
of	fidelity	when	models	are	translated	from	the	model	development	platform	to	the	model
execution	platform.	It	is	not	unusual	for	banks	to	have	models	in	actual	use	being	several
versions	behind	the	models	just	developed.	Another	challenge	in	this	stage	is	whether	the
system	can	efficiently	accommodate	the	sophistication	of	the	models.	Such	sophistication
includes	both	the	mathematical	complexity	and	the	granularity	of	the	data	the	model	applies
to.	For	example,	a	bank	that	moves	from	a	pooled	analysis	of	banking	book	credit	losses
and	cash	flows	to	loan	level	models	not	only	faces	the	challenge	of	more	granular	model
validation.	This	increased	granularity	requires	the	risk	system	to	be	able	to	execute	models
against	millions	of	loans.	The	capturing	of	credit	losses	and	cash	flows	over	long	horizons
leads	to	challenges	in	computer	processing,	memory,	input	and	output	capability,	as	well	as
storage.	To	solve	this	challenge,	banks	must	find	balance	between	the	efficiency	of	the	risk
system	and	the	models	to	be	used.

Model	governance:

There	is	rarely	a	case	that	one	risk	system	actually	carries	out	all	the	modeling	functions
covered	in	this	section.	Sometimes	these	functions	are	dispatched	in	different	systems.	For
that	very	reason	model	governance	becomes	essential	to	minimize	the	model	risk	in	the
entire	modeling	lifecycle.	Although	model	execution	is	usually	the	last	stop	in	a	modeling
cycle,	it	should	not	be	the	end	of	the	process.	The	result	of	model	execution	should	be
validated	and	serve	as	a	trigger	for	model	updates.	To	minimize	the	model	risk,	it	is
preferable	to	automate	the	entire	model	risk	management	workflow.	This	workflow
typically	requires	a	clear	management	policy	in	terms	how	a	model,	from	its	inception	and
development,	can	finally	get	into	the	production	and	participate	in	any	risk	analysis.
Rigorous	examination	and	approval	should	be	put	in	place.	A	good	model	governance
capacity	should	also	be	able	to	track	all	the	issues	and	actions	about	all	the	models	in	its
specific	usage,	for	example,	all	the	stress	testing	models	or	market	risk	capital	models.
When	the	model	validation	team	discovers	an	issue,	they	should	be	able	to	track	who	owns
the	issue,	what	is	the	current	status,	and	if/how	it	was	resolved.

1	While	the	economic	capital	model,	regulatory	required	capital	levels,	and	actual	held	capital
were	quite	different	in	practice,	some	banks	rescaled	the	economic	capital	model	capital
allocation	so	that	they	summed	to	the	actual	capital,	achieving	a	full	allocation	of	capital
with	concentration	effects.

2	The	stressed	VaR	charge	was	implemented	as	the	VaR	obtained	when	market	risk	models



were	calibrated	on	a	stressful	period	in	the	past.

3	For	example,	there	is	both	a	2.5%	general	capital	conservation	buffer	as	well	as	a	2.5%
discretionary	countercyclical	capital	buffer.	The	capital	conservation	buffer	is	designed	to
ensure	that	banks	build	up	capital	buffers	outside	periods	of	stress	that	can	be	drawn	down
as	losses	are	incurred.	Hence,	outside	periods	of	stress,	banks	should	hold	buffers	of
capital	above	the	regulatory	minimum.

4	The	credit	valuation	adjustment	prices	the	fair	mark-to-market	adjustment	of	trades	due	to
counterparty	credit	risk.

5	However,	the	regulators	have	been	clear	in	this	matter.	The	Basel	III	credit	valuation
adjustment	charge	should	be	computed	based	on	market	credit	spreads	and	not	based	on
historical	default	information.

6	The	original	market	risk	VaR	requirement	considers	a	10-day	holding	period	for	all
positions.	The	introduction	of	liquidity	horizons	between	10	days	and	1	year	allows	a
segmentation	on	position	closeout	times	connected	to	the	position's	market	liquidity.

7	For	a	normal	distribution	CVaR	at	confidence	level	97.5%	is	equal	to	the	VaR	at	99%
confidence	level.

8	In	some	cases	a	counterparty	credit	risk	is	also	constrained	by	its	parent	entity	credit	risk.
For	example,	a	counterparty	in	a	country	is	subject	to	the	country	risk	and	a	subsidiary	is
subject	to	the	parent	company	counterparty	risk.

9	It	is	a	relevant	question	to	ask	if	a	model	that	has	been	calibrated	over	a	specific	business
cycle	can	be	confidently	used	to	predict	behavior	in	other	types	of	stressed	tail	events.



Part	One
Market	Risk



Chapter	2
Market	Risk	with	the	Normal	Distribution
Regarding	modern	risk	management,	it	is	fair	to	say	research	and	practice	in	market	risk	have
played	a	very	important	role.	The	major	financial	economics	breakthroughs	were	due	to	a	rich
body	of	contributions	by	academic	researchers	and	practitioners.	In	1990,	Harry	Markowitz,
Merton	Miller,	and	William	Sharpe	were	jointly	awarded	the	Nobel	Prize	in	Economic
Sciences	for	“their	pioneer	work	in	the	theory	of	financial	economics”	in	the	1950s	and	1960s.
They	laid	down	a	foundation	of	risk-based	asset	pricing	and	portfolio	decision	theory.	Fisher
Black,	Myron	Scholes,	and	Robert	Merton's	work	on	options	successfully	applied	risk-based
concepts	such	as	replicating	portfolio	for	hedging	and	law	of	no-arbitrage	in	asset	pricing.
Their	work	laureated	Scholes	and	Merton	(with	an	honorable	mention	of	the	late	Black)	the
Nobel	Prize	in	Economic	Sciences	in	1997.

Since	the	early	risk	researches	and	practice	the	multivariate	normal	distribution	assumption	for
the	changes	in	all	the	market	risk	and	macroeconomic	factors	such	as	equity,	foreign	exchange,
and	interest	rates	is	one	of	the	most	popular	quantitative	approaches.	We	will	therefore	start
with	market	risk	management	using	a	multivariate	normal	distribution	assumption.	We	will
consider	three	different	cases	for	the	portfolio	representation:	first,	the	case	of	linear
portfolios	such	as	plain	stock	portfolios	or	portfolios	that	can	be	approximated	well	by	a	first-
order	sensitivity;	second,	a	quadratic	portfolio	representation	that	includes	also	second-order
sensitivities	for	portfolios	with	convexity;	and	third,	using	simulation-based	valuation	of	the
portfolio.

In	advance	of	this	chapter	we	need	to	remark	that	the	assumption	that	financial	risk	factors
return	series	are	normal	and	independent	over	time	is	one	of	the	most	common	simplifying
assumptions	in	finance.1	The	stylized	facts	of	financial	return	series	depend	in	practice	on	the
temporal	aggregations	such	as	daily	or	monthly	returns.	The	typical	time	horizon	for	market
risk	management	is,	however,	counted	in	days.	For	daily	returns,	the	stylized	facts	of	financial
return	series	show	that	the	assumption	of	a	normal	distribution	is	questionable	due	to	the
observed	fat-tailed	nature	of	financial	time	series.	It	is	typically	also	a	feature	of	financial	time
series	that	they	display	volatility	clusters,	which	is	inconsistent	with	a	simple	multivariate
normal	distribution.	Notwithstanding	the	fact	that	the	stylized	facts	of	financial	returns	may
deviate	from	the	multivariate	normal	assumption,	it	is	an	important	benchmark	model,
especially	for	introducing	core	concepts	that	we	later	can	extend	to	more	general	settings.	In
addition,	the	assumption	of	a	multivariate	normal	distribution	for	risk	factors	enables	some
simple	analytical	representations	with	straightforward	interpretation	that	are	useful	for
understanding	more	general	cases.

Linear	Portfolios
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The	classical	and	simplest	method	for	portfolio	risk	analysis	relies	on	the	assumption	of
multivariate	normal	risk	factor	returns	and	approximation	of	instrument	price	changes	using	a
first-order	Taylor	approximation.	The	method	is	usually	referred	to	as	the	delta	method.	The
delta	sensitivities	of	a	position	are	related	to	the	changes	in	the	value	of	an	underlying	asset	in
a	position	such	as	an	equity.	The	changes	in	the	underlying	asset	is	the	primary	source	of
market	risk.	Hence,	the	delta	sensitivities	are	important	in	risk	management.

Basic	Model
To	introduce	the	basic	delta	model	we	denote	by	 	an	 	vector	of	sensitivities	to	the	

	portfolio	risk	factors	 .	Here,	the	vector	 	contains	market	risk
factors	like	equity,	foreign	exchange,	and	interest	rates.	We	denote	the	pricing	function	for	a
specific	portfolio	instrument	 	by

where	each	 	is	a	function	of	(typically	a	subset	of)	the	 	portfolio	risk	factors	 .
The	total	portfolio	value,	 ,	is	a	weighted	sum	of	the	 	instruments	in	the	portfolio
such	that

where	 	is	the	current	position	in	instrument	 .	Each	position	number,	 ,	is	an	element
of	the	 	holding	vector,	 .

To	calculate	the	portfolio	risk	sensitivity	to	the	market	risk	factors	we	let	the	j:th	element	of	the
-dimensional	sensitivity	vector,	 ,	be	defined	as

Collecting	all	 	elements	in	matrix	format,

defines	the	 -dimensional	vector	 .	We	can	write	this	as

where	 	indicates	the	delta	for	position	 	with	respect	to	risk	factor	 .	The	portfolio	value	at	a
future	time	 ,	with	current	positions	(i.e.,	time	 	positions),	 ,	can	now	be	written	as
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We	may	now	approximate	 	by	the	approximate	change	in	portfolio	value	between	
	as

For	example,	if	we	have	two	positions	( )	and	three	risk	factors	( ),	we	have	that

or,	expressed	differently,	in	terms	of	the	 	positions,

where	again	 	indicates	the	delta	for	position	 	with	respect	to	risk	factor	 .

To	obtain	the	distribution	of	 	it	therefore	remains	to	specify	the	distribution	of	
.	In	this	chapter	we	focus	on	the	case	when	the	increment	(returns)	vector	 	is

multivariate	normal.	That	is,

where	 	is	the	 	expected	returns	vector	over	the	 	horizon	for	the	risk	factors,	
,	 	is	the	corresponding	 	covariance	matrix	for	the	 	horizon	of	the

-dimensional	vector	of	risk	factors	 .	Using	the	basic	properties	of	the	normal	distribution
we	have	that

The	approximate	portfolio	is	hence	distributed	as	univariate	normal	with	mean	 and
variance	 .	Henceforth	in	the	analysis	we	however	set	 	and	hence	 	for
notational	convenience.	This	case	is	also	practical	for	a	short-term	risk	horizon,	which	is	the
usual	case	in	market	risk	analysis.

In	the	above	simple	linear	normal	market	risk	model,	we	note	that	there	are	two	core	inputs	to
measure	portfolio	risk:

1.	 Position	sensitivities	to	the	risk	factors
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2.	 The	covariance	matrix	of	the	risk	factors

We	will	first	focus	on	the	computation	of	sensitivities	as	well	as	the	computation	of	risk
measures	and	risk	contributions	in	the	linear	normal	model.	After	that	we	will	return	to	the
issue	of	how	to	estimate	the	covariance	matrix	of	the	risk	factors.

Computing	Sensitivities
We	consider	three	examples	of	computing	position	sensitivities:	first,	a	simple,	stock	portfolio;
second,	a	bond	position;	and	third,	a	stock	option	position.	Of	course,	the	simplest	case	of	the
model	is	when	it	is	applied	to	linear	positions	such	as	stock	positions	or	spot	foreign	exchange
positions.	In	this	case,	because	of	position	linearity	the	distribution	of	 	in	equation
(2.2)	is	exact	rather	than	an	approximation	when	the	market	risk	factors	are	multivariate
normal.

Equity	Portfolio	Sensitivities
We	consider	an	equity	portfolio	with	5	different	equity	positions.	Each	equity	position	has	a
corresponding	market	risk	factor,	 	being	the	stocks.	We	assume	that	current	stock
values	are	given	by

in	units	of	a	common	currency.	The	corresponding	portfolio	holding	vector,	 ,	in	the	5	stocks	is
given	by

Since	equity	positions	are	linear	the	sensitivity	vector,	 ,	is	hence

The	current	mark	to	market	of	the	portfolio	sums	the	position-adjusted	current	equity	values.
That	is,

If	we	assume	the	stock	values	all	increase	5%	between	time	 	and	 ,	then	because	portfolio
value	is	linear	in	the	stock	prices,	the	change	of	the	portfolio	value	is



When	portfolio	value	is	not	linear	in	the	position,	risk	factor	sensitivities	can	be	calculated
analytically	from	the	functional	form	of	the	pricing	function	in	equation	(2.1),	or	use	a
numerical	approximation	to	the	analytic	sensitivity.	For	example,	both	bonds	and	European
stock	options	have	analytic	sensitivities.

Bond	Sensitivity
For	bond	instruments	the	pricing	function	(2.1)	is	based	on	present	value	( )	of	cash	flows.
Assuming	discrete	compounding,	it	is	the	practice	to	make	use	of	the	modified	duration,	 ,
as	the	first-order	sensitivity,	defined	as

Here	 	is	the	present	value	of	the	bond,	 	the	yield	to	maturity,	 	the	cash	flow	amount	at	 ,
and	 	a	cash	flow	date	such	that	 	the	set	of	all	cash	flow	dates.	The	(modified)	duration
hence	corresponds	to	a	normalized	weighted	average	cash	flow	measure	with	 	the	yield
solved	from

The	duration	in	absolute	values,	also	known	as	dollar	duration,	 ,	is	given	by

and	the	traditional	Macaulay	duration,	 ,

The	duration	can	be	shown	to	correspond	to	the	first	term	in	a	Taylor	series	expansion	of	the
bond	price	with	respect	to	 .	That	is,

A	drawback	of	the	duration	as	sensitivity	measure	is	that	it	assumes	a	parallel	term-structure
(through	 ).	To	include	nonparallel	shifts	of	the	term-structure	of	interest	rates	we	may
therefore	define	a	series	of	partial	durations,	that	is	derivatives,	with	respect	to	yield	curve
points,	 .	The	series	of	partial	durations	then	correspond	to	the	derivatives	of	the	bond
price	with	respect	to	the	vertices	of	the	discount	curve.

For	credit-risky	bonds	the	discount	term,	 ,	is	often	decomposed	as	 	where	 	is	the
discount	rate	for	default-free	bonds	and	 	is	the	credit	spread.2	In	that	case



which	allows	a	decomposition	in	terms	of	traditional	interest	rate	risk	and	spread	risk.	We
refer	to	Fabozzi	(1997,	ch.	13)	for	many	examples	of	bond	price	sensitivity	analysis	using
duration.

Option	Sensitivity
For	a	European	call	option	maturing	at	 	on	a	single	underlying	stock,	 ,	priced	at	time	 	by	the
standard	Black	and	Scholes	(1976)	formula	we	obtain	the	arbitrage-free	option	premium,
denoted	by	 ,	as

where	 	is	the	cumulative	normal	distribution	function,	 	is	the	risk-free	rate,	 	is	the
volatility	of	the	stock,	and	 	is	the	strike	price.	The	inputs	to	the	cumulative	normal
distribution	function,	 	and	 ,	are	given	by

The	first-order	derivatives	with	respect	to	the	underlying	stock,	volatility,	and	interest	rate	are
then	given	by	(denoting	by	 	the	normal	density),

These	first-order	derivatives	are	denoted	respectively	the	delta,	the	vega,	and	the	rho	of	the
option.	We	can	now	write,	assuming	a	unit	position	in	the	European	call	option,

Risk	Measures
Previously	we	have	defined	the	delta	method	portfolio	distribution	as	normal	in	equation	(2.3).
The	normal	portfolio	distribution	variance,	 ,	depends	on	the	covariance	of	market	risk
factors,	 ,	and	the	portfolio	position	sensitivities	to	the	market	risk	factors.
The	portfolio	variance,	 ,	or	volatility,	 ,	is	a	classical	measure	of	risk.	Markowitz	(1952,
1959)	used	portfolio	variance	in	the	optimal	mean-variance	frontier	construction.	However,
quantile	and	other	tail-based	measures	of	risk	are	now	more	commonly	used	in	risk
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measurement.	Let	therefore	 	be	a	risk	measure.	If	 	is	a	worst-case	quantile	of	the	portfolio
distribution,	we	obtain	the	well-known	value	at	risk	measure,	denoted	 	and	defined	by

where	 .3	In	this	normal	distribution	setting	 	is	simply	given	by

where	 	is	again	the	cumulative	distribution	of	the	normal,	 	its	inverse,	and	 	is
an	 	quantile	of	the	univariate	standard	normal	distribution.

Another	popular	tail	risk	measure	is	the	risk	measure	that	computes	the	expected	losses	beyond
.	The	conditional	value	at	risk,	denoted	 ,	is	defined	by	the	average	tail	integral,4

To	have	an	explicit	representation	for	 ,	we	note	that	for	a	normally	distributed	variable
	with	mean	 ,	variance	 	and	truncation	point	 ,

The	function	 	is	the	well-known	hazard	function	for	the	normal	distribution.5	Using
the	fact	that	 	and	 ,	we	get

We	can	therefore	conclude	that	 	and	 ,	as	well	as	the	portfolio	volatility,	 ,	are
equivalent	risk	measures	in	this	setting	since	they	only	differ	by	constants.

Example	Risk	Measures
Below	we	illustrate	numerically	the	calculation	of	risk	measures	for	an	equity	portfolio	and	a
bond.

Computation	of	 	and	 	Risk	Measures	for	a	Sample	Equity	Portfolio
We	consider	the	sample	equity	portfolio,	introduced	above	when	considering	equity	portfolio
sensitivities,	with	risk	factors,	 ,	and	holding	vector	as	in	(2.4),	For	this	portfolio	we
now	specify	the	covariance	matrix,	 ,	of	the	risk	factors,	 ,	as
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Note	that	this	is	the	covariance	matrix	of	the	arithmetic	returns	of	the	risk	factors	(i.e.,	
	for	 ),	since	we	have	assumed	that	the	arithmetic	returns	are	normally

distributed	in	equation	(2.3).	From	the	covariance	matrix,	 ,	we	obtain,	for	example,	that	the
daily	standard	deviation	of	equity	risk	factor	 	arithmetic	returns	is	equal	to	 .

With	this	covariance	matrix	the	portfolio	profit	and	loss	is	distributed	as	normal	with

for	the	time	horizon	of	 .	Hence,	portfolio	volatility,	 ,	is	approximately	 .	For	a	
	confidence	level	we	now	have	that	portfolio	 	and	 	are	given	by

respectively

The	portfolio	 	is	hence	3.04%	of	the	total	portfolio	market	value	of	 	(see
equation	(2.5)).	The	corresponding	percentage	for	 	is	3.48%.

To	obtain	risk	measures	for	 	one	can	estimate	the	covariance	matrix	on	the	appropriate
risk	factor	returns	time	horizon,	for	example,	weekly	arithmetic	returns.	Alternatively,	one	can
adjust	the	daily	covariance	matrix	by	 	to	obtain	the	weekly	risk	measures	from	the
1-day	risk	measures.	That	is,	use	scaling	with	the	square	root	of	time.	In	our	example	the
weekly	 ,	denoted	by	 ,	is	given	by

Hence,	for	a	weekly	time	horizon	 	as	a	percentage	of	the	portfolio	market	value	is
6.79%.	In	practice,	banks	frequently	calculate	the	1-day	horizon	 	and	subsequently	scale
the	1-day	 	to	obtain	an	 -day	 	estimate	such	as	a	10-day	regulatory	 	estimate.	For
example,	this	simple	scaling	holds	true	in	case	of	a	normal	independent	and	identical
distribution	and	a	buy-and-hold	trading	strategy,	which	is	the	case	we	are	concerned	with	here.
See	Diebold	et	al.	(1997).6	We	now	turn	to	a	bond	example.

Computation	of	Bond	Risk
Consider	a	5-year	bond	with	Macauley	duration	equal	to	5	years.	The	current	yield,	 ,	is	5%
and	the	standard	deviation	of	(absolute)	change	in	interest	rates	is	0.25%.	Assuming	the	bond
price	is	100	units	of	currency	we	get	that



Risk	Factor	Returns	and	Risk	Measures
So	far	we	have	assumed	that	arithmetic	risk	factor	returns	are	normal	in	our	analysis.	That	is,

is	multivariate	normal.	If	instead	relative	returns	are	assumed	multivariate	normal,

with	“ ”	indicating	component	by	component	division,	then	equation	(2.3)	holds	with	the
sensitivity	component	 	for	risk	factor	 	being	replaced	by	 .	Hence,	we	get

The	mixed	case	with	some	risk	factors	arithmetic	normal	and	some	relative	normal	is	obtained
by	defining,	for	risk	factor	 ,	 	or	 	as	appropriate.	Of	course,	for	consistency,	the
assumed	format	for	returns	for	a	risk	factor	should	be	respected	when	calculating	the	joint
covariance	matrix,	 ,	of	risk	factor	returns.

The	relative	return	of	a	risk	factor	is	often	identified	with	the	logarithmic	return.	Specifically,
the	relative	return	of	a	risk	factor	 ,	is	denoted	 ,	such	that

and	is	usually	referred	to	as	the	simple	net	return.	Clearly,	 .	With	continuous
compounding	the	simple	net	return	is	just	the	logarithm	of	 	such	that

We	refer	to	Campbell	et	al.	(1997,	ch.	1)	for	a	discussion	of	the	different	definitions	of	returns.

Simple	Extensions	to	the	Normal	Distribution	Assumption
We	finally	note	in	this	subsection	on	risk	measures	that	the	explicit	formulas	for	 	and	
under	the	multivariate	normal	distribution	assumption	for	risk	factors	and	first-order
sensitivities	can	be	extended	quite	easily	in	some	cases.	For	example,	using	a	multivariate	t-
distribution	for	risk	factors	such	that	 	with	degrees-of-freedom	parameter	
the	 	is	expressed	as



with	 	the	inverse	of	the	t-distribution	function	with	degrees-of-freedom	parameter	 .	For
example,	if	 	and	 ,	then	 .	Compared	to	the	normal	distribution	case	risk
has	hence	increased	by	60%	since	 .	See	Sadefo-Kamdem	(2003).

Risk	Contributions
Given	the	portfolio	distribution	and	a	risk	measure	 ,	an	interesting	question	is	how	we
attribute	the	overall	portfolio	risk	to	sources	of	risks.	That	is,	how	can	we	decompose	risk?
This	is	an	important	issue	to	the	risk	manager	and	the	management	of	an	institution	because	they
need	to	know	not	only	the	total	portfolio	risk	but	also	the	breakdown	of	the	total	portfolio	risk
into	contributing	positions.	The	breakdown	allows	the	risk	manager	to	find	which	positions
and	risk	factors	contribute	to	the	portfolio	risk	and	hence	which	positions	need	to	be	adjusted
to	(for	example)	decrease	portfolio	risk.	Identifying	the	major	positions	and	risk	factors	that
concentrate	risk	in	the	portfolio	and	hedge	out	portfolio	risk	is	hence	at	the	core	of	risk
management	activities.	Another	use	case	of	the	risk	contribution	analysis	is	to	fairly	account
each	position's	contribution	to	the	total	portfolio	risk	for	risk-adjusted	performance	analysis
and	capital	allocation	purposes.

Risk	attribution	usually	comes	up	from	two	dimensions.	One	is	the	physical	holdings	of	a
particular	security,	which	is	known	as	position.	The	other	refers	to	risk	position,	which
represents	the	exposure	to	a	particular	risk.	For	example,	a	bank	may	hold	one	unit	of	a	bond
denominated	in	a	currency	different	to	the	bank's	reporting	currency.	Therefore,	the	bank	has	a
position	of	one	unit	in	the	bond;	at	the	same	time	the	bond	may	be	mapped	to	a	risk	position	for
foreign	exchange	risk,	a	number	of	risk	positions	for	interest	rate	risk	(in	the	foreign	currency),
and	one	or	more	risk	positions	for	credit	risk.	The	Basel	Committee	also	uses	the	risk	position
as	a	unit	in	the	trading	book	capital	requirement	calculation.

The	Euler	Decomposition
When	decomposing	portfolio	risks	we	naturally	want	the	decomposed	risks	to	satisfy	the
condition	that	the	sums	of	decomposed	risks	equal	the	total	risk.	Of	course,	this	does	not
naturally	happen	for	standalone	risk	measures	and	hence	we	need	to	consider	another	measure
of	risk,	still	based	on	the	portfolio-level	risk,	that	naturally	reflects	the	risk	contribution	of
portfolio	items.	For	our	linear	portfolio	we	consider	a	portfolio-level	risk	measure	 ,	which
has	the	properties	that

	is	continuously	differentiable	(i.e.,	 ).

	is	homogeneous	of	degree	 	(i.e.,	the	risk	measure	satisfies	 	for	scalar	
and	a	stochastic	vector	 ).

We	then	have	a	natural	risk	decomposition	by	the	famous	Euler	formula7
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and,	by	normalization

The	Euler	decomposition	hence	provides	us	with	a	risk	decomposition	that	satisfies	the	full
allocation	property.	That	is,	all	the	portfolio	risk	(capital)	obtained	using	risk	measure	 	is
allocated.	In	order	to	obtain	Euler	decompositions	of	the	portfolio	volatility	risk	measure,	 ,
that	we	have	discussed	above	we	first	differentiate	the	standard	deviation	of	the	portfolio,	 ,
obtaining

The	equation	(2.9)	is	hence	an	 -dimensional	vector	of	risk	contributions	to	the	
portfolio	risk	factors.	By	additivity	we	can	of	course	also	calculate	the	contribution	of	a
portfolio	position,	 .	Specifically,	denote	the	delta	vector	for	the	specific	position	 	to
the	 	risk	factors	by	 	such	that

then

A	Numerical	Example	of	Euler	Risk	Contributions
Consider	a	portfolio	with	three	positions	in	two	risk	factors,	 	and	 ,	where	 ,	

,	and	 .	Using	the	covariance	matrix,	 ,	such	that

we	obtain	from	equation	(2.9)	the	contribution	from	each	risk	factor	(i.e.,	portfolio	risk
position),

such	that
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For	the	portfolio	(physical)	position	view	of	the	contributions	we	have,

and,	hence	we	have	that,

as	expected.	We	can	therefore	conclude	that	for	this	portfolio	the	percentage	volatility
contribution	of	risk	factor	1,	 ,	is	approximately	23%	and	for	risk	factor	2,	 ,	it	is
approximately	77%.	As	we	have	mentioned	above,	the	risk	contributions	in	terms	of	the
portfolio	risk	factors	are	usually	referred	to	as	the	risk	positions	of	the	portfolio.	This	is
different	than	the	actual	physical	portfolio	positions	contributions,	and	in	terms	of	the	three
portfolio	positions,	we	have	that	position	1	and	3	each	contribute	an	approximate	23%	of	total
portfolio	risk	while	position	2	contributes	approximately	54%	to	total	portfolio	risk.	Hence,
closing	out	or	hedging	position	2	should	reduce	portfolio	volatility	the	most.

From	Volatility	Contributions	to	 	and	 	Contributions
Now,	by	the	equivalence	of	the	volatility	risk	measure,	 ,	with	value	at	risk,	 ,	in	this	case,
we	have	that

Similarly,	by	the	equivalence	of	 	and	 	in	this	setting,

where,	again,	these	decompositions	satisfy	the	full	allocation	property.	For	example,	we	have
that

We	now	continue	with	our	equity	portfolio	example	focusing	on	the	computation	of	risk
contributions.

Computation	of	Risk	Contributions	for	the	Sample	Equity	Portfolio



Table	2.1	displays	the	 	and	 	risk	measures	for	the	aggregate	equity
portfolio	and	the	equity	positions,	 ,	using	the	covariance	matrix	in	(2.8)	and	holding
vector	(2.4).	It	also	displays	the	 	and	 	Euler	risk	contributions,	denoted
Cont	 	and	Cont	 	respectively,	with	respect	to	the	positions,	 .

Table	2.1	The	VaR(0.99)	and	CVaR(0.99)	Risk	Measures	for	the	Aggregate	Portfolio	and	the
Equity	Positions,	P1,	…,	P5.	The	Table	also	Displays	the	VaR(0.99)	and	CVaR(0.99)	Euler
Risk	Contributions	with	Respect	to	the	Positions	P1,	…,	P5

Equity	position VaR(0.99) CVaR(0.99) Cont	VaR(0.99) Cont	CVaR(0.99)
93.05 106.61 64.69 74.11
93.63 127.27 63.54 72.79
46.29 53.04 18.99 21.76
15.95 18.27 2.25 2.57
33.55 38.44 8.07 9.25

Portfolio 157.54 180.48 157.54 180.48

Table	2.1	shows	that	risk	is	diversified	in	the	context	of	the	portfolio	since	risk	contributions
are	significantly	lower	than	standalone	risk	for	the	equity	positions.	One	can	also	measure	the
degree	of	diversification	obtained	by	an	instrument	or	subportfolio	when	put	in	the	context	of
the	portfolio	by	dividing	the	risk	contributions	by	the	standalone	risk.	For	example,	for	

	risk	contributions	divided	by	standalone	 	we	obtain	portfolio
diversification	percentages,	for	positions	 ,	as

Clearly,	equity	position,	 ,	has	the	largest	diversification	benefit	in	the	portfolio.	This	might
seem	unintuitive	because,	for	example,	position	 	has	a	lower	correlation	with	the	other
portfolio	positions.	However,	position	size	also	matters	because	of	the	delta	component	in	the
risk	contribution	equations	and	equity	position	 	only	has	one	holding.	This	shows	that
diversification	is	not	only	a	function	of	the	covariance	matrix	but	also	the	position	sensitivity
that	contains	the	holding.

If	position	sensitivity	is	the	same	for	all	positions,	then	the	covariance	matrix	is	the	sole	source
of	diversification	effects.	Consider	therefore	a	modified	sample	equity	portfolio	with	unit
holding	in	each	of	the	equities,	 ,	and,	using	the	covariance	matrix



where	all	variances	are	equal	to	unity	but	with	same	covariances	as	before	in	the	covariance
matrix	(2.8).	With	the	modified	unit	holding	and	the	new	covariance	matrix	we	obtain	that	each
equity	position	standalone	 	since	each	equity	return	is	standard	normal
distributed.

Calculating	the	portfolio	diversification	percentages	for	this	case	we	obtain,

This	shows	that	the	equity	position	with	the	lowest	correlation	to	the	other	portfolio	positions,	
,	indeed	now	has	the	largest	diversification	effect	in	the	portfolio	context,	or,	put	differently,

the	lowest	concentration	in	the	context	of	the	portfolio.

Euler	Risk	Decompositions	and	Hedging
The	Euler	risk	decomposition	is	a	convex	function	of	the	sensitivity	vector	 .	Hence,	we	can
differentiate	to	find	the	minima	of	the	risk	contribution.	Let	 	be	the	risk	factor	covariance
between	risk	factor	 	and	risk	factor	 ;	then,	for	 	as	risk	measure,	this	entails	solving	for	
in	the	equation

yielding,

The	obtained	 	may	be	referred	to	as	the	best	hedging	position	of	risk	factor	 .	We	note	that	in
this	setting	this	best	hedging	position	is	independent	of	whether	the	risk	measure	is	volatility,	

,	or	 .	By	plotting	the	portfolio	risk	measure	for	a	local	grid	of	holdings	in	a	particular
instrument,	 ,	we	can	trace	out	how	the	portfolio	risk	profile	changes	with	different	holdings.
The	minimum	of	this	profile	is	the	best	hedging	position.	The	reader	is	referred	to	Litterman
(1996)	for	further	examples	of	risk	contributions	and	best	hedging	position	applications	to
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simple	linear	portfolios.	Litterman	also	discuss	the	fact	that	in	large	portfolios	with	many	risk
factors	and	positions	it	may	be	useful	to	find	a	small	(delta)	replicating	portfolio	with	just	a
few	positions	and	risk	factors	to	obtain	a	simplified	view	of	the	portfolio	risk	profile.

Interpretation	as	Regression
The	Euler	risk	decompositions	also	has	a	useful	regression,	or	equivalently,	conditional
expectation	interpretation.	This	is	because	for	the	normal	distribution	the	conditional
expectation	and	linear	regression	coincide.	In	particular	for	the	j:th	risk	factor	we	obtained
above	(see	equation	(2.10))	that

	denoting	the	j:th	row	of	the	covariance	matrix	 	and	 	the	(j,l):th	component	of	 .	Notice
therefore	that	 	corresponds	to	the	covariance	between	risk	factor	 	and	the	set	of	all	risk
factors.	By	the	definition	of	the	classical	linear	regression	coefficient,	 ,	as	covariance	divided
by	variance	we	therefore	have

where	 	is	the	least	squares	regression	coefficient	from	the	regression	of	risk	factor	 	returns
on	the	total	portfolio	returns.	That	is,

where

is	the	risk	factor	 	returns,	and

is	the	portfolio	returns.	The	 	parameter	here	is	the	same	as	in	the	famous	capital	asset	pricing
model	(CAPM).	According	to	CAPM	one	can	write	the	expected	return	of	an	asset	 	as	a
function	of	the	risk-free	rate	of	interest,	 ,	the	asset's	 	with	respect	to	the	market	portfolio
such	that

See	Sharpe	(1964).	To	gain	insight	into	this	result	consider	first	the	case	when	 .	That	is,
the	risk	factor	contribution	is	null,	or	in	CAPM	terminology,	the	risk	factor	is	uncorrelated	with
the	portfolio.	In	our	case,	since	the	risk	factor	itself	is	always	included	in	the	portfolio	
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typically	happens	in	the	degenerate	case	with	 	as	well	as	when	 	is	exactly	offset	by
the	covariances	with	the	portfolio.	If	 ,	this	means	the	risk	factor	is,	on	average,	negatively
related	to	the	portfolio	and	hence	provides	a	form	of	insurance	or	hedge.	Garman	(1997)	and
Hallerbach	(2003)	contain	further	discussions	on	risk	contributions	or	so-called	component
risk	as	well	as	the	relation	of	the	risk	contributions	to	CAPM	β:s	in	this	linear,	delta	normal,
model	setting.

Decomposing	Risk	Factor	Contributions	into	Systematic	and	Idiosyncratic	Risk
Especially	in	the	asset	management	industry	it	is	practice	to	decompose	risk	not	only	per	risk
factor	(that	is	per	risk	position)	but	also	in	the	systematic	and	idiosyncratic	component	of	the
risk	factor.	The	asset	returns	for	factor	 	is	modeled	as	a	multifactor	model

where	 	are	the	common	factors	(e.g.,	country	and	industry	factors),	 	are	the
factor	loadings	(factor	betas)	for	asset	 	on	the	common	factors.	Finally,	 	is	the	asset	
specific	factor.	For	example,	Fama	and	French	(1993)	model	stock	and	bond	returns	with
multifactor	models.	In	matrix	format	we	have	that

with	 	a	 	vector	and	 	a	 	matrix,	being	the	factor	loading	matrix,	and	 	the	
vector	representing	the	idiosyncratic	risks	where	 .	Since	by	definition	the	asset-
specific	factor	is	independent	of	the	common	factors	the	joint	covariance	of	returns,	 ,	is
given	by

where	 	is	the	 	covariance	matrix	of	 	and	 	is	the	 	covariance	matrix	of	 .
Replacing	 	by	 	in	our	Euler	risk	decomposition	formulas	we	obtain,	for	example,	for
portfolio	volatility,	 ,

where

The	first	term	in	equation	(2.14)	represents	the	risk	factor	contribution	from	systematic	risk
explained	by	the	common	factors.	The	second	term	is	attributed	to	a	risk	factors	idiosyncratic
risk.

Economic	Interpretation	of	Euler	Decomposition
We	remarked	above	that	the	Euler	decomposition	has	the	full	allocation	property.	That	is,



exactly	the	total	risk	is	allocated.	However,	any	risk	decomposition	method	can	be	adapted	to
this	property	by	simple	normalization.	This	leads	to	the	question	of	why	we	should	consider
the	Euler	decomposition	and	not	just	any	other	decomposition.	The	answer	lies	in	the	economic
interpretation	of	the	Euler	decomposition	and	its	role	in	portfolio	optimization.

Consider	an	equity	portfolio	with	holdings	 	in	the	 	equity	risk	factors.	The	Sharpe
ratio	(Sharpe,	1994),	denoted	by	 ,	relates	the	expected	portfolio	returns	to	a	risk	measure	in
ratio	form	and	is	defined	for	a	portfolio	as

where	 	is	the	holdings	vector	and	 	is	the	expected	returns	vector
for	the	equities.	Furthermore,	 	is	a	continuously	differentiable	and	homogeneous	of	degree	1
risk	measure.	By	homogeneity	of	our	risk	measure,	we	can	decompose	 	as	above	with	the
Euler	formula,

and,	by	normalization

Now,	as	in	Nyström	and	Skoglund	(2003a),	since	the	Sharpe	ratio	is	given	by	 	it	is	natural	to
define

as	the	marginal	Sharpe	ratio	of	equity	position	 ,	 .	Then,

where	 	for	 	is	the	fraction	allocated	to	equity	position	 .	The	investor
optimization	problem	can	then	be	formulated	as,	with	 	indicating	initial	allocation,

where	 	is	a	penalty	function	for	the	costs	associated	with	reallocation	and	subject	to	the
constraint	 .	Taking	 	we	obtain	from	the	first-order	condition
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Hence	it	is	optimal	to	allocate	 	in	relation	to	equity	position	(risk	factor)	j:s	marginal	Sharpe
ratios	deviation	from	the	mean	marginal	Sharpe	ratio	of	the	portfolio.	Hence	for	a	given	equity
to	be	considered	for	inclusion	in	the	portfolio	we	require	that	the	expected	return	divided	by
the	marginal	risk	should	be	larger	than	the	corresponding	mean	of	the	portfolio.	The	inputs	to
the	portfolio	manager's	optimization	process	are	therefore	a	(normalized)	vector	of	Euler	risk
contributions	and	the	expected	returns	vector.	The	optimal	portfolio	has	the	characteristic	that

where	 	is	the	average	marginal	Sharpe	ratios.	Tasche	(1999)	proves	that	the	Euler
decomposition	is	the	only	risk	decomposition	that	is	consistent	with	(local)	portfolio
optimization.	For	a	second	economic	justification	of	Euler	risk	contributions	as	the	only	fair
allocation	in	cooperative	game	theory	we	refer	to	Denault	(2001).

Estimating	the	Covariance	Matrix	of	Risk	Factors
Having	calculated	the	position	sensitivities	to	the	risk	factors,	the	second	important	model
component	in	the	linear	delta	normal	model	is	an	estimate	of	the	covariance	matrix	of	the	risk
factors.	Let	 	be	an	independent	and	identically	distributed	size	 	sample	of
returns	from	the	 	risk	factors	that	are	distributed	as	multivariate	normal	with	

	 .	The	log	likelihood	function	takes	the	form

Solving	for	the	first-order	conditions	 	and	 	respectively,	yields	the	well-
known	two-step	maximum	likelihood	estimators

From	a	risk	management	perspective	it	is	useful	to	understand	the	uncertainty	in	these	estimates
and	hence	the	model	estimation	risk	or	parameter	risk.	First,	since	 	is	a	linear	combination
of	normals,	it	is	itself	normally	distributed	with

The	distribution	of	the	covariance	matrix	estimate,	 ,	is	a	direct	generalization	of	the	well-



known	 -distribution	(chi-square)	to	a	matrix	distribution,	the	so-called	Wishart	distribution
with	 	degrees	of	freedom.	We	write

where	 	denotes	an	 -dimensional	Wishart	distribution	with	 	degrees	of	freedom.
The	Wishart	distribution	hence	plays	a	central	role	in	estimation	of	the	covariance	matrix	of	the
multivariate	normal	distribution.	The	estimated	averages	and	the	variances	and	covariances
are	independent	with	the	estimated	averages	normally	distributed	and	the	estimated	variances
and	covariances	Wishart	distributed.	See	Anderson	(1958).

The	sample	covariance	matrix	above	is	the	standard	estimator	of	the	covariance	matrix.	A	true
covariance	matrix	should	be	positive	definite	in	general.	However,	the	sample	covariance
matrix	can	be	poorly	estimated	in	two	typical	situations.	First	is	when	the	number	of	risk
factors,	 ,	is	large	in	proportion	to	the	number	of	historical	observations,	 ,
which	may	result	in	a	matrix	that	is	not	full	rank.	The	other,	even	harder	situation	may	arise
because	the	extreme	covariances	are	unreliable	with	a	tendency	for	large	values	to	become
even	larger	and	for	small	values	to	become	even	smaller.	Typical	remedies	for	a	poorly
estimated	covariance	matrix	include	reducing	ranks	or	shrinkage.	The	reduction	of	ranks	can
use	principal	component	analysis,	which	we	will	discuss	later	in	this	chapter	in	the	section	on
simulation-based	valuation.	The	idea	behind	the	shrinkage	estimator	is	to	pull	the	extreme
coefficients	toward	some	central	value.	Though	the	shrinkage	approach	introduces	some	bias,
the	estimated	covariance	matrix	has	a	smaller	variance	than	the	sample	covariance	matrix.	See,
for	example,	Jorion	(1986)	and	Ledoit	and	Wolf	(2003,	2004)	on	shrinkage	estimators.

Distribution	of	Risk	Measures
Using	the	Wishart	distribution,	obtained	above	as	the	distribution	of	the	covariances,	we	can
now	consider	the	distribution	of	the	portfolio	risk	measures.	First,	substituting	estimates	for
population	counterparts	we	have	for	the	estimated	portfolio	volatility,	 ,

with	 	the	chi-square	distribution	with	 	degrees	of	freedom,	and	hence	the	estimated	 ,
denoted	 ,	has	the	distribution

with	a	symmetric	 	coverage	interval	defined	by

and	similarly	for	 .

To	consider	also	confidence	intervals	for	Euler	risk	contributions	we	recall	that	the	beta	( )	or
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least	squares	regression	coefficient	from	the	regression	of	risk	factor	 	returns	on	the	portfolio
returns	was	the	main	component.	From	classical	linear	regression	analysis	and	the	model,

it	is	well	known	that	the	estimated	 ,	denoted	 ,	has	the	property	that

Applying	this	in	our	setting,	denoting	by	 	the	period	realized	portfolio	return,

with

and,	for	example,	a	 	coverage	interval	for	 	risk	contributions	is	defined	by

where	 	denotes	the	normal	cumulative	density	function.	Again,	there	is	a	similar	expression
for	a	coverage	interval	of	 	risk	contributions.

Probabilistic	Stress	Testing
Finally	in	this	section	on	the	linear	delta	normal	risk	model	we	shall	consider	an	attractive
method	for	stress	testing	discussed	in,	for	example,	Nyström	and	Skoglund	(2002)	that	uses
conditional	distributions	and	stress	events.	In	the	case	of	a	linear	portfolio	with	multivariate
normal	risk	model,	the	conditional	probabilistic	stress	tests	are	analytical	due	to	the	fact	that
the	normal	distribution	is	closed	under	conditioning.	For	an	 -dimensional	multivariate	normal
vector	 	decomposed	as	an	 -dimensional	vector,	we	can	write

where	the	mean	vector,	 ,	and	the	covariance	matrix,	 ,	has	been	partitioned	accordingly.	Now,
conditioning	on	 we	have	that,

where	 	is	the	inverse	of	the	matrix,	 .	See,	for	example,	Greene(1993,	p.	90).	Setting
mean	values	to	zero	we	can	simplify	further	to	get
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We	can	now	think	of	the	conditioning	events,	 ,	as,	for	example,	the	event	that	one	or	a
few	stocks	experiences	a	downturn	by	 	or	the	event	that	short-term	interest	rates	rise	by	
basis	points	at	the	same	time	as	a	downturn	by	 	in	a	stock.	Using	a	conditional	distribution
we	can	estimate	the	risk	in	our	portfolio	contingent	on	such	stress	events.	This	is	because	we
can	use	equation	(2.16)	and	obtain	the	conditional	distribution	of	our	risk	factors.

In	general,	the	stress	events	themselves	can	be	defined	from	expert	knowledge	or	actual
historical	stress	events.	In	practice	one	may	object	to	using	the	normal	distribution	assumption
and	an	estimated	covariance	matrix	when	conditioning	on	stress	events.	Indeed,	during	stress	it
is	common	that	volatilities	and	correlations	tend	to	grow.	This	observation	is	certainly	not
consistent	with	the	simple	multivariate	normal	distribution	and	we	will	discuss	this	issue	later
in	the	context	of	stylized	univariate	and	multivariate	risk	factor	returns.	For	now	it	suffices	to
notice	that	we	may	condition	the	covariance	matrix,	 ,	on	the	extremity	of	stress	events	or,
phrased	differently,	on	the	expected	experienced	volatility	and	correlations	under	the	stress.

A	Numerical	Example	of	Probabilistic	Stress	Testing
We	now	consider	a	numerical	example	of	probabilistic	stress	testing	reusing	again	our	equity
portfolio	example.	In	the	example	we	consider	the	case	of	unit	holdings	in	each	of	the	5	equity
positions,	 ,	in	the	portfolio	and	a	covariance	matrix,	for	the	time	horizon	 ,	given
by	the	covariance	matrix,	 ,	in	(2.8).	Now,	if	we	condition	on	an	extreme	negative	return	for
position	 	such	that

we	can	use	the	covariance	matrix,	 ,	to	get

where	 	denotes	the	transpose	of	the	matrix	 .	Here	 	contains	the	covariances	of
portfolio	position	5	to	the	other	positions	in	the	portfolio.	We	therefore	have	a	conditional
normal	distribution	as

where



Using	the	properties	of	the	normal	distribution	as	in	equation	(2.3)	we	now	obtain	the
conditional	99%	 ,	denoted	 ,	as	given	by

In	contrast,	the	unconditional	distribution	 	for	equity	positions,	 ,	is

Knowing	that	equity	position	5	has	a	large	negative	return	of	 	for	positions,	 ,
has	hence	significantly	increased.	Note	here	that	the	−50	absolute	return	of	equity	position	5	is
equivalent	to	an	almost	−19%	relative	return.	Specifically,

and	hence

If	we	now	increase	the	common	covariance	factor	of	portfolio	position	5	to	the	rest	of	the
portfolio	from	0.15	to	0.95	(i.e.,	 ),	we	get	that

and	hence	conditional	 ,	 ,	has	increased	even	more	compared	to	the	unconditional	case.
Note,	however,	that	the	increase	in	conditional	 	comes	mainly	from	a	change	in	conditional
mean	of	the	portfolio	profit-and-loss	distribution	and	not	from	a	significant	change	in
conditional	portfolio	volatility.	In	fact,	portfolio	volatility,	 ,	has	reduced	from	 	to

	when	portfolio	position	5	common	covariance	factor	to	the	rest	of	the	portfolio
has	increased.

While	conditional	 ,	 ,	represents	one	way	to	integrate	stress	events	into	the	risk
calculation	one	can	also	consider	expected	portfolio	losses	only.	In	our	example	above	this
corresponds	to	focusing	on	the	conditional	expected	mean	of	portfolio	profit	and	loss	with	risk
factors	 	while	conditioning	on	the	stressed	return	for	risk	factor	 .	For	example,
we	calculated	the	conditional	expected	portfolio	loss	above	as	 	and	 	respectively
with	the	covariance	of	equity	risk	factor	5	returns	to	the	other	risk	factors	being	either	0.15	or
0.95.	This	observation	reveals	that	stress	events	affect	not	only	the	unexpected	loss	but	also	the
expected	loss.	Oftentimes	the	impact	on	the	expected	loss	can	be	even	bigger.

Quadratic	Portfolios



For	option	portfolios	as	well	as	bonds	with	a	significant	amount	of	nonlinearity,	the
approximation	errors	from	using	only	a	first-order	sensitivity	might	be	considered	too	high.
Our	focus	in	this	section	is	therefore	to	consider	a	quadratic	portfolio	approximation	capturing
the	second-order	sensitivity	of	the	portfolio	instruments	as	well.	However,	we	still	maintain
the	assumption	of	normally	distributed	risk	factors.

Our	analysis	of	the	quadratic	portfolio	risk	will	focus	on	the	derivation	of	a	representation	for
the	quadratic	form	distribution.	This	is	to	provide	intuition	on	the	change	of	distribution	from
the	simple	normal	distribution	in	the	linear	model	to	a	more	complex	distribution	in	the
quadratic	case.	In	fact,	the	distribution	is	not	explicit	in	general,	although	the	Fourier	transform
is,	and	calculating	risk	measures	for	the	quadratic	portfolio	hence	requires	numerical
techniques	such	as	Fourier	inversions	or	other	tail	approximations.	We	will	highlight	the	most
frequently	used	numerical	techniques	for	calculating	quadratic	portfolio	risk	measures	but	refer
to	the	literature	for	details	on	implementation	and	examples.

Quadratic	Portfolio	Representation
Using	a	quadratic	approximation	of	our	portfolio	we	consider	the	probability	of	portfolio	loss
exceeding	a	fixed	loss	level,	 ,	such	that	 	where	 	is	a	quadratic
form	in	the	multivariate	normal	vector	 .	Using	our	previous	risk	factor	notation,

is	multivariate	normal	with	 	portfolio	risk	factors.	Here	 	is	the	delta	vector	of	the
portfolio	and	 	is	the	Hessian	matrix	of	second-order	and	cross-derivatives.

After	a	diagonalization	procedure	that	we	describe	below	we	obtain	that	the	portfolio	is
distributed	as	a	sum	of	independent,	scaled,	non-central	chi-square	variables.	The	distribution
is	not	explicit	in	general	but	the	Fourier	transform	of	the	distribution	can	be	obtained	using	the
independence.	We	can	then	either	invert	the	transform	numerically	or	make	some	type	of
approximation	of	the	transform	in	order	to	be	able	to	invert	explicitly.

Various	solutions	have	been	proposed	in	the	literature.	For	example,	Fallon	(1996)	and	Pichler
and	Selitsch	(2000)	use	a	Cornish-Fisher	expansion.	Rouvinez	(1997)	uses	the	trapezoidal	rule
to	invert	the	characteristic	function.	Cardenas	et	al.	(1997)	use	the	fast	Fourier	transform	and
Duffie	and	Pan	(2001)	use	an	inversion	formula	due	to	Gil-Pelaez	(1951)	and	control	the
approximation	errors	in	the	numerical	inversion	of	the	Fourier	transform	using	the	Poisson
summation.8	Using	either	of	these	methods,	approximate	Euler	risk	contributions	can	be
obtained	as	 -perturbations	on	the	holdings.	For	 	portfolio	instruments	this	of	course	requires	
	recomputations	with	the	perturbed	holdings.	It	can	be	quite	time	consuming	for	a	large

portfolio.

A	simpler	method	to	approximate	the	quadratic	portfolio	risk	is	the	method	of	moments.
However,	the	method	of	moments	implies	that	one	only	makes	use	of,	for	example,	the
information	contained	in	the	first	four	moments	of	the	distribution.	However,	the	few	moments
may	very	well	contain	little	information	about	the	tail	behavior	of	the	distribution.	Moreover,



since	the	reference	distribution	is	arbitrary	there	is	no	way	to	obtain	probabilistic	error	bounds
on	the	estimates.

Yet	another	approach	is	to	use	the	method	of	stationary	phase	to	develop	an	asymptotic
expansion.	One	can	after	manipulation	make	use	of	a	Taylor	expansion	at	the	stationary	points
of	the	phase,	hence	developing	an	asymptotic	expansion	for	the	integral.	This	route	has	been
followed	by	Nyström	and	Skoglund	(2003b)	for	 	and	Nyström	(2008)	for	 .

Computation	of	Second-Order	Sensitivities
Using	a	quadratic	portfolio	approximation	requires	second-order	and	cross-derivatives	for	the
positions.	We	therefore	extend	our	previous	example	of	sensitivities	for	bonds	and	options	to
compute	the	second-order	sensitivities.

Bond	Convexity
For	bonds	a	quadratic	expansion	entails	including	also	the	so-called	modified	convexity	term
in	the	approximation,	yielding

with	 	the	yield.	We	see	that	for	a	yield	increase	of	 	basis	point	the	modified	duration	(first
term)	gives	a	negative	price	impact	whereas	the	modified	convexity	(second	term)	corresponds
to	a	positive	price	impact.	Common	values	for	modified	duration	and	modified	convexity
found	in	practice	are	respectively	 	and	 .	For	such	values	the	approximate	bond	price
change	of	a	 	basis	point	increase	of	the	yield	is	a	price	decrease	of	 .

Option	Second-Order	Sensitivities
To	achieve	a	quadratic	approximation	of	the	European	call	option	price	we	include	second-
order	versions	of	delta,	vega,	and	rho	as	well	as	cross-derivatives,	resulting	in	a	Hessian
matrix	of	second-order	effects.	We	therefore	define

as	the	Hessian	matrix	of	the	option.	In	common	financial	jargon	the	first	and	second	derivatives
of	option	prices	are	referred	to	as	the	Greeks.	For	European	call	options,	we	have	that
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denoting	by	 	the	normal	density	and	 	and	 ,	are	given	by

The	reader	may	consult	Haug	(2007,	ch.	2)	for	explicit	formulas	for	all	the	equity	option
Greeks.

Quadratic	Portfolio	Views
Having	illustrated	the	computation	of	second-order	effects	for	the	bond	and	equity	option	we
now	proceed	to	derive	a	tractable	expression	for	the	quadratic	portfolio.	As	in	the	case	for	the
linear	normal	model	we	emphasize	that	the	risk	can	be	viewed	from	both	a	physical	position
view	as	well	as	a	risk	(factor)	position	view.

Physical	Position	View
Consider	a	quadratic	portfolio	with	 	instruments	and	 	risk	factors.
Denoting	by	 	the	 	sensitivity	vector	for	instrument	 	such	that

and	by	 	the	corresponding	 	second-order	sensitivity	matrix	for	instrument	 	the	change	in
portfolio	value	between	 	is	given	by

where	 	denotes	portfolio	value	at	 ,	 	is	a	constant,	that	is,	the	time	derivatives,	and	
	is	the	position	vector	for	the	 	instruments.

For	example,	if	we	have	 	positions	( )	and	 	risk	factors	( ),	we	have	that
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where	 	indicates	the	delta	for	position	 	with	respect	to	risk	factor	 	and	 	indicates	the
second-order	derivative	for	position	 	with	respect	to	risk	factor	 	and	 .

The	quadratic	expansion	above	is	also	frequently	used	for	ex-post	breakdown	and	explanation
of	the	profit-and-loss	components	for	a	portfolio	or	a	position.	This	practice	is	referred	to	as
“P/L	explain”	and	in	this	case	 	as	well	as	 	is	observed	and	the	right-hand
side	of	equation	(2.18)	is	hence	the	decomposition	of	the	observed	profit	or	loss	into	
first-	and	second-order	effects.

Risk	Position	View
Summing	up	all	the	first-	and	second-order	positions	per	risk	factor	 	we	have

where

	indexing	risk	factors,	and

where	 	indexes	the	elements	of	the	 -by- 	matrix	 .	Expressed	in	our	previous	example	with	
	positions	( )	and	 	risk	factors	( ),
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In	practice	an	institution's	portfolio	can	be	delta	hedged	such	that	the	sum	of	risk	factor	
	deltas	across	all	the	positions,	 	is	close	to	zero.	In	equation	(2.19)	the

delta,	 ,	for	risk	factor	 	is	the	sum	of	all	position	deltas	with	respect	to	risk	factor	 .	For
example,	if	risk	factor	 	is	a	stock	and	the	institution	has	one	European	call	option	position	in
the	stock	and	a	short	stock	position	with	holding	equal	to	the	option	delta,	the	portfolio	delta
with	respect	to	the	stock	is	zero.	In	those	cases	only	the	quadratic	terms	will	contribute	to	risk
and	the	delta	normal	model	is	of	course	not	a	good	description	of	risk	as	it	will	indicate	the
portfolio	as	risk-free.

Quadratic	Portfolio	Diagonalization	Procedure
We	now	focus	on	the	derivation	of	a	representation	for	the	quadratic	form	distribution	using	a
diagonalization	procedure	of	the	covariance	matrix	that	will	eventually	simplify	the	quadratic
form	to	a	sum	of	independent	random	variables.	There	are	three	steps	in	the	procedure:	First,
we	decompose	the	covariance	matrix	using	the	Cholesky	decomposition.	Second,	we	use	the
eigenvalue	decomposition	to	obtain	independence	between	the	risk	factors.	Third,	we	expand
the	quadratic	form	to	finally	obtain	the	(relatively)	simple	distribution	representation.

Step	1:	Cholesky	Decomposition
Now,	since	 ,	in	equations	(2.18)	and	(2.19),	and	assuming	that	 	is	positive
definite,	we	can	do	a	Cholesky	decomposition	of	 	as

and	write	 	where	 	and	 	is	the	identity	matrix.	As	a	simple	example	of	the
Cholesky	decomposition	consider	the	case	of	 	risk	factors.	Using	the	definition	of	a
covariance	matrix,

with	 	the	variance	of	risk	factor	1,	 	the	variance	of	risk	factor	2,	and,	 ,	the	correlation
between	risk	factors.	We	can	now	obtain	the	Cholesky	decomposition	as
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In	case	 	this	simplifies	to

which	shows	that	the	Cholesky	matrix	is	not	defined	if	 ,	which	is	the	case	of	perfect
correlation	between	the	risk	factors.	This	is	why	the	common	algorithm	to	calculate	the	unique
Cholesky	matrix,	 ,	assumes	that	the	matrix	is	positive	definite.	That	is,	all	of	its	eigenvalues
are	positive,	meaning	that	two	or	more	risk	factors	cannot	be	perfectly	correlated.	Of	course,	a
large	covariance	matrix	for	risk	factors	may	not	be	positive	definite	in	practice	due	to
collinearity.	In	those	cases	one	can	create	a	so-called	modified	Cholesky	matrix.	An
alternative	is	to	apply	the	principal	component	factorization	that	effectively	reduces	the	rank	of
the	covariance	matrix,	that	is,	to	remove	the	collinearity	in	the	system.	We	will	discuss	such
methods	later	in	this	chapter	when	we	discuss	simulation	using	the	multivariate	normal
distribution.	For	now	we	assume	that	the	covariance	matrix,	 ,	is	positive	definite	and	use	the
Cholesky	decomposition	to	simplify	the	quadratic	form	in	equation	(2.19),

with	 	and	 .

Step	2:	Eigenvalue	Decomposition
The	eigenvalue	decomposition	of	 	is	given	by	 	with	 	orthogonal	and	 	diagonal.
Specifically,

is	the	matrix	with	eigenvalues	on	the	diagonal,	 ,	and	 	has	the	eigenvectors,	 ,
such	that

Here	 	is	orthogonal.	That	is,	 	and	we	have	that	both	 	and	 .	Further,
due	to	the	orthogonal	properties	of	 	we	also	have	that	 ,	where	“ ”	indicates	equal
in	distribution.

Step	3:	Expanding	the	Quadratic	Form
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Using	the	eigenvalue	decomposition	we	can	now	expand	to	obtain	a	quadratic	form	in	 ,
writing	equation	(2.22)	as

where	 	is	the	j:th	element	of	 ,	and	the	last	line	follows	since	 	is	diagonal.	Hence,	we
have	reduced	the	initially	complex	quadratic	form	to	a	sum	of	scaled	squared	shifted	normally
distributed	variables,	 ,	that	are	also	independent.	We	now	use	equation	(2.23)	to
calculate	quadratic	VaR	for	the	case	of	an	equity	option	position.

Sample	Quadratic	VaR	for	an	Equity	Option
Consider	a	single	position	in	an	at-the-money	European	call	equity	option	with	strike	price,	 ,
100,	annual	implied	option	volatility,	 ,	of	30%,	risk-free	rate,	 ,	5%,	and	a	time	to	maturity,	

,	of	1	year.	Using	the	Black	and	Scholes	pricing	formula	we	arrive	at	the	option	premium,	
,

We	also	obtain	the	option	delta,

and	gamma,

We	can	then	write,	ignoring	the	time	derivative,

Based	on	this	we	can	conjecture	that

where



and	where	 	is	distributed	as	the	non-central	chi-square	distribution.	That	is,

with	 	the	non-centrality	parameter.	Hence,	if	daily	absolute	stock	volatility, ,	is	1
unit	of	currency,

where	 	is	the	99%	quantile	of	the	 	distribution.	For	comparison	the	delta-
only	 	component	is	approximately	 .	Clearly,	the	delta	 	portion	is	the	main	risk
component	in	this	case,	and	if	we	instead	assume	the	option	is	perfectly	delta	hedged	by	a	short
position	in	the	underlying	stock,	we	obtain	the	delta-hedged	 	from	(2.24)	as

such	that	 .

To	see	that	this	simple	quadratic	option	position	 	expression	is	consistent	with	our	general	
-dimensional	risk	factor	derivation	in	equation	(2.23)	we	set

For	most	options	with	sufficient	time	to	maturity	the	second-order	effect	is	significantly
smaller	than	the	first-order	delta	effect.	However,	as	time	to	maturity	becomes	shorter	the
second-order	component	becomes	larger.	We	had	in	the	example	above	that	for	an	at-the-
money	European	call	equity	option	with	strike	price	100,	annual	implied	option	volatility	of
30%,	risk-free	rate	5%,	and	a	time	to	maturity	of	1	year,	the	option	delta	is	 	and	the	option
gamma	is	 .	Reducing	the	time	to	maturity	to	a	 	fraction	of	a	year	(that	is,	a	few	days
using	a	daycount	of	remaining	days/365)	we	get	the	option	delta	and	gamma	respectively,	
and	 .	Hence,	gamma	has	significantly	increased.	This	leads	us	to	think	that	unless	the
European	call	option	portfolio	is	delta	hedged	or	very	close	to	maturity	the	simple	delta



normal	representation	works	quite	well	as	an	approximation.	It	is	also	the	case	that
significantly	in-the-money	European	call	options	(stock	value	significantly	above	strike)
display	a	large	delta	and	a	very	small	gamma	and	are	hence	well	approximated	by	the	delta
normal.	In	contrast,	significantly	out-of-the-money	European	call	options	(stock	value
significantly	below	the	strike)	have	a	relatively	small	delta	component	and	a	relatively	large
gamma	component.	See	Britten-Jones	and	Schaefer	(1999)	for	an	in-depth	analysis	of	option
positions	where	linear	and	quadratic	approximations	performs	well	versus	less	well.

Quadratic	Portfolio	Distribution
The	obtained	quadratic	representation	in	equation	(2.23)	of	the	portfolio	value	distribution	is
not	explicit	in	general	for	 	risk	factors	but	the	Fourier	transform	of	the	distribution	can	be
obtained	using	the	independence	of	the	 	chi-square	distributions.	Our	next	step	in	the
analysis	is	therefore	to	derive	the	Fourier	transform	of	the	distribution.	For	that	purpose	recall
that	for	a	univariate	random	variable	 	the	function	 	where	 ,	that	is,	the
complex	 ,	is	called	the	Fourier	transform	or	characteristic	function	of	 .	Using	a	power	series
expansion	of	 	we	arrive	at	the	representation

where	each	of	the	integrals	is	referred	to	as	a	Fourier	transform	of	 .	Because	 	and	
	do	not	exceed	 ,	each	of	the	Fourier	integrals	exists	and	hence	 	always	exists.

Using	the	Fourier	transform	we	can	now	write

yielding,

by	the	well-known	independence	property	of	Fourier	transforms.

We	can	also	obtain	the	moment	generating	function,	 ,	which	is	also	referred	to	as	the
Laplace	transform,	as
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and	the	cumulant	generating	function,	 ,

from	which	the	cumulants,	 ,	are	derived	by	differentiation.	See	Feuerverger	and	Wong	(2000).
It	remains	now	to	devise	a	method	for	computing	a	quantile,	that	is,	value	at	risk	of	the
corresponding	density.

Calculation	of	Risk	Measures	for	the	Quadratic	Portfolio

Fourier	Inversion
Having	derived	an	explicit	Fourier	transform	it	is	natural	to	try	to	invert	the	transform	to	obtain
the	portfolio	distribution.	The	classical	Fourier	inversion	formula	for	a	continuous	distribution,

	with	Fourier	transform,	 ,	can	be	inverted	for	any	 	as

See,	for	example,	Davidson	(1994,	p.	168).	To	obtain	the	portfolio	distribution	we	may	hence
utilize	a	version	of	the	above	inversion	formula,	or	an	inversion	formula	directly	for	 	due	to
Gil-Pelaez	(1951),

where

and,	 ,	is	as	defined	above.	Of	course,	in	practice	the	indefinite	integral	needs	to	be
approximated,	that	is,	discretized	and	truncated	to	compute	the	cumulative	density.	Introducing
the	step	size	 	and	the	truncation	point	 ,	setting

we	may	write
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and	the	approximation	errors	introduced	are

1.	 Discretization	error	due	to	step	size	

2.	 Truncation	of	the	infinite	sum	at	

For	details	on	how	to	control	the	approximation	errors	in	the	numerical	inversion	of	the
Fourier	transform	above	using	the	Poisson	summation	formula	we	refer	to	Duffie	and	Pan
(2001).

Tail	Approximations
Instead	of	using	the	Fourier	transform	to	numerically	calculate	the	distribution	function	one	can
consider	tail	approximations	using,	for	example,	the	Cornish-Fisher	expansion	or	the	saddle
point	approximation	by	Lugannani	and	Rice	(1980).

Cornish-Fisher	Expansion
The	Cornish-Fisher	expansion	approximates	the	quantiles	of	a	distribution	using	a	polynomial
expansion	for	standardized	percentiles	of	a	general	distribution	in	terms	of	its	standardized
moments	and	the	corresponding	percentiles	of	the	standard	normal	distribution.	Specifically,
denoting	by	 	the	i:th	cumulant,	which	is	obtained	from	equation	(2.26)	by	differentiation,	the
first	four	terms	in	the	expansion	are

where	 	is	an	 	quantile	of	the	univariate	standard	normal	distribution	such	that

with	 	the	mean	of	 	and	 	the	variance.	See	Mina	and	Ulmer	(1999).	Mina	and
Ulmer	(1999)	also	compare	Fourier	inversion	and	Cornish-Fisher	expansion	quadratic	
using	test	portfolios	and	favor	the	Fourier	inversion	method.	See	also	Castilacci	and	Seclari
(2003)	on	quadratic	 	with	the	Cornish-Fisher	expansion.

Saddle	Point	Method
The	saddle	point	method	approximates	the	cumulative	distribution	function,	 ,	using



where	 	is	the	normal	cumulative	density	and	 	the	normal	probability	density,	and

The	saddle	point,	 ,	solves

We	refer	to	Feuerverger	and	Wong	(2000)	on	the	application	of	saddle	point	approximation	to
quadratic	 .

Simulation-Based	Valuation
As	risk	measurement	based	on	even	quadratic	approximations	can	be	too	crude	for	many
portfolios,	in	practice	it	is	common	in	market	risk	management	to	employ	simulation-based
valuation,	that	is,	applying	full	or	approximate	valuation	of	the	portfolio	under	each	scenario	to
construct	a	profit-and-loss	distribution.	This	of	course	generates	an	empirical	profit-and-loss
distribution	from	the	realized	portfolio	profit	and	loss	obtained	under	the	scenarios.
Subsequently	risk	measures	are	obtained	from	the	simulated	profit-and-loss	distribution.

It	is	important	to	understand	that	even	if	on	an	aggregate	level	the	market	risk	portfolio	is
dominated	by	relatively	simple	instruments	such	as	bonds	and	vanilla	options	that	may	be	well
approximated	with	linear	or	quadratic	expansions,	a	large	risk	exposure	may	still	arise	from
the	more	complex	instruments	in	the	portfolio.	The	oversimplification	of	complex	instruments,
for	example,	using	a	delta	approximation,	may	also	result	in	a	nonrepresentative
decomposition	of	the	risks	in	the	portfolio	using	risk	contributions	and	hence	resulting	unfair
capital	allocations.	Hence,	even	if	a	smaller	part	of	the	portfolio	has	complex	positions	one
may	resort	to	a	simulation-based	approach	to	enable	full	valuation	of	the	complex	positions.	Of
course,	to	reduce	valuation	time	for	the	simpler	instruments	their	pricing	can	be	approximated
by	a	first-	or	second-order	approximation	in	the	simulation-based	scenario	valuation.	Enabling
the	choice	of	best	valuation	representation	per	position	is	of	course	a	key	advantage	of	the
simulation-based	approach	to	market	risk.

Another	key	advantage	with	a	simulation-based	approach	to	risk	management	is	that	one	can
consider	general	distributions	for	the	portfolio	risk	factors,	 .	However,	consistent	with
previous	sections	on	the	linear	and	quadratic	portfolios	we	will	here	still	assume	that	the
distribution	of	risk	factors	is	multivariate	normal	and	will	defer	the	discussion	of	more	general
risk	factor	distributions	and	models	to	the	next	chapter	on	advanced	market	risk	analysis.
Hence	the	focus	in	this	section	is	on	the	simulation	of	samples	from	the	multivariate	normal
distribution	and	the	corresponding	valuation	scheme.

Clearly,	even	if	the	risk	factors	are	multivariate	normal	the	resulting	portfolio	profit-and-loss
distribution	does	not	need	to	be	normal	and	hence	the	set	of	empirical	portfolio	loss	samples	

	for	 	scenarios	can	come	from	an	arbitrary	distribution.	The	deviation	from
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nonnormality	of	the	portfolio	distribution	is	driven	by	the	functional	form	of	the	pricing
functions	for	the	instruments.	For	example,	we	have	seen	that	when	the	portfolio	instruments
are	priced	using	a	quadratic	approximation,	the	resulting	portfolio	distribution	is	no	longer
normal	(as	it	still	is	in	the	delta	case)	and	is	distributed	as	a	sum	of	scaled	squared	shifted
normally	distributed	variables.

In	the	simulation-based	approach	to	market	risk,	we	can	allow	any	functional	form	for	the
pricing	function	for	a	specific	portfolio	instrument	 .	In	principle,	the	pricing	function
does	not	have	to	be	analytic	but	we	assume	a	functional	representation	as,

as	a	function	of	the	 	vector	of	risk	factors,	 ,	with

As	we	have	discussed	above,	the	pricing	function	in	equation	(2.28)	may	in	practice	be
nonlinear	and	not	well	approximated	by	either	a	linear	or	even	a	quadratic	portfolio.	As	a	few
motivating	examples	of	position	nonlinearity	we	now	consider	the	profit-and-loss	profiles	for
three	common	barrier	stock	options	using	a	grid	of	values	for	the	underlying	stock.	It	is	well-
known	that	the	representation	of	barrier	options	in	terms	of	its	Greeks	is	not	without	problems.
For	example,	standard	barrier	options	will	typically	have	a	large	gamma	component	when	the
stock	value	is	close	to	the	barrier	value.	See	Derman	and	Kani	(1996).	This	also	makes	barrier
options	difficult	to	hedge.

Example	of	Barrier	Stock	Options	and	Position	Nonlinearity

Single-Barrier	Option9

Our	first	example	is	a	single-barrier	option	with	current	stock	price	at	46.75	units	of	currency
and	option	volatility	at	25%.	The	single-barrier	option	is	an	up	and	in	put	option	with	barrier
level	60	and	strike	level	50.	Being	an	up	and	in	put	a	standard	Black	and	Scholes	European	put
option	is	knocked	in	if	the	stock	value	breaches	the	barrier.	The	option	maturity	date	is
approximately	3	years	and	4	months	from	the	valuation	date.	Table	2.2	and	Figure	2.1	display
the	single-barrier	option	profit-and-loss	profile	for	the	different	stock	values.	We	note	that	the
option	value	increases	as	underlying	stock	price	moves	closer	to	the	barrier	value	of	60.
However,	for	stock	values	far	above	the	barrier	value	the	barrier	option	profit	and	loss
decreases.	This	is	because	while	the	barrier	has	been	breached,	and	the	standard	Black	and
Scholes	European	put	has	been	knocked	in,	it	becomes	less	likely	that	the	option	will	have	an
intrinsic	value	at	maturity.



Table	2.2	Profit-and-Loss	Profiles	for	Barrier	Options	for	a	Grid	of	the	Underlying	Stock
Value

Profit	and	loss	profiles	for	barrier	options
Stock	value Single	barrier	option Binary	barrier	option Soft	barrier	option
35 −0.81 −1.09 −1.01
42.50 −0.36 −0.41 −0.46
46.75 0 0 0
50 0.35 0.32 0.45
57 1.32 1 1.56
65 1.83 2.72 1.16
72 0.91 2.72 0.26
80 0.28 2.72 −0.31
88 −0.15 2.72 −0.67
95 −0.44 2.72 −0.9



Figure	2.1	Profit-and-Loss	Profiles	for	Barrier	Options	for	a	Grid	of	the	Underlying	Stock
Value

Binary	Barrier	Option
Our	second	example	is	a	binary	barrier	option.	The	option	is	an	up	and	in	cash-or-nothing	call
that	pays	at	the	maturity	date,	which	is	approximately	2	years	and	10	months	from	valuation
date.	The	option	strike	level	is	50	and	the	barrier	level	is	60.	As	for	the	single-barrier	option
the	current	stock	value	is	46.75	and	the	option	implied	volatility	is	25%.	The	binary	barrier
option	pays	out	a	cash	amount	of	5	units	of	currency.	Hence,	if	the	option	is	knocked	in,	the
option	holder	receives	at	maturity	the	cash	payout	(today	the	discounted	value	of	the	cash
payout).	The	profit-and-loss	profile	for	the	binary	barrier	option	is	also	displayed	in	Table	2.2
and	Figure	2.1.	For	the	binary	barrier	option	the	profit-and-loss	profile	rises	with	higher
values	of	the	stock	value	as	the	option	is	knocked	in,	and	at	barrier	level	60	there	is	a	fixed,
discounted	value	of	final	cash	payout.

Soft	Barrier	Option
Our	final	barrier	option	example	is	a	put	soft	barrier	option.	Being	a	soft	barrier	option	this
means	that	the	put	is	knocked	in	proportionally	as	we	move	from	the	lower	barrier	level	to	the
upper	barrier	level.	The	put	strike	level	is	50	and	the	lower	and	upper	soft	barriers	are	55	and
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65,	respectively.	Hence,	to	knock	in	the	put	100%	we	require	the	stock	value	to	breach	the
upper	barrier.	The	maturity	date	is	approximately	2	years	and	7	months	from	the	valuation	date.
Again,	the	current	stock	value	is	46.75	and	the	option	volatility	is	25%.	The	put	soft	barrier
option	profit-and-loss	profile,	displayed	in	Table	2.2	and	Figure	2.1	as	for	the	other	examples,
does	not	increase	monotonically	as	the	put	is	knocked	in.	This	is	because	while	the	soft	barrier
option	gets	knocked	in	further	the	intrinsic	value	of	the	knocked-in	put	option	decreases	as	the
stock	value	increases.	The	profit-and-loss	profile	for	the	soft	barrier	option	is	hence	similar	to
the	profit-and-loss	profile	for	our	first	example	put	barrier	option.

Simulation	from	the	Multivariate	Normal	Distribution
In	the	simulation-based	approach	to	market	risk	analysis,	the	first	step	is	to	simulate	

	samples	of	the	 	vector	of	risk	factors,	 .	As	before	we	assume	the
multivariate	normal	risk	factor	model,

where	 ,	 	has	been	estimated	from	historical	data	using	the	normal	log-likelihood	in	equation
(2.15).	We	can	now	define	the	simulation	samples	as	follows:

1.	 Decompose	 	as	 	using	the	eigenvalue	decomposition	where	 	is	a	diagonal
matrix	with	eigenvalues	on	the	main	diagonal,

and	 	is	orthogonal,	with	the	eigenvectors,

2.	 such	that	 ,	the	identity	matrix.

3.	 Define	 	and	generate	samples	from	 	where	 .

4.	 Transform	to	sampled	values	for	 ,	 ,	by	translation	of	 	by	 .

Having	available	the	simulation	samples,	 ,	we	can	now	value	the	portfolio	conditional	on
the	realized	samples.	That	is,	we	transform	to	portfolio	sampled	profit-and-loss	values	by
evaluation	of

where	 	is	the	holdings	of	instrument	 .	The	loss	distribution	is	now	the	distribution	of



for	 	samples	of	 	and	hence	also	 .

The	eigenvalue	decomposition	in	step	1	does	not	require	the	covariance	matrix	to	be	positive
definite—only	positive	semi-definite.10	Besides	the	collinearity	issue	discussed	previously	in
the	context	of	estimating	the	covariance	matrix	of	risk	factors	in	section	2.1.4,	in	practice,
numerical	precision	might	also	result	in	a	covariance	matrix	that	is	not	positive	semi-definite.
We	refer	to	Rebonato	and	Jackel	(1999)	for	a	spectral	decomposition	method	to	adjust	the	non-
positive–semidefinite	covariance	matrix.

To	generate	the	standard	normals	in	step	 	above	we	make	use	of	a	random	number	generator.
There	are	basically	two	types	of	random	number	generators	available,	pseudo-random
generators	and	quasi-random	generators.	These	generators	realize	a	uniform	random	number
(i.e.,	a	number	between	 	and	 ).	Traditionally	high	discrepancy	pseudo-random	number
generators	are	used	to	generate	the	uniform	innovations	to	Monte	Carlo	simulations.	Loosely
translated,	a	high-discrepancy	pseudo-random	number	generator	is	a	random	generator	in
which	there	is	very	little	correlation	between	current	and	past	numbers	generated.	In	contrast	to
pseudo-random	generators,	quasi-random	generators	are	deterministic.	That	is,	they	produce
random	numbers	that	have	no	random	component.	Well-known	quasi-random	number
generators	include	the	Sobol	and	Faure	sequences.	It	has	been	shown	that	for	some	problems
quasi-random	number	generators	converge	to	the	true	distribution	with	a	smaller	number	of
draws	than	the	pseudo-random	generators.	However,	a	problem	with	quasi-random	generators
is	that	they	typically	induce	restrictions	on	the	dimensionality	(e.g.,	≤40),	which	typically
requires	restrictive	dimension	reduction	methods	on	the	risk	factor	models.	We	refer	to
Glasserman	(2003)	for	more	details	on	pseudo-	and	quasi-random	number	generators.	For	the
purpose	of	illustration	Figure	2.2	displays	 	simulated	normal	points	from	a	pseudo-random
number	generator	(left	panel)	and	a	quasi-random	number	generator	(right	panel).

Figure	2.2	100	Normal	Simulated	Points	from	a	Pseudo-Random	Number	Generator	(Left)	and
a	Quasi-Random	Number	Generator	(Right)

Having	generated	a	uniform	 	random	number	 	we	may	transform	to	a	random	number	
where	the	distribution	 	is	continuous	using	the	inverse	function	transformation.	Specifically,



denote	by	 	the	cumulative	distribution	function	of	 .	If	 	is	strictly	increasing,	then	the
inverse	function	 	is	defined	as

whereas	if	 	is	constant	on	some	interval,	we	define	the	inverse	function	as

Figure	2.3	displays	the	inverse	function	transformation	for	the	normal	distribution.	Note	that	in
case	of	the	normal	distribution,	 	is	strictly	increasing	on	the	domain	and	hence	the
definition	 	with	 	the	inverse	normal	distribution	suffices.

Figure	2.3	The	Inverse	Function	Transformation	for	the	Normal	Distribution

Once	we	have	generated	 	independent	random	normal	variables,	representing	the	
	risk	factors,	the	next	step	is	to	construct	corresponding	correlated	random	normal

variables,	that	is,	to	generate	a	sample	from	the	distribution,	 .	If	the
covariance	matrix,	 ,	is	positive	definite,	we	can	use	the	Cholesky	decomposition	for	this
purpose.	For	example,	if	

with	 	the	variance	of	risk	factor	1,	 	the	variance	of	risk	factor	2,	and	 ,	the	correlation
between	risk	factors.	We	can	then	decompose	the	covariance	matrix	as	in	(2.21)



where	 	is	the	Cholesky	actorization.	We	can	now	generate	risk	factor,	 	and	 ,	return
samples	as	follows	(assuming	zero	mean	returns):

where	 	and	 	are	two	independent	standard	normal	variables.

In	case	 	we	can	simplify	to	get

When	risk	factor	returns	are	relative	and	continuously	compounded	we	have	instead	that

which	is	appropriate,	for	example,	for	stocks	since	the	stock	price	is	bounded	below	by	 .	A
true	geometric	Brownian	motion	has	contribution	from	the	volatility	to	the	growth	rate.

Note	here	that	due	to	dealing	with	the	normal	distribution	and	independent	increments	we	can
scale	the	variance	of	the	sampled	normal	variables	to	simulate	risk	factor	values	at	different
horizons.	For	example,	if	we	have	 	risk	factors	and	the	covariance	matrix	of	absolute
returns	is	estimated	at	an	horizon	of	1	day	but	we	require	simulation	at	an	horizon	of	10	days,
the	simulated	risk	factor	value	at	the	10-day	horizon	is	simply	obtained	as

Here	we	have	assumed	a	unit	variance	for	both	risk	factors.	That	is,	 .

Below	we	consider	several	methods	of	adjusting	the	simple	simulation	process	sketched
above.

First,	we	recognize	that	the	dimension	of	 	risk	factors	may	be	very	large	and	that
dimension	reduction	techniques	can	be	useful	in	practice.

Second,	we	consider	the	introduction	of	parameter	uncertainty	in	the	simulation	process	by
factoring	in	the	estimation	risk	in	 	and	 .



Third,	we	consider	two	commonly	used	methods	to	enable	reduction	of	the	computation
time	in	Monte	Carlo	simulation.

The	first	method	is	a	variance	reduction	scheme	using	importance	sampling	suggested	by
Glasserman	et	al.	(2000a,	b).	It	allows	the	reduction	of	the	number	of	scenarios	required	to
achieve	a	given	accuracy,	and	hence,	the	number	of	potentially	time-consuming	instrument
valuations.	As	described	here	this	method	is	specific	to	the	multivariate	normal	distribution	for
risk	factors	as	we	will	make	use	of	the	linear	and	quadratic	expansions	of	the	portfolio
detailed	previously.	However,	Glasserman	et	al.	(2002)	also	consider	variance	reduction	for
simulation	of	samples	from	the	multivariate	t-distribution.

The	second	method	is	focused	on	simplifying	the	portfolio	pricing	and	hence	reducing	pricing
time	for	a	given	set	of	scenarios.	We	consider	several	portfolio	approximations	as	well	as
specific	instrument	pricing	simplification	methods	that	enable	the	reduction	of	valuation	time
for	a	portfolio.	These	portfolio	valuation	time	reduction	methods	are	certainly	not	specific	to
the	assumption	of	a	multivariate	normal	distribution	for	returns.	We	still	include	the	description
of	their	method	in	this	section.

Risk	Factor	Dimension	Reduction
A	typical	market	risk	model	for	a	financial	institution	has	thousands	of	risk	factors	that	affect
the	portfolio	value.	The	risk	factor	types	include:

Equity

Interest	rate

Foreign	exchange

Commodity

Credit	spread

Volatility	factors

The	large	dimension	of	 	risk	factors	can	make	it	difficult	to	understand	what	risk
factors	are	the	core	factors	driving	the	portfolio	risk.11	In	practice	the	number	of	risk	factors	

	is	also	considerably	larger	than	the	number	of	time	series	observations	used	to
estimate	the	covariance	matrix.	This	means	that	a	covariance	matrix	for	a	large	number	of	risk
factors	can	contain	relatively	little	information	and	there	may	only	be	a	few	sets	of	independent
principal	components	that	can	explain	close	to	100%	of	the	distribution.	Risk	factor	dimension
reduction	with	factor	models	is	therefore	often	used	in	practice.	It	is	useful	to	make	a
distinction	between	observed	factor	models	and	unobserved	factor	models.	The	observed
factor	models	use	actual	market	indices	such	as	broad	equity	market	indices	to	reduce	risk
factor	dimensions.	The	unobserved	factor	model	uses	statistical	techniques	to	infer	a	few
principal	components	that	can	largely	explain	the	variability	in	large-dimensional	data.

Observed	Factor	Models
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The	observed	factor	model	decomposes	the	 	risk	factors	into	a	reduced	set	 	observed
risk	factors	that	we	can	model	instead	of	the	original	 	factors.	An	observed	factor	model,
generally	known	as	Arbitrage	Pricing	Theory	(APT)	model	as	in	equation	(2.13),	decomposes
the	 	risk	factor	returns	into	 	factors	such	that

where	 	are	the	common	factors	such	as	market	indices,	 	are	the	factor	loading
(factor	betas)	for	risk	factor	 	on	the	common	factors.	Finally,	 	is	the	risk	factor	 	specific
factor	returns.

This	decomposition	of	a	large	number	of	 	risk	factors	into	 	common	factors	allows
scenario	and	simulation	analysis	to	focus	on	the	reduced	set	of	 	factors.	We	note	especially
that	the	risk	factor	covariance	matrix	we	need	to	estimate	is	now	 -dimensional	instead	of	 -
dimensional.	Once	the	scenarios	for	the	 	factors	have	been	obtained	the	factor	model	is	used
to	convert	the	 factor	scenarios	into	the	actual	portfolio	risk	factor	returns,	 .	The
conversion	has	two	components:

First,	the	risk	factor	transformation	in	equation	(2.30)	has	an	expected	value	of	the	actual
portfolio	risk	factor	returns,	 .

This	expected	value	is	obtained	by	setting	 .	Hence,	capturing	only	the	systematic
portion	of	risk	factor	 	return.

The	second	component	is	the	specific	risk.

The	specific	risk	samples	 	independently	for	each	 	risk	factor.	An	often-
used	special	case	of	the	observed	factor	model	is	the	single-index	CAPM	model
introduced	in	equation	(2.12).12	In	the	CAPM	model	each	risk	factor	return	is	expressed	as
reference	to	a	“beta”	risk	factor.	The	beta	of	the	single	factor	is	calculated	by	regression
analysis	as	the	return	of	the	individual	risk	factor	on	the	risk-free	rate	of	return	and	the
return	on	the	single	market	index.	The	model	is	often	used	for	equity	returns.	See	Elton	and
Gruber	(1995,	ch	7,	8)	for	an	overview	of	equity	factor	models	used	in	practice.

Unobserved	Factor	Models
The	multivariate	normal	distribution	has	the	property	that	the	eigenvalue	decomposition	of	the
covariance	matrix	produces	independent	eigenvectors,	 ,	and	that	the	eigenvalues
basically	explain	the	variance	attributed	to	eigenvector	 .	Assume	therefore	that	 ,	the	diagonal
matrix	with	eigenvalues	on	the	diagonal,	is	ordered	such	that	the	eigenvalues	of	 	appear	in
descending	order.	To	measure	the	ability	of	the	 	first	principal	components	to	explain	the
variability	we	write	 	as	the	total	variability	explained	by	the	first	 	principal
components.	To	obtain	a	representation	of	the	covariance	matrix	in	terms	of	the	 	main
principal	components	we	have	that
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where	the	subscript	 	indicates	that	the	ordered	matrices	have	been	truncated	accordingly.	To
generate	random	numbers	for	the	 	principal	components	we	now	set

where

and	 .	The	representation	in	terms	of	the	original	 -dimensional	risk	factors,

is	obtained	as

where	 	is	partitioned	such	that	 	is	 	by	 -dimensional	and	conformable	with	 .

As	a	numerical	example	of	principal	component	analysis	consider	 	risk	factors	and	a
covariance	matrix,	 ,	given	by

The	corresponding	eigenvalues	are

Hence,	the	first	eigenvalue	explains	almost	99.5%	of	the	variability	since

and	the	first	two	eigenvalues	99.98%	since

The	corresponding	eigenvectors	are



The	dominant	first	eigenvector	(first	row)	now	corresponds	to	an	almost	equal	shift	of	the	three
risk	factors.	Generating	random	numbers,	using	only	the	first	principal	component,	we	have
that

Principal	component	analysis	is	traditionally	applied	to	interest	rates	and	specifically	yield
curve	dimension	reductions.	In	case	of	yield	curves	one	often	talks	about	the	main	principal
components	being

A	parallel	shift	of	the	curve	(first	eigenvector)

A	twist	of	the	curve	(second	eigenvector)

A	butterfly	move,	that	is,	a	bend	of	the	yield	curve	(third	eigenvector)

This	is	illustrated	in	the	following	yield	curve	principal	components	example.

Yield	Curve	Principal	Components	Example
We	consider	the	historical	monthly	US	Treasury	yield	curve	from	February	2006	to	January
2013.	The	yield	curve	has	yields	for	the	maturities	of	1	month,	3	months,	6	months,	1	year,	2
years,	3	years,	5	years,	7	years,	10	years,	20	years,	and	30	years.	Table	2.3	displays	the
historical	means	and	standard	deviations	of	the	yields.	Figure	2.4	shows	the	eigenvalues	of	the
covariance	matrix	for	these	11	yields	and	the	variance	explained	by	these	eigenvalues.	The
first	three	eigenvalues	can	cumulatively	explain	more	than	99%	of	the	total	variance.

Table	2.3	Mean	and	Standard	Deviation	of	US	Treasury	Historical	Yields

Yield	maturity Mean Standard	deviation
1	month 1.48 2.01
3	months 1.54 2.03
6	months 1.65 2.05
1	year 1.72 1.97
2	years 1.80 1.79
3	years 2.10 1.66
5	years 2.58 1.44
7	years 3.00 1.24
10	years 3.42 1.05
20	years 4.06 0.87
30	years 4.14 0.73



Figure	2.4	Eigenvalues	and	Variance	Explained	by	Principal	Components	Analysis	of	the	US
Treasury	Curve

In	a	simulation	of	the	US	Treasury	yield	curve	scenarios	one	can	consider	to	model	only	the
first	three	principal	components.	There	are	two	immediate	benefits	gained	from	modeling	the
principal	components	rather	than	all	of	the	curve	components.

First,	the	number	of	factors	to	be	modeled	reduces	from	11	to	3.

Second,	the	principal	components	can	be	modeled	independently	because	they	are
orthogonal.

As	a	final	step	we	can	transform	back	to	the	original	interest	rate	curve	using	the	simulated
principal	components	and	equation	(2.31).

Table	2.4	and	Figure	2.5	display	the	obtained	first	three	principal	components	in	our	interest
rate	principal	components	example.	We	notice	from	Table	2.4	and	Figure	2.5	that	the	first	three
principal	components	indeed	reflect	a	parallel	shift,	a	curve	twist,	and	a	butterfly	move	as
expected.	We	refer	the	interested	reader	to	Litterman	and	Scheinkman	(1991)	for	a	thorough
discussion	of	the	principal	components	factors	affecting	bond	returns.



Table	2.4	First	Three	Principal	Components	of	the	US	Treasury	Yield	Curve

Yield	maturity Component	1 Component	2 Component	3
1	month 0.300171 −0.310751 0.374625
3	months 0.301668 −0.302667 0.283004
6	months 0.303280 −0.289463 0.132895
1	year 0.305486 −0.264530 0.003473
2	years 0.310740 −0.186357 −0.189603
3	years 0.314063 −0.097946 −0.317344
5	years 0.314850 0.068967 −0.327312
7	years 0.309681 0.197286 −0.266078
10	years 0.302882 0.292970 −0.153138
20	years 0.280849 0.467022 −0.081825
30	years 0.269726 0.515868 0.645877



Figure	2.5	First	Three	Principal	Components	of	the	US	Treasury	Yield	Curve

A	Few	Words	of	Caution	When	Using	Principal	Component	Analysis
Note	that	when	applying	principal	component	analysis	on	a	larger	scale	for	the	 	risk
factors	in	the	portfolio	the	large	sample	covariance	matrix	used	as	basis	for	principal
component	analysis	can	be	poorly	estimated.	As	we	have	discussed	previously	this	is
especially	the	case	when	the	number	of	risk	factors	is	large	in	proportion	to	the	number	of
historical	observations.	Since	the	principal	components	themselves	are	derived	from	the
estimated	covariance	matrix,	it	is	important	that	one	validates	the	empirical	covariance	matrix,
for	example,	using	a	shrinkage	estimator	of	the	covariance	matrix.

Finally,	caution	is	necessary	when	using	principal	component	analysis	in	risk	management.
Since	risk	management	focuses	on	tail	risks	one	needs	to	be	careful	in	focusing	on	only	a	few
principal	component	shifts.	For	example,	in	tail	risk	analysis	of	a	bond	portfolio	unlikely	yield
curve	shifts	may	still	give	rise	to	large	tail	risks.	It	is	therefore	useful	to	have	in	mind	that
principal	component	analysis	finds	the	factors	that	can	explain	historical	yield	curve
movements	the	most	and	not	necessarily	the	yield	curve	movements	that	can	explain	portfolio



profit	and	loss	best.	Methods	that	attempt	to	“rank”	which	risk	factors	can	explain	most	of
portfolio	profit	and	loss	for	general	nonlinear	portfolios	include	the	risk	factor	information
measure,	based	on	Kullback-Leibler	information	and	partial	least	square	analysis.	We	will
return	to	a	discussion	of	these	measures	in	the	next	chapter	on	advanced	market	risk	analysis.

Incorporating	Model	Estimation	Error	in	the	Simulation	Scheme
The	previously	discussed	multivariate	normal	risk	factor	simulation	process	ignores	the
estimation	risk	in	the	parameters	 ,	 .	To	incorporate	the	uncertainty	in	the	estimates	 ,	 	we
consider	a	simple	modification	to	the	scheme	above.	First,	we	replace	step	 	by	the	following:

Generate	samples	from	 	and	 	and	construct	 .

Here	 	is	the	 -dimensional	Wishart	distribution	with	 	degrees	of	freedom	introduced
previously	as	the	distribution	of	the	estimated	covariance	matrix	of	the	normal	distribution.

Second,	we	replace	step	 	by:

[[check]]	Transform	to	samples	for	 ,	 ,	by	translation	of	 	by	samples	from	
where	 	is	the	covariance	matrix	of	the	 	parameters.

By	construction	the	distributions	for	the	covariances	and	the	averages	are	independent.	Hence
these	modified	steps	 	and	 	can	still	be	done	independently.

While	this	approach	accounts	for	risk	factor	model	parameter	uncertainty	it	does	not
represent	a	comprehensive	approach	to	model	risk.	Indeed,	the	model	itself	may	be	wrong
and/or	the	historical	data	on	which	the	model	is	calibrated	may	not	be	representative	of	the
future.	There	are	also	other	aspects	of	the	portfolio	risk	model	that	may	be	exposed	to	model
risk.	For	example,	there	can	be	model	risk	inherent	in	the	pricing	models	used	to	value	the
positions.	Especially	complex	financial	products	may	carry	significant	model	risk	in	their
pricing.13	An	important	part	of	the	model	validation	process	for	financial	institutions	is	to
perform	stress	testing	as	well	as	backtesting	of	the	risk	measures	produced	by	the	market	risk
model.	Both	stress	testing	and	backtesting	will	be	discussed	extensively	in	the	next	chapter	on
advanced	market	risk	analysis.

Variance	Reduction	by	Importance	Sampling
Importance	sampling	is	a	powerful	tool	that	in	general	allows	the	number	of	scenarios	to
achieve	a	given	accuracy	in	risk	measures	such	as	value	at	risk	to	be	far	fewer	than	otherwise.
It	is	especially	useful	in	situations	where	losses	may	happen	with	a	very	low	probability	such
that	the	portfolio	profit	and	loss	resembles	insurance-style	contracts	where	there	is	a	steady
earning	at	a	very	high	probability	and	extreme	losses	with	a	very	low	probability.	This	feature
is	typically	reminiscent	of	speculative	market	risk	portfolios	and	portfolios	with	issued	credit
insurance.	A	classical	example	in	the	market	risk	context	is	a	portfolio	that	earns	income
through	selling	deep	out-of-the-money	options.	To	earn	a	sizable	income	stream	the	portfolio
holding	itself	needs	to	be	sizable	since	each	out-of-the-money	contract	carries	a	relatively
small	market	premium.	Of	course,	the	larger	the	portfolio	of	sold	deep	out-of-the-money



options	the	larger	the	tail	risk	payout	amount.	Clearly,	in	such	portfolio	situations	the	bulk	of
the	normal	scenarios	from	the	 	risk	factors	carry	no	or	little	information	about	the
portfolio	risk,	and	one	could	be	better	off	by	focusing	sampling	directly	in	the	tail.

General	Methodology
We	start	by	describing	the	general	methodology	of	importance	sampling	and	then	proceed	to
discuss	the	specific	case	of	interest	in	this	chapter,	namely	using	the	normal	linear	or	quadratic
portfolio	approximation	to	guide	the	sampling	ofscenarios.	Let	the	expectation

be	the	quantity	of	interest,	with	 	an	 -dimensional	independent	vector	with	 .
Supposing	we	have	available	a	function	 	with	the	property	that	 	whenever	 ,
we	can	write

It	seems	therefore	that	we	can	estimate	 	by	generating	samples	from	 	and	computing	
.	Following	this	program	we	could	enable	a	variance	reduction	if	 	has	small

variance.	Note	here	that

is	a	likelihood	ratio	and	as	we	would	like	to	reduce	variance	in	 	we	should	obviously	try
to	choose	the	function	 	such	that	the	likelihood	ratio	is	small	when	 	is	large	and	possibly
large	only	when	 	is	small.	Still,	we	require

The	requirement	that	to	be	successful	in	our	variance	reduction	we	must	have	 	exceedingly
small	sometimes	so	that	the	likelihood	ratio	is	allowed	large	sometimes	suggests	that
importance	sampling	will	work	best	for	estimating	small	probabilities.	That	is,	probabilities	of
large	thresholds	are	our	main	concern	here.	The	question	is	now	how	we	could	choose	 	in
practice.	A	generic	density	that	satisfies	the	properties	referred	above	is	the	following:

where	 	is	the	Laplace	transform	(moment	generating	function)	of	 .	Then	
for	 	and	the	reverse	for	 .

Estimating	Tail	Probabilities
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Consider	now	the	specific	case	of	estimating	 	where	 .	Here	 	denotes
the	indicator	function	such	that	 	if	the	condition	 	is	fulfilled	and	zero	otherwise.
Using	the	tilted	density	the	importance	sampling	estimator	of	 	is

Since	 	we	have	that

and	hence

where	this	bound	is	minimized	at	 .	It	can	be	shown	that	the	minimizing	 	satisfies	
	where	the	expectation	here	is	taken	with	respect	to	the	density	 .	That	is,	the

(independent)	elements	of	 	have	density	 .

To	summarize	we	therefore	have	the	following	importance	sampling	estimator	of	 :

1.	 Generate	random	samples	from	 ,	 ,	that	is,	from	their	tilted	density
functions.

2.	 Evaluate	the	importance	sampling	estimator	(2.32).

We	now	consider	an	explicit	example	using	the	normal	distribution	where	 	is
independent	for	 ,	then

and,	by	independence	between	components,

Hence,	estimating	 	we	generate	random	samples	from	 	and	compute	the	likelihood	ratio	
	times	 	in	each	run.	The	minimizing	choice	of	 	is

Variance	Reduction	Using	the	Quadratic	Portfolio	Approximation
Focusing	on	our	main	objective	of	the	importance	sampling	estimation	of	the	probability	of
portfolio	loss	over	a	large	threshold	 	we	are,	as	above,	interested	in	the	quantity
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where	 	denotes	the	(positive)	portfolio	loss.	According	to	the	above	we	may	choose	the
Laplace	transform	in	 	as	approximating	 	and	still	have	an	unbiased	estimator.	In	particular
denoting	the	approximative	portfolio	value	by	 ,	where	 	is	the	quadratic	portfolio
approximation,	and	the	corresponding	transform	by	 	(see	equation	(2.25)),	we	get

as	the	importance	sampling	estimator	when	we	sample	from	the	tilted	density.	From	equation
(2.22)	we	have	that	the	quadratic	portfolio	approximation	can	be	written

with	approximate	quadratic	portfolio	loss,	 ,

such	that	a	large	loss	contribution	for	risk	factor	 	occurs,	for	example,	when	 	is	a	large
negative	number	(negative	return)	with	a	large	 	(large	delta	and	volatility	component)	and
small	 	(small	gamma	component).

Glasserman	(2003)	shows	that	the	tilted	density	is	obtained	if	we	set	the	parameters	of	the
normal	simulation	vector	 	as

and	follow	the	scheme:

Generate	a	 	scenario	from	the	tilted	distribution	(2.35)	and	compute	an	approximate
portfolio	loss	scenario,	 ,	as	in	equation	(2.34)	using	the	approximation	(2.33).

Calculate	a	true	portfolio	loss	scenario,	 ,	by	using	the	regular	covariance	matrix
simulation	scheme	above	(with	 	decomposed	as	 	and	the	actual	portfolio	pricing
functions).

Calculate	 	where	 	is	the	Laplace	transform	in	equation	(2.25).



Obtain	the	estimate	of	the	probability	 	as	the	average	over	the	replications	of
weighted	portfolio	loss	exceeding	 ,	 .

For	a	discussion	on	the	optimal	choice	of	the	 	parameter	as	the	 	of	the	quadratic
approximation	as	well	as	an	extension	of	the	importance	sampling	method	to	post-stratification
we	refer	to	Glasserman	(2003).

Reducing	Pricing	Time
In	a	simulation-based	approach	to	market	risk	the	portfolio	valuation	step	is	usually	by	far	the
most	time-consuming	task.	Indeed,	for	each	scenario	 	each	portfolio	instrument	has
to	be	repriced.	Here	the	number	of	scenarios,	 ,	is	usually	counted	in	the	order	of	thousands,
such	as	10,000	scenarios.	The	portfolio	size	is	usually	counted	in	the	order	of	hundreds	of
thousands	or	even	millions.	As	a	first	dimension	reduction	for	pricing	we	note	that	there	is	no
need	to	price	different	positions	held	by,	for	example,	different	desks	in	the	same	instrument
separately.	This	is	because	pricing	is	linear	in	the	holding	(see	equation	(2.29)).	Hence,	it
suffices	to	obtain	the	instrument	market	price	under	a	unit	holding	and	then	construct	the
position	value(s)	by	multiplication	of	the	position	holding(s).	This	also	means	that,	for	no
change	in	market	scenarios,	the	incremental	risk	of	adding	a	position	in	an	instrument	does	not
require	a	portfolio	resimulation—just	a	reaggregation	of	unit	position	profit	and	losses	using
the	new	position	holding	scaling.14	Once	basic	portfolio	dimension	reduction	principles	such
as	position	scaling	have	been	applied	it	is	natural	to	try	to	reduce	a	given	portfolio	or
instrument's	pricing	time	through	various	approximation	techniques.

Grid	Pricing
A	sometimes	useful	method	to	reduce	pricing	time	for	simulation-based	risk	measurement	is
through	so-called	grid	pricing.	In	this	method	a	grid	of	instrument	prices	is	pre-computed	as	a
function	of	 	risk	factors.	Write

as	the	pricing	function	for	a	particular	instrument	 	as	a	function	of	 	risk	factors	and
define	a	particular	discretization	 	for	 	such	that

We	may	then,	for	 	risk	factors,	evaluate	the	instrument	pricing	function	 	under	all	the
possible	combinations.	Denoting	the	resulting	pricing	surface	by	 	we	may	now,	for	a	given
realization	of	 ,	obtain	a	value	for	 	using	 -dimensional	interpolation.	In	practice,
however,	one	typically	works	with	a	reduced	risk	factor	dimension	(e.g.,	 )	to	allow	a
feasible	interpolation	scheme.

A	practical	example	of	grid	pricing	is	the	standard	practice	in	risk	management	to	compute	so-
called	risk	matrices	or	stress	matrices	for	options	by	computing	the	variation	in	the	option
price	due	to	a	deterministic	bivariate	grid	for	the	underlying	asset	and	the	implicit	volatility	of
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the	option.	To	make	use	of	such	a	riskmatrix	in	the	approximate	grid	pricing	method	amounts
to,	for	a	value	pair	of	the	underlying	asset	price	and	its	implied	volatility	respectively,
applying	bivariate	linear	interpolation	to	retrieve	a	price	associated	with	the	pair.	Obviously,
for	highly	nonlinear	instruments,	such	as	the	single	and	soft	barrier	option	examples	in	Table
2.2,	the	demands	on	the	grid	fineness	are	higher	to	capture	profit-and-loss	turning	points.	For
multidimensional	products	with	 	large,	such	as	basket	options,	the	requirements	on	the	number
of	risk	factors	in	the	pricing	surface	may	also	restrict	its	use	in	practice.15	However,	the	grid
pricing	method	is	still	a	very	simple,	yet	potentially	powerful,	method	to	reduce	computation
time	in	risk	management.	The	method	has	been	discussed	in	Rowe	(1993,	1995)	and	Rowe	and
Mulholland	(1999).

Example	of	Grid	Pricing	for	an	American	Option
Consider	a	single	position	in	an	at-the-money	American	call	equity	option	with	strike	price
100,	annual	implied	option	volatility	of	30%,	risk-free	rate	5%,	and	a	time	to	maturity	of	1
year.	The	continuous	dividend	yield	of	the	stock	is	5%.	The	valuation	of	the	option	uses	a
binomial	lattice	(Cox,	Ross,	and	Rubinstein,	1979)	with	100	steps.16	We	calculate	the	value	of
the	option	for	a	grid	of	underlying	stock	values,	 ,	and	implied	volatilities,	 ,	as

For	realized	risk	factor	scenario	values	of	 	and	 	we	then	obtain	the	bivariate
linear	interpolated	option	price,	 ,	as	 .	The	scenario	pricing	time	for	the	American
option	using	the	lattice	technique	has	hence	been	replaced	with	the	time	to	perform	a	bivariate
linear	interpolation.

We	finally	note	two	important	things	to	consider	when	applying	the	grid	pricing	method.

First,	it	may	be	applied	to	a	(sub)portfolio	as	well	and	not	just	specific	instruments.

For	example,	in	our	American	option	grid	pricing	the	pricing	grid	may	be	constructed	for
the	portfolio	of	options	with	 	as	the	underlying	risk	factor.

Second,	when	applying	the	grid	pricing	approximation	it	is	important	that	the	risk	factor
scenarios,	 ,	are	covering	the	space	of	possible	risk	factor	values	in	the	scenarios
and	include	extreme	shifts	of	risk	factors	as	well	for	correct	pricing	of	the	tail	risk.

For	example,	if	we	think	the	99.9%	worst-case	equity	fall	is	40%	for	an	option	instrument
or	portfolio,	we	may	want	to	also	use	equity	scenarios	that	cover	a	50%	fall	in	equities	for
some	safety.

Grid	Pricing	and	Curve	Fitting



instead	of	using	linear	interpolation	directly	in	the	grid	pricing	we	can	use	 -dimensional
polynomials	for	curve	fitting	based	on	the	grid	prices.	For	a	pricing	grid	with	a	single	risk
factor	 	we	have	the	 -polynomial	pricing	approximation,	 ,	as

The	Weierstrass	approximation	theorem	provides	the	foundation	for	this	choice	of
approximation	of	the	pricing	grid.	That	is,	we	can	approximate	any	function	arbitrarily	well
using	a	polynomial.	For	multiple	risk	factors,	say	 	and	 ,	with	nonlinear	dependence	the
polynomial,	 ,	of	course	needs	to	capture	cross-terms	of	the	risk	factors	as	well,

In	practice	a	second-	or	third-order	polynomial	may	be	sufficient.

Using	the	grid	pricing	and	curve	fitting	approach	we	have	hence	replaced	the	pricing	time	with
the	evaluation	of	a	polynomial	function.	Of	course,	as	we	increase	the	number	of	core	risk
factors	the	polynomial	function,	 ,	becomes	increasingly	more	complex,	especially	if	there
are	nonlinear	interactions	between	the	risk	factors.	Both	plain	grid	pricing	and	grid	pricing
with	curve	fitting	methods	can	therefore	benefit	from	an	initial	risk	factor	dimension	reduction
using	factor	models	and/or	principal	component	analysis.	Below	we	will	discuss	a	few
literature	references	that	combine	grid	pricing	with	risk	factor	dimension	reduction	methods.

Literature	References	Using	Grid	Pricing	with	Risk	Factor	Dimension	Reduction
Jamshidian	and	Zhu	(1997)	propose	grid	pricing	together	with	principal	component	analysis
and	discrete	stratified	sampling	of	risk	factors	for	fixed-income	portfolios.	Chishti	(1999)
contains	a	case	study	of	the	method	applied	to	a	portfolio	of	callable	bonds.	Gibson	and
Pritsker	(2000)	also	apply	the	grid	pricing	method	to	fixed-income	portfolios.	However,	they
challenge	both	the	use	of	discrete	simulation	of	risk	factors	and	the	use	of	principal	component
analysis	for	dimension	reduction	as	proposed	in	Jamshidian	and	Zhu	(1997).	Indeed,	as	we
have	discussed	above,	principal	component	analysis	to	reduce	the	number	of	interest	rate
factors	for	the	fixed-income	portfolio	may	be	dangerous	for	some	portfolios.	This	is	because
principal	components	analysis	is	based	on	selecting	yield	curve	components	that	have	high
explanation	of	historical	yield	curve	movements	and	not	necessarily	yield	curve	components
that	can	actually	explain	portfolio	profit	and	loss.	Gibson	and	Pritsker	(2000)	suggest
replacing	principal	component	analysis	with	the	use	of	partial	least	squares	to	define	the
reduced	yield	curve	components	for	grid	pricing.	The	benefit	of	partial	least	squares	is	that	it
focuses	on	selecting	reduced	components	that	can	actually	explain	portfolio	loss.

Quadratic	Pricing
The	quadratic	portfolio	approximation	in	equation	(2.18)	allows	us	to	write	the	approximate
scenario	price	for	a	position	 	(or	portfolio),	 ,	as,
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where	 	is	the	current	mark-to-market	value	and	 	are	the	scenario	realized	risk
factor	returns.	In	contrast	to	the	grid	pricing	method	this	price	approximation	efficiently	deals
with	large	dimensions	for	risk	factors	and	can	be	used	for	basket	option	products	with	many
underlying	assets	as	well	as	subportfolios	that	depend	on	a	large	number	of	risk	factors,	

.

Of	course,	in	practice,	the	instrument	approximately	valued	using	a	delta	gamma	approximation
may	not	have	analytical	Greeks.	However,	the	pre-computation	of	numerical	Greeks	and	a
scenario	evaluation	of	equation	(2.37)	may	still	take	considerably	less	time.	Still,	as	we	have
mentioned	before	the	delta	gamma	representation	may	not	be	that	good	for	certain	instruments,
for	example,	barrier	options	where	option	payoff	depends	on	the	path	of	the	asset	price	and
either	a	knock-in	or	knock-out	with	respect	to	the	barrier.	An	in-the-money	knock-outbarrier
option	can	have	very	large	delta	and	gamma	values	close	to	the	barrier	because	the	option
value	can	jump	from	an	intrinsic	value	to	zero	when	the	barrier	is	breached.	Of	course,	in	such
cases	where	Greeks	are	not	smooth	in	changes	of	the	underlying	risk	factors	the	quadratic
pricing	approximation	fails.

Nested	Stochastic	ValuationLeast	Squares	Monte	Carlo
The	pricing	of	many	financial	instruments	requires	simulation	by	itself	for	pricing.	This	is
usually	referred	to	as	nested	simulation	valuation.	For	example,	many	basket	options	and	the
path-dependence	of	exotic	options	naturally	lead	to	a	simulation-based	approach	to	valuation.
This	results	in	a	nested	stochastic	problem	with	a	large	number	of	“inner”	risk-neutral
scenarios	that	are	used	for	valuation	for	each	“outer”	risk	analysis	scenario	 .	An
important	method	to	reduce	the	number	of	inner	scenarios	in	valuation	of	American	options	is
the	Least	Squares	Monte	Carlo	approach	(LSMC)	introduced	by	Longstaff	and	Schwartz
(2001).	In	this	method	the	outer	scenarios	are	used	to	calibrate	the	optimal,	American	exercise,
decision	functions	using	only	the	cross-sectional	information	in	the	simulated	outer	scenario
paths,	 .	With	LSMC	the	potentially	very	expensive	nested	simulation	pricing	of	the
American	option	for	each	outer	scenario	has	hence	been	replaced	by	a	global	calibration	of
regression	functions	based	on	the	outer	scenarios	and	the	associated	evaluation	of	the	optimal
exercise	decision.	We	refer	the	reader	to	the	paper	by	Longstaff	and	Schwartz	(2001),	which
contains	an	excellent	introduction	to	the	rationale	of	LSMC	using	an	American	put	option
example.	It	also	contains	several	practical	examples	of	the	LSMC	approach.

Nested	Stochastic	ValuationProxy	Pricing
A	similar	idea	to	the	LSMC	approach	to	avoiding	expensive	nested	valuation	of	instruments	is
to	perform	the	expensive	risk-neutral	pricing	only	a	few	times	per	outer	risk	scenario	 .	For
example,	for	a	given	scenario	 	the	pricing	can	be	based	on	only	2	inner	risk-neutral	pricing
scenarios.	Of	course,	for	each	outer	scenario	 	the	pricing	will	then	be	very
inaccurate.	However,	if	there	are	many	inaccurate	pricings	very	close	to	each	other	one	could
argue	that	the	average	of	many	inaccurate	pricings	in	a	region	is	still	a	consistent	estimator	of



the	price	in	the	region.	As	a	second	step	we	could	fit	a	polynomial	regression	to	the	many
inaccurate	valuations,	similar	to	the	grid	pricing	and	curve	fitting	approach.	Again,	the	idea	is
that	since	there	are	so	many	points	close	to	each	other	the	local	region	contribution	to	the
regression	is	a	consistent	estimator	of	market	price.	The	consistency	of	the	regression	hence
relies	on	having	many	outer	scenarios	very	close	to	each	othereverywhere.

To	ensure	that	the	polynomial	regression	estimates	consistently	can	retrieve	market	prices	for	a
wide	range	of	outer	scenarios—including	large	shifts—it	is	advisable	to	ensure	that	outer
scenarios	are	created	evenly	on	a	multidimensional	cube	and	include	the	extreme	risk	factor
levels.	Hence,	in	this	method,	the	outer	polynomial	fitting	scenarios	are	not	created	as
economical	risk	scenarios	but	rather	designed	to	achieve	many	fitting	points	uniformly	in	the
relevant	range	of	each	risk	factor.	Because	of	this	required	uniform	feature	of	the	outer	fitting
scenarios	they	can	preferably	use	deterministic	quasi-random	number	generators	such	as	the
Sobol	and	Faure	sequences	on	a	predefined	range	multidimensional	cube	for	the	risk	factors.
The	second	step	of	the	method,	that	is,	the	polynomial	fitting,	is	equivalent	to	the	polynomial
fitting	in	the	grid	pricing	and	curve	fitting	method.	Although,	since	in	this	method	each	grid
point	is	an	inaccurate	pricing	we	require	many	more	local	pricing	points	to	fit	the	polynomial
on.	The	third	step	in	this	method	is	the	use	of	the	polynomial	regression	in	actual	instrument	or
portfolio	valuation	based	on	the	economical	risk	factor	scenarios.	This	step	is	equivalent	to	the
curve	fitting	use	of	the	polynomial	regression.

The	curve	fitting	approach	and	the	current	LSMC	inspired	proxy	pricing	method	is	frequently
used	in	insurance	stochastic	liability	evaluation.	See	Wieland	(2011)	for	an	overview	and
literature	references.	However,	the	method	is	slowly	finding	its	use	in	banking.

We	finally	note	here	that	the	grid	pricing	and	curve	fitting	approach	can	also	be	used	for	nested
simulation	cases.	The	method	then	approximates	the	price	using	a	large	number	of	inner	risk-
neutral	scenarios	to	yield	very	accurate	valuations	at	just	a	few	outer	fitting	points	on	the	grid.
In	contrast,	the	LSMC-inspired	proxy	pricing	methods	use	much	more	outer	fitting	points	but
just	a	few	inner	risk-neutral	valuation	points	for	each	outer	point	such	that	each	pricing	is
inaccurate.	Improvement	of	the	method	focuses	on	increasing	the	number	of	inner	risk-neutral
valuation	scenarios—to	yield	less	inaccurate	valuations	for	each	outer	fitting	point—as	well
as	increasing	the	density	of	the	outer	fitting	points.	The	improvement	of	the	grid	pricing	and
curve	fitting	approach	extends	the	number	of	outer	fitting	points	on	which	accurate	valuations
are	obtained.	A	benefit	is	that	the	choice	of	the	outer	fitting	points	can	be	carefully	made	to
regions	where	exact	prices	are	needed	more.

Replicating	Portfolios
Instead	of	approximating	the	pricing	itself	for	a	portfolio	we	can	try	and	replicate	the	portfolio
with	a	simpler	and,	preferably,	dimension	reduced	representation.	The	replication	method	can
use	a	mapping	procedure	or	use	more	advanced	optimization	methods.	The	most	well-known
replicating	portfolio	mapping	is	probably	the	bond	portfolio	dimension	reduction	used	in
RiskMetrics	(1996).	The	idea	is	to	map	bond	cash	flows	into	a	stream	of	zero-coupon	bond
flows	that	are	assignedto	cash	flow	buckets.	The	bond	portfolio	has	hence	been	replaced	with



a	single	bond	representation.	The	use	of	advanced	optimization	techniques	in	portfolio
replication	is,	however,	an	increasing	practice.	Essentially,	in	a	portfolio	replication
optimization	we	define	a	set	of	scenarios	on	which	we	want	to	evaluate	the	portfolio
replication	error.	We	can	then	perform	a	scenario-based	optimization	to	find	the	minimum
deviation	portfolio	using	a	deviation	measure.	It	is	of	course	important	that	the	scenarios
include	large	shocks	to	the	risk	factors	and	that	we	explicitly	control	the	fit	for	these	large
shocks	of	the	risk	factors.	We	will	return	to	the	discussion	on	portfolio	optimization	and
replication	in	the	next	chapter	on	advanced	market	risk	analysis.

1	See,	for	example,	Taleb	(2007),	is	highly	critical	of	the	use	of	the	normal	distribution	as	it
cannot	explain	the	extreme	“black	swan”	outliers	observed	in	practice.

2	We	will	discuss	in	more	detail	the	credit	spread	in	the	credit	risk	chapters	of	the	book.

3	Note	that	in	the	definition	of	 	we	are	concerned	with	the	positive	tail	loss	in	 .
This	is	because	we	are	concerned	about	negative	return	contributions	to	 .

4	Here	we	use	the	terminology	conditional	value	at	risk.	However,	this	measure	is	also
frequently	termed	expected	shortfall.

5	The	hazard	function	for	a	probability	density	function,	 ,	and	cumulative	density	function,	
,	is	given	by

The	hazard	function	is	hence	a	conditional	density	function.

6	In	the	next	chapter	on	market	risk	we	will	discuss	the	issues	with	using	the	square	root	of
scaling	method	more	generally	and	possible	remedies.

7	The	Euler	formula	states	that	a	function	 	of	 	variables	 	with	continuous	partial
derivatives	is	homogeneous	of	degree	 	if	and	only	if	the	following	equation	holds	for	all	

,	an	open	domain

8	Duffie	and	Pan	(2001)	consider	a	more	general	setting	than	the	multivariate	normal
distribution	for	assets	we	consider.	They	also	consider	exogenous	jump	intensities	for
assets	in	a	jump	diffusion	model.

9	All	our	barrier	stock	option	examples	have	analytical	pricing.	For	details	on	the	pricing
functions	for	the	barrier	options	we	refer	to	Merton	(1973),	Reiner	and	Rubinstein	(1991),
and	Hart	and	Ross	(1994).



10	This	is	in	contrast	to	the	standard	Cholesky	decomposition	we	used	in	equation	(2.20)	that
requires	the	matrix	to	be	positive	definite.

11	Although	in	the	advanced	market	risk	chapter	we	will	discuss	a	measure	referred	to	as	the
risk	factor	information	measure	that	is	useful	for	understanding	which	specific	risk	factors
are	important	in	determining	portfolio	profit	and	loss.

12	Both	the	CAPM	and	the	APT	are	influential	models	on	asset	pricing.	Although
mathematically	the	CAPM	can	be	viewed	as	a	special	case	of	the	APT	model,	the	APT
model	is	by	and	large	considered	more	general	than	the	CAPM	because	it	allows	any
observed	factors	in	addition	to	the	only	market	index	factor	in	the	original	CAPM.

13	For	example,	in	the	subprime	mortgage	crisis	in	the	United	States,	the	value	of	mortgage-
backed	securities	quickly	dropped	because	of	the	rise	in	mortgage	defaults,	hence
questioning	the	pre-crisis	credit	default	correlation	assumptions	used	in	pricing	models.

14	Note,	however,	that	an	instrument's	price	may	not	be	linear	in	holding	when	market	liquidity
is	considered	as	well.	For	example,	a	very	large	position	may	not	carry	the	same	intrinsic
value	as	a	small	position	due	to	the	market	costs	of	liquidating	a	large	position.

15	For	basket	products	one	can	potentially	map	the	risk	factors	to	one	or	a	few	indices	using
CAPM	 	to	reduce	the	dimension	of	the	risk	factor	pricing	grid.	However,	such
simplifications	may	be	too	crude	in	practice.

16	If	the	stock	would	have	a	zero	dividend	yield,	the	American	call	price	would	reduce	to	the
Black	and	Scholes	analytical	European	call	price.



Chapter	3
Advanced	Market	Risk	Analysis
In	this	second	market	risk	chapter	we	focus	on	a	few	important	advanced	topics	in	market	risk
analysis.

First,	we	consider	an	arbitrary	set	of	portfolio	profit-and-loss	samples	 	for	which	we
wish	to	apply	risk	measures.	The	empirical	portfolio	loss	distribution	can	come	from	any
underlying	model	and	the	focus	is	hence	on	general	simulation-based	risk	measures.

Second,	we	analyze	the	univariate	and	multivariate	stylized	facts	of	financial	time	series	and
discuss	risk	factor	models	that	can	capture	these	stylized	facts.	As	we	have	mentioned	before
the	multivariate	normal	distribution	assumption	for	market	risk	factors	is	in	general	a
simplifying	assumption	rather	than	an	empirically	vetted	assumption.	We	show	that	models	that
do	not	capture	the	stylized	facts	tend	to	underestimate	risk,	sometimes	severely.	They	may	also
fail	to	account	for	the	fact	that	portfolio	losses	from	one	day	to	another	can	be	correlated.

The	third	topic	in	this	chapter	is	concerned	with	measurement	horizons	for	market	risk.	In
practice,	financial	institutions	measure	market	risks	on	relatively	short-term	horizons	such	as	a
day.	However,	for	regulatory	reporting	and	other	purposes,	longer	horizon	market	risk
measures	are	also	needed.	We	therefore	discuss	the	concept	of	scaling	risk	measures	as	well	as
temporal	aggregation	of	data	to	obtain	longer	horizon	risk	analysis.	A	complicating	factor	with
temporal	aggregation	of	data	and	scaling	of	risk	measures	is	that	intervening	portfolio	trading
decisions	may	occur	and	significantly	impact	the	risk	profile.

Fourth,	we	consider	the	important	and	often	overlooked	issue	in	market	risk	analysis	of	market
liquidity	risk.	Indeed,	the	style	of	liquidity	execution	can	have	a	significant	effect	on	the	risk,
as	we	discuss.

Our	fifth	topic	is	concerned	with	scenario	analysis	and	stress	testing.	This	is	an	increasingly
important	topic	in	risk	analysis.	One	challenge	is	the	design	of	stress	tests	that	can	have	a
significant	impact	on	the	financial	institution's	portfolio	profit	and	loss.	With	an	increased
regulatory	focus	on	stress	tests	financial	institutions	need	a	comprehensive	integrated	approach
to	model-based	and	scenario-based	risk	analysis.	Such	an	approach	also	allows	stress
scenarios	to	be	a	part	of	advanced	risk	management	decision-making	analysis,	such	as
scenario-based	portfolio	optimization.

The	sixth	topic	in	this	chapter	is	focused	on	risk-based	portfolio	optimization.	Optimizations	is
used	frequently	in	market	risk	management	to	find	risk	and	return	optimal	portfolios,	and	best
hedge	portfolios,	as	well	as	to	replicate	portfolios.

Finally,	we	discuss	recent	developments	in	the	regulation	for	market	risk.



3.1

Risk	Measures,	Risk	Contributions,	and	Risk
Information
Here	we	consider	an	arbitrary	set	of	portfolio	loss	samples	 	for	which	we	wish	to	apply
risk	measures.	In	particular,	we	may	wish	to	compute	an	empirical	 	or	 	estimate
using	the	portfolio	loss	samples.

Denote	the	empirical	cumulative	density	function	of	 	by	 	and	the	desired	quantile	by	
;	we	can	then	define	the	empirical	estimate	of	 	by

where	 	denotes	the	inverse	of	the	empirical	cumulative	density	function	of	 .

Here	we	have	assumed	that	 	is	sorted	from	the	smallest	loss	to	the	largest	loss	and	that
the	number	of	discrete	samples,	 ,	and	the	confidence	level,	 ,	are	chosen	such	that	 	times	
is	an	integer	such	that	the	empirical	 	does	not	split	the	atoms	of	the	discrete	probability
distribution.	Of	course,	if	 	times	 	is	not	an	integer,	then	a	weighted	 	can	be	defined.1

Rockafellar	and	Uryasev	(2002)	define	a	general	discrete	convex	 	as	a	weighted
average	of

with	average	 	losses	strictly	exceeding	 	such	that

Assuming	 	is	not	at	the	end	point	of	the	distribution	such	that	 	exists,	 	when	
	is	an	integer	and	we	can	define	an	empirically	convex	(smooth)	 	as

where	 	is	the	unit	indicator	function	for	the	set	of	loss	samples	 	that	are
greater	than	 .	Again,	our	assumption	that	 	times	 	is	an	integer	will	ensure	convexity	of	

	in	equation	(3.1).

It	is	easy	to	see	that	equation	(3.1)	is	a	particular	choice	of	numerical	approximation	to	its
continuous	counterpart	in	equation	(2.6).	While	 	as	defined	above	in	the	discrete	case
is	convex,	 	is	not	necessarily	convex.	For	elliptical	portfolio	distributions	(e.g.,	the
normal	and	t-distribution)	 	is	still	convex.	This	is	a	consequence	of	the	linear	form	of	

	for	elliptical	distributions	and	the	fact	that	the	sum	of	elliptical	distributions	is	an
elliptical	distribution.	See,	for	example,	Embrechts,	McNeil,	and	Straumann	(2001),	Hult	and
Lindskog	(2001),	and	Sadefo-Kamdem	(2003).



VaR	Interval	Estimation
In	practice	 	is	an	estimate	of	the	portfolio	loss	quantile	and	as	any	other	statistical	estimate
its	uncertainty	depends	on	the	number	of	data	points	used	in	estimation.	As	the	loss	distribution
in	general	does	not	have	a	known	distribution	it	is	especially	useful	if	one	could	devise	a
confidence	interval	for	 	that	does	not	rely	on	knowing	the	loss	distribution.	Fortunately,	it
turns	out	that	to	obtain	a	nonparametric	confidence	interval	for	the	empirical	 	estimate	we
can	make	use	of	the	probabilities	of	order	statistics.

Consider	a	general	discrete	random	sample	 	where	 	are	the	possible
values	in	ascending	order	with	probability	density	function	 .	We	can	then	obtain	the
probability	that	the	j:th-order	statistic,	 ,	is	less	than	or	equal	to	 	as

where	 .	See,	for	example,	Cassella	and	Berger	(1990).	Using	this	we	can	obtain
that	an	interval	of	the	form	 ,	 	covers	an	estimate	of	 	with	probability

Example	Calculation	of	Nonparametric	Probabilistic	 	Bounds
Let	 	be	an	ordered	profit-and-loss	sample	of	size	 .	Then	 	and	a
probabilistic	 	bound	based	on	 	and	 ,	 ,	is	given	by

That	is,	with	approximately	93.5%	probability	the	true	95%	VaR	is	contained	within	the
interval	created	by	the	ordered	observations	 .

In	practice,	for	a	desired	 	level	confidence	interval	we	can	find	the	values	of	 	that
minimize	the	equation

Of	course,	the	nonparametric	 	bound	does	not	directly	answer,	for	a	given	number	of
scenarios	 ,	the	practical	question	of	how	many	scenarios	 	are	required	to,	with	a
given	confidence	level,	reach	a	certain	desired	maximum	 	sampling	error	of	say	 	units	of



currency.	Finding	an	answer	to	that	question	in	general	still	requires	experimentation	with
different	scenario	sample	sizes.A	real	portfolio	example	calculating	simulation-based	 	and	

	as	well	as	the	nonparametric	probabilistic	bounds	on	 	is	helpful	at	this	stage.

We	consider	the	calculation	of	 ,	 ,	as	well	as	nonparametric	 	confidence	intervals
for	a	market	risk	horizon	of	1	day	using	a	sample	equity	portfolio.	The	portfolio	consists	of	unit
holdings	in	two	stocks,	denoted	A	and	B,	and	unit	holdings	in	at-the-money	European	options
on	the	stocks.	On	both	stock	A	and	stock	B	we	have	a	European	call	(EuC)	and	a	European	put
(EuP).2	Table	3.1	displays	the	portfolio	and	its	characteristics.

Table	3.1	Sample	Equity	Portfolio

Instrument	type Equity Time	to	maturity Equity	quote Strike	price MtM
Equity	spot A . 50 . 50
Equity	spot B . 280 . 280
Equity	option	(EuC) A 1	year 50 50 6.64
Equity	option	(EuP) A 1	year 50 50 5.16
Equity	option	(EuC) B 1	year 280 280 37.19
Equity	option	(EuP) B 1	year 280 280 28.92

Assuming	that	equity	A	and	B	relative	returns	are	jointly	normal	distributed	with	equity	A	and
B	relative	returns	standard	deviations,	0.1168	and	0.0355	as	well	as	correlation	0.075,	we
simulate	1,000,	10,000,	100,000,	and	1,000,000	scenarios.	In	the	simulation	we	also	use	a
slightly	positive	mean	return	for	the	equities.	Specifically,	equity	A	has	a	mean	return	of
approximately	0.011	and	equity	B	has	a	mean	return	of	approximately	0.010.	When	pricing	the
equity	options	under	the	scenarios,	we	assume	a	fixed	volatility	of	30%	and	a	fixed	3%	interest
rate	for	discounting.3

Table	3.2	displays	the	portfolio	mark	to	market	(MtM)	and	portfolio	level	 ,	
95%	confidence	lower	and	upper	bounds	( 	LB	and	 	UB	respectively),	and	

	for	the	different	number	of	scenarios.

Table	3.2	Sample	Equity	Portfolio	Risk	Measures	for	1,000,	10,000,	100,000,	and	1,000,000
Scenarios

Scenarios MtM VaR(0.99) VaR(0.99)	LB VaR(0.99)	UB CVaR(0.99)
1,000 407.92 27.19 24.09 29.93 30.46
10,000 407.92 27.90 27.20 28.39 31.69
100,000 407.92 27.96 27.78 28.19 31.60

1,000,000 407.92 27.88 27.82 27.94 31.37

We	notice	that	the	 	95%	confidence	interval	lower	and	upper	bounds	is	closer	and
closer	to	the	 	as	the	number	of	scenarios	increase.	Hence,	we	are	getting	more	and



more	certain	about	our	 	estimate.	While	more	scenarios	yield	more	confidence	in	the	
number,	one	must	of	course	remember	that	this	certainty	is	always	conditional	on	the	model
used	being	correct.	The	 	in	Table	3.2	is	always	larger	than	 	consistent	with
our	definition	of	 	as	the	average	losses	strictly	exceeding	 .

Probability	Bounds	Using	the	Central	Limit	Theorem
An	alternative	method	to	obtain	a	confidence	bound	on	the	nonparametric	 	estimate	relies
on	the	central	limit	theorem	and	the	expression	for	the	density	of	order	statistics.	Serfling
(1980)	shows	that	the	estimated	empirical	quantile,	 ,	converges	to	the	true	quantile,	 ,	and
that

Here,	 	denotes	the	density	of	the	order	statistic	 .	As	shown	in	Casella	and	Berger	(1990)
the	(continuous	limit)	density	of	 	is	given	by

where	 	is	the	(continuous	limit)	density	of	 	and	 	the	corresponding	cumulative
density	function.	We	note	that	for	 	close	to	 	(i.e.,	a	high	quantile)	we	have	 ,
which	is	potentially	large	for	small	 	(i.e.,	small	 ),	inflating	the	variance	of	the	estimator	in
the	central	limit	theorem	above.	Although	this	limit	result	is	useful	for	understanding
qualitative	properties	of	the	estimator,	it	is	not	very	useful	in	practice	since	it	involves	the
density	of	the	quantile	itself,	which	is	typically	unknown.

A	Note	on	Interval	Estimation	for	General	Risk	Measures
To	obtain	nonparametric	confidence	bounds	for	other	risk	measures	than	 	(e.g.,	 )	the
bootstrap	re-sampling	method	is	often	used—employing	re-sampling	with	replacement	from
the	simulated	portfolio	distribution	to	construct	a	bootstrapdistribution	for	the	risk	measure.
Confidence	bounds	on	the	risk	measure	are	then	obtained	by	application	of	empirical
probabilistic	bounds	on	the	bootstrap	distribution.	The	nonparametric	confidence	interval
estimations	of	the	risk	measures	are	based	on	the	simulated	empirical	distribution	with	equal
probability	weight	on	every	sample	point.	The	interested	reader	may	find	a	good	introduction
to	the	bootstrap	method	in	Efron	and	Tibshirani	(1993).

Coherent	Measures	of	Risk
We	now	consider	the	important	concept	of	coherent	measures	of	risk	introduced	by	Artzner	et
al.	(1999)	as	a	characterization	of	reasonable	properties	or	axioms	that	a	risk	measure	should
satisfy.	A	risk	measure	 	is	said	to	be	coherent	if	it	has	the	following	properties:

1.	 Subadditive.	That	is,	for	two	portfolios	 	and	



2.	 Homogeneous,	such	that	for	a	scalar	

3.	 Monotonous.	That	is,	for	 	almost	everywhere

4.	 Risk-free	condition.	For	a	risk-free	position	 	we	have

Property	1	is	also	known	as	the	diversification	effect,	which	says	that	merging	two	risky	assets
together	cannot	create	more	risk	than	the	sum	of	their	standalone	risks.	Property	2	implies	that
the	risk	measure	is	linear	in	positions.	Property	1	and	2	together	imply	that	the	risk	measure	is
convex	and	hence	is	amenable	for	use	in	portfolio	optimization	programs,	as	we	shall	discuss
below.	Loosely	speaking,	a	convex	risk	measure	is	also	a	smooth	risk	measure	enabling
interpretation	of	its	risk	contributions.	Property	3	is	obvious,	stating	that	portfolios	that	lead	to
higher	losses	in	every	state	of	the	world	should	be	considered	riskier	by	the	risk	measure.
Finally,	property	4	states	that	by	adding	or	subtracting	a	deterministic	quantity	we	shift	the
magnitude	of	the	risk	by	that	amount.

The	coherent	properties	are	by	no	means	always	correct	in	practice.	For	example,	property	1
can	be	violated	when	two	firms	merge	together;	the	integration	of	the	two	business	operations
may	introduce	additional	operational	risk	to	the	existing	risks	the	two	firms	are	facing.
Property	2	can	be	criticized	in	case	of	market	illiquidity	because	the	market	liquidation	value
of	a	concentrated	position	(large	holding)	may	be	less	than	the	market	value	of	a	single	holding
scaled	by	the	actual	large	holding.	However,	the	coherent	risk	measure	properties	can	at	least
establish	a	risk	measurement	standard.	In	addition,	the	convexity	implied	by	the	coherence
provides	a	desired	mathematical	property	for	many	risk	analysis	results.	However,	coherence
is	not	necessary	for	convexity.

Föllmer	and	Schied	(2002)	define	a	convex	risk	measure	as	a	so-called	monetary	risk	measure
that	is	satisfying	properties	3	and	4,	and	also	has	the	convexity	property

for	 .	A	convex	risk	measure	is	then	also	coherent	if	it	satisfies	property	2	for	 .
However,	as	we	have	mentioned,	property	2	may	be	violated	in	practice	due	to	concentrated
positions	liquidity	risk.

As	shown	by	Artzner	et	al.	(1999),	and	perhaps	not	so	surprisingly	due	to	the	fact	that	the	tail
information	beyond	a	certain	point	is	ignored,	 	is	not	necessarily	convex	and	hence	not
subadditive,	implying	that

is	not	in	general	an	upper	bound	on



3.2

In	contrast	 	is	convex	and	moreover	is	necessarily	smooth,	making	it	more	easily
interpreted	as	a	risk	measure.	 	is	therefore	the	preferred	risk	measure	for	risk	managers
even	though	 	is	still	frequently	used	due	to	the	intuition	it	brings.	However,	regulators	are
recently	also	considering	replacing	 	with	 	(termed	expected	shortfall	by	regulators)
for	internal	market	risk	models	to	better	capture	tail	risk.	This	replacement	of	 	by	 	is
part	of	the	Basel	fundamental	review	of	the	market	risk	in	the	trading	book	(Basel	Committee,
2012,	2014a).

Simulation-Based	Risk	Contributions
Recall	that	in	case	of	the	linear	normally	distributed	portfolio	the	Euler	risk	contribution	to
risk	measure	 	of	instrument	 	with	holding	 	is	defined	by	the	derivative,

In	the	discrete	(simulation)	setting	the	derivative	does	not	exist,	so	how	do	we	then	define	a
risk	decomposition?	Following	Tasche	(2000)	the	answer	lies	in	theinterpretation	of	risk
contributions	as	conditional	expectations	(regressions)	put	forward	in	the	linear	normal
portfolio	case	(see	equation	(2.11)).	We	consider	the	following	situation:

Let	 	be	the	discrete	portfolio	distribution	with	 	instruments	and	 -
dimensional	holding	vector	 	with	loss	components	 ,	 	having	

	equal	to	the	portfolio	loss	sample	point	 	and	define

as	the	 	risk	contribution	for	position	 .

Note	that	by	definition	equation	(3.2)	sums	to	 	over	the	 	instruments	as	the
discrete	 	contribution	is	the	realized	loss	of	the	specific	instrument	or	subportfolio	in	the
loss	scenario	corresponding	to	total	risk	as	measured	by	 .

Similarly	we	can	consider	risk	contributions	for	empirical	 .	For	that	purpose	recall	the
integral	relation	for	continuous	distributions	in	equation	(2.6),

and,	taking	the	derivative	inside	the	integral,	we	can	write,

It	seems	therefore	that	we	can	interpret	 	contributions	as	the	average	of	a	sequence	of	
	contributions.	This	is	formalized	in	Tasche	(2000)	and	we	now	have	the	following
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situation:

As	above,	we	let	 	be	the	discrete	portfolio	distribution	with	 	instruments
and	 -dimensional	holding	vector	 	with	loss	components	 ,	
having	 	equal	to	the	portfolio	loss	sample	point	 	and	define

The	equation	(3.3)	makes	it	clear	that	 	risk	contributions	may	be	interpreted	as	average	
	contributions.	Note	that	equation	(3.3)	yields	 	contributions	as	the	average

strictly	above	 .	This	is	consistent	with	our	definition	of	discrete	 	above,	ensuring
a	coherent	and	in	particular	convex	risk	measure.

The	empirical	risk	contribution	to	 	is	a	statistical	consistent	estimator.	However,	in	small
scenario	samples,	due	to	tail	truncation,	downward	bias	of	 	itself	should	be	expected.	In
those	cases	loss	tail	extrapolation	by	extreme	value	theory	using	the	generalized	Pareto
distribution	should	be	expected	to	decrease	variance	and	bias	compared	to	the	empirical
sample	estimator	of	 .	However,	it	is	harder	to	argue	for	the	use	of	extreme	value	theory
for	the	 	contributions	as	the	corresponding	instrument	or	subportfolio	loss	contributions
may	not	reside	in	the	tail	of	their	 	sub-loss	distributions,	 .	We	will	discuss
the	use	of	extreme	value	theory	for	extrapolation	of	density	tails	later	in	this	chapter.

Examples	Illustrating	the	Calculation	of	 	and	 	Risk	Contributions
Table	3.3	displays	the	five	highest	portfolio	losses	in	units	of	currency	in	descending	order,
ordered	by	the	total	portfolio	loss,	together	with	the	realized	loss	in	the	scenarios	for	the	
instruments	that	comprise	the	portfolio.	For	a	portfolio	sample	of	size	 	the	table
corresponds	to	the	 	highest	ordered	loss	scenarios.	Hence,	considering	the	 	 ,	we
obtain	portfolio	 	as	the	ordered	scenario	 	loss	for	the	portfolio	(i.e.,	 )	and	the	
risk	contributions	as	the	corresponding	scenario	losses	for	the	instruments	(i.e.,	Loss	1
contribution	equal	to	−0.086,	Loss	2	contribution	equal	to	 ,	and	Loss	3	contribution
−4.281).	For	 	at	the	 	confidence	level	we	obtain,	at	the	portfolio	level,	

	where	 	is	the	total	portfolio	loss	in	scenario	 .	The	
risk	contributions	are	obtained	by	averaging	the	individual	losses	in	scenario	 ,
yielding	Loss	1	contribution	as	 ,	Loss	2	contribution	as	 ,	and	finally	Loss	3
contribution	as	 .



Table	3.3	Example	Ordered	Loss	Matrix

Scenario Loss	1 Loss	2 Loss	3 Portfolio	loss
1 0.701 101.73 0.727 103.158
2 −0.086 101.365 0.453 101.732
3 −0.086 87.150 1.073 88.137
4 −0.086 72.572 −1.875 70.611
5 −0.086 44.043 −4.281 39.676

Our	next	example	of	risk	contributions	reuses	the	sample	equity	portfolio	in	Table	3.1.	We	also
refer	to	Table	3.2	for	the	sample	equity	portfolio	mark	to	market	(of	407.92	units	of	currency)
and	aggregate	 	and	 	numbers	obtained	previously	for	the	portfolio.

Table	3.4	displays	the	 ,	 	as	well	as	the	incremental	risk	(Inc)	and	Euler
risk	contributions	(Contr)	for	the	equity	and	equity	option	positions	in	the	portfolio	in	Table
3.1.4	We	also	display	the	risk	measures	for	the	portfolio	aggregated	to	the	equity	positions,	the
equity	option	positions,	and	the	portfolio.	In	the	calculation	of	the	risk	measures	we	have	used
1,000,000	scenarios.5	We	note	from	Table	3.4	that	the	put	options	have	a	negative	incremental
risk	and	risk	contribution	in	the	context	of	the	portfolio	as	they	represent	hedges	in	the	portfolio
to	the	long	equity	and	option	call	positions.	Specifically,	the	value	of	the	put	options	increases
when	stock	prices	decrease	while	the	plain	equity	and	equity	call	option	position	values
increase	when	stock	prices	increase.	For	both	 	and	 	the	incremental	risk	and
contribution	risks	are	relatively	close	to	each	other	for	all	the	portfolio	instruments.
Practically,	we	can	think	of	incremental	risk	measures	as	a	global	effect	and	risk	contribution
measures	as	a	local	effect.	That	the	two	are	similar	is	hence	an	indication	that	the	portfolio
loss	is	a	smooth	function	of	all	the	instruments	in	the	portfolio.	Of	course,	this	is	not	surprising
given	the	simple	portfolio	instruments.	Figure	3.1	displays	graphically	the	 ,	incremental	

,	and	contribution	 	for	the	portfolio	obtained	from	Table	3.4.



Table	3.4	VaR	and	CVaR	99%	Confidence	Level	Risk	Measures,	Incremental	Risk,	and	Risk
Contributions	for	the	Portfolio	Instruments

Instrument	type Equity Inc- Contr- Inc- Contr-
Equity A 11.90 4.10 4.97 13.35 4.64 6.87
Equity B 22.25 16.90 20.56 25.32 19.56 22.95
Equity	option	(EuC) A 5.12 2.50 2.64 5.44 2.84 3.26
Equity	option	(EuP) A 3.78 −3.66 −2.33 4.05 −4.18 −3.61
Equity	option	(EuC) B 12.13 10.50 11.30 13.59 11.95 12.43
Equity	option	(EuP) B 8.43 −9.30 −9.27 9.47 −10.79 −10.52
Aggregate	equity . 26.22 25.60 25.54 29.92 29.04 29.82
Aggregate	options . 2.28 1.66 2.34 2.34 1.45 1.55
Portfolio . 27.88 27.88 27.88 31.37 31.37 31.37

Figure	3.1	VaR	99%	Confidence	Level	Risk	Measures,	Incremental	Risk,	and	Risk
Contributions	for	the	Portfolio	Instruments

To	illustrate	the	smooth	risk	profiles	for	the	portfolio	instruments,	Table	3.5	and	Figure	3.2
display	the	portfolio	 	as	we	vary	the	holding	of	the	European	call	option	on	stock	A
from	1	to	−1.	Note	that	a	negative	holding	is	a	short	position	in	the	option	and	that	for	the



current	portfolio	holding	of	1	unit	we	retrieve	the	current	portfolio	 	being	27.88.	The
smooth	risk	profile	is	due	to	the	simplicity	of	our	sample	portfolio.	Therefore,	for	illustration,
Figure	3.3	displays	a	non-convex	trade	risk	profile.	Just	as	in	Figure	3.2	the	 -axis	displays	the
number	of	holdings	and	the	 -axis	the	risk	measure	value.	The	non-convex	trade	risk	profile	is
also	overlaid	by	a	smoothed,	convex	curve—being	representable	of	the	corresponding	trade
risk	profile	for	a	convex	risk	measure	(e.g.,	 ).	Clearly,	estimates	of	risk	contributions
from	non-convex	risk	measures	can	provide	no	or	little	information	on	the	curvature,	rendering
its	use	doubtful.	Hence,	the	convexity	requirement	on	risk	measures	is	instrumental	not	only	in
theory.

Table	3.5	Portfolio	Trade	Risk	Profile	for	the	European	Call	Option	on	Stock	A	as	we	Vary	Its
Holding	from	1	to	

Holding VaR(0.99)
1 27.88
0.5 26.52
0.25 25.93
0 25.38
−0.25 24.97
−0.5 24.58
−1 24.26



Figure	3.2	Portfolio	Trade	Risk	Profile	for	the	European	Call	Option	on	Stock	A	as	We	Vary
Its	Holding	from	1	to	−1

Figure	3.3	Trade	Risk	Profile	for	Convex	and	Non-convex	Risk	Measures

Smoothing	VaR	Contributions
We	have	seen	that	in	a	sample	of	losses	the	natural	estimator	of	 	contribution	is	the
conditional	realization	of	loss.	However,	as	 	can	be	non-convex	as	discussed	above	it	is



practical	to	smoothen	the	 	contributions.	One	approach	is	to	define	the	 	contributions
using	 	contributions	such	that	one	calculates	contributions	to	 	where	 	is
chosen	such	that

Similarly,	one	may	choose	an	interval	of	nearest	neighbors	to	 ,	say	
where	 .	In	this	case	 	contributions	are	obtained	for	all	 	in	the	interval	and
averaged.

Smoothed	VaR	Examples
Using	the	example	computation	of	 	and	 	above	with	scenario	loss	Table	3.3	we
choose	to	smoothen	 	at	confidence	level	of	 	using	the	two	nearest	neighbors.	First,	

	and	hence	the	smoothened	 	contribution	for	loss	1	is:	−0.086,	for	loss
2:	 ,	for	loss	3:	 .	Clearly,	the	smothered	 	contributions	do	not
add	to	portfolio	 .	However,	we	can	rescale	them	such	that	they	sum	to	portfolio	 .

Our	next	example	calculates	smoothed	 	contributions	for	the	sample	equity	portfolio
in	Table	3.1.

Table	3.6	displays	the	non-smoothed	 	contributions	(obtained	from	Table	3.4)	and	the	
	contributions	smoothed	with	the	20	and	40	nearest	neighbors	( 	and	

respectively).	The	smoothed	 	contributions	have	been	re-scaled	to	sum	to	portfolio	 .

Table	3.6	VaR	Risk	Contributions	and	Smoothed	Risk	Contributions	for	the	Portfolio
Instruments

Instrument	type Equity Contr- Contr- Contr-
Equity A 4.97 6.48 6.14
Equity B 20.56 19.71 19.88
Equity	option	(EuC) A 2.64 3.10 3.00
Equity	option	(EuP) A −2.33 −3.39 −3.13
Equity	option	(EuC) B 11.30 10.84 10.94
Equity	option	(EuP) B −9.27 −8.86 −8.94
Aggregate	equity . 25.54 26.19 26.02
Aggregate	options . 2.34 1.69 1.86
Portfolio . 27.88 27.88 27.88

Due	to	the	smooth	profit-and-loss	behavior	of	the	simple	instruments	in	the	portfolio	the
smoothened	 	contributions	are	similar	to	the	empirical	 	contribution.	While	this
behavior	is	observed	in	the	context	of	a	simple	market	risk	portfolio	it	cannot	be	extrapolated
to,	for	example,	simple	credit	risk	portfolios.	Loosely	speaking	 	is	a	dubious	risk	measure
when	portfolio	instruments	yield	no	loss	(or	profit)	with	a	very	high	probability,	though	with



very	low	probability	losses	are	large.	We	will	see	several	examples	of	this	when	we	discuss
portfolio	credit	risk.

Trading	Off	Bias	and	Variance	in	Smoothed	VaR	Contributions
Hallerbach	(2003)	similarly	proposes	calculating	 	contributions	using	an	adjusted
conditional	mean	estimator	that	involves	setting	the	 	contribution	equal	to	the	mean	of
contribution	 ,	which	are	close	to	the	 	threshold.	Calculating	the	mean	contribution	using
a	small	number	of	contributions	offers	less	bias	but	results	in	a	higher	variance.	Using	more
contributions	gives	a	lower	variance	but	higher	bias.	Epperlein	and	Smillie	(2006)	consider	a
Kernel	estimator	to	smoothen	the	 	contributions	and	evaluate	the	bias	and	variance	of	the
Kernel	smoothing	versus	using	the	exact	 	contribution.	Another	approach	is	to	use
regression	to	estimate	the	 	contribution.	This	is	because	conditional	expectations	as	in
equation	(3.2)	appear	naturally	as	solutions	in	regression	problems.	In	practice,	linear	or
quadratic	regressions	are	often	used	to	fit	the	relationship	between	the	position	profit	and	loss
and	the	portfolio	profit	and	loss—with	quadratic	regression	being	preferred	for	nonlinear
portfolios.	The	regression	function	estimate	of	the	 	contribution	is	the	value	of	the	fitted
regression	function	at	the	portfolio	 	point.

Concentration	and	Diversification
Risk	contributions	are	useful	for	understanding	the	instrument	or	subportfolio	local
contribution	to	total	risk	and	hence	are	critical	for	risk	managers	in	decomposing	risk	and
understanding	the	most	risky	components	of	the	portfolio,	taking	into	account	portfolio
diversification	effects.	One	can	also	take	this	one	step	further	and	consider	specific	measures
of	subportfolio	diversification	and	concentration	in	the	context	of	the	portfolio.	Specifically,
we	can	define	a	diversification	index	for	position	or	subportfolio	 ,	 ,	as

where	 	is	the	Euler	contribution	to	position	or	subportfolio	 	for	risk	measure	 ,	
is	the	standalone	risk	for	position	or	subportfolio	 	for	risk	measure	 .

For	a	risk	measure	 	that	is	subadditive,	homogeneous	of	degree	 ,	and	co-monotonic	(that	is,
for	perfectly	dependent	risks	 	and	 ,	 ),	we	have	that

The	 	risk	measure	satisfies	these	properties	and	hence

See	Tasche	(2006,	2007),	Memmel	and	Wehn	(2006),	and	Garcia	Cespedes	et	al.	(2006).	The
diversification	index	measures	the	degree	of	diversification	obtained	by	an	instrument	or
subportfolio	when	put	in	the	context	of	the	portfolio.	A	subportfolio	with	a	diversification
index	close	to	 	might	be	considered	to	have	high	concentration	risk,	whereas	a



subportfolio	with	a	low	diversification	index	might	be	considered	well	diversified	in	the
context	of	the	portfolio.

Examples	of	Calculation	and	Interpretation	of	Diversification	and	Concentration
Consider	a	portfolio	with	two	equities.	Portfolio	 	is	1	unit	of	currency	and	standalone	

	for	equity	1	and	2	is	0.6	and	0.78.	The	portfolio	 	contributions	are	0.35	and	0.65
respectively	for	equity	1	and	2.	We	hence	obtain	the	diversification	for	equity	1	as	

	and	for	equity	2	as	 .	Equity	1	has	therefore	a	diversification
index,	when	put	in	the	context	of	the	portfolio,	close	to	50%.	The	diversification	of	equity	2,
when	put	in	the	context	of	the	portfolio,	is	much	less.

We	also	consider	diversification	measures	for	our	sample	equity	portfolio	in	Table	3.1.

Using	Table	3.4,	we	can	calculate	the	 	and	 	diversification	indices	for	the
sample	equity	portfolio	in	Table	3.1.	This	is	done	in	Table	3.7.	Note	that	according	to	the
diversification	indices,	in	the	context	of	theportfolio,	the	equity	B	position	is	more
concentrated	than	the	equity	A	position.	The	European	put	equity	option	on	stock	B	has	a
diversification	index	less	than	−1.	It	is	hence	adding	a	stronger	negative	contribution	to	the
portfolio	than	its	standalone	risk.	As	in	our	linear	delta-normal	model	example	on	risk
contributions	and	diversification	in	the	previous	chapter	diversification	depends	on	the
position	size.	For	example,	if	we	increase	the	holding	of	the	equity	A	position	to	10	units
instead	of	the	current	1	unit,	we	obtain	a	diversification	 	and	 	of	equity	A	in	the
context	of	the	portfolio	of	0.937	and	0.972	respectively.	As	a	consequence	of	the	portfolio
change	in	relative	position	sizes	we	also	obtain	a	significant	reduction	in	the	equity	B	position
concentration	with	diversification	 	and	 	now	being	0.456	and	0.321.	In	general	a
position	or	subportfolio	diversification	is	hence	a	function	of	both	covariance	(or	more
generally	codependency)	and	position	scaling.

Table	3.7	VaR	and	CVaR	99%	Confidence	Level	Diversification	Indices

Instrument	type Equity Div- Div-
Equity A 0.418 0.515
Equity B 0.924 0.906
Equity	option	(EuC) A 0.516 0.599
Equity	option	(EuP) A −0.616 −0.891
Equity	option	(EuC) B 0.932 0.915
Equity	option	(EuP) B −1.100 −1.111
Aggregate	equity . 0.974 0.997
Aggregate	options . 1.026 0.662
Portfolio . 1 1

Implied	Normal	Risk	ContributionsBetas
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In	the	linear	normal	model	discussed	in	the	previous	chapter	we	had	that	risk	contributions
could	be	analytically	expressed	as	scaled	betas	(see	equation	(2.11)	for	the	case	of	 ).	For
example,	the	contribution	of	asset	 	to	the	portfolio	volatility	is	given	by	 	where

and	hence	 	is	the	covariance	between	portfolio	and	asset	 	returns	divided	by	the	portfolio
variance.	In	case	the	portfolio	returns	are	not	normal	we	can	still	compute	equation	(3.4)	using
the	realized	simulated	portfolio	returns	and	instrument	or	subportfolio	 	returns.	We	can	hence
construct	what	we	can	call	“implied	normal”	portfolio	risk	contributions	for	an	arbitrary	set	of
portfolio	loss	samples.

As	we	shall	discuss	below	in	the	context	of	copulas	the	covariance	may	not	be	a	good	measure
of	codependency	in	general.	One	can	therefore	consider	the	implied	normal	beta	as	being
estimated	on	the	simulated	portfolio	returns	and	instrument	or	subportfolio	 	returns
transformed	to	normal.6	Since	implied	normal	beta	contributions	will	not	sum	up	to	the	risk
measure	they	can	be	scaled	by,	for	example,	aggregate	portfolio	 	to	sum	up.

Risk	Information	Measures
The	Euler	risk	contribution	decomposition	applies	to	the	portfolio	instruments	 	and,
of	course,	optionally	to	subportfolios	of	instruments	by	aggregation	as	risk	contributions	have
the	additive	property	by	construction.	However,	if	 	denotes	the	 	instruments,	then,
in	general,	for	 	risk	factors	 	we	have	that	 ,	that	is,	instrument	 	is	a
function	of	the	 	underlying	risk	factors.	Having	obtained	a	decomposition	of	risk	in	
as	above,	the	question	is	then	how	we	can	further	decompose	risk	in	attributions	to	 .

This	is	clearly	a	key	concern	of	risk	managers—that	is,	how	they	can	further	decompose	risk
into	contributions	of	the	portfolio	risk	factors	such	as	equity,	foreign	exchange,	and	economy-
wide	systematic	and	interest	rate	components.	In	the	linear	normal	model	case	discussed	in	the
previous	chapter	we	saw	that	this	decomposition	of	risk	is	in	fact	obtained	by	the	Euler	risk
contributions.	This	was	of	course	due	tothe	linear	property	of	the	portfolio	and	does	not	hold
generally	when	each	of	the	instruments	 	are	nonlinear	functions	of	the	portfolio	risk
factors	 .

Following	Skoglund	and	Chen	(2009)	we	will	approach	this	problem	from	the	perspective	of
what	information	is	generated	in	 	and	for	this	purpose	we	introduce	the	concept	of
information	(Fisher,	1956;	Shannon,	1956;	Wiener,	1956).	Following	Kullback	(1959)	denote
by	 ,	 ,	 ,	the	hypothesis	that	 	comes	from	a	population	with	probability	measure	 ,	 ,	
.	Using	elementary	conditional	probability	rules

yielding
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which	measures	the	logarithm	of	the	odds	in	favor	of	 	after	and	before	the	observation	that	
.	Alternatively,	we	say	that	 	describes	the	weight	of	evidence	for	 	given	 .

The	mean	information	for	discrimination	in	favor	of	 	against	 ,	given	 ,	is

since	 .	Specifically,	suppose	that	the	sample	space	is	the	Euclidean	space	
with	elements	 	and	 	is	the	hypothesis	that	 	are	dependent,	whereas	the	hypothesis	
is	that	the	variables	are	independent.	In	that	case	we	may	write	 	as

The	information	measure	 	in	equation	(3.5)	has	the	property	that	 	and	is	zero	if
and	only	if	 .	Furthermore	equation	(3.5)	is	additive	for	independent	events	(see
Kullback,	1959,	ch.	2).	The	fact	that	the	information	measure	is	nonnegative	and	additive	for
independent	events	makes	it	useful	for	measurement	of	relations	or	dependence.

Risk	Information	in	the	Linear	Portfolio	Model
Having	previously	discussed	Euler	risk	contributions	in	the	classical	linear	normal	risk	model
in	Chapter	2	we	now	consider	the	equivalence	of	the	Kullback	information	measure	and	the
Euler	risk	contribution	in	that	setting.	Above	we	defined	the	mean	(risk)	information	in	 	about	
	by	equation	(3.5).	If	 ,	 	are	both	univariate	normal	and	we	consider	the	hypothesis	 	of	a
bivariate	normal	density	and	 	a	product	of	normal	densities,	we	find	that

with	 	the	correlation	coefficient	of	the	bivariate	normal	distribution,	and

being	the	joint	and	marginal	densities	of	 	and	 .	Note	that	 	in	equation	(3.6)	ranges	from	
	as	 	ranges	between	 .	Moreover	 	is	zero	if	and	only	if	 .

For	 	an	 -dimensional	vector	 	with	weights	 	we	similarly	have
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where	 	is	now	the	correlation	between	 	and	the	weighted	linear	combination	of	the	 -
dimensional	vector	 .	By	the	definition	of	correlation,

with	 	the	variance	of	 ,	and

the	variance	of	the	weighted	linear	combination	of	the	vector	 .	Here,	 	is	the	covariance
matrix	of	the	vector	 .

Using	our	linear	portfolio	definition	in	equation	(2.2)	and	in	correspondence	with	the	scaled	
representation	of	linear	model	risk	contributions	in	equation	(3.4)	we	can	therefore	write

where

and

with	 	the	 -dimensional	sensitivity	vector	and	 	the	j:th	element	of	the	sensitivity	vector.	The
Kullback	information	measure	is	hence	closely	related	to	the	Euler	risk	contributions	in	this
linear	normal	portfolio	setting.	However,	while	the	Euler	allocation	has	the	desirable	property
that	dependent	risks	are	additive	no	such	concept	is	available	for	the	Kullback	information
measure.	That	is,	there	is	no	total	portfolio	information	that	the	information	of	the	
components	in	equation	(3.7)	can	be	compared	with.	For	each	 	component	the	comparison	in
equation	(3.7)	is	with	respect	to	the	possible	minimum	and	maximum	information,	that	is,	
and	for	 	components	 	and	 	we	can	compare	the	relative	importance	of	 	versus	 	in
determining	portfolio	value	by	comparing	 	and	 .

Risk	Information	for	Discrete	Distributions
Dealing	with	general	simulated	discrete	loss	distributions	we	now	consider	a	discrete	version
of	the	 	information	measure.

Let	 	be	the	frequency	of	the	joint	occurrences	of	 	belonging	to	quintile	 	and	 	belonging	to
quintile	 	and	let	 	represent	the	number	of	quantile	cutoff	factors	for	the	distributions	of	 ,	 .
We	then	define	a	discrete	version	of	the	information	measure	in	equation	(3.5)	as
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3.9

Clearly	 	where	unity	corresponds	to	the	case	where	 	belonging	to	quintile	 	is
always	matched	with	 	belonging	to	quintile	 .	The	maximum	of	 	is	hence	 .

The	discrete	information	measure	is	seen	to	be	a	measure	of	the	amount	of	covariation	between
quintiles	of	the	distributions	and	hence	a	(nonparametric)	measure	of	codependency.	A
normalized	information	measure,	by	 ,	therefore	expresses	this	degree	of	codependency	on	a

	scale.

Examples	of	Risk	Information	Measures
As	a	simple	example	of	the	discrete	information	measure	 	we	set	 	giving	a	
quantile	(median)	cutoff	for	 	and	 ,	and

It	remains	to	specify	the	sample	distributions	to	complete	equation	(3.9)	numerically.
Employing	the	sample	distribution	numbers	in	Table	3.8	gives

Table	3.8	Sample	Distributions	of	X	and	Y	(Bold	Sample	Numbers	Indicate	the	Sample
Belonging	to	the	Left	Part	of	the	Distribution,	i.e.,	the	First	Quintile	for	s	=	2)

Sample g(X) h(Y)
1 15 −7
2 7 −5
3 9 7
4 10 3
5 4 2
6 13 5

A	normalized	information	measure	for	the	samples	in	Table	3.8	is	now	obtained	by	dividing



the	 	by	 ,	yielding	a	 	normalized	information	measure	of
approximately	 .	Note	that	changing	place	of	the	sample	points	 	and	 	for	the	distribution
of	 .	That	is,	exchanging	places	of	the	sample	points	−7	and	 	would	yield	a	normalized
information	measure	of	 .	This	is	because,	this	change,	within	the	sample	knowledge	of	which
part	of	the	distribution	 	belongs	to,	would	allow	us	to	predict	with	certainty	the	part	of	the
distribution	for	the	corresponding	sample	of	 .

Our	next	example	uses	the	sample	equity	portfolio	in	Table	3.1.

For	the	sample	equity	portfolio	in	Table	3.1	we	compute	the	equity	A	and	B	Risk	Factor
Information	measures	(RFI)	as	well	as	correlation	(Corr)	of	the	equity	risk	factors	to	the
portfolio	profit	and	loss	at	the	aggregate	equity,	option,	and	portfolio	level.	The	results	are
displayed	in	Table	3.10	and	use	the	same	1,000,000	scenarios	for	equity	A	and	B	as	we	used
in	Table	3.4.7	Table	3.10	shows	that	equity	B	has	the	highest	RFI	measure	of	the	two	equities.
As	for	diversification	measures	the	risk	factor	information	measures	are	dependent	on	the
position	size.	For	example,	changing	the	holding	in	equity	A	to	10	units	from	the	current	1	unit
of	holding	we	obtain	new	risk	factor	information	measures	(RFI)	and	correlations	(Corr)	in
Table	3.9.	Note	that	equity	A	now	has	the	highest	RFI	at	both	the	aggregate	equity	and	portfolio
level	while	at	the	aggregate	options	level	we	of	course	obtain	the	same	risk	factor	information
as	in	Table	3.10.

Table	3.9	Risk	Factor	Information	Measures	and	Correlation	of	Equity	Risk	Factors	to
Portfolio	Profit	and	Loss	When	Holding	in	Equity	A	is	Changed	to	10	Units	Instead	of	1	Unit

RFI Corr
Instrument	type Equity	A Equity	B Equity	A Equity	B
Aggregate	equity 0.661 0.015 0.986 0.239
Aggregate	options 0.112 0.341 0.539 0.740
Portfolio 0.625 0.018 0.981 0.265

Table	3.10	Risk	Factor	Information	Measures	and	Correlation	of	Equity	Risk	Factors	to
Portfolio	Profit	and	Loss

RFI Corr
Instrument	type Equity	A Equity	B Equity	A Equity	B
Aggregate	equity 0.090 0.328 0.557 0.871
Aggregate	options 0.112 0.341 0.539 0.740
Portfolio 0.092 0.335 0.564 0.862

For	a	more	extensive,	market	risk	focused	application	of	information	measures	to	a	portfolio	of
equity	derivatives	we	refer	to	Skoglund	and	Chen	(2009).	Further	numerical	examples	of	the
risk	factor	information	measure	are	also	considered	later	in	this	chapter	as	well	as	in	the
chapter	on	portfolio	credit	risk.



Practical	Use	of	the	Risk	Factor	Information	Measure
Clearly,	the	risk	factor	information	measures	give	the	ranking	of	which	risk	factors	are
important	for	determining	profit	and	loss.	Depending	on	the	specific	portfolio	characteristics
two	different	situations	typically	arise	in	practice:

First,	there	are	cases	where	many	combinations	of	risk	factors	can	give	rise	to	the	same	or
almost	the	same	profit	and	loss.

In	this	case	there	is	typically	a	common	low	level	of	risk	factor	information	among	many	of
the	risk	factors.

Second,	there	are	cases	where	a	small	subset	of	risk	factors	are	truly	more	important	to
determine	portfolio	loss.

In	this	case	a	few	risk	factors	would	have	a	high	risk	factor	information	measure	and	other
risk	factors	a	low	measure.

In	the	second	situation	the	risk	factor	importance	ranking	feature	of	the	Kullback	information
measure	can	allow	a	risk	manager	to	extract	very	useful	information	on	the	value	of	so-called
reverse	stress	tests	where	a	certain	loss	is	identified	with	certain	risk	factor	values	and,	in
particular,	any	key	risk	factors	that	seem	to	have	a	predictive	impact	on	loss.	This	is	a	topic
that	we	will	return	to	later	in	this	chapter	when	we	discuss	stress	testing.

While	risk	factor	information	measures	are	computed	at	the	risk	factor	level	it	is	also	useful	to
look	at	the	risk	factor	information	measures	per	risk	factor	categories	such	as	per	equity,
interest	rate,	and	foreign	exchange	categories.	If	just	a	few	risk	factor	categories	have	large
risk	factor	information	measures,	one	can	try	to	extract	summarized	portfolio	risk	factor
exposure	information	like	“for	severe	losses	we	would	be	exposed	to	very	high	interest	rates
simultaneously	with	dramatically	falling	equity	prices.”

We	also	note	that	while	we	here	choose	to	focus	on	the	information	as	the	measure	to	rank	risk
factors'	relative	importance	on	portfolio	profit	and	loss,	various	other	techniques	can	also	be
used	in	practice	to	assess	the	most	influential	factors.	Post-simulation	one	has	available	both
risk	factor	scenarios	and	portfolio	profit-and-loss	scenarios;	it	is	hence	natural	to	consider
regression-based	techniques	to	infer	the	most	influential	risk	factors.	For	example,	in	Tables
3.10	and	3.9	we	also	computed	the	correlation	between	portfolio	profit	and	loss	andthe	risk
factor	as	another	measure	indicating	the	importance	of	a	risk	factor	in	explaining	profit	and
loss.	A	closely	related	example	to	using	correlation	measures	is	the	partial	least	squares
method	used	by	Gibson	and	Pritsker	(2000)	to	achieve	a	risk	factor	dimension	reduction	for	a
fixed	income	portfolio	that	we	discussed	in	the	previous	chapter.	Gibson	and	Pritsker	(2000)
use	partial	least	squares	as	an	advancement	over	principal	component	analysis,	extracting
principal	factors	that	are	potentially	truly	influential	on	portfolio	profit	and	loss	rather	than
only	influential	on	historical	risk	factor	variation.	The	partial	least	squares	method	can	hence
also	be	interpreted	as	a	factor	importance	analysis.

The	benefit	of	the	risk	information	measure	discussed	here	is	that	it	is	nonparametric	(and
hence	not	based	on	normal	correlation	matrices).	Moreover,	it	produces	ranked	factor



importance	analysis	in	terms	of	the	actual	portfolio	risk	factors.	Therefore,	the	risk	factor
information	measure	can	also	be	used	as	a	risk	factor	dimension	reduction	method	in	terms	of
the	observed	risk	factors.

Finally,	a	word	of	caution	is	warranted	in	using	any	risk	factor	importance	analysis	method.	As
with	any	statistical	method	what	is	measured	is	essentially	the	degree	of	covariation	and	not
causality.	This	means	that	risk	factors	that	may	not	even	influence	the	portfolio	but	still	have	a
strong	covariation	with	portfolio	profit	and	loss	may	seem	important	using	the	statistical
measures.	We	will	see	an	example	of	this	in	the	next	chapter	on	portfolio	credit	risk.

Risk	Distortion	Measures
So	far	we	have	focused	on	 	and	 	as	the	measures	of	risk.	More	generally	one	can
consider	defining	risk	measures	using	a	so-called	risk	distortion	function.	A	risk	distortion
function	allows	one	to	define	a	risk	measure	that	gives	different	weights	to	specific	parts	of	the
loss	distribution.

Consider	a	given	realized	discrete	loss	distribution	 	from	which	we	can	construct	the
empirical	cumulative	density	function,	 .	Now,	define	a	distortion	function,	 ,	 ,	such	that

	is	non-decreasing	and	right-continuous

The	expected	value	of	this	distorted	distribution	 	is	then	called	a	distortion	risk	measure;	see
Wang	(1996).	A	risk	distortion	measure	is	not	necessarily	coherent.	For	example,	 	is	a
distortion	function	that	enables	you	to	compute	value	atrisk	at	the	 	confidence	level.	The
corresponding	distortion	function	is

where	 	denotes	the	cumulative	probability	of	 .	The	distortion	function	for	 	is	hence	a
step	function	that	jumps	from	zero	to	1.	Similarly,	for	 	the	distortion	function	is

such	that	when	the	cumulative	probability	passes	the	 	threshold	the	distortion	function
increments	a	step	for	each	observation	until	reaching	the	cumulative	probability	1	for	the	last
maximum	observed	loss.

In	practice,	various	different	weights	can	be	used	on	the	distribution	function	of	losses	and	we
will	just	consider	a	few	common	risk	distortion	functions	below.	For	example,	the	block
maxima	distortion	function	is	given	by

where	if	 ,	it	is	convex.	Clearly,	as	 	increases	more	weight	will	be	given	to	extreme



losses.

Figure	3.4	displays	a	sample	empirical	cumulative	distribution	function	(denoted	CDF)	and	the
block	maxima	distortion	function	for	 	equal	to	5,	10,	or	20	for	a	loss	sample.	It	is	clear	from
the	figure	that	with	increasing	 	the	block	maxima	distortion	function	resembles	more	and	more
a	tail-based	risk	measure	as	more	of	the	weight	is	given	to	the	 	loss	observations	with	
large.

Figure	3.4	Empirical	Distribution	Function	(CDF)	and	Block	Maxima	Distortion	Function	for
n	Equal	to	5,	10,	and	20	for	a	Loss	Sample

Yet	another	distortion	function	is	the	dual	block	minima	function.	It	distorts	the	distribution
function	as	follows

where	if	 	is	between	 ,	it	is	convex.	In	this	case	as	 	decreases	more	weight	is	given	to
losses.

The	Wang	 	transformation	is	defined	by	the	following	distortion	function:

for	 	where	 	is	the	normal	cumulative	distribution	function,	and	 	its	inverse.

Risk	distortion	measures	can	be	seen	as	a	risk	measure	framework	where	one	can	simply	and
elegantly	implement	new	risk	measures	with	user-defined	loss	weighting.	Since	distortion
measures	represent	weighted	portfolio	losses	we	can	also	calculate	Euler	risk	contributions	to



the	risk	distortion	measure.	Indeed,	a	distortion	risk	measure	can	be	viewed	as	a	weighted
function	of	the	portfolio	 	associated	with	different	risk	confidence	levels	 .	In	practice
different	distortion	functions	(different	 	loss	weights)	are	useful	to	assess	the	sensitivity
of	risk	and	risk	contributions	to	the	risk	measure	itself.

Example	Calculation	of	Risk	Distortion	Measures	as	Well	as	Euler
Contributions	and	Risk	Without	Measures	to	Risk	Distortion	Measures
We	consider	a	simple	linear	normal	portfolio	of	two	equities	with	variance	0.1	for	equity	1
and	variance	0.2	for	equity	2.	The	covariance	between	the	equities	is	zero	and	current	equity
value	is	unity	for	both	equities.	Using	10,000	simulations	we	calculate	a	realized	discrete	loss
distribution,	 ,	and	the	cumulative	loss	density,	 .

Table	3.11	displays	the	aggregate	risk,	the	standalone	risk,	the	Euler	risk	contributions,	and	the
“risk	without”	for	five	different	risk	distortion	measures	( (0.95),	 (0.95),	Block
maxima(2)	 (2)),	Dual	block	minima(0.5)	( (0.5)),	and	Wang(1.96)	( (1.96)).	The	risk
without	is	simply	the	risk	remaining	when	the	instrument	is	removed	from	the	portfolio.	It	is	the
counterpart	of	the	incremental	risk	used	in	Table	3.4.8

Table	3.11	Risk	Distortion	Measures

Risk	distortion	measure
Instrument VaR(0.95) CVaR(0.95) BM(2) DBM(0.5) W(1.96)

Aggregate	risk
Portfolio 0.67 0.81 0.18 0.18 0.73

Stand	alone	risk
Equity	1 0.40 0.47 0.13 0.13 0.43
Equity	2 0.52 0.60 0.17 0.15 0.54

Euler	risk	contributions
Equity	1 0.24 0.33 0.06 0.07 0.29
Equity	2 0.43 0.48 0.12 0.11 0.44

Risk	without
Equity	1 0.52 0.60 0.17 0.15 0.54
Equity	2 0.40 0.47 0.13 0.13 0.43

Table	3.11	shows	that	the	aggregate	risk	for	block	maxima	and	dual	block	minima	risk
distortion	functions	are	much	lower	than	for	 (0.95).	However,	we	can	change	the
weighting	in	these	measures	such	that	more	weight	is	given	to	large	losses	and	hence	they	more
resemble	tail	risk	measures.	For	example,	increasing	the	block	maxima	parameter	to	 	we	get
an	aggregate	risk	of	 ,	and	increasing	to	 	we	now	have	an	aggregate	risk	of	 .	This	is
relatively	close	to	the	maximum	simulated	loss	of	 	and	hence	the	bulk	of	the	loss	weights
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are	now	with	a	few	large	losses.

Considering	the	risk	without	measure	we	have,	for	example,	that	the	 (0.95)	portfolio	risk	is
0.67	and	corresponding	risk	without	for	equity	1	is	0.52.	This	translates	into	an	incremental
risk	of	adding	instrument	1	of	0.15	since	one	can	always	obtain	incremental	risk	from	total	risk
and	risk	without	and	vice	versa.

The	Euler	risk	contributions	for	all	the	risk	distortion	measures	sum	to	aggregate	risk	as
expected	and	for	all	the	measures	the	higher	variance	of	equity	2	is	captured	in	a	larger	risk
contribution	for	equity	2.

Spectral	Risk	Measures
Risk	distortion	measures	also	includes	a	large	family	of	general	risk	measures.	If	 	is	convex,
the	distortion	measure	is	also	convex	(subadditive).	Acerbi	(2002)	therefore	introduced	a
subset	of	risk	distortion	measures,	called	spectral	risk	measures,	that	are	coherent.	Spectral
risk	measures	( )	are	in	a	family	of	risk	measures	that	generalize	 	by	allowing	non-
negative	weights	assigned	to	the	 -VaRs	with	 .	That	is,

where	 	is	an	increasing	weight	function	 	and

Comparing	to	equation	(2.6)	 	is	a	special	case	of	 	where	 	with	 .

In	addition	to	being	coherent,	the	spectral	risk	measures	offer	a	couple	of	nice	properties.

First,	the	weight	function	allows	a	financial	institution	to	assign	a	different	tolerance	to
different	loss	severities.

The	increasing	weights	on	the	severity	reflects	the	institution's	risk	aversion	as	higher
weights	have	to	be	placed	on	more	severe	losses.	However,	the	actual	sizes	are	still
choices	by	the	institution.

The	second	advantage	is	that	the	 	does	not	really	impose	a	specific	confidence	level.

It	basically	allows	any	loss	to	be	counted	toward	the	risk	measure,	and	therefore
potentially	makes	itself	react	to	changes	in	the	loss	distribution	more	smoothly	than	to	any
specific	confidence	level–based	measure	like	 	that	may	cause	a	jump	effect	between
the	losses	slightly	below	and	above	the	confidence	level.

Modeling	the	Stylized	Facts	of	Financial	Time	Series
Univariate	Time	Series



The	assumption	that	financial	return	series	are	normal	and	independent	over	time	is	one	of	the
most	common	assumptions	in	finance.	Stylized	facts	of	financial	return	series	show,	however,
that	both	of	these	assumptions	are	questionable.	In	particular,	the	independence	assumption	is
questionable	due	to	the	tendency	of	financial	return	series	to	display	volatility	clusters	and	the
assumption	of	a	normal	distribution	is	questionable	due	to	the	observed	fat-tail	nature	of
financial	time	series—even	after	correcting	for	volatility	clusters.

It	is	by	now	well-known	that	financial	time-series	(after	suitable	transformation)	display	a
number	of	so-called	stylized	facts	that	can	be	summarized	as	follows:9

1.	 They	tend	to	be	uncorrelated	but	dependent.

2.	 Volatility	is	stochastic	and	the	autocorrelation	function	of	absolute	(or	squared)	returns
tend	to	decay	very	slowly.

3.	 They	tend	to	be	heavy	tailed	and	asymmetric.	In	particular	large	negative	returns	occur
more	frequently	than	predicted	by	the	normal	distribution.

Figure	3.5	displays	the	typical	volatility	clustering	behavior	of	a	financial	return	series	where
a	large	return	(of	either	sign)	is	typically	followed	by	another	large	return	(of	either	sign).

Figure	3.5	A	Typical	Financial	Time	Series	of	Returns	that	Displays	the	Well-Known	Property
of	Volatility	Clustering

As	a	concrete	example	we	consider	the	distributional	properties	of	the	returns	to	the	daily	S&P
500	index	between	1928	and	1991.	Table	3.12	gives	the	estimates	of	the	first	four
unconditional	moments	of	the	distribution	of	logarithmic	returns	to	the	S&P	500	index.	The
table	shows	that	the	S&P	500	returns	display	both	negative	skewness	and	excess	kurtosis



compared	to	a	normal	distribution.	Figure	3.6	displays	the	autocorrelations	of	the	S&P	500
daily	returns	and	the	squared	returns	respectively.	The	autocorrelation	of	returns	display	very
little	structure	but	the	autocorrelations	for	squared	returns	decay	extremely	slowly	consistent
with	stylized	fact	2.	The	properties	of	the	S&P	500	returns	have	been	analyzed	extensively	in
Mills	(1999,	ch.	5)	and	Granger	and	Ding	(1995)	investigated	the	properties	of	absolute
returns.

Table	3.12	Unconditional	Moments	of	Returns	to	the	SP	500	Index

Mean 0.01821
Variance 1.32377
Skewness −0.48725
Kurtosis 25.4164



Figure	3.6	Autocorrelation	of	Returns	and	Squared	Returns	for	the	S&P	500	Index

The	lack	of	autocorrelation	in	financial	returns	implied	by	stylized	fact	1	suggests	that	linear
association	between	consecutive	observations	is	not	large.	Linear	time	series	models,	such	as
autoregressive	moving	average	(ARMA)	models,	may	therefore	not	be	expected	to	perform



very	well	in	terms	of	returns	forecasting	availability.	However,	the	predictability	of	financial
returns	is	a	debated	issue.	Financial	returns	series	may	be	predictable	to	some	extent.	See
Campbell	et	al.	(1997).	It	is	fair	to	say	that	there	is	more	evidence	of	predictability	of	financial
returns	series	at	longer	horizons	when	fundamental	macroeconomic	factors	can	provide
explanation	for	performance.	For	example,	McMillan	(2001)	analyzes	the	S&P	500	monthly
returns	using	linear	and	nonlinear	time	series	models	and	finds	evidence	of	linear
predictability	from	macroeconomic	factors	and	nonlinear	predictability	from	interest	rates.

At	shorter	time	horizons,	such	as	daily	returns,	linear	and	nonlinear	models	for	returns	may	not
improve	significantly	on	the	simple	random	walk	hypothesis.	Hence,	for	the	short-term	market
risk	management	there	is	no	compelling	reason	to	go	beyond	simple	parametric	conditional
mean	specifications	such	as	the	growth	or	mean-reverting	model.

Ignoring	stylized	facts	2	and	3	above	for	the	moment	one	can	model	equities	using	a	standard
growth	model	such	as	the	geometric	Brownian	motion,

where	 	and	 	are	the	mean	growth	rate	and	instantaneous	volatility	respectively	and	with	
	the	Wiener	process.	This	model	is	of	course	equivalent	to	the	normal	covariance

simulation	of	logarithmic	(relative)	returns	that	we	have	discussed	previously.	It	is	a	natural
model	for	stocks	since	stock	values	are	bounded	below	by	0.	However,	risk	factors	such	as
interest	rates	are	usually	assumed	to	have	a	long-term	mean	reversion	to	an	equilibrium	rate.
We	can	capture	such	mean	reversion	effects	using,	for	example,	a	Cox-Ingersoll-Ross	model
(Cox,	Ingersoll,	and	Ross,	1985),

where	 	is	the	Wiener	process.	Here	the	parameter	 	is	the	mean	reversion	level	at	which
all	future	trajectories	will	evolve	around	in	the	long	run.	The	parameter	 	characterizes	the
speed	at	which	trajectories	will	regroup	aroundthe	mean	reversion	rate	 	over	time,	and	 	is
the	instantaneous	volatility	of	the	short-rate	model.	While	mean	reversion	also	in	foreign
exchange	rates	is	supported	by	the	purchasing	power	parity,	empirical	evidence	of	mean
reversion,	especially	at	shorter	time	horizons,	is	a	discussed	issue.	See,	for	example,	Cheung
and	Lai	(1994),	Sweeney	(2000),	and	Taylor	and	Taylor	(2004).	Similar	to	the	discussed	issue
about	the	degree	of	mean	reversion	in	forward	foreign	exchange	rates	there	is	a	discussion
about	the	rationale	for	mean	reversion	in	credit	spreads—specifically,	if	the	observed	mean
reversion	is	due	to	survival	effects.	See,	for	example,	Bhanot	(2005).

In	practice	for	short-term	horizon	market	risk	analysis	(e.g.,	1–10	days)	the	choice	of	whether
to	include	long-term	mean	reversion	in	the	model	for	the	asset	class	is	not	that	important.	The
short-term	behavior	is	dominated	by	the	volatility	and	the	distribution	of	the	random	shocks	to
the	model,	that	is,	by	stylized	facts	2	and	3.	Hence,	for	short-term	market	analysis	we	can
essentially	focus	on	modeling	the	arithmetic	or	relative	returns	of	a	risk	factor	directly	with	no
mean-reversion	component.10	Below,	we	therefore	focus	our	discussion	on	univariate	financial
time	series	on	the	key	aspects	of	the	market	risk	model	for	the	risk	factors,	 ,	that	is,	how	to



capture	stylized	fact	2	and	stylized	fact	3.

Capturing	the	Volatility	Clustering
Regarding	stylized	fact	2	it	is	well-known	when	considering	financial	time	series	that	the
modeling	and	forecasting	of	volatility	is	a	key	issue.	If	volatility	is	stochastic	and	forecastable
(as	implied	by	stylized	fact	2),	then	an	accurate	modeling	of	volatility	improves	the
measurement	of	risk	as	the	risk	increase	in	volatility	clustering	periods	is	captured.	When
considering	one-day	returns	the	generalized	autoregressive	conditional	heteroskedasticity
(GARCH)	family	of	stochastic	processes	tends	to	explain	much	of	the	dependence	structure
referred	to	in	stylized	fact	2,	and	the	GARCH	filtered	residuals	displays	little	or	no
dependence,	being	approximately	independent	and	identically	distributed.

GARCH	Models
To	introduce	the	GARCH	family	of	processes	we	consider	the	following	simple	univariate
model	describing	the	returns,	 ,

denoting	by	 .	The	dynamic	variance	is	parametrized	as

with	 	the	parameter	vector.	The	following	properties	are	obtained	using	that	 ,

and	hence	the	process	is	uncorrelated.	However,	 	as	well	as	 	and
the	process	has	the	ability	to	generate	excess	kurtosis.	That	is,	it	has	the	potential	to	address
not	only	stylized	fact	2	but	also	some	of	the	heavy	tailed	nature	of	financial	time	series	referred
to	in	stylized	fact	3.	This	can	be	easily	seen	by	applying	Hölder's	inequality	to	the	kurtosis	of	
,	 :

Intuitively,	the	unconditional	distribution	of	 	(hence	 )	is	a	mixture,	somewith	small
variances	that	concentrate	mass	around	the	mean	and	some	with	large	variances	that	put	mass
in	the	tails	of	the	distribution.

The	classical	ARCH 	parametrization	of	this	model	by	Engle	(1982)	is



for	which	a	necessary	and	sufficient	condition	for	 	is	 ,	 	 .	The	class	of
stochastic	volatility	models	(see	Shephard,	1996)	generalize	this	model	further	by	adding	an
unobserved	error	component,	 	being,	for	example,	 -distributed.	However,	we	confine
ourselves	to	ARCH-type	models	in	this	exposition.	Writing	for	the	ARCH 	process,

we	find	that	the	ARCH 	model	is	covariance-stationary	if	 	and	 	such	that	
.	Assuming	further	that	 	and	 ,

which	gives	the	following	condition	for	existence	of	the	fourth	moment	of	the	ARCH
process:

Hence	if	 ,	then	 	and	the	requirement	on	 	for	existence	of	 	is	
.

Considering	the	temporal	dependence	of	the	ARCH 	process,

yielding	by	induction	that

This	form	of	the	temporal	dependence	reveals	a	fundamental	problem	with	the	ARCH	process
as	an	empirical	model	for	financial	time	series.	In	particular,	to	capture	the	slowly	decaying
temporal	dependence	observed	in	practice	(see	Figure	3.6)	we	require	 	high.	Unfortunately	
high	is	infeasible	with	the	existence	of	a	fourth	moment	and	hence	the	autocorrelation	function
of	squared	observations.	Hence,	there	is	a	motivation	to	generalize	the	ARCH	process.

Bollerslev	(1986)	suggested	the	GARCH 	process	where



3.11

Here	 	 	are	sufficient	for	 	and	necessary	conditions	are
provided	by	Nelson	and	Cao	(1992).	The	GARCH	model	is	commonly	used	in	its	most	simple
form,	the	GARCH 	model,	in	which	the	conditional	variance	is	given	by

The	term

has	zero	mean	conditional	on	past	information	and	can	be	interpreted	as	the	shock	to	volatility.
The	coefficient	 	therefore	measures	the	extent	to	which	a	volatility	shock	in	period	 	feeds
through	into	the	volatility	in	period	 ,	while	 	measures	the	rate	at	which	this	effect
dies	out,	that	is,	the	discount	rate.	Hence	the	GARCH	model	has	greater	potential	to	satisfy	the
observed	slowly	decaying	autocorrelation	function	of	squared	observations	since	two
parameters	are	involved.

Forecasting	with	GARCH	Models
Assuming	that	 	in	the	GARCH 	model	we	obtain	the	 	step	ahead	forecast	as,

Hence,	the	forecast	of	 	reverts	to	its	unconditional	mean	at	rate	 .	Nelson	(1990)
considered	the	properties	of	the	integrated	GARCH	model	(i.e.,	the	case	where	 ).	He
showed	that	if	 	and	 ,	 	dies	out	in	finitely	many	steps,	that	is,	it
degenerates,	whereas	if	 	and	 ,	 	explodes	as	 .	In	particular,	for
the	integrated	GARCH	model	 .	In	its	integrated	form	the	GARCH	model
has	therefore	some	nondesirable	features,	which	makes	it	questionable	as	a	model	for	financial
time	series.	Nevertheless	the	model	appears	as	a	reasonable	alternative	in	estimation	in	finite
samples	where	estimated	parameters,	 ,	are	very	often	close	to	unity.	However,	obtaining
estimated	parameters	consistent	with	integrated	GARCH	does	not	necessarily	mean	that	an
integrated	GARCH	model	is	an	accurate	description.	In	particular	it	is	well-known	that	time-
varying	parameter	models,	for	example,	through	structural	breaks	of	the	process,	give	rise	to
“integrated	type	behavior”	in	finite	samples	of	fixed	parameter	specifications.	Lundbergh
(1999)	contains	a	simulation	example	of	this	feature	in	the	context	of	GARCH	models.

The	RiskMetrics	Model—A	Special	Case
Ignoring	the	theoretical	deficiencies	of	the	integrated	GARCH	model,	acknowledging	simply
that	it	behaves	reasonably	over	short	time	periods	such	as	a	one-day	or	one-week	forecast,	a
special	case	of	the	integrated	GARCH	model	(termed	the	RiskMetrics	model)	is	often	used	in
practice.	The	RiskMetrics	(1996)	model	isdefined	by
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corresponding	to	an	exponentially	weighted	moving	average	model.	In	practice	 	is	here	pre-
set,	avoiding	the	cumbersome	estimation	stage,	to,	for	example,	 .	The	rationale	for	this
approach	to	avoiding	estimation	is	that	the	range	of	useful	GARCH	parameters	is	often	very
small	and	 .

Asymmetric	GARCH	Models
The	GARCH(1,1)	model	is	symmetric	in	the	sense	that	negative	and	positive	shocks	have	the
same	impact	on	volatility.	There	is	much	stronger	evidence	that	positive	innovations	to
volatility	are	correlated	with	negative	innovations	to	returns	than	with	positive	innovations	to
returns;	see	Black	(1976)	and	stylized	fact	3	above.	To	capture	this	potential	asymmetry	we
may	follow	Glosten,	Jagannathan,	and	Runkle	(1993)	and	specify	a	GARCH(1,1)	model	as

Here	 	if	 	and	 	if	 	and	the	difference	between	the	symmetric
GARCH	and	the	present	model	is	that	the	impact	of	a	shock	and	its	discounting	is	captured	by
the	term	 	as	well.

Calibration	of	GARCH	Models
To	estimate	GARCH-type	models	the	method	of	normal	maximum	likelihood	is	often	applied
regardless	of	whether	the	conditional	distribution	is	assumed	normal.	The	resulting	estimator	is
termed	a	quasi-maximum	likelihood	estimator	and	is	still	generally	consistent	(see	Bollerslev
and	Wooldridge,	1992).	However,	the	application	of	the	normal	likelihood	in	a	setting	where	it
is	not	valid	may	of	course	result	in	a	large	loss	of	efficiency	relative	to	the	true	but	unknown
maximum	likelihood	estimator.	In	response	Engle	and	Gonzales-Rivera	(1991)	introduced	the
semi-parametric	maximum	likelihood	estimator	of	GARCH	models.	The	semi-parametric
estimator	is	a	two-step	estimator.	In	the	first	step	consistent	estimates	of	the	parameters	are
obtained	using	the	quasi-maximum	likelihood	estimator	and	are	used	to	estimate	a
nonparametric	conditional	density.	The	second	step	consists	of	using	this	nonparametric
density	to	adapt	theinitial	estimator.	As	our	main	concern	is	cases	where	we	have	deviations
from	normality,	that	is,	deviations	from	 	as	emphasized	by	stylized	fact	number	3,	we
may	also	consider	estimators	that	use	information	about	the	moments	of	 .	Skoglund	(2001)
analyzes	the	efficient	GMM	estimator	of	GARCH(1,1)	regression	models	in	detail	and	in
particular	establishes	the	asymptotic	efficiency	of	GMM	relative	to	quasi-maximum	likelihood
estimator.	Skoglund	(2001)	also	evaluates	the	finite-sample	properties	of	the	GMM	estimator
of	a	GARCH(1,1)	process	through	a	Monte	Carlo	study	and	shows	that	the	asymptotic	relative
efficiency	is	realized	for	sample	sizes	encountered	in	practice.

The	Exponential	GARCH	Model
A	vast	array	of	different	GARCH	models	have	been	proposed	in	the	literature.	See	He	and
Teräsvirta	(1999),	which	contains	many	examples	of	GARCH	models	and	their	statistical
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properties.	There	is	a	GARCH	model	that	deserves	special	consideration	due	to	its	popularity
in	applications.	This	is	the	exponential	GARCH	model	proposed	by	Nelson	(1991).	Nelson
criticized	the	GARCH(p,q)	model	on	several	grounds:	first,	the	complexity	of	positivity
restrictions	required	to	ensure	that	 ;	second,	the	symmetry	of	the	model	and	the	fact
that	persistence	is	difficult	to	evaluate.	Given	stylized	facts	of	financial	return	series	the
relevant	range	of	the	standard	GARCH	parameters	has	been	shown	in	applications	to	be	very
small.	To	overcome	some	of	these	deficiencies	Nelson's	idea	was	to	propose	a	logarithmic
version	of	the	GARCH	model,	formulated	as

where	 	and

The	first	part	of	 	is	the	asymmetry	term	and	the	second	the	symmetric	term	where,	in
particular,	 	if	 .	Write

where	 	is	the	lag	operator	for	lag	 .	Replacing	 	by	an	approximating	rational
polynomial	obtains

which	is	the	exponential	GARCH(p,	q)	model	proposed	by	Nelson.	If	 	and	normally
distributed,	then	 	is	a	necessary	condition	for	all	the	moments	to	exist	for	the
exponential	GARCH	model,	which	is	to	be	compared	with	the	complex	necessary	parameter
restrictions	required	on	the	classical	GARCH	model.

Capturing	Tail	Behavior
Having	estimated	a	GARCH	model	for	the	risk	factor	we	can	construct	the	empirical	residuals

which	are	in	practice	approximately	independent	and	identically	distributed	over	time.	As
observed	in	practice,	however,	the	distribution	of	model	residuals,	 ,	does	not	seem	to	support
the	symmetry	or	the	exponentially	decaying	tail	behavior,	exhibited	by	the	normal	distribution.
Hence,	using	the	normal	distribution	approximation	for	 	the	high	quantiles	may	be	severely
underestimated.

An	immediate	alternative	to	the	normal	distribution	may	be	to	consider	a	Student's	t-



distribution,	being	only	slightly	more	complex.	For	example,	Bollerslev	(1987)	considers	an
application	of	GARCH	with	Student's	t-errors.	The	Student's	t-distributions	have	heavier	tails
than	the	normal,	displaying	polynomial	decay	in	the	tails.	It	may	therefore	be	able	to	capture
the	fat	tails	although	it	maintains	the	hypothesis	of	symmetry,	which	is	troublesome	because
many	financial	returns	residuals	are	found	to	be	asymmetric,	having	a	much	fatter	left	tail	than
right	tail.

In	contrast,	purely	nonparametric	methods	(e.g.,	kernel	methods	or	the	empirical	distribution
function)	make	no	assumptions	concerning	the	nature	of	the	empirical	distribution	function	but
have	several	drawbacks,	especially	their	poor	behavior	in	the	tails.	Extreme	value	theory	and
in	particular	the	generalized	Pareto	distribution	give	an	asymptotic	theory	for	the	tail	behavior.
Based	on	a	few	assumptions	the	theory	shifts	the	focus	from	modeling	the	whole	distribution	to
the	modeling	of	the	tail	behavior	and	hence	the	symmetry	hypothesis	may	be	examined	directly
by	estimating	the	left	and	right	tail	separately.	In	addition,	application	of	extreme	value	theory
has	the	advantage	of	requiring	just	a	few	degrees	of	freedom.

We	now	turn	to	using	extreme	value	theory	in	extrapolation	of	density	tails.	Our	exposition	is
brief	and	focused	on	the	practical	application	of	extreme	value	theory	in	tail	extrapolation	of
the	conditional	GARCH	residuals,	 ,	as	in	McNeil	and	Frey	(2000)	and	Nyström	and
Skoglund	(2005).	See	also	Kourouma	et	al.	(2011)	for	an	analysis	of	performance	of	univariate
extreme	value	theory	models	during	the	2007	financial	crisis.	For	a	comprehensive	textbook
account	on	extreme	value	theory	we	refer	to	Embrechts	et	al.	(1997).

Extreme	Value	Theory	and	the	Generalized	Pareto	Distribution
To	introduce	the	extreme	value	theory	we	recall	that	the	central	limit	theorem	states	a	1–1
asymptotic	correspondence	between	(properly	normalized)	sums	and	the	normal	distribution.
The	essence	of	extreme	value	theory	is	that	it	gives	similar	results	as	the	central	limit	theorem
but	for	the	maximum	of	random	variables.	We	introduce	the	following	distribution,

where	 ,	 	and	 	are	parameters	and	 .	This	is	the	general	form	of	the	extreme
value	distribution.	We	also	let

and	 .	Here	 	is	referred	to	as	the	tail	index	as	it	indicates	how	heavy	the	upper
tail	of	the	underlying	distribution	is.	The	parameters	 	and	 	represent	a	translation	and	scaling
respectively.	Obviously	the	distribution	 	is	non-zero	if	and	only	if	 .	As	
by	definition	is	positive	the	subset	of	the	real	axis	where	this	inequality	is	true	is	depending	on
the	sign	of	 .	If	 ,	the	distribution	spreads	out	along	all	of	the	real	axis	and	in	this	case	the
distribution	is	often	called	a	Gumbel	distribution.	If	 ,	the	distribution	has	a	lower	bound
(often	the	distribution	is	called	Frechet	in	this	case),	and	if	 ,	the	distribution	has	an	upper
bound	(usually	referred	to	as	the	Weibull	case).



Concentrating	on	the	conditional	distribution	function	 ,	defined	in	the	following	manner	for	
,

we	also	introduce	the	generalized	Pareto	distribution,	 ,

Extreme	value	theory	now	states	a	1–1	correspondence	between	extreme	value	distributions
and	the	generalized	Pareto	distribution.	The	formal	connection	can	be	stated

The	relation	is	that	excesses	over	a	threshold	is	asymptotically	(large	threshold)	described	by
the	generalized	Pareto	distribution.	See	Embrechts	et	al.	(1997)	for	details.

Applying	Extreme	Value	Theory
We	can	now	make	use	of	extreme	value	theory	in	an	estimate	of	the	tail	for	large	 .	In	order	to
do	so	we	have	to	make	a	choice	for	the	threshold	 .	That	is,	we	have	to	decide	where	the	tail
starts.	Consider	a	sample	of	 	points	sorted	according	to	their	size,	 .
Suppose	that	we	let	the	upper	tail	be	defined	by	an	integer	 ,	hence	considering	

	to	be	the	observations	in	the	upper	tail	of	the	distribution.	This	implies	that	we
choose	 	to	be	our	threshold.	A	naturalestimator	for	 	is	 .	Using	the	generalized
Pareto	distribution	for	the	tail	we	get,	for	 ,	the	following	estimator	of	the	distribution
function	

where	 	and	 	are	estimates	of	the	parameters	in	the	generalized	Pareto	distribution.	Given	this
as	an	estimate	for	the	upper	tail	of	the	distribution	function	we	solve	the	equation	 	for	

	(i.e.,	for	high	quantiles).	Using	the	formula	above	we	get

The	maximum	likelihood	estimator	is	consistent	and	asymptotically	normal	provided	that	
;	see	Smith	(1987).	When	estimating	 	one	could	assume	a	priori	that	 	(Frechet

case)	combined	with	a	maximum-likelihood	method.	In	this	case	we	get	a	maximum	likelihood
estimator	of	the	parameter	 	only.	This	estimator	is	referred	to	as	the	Hill	estimator.
Specifically,	Hill	(1975)	proposed	the	estimator
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where	 	is	referred	to	as	the	Hill	tail	index.

For	 	we	may	choose	the	empirical	distribution	as	an	estimate	for	 .	Of	course,	all	the
estimates	are	depending	on	the	size	of	the	sample,	 ,	and	on	the	threshold	 	implicitly
through	 .	There	is	furthermore	a	trade-off	when	choosing	the	size	of	the	quotient	 .	If	this
quotient	is	too	small,	we	will	have	too	few	observations	in	the	tail,	giving	rise	to	large
variance	in	our	estimators	for	the	parameters	in	the	GP-distribution.	If	the	quotient	is	very
large,	the	basic	model	assumption,	that	is,	the	fact	that	from	the	point	of	view	of	the	asymptotic
theory	 	should	tend	to	 ,	may	be	violated.	One	therefore	has	to	understand	the	stability	of
any	estimator	with	respect	to	the	choice	of	 .

Nyström	and	Skoglund	(2005)	consider	a	Monte	Carlo	evaluation	of	the	finite	sample
properties	of	the	maximum	likelihood	and	Hill	estimator	using	a	reference	t-distribution.	They
find	that	maximum	likelihood	is	the	preferred	estimator.	It	always	performs	better	than	the	Hill
estimator.	In	addition	it	has	the	useful	property	of	being	almost	invariant	to	the	choice	of
threshold,	 .	This	is	in	sharp	contrast	to	the	Hill	estimator,	which	is	very	sensitive	to	the
threshold.	There	are	also	theoretical	reasons	to	prefer	the	maximum	likelihood	estimator.	The
maximum	likelihood	estimator	is	applicable	to	light-tailed	data	as	well,	whereas	the	Hill
estimator	is	designed	specifically	for	the	heavy-tailed	case.	Since	the	Hill	estimator	can	be
sensitive	to	the	threshold	the	so-called	Hill	plot	is	often	used.	It	plots	the	Hill	estimator	for	a
range	of	different	thresholds	 	and	can	be	used	to	judge	the	sensitivity	of	the	Hill	estimator	to
the	threshold	for	particular	data.	See,	for	example,	Bensalah	(2000).

Estimating	Risk	Using	Extreme	Value	Theory
To	estimate	risk	at	time	 	using	the	generalized	Pareto	extrapolation	of	tails,	we	denote	by	
a	random	variable	having	as	its	distribution	function	the	distribution	function	constructed	using
the	filtered	residuals.	Then,

where	the	volatility	factor	 	is	a	forecast	obtained	from	the	GARCH	process.	Hence,	 	is	a
random	variable	with	randomness	quantified	by	the	random	variable	 .	If	we	apply	the	risk
measure	 	to	 ,	we	get	(assuming	that	 	is	homogeneous	of	degree	 	and	fulfills	the	risk-free
condition)

Hence,	the	risk	in	 	is	completely	determined	by	the	risk	in	 	and	we	see	that	a	higher
forecasted	volatility	gives	higher	risk.	For	 	we	therefore	have	as	an	estimate

We	now	consider	an	example	of	using	equation	(3.16)	to	compute	 	for	a	simple	equity	and



an	exchange	rate.	The	different	models	considered	for	the	tails	of	 	are	the	empirical
distribution	function,	the	normal	density,	the	t-density,	and	the	generalized	Pareto	density.

Figure	3.7	displays	the	1-day	 	for	different	quantiles	 	such	that	 	for	the
USD/SEK	exchange	rate	and	using	different	models	for	the	tail	of	the	obtained	standardized
residuals	in	equation	(3.13).	Figure	3.8	displays	the	same	for	the	ABB	(Asea	Brown	Boveri)
stock	quoted	on	the	Stockholm	exchange.	In	both	cases	a	GARCH(1,1)	model	has	been
estimated	on	daily	returns	between	January	1,	1993,	and	September	6,	2001.	Different	tail
models	are	then	fitted	to	the	standardized	GARCH	residual	tails,	specifically,	the	empirical
distribution	function	(EDF),	the	normal	density	(Normal),	the	t-density	(t-distr.),	and	the
generalized	Pareto	density	(GPD).	The	 	for	the	different	quantiles,	expressed	in	%	returns,
are	then	obtained	using	equation	(3.16).	Note	that	in	both	cases	(though	more	pronounced	for
the	ABB	stock)	the	normal	and	t-model	underestimates	the	risk	for	high	quantiles,	whereas	the
generalized	Pareto	density	provides	a	good	in-sample	fit	to	the	empirical	density	with	the
added	benefit	of	providing	consistent	estimates	of	out-of-sample	quantiles.

Figure	3.7	GARCH	Filtered	Lower	Tail	Residuals	of	the	USD/SEK	Exchange	Rate.	The	Fitted
Tail	Distributions	are	the	Empirical	Distribution	Function,	Normal	Density,	t-Density,	and	the
Generalized	Pareto	Distribution



Figure	3.8	GARCH	Filtered	Lower	Tail	Residuals	of	the	ABB	Stock.	The	Fitted	Tail
Distributions	are	the	Empirical	Distribution	Function,	Normal	Density,	t-Density,	and	the
Generalized	Pareto	Distribution

We	also	consider	an	example	of	using	the	simplified	Hill	extreme	value	estimator	in	equation
(3.14)	for	portfolio	risk	in	the	context	of	our	sample	equity	portfolio	in	Table	3.1.	Danielson
and	De	Vries	(1997)	proposed	the	following	estimator	of	tail	probabilities	given	an	estimated
tail	index,	 ,

such	that

which	can	be	used	to	compute	a	Hill	based	 	estimate.	To	gain	intuition	on	the	
estimate	we	can	write



where	 	is	the	percentage	cutoff	point	for	the	estimator.	Hence,	for	a	given	cutoff	percentage	
we	can	calculate	 	for	any	 .	We	can	also	obtain	a	Hill-based	 	for	 	as

For	our	sample	equity	portfolio	in	Table	3.1	we	now	compute	the	aggregate	portfolio	loss	tail
index,	 ,	using	the	Hill	estimator.	We	also	compute	the	 	and	 	based	on	the
Hill	tail	index,	denoted	 	and	 	respectively.	This	is	done	for	different
percentages	of	sample	points	in	the	tail	of	10%,	7%,	5%,	3%,	and	1%	and	using	1,000,000
scenarios.	Table	3.13	displays	the	results.	For	reference,	the	portfolio	empirical	 	and	

	from	Table	3.2	are	27.88	and	31.37,	respectively.	We	note	that	the	Hill	estimator	is
quite	sensitive	to	the	number	of	sample	points	in	the	tail,	that	is,	the	choice	of	threshold.	This	is
consistent	with	the	findings	in	Nyström	and	Skoglund	(2005).

Table	3.13	Hill-Based	Exteme	Value	Portfolio	Risk	for	Different	Percentage	Sample	Points	in
the	Tail

Sample	points	in	tail Tail	index	( )
10% 3.84 29.99 40.92
7% 4.63 28.45 36.56
5% 5.39 27.75 34.31
3% 6.54 27.41 32.54
1% 9.11 27.88 31.45

We	finally	emphasize	that	in	this	univariate	setting	the	GARCH	model	filtering	of	the	financial
returns	yields	a	transformed	return	series,	 ,	that	should	be	close	to	independent	and
identically	distributed.	Hence,	we	have	transformed	the	return	series	to	a	distribution	that	is
amenable	for	random	sampling	using	the	bootstrap	methodology,	requiring	independent	and
identically	distributed	observations.	The	bootstrap	re-sampling	of	 	instead	of	 	(that	is,
sampling	from	the	density	of	 	in	equation	(3.15))	is	often	referred	to	as	a	filtered	historical
simulation,	introduced	by	Barone-Adesi	et	al.	(1998,	1999).	Filtered	historical	simulation
improves	on	the	naive	historical	simulation	of	 ,	which	does	not	take	into	account	that	returns
are	in	general	dependent	(see	stylized	fact	2).	It	is	also	natural,	as	we	have	done	here,	to
address	also	stylized	fact	3	(i.e.,	that	the	returns	are	in	general	fat-tailed).	Consequently,	we
have	used	extreme	value	theory	for	the	tails	of	the	(standardized)	returns,	 ,	while	we	can	of
course	retain	the	empirical	distribution	function	in	the	center	as	in	filtered	historical	simulation
since	there	are	sufficient	empirical	observations	there.

In	a	multivariate	context	with	 	risk	factors	we	of	course	also	need	to	model	the	dependence
between	the	financial	returns.	Barone-Adesi	et	al.	(1998,	1999)	use	a	nonparametric	estimation



of	dependence	by	re-sampling,	for	random	 ,	multivariate	 	standardized	residuals,	
.	While	addressing	multivariate	dependencies	in	standardized	residuals	by	using

bootstrap	re-sampling	of	the	observed	dependence	is	one	way	to	consider	codependency	we
will	focus	below	on	using	explicit	parametric	dependence	structures	with	copulas.11	A	benefit
of	many	copula	models	of	explicit	parametric	dependence	is	that	they	have	parameters	that	can
be	used	to	stress	the	degree	of	dependence	that	has	been	calibrated	on	history.	This	is	useful
since	historically	calibrated	dependence	relationships	may	change	quickly	in	distress,	and	in
practice	there	is	a	lot	of	uncertainty	about	whether	historically	observed	dependencies	will
hold	true	going	forward.

Multivariate	Time	Series
We	now	focus	on	the	codependency	of	the	(univariate	GARCH	filtered)	residual	vector,	

	where	 	 	is	approximately	independent	and	identically	distributed	over	time	
.

Among	parametric	copulas	the	elliptic	copulas	such	as	the	normal	and	t-distribution	copulas
are	the	most	frequently	used	copulas	in	practice.	This	is	because	these	copulas	can	handle	the
scale	of	financial	applications	and	use	the	well-known	correlation	approach	to	modeling
dependency.	Here,	we	shall	also	make	the	assumption	that	the	dependence	between	the	random
variables	 	is	time-independent.	Denoting	by	 	a	measure	of	correlation	between
components	of	 	we	assume	that	 	 	 .	Notethat	the	present	specification	allows	for
GARCH	models	for	each	of	the	univariate	return	series	 	and	the	assumption	that	 	
	 	does	not	imply	time-independent	correlation	between	the	financial	return	series

themselves.	In	what	follows	we	denote	the	model	with	 	 	 	the	constant	conditional
correlation	model.	In	a	multivariate	normal	framework	this	model	was	originally	proposed	by
Bollerslev	(1990),	who	used	it	as	a	parsimonious	multivariate	specification	to	model	exchange
rates.	The	constant	conditional	covariance	matrix	model	can	be	represented	in	the	form

where	 	is	a	diagonal	volatility	matrix	with	univariate	GARCH	specifications	on	the	diagonal.

Implicit	in	the	use	of	copula	as	a	model	of	codependency	is	the	separation	of	the	modeling	of
univariate	marginal	distributions	and	the	dependence	structure.	In	this	setting	the	model
specification	framework	consists	of	two	components.

The	first	component	is	the	specification	and	estimation	of	models	for	univariate	marginal
distributions	including,	for	example,	parametric	GARCH	specifications	and	fitting	of
(non)parametric	densities	to	the	(tails	of	the)	univariate	residuals	as	we	have	discussed
above.

The	second	component	is	the	specification	of	a	model	for	codependency	between	financial
time	series	in	terms	of	copula	for	the	vector	 .

Copulas
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Traditionally	dependence	between	real-valued	random	variables	 	is	described	by	the
joint	distribution	function.	The	idea	of	the	copula	is	to	decouple	the	construction	of
multivariate	distribution	functions	into	the	specification	of	marginal	distributions	and	a
dependence	structure.	Suppose	that	 	have	continuous	marginals	 .	Then	for
each	 ,	 	is	a	uniform	 -variable.	By	definition

Hence

and	if	 ,	 ,	denotes	the	inverse	of	the	marginal,	the	copula	may	be	expressed	in	the
following	way

The	copula	is	hence	the	joint	distribution	function	of	the	vector	of	transformed	marginals.
Independence	between	the	components	is	equivalent	to

We	also	introduce	the	copulas	 	and	 ,	usually	referred	to	as	the	lower	and	upper	Frechet
bounds,	respectively:

The	lower	Frechet	bound	is	not	a	copula	for	 .	For	 	it	may	be	interpreted	as	the
dependence	structure	of	two	counter-monotonic	random	variables.	The	upper	Frechet	bound	is
always	a	copula	and	symbolizes	perfect	dependence	as	its	density	has	no	mass	outside	of	the
diagonal.

Figure	3.9	displays	the	bivariate	Frechet	bounds	(counter-dependence	and	perfect	dependence,
respectively)	and	the	independence	copula	respectively.	The	bivariate	lower	Frechet	bound
copula	has	no	mass	outside	the	northeast	corner,	whereas	the	upper	Frechet	bound	has	no	mass
outside	the	diagonal.	In	contrast	the	independence	copula	has	mass	almost	everywhere.



Figure	3.9	Bivariate	Frechet	Bound	and	Independence	Copulas

The	most	commonly	used	copulas	include	the	elliptic	and	Archimedean	copula	families	and



some	of	their	members.	As	we	have	mentioned	above	the	elliptic	family	includes	the	well-
known	normal	and	t-copulas.	The	Archimedean	class	of	copulas	displays	three	well-known
members.	They	are	the	Clayton,	Gumbel,	and	Frank	copula.	All	of	these	Archimedean	copulas
have	an	explicit	copula	representation,	which	makes	them	easy	to	use	for	simulation	purposes.
The	Clayton	two-dimensional	copula	is	represented	as

and	as	 	approaches	 	we	obtain	the	independence	copula,	whereas	as	 	approaches	 	we
obtain	the	perfect	dependence	copula.	The	Clayton	copula	displays	lower	tail	dependence.	The
Gumbel	copula	has	two-dimensional	representation

where	 	implies	the	independence	copula	and	as	 	approaches	 	we	obtain	the	perfect
dependence	copula.	The	Gumbel	copula	displays	upper	tail	dependence.	Finally,	the	Frank
copula	has	the	bivariate	representation

The	Frank	copula	displays	perfect	negative	dependence	for	 	equal	to	 	and	perfect	positive
dependence	for	 	equal	to	 .	The	Frank	copula	has	both	upper	and	lower	tail	dependence.

Since	both	the	Clayton	and	Frank	copula	display	lower	tail	dependence	( 	for	Frank
copula)	they	are	natural	copulas	for	risk	analysis	since	our	main	interest	is	in	modeling	tail
loss.	However,	these	Archimedean	copulas	parametrize	dependence	in	a	single	parameter	and
are	usually	difficult	to	make	use	of	in	practice	with	many	financial	risk	factors	due	to	the
limitation	of	the	single	dependenceparameter.12

Measuring	Copula	Dependence
The	most	well-known	copula	dependence	measures	are	the	Spearman's	rho,	the	Kendall's	tau,
and	the	coefficients	of	upper	and	lower	tail	dependence.	See	Embrechts	et	al.	(2002).	These
are	all	bivariate	notions	that	can	be	extended	to	the	multivariate	case	by	applying	them	to	all
pairs	of	components	in	the	vector.	The	linear	correlation,	 ,	between	 	is

Linear	correlation	is,	as	the	word	indicates,	a	linearmeasure	of	dependence.	For	constants	
	it	has	the	property	that

and	hence	is	invariant	under	strictly	increasing	linear	transformations.	However,	in	general
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for	strictly	increasing	transformations	and	hence	the	linear	correlation	 	is	not	a	copula
property	as	it	depends	on	the	marginal	distributions.

For	two	independent	vectors	of	random	variables	with	identical	distribution	function	
and	 	Kendall's	tau	is	the	probability	of	concordance	minus	the	probability	of
discordance,

Kendall's	tau	is	a	copula	property.	Spearman's	rho	is	the	linear	correlation	of	the	variables	
,

and	Spearman's	rho	is	a	property	of	only	the	copula	 	and	not	the	marginals.	Often	the
Spearman's	rho	is	referred	to	as	the	correlation	of	ranks.	We	note	that	Spearman's	rho	is	simply
the	usual	linear	correlation,	 ,	of	the	probability	transformed	random	variables.13

Another	important	copula	quantity	is	the	coefficient	of	upper	and	lower	tail	dependence.	The
coefficient	of	upper	tail	dependence	 	is	defined	by

The	coefficient	of	lower	tail	dependence	 	is	similarly	defined	by

If	 ,	then	 	and	 	are	said	to	have	asymptotic	upper	tail	dependence.	If	
,	then	 	and	 	are	said	to	have	asymptotic	upper	tail	independence.	The

obvious	interpretation	of	the	coefficients	of	upper	and	lower	tail	dependence	is	that	these
numbers	measure	the	probability	of	joint	extremes	of	the	copula.

Elliptic	Copulas
Elliptic	copulas	are	copulas	derived	from	the	elliptic	class	of	distributions	such	as	the	normal,
Student's	t,	and	logistic	distribution.	The	elliptic	copulas	that	will	concern	us	below	are	the
normal	copula	and	the	Student's	t-copula.

The	Gaussian	or	normal	copula	is	the	copula	of	the	multivariate	normal	distribution.	The
random	vector	 	is	multivariate	normal	if	and	only	if	the	univariate	margins	

	are	Gaussians	and	the	dependence	structure	is	described	by	a	unique	copula	function	
,	the	normal	copula,	such	that

where	 	is	the	standard	multivariate	normal	distribution	function	with	linear	correlation	matrix
	and	 	is	the	inverse	of	the	standard	univariate	Gaussian	distribution	function.
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For	the	Gaussian	copula	there	is	an	explicit	relation	between	the	Kendall's	tau,	 ,	the
Spearman's	rho,	 ,	and	the	linear	correlation,	 	of	the	random	variables	 	 .	In	particular,

The	copula	of	the	multivariate	Student's	t-distribution	is	the	Student's	t-copula.	Let	 	be	a
vector	with	an	 -variate	student- 	distribution	with	 	degrees	of	freedom,	mean	vector	 	(for	

),	and	covariance	matrix	 	(for	 ).	It	can	be	represented	in	the	following	way,

where	 	and	the	random	vector	 	 	is	independent	of	 .	The	copula	of	the	vector	
is	the	Student's	t-copula	with	 	degrees	of	freedom.	It	can	be	analytically	represented	as

where	 	denotes	the	multivariate	distribution	function	of	the	random	vector	 	and	 	denotes
the	margins.	For	the	t-copula	there	is	an	explicit	relation	between	the	Kendall's	tau	and	the
linear	correlation	of	the	random	variables	 ,	 .	Specifically,

However,	the	simple	relationship	between	the	Spearman's	rho,	 ,	and	the	linear	correlation,	 ,
that	we	had	for	the	Gaussian	copula	above	does	not	exist	in	the	t-copula	case.

To	capture	different	tail	dependencies	between	risk	factors	an	enhancement	of	the	t-copula	to	a
mixture	of	degrees	of	freedoms,	 ,	is	useful.	Therefore,	the	grouped	t-copula	was	introduced	by
Daul	et	al.	(2003)	and	Demarta	and	McNeil	(2005).	The	basic	idea	is	to	construct	a	t-copula
for	a	random	vector	 	such	that	subvectors	of	 	are	allowed	to	have	different	levels	of	the
degrees-of-freedom	parameter.14	We	know	from	equation	(3.19)	that	 .	We	can	hence
partition	 	into	 	subgroups	with	degrees-of-freedom	parameters	 .	Denoting
subgroup	 	by	 	we	set	 .	The	obtained	sample	vector	 	is	referred	to	as	a	sample
from	a	grouped	t-copula.

Above	we	defined	the	upper	tail	dependence	of	a	copula	as	the	limiting	conditional
probability,

The	normal	copula	is	well-known	to	be	asymptotically	independent	while	the	t-copula
displays	asymptotic	tail	dependence	with



See	McNeil	et	al.	(2005).	Although	these	asymptotic	notions	are	interesting	from	a	practical
perspective	it	might	be	more	interesting	to	investigate	the	finite	tail-dependence	for	the	normal
and	t-copula.

Figure	3.10	displays	the	(for	 )	tail	dependence	of	the	bivariate	normal	and	t-copula	for
different	values	of	the	correlation	parameter	and	different	values	for	 .	We	note	from	the	figure
that	the	decay	of	tail	dependence	is	quite	fast	for	the	normal	copula	and	hence	in	risk
applications,	especially	for	very	high	quantiles,	real	differences	between	the	copulas	are
expected.



Figure	3.10	Finite	Tail	Dependence	for	the	Normal	and	t-Copula	for	Different	Values	of	the
Correlation	Parameter	and	Threshold



Estimation	of	Copulas
To	estimate	the	parameters	of	the	normal	and	t-copulas	there	is,	due	to	the	explicit
relationships	between	Kendall's	tau	and	linear	correlation,	a	simple	method	based	on
Kendall's	tau.	The	method	consists	of	constructing	an	empirical	estimate	of	linear	correlation
for	each	bivariate	marginals	and	then	using	the	relationship	between	the	linear	correlation	and
Kendall's	tau	stated	above	to	infer	an	estimate.	Obviously,	there	is	no	guarantee	that	the
componentwise	transformation	of	the	empirical	Kendall's	tau	matrix	will	be	positive	definite.
However,	it	can	be	fixed	by	using	a	procedure	such	as	the	eigenvalue	adjustment	method	of
Rousseeuw	and	Molenberghs	(1993).	An	alternative	method	employs	the	linear	correlation	of
the	probability	transformed	random	variables,	that	is,	the	Spearman's	rho,	or,	in	the	case	of	the
Gaussian,	the	explicit	relation	between	linear	correlation	and	Spearman's	rho.

In	addition	to	the	nonparametric	approaches	to	estimation	of	correlation	we	can	also	employ
the	familiar	method	of	maximum	likelihood.	For	that	purpose	consider	the	fundamental	relation

Taking	derivatives	the	density	of	the	copula	is	given	by

and	fulfills

such	that

Hence	the	log-likelihood	can	be	written	as

since	the	second	term	only	depends	on	the	margins	and	is	not	relevant	for	estimation	of
correlation.

Focusing	on	the	Gaussian	copula	we	have	 	the	standard	normal	inverse	function.	The
maximum	likelihood	estimate	is	hence	recognized	as	simply	the	covariance	matrix	estimate	for



the	normalized	univariate	margins—albeit	under	the	restriction	that	the	estimate	is	a	true
correlation	matrix,	that	is,	the	components	of	the	estimated	matrix,	 ,	satisfying	 	and

	for	 .	To	a	close	approximation	this	is	expected	to	be	satisfied	by	the
normalized	univariate	margins.	If	this	is	not	the	case	in	practice,	normalization	to	a	true
correlation	matrix	can	be	used.	The	maximum	likelihood	estimation	of	the	Gaussian	copula
hence	proceeds	as	follows.

1.	 Transform	the	univariate	model	residuals	 	to	uniforms	using	the	cumulative	density
function	of	 ,	 .

2.	 Transform	the	obtained	uniforms	to	normals	using	the	inverse	normal	cumulative
distribution	function,	 .	That	is,	 	where	 .

3.	 Estimate	the	correlation	matrix	 	of	the	normalized	vector	 	where	 	is	an
estimate	of	the	normal	copula.

For	the	t-copula	the	log	likelihood	can	be	maximized	with	respect	to	the	correlation
parameters	and	the	degrees-of-freedom	parameter	using	numerical	optimization.	However,
when	the	dimension	of	the	data	increases	the	numerical	optimization	can	become	infeasible.
One	can	then	estimate	the	t-copula	correlation	matrix	using	the	explicit	relation	between	the
Kendall's	tau	and	the	linear	correlation.	Then,	conditional	on	the	correlation	matrix	the
degrees-of-freedom	parameter	can	be	estimated.	In	practice	it	is	possible	that	the	estimate	of
the	correlation	matrix	is	not	positive	definite.	In	this	case	one	can	use	the	eigenvalue
adjustment	method	of	Rousseeuw	and	Molenberghs	(1993).	See	also	algorithm	5.55	in	McNeil
et	al.	(2005)	that	uses	this	method.

The	Gumbel	and	Clayton	copula	parameter	 	has	closed-form	explicit	representation	in	terms
of	Kendall's	tau.	Specifically,	for	the	Gumbel	copula

and,	for	the	Clayton	copula,

One	method	to	estimate	the	parameters	is	therefore	to	calibrate	with	Kendall's	tau.15
Alternatively,	one	can	use	maximum	likelihood	method	to	estimate	 .

Empirical	Example	of	Estimation	and	Simulation	from	Copulas
We	consider	a	10-day	sample	of	returns	from	four	equities	in	Table	3.14.	Figure	3.11	displays
the	bivariate	scatter	plots	between	the	equities	returns.



Table	3.14	Sample	Equity	Returns	for	10	Days

Day Equity	1 Equity	2 Equity	3 Equity	4
1 0.004182 0.010367 0.002002 0.003503
2 −0.027960 0.001913 −0.035861 −0.000582
3 0.006732 0.023607 −0.010671 0.025611
4 −0.033435 0.004239 −0.024610 −0.002838
5 0.029560 0.026680 0.007301 0.010814
6 −0.003054 0.004441 0.016414 −0.001689
7 −0.012255 −0.027346 −0.022546 −0.012408
8 0.013958 0.008418 0.053857 0.003427
9 −0.011318 −0.010851 −0.010689 −0.017075
10 −0.022587 −0.015021 −0.001955 0.002316



Figure	3.11	Bivariate	Scatter	Plots	of	Equity	Returns

We	now	estimate	the	normal	copula	using	the	maximum	likelihood	method	above,	yielding	a
correlation	matrix	 ,

We	also	estimate	the	t-copula	using	Kendall's	tau	and	subsequent	maximum	likelihood	to	find
the	degrees	of	freedom,	 .	The	corresponding	Kendall's	tau	t-copula	correlation	matrix,	 ,	is



with	 	estimated	to	 .	The	corresponding	full	maximum	likelihood	estimate	of	the	t-copula
gives	the	same	estimate	for	the	degrees	of	freedom.	However,	the	full	maximum	likelihood
correlation	matrix,	 ,	is	estimated	as

For	the	Archimedean	copulas	Clayton,	Gumbel,	and	Frank	we	fit	the	 	parameter	using	both	the
Kendall's	tau	and	maximum	likelihood.	The	estimates	are	given	in	Table	3.15.

Table	3.15	Estimation	of	Theta	Parameter	for	Archimedean	Copulas	Clayton,	Gumbel,	and
Frank	Using	Kendall's	Tau	and	Maximum	Likelihood	Method

Estimation	method Copula
Clayton Gumbel Frank

Maximum	likelihood 1.228 1.949 5.232
Kendall's	tau 2.087 2.043 5.801

The	reader	may	have	observed	that	there	may	be	significant	differences	between	the	estimates
using	Kendall's	tau	and	maximum	likelihood	for	the	t-copula	and	the	Archimedean	copulas.
However,	this	is	largely	due	to	the	small	sample	size	we	use	for	the	equity	returns	(only	10
days).

Having	estimated	the	copula	parameters	we	can	simulate	from	the	copulas.	Figures	3.12	and
3.13	display	the	bivariate	scatter	plots	of	10,000	copula	simulations	for	equity	1	and	equity	2
from	the	normal	copula,	the	t-copula	(estimated	with	Kendall's	tau),	and	Archimedean	copulas
estimated	with	Kendall's	tau	(Clayton	and	Frank).	Specifically,	Figure	3.12	displays	the	copula
simulated	uniforms	and	Figure	3.13	displays	the	corresponding	empirical	values	(transformed
back	to	empirical	distribution	from	the	copula	simulated	uniforms	using	the	empirical
distribution	function).	In	Figure	3.12	the	normal	and	t-copula	display	similar	behavior	as	the
degrees-of-freedom	parameter	of	the	t-distribution	is	100	and	hence	the	t-distribution	is	close
to	normal.	The	Clayton	copula	simulation	displays	the	characteristic	lower	tail	dependence
while	the	Frank	copula	has	both	lower	and	upper	tail	dependence.	The	copula	simulations
transformed	to	the	empirical	densities	in	Figure	3.13	concentrate	mass	due	to	the	fact	that	we
have	only	10	observations	for	the	empirical	density.



Figure	3.12	Bivariate	Scatter	Plots	of	10,000	Uniform	Copula	Simulations	of	Returns	for
Equity	1	and	and	Equity	2	from	the	Normal	Copula,	the	t-Copula	(Estimated	with	Kendall's
Tau),	and	Archimedean	Copulas	Estimated	with	Kendall's	Tau	(Clayton	and	Frank)



Figure	3.13	Bivariate	Scatter	Plots	of	10,000	Empirical	Density	Copula	Simulations	of
Returns	for	Equity	1	and	Equity	2	from	the	Normal	Copula,	the	t-Copula	(Estimated	with
Kendall's	Tau),	and	Archimedean	Copulas	Estimated	with	Kendall's	Tau	(Clayton	and	Frank)

Normal	Mixture	Copulas	and	Copula	Asymmetry
Having	considered	the	normal	and	t-copulas	as	unique	copulas	we	will	now	consider	a	more
general	copula,	termed	the	normal	mixture	copula,	that	contains	the	two	as	a	special	case.	The
normal	mixture	copula	representation	is	also	an	economically	relevant	representation	of
dependence	as	it	introduces	essentially	different	states	of	dependence.	This	is	consistent	with
financial	markets	behavior	with	stressed	and	normal	states	of	dependence.

To	introduce	the	normal	mixture	copula	we	consider	a	normal	mixture	distribution	as	the
distribution	of	the	random	vector

where	 ,	 	is	a	random	variable	and	the	random	vector	 	 	is	independent
of	 .	In	particular,	if	 	and	 	is	distributed	as	an	inverse	gamma	with	parameters	

,	then	 	is	distributed	as	a	t-distribution.	Another	type	of	normal	mixture	distribution	is



the	discrete	normal	mixture	distribution,	where	 	and	 	is	a	discrete	random	variable
taking	values	 	with	probability	 .	By	setting	 	large	relative	to	 	and	 	large
relative	to	 ,	one	can	interpret	this	as	two	states—one	ordinary	state	and	one	stress	state.	The
normal	mixture	distribution	where	 	and	 	is	different	among	at	least	one	of	the
components	 	is	a	non-exchangeable	normal	mixture	distribution,	and	 	is	called	an
asymmetry	parameter.	Negative	values	of	 	elements	produce	a	greater	level	of	tail	dependence
for	joint	negative	returns.	This	is	the	case	that	is	perceived	as	relevant	for	many	financial	time
series	where	joint	negative	returns	show	stronger	dependence	than	joint	positive	returns.	The
copula	of	a	normal	mixture	distribution	is	a	normal	mixture	copula.

Model	Validation	and	Backtesting
All	models	are	created	in	a	context	of	proper	assumptions,	historical	data,	and	target	use	case.
Therefore,	they	are	all	subject	to	validation	of	this	context	and	performance	of	model	during	its
life	cycle.	Model	validation	has	attracted	a	lot	of	attention	recently,	partly	due	to	the	2007
financial	crisis.	In	general,	model	validation	methodology	includes

1.	 Expert	examination:	Financial	economic	models	must	follow	sound	economic	intuition,
ensure	mathematical	justification,	and	meet	business	practice.	Expert	examination	usually
focuses	on	these	aspects.	The	examination	is	also	accompanied	by	thorough	documentation
of	the	model.	The	topics	of	 	scaling	for	risk	horizons	longer	than	the	typical	1-day
market	risk	horizon,	the	impact	on	VaR	with	trading	activities,	as	well	as	incorporation	of
market	illiquidity	premiums	discussed	later	in	this	chapter	are	a	few	examples	how	models
and	risk	measurement	can	be	complicated	by	practical	factors.

2.	 Stress	testing	and	scenario	analysis:	Stress	testing	and	scenario	analysis	provide
forward-looking	capabilities	to	capture	any	substances	that	models	based	on	historical	data
may	miss.	They	not	only	provide	a	validation	function	versus	expert	estimates	but	also
often	complement	the	existing	models	to	help	the	management	or	regulator	to	capture	any
unseen	scenarios.

3.	 Backtesting:	Backtesting	is	the	most	direct	validation	of	a	model.	It	is	also	a	widely
studied	subject	in	the	modeling	practice.	In	the	discipline	of	time	series	modeling	and
forecasting	it	is	usually	related	to	the	study	of	goodness	of	fit.	However,	in	risk
management	the	performance	focus	is	usually	not	on	the	forecasted	value	but	the	out-of-
sample	accuracy	of	the	confidence	interval.

Clearly,	model	validation	and	model	management	play	a	vital	role	in	financial	institutions
since	both	valuation	and	risk	management	are	based	on	models	and	the	associated	model
assumptions.

In	the	simulation-based	approach	market	risk	measures	are	obtained	in	steps.

First,	statistical	risk	factor	models	are	used	to	generate	future	possible	scenarios.

Second,	portfolio	valuation	is	performed	under	the	scenarios	to	generate	a	portfolio	profit-
and-loss	distribution.



Third,	risk	measures	are	obtained	from	the	portfolio	profit-and-loss	distribution.

Model	risks	can	arise	mainly	from	the	first	two	stages.	In	the	first	step	of	generating	scenarios
from	risk	factor	models	one	faces	the	risk	of	incorrect	risk	factor	model	assumption,
specification,	and	implementation.	In	the	second	step	of	valuation	there	may	be	uncertainty
around	whether	the	pricing	model	fairly	represents	thescenario	obtainable	market	values,
especially	when	markets	are	not	liquid	or	portfolios	are	concentrated.

Pricing	models	may	depend	on	risk	factors	that	are	not	liquidly	quoted	with	significant	bid–
offer	spreads.	For	example,	a	long-term	swap	depends	on	both	the	relatively	liquid	short-term
money	market	quotes	as	well	as	the	long-term	swap	rates,	which	may	be	less	liquid.	Pricing
models	may	also	include	risk	factors	that	more	resemble	model	assumptions	than	actual	liquid
market	quotes.	Examples	include	correlations	in	basket	products.

General	model	risk	management	has	been	discussed	in	the	introduction	to	this	book.	We	also
refer	the	reader	to	Derman	(1996)	and	Rebonato	(2001)	on	model	risk	management.	Our	focus
in	this	subsection	will	be	mainly	on	statistical	backtesting	models	used	to	test	the	accuracy	of
the	final	risk	measures	obtained	from	the	market	risk	model.

Statistical	backtesting	models	can	potentially	reveal	incorrect	model	assumption	and
specification	risk,	for	example,	if	we	are	using	the	wrong	risk	factor	model	or	an	incomplete
model	that	ignores	important	risk	factors.	Portfolio-level	backtesting	methods	can	potentially
also	reveal	whether	we	use	an	incorrect	model	for	specifying	risk	factor	dependence.	We	will
discuss	both	 	and	 	backtesting	starting	with	 	since	the	backtesting	methodology	for

	lays	the	foundation	for	backtesting	techniques	of	 .

The	 	measure	is	essentially	an	interval	forecast	of	the	maximum	portfolio	loss	that	could
occur	over	a	given	period	of	time	at	a	specific	confidence	level.	Intuitively	this	can	be	tested
by	an	exceedance	test.	We	define	a	 	exceedance	indicator	 	at	time	 	as

The	expected	exceedance	rate	is	therefore	 .	 	is	also	called	“hit	sequence”	by
Christoffersen	(1998).	Since	 	is	a	quantile	measure,	backtesting	can	be	done	with	the
statistical	evaluation	of	an	interval	estimator.	A	 	estimation	is	considered	accurate	if	it
satisfies	both	unconditional	and	independence	properties.

Unconditional	Coverage
Unconditional	coverage	is	a	critical	property	of	the	 	because	it	makes	 	true	at	the
promised	confidence	level	 .	With	the	observed	actual	losses	in	the	past	 	periods,	one	can
count	how	many	times	the	 	computed	for	thatperiod	was	exceeded.	If	there	are	too	many
exceedances,	then	the	 	underestimates	the	risk;	on	the	other	hand,	if	there	are	too	few
exceedances,	then	the	 	estimation	is	too	conservative.	Therefore,	the	hypothesis	test	can	use
the	classical	Bernoulli	trials	by	assuming	a	binomial	distribution	for	the	number	of	exceptions	
:



For	a	large	number	 ,	the	above	binomial	distribution	can	be	approximated	by	the	normal
distribution	 .16

Christoffersen	(1998)	formulates	a	likelihood	test	based	on	the	assumption	of	a	correctly
specified	model.	The	likelihood	function	of	independent	and	identically	distributed	Bernoulli
	random	variables,	 ,	is

which	simplifies	to

where	 	is	the	number	of	periods	where	no	violations	occurred	and	 	is	the	number	of
violation	periods.	The	maximum	likelihood	estimate	of	 	is	 .	Hence,	the	null	hypothesis
is	simply	 :	 ,	which	amounts	to	test	whether	on	average	the	coverage	rate	is	consistent
with	the	 	model.	The	likelihood	ratio	statistic	is

and	the	p-value	of	the	statistic	is	obtained	from	the	 -distribution.

The	Basel	regulatory	backtesting	of	the	market	risk	 	measure	uses	the	coverage	test	to
specify	three	supervisory	review	zones	based	on	the	number	of	exceedance	of	the	
confidence	level	 .

Independence
Christoffersen	(1998)	has	shown	that	the	failure	rate–based	test	performs	poorly	in	financial
risk	management	where	higher-moment	dynamics	such	as	clustering	of	volatility	are	often
present.	It	may	produce	a	correct	overall	“unconditional”	evaluation	but	incorrect	local
evaluation	at	any	given	time.	The	basic	idea	is	that	if	the	 	prediction	is	conditional,	it	must
exhibit	serial	independence.	The	independence	property	is	the	other	important	property	of	a
risk	measure	like	 .	There	are	several	independence	test	methods.	The	most	used	are	the
independence	and	duration	tests.

Independence	Test
Christoffersen	(1998)	proposes	the	independence	(IT)	likelihood	ratio	test	of	the	validity	of	the
independence	assumption.	If	the	exceedances,	 ,	are	dependent	random	variables,	then	it	is
assumed	that	their	sequence	is	a	first-order	Markov	process	with	a	transition	matrix



Here	 	is	the	probability	that	a	no-violation	is	followed	by	a	violation	and	 	is	the
probability	that	a	violation	is	followed	by	a	violation.	The	likelihood	function	of	the	Markov
process	is

where	 	is	the	number	of	times	an	 	event	is	followed	by	a	 	event.	The	maximum	likelihood
estimates	of	the	transition	probabilities	are

and

If	the	exceedances	are	independent,	then	 	where

The	likelihood	ratio	statistic	of	the	null	hypothesis	of	independence	is,	hence,

and	the	p-value	of	the	statistic	is	obtained	from	the	 -distribution.

Duration	Test
Another	test	for	independence	of	the	exceedances	is	the	duration	test	(DT)	proposed	by
Christoffersen	and	Pelletier	(2004).	The	test	is	based	on	the	distribution	of	the	periods
between	exceedances	(i.e.,	the	durations).	With	a	correctly	specified	 	model	the	durations
should	have	mean	of	 	with	 	and,	moreover,	be	exponentially	distributed	and	hence
memoryless.	Under	the	alternative	hypothesis	the	exceedances	follow	a	Weibull	distribution
where	a	special	case	of	the	Weibull	distribution	is	the	exponential.	The	Weibull	distribution,

has	the	property	that	when	 	the	distribution	of	durations	has	memory,	which	indicates	that
the	violations	are	not	independent.	However,	when	 	the	Weibull	distribution	reduces	to	the
exponential	distribution,	which	is	memoryless.	Under	the	null	hypothesis	of	independence	we
have	the	likelihood,

where	 	are	the	number	of	periods	in	which	a	violation	occurred	and	 	are	the	durations.	The



likelihood	ratio	test	statistic	is	hence,

and	the	p-value	is	obtained	by	comparison	with	the	 -distribution.

Density	Forecast	and	CVaR	Backtesting
Despite	the	increasing	popularity	of	 	it	is	harder	to	backtest	than	the	quantile-based	 .
Since	 	is	the	conditional	expectation	in	the	tail	of	the	loss	distribution	the	test	can	start
from	a	density	estimate	evaluation.	Several	density	estimate	evaluation	methods	have	been
introduced	into	financial	risk	management.	Crnkovic	and	Drachman	(1996)	suggest	using	the
Kuiper	and	related	statistics	to	test	the	distance	between	the	observed	density	and	the
projected	density.	Diebold,	Gunther,	and	Tay	(1998)	propose	a	variety	of	graphical
approaches.	The	basic	idea	is	that	the	transformed	data	should	be	uniformly	distributed	and
thus	the	histograms	should	be	relatively	flat.

In	general	the	density	test	evaluation	starts	with	a	transformation	of	observed	losses,	 ,	to
uniform	using	the	empirical	distribution	function.	A	density	forecast	evaluation	can	then	test	the
null	hypothesis	that	the	density	is	uniform	independent	and	identically	distributed	using
nonparametric	density	tests	such	as	Anderson-Darling	and	Kolmogorov-Smirnov.	We	can	also
transform	the	uniformlosses	to	normal	and	test	that	the	observations	are	indeed	normal	using
the	Jarque-Berra	normality	test.	A	test	of	 	can	then	be	considered,	testing	that	the	loss
points	beyond	the	 	point	are	indeed	normal	independent	and	equally	distributed.

Berkowitz	(2001)	consider	likelihood-based	density	forecast	evaluation	methods.	Specifically,
let	the	predicted	cumulative	distribution	function	be	 .	Under	the	null	hypothesis	that	the
prediction	is	correct,	the	transformation	 	is	independent	and	identically
distributed	 	where	 	is	the	inverse	of	the	standard	normal	distribution.	The	test
against	a	first-order	autoregressive	alternative	with	mean	and	variance	different	than	 	and	
uses	the	well-known	log-likelihood	construction:

Here	 	is	the	autoregressive	parameter.	The	log-likelihood	ratio	test	of	independence	across
observations,	 ,	and	 	mean-variance	can	now	be	formulated	as

which	is	distributed	as	 	under	the	null	hypothesis.

Similarly	one	can	construct	a	hypothesis	test	for	the	 	based	on	a	censored	normal



distribution.	Let	 	be	the	cutoff	point	and	define	a	new	variable

The	log-likelihood	function	for	 	is

A	log-likelihood	ratio	test	against	the	null	hypothesis	that	 	and	 	to	assuming	the
match	in	the	first	two	moments	of	the	tail	is

which	is	 	distributed.

Other	Backtesting	Methods	in	the	Literature
Several	backtesting	methods	have	been	proposed	in	the	literature	that	we	do	not	cover	here.
This	includes	the	functional	delta	approach	of	Kerkhof	and	Melenberg	(2004),	and	the
saddlepoint	technique	by	Wong	(2008).	More	recently	introduced	backtesting	methods	include
the	dispersion	of	a	truncated	distribution	test	by	Righi	and	Ceretta	(2013)	and	the	
composition	approximation	by	Emmer	et	al.	(2014).	Colletaz	et	al.	(2013)	propose	taking	into
account	also	the	size	of	the	 	exceedance	in	the	test.	This	allows	one	to	distinguish	two
models,	having	the	same	number	of	exceedances,	based	on	their	relative	size	of	exceedance.
Their	approach	is	based	on	introducing	a	second	 	measure	with	a	higher	confidence
level	 	referred	to	as	the	 	super-exception.

In	the	next	subsection	we	will	put	the	 -based	tests	for	unconditional	coverage	and
independence	discussed	above	to	use	in	comparing	performance	of	different	 	models.

A	Multivariate	Model	of	Risk	Factor	Returns
Having	considered	both	the	univariate	risk	factor	model	and	copula	models	to	model	the
codependency	of	the	multivariate	filtered	residual	vector,

we	can	now	join	these	two	components	together	to	arrive	at	a	multivariate	model	of	asset
returns.	Specifically,	consider	an	 -dimensional	sample	of	asset	returns	 	where	
can	be	decomposed	as

and	 	are	independent	and	identically	distributed	over	time.	The	parametrization	of



the	sequences	 	is	by	 	univariate	GARCH	models,

Having	estimated	the	univariate	GARCH	parameters	 	we	obtain	the	filtered	residual
vectors	 .

We	can	now	specify	a	univariate	model	for	each	of	the	 ,	 	samples	of	
.	For	example,	we	can	choose	a	t-distribution.	We	can	also	consider	a	mixed

distribution	with	a	normal	or	empirical	density	in	the	center	and	another	distribution	for	the
tails.	Using	extreme	value	theory	for	the	tails	we	should	consider	a	choice	of	lower	and	upper
thresholds	 	and	fit	a	generalized	Pareto	density	to	the	excesses	over	the	thresholds.	Having
estimated	the	left	and	right	tail	parameters	of	the	generalized	Pareto	density,	obtaining
estimates	of	 	and	 	for	the	lower	and	upper	tail	respectively,	the	marginal
distribution	of	 	is	defined	by:

where	 	is	the	empirical	cumulative	density	function	of	 	or,	for	example,	a	kernel	estimator.

Having	calibrated	the	univariate	models	for	each	of	the	asset	return	vectors,	 ,	it
remains	to	specify	the	cross-dependence	between	 	 ,	that	is,	to	estimate	the	copula.	To
obtain	a	scenario	for	the	 	asset	returns	we	now	proceed	as	follows:

1.	 Simulate	uniform	random	variates	from	the	copula.

2.	 Transform	the	simulated	random	variates	using	the	inverse	marginal	distributions,	 ,
where	 	is	the	(generalized)	inverse	of	the	cumulative	distribution	functions	 	above.

3.	 Apply	a	location	( )	and	scale	transformation,	that	is,	multiply	by	 	(where	 	is
defined	by	the	conditional	expectation	 	as	in	equation	(3.11))	to	the
simulated	 	in	order	to	obtain	a	scenario	for	the	asset	returns,	 .

Backtesting	Performance	of	the	Multivariate	Model
We	will	now	focus	on	two	examples	where	the	above	model	has	been	applied	in	risk	analysis,
and	the	historical	performance	has	been	compared	with	simpler	models	such	as	the
multivariate	normal	model	or	historical	simulation.



The	first	example	we	consider	is	a	master	thesis	by	Josefsson	(2004),	who	considers	the
evaluation	of	the	performance	of	several	models	using	a	portfolio	of	stocks	and	exchange	rates.
The	second	example	is	a	 	backtesting	comparison	for	several	multivariate	models	using
data	that	include	the	2007	financial	crisis	by	Skoglund	et	al.	(2010).

VaR	Model	Performance	Analysis	by	Josefsson	(2004)
Josefsson	(2004)	considers	the	evaluation	of	the	performance	of	several	models	using	a
portfolio	of	stocks	and	exchange	rates.	The	portfolio	includes	holdings	in	five	exchange	rates
and	23	stocks	traded	on	the	Stockholm	exchange,	each	consisting	of	2,786	samples	quoted	on
business	days	from	the	beginning	of	March	1993	to	the	beginning	of	February	2004.17	The
following	models	are	considered:

a.	 The	simple	multivariate	normal	distribution

b.	 The	multivariate	conditional	normal	distribution	with	fitted	univariate	GARCH	models

c.	 A	model	with	univariate	GARCH,	generalized	Pareto	distribution	for	the	tails	(and
empirical	density	in	the	center)	with	a	normal	copula

d.	 A	model	with	univariate	GARCH,	generalized	Pareto	distribution	for	the	tails	(and
empirical	density	in	the	center)	with	a	t-copula	with	4	degrees	of	freedom

e.	 A	model	with	univariate	GARCH,	generalized	Pareto	distribution	for	the	tails	(and
empirical	density	in	the	center)	with	a	t-copula	with	10	degrees	of	freedom

For	each	of	these	financial	series	the	logarithmic	returns	were	computed	and	a	GARCH(1,1)
model	was	fitted.	Except	for	the	simple	multivariate	normal	model	and	the	multivariate
conditional	normal	model	generalized	Pareto	distributions	to	the	tails	of	the	standardized
GARCH	residuals	were	estimated	for	all	the	financial	time	series	using	a	uniform	threshold	of	
.	The	normal	and	t-copula	were	fitted	using	the	nonparametric	Kendall's	tau	estimator	of	the

correlation.	Using	an	equally	weighted	portfolio	and	starting	with	the	1,500th	observation	in
the	sample	of	2,785	returns,	each	day	different	models	were	reestimated	using	the	last	1,500
day's	returns	(rolling	forward)	and	5,000	samples	were	generated.	By	using	each	of	the
models'	(one-day)	 -forecasts	for	the	following	day	a	total	of	1,285	forecasts	were
produced.	These	 -forecasts	were	then	compared	to	the	actual	return	on	that	particular	day,
and	the	number	of	days	when	the	actual	loss	was	larger	than	the	 -forecast	was	counted.
This	is	called	the	number	of	exceedances	and	the	results	are	presented	in	Table	3.16.	The
expected	number	of	exceedances	are	stated	on	the	first	row	for	the	 ,	 ,	and	 	
confidence	level.



Table	3.16	VaR	Exceedances	for	the	Models

Model
Expected 12.85	(1%) 6.43	(0.5%) 1.29	(0.1%)
(a)	Normal 527	(41.08%) 518	(40.37%) 499	(38.89%)
(b)	Conditional	normal 16	(1.25%) 7	(0.55%) 1	(0.08%)
(c)	Copula	EVT-normal 9	(0.7%) 2	(0.16%) 1	(0.08%)
(d)	Copula	EVT-t 18	(1.4%) 7	(0.55%) 2	(0.16%)
(e)	Copula	EVT-t 11	(0.86%) 5	(0.39%) 1	(0.08%)

In	Table	3.17	are	the	number	of	days	between	exceedances	of	 	for	the	models	(a)–(e)
tested	in	Josefsson	(2004).	The	table	reveals	that	the	elliptic	copula	EVT	model	with	normal
and	student's	 	copula	are	the	best	models	in	terms	of	spreading	the	exceedances	over	time.
None	of	them	had	two	exceedances	in	a	row	and	both	of	them	had	only	one	pair	of	exceedances
within	three	days.	Neither	the	conditional	normal	nor	the	copula	EVT	 	model	were	able	to
avoid	consecutive	exceedances.18	Since	the	simple	linear	normal	model	produces	 -
forecasts	that	do	not	react	to	changing	market	conditions	(that	is,	it	does	not	update	volatility)	it
is	not	surprising	to	see	that	 	pairs	of	exceedances	occur	in	consecutive	days.

Table	3.17	Days	Between	VaR	Exceedances	for	the	Models

Model 	day ≤2	days ≤3	days ≤5	days
(a)	Linear	normal 249 334 408 484
(b)	Conditional	normal 2 2 2 4
(c)	Copula	EVT-normal 0 1 1 2
(d)	Copula	EVT-t 2 2 2 4
(e)	Copula	EVT-t 0 1 1 3

As	expected	the	simple	normal	model	underestimates	the	risk	severely	while	the	conditional
normal	and	the	elliptic	copula	EVT	models	are	quite	close	to	the	expected	exceedances.	From
this,	one	can	conclude	that	the	GARCH-based	conditional	volatility	seems	to	be	of	great
importance	for	the	accuracy	of	the	 -forecast	because	of	the	performance	improvement
between	model	(a)	and	(b).	Considering	the	choice	of	copula	we	note	that	the	choice	of	copula
has	much	less	impact	on	the	accuracy	of	the	 -forecast	than	the	choice	of	using	GARCH
models.	This	can	be	seen	by	comparing	the	(c)	normal,	(d)	student's	 ,	and	(e)	student's	
copula	models.

VaR	Model	Performance	Analysis	by	Skoglund	et	al.	(2010)
Using	a	portfolio	of	plain	equity	holdings	as	well	as	forward	agreements	and	European	and
American	option	holdings	on	the	stocks	Skoglund	et	al.	(2010)	perform	a	backtesting
comparison	of	the	 	risk	measure	for	several	multivariate	models.	The	models	performance



comparison	is	based	on	empirical	data	from	 	stocks.	The	stocks	are	traded	on	New	York
Stock	Exchange	(ABB,	Astra	Zeneca,	FORD,	AIG),	Nasdaq	(Microsoft,	Ericsson),	and	OTC
(Volvo),	each	consisting	of	2,063	samples	quoted	on	business	days	from	April	6,	2001,	to	June
17,	2009.	The	data	period	hence	includes	the	2007	financial	crisis	turbulence,	which	allows
model	performance	under	a	period	of	significant	stress.	The	models	considered	are:

a.	 The	portfolio	delta	approximation	normal	model	using	either	an	arithmetic	covariance
matrix	or	a	RiskMetrics	covariance	matrix19

b.	 The	covariance	simulation	model	using	either	an	arithmetic	covariance	matrix	or	a
RiskMetrics	covariance	matrix

c.	 The	historical	simulation	model

d.	 Several	multivariate	copula	models	based	on	GARCH	filtering	and	models	for	the
standardized	residuals

Specifically,	for	model	(d),	we	consider	the	normal,	t,	and	normal	mixture	copula	and	the
different	models	for	the	standardized	GARCH	residuals	are	the	normal	distribution,	the	t-
distribution,	and	the	empirical	distribution	function	with	t-distributed	tails.	For	the	t-copula	we
consider	 	or	 	degrees	of	freedom	and	the	discrete	normal	variance	mixture	copula	has
parameters	 ,	 ,	 ,	 .	The	copula	correlation	matrix	parameters	are
estimated	using	Kendall's	tau	on	the	historical	data.	Each	of	the	t-	and	normal	mixture	copulas
can	also	have	asymmetry	with	common	asymmetry	parameter	−0.8	for	the	stocks.

Using	the	models	each	of	the	one-day	 -forecasts	were	compared	to	the	actual	return	on	that
particular	day,	and	the	number	of	days	when	the	actual	loss	was	larger	than	the	 -forecast
was	counted.	This	is	hence	the	number	of	exceedances	and	the	results	are	presented	in	Table
3.18.



Table	3.18	VaR	Backtesting	Comparison	of	the	Models,	Comparing	Expected	Number	of
Exceedances	Versus	Actual	and	p-Values	from	the	Unconditional	Coverage	Test,	the
Independence	and	the	Duration	Test

Model UC	p-value IT	p-value DT	p-value
Expected 1.00% . . .
Delta-normal 2.85% 0.0000 0.0000 0.0000
Delta-normal	(RiskMetrics) 1.66% 0.0123 0.0008 0.0009
Historical	simulation 1.84% 0.0018 0.0020 0.0013
Covariance	simulation 3.09% 0.0000 0.0000 0.0000
Covariance	simulation	(RiskMetrics) 2.02% 0.0002 0.0042 0.0036
N	copula	(N) 1.48% 0.0615 0.3846 0.0699
t10	copula	(N) 1.30% 0.2255 0.2911 0.3048
t10	asym	copula	(N) 0.17% 0.0000 0.9175 0.2636
t5	copula	(N) 1.30% 0.2255 0.2911 0.3048
t5	asym	copula	(N) 0.17% 0.0000 0.9175 0.2636
NM	copula	(N) 0.83% 0.4766 0.6278 0.8947
NM	asym	copula	(N) 0.53% 0.0355 0.7556 0.1195
N	copula	(t) 0.71% 0.2131 0.6779 0.8532
t10	copula	(t) 0.65% 0.1279 0.7035 0.9637
t10	asym	copula	(t) 0.005% 0.0000 0.9724 0.9999
t5	copula	(t) 0.65% 0.1279 0.7035 0.9637
t5	asym	copula	(t) 0.00% 0.0000 0.9999 0.9999
NM	copula	(t) 0.41% 0.0064 0.8088 0.0803
NM	asym	copula	(t) 0.17% 0.17 0.9175 0.2636
N	copula	(E(t)) 1.54% 0.0372 0.4182 0.1394
t10	copula	(E(t)) 1.36% 0.1514 0.3210 0.1841
t10	asym	copula	(E(t)) 0.17% 0.0000 0.9175 0.2636
t5	copula	(E(t)) 1.24% 0.3240 0.2625 0.2670
t5	asym	copula	(E(t)) 0.17% 0.0000 0.9175 0.2636
NM	copula	(E(t)) 1.01% 0.9648 0.5557 0.6192
NM	asym	copula	(E(t)) 0.53% 0.0355 0.7556 0.1195

In	the	table	we	have	used	the	model	notation	“copula	type	(GARCH	residual	model	type)”	to
describe	the	different	copula	models	where	the	abbreviations	N,	t,	NM	refer	to	the	normal,	t,



and	normal	mixture	copulas,	and	the	GARCH	residual	model	abbreviations	N,	t,	and	E(t)	refer
to	the	normal,	t,	and	empirical	model	with	t-distributed	tails.	The	expected	number	of
exceedances	are	stated	on	the	first	row	for	the	 	 	confidence	level.

In	Table	3.18	the	unconditional	coverage	likelihood	ratio	test	(UC)	tests	if	the	 	violations
occur	with	expected	probability.	By	assumption,	exceedances	are	independent	and	identically
distributed	Bernoulli	random	variables.	The	p-values	of	the	unconditional	coverage	test	for	all
the	models	and	for	the	 	 	confidence	level	are	found	in	Table	3.18.

From	Table	3.18	we	observe	that	the	simple	risk	models	such	as	the	delta-normal	model	and
the	covariance	simulation	model	underestimate	risk	quite	severely.	The	models'	ability	to
capture	the	expected	exceedances	are	rejected	at	low	levels	of	significance.	However,	using	a
RiskMetrics	covariance	matrix	improves	the	situation	for	both	models	even	though	risk	is	still
underestimated	with	more	exceedances	than	expected.	The	historical	simulation	model	also
underestimates	risk	quite	severely.

The	results	for	the	copula	models	are	mixed.	While	none	of	the	copula	models	underestimate
risk	by	more	than	either	of	the	delta-normal,	covariance	simulation	models	(with	or	without
RiskMetrics	covariance	matrix),	or	the	historical	simulation	model,	some	copula	models
overestimate	risk	quite	severely,	for	example,	the	model	with	a	t5	copula	and	t-distributed
GARCH	residuals.	On	the	other	hand	the	model	with	a	normal	mixture	copula	with	empirical
GARCH	residuals	and	t-distributed	tails	is	very	close	to	the	expected	number	of	exceedances.
The	copula	models	with	t-	and	normal	mixture	asymmetry	generally	overestimate	risk	at	the
99%	level.

In	addition	to	the	requirement	that	the	 	model	should	be	able	to	match	closely	the	number	of
realized	exceedances	with	the	expected	number	one	would	prefer	a	 	model	that	distributes
the	exceedances	randomly	rather	than	a	model	where	exceedances	are	correlated	over	time.

Table	3.18	contains	the	p-values	for	the	independence	test	(IT)	for	all	the	models	for	 	 .
Table	3.18	also	displays	the	p-values	for	the	duration-based	test	calculated	using	the
continuous	Weibull	distribution	for	 	 .

Comparing	the	models'	ability	to	spread	exceedances	over	time	we	note	that	models	with	no
stochastic	volatility	component	(no	GARCH	or	RiskMetrics)	are	not	able	to	have	independent
exceedances.	For	example,	the	p-values	of	the	independence	(IT)	and	duration	(DT)	tests
indicate	that	the	delta-normal	model	and	the	covariance-based	simulation	model	are	rejected	at
any	significance	level.	This	is	not	surprising	as	the	models	do	not	react	to	high-volatility
regimes	and	exceedances	are	expected	to	come	in	clusters.	The	delta-normal	model	with
RiskMetrics	covariance	matrix	and	the	covariance	simulation	model	with	RiskMetrics
covariance	are	also	rejected,	albeit	the	covariance	simulation	model	with	RiskMetrics
covariance	matrix	is	rejected	at	slightly	lower	levels	ofconfidence.	This	indicates	that	the
RiskMetrics	covariance	matrix	is	not	able	to	capture	volatility	regimes	adequately	with	its
“predefined”	GARCH	parameters	that	are	not	updated.	For	historical	simulation	the
independence	and	duration	tests	in	Table	3.18	indicate	that	the	model	is	not	able	to	spread	the
exceedances	independently	and	hence	is	not	a	realistic	model	of	 .



In	contrast	the	copula	models	with	GARCH	univariate	models	are	not	rejected	at	the	5%
significance	levels	for	any	of	the	models.	This	is	a	clear	indication	that	the	GARCH	models
are	able	to	capture	volatility	clusters	and	respond	to	volatility	increases	with	higher	risk
estimates,	hence	avoiding	producing	correlated	exceedances.	In	the	judgment	of	an	adequate
model	for	 	one	must	take	into	account	the	unconditional	coverage	of	the	model	as	well	as
the	ability	of	the	model	to	produce	independent	 	exceedances.

Learnings	from	the	Models	Backtesting	Performance
We	can	now	summarize	the	findings	from	the	above	two	backtesting	examples	as	follows:

First,	simple	models	that	do	not	capture	the	stylized	fact	of	volatility	clustering	in	financial
returns	tend	to	both	underestimate	the	risk	level	as	well	as	display	significant	correlation	in
exceedances.

Using	the	simple,	exponentially	moving	average,	RiskMetrics	model	improves	the
situation.	However,	due	to	the	fact	that	parameters	are	not	estimated	on	data	and	hence
tailored	to	current	volatility	regimes	the	current	volatility	level	may	not	be	captured	well
enough	and	correlated	exceedances	may	still	be	produced.	The	first-order	(most	important)
correction	of	simple	models	is	therefore	to	consider	a	model	for	stochastic	volatility	with
parameters	that	are	updated	regularly	such	as	the	GARCH	model.

Second,	taking	into	account	fat	tails	for	the	standardized	GARCH	residuals	may	improve
the	model	further	but	is	a	second-order	(less	important)	effect.

Third,	another	second-order	correction	is	to	consider	other	copulas	than	the	normal.
However,	the	t-copulas	and	normal	mixture	copulas	may	outperform	the	normal	copula
only	by	a	small	margin.

Apart	from	the	two	backtesting	examples	above	there	are	several	empirical	studies	in	the
literature	on	the	performance	of	 	models.	See,	for	example,	Bao	et	al.	(2004),	Brooks	et	al.
(2005),	and	Kuester	et	al.	(2006)	for	applications	to	different	financial	returns.	Berkowitz	and
O'Brien	(2002)	use	the	expected	frequency	of	exceedances	to	evaluate	the	performance	of	
risk	models	for	six	banks.	Barone-Adesi	et	al.	(2000)	do	an	extensive	backtesting	analysis	on
the	multivariate	filtered	historical	simulation	model.	Pritsker	(2006)	compare	various
historical	simulation	methods,	including	filtered	historical	simulation.

A	Note	on	Dynamic	Codependency	and	Multivariate	GARCH
We	now	briefly	consider	a	method	of	generalizing	the	time-invariant	elliptic	copula	models
studied	above.	Recall	that	in	the	constant	conditional	correlation	case	the	covariance	matrix	of
multivariate	financial	returns	could	be	represented	in	the	form	 	 	where	 	is	a
diagonal	volatility	matrix	with	univariate	GARCH	specifications	on	the	diagonal,



3.20

Hence,	for	that	model	the	correlation	matrix	of	rescaled	innovations,	 ,	is	time-invariant.
Potential	drawbacks	of	the	assumption	of	a	constant	correlation	matrix	for	 	include

Multivariate	financial	returns	may	display	evidence	of	dynamics	in	covariances	as	well	as
in	volatility.

The	plausible	effect	that	a	volatility	shock	to	a	financial	return	series	may	create	spillover
effects	to	other	financial	returns	series	is	ruled	out	with	a	constant	conditional	correlation
matrix.

To	test	these	potential	drawbacks	empirically	we	note	that	the	assumption	of	constant
conditional	correlation	implies	that

should	be	serially	uncorrelated	(note	that	this	does	not	apply	to	 	for	 ).	Hence,
traditional	Ljung-Box	type	tests	of	the	null	hypothesis	of	no	serial	correlation	in	the	estimated	

	may	be	constructed.	See	Bollerslev	(1990)	and	Tse	(2000)	for	discussions	of	tests	of	the
null	hypothesis	of	no	serial	correlation	in	cross-covariances.

Rejecting	the	null	hypothesis	of	constant	conditional	correlation	requires	the	modeling	of	the
correlation	matrix	 	as	dynamic	(e.g.,	using	a	multivariate	GARCH	model	for	 ).	It	is
clear	that	given	the	scale	of	applications	in	market	risk	management	with	hundreds	or
thousands	of	risk	factors	the	functional	form	chosen	for	 	must	still	enable	the	separation	of	the
estimation	stage	in	two	steps,	and	moreover,	have	a	parsimonious	parameter	specification	for
feasible	estimation.	This	is	in	general	not	the	case	for	the	multivariate	GARCH	models	found
in	the	literature,	which	are	designed	for	full	information	maximum	likelihood	estimation,	for
example,	the	multivariate	GARCH	model	with	time-varying	covariances	proposed	by
Bollerslev,	Engle,	and	Wooldridge	(1988).

However,	Engle	(2002)	and	Tse	and	Tsui	(2002)	consider	parsimonious	models,	enabling	the
separation	of	the	estimation	stage	in	two	steps,	of	the	form

for	multivariate	GARCH .	A	special	case	is	the	multivariate	exponentially	weighted
moving	average	RiskMetrics	model,	where

For	an	empirical	comparison	of	the	case	of	constant	conditional	correlation	versus	the	case	of
dynamic	conditional	correlations	using	the	t-copula	see	Kang	and	Babbs	(2012),	who	apply	the
two	models	to	funds	returns.



Time	Scaling	VaR	and	VaR	with	Trading
When	institutions	are	concerned	with	obtaining	 -period	risk	measures	from	 -period	risk
measures	(e.g.,	 	is	1	day	and	 	is	10	days)	they	can	consider	one	of	the	following:

Scale	an	already	calculated	 	period	( )	risk	measure	using	an	appropriate	method.

Use	temporal	aggregation	to	aggregate	financial	returns	data	to	 -period	intervals	and
specify	models	on	the	 -period	interval	data	obtaining	the	 	period	risk.

Estimate	 	period	risk	by	simulating	paths	of	returns	for	 	and	calculate	risk	at	 .

While	market	risk	models	typically	forecast	1-day	risk	measures,	risk	measures	at	multiple
horizons	are	needed	in	practice,	both	for	regulatory	reporting	purposes	as	well	as	for	internal
economic	capital	models.

It	is	important	to	understand	which	of	the	three	methods	are	appropriate	in	practice.	For
example,	the	methods	of	scaling	and	temporal	aggregation	may	be	appropriate	in	case	we
assume	a	constant	portfolio	for	the	time	horizon	 .	However,	if	the	portfolio	is	traded	during
the	time	interval	 ,	then,	of	course	depending	on	the	actual	trading	strategy	impact	on	risk,
both	of	these	methods	may	be	inappropriate	and	the	simulation	of	paths	of	 	returns
togetherwith	the	trading	strategy	may	be	needed	to	accurately	assess	 -period	risk.

Time	Aggregation	of	VaR	with	Constant	Portfolios
In	practice	many	financial	institutions	use	the	method	of	scaling	to	obtain	 -period	risk
measures	from	 	day	period	risk	measures.	If	we	assume	that

i.	 the	portfolio	returns	are	normal	independent	and	identically	distributed,	and

ii.	 a	buy-and-hold	trading	strategy	between	 ,	we	can	obtain	the	 -period	 ,	 ,	as

See	Diebold	et	al.	(1997)	and	McNeil	et	al.	(2005).	The	square	root	of	time	result	for	 	also
extends	to	 	as	in	the	normal	iid	case	 	is	obtained	via	a	constant	scaler	on	 	(see
equation	(2.7)).

In	case	the	distribution	is	not	normal,	such	as	a	GARCH	model	for	volatility,	or	the	portfolio
composition	changes,	the	square	root	of	time	scaling	is	inappropriate.	While	this	is	well-
known	by	industry	practitioners	the	square	root	of	time	model	is	still	in	wide	use	for	obtaining	
-period	 	estimates	from	corresponding	 -period	forecasts.

The	impact	of	the	distribution	deviating	from	normal	independent	and	identically	distributed	as
a	source	of	error	for	the	square	root	of	time	scaling	has	been	extensively	studied	in	the
literature.	Danielsson	and	De	Vries	(1997)	discuss	the	 	scaling	with	heavy	tailed
distribution	with	tail	index	 	being	given	by	 —which	is	less	than	the	normal	scaling	rule	of	
	in	case	 	(which	corresponds	to	the	finite	variance	case).20	McNeil	and	Frey	(2000)

study	the	behavior	of	multiple-day	returns	from	a	mixture	of	GARCH	and	extreme	value	theory



models	for	the	tail	and	find	evidence	in	favor	of	a	power	law	of	scaling	for	multiple-day
quantiles.	Danielsson	and	Zigrand	(2004)	study	time	scaling	of	quantiles	when	returns	follow	a
jump-diffusion	process.	More	recently	Menkens	(2007)	studied	the	feasibilityof	using	self-
similarity	of	underlying	profit	and	loss	distribution	and	the	Hurst	coefficient	to	derive	 -period
VaR	estimates	from	1-period	VaR	estimates.

The	questionable	use	of	the	simple	square	root	of	time	method	to	obtain	10-day	 	from	1-
day	 	for	regulatory	reporting	has	also	been	recognized	by	the	Basel	Committee	in	2002
(Basel	Committee,	2002,	p.	93)	where	the	Basel	Committee	state	that	to	obtain	 	at	higher
frequencies	financial	institutions	must	use	an	“analytically	appropriate	method	supported	by
empirical	evidence.”

A	simple	method	to	consider	in	validating	the	scaling	method	used	is	to	use	temporal
aggregation	of	the	data	to	 -period	intervals	and	compute	 -period	risk	measures	that	can	be
compared	with	their	scaled	counterparts.	For	example,	Christofferson	et	al.	(1998)	study	the
square	root	of	time	scaling	model	versus	the	exact	method	of	temporal	model	aggregation	and
Kauffman	and	Patie	(2003)	compare	different	methods	of	studying	long-term	risks	such	as
scaling	short-term	risks	versus	estimating	risks	on	the	desired	measurement	frequency.	Of
course,	temporal	aggregation	of	data	still,	as	with	the	case	of	scaling,	relies	on	an	assumption
that	portfolios	are	constant	even	for	 -period	intervals.	Consequently,	the	Basel	Committee,	in
a	working	paper	(Basel	Committee,	2011b)	also	discuss	the	problems	with	scaling	short-
horizon	 	to	longer	horizons	since	this	rule	ignores	future	changes	in	portfolio	composition.
Indeed,	to	firmly	understand	long-term	risks	in	case	of	management	intervention	the	short-term
trading	behavior	needs	to	be	incorporated.

Time	Aggregation	of	VaR	with	Trading
When	market	risk	portfolios	are	traded	more	frequently	than	the	target	risk	horizon	 	we	have
to	consider	the	simulation	of	paths	of	 	returns	together	with	the	trading	strategy	to
accurately	assess	 -period	risk.	This	potential	source	of	error	for	the	simple	square	root	of
time	rule	is	at	least	as	important	to	validate	considering	the	fact	that	banks	rarely	operate	under
a	buy-and-hold	strategy	for	their	market	risk	portfolios.	Indeed,	the	bulk	of	the	market	risk
portfolio	for	which	risk	is	calculated	is	actively	traded	at	least	daily.

As	we	have	discussed	above,	in	case	of	buy-and-hold	portfolios,	a	potential	solution	to	the
problem	of	using	the	square	root	of	time	rule	in	calculating	 	is	to	use	temporal	aggregation
of	data.	The	temporal	aggregation	approach	does	not	solve	the	problem	of	the	inconsistency	if
the	composition	of	the	portfolio	changes.	In	this	case	the	risk	model	should	incorporate	the
trading	behavior	and	 -day	risks	should	be	estimated	from	path-dependent	simulations	over
days	 .

To	analyze	the	trading	impact	of	 -period	risks	Skoglund	et	al.	(2011)	consider	a	Monte	Carlo
simulation	comparison	of	the	10-day	 	using	different	daily	trading	strategies.	Three	basic
trading	methods	are	applied.	They	are	the	convex,	the	concave,	and	the	volatility-based	trading
method.	Convex	trading	means	that	traders	buy	winners,	that	is,	instruments	with	increasing
value	(return),	and	sell	instruments	with	decreasing	value	(return).	Concave	trading	is	opposite



of	convex	trading	such	that	traders	sell	winners,	that	is,	instruments	with	increasing	value
(return),	and	buy	instruments	with	decreasing	value	(return).	In	volatility	trading,	traders	sell
(or	buy)	nonvolatile	stocks	(low	absolute	returns)	and	buy	(or	sell)	volatile	stocks	(high
absolute	returns).	Hence,	we	consider	two	types	of	volatility	trades.	One	that	trades	into	high-
volatility	instruments	and	one	that	trades	into	low-volatility	instruments.

These	trading	strategies	are	parametrized	as	filter-based	strategies	with	filter	parameter	 .
This	means,	for	example,	for	the	convex	trading	strategy	that	if	the	daily	return	has	exceeded	 ,
then	further	positions	are	bought	using	cash	from	instruments	that	are	sold	based	on	the	filter
strategy	(i.e.,	stocks	for	which	the	daily	return	is	lower	than	 ).	Similarly,	for	the	buy
volatility	strategy	the	filter	 	is	used	such	that	instruments	with	daily	returns	above	 	are
bought	and	instruments	with	daily	returns	between	 	are	sold.

Applying	these	strategies	Skoglund	et	al.	(2011)	find	that	severe	underestimates	of	risk	may
result	from	scaling	the	risk	of	actively	traded	volatility	buying	portfolios	using	a	square	root	of
time	rule,	which	incorporates	an	implicit	buy-and-hold	portfolio	assumption.	Moreover,	in
general	the	longer	the	scaling	period	the	more	severe	is	the	underestimation	of	risk.	In	contrast,
for	actively	traded	portfolios	that	trade	into	low	volatility	one	should	not	expect	a	severe
overestimation	of	risk	by	scaling	(i.e.,	by	assuming	a	buy-and-hold	portfolio).	The	risk
reduction	achieved	by	minimizing	portfolio	volatility	is	strictly	bounded,	whereas	the	order	of
risk	increase	by	maximizing	portfolio	volatility	can	be	significant,	especially	in	extremely
volatile	markets	such	as	the	2007	crisis.

The	analysis	is	notwithstanding	whether	the	square	root	of	time	scaling	is	appropriate	for	the
model	at	hand.	That	is,	even	if	the	portfolio	model	is	normal	independent	and	identically
distributed	scaling	is	in	general	not	appropriate	when	the	portfolio	composition	changes.	This
is	an	important	point	because	the	square	root	of	time	approach	is	often	used	in	situations	where
the	underlying	model	assumptions	are	not	valid,	accepting	that	the	method	is	a	generally	fairly
accurate	approximation	to	 -day	 	under	small	deviations	from	the	normal	independent	and
identically	distributed	assumption.

Market	Liquidity	Risk
Market	liquidity	of	an	instrument	can	be	measured	from	the	trading	buy-and-sell	executions,	the
executed	order	volumes,	and	the	associated	market	prices	for	a	given	order	volume
corresponding	to	the	liquidity	depth	in	a	market	situation.	The	primarysource	of	the	market
liquidity	of	an	instrument	is	the	demand-and-supply	inequilibrium.	Market	liquidity	may	have	a
nonnegligible	effect	on	the	pricing	and	risk	of	a	financial	instrument.

Bangia	et	al.	(1999)	and	Bervas	(2006)	argue	that	there	are	two	types	of	market	illiquidity.	The
first	type	is	exogenous	and	the	second	type	is	endogenous.

The	exogenous	market	liquidity	is	common	to	all	market	players.	It	is	independent	of	each
individual	trading	activity.	It	can	happen	in	both	normal	market	conditions	and	a	systematic
crisis	in	the	market.	Especially	low-quality	instruments	such	as	non-investment-grade	bonds	or
complex	financial	instruments	such	as	structured	products	may	suffer	from	a	flight	to	quality	in



case	of	market	distress.

An	asset	may	encounter	significant	illiquidity	even	in	a	normal	market	situation.	This
illiquidity	is	said	to	be	endogenous.	For	example,	when	unloading	a	large	size	position	in	an
asset	comparing	to	the	market	depth	of	the	asset	a	trader	may	have	to	pay	extra	cost	for	the
convenience	of	unloading	it	fast.	Clearly,	this	type	of	illiquidity	is	inconsistent	with	coherent
risk	measures,	in	particular	property	2	stating	that	the	risk	measure	is	linear	in	positions.

Traditionally	illiquidity	is	incorporated	in	market	risk	models	using	an	extended	closeout	time
for	the	portfolio.	Lawrence	and	Robinson	(1995)	proposed	to	incorporate	illiquidity	within	the

	framework	by	matching	the	 	time	horizon	with	the	time	horizon	it	could	take	to
liquidate	the	portfolio.	Another	approach	to	incorporate	liquidity	risk	is	to	assume	that	the	full
position	is	executed	immediately	(with	no	closeout	time)	and	incorporate	the	resulting	liquidity
spread	in	the	risk	measurement.	Bangia	et	al.	(1999)	added	the	risk	of	the	bid–ask	spread	to	the
market-based	risk	assuming	additivity	of	risks	to	obtain	a	liquidity-adjusted	 	model.	Such
additivity	can	be	motivated	by	the	fact	that	the	worst	liquidity	spread	for	the	instrument	likely
happens	at	the	same	time	as	market	distress.	Angelidis	and	Benos	(2006)	also	included
endogenous	liquidity	by	including	the	position	size	in	the	liquidity-adjusted	 	model.	We
also	refer	the	reader	to	Ernst	et	al.	(2009)	for	a	useful	overview	of	liquidity	 	models	based
on	the	liquidity	spread	and	an	empirical	comparison	of	models.

In	practice,	liquidity	execution	cannot	be	characterized	as	being	captured	with	either	an
extended	closeout	period	with	no	liquidity	spread	or	a	full	immediate	closeout	with	a	liquidity
spread.	The	trader	is	faced	with	market	execution	limits	and	anticipated	execution	costs	that
may	depend	on	the	execution	size	relative	to	the	market.	Of	course,	the	liquidity	execution
program	itself	will	be	a	trade-off	between	either	incurring	immediate	larger	liquidity	costs	by
executing	large	positions	versus	holding	onto	the	position	and	incur	larger	market	risk.	For	a
given	risk	preference	the	exact	trade-off	depends	on	how	the	risk	grows	over	time	and	on	how
liquidity	execution	costs	can	change	over	time.	That	is,	incurred	liquidity	risks	depend	on	the
exact	trading	strategy.

Here,	in	the	context	of	market	risk	models,	we	will	mainly	focus	on	the	inclusion	of	illiquidity
in	market	risk	models	using	closeout	times	for	positions.	However,	wewill	return	to	consider
more	complex	trading	execution	models	of	liquidity	risk	in	our	chapter	on	liquidity	risk
management,	specifically,	in	the	context	of	optimal	hedging	of	funding	liquidity	risk	using
tradable	assets.	Our	current	focus	on	position	closeout	times	is	motivated	by	current	practice,
specifically	the	current	regulatory	use	of	market	risk	 	models	with	an	extended	closeout
period	of	10	days.	It	is	also	motivated	by	Basel	Committee	(2012,	2014a)	proposing	an
extended	and	more	granular	liquidity	adjustment	to	the	regulatory	market	risk	capital
calculation	than	the	10-day	risk	horizon.	The	adjustment	is	more	granular	because	it	requires
institutions	to	allocate	positions	into	different	liquidity	buckets	corresponding	to	liquidity
horizons.	The	allocated	liquidity	bucket	is	connected	to	the	market	liquidity	of	the	risk	factors,	

,	that	drives	the	position	value.	At	the	same	time	the	standard	10-day	position	horizon
becomes	a	lower	bound	for	the	most	liquid	positions.

An	added	advantage	of	the	extended	closeout	time	model	for	handling	illiquidity	is	that	 	is



still	a	coherent	risk	measure	within	this	model	of	illiquidity.

Closeout	Time	with	No	Liquidity	Cost
We	can	assume	that	an	asset	can	be	traded	within	a	trading	period	up	to	a	certain	trading
threshold	known	as	market	depth	at	a	market	bid–ask	spread	 .	In	order	to	execute	the
trading	in	a	bigger	volume,	market	price	moves	unfavorably	at	a	cost	rate	 	where	 .	The
execution	cost	 	can	be	interpreted	as	fire	sale	cost.	To	avoid	liquidity	execution	costs	a	trader
can	execute	the	position	over	multiple	days.	For	example,	we	noted	above	that	 	for	 	days
(with	 	day)	can,	in	the	normal	independent	and	identically	distributed	model	setting,	be
obtained	as

This	is	a	special	case	when	the	trader	holds	onto	the	position	for	 	more	days	and	then
executes	the	full	position	with	no	liquidity	cost.	We	can	interpret	this	case	as	the	trader	is
holding	onto	the	position	until	markets	have	calmed	and	liquidity	costs	are	no	longer
significant.

Another	case	is	when	the	trader	executes	the	position	in	smaller	portions	over	 	days	with	no
liquidity	execution	costs—that	is,	not	above	the	market	depth.	In	case	of	equal	portions	over
the	 	days	we	have	that

Clearly,

and	when	 	days	we	have	specifically	that

Hence,	the	style	of	liquidity	execution	can	have	a	significant	effect	on	the	risk.

Instead	of	having	a	single	liquidity	execution	portion	per	asset	one	can	classify	the	positions
into	different	liquidity	buckets	with	associated	daily	execution	percentages	at	no	significant
liquidity	cost.

Example	of	Partial	Portfolio	Closeout	Over	Time
We	consider	a	portfolio	of	7	unit	holding	stocks	with	different	daily	execution	percentages	of
the	initial	holding	as	in	Table	3.19.



Table	3.19	Stock	Allocation	to	Liquidity	Groups

Stock Daily	execution	%
1 10
2 10
3 20
4 20
5 30
6 30
7 40

The	executed	portion	of	the	stock	is	put	in	a	risk-free	cash	account	with	no	return	and	carries
no	risk	after	being	sold.	Using	a	logarithmic	stock	returns	variance	of	0.01	and	zero	covariance
for	each	of	the	7	stocks	we	perform	the	trading	execution	on	the	path	of	1	day	up	to	15	days.	Of
course,	because	of	the	iterative	percentage	daily	trades	the	positions	will	not	close	out	fully
after	15	days	and	a	very	small,	insignificant	holding	will	still	remain	even	for	the	stocks	with
30%	and	40%	daily	execution.	For	the	stocks	with	10%	and	20%	daily	execution	an
approximate	20%	and	3.5%	respectively	of	the	initial	holding	will	still	reside	after	15	days.
The	current	stock	values	are	respectively	1	unit	of	currency	for	all	7	stocks.	The	portfolio
mark-to-market	is	hence,	with	unit	positions	in	the	stocks,	7	units	of	currency.

Table	3.20	displays	the	partial	closeout	 	confidence	level	 	profile	and	the
corresponding	 	profile	obtained	with	full	closeout	on	any	of	days	1,	…,	15.	The	 	
numbers	are	here	expressed	in	percent	of	the	mark-to-market	value	of	the	portfolio.	Table	3.20
shows	that	the	partial	closeout	portfolio	is,	for	all	practical	purposes,	almost	fully	closed	out
after	10	days	as	 	is	almost	constant	after	that.	The	liquid	1-day	portfolio	 	is	8.07%	and
hence	with	15-day	percent	closeout	as	in	Table	3.19	the	risk	has	increased	by	a	factor	of
approximately	1.51	(that	is	12.26/8.07).	If	on	the	other	hand	the	portfolio	is	held	fixed	until	day
15	and	then	closed	out	in	full,	it	results	in	portfolio	risk	increase	by	a	factor	of	approximately
3.10	(that	is,	25.09/8.07).	Again,	this	shows	that	the	closeout	assumption	for	the	portfolio
significantly	impacts	the	risk.	For	illustration	Figure	3.14	displays	the	 	profiles	in
Table	3.20	graphically.



Table	3.20	Percent	Closeout	VaR	Profile	and	the	No-Closeout	VaR	Profile	on	Either	of	Days
1,	…,	15

Liquidity	horizon	(days) Percent	
Partial	closeout Full	closeout

1 8.07 8.07
2 9.98 11.12
3 10.86 13.15
4 11.36 14.87
5 11.72 16.36
6 11.92 17.56
7 12.03 18.81
8 12.10 19.70
9 12.17 20.70
10 12.18 21.46
11 12.21 22.29
12 12.23 23.14
13 12.23 23.74
14 12.24 24.44
15 12.26 25.09



Figure	3.14	VaR	at	the	99%	Confidence	Level	for	Partial	and	Full	Closeout	at	the	Liquidity
Horizons

Example	of	Tiered	Portfolio	Closeout	Over	Time
The	Basel	Committee	(2012,	2013b,	2014a)	proposal	for	the	illiquidity	adjustment	does	not
assume	a	partial	portfolio	closeout	over	time.	Instead,	portions	of	the	portfolio	are	tiered	with
full	closeout	at	a	specific	horizon.

We	now	consider	a	tiered	closeout	example	using	the	same	portfolio	as	in	the	example	above
but	with	tiered	full	closeout	for	the	stocks	as	indicated	in	Table	3.21.	In	Table	3.21	when	the
closeout	horizon	is	 	days	the	stock	holding	is	zero	at	horizon	 .	All	the	stocks	except	stock
7	are	closed	out	before	the	risk	horizon	of	15	days.21

Table	3.21	Stock	Allocation	to	Full	Closeout	Horizons

Stock Full	closeout	(horizon)
1 3	days
2 3	days
3 5	days
4 5	days
5 10	days
6 10	days
7 15	days

The	obtained	 	 ,	in	percent	of	the	mark-to-market	value	of	the	portfolio,	is	given	in



Table	3.22.	We	can	now	compare	the	15-day	 	with	tiered	full	closeout	(as	per	Basel
proposal)	to	the	case	with	full	portfolio	closeout	on	either	of	the	horizons.	From	Table	3.20	we
obtain	the	full	portfolio	closeout	15-day	 	as	25.09%.	By	portfolio	tiering	the	full	closeout,
as	in	Table	3.21,	 	has	decreased	by	approximately	25%	compared	to	the	full	portfolio
closeout	case	(18.57/25.09).	On	the	other	hand,	the	position	tiered	full	closeout	 	is
approximately	a	factor	of	2.3	times	higher	than	would	be	the	case	if	all	the	stocks	in	the
portfolio	had	a	liquidity	horizon	of	1	day	(18.57/8.07).

Table	3.22	Percent	Tiered	Full	Closeout	VaR	Profile	on	Days	1,	…,	15

Liquidity	horizon	(days) Percent	
1 8.07
2 11.12
3 13.15
4 14.39
5 15.43
6 16.01
7 16.61
8 17.00
9 17.46
10 17.91
11 18.06
12 18.19
13 18.32
14 18.44
15 18.57

Figure	3.15	displays	graphically	the	 	profiles	over	the	1,	…,	15	liquidity	horizons	for
the	tiered	closeout	by	horizon	as	in	Table	3.21	versus	the	full	portfolio	closeout	of	all
positions	on	either	of	the	horizons.	We	note	that	as	stock	positions	closeout	at	the	horizons	the	

	profile	increases	at	a	slower	rate	compared	to	the	no-closeout	case.



Figure	3.15	VaR	at	the	99%	Confidence	Level	for	Full	Closeout	for	Different	Stocks	at	the
Liquidity	Horizons	and	Full	Closeout	at	the	Liquidity	Horizons

A	Note	on	General	Market	Illiquidity	Models
Clearly,	while	our	position	liquidity	closeout	examples	above	have	been	simple,	the
incorporation	of	liquidity	risk	in	market	risk	models	is	nontrivial	in	general.	The	liquidity	cost
incurred	is	a	function	of	both	the	market	liquidity	of	the	instrument	as	well	as	the	trader
execution	style	of	the	position	in	the	market.	There	are	two	extreme	scenarios	available.

First,	trade	the	full	position	immediately	at	a	current	known,	but	probably	high	cost.

Second,	trade	in	smaller	portions	over	a	fixed	time	at	relatively	lower	or	no	cost.

The	latter	strategy	may	lower	expected	cost;	however,	it	is	also	more	uncertain	because	it
includes	waiting	to	unwind	the	portfolio	over	a	longer	time.	Hence,	market	risk	increases	and
there	is	also	uncertainty	about	future	liquidity	spreads.	It	is	also	an	undesirable	strategy	if	an
institution	must	close	out	the	position	as	soon	as	possible	for	the	reasons	of	market	timing	or
funding	shortage.

Our	analysis	here	has	focused	on	the	case	when	a	trader	can	wait	to	execute	at	minimal
liquidity	cost	but	at	higher	incurred	market	risk.	However,	as	mentioned	previously,	we	will
return	to	the	issue	of	(forced)	immediate	liquidity	execution	with	large	execution	costs	when
we	discuss	funding	liquidity	risk.	See	also	Almgren	and	Chriss	(2000)	on	the	analysis	of
optimal	liquidity	execution	for	a	given	level	of	risk.	The	authors	trace	out	the	equivalent	of	an
efficient	frontier	for	liquidity	execution	strategies.

Scenario	Analysis	and	Stress	Testing



Capturing	tail	events,	especially	those	that	incur	severe	loss	at	rare	chance,	is	an	important
objective	in	modern	risk	analysis.	Historically,	a	substantial	part	of	finance	research	has	been
devoted	to	the	development	of	models	that	extend	beyond	the	normal	distribution	and	that
capture	the	stylized	facts	of	financial	time	series.	However,	past	performance	is	no	guarantee
of	future	results.

Regardless	of	methodology,	 -type	risk	models	rely	almost	exclusively	on	history—either	in
terms	of	calibrating	model	parameters	or	directly	as	in	historical	simulation	and	other
approaches	that	re-sample	from	empirical	distributions.	Stress	testing	is	viewed	as	a	forward-
looking	risk	analysis	tool	that	should	complement	risk	measures	based	on	historical	calibration
such	as	 .

Many	recent	risk	regulations,	including	Basel	III	liquidity	requirements,	CCAR	firmwide	stress
testing,	EBA	firmwide	stress	testing,	and	the	Solvency	II	regulation	for	insurers,	have	either
included	stress	testing	as	a	complementary	risk	analysis	or	directly	employed	a	stress
scenario–based	approach	to	measure	tail	risk.	Stress	scenarios	are	also	a	key	element	in	the
widely	adopted	Standardized	Portfolio	Analysis	of	Risk	(SPAN)	exchange	margin	system
where	the	required	exchange	margin	on	futures	options	is	based	on	the	maximum	one-day	loss
using	16	prescribed	scenarios	for	the	underlying	futures	price	and	volatility.

Basel	Committee	(2009c)	provides	several	principles	for	sound	enterprise	stress	testing.
Stress	testing	plays	an	important	role	in	many	enterprise	functions,	including:

Providing	forward-looking	assessment	of	risk	that	overcomes	limitations	of	models	and
historical	data

Supporting	internal	and	external	communication

Feeding	into	provision,	capital,	and	liquidity	analysis	and	planning	process

Supporting	a	bank's	risk	tolerance	and	facilitating	risk	mitigation	and	contingency	planning

In	our	discussion	of	stress	testing	we	find	it	convenient	to	structure	a	financial	institution's
approach	to	scenario	analysis	and	stress	testing	in	four	components.	This	includes:

1.	 Portfolio	sensitivity	analysis

2.	 Systematic	portfolio	stress	test	programs

3.	 Implied	stress	scenarios

4.	 Integration	of	stress	and	model-based	analysis

We	will	review	each	of	these	approaches	and	discuss	their	role	in	a	comprehensive	market
risk	stress	testing	program	for	financial	institutions.

Arguably,	in	many	cases	a	joint	stress	testing	across	risk	types	is	required	for	firmwide	stress
testing	where	market	risk	is	only	one	of	the	loss	contribution	items	in	the	bank's	projected
income	statement	under	stress.	We	will	return	to	the	issue	of	firmwide	stress	testing	later	in	this
book	in	Chapter	9.



Portfolio	Sensitivity	Analysis
The	main	idea	of	portfolio	sensitivity	analysis	is	to	systematically	construct	portfolio
sensitivity	to	each	of	the	 	portfolio	risk	factors	 .	The	purpose	of	the	analysis	is	to
be	able	to	identify	portfolio	impacts	from	isolated	univariate	and	potentially	bivariate	risk
factor	movements.	There	is	no	notion	of	joint	market	stress	as	all	risk	factors	except	the
univariate	risk	factor	or	the	bivariate	pair	of	risk	factors	are	held	constant.	Hence,	the	method
is	essentially	a	portfolio	risk	factor	sensitivity	method	although	we	are	concerned	also	with
large	changes	in	the	underlying	risk	factor(s)	such	as	a	range	of	–30%	to	30%	of	changes	in	a
stock	price.	Depending	on	the	portfolio	characteristics	we	may	use	approximation	methods	or
full	valuation	to	obtain	the	risk	factor	sensitivity.

Linear	Portfolio
Using	the	linear	delta	model	approximation	as	in	equation	(2.2)	we	can	attribute	a	portfolio
sensitivity	to	each	of	the	 	portfolio	risk	factors	 	for	small	changes	in	the	risk
factor,	 .	If	the	portfolio	is	truly	linear,	such	as	a	stock	portfolio,	the	delta	impacts	on	portfolio
profit	and	loss	can	of	course	be	extrapolated	to	large	risk	factor	shocks	as	well.

Quadratic	Portfolio
For	nonlinear	portfolios	the	quadratic	approximation	model	in	equation	(2.18)	allows	second-
order	risk	factor	effects	as	well	as	potential	cross-risk-factor	effects	to	be	captured	in	the	local
portfolio	sensitivity	analysis.	As	in	the	linear	model	case	such	sensitivities	may	be	used	in
extrapolation	to	large	risk	factor	shifts.

Full	Valuation
When	the	portfolio	is	significantly	nonlinear	it	can	be	dangerous	to	extrapolate	the	Greeks
local	sensitivity	analysis,	with	small	 	risk	factor	shifts	effect	on	portfolio	profit	and	loss,	to
large	risk	factor	shifts	effect	on	portfolio	profit	and	loss.	In	those	cases	a	full	valuation
approach	is	used,	applying	stressed	shocks	to	a	single	or	a	few	risk	factors	across	a	grid	of
values	for	which	the	portfolio	value	is	calculated.

For	example,	for	an	equity	option	portfolio	it	is	appropriate	to	calculate	the	portfolio	profit-
and-loss	impact	from	varying	underlying	equity	value	and	the	equity	implied	volatility	through
a	range	of	values.	The	result	is	a	pricing	matrix,	similar	to	the	grid	pricing	matrix	(2.36),
though	mark-to-market	values	are	on	a	portfolio	level	rather	than	for	a	specific	instrument.	In
the	univariate	risk	factor	case,	that	is,	variation	of	a	single	risk	factor,	 ,	a	vector	of	mark-to-
market	values	or	portfolio	profit	and	losses	are	obtained.

Systematic	Portfolio	Stress	Tests
In	systematic	portfolio	stress	test	programs	we	are	interested	in	joint	market	scenarios	for	all
the	 	portfolio	risk	factors,	 .	The	scenarios	can	be	inspired	from	historical	events
with	historical	values	for	the	portfolio	risk	factors	or	be	forward	looking.	The	scenario
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definition	can	involve	all	the	 	portfolio	risk	factors	or	a	subset	 	with	 .

In	case	the	scenario	definition	only	includes	a	subset	of	the	risk	factors	one	of	course	has	to
transfer	the	stress	scenario	from	the	 	risk	factors	to	all	portfolio	risk	factors,	 .	This
stress	transfer	to	all	the	portfolio	risk	factors	can	be	done	using	models	or	by	searching	the
history	for	relevant	 	risk	factor	shifts	conditional	on	assumed	 	shifts.	If	the	core
scenario	for	the	 	risk	factors	are	inspired	from	an	historical	event	it	is	natural	to	search	for
the	experienced	 	risk	factor	shifts	during	the	same	historical	period.	However,	in	practice
the	risk	factor	may	not	be	observed	historically	such	that	one	has	to	resort	to	models	for
generating	 	risk	factor	shifts	conditional	on	 	shifts.

Using	Models	to	Transfer	Stress
We	have	previously	seen,	in	the	context	of	normally	distributed	risk	factor	returns,	how	we	can
potentially	use	conditional	distributions	to	calculate	the	expected	behavior	of	all	risk	factors
conditional	on	a	scenario	for	a	few	risk	factors.	Specifically,	with	historical	mean	returns	zero,
we	can	obtain,	as	in	equation	(2.16),	the	expected	returns	of	the	risk	factors	 	from
scenarios	conditional	on	the	risk	factors	 ,	from	the	conditional	distribution

Another	type	of	model	that	is	relevant	to	transfer	stress	from	the	 	risk	factors	to	 	risk
factor	shifts	is	the	observed	factor	model	in	equation	(2.30).	When	the	model	expresses	risk
factors	 	returns	in	terms	of	stress	defined	 	returns	we	can	obtain	the	expected	stress
return	of	 	risk	factors.	That	is,	if	 	is	the	returns	of	the	stressed	risk	factors,	 ,	we
have	that

with	 	the	returns	vector	of	the	 	risk	factors,	 	the	factor	loading	matrix,	and	 	the	vector
representing	the	idiosyncratic	risks	of	 .

Of	course,	in	practice,	in	either	of	these	models	to	transfer	stress,	the	stressed	factors	may	not
affect	the	portfolio	directly	at	all.	This	happens	if	the	initial	stressed	factors	are	only	high-
level	macroeconomic	scenarios	such	as	GDP	and	unemployment.	However,	we	can	still	use	the
model	approaches	above	to	transfer	stress	to	the	portfolio	risk	factors.	The	interpretation	is
then	that	the	 	factors	are	the	actual	portfolio	risk	factors	and	 	are	the	macroeconomic
variables.

Both	factor	model	and	conditional	distribution	model	approaches	to	stress	transfer	rely	on
covariances	to	specify	the	relationship	between	risk	factors.	In	the	conditional	distribution
model	it	is	explicit	since	one	specifies	a	joint	covariance	matrix	of	 	and	 	risk	factors.
In	the	factor	model	approach	covariance	information	is	implicit	in	the	factor	loading	matrix,	 ,
of	the	regression.

When	the	core	scenarios	are	high-level	macroeconomic	factors	several	hierarchical	factor
models	may	in	practice	be	used	to	transform	to	a	specific	portfolio	risk	factor.	For	example,	if



the	macroeconomic	scenario	specifies	an	unemployment	rate	shift	and	the	portfolio	risk	factor
is	a	specific	stock,	there	may	be	a	factor	model	linking	first	the	unemployment	rate	shift	to	a
broad	market	equity	index	shift.	A	second	factor	model	may	link	the	market	equity	index
implied	shift	to	a	stock	industry	specific	index	shock.	Finally,	a	third	factor	model	may	link	the
industry	index	shock	to	a	shock	in	the	specific	stock.

A	few	caveats	are	necessary	when	using	models	to	transfer	stress.

First,	for	the	purpose	of	stress	testing	it	is	prudent	to	use	model	parameters	estimated	on
volatile	subperiods.	In	extreme	stress	situations	it	may	also	be	relevant	to	abandon	historical
implied	model	parameters	and	assume,	for	example,	a	perfect	positive	correlation	between	all
risk	factors.	Each	risk	factor	may	still	maintain	its	own	volatility	in	this	case	and	hence	the
response	to	the	market	shock	is	based	on	its	relative	volatility	to	the	stressed	factors,	 .	In
the	case	of	the	conditional	distribution	model	one	can	also	generalize	the	multivariate	normal
risk	factor	model	to	one	of	the	more	advanced	copulamodels	we	have	discussed.	However,
while	the	conditional	expectation	is	explicit	in	the	normal	case	it	may	have	to	be	simulated	for
more	elaborate	models.

Second,	both	the	conditional	distribution	model	and	the	observed	risk	factor	model	yield	a
distribution	for	the	 	risk	factor	shifts	conditional	on	the	stress	scenario	for	 .	Instead	of
using	the	conditional	expected	 	risk	factor	shifts,	hence	ignoring	the	idiosyncratic	risk	in	

,	it	may	be	relevant	to	use	the	full	conditional	stress	distribution	and	calculate	a	tail	risk
measure	from	the	profit-and-loss	distribution	as	the	stress	scenario.	This	is	relevant	because
conditional	on	the	stressed	factors,	 ,	there	can	still	be	a	significant	variation	in	the
conditional	stress	distribution.	The	more	the	stressed	 	risk	factors	explain	the	 	risk
factors	systematic	risk	the	less	variation	in	the	conditional	stress	distribution.22

Regulatory	Provided	Scenarios
Systematic	portfolio	stress	tests	are	not	only	internally	developed	by	financial	institutions.	A
useful	application	in	practice	of	systematic	portfolio	stress	is	to	assume	 	contains	the
prescribed	macroeconomic	variables	evolution	in	regulatory	stress	testing,	for	example,	the
CCAR	exercise	required	by	the	Federal	Reserve	in	United	States.	At	the	end	of	every	year,
Federal	Reserve	Board	releases	supervisory	scenarios	for	the	following	year	submission.
These	scenarios	include	macroeconomic	factors	ranging	from	interest	rates,	housing	price
index,	unemployment	rate	to	major	economic	indices	outside	the	United	States.	The	bank
holding	companies	that	are	subject	to	CCAR	must	expand	these	macroeconomic	scenarios	to
their	specific	portfolio	risk	factors.	Another	example	is	EBA	stress	tests	in	Europe.

Both	CCAR	and	EBA	also	require	major	European	banks	to	apply	instantaneous	global	market
risk	shocks	to	their	trading	portfolios	and	compute	the	resulting	portfolio	profit	and	loss.23	The
risk	factors	are	relatively	granular—spanning	interest	rates,	foreign	exchange,	equity,
commodity	and	volatility	factors	for	major	currencies	and	indices.	However,	banks	still	have
to	transform	the	predefined	risk	factors	into	the	actual	portfolio	risk	factors.	For	example,	EBA
favors	a	transformation	approach	from	the	stressed	 	risk	factors	to	all	the	portfolio	risk
factors,	 ,	using:



First,	similar	historical	relationships	if	available

Second,	statistical	transformation	models	(sometimes	referred	to	as	satellite	models	in	this
context,	see	ECB	(2013,	p.	20))	such	as	the	conditionaldistribution	or	factor	models

Third,	theoretical	arguments

Finding	equivalent	historical	shifts	for	the	 	risk	factors	is	of	course	more	likely	for
historically	inspired	scenarios	while	in	case	of	forward-looking	scenarios	the	bank	may	have
to	resort	to	statistical	models.	Ultimately,	when	the	bank	has	inferred	all	the	portfolio	risk
factors,	 ,	shifts	from	the	core	scenarios	they	can	run	the	scenarios	through	the	market	risk
system	to	obtain	portfolio	profit	and	loss.	In	both	CCAR	and	EBA	the	market	risk	shock	profit
and	loss	is	subsequently	used	as	an	add-on	component	in	the	CCAR	and	EBA	firmwide	stress
testing.24	In	EBA	the	market	risk	loss	is	distributed	over	the	stress	horizon	of	three	years	while
in	CCAR	the	full	market	risk	loss	is	allocated	to	the	first	stress	quarter	of	a	total	of	nine	stress
quarters.

The	EBA	stress	testing	includes	all	the	bank's	positions	exposed	to	market	risk	and	uses	full
valuation	of	the	portfolio	instruments	in	the	stress	scenario.	However,	for	the	subset	of	market
risk	positions	held	for	trading	EBA	also	requires	banks	to	perform	further	risk	factor
decomposition	analysis	using	the	simple	linear	delta	model.	This	includes	a	sensitivity
analysis	to	all	the	EBA	specified	risk	factors	and	a	decomposition	of	scenario	profit	and	loss
into	EBA	risk	factors.	The	stress	approach	has	the	following	steps:

First,	all	trading	positions	are	decomposed	into	risk	factor	asset	classes	(e.g.,	equity,
foreign	exchange)	and	then	to	the	specific	regulatory	shock	risk	factor	using	the	linear	delta
model	approach.

This	approach	is	termed	the	risk	position	approach	and	was	discussed	in	the	previous
market	risk	chapter	in	the	context	of	risk	attribution.	A	risk	position	of	a	physical	position
represents	the	exposure	to	a	particular	risk	factor.	For	example,	an	equity	option	has	risk
positions	in	equity,	interest	rate,	and	volatility.	Each	of	these	risk	positions	are	then
referred	to	as	asset	class	exposures	for	the	physical	position.	Since	the	regulatory
prescribed	risk	factors	may	not	match	the	actual	risk	positions,	as	we	have	discussed
above,	a	model	may	be	needed	to	transfer	from	actual	portfolio	risk	positions	to	regulatory
risk	positions.

Second,	a	linear	profit	and	loss	is	computed	based	on	the	prescribed	regulatory	risk
positions	shocks.

Note	here	that	since	the	risk	position	model	is	linear	the	profit-and-loss	contribution	from	a
physical	positions	risk	positions	sums	to	aggregate	impact.	Because	of	the	linearity	we	can
also	decompose	aggregate	portfolio	impact	into	summable	contributions	from	asset	class.

Third,	compute	full	valuation	profit	and	loss	at	an	aggregated	level,	for	example,	books	of
business.

In	this	case	the	aggregate	profit	and	loss	cannot	be	easily	decomposed	in	summable
components	to	regulatory	risk	factors	or	risk	factor	asset	classes	because	of	the



nonlinearity.	However,	we	can	aggregate	the	profit	and	loss	to	higher	levels,	for	example,
from	books	of	business	to	firmwide	profit	and	loss.

Fourth,	aggregate	the	linear	risk	positions	profit	and	loss	to	the	reporting	level(s).

Here,	reporting	levels	can	be	granular	such	as	regulatory	risk	positions	but	also	aggregated
such	as	asset	class.

Fifth,	apply	a	nonlinearity	adjustment	to	the	risk	positions	profit	and	loss	using	the	full
valuation	at	the	reporting	level(s).

For	example,	we	can	infer	a	nonlinearity	adjustment	at	the	firmwide	level	comparing	the
firmwide	full	valuation	profit	and	loss	to	the	firmwide	risk	positions	profit	and	loss.

Systematic	Stress	Test	Programs	vs.	Portfolio	Sensitivity	Analysis
We	can	conclude	that	the	purpose	of	systematic	stress	test	programs	is	quite	different	from
portfolio	sensitivity	analysis.	Systematic	stress	test	programs	typically	include	stressed	values
for	a	large	number	of	risk	factors	that	affect	the	portfolio	and	try	to	replicate	potential	market
stresses	that	could	happen.	Core	risk	factor	shifts	can	be	derived	from	previous	historical
scenarios	or	expert	knowledge	of	potential	stresses.	Since	stress	scenarios	are	usually	defined
only	for	the	reduced	set	of	core	risk	factors,	as	it	is	usually	too	complex	to	specify	the	behavior
of	all	risk	factors	that	can	affect	the	portfolio,	a	model	or	historically	implied	values	are
frequently	used	to	spread	the	core	risk	factor	scenarios	to	all	the	portfolio	risk	factors.	Since
the	use	of	models	to	transfer	risk	factor	stress	is	central	in	systematic	portfolio	stress	tests	the
models	used	need	to	be	vetted.	Moreover,	different	scenarios	may	use	different	models	or
approaches.

Hypothetical	Scenario	from	Reverse	Stress	Testing
In	the	systematic	portfolio	stress	tests	we	assumed	that	core	risk	factor	scenarios	were	derived
from	historically	relevant	events	or	forward	looking—based	on	economic	conjecture.
However,	in	practice,	with	a	large	and	complex	portfolio,	it	is	hard	to	know	a	priori	which
scenarios	could	potentially	cause	the	largest	portfolio	losses.	A	complementary	method	to
design	systematic	portfolio	stress	tests	is	to	infer,	from	the	portfolio	profit	and	loss	under	many
scenarios,	which	hypothetical	scenarios	could	be	affecting	the	portfolio	most	using	a	reverse
impact	analysis.

The	idea	of	a	hypothetical	stress	scenario	is	to	specify	potentially	large	shifts	in	risk	factors
that	have	significant	impact	on	(sub)	portfolio	profit	and	loss.	Regulators,	for	example,	Basel
Committee	(2009c)	and	CEBS	(2009,	2010),	also	require	banks	to	base	stress	tests	on	the	key
scenarios	that	could	challenge	the	bank	(called	reverse	stress	tests),	thereby	uncovering	hidden
risks	and	interactions	among	risks.	The	hypothetical	stress	scenario	is	in	its	nature	forward
looking	and	has	usually	not	materialized	historically	yet.	Still,	it	is	an	economically	plausible
scenario.

In	practice,	in	order	to	derive	quantifiable	hypothetical	stress	scenarios,	several	of	the	tools
we	have	discussed	previously	are	useful.	Specifically,



Portfolio	risk	contribution	analysis	(through	Euler	contribution	allocations)	can	be	used	to
identify	the	current	most	risky	and	concentrated	subportfolios	where	stress	could	be
focused.

The	risk	factor	information	measure	that	ranks	the	most	influential	risk	factors	that
determine	portfolio	profit	and	loss.

An	important	component	in	a	hypothetical	stress	scenario	is	hence	to	use	reverse	impact
analysis	to	identify	the	key	portfolios	and	risk	factors	to	focus	on	in	systematic	stress	test
programs.

The	concept	of	reverse	stress	testing	is	focused	exactly	on	finding	the	risk	factor	scenarios	that
could	contribute	to	large	losses.	The	purposes	of	reverse	stress	tests	are	hence	clear:	Uncover
which	risks	contribute	the	most	to	portfolio	profit	and	loss	and	use	that	information
subsequently	to	design	plausible	stress	scenarios.	In	practice	this	can	be	done	in	many	ways.
For	example:

a.	 Identify	implied	values	of	risk	factors	with	(for	example)	a	 	scenario.

b.	 Identify	implied	(average)	extreme	values	of	risk	factor	values	for	tail	losses	above	a
certain	quantile	(use	 	as	base).

c.	 Devise	a	measure	that	ranks	which	risk	factors	contribute	the	most	to	portfolio	profit	and
loss.

A	naive	approach	of	extracting	the	risk	factor	values	contributing	to	a	certain	loss	and
subsequently	using	this	information	to	define	a	stress	event	may	or	may	not	be	meaningful.	In
reality	(a)	may	not	be	that	useful	in	practice	because	for	many	portfolios	there	are	many
different	combinations	of	risk	factor	values	that	can	give	the	same	or	almost	the	same	loss.
Hence,	using	(a)	one	may	not	extract	systematic	information	about	which	risk	factor	extreme
values	are	also	associated	with	extreme	loss.

A	similar	approach	to	using	 	of	the	simulation	as	a	reference	point	is	to	attempt	a	goal-seek
scenario	optimization	to	see	which	combinations	of	risk	factor	values	can	give	a	certain	loss.
However,	this	is	potentially	practical	for	a	few	risk	factors	only.	Moreover,	there	is	typically
no	single	solution	to	such	an	optimization	and	the	number	of	potential	solutions	may	be	very
large	even	for	a	small	number	of	risk	factors.	That	is,	there	are	many	combinations	of	risk
factor	values	that	can	give	(almost)	the	same	loss.

Grundke	(2011,	2012)	classifies	a	reverse	stress	scenario	as	a	scenario	where	the	capital
buffer	is	exactly	exhausted	(and	not	more	severe	than	that)	and	hence	uses	 	as	the	reference
point.	A	risk	factor	grid	search	finds	the	most	likely	reverse	stress	test	that	exhausts	the	capital
base.	Likelihood	of	a	scenario	is	here	based	on	the	multivariate	distribution	of	risk	factors
(using	the	grid	points).	Solving	the	inversion	problem	to	find	the	set	of	risk	factor	values	and
determining	the	scenario	probabilities	is	of	course	mathematically	more	demanding	the	greater
the	number	of	risk	factors.	The	method	hence	relies	on	a	small	risk	factor	dimension.	See	also
McNeil	and	Smith	(2012),	who	use	the	statistical	concept	of	depth	of	the	distribution	to	find
the	most	likely	ruin	event	among	a	set	of	possible	ruin	events.



Using	 	as	base,	that	is,	(b)	above	may	be	more	useful	because	it	averages	the	realized	risk
factor	values	for	exceeding	a	given	tail	loss	and	may	give	more	systematic	information	about
which	(extreme)	risk	factor	values	contribute	to	loss.	This	approach	is	taken	by	Glasserman	et
al.	(2013).	In	their	approach	to	reverse	stress	testing	they	first	estimate	the	conditional	mean	of
the	risk	factors	conditional	on	portfolio	loss	exceeding	a	certain	loss	level.	Second,	the
conditional	mean	is	adjusted	to	obtain	the	most	likely	loss	scenario	for	risk	factors.
Specifically,	this	amounts	to	solving	for

where	 	is	the	conditional	density	of	the	 	 	portfolio	risk	factors—being	conditional
on	the	portfolio	loss,	 ,	exceeding	the	threshold,	 .	Glasserman	et	al.	(2013)	show	that	for	the
normal	and	Laplace	distribution	the	most	likely	loss	scenario	coincides	with	the	conditional
mean	asymptotically	as	the	loss	threshold,	 ,	becomes	larger.	For	the	t-distribution	the	most
likely	loss	can	be	obtained,	as	the	loss	threshold	grows	large,	as	a	simple	scaler	on	the
conditional	mean	loss	using	 	with	 	the	degrees	of	freedom	for	the	t-distribution.	An
important	contribution	by	Glasserman	et	al.	(2013)	is	not	only	to	solve	for	the	most	likely
scenario	but	to	also	propose	a	method,	due	to	Owen	(2001),	that	computes	a	confidence
interval	around	the	conditional	loss	and,	approximately,	the	most	likely	scenario.	Indeed,	as	we
have	discussed,	reliance	on	a	single	or	just	a	few	scenarios	can	be	misleading	for	reverse
stress	testing.	Once	the	confidence	interval	is	obtained	one	can	in	principle	sample	from	the
region	to	obtain	extreme	scenarios	as	discussed	in	Glasserman	et	al.	(2013).	However,	in
practice	for	many	risk	factors	the	information	still	needs	to	be	ranked.	That	is,	we	have	to
reduce	the	dimensions	of	the	risk	factors.

An	example	of	(c)	is	the	risk	factor	information	measure	that	ranks	the	most	influential	risk
factors	that	determine	portfolio	profit	and	loss.	It	can	also	be	seen	as	a	dimension	reduction
tool	to	enable	goal-seek	reverse	stress	testing	approaches	such	as	Grundke	(2011,	2012)	and	 -
dimensional	confidence	region	methods	such	as	Glasserman	et	al.	(2013)	as	it	ranks	the	top	

	risk	factors.	Practically	therefore	reverse	stress	test	information	is	extracted	from	history
or	the	scenario	simulation	itself,	which	should	have	all	the	information,	assuming	enough
scenarios	are	generated.	It	can	also	use	smoothing,	through	a	smoothed	risk	measure	like	 ,
and	dimension	reduction	techniques,	such	as	the	risk	factor	information	measure,	to	extract
systematic	information	about	tail	behavior.

Finding	Hypothetical	Stress	Scenarios	Example
As	a	simple	example	of	finding	hypothetical	stress	scenarios	we	consider	a	market	risk
portfolio	profit	and	loss	that	is	described	by	5	market	indices	risk	impact	on	3	market	risk	sub-
books	using	the	simple	delta	approach.	Table	3.23	displays	the	delta	approximation	of	the
books	with	respect	to	the	5	market	indices.	Because	we	approximate	the	profit	and	loss	rather
than	the	portfolio	values	the	current	or	base	case	value	is	naturally	zero	for	each	of	the	market
indices.	In	this	model	it	is	assumed	that	each	of	these	market	indices	have	a	zero	mean
univariate	t-distribution	with	an	estimated	degrees	of	freedom	and	volatility	as	in	Table	3.24.



Table	3.23	Delta	Approximation	of	3	Market	Risk	Books

Market	risk	book Index	1 Index	2 Index	3 Index	4 Index	5
1 0 827,460 489,933 520,311 464,642
2 604,489 898,281 564,033 127,557 114,749
3 10,224 46,760 727,901 519,575 743,446

Table	3.24	Market	Indices	Volatility	and	Degrees	of	Freedom

Distribution	feature Index	1 Index	2 Index	3 Index	4 Index	5
Volatility 5.34 2.41 5.12 2.30 5.05
Degrees	of	freedom 15 22 5 16 16

The	correlation	matrix	between	the	market	indices,	 ,	is	given	by

Clearly,	the	distribution	of	the	market	indices	is	a	mixture	of	t-distributions.	Hence,	we	cannot
easily	obtain	market	risk	measures	analytically	and	resort	to	a	simulation-based	approach.
Using	1,000	scenarios	Table	3.25	displays	the	 ,	 ,	as	well	as	the
incremental	risk	(Inc)	and	Euler	risk	contributions	(Contr)	for	the	3	market	risk	books	and	the
aggregate	risk	using	either	a	t-copula	with	5	degrees	of	freedom	or	a	normal	copula.	As
expected	the	risk	is	higher	for	the	books	and	the	aggregate	portfolio	when	we	use	a	t(5)	copula
instead	of	a	normal	copula.	The	aggregate	market	risk	 	with	the	t(5)	copula	is	a	bit	above
50,000,000	units	of	currency	compared	to	a	bit	above	44,000,000	units	of	currency	using	a
normal	copula.



Table	3.25	VaR	and	CVaR	99%	Confidence	Level	Risk	Measures,	Incremental	Risk,	and	Risk
Contributions	for	the	Approximate	Firmwide	Market	Risk	Portfolio

Copula	=	t(5)
Market
risk	book

VaR Inc-VaR Contr-VaR CVaR Inc-CVaR Contr-CVaR

1 13,391,122.29 14,772,122.39 12,883,506.74 16,213,554.69 15,830,175.93 16,040,022.11
2 17,997,112.34 18,387,021.12 17,078,082.90 21,013,276.74 20,347,863,28 20,643,241.88
3 18,174,018.67 18,110,011.01 20,107,508.94 21,068,021.60 20,746,604.16 20,746,604.16
Aggregate 50,069,098.57 50,069,098.57 50,069,098.57 57,429,868.16 57,429,868.16 57,429,868.16
Copula	=	Normal
1 12,701,340.01 12,313,697.89 16,373,462.53 15,241,712.42 14,588,949.11 14,768,745.59
2 17,814,839.07 15,493,950.26 11,530,123.11 21,830,006.63 20,598,953.45 21,423,694.18
3 16,487,802.13 14,176,886.05 16,457,928.02 20,414,988.60 19,433,543.35 19,613,357.90
Aggregate 44,361,513.66 44,361,513.66 44,361,513.66 55,805,797.67 55,805,797.67 55,805,797.67

Our	next	step	is	to	examine	the	impact	of	stress	tests	on	the	market	risk	loss.	For	that	purpose
we	first	compute	the	market	indices	risk	factor	information	(RFI)	measure	and	correlation
(Corr)	with	the	aggregate	profit	and	loss	in	Table	3.26.	The	market	indices	RFI	suggests	that
index	1	is	the	main	driver	of	the	aggregate	risk	with	index	3	second,	closely	followed	by	index
4.	To	confirm	the	relative	impact	of	the	market	indices	Table	3.27	displays	the	market	indices
values	in	the	10	worst	scenarios	where	the	10th	worst	scenario	is	the	realized	
scenario	as	we	have	1,000	scenarios.	The	numbers	in	the	table	indeed	verify	that	in	all	worst-
case	aggregate	portfolio	losses	market	index	1	has	a	large	negative	value.	This	is	however	also
true	for	index	3	and	index	4,	while	index	2	and	5	mix	large	negative	values	with	positive	and
small	negative	values.	Looking	only	at	the	sizes	of	deltas	for	the	indices	in	Table	3.23	and	the
indices	distributional	characteristics	in	Table	3.24,	we	would	probably	have	guessed	that
index	3	would	be	the	main	source	of	risk.	However,	correlations	matter	as	well	and	index	1	is
the	only	index	that	has	positive	correlations	to	all	the	other	indices.

Table	3.26	Risk	Factor	Information	Measures	and	Portfolio	Profit-and-Loss	Correlations	for
the	Equity	Indices

Measure Index	1 Index	3 Index	4 Index	5 Index	2
RFI 0.281 0.146 0.143 0.094 0.040
Corr 0.828 0.705 0.685 0.518 0.342



Table	3.27	Realized	Equity	Index	Values	in	the	10	Worst	Aggregate	Portfolio	Loss	Scenarios

Worst	scenario Index	1 Index	2 Index	3 Index	4 Index	5
1 −18.02 −6.03 −12.28 −6.37 −17.63
2 −13.83 −6.87 −12.75 −2.48 −12.27
3 −12.41 1.39 −22.12 −7.65 −5.98
4 −15.19 −2.06 −13.17 −5.26 −10.01
5 −11.50 3.28 −22.19 −6.86 −5.20
6 −16.92 1.40 −25.08 −5.85 4.34
7 −11.99 −3.18 −9.54 −4.12 −12.69
8 −13.94 −1.90 −12.89 −4.04 −8.72
9 −10.67 −4.29 −10.52 −3.21 −10.51
10	 −9.56 2.32 −21.97 −7.46 −0.34

With	this	information	we	can	now	continue	to	focus	on	stressing	the	portfolio.	Focusing
initially	only	on	stressing	index	1	we	find	that	when	index	1	is	–20	and	the	other	indices
remain	at	zero	the	portfolio	loss	impact	is	12,294,268.83	units	of	currency.	If	we	stress	all
indices	to	–20	the	portfolio	loss	is	instead	133,187,265.81	units	of	currency.	This	is
significantly	above	the	 	and	 ,	partly	because	of	the	relatively	unlikely	event
of	all	indices	being	–20	with	the	assumed	univariate	distributions	for	the	indices,	but	also
because	the	correlation	matrix	has	offsetting	negative	correlations,	for	example,	between	index
2	and	index	3	and	4.	This	makes	it	even	more	unlikely	that	all	indices	will	be	very	large
negative	at	the	same	time.	On	the	other	hand,	stress	scenarios	are	model	independent	and
should	focus	on	unlikely	but	still	plausible	events.	Hence,	even	if	a	model	is	used	to	derive
information	on	hypothetical	stress	scenarios,	we	may	abandon	the	model	in	the	final	systematic
stress	design.	We	may	also	experiment	with	different	stressed	distributions	and	correlations	for
the	indices,	especially	since	we	now	know	from	this	example	that	correlations	can	have	a	large
impact	in	determining	the	main	risk	driver(s).

A	Reverse	Stress	Test	Example	Using	the	Glasserman	et	al.	(2013)	Approach
Our	next	example	on	hypothetical	stress	scenarios	uses	the	approach	by	Glasserman	et	al.
(2013)	to	compute	the	conditional	mean	of	the	risk	factors	conditional	on	a	certain	portfolio
loss	level	as	well	as	the	most	likely	loss	scenario	and	confidence	intervals	around	these
points.	The	data	used	are	historical	weekly	returns	data	for	the	indices	S&P	500,	FTSE,	DAX,
Nikkei	225,	Hang	Seng,	and	Bovespa,	ranging	from	May	3,	1993,	to	December	26,	2011.	This
data	set	is	also	used	by	Glasserman	et	al.	(2013).	To	construct	a	portfolio	we	use	a	weight	for
all	the	indices'	risk	factors	and	the	resulting	portfolio	returns	are	displayed	in	Figure	3.16.25
Having	the	portfolio	returns	we	define	a	loss	threshold	of	–0.05,	that	is,	–5%.	Using	this	loss
threshold	we	can	now	compute	the	conditional	mean	of	the	risk	factors	as	well	as	the	most
likely	loss	scenario.	In	Table	3.28	we	display	the	19	historical	dates	where	the	portfolio	loss
exceeded	the	loss	threshold	of	–0.05.	Table	3.28	also	displays	the	conditional	mean	loss	of	the



indices'	risk	factors	and	the	most	likely	loss	scenario.	To	compute	the	most	likely	loss	scenario
from	the	conditional	mean	of	the	risk	factors	we	have	assumed	a	t-distribution	for	the	portfolio
returns	with	 	degrees	of	freedom.

Table	3.28	The	19	Historical	Dates	Where	the	Portfolio	Loss	Exceed	the	Loss	Threshold	of
−5%,	the	Conditional	Loss,	and	the	Most	Likely	Loss

Date Portfolio S&P	500 FTSE DAX Nikkei
225

Hang
Seng

Bovespa

1/5/1998 −0.0547 −0.04856 −0.01063 −0.02899 −0.0173 −0.16722 −0.12996
4/10/2000 −0.07612 −0.10538 −0.05964 −0.04086 0.00898 −0.04716 −0.1553
3/5/2001 −0.06194 −0.06187 −0.04007 −0.04504 −0.05922 −0.10577 −0.05923
3/12/2001 −0.05874 −0.0672 −0.05991 −0.07574 −0.03127 −0.04736 −0.05495
9/10/2001 −0.13637 −0.14801 −0.11023 −0.20666 −0.06577 −0.12939 −0.2186
6/3/2002 −0.06119 −0.07144 −0.05703 −0.08463 −0.0345 −0.05761 −0.03276
7/8/2002 −0.05136 −0.06913 −0.09284 −0.05745 −0.00192 0.00469 −0.01544
7/15/2002 −0.05811 −0.07992 −0.02978 −0.05784 −0.03764 −0.03032 −0.03501
9/30/2002 −0.08259 −0.10028 −0.04845 −0.19239 −0.0232 −0.06213 −0.09046
1/27/2003 −0.0593 −0.05821 −0.10926 −0.11158 −0.01541 −0.0339 −0.05681
9/29/2008 −0.07698 −0.09399 −0.02126 −0.04395 −0.0803 −0.05351 −0.12339
10/6/2008 −0.19568 −0.18195 −0.21047 −0.2161 −0.24334 −0.16319 −0.20008
11/10/2008 −0.0646 −0.09854 −0.03297 −0.05568 −0.01336 −0.0305 −0.0394
11/17/2008 −0.08705 −0.08389 −0.10678 −0.12374 −0.06518 −0.06524 −0.1268
3/2/2009 −0.14813 −0.1735 −0.15727 −0.16925 −0.07794 −0.12049 −0.10964
2/1/2010 −0.07998 −0.06881 −0.08552 −0.09992 −0.06864 −0.11803 −0.10674
3/14/2011 −0.05196 −0.03175 −0.04546 −0.07167 −0.13905 −0.04736 −0.01664
8/1/2011 −0.07702 −0.07189 −0.09771 −0.12888 −0.05422 −0.06658 −0.09986
9/26/2011 −0.05934 −0.06956 −0.04469 −0.01283 −0.01849 −0.09575 −0.0854

Conditional
mean

−0.08111 −0.08863 −0.07474 −0.09596 −0.05462 −0.07562 −0.09245

Most	likely	loss −0.06489 −0.0709 −0.05979 −0.07677 −0.0437 −0.0605 −0.07396



Figure	3.16	Index	Portfolio	Returns	Between	May	3,	1993,	and	December	26,	2011

Our	next	step	in	this	example	is	to	compute	the	confidence	intervals	for	the	indices'	risk	factors
around	the	conditional	mean	loss	and	the	most	likely	loss.	The	confidence	intervals	are
computed	as	the	empirical	likelihood	confidence	regions	and	use	a	numerical	optimization
scheme.	As	an	example	of	the	confidence	intervals,	we	display	the	confidence	intervals	for	the
risk	factors	Hang	Seng	and	Nikkei	225	in	Figure	3.17.	In	Figure	3.17	we	have	computed	both
50%	and	90%	coverage	confidence	intervals.	Figure	3.17	shows	that	extreme	portfolio	losses
are	often	associated	with	joint	negative	returns	for	Hang	Seng	and	Nikkei	225.	Remember	that
the	portfolio	is	linear	and	therefore	this	is	a	well-behaved	situation.	More	complex	and
nonlinear	portfolios	can	show	a	greater	range	of	risk	factor	values	that	yield	the	same	or
almost	the	same	portfolio	loss.	Sometimes	a	risk	factor	can	display	positive	as	well	as
negative	values	that	contribute	to	portfolio	extreme	loss	values.	The	complexity	also	increases
with	the	risk	factor	dimension,	both	in	terms	of	solving	for	the	 -dimensional	confidence
regions	numerically	as	well	as	displaying	and	interpreting	results.



Figure	3.17	Conditional	Mean,	Most	Likely	Loss	and	50%	and	90%	Confidence	Intervals
Around	the	Points	for	the	Nikkei	225	and	Hang	Seng	Index	Risk	Factors

Practical	Approaches	to	Reverse	Stress	Tests	for	Large	Portfolios
In	practice,	for	a	large	portfolio	with	many	risk	factors,	portfolio-based	risk	factor	dimension
reduction	methods	such	as	the	risk	factor	information	measure	and	the	partial	least	squares
method	can	be	the	first	step	in	reverse	stress	testing.	Next,	assuming	one	can	identify	a	set	of
significantly	reduced	core	risk	factors	that	contribute	to	the	majority	of	the	portfolio	loss,	one
can	hold	constant	the	other	risk	factors	and	apply	the	Grundke	(2011,	2012)	or	the	Glasserman
et	al.	(2013)	reverse	stress	test	approach	to	the	core	risk	factors.	Hence,	we	can	consider	the
following	two-step	method	of	reverse	stress	testing:

1.	 Use	a	portfolio-based	risk	factor	dimension	reduction	method	to	reduce	number	of	risk
factors	to	the	top	 	risk	factors.

2.	 Holding	constant	the	“non-top”	 	risk	factors,	perform	the	Grundke	(2011,	2012)	goal-
seek	for	the	top	 	risk	factors	or	compute	the	Glasserman	et	al.	(2013)	confidence	intervals
for	the	 	risk	factors.

Another	approach	to	dimension	reduction	in	step	1	is	the	use	of	economic	factor	models	or
unobserved	factor	models	such	as	principal	component	analysis.	However,	as	we	have
discussed	previously,	such	models	are	often	based	on	selecting	risk	factor	components	that
have	high	explanation	of	historical	movements	and	not	necessarily	movements	that	can	actually



explain	portfolio	loss.	For	example,	principal	component	analysis	is	based	on	selecting	yield
curve	components	that	have	high	explanation	of	historical	yield	curve	movements	and	not
necessarily	yield	curve	components	that	can	actually	explain	portfolio	profit	and	loss.	Post-
simulation	one	has	available	both	risk	factor	scenarios	and	portfolio	profit-and-loss	scenarios.
It	is	therefore	natural	to	consider	dimension	reduction	methods	that	actually	try	to	infer	the
most	influential	risk	factors	on	the	portfolio	(and	not	historical	variation).	Using	portfolio-
based	risk	factor	dimension	reduction	methods	is	also	more	credible	for	being	applied	to	real
portfolios	with	hundreds	or	thousands	of	risk	factors.

Once	one	has	obtained	reasonable	reverse	stress	test	scenarios	for	the	top	 	risk	factors	one
can	spread	the	reverse	stress	test	to	all	the	 	risk	factors	using	a	suitable	method—for	example,
conditional	distribution	approaches.

Integration	of	Stress	and	Model	Analysis
The	integration	of	stress	and	model	analysis,	our	fourth	item	in	our	stress	testing	components
above,	is	a	practice	of	increasing	importance.	Integration	of	stress-	and	model-based	analysis
is	an	important	issue	because	it	allows	a	comprehensive	tail	risk	analysis	based	on	both
information	from	historical	data	and	forward-looking	hypothesis	of	stress	events.	It	also
allows	stress	scenarios	to	be	a	part	of	advanced	risk	management	decision-making	analysis
such	as	scenario-based	portfolio	optimization,	which	we	will	discuss	below.	More	importantly
perhaps,	integration	of	stress	and	model	analysis	provides	one	solution	to	how	to	aggregate	the
results	of	different	stress	tests,	and	how	to	reconcile	a	stress	test	risk	charge	with	a	model-
based	 	or	 -type	charge.	Simply	summing	stress	risk	charges	for	multiple	stress	tests
and	model	based	risk	charges	is	not	a	solution.26

Berkowitz	(2000)	proposed	a	single	period	model	that	superimposes	probability	weighted
exogenous	rare	event	scenarios	to	a	 -type	risk	model.	In	Berkowitz's	model,	stress-testing
is	embedded	within	the	 	model	such	that	a	random	sample	of	asset	returns	 ,	

	is	realized	as

where	 	is	the	base	risk	model,	 ,	are	point	mass	(stress)	events,	and	“with
probability”	denotes	the	probability	of	the	base	risk	model	and	the	stress	events.	Clearly,	

	and	 .	This	model	integration	is	motivated	by	the	fact	that	stress	events
represent	potential	future	economic	states	that	are	not	captured	by	the	base	model.	The	base
risk	model	is	based	on	financial	economic	models	calibrated	from	data	while	the
complementing	stress	scenarios,	 ,	are	forward-looking	based	on	hypothetical
assumptions	and	expert	knowledge.

Recently,	Chen	and	Skoglund	(2013)	extends	the	Berkowitz	model	to	a	multi-period	switching
simulation	model	framework	to	integrate	both	model-	and	event-based	stress.	This	means	that



multi-period	stress	tests	and	model-based	views	can	naturally	be	integrated	in	a
comprehensive	risk	model.	We	refer	to	Chen	and	Skoglund	(2013)	for	an	application	of	the
model	to	an	equity	portfolio	with	multi-period,	dynamic,	rare	stress	events	and	switching
models	in	stressed	periods	using	an	equity	index	correlated	with	the	portfolio	as	indicator.	The
integrated	stress	model	framework	is	of	course	more	broadly	applicable	than	market	risk.	For
example,	credit	risk	models,	as	we	will	discuss	in	the	next	chapter,	usually	have	limited	data
for	calibration	and	validation	and	hence	rely	on	both	expert	judgment	in	calibration	as	well	as
on	complementary,	forward-looking	scenarios	to	model-based	views.

Of	course,	market	risk	 -type	risk	models	may	also	contain	an	inherent	element	of	stress	in
calibration—for	example,	by	calibration	of	the	risk	factor	models	on	stressful	periods	such	as
recent	crisis,	and	Basel	Committee	(2009a)	introduced	an	added	stressed	 	component	into
the	market	risk	capital	requirement.	However,	the	basis	of	the	model	is	still	historical	with	no
forward-looking	stress	events	complementing	the	historical	view.

Portfolio	Optimization
Optimization	is	used	frequently	in	market	risk	management	to	find	risk	and	return	optimal
portfolios	as	well	as	to	replicate	portfolios.	In	this	section	we	will	focus	on	the	classical
problems	of	portfolio	mean	risk	optimization	and	cash	flow	replication.	Portfolio	replication
optimization	is	also	used	frequently	as	a	pre-process	to	model-based	 -type	analysis	to
extract	positions	from	partial	information	on	funds	or	portfolios.	One	example	is	revealing	the
most	likely	holdings	of	a	hidden	fund	investment	in	the	portfolio.	See	Markov	et	al.	(2004)	for
an	application	of	dynamic	style	analysis	for	detecting	portfolio's	hidden	dynamics.	Another
example	is	when	the	risk	manager	may	only	have	portfolio	sensitivity	information	available
such	as	portfolio	delta	and	gamma	information	only.	In	this	case	optimization	can	be	used	to
find	the	best	replicating	positions	that	can	subsequently	be	used	as	input	to	a	 	risk	model.

Portfolio	Mean	Risk	Optimization
The	traditional	portfolio	optimization	is	mean-variance	optimization,	which	was	originated	by
Markowitz	(1952).	The	decision	rule	is	to	maximize	the	expected	return	of	the	portfolio	while
keeping	the	return	variance	to	a	certain	level	(or	to	minimize	the	return	variance	for	a	given
expected	return).	The	resulting	portfolios	for	different	desired	variance	levels	make	a	so-
called	mean-variance	efficient	frontier.	The	efficient	frontier	concept	is	useful	as	a	criterion
for	investor	decision	making—presenting	the	investor	with	a	curve	that	shows	the	maximum
feasible	expected	return	that	can	be	obtained	per	unit	of	risk.	The	Markowitz	efficient	portfolio
is	the	portfolio	that	has	holdings	that	maximize	the	portfolio	expected	return	subject	to	a
constraint	on	the	portfolio	volatility.

Traditional	Markowitz	Efficient	Portfolio
Let	 	be	a	vector	of	multivariate	normal	random	returns	of	 	assets	in	a	portfolio
and	 	is	the	vector	of	the	proportion	of	the	portfolio	invested	in	these	assets.	The
covariance	matrix	of	returns	on	these	 	assets	is	 .	The	mean-variance	optimization	seeks	to



3.23

find	an	optimal	vector	 	such	that

is	subject	to:

where	 	are	the	expected	returns	of	the	 	assets	in	the	portfolio.	Here,	 	is	a	preset	tolerance	of
the	variance	of	portfolio	return,	and	 	and	 	are	the	lower	and	upper	bounds	of	weight	on	the
asset	 	in	the	portfolio.	The	optimal	solutions	from	a	range	of	 	constraints	result	in	a	mean-
variance	efficient	frontier.

The	Markowitz	mean-variance	optimization	is	important	theoretically.	However,	in	practice,
as	we	have	seen,	the	multivariate	normal	model	may	not	be	a	good	descriptor	of	financial
returns,	and	in	addition	market	risk	portfolios	typically	contain	significantly	nonlinear	products
such	as	options.	This	assumption	deviation	imposes	challenges	to	the	mean-variance
optimization	model	above.	Indeed,	in	the	practical	setting	of	a	nonlinear	portfolio	and	a
deviation	from	the	multivariate	normal	distribution	for	the	risk	factors	the	variance	can	no
longer	be	considered	a	good	measure	of	risk.	Therefore,	we	consider	using	 	as	an
alternative	risk	measure	to	variance,	and	employ	a	scenario-based	approach	to	optimization.

Scenario-Based	Portfolio	Optimization
Scenario-based	optimization	can	use	any	multivariate	model	for	the	portfolio	risk	factors	and
full	valuation	of	nonlinear	portfolio	instruments.	The	method	is	hence	useful	in	practice	for
portfolio	optimization.	To	introduce	the	more	generally	applicable	scenario-based
optimization	we	denote	by	 	the	portfolio	returns	with	distribution	 	and	express	 	as	the
conditional	expectation	of	the	portfolio	return	associated	with	choice	of	asset	weights	 	as

where	 	if	 	and	 	otherwise,	and	 	is	the	smallest	solution	to

where	 	if	true	and	 	otherwise.	Rockafellar	and	Uryasev	(2000)	proved	that	equation
(3.23)	is	a	convex	and	continuously	differentiable	function.	In	a	sample	space	of	
equiprobable	simulated	samples	from	the	distribution	 	we	can	further	approximate	equation
(3.23)	by	a	convex	and	piecewise	linear	function



Therefore,	the	minimum	 	conditional	on	a	target	return	 	is	approximated	as

subject	to

as	well	as	including	potentially	upper	and	lower	bounds	on	optimal	holdings	and	linear
holding	constraints.

Krokhmal	et	al.	(2002)	showed	duality	of	the	mean	 	optimization	in	the	sense	that	finding
the	minimum	 	conditional	on	a	target	return	generates	the	same	efficient	frontier	as
maximizing	the	mean	return	subject	to	a	preset	tolerance	of	 .

The	major	advantage	of	the	above	linear	program	formulation,	due	to	Rockafellar	and	Uryasev
(2000,	2002),	is	that	even	large-scale	programs	can	be	solved	very	efficiently.27	Having
obtained	an	efficient	linear	programming	formulation	for	a	 	risk	constraint	the	reader	may
also	want	to	optimize	the	expected	return	using	a	 	constraint.	However,	as	noted
previously,	 	is	not	a	coherent	risk	measure	in	general.	Optimization	with	a	 	constraint	is
therefore	potentially	a	non-convex	program	with	many	local	extrema.	For	these	reasons	direct	

	optimization	may	be	nontrivial	and	the	approach	taken	by	Larsen,	Mausser,	and	Uryasev
(2002)	is	to	approximate	the	 	optimization	using	a	series	of	 	constraints.

Scenario-Based	Portfolio	Optimization	Example
Using	the	sample	equity	portfolio	in	Table	3.1	we	compute	the	Markowitz	efficient	frontier
using	1,000	simulations.	We	perform	both	an	unconstrained	and	a	constrained	portfolio
optimization.	In	the	constrained	case	we	have	enforced	a	minimum	and	maximum	portfolio
weight	for	each	instrument,	being	10%	and	50%,	respectively.	The	efficient	frontier	has	been
calculated	for	 	risk	ranging	from	1%	to	15%	of	the	portfolio	mark	to	market.	Table
3.29	and	Figure	3.18	display	the	efficient	frontiers	obtained	by	applying	the	Rockafellar	and
Uryasev	(2000,	2002)	approach	to	portfolio	optimization	of	 .	The	unconstrained	and
constrained	efficient	frontiers	in	Table	3.29	and	Figure	3.18	should	be	compared	with	the
current	portfolio	 	percentage	of	the	market	value	and	expected	return	of	the	absolute
portfolio	being	approximately	 	(see	Table	3.2	for	the	previously	computed	 	of	30.46
with	1,000	scenarios)	and	 .



Table	3.29	Efficient	Frontiers	for	the	Unconstrained	and	the	Constrained	Case	Across	CVaR
99%	Confidence	Risk	Ranging	Between	1%	and	15%	of	Portfolio	Mark	to	Market

	constraint	(%) Unconstrained	optimal	return	(%) Constrained	optimal	return	(%)
1 8.42 5.19
2 8.71 5.47
3 8.94 5.66
4 9.13 5.82
5 9.29 5.96
6 9.44 6.08
7 9.58 6.19
8 9.71 6.30
9 9.83 6.40
10 9.99 6.49
11 10.0 6.58
12 10.1 6.60
13 10.2 6.73
14 10.3 6.81
15 10.4 6.88



Figure	3.18	Efficient	Frontiers	for	the	Unconstrained	and	the	Constrained	Case	Across	CVaR
99%	Confidence	Risk	Ranging	Between	1	and	15%	of	Portfolio	Mark	to	Market

Focusing	first	on	the	unconditional	case	then,	conditional	on	the	simulations	as	the
representation	of	potential	future	returns	and	risk,	the	current	portfolio	weights	are	clearly
suboptimal.	From	Table	3.29	we	can	reduce	risk	from	the	current	7.5%	to	1%	and	still	achieve
a	13.5	times	higher	expected	return	(8.42%	/	0.621%).

The	current	and	optimal	portfolio	weights	as	well	as	net	amount	to	buy	and	sell	are	displayed
in	Table	3.30	when	the	 	constraint	is	7%.	The	unconstrained	optimal	portfolio	hence
prefers	no	weight	in	either	of	the	stock	positions	or	the	European	options	on	stock	B.	It
allocates	a	weight	of	approximately	61%	to	the	European	call	on	stock	A	and	32%	to	the
European	put	on	stock	A.	The	optimal	allocation	for	the	other	 	constraints	is	similar
in	the	sense	that	the	optimal	portfolio	weights	always	choose	the	European	options	on	stock	A
as	the	only	instruments	in	the	optimal	portfolio.	For	example,	for	 	constrained	to	1%
the	weights	are	close	to	50%	for	each	of	the	options	on	stock	A.



Table	3.30	Optimal	Net	Buy-and-Sell	Amounts—Unconstrained	Portfolio	with	CVaR
Constrained	at	7%

Instrument	type Equity MtM Current	weight
(%)

Optimal	weight
(%)

Net	buy
(+)/sell( )

Equity	spot A 50 12.257 0 −50
Equity	spot B 280 68.641 0 −280
Equity	option
(EuC)

A 6.64 1.628 61.361 243.66

Equity	option
(EuP)

A 5.16 1.266 38.639 152.45

Equity	option
(EuC)

B 37.19 9.118 0 37.19

Equity	option
(EuP)

B 28.92 7.089 0 28.92

As	we	increase	the	 	constraint	a	progressively	larger	weight	gets	allocated	to	the
European	call	option	on	stock	A.	At	the	 	constraint	15%	the	European	call	weight	is
68.357%	and	the	European	put	weight	is	31.643%.	We	can	interpret	these	optimal	portfolios
such	that	at	low	 	risk	levels	the	optimal	portfolio	is	a	so-called	straddle.	A	straddle	gives
a	profit	if	the	stock	price	of	A	moves	away	sufficiently	from	the	strike	price.	If	the	stock	A
price	is	close	to	the	strike,	it	gives	a	loss.	It	is	hence	a	volatility	bet.	As	we	increase	the	
risk	tolerance	level	the	weight	on	the	European	call	option	increases.	This	is	close	to	a	so-
called	strap	option	position	with	two	calls	and	one	put.	The	strap	position	bets	on	volatility	as
the	straddle	position	but	the	larger	weight	on	the	call	option	bets	higher	on	a	stock	A	price
increase	than	a	decrease.28

The	obtained	optimal	portfolios	can	be	explained	by	the	volatilities	and	expected	returns	for
stock	A	and	stock	B	used	in	the	simulation.	Stock	A	has	a	higher	volatility	than	stock	B.
Specifically,	stock	A	has	volatility	of	0.1168	while	stock	B	has	a	volatility	of	0.0355.	Stock	A
also	has	a	higher	expected	return	of	0.11	compared	to	0.10	for	stock	B.

Now,	considering	the	constrained	optimization,	Table	3.29	shows	that	the	constrained	optimal
return	is	significantly	lower	than	the	unconstrained.	This	is	because	we	have	forced	a	minimum
portfolio	weight	of	10%	for	each	of	the	portfolio	instruments	while	the	optimal	portfolio	has
no	holding	in	either	of	the	stocks	or	the	European	options	on	stock	B.	In	the	constrained	case
the	optimal	portfolios	for	the	different	 	constraints	allocate	the	minimum	portfolio	weights
of	10%	to	the	stocks	and	the	options	on	stock	B.	The	remaining	weights	are	allocated	to	the
European	options	on	stock	A.	As	for	the	unconstrained	case,	as	the	 	constraint	increases,
more	of	the	weight	is	given	to	the	European	call	option	on	stock	A.	Table	3.31	displays	the
current	and	optimal	portfolio	weights	as	well	as	net	amount	to	buy	and	sell	for	the	constrained
case	when	the	 	constraint	is	7%.



Table	3.31	Optimal	Net	Buy-and-Sell	Amounts—Constrained	Portfolio	with	CVaR
Constrained	at	7%

Instrument	type Equity MtM Current	weight
(%)

Optimal	weight
(%)

Net	buy
(+)/sell( )

Equity	spot A 50 12.257 37.873 −9.21
Equity	spot B 280 68.641 22.127 −239.21
Equity	option
(EuC)

A 6.64 1.628 10 147.85

Equity	option
(EuP)

A 5.16 1.266 10 85.09

Equity	option
(EuC)

B 37.19 9.118 10 3.60

Equity	option
(EuP)

B 28.92 7.089 10 11.87

Model	Risk	and	Portfolio	Optimization
A	common	approach	to	measure	the	uncertainty	due	to	estimation	error	in	portfolio
optimization	is	the	statistical	bootstrapping	approach	(portfolio	re-sampling)	to	obtaining
confidence	bounds.	See	Scherer	(2004,	ch.	3)	in	this	regard.	Of	course,	this	approach	does	not
solve	the	general	question	of	model	risk—that	is,	differences	between	different	models—as	it
only	attempts	to	take	into	account	the	uncertainty	in	a	specific	model,	specifically	the
estimation	risk.	Different	model	assumptions	such	as	expected	returns,	volatilities,	and
correlations	can	have	a	significant	effect	on	the	outcome	of	the	optimization	as	we	have	seen	in
the	example	above.	One	is	therefore	advised	to	consider	not	only	a	single	model	but	a	set	of
plausible	models	in	the	efficient	frontier	approach	to	optimal	portfolio	construction.

Another	approach	to	model	risk	in	portfolio	optimization	is	robust	optimization	approaches.
The	robust	optimization	models	can	be	used	both	in	the	traditional	mean-variance	optimization
to	cater	for	uncertainty	in	the	mean	and	variance	estimates	as	well	as	in	scenario-based
optimization—accounting	for	model	distribution	uncertainty.	We	refer	to	Bertsimas	et	al.
(2011)	for	an	overview	of	robust	optimization	methods	and	applications	in	finance.

When	the	optimization	is	based	on	simulated	scenarios	it	is	an	advantage	as	not	only	model-
based	scenarios	but	also	expert	views	and	specific,	forward-looking	stress	scenarios	can	be
integrated.	As	we	have	discussed	in	the	context	of	scenario	analysis	and	stress	testing,	there
are	integrated	models	that	can	join	model-based	views	as	well	as	forward-looking	expert
views,	for	example,	the	Berkowitz	(2000)	model	and	its	generalization	in	Chen	and	Skoglund
(2013).

Cash	Flow	Replication
Cash	flow	replication	models	stem	from	the	classical	problem	of	bond	portfolio	immunization.
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See	Hawawini	(1982),	Granito	(1984),	Christensen	and	Fabozzi	(1987),	and	Elton	and	Gruber
(1995,	ch.	21)	for	textbook	accounts	on	bond	portfolio	immunization.	In	this	approach	the	bond
portfolio	is	immunized	from	interest	rate	shifts	by	a	portfolio	that	replicates	the	bond
portfolio's	duration	and	convexity.	However,	we	focus	here	on	immunization	achieved	by	an
exact	cash	flow	matching	optimization.	The	cash	flow	matching	is	accomplished	by	finding	the
minimum	cost	portfolio	such	that	the	matching	portfolio	cash	flows	satisfy	the	constraint	of
being	sufficient	to	meet	the	liabilities.	Specifically,	in	this	approach	the	model	takes	as
objective	function	the	deviation	to	be	minimized	over	a	set	of	 ,	 	of	discrete	time
buckets	with	weights	 .	The	cash	flow	time	buckets	are	there	to	reduce	the	complexity	of
the	problem	by	grouping	cash	flows	into	different	time	spans	andtreating	them	as	one.	The
weight	on	each	time	bucket	is	used	to	indicate	the	importance	of	the	time	bucket	mismatch
contribution	to	the	final	decision.	When	deciding	on	the	weights	on	the	time	buckets	it	is	in
general	advisable	to	consider	the	possibility	of	being	able	to	trade	the	replication	portfolio.
Indeed	if	the	replicating	portfolio	is	liquidly	traded,	then	immediate	cash	flow	mismatches	are
most	important	to	close.	The	choice	of	the	time	buckets	and	their	weights	therefore	depends	on
both	the	time	horizon	and	the	mispricing	tolerance.

Cash	Flow	Deviation	Optimization
To	represent	the	cash	flow	deviation	minimization	problem	we	denote	by	 	the	set	of	all
instruments	whose	shares	in	the	replicating	portfolio	are	to	be	determined.	We	also	denote	by	
the	set	of	cash	flow	instruments	(liabilities)	that	are	to	be	replicated.29	Denoting	the	shares	for
instrument	 	by	 	and	the	shares	vector	for	all	instruments	in	 	by	 ,	we	then	have

where	 	is	the	discount	factor	for	time	bucket	 .

In	a	simulation	with	 	scenarios	equation	(3.24)	becomes

where	 	is	the	number	of	scenarios	and	 	is	the	scenario	probability,	 	is	the	weight	of	the
cash	flow	bucket	 ,	 	is	the	cash	flow	from	instrument	 	in	time	bucket	 	in	scenario

,	 	is	the	discount	factor	for	time	bucket	 	in	scenario	 .30	Finally,	 	is	determined
according	to	the	matching	rule,	for	example,

represents	the	absolute	mismatch	or	an	L1-norm	deviation,	and

the	least	squares	cash	flow	mismatch	or	L2-norm	deviation.



In	practice,	all	the	liabilities	can	be	aggregated	to	a	single	liability	when	performing	the
optimization.	This	is	because	the	decision	criterion	is	only	with	respect	to	the	best	replicating
asset	holdings.

Example	Cash	Flow	Deviation	Optimization	Using	the	Least	Squares	Criterion
We	consider	5	scenario	cash	flows,	 ,	from	asset	1,	asset	2,	and	a	liability	across	

	time	buckets.	Table	3.32	displays	the	asset	and	liability	cash	flow	scenarios	for	the
8	time	buckets,	denoted	CF	1,	…,	CF	8.	To	further	illustrate	the	mismatch	of	asset	and	liability
cash	flows	with	unit	holdings	of	the	assets	Figure	3.19	displays	graphically	the	cash	flow
scenarios	for	asset	1	and	the	corresponding	negative	liability	scenario	cash	flows.

Table	3.32	Asset	and	Liability	Cash	Flow	Scenarios	for	the	8	Time	Buckets

Asset/Liability Scenario CF	1 CF	2 CF	3 CF	4 CF	5 CF	6 CF	7 CF	8
Asset	1 1 5 10 8 7 9 12 11 23
Asset	1 2 2 13 6 7 18 12 11 23
Asset	1 3 9 10 8 1 9 12 4 2
Asset	1 4 12 10 8 1 9 12 17 23
Asset	1 5 31 3 5 21 11 1 11 12
Asset	2 1 1 1 4 11 3 9 5 3
Asset	2 2 1 1 2 3 3 2 5 3
Asset	2 3 1 1 9 21 3 9 5 3
Asset	2 4 1 8 4 11 3 9 19 6
Asset	2 5 2 1 0 1 33 9 0 3
Liability 1 99 150 43 11 31 9 15 3
Liability 2 103 100 22 18 2 2 16 3
Liability 3 93 19 95 2 3 8 9 3
Liability 4 117 58 41 1 3 94 102 6
Liability 5 200 10 33 120 31 68 0 32
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Figure	3.19	Asset	1	and	Liability	Cash	Flow	Scenarios	for	the	8	Time	Buckets

Using	an	equal	weight	for	all	time	buckets	( )	and	the	least	squares	cash	flow	mismatch	as
criterion	for	selecting	optimal	asset	weights	we	find	the	optimal	replicating	asset	weights,	
and	 ,	for	asset	1	and	2,	respectively,	as	 	and	 .	The	quadratic	optimization	yields
the	optimal	least	squares	objective	function	as	 	and	hence	the	replication	comes	with
significant	error.

Cash	Flow	Mismatch	as	a	Constraint	vs.	Naive	Cash	Flow	Replication
The	previous	numerical	example	shows	that	one	needs	to	be	careful	with	a	naive	approach	to
replicating	cash	flows.	The	replication	error	can	in	practice	be	significant.	In	particular,	the
main	drawbacks	of	the	replicating	portfolio	model	in	equation	(3.25)	are:

1.	 It	doesn't	allow	control	of	how	well	the	asset	portfolio	should	match	the	liabilities	that	are
to	be	replicated	for	the	purpose	of	pricing	and/or	hedging.	Specifically,	the	optimization
only	finds	the	best	match	based	on	the	given	set	of	tradable	instruments.

2.	 Because	the	difference	between	the	replicating	portfolio	and	the	liabilities	is	provided	as	it
is,	there	is	no	way	to	check	a	priori	if	the	tradable	instruments	are	good	candidates	for	the
replicating	portfolio,	even	when	the	minimal	mismatch	is	reached.	This	is	because	the
returned	minimized	mismatch	may	remain	at	a	very	high	magnitude.

3.	 Valuation	is	done	separately	from	the	replicating	process	in	equation	(3.25).	The	process
of	finding	the	replicating	portfolio	doesn't	calculate	the	replicating	value	at	all.	This	is
problematic	because	if	there	are	several	asset	portfolios	that	are	able	to	match	the
liabilities	equally	well,	then	from	a	pricing	perspective	we	would	prefer	the	least	cost
portfolio.

To	address	these	deficiencies	Chen	and	Skoglund	(2012)	recast	the	naive	cash	flow	replication
in	equation	(3.24)	to	a	cash	flow	mismatch	as	a	constraint	of	the	objective	to	find	the	minimal
cost	replicating	portfolio.	This	gives	the	optimization	problem,

subject	to	the	mismatch	constraint	for	each	time	bucket	
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where	the	constraint	function	 	can	be	absolute	or	squared	deviation.	Neither	the	absolute	nor
least	square	cash	flow	mismatch	criterion	is	designed	to	effectively	capture	large	tail
mismatches.	Chen	and	Skoglund	(2012)	therefore	also	include	risk	constraints	such	as	
constraints—expanding	on	the	return	 	optimization	from	Rockafellar	and	Uryasev	(2000)
to	cash	flow	mismatches.	The	cash	flow	mismatch	as	constraint	model	formulation	now
explicitly	controls—using	 —how	well	the	asset	portfolio	should	match	the	liabilities
that	are	to	be	replicated	for	the	purpose	of	pricing	and/or	hedging.	It	also	includes	valuation	as
part	of	the	process	to	find	the	least	cost,	or	alternatively,	the	maximum	return	portfolio.
Another	advantage	of	the	cash	flow	mismatch	as	constraint	formulation	is	that	the	optimization
is	now	an	efficient	linear	program	for	absolute	and	 	constraints.

Applications	of	Cash	Flow	Replication
Cash	flow	replication	optimization	has	many	potential	applications.	The	most	well-known	is
probably	as	finding	best	cash	flow	hedging	portfolios.	However,	cash	flow	replication
optimizations	also	allows	us	to	replace	certain	cash	flow	assets	with	other,	tradable	cash	flow
assets	that	we	have	a	fundamental	understanding	of	and	hence	may	be	able	to	analyze	using
traditional	risk	measurement	and	hedging	techniques	applied	to	market	instruments.	For
example,	replication	of	deposits	with	tradable	bonds	allows	the	treasurer	to	determine	an
approximate	fair	value	of	deposits	and	implement	market	hedging	schemes.	In	these
applications,	the	replication	of	deposits	with	tradable	instruments	is	crucial	as	this	restates	the
problem	of	pricing	and	hedging	deposits	into,	for	the	treasury	trader,	well-known,	standard
market	instrument	valuation	and	hedging.

Cash	flow	replication	optimization	can	also	be	used	as	a	portfolio	dimension	reduction	tool	for
risk	analysis,	for	example,	replacing	a	large	dimensional	fixed	income	portfolio	with	just	a
few	best	replicating	fixed	income	instruments.	In	risk	management	applications	using	cash	flow
replication	the	cash	flow	mismatch	as	a	constraint	approach	is	beneficial	as	it	explicitly
constrains	tail	deviation	in	addition	to	expected	deviation.	We	will	return	to	cash	flow
optimization	models	later	in	this	book	in	the	chapter	on	liquidity	risk.	Specifically,	we	will
consider	the	use	of	cash	flow	mismatch	optimization	models	in	determining	efficient	liquidity
hedging	portfolios	and	liquidity	execution	strategies.

Developments	in	the	Market	Risk	Internal	Models
Capital	Regulation
The	classical	regulatory	model	for	internal	market	risk	 ,	founded	in	1996,	requires
estimation	of	the	10-day	 	 .	The	capital	requirement,	 ,	is	based	on
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with	 	a	regulatory	multiplier	between	3	and	4	that	depends	on	the	model's	backtesting
performance.	The	capital	charge	hence	takes	the	largest	of	the	most	recent	 	and	the	60-day
average	of	 :s	scaled	with	the	regulatory	multiplier.	In	2009,	about	13	years	after	the	1996
introduction	of	a	model-based	 	approach	to	regulatory	capital	for	market	risks,	the
regulators	introduced	an	additional	market	risk	 	charge	as	part	of	the	so-called	Basel	2.5.
This	charge	required	a	stressed	period	calibration	of	the	market	risk	models.	The	resulting
market	risk	charge	is	the	sum	of	the	regular	and	stressed	 .	However,	this	was	only	the
starting	point	for	a	revision	to	a	new	market	risk	regulation.	Recently,	the	market	risk
regulation	is	going	through	its	most	substantial	revision	ever	(Basel	Committee,	2012,	2013b,
2014a).	The	current	regulatory	proposal	for	a	fundamental	review	of	the	market	risk	in	the
trading	book	includes,	for	example:31

A	move	to	 	at	the	97.5%	confidence	level	as	the	risk	measure—replacing	99%	 .32
This	move	to	 	would	also	undo	the	Basel	2.5	introduced	double	counting	of	 	+
stressed	 	and	base	the	capital	requirement	on	a	single	stressed	 .

A	mapping	of	positions	to	liquidity	horizons	ranging	between	10	days	and	1	year.	The
liquidity	horizons	are	derived	from	the	liquidity	of	the	risk	factors	that	the	positions	depend
on.	This	move	to	a	position	specific	liquidity	horizon	removes	the	need	for	the	regulatory	
	multipliers	minimum	value	of	3.

A	focus	on	stressed	market	period	analysis,	model	approval,	and	model	performance
measurement	on	trading	desk	level—rather	than	on	just	aggregate	(entity)	portfolio	level.

A	mandatory	standardized	approach	that	also	needs	to	be	disclosed	on	the	trading	desk
level.

A	revised,	stricter	boundary	for	trading	book	allocated	positions	with	the	purpose	to
restrict	banks	from	moving	positions	from	banking	to	trading	book	and	vice	versa	for	more
favorable	treatments.

A	restriction	on	banks	in	the	modeling	of	cross-asset	class	diversification—with
diversification	level	controlled	by	a	diversification	parameter,	 .

We	have	already	discussed	some	of	these	items,	for	example,	the	use	of	 	instead	of	 ,
and	the	introduction	of	liquidity	horizons.	Basel	Committee	proposes	five	liquidity	horizon
categories	ranging	from	the	current	10	days	to	1	year	to	which	positions	can	be	allocated.
Specifically,	the	regulators	put	forward	risk	factor	categories	with	preassigned	liquidity
horizons	that	banks	need	to	map	their	risk	factors	to.	Not	surprisingly,	credit	risk	factor
categories	are	typically	allocated	the	longest	liquidity	horizons.	The	specific	regulatory
adjustment	equation	is	defined	as

Here	 	days	is	the	base	risk	measurement	horizon	and	 	for	 	corresponds	to	the



five	regulatory	liquidity	horizons,	which	range	from	10	days	to	1	year	(250	days)	and	are	10,
20,	60,	120,	and	250	days.	The	 	also	corresponds	to	the	liquidity	horizon	in	days	such	that	

	correspond	to	the	incremental	liquidity	horizon	in	days.	In	the	calculations	
	includes	all	the	risk	factors	while	 	only	shocks	the	subset	of	the	risk	factors

that	have	a	liquidity	horizon	at	least	as	long	as	 .33	For	example,	if	 ,	this	corresponds	to
risk	factors	with	a	liquidity	horizon	greater	than	or	equal	to	20	days.	This	means	that	the
regulatory	 	is	obtained	from	the	base	horizon	for	all	risk	factors,	 ,	plus	a
collection	of	incremental	 	for	subsets	of	risk	factors	with	longer	liquidity	horizons.	In	this
approach,	for	each	successive	 	calculation	one	hence	“turns-off”	successively	more
risk	factors	that	do	not	have	a	liquidity	horizon	at	least	 .34

A	major	change	in	the	new	proposal	is	the	move	of	the	model	validation	and	approval	to	desk
level	and	that	the	model	validation	(backtesting)	is	now,	presumably,	with	respect	to	 .
This	of	course	raises	the	question	if	a	 	validated	internal	model,	at	portfolio	level,	is
automatically	approved	for	 	at	the	desk	level	or	if	model	approval	at	the	trading	desk
level	will	require	major	revalidation.	It	is	obvious	that	a	 	model	can	perform	well	in	

	testing	but	fail	at	a	higher	confidence	level,	 .	A	further	complication	with	 	is	that
backtesting	methods	are	more	developed	and	empirically	tested	for	 .	The	current	regulatory
proposal	is	therefore	to	validate	the	 	model	using	backtesting	of	 	and	
quantiles.	In	addition	to	the	backtesting	requirements	banks	are	also	required	to	do	profit-and-
loss	attribution	analysis,	comparing	the	model	profit	and	loss	versus	actual	profit	andloss.35

Consistent	with	the	requirement	on	desk-level	model	validation	and	approval	the	regulators
also	institute	a	mandatory	standardized	approach—on	trading	desk	level—that	in	principle
allows	a	switch	on/off	on	internal	model	approvals	at	desk	level.	The	new	standardized
approach	has	its	basis	in	the	delta-normal	model	and	the	RiskMetrics	(1996)	mapping
approach	of	cash	flows	onto	vertices	or	buckets.	The	method	requires	mapping	of	all
instruments	to	a	specified	set	of	risk	factors	with	a	regulatory	specified	covariance	matrix.	For
greater	comparability	across	banks	the	new	regulatory	proposal	also	includes	a	requirement	to
disclose	the	standardized	approach	capital	down	to	trading	desk	level	publicly.

Perhaps	the	most	debated	proposed	change	is	to	restrict	the	cross-asset	class	diversification	in
banks	internal	market	risk	models.	This	is	done	by	a	calculation	of	the	total	capital	requirement
as	a	weighted	sum	of	the	single	diversified	capital,	and	the	marginal	capital	numbers	per	risk
factor	asset	class	with	the	weight	being	the	diversification	parameter	 	for	the	single
diversified	capital	and	 	for	the	capital	numbers	per	asset	class.	For	regulatory	capital
purposes	the	aggregated	charge	for	an	approved	trading	desk	is	then	equal	to	the	maximum	of
the	most	recent	capital	and	a	weighted	average	of	the	capital	from	the	previous	12	weeks—
scaled	by	a	multiplier	that	depends	on	the	backtesting	performance,	similar	to	equation
(3.28).36	The	proposed	adjustment	to	market	risk	capital	as	a	weighted	sum	of	diversified	and
nondiversified	capital	indicates	that	the	regulators	do	not	trust	the	banks	in	modeling
diversification	themselves.	It	also	requires	banks	to	compute	market	risk	capital	per	asset	class
in	addition	to	portfolio	level.	This	is	in	addition	to	the	incremental	risk	calculations	already
needed	for	the	regulatory	liquidity	adjustment	in	equation	(3.29).



1	In	terms	of	statistics	 	is	the	 	percentile	of	the	simulated	empirical	distribution.	In
statistics	there	are	a	number	of	different	methods	for	percentile	calculation.	The	definition
we	use	is	the	simple	empirical	distribution	function	approach.

2	Buying	a	put	and	call	option	on	the	same	stock	at	the	same	strike	price	and	exercise	time	is
referred	to	as	a	straddle	position,	which	gains	from	market	volatility.	See	Hull	(2006).

3	In	practice	one	typically	includes	the	option-implied	volatility	as	well	as	the	discount	rates
as	risk	factors.	However,	for	simplicity	we	treat	them	as	fixed	here.	In	addition,	a	volatility
smile	adjustment	may	be	used	when	pricing	to	capture	market	observed	option	smile	effects
for	equity	scenarios	that	are	significantly	in	or	out	of	the	money.

4	The	incremental	risk	is	the	additional	risk	obtained	when	adding	the	particular	instrument	to
the	portfolio.	Specifically,	denote	the	incremental	risk	of	position	 ,	 ,	with	risk	measure	
as

where	 	is	the	portfolio	with	all	positions.

5	Hence,	we	obtain	the	same	aggregate	portfolio	 	and	 	here	as	in	Table	3.2	for	the
case	of	1,000,000	simulations.

6	That	is,	we	could	transform	the	empirical	density	of	the	portfolio	return	and	the	asset	or
subportfolio	 	return	first	to	uniform	and	then	to	normal,	applying	the	beta	calculation	(3.4)
to	the	transformed	normal	returns.

7	The	portfolio	profit	and	loss	and	risk	factor	values	are	decomposed	in	5	20%	percentile
buckets	as	0%–20%,	20%–40%,	40%–60%,	60%–80%,	and	80%–100%,	such	that

where	 	is	the	joint	frequency	of	portfolio	profit	and	loss	being	in	percentile	bucket	 	and
the	risk	factor	being	in	percentile	bucket	 .	Here	 	is	the	marginal	frequency	of	the	portfolio
profit	and	loss	being	in	percentile	bucket	 	and	 	is	the	marginal	frequency	of	the	risk	factor
being	in	percentile	bucket	 .

8	Specifically,	we	have	that	the	total	portfolio	risk	minus	risk	without	for	an	instrument	is	the
equivalent	incremental	risk	of	adding	the	instrument.

9	Of	course	these	stylized	facts	depend	on	the	time	scale	chosen.	What	we	have	in	mind	here	is
daily	data	as	is	often	the	case	for	market	risk	analysis.	Financial	market	data	returns
aggregated	to	lower	frequencies	such	as	month	or	year	benefit	from	the	central	limit
theorem	as	daily	returns	are	summed	and	hence	may	be	close	to	normally	distributed	in
practice.



10	Of	course,	for	longer-term	risk	analysis	such	as	analyzing	counterparty	exposure	over	the
lifetime	of	a	10-year	maturity	swap	portfolio	the	specific	choice	of	parametric	model	for
interest	rates	(mean	reversion	or	not)	has	a	significant	effect.	On	the	other	hand,	for	longer
time	horizons,	the	importance	of	capturing	stochastic	volatility	and	nonnormality	becomes
less	important	due	to	the	central	limit	theorem.

11	The	approach	to	modeling	codependency	in	the	multivariate	filtered	historical	simulation
can	be	thought	of	as	using	the	empirical	dependence.

12	However,	see	Chapter	8	on	firmwide	risk	aggregation	where	a	risk	aggregation	is
decomposed	in	 	subset	partial	aggregations	where	each	partial	aggregation	has	a	lower
dimensional	copula	than	all	the	risks.

13	See	Figure	3.3,	which	displays	the	inverse	function	transformation	for	the	normal
distribution,	 ,	and	equivalently,	 .

14	As	we	will	discuss	below	the	degrees-of-freedom	parameter	is	important	for	the	tail
dependence.

15	The	Frank	copula	has	functional	relation	between	Kendall's	tau	and	the	 	parameter;	see
McNeil	et	al.	(2005,	p.	222).	This	functional	form	can	be	inverted	numerically	to	obtain	
as	a	function	of	Kendall's	tau.

16	However,	if	the	total	number	of	observed	losses	is	not	large	enough,	then	the	test	will	rely
on	the	bootstrap	method.	See	Dufour	(2006).

17	The	specific	exchange	rates	are	DKK,	GBP,	JPY,	NOK,	USD	with	respect	to	SEK.	The
specific	stocks	are	ABB,	ATCO	A,	ATCO	B,	AZN,	BILI	A,	ELUX	B,	ERIC	B,	GAMB	B,
HEXA	B,	HOLM	B,	HUFV	A,	INDU	A,	INVE	A,	NCC	B,	SAND,	SDIA,	SEB	C,	SECO	B,
SHB	B,	SKF	B,	SSAB	B,	TREL	B,	VOLV	B.

18	It	may	seem	unintuitive	that	the	 	copula	can	yield	lower	risk	than,	for	example,	the	
copula.	However,	this	depends	on	the	choice	of	confidence	level.	While	the	 	copula	can
produce	heavier	tails	at	very	high	confidence	levels	the	tail	loss	at	lower	confidence
intervals	may	be	smaller.

19	We	have	previously	discussed	the	univariate	RiskMetrics	model	as	a	special	case	of	a
GARCH	model	with	predefined	parameters.	See	equation	(3.12).	The	multivariate
RiskMetrics	model	is	similarly	a	special	case	of	multivariate	GARCH.	We	refer	to	our
subsequent	dicussion	on	multivariate	GARCH	models	and	equation	(3.20)	below	on	the
definition	of	the	multivariate	RiskMetrics	covariance	matrix	as	a	special	case	of
multivariate	GARCH.

20	We	can	use	the	Hill	estimator,	 ,	in	equation	(3.14)	to	estimate	the	tail	index.

21	The	Basel	Committee	gives	a	specific	liquidity	adjustment	equation	for	 	that	we	will



discuss	later	in	this	chapter	in	the	section	on	the	developments	in	the	market	risk	internal
models	capital	regulation.	The	adjustment	equation	is	based	on	 	rather	than	
consistent	with	the	intended	move	to	 	as	risk	measure.	In	addition	the	liquidity
horizons	in	this	example	are	for	illustration	only	and	are	not	those	assigned	by	Basel,	which
range	from	10	days	to	1	year.

22	Conditional	stress	may	have	a	significant	effect	on	expected	portfolio	loss.	However,	it	may
still	have	significant	conditional	portfolio	loss	volatility	remaining.	See	the	probabilistic
stress	testing	example	in	the	chapter	on	market	risk	analysis	with	the	multivariate	normal
distribution.

23	In	CCAR	the	global	market	risk	shock	is	mandatory	for	the	bank	holding	companies	with
large	trading	operations.

24	The	CCAR	and	EBA	firmwide	stress	testing	focuses	on	the	firmwide	earnings	and	loss	with
contributions	from	market	risk,	credit	risk,	income	and	expense,	etc.	In	this	book	we	discuss
the	CCAR	and	EBA	stress	testing	both	in	the	context	of	the	chapters	of	specific	risk	types	as
well	as	at	the	firmwide	level	in	Chapter	9.

25	We	use	the	same	relative	portfolio	weights	as	in	Glasserman	et	al.	(2013)	corresponding	to
the	market	capitalization	of	the	index	traded	on	the	exchanges.	For	the	S&P	500,	FTSE,
DAX,	Nikkei	225,	Hang	Seng,	and	Bovespa	the	portfolio	weigths	used	are	respectively
0.5050,	0.136,	0.0539,	0.1443,	0.1022,	0.0583.

26	Rebonato	(2010)	considers	aggregating	the	loss	of	a	stress	event	using	conditional	loss
events	and	conditional	probabilities.	He	also	proposes	an	event	risk	charge	based	on	the
maximum	of	conditional	losses.	In	this	setting	the	stress	test	charge	is,	however,	still	a
standalone	charge	separated	from	model-based	risk	charges.

27	However,	see	Alexander	et	al.	(2004)	for	an	example	of	an	ill-posed	optimization	problem
for	a	derivative	portfolio	where	derivatives	are	evaluated	with	the	delta-gamma
approximation.

28	See	Hull	(2006)	for	a	discussion	on	straddle	and	strap	option	strategies.

29	The	set	of	cash	flow	instruments	that	are	to	be	replicated	are	traditionally	referred	to	as	the
liabilities.	However,	in	practice	they	do	not	have	to	be	liabilities	of	course.	The	term
originates	from	the	classical	application	of	cash	flow	mismatch	to	the	assets	and	liabilities
in	the	bank's	balance	sheet.

30	Here,	discount	factors	are	explicitly	kept	in	the	objective	function	to	match	the	present	value
calculations.

31	The	fundamental	review	also	proposes	changes	to	the	Basel	2.5	default	and	migration	risk	in
the	trading	book.	While	this	capital	charge	is	part	of	the	total	market	risk	capital	charge	we
will	discuss	credit	risk	charges	in	the	credit	risk	chapters.



32	For	a	normal	distribution	 	at	confidence	level	97.5%	is	equal	to	the	 	at	99%
confidence	level.

33	That	is,	the	risk	factors	with	liquidity	horizon	less	than	 	are	held	constant.

34	The	regulatory	liquidity	adjustment	equation	(3.29)	can	be	seen	as	an	approximation	to	a
multi-horizon	simulation	over	the	liquidity	horizons	with	tiered	portfolio	closeout	by
liquidity	horizon,	that	is,	as	in	our	example	of	tiered	portfolio	close	out	by	liquidity	horizon
in	Table	3.22.	The	benefit	of	using	equation	(3.29)	for	the	liquidity	adjustment	is	that	it	can
be	easily	implemented	in	an	existing	market	risk	system	as	multiple	risk	calculations	while
implementing	portfolio	closeout	(trading)	over	horizons	may	be	harder.

35	We	discussed	profit-and-loss	attribution	in	the	context	of	the	quadratic	portfolio	model	in	the
previous	market	risk	chapter.	The	quadratic	expansion	is	frequently	used	for	such	ex-post
breakdown	and	explanation	of	the	profit-	and-loss	components	for	a	portfolio	or	a	position.

36	There	can	also	be	adjustments	to	the	capital	charge	for	the	so-called	non-modellable	risk
factors.	Risk	factors	that	are	considered	non-modellable	are	capitalized	via	an	add-on.



Part	Two
Credit	Risk



Chapter	4
Portfolio	Credit	Risk
For	many	financial	institutions	the	credit	risk	in	the	banking	and	trading	book	represents	by	far
the	largest	financial	risk	exposure.	The	2007	financial	crisis	is	of	course	a	prominent	example
of	the	importance	of	managing	credit	risk	and	as	a	result	of	the	experiences	in	the	2007
financial	crisis	regulators	have	been	very	active	in	developing	new,	stricter	regulations	for
credit	risk	under	the	heading	of	Basel	III.	Many	of	the	new	regulations	were	driven	by	reports
on	the	(failed)	risk	management	practices	during	the	crisis.	See,	for	example,	the	Senior
Supervisors	Group	(2008)	and	Financial	Stability	Forum	(2008)	reports.

As	we	have	discussed	in	the	introduction	to	this	book	credit	risk	capital	requirements	have	a
long	history.	The	larger	banks	use	the	advanced	internal	ratings	based	approach	originating
from	Basel	II	to	calculate	risk	weighted	assets	for	credit	risk.	The	advanced	Basel	charge	for
credit	risk	is	model	based,	though	the	model	is	prescribed	by	regulators,	and	require	banks	to
estimate	model	input	parameters	such	as	the	probability	of	default,	loss	given	default	and
exposure	at	default	for	the	credit	exposures.	In	2009,	with	Basel	2.5,	banks	were	also	allowed
to	develop	fully	internal	model	based	charges	for	bond	trading	exposures	termed	the
incremental	risk	charge.	The	incremental	risk	charge	assigns	liquidity	trading	horizons	to	the
bonds	and	uses	the	banks	own	bond	portfolio	credit	risk	model.	Credit	risk	is	also	a	main	part
of	the	CCAR	and	EBA	firmwide	stress	tests	and	requires	banks	to	project	expected	credit
losses	and	risk	weighted	assets	under	regulatory,	multi-horizon,	macroeconomic	stress
scenarios.

A	financial	institutions	credit	risk	exposure	includes	both	issuer	credit	risk	in	the	banking	and
trading	book	as	well	as	counterparty	credit	risk	in	derivatives	transactions	such	as	swaps.	Our
focus	in	this	chapter	is	however	only	on	the	issuer	credit	risk	while	we	will	return	to
counterparty	credit	risk	in	the	next	chapter.	The	issuer	credit	risk	can	be	divided	into

Retail	exposures	such	as	mortgages,	loans,	and	credit	cards1

Large	corporate	(wholesale)	exposures	such	as	commercial	loans	and	credit	facilities

Trading	exposures	such	as	bonds

As	we	mentioned	above,	for	the	larger	banks	the	banking	book	retail	and	wholesale	credit
exposures	uses	the	prescribed	Basel	model	framework	while	the	(bond)	trading	book
exposures	use	an	internal	model	VaR	based	charge	similar	to	the	internal	model	based	VaR
charge	for	market	risk.

A	complicating	factor	for	measurement	of	issuer	credit	risk	is	that	default	data	are	relatively
rare,	which	obviously	makes	statistical	validation	of	credit	risk	models	difficult.	For
consumers	and	small	companies	one	can	consider	credit	risk	models	estimated	on	large	pools
of	obligors	and	thereby	derive	relatively	accurate	estimates	of	probability	of	default.	The



situation	for	large	corporates	is	of	course	more	difficult	and	usually	relies	on	external	ratings
and	structural	credit	risk	models	such	as	the	Merton	(1974)	model	for	credit	risk	assessment.
Due	to	scarcity	of	default	data	it	is	especially	complex	to	validate	correlations	in	credit	risk
models.	Indeed,	one	of	the	main	failures	of	the	credit	risk	models	used	before	the	2007	crisis
was	the	underestimation	of	default	correlations	versus	the	realized	number	of	joint	defaults
during	the	crisis.	A	low	credit	portfolio	default	correlation	implies	that	senior	tranches	of
mortgage	backed	securities	are	“safe”	even	with	thin	subordinate	tranches.	See	Jorion	(2009)
for	an	interesting	discussion	of	deficiencies	in	risk	models	used	during	the	crisis.

In	the	context	of	market	risk	we	have	seen	that	it	is	generally	a	first-order	important	component
of	a	model	to	capture	the	stylized	fact	of	univariate	financial	returns	volatility	clustering	(and
to	some	extent	fat	tails	of	the	conditional	residuals).	The	specific	model	for	the	codependency
(the	copula)	is	generally	a	second	order	important	effect.	This	result	can,	however,	not	be
applied	to	credit	risk	models.	This	is	because	credit	risk	models	are	in	general	based	on
monthly,	quarterly,	or	even	yearly	financial	data	versus	daily	data	for	market	risk.	Temporal
aggregation	of	data	enforces	the	central	limit	theorem	such	that	financial	returns	on,	for
example,	a	monthly	basis	are	closer	to	(unconditionally)	normal.	However,	since	defaults	are
rare	events	we	should	in	the	context	of	credit	risk	expect	the	model	for	correlated	defaults	and
in	particular	the	tail	dependency	to	have	a	significant	impact	on	credit	risk.	Moreover,	since
credit	risk	default	and	migration	models	usually	focus	on	risk	measurement	over	a	long	period
such	as	a	year	or	multiple	years	the	credit	correlation	is	driven	by	co-movement	of	economic
variables	during	business	cycle	swings	rather	than	day	to	day	co-movements	as	in	market	risk
analysis.

The	fact	that	correlated	defaults	in	a	portfolio	credit	risk	model	arises	from	long-term	joint
behavior	of	financial	economic	indicators	complicates	the	use	of	traditional	market	risk
backtesting	methods	for	validating	portfolio	credit	risk	models	as	they	require	many	time
series	observations.	Expert	examination	and	scenario	testing	is	therefore	critical	in	the
validation	of	portfolio	credit	risk	models	defaultcorrelation.2

The	analysis	of	credit	migration	and	default	is	usually	viewed	as	distinct	from	the	analysis	of
the	short-term	credit	spread	risk	(with	no	credit	migration)	of	a	financial	instrument	which	is
treated	as	a	market	risk	factor.	Credit	migration	and	default	risk	models	can	of	course	include
credit	spread	variation	risk	in	the	analysis	framework	but	then	the	models	for	credit	spread
volatility	uses	the	relatively	long	time	horizons	of	the	portfolio	credit	risk	model.

Portfolio	credit	risk	models	proposed	in	the	literature	can	roughly	be	divided	into	structural
models	and	reduced	form	or	intensity	based	models.

In	the	structural	approach	corporate	liabilities	are	contingent	claims	on	the	assets	of	the	firm
and	the	firm	defaults	when	its	assets	falls	below	its	liabilities.	The	approach	is	hence	based	on
the	specific	balance	sheet	of	the	firm.	Consequently,	the	model	is	usually	applied	to	large
corporates	and	hence	to	large	corporate	issued	loans	and	bonds.	Portfolio	models	based	on	the
structural	approach	specify	dependence	between	the	default	events	of	firms	based	on
dependence	between	firms	assets	or	proxies	such	as	firm	equity	or	financial	indices	factor
models	for	firms.



The	reduced	form	approach	does	not	attempt	a	microeconomic-based	explanation	of	default	but
rather	a	macroeconomic	view	of	the	key	factors	that	can	drive	default	risk.	The	default
intensity	is	exogenously	modeled,	for	example	using	a	Poisson	process.	The	reduced	form
approach	is	frequently	used	for	consumer	and	small	business	portfolios	as	regression	evidence
of	which	economic	factors	that	drive	default	can	be	established	for	large	cohorts.	In	reduced
form	portfolio	models	default	dependence	is	traditionally	modeled	using	codependency
between	the	driving	economic	factors.	However,	the	distinction	between	structural	and
reduced	form	models	may	not	be	that	important	in	practice.	For	example,	Duffie	and	Lando
(2001)	show	the	link	between	intensity	and	structural-based	models	by	assuming	that	firm	asset
values	are	imperfectly	observed.

Another	categorization	of	the	credit	risk	models,	as	used	by	Basel	(1999),	is	the	default-only
mode	versus	mark-to-market	model.	The	mark-to-market	model	approach	is	frequently	used	for
bonds	and	wholesale	exposures.	In	the	mark-to-market	approach,	the	financial	institution	can
suffer	credit	losses	not	only	from	the	default	event	but	also	from	the	rating	migrations.	In
default	mode	models	the	credit	loss	is	only	realized	in	the	event	of	the	default	and	based	on	the
loss	given	default.	Moreover,	there	is	no	credit	migration	that	can	over	time	eventually	lead	to
a	default.	Historically,	this	approach	has	been	widely	used	in	the	retail	banking	book	assuming
the	loans	are	held	until	maturity.	Many	traditional	credit	scoring	models	and	portfolio	credit
risk	models—for	example,	the	actuarial	approach	models	like	the	CreditRisk 	model—are
default	only	models.	However,	after	the	2007	financial	crisis	financial	institutions	have	started
to	use	credit	migration	models	in	the	retail	banking	books	as	well.Sometimes	with	an
associated	model	for	measuring	(unexperienced)	loss	in	the	event	of	downgrade.	That	is	a
mark-to-model	method	of	assigning	loan	value.3	Multiple	credit	states	also	arise	naturally	in
retail	credit	models	that	capture	the	delinquency	status	of	loans.	For	example,	a	loan	may	be
delinquent	30	days	or	delinquent	90	days	but	not	yet	in	default.	The	tracking	of	loan
delinquency	also	has	implications	for	how	state	cash	flows	and	losses	are	booked.	Clearly,
when	the	loan	is	delinquent,	scheduled	cash	flows	accrue	and	may	be	lost.	The	loan	may,
however,	also	go	back	to	current	and	repay	the	accruals.

In	this	chapter	we	consider	market	standard	models	used	to	price	and	risk	manage	credit	risk
portfolios.	We	first	focus	on	market	pricing	of	issuer	credit	risk	in	trading	book	and	credit
portfolio	models	for	trading	book	exposures	and	wholesale	loan	exposures.	Consistent	with
large	corporate	exposures,	the	model	we	employ	for	portfolio	credit	risk	has	its	foundation	in
the	Merton	structural	model	of	the	firms	balance	sheet.	We	then	consider	credit	models	and
credit	analysis	for	the	retail	banking	book	exposures.	For	retail	and	the	small	business	segment
of	the	banks	credit	exposures,	reduced	form	credit	scoring	models,	with	the	addition	of
common	economic	factors,	are	the	natural	basis	for	credit	portfolio	models.

At	the	end,	a	financial	institution	also	needs	to	consider	its	firmwide	portfolio	credit	risk	and
combine	the	different	credit	risk	models.	Consequently,	we	explain	how	the	structural	and
reduced	form	models	can	be	integrated	using	correlation	and	more	generally	copulas.

Other	important	topics	we	cover	in	this	chapter	include	stress	testing	using	the	credit	models
and	a	summary	of	the	required	features	of	new	generation	credit	portfolio	models.	For	many



banks	the	portfolio	credit	risk	models	that	are	in	use	today	were	largely	developed	about	10
years	ago	with	the	introduction	of	Basel	II	risk	weighted	assets.	However,	new	regulations
such	as	the	CCAR	and	EBA	stress	tests	require	for	example	multi-horizon	models,	the
prediction	of	both	loss	and	revenue	as	well	as	regulatory	capital	impact.

The	introduction	of	credit	derivatives	has	allowed	financial	institutions	to	hedge	their	credit
risk	exposure.	Single	name	credit	default	swaps	or	credit	guarantees	allow	financial
institutions	to	hedge	an	issuers	specific	credit	risk—both	from	a	market	value	perspective	and
default	loss	perspective.	Index	based	credit	default	swaps	such	as	the	iTraxx	and	CDX	indices
can	be	used	for	approximate	macroeconomic	hedging	of	credit	portfolios.	This	is	also	true	for
basket	credit	default	swaps.	In	basket	credit	default	swaps	the	assumed	credit	correlations	are
the	most	important	driver	of	the	market	price.

Finally,	we	end	the	chapter	with	a	discussion	of	the	Basel	II	capital	requirements	for	credit
risk	with	a	focus	on	banking	book	requirements.

Issuer	Credit	Risk	in	Wholesale	Exposures	and	Trading
Book
In	the	presence	of	default	risk	fixed	income	investors	take	the	additional	risk	of	realizing	a
downward	jump	in	the	value	of	the	asset	due	to	worsening	credit	quality	of	the	issuer.	From	a
modeling	perspective	capturing	the	default	and	migration	risk	amounts	to	considering	a	model
that	can	incorporate	these	potential	jumps	as	well	as	their	monetary	implication	in	terms	of
losses.

Traded	bonds	are	typically	marked	to	market	for	the	different	rating	grades	using	market
observed	or	market	implied	credit	spreads.	Wholesale	exposures	can	be	marked	to	model	for
different	rating	grades	using	a	similar	methodology.	Alternatively,	a	default	mode	only
approach	can	be	used	for	wholesale	loans.	Note,	however,	that	if	wholesale	exposures	are
treated	with	a	default	loss	only	model	this	is	still	a	special	case	of	the	mark	to	market	model.	It
simply	means	that	wholesale	exposures	experience	no	market	value	change	in	non-default
states.

For	both	traded	bonds	and	wholesale	exposure	counterparties	external	ratings	are	generally
available	as	well	as	corporate	equity	prices.	The	corporate	equity	prices	can	be	used	as	basis
for	approximate	firm	value	estimates	in	a	structural	model	approach	to	credit	risk.

Market	Pricing	of	Corporate	Bonds
In	the	fixed	income	modeling	it	is	convention	to	focus	on	the	models	of	zero-coupon	bonds.
This	is	because	any	coupon	bond	can	be	expressed	as	a	series	of	cash	flows	from	zero-coupon
bonds.	The	value	of	the	coupon	bond	is	the	value	of	all	the	zero	coupon	bonds.	See	for
example	Fabozzi	(1997,	ch.	7).	As	a	result,	we	will	primarily	focus	on	the	zero	coupon	bonds
as	the	bond	credit	exposure.



4.1

The	Bond	Pricing	Equation
Considering	a	model	for	the	market	pricing	of	corporate	bonds	we	denote	the	bond	price	as	

	for	a	bond	maturing	at	 	and	being	priced	today	at	 .	We	now	write	the	bond	price	at	
as,

where	 	is	the	short-rate	of	interest	and	 	is	a	Poisson	process	that	produces	default	jumps
	such	that,

at	the	Poisson	events,	where	 	is	a	variable	capturing	the	recovery	value	in	default.

Assuming	fractional	recovery	of	market	value.	That	is,	 	where	 ,	Duffie	and
Singleton	(1999)	derive	the	credit-risky	bond	discounting	formula4

Here	 	denotes	the	default	intensity	of	the	Poisson	process.	The	pricing	equation	(4.1)	is
derived	under	the	assumption	that	we	hedge	only	the	market	risk	component.	That	is,	 ,	and
not	the	jump	risk.	This	is	achieved	by	taking	expectations	of	the	Poisson	events	which	is
justified	in	a	“large	homogeneous	portfolio”	situation	where	only	systematic	credit	risk
remains.	The	expectation	is	taken	under	the	so-called	risk-neutral	dynamics	of	the	short-rate
process,	 .	If	the	default	intensity,	 ,	is	assumed	stochastic	(referred	to	as	a	Cox	process)
this	means	that	we	cannot	directly	factor	the	intensity,	 ,	outside	the	expectation	in	the	pricing
equation	(4.1)	and	we	interpret	the	expectation	as	being	over	the	realizations	of	 	as	well.

The	pricing	equation	(4.1)	shows	that,	with	fractional	recovery	of	market	value,	the	price	of	a
defaultable	bond	is	the	price	of	a	default-free	in	a	world	where	the	discount	factor	is

rather	than	simply

where	 	is	the	credit	spread.	From	a	theoretical	pricing	perspective	the	only	difference
between	pricing	a	credit-risky	debt	and	a	credit	risk-free	debt	is	hence	on	the	choice	of
discount	curve.

In	practice,	we	might	define



as	the	credit-risky	rate	and	bootstrap	a	zero	curve	from	similar	traded	(credit	risky)
instruments.5	For	example,	a	credit	discount	curve	may	be	derived	from	corporate	issues	with
different	maturities.	In	case	there	are	not	enough	issues	(maturities)	from	the	same	corporation,
one	can	approximate	credit	discount	factors	at	different	terms	using	prices	of	similar	credits
(e.g.,	bonds	with	same	external	rating	and	belonging	to	the	same	industry).

Bond	Prices	and	Default	Rates
In	principle,	market	implied	default	rates	on	issuers	can	also	be	derived	from	bond	prices.	As
a	simple	example	of	implied	zero-coupon	bond	default	rates,	consider	a	zero-coupon	bond
with	maturity	1	year	that	is	issued	by	a	firm.	The	coupon	rate	is	6%	such	that	for	a	notional
principal	of	100	units	of	currency	we	have	that

using	a	continuously	compounded	rate.	Assume	now	that	an	equivalent	credit	risk	free	zero
coupon	bond	pays	the	coupon	rate	3%.	Hence,	its	price	is

Assuming	a	recovery	rate	of	50%	for	the	default	risky	bond,	 ,	the	implied	1-year
default	rate	from	the	bond	is	6%.	That	is,	 	such	that	 .

Market	Risk	VaR	Models	and	the	Credit	Spread
When	a	credit-risky	bond	is	analyzed	for	short-term	market	risk	the	risk	is	usually	decomposed
into	the	variation	of	the	credit	risk	free	zero	rate,	 ,	and	the	credit-risky	spread,	 .	This	is
motivated	by	the	fact	that	for	short-term	market	risk	horizons	jump	to	default	or	migration	is
unlikely	and	hence	the	main	credit	risk	component	is	the	market	credit	spread	risk.	The	market
credit	spread	already	has	the	short-term	market	perspective	of	default	and	migration
information	built	into	it.6

Internal	regulatory	models	for	market	risk	 	may	include	the	bond	spread	risk	components	as
risk	factors	subject	to	the	institutions	approval	for	interest	rate	specific	risk.	We	now	illustrate
the	market	risk	effect	of	including	the	spread	risk	of	a	corporate	bond	on	risk	measures—using
different	correlations	between	zero	coupon	rates	and	credit	spread	rates.

Consider	a	corporate	bond	paying	coupons	semi-yearly	with	1	year	left	to	maturity.	Next
coupon	payment	is	6	months	from	today	and	the	final	coupon	payment	and	redemption	of
principal	value	occurs	at	maturity.	The	bond	principal	value	is	1,000,000	of	currency	and	the
coupon	rate	is	8.322%.	The	bond	is	valued	using	a	zero	curve	plus	a	credit	spread.	The	current
zero	curve	and	spread	curve	are	displayed	in	Table	4.1.



Table	4.1	Corporate	Bond	Zero	Curve	and	Credit	Spread	Curve	Current	Values	for	Maturities
1	Month,	3	Months,	6	Months,	and	12	Months	(1	Year)

Maturity
Curve	type 1	month 3	months 6	months 12	months
Zero	curve 0.0456 0.0462 0.0469 0.0481
Credit	spread	curve 0.0318 0.0348 0.0350 0.0375

In	our	analysis	we	set	the	daily	returns	volatility	of	each	zero	curve	and	credit	spread	curve
component	as	0.1.	The	correlation	between	the	points	within	the	curves	are	set	high	to	0.999,
yielding	an	almost	collinear	behavior	within	the	curve	with	essentially	parallel	shifts	only.
Now,	to	consider	the	behavior	between	the	curves	we	introduce	the	correlation	parameter	
which	captures	the	correlation	between	the	zero	curve	and	credit	curve	components.	We	will
vary	this	correlation	parameter	between	( )	as	we	compute	risk	measures	for	the
corporate	bond.

Results	on	the	empirical	co-variation	between	zero	rates	and	credit	spreads	have	been	mixed
in	the	literature,	see	Neal	et	al.	(2012).	The	structural	Merton	(1974)	model,	that	we	will
discuss	in	detail	below,	implies	a	negative	relationship	between	zero	rates	and	credit	spreads
because	as	risk-free	rates	increase	the	implied	risk	neutral	growth	rate	of	the	firm	increases.

Using	our	assumed	volatilities	and	correlations,	we	compute	 	and	 	for	the	corporate
bond	using:

1.	 Only	simulation	for	the	risk	free	rates	(conditional	on	current	spread	curve)

2.	 Only	simulation	for	the	spread	rates	(conditional	on	current	zero	curve)

3.	 Joint	simulation	of	the	zero	rates	and	the	spread	rates	using	the	different	values	for	the
correlation	parameter,	

Table	4.2	displays	the	obtained	99%	 	and	 	in	percent	of	the	corporate	bond	mark	to
market	value	when	the	number	of	simulations	used	is	10,000.	The	corporate	bond	mark	to
market	value	is	1,011,128	in	units	of	currency.

Table	4.2	99%	VaR	and	CVaR	for	the	Corporate	Bond	Using	Different	Risk	Factors	and
Different	Values	for	the	Correlation	Parameter,	Rho

Risk	measure	(%)
Risk	factors	used VaR(0.99) CVaR(0.99)
Zero	rates	only 1.29 1.51
Credit	spreads	only 1.33 1.55
Both	zero	and	credit	( ) 1.87 2.13
Both	zero	and	credit	( ) 0.94 1.07
Both	zero	and	credit	( ) 2.49 2.87



Table	4.2	shows	that	in	the	case	of	 	(i.e.,	a	negative	co-variation	between	risk	free
rates	and	credit	spreads)	the	corporate	bond	risk	is	reduced	by	using	both	zero	and	credit	rates
in	the	simulation.	Hence,	the	inclusion	of	specific	issuer	risk	in	the	market	risk	model	may
reduce	portfolio	risk.	When	 	or	 	bond	risk	has	increased	compared	to	using	zero
rates	only.

We	can	also	consider	the	risk	factor	information	measure,	introduced	in	the	previous	chapter	in
the	context	of	market	risk,	for	the	zero	and	credit	spread	curve	components.	Due	to	the	almost
perfect	correlation	within	the	curves	the	risk	factor	information	measure	for	the	curve
components	within	a	curve	are	the	same.	This	is	essential	since	they	have	the	same	correlation
with	portfolio	profit	and	loss.	For	the	case	of	 	we	obtain	that	the	credit	spread	curve
components	have	a	risk	factor	information	measure	of	0.1758	while	the	zero	curve	components
risk	factor	information	measure	is	0.1654.	The	corresponding	risk	factor	information	measures
for	 	are	0.0466	and	0.0350,	and,	finally	for	the	case	of	 	we	obtain	the	risk
factor	information	measures	as	0.452	and	0.437	for	the	credit	curve	and	zero	curve	components
respectively.	The	risk	factor	information	levels	for	the	two	curves	are	hence	driven	by	the
correlation	while	their	relative	impact	is	similar	as	expected.

The	fact	that	the	risk	factor	information	measure	for	the	curve	components	within	a	curve	are
the	same	shows	a	weakness	of	the	empirical	risk	factor	information	measure.	Specifically,
since	the	bond	payments	occur	only	6	months	and	1	year	from	today	the	only	real	risk	factors
affecting	the	bond	value	is	the	6-month	and	1-year	maturities	for	the	zero	and	credit	curve.
However,	the	risk	factor	information	measures	for	the	1-month	and	3-month	components	of	the
curve	still	have	the	same	risk	factor	information	measures	as	the	corresponding	6-month	and	1-
year	components.	This	is	because	they	are	also	strongly	correlated	with	portfolio	loss—even
though	they	do	not	really	impact	portfolio	loss.	Hence,	one	needs	to	be	careful	with
interpreting	risk	factor	information	measures	as	causal	relationships	between	risk	factors	and
portfolio	profit	and	loss.

Components	of	Credit	Spreads
In	practice	quoted	bond	credit	spreads	and	credit	default	swap	premiums	are	due	not	only	to
default	risk	but	also	other	components	such	as	liquidity	risk.7	Indeed,	empirical	default	loss
rates	are	significantly	smaller	than	implied	by	credit	spreads.	The	difference	is	especially
large	for	good	credit	quality	counterparties.	See	Manning	(2004),	who	finds	that	only	8%–11%
of	the	variability	in	default	rates	for	the	top	investment	grades	can	explain	the	variability	in
credit	spreads.	The	remaining	part	of	the	market	credit	spread	is	attributed	to	other	market
factors	such	asliquidity.

The	fact	that	market	implied	default	rates—obtained	through	either	credit	default	swaps	or
credit	spreads—may	contain	an	estimate	well	in	excess	of	actual	default	rates	is	a	concern	for
using	market	implied	credit	spreads	for	bond	lifetime	(hold	to	maturity)	empirical	default	loss
estimation.	However,	not	for	pricing	which	uses	the	market	credit	spreads.

Merton's	Structural	Model	for	Corporate	Bond	Pricing
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We	now	turn	our	attention	to	the	Merton	structural	model	of	corporate	bond	pricing.	As	we
will	see,	it	will	be	able	to	yield	a	very	similar	pricing	formula	as	in	equation	(4.1)—albeit
with	endogenously	given	expressions	for	the	default	rate,	 ,	and	recovery	rate,	 .

The	Merton	Pricing	Model
In	the	Merton	(1974)	structural	bond	pricing	model	the	objective	is	to	provide	the	fair	price	of
a	zero-coupon	bond	issued	by	a	defaultable	firm	with	face	value	 .	In	the	setup	of	the	model	it
is	supposed	that	the	firm	has	only	two	classes	of	claims:

1.	 A	single	zero	coupon	debt

2.	 The	residual	claim,	equity

The	firm	promises	to	pay	a	total	of	 	amounts	of	currency	to	the	bondholders	at	the	bond
maturity	date	 .	In	the	event	that	this	payment	cannot	be	met,	the	bondholders	recover	what	is
available	and	the	shareholders	receive	nothing.	Hence,	on	the	maturity	date,	 ,	the	firm	must
either	pay	the	debt	to	the	bondholders	or	else	the	current	equity	will	be	useless.	Note	that	since
the	debt	is	a	simple	zero	coupon	bond	this	allows	the	firm	to	be	technically	insolvent	for	any	

	since	default	can	only	happen	at	maturity.	Extensions	to	this	simple	capital	structure	will
be	discussed	later.

In	the	Merton	model,	 ,	the	value	of	the	assets	of	the	firm,	follows	a	geometric	Brownian
motion,

where	 	and	 	are	the	mean	growth	rate	and	instantaneous	volatility	respectively	and	with	
the	Wiener	process.

On	the	liability	side	of	the	balance	sheet	of	the	firm,	the	total	value	is	financed	by	equity,	 ,
and	the	zero-coupon	debt	contract,	maturing	at	time	 ,	with	face	value	 .	This	gives	the
balance	sheet	identity

where	 	is	the	credit-risky	bond	value,	using	the	notation	 	to	denote	that	at	this
point	of	the	analysis	the	paying	rate	is	still	the	credit	risk-free	short-rate,	 .

Using	the	identity	in	equation	(4.2)	we	note	the	following:

If	 ,	the	zero-coupon	bond	is	worth	 ,	that	is,	the	recovery	value.

If	 ,	the	zero-coupon	bond	is	worth	 .

Hence,	the	value	of	the	risky	zero	coupon	debt	at	time	 	is

or,
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Here	we	recognize	the	last	term	as	the	terminal	value	of	a	standard	Black	and	Scholes
European	put	option	on	the	firms	assets	with	strike	price	 	and	maturity	 .

By	the	no-arbitrage	principle	we	have,	for	 ,	that	a	risk-free	debt	position	
is	equivalent	to	a	risky	debt	position,	 ,	with	paying	interest	rate	 	as	the	non-credit-
risky	debt,	and	a	long	position	in	a	put	on	the	value	of	the	firm,	 .	We	can	therefore	write

and

The	holders	of	the	risky	debt	have	hence,	with	paying	rate	 ,	issued	a	free	of	charge	put	option
on	the	firms	assets	with	strike	 .	The	price	of	the	put	option	can	therefore	be	interpreted	as	the
cost	of	eliminating	the	credit	risk,	or,	the	required	premia	on	 	for	taking	on	credit	risk.

Applying	now	the	Black	and	Scholes	European	call	option	pricing	formula	to	equation	(4.4)
we	arrive	at

where	 	is	the	cumulative	distribution	function	of	the	stochastic	variable	 	and

Clearly	 .

Bond	Value	in	Terms	of	Spread
The	above	analytical	expression	of	the	value	of	credit-risky	debt	expressed	in	prices	can	be
simpler	to	interpret	when	expressed	as	an	interest	rate	spread	on	 .	We	denote	the	resulting
credit-risky	interest	rate	by	 	and	consider	the	credit-risky	equivalent	bond	value,

with,
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This	enables	us	to	solve	for	the	required	 	in	equation	(4.6),	yielding

The	required	credit	spread,	in	excess	of	 ,	is	then	a	function	of:

The	leverage	ratio,	 ,	or	inversely	of	the	debt	ratio,	

The	volatility	of	the	firms	assets	 	(the	firms	business	risk)

Maturity	of	the	debt	issue	

As	expected,	the	credit	spread	is	for	fixed	maturity	increasing	in	 	and	 .8

Example	of	Merton	Model	Credit	Spreads
As	an	example	of	Merton	model	implied	credit	spreads,	Table	4.3	and	Figure	4.1	display	the
percent	implied	credit	spread,	in	excess	of	the	risk-free	rate	 ,	when	 ,	 	and	for	

	years	bond	maturity	as	the	quasi	debt	ratio,	 ,	varies	between	50%,	65%,	and	75%.
As	expected,	with	a	higher	debt	ratio	the	bond	credit	spread	increases.	For	a	fixed	debt	ratio
the	credit	spread	first	increases	with	bond	maturity	and	then	decreases	slightly.	This	behavior
is	consistent	with	the	geometric	Brownian	motion	model	of	asset	price	and	the	default	barrier,	
,	at	maturity	time	 .	For	short	maturity	times	 	will	likely	not	cross	the	default	barrier,	 .

As	we	increase	maturity	time	it	becomes	more	likely	due	to	the	increased	volatility	over	time.
However,	for	very	long	maturity	times	the	drift,	 ,	of	the	geometric	Brownian	motion	process
ensures	the	geometric	Brownian	motion	drifts	away	from	the	default	barrier.	This	hump-shaped
behavior	of	credit	spreads	from	the	Merton	model	is	also	consistent	with	survival	contingent
effects.



Table	4.3	Merton	Credit	Spreads	in	Percent	as	the	Debt	Ratio,	K/V,	Varies	Between	50,	65,
and	75%	and	for	1,	…,	10	Years	Bond	Maturity

Bond	maturity K/V=50% K/V=65% K/V=75%
1 0.18% 1.50% 3.72%
2 0.75% 2.54% 4.41%
3 1.19% 2.92% 4.45%
4 1.47% 3.05% 4.33%
5 1.64% 3.07% 4.16%
6 1.74% 3.04% 3.99%
7 1.80% 2.97% 3.81%
8 1.82% 2.90% 3.64%
9 1.83% 2.81% 3.48%
10 1.82% 2.72% 3.33%

Figure	4.1	Merton	Credit	Spreads	in	Percent	as	the	Debt	Ratio,	K/V,	Varies	Between	50,	65,
and	75%	and	for	1,	…,	10	Years	Bond	Maturity

Solving	for	the	Unobserved	Claims	Value	of	the	Firm
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In	practice,	determination	of	the	credit	spread	and	hence	pricing	risky	debt	requires	knowledge
of	 ,	 ,	and	 .	But,	all	the	claims	of	the	firm	are	in	general	not	publicly	traded	and	an
indirect	approach	has	to	be	taken.	For	example,	one	could	estimate	the	face	value	of	the	debt,	
,	from	accounting	data.	Given	knowledge	of	 	and	assuming	that	the	equity	value,	 ,	and	its
volatility,	 ,	is	observable	one	could	then	infer	the	asset	value,	 ,	and	volatility	of	the	firm,	
,	from	the	equation	system

where	the	first	equation	is	the	price	of	a	European	call	option	on	the	firms	assets	with	strike
price	 	and	the	second	equation	results	from	applying	Ito's	lemma.	Since	we	now	have	two
equations	and	two	unknowns,	 ,	a	solution	can	be	found	using	numerical	techniques.	See
Ronn	and	Verma	(1986)	for	a	practical	application.

Empirical	Market	Spreads	Versus	the	Merton	Model	Spreads
Empirically,	comparing	the	observed	market	spreads	with	the	theoretical	spreads	obtained
from	the	Merton	model	one	generally	finds	too	low	theoretical	spreads,	see	for	example	Jones
et	al.	(1984),	Gemming	(2002),	and	Manning	(2004).	However,	although	the	level	of	the	credit
spreads	obtained	from	the	Merton	model	does	not	match	actual	market	data	the	general	shape
of	the	theoretical	spreads	seem	to	accord	very	well	with	the	zero-coupon	bond	market	spreads,
see	Sarig	and	Warga	(1989).	However,	recall	from	our	previous	discussions	that	the	market
credit	spreads,	especially	for	investment	grade	credits,	are	also	attributed	to	other	market
factors	than	credit	risk.

To	make	the	Merton	model	fit	market	spreads,	in	practice,	a	very	high	value	of	the	volatility	of
assets,	 ,	must	be	chosen.	Another	approach	is	to	extend	the	Merton	model	for	a	better	fit.	In
the	literature	two	standard	approaches	toremedy	some	of	the	discrepancy	between	market	and
theoretical	spreads	have	emerged.	Either	one	assumes	that	the	terminal	distribution	of	the	asset
process	has	fatter	tails	than	the	normal	or	one	introduces	a	default	barrier	before	 ,	allowing
for	the	possibility	of	default	before	the	maturity	of	the	bond.	We	will	discuss	both	of	these
approaches	below.	However,	first	we	will	consider	the	connection	between	the	reduced-form
pricing	formula	in	equation	(4.1)	and	the	structural	pricing	formula	obtained	from	the	Merton
model.

Deriving	a	Structural	Equivalent	of	the	Reduced	Form	Pricing	Approach
By	declaring	a	firm	to	be	in	default	at	time	 	if	 ,	and	using	the	corresponding	risk-
neutral	asset	process,

we	can	find
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denoting	the	standard	normal	component	of	the	increments	of	the	Wiener	process,	 ,	as	
.	Hence,

is	the	(risk-neutral)	default	probability.

By	rearranging	equation	(4.5),

where	now	 	is	the	probability	of	default,	 	is	the	exposure	at	default	(face	value	of
debt)	and

is	one	minus	the	recovery	rate,	 .	Hence,	we	can	now	interpret	the	value	of	risky-debt	as	the
value	of	secure	debt	minus	the	risk-neutral	expected	loss	due	to	default.	We	note	the	following:

	and	Loss	Given	Default	( )	are	not	constant	through	time.

They	depend	on	the	same	factors.	Hence	 	and	 	are	highly	codependent	and	
cannot	be	assumed	to	be	exogenously	determined.

The	above	result,	in	the	setting	of	the	Merton	model,	implies	that	it	is	not	possible	to	easily
separate	out	the	market	(risk-neutral)	probability	of	default	from	the	observed	market	credit
spreads.	However,	we	can	back	out	expected	loss.

By	approximating	the	spread	equation	(4.8)	as	follows



We	can	now	price	risky	debt	using	the	equation

where	 	is	the	added	particle	due	to	credit	risk.9	We	can	now	recall	that	this
expression	also	forms	the	basis	for	the	reduced	form,	market	based,	approach	to	pricing	issuer
credit	risk	in	equation	(4.1)	where	 	and	 	are	exogenously	given	from	market	rather	than
obtained	from	a	structural	model.

Matching	Market	Credit	Spreads
Recall	that	it	was	empirically	found	that	the	Merton	model	produce	too	low	credit	spreads.	As
mentioned	above	two	standard	approaches	to	remedy	some	of	the	discrepancy	between	market
and	theoretical	spreads	have	emerged.	Either	one	assumes	that	the	terminal	distribution	of	the
asset	process	has	fatter	tails	than	the	normal	or	one	introduces	a	default	barrier,	allowing	for
the	possibility	of	default	before	the	maturity	of	the	bond.

Adjusting	the	Asset	Value	Distribution
Following	the	first	route	Zhou	(1997)	consider	a	jump-diffusion	process	for	the	asset	value.
More	specifically	he	considers	the	process

where	 	is	the	jump	amplitude	expressed	in	 .	For	example,	if	 	the	jump	amplitude
is	a	 	fall	in	the	asset	price	and	 	is	a	Poisson	process	with	intensity	 	so	that	
with	probability	 	and	 	with	probability	 .	There	is	therefore	a	probability	of	

	of	a	jump	in	 	of	size	 	in	time-step	 .	More	generally	 	may	be	drawn	from	a
distribution	independent	of	the	Poisson	process.

The	resulting	credit	spread	equation	has	a	similar	form	as	the	formula	for	European	option
prices	when	the	underlying	follows	a	jump-diffusion,	derived	by	Merton	(1974).	This
approach	can	answer	the	problem	that	a	perfectly	healthy	firm,	having	credit	spread	almost
zero	in	the	original	Merton	model,	can	have	systematically	a	positive	credit	spread.	Since	the
model	also	has	more	degrees	of	freedom	(more	parameters)	it	may	also	be	used	to	fit	a	wider



diversity	of	credit	spread	shapes.	In	some	sense	these	additional	degrees	of	freedom	is	also	a
weakness	of	the	model	since	their	calibration	to	data	is	non-trivial.

Similarly,	Madan,	Carr,	and	Chang	(1998)	consider	a	stochastic	volatility	model	for	the	asset
value.	More	specifically,	they	consider	a	Brownian	motion	process	where	volatility	is
evaluated	at	an	independent	random	time	given	by	an	increasing	process	with	increments	that
have	gamma	distribution	with	mean	1	and	variance	 .	They	argue	that	the	model	calibrates
well.	In	particular	the	short-maturity	credit	spread	is	substantial	in	contrast	to	what	would	be
found	in	the	Merton	model.

The	above	approaches	basically	relies	on	the	well-known	deficiency	of	the	Black	and	Scholes
model	in	equity	derivative	pricing	and	market	risk	management.	That	is,	that	the	log-normal
distribution	fails	to	calibrate	to	the	empirical	observed	stochastic	volatility	and	excess	kurtosis
and	skewness.	Hence,	one	may	argue	that	this	method	of	“fixing	the	spread”	relies	rather	on	the
stylized	facts	of	equity	returns	and	not	on	the	stylized	facts	of	the	asset	return	process.	For
example,	one	may	argue	that	it	is	rather	the	complex	debt	structures	and	the	real-life	dynamics
of	debt	that	is	non-trivial	to	capture	in	the	basic	model.

Debt	Adjustments
The	second	route	to	remedy	the	low	market	credit	spreads	obtained	from	the	Merton	model	is
therefore	to	introduce	a	more	realistic	debt	scheme	(e.g.,	allowing	for	default	before	maturity
such	as	introducing	a	default	barrier	so	that	the	firm	can	default	should	this	barrier	be	reached
before	the	maturity	of	the	contract).	This	corresponds	basically	to	a	knockout	(down-and-out)
barrier	option.	For	example,	Longstaff	and	Schwartz	(1995)	price	a	zero-coupon	bond	as
(compare	equation	(4.11))

where	 	is	an	exogenously	given	constant	default	barrier.	No	reference	is	given	to	the	face-
value	of	the	risky	debt	so	that	the	recovery	rate	is	assumed	exogenously	given	as	well.	Clearly
this	is	now	akin	to	a	reduced	form	model.

Extensions	of	the	Longstaff	and	Schwartz	model	include	allowing	for	a	stochastic	default
barrier.	This	yields	the	bond	price	as

where,	for	example,	the	 	dynamics	is	described	by

This	is	done	in	for	example	Saa'-Requejo	and	Santa	Clara	(1997)	who	introduce	two
stochastic	processes,	one	for	the	assets	dynamics	and	one	for	the	debt	dynamics.	That	is,	the
dynamics	of	the	default	barrier	to	price	debt.
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Other	Extensions	and	Further	Reading
The	interested	reader	is	referred	to	Cossin	and	Pirotte	(2001)	for	an	extensive	account	on	the
Merton	model	and	its	subsequent	generalizations.	For	example	Geske	(1977)	extends	the
Merton	model	to	coupon	bonds.	Since,	as	we	have	discussed,	market	credit	spreads	also
contain	liquidity	premiums	it	is	also	natural	to	add	a	liquidity	component	to	the	Merton	model.
This	is	done	in	for	example	Chen	et	al.	(2013)	who	extends	the	Geske	(1977)	model.

The	Multivariate	Merton	Model
In	the	previous	subsection	we	derived	the	Merton	bond	pricing	model	which	provided	us	with
structural	estimates	of	the	bond	issuer	 	as	well	as	the	ultimate	losses,	should	default	occur.
The	probability	of	default	of	a	single	issuer	was	obtained	as,

where

and	with	 	being	the	nominal	debt	value,	 	the	leverage	ratio	with	 	the	value	of	assets.
Further	 	and	 	are	respectively	the	short-rate	of	interest	and	the	volatility	of	the	asset	process.

For	a	portfolio	of	 	bond	issuers	we	are	now	concerned	with	the	probability	that	the	sum	of	
Bernoulli	loss	indicators,	 	attain	the	value	of	 ,

As	an	extension	of	the	univariate	case	consider	therefore	an	 -dimensional	geometric
Brownian	motion	process	for	the	asset	values,	

where	 ,	 	is	an	 	by	 	diagonal	matrix	with	the	vector	 	on	the	diagonal,	
	are	 	independent	standard	uncorrelated	Wiener	processes.	The	matrix	

is	an	 	by	 	square	root	matrix	such	that	 	is	the	covariance	matrix	in	the	Cholesky
decomposition.	It	is	defined	as,

with	 	element	 .	By	construction
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for	all	 .	Note	that	while	 	are	 	independent	standard	uncorrelated
Wiener	processes	 	are	 	correlated	Wiener	processes.

The	instantaneous	correlation	between	 	and	 	is	given	by

In	full	analogy	with	the	probability	of	default	in	the	univariate	case	we	here	find	for	an	issuer	 ,

with	 	 	yielding,

where

and	 .

We	can	refer	to	equation	(4.15)	as	the	standardized	asset	returns	of	the	multivariate	Merton
model.	Practical	applications	of	the	multivariate	Merton	model	express	this	standardized	asset
return	either	in	terms	of	approximating	equity	returns	or	using	a	multifactor	model.	Standard
industry	models	such	as	the	KMV	model	and	CreditMetrics	use	factor	models	where	the
underlying	factors	are	macroeconomic	variables.	The	KMV	model	uses	historical	default	data
to	calibrate	the	default	threshold	while	CreditMetrics	(1997)	use	multiple	states	corresponding
to	rating	classes.	The	different	states	cutoff	levels	are	calibrated	based	on	empirical	default
and	transition	data.

Applied	Portfolio	Migration	and	Default	Risk	Models
We	now	consider	portfolio	migration	and	default	risk	models	inspired	by	the	multivariate



Merton	model	for	 	firms	and	how	we	can	practically	use	these	models	for	estimating
portfolio	credit	risk.	Extensive	examples	are	given	for	two	approaches:	First,	using	equity	data
as	proxy	for	asset	values,	and,	second,	using	multifactor	models	for	each	firm	where	the	factors
are	relevant	drivers	for	the	credit	quality	of	the	firms	such	as	country	indices,	sector	indices
and	other	economic	factors.	We	also	study	a	model	proposed	originally	by	Li	(2000)	focusing
the	modeling	on	the	default	times	of	issuers.

Applying	the	Multivariate	Merton	Model	Using	Equity	Data
To	estimate	the	probability	defined	in	equation	(4.13)	requires	the	calibration	of	the	asset
process	parameters	 	and	 .	However,	as	in	the	univariate	model,	in	practice	we	face	the
problem	that	asset	values	are	non-traded	and	hence	unobserved.	In	practical	implementation	of
the	multivariate	Merton	model	one	can	therefore	use	equity	data	as	a	proxy	for	asset	values—
that	is,	assuming	that	the	correlations	and	volatilities	of	asset	returns	and	equity	returns	are
comparable.	It	is	also	the	practice	to	estimate	the	default	threshold,	as	given	by	the	debt	level,	
,	in	the	multivariate	Merton	model	by	using	the	empirically	observed	default	frequency

(CreditMetrics,	1997).	That	is	for	a	given	observed	default	probability,	 ,	the	threshold	is
obtained	as	 	where	 	is	the	inverse	normal	distribution	function.	The	driver	of	the
asset	quality	of	the	firm	in	the	multivariate	Merton	model	is	equation	(4.15)	where	 .
Hence,	realized	values	of	 	should	be	compared	with	the	default	threshold	 	to	determine
if	the	firm	is	in	default	or	not.

For	different	classes	of	rating	categories	we	have	 	distinct	transitionprobabilities	to	the	
classes.	For	an	issuer	belonging	to	class	 	we	have	hence	 	transition
probabilities.	In	this	case	the	 	thresholds	are	obtained	from	the	 	transition	probabilities	and
the	realized	rating	is	determined	by	the	realized	return	and	the	thresholds.	Figure	4.2	illustrates
the	decomposition	of	the	thresholds	for	a	firm	rated	BBB	using	the	Standard	and	Poor's	rating
grade	scale.



Figure	4.2	Example	of	Obtained	Rating	Grade	Thresholds	Using	the	Transition	Probabilities
of	the	Standard	and	Poor's	Rating	Grade	Scale

In	practice	the	thresholds	in	Figure	4.2	are	easily	calculated	from	a	given	transition	matrix.
Consider	for	example	a	bond	having	current	rating	grade	BBB.	Employing	the	one-year	sample
transition	matrix	in	Table	4.4	we	can	obtain	the	implied	one-year—standard	normal
distribution—rating	thresholds	for	the	bond.	This	is	done	in	Table	4.5.	Hence,	for	the	bond	to
default	a	standard	normal	variable	would	have	to	be	smaller	than	−2.82.	If	the	sampled
standard	normal	variable	is	not	greater	than	 	and	not	smaller	than	−1.53	the	bond	remains
rated	BBB	in	the	sampled	scenario.

Table	4.4	Sample	Transition	Matrix

Rating AAA AA A BBB BB B CCC
AAA 0.91939194 0.07460746 0.00480048 0.00080008 0.00040004 0 0
AA 0.00639936 0.9180082 0.06749325 0.0059994 0.00059994 0.00119988 0.00029997
A 0.0007 0.0227 0.9169 0.0511 0.0056 0.0025 0.0001
BBB 0.00039996 0.00269973 0.05559444 0.87871213 0.04829517 0.01019898 0.00169983
BB 0.00040004 0.0010001 0.00610061 0.07750775 0.81488149 0.07890789 0.01110111
B 0 0.001 0.0028 0.0046 0.0695 0.828 0.0396
CCC 0.00189981 0 0.00369963 0.00749925 0.02429757 0.12128787 0.60443956
Default 0 0 0 0 0 0 0
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Table	4.5	Implied	One-Year	Rating	Thresholds	for	a	Bond	Rated	BBB

Threshold BBB	bond
+inf
3.35
2.73
1.56
−1.53
−2.19
−2.64
−2.82

An	Illustration:	Risk	Measures	for	a	Bond	Portfolio
Having	a	basic	understanding	of	the	multivariate	Merton	model	and	how	one	can	use	transition
probabilities	to	define	default	and	rating	migration	thresholds	of	a	firm	we	now	consider	an
extensive	example	of	bond	portfolio	migration	and	default	risk	that	illustrates	the	main	model
components.	The	example	also	illustrates	the	risk	sensitivity	to	model	assumptions	such	as
copula	used	and	the	typically	different	behaviors	of	 	and	 	risk	measures	in	the	context
of	credit	portfolios.	We	have	previously	seen	that	for	simple	market	risk	portfolios	the	choice
of	 	or	 	as	risk	measure	may	not	be	fundamental.	However,	this	is	not	true	for	simple
credit	portfolios.

We	consider	a	portfolio	of	7	corporate	bonds	with	3	years	remaining	to	maturity	for	each	bond
and	each	bond	is	paying	annual	coupons.	The	corporate	bonds	1,	…,	7	are	rated	in,
respectively,	the	categories	AAA,	AA,	A,	BBB,	BB,	B	and	CCC	corresponding	to	the	rating
grades	in	the	transition	matrix	in	Table	4.4.

Each	bond	has	an	associated	firm	equity	return	that	is	observed	and	denoted,	 .	The
joint	distribution	of	equity	returns	is	given	by	(see	the	definition	of	copula	in	equation	(3.17)),

where	 	are	uniform	such	that	 .	We	will	focus	on	the	case	when	 	is	standard
normal	such	that	 	with	 	the	standard	normal	distribution	function.	We	can	now	write
the	copula	as,

Initially,	we	will	consider	the	normal	copula	such	that	the	random	vector	 	is
multivariate	normal	and	the	dependence	structure	is	described	by	a	normal	copula	as	in
equation	(3.18),
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where	 	is	the	standard	multivariate	normal	distribution	function	with	linear	correlation	matrix
	and	 	is	the	inverse	of	standard	univariate	Gaussian	distribution	function.

Using	an	equicorrelation	matrix	with	common	correlation	 	between	firm	returns	we	now
generate	100,000	correlated	standard	normal	scenarios	for	the	1,	…,	7	firms	returns,	

.	The	return	scenarios	are	translated	to	actual	realized	ratings	using	the	inverse
normal	distribution	applied	to	the	1	year	transition	matrix	in	Table	4.4.	Hence,	in	each	scenario
we	have	available	a	realized,	standard	normal,	firm	return	and	a	set	of	rating	thresholds
converted	to	normal	as	in	Table	4.5.	This	information	is	used	to	determine	the	rating	in	a	given
scenario.10

Let	now	the	realized,	non-default,	scenario	rating,	AAA,	…,	CCC	be	denoted	 	for	a	particular
bond.	We	then	have	the	bond	is	valued—conditional	on	the	realized	rating,	 ,	as

where	 	is	the	fixed	bond	coupon	rate,	 	the	bond	principal	value	being	100	in	units	of
currency	for	all	the	bonds,	and,	 	the	credit-risky	discount	rate	at	year	 	conditional
on	rating	 .

The	credit-risky	discount	rates	used	in	our	example	for	the	different	ratings	and	for	the	years	1,
2,	and	3	are	given	in	Table	4.6.	The	table	also	displays	the	fixed	coupon	rate,	 ,	for	each	bond
assigned	to	the	different	rating	categories.	We	can	already	note	that	the	origination	coupon	rate
for	the	bond	in	the	CCC	rating	category	is	significantly	lower	than	the	current	CCC	rating
category	market	spreads.	Hence,	for	the	CCC	rated	bond	we	should	expect	a	current	mark	to
market	significantly	less	than	the	bond	principal	value	of	100	units	of	currency.

Table	4.6	Credit-Risky	Discount	Rates	for	the	Bonds	for	Years	1,	2,	and	3	for	the	Different
Rating	Categories	as	Well	as	Fixed	Coupon	Rates	for	the	Bonds	in	Different	Rating	Categories

Rating Year	1 Year	2 Year	3 Coupon	(%)
AAA 0.036 0.0417 0.0473 4
AA 0.0365 0.0422 0.0478 4.5
A 0.0372 0.0432 0.0493 5
BBB 0.041 0.0467 0.0525 6
BB 0.055 0.0602 0.0678 6.5
B 0.0605 0.0702 0.0803 7
CCC 0.1505 0.1502 0.1403 8

To	continue	with	our	example	we	also	have	to	specify	the	recovery	rate	of	the	bonds	in	case	of
default.	We	simply	assume	a	cash	recovery	rate	of	0%	of	the	bond	value.	That	is,	no	recovery.



This	means	that	the	maximum	bond	and	portfolio	loss	is	easily	obtained	as	the	current	mark	to
market.	This	is	because	we	do	not	incorporate	the	effect	of	aging	of	the	bond	in	the	valuation	in
equation	(4.17)	when	we	simulate	future	possible	bond	market	values	induced	by	simulated
future	bond	ratings.	Hence,	we	isolate	the	effect	of	credit	migration	and	default	on	the	portfolio
from	the	discounting	effect.

Table	4.7	displays	the	calculated	risk	measures	for	the	bond	portfolio	as	well	as	for	the
individual	bonds	at	the	98%	confidence	level,	the	99%	confidence	level,	and,	at	the	99.9%
confidence	level.	Specifically,	Table	4.7	displays	the	 ,	 	as	well	as	the	 	and	
contributions	(denoted	in	the	table	by	Cont	 	and	Cont	 	respectively).	It	also	displays
the	incremental	 	and	 	(denoted	Inc	 	and	Inc	 	respectively)	and	the	bonds	and
portfolio	mark	to	market	values	(denoted	MtM).	In	Figure	4.3	we	also	display	graphically	the	

	at	the	98%,	the	99%,	and	the	99.9%	confidence	level	for	the	bonds	and	the	portfolio.



Table	4.7	Corporate	Bond	Portfolio	Risk	Measures

Bond	rating MtM Cont	 Cont	 Inc	 Inc	
98%	confidence	level

AAA 98.08 0.13 0.96 0 0.17 0.40 0.84
AA 99.33 0.40 3.34 0.40 0.71 0.40 1.35
A 100.30 0.87 10.40 0 2.87 0.40 2.45
BBB 102.16 4.07 24.68 0 13.79 1.73 9.08
BB 99.42 17.02 99.42 3.14 31.03 3.14 19.02
B 97.58 97.58 97.58 97.58 82.41 87.54 67.27
CCC 85.84 85.84 85.84 85.84 82.43 84.91 81.92
Portfolio 682.70 186.96 213.42 186.96 213.42 186.96 213.42

99%	confidence	level
AAA 98.08 0.13 0.96 0 0.23 0.16 0.23
AA 99.33 0.40 3.34 8.27 1.11 0.92 0.53
A 100.30 0.87 10.40 0.87 4.61 1.42 3.64
BBB 102.16 7.18 68.41 0 18.58 4.73 13.08
BB 99.42 99.42 99.42 0 50.94 4.67 33.34
B 97.58 97.58 97.58 97.58 81.51 81.76 50.17
CCC 85.84 85.84 85.84 85.84 79.22 82.97 78.15
Portfolio 682.70 192.56 236.20 192.56 236.20 192.56 236.20

99.9%	confidence	level
AAA 98.08 1.39 5.31 0.13 0.56 0.58 0.50
AA 99.33 8.27 21.53 0 3.01 1.01 2.18
A 100.30 7.94 82.62 4.87 17.45 2.27 10.65
BBB 102.16 102.16 102.16 4.07 55.32 7.67 29.66
BB 99.42 99.42 99.42 99.42 75.05 8.06 33.75
B 97.58 97.58 97.58 97.58 90.79 91.14 80.58
CCC 85.84 85.84 85.84 85.84 84.03 85.44 83.38
Portfolio 682.70 291.91 326.21 291.91 326.21 291.91 326.21



Figure	4.3	Corporate	Bond	Portfolio	VaR	at	Different	Confidence	Levels

In	Table	4.7,	we	have	marked	risk	measures	that	imply	a	maximum	loss	by	*.	For	example,	at
the	98%	confidence	level	the	 	for	the	bond	rated	B	and	CCC	have	a	 	and	 	equal	to
the	maximum	loss.	In	addition,	 	has	a	maximum	loss	for	the	bond	rated	BB.	At	the	99%
level	this	is	also	the	case	for	the	bond	rated	BB	and	the	 	risk	measure,	and,	at	the	99.9%
level	also	for	the	bond	rated	BBB	and	the	 	risk	measure.

For	the	higher	rated	bonds	in	rating	category	AAA,	AA,	and	A	we	observe	a	significant
difference	between	the	 	and	 	risk	measures	for	all	the	confidence	levels.	Specifically,	

	is	much	higher	than	 .	This	is	because	for	the	higher	quality	bonds	significant
downgrades	and	default	are	extremely	rare	events	(see	the	transition	matrix	in	Table	4.4).	As	a
consequence	of	the	bond	value	changing	only	because	of	rating	migration,	the	bonds	and	the
portfolio	profit	and	loss	distributions,	are	discrete—corresponding	to	the	rating	events.	For
reference,	Table	4.8	displays	the	possible	discrete	profit	and	loss	for	the	bonds	1,	…,	7	for	the
different	possible	realized	rating	categories.



Table	4.8	Bond	Discrete	Profit	and	Loss	for	Different	Rating	Categories

Bond/Rating AAA AA A BBB BB B C Default
AAA 0 −0.13 −0.53 −1.39 −5.31 −8.33 −21.44 −98.08
AA 0.14 0 −0.40 −1.27 −5.23 −8.27 −21.53 −99.33
A 0.54 0.40 0 −0.87 −4.87 −7.94 −21.36 −100.30
BBB 1.44 1.30 0.89 0 −4.07 −7.18 −20.92 −102.16
BB 5.56 5.42 5.01 4.11 0 −3.14 −17.02 −99.42
B 8.77 8.63 8.22 7.31 3.16 0 −14.04 −97.58
CCC 23.27 23.13 22.71 21.78 17.56 14.35 0 −85.84

Turning	now	to	the	risk	contributions	in	Table	4.7	we	note	that	the	empirical	 	contributions
are	not	a	good	choice	for	risk	allocation	in	this	case.	In	fact	as	the	natural	estimator	of	
contribution	is	the	conditional	realization	of	loss	the	contributions	can	vary	significantly	with
confidence	level.	Especially	at	the	lower	confidence	intervals	98%	and	99%	the	
contributions	are	zero	for	some	of	the	higher	quality	bonds.	In	contrast,	the	 	contributions,
being	based	on	average	tail	losses,	are	smooth	and	produce	well-behaved	and	economically
intuitive	contributions.	For	example,	the	 	contributions	are	never	zero	and	ranks	the	bonds
contribution	risk	accurately	according	to	their	rating.Moreover,	the	 	contributions	vary
smoothly	across	confidence	levels.	As	we	have	discussed	previously	in	the	advanced	market
risk	chapter,	it	is	practice	to	smooth	 	contributions,	or,	use	the	naturally	smoothed	
contributions	when	conditional	( )	contribution	to	portfolio	loss	is	not	smooth.11

Using	the	risk	contributions	and	the	stand-alone	risk	measures,	we	can	also	compute
diversification	indices	for	the	bonds.	For	example,	the	AAA	rated	bond	has	a	
diversification	index	of	 	at	the	99%	confidence	level.

In	Table	4.7,	we	also	display	the	incremental	 	and	 	risk	measures	for	the	different
confidence	levels.	The	interpretation	of	these	measures	for	the	bonds	is	the	risk	measure
increase	when	the	bond	is	added	to	the	portfolio.	Naturally,	at	the	portfolio	level,	incremental
risk	is	also	the	portfolio	risk.	Note	that	the	incremental	 	risk	measure	seems	to	produce
more	economically	intuitive	results	than	the	empirical	 	contribution.

We	now	recall	that	risk	factor	information	measures	calculate	the	relative	importance	of	risk
factors	in	determining	aggregate	portfolio	loss.	While	the	risk	factor	information	measure	is	not
a	contribution	measure	it	gives	a	relative	ranking	of	risk	factors.	In	our	example,	the	relevant
risk	factors	are	the	firm	equity	returns,	 ,	for	the	rating	categories	AAA,	…,	CCC	of	the
bonds.

Table	4.9	displays,	at	the	98%	confidence	level,	the	risk	factor	information	measures	(RFI)	for
the	firm	returns	as	well	as	the	correlation	(Corr)	between	the	firm	return	risk	factor	and	the
portfolio	profit	and	loss.	The	risk	factor	information	measure	orders	the	influential	risk	factors
naturally	by	ranking	the	firm	returns	in	reverse	order	of	credit	quality.	That	is,	the	firm	returns
for	the	firm	rated	CCC	gives	the	largest	loss	information	while	the	firm	returns	for	the	firm
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rated	AAA	are	ranked	as	having	the	lowest	loss	information.

Table	4.9	Risk	Factor	Information	Measures	for	the	Firm	Returns

Firm	return RFI Corr
CCC 0.3823 0.731
B 0.0954 0.541
BB 0.0880 0.457
BBB 0.0773 0.430
A 0.0697 0.419
AA 0.0675 0.416
AAA 0.0672 0.415

Extension	to	the	t-Copula
So	far	in	our	example	of	corporate	bond	migration	and	default	risk,	we	have	used	the
multivariate	normal	distribution.	That	is,	we	have	used	the	normal	copula	in	equation	(4.16)
for	the	firms	returns.	We	could	of	course	also	consider	another	copula	to	join	the	univariate
standard	normal	firm	returns.	A	natural	choice	is	the	t-copula	such	that

where	 	denotes	the	multivariate	t-distribution	function	with	degrees	of	freedom	parameter	
and	 	denotes	the	margins.	As	we	have	discussed	previously,	the	t-copula,	in	contrast	to	the
normal	copula,	displays	(asymptotic)	tail	dependence.

Table	4.10	displays	corporate	bond	portfolio	risk	measures	as	in	Table	4.7	but	now	using	the
t-copula	with	3	degrees	of	freedom	and	at	the	99.9%	confidence	level	only.	Clearly,	the	stand-
alone	risk	for	the	bonds	has	not	changed	since	each	bond	still	has	the	same	marginal
distribution.	However,	with	the	t-copula	portfolio	 	has	increased	from	291.91	to	315.49
and	portfolio	 	has	increased	from	326.21	to	402.64.	The	most	significant	increase	is
hence	for	 	with	about	a	23%	increase	in	risk.



Table	4.10	Corporate	Bond	Portfolio	Risk	Measures	Using	the	t-Copula	with	3	Degrees	of
Freedom

Bond	rating MtM Cont	 Cont	 Inc	 Inc	
99.9%	confidence	level

AAA 98.08 1.39 5.31 0.13 1.34 1.64 1.05
AA 99.33 8.27 21.53 8.27 6.04 3.67 4.73
A 100.30 7.94 82.99 7.94 28.79 9.94 24.44
BBB 102.16 102.16 102.16 102.16 92.24 23.79 86.38
BB 99.42 99.42 99.42 99.42 94.83 24.69 89.27
B 97.58 97.58 97.58 97.58 95.68 26.81 90.26
CCC 85.84 85.84 85.84 0 83.71 15.81 78.69
Portfolio 682.70 315.49 402.64 315.49 402.64 315.49 402.64

The	increase	in	the	 	and	 	risk	measures	with	the	t-copula	can	be	broken	down	into	the
contributions	of	the	bonds	to	total	risk.	For	 	the	main	contribution	increase	is	seen	to	come
from	the	bonds	in	categories	AAA,	…,	BBB	with	main	contribution	increase	from	the	BBB
bond	compared	to	the	normal	copula	case.	With	the	t-copula	the	contribution	 	is	now	the
maximum	loss.	For	 	the	main	contribution	increase	includes	the	same	bonds	as	for	 	but
also	the	BB-rated	bond.

This	analysis	shows	that	the	choice	of	copula	in	general	have	a	significant	effect	on	portfolio
credit	risk	models	risk	measures.	We	also	refer	to	Frey	et	al.	(2001)	for	further	analysis	of	the
normal	copula	versus	the	t-copula	in	this	simple	equity	version	of	the	Merton	based	credit
portfolio	model.	However,	we	will	also	return	to	the	comparison	of	the	normal	and	t-copula
for	Merton-based	models	when	we	discuss	the	multifactor	version	of	the	model	below.

Extension	to	Multiple	Horizons	Risk	Analysis
For	bond	credit	portfolio	analysis	for	longer	periods	than	1	year	one	needs	to	adjust	the
transition	matrix	accordingly	in	order	to	capture	rating	migrations	for	the	longer	period.	It	is
practice	in	this	model	to	assume	that	the	transition	probabilities	are	exogenously	given	long-
run	rates.	The	credit	correlation	derives	from	the	equity	correlation	with	a	time	homogeneous
transition	matrix.	A	time	homogeneous	transition	matrix	is	estimated	as	if	it	is	not	dependent	on
the	business	cycle	and	is	generally	referred	to	as	a	Through	the	Cycle	(TTC)	credit	transition
matrix	or	a	long-run	transition	matrix.	A	transition	matrix	that	is	not	time	homogeneous	depends
on	the	business	cycle	and	is	generally	referred	to	as	a	Point	in	Time	(PIT)	estimate	of	the	credit
transition	matrix.	See	Schuermann	and	Jafry	(2003)	on	the	estimation	of	the	different	transition
matrices	using	Standard	and	Poor's	rating	data.

A	time	homogeneous	transition	matrix	can	be	used	to	obtain,	for	example,	the	2-year	transition
matrix,	by	using	matrix	powers.	Assuming	we	have	available	a	1-year	long-run	transition
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matrix,	denoted	by	 ,	we	can	now	obtain	the	2-year	transition	matrix	using	the	matrix
multiplication	 .	Similarly,	the	3-year	transition	matrix	is	obtained	with	the	matrix
multiplication	 .	Using	this	matrix	power	principle,	we	can	extend	our	corporate	bond
default	and	migration	risk	example	to	analyze	aggregate	portfolio	risk	at	year	2	and	3	as	well.
In	general,	two	important	steps	are	needed	to	extend	our	bond	portfolio	analysis	to	multiple
horizons.

First,	as	discussed	above,	we	use	the	matrix	power	to	obtain	the	transition	matrices	at	year
2	and	3	from	the	transition	matrix	in	Table	4.4.

Second,	since	we	now	analyze	portfolio	risk	across	time	we	also	need	to	consider	a
stochastic	process	for	the	firm	returns	random	vector,	 .

We	therefore	construct	the	marginal	process	for	firm	returns	as	zero	expected	returns	processes
across	year	1,	2,	and	3	such	that

where,	for	example,	 ,	and	with	 .	Here	 	is	the	standard
Wiener	process	for	firm	i	equity	returns	such	that	 	is	a	standard	normal
variable.	For	example,	with	a	multivariate	normal	distribution	for	 	we	have	that

where	 	is	the	correlation	matrix.

As	in	the	single	horizon	version	of	the	model,	we	assume	an	equicorrelation	matrix	having
equicorrelation	 .	Note	also	that	with	this	multi-horizon	model	specification	we	have
introduced	path-dependence	in	simulated	firm	returns	over	the	years	with	dependent
increments.	With	dependent	increments	of	firm	returns	a	large	positive	return	in	period	1	gives
a	relatively	low	(conditional)	probability	of	default	in	period	2.	Similarly,	a	large	negative
return	in	period	2	gives	a	relatively	high	(conditional)	probability	of	default	in	period	3.	An
argument	against	this	model	specification	of	multi-horizon	firm	returns	is	that	it	does	not
capture	a	firms	response	behavior	conditional	on	the	observed	yearly	high	positive	or	high
negative	returns.	That	is,	for	large	positive	returns	the	firm	can	add	more	debt	and	for	large
negative	returns	the	firm	can	take	measures	to	avoid	default.	Using	such	an	argument	we	should
simulate	returns	directly	at	the	1-,	2-,	and	3-year	horizon	with	a	static,	one-period,	model.	We
refer	to	Morokoff	(2003)	for	a	discussion	on	the	use	of	dependent	increments	versus
independent	increments	in	multi-horizon	simulation	of	firm	returns.

Another	natural	question	when	one	moves	from	a	single	period	model	to	a	multi-horizon	model
is	whether	one	should	include	path-dependence	in	the	firms	ratings	across	years	1,	2,	and	3.
Here	path-dependence	in	ratings	means	that	a	firm	rated	in	a	particular	rating	category	in	a
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scenario	at	year	1	starts	year	2	with	that	rating	and	so	on.	Using	path-dependence	in	ratings	we
should	use	the	1	year	transition	matrix	for	each	year	rather	than	a	cumulative	transition	matrix
for	years	2	and	3.	Path-dependence	in	ratings	is	important	if	one	focuses	on	the	marginal	risk
within	a	year.	However,	if	the	focus	is	instead	only	on	the	cumulative	risk	at	years	1,	2,	and	3,
path	dependence	in	ratings	is	notnecessary.

Our	example	here	focuses	on	the	cumulative	risk	across	years	and	also	uses	a	t-copula	with	3
degrees	of	freedom.	That	is,	instead	of	the	multivariate	normal	distribution	in	equation	(4.20)
we	use	the	t-copula	for	the	transformed	uniforms	as	in	equation	(4.18).	We	compute	the
portfolio	level	 	and	 	at	the	cumulative	intervals	of	1	year,	2	years,	and	3	years.	To
obtain	bond	rating	migrations	and	defaults	across	years	we	hence	proceed	as	follows:

For	the	first	year	horizon	simulated	firm	returns	we	use	the	1-year	transition	matrix	in
Table	4.4	to	evaluate	the	1-year	realized	rating	as	before.

For	the	second-year	horizon	we	use	the	second	power	of	the	transition	matrix	in	Table	4.4
and	the	simulated	returns	for	year	2	to	evaluate	the	second-year	ratings.

Finally,	for	the	third	year	we	use	the	third	power	of	the	transition	matrix	in	Table	4.4	and
the	simulated	returns	for	year	3.

Using	a	confidence	level	of	99.9%	the	obtained	t(3)	copula	portfolio	 	and	 	for	the
first	year	is	of	course	315.49	and	402.64	as	in	Table	4.10.	For	the	second	year	we	obtain	
and	 	as	586.01	and	625.70,	and,	for	the	third	year	we	obtain	both	 	and	 	as	the
mark	to	market	of	the	portfolio	682.70.	Hence,	at	the	99.9%	confidence	level,	both	 	and	

	achieves	the	maximum	portfolio	loss	at	year	3.

A	Multifactor	Model	for	Asset	Returns
Having	analyzed	the	multivariate	Merton	model	implemented	on	the	basis	of	single	equity
proxies	to	asset	values,	we	now	consider	a	popular	implementation	of	the	multivariate	Merton
model	that	employs	a	factor	model	as	an	approximation	to	the	issuers	vector	asset	process.

Using	a	multifactor	model	the	standardized	returns	for	issuer	i,	 	in	equation	(4.15),	is	driven
by	observed	indices	such	as	country	indices,	sector	indices	and	other	economic	factors.	The
returns	of	an	issuer	 	is	described	by	the	following	linear	multifactor	model

where	the	 	are	interpreted	as	returns	of	the	common	credit	factors	 ,	
and	with	 	the	sensitivity	of	issuer	 	to	the	 	index	factor.	The	 	are	the	idiosyncratic
factors	that	represents	the	specific	risk	to	issuer	 .	The	 	are	assumed	to	be	independent	and
identically	distributed	standard	normal	variables	which	are	independent	of	the	 .

Since	the	 	are	not	necessarily	standardized	we	can	obtain	the	standardized	 	as
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where	 	is	the	covariance	matrix	of	 	and	 .	Note	here	that	the	horizon
of	the	covariance	matrix,	 ,	in	equation	(4.22)	must	be	consistent	with	the	simulation	horizon
of	the	standardized	factor,	 .	For	example,	if	 	is	calculated	on	monthly	data	and	the
simulation	horizon	is	yearly	then	 	must	be	scaled	by	 	for	consistency	in	equation	(4.22).

Denoting	the	transformed	(to	normal)	default	threshold	by	 	for	issuer	 	we	have	that	the
conditional	(on	 )	default	probability	is,

where	 .

We	have	assumed	here	that	 	although	in	principle	we	can	consider	other	cases.	For
example,	using	equation	(3.19)	we	can	have	a	multivariate	t-distribution	for	 	such	that

with	 ,	 	and	 	is	independent	of	 .	Further,	 	is	the	degrees	of	freedom
parameter	for	the	t-distribution.	See	Schönbucher	(2000)	on	using	the	t-distribution	in	the
multifactor	model.	Having	a	t-distributed	standardized	return	for	the	normalized	credit	index,	
,	we	of	course	also	need	to	use	the	t-distribution	when	we	transform	the	standardized	returns

to	uniforms	to	compare	with	the	actual	transition	matrix	thresholds.	Alternatively,	we	use	the
inverse	t-distribution	to	transform	the	actual	transition	matrix	transition	probabilities	to	t-
distributed	thresholds.

A	generalization	often	used	in	practice	is	to	retain	the	normal	distribution	for	each	 	and	use	a
copula	for	 	such	that	we	simulate	from

and	then	transform	back	to	normal	using,	 ,	where	 	is	the	inverse	normal	distribution
function.

Below	we	will	consider	using	the	t-copula	as	an	alternative	to	the	implied	normal	copula	in
equation	(4.22).	The	t-copula	is	useful	in	this	credit	risk	context	since	it	still	maintains	the
flexibility	of	using	a	full	correlation	matrix	between	the	credit	factors,	 ,	and	still,
for	low	values	of	the	degrees	of	freedom	parameter,	 ,	displays	significant	tail	dependence.
Hence,	it	can	generate	more	extreme	tail	events	(i.e.,	more	joint	defaults	than	the	normal).	The



same	flexibility	is	provided	by	the	normal	mixture	copula	and	the	grouped	t-copula	introduced
by	Daul	et	al.	(2003).

A	Numerical	Example	of	Multifactor	Models
As	a	concrete	example	of	a	multifactor	model,	consider	a	firm	with	a	credit	index	driven	by
four	monthly	observed	return	factors.	We	denote	these	return	factors	by	
where	the	factors	are	distributed	as	multivariate	normal	with	the	standard	deviation	of	the
return	factors	being	 ,	 ,	 ,	and	 ,	respectively.	The	correlation	matrix	between
the	returns	is	given	by

The	factor	parameters,	 ,	and	the	idiosyncratic	parameter,	 ,	are	given	by

Note	here	that	 	and	that	each	 	can	be	interpreted	as	the	percentage	exposure	to	that
factor.

It	is	natural	to	think	of	these	factors	as	influencing	the	firms	credit	health	in	different	ways.	For
example,	a	manufacturing	firm	with	significant	export	may	be	exposed	to	a	local	index	for
similar	firms	as	well	as	indices	that	indicate	the	potential	revenue	in	exports	(e.g.,	foreign
countries'	GDP	deviations	from	trend	and	foreign	exchange	rates).	The	idiosyncratic	parameter
	captures	the	part	of	the	firm's	credit	health	that	cannot	be	explained	by	the	factors.

From	classical	linear	regression	theory	we	have	that	the	 	is	defined	as	1	minus	the	variance
of	the	error	term	divided	by	the	variance	of	the	dependent	variable.	In	terms	of	equation	(4.22),
the	dependent	variable	is	 	and	by	definition	the	variance	of	 	is	unity.	Hence,	in	this	model
the	classical	linear	regression	 	is	given	by	 .	Note,	however,	that	for	the	original
regression	equation	(4.21)	the	regression	 	is	given	by,

For	our	numerical	example	we	then	have	that	the	standardized	model	 	for	the	firm	is	
and	that	the	unstandardized	model	 	for	the	firm	is	 .	The	remaining	explanatory	part	is
attributed	to	the	unknown	idiosyncratic	factor,	 .	Henceforth,	when	we	refer	to	the	 	we	will
mean	the	standardized	model	 .

Calibration	of	Multifactor	Models
The	expression	of	the	multifactor	model	in	terms	of	 	such	that



is	convenient	for	expert-based	calibration	of	the	firm	parameters	 .	However,	 	and	 	can
also	be	statistically	calibrated	based	on	time	series	of	approximate	asset	returns,	 ,	for	firm	 .
Two	approaches	are	generally	used:

1.	 Calibration	to	asset	values	or	approximate	asset	values.

For	example,	Dullman,	Scheicher,	and	Schmieder	(2007)	use	monthly	time	series	of
Moody's	KMV	produced	approximate	asset	values	(inferred	from	the	Merton	model	from
equity	prices,	see	equation	(4.9))	to	estimate	single	and	multifactor	sector	models	for	about
2,000	European	firms	returns.	They	find	substantial	variation	in	asset	correlations	over
time,	suggesting	that	at	least	the	model	covariance	matrix	between	credit	factors,	 ,	should
be	regularly	updated.

2.	 Another,	simpler	approach,	is	to	use	directly	the	equity	returns	as	proxy	for	asset	values.

For	example,	Mashal	et	al.	(2003)	find	that	the	dependence	of	equity	and	inferred	asset
returns	is	similar.	Using	equity	returns	directly	as	 	in	model	calibration	clearly	simplifies
the	regression	analysis,	as	market	observed	equity	returns	can	be	regressed	on	several
credit	factors	to	find	the	best	fit.

Simulation	of	Multifactor	Models
Having	obtained	the	model	parameters	for	the	firms	credit	index	we	can	now	easily	construct	a
firm	scenario	for	 	by	joint	simulation	of	the	return	factors	 	as	well	as	an	independent	normal
factor,	 .	Finally,	using	equation	(4.22)	we	obtain	the	realized	firm	credit	index,	 .	The
obtained	 	then	needs	to	be	compared	with	the	ratings	thresholds	implied	by	the	transition
matrix	to	determine	the	firm	rating	in	the	scenario.

Note	that	in	this	model	(assuming	a	multivariate	normal	distribution	and	hence	a	normal	copula
between	firm	returns),	the	firms	credit	quality	correlation	(and	hence	default	and	migration
correlation)	is	completely	driven	by	the	correlation	between	the	firms	factors	and	the	firm
factor	parameters.	Specifically,	for	two	firms	with	factor	models

we	obtain,	since	the	idiosyncratic	components	are	independent,
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Application	of	the	Multifactor	Models
We	now	consider	an	extensive	application	of	the	multifactor	model	in	a	dynamic	setting	where
credit	portfolio	loss	is	path	dependent	across	horizons.	The	path	dependency	of	credit	loss
implies	that	the	rating	is	made	path	dependent	across	horizons.	That	is,	next	horizon	starts	with
the	previous	horizons	rating	and	once	a	default	has	occurred	at	a	certain	horizon	the	firm
remains	in	default	as	the	default	state	is	absorbing.

Our	sample	portfolio	is	composed	of	8	bond-issuing	firms	where	each	firm	has	a	current	rating
in	the	rating	categories	A1	to	A9,	A1	being	the	highest	quality	rating	grade	and	A9	the	lowest
quality	rating	grade.	Table	4.11	displays	the	8	firms	in	the	portfolio	and	their	current	rating.

Table	4.11	Firms'	Ratings

Firm Rating
1 A6
2 A4
3 A6
4 A2
5 A7
6 A5
7 A4
8 A5

Each	firm	has	a	monthly	horizon	multifactor	model	describing	its	asset	returns.	The	multifactor
models	for	the	8	firms	(see	equation	(4.21))	describes	the	dynamics	of	the	firms	asset	returns,	

,	and	depends	on	 	normal	credit	factors.	The	specific	asset	returns	models	for	the	8
firms	hence	use	 	unique	credit	factors	that	we	for	now	assume	are	distributed	as
multivariate	normal.	That	is,	 .

Focusing	on	the	specific	sample	multifactor	models	for	the	firms,	we	have	that	firm	1:s
multifactor	model	uses	the	same	parameters	as	our	numerical	example	above	and	is	given	by

such	that	its	exposure	is	mainly	to	the	credit	factors	 	and	 	with	minimal	exposure	to	credit
factors	 	and	 .	The	explained	portion	of	the	model	is

Firms	2,	3,	and	4	multifactor	models	use	only	two	factors	and	are	described	by



Hence,	for	firms	2,	3,	and	4,	two	thirds	of	the	exposure	is	attributed	to	a	single	credit	factor.
The	explained	portion	of	the	model	for	firms	2	and	3	is	the	same	as	for	firm	1	while	firm	4
explained	portion	of	the	model	is	higher	with	 .	This	is	because	firm	4	has	a	lower
idiosyncratic	 	parameter, .

Firm	5	has	a	5-factor	model	that	is	given	by

with	main	exposure	to	3	factors,	 ,	 ,	and,	 .	The	model	 	is	 	as	for	firms	1,	2,	and
3.

Firm	6	has	a	7-factor	model	given	by

However,	main	exposure	is	just	toward	3	factors	as	for	firm	5.	Firm	6	also	has	the	same	model
	as	firm	5.

Finally,	for	firm	7	and	8	we	have	respectively	a	4-factor	and	a	7-factor	model	given	by

and

Both	models,	 	is	 ,	as	is	the	case	for	all	firms	except	firm	4,	which	has	a	higher	 	of	
.

Our	next	step	is	to	specify	the	distribution	parameters	for	the	credit	factors,	 ,
that	drive	systematic	risk	in	the	 	firms	asset	returns.	Recall	that	we	assumed	a
multivariate	normal	distribution	with	 .	Each	 	has	a	monthly	standard	deviation
that	is	displayed	in	Table	4.12.	The	credit	factors,	 ,	corresponding	correlation
matrix	is	given	in	Table	4.13.	Note	that	we	only	display	numbers	for	the	upper	triangular	part
of	the	correlation	matrix	in	Table	4.13	as	correlation	matrices	are	symmetric.



Table	4.12	Credit	Factors	Monthly	Returns	Standard	Deviation

Credit	factor Standard	deviation
1 0.0785
2 0.0848
3 0.0497
4 0.0696
5 0.0346
6 0.0762
7 0.0726
8 0.1088
9 0.0888
10 0.0569
11 0.0688
12 0.0647
13 0.0602
14 0.0510
15 0.0565
16 0.0558
17 0.0860
18 0.0738



Table	4.13	Credit	Factors	Monthly	Asset	Returns	Correlation	Matrix

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.54 0.74 0.72 0.51 0.80 0.76 0.68 0.76 0.71 0.78 0.62 0.79 0.67 0.61 0.55 0.70 0.99
2 0.69 0.69 0.47 0.62 0.74 0.56 0.63 0.78 0.66 0.65 0.65 0.61 0.62 0.54 0.62 0.58
3 0.87 0.67 0.78 0.78 0.56 0.63 0.78 0.83 0.80 0.81 0.89 0.95 0.83 0.82 0.75
4 0.58 0.77 0.84 0.54 0.67 0.87 0.88 0.78 0.77 0.79 0.78 0.73 0.72 0.72
5 0.44 0.43 0.39 0.51 0.57 0.56 0.50 0.55 0.58 0.61 0.50 0.53 0.52
6 0.85 0.62 0.75 0.79 0.83 0.67 0.82 0.70 0.68 0.60 0.79 0.80
7 0.64 0.76 0.90 0.84 0.72 0.76 0.71 0.66 0.62 0.73 0.76
8 0.73 0.65 0.65 0.59 0.63 0.56 0.49 0.46 0.52 0.68
9 0.79 0.78 0.54 0.84 0.52 0.48 0.39 0.54 0.76
10 0.88 0.75 0.77 0.69 0.68 0.60 0.69 0.71
11 0.75 0.87 0.74 0.74 0.64 0.77 0.78
12 0.66 0.87 0.76 0.76 0.74 0.63
13 0.70 0.68 0.57 0.69 0.79
14 0.86 0.95 0.79 0.67
15 0.84 0.79 0.62
16 0.70 0.54
17 0.70

Knowing	the	exact	distribution	of	the	credit	factors,	 ,	we	now	have	all
information	needed	to	simulate	equation	(4.22)	for	each	firm.	We	break	down	the	process	in
steps:

1.	 First,	we	simulate	each	 ,	 	using	a	model	as	in	equation	(4.19).	That	is,

where	 	is	the	18	by	18	square	root	matrix	( 	the	covariance	matrix)	that	is	obtained
from	Tables	4.12	and	4.13.	The	initial	value	of	each	 	is	zero	with	dependent
increments	in	factor	returns	between	horizons	(see	our	discussion	above	on	dependent
versus	independent	firm	returns).

2.	 Second,	at	each	horizon	and	scenario	we	construct	the	normalized	asset	returns,	 ,	using
equation	(4.22).	We	now	have	obtained	the	realized	standard	normal	firm	return	that	we
can	use	to	compare	with	the	transition	matrix	thresholds	to	obtain	a	new	rating.

3.	 Consequently,	in	step	3,	we	can	either	use	the	normal	distribution	transformation,	
,	on	the	realized	standardized	firm	return,	 ,	to	compare	the	uniform	 	with	the	uniform
transition	matrix	thresholds.	This	will	allow	us	to	decide	the	new	rating	at	the	horizon.



Equivalently,	we	can	retain	the	realized	standardized	firm	return,	 ,	as	normal	and
transform	the	transition	matrix	thresholds	to	normal	instead.
In	our	example	we	will	focus	on	risk	at	the	horizons	of	3,	6,	9,	and	12	months.	Hence,	we
need	a	3-month	transition	matrix	since	the	interval	length	between	horizons	is	3	months.
The	3-month	transition	matrix	we	use	is	displayed	in	Table	4.14.

Table	4.14	The	3-Month	Transition	Matrix	for	Rating	Classes	A1,	…,	A9	and	Default

Rating A1 A2 A3 A4 A5 A6 A7 A8
A1 0.981076 0.01373 0.002432 0.002071 0.000628 0.000028 0.000014 0.000003
A2 0.000346 0.955995 0.02981 0.008782 0.003894 0.000572 0.000479 0.000089
A3 0.000166 0.002461 0.926368 0.05613 0.008105 0.004032 0.002067 0.00041
A4 0.000002 0.00046 0.010864 0.931403 0.039692 0.010823 0.00489 0.001245
A5 0.000036 0.000218 0.001883 0.029349 0.92279 0.030815 0.011152 0.002666
A6 0.000061 0.000081 0.000495 0.007339 0.031295 0.914282 0.035751 0.008994
A7 0.000001 0.000004 0.000428 0.003203 0.010665 0.03582 0.910908 0.029834
A8 0.000001 0.000003 0.000796 0.002731 0.006292 0.015428 0.044812 0.879731
A9 0 0.000001 0.000024 0.000138 0.002276 0.004656 0.020566 0.038688
Default 0 0 0 0 0 0 0 0

Having	simulated	the	firms	rating	transitions	using	the	realized	standardized	firm	return,	 ,
and	the	transition	matrix	thresholds	we	can	now	calculate	portfolio	profit	and	loss	using	the
bond	exposures	for	each	firm.	We	assume	that	each	firm	can	have	multiple	exposures
(which	all	inherit	their	rating	from	the	firm)	and	that	all	firm	exposures	are	zero-coupon
bonds	with	5	years	remaining	to	maturity.12	For	example,	firm	1	has	3	zero-coupon	bond
exposures	with	currency	notional	amounts	50,000,	400,000,	and	600,000.	Each	exposure
also	has	a	recovery	rate.	That	is,	recovery	rates	are	assigned	to	exposure	level	rather	than
firm	level.	Table	4.15	displays	the	portfolio	exposures	and	their	assigned	recovery	rates	in
percent	of	the	current	value	of	the	exposure.



Table	4.15	Firm	Zero-Coupon	Bond	Exposures	and	Percent	Recovery	Rates

Firm Exposure Notional	amount Recovery	rate	(%)
1 1 50,000 0
1 2 400,000 0
1 3 600,000 0
2 1 1,000,000 0
3 1 100,000 69
3 2 75,000 69
3 3 80,000 69
4 1 100,000 76
4 2 25,000 76
5 1 125,000 69
6 1 90,000 69
6 2 325,000 69
6 3 210,000 69
7 1 112,000 80
7 2 29,000 80
8 1 56,000 80
8 2 95,000 69
8 3 10,000 80
8 4 245,000 80

In	order	to	value	the	exposures	we	also	need	the	zero	coupon	rates	as	well	as	the	credit
spread	curves	for	the	rating	classes,	A1,	…,	A9.	As	our	portfolio	only	consists	of	zero
coupon	bonds	with	5	years	to	maturity	and	our	maximum	analysis	horizon	is	1	year	we	only
need	the	zero	and	credit	spread	rates	between	years	4	and	5.	For	simplicity	we	specify	the
rates	at	years	4	and	5	only	and	use	linear	interpolation	between	the	years	for	the	3,	6	and	9
month	analysis	horizons.	The	4	and	5	year	zero	rates	are	given	by	3.048%	and	3.257%,
respectively.	The	4-	and	5-year	credit	spread	rates	for	rating	category	A1	is	2.915%	and
3.121%.	For	other	rating	categories	than	A1,	we	use	an	upward	scaling	on	the	A1	rating
category	spreads.	Specifically,	rating	category	A2	spreads	are	scaled	A1	category	spreads
by	a	factor	of	1.2.	We	then	use	an	incremental	scaling	of	0.2	for	each	additional	rating
downgrade	such	that	for	example	rating	category	A9	has	the	A1	rating	category	spreads
scaled	by	2.6	yielding	4-	and	5-year	spread	rates	for	rating	category	A9	as	7.579%	and
8.1146%,	respectively.

Having	all	the	information	about	the	firms	exposures	we	can	now	proceed	to	step	4	in	our



process:

4.	 	Given	the	realized	ratings	for	firms	in	a	given	scenario	and	horizon,	we	compute	bond
value	as	the	discounted	value	of	the	notional	amount	at	the	horizon	using	the	zero	coupon
rates	and	appropriate	risk	spreads	for	the	realized	rating.

Here	a	specific	credit	exposure	profit	and	loss	is	defined	as	the	deviation	between	the
value	of	the	exposure	holding	fixed	the	initial	rating	versus	the	value	of	the	exposure	at	the
scenario	rating.	The	calculation	of	the	exposure-based	value,	holding	fixed	the	initial
rating,	is	done	at	each	horizon	as	well	as	the	value	based	on	the	scenario	rating.	Hence,	at
any	time,	the	profit	and	loss	measure	based	on	the	two	exposure	values	is	concentrated	on
credit	migration	profit	and	loss	and	not	time	effects	such	as	portfolio	aging.13	With	this
definition	of	profit	and	loss,	the	loss,	holding	fixed	the	rating,	may	actually	decrease	across
horizons.	For	example,	consider	a	downgrade	of	a	firm	after	6	months.	Holding	fixed	the
firm's	6-month	new	rating	at	the	9-month	horizon,	the	6-month	exposure	loss	is	greater	than
the	9-month	exposure	loss.	This	is	because	the	profit	and	loss	difference,	for	a	fixed	rating,
will	decrease	as	time	to	maturity	decreases.	The	opposite	situation	will	occur	for	a	firm
that	defaults	at	a	horizon	earlier	than	12	months	with	cash	recovery	and	no	reinvestment	or
interest	earned	on	the	recovery	amount.	While	the	firm	stays	in	default	at	all	future
horizons,	the	loss	will	grow	over	time	as	the	base	value,	with	no	credit	migration,	will
increase	over	horizons	due	to	aging.

Once	we	have	available	exposure-level	empirical	profit	and	losses,	we	can	perform	the
last	step	in	our	process.	That	is	step	5.

5.	 	Aggregate	the	empirical	profit	and	losses	at	each	horizons	to	portfolio	and	other	levels
such	as	firm	level	and	compute	risk	measures	such	as	 	on	the	empirical	profit	and	loss.

Table	4.16	displays	the	obtained	portfolio	 	and	 	risk	metrics	for	horizons	3,	6,	9,	and
12	months	using	100,000	scenarios	and	a	confidence	level	of	99%.	In	Table	4.16,	we	also
display	the	mark	to	market	(MtM)	and	the	 	and	 	contributions	(Cont	 	and	Cont	

)	as	well	as	the	incremental	risk	measures	for	 	and	 	(Inc	 	and	Inc	
respectively).	Figure	4.4	also	displays	graphically	the	99%	 	for	the	firms	and	the	portfolio
for	the	horizons	of	3,	6,	9,	and	12	months.	We	can	notice	several	important	points	from	Table
4.16.

Table	4.16	Firm	Portfolio	Risk	Measures	at	Horizons	3,	6,	9,	and	12	Months

Firm MtM Cont	 Cont	 Inc	 Inc	
3	months	horizon

1 652,796 38,183 366,805 0 70,253 9,514 61,578
2 661,783 38,551 71,253 56,999 44,173 18,816 18,207
3 214,729 4,087 33,561 0 5,354 0 -6,280
4 88,055 5,109 8,484 0 851 0 -2,854
5 75,324 2,240 11,821 0 1,553 0 -3,305



6 530,736 10,400 36,830 0 11,062 0 -575
7 93,311 5,436 9,039 0 948 0 -2,770
8 284,017 12,942 23,993 0 4,318 0 -6,590
Portfolio 2,600,752 56,999 138,782 56,999 138,872 56,999 138,872

6	months	horizon
1 652,796 36,758 388,082 0 176,422 11,677 159,242
2 661,783 54,708 136,338 71,973 63,757 25,823 47,409
3 214,729 3,608 34,979 0 7,779 3,345 3,240
4 88,055 7,221 11,189 0 1,575 1,289 1,491
5 75,324 4,258 25,628 0 2,915 2,033 2,374
6 530,736 9,063 38,302 9,063 25,487 5,429 17,783
7 93,311 7,714 11,683 0 1,786 1,410 798
8 284,017 12,206 26,086 0 7,678 4,506 5,061
Portfolio 2,600,752 81,036 287,400 81,036 287,400 81,036 287,400

9	months	horizon
1 652,796 35,206 404,830 0 338,132 36,327 305,920
2 661,783 52,243 168,215 35,267 97,124 32,768 86,652
3 214,729 3,118 39,128 0 8,340 11,682 5,176
4 88,055 6,869 11,062 0 2,012 2,237 1,966
5 75,324 25,724 28,224 4,087 3,519 5,588 2,980
6 530,736 11,484 101,532 7,693 46,871 21,540 27,566
7 93,311 7,366 11,950 2,518 2,249 2,578 2,205
8 284,017 16,967 48,264 70,694 8,733 11,944 6,357
Portfolio 2,600,752 120,258 506,979 120,258 506,979 120,258 506,979

12	months	horizon
1 652,796 49,767 735,915 0 565,360 166,340 463,492
2 661,783 65,458 381,372 65,458 162,278 70,938 126,286
3 214,729 3,916 74,919 0 4,892 11,518 4,542
4 88,055 8,573 12,855 0 2,308 1,778 2,306
5 75,324 28,332 30,833 1,975 3,817 14,147 3,741
6 530,736 9,450 110,279 186,357 13,349 96,249 10,647
7 93,311 9,230 16,294 4,723 2,554 4,723 2,554
8 284,017 15,810 51,832 15,810 6,848 13,298 6,543



Portfolio 2,600,752 274,323 761,406 274,323 761,406 274,323 274,323

Figure	4.4	Firm	Portfolio	VaR	at	Horizons	3,	6,	9,	and	12	Months

First,	both	on	portfolio	level	and	firm	level	there	is	generally	a	significantly	higher	
than	 .	This	is	because	there	is	in	general	a	low	probability	of	severe	losses	(less	than
1%)	and	hence	the	tail	loss	contribution	beyond	the	99%	significance	level	is	substantial.

Second,	the	individual	firm	 	and	 	contributions	seem	to	reflect	fairly	the	relative
differences	in	risks	between	firms.

For	example,	comparing	the	firm	1	and	firm	2	 	contributions,	at	either	of	the	horizons,
which	have	similar	exposures	and	the	same	exposure	recovery	rate	of	zero,	we	find	that	firm	1
has	a	larger	 	contribution	that	we	can	attribute	to	the	firm's	lower	rating.	In	contrast,	the	

	contributions	allocate	a	zero	contribution	to	firm	1	and	a	non-zero	contribution	to	firm	2	at
all	horizons.	This	 	allocation	is	not	consistent	with	the	firms	relative	risk	profiles	and
seems	unintuitive.	Indeed,	as	we	have	discussed	previously,	the	empirical	 	contribution
may	not	be	a	good	estimate	of	portfolio	risk	contribution	as	it	relies	on	a	single	realization.
Since	the	 	risk	contribution	represents	a	realized	average	of	tail	losses	it	captures	more
information	about	the	loss	contributions	in	the	tail.



Third,	incremental	 ,	at	least	for	the	longer	horizons,	match	relatively	well	the	
contributions.14	This	is	useful	since	(Euler)	contributions	can	be	seen	as	a	local	measure	of
risk	contribution	whereas	the	incremental	measure	is	global.	Note	also	that	the	incremental	

	measure	seems	to	produce	more	intuitive	results	than	the	empirical	 	contribution.
At	least	beyond	the	3-month	horizon.

It	is	also	interesting	to	decompose	the	portfolio	risk	factors.	That	is,	the	 	normal	credit
factors,	relative	importance	using	their	risk	factor	information	measures.	Indeed,	it	can	be
especially	complex	with	many	credit	factors	to	understand	which	factors	that	are	relatively
more	important	in	determining	portfolio	profit	and	loss.

Table	4.17	displays	the	5	top	risk	factors	according	to	the	risk	factor	information	measure
(RFI)	and	their	correlation	(Corr)	with	portfolio	profit	and	loss	at	the	horizon	of	12	months.
The	highest	risk	factor	information	measure	is	0.09425	attributed	to	credit	factor	 	and	hence
there	does	not	seem	to	be	a	single	risk	factor	which	is	significantly	more	important	than	other
risk	factors.	Many	of	the	 	risk	factors	have	a	similar	risk	factor	information	measures.
This	result	complicates	reverse	stress	testing	for	the	portfolio	as	many	risk	factors	can
contribute	almost	equally	to	portfolio	loss.	Hence,	reverse	stress	testing	for	this	portfolio	can
in	general	not	focus	on	a	significantly	dimension	reduced	set	of	risk	factors.

Table	4.17	Risk	Factor	Information	Measures	for	the	Top	5	Ranked	Credit	Factors	at	the
Horizon	of	12	Months

Credit	factor RFI Corr
0.09425 0.278
0.09104 0.273
0.08876 0.274
0.08837 0.269
0.08565 0.271

Extensions	to	the	t-Copula
We	now	continue	the	above	example	to	examine	the	impact	of	a	t-copula	with	tail	dependence
on	the	portfolio	 	and	 .	That	is,	we	assume	the	copula	function	in	equation	(4.24)	is
used	to	simulate	correlated	uniforms	with	the	t-copula.	Subsequently,	the	uniforms	are
transformed	to	normal	marginal	distributions	such	that	we	still	have	that	each	 .

Considering	the	aggregate	portfolio	risk	impact	of	using	a	t-copula	Table	4.18	displays	the
portfolio	99%	confidence	level	 	and	 	at	the	12	month	horizon	using	a	t-copula	with	3
degrees	of	freedom	versus	the	normal	copula	we	have	implicitly	used	above.



Table	4.18	VaR	and	CVaR	at	the	12-Month	Horizon	for	the	Portfolio	with	the	Normal	and	the	t-
Copula	with	3	Degrees	of	Freedom

Copula
Normal 274,323 761,406
t(3) 738,303 940,309

We	notice	that	the	largest	relative	risk	measure	increase	from	using	the	t-copula	is	on	the	
risk	measure.	This	can	be	explained	by	analyzing	the	empirical	portfolio	tail	loss	using	the
normal	and	the	t-copula.	For	illustration,	Figure	4.5	displays	the	portfolio	credit	loss	tail,	at
the	12-month	horizon,	using	the	normal	and	t(3)	copula	for	confidence	levels	99%	and	higher.
While	the	tail	loss	amounts	for	the	t(3)	copula	are	higher	than	for	the	normal	copula	we	note
that	for	some	confidence	levels	the	normal	and	t(3)	copula	would	give	a	similar	 .	For
example,	at	the	99.1%	to	the	99.5%	confidence	level.	In	contrast,	at	the	99.9%	confidence
level	there	are	significant	differences	in	 .

Figure	4.5	Credit	Portfolio	Loss	Tail	for	the	Normal	and	t(3)	Copula	for	Confidence	Levels
99%	and	Higher

The	reader	interested	in	further	applications	comparing	the	t-	and	normal	copula	for	the
multifactor	credit	risk	models	may	consult	Daul	et	al.	(2003)	who	compare	the	grouped	t-
copula	(which	allows	different	degrees	of	freedoms	for	the	credit	factors)	to	the	regular	t-
copula	(that	we	used	here	with	3	degrees	of	freedom)	and	the	normal	copula.



Recovery
In	our	portfolio	credit	risk	analysis	so	far	we	have	taken	bond	exposure	recovery	rates	as
exogenously	given	rates.	However,	in	the	structural	Merton	model	framework	the	recovery	rate
is	explicit.	See	equation	(4.12).

Several	empirical	studies	have	focused	on	estimating	observed	historical	recovery	rates
dependence	on	core	factors	such	as	bond	seniority	and	industry	of	bond	issuer.	For	example,
Altman	and	Kishore	(1996)	measure	recovery	rates	from	quoted	defaultable	bond	prices.	For
traded	bonds	the	recovery	rate	is	usually	measured	as	the	quoted	defaultable	bond	price	rather
than	the	ultimate	recovery	rate.	The	ultimate	recovery	rate	is	the	realized	(discounted)	amount
paid	by	the	firm	to	the	bondholders.	More	recently,	Jankowitsch	et	al.	(2014)	analyze	the
determinants	of	US	bond	recovery	rates	between	2002	and	2010	(measured	using	quotable
bond	prices	in	default)	and	find	that	bond	characteristics,	firm	fundamentals,	macroeconomic
variables	and	liquidity	measures	are	key	factors	in	explaining	recovery	rates.	Both	Altman	and
Kishore	(1996)	and	Jankowitsch	et	al.	(2014)	find	that	average	bond	recovery	rates	are	about
40%	of	bond	face	value,	which	is	a	numerical	recovery	value	often	used	in	practice.

Recovery	and	Macroeconomic	Factors
There	is	also	evidence	for	a	general	macroeconomic	negative	correlation	between	default	rates
and	recovery	rates	such	that	recovery	rates	are	at	their	lowest	when	default	rates	are	high.	See
Altman	et	al.	(2005).	Altman	et	al.	(2002),	in	a	Basel	working	paper	study,	investigate	the
effect	of	different	recovery	models	assumption	on	the	credit	portfolio	risk	as	measured	by	 .
Using	a	portfolio	of	250	loans	and	a	single	common	one	factor	model	for	the	loans	they
compare	three	different	recovery	models:

1.	 A	fixed	recovery	rate	of	70%.

2.	 A	stochastic	recovery	rate	drawn	from	a	truncated	Beta	distribution	withmean	70%	and
with	lower	and	upper	bound	50%	and	90%.15

3.	 A	stochastic	recovery	rate	drawn	from	a	truncated	Beta	distribution	where	the	common
factor	influences	the	recovery	such	that	if	the	common	factor	indicates	a	strong	recession
then	recovery	rates	take	their	minimum	value	of	50%.	Similarly,	if	the	common	factor
indicates	a	strong	economy	the	recovery	rates	increase	to	90%.

Their	results	indicate	that	there	is	no	significant	difference	between	risk—as	measured	by	
—when	one	moves	from	a	fixed	recovery	rate	(case	1)	to	a	stochastic	recovery	rate	that	is
independent	of	default	rates	(case	2).

This	shows	that	even	if	the	portfolio	is	relatively	small	with	250	loans	the	law	of	large
numbers	effectively	ensures	the	aggregate	portfolio	level	losses	are	similar.	In	contrast,	the
case	with	correlated	default	and	recovery	rates	(case	3)	yields	significantly	larger	 	than	the
other	recovery	models.	Of	course,	this	is	not	surprising	as	the	correlated	recovery	and	default
rate	model	tends	to	generate	more	tail	events	where	loss	rates	are	higher.	See	also	Rösch	and
Scheule	(2005)	who	uses	a	multifactor	model	with	negative	correlation	between	default	rates
and	recovery	rates	applied	to	Moody's	global	corporate	default	and	recovery	rates.	The	model



is	generalized	by	Hamerle	et	al.	(2007)	using	a	simultaneous	model	of	probability	of	default
and	loss	given	default.

Double	Default	and	the	Factor	Model
In	addition	to	modeling	outright	recovery	rates	bond	issues	and	corporate	loans	can	also	be
hedged	with	credit	products.	The	rise	in	trading	volumes	of	credit-risky	assets	has	caused	a
market	need	for	credit	derivatives	to	hedge	counterparty	defaults.	Credit	derivatives	pay	off
based	on	events	such	as	bankruptcy,	failure	of	a	payment	obligation	or	downgrade.	Several
credit	events	are	now	standard	definitions	by	International	Swap	and	Derivatives	Association
(ISDA).

At	the	credit	event	the	protection	payer	typically	receives	either	a	cash	amount	or	a	physical
delivery	of	a	market	instrument	(such	as	a	non-defaulted	bond).The	most	common	credit
derivative	is	the	single-name	credit	default	swap	which	protects	the	buyer	against	a	specific
counterparty	default	on	a	certain	agreed	notional	amount.	In	return,	the	protection	buyer	pays	a
periodic	premium	to	the	protection	seller.	A	protected	exposure	is	hence	lost	only	if	both	the
issuer	and	the	guarantor	counterparty	default.	This	is	termed	double-default.

Basel	II	(Basel	Committee	(2005b))	added	a	specific	correlation	based	treatment	of	double
default	to	the	Basel	II	accord	in	response	to	the	bank's	concern	on	the	adequacy	of	a	simple
substitution	rule.	Under	the	simple	substitution	rule,	if	the	guarantor	counterparty	has	a	lower
probability	of	default,	it	could	be	used	in	place	of	the	issuer	probability	of	default.	The	rule	is
simple	because	it	assumes

i.	 If	the	guarantor	defaults,	then	the	exposure	counterparty	should	have	already	defaulted,	but

ii.	 If	the	exposure	defaults,	the	guarantor	would	still	have	the	same	probability	of	default
unconditionally.

Let	 	denote	the	exposure	and	 	the	guarantee	protection	then	 	is	the	joint	default
probability	of	the	exposure	and	the	guarantee.	In	the	first	situation,	when	the	exposure	and
guarantor	have	very	close	credit	quality,	from

then	substitution	rule	implies	that	if	 ,	then	 ,	which	discourages
banks	to	seek	credit	protection	against	the	exposure	of	high	credit	quality.	This	is	because	it
would	be	very	costly	to	find	a	credit	protection	that	has	a	lower	probability	of	default	that	can
effectively	replace	the	probability	of	default	of	the	exposure	itself.	On	the	other	hand,	when	the
exposure	has	a	very	poor	credit	quality,	from	 ,	the	substitution	approach	leads	to	

,	and

which	ignores	the	situation	that	when	the	exposure	defaults	the	guarantor	may	become	more
vulnerable.



Basel	II	credit	risk	capital	requirements	are	based	on	a	special	case	of	the	multifactor	model—
specifically,	a	one-factor	model	version	of	equation	(4.22).	Heitfield	and	Barger	(2003)	use
the	single-factor	model	and	explain	the	difference	between	the	substitution	approach	and	the
double-default	approach.	The	double-default	formula	assumes	a	one-factor	model	for	both	the
exposure	and	the	guarantee	counterparty.	It	results	in	an	analytic	formula	based	on	the	bivariate
normal	distribution.	The	model	credit	correlation,	however,	derives	from	two	sources.	First,
the	common	systematic	factor.	The	second	source	of	correlation	is	introduced	as	a	common
factor	in	the	idiosyncratic	terms	for	the	exposure	and	the	guarantee	counterparty.	The	double-
default	formula	is	consistent	with	the	simple	substitution	rule	when	assets	of	the	obligor	and
guarantor	are	perfectly	correlated,	they	share	the	same	exposure	to	the	systematic	risk	factor,
and,	the	recovery	rate	of	the	lowest	credit	quality	counterparty	is	zero.	Heitfield	and	Barger
(2003)	provide	numerical	examples	to	illustrate	how	the	substitution	approach	compares	to	the
double	default	formula.

In	the	context	of	the	multifactor	portfolio	model	we	can	easily	model	the	double	default	case.
Specifically,	if	an	issuer	exposure	is	hedged	by	a	guarantor	counterparty	we	can	model	the
guarantor	counterparty	credit	index	model	together	with	the	issuer	model	and	thereby	capture
default	correlations	between	the	issuer	and	the	guarantor.	For	example,	if	issuer	 	has
multifactor	model

and	guarantor	 	has	multifactor	model

we	can	calculate	the	correlation	between	credit	indices	using	equation	(4.25).

Consistent	with	the	Basel	double-default	formula	we	could	also	introduce	a	second	source	of
correlation	through	a	common	factor	in	the	idiosyncratic	terms,	 ,	 .	For	example,	replace	 ,	
	by

where	now	 ,	 	are	the	independent	components	and	 	is	the	common	idiosyncratic
component.

An	Example	Using	Multifactor	Models	for	Double	Default
We	continue	our	example	on	the	dynamic	multifactor	model	focusing	only	on	firm	2	in	Table
4.15	with	its	single	exposure	of	1,000,000	units	of	currency	and	a	recovery	rate	of	zero.	We
introduce	a	guarantor	counterparty	that	guarantees	a	notional	recovery	of	900,000	in	case	firm



2	defaults.	In	the	example	below,	we	will	assume	that	all	issuer	and	guarantor	credit
correlations	derives	from	the	common	systematic	factors.	Hence,	there	is	no	common	factor	in
the	idiosyncratic	terms.16

In	our	example,	firm	2	keeps	its	current	multifactor	model	such	that

while	the	new	multifactor	model	for	the	guarantor,	 ,	is

where	 	and	 	have	already	been	used	in	our	example	above	and	 	is	a	common	factor	for
firm	2	and	the	guarantor.	The	guarantor	also	has	two	new	factors,	 	and	 .

The	credit	factors	monthly	standard	deviation	is	given	in	Table	4.19	while	Table	4.20	displays
the	correlation	between	the	credit	factors	used	here.	Note	that,	as	before,	we	only	display
numbers	for	the	upper	triangular	part	of	the	correlation	matrix	in	Table	4.20	as	correlation
matrices	are	symmetric.

Table	4.19	Credit	Factors	Monthly	Returns	Standard	Deviation

Credit	factor Standard	deviation
2 0.0848
5 0.0346
14 0.0510
G1 0.0648
G2 0.0620

Table	4.20	Credit	Factors	Monthly	Returns	Correlation	Matrix

Credit	factor 5 14 G1 G2
2 0.47 0.61 0.39 0.53
5 0.58 0.48 0.50
14 0.35 0.71
G1 0.52

Clearly,	all	else	equal,	the	stronger	the	correlation	between	the	firm	2	and	the	guarantor	credit
indices	the	stronger	is	the	default	correlation	between	firm	2	and	the	guarantor.	This	is
essentially	the	situation	that	the	Basel	double-default	treatment	wants	to	capture.	When	a
protection	has	strong	positive	correlation	with	the	exposure,	a	wrong-way	risk	type	of	situation
arises.	We	know	from	Table	4.11	that	firm	2	is	rated	in	category	A4	and	we	also	assume	that
the	guarantor	is	currently	rated	in	category	A4.	Hence,	we	assume	that	the	guarantor	has	the
same	current	rating	as	firm	2.	Of	course,	this	means	that	if	we	were	following	a	simple	Basel



substitution	approach	in	this	case	the	guarantee	would	have	no	value.	We	now	compute	the	3
months,	6	months,	9	months,	and	12	months	horizon	 	and	 	risk	at	the	99%	confidence
level—with	and	without	firm	2's	exposure	being	hedged	by	the	guarantee.	We	can	of	course
obtain	the	case	when	firm	2's	exposure	is	unhedged	directly	from	Table	4.16	and	Table	4.21
displays	the	case	when	firm	2's	exposure	is	hedged	compared	with	the	unhedged	case.

Table	4.21	Firm	2	Hedged	and	Unhedged	Risk	Measures	at	Horisons	3,	6,	9,	and	12	Months

Case
3	months	horizon

Unhedged 38,551 71,253
Hedged 38,551 63,513

6	months	horizon
Unhedged 54,708 136,338
Hedged 54,708 77,261

9	months	horizon
Unhedged 52,243 168,215
Hedged 52,243 74,703

12	months	horizon
Unhedged 65,458 381,372
Hedged 49,662 72,075

While	there	is	no	effect	on	 	until	the	final	horizon	of	12	months	(due	to	the	fact	that	there	is
not	enough	amounts	of	firm	2	defaults	and	hence	not	enough	significant	recoveries	due	to	the
guarantee)	we	notice	that	there	is	an	effect	on	 	at	all	horizons.	The	effect	is	more
significant	the	longer	the	risk	horizon.	For	example,	at	the	12-month	horizon	hedged	 ,	at
the	99%	confidence	level,	is	less	than	19%	of	the	unhedged	 .	Clearly,	at	this	confidence
level	a	joint	default	of	firm	2	and	the	guarantor	becomes	more	unlikely.	However,	if	we
compare	the	hedged	and	unhedged	 	at	a	higher	confidence	level	of	99.9%	we	find	a	less
substantial	risk	reduction	(not	shown	in	Table	4.21).	Specifically,	at	the	99.9%	confidence
level	the	12-months	horizon	unhedged	and	hedged	 	are	both	734,364,	yielding	no	hedge
reduction.	At	this	high	confidence	level,	the	tail	events	include	the	double	default	case.

The	above	example	shows	that	the	portfolio	risk	accredited	value	of	default	protection
depends	heavily	on	the	choice	of	risk	measure,	as	well	as	on	the	confidence	level	for	a	given
model.	Another	important	factor	is,	of	course,	also	the	joint	default	probability	or	the	default
correlation.	As	we	have	seen	previously,	using	a	t-copula	for	joint	defaults	with	a	low	degrees
of	freedom	can	significantly	impact	the	risk	measure	due	to	more	frequent	joint	defaults.	While
using	a	t-copula	with	low	degrees	of	freedom	between	factors,	 ,	can	increase	the
dependence	of	firms	 	and	 	factors	 	and	 	and	hence	joint	default	probability	the	probability
of	joint	default	also	depends	on	the	factor	loadings	through	 .



Probability	of	Joint	Defaults	and	Default	Correlation	in	the	Multifactor	Model
The	multifactor	model	expresses	dependence	between	firms	default	probability	indirectly
through	the	factor	correlations.	Intuitively,	the	higher	the	correlation	between	two	firms	factor
models	the	higher	the	default	correlation.	Following	Schönbucher	(2000)	the	joint	default
probability	between	firms	A	and	B,	 ,	is

where	 	and	 	are	the	individual	default	probabilities	of	firm	A	and	B	respectively	and	 	is
the	default	correlation	between	firm	A	and	B.17	Similarly,	the	conditional	default	probability	of
firm	A	defaulting	conditional	on	a	firm	B	default,	 ,	is

Hence,	if	 	and	 	then

We	note	here	that	 	is	almost	invariant	to	the	individual	default	probabilities	of	firm	A	and
B.	Specifically,	if	 	then	 ,	and,	if	 	then	 .

In	principle,	one	could	consider	a	credit	risk	model	where	one	would	specify	the	default
correlation	directly	between	firms.	However,	it	is	in	practice	more	convenient	to	work	with
multifactor	models	that	implicitly	specify	default	correlations	using	the	factor	correlations	and
factor	model	parameters.	However,	in	general,	default	correlations	implied	from	multifactor
models	are	much	lower	than	the	actual	correlations	between	the	multifactor	models	(see
equation	(4.25)).	It	is	also	in	general	the	case	that	the	more	the	number	of	factors	that	are	used
in	multifactor	models,	the	more	diluted	becomes	the	correlation	between	multifactor	models
and	hence	the	default	correlation.	This	is	because	the	factors	are	usually	less	than	perfectly
correlated	and	increasing	the	number	of	factors	therefore	contributes	to	diluting	the	correlation.
We	refer	to	Schönbucher	(2000)	for	a	detailed	account	on	default	correlations	in	factor	models
for	portfolio	credit	risk.

Firm	Pooling	and	the	Conditional	Law	of	Large	Numbers
Until	now,	we	have	focused	on	modeling	the	credit	index	for	specific	firms.	However,
sometimes	there	are	enough	firms	(or	bonds	and	loans	if	the	model	is	applied	on	that	level)
such	that	one	can	create	approximately	homogenous	pools.	When	the	multifactor	model	is
applied	to	a	set	of	firms	that	are	homogeneous	with	respect	to	(i)	current	rating,	and	(ii)	the
multifactor	model	(which	drives	migration	and	default),	one	can	consider	using	an
approximation	method	to	derive	the	pools	empirical	transition	and	default	frequencies—
conditional	on	the	credit	factors,	 .



Finger	(1999)	considers,	in	the	context	of	a	one-factor	model	and	a	default	only	assumption
with	no	migration,	three	different	approaches	to	derive	an	approximation	to	the	full	credit	loss
distribution:

First,	the	law	of	large	numbers	to	derive	a	simple,	conditional	on	the	single	factor,	credit
loss	distribution	that	can	be	integrated	explicitly

Second,	an	approximation	to	the	credit	portfolio	loss	distribution	using	the	central	limit
theorem	and	numerical	integration

Third,	using	the	moment	generating	function

All	these	approaches	rely	on	a	conditional	independence	assumption	such	that	conditional	on
the	firms	factors,	 ,	the	firms	are	independent	since	we	have	assumed	independence	of	the
firms	idiosyncratic	factors,	 .	See	equation	(4.23)	for	the	conditional	default	probability	of	a
firm.

While	direct	approximations	to	credit	losses	are	also	useful	in	practice	we	will	focus	here
instead	on	an	approximation	approach	based	on	the	conditional	law	of	large	numbers	that	can
be	applied	in	a	general	simulation	context.	In	particular,	firms	can	still	maintain	idiosyncratic
and	general	(stochastic)	properties	for	exposure	and	recovery	models.	That	is,	we	focus	on	the
case	when	the	law	of	large	numbers	approximation	is	only	applied	to	a	set	of	firms	migration
and	default	process.	The	approach	is	similar	to	Lucas	et	al.	(1999)	(see	also	Schönbucher,
2000)	although	we	do	not	attempt	an	approximation	for	the	final	credit	loss	distribution	and
instead	focus	on	the	approximation	of	credit	migration	frequencies	only.

In	practice	this	approach	may	be	more	useful	because	homogeneity	of	firms	credit	migration
and	default	model	is	much	less	restrictive	than	having	to	assume	homogeneity	also	in	exposure
and	recovery	for	the	firms.	It	is	also	the	case	that	many	models	that	try	to	approximate	credit
portfolio	loss	models	loss	distributions	cannot	incorporate	general	idiosyncratic	and	stochastic
models	for	exposure	and	recovery.

To	introduce	the	firm	pool	approximation	model	we	let	there	be	 	firms	in	a	pool.	The
	firms	are	assumed	to	have	the	same	initial	rating	and	a	common	multifactor	model,	such	that
their	standardized	returns	are,

Hence,	the	 	firms	have	common	multifactor	parameters,	 	but	different
idiosyncratic	factors,	 .

Let	 	be	the	indicator	which	takes	the	value	1	if	the	firm	is	in	rating	class	
at	time	 ,	 .	For	different	classes	of	rating	categories	we	have	 	distinct	transition
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probabilities	to	the	 	classes;	that	is,	if	a	firm	belongs	to	class	 ,	we	have	 ,	 	
transition	probabilities.	As	we	have	explained	previously	the	 	thresholds	are	obtained	from
the	transition	probabilities	and	the	realized	rating	is	determined	by	the	realized	return	from	the
standardized	multifactor	model	and	the	thresholds.	In	the	following	we	will	assume	rating
thresholds	are	denoted	by	 	and	that	rating	classes	are	ordered	such	that	rating	class	1	is	the
highest	quality	grade	and	class	 	is	the	lowest	quality	grade.	For	example,	we	can	think	of
grade	1	as	being	the	AAA	grade	and	the	grade	 	as	being	the	default	grade	in	the	Standard	and
Poor's	rating	scale.	The	reader	is	referred	to	Figure	4.2	and	Table	4.5,	which	illustrates	the
decomposition	of	the	thresholds	for	a	firm	rated	BBB	using	the	Standard	and	Poor's	rating
grade	scale.

We	can	now	write	for	firm	 ,	assuming	that	the	threshold	for	firm	 	to	migrate	to	above	class	2
(hence	to	class	1)	is	 ,

where	the	probability	is	conditional	on	 	and	 .	Similarly,	for	firm	 	to	migrate	to
any	of	the	 	rating	classes	we	can	write

Finally,	for	rating	class	 	we	obtain

We	note	that	this	corresponds	to	an	ordered	Probit	model	(see	Amemiya,	1985,	ch.	7)	and	that
each	transition	probability	is	a	marginal	transition	probability.	Of	course,	the	rating	thresholds	

	are	dependent	on	the	current	rating,	 ,	and	typically	induced	using	the	normal
distribution	transformation	of	the	marginal	transition	probabilities	to	rating	classes	 .

If	the	number	of	firms	 	in	the	pool	is	large	we	can	apply	a	conditional	law	of	large
numbers	such	that	the	expected	fraction	of	firms	that	belong	to	rating	class	 	at	time	

	is
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conditional	on	a	realization	of	 	where	 	is	the	cumulative	normal	distribution	and	 ,	
.

Essentially,	for	each	realization	of	 	we	obtain	a	vector	 	with	the	expected	realized
rating	fractions	 	for	each	of	the	possible	 	classes.	Clearly,	 .	Once
this	vector	is	obtained,	we	can	of	course	value	a	set	of	exposures	for,	say,	firm	 	by	using	the
rating	fractions,	 .	Specifically,	if	 	is	such	a	realized	vector	and	 	is	a	 -
dimensional	vector	with	market	values	for	firm	 	for	all	the	 	rating	categories,	then
we	can	write	total	market	value	for	firm	 ,	say	 ,	as

In	practice,	the	difference	for	different	 	will	be	due	to	credit	spreads	associated	with
the	different	ratings,	 .	Of	course,	for	rating	class	 ,	 ,	represents	the	recovery
value	in	the	event	of	default.

Now,	at	time	 	our	starting	point	is	the	vector	 .	This	vector	will	in	general	have	
non-zero	elements.	Hence,	in	order	to	compute	migrations	at	 	we	need	to	calculate	all	the
transition	probabilities	from	the	current	rating	fractions	(at	 ),	 ,	migrating	to
either	of	the	ratings	 	(at	 ).	Conditional	on	 	we	therefore	obtain	a	
dimensional	transition	matrix,	 	where	 	and	 .

Let	 	be	the	 	matrix	that	is	defined	by	adding	a	 	row	of	zeros	for	the	 	columns
and	unity	for	the	 	column.	That	is,

with	the	transition	probability	from	state	 	to	state	 	being

where	we	have	explicitly	indicated	in	equation	(4.28)	that	the	transition	probability	rating
thresholds,	 ,	depends	on	both	the	from	and	to	state	with	 	being	the	normalized	threshold
for	a	firm	currently	in	state	 	migrating	to	state	 .	With	this	matrix	defined	we	can	now	compute
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the	expected	rating	fractions	at	 	using	a	first-order	Markov	Chain.	Specifically,

such	that	we,	conditional	on	 ,	obtain	the	expected	rating	fractions	at	 .	It	is	now	clear
that	with	the	above	algorithm	we	can	apply,	in	general	for	any ,

This	gives	us	the	 	current	expected	rating	fractions	conditional	on	a	realization	of	 .

It	is	important	to	understand	that	with	this	algorithm	we	have	reduced	the	computational	burden
of	credit	migration	for	a	pool	of	 	firms	that	are	homogeneous	with	respect	to	current
rating	and	the	multifactor	model	to	the	computational	burden	of	a	single	firm.	Again,	we	have
not	assumed	any	homogeneity	in	either	exposure	or	recovery	models.	In	this	setting	a
homogeneous	pool	can	safely	maintain	specific	exposure	and	recovery	models	for	its	members.
But,	of	course,	applying	a	homogeneity	assumption	of	exposure	has	the	potential	to	reduce
calculation	time	further	if	the	exposure	valuation	is	time	consuming.	For	example,	we	could
decompose	the	 	firms	into	further	subclasses	with	sub-homogeneous	exposure
valuation	and	recovery	models.

A	Note	on	the	Pools	Based	Multifactor	Model	and	Large	Loan	and	Retail
Portfolios
When	the	multifactor	model	is	applied	to	large	firms,	as	we	have	focused	on	here,	the	credit
index	 	in	equation	(4.21)	is	often	referred	to	as	a	latent	variable.	This	is	because	it	is	in
general	unobserved	but	can	be	inferred	from	the	multifactor	model	itself.	In	practice,	the	firm
credit	index	 	can	be	approximated	by	equity	or	inferred	asset	values	for	calibration	of
multifactor	models.	Alternatively,	expert	calibration	can	be	used.

In	the	large	homogenous	pool	setting	of	the	multifactor	model,	it	is	also	applicable	more
generally	to	large	loan	and	retail	portfolios.	The	major	reason	for	this	is	that	with	a	large
portfolio	we	can	now	identify	the	previously	unobserved	credit	index	with	the	(transformed)
historical	empirical	default	frequencies	of	the	large	homogenous	portfolio.	Specifically,	we
can	transform	the	historical	default	frequencies,	 ,	to	a	normal	distribution	and	use	the
transformed	series,	 ,	as	our	definition	of	the	credit	index,	 .	Clearly,	the	credit	index
is	no	longer	unobserved	and	we	can	use	the	actual	credit	default	index	 	in	direct	calibration
of	equation	(4.21).	The	economic	factors,	 ,	can	for	example	be	macroeconomic	factors	such
as	unemployment	rates	and	GDP	deviations	from	trend.

As	the	reader	realizes,	in	this	large	pool	setting,	the	multifactor	model	is	now	similar	to	a
traditional	credit	scoring	model	with	macroeconomic	factors	calibrated	on	the	basis	of
observed	default	frequencies.	The	only	difference	is	that	we	have	transformed	the	model	into
normal	rather	than	using	directly	a	credit	score	model	defined	on	the	range	of	default
probabilities	 ,	such	as	aProbit	model.	However,	as	we	have	seen	above,	for	pools,	the



conditional	transition	probabilities	(on	 )	are	described	by	an	ordered	Probit	model.	The
model	is	hence	now	transformed	into	a	dynamic	credit	score	model	(or,	more	generally,	a
dynamic	transition	matrix	model).	Consequently,	with	a	different	calibration	interpretation,	the
model	is	now	equally	applicable	to	retail	portfolios.	We	will	return	to	discussing	appropriate
credit	models	for	large	loan	and	retail	portfolios	in	the	section	on	credit	models	for	the
banking	book.

Markov	View	and	Stress	Testing	of	Credit	Migration
The	Markov	iteration	algorithm	in	equation	(4.29)	computes	the	expected	transition
probabilities	(conditional	on	a	single	realization	of	 )	for	each	possible	state	 	for
each	time	 .	Clearly,	this	is	not	only	useful	for	credit	pools	approximations.	It	is	also
useful	for	economic	scenario	stress	testing	at	bond	or	loan	level.	This	is	because	by	using	the
iteration	equation	(4.29)	we	obtain	the	pathwise	expected	rating	transitions	of	the	firm,	loan	or
bond	for	a	given	scenario	of	the	firms	factors,	 .	Specifically,	the	random	sampling	of	
state	transition	paths,	for	a	given	 	economic	scenario,	and	the	subsequent	calculation	of
expected	state	frequencies	at	times	 	converges	to	the	Markov	iteration	state
frequencies,	 ,	in	equation	(4.29)	as	 	grows	large.	Specifically,	let	there	be	 ,	 -
dimensional	state	transition	indicators,	 ,	that	records	unity	at	the	realized	state	position
at	 	for	each	of	the	 	simulated	state	transition	paths.	Then

represents	the	estimated	fraction	of	the	firm	in	state	 	at	time	 	using	the	 	state
transition	samples	conditional	on	the	economic	scenario,	 .	The	collection,	 ,
hence	records	the	estimated	state	transition	fractions	at	each	time	 .	The	Markov
iteration	equation	(4.29)	can	now	be	understood	as	giving	the	case	of

conditional	on	the	scenario	 .	Hence,	we	can	obtain	the	expected	loss	in	an	economic
stress	scenario	without	sampling.	The	reason	that	we	obtain	this	relatively	simple
representation	of	the	Markov	iteration	in	this	case	is	due	to	the	fact	that	the	transition
probabilities	depend	only	on	time,	through	the	realization	of	 	as	in	equation	(4.27),	and	not
on	past	state	transition	history.	This	type	of	model	is	referred	to	as	a	time	inhomogeneous	(non-
stationary)	Markov	state	transition	model	and	leads	to	the	simple	state	occupancy	probabilities
in	equation	(4.29).	See	Lancaster	(1990,	p.	116).	Another	important	feature	of	the	Markov	state
transition	model	in	equation	(4.29)	is	that	it	is	homogeneous	for	firms	with	the	same	multifactor
model.	That	is,	the	 	matrix	 	is	common,	which	enabled	the	relatively	simple	Markov
approximation	for	pools.	We	will	apply	the	pool	Markov	iteration	feature	of	the	model	below,
and,	later	in	this	chapter	when	we	perform	multi-horizon	credit	risk	stress	testing	for	the
multifactor	model	we	will	use	the	Markov	iteration	again,	avoiding	expensive	sampling	of
expected	state	transitions	conditional	on	a	given	macroeconomic	scenario,	 .
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Expanding	the	Multifactor	Model	Example	to	Pools
We	now	extend	the	dynamic	multifactor	model	example	above	by	introducing	pools	in	the
portfolio	in	addition	to	the	8	firms	in	Table	4.11.18	Specifically,	the	portfolio	is	enriched	with
10	pools	for	which	their	current	rating	and	pool	sizes	are	listed	in	Table	4.22.	While	a
homogeneous	zero-coupon	bond	exposure	per	pool	is	not	necessary	in	this	model,	we	still
assume	in	this	example	that	the	pools	are	also	homogeneous	with	respect	to	exposure	and
recovery.	The	pool	zero-coupon	bond	exposures	aggregate	notional	amounts	and	recovery	rates
in	%	are	also	displayed	in	Table	4.22.	As	for	the	original	firm's	portfolio,	all	zero	coupon
bond	exposures	have	a	maturity	of	5	years.	The	assumptions	about	valuation	of	the	exposures,
for	a	given	rating	fraction	of	the	pool,	is	the	same	as	in	the	previous	examples	on	the	dynamic
multifactor	model.	Hence,	we	re-use	the	zero	rates	and	the	credit	spreads	we	had	in	the	firms
case	for	this	example.

Table	4.22	Pool	Ratings,	Size,	and	Exposures

Pool Rating Pool	size Notional	amount Recovery	rate	(%)
1 A7 1738 50,000,000 68
2 A7 3258 40,000,000 74
3 A4 539 7,000,000 78
4 A7 1828 120,000,000 72
5 A6 652 90,000,000 70
6 A4 47 15,000,000 69
7 A7 62 39,000,000 54
8 A7 312 27,000,000 70
9 A1 122 15,000,000 89
10 A7 85 12,000,000 70

The	monthly	multifactor	models	for	the	10	pools,	 ,	depends	on	the	 	normal	credit
factors	already	used	for	the	firms.	We	keep	the	pool	multifactor	models	simple	and	set	for	each
pool	 	the	multifactor	model	as

Here,	 .	Hence,	the	pools	share	a	common	two-factor	model.	With	these	multifactor
model	specifications	for	the	 	pools	we	can	now	compute	risk	measures	for	the
mixed	firms	and	pools	portfolio—similar	to	Table	4.16—across	the	different	horizons	such	as
3	months,	6	months,	9	months,	and	12	months.

A	specific	firm's	new	rating	at	a	certain	horizon	will	be	decided,	as	before,	by	comparing	the
implied	normal	thresholds	of	the	transition	matrix	using	the	current	rating	with	the	normalized
credit	index	from	equation	(4.22).	For	a	pool	the	calculation	of	the	expected	fraction	of	a	pool



in	a	particular	rating	class	at	a	certain	horizon	use	equation	(4.27)	and	equation	(4.29).

As	in	the	previous	example	for	the	8	firms	we	compute	results	at	the	horizons	of	3,	6,	9,	and	12
months	using	100,000	scenarios	and	a	confidence	level	of	99%.	However,	here	we	only
display	the	results	for	6	and	12	months.	This	is	done	in	Table	4.23.	Figure	4.6	also	displays
graphically	the	 	and	 	at	the	12-month	horizon	for	the	firms,	pools	and	the	portfolio.

Table	4.23	Mixed	Firm	and	Pool	Portfolio	Risk	Measures	at	Horizons	6	and	12	Months

MtM Cont	 Cont	 Inc	 Inc	
6	months	horizon

Firm
1 652,796 34,758 365,515 0 44,530 32,362 41,300
2 661,783 54,708 152,673 18,734 23,272 17,303 22,433
3 214,729 3,608 37,130 1,817 2,889 201 2,889
4 88,055 7,221 11,429 2,473 2,721 2,473 2,721
5 75,324 4,258 25,564 4,258 2,440 201 2,440
6 530,736 9,063 32,939 0 6,382 4,803 6,129
7 93,311 7,714 11,587 0 2,289 0 2,289
8 284,017 12,206 26,618 0 5,025 4,803 4,969
Pool
1 30,129,668 893,626 1,202,695 898,833 1,202,065 889,984 1,201,976
2 24,103,774 608,607 811,665 613,432 811,244 613,026 811,229
3 4,632,483 91,537 113,639 91,357 113,582 91,357 113,582
4 72,311,203 1,793,410 2,372,425 1,807,960 2,371,205 1,797,216 2,370,782
5 55,953,939 1,016,463 1,337,256 1,020,236 1,336,562 1,014,858 1,336,461
6 9,926,749 238,553 308,640 237,909 308,456 238,291 308,456
7 23,501,141 823,533 1,101,948 828,144 1,101,377 819,127 1,101,330
8 16,270,021 493,056 669,025 495,531 668,668 495,531 668,662
9 10,901,807 93,180 123,552 92,706 123,463 92,843 123,463
10 7,231,120 200,502 268,316 201,784 268,177 201,784 268,177

Portfolio 257,562,617 6,315,174 8,394,348 6,315,174 8,394,348 6,315,174 8,394,348
12	months	horizon

Firm
1 652,796 49,767 735,915 0 116,760 64,931 112,804
2 661,783 65,458 364,018 65,458 51,021 30,008 49,199



3 214,729 3,916 75,026 1,322 8,544 7,132 8,527
4 88,055 8,573 12,642 10,594 4,693 9,586 4,693
5 75,324 28,332 30,769 0 6,690 9,456 6,673
6 530,736 9,450 106,967 0 13,498 10,749 13,416
7 93,311 9,230 16,465 0 3,665 0 3,665
8 284,017 15,810 52,100 0 10,112 12,509 10,054
Pool
1 30,129,668 2,189,991 2,880,202 2,196,330 2,879,304 2,183,165 2,879,112
2 24,103,774 1,470,570 1,921,328 1,473,109 1,920,702 1,461,628 1,920,616
3 4,632,483 158,785 197,941 159,623 197,835 159,623 197,835
4 72,311,203 4,344,741 5,469,338 4,362,244 5,467,573 4,332,626 5,646,629
5 55,953,939 2,274,678 3,045,512 2,287,088 3,044,273 2,273,153 3,043,970
6 9,926,749 433,499 573,524 434,144 573,150 427,104 573,140
7 23,501,141 2,056,589 2,695,891 2,071,223 2,694,957 2,058,433 2,694,760
8 16,270,021 1,205,109 1,592,726 1,206,332 1,592,208 1,195,856 1,592,134
9 10,901,807 170,026 223,727 170,438 223,552 170,438 223,552
10 7,231,120 488,606 640,641 490,310 640,442 481,846 640,438

Portfolio 257,562,617 14,928,216 19,628,980 14,928,216 19,628,980 14,928,216 19,628,980



Figure	4.6	Mixed	Firm	and	Pool	Portfolio	VaR	and	CVaR	Risk	Measures	at	the	12-Month
Horizon

The	portfolio	risk,	as	measured	by	 	and	 	at	the	99%	confidence	level	is	of	course
dominated	by	the	pools	due	to	their	large	exposure	sizes.	As	in	the	example	when	we	only	had
individual	firms	in	the	portfolio	we	note	that	contribution	 	may	not	be	intuitive	for	the
individual	firms.	For	example,	at	both	horizons,	contribution	 	is	zero	for	many	firms.	In
contrast,	for	the	pools	we	observe	a	contribution	 	and	incremental	 	close	to	the
standalone	 .	That	the	risk	contributions	and	incremental	risk	measures	are	close	to	the
standalone	risk	is	a	general	phenomenon	for	credit	risk	portfolios	as	the	diversification	effect
is	generally	small.	This	is	in	contrast	to	market	risk	portfolios,	which	may	contain	natural
hedge	positions	such	as	short	positions.	Of	course,	in	a	credit	portfolio,	negative	risk
contributions	and	incremental	risk	may	arise	naturally	from	credit	hedges	such	as	credit	default
swaps	and	guarantees.

The	observation	of	smooth	risk	contributions	and	incremental	risk	for	the	pools	even	using	
as	a	risk	measure	is	not	surprising.	This	is	because	the	conditional	law	of	large	numbers
approximations	used	for	the	pools	introduce	a	smoothness	in	empirical	profit	and	loss.	Hence,
working	with	pools	instead	of	individual	firms	also	creates	advantages	in	terms	of	the	resulting
loss	distribution.

When	creating	the	pools	a	natural	question	to	ask	is	the	number	of	pool	members	needed	in



order	for	the	approximation	in	equation	(4.27)	to	be	good.	Clearly,	we	assume	the	pool	to	be
large	enough	such	that	for	a	pool	with	members	 	we	can	average	out	the	idiosyncratic
components	 	rendering	the	expectation	in	equation	(4.27)	valid	as	approximation.
Assuming	this	approximation	is	valid	we	have	hence,	conditional	on	 ,	a	simple	multinomial
distribution	for	the	pools	credit	rating.	In	practice,	a	simulation	comparison	analysis	can	be
conducted	comparing	the	risk	horizon	obtained	multinomial	rating	class	distributions	from	the
case	of	pooled	firms	 	versus	idiosyncratic	firm	models	 .	We	will	consider
such	an	example	later	when	we	discuss	the	creation	of	pools	in	the	context	of	banking	book
credit	scoring	based	credit	portfolio	models.

Convergence	of	Credit	Risk	Measures
Credit	loss	distributions,	due	to	the	relatively	rare	event	of	default	and	migration,	typically
display	much	fatter	tails	than	the	normal	distribution.	We	refer	to	Lucas	et	al.	(1999)	for	a
theoretical	analysis	of	the	loss	tail	behavior	induced	by	a	multifactor	model	as	having	naturally
polynomial	decaying	(fat	tailed	distribution)	rather	than	exponentially	decaying	tails	(as	for	the
normal	distribution).	The	loss	tail	index	is	shown	to	be	closely	related	to	the	correlation
between	the	firms	multifactor	models.

Because	with	credit	risk	we	attempt	to	model	rare	events	the	number	of	scenarios	required	to
obtain	stability	in	the	risk	measures	may	be	quite	large.	It	is	often	not	unreasonable	to	consider
number	of	scenarios	in	the	range	of	100,000–1,000,000	forportfolio	credit	risk	models.
Intuitively,	we	should	require	more	scenarios	for	a	portfolio	with	higher	quality	rating	since
the	default	event	is	even	more	rare	than	for	lower	quality	portfolios.	Pooling	should	also	help
to	reduce	the	number	of	scenarios	as	we	employ	a	conditional	expectation	rather	than	relying
on	sampling	of	idiosyncratic	components.	In	particular,	with	pooling,	the	scenario	attribution	of
at	least	some	proportion	of	the	portfolio	to	the	defaulted	fraction	happens	in	general	even	for
high	quality	grade	pool	of	firms	(since	they	have	generally	have	very	small	but	still	non-zero
default	probabilities).	As	we	saw	from	the	last	example,	pooling	also	helps	with	obtaining	a
smooth	loss	distribution.

Another	important	component	for	the	stability	of	credit	risk	measures	is	the	choice	of
confidence	level,	and,	the	choice	of	risk	measure	(e.g.,	 	or	 ).	For	example,	we	have
seen	that	 	as	a	risk	measure	and	in	particular	empirical	risk	contributions	using	 	may
not	be	straightforward	to	interpret	for	the	case	of	subportfolios	with	one	or	just	a	few	firms.

While	the	concern	about	having	to	use	a	large	number	of	scenarios	for	portfolio	credit	risk
portfolio	analysis	is	easing	over	time	thanks	to	the	advance	of	computer	technology	and
computational	techniques,	there	are	still	researches	on	faster	approximation	techniques	that
avoids	time	consuming	simulation.	We	have	already	mentioned	Lucas	et	al.	(1999)	and	Finger
(1999).	Analytical	approximation	techniques	for	one-factor	models	have	been	explored	in
Vasicek	(2002)	and	Gordy	(2003,	2004).	Pykthin	(2004)	extends	the	analytical	approximation
techniques	to	multifactor	models	by	using	a	corresponding	one-factor	model	that	has	similar
loss	distribution	properties	to	the	multifactor	model.	See	also	Glasserman	and	Li	(2005)	on
using	importance	sampling	in	the	credit	risk	context.



For	a	given	credit	portfolio	model	one	can	investigate	the	number	of	scenarios	required	to,
with	a	given	confidence	level,	reach	a	certain	desired	maximum	risk	measure	sampling	error	of
say	3%.	Finding	an	answer	to	that	question	in	general	requires	experimentation	with	different
simulation	sample	sizes	and	simulation	seeds.	For	a	given	simulation	seed	we	can	investigate
the	 	confidence	levels,	for	different	simulation	sizes,	using	the	order	statistics	based
nonparametric	probability	bounds	on	 .19

Convergence	Analysis	Example	for	the	Dynamic	Multifactor	Model	with	Both
Pools	and	Individual	Firms
Table	4.24	displays	99%	( ),	99.9%	( ),	and	99.99%	( )	 ,	at	the	12-month	horizon	level.
The	 	risk	measures	are	computed	separately	for	the	subportfolios	of	firms	and	pools,	for
different	simulation	sizes,	together	with	the	corresponding	95%	coverage	level	 	confidence
intervals	for	 	at	the	99%,	99.9%,	and	99.99%	confidence	level.	In	the	table	the	lower	and
upper	confidence	intervals	for	the	 	is	denoted	 	and	 	respectively.	A
similar	notation	is	used	for	 	and	 	confidence	levels.20	In	the	table	the	notation
N/A	indicates	that	an	empirical	 	is	not	available	(or	available	only	as	the	end	point	of	the
loss	sample)	for	that	particular	simulation	size	and	 	confidence	level.

Table	4.24	VaR	and	VaR	Confidence	Intervals	for	the	Subportfolios	of	Firms	and	Pools	for
Different	Simulation	Sizes

Subportfolio
Simulation	size	=	10,000

Firms 297,131 261,063 738,303 799,127 777,307 831,945 950,320
Pools 14,082,271 13,394,490 14,916,215 23,319,414 21,403,539 28,396,896 49,978,377

Simulation	size	=	50,000
Firms 270,436 232,911 731,267 824,686 814,576 835,102 1,005,958
Pools 14,636,145 14,295,319 15,030,642 24,999,344 23,820,670 26,240,716 42,947,529

Simulation	size	=	100,000
Firms 278,463 247,667 731,159 822,464 816,517 828,611 1,494,242
Pools 14,777,266 14,544,863 15,010,003 25,195,873 24,643,010 26,274,591 39,456,415

Table	4.24	shows	that	even	using	100,000	simulations	for	the	credit	risk	portfolios	yields	a
relatively	large	confidence	interval	for	the	 	risk	measure	for	very	high	confidence	levels
such	as	99.99%.	It	is	interesting	to	note	that	for	the	firms	portfolio	there	is	a	very	large	
confidence	interval	at	the	99%	level	even	using	100,000	simulations.	Especially	the	upper
bound	 	order	statistic	is	very	large	compared	to	99%	 .	This	behavior	can	be	explained
by	Figure	4.5	which	shows	that	normal	copula	 	for	the	firms	portfolio	jumps	discretely	at
confidence	levels	slightly	above	99%,	which	is	where	the	upper	 	bound	order	statistic
resides.



Figure	4.7	displays	graphically	the	99.9%	 	for	the	firms	together	with	the	95%	lower	and
upper	confidence	levels	for	the	different	simulation	sizes.	The	 	and	the	confidence	intervals
are	expressed	in	percentage	of	the	firms	mark	to	market	value	of	2,600,752.	Figure	4.8
displays	graphically	the	same	information	for	the	pools	with	the	mark	to	market	value	for	the
pools	being	254,961,865.

Figure	4.7	99.9%	VaR	(Expressed	in	Percentage	of	Current	Mark	to	Market)	for	the	Firms
Together	with	the	95%	Lower	and	Upper	Confidence	Levels	for	the	Different	Simulation	Sizes



Figure	4.8	99.9%	VaR	(Expressed	in	Percentage	of	Current	Mark	to	Market)	for	the	Pools
Together	with	the	95%	Lower	and	Upper	Confidence	Levels	for	the	Different	Simulation	Sizes

Calculation	and	Stability	of	Risk	Contributions
Oftentimes	the	stand-alone	risk	of	an	exposure	is	of	less	interest	than	its	risk	contribution	to	the
portfolio.	Hence,	while	the	stability	of	the	portfolio	risk	measure	is	a	concern	in	credit	risk
portfolios	there	is	also	a	concern	about	the	stability	of	the	risk	contributions	that	are	used	for
capital	allocations.	We	have	previously	seen	in	our	examples	that	pooling	helps	as	does	using	

	contributions	instead	of	 	contributions.	Alternatively,	one	can	consider	smoothed	
contributions	to	reduce	variance	as	we	discussed	in	the	advanced	market	risk	chapter.	A
practical	concern	for	large	portfolios	where	one	needs	to	calculate	risk	contributions	at
exposure	level	is	that,	in	principle,	all	the	exposure-level	scenario	profit-and-loss	data	that	has
to	be	kept	in	memory	or	stored	to	disk	together	with	the	portfolio-level	loss	information.	This
is	to	enable	the	subsequent	exposure	risk	contribution	calculations	that	depends	on	the
portfolio-level	tail	scenarios.	There	are	however	several	practical	ways	to	avoid	an	exposure
level	storage	for	all	the	simulation	scenarios.	One	approach	that	trades	speed	for	reduced	disk
or	memory	requirements	is	to	first	calculate	the	portfolio-level	results	only	and	then	identify
the	portfolio-level	scenarios	that	are	necessary	for	the	exposure-level	risk	contributions,	and,
in	a	second-run	calculate	and	store	exposure-level	loss	for	only	these	scenarios.	A	second
approach	is	to	produce	results	for	the	portfolio	and	the	exposures	at	the	same	run	but	define	a
portfolio-level	loss	threshold	where,	most	likely,	losses	below	that	threshold	will	not	be	part
of	the	portfolio-loss	tail	and	only	store	exposure-level	loss	information	if	the	portfolio	loss
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exceeds	the	threshold	for	that	scenario.	Since	the	exact	threshold	is	not	known	with	certainty	a
priory	the	threshold	can	be	taken	as	a	conservative	low	threshold.	Hence,	the	method	may	store
much	more	exposure-level	losses	than	needed	in	the	first	method.	On	the	other	hand,	it	only
requires	one	run.

Modeling	Default	Times
In	the	multivariate	Merton	model—using	a	plain	equity	representation	or	the	multifactor
models	representation—we	have	focused	on	the	simulation	of	discrete	migration	and	default
events	on	a	set	of	future	time	points,	 .	If	we	are	only	interested	in	the	default	time	of
an	issuer	it	is	of	course	more	efficient	to	focus	directly	on	estimating	the	default	time	rather
than	simulating	discrete	credit	events	until	a	default	occurs.	In	the	Li	(2000)	model,	the
modeling	focus	is	on	the	survivor	function,	which	gives	the	probability	of	survival	up	to	 	and
is	defined	by

where	 	is	a	continuous	random	variable	modeling	the	stochastic	default	time	of	an	issuer.
We	also	introduce	the	hazard	rate

where	 	is	the	density	of	the	distribution	 .	Since	 	the	equation	
corresponds	to	a	differential	equation	in	 ,	with	solution,	subject	to	the	initial	condition	
,

We	can	now	define	the	default	time	of	an	issuer	as	the	first	time	 	breaches	the	level	of	some
variable	 .	Specifically,	the	default	time	is	registered	as21

Note	that	the	probability	of	default	over	a	fixed	interval	 	is	equal	to	 	yielding,	for
constant	 ,	 	and	hence	we	can	solve	for	 	that	is	consistent	with	the	static
version	of	the	model	over	the	horizon	 .	This	feature	is	often	used	in	calibration	of	the
models	default	intensities,	especially	for	the	implied	default	intensities	derived	from	the
market	spreads.

In	the	model	formulation	proposed	by	Li	(2000),	one	makes	use	of	a	normal	copula	for	the	 -
vector	 	with	 	where	 	is	the	normal	copula,	implying	also	a	normal
copula	for	the	 vector	of	asset	(equity)	returns	since	the	copula	is	invariant	under	strictly
increasing	componentwise	transformations.22	A	straightforward	generalization	of	the	above
model	is	to	consider	other	copulas	than	the	normal	(e.g.,	the	t-copula).	Another	alternative	is	to
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consider	the	Archimedean	family	of	copula	functions	for	 .	See	Rogge	and	Schönbucher
(2003).

The	Impact	on	the	Joint	Default	Probability	in	the	Model	Using	Different
Copulas
We	consider	the	default	time	of	2	firms	using	the	default	time	model	by	Li	(2000).	Each	firm	
is	assumed	to	have	a	deterministic	and	constant	hazard	rate,	 .	To	generate	default	times	for
the	2	firms,	we	first	simulate	uniforms,	 ,	 	from	a	copula.	Having	obtained	the	uniforms,	we
can	now	calculate	the	default	time	for	firm	i,	 ,	as

Equivalently,	we	can	also	invert	 	using	the	exponential	distribution	with	parameter	
as	 	 .	Hence,	obtaining	firm	i:s	default	time.	Clearly,	correlated	default	times	comes
from	the	correlation	in	the	 .

Figure	4.9	displays	the	simulation	scatterplot	of	default	times	 ,	 	(expressed	in	years)	from	a
normal	copula	with	correlation	parameter	 	using	100,000	simulations	and	 	for
both	firms.23	Figure	4.10	displays	the	corresponding	simulation	scatterplot	of	default	times	 ,	
	from	the	normal	copula	using	the	correlation	parameter	 .	Comparing	the	cases	we

notice	a	strong	default	dependence	when	the	correlation	is	0.99.	Most	defaults	are	joint	as	the
default	times	for	the	2	firms	are	concentrated	on	the	diagonal	in	Figure	4.10.



Figure	4.9	Simulation	Scatterplot	of	Default	Times	(Expressed	in	Years)	from	a	Normal
Copula	with	Correlation	Parameter	0	Using	100,000	Simulations



Figure	4.10	Simulation	Scatterplot	of	Default	Times	(Expressed	in	Years)	from	a	Normal
Copula	with	Correlation	Parameter	0.99	Using	100,000	Simulations

Table	4.25	displays	the	obtained	empirical	probability	of	joint	firm	default	before	2	years,	
,	and	before	10	years,	 ,	when	 	for	both	firms	and	using

different	copulas	for	 	and	 .	Specifically,	we	use	the	normal	copula,	the	t-copula	and	the
Clayton	copula.	The	joint	default	probabilities	in	Table	4.25	should	be	interpreted	in	the
context	of	the	marginal	default	probabilities,	 	and	 	which	are	approximately
9.51%	and	39.36%	respectively	for	both	firm	1	and	2.	From	Table	4.25	we	note,	for	example,
that	for	the	normal	copula	and	t(3)	copula	with	correlation	parameter	 	the	joint
default	probabilities	are	very	close	to	the	marginal	default	probabilities.	This	means	that	for
this	case	almost	all	marginal	defaults	are	also	joint	defaults.	The	joint	defaults	obtained	with
the	Clayton	copula	in	Table	4.25	seems	to	suggest	that	the	Clayton	copula	is	a	useful
alternative	to	the	normal	and	t-copulas	in	parametrizing	joint	defaults.24	However,	it	is
important	to	remember	that	the	Clayton	copula	only	has	lower	tail	dependence.	Hence,	when
modeling	long-term	survival	and	conditional	default	over	long	term	it	may	result	in	unwanted
behavior	in	conditional	default	probabilities.	To	illustrate	this	Figure	4.11	displays	the



simulation	scatterplot	of	default	times	 ,	 	(expressed	in	years)	from	the	Clayton	copula	with	
	using	100,000	simulations	and	 	for	both	firms.	It	is	clear	that	there	is	only

default	dependence	in	the	left	tail	(compare	to	Figure	4.10,	which	displays	simulated	default
times	from	a	normal	copula	with	correlation	parameter	 ).	Another	drawback	of	the
Clayton	copula	is	that	it	only	has	a	single	parameter	to	specify	the	strength	of	codependency
when	many	firms	default	times	are	to	be	modeled.

Table	4.25	Empirical	Probability	of	Joint	Firm	Default	Before	2	Years	and	10	Years	for	Both
Firms	and	Using	Different	Copulas

Copula
Normal	( ) 0.90% 15.50%
Normal	( ) 3.02% 23.33%
Normal	( ) 8.56% 37.17%
Normal	( ) 9.48% 39.29%
t(3)	( ) 3.80% 23.50%
t(3)	( ) 8.71% 37.20%
t(3)	( ) 9.49% 39.29%
Clayton	( ) 7.53% 31.57%
Clayton	( ) 8.87% 36.73%
Clayton	( ) 9.29% 38.44%



Figure	4.11	Simulation	Scatterplot	of	Default	Times	(Expressed	in	Years)	from	a	Clayton
Copula	with	Copula	Parameter	30	Using	100,000	Simulations

Default	Times	and	Multifactor	Models
In	our	example	above,	we	directly	simulated	correlated	uniforms	 ,	 	from	a	copula.
However,	we	could	also	have	used	a	multifactor	model	approach.	Specifically,	each	firm	 	can
have	a	standard	normal	factor	model	as	in	(4.22)	such	that	for	a	firm	 ,

and	we	can	now	set

as	the	correlated	uniforms	that	we	use	to	calculate	firm	default	times,	 .	In	this	multifactor
model	the	copula	is	applied	to	the	credit	factors	 	as	in	equation	(4.24).	A	model	that
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is	often	used	in	practice	due	to	its	simplicity	is	the	one-factor	model	where

with	 ,	 	for	all	firms	 .	In	this	model	there	is	only	a	single	correlation
parameter	 	for	each	pair	of	firms.

Pricing	Using	the	Default	Time	Model
Once	we	have	obtained	the	default	times	we	can	properly	value	the	firms	exposures.
Specifically,	if	a	firm	has	issued	an	instrument	that	has	cash	flows	at	times	 	and	firm
default	time,	 ,	is	 	we	can	calculate	the	value	of	obtaining	cash	flows	up	to	 	plus
any	recoveries.	The	default	time	model	is	also	frequently	used	to	value	credit	correlation
products	such	as	 	to	default	basket	credit	default	swaps	and	tranches	of	collateralized	debt
obligations.	The	standard	basket	credit	default	swap	product	is	an	insurance	contract	on	the	

	default	in	a	basket	of	large	international	corporate	credits.	For	example,	a	basket	credit
default	swap	that	pays	off	1	unit	of	currency	if	at	least	3	out	of	10	firms	defaultsbefore	2	years
can	be	easily	valued	using	the	simulation	of	firm	default	times	and	then	calculating	the
probability	of	minimum	3	firm	defaults	before	2	years.

Before	the	2007	crisis	the	market	standard	model	for	basket	credit	derivatives	was	the	one-
factor	normal	copula	model	with	a	single	correlation	parameter,	 ,	between	firms	(see
equation	(4.34))	and	constant	default	probabilities	for	each	firm.	For	tranche-based	products
such	as	collateralized	debt	obligations	the	market	participants	calculated	implied	correlations
for	each	tranche.	As	a	result,	an	implied	correlation	curve	referred	to	as	“correlation	smile”
was	observed	in	the	market.25	Several	attempts	were	made	by	the	practitioners	to	fix	the	smile.
See	for	example	Amato	and	Gyntelberg	(2005).	However,	after	the	credit	crisis,	the	use	of	the
simple	one-factor	model	and	in	particular	the	normal	copula	have	been	heavily	criticized.
However,	our	examples	in	Table	4.25	have	shown	that	the	normal	copula	with	high	values	for
the	correlation	parameter,	 ,	is	capable	of	producing	strongly	correlated	defaults.	The	main
critique	should	hence	be	targeted	toward	the	use	of	too-low	(optimistic)	correlations	by	market
participants.	See	Hediorn	and	Kahlert	(2010)	on	the	sharply	increasing	implied	correlations
during	the	2007	financial	crisis.

Economic	Capital	for	a	Portfolio	of	Traded	Bonds
Considering	the	calculation	of	economic	capital	for	issuer	credit	risk	in	the	trading	book	one
must	recognize	that	trading	books	in	banks	mainly	consist	of	positions	held	with	intent	to	trade
or	hedge	other	positions.	This	is	in	contrast	to	banking	books	that	are	usually	made	of	held	to
maturity	items.	When	considering	issuer	credit	exposure	and	economic	capital	in	the	trading
book	it	is	therefore	natural	to	consider	a	trading	horizon	or	liquidity	horizon	of	credits.	The
trading	or	liquidity	horizon	should	reflect	the	intended	holding	period	and	market	depth	of	the
credits.

When	trading	credits	liquidity	horizons	are	shorter	than	the	risk	measurement	horizon	one
needs	to	consider	a	trading	intent	model	at	the	liquidity	horizons.	A	trading	intent	model



captures,	at	the	liquidity	horizons,	the	portfolio	strategy.	An	example	of	such	a	portfolio
strategy	is	to	maintain	the	credit	quality	and	risk	of	the	portfolio.	With	this	strategy,	when
trading	credits	at	their	liquidity	horizon,	the	requirement	is	that	the	credit,	assuming	credit
migration	has	happened,	is	replaced	by	a	credit	with	the	same	risk	profile	such	that	the	initial
risk	level	of	the	portfolio	is	maintained.	In	practice	this	means	that	the	newly	traded	credit
should	have	the	same	initial	rating	as	the	original	credit	but	also	that	the	new	credit	should	not
change	the	portfolio	features	such	as	concentration	or	the	maturities	of	the	investments.
Therefore,	in	order	to	preserve	the	initial	risk	level	from	both	an	exposure	and	portfolio
perspective	the	newly	traded	credit	should	have	the	same	stand-alone	characteristics	as	well
as	correlation	with	the	rest	of	the	portfolio.

This	specific	trading	intent	model	for	economic	capital	is	used	in	the	Basel	(Basel	Committee,
2009b)	internal	model	for	trading	book	credit	risk,	termed	the	Incremental	Risk	Charge	(IRC).
The	incremental	risk	charge	includes	positions	that	are	subject	to	risk	charges	for	specific
interest	rate	risk	such	as	corporate	bonds.	However,	the	incremental	risk	charge	captures	the
credit	migration	and	default	risk	holding	fixed	any	market	variations	such	as	interest	rate	risk
and	spread	risk	within	a	rating	class.	The	incremental	risk	charge	is	not	allowed	to	capture	any
diversification	effects	between	market	and	credit	risk.	This	means	that	the	incremental	risk
charge	is	added	to	the	total	market	risk	charge.

When	we	consider	economic	capital	calculations	of	a	traded	bond	portfolio	we	will	use	the
regulatory	IRC	framework	as	the	definition	of	the	economic	capital	trading	intent	model.	In	the
economic	capital	model	the	trading	horizon	is	of	course	specified	by	the	bank	while	in	the
regulatory	IRC	case	restrictions	on	the	specification	is	given.	Specifically,	the	trading	horizon
or	liquidity	horizon	is	subject	to	a	floor	of	3	months.	Moreover,	investment	grade	credits	are
expected	to	be	more	liquid	than	non-investment-grade	and	hence	have	a	shorter	liquidity
horizon.	In	this	setting	the	liquidity	horizon	represents	the	time	required	to	sell	the	position	or
to	hedge	all	material	risks	covered	by	the	incremental	risk	charge	model	in	a	stressed	market.

The	regulatory	IRC	is	assessed	by	banks	on	weekly	basis	at	a	99.9%	 	confidence	level
using	a	risk	horizon	of	1	year.	No	specific	model,	approach	or	method	is	prescribed	for	banks
in	terms	of	the	IRC	estimation.	This	is	in	contrast	to	Basel	II	models	for	banking	book,	where
the	risk	weight	calculation	is	set	to	a	one-factor	model	that	every	bank	uses.

In	the	calculation	of	bond	loss	with	the	IRC	trading	model	the	profit	and	loss	made	at	the
liquidity	horizon,	by	trading	back	into	a	bond	with	the	same	start	rating,	is	aggregated	to	the
final	horizon.	That	is,	for	a	bond	with	a	3-month	liquidity	horizon	the	loss	is	aggregated	at	the
3,	6,	9,	and	12	month	horizon	to	obtain	the	12-month	horizon	trading	loss.	As	a	general	rule	for
investment	grade	credits,	for	example,	bonds	belonging	to	rating	class	Aaa,	Aa,	or	A	in	the
Moody's	rating	categories,	the	incremental	risk	charge	(as	measured	by	99.9%	 	at	the	12
month	horizon)	is	smallest	when	the	shortest	liquidity	horizon	of	3	months	is	used.	For
medium-quality	bonds	the	incremental	risk	charge	level	is	generally	constant	and	does	not
depend	on	choosing	either	of	the	3,	6,	9,	or	12	month	liquidity	horizons.	For	the	speculative
grade	rating	classes,	for	example,	bonds	in	rating	classes	B	and	Caa	using	the	Moody's	rating
categories,	it	is	typically	always	beneficial	to	assume	a	long	liquidity	horizon	if	one	wants	to



minimize	the	level	of	IRC.

These	risk	impacts	due	to	choosing	different	trading	liquidity	horizons	for	bonds	with	different
credit	qualities	come	from	two	competing	effects.

First,	for	bonds	with	short	liquidity	horizons	there	is	a	mitigation	effect	of	preventing	the
bond	from	further	downgrades	by	trading	it	frequently.

Second,	there	is	the	effect	of	the	possibility	of	multiple	defaults.

Of	these	two	effects	the	multiple	default	effect	will	generally	be	more	pronounced	for
speculative	grade	credits	as	the	probability	of	default	is	severe	even	for	short	liquidity	periods
and	hence	incremental	risk	charges	will	generally	increase	the	shorter	the	liquidity	horizon.
For	medium	investment	grade	credits	these	two	effects	will	in	general	offset	and	the
incremental	risk	charge	will	be	approximately	the	same	across	liquidity	horizons.	For
investment	grade	credits	the	effect	of	the	multiple	defaults	is	low	for	short	liquidity	horizons	as
the	frequent	trading	effectively	prevents	severe	downgrades.

Not	surprisingly	this	behavior	coincides	with	results	in	the	credit	spread	term	structure
modeling	literature.	For	example,	Merton	(1974),	Sarig	and	Warga	(1989),	Fons	(1994),
Longstaff	and	Schwartz	(1995)	and	especially	Jarrow	et	al.	(1997).	That	is,	that	the	investment
grade	credits	have	increasing	credit	spreads	and	the	non-investment	grades	or	speculative
grades	have	downward	sloping	spreads	reflecting	the	survival	contingent	effects.	It	also	shows
that	the	market	and	regulatory	rationale	for	assigning	stressed	liquidity	horizons	to	credits	is
aligned	with	banks	preferred	choice	of	liquidity	horizons	to	minimize	the	IRC	add-on	to	the
total	capital	charge	for	the	trading	book.	See	Skoglund	and	Chen	(2011)	for	further	discussions
on	the	IRC	and	a	numerical	analysis	illustrating	the	competing	effects	of	multiple	defaults	and
mitigation	by	trading.	However,	we	will	also	analyze	some	of	the	IRC	portfolio	risk	effects
below	in	a	numerical	example.

To	analyze	the	impact	on	the	IRC	charge	for	banks	the	Basel	committee	performed	a
quantitative	impact	study	on	the	portfolio	effects	of	IRC.	The	findings	of	the	Basel	quantitative
impact	study	(Basel	Committee,	2009d)	is,	not	surprisingly,	that	the	IRC	capital	will	on
average	increase	the	total	risk	capital	charge.	However,	more	related	to	the	findings	in
Skoglund	and	Chen	(2011)	on	the	competing	effects	is	the	Basel	quantitative	impact	results
obtained	from	the	25	sample	banks	when	different	uniform	choices	of	liquidity	horizons	are
made	for	the	bank	portfolios.	The	Basel	results	show	an	increase	in	the	IRC	capital	when
liquidity	horizons	increase.	Specifically,	increasing	the	liquidity	horizon	from	1	month	to	6
months	on	average	increases	the	capital	charge	with	20%.	In	addition,	for	sample	banks	that
provided	estimates	for	both	1-month	and	3-month	uniform	liquidity	horizons	the	average
increase	in	the	capital	charge	is	3%.	These	results	are	therefore	consistent	with	the	Basel
sample	banks	having,	on	average,	investment	quality	bond	portfolios.

Below	we	will	consider	an	empirical	example	of	economic	IRC	portfolio	risk	effects.	Our
application	example	will	use	a	1-year	horizon	with	3-month	trading	intervals.	An	issue	one
faces	in	the	construction	of	a	3-month	matrix	is	that	the	shortest	time	interval	in	which
transition	matrices	are	estimated	is	often	a	year.	Hence,	we	usually	need	to	derive	a	shorter
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horizon	transition	matrix	from	a	given	1-year	transition	matrix.	For	this	purpose	it	is
convenient	to	use	a	generator	matrix	and	we	derive	this	generator	matrix	before	we	proceed
with	the	IRC	example.

Generator	Matrix	and	Short-Term	Transition	Matrices
Introducing	the	concept	of	a	generator	matrix	that	accompanies	a	transition	matrix	we	let	for
any	pair	of	states	 	and	 ,	 ,	be	defined	by,

where	 	is	the	rate	at	which	the	process	makes	a	transition	when	in	state	 	and	 	is	the
probability	that	the	transition	is	into	state	 .	Then	we	have	defined	the	rate	 	to	be	the	rate,
when	in	state	 ,	that	the	process	makes	a	transition	into	state	 .	It	follows	that	for	 	states,

which	leads	to	 .	Mathematically

is	the	generator	matrix	for	a	continuous	time	Markov	chain.	For	any	time	period	 ,	the	transition
probability	matrix	from	time	0	to	time	 	is

Specifically,	the	one-year	transition	matrix	 	is	simply	 	and	for	a	three-month
transition	matrix,	 ,	we	have	that	 .

In	a	credit	risk	Markov	chain	model	the	default	state,	 ,	is	assumed	to	be	absorbing.	That	is
once	in	default	an	exposure	or	firm	cannot	recover	from	it.	Correspondingly	the	transition
matrix	has	 	and	 	for	all	 .	Similarly	the	corresponding	generator
matrix	in	this	case	has	 .

Now	the	question	remains	how	a	generator	matrix	can	be	derived	from	a	one-year	transition
matrix,	 .	There	are	several	approaches	in	the	literature;	however,	Israel,	Rosenthal,	and	Wei
(2001)	propose	an	effective	method	as	follows:

where	 ,	with	 	the	identity	matrix.	The	required	power,	 ,	of	the	initial	transition	matrix
	is	then	calculated	as	 	using	the	Taylor	expansion	approximation



In	this	way	we	can	obtain	transition	probabilities	for	the	3-months	horizon	as	well	as	longer
horizons	such	as	6	months	and	9	months	from	the	generator	matrix	 .

Example	Calculation	of	the	Generator	Matrix	from	a	Moody's	One-Year
Transition	Matrix
Our	base	transition	matrix,	 ,	is	the	Moody's	long-run	or	TTC	one-year	transition	matrix
between	1920–1996	displayed	in	Table	4.26.

Table	4.26	Moody's	1920–1996	Average	One-Year	Transition	Matrix	for	the	Non-Default
Rating	Grades	Aaa,	Aa,	A,	Baa,	Ba,	B,	and	Caa,	and	the	Default	State,	D

Rating Aaa Aa A Baa Ba B Caa D
Aaa 0.9218 0.0651 0.0104 0.0025 0.0002 0 0 0
Aa 0.0129 0.9162 0.0611 0.007 0.0018 0.0003 0 0.0007
A 0.0008 0.025 0.9135 0.0511 0.0069 0.0011 0.0002 0.00014
Baa 0.0004 0.0027 0.0422 0.8916 0.0525 0.0068 0.0007 0.0031
Ba 0.0002 0.0007 0.0044 0.0511 0.8708 0.0557 0.0046 0.0125
B 0 0.0004 0.0014 0.0069 0.0652 0.852 0.0354 0.0387
Caa 0 0.0003 0.0004 0.0037 0.0145 0.06 0.783 0.1381
D 0 0 0 0 0 0 0 1

This	transition	matrix	has	empirical	transition	probabilities	for	the	Moody's	rating	classes	Aaa,
Aa,	A,	Baa,	Ba,	B,	and	Caa,	as	well	as	the	default	state,	D.	The	matrix	has	been	estimated
conditional	on	no	withdrawal	of	rating	and	hence	contains	no	category	attributed	to	non-rated
exposures	as	is	usually	the	case.	We	refer	to	Moody's	(1997)	for	details	on	how	the	transition
matrix	has	been	estimated.

We	now	construct	a	generator	matrix	from	the	Moody's	transition	matrix	using	equation	(4.36).
Table	4.27	displays	the	generator	matrix,	 ,	obtained	from	the	Moody's	one-year	average
transition	probability	matrix	for	the	Moody's	rating	classes	Aaa,	Aa,	A,	Baa,	Ba,	B,	and	Caa,
as	well	as	the	default	state,	D.



Table	4.27	The	Transition	Generator	Matrix	Obtained	from	Moody's	1920–1996	Average	One-
Year	Transition	Matrix	for	the	Non-Default	Rating	Grades	Aaa,	Aa,	A,	Baa,	Ba,	B,	and	Caa,
and	the	Default	State,	D

Rating Aaa Aa A Baa Ba B Caa
Aaa −0.078426 0.0655632 0.0101495 0.0025099 0.0001981 0.000003425 0.0000010726
Aa 0.0129921 −0.084197 0.0616064 0.0067839 0.0018027 0.0003031 0
A 0.0007784 0.0252062 −0.085778 0.0516558 0.006706 0.0010851 0.0002033
Baa 0.000402 0.0026288 0.042664 −0.109352 0.053329 0.0065479 0.0006829
Ba 0.0002012 0.0007008 0.0042233 0.0519202 −0.130752 0.056879 0.0044131
B 0 0.0004024 0.0014054 0.0065817 0.0665542 −0.149997 0.0366668
Caa 0 0.0003049 0.0003881 0.003705 0.014297 0.0620952 −0.220949
D 0 0 0 0 0 0 0

Having	available	the	generator	matrix	we	can	now	generate	a	transition	matrix	at	any	frequency
as	 .	We	will	make	use	of	the	generator	matrix	in	Table	4.27	when	we	calculate	bond
portfolio	economic	capital	using	different,	short-term,	trading	liquidity	horizons	for	bonds.

Example	IRC	Portfolio	Risk	Effects
We	consider	the	analysis	of	portfolio	level	economic	capital	using	a	simple	portfolio	with	1
bond	in	each	of	the	Moody's	rating	categories	Aaa,	Aa,	A,	Baa,	Ba,	B,	and	Caa.	All	the	bonds
notional	are	100	units	of	currency	with	a	recovery	rate	of	25%.	Each	of	the	bonds	are	zero
coupon	bonds	with	4	years	to	maturity.	For	an	analysis	horizon	of	1	year	we	therefore	require
the	3-	and	4-year	bond	discount	rates	for	a	bond	rated	in	one	of	the	rating	classes	Aaa,	Aa,	A,
Baa,	Ba,	B,	and	Caa.	The	bond	discount	rates	are	displayed	in	Table	4.28.

Table	4.28	Bond	Discount	Rates	for	the	7	Non-Default	Moody's	Rating	Classes,	Aaa,	Aa,	A,
Baa,	Ba,	B,	and	Caa	Respectively,	for	Maturity	Terms	3	and	4	Years

Rating	category Interest	rate	(3	years) Interest	rate	(4	years)
Aaa 0.02651775 0.02934361
Aa 0.02687823 0.02990976
A 0.02784931 0.03124889
Baa 0.02933442 0.03306486
Ba 0.03176641 0.03581472
B 0.05451719 0.05929989
Caa 0.12388839 0.12019516

Each	of	the	bonds	have	a	common	multifactor	model,



where	the	standard	deviation	and	correlation	between	credit	factors,	 ,	 ,	 ,	and	 	are
already	given	in	Tables	4.12	and	4.13,	respectively.

To	model	rating	transitions	at	the	liquidity	horizons	we	will	use	the	generator	transition	matrix
we	obtained	above	in	Table	4.27.	Using	the	generator	transition	matrix	and	the	multifactor
models	we	can	now	compute	the	economic	capital	required	to	support	the	portfolio	using	the
IRC	trading	intent	model.

Table	4.29	displays	the	portfolio	economic	capital,	as	measured	by	 	and	 	at	the	99.9%
level	using	100,000	simulations,	required	over	a	12-month	horizon	to	support	the	portfolio
with	different	trading	intervals	assumed	for	all	the	bonds.	The	portfolio	mark	to	market	is	529
units	of	currency.

Table	4.29	Economic	Capital	Required	Over	a	12-Month	Horizon	to	Support	the	Portfolio
with	Different	Trading	Frequencies	Assumed	for	all	the	Bonds

Economic	capital
Trading	interval VaR(0.999) CVaR(0.999)
3	months 297 337
6	months 269 298
9	months 229 257
12	months 184 210

We	notice	from	Table	4.29	that	economic	capital	increases	with	an	increased	trading
frequency.	This	is	because	the	lower-rated	bonds	contribute	more	to	losses	then	through	the
multiple	default	effect.	The	case	of	12	months	trading	interval	is	of	course	the	economic	capital
with	no	trading	and	is	consistent	with	the	12-month	risk	measure	for	our	previous	examples	on
the	dynamic	multifactor	model.

The	minimal	 	based	economic	capital	measure	for	the	portfolio	is	obtained	when	the	bonds
in	rating	categories	Aaa,	Aa,	A	have	a	short	trading	interval	and	the	bonds	in	rating	categories
B	and	Caa	have	a	long	trading	interval.	For	example,	when	bonds	rated	in	the	category	Aaa,
Aa,	A,	and	Baa	have	a	trading	interval	of	3	months,	bonds	rated	in	category	Ba,	B,	and	Caa
have	trading	interval	of	12	months	we	obtain	VaR-based	economic	capital	as	164	units	of
currency	(not	shown	in	Table	4.29).	If	we	instead	assign	a	12-month	trading	interval	to	Aaa,
Aa,	A,	and	Baa	rated	bonds	and	a	3-month	interval	to	Ba,	B,	and	Caa	rated	bonds	we	obtain
the	 -based	economic	capital	as	309	units	of	currency	(also	not	shown	in	Table	4.29).
Hence,	the	banks	preferred	choice	of	liquidity	horizons	to	minimize	the	economic	capital	(IRC
capital)	is	aligned	with	regulatory	required	choice	of	liquidity	horizons—allowing	short
liquidity	horizons	for	higher	rated	bonds	and	requiring	long	liquidity	horizons	for	low	quality
bonds.

As	we	have	seen	in	the	above	example	the	choice	of	trading	intervals	(liquidity	horizons)	of



banks	credit	portfolios	can	have	a	significant	impact	on	the	1-year	horizon	economic	capital.
While	the	regulatory	IRC	specification	of	trading	intervals	is	prescribed	the	economic	capital
model	can	have	any	choice	of	trading	intervals	for	credits.	However,	the	regulatory
specification	tends	to	yield	the	lowest	portfolio	risk.	Compared	to	a	model	with	no	trading
intent	over	the	1-year	horizon,	the	regulatory	specification	yields	also	in	general	a	lower
portfolio	risk,	as	it	benefits	from	a	mitigation	effect	of	preventing	high-quality	bonds	from
further	downgrades	by	trading	them	frequently.

Credit	Models	for	the	Banking	Book
Banking	book	credit	exposures	typically	include	loans,	leases,	and	facilities.	For	commercial
business	with	large	and	to	some	extent	medium-sized	firms,	the	Merton	style	models	discussed
above	are	widely	used	in	the	industry.	In	this	section	we	will	focus	on	the	exposures	mainly	in
the	form	of	consumer	and	small	firms	loans,	mortgages,	credit	cards	and	leases.	In	contrast	to
large	corporates,	consumers	and	small	firms	do	not	have	publicly	traded	equity.	Nor	do	they
have	publicly	traded	debt.

Banking	book	portfolios	are	generally	large	with	a	relatively	small	contribution	for	each	loan.
While	relatively	little	is	known	about	each	loan,	the	behavior	of	large	pools	of	loans	can	be
inferred	with	a	high	degree	of	statistical	certainty.

Traditionally,	financial	institutions	employ	credit	score	models—estimated	on	pools	of	loans
—to	retrieve	credit	scores	for	an	individual	loan.	Credit	score	models	includeborrower-
specific	(idiosyncratic)	factors	such	as,	for	example,	age,	income,	previous	delinquency
history	and	yields	a	probability	of	default	prediction	based	on	the	values	of	the	specific	factors
at	a	given	point	in	time.	Credit	score	models	used	in	portfolio	credit	models	also	include	a
macroeconomic	view	of	the	key	factors	that	can	drive	default	risk	over	time.	Default
dependence	is	hence	introduced	through	the	common	macroeconomic	factors.

In	credit	models	with	multiple	states,	such	as	when	tracking	delinquency	status,	the	credit	score
models	must	also	estimate	the	transition	probabilities	to	the	non-default	delinquency	states.	In	a
multiple-states	credit	model,	the	credit	transition	models	can	be	estimated	individually	for
each	from	and	to	state	or	use	a	multinomial	model	approach.	In	the	latter	case,	the	transition
probabilities	are	automatically	constrained	to	sum	to	unity	as	is	required	by	a	transition
probability	model.

This	structure	of	estimating	transition	probabilities	is	not	too	different	from	the	multifactor
model	we	used	in	the	context	of	wholesale	exposures	and	bonds.	However,	the	difference	is
that	here	we	are	explicitly	regressing	the	factors	that	drive	default	and	transition	rates	of	loans
on	the	historical	rates,	while	in	the	multifactor	model,	default	and	transition	rates	were	given
exogenously	(through	the	transition	matrix)	with	a	multifactor	model	for	the	random	credit
index.	However,	the	reader	may	recall	that	when	the	multifactor	model	was	given	a	pool
interpretation	the	model	was	essentially	reduced	to	an	ordered	Probit	model	regression	for	the
transition	rates	with	the	economic	factors	and	their	regression	coefficients	describing	the
deviation	of	transition	probabilities	from	long-run	or	unconditional	on	the	business	cycle.



Our	exposition	of	credit	models	for	the	banking	book	first	starts	with	the	simple	one-period
binomial	loss	model	for	homogeneous	and	heterogeneous	portfolios.	This	model	is	the
foundation	of	many	credit	portfolio	models	and	also	leads	to	tractable	solutions	in	some	cases.
The	most	important	tractable	solution	case	is	the	specific	model	used	for	credit	risk	capital
requirements	in	Basel	II.	After	our	discussion	of	the	simple	binomial	model	we	consider
estimation	and	simulation	of	credit	scores	or	credit	transition	probabilities	which	is	the	main
model	component	in	building	a	credit	portfolio	model.	In	a	credit	portfolio	model	the	credit
score	or	credit	transition	probabilities	generally	capture	both	idiosyncratic	credit	features	as
well	as	common	economic	factors	impact.	Having	available	the	credit	score	or	credit
transition	models	one	can	sample	empirical	loan	state	transitions	over	time	conditional	on	the
economic	scenario	using	a	state	transition	matrix.	However,	in	some	cases,	analogous	to	our
pool	approximations	for	the	multifactor	model	one	can	employ	simple	Markov	iterations	to
compute	the	expected	state	occupancy	probabilities	conditional	on	the	state	transition	matrix.

Economic	capital	for	loan	portfolios	is,	due	to	the	hold	to	maturity	nature	of	loan	portfolios,
more	focused	on	long	planning	horizons	for	capital	than	on	short-term	horizons	as	for	traded
credit	portfolios.	We	therefore	focus	on	estimating	economic	capital	for	loan	portfolios	with	an
approach	founded	in	the	classical	insurance	risk	theory	approach	that	considers	an	initial	risk
reserve	to	support	the	portfolio	over	itslifetime.	We	end	this	section	with	a	discussion	of	a
particular	credit	scoring	model	that	can	be	solved	numerically	in	some	cases	and	hence	avoid
simulation.	This	is	the	actuarial	model	also	known	as	the	CreditRisk 	model.	While	in	practice
simulation	based	models	are	frequently	used	to	capture	all	the	credit	portfolio	model
characteristics	such	as	state	path-dependency	and	stochastic	recovery	in	the	event	of	default	the
CreditRisk 	model	is	still	important	as	a	benchmark	model.

The	Binomial	Loss	Model
We	consider	loan	portfolio	representations	in	three	cases.	First,	when	the	portfolio	is	large	and
homogeneous.	Second,	when	the	portfolio	is	large	with	homogeneous	large	subportfolios,	and,
finally	when	the	portfolio	is	either	small	or	heterogeneous.	The	case	of	large	homogeneous
portfolios	have	been	extensively	studied	in	the	literature	and	is	also	the	foundation	for	Basel	II
credit	risk	capital	for	the	banking	book.

Homogeneous	Large	Portfolio
As	the	default	indicator	for	the	 	credit	in	a	portfolio	we	consider	the	Bernoulli	loss
indicator	 	where

with	 	the	probability	of	default.	As	model	for	 	we	consider	the	case	when

	being	the	so-called	score	function,	 	the	parameter	vector	and	 	the	stochastic	 -
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dimensional	vector	of	score	risk	factors,	having	density	 .

For	a	credit	portfolio	with	 	members	the	conditional	(on	 )	Fourier-Laplace	transform	
	of	the	conditional	loss	density,	 ,	is	now	given	by

Hence,	the	conditional	portfolio	loss	is	distributed	as	binomial.	Using	the	properties	of	the
binomial	distribution	the	correlation	between	default	events	of	loan	 	and	 	is

The	correlation	between	default	events	is	therefore	fully	captured	by	the	covariance	of	 	and	
.

A	special	case	of	the	conditionally	binomial	portfolio	distribution	that	we	will	consider	is
when	the	 	are	homogeneous.	That	is,	 	is	the	homogeneous	score	function	for	all	

.	Using	that	the	portfolio	is	homogeneous	(conditional	on	 )	we	have	that

for	 ,	and	with	 .	Note	also	that	in	this	homogeneous	portfolio	setting	the
default	correlation	formula	in	equation	(4.37)	reduces	trivially	to

and	hence	the	default	correlation	increases	by	the	variance	of	 .	The	case	of	perfect	default
correlation,	 ,	happens	here	if	 	itself	is	a	Bernoulli	distributed	random	variable
with	probability	 	of	being	unity	and	probability	 	of	being	null	since	then	
.

Assuming	that	the	portfolio	is	large,	formally	 ,	and	employing	the	conditional	law	of
large	numbers,

we	can	derive	that	(see	Vasicek,	1991)

Here,	 .	Hence,	for	the	infinitely	large	homogeneous	portfolio	with	homogeneous
score	function	 	and	homogeneous	recovery	adjusted	exposure	 	we	can	obtain	the
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portfolio	loss	at	the	 	confidence	level	as

where	 	denotes	the	density	of	 .

Example	Score	Functions
If	 	is	the	logistic	density,

and	 .	Then,	following	Westin	(1974),

and	 	can	be	solved	by	numerical	integration.

As	a	second	example	consider	the	homogeneous	one-factor	model.	That	is,	the	special	one-
factor	case	of	equation	(4.22)

triggering	a	default	for	loan	 	when	 	with	 	the	cumulative	normal	distribution	function
and	 	the	default	probability.	We	have	previously	mentioned	that	this	one	factor	model	(see
also	equation	(4.34))	was	the	foundation	for	pricing	credit	derivatives	before	the	2007	crisis.
Note	here	that	the	one-factor	model	corresponds	to	a	(standardized)	CAPM	model	for
systematic	risk	where	 	is	homogeneous.	Using	that	 	is	a	standardized	normal	variable,

where	 	corresponds	to	the	specific	score	function	 .	In	this	model,	generally
referred	to	as	the	Vasicek	one-factor	model,	the	homogeneous	portfolio	default	rate	density,	

,	is	being	given	by

where	 	and	with	 	the	density	function	of	a	standard	normal	variable.	Integration
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using	equation	(4.38)	then	yields	the	distribution	function	of	the	loss	fraction	as

It	is	practice	to	express	this	distribution	using	the	equivalent	formulation	of	equation	(4.39)

The	asset	correlation,	measuring	the	exposure	of	loan	 	to	systematic	risk,	is	then .	This
model	formulation	yields,

The	calibration	parameters	here	are	the	homogeneous	CAPM	 	common	to	all	loans	and	the
common,	“normalized,”	default	threshold,	 .

As	we	discussed	in	the	context	of	the	Merton-based	multifactor	models—in	this	setting	of	a
large	homogeneous	portfolio—the	credit	index,	 ,	is	not	a	latent	(unobserved)	variable
anymore.	We	can	observe,	 ,	using	the	homogenous	portfolios	historical	default	rates,	 .
Specifically,	applying	the	transformation,	 ,	we	can	convert	the	model,	for	example,	in	its
single	factor	form	in	equation	(4.39),	to	a	classical	regression	analysis	credit	score	model
where	we	can	estimate	the	impact	of	the	systematic	factors,	 ,	on	the	observed	default	rates.

The	equation	(4.40)	is	also	recognized	as	the	model	in	the	Basel	II	regulation	to	compute
advanced	internal	model	based	credit	risk	capital	requirements	for	financial	institutions
banking	book	exposures	at	the	 	confidence	level	(i.e.,	 ).	Note	here	that	since
equation	(4.40)	is	concave	in	the	most	relevant	range	for	 	we	have	that

so	that	from	the	perspective	of	the	regulated	institution	applying	equation	(4.40)	on	an
individual	level	is	desirable.

In	the	Basel	II	setting	capital	is	adjusted	by	the	loss	given	default	(LGD)	rate.	Furthermore,
capital	is	only	held	for	the	unexpected	losses,	consistent	with	banks	making	provisions	for
expected	losses.	There	is	also	a	regulatory	maturity	adjustment,	yielding	the	actual	Basel	II
capital	requirement,	 ,	as

where	 	is	the	Basel	II	maturity	adjustment	and	with	 	the	exposure	at	default.	The	Basel	II
(Basel	Committee,	2005c)	explanatory	note	on	the	risk	weight	functions	explains	the	rationale
for	each	of	the	terms	in	equation	(4.41).	The	regulatory	assigned	asset	correlation	parameter,	 ,
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depends	on	asset	class.	For	large	corporate	exposures	the	correlation	also	depends	on	 	and
the	firm	size	with	asset	correlations	increasing	with	firm	size	and	decreasing	with	
increases.

The	large	homogeneous	portfolio	approximation	in	equation	(4.40)	is	appropriate	in	case	of
large	homogeneous	consumer	portfolios.	However,	if	the	portfolio	is	not	sufficiently	large,
such	as	a	smaller	commercial	portfolio,	it	may	be	appropriate	to	consider	a	risk	add-on	for	the
remaining	idiosyncratic	risk.	See	Vasicek	(2002),	Gordy	(2003),	and	Martin	and	Wilde	(2002)
on	granularity	adjustments	to	the	assumption	of	infinitely	large	portfolios.	Gordy	and
Lütkebohmert	(2007)	apply	the	granularity	adjustment	to	the	Basel	II	formula	to	real	portfolios.
The	granularity	adjustment	is	shown	to	be	strongly	correlated	to	the	Herfindahl	index,	which,
in	this	credit	risk	context,	measures	the	size	of	firm	exposures	in	relation	to	total	exposures.26
See	also	Pykthin	(2004)	on	extensions	to	multifactor	models.

Homogeneous	Large	Subportfolios
Suppose	instead	of	a	single	large	portfolio	we	have	 	infinitely	large	homogeneous
subportfolios.	That	is,	we	have	 	instances	of

with	 ,	 .	We	are	hence	concerned	with	the	composite	default	distribution

where	 	(we	assume	unit	loss	amount	in	 ).	Since	each	of	the	 	subportfolios
are	large	we	can	apply	a	conditional	law	of	large	numbers	such	that

Hence,	in	this	model	we	can	evaluate	the	defaulted	fraction,	conditional	on	 ,	using	the
expected	loss	obtained	from	the	score	functions,	 .	Hence,	even	if	we	use
simulation	to	calculate	the	portfolio	loss	the	computational	burden	is	minimal.

Here	we	can	have	a	different	average	expected	default	frequency	for	each	subportfolio	
,	corresponding	to	a	rating	categorization	of	the	portfolio.	In	addition,	we	can	allow

for	different	 	vectors,	that	is,	differences	in	the	volatility	of	default	rates	over	time	across
rating	classes	and/or	loan	segments.	We	can	therefore	conclude	that	if	we	are	able	to
decompose	a	credit	portfolio	in	the	manner	of	equation	(4.42),	still	reasonably	maintaining	the
assumption	that	 ,	the	number	of	loans	in	class	 	for	 	is	large,	we	have	the	potential
to	reduce	a	very	large	portfolio	of	size	 	to	just	a	few	categories	 	for	the	purpose	of
computations.
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Example	Portfolio	with	Homogeneous	Large	Subportfolios27

Table	4.30	displays	the	characteristics	of	a	loan	portfolio	containing	200,000	loans	that	have
been	classified	in	 	homogeneous	groups.	Each	of	the	homogeneous	groups	has	 	loans
with	scoring	function

Table	4.30	Portfolio	Homogeneous	Group	Characteristics

Subportfolio
Parameters 1 2 3 4 5 6 7 8

25,000 12,500 10,000 25,000 40,000 50,000 25,000 12,500
0.71 0.36 0.40 1.22 0.71 0.40 0.34 0.29
−0.09 0.02 0.01 −0.05 −0.02 −0.07 0.02 0.05
0.01 −0.05 −0.03 0.01 −0.03 −0.01 0.07 0.02
0.25 0.075 0.4 0.04 0.525 0.3 0.05 0.38

with	specific	scoring	model	parameters	 ,	 .	Here	 	is	interpreted	as	the	parameter	that
sets	homogeneous	group	 	model	expected	defaultfrequency	at	the	empirical	default	rate.	The
parameters	 	and	 	correspond	to	elements	of	the	parameter	vector	 	in	the	scoring	equation	

	where,	in	this	example,	 	is	the	normal	cumulative	density	function	and	the
common	factors,	 	and	 ,	are	independent	standard	normal.	That	is,	 .	The
choice	of	 	for	the	homogeneous	loan	groups	(see	Table	4.30)	implicitly	defines	the	strength
of	default	correlation	within	as	well	as	between	groups.	Table	4.30	also	displays	the
individual	loans	in	group	 	recovery-adjusted	exposure	in	unit	of	currency,	 .

Table	4.31	displays	simulated	expected	losses	( ),	 	and	contribution	 	(Cont	 )	for
the	homogeneous	groups	as	well	as	for	the	aggregate	portfolio	at	the	 	confidence	level.	In
the	table	Cont	 	is	the	simulated	 	risk	contribution	for	the	homogeneous	subportfolios.
Hence,	Cont	 	is	the	risk	contribution	of	a	single	loan	in	homogeneous	group	 .
The	number	of	simulations	used	is	10,000	and	since	the	subportfolios	are	large	we	can
simulate	the	score	from	the	model	in	equation	(4.43)	using	a	representative	member	of	each
class	 .	Subsequently,	we	multiply	by	the	number	of	loans	in	the	class,	 ,	and	the
recovery-adjusted	exposure,	 ,	for	one	subportfolio	member	to	obtain	the	scenario	(expected)
loss.	Hence,	while	the	portfolios	size	is	200,000	loans	the	computational	burden	is	reduced	to
analyzing	8	representative	loans.



Table	4.31	Portfolio	Homogeneous	Groups	Risk	Measures

Subportfolio
1 2 3 4 5 6 7 8 Aggregate
45.8 3.49 16.1 12.3 150 61.5 4.41 14.3 309
93.7 5.6 21.4 18.2 203 112.6 8.31 23.18 442

Cont	 50.5 5.7 24.3 18.5 215.5 67.5 15 45 442

We	now	move	on	to	focus	on	the	case	when	the	portfolio	is	either	heterogeneous,	or	the
homogeneous	portfolios	are	too	small	for	a	conditional	law	of	large	numbers.

Heterogeneous	Portfolios	or	Homogeneous	Small	Portfolios
In	the	homogeneous	large	subportfolios	example	above	we	could	employ	the	conditional	law
of	large	numbers	as	a	dimension	reduction	technique	for	every	subportfolio	 .	In
practice,	only	one	or	just	a	few	exposures	may	be	considered	to	belong	to	a	homogeneous
group	themselves.	That	is,	the	portfolio	may	be	heterogeneous,	or	may	only	have	small
subportfolios	that	are	homogeneous.	For	subportfolios	 	with	small	number	of	loans	
,	the	conditional	law	of	large	numbers	may	not	be	a	good	approximation.	Of	course,	the	most

extreme	case	is	a	loan	portfolio	where	each	homogeneous	subportfolio	 	only	has	one
member	such	that	 	for	 .	In	this	case	 	is	usually	of	the	order	of	millions	of
loans.

Taking	the	small	subportfolio	size	into	account	we	now	need	to	consider	a	random	sampling
method	for	subportfolios	 .	Specifically,	for	each	 	we	proceed	as	follows:

1.	 Define	 	independent	uniform,	 ,	random	variables.	Loan	 	in	subportfolio	 	is
found	to	be	in	default	if	 .	Here	 	is	the	realized	score	function,	 ,
conditional	on	a	realization	of	 .

2.	 Define	the	default	indicator,	 ,	and	compute	the	sum	 	and	record	the
loss	in	the	scenario.

We	note	that	in	this	context	of	small	homogeneous	portfolios	we	may	as	well	have	individual
score	functions	for	each	loan	in	the	portfolio.	Hence,	the	portfolio	is	completely	heterogeneous
such	that	each	homogeneous	subportfolio	 	only	has	one	member.	Of	course,	in
practice	we	may	also	have	a	combined	situation	with	some	subportfolios	being	homogeneous
and	large	enough	for	a	conditional	law	of	large	numbers	approximation	and	some
heterogeneous	(or	small	homogeneous).	We	can	then	employ	the	conditional	law	of	large
numbers	simulation	method	for	the	large	homogeneous	subportfolios,	whereas	the	uniform
sampling	method	steps	above	are	used	for	the	heterogeneous	(or	small	homogeneous)
subportfolios.

For	a	large	heterogenous	portfolio	(e.g.,	a	mortgage	portfolio)	with	loan-specific	scoring
models	the	uniform	sampling	method	is	of	course	computational	heavy.	However,	loan-level
models	are	being	used	in	practice	in	portfolio	credit	risk	analysis.



Applying	a	heterogeneous	portfolio	interpretation	to	the	example	portfolio	in	Table	4.30	we
can	consider	the	portfolio	as	having	only	8	loans—eachhaving	a	very	large	exposures	taken	to
be	 .	In	that	case	 	may	not	be	the	appropriate	choice	of	risk	measure.	In	particular	the	

	for	any	of	the	8	loans	jumps	discretely	from	zero	to	 	as	a	function	of	the	risk
confidence	level	and	since	the	portfolio	is	small	its	aggregate	portfolio	distribution
characteristics	are	similar.	Accordingly,	this	also	makes	it	difficult	to	interpret	 	risk
contributions.	With	this	portfolio	interpretation	it	is	therefore	desirable	to	consider	risk
measures	that	take	into	account	all	the	tail	losses	such	as	 .

Credit	Transition	Score	Models
We	are	now	concerned	with	the	more	general	modeling	of	the	transition	probability	of	a	loan
or	a	borrower	to	a	certain	state	 	at	time	 	and	we	define	this	transition
probability	as	 	as	the	probability	of	moving	from	state	 	to	 	for	loan	 .	If	we	have	that	

	for	all	 	and	 ,	then	the	transition	probability	is	said	to	be
time	homogeneous.	However,	in	credit	risk	applications	it	is	common	that	 	depends	on	
through	both	macroeconomic	variables	as	well	as	idiosyncratic	variables	such	as	age-indexed
variables.	The	transition	probabilities,	 ,	are	then	referred	to	as	non-stationary	or	time
inhomogeneous.	This	is	the	typical	model	case	and	the	reader	may	recall	that	in	the	Merton
inspired	multifactor	credit	migration	models	we	obtained,	conditional	on	 ,	the	expected	state
occupancy	probabilities	through	a	simple	Markov	iteration	(see	equation	(4.29)).	A	key
assumption	to	obtaining	the	simple,	computationally	efficient	Markov	iteration	approximation
was	that	the	multifactor	model	transition	rates	did	not	depend	on	past	transition	history	so	that
we	could	condition	the	state	transition	probabilities	on	the	macroeconomic	time	variables,	 ,
and	any	other	idiosyncratic	time	varying	variable	such	as	age.	However,	while	for	the	trading
book	and	wholesale	credit	exposures	one	generally	does	not	include	past	transition	history	in
the	state	transition	probabilities	this	is	more	likely	for	the	retail	banking	book.28	In	practice,
for	retail	portfolios	the	dependence	of	the	future	transition	probabilities	on	past	state
transitions	comes	from	the	modeling	of	transitions	to	delinquency	states,	which	likely	depend
on	delinquency	history.	Such	historical	events	are	usually	modeled	through	indicators	such	as
time	since	last	delinquency,	number	of	past	delinquencies,	spell	of	last	delinquency.	While	this
kind	of	path-dependence	in	state	transition	probabilities	is	not	hard	to	capture	in	a	simulation-
based	approach	the	corresponding	Markov	iterations	for	models	with	path-dependence	in	state
transition	probabilities	can	be	more	complex.	The	complexity	comes	from	the	fast	expansion	of
the	behavioral	event	space	over	time.

When	modeling	the	joint	credit	quality	of,	for	example,	loans,	consumers,	andsmall	firms,	there
are	in	general	two	distinct	model	approaches	that	can	be	used	for	the	inclusion	of	the	common
macroeconomic	variables,	 ,	that	are	important	as	drivers	of	the	portfolio	default	and
migration	risk	correlation.	The	first	approach	focuses	on	scoring	consumers	and	firms,	at	a
particular	point	in	time,	using	a	model	with	only	idiosyncratic	factors	such	as	borrower
income,	age,	past	credit	behavior,	and	delinquency	history	indicators.29	Having	point	in	time
score	models	one	therefore	relies	on	an	ex-post	inclusion	of	the	common	macroeconomic	time-
variables,	 ,	when	considering	their	use	in	a	credit	portfolio	loss	model.	The	second	approach



4.44

is	focused	on	dynamic	score	models	where	one	models	explicitly	the	time	dimension	of	the
default	indicator	using	both	idiosyncratic	factors	and	common	credit	factors.

Below	we	will	first	focus	on	the	time	inhomogeneous	Markov	case	and	introduce	a	dynamic
scorecard	model	that	depends	on	the	macroeconomic	factors;	after	that	we	will	consider	the
point	in	time	scorecard	model	and	consider	a	special,	multinomial	logit	approach	to	ex-post
inclusion	of	the	macroeconomic	factors.	After	this	we	will	return	to	the	discussion	of	more
general	credit	score	or	credit	transition	models	that	depend	on	past	transition	history	as	well	as
macroeconomic	factors	for	their	future	transition	probabilities.

Dynamic	Markov	Scoring	Models
Assuming	 	is	a	0-1	binary	default	indicator	for	the	 	loans	at	time	 	and
focusing	on	first-order	Markov	models,	we	have	the	Markov	transition	probabilities	for	loan
or	consumer	 	as

where	 	is	the	one-period	default	probability	and	 	is	the	one-period	survival
probability	at	time	 	conditional	on	survival	up	to	time	 .	That	is,

The	last	row	of	the	transition	matrix	in	(4.44)	derives	its	behavior	from	the	fact	that	the	default
state	isabsorbing.30	The	likelihood,	 ,	for	the	two-state	first-order	Markov	model,	is	now
given	by

where	 	is	the	score	function,	for	example,	the	logistic	function

with	idiosyncratic	score	variables	 ,	systematic	score	variables,	 ,	and	parameter	vector	 .
This	likelihood	arises	due	to	the	fact	that	if	 ,	then	loan	 	is	in	default.	Hence,	the
terms	involving	period	 	are	raised	to	the	power	 	because	they	are	only	observed	when
loan	 	does	not	go	bankrupt	in	period	 .

In	practice,	the	dynamic	score	model	may	also	need	to	handle	the	fact	that	some	loans	exit	the
portfolio	at	times	without	defaulting	on	their	obligations	(e.g.,	by	prepayments).	This	feature	of
the	Markov	model	is	referred	to	as	right	censoring.	Taking	right	censoring	into	account	we
have	that



4.45

where

and	if	 ,	then	 .	That	is,	if	a	loan	exits,	it	does	not	come	back.

Note	that	once	we	have	calibrated	the	scoring	model	using	the	likelihood	in	equation	(4.45),
we	can	now	simulate	correlated	loan	credit	scores	by	simulating	the	common	credit	factors,	 ,
and	evaluating	the	dynamic	score	model,	 .	Loan	 	is	found	to	be	in	default	if	

	where	 	and	 	are	independent.	Hence,	in	this	model	credit	correlation
derives	from	the	correlated	credit	scores,	 .

For	examples	of	successful	applications	taking	a	direct	dynamic	approach	to	score	model
estimation	using	variants	of	the	likelihood	in	equation	(4.45)	we	refer	to	Shumway	(2001)	and
Carling	et	al.	(2002).	In	addition	Carling	et	al.	(2002)	employ	their	dynamic	scorecards
directly	in	simulation	of	credit	portfolio	loss.

Stein	et	al.	(2010)	use	a	Cox	proportional	hazard	model	with	time-varying	covariates	to
represent	the	systematic	factors	for	mortgage	portfolios	and	model	survival	times.	The	Cox
proportional	hazard	model	(Cox,	1972)	is	a	continuous	time	survival	model.	It	models	the
duration	to	an	event	instead	of	the	occurrence	of	the	event	as	in	the	discrete	Markov	model.	As
in	the	discrete	Markov	model	it	can	be	used	to	model	multiple	types	of	events	(competing
states;	e.g.,	time	to	migration	in	addition	to	time	to	default).	It	provides	an	alternative	model
approach	to	the	discrete	time	Markov	chain	model	we	have	considered.	Essentially,	this	is	the
same	relation	as	between	an	exponential	distribution	and	a	Poisson	distribution.	However,	the
discrete	Markov	model	can	also	generate	expected	default	(survival)	times	as	well	as	the
continuous	time	duration	models	can	generate	a	default	probability.	Hence,	in	practice	the
exact	choice	of	model	may	not	be	that	important.

The	modeling	of	survival	times	rather	than	discrete	default	events	is	frequently	used	for	retail
portfolios	with	default	mode	only	models	over	longer	horizons	for	computational	efficiency
reasons.	The	Cox	proportional	hazard	model	has	a	hazard	rate,	for	loan	 ,	as	in	equation	(4.31)
of	the	form

where	 	are	the	loan	 	specific	factor	loadings	and	the	proportional	term,	 ,	introduces	the
non-stationarity	baseline	of	the	hazard	rate	over	time—independent	of	the	systematic	factors.

Example	of	a	Cox	Proportional	Hazard	Model
As	a	concrete	numerical	example,	we	consider	the	model



This	model	specifies	an	increasing	hazard	rate	when	any	of	the	systematic	factors,	 ,	 ,	 ,
increase	with	a	baseline	hazard	rate	of	0.002.	To	use	the	model	in	default	sampling	at	times	 ,	
,	and	 	or	to	calculate	the	survival	time	we	need	to	define	scenarios	for	the	systematic

factors.	Using	two	different	multi-horizon	scenarios	for	the	systematic	factors,	 ,	 ,	 ,	over
times	 ,	 ,	and	 	we	now	compute	the	hazard	rate,	 ,	the	survival	rate,	 	in	%,	the	cumulative
default	probability,	 	in	%,	and	the	incremental	default	probability,	 	in	%.	The	results	are
displayed	in	Table	4.32	together	with	the	assumed	scenarios	for	the	systematic	factors.	Here
the	systematic	factors,	 ,	 ,	 ,	are	interpreted	as	respectively	the	debt-to-income	ratio,	the
unemployment	rate,	and	the	interest	rate.	The	two	scenarios	share	the	same	time	 	values	for
the	systematic	factors.	At	times	 	and	 	scenario	1	has	a	worsening	debt-to-income	ratio,	an
increasing	unemployment	rate	(expressed	in	%),	and	increasing	interest	rates	(expressed	in	%)
while	scenario	2	has	the	reverse	scenario	evolution.	Because	of	the	different	evolution	of	the
scenarios	for	the	systematic	factors,	we	find	that	scenario	1	has	increasing	incremental	default
probabilities	at	times	 	and	 	while	scenario	2	has	decreasing	incremental	default
probabilities	at	times	 	and	 .	Using	a	random	sampling	model	we	could	now	sample	a
uniform	variable	 	for	each	 ,	 ,	and	 	to	determine	whether	the	loan	is	in	default	at	that	time
conditional	on	the	scenario	for	the	systematic	factors.	We	can	also	directly	determine	the
default	time	of	the	loan,	 ,	using	the	survival	function	as	in	equation	(4.33),	although	here	we
have	a	time-varying	hazard	rate	such	that	the	equivalent	of	equation	(4.33)	becomes

Table	4.32	Cox	Model	Example	with	Two	Different	Scenarios	for	the	Systematic	Factors

Time
Scenario	1
0.2 4% 2% 0.0248 97.55% 2.45% 2.45%
0.25 4.5% 2.3% 0.0775 92.54% 7.46% 5.01%
0.28 4.7% 2.5% 0.1581 85.38% 14.62% 7.16%
Scenario	2
0.2 4% 2% 0.0248 97.55% 2.45% 2.45%
0.15 3.5% 1.7% 0.0364 96.42% 3.58% 1.13%
0.12 3.3% 1.5% 0.0441 95.69% 4.31% 0.73%

The	reader	interested	in	further	analysis	of	duration	models	is	referred	to	Amemiya	(1985,	ch.
11)	for	an	excellent	account	on	Markov	chain	and	duration	(survival)	models	and	the	duration
model	as	the	continuous	time	limit	of	the	discrete	time	Markov	chain	model.	Lancaster	(1990)
also	contains	many	examples	of	econometric	models	for	duration	analysis.

When	prepayments	is	included	in	the	duration	model	there	are	competing	risks	of	prepayment
and	default.	Prepayment	increases	the	inflow	of	the	capital	but	can	reduce	the	future	revenue.



Different	models	of	the	prepayment	can	affect	how	the	actual	revenue	evolves.	The	competing
risk	model	is	frequently	used	for	mortgages	as	a	homeowner	may	default	or	prepay	at	any	point
in	time.	The	incentive	for	prepayment	also	depends	on	the	costs.	For	example,	in	case	there	are
significant	prepayment	penalties	that	can	be	charged	by	banks	for	homeowners	the	prepayment
risk	may	be	reduced	significantly.	It	is	important	to	recognize	prepayment	and	default	as	truly
competing	risk	effects.	For	example,	during	the	2007	financial	crisis	in	the	United	States,
because	of	low	interest	rates,	one	could	expect	to	see	high	prepayment	rates.	However,
because	of	significant	declines	in	property	prices	high	loan-to-value	ratios	made	it	difficult	for
borrowers	to	refinance	and	high	prepayment	rates	were	not	realized.	See	An	and	Qi	(2012)	on
the	competing	risk	model	using	proportional	hazard	models.	At	each	payment	period,	the
model	recognizes	that	the	borrower	faces	the	choice	of	either:	(a)	make	the	next	scheduled
mortgage	payment,	(b)	refinance	the	mortgage	and	prepay	the	debt,	or	(c)	default	on	the
mortgage	obligation.

With	a	statistical	model	approach	to	competing	risks	the	competing	risk	effects	can	be	modeled
by	the	so-called	multinomial	logit	models,	which	are	used	to	model	relationships	between	a
polytomous	response	variable	and	a	set	of	regressor	variables.	This	model	class	has	a	wide
application	in	the	study	of	consumer	choice	behaviors.	However,	the	borrower	options	can
also	be	viewed	from	the	financial	engineering	point	of	view.31	We	refer	the	reader	to	Chapter	7
on	funds	transfer	pricing	and	profitability	of	cash	flows	and	the	discussion	in	that	chapter	on
modeling	consumer	embedded	optionality	using	either	financial	engineering	approaches	or
statistical	behavior	models.

As	we	have	mentioned,	during	the	2007	financial	crisis,	prepayments	rates	were	very	low	in
spite	of	a	low	interest	rate	environment.	This	low	level	of	prepayments	could	not	be	predicted
with	the	classical	prepayment	models	focusing	on	prepayment	incentive	based	on	interest	rate
levels	alone.	To	be	able	to	predict	accurately	the	low	level	of	prepayments	during	the	financial
stress	several	other	prepayment	incentive	factors	have	to	be	taken	into	account.	Examples
include	the	declining	home	property	prices	mentioned	above	as	well	as	worsening	credit
scores	in	stress,	tightening	lending	standards	by	banks	and	a	more	risk-averse	behavior	of
consumers	making	them	less	prone	to	changing	their	contractual	obligations.	See	Krainer	and
Laderman	(2011)	for	an	analysis	of	the	prepayment	and	delinquency	behavior	in	US	mortgage
portfolios	during	the	crisis.	The	fact	that	prepayment	rates	tended	to	decline	significantly
during	the	2007	financial	crisis	suggests	that	in	many	cases	it	is	more	prudent	to	assume	very
low	or	even	zero	prepayments	under	stress.	However,	zero	prepayments	may	not	be	the	most
prudent	assumption	in	all	cases.	It	depends,	for	example,	on	how	the	contractual	interest
income	loss	is	booked	and	the	analysis	horizon.

Building	the	Credit	Transition	Matrix
When	the	credit	risk	model	only	has	default	and	no	default	states,	the	corresponding	transition
matrix	is	simple	as	in	(4.44)	and	only	requires	the	estimation	of	a	single	transition	probability,	

,	to	define	the	complete	transition	matrix.	When	the	credit	risk	model	has	multiple
competing	states,	which	is	the	case	we	will	mainly	focus	on,	one	has	to	consider	models	for
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each	of	the	non-absorbing	states	transition	probabilities,	 .	Of	course,	since	for
each	row	 	the	transition	probabilities	must	sum	to	unity	we	can	choose	one	of	the	

	as	the	“residual”	probability	for	each	 .	Hence,	we	only	need	to
estimate	a	maximum	of	 	transition	probabilities	for	each	row.

Once	we	have	estimated	all	the	necessary	dynamic	Markov	scoring	models	for	the	different
possible	state	transitions	we	can	build	the	transition	matrix	by	inserting	the	transition	models.
For	this	reason	we	assume	that	at	 	each	of	the	non-defaulted	loans	are	located	in	one	of	the
classes	 .	To	the	classes	we	assign	a	 	matrix	of	transition	probabilities,	

,	with	the	last	row	of	 	defined	as	 	being	the	absorbing	default	state.	That
is,

The	transition	matrix	is	hence	a	matrix	valued	stochastic	process	such	that	element	
describes	the	probability,	at	 ,	that	a	loan	in	class	 	will	make	a	transition	to	class	 	during	the
interval	 .	If	the	transition	probabilities	and	hence	the	transition	matrix	is	loan	specific
for	loan	 ,	we	can	index	it	such	that	loan	 	has	transition	matrix	 	with	transition	probabilities,	

.	While	the	transition	matrix	(4.46)	only	has	one	explicit	absorbing	state,	there

can	in	practice	be	more	than	one	absorbing	state	in	the	credit	transition	matrix,	for	example,	if
prepayment	is	a	competing	risk.	Other	examples	of	competing	risks	include	loan	modification
or	restructuring.	However,	in	that	case	the	loan	usually	goes	back	to	being	in	a	non-defaulted
state	immediately	after	the	modification.

Since	by	definition	we	have	that,

it	means	that	individual	transition	models	that	are	used	to	estimate	the	transition	probabilities
in	a	particular	row	of	the	transition	matrix	are	constrained	to	sum	to	unity	as	required	by	a
transition	matrix.	This	is	the	case	with	the	multinomial	logit	model	that	we	will	discuss	below
in	the	context	of	ex-post	inclusion	of	macroeconomic	factors	to	static	Markov	scoring	models.
However,	in	many	cases	the	models	for	each	transition	rate	in	a	row	of	the	transition	matrix
can	be	estimated	individually	with	no	explicit	multinomial	model	constraint,	for	example,
using	individual	hazard	models	or	binomial	logistic	regressions	for	the	transition	probabilities.
In	that	case,	one	needs	to	normalize	the	row	transition	probabilities	to	sum	to	unity.	A
frequently	used	normalization	formula	in	this	context	is	the	so-called	log-odds	ratio
normalization	that	appears	in	the	multinomial	logistic	model	(see	Begg	and	Gray,	1984	and
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equation	(4.52)).

Point	in	Time	Markov	Scoring	Models
Returning	to	our	discrete	time	Markov	model,	we	can	investigate	the	case	when	the	default
indicators	 	are	assumed	independent	over	time,	 .	In	this	case	we	have	the
extremely	simple	transition	matrix

with	associated	likelihood,

Such	one-period	scoring	models	are	however	only	interesting	in	the	case	of	a	pure	cross-
section	sample	at	a	particular	time	point	 	of	idiosyncratic	factors	with	realized	indicators	

.	This	is	due	to	the	assumption	of	exchangeability	of	default	and	non-default	states.	Due
to	this	simplification,	we	may	also	drop	the	time-dimension	and	write

which	is	the	likelihood	of	the	well-known	qualitative	response	models	such	as	the	Probit
model	and	logistic	regression	being	frequently	used	for	behavioral	scoring.

We	now	focus	on	approaches	to	ex-post	inclusion	of	the	common	credit	factors.	This	is
because	in	practice	many	scoring	models	are	calibrated	using	behavioral	scores	at	specific
points	in	time,	say	monthly	or	quarterly,	that	is,	the	approach	using	the	likelihood	equation
(4.48).	While	this	creates	a	history	of	credit	scores	or,	more	generally,	a	realized	migration
over	credit	quality	states	obtained	from	the	credit	scores	(which	may	be	influenced	by
economic	state)	we	require	an	ex-post	inclusion	of	the	common	credit	factors,	 ,	to
understand	their	impact	over	time.32	Our	analysis	is	targeted	toward	discrete	time	Markov
models	rather	than	duration	models	as	we	will	focus	on	models	that	can	capture	different	credit
quality	transitions	over	time	and	not	just	time	to	an	event	such	as	default	or	transition.

Point	in	Time	Markov	Scoring	Models	and	Ex-post	Inclusion	of	Macroeconomic
Factors
Here	we	consider	general,	multinomial,	score	transition	models,	suggested	by	Nyström	and
Skoglund	(2006),	that	are	designed	for	an	aggregate	of	loans	and	in	particular	the	observed
empirical	time	series	of	transition	frequencies	of	loans.	We	focus	on	a	multinomial	logistic
model	because	it	is	tractable	for	estimation	and	simulation	and	also	automatically	restricts
transition	probabilities	for	a	state	to	sum	to	unity	as	is	required	by	a	transition	matrix.	In
addition,	the	log-odds	ratios	of	the	logistic	model	are	linear,	which	simplifies	the	estimation
considerably.
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We	should	mention	that	similar	approaches	to	dynamic	transition	matrix	analysis	are	available
in	the	literature	and	are	usually	based	on	the	ordered	Probit	model.	For	example,	Nickell	et	al.
(2000)	consider	estimation	of	transition	matrices	that	depend	on	macroeconomic	variables.
They	consider	an	ordered	probit	model	that	allows	a	transition	matrix	to	be	conditioned	on	the
business	cycle	and	other	factors	such	asindustry.	Belkin	et	al.	(1998)	use	a	default/no-default
mode	macroeconomic	credit	transition	model	based	on	the	ordered	Probit	that	is	generalized
by	Wei	(2003)	to	multiple	credit	states.	Wei	(2003)	models	the	deviation	of	the	conditional
transition	matrix	from	the	long-term	unconditional	transition	matrix.	The	deviation	model	is
referred	to	as	a	Z-score	model	that	is	a	standard	normal	regression	depending	on	the	common
macroeconomic	factor	and	rating	grade	specific	factors.	The	term	Z-score	relates	back	to	the
famous	Altman	(1968)	Z-score	model	for	bankruptcy	prediction.	The	reader	may	also	recall
that	we	obtained	an	ordered	Probit	formulation,	for	each	row	of	the	transition	matrix	transition
rates	conditional	on	 ,	for	the	multifactor	model	inspired	from	the	Merton	structural	approach.
Hence,	in	this	loan	portfolio	setting	the	model	becomes	a	dynamic	transition	matrix	model.
Again,	the	main	benefit	of	the	multinomial	logit	approach	is	that	the	log-odds	ratios	of	the
model	are	linear	equations.

Considering	the	representation	of	the	empirical	transition	matrix	we	assume	that	a	collection	of
	loans	have	been	scored	at	past	times	using	the	likelihood	in	equation	(4.48).	At

each	time	 	a	loan	 	has	also	been	classified	into	one	of	 	states	based	on	the	score	or
simply	its	current	status	(e.g.,	delinquent	60	days).	Hence,	we	assume	the	existence	of	an
empirical	transition	matrix	of	dimension	 .	Such	an	empirical	transition	matrix	can	be
obtained	in	several	ways.	The	historical	time	series	of	empirical	transition	frequencies	may
come	from	internally	calculated	empirical	transition	matrices,	obtained	through	a	 -
dimensional	grade	decomposition	of	the	interval	 	to	generate	rating	grades	from	the
idiosyncratic	credit	scoring	model(s).	This	would	typically	be	the	case	for	retail	segments	as
well	as	small	and	medium-sized	corporates	that	do	not	have	external	ratings.

Before	introducing	the	multinomial	transition	model	for	general	 	we	consider	the	modeling	of
default/no-default	in	the	simple	aggregate	binary	logistic	model	appearing	in	the	well-known
CreditPortfolioView	scorecard	simulation	model	due	to	Wilson	(1997).	In	this	two-state	model
for	aggregate	credit	risk	migration	 	is	the	only	cell	in	the	migration	matrix	that	we
have	to	model.	We	will	refer	to	 	as	the	default	rate	for	the	interval	 .	The	aggregate
scorecard	simulation	approach	to	portfolio	credit	risk	of	Wilson	(1997)	is	then	defined	as

Here	 	is	the	vector	of	systematic	factors,	 	and	 	are	constants.	Just	as	in	the	multifactor
model	for	bonds	and	wholesale	exposures	the	systematic	variables	should	be	thought	of	as
variables	describing	the	evolution	of	economically	relevant	variables	like	interest	rates	and
unemployment	levels	for	the	loans.	The	innovations	 	are	assumed	to	be	 	variables.
The	main	idea	in	theapproach	of	Wilson	(1997)	is	that	loans	are	supposed	to	satisfy	a	certain
homogeneity	with	respect	to	default	risk	in	the	sense	that	all	loans	that	belong	to	a	specific
industry	sector,	loan	type,	or	geographical	region	as	well	as	a	specific	rating	class	within	share
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the	same	aggregate	scoring	model	in	equation	(4.49).	For	a	credit	portfolio	with	
homogeneous	subportfolios	we	can	introduce	an	index	on	all	variables	and	parameters	in
equation	(4.49)	such	that,

where	each	element	of	 	is	assumed	non-zero.	Collecting	the	 	models	for	the	total
portfolio	either	all	 	are	assumed	independent	or	 	where	 	is	a
constant	matrix.	A	useful	property	of	the	logistic	model	specifying	 	is	that	the	logarithm	of
the	ratio	of	the	default	rate	and	the	survival	rate	is	a	linear	model.	That	is,

Let	 	be	an	empirical	time-series	of	default	frequencies.	Then,	assuming	that	at	all	times	
there	are	sufficiently	many	defaulted	loans,	we	can	apply	a	frequency	interpretation	to	 .
That	is,	we	can	assume	that	there	is	no	measurement	error	in	 	and	we	can	write	the	equation
to	be	estimated	as33

Of	course,	in	the	case	of	a	portfolio	with	 	homogeneous	segments	we	similarly	have

This	defines	a	multivariate	linear	regression	model	for	the	 	segments	for	which	the	seemingly
unrelated	estimation	technique,	as	proposed	by	Zellner	(1962),	is	efficient.	With	this	estimation
technique	consistent	parameter	estimates	are	obtained	by	applying	least	squares	equation	by
equation	and	in	the	second	step	an	estimate	of	the	covariance	matrix	of	the	least	squares
residuals	is	used	to	improve	on	the	efficiency	of	the	least	squares	estimator	using	the
generalized	least	squares	estimator.	In	the	special	case	that	 	are	common	for	all	
seemingly	unrelated	regression	reduces	to	least	squares	equation	by	equation.	See	Amemiya
(1985,	p.	197).	In	applications,	this	is	quite	likely	to	be	satisfied	across	loan	classes	within	a
specific	sector,	loan	type,	or	geographical	region.

The	basic	idea	for	the	more	general	modeling	of	state	migration	risk	in	Nyström	and	Skoglund
(2006),	as	opposed	to	just	default	risk,	is	to	consider	the	multinomial	logistic	model
introduced	by	Theil	(1969)	for	each	row	of	the	transition	matrix,
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as	in	(4.46).	Note	that	since	for	each	 ,	we	have	the	restriction	that	 	the
choice	of	functional	form	is	somewhat	limited.	The	multinomial	logit	formulation	expresses	the
log	of	a	ratio	of	probabilities	as	a	function	of	variables.	More	specifically	for	
and	 	we	have	that

This	can	also	be	rephrased	as

In	the	following	we	let	 	 	denote	the	 	matrix	of	log	ratios	of
probabilities.	One	relevant	choice	for	the	function	 	is

where	 	and	 	are	constants	and	either	all	 	are	assumed	independent	or	
	with	 	a	constant	matrix.	Hence,	we	now	have	a	straightforward

generalization	of	the	two-state	model	of	Wilson	(1997)	to	a	multistate	setting.	The	set	of
equations	can	be	calibrated	to	empirical	transition	frequencies	using	seemingly	unrelated
regression	in	the	same	manner	as	the	aggregate	logit	model.34	This	is	because	the	model	in
equation	(4.53)	is	linear.

General	Scoring	Models	that	Depend	on	Past	Transition	Behavior
In	the	dynamic	Markov	scoring	model	the	score	function,	 ,	depends	on	the
idiosyncratic	score	variables	 ,	the	systematic	(macroeconomic)	score	variables,	 ,	and	the
parameter	vector	 .	Let	now	 	be	the	vector	holding	the	past	states	we	track.	For	example,	
could	track	the	monthly	state	occupancy	from	the	last	2	years	by	assigning	each	of	the	past	state
numbers	or	labels	from	the	last	24	months	in	the	vector.	The	length	of	the	past	history	we	need
to	track	is	of	course	related	to	how	fast	the	past	state	information	“dies	out”	in	predicting
current	state	transitions.	From	the	past	state	vector	 	we	can	create	summary	indicator
variables	such	as	time	since	last	occupancy	of	a	certain	state,	number	of	occupancies,	and	the
spells	of	the	occupancies.	Let	these	indicators	be	denoted	by	 	and	subsume	their	parameters
in	the	extended	 	parameter	vector,	 .	This	gives	the	credit	score	or	transition	function

We	can	now	characterize	the	score	variables	as	being	(i)	idiosyncratic	variables	such	as
bureau	credit	score,	region	etc.	such	as	 ,35	(ii)	common	economic	variables	such	as	 ,	or
(iii)	dynamically	updated	based	on	past	state	transitions	such	as	 .



With	transition	models	such	as	equation	(4.54)	for	each	transition	probability	we	still	build	the
state	transition	probability	matrix	 	as	in	(4.46).	The	only	difference	is	that	the
future	state	transition	probabilities	in	the	transition	matrix	depend	on	the	previous	state
occupancies	through	the	indicators,	 .	As	we	have	mentioned	previously,	state	dependence	in
the	transition	probabilities	can	easily	happen	in	practice	when	modeling	loan	delinquency.	The
delinquency	loan	transition	matrix	with	default	and	prepayment	as	competing	absorbing	states
in	Table	4.33	serves	as	an	example.

Table	4.33	Example	Loan	Delinquency	Transition	Matrix

Current D30 D60 D90 D120 D150 Prepay Default
Current 0 0 0 0 0
D30 0 0 0 0
D60 0 0 0
D90 0 0
D120 0
D150
Prepay 0 0 0 0 0 0 1 0
Default 0 0 0 0 0 0 0 1

In	Table	4.33	we	have	the	loan	current	state,	delinquency	states	for	the	loan	being	30,	60,	90,
120,	and	150	days	past	due,	as	well	as	the	absorbing	default	and	prepayment	state.	Here,	the
default	state	is	assumed	equivalent	to	delinquent	180	days	and	is	in	practice	a	technical	default
definition	rather	than	a	“true”	default	definition.	Each	row	of	the	transition	matrix	has
competing	risks	such	as	when	the	loan	is	current	this	month	at	the	next	month	there	is	competing
risks	of	delinquent	30	days	and	prepayment.	Because	the	loan	cannot	migrate	to,	for	example,
delinquent	60	days	in	a	month	from	current	the	transition	rate	from	current	to	delinquent	60
days	is	zero.

Considering	now	a	transition	probability	model	for	a	particular	transition	probability	in	the
matrix,	say	 ,	being	the	transition	probability	from	current	to	delinquent	30	days,	it	is
reasonable	to	assume	that	this	transition	probability	is	not	only	influenced	by	the	economic
state	through	 	but	also	by	the	idiosyncratic	past	loan	states.	A	simple	example	are	the
delinquency	indicator	functions	that	are	unity	if	the	loan	has	previously	been	delinquent	in	one
of	the	delinquency	states	and	null	otherwise.	Because	this	indicator	function	tracks	occupancy
of	all	delinquency	states	it	also	represents	knowledge	of	the	severity	of	any	previous
delinquencies.	In	practice,	the	exact	timing	of	any	previous	delinquencies	matter	as	well	as
frequency	of	past	delinquencies.	For	example,	some	borrowers	are	frequently	delinquent,	and
delinquency	may	not	be	a	sign	of	ultimate	default	or	even	increases	in	transition	rates	to	more
severe	delinquency	states,	while	for	some	borrowers	that	have	never	previously	been
delinquent	their	first	delinquency	may	be	a	strong	sign	that	they	will	continue	their	delinquency
spell	to	more	severe	delinquencies	with	ultimate	default.



When	delinquency	behavior	is	included	in	the	transition	probability	model	we	must	in	general
track	the	delinquency	behavior	for	a	particular	loan	simulated	state	transition	path	across,	

.	That	is,	we	need	to	dynamically	update	the	vector	 	that	holds	information	about
past	transition	states.	When	delinquency	behavior	is	included	in	the	model	it	is	also	important
to	understand	the	interaction	between	macroeconomic	variables	and	the	delinquency	behavior.
For	example,	a	particular	borrower's	past	delinquencies	may	be	driven	by	past	bad	economic
states	that	saw	the	borrower	in	difficulty	meeting	payments.	It	may	also	be	driven	by	borrower
idiosyncratic	factors	as	well	as	behavior	that	is	largely	independent	of	economic	state.	The
explicit	modeling	of	loan	delinquencies	may	hence	mask	the	effect	of	macroeconomic
variables	in	determining	future	delinquencies.	This	should	be	taken	into	consideration	when	the
main	model	objective	is	to	capture	the	changes	in	the	credit	quality	of	the	portfolio	over	a
business	cycle	or	a	worst-case	economic	scenario	for	 ,	that	is,	to	capture	the	variation	of
the	credit	losses	due	to	systematic	effects.	In	practice,	currently	delinquent	accounts	are	likely
to	contribute	significantly	to	portfolio	losses	in	the	short	run,	while	current	accounts	are	likely
to	contribute	to	portfolio	losses	over	a	longer	time	horizon.	The	impact	of	the	macroeconomic
variables	on	delinquency	and	default	behavior	also	depends	strongly	on	the	choice	of
calibration	period	as	well	as	the	credit	quality	of	the	borrower.	If	the	model	is	calibrated	on	a
period	with	small	changes	in	the	macroeconomic	environment	(as	opposed	to	the	2007
financial	crisis	period),	it	is	likely	that	the	model	will	not	be	able	to	capture	correctly	the
different	credit	quality	segments'	sensitivity	to	the	economic	cycle.	It	will	therefore	also	not	be
able	to	predict	correctly	the	amount	of	losses	in	severe	economic	scenarios.	See	Canals-Cerdá
and	Kerr	(2015),	who	employ	credit	score	models	with	macroeconomic	factors	to	credit	card
portfolios	calibrated	on	data	including	the	2007	financial	crisis.	They	find	that	the	impact	of
macroeconomic	factors	is	significant	but	heterogeneous	across	portfolio	risk	segments	with	the
prime	(better	quality)	borrowers	being	more	sensitive	to	the	economic	cycle.

Comparing	the	delinquency	model	approach	with	the	point	in	time	credit	score	model	with	ex-
post	inclusion	of	macroeconomic	factors	in	equation	(4.53)	we	note	that	in	the	credit	score
model	we	first	create,	at	different	times,	credit	quality	grades	based	on	the	idiosyncratic	loan
behavior.36	Such	idiosyncratic	loan	behavior	may	of	course	include	past	delinquency	behavior.
However,	given	many	loan	grade	classifications	over	time,	we	use	macroeconomic	variables
to	indicate	likely	common	future	delinquency	and	default	behavior	in	the	portfolio	for	a	grade.
Hence,	the	loan	grade,	at	each	time,	is	determined	by	its	idiosyncratic	behavior	while	the
future	portfolio	behavior	over	time	is	driven	by	the	common	economic	state	variables.	The
sensitivity	of	future	delinquencies	and	default	to	the	economic	state	depends	on	the	loan	grades
historical	sensitivity,	obtained	when	calibrating	the	model	equations	(4.53)	to	the	historical
behavior.

The	modeling	of	delinquency	behavior	also	depends	on	the	measurement	frequency.	For
example,	with	a	quarterly	time	horizon	we	can	reduce	the	monthly	delinquency	states	in	the
transition	matrix	in	Table	4.33	to	D90	(delinquent	90	days)	and	the	default	state	(delinquent
180	days).	This	gives	the	reduced	transition	matrix	in	Table	4.34.	A	quarterly	delinquency
transition	matrix	specification	was	used	by	the	Federal	Reserve	in	the	United	States	for	the
2012	CCAR	supervisory	projected	loss	estimates	for	residential	mortgages.	The	idiosyncratic
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score	factors	included	the	original	interest	rate	margin	or	spread	relative	to	a	reference	rate
(e.g.,	30-year	Treasury	yield),	borrower	original	credit	score,	current	loan	to	value,	and
delinquency	history.	Key	macroeconomic	drivers	included	the	state	level	unemployment	rate,
national	property	price	index,	and	market	interest	rates.	See	Federal	Reserve	(2012)	CCAR
frequently	asked	questions.	A	specific	bank	can	of	course	choose	to	use	a	monthly	transition
model	(as	in	Table	4.33)	for	their	CCAR	quarterly	stress	test	projections.37	However,	the
projected	monthly	losses	then	need	to	be	aggregated	to	the	CCAR	required	quarterly	horizons.

Table	4.34	Example	Loan	Delinquency	Transition	Matrix—Reduced	Delinquency	States	with	a
Quarterly	Measurement	Horizon

Current D90 Prepay Default
Current 0
D90
Prepay 0 0 1 0
Default 0 0 0 1

Models	that	include	delinquency	states	have	in	general	a	more	complex	cash	flow	calculation
due	to	the	tracking	of	the	past	delinquency.	This	means	that	cash	flows	depend	on	the	past	state
and	not	only	the	current	state.	Consider	a	monthly	measurement	horizon	with	a	monthly	payment
loan	that	is	currently	past	due	30	days	(one	month).	If	in	the	previous	state	the	loan	was	past
due	120	days	(four	months),	the	loan	cash	flows	in	the	current	state	include	the	past	3	months'
accruals	as	well	as	the	required	current	monthly	payment.

Different	ways	to	solve	the	delinquency	model	as	well	as	the	other	credit	transition	models	we
have	discussed	in	this	section	will	be	discussed	in	detail	below.

Simulation	of	State	Transitions	and	Markov	Iteration

Simulation	of	State	Transitions
To	simulate	a	credit	state	for	a	loan	 	we	take	as	given	a	state	transition	matrix,	 ,	at	a
particular	time	 .	Here	we	assume	that	each	row	of	the	transition	probability	is	normalized	to
sum	to	unity,	for	example,	using	a	log-odds	ratio	normalization	or	an	explicit	multinomial
model	specification.	However,	we	do	not	assume	a	specific	model	for	the	transition	rates	in
the	transition	matrix	such	that	the	transition	models	can	contain	past	transition	information	such
as	past	delinquency	behavior.

Sampling	a	uniform	random	variable	 	we	have	that	the	transition	state	of	loan	 ,
previously	in	state	 	at	 ,	is	determined	by	the	 -dimensional	transition	indicator	
where	element	 	of	 	is	unity	if	and	only	if
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The	sampling	at	 	creates	a	state	transition	path	determined	by	the	 -dimensional
transition	indicators	 .	We	again	note	that	the	transition	matrix	 	can	depend	on
time,	be	specific	for	loan	 ,	and	be	based	on	loan	 's	past	state	transitions.	Still,	once	the
dynamic	transition	matrix	transition	probabilities	have	been	obtained	the	evaluation	of	the	new
loan	grade	is	trivial.	Note	also	from	equation	(4.55)	that	we	only	need	to	update	the	time	
transition	probabilities	for	row	 	of	the	transition	matrix,	 ,	and	not	all	the	transition
probabilities.	This	saves	computational	time	since	the	transition	probabilities	obtained	from
the	models	generally	have	to	be	recomputed	for	each	 	and	loan	 .

For	a	portfolio	of	 	loans	this	sampling	is	done	independently.	Hence,	credit
correlation	results	from	the	correlated	transition	intensities	driven	by	the	systematic	factors,	

.	As	for	the	Merton-based	multifactor	model,	we	can	of	course	consider	various
distributions	and	copulas	for	the	systematic	factors,	 .38	When	transition	rates	depend	on	past
loan	behavior	the	past	loan	behavior	also	drives	the	credit	correlation.	Consider	a	loan
portfolio,	now	current,	but	with	loans	that	have	recently	been	delinquent	and	thus,	in	general,
having	higher	transition	probabilities	of	the	loans	moving	from	current	to	delinquent	state.

Markov	Iteration:	Pools,	Stress	Testing	and	the	Conditional	Law	of	Large
Numbers
When	the	loan	transition	models	are	time	inhomogeneous	(non-stationary)	Markov	and
homogeneous	across	loans	we	can	use	a	relatively	simple	pool	approximation	based	on	the
expected	state	transitions	for	a	loan.	That	is,	for	a	large	pool	of	loans	that	are	homogeneous
with	respect	to	rating	grade	(state)	at	 	and	the	score	transition	model	we	can	make	use	of
the	conditional	law	of	large	numbers	to	understand	the	frequency	of	transition	from	rating	class
	at	 	to	rating	class	 	at	any	time	 	by	iterating	the	relation

Here	 	is	a	 	vector	of	frequencies	and	 	contains	zeros	in	all	positions	except	at
position	 .	Note	that	we	used	the	same	Markov	iteration	equation	in	the	context	of	portfolio
credit	risk	for	bonds	and	the	multifactor	model	(see	equation	(4.29)).	This	iteration	equation	is
of	course	of	particular	use	in	applications	to	large-scale	homogeneous	portfolios	as	it	has	the
potential	to	reduce	the	computational	burden	considerably.	As	for	the	multifactor	model	case
we	do	not	have	to	assume	homogeneity	in	recovery	or	exposures,	which	makes	the	method
especially	appealing.	All	that	is	required	is	that	the	pool	shares	a	common	current	rating	and
homogeneous	transition	models.	This	is	the	case	with	the	multinomial	logit	transition	models	in
equation	(4.53)	yielding	a	homogeneous	state	transition	matrix	for	each	 .

As	for	the	Markov	iteration	equation	for	bonds	in	the	multifactor	model	the	algorithm	in
equation	(4.56)	is	not	only	useful	for	credit	pools	approximations.	It	is	also	useful	for	stress
testing	at	loan	level.	By	using	the	iteration	equation	(4.56)	for	a	specific	loan	 	we	obtain	the
expected	state	transition	fractions	of	the	loan	for	a	given	multi-horizon	scenario	of	the	credit
factors,	 .	That	is,	the	random	sampling	of	 	state	transition	paths	for	a	given	
scenario	and	the	subsequent	calculation	of	expected	state	frequencies	at	times	



converge	to	the	Markov	iteration	state	frequencies,	 ,	in	equation	(4.56)	as	 	grows
large.	Specifically,	for	a	loan	 	we	have	that

where	 	are	the	 ,	 -dimensional	transition	indicators	for	loan	 	obtained	from
the	state	transition	sampling	conditional	on	the	economic	scenario,	 .	Hence,	as	in	the
multifactor	model,	we	can	obtain	the	loan	expected	loss	in	a	stress	scenario	without	sampling.

The	computational	advantage	of	equation	(4.56)	for	a	pool	of	loans	relies	on	the	assumption	of
homogeneity	in	the	state	transition	matrix,	 ,	in	the	pool.	Similarly,	the	simplicity	of	the
Markov	iteration	to	compute	expected	state	fractions	of	a	loan	or	a	pool	of	loans	relies	on	the
assumption	that	the	transition	rates	do	not	depend	on	past	state	transitions.

When	the	loan	transition	models	depend	on	past	transition	behavior,	such	as	past	delinquency
history,	the	corresponding	pool	iteration	as	in	equation	(4.56)	can	be	very	complex.	A	simple
example	serves	as	illustration.	We	assume	that	at	 	there	is	a	pool	of	loans,	with	the	same
past	transition	behavior,	that	have	future	homogeneous	state	transition	probabilities	conditional
on	the	experienced	state	transition	behavior,	that	is,	the	state	transition	matrix,	 ,	is	common
for	any	of	the	loans	in	the	pool	that	take	a	common	future	state	transition	path.	Given	the	same
past	behavior,	such	homogeneity	can	be	obtained	by	classifying	loans	in	approximately
homogeneous	groups	based	on	their	transition	probabilities—similar	to	what	we	did	for	the
multinomial	logit	model.	The	added	complexity	here	is	of	course	that	we	need	to	allow	a
specific	loan's	future	experienced	state	transition	history	to	influence	its	state	transition
probabilities	in	the	future.	Consider	now	a	loan	in	state	 	that	migrates	to	the	vector	of	state
fractions	 	at	time	step	1—determined	by	the	k:th	row	of	the	transition	matrix	 .	That	is,

Now,	at	time	step	2	we	need	to	incorporate	the	fact	that	the	state	history	influences	the
transition	probabilities	and	hence	we	obtain	at	time	step	2,

where	 	is	the	 	state	transition	probability	matrix	for	loans	previously	(i.e.,	at	 )	in
state	 	and	 	is	a	 -dimensional	vector	that	has	the	state	fractions	of	loans	in	state	 	at
time	1	and	zeroes	elsewhere.	At	time	step	3	we	now	obtain,

where	 	is	the	 	state	transition	probability	matrix	for	loans	previously	in	state	 	at
time	1	and	 	at	time	2,	and,	 	is	the	state	vector	that	has	the	state	fractions	of	loans	in
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state	 	at	time	1	and	 	at	time	2	and	zeroes	elsewhere.39	For	 ,

where	past	state	transition	history	is	 ,	 ,	 	and	 	has	the	time	3	state	fraction	of	loans
that	has	passed	through	states	 ,	 ,	 	and	zeroes	elsewhere.	For	general	 	we	have
by	induction	that

The	iteration	equation	(4.57)	looks	like	a	branching	tree	version	of	the	simple	iteration
equation	(4.56)	with	branching	by	past	state	history.	There	is	also	a	subsequent	sum	over	all
the	branch	iterations	to	find	the	total	cumulative	fraction	of	the	ways	the	loan	could	enter	a
certain	state	 	from	a	certain	state	history	at	time	 .	This	means	that	with	no	absorbing	states	we
have	in	general	 	evaluations	of	the	equivalent	of	the	iteration	equation	(4.56)	at	time	step	 .
In	practice,	however,	some	states	are	absorbing	(like	default	state)	or	impossible	to	reach	from
other	states,	which	reduces	the	computational	burden.	Hence,	albeit	with	a	bit	more	complexity
the	Markov	iteration	approximation	can	still	be	used	for	pools	when	the	transition
probabilities	depend	on	past	state	transition	history.	Note	that	in	this	iteration	 	holds	the
state	occupancy	stock	at	 .	Besides,	in	this	algorithm,	the	exact	state	flow	history	is
fully	retained	because	of	the	branching	of	the	Markov	iteration	by	state	history.	This	means	that
subsequent	cash	flow	calculations	can	also	depend	on	past	state	transitions.	We	give	an
explicit	example	as	well	as	discussion	of	the	iteration	in	equation	(4.57)	for	the	sample
quarterly	delinquency	matrix	in	Table	4.34	in	the	appendix	to	this	chapter.

If	we	relax	the	assumption	that	the	state	transition	probabilities	for	loans	in	the	pool	are
homogeneous—conditional	on	past	state	transition	experienced—we	have	to	index	the	state
transition	for	loan	 .	This	gives

and	the	Markov	iteration	is	not	pool	based	anymore.	That	is,	we	need	to	execute	the	iteration
per	loan	 .	However,	the	iteration	equation	(4.58)	can	still	be	valuable	for	stress	testing
because	an	evaluation	of	equation	(4.58)	can	still	be	faster	than	simulating	a	large	number	 	of
loan	 	state	transitions	conditional	on	an	economic	scenario,	 .	Since	in	the	case	of	stress
testing	the	analysis	interest	is	usually	centered	at	the	expectation	level	(loss	or	cash	flow)	for
the	given	scenario,	equation	(4.58)	is	a	valid	alternative	to	a	full	simulation.

Skoglund	and	Chen	(2015)	consider	stress	testing	applications	using	the	exact	Markov	iteration
in	equation	(4.58)	for	the	quarterly	delinquency	transition	matrix	in	Table	4.34	(see	also	the
appendix	specific	Markov	iteration	for	the	quarterly	model).	They	compare	state	transition



sampling	using	1,000,	10,000,	100,000,	and	1000,000	simulations	to	the	exact	Markov
iteration	for	a	quarterly	model	that	uses	the	specific	delinquency	indicators;	quarters	since	last
delinquent	and	ever	delinquent	90	days,	with	proportional	hazard	model	specifications	for	the
transition	intensities.	Predicting	loan	future	state	occupancies	as	well	as	loan-ending	balances,
default	and	prepayment	amounts	for	the	next	8	quarters—conditional	on	a	macroeconomic
scenario—they	find	that	the	loan	level	prediction	can	be	quite	poor	with	simulation	compared
to	the	exact	Markov	iteration.	Comparedto	simulation	the	exact	Markov	iteration	also	has	the
advantage	of	giving	the	same	(exact)	results	every	time.	This	is	in	contrast	to	simulation-based
approaches	where	a	user	needs	to	manage	the	seeds	(typically	on	loan	level)	for
reproducibility.	Hence,	while	a	simulation	based	approach	can	be	quicker	to	implement
initially	due	to	its	simplicity	it	is	hard	to	argue	for	its	use	in	this	quarterly	model	since	the
exact	Markov	iteration	method	is	feasible.	The	same	paper	by	Skoglund	and	Chen	(2015)	also
analyze	Markov	iteration	versus	state	transition	sampling	for	stress	testing	with	the	monthly
delinquency	transition	matrix	model	in	Table	4.33.	State	transition	sampling	is	used	for	a
monthly	model	which	tracks	months	since	last	delinquent.	However,	for	a	monthly	model	with
delinquency	state	indicator	functions	(for	example	ever	delinquent	30	days	and	ever	delinquent
60	days)	the	exact	Markov	iteration	is	simple.	This	is	because	we	can	condition	on	the	state
occupancy	indicator	being	set	or	not	to	reduce	the	exact	Markov	iteration,	at	each	t	=	1,	…,	T,
to	a	bounded	sum	that	is	only	marginally	more	complex	than	the	simple	Markov	iteration	in
equation	(4.56).

Clearly,	in	practice,	when	the	transition	probabilities	depend	on	past	state	history,	one	must
weigh	the	computational	complexity	and	burden	of	performing	many	state	transition	samplings
of	the	path	for	each	member	of	a	large	homogeneous	pool	of	loans	using	equation	(4.55)	versus
a	potentially	more	complex	Markov	iteration	for	the	pool.	In	practice	the	number	of	state
transition	samples,	 ,	required	to	converge	to	the	Markov	state	frequencies	can	be	very	large
for	a	particular	loan	(since	most	transition	frequencies	like	default	and	prepayment	are	usually
very	small).	Accuracy	on	a	large	portfolio	of	homogeneous	loans	may	not	require	the	same
amount	of	state	transition	samples	for	each	loan.	This	is	because	we	benefit	from	the	law	of
large	numbers	across	the	portfolio	size	dimension	when	sampling.	The	same	reasoning	applies
to	stress	scenarios	where	the	Markov	iteration	represents	the	expected	state	transition	fractions
conditional	on	the	economic	scenario.	The	convergence	of	a	particular	loan	with	state
sampling	may	require	a	very	large	number	of	state	sampling	paths.	However,	if	we	are	only
interested	in	portfolio-level	expected	losses	in	a	stress	scenario,	we	can	benefit	from	the
averaging	of	expected	losses	across	the	large	portfolio.	Convergence	is	of	course	not	a
concern	for	the	Markov	iteration	because	it	always	provides	the	true	expected	fraction	of	the
loan	in	each	state	at	any	point	of	time	as	does	the	expected	loan	loss	and	cash	flow	values
these	fractions	lead	to.

Mortgage	Portfolio	Risk	Analysis:	An	Illustration
We	now	consider	an	extensive	example	that	illustrates	the	main	components	of	banking	book
portfolio	credit	risk	models.	Our	example	uses	the	multinomial	logit	model	with	ex-post
inclusion	of	common	macroeconomic	factors.	Our	focus	is	on	a	mortgage	portfolio	as	in



general	mortgage	portfolios	are	more	complex	due	to	therecovery	being	tied	to	the	property
value,	which	may	likely	be	low	at	the	exact	time	of	significant	amounts	of	defaults	in	the
portfolio.	Other	loan	portfolios	such	as	leasing	portfolios	also	need	to	model	the	correlation
between	default	and	recovery	explicitly	using	the	underlying	collateral	while	credit	card
portfolios	may	use	simpler	models	of	uncollateralized	recovery.	However,	the	uncollateralized
recovery	rate	may	still	follow	the	business	cycle	and	be	correlated	with	the	default	rate.	The
focus	is	on	the	modeling	of	the	macroeconomic	factors	that	drive	both	credit	state	migration
and	recovery.	Our	modeling	example	does	not	consider	prepayment	as	a	competing	risk	such
that	default	is	the	only	absorbing	state.

In	our	example	we	focus	on	credit	state	and	default	migration	over	multiple,	path-dependent,
yearly	horizons	for	the	mortgage	portfolio.	Because	of	the	yearly	horizons	of	the	model	we	do
not	model	delinquency	states	until	default.	We	assume	that	the	credit	scoring	models	used	for
the	mortgage	portfolio	have	classified	the	loans	in	multiple	non-default	internal	rating	(grade)
categories	based	on	the	actual	credit	quality	(such	as	default	probability)	over	time,	yielding
empirical	credit	grade	transitions	for	 	states.	Clearly,	idiosyncratic	borrower	factors
such	as	past	delinquency	behavior	are	important	in	determining	the	default	probability	at	a
point	in	time	and	hence	the	borrower	credit	grade	at	a	particular	point	in	time.	These	internal
rating	categories	and	their	empirical	migration	frequencies	are	reused	in	the	credit	portfolio
model	calibration	to	macroeconomic	variables	and	subsequent	analysis	of	the	credit	portfolio
risk.

The	construction	of	multiple	credit	grades	occurs	naturally	based	on	the	loan	credit	scores.
Even	if	default	only	happens	in	the	default	state,	the	use	of	a	ratings	(credit	state)	based
approach	is	important	to	capture	the	specific	loan	grades'	sensitivity	to	the	economic	state.
Clearly,	poor	credit	quality	borrowers	may	be	more	sensitive	to	the	economic	state	and	more
likely	to	become	delinquent	or	default	in	bad	economic	states.	It	is	also	important	to	model
multiple	credit	grades	since	we	are	concerned	with	the	portfolio	behavior	over	longer	term
and	one	may	otherwise	underestimate	the	long-term	credit	losses	as	defaults	may	happen
subsequently	as	a	consequence	of	period	credit	(quality)	grade	migrations.	It	is	also	the	case
that	economic	value	models	of	the	banking	book	may	consider	the	migration	to	credit	grades	as
the	basis	for	fair	economic	values.

In	our	application	of	the	loan	transition	model	to	a	mortgage	portfolio,	we	consider	14	sample
subportfolios.	The	subportfolios	contain	both	individual	and	pooled	exposures,	and	for	the
purpose	of	this	example	we	assume	that	mortgages	in	a	subportfolio	are	homogeneous	with
respect	to	both	credit	transition	model	as	well	as	exposure	and	recovery	characteristics.
However,	this	is	not	necessary	in	practice,	and	different	levels	of	homogeneity	can	be	used	for
credit	transition	model,	collateral	(recovery),	and	exposure	characteristics.	The	portfolio
characteristics	are	displayed	in	Table	4.35.



Table	4.35	Mortgage	Portfolio	Characteristics

Subportfolio Rating Pool
size

Loan	to
value

Notional Total	notional Credit
margin	(%)

Property
index

1 5 3 0.85 1,000,000 300,000 1.5 1
2 4 1 0.95 1,000,000 100,000 1.3 1
3 7 1 0.95 1,000,000 100,000 2.0 1
4 3 2 0.85 1,000,000 200,000 1.1 2
5 4 4 0.80 1,000,000 400,000 1.2 3
6 1 1 0.90 1,000,000 100,000 1.0 1
7 2 1 0.85 1,000,000 100,000 1.1 1
8 4 65 0.95 1,000,000 6,500,000 1.3 3
9 3 1,623 0.85 1,000,000 162,300,000 1.0 3
10 8 8,003 0.95 1,000,000 800,300,000 1.1 4
11 2 9,012 0.90 1,000,000 901,200,000 1.2 5
12 4 11,013 0.95 1,000,000 1,101,300,000 1.0 5
13 5 14,390 0.90 1,000,000 1,439,000,000 1.0 1
14 6 27,803 1 1,000,000 2,780,300,000 0.90 4

The	rating	grade40	scale	for	the	loans	is	assumed	to	be	a	9-grade	scale	labeled	 	where
the	9th	grade	is	the	default	grade.	Each	mortgage	subportfolio	is	hence	assigned	a	non-default
rating	grade	between	 .	In	Table	4.35,	each	subportfolio	has	also	a	pool	size,	a	loan	to
value,	a	current	loan	specific	and	total	subportfolio	notional	in	units	of	currency,	a	credit
margin,	and	a	link	to	a	property	price	index,	that	we	will	subsequently	use	to	revalue	the
property	collateral	for	the	mortgages.	For	the	purpose	of	this	example,	to	retain	the	current
portfolio	structure	over	a	longer	period	of	time	(including	to	the	end	of	our	analysis	horizon	of
10	years)	we	assume	no	amortization	of	the	notionals	for	the	mortgages	and	that	the	mortgages
are	fixed	rate	mortgages—which	will	hence	resemble	coupon	bonds	with	a	very	long	maturity.
The	fixed	credit	margin	of	a	mortgage	in	Table	4.35	is	defined	as	the	customer	rate	in	excess	of
the	funding	rate.	The	funding	rate	is	here	defined	as	the	matched	maturity	funds	transfer	rate	at
which	a	loan	branch	would	synthetically	receive	funds	from	the	Treasury.	For	now	we	don't
have	to	be	explicit	about	exactly	how	this	funds	rate	is	defined	and	just	take	the	credit	margin
for	given.	We	will	come	back	to	the	issue	of	funds	rates	in	Chapter	7	on	funds	transfer	pricing
and	profitability	of	cash	flows.

An	important	component	in	a	credit	portfolio	model	for	mortgages	is	the	modeling	of	property
values.	In	Table	4.35	we	assigned	property	indices	to	the	subportfolios,	which	will	allow	us	to
consider	correlation	between	default	and	recovery	rates	for	the	mortgage	portfolio.	The	loan	to
value	of	a	mortgage	in	Table	4.35	is	defined	as	the	current	notional	divided	by	the	current
value	of	the	property.	The	loan-to-value	ratio	is	frequently	used	as	a	risk	statistic	for	first-lien
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mortgages,	which	we	also	assume	to	be	the	case	here.	For	example,	from	Table	4.35	we	note
that	subportfolio	1	has	a	loan	to	value	of	0.85,	indicating	that	the	current	mortgage	notional	is
85%	of	the	current	property	value	for	the	3	mortgages	in	this	subportfolio.	Specifically,	for	the
mortgages	in	subportfolio	1	the	current	property	value	can	be	inferred	from	the	current	notional
and	the	loan	to	value	of	0.85	as	850,000	units	of	currency.	With	first-lien	mortgages,	we	can
use	the	current	loan	to	value	and	property	index	to	calculate	the	recovery	once	a	mortgage	is	in
default,	or	a	fraction	of	a	homogeneous	pool	is	in	default.	Specifically,	the	loss	given	default,	

,	at	a	particular	time,	 ,	and	scenario,	 ,	is	given	by

Here,	 	is	the	outstanding	notional	of	the	loan,	 	is	the	current	loan	to	value,	and	 	is	the
property	index	value	at	time	 	in	scenario	 	with	 	the	current	property	index	value,	and,	 	the
haircut	rate.41	Hence,	 	represents	a	normalized	growth	rate	for	the	property	value.	The
haircut	rate,	 ,	is	here	capturing	the	fact	that	the	value	of	a	property	in	default	may	not	sell	at
the	market	price,	for	example,	due	to	auction.	We	set	 	for	all	mortgages,	that	is,	a	default
value	haircut	of	the	property	value	of	40%.	Effectively,	this	haircut	rate	increases	significantly
the	effective	loan-to-value	ratios	for	the	mortgages	when	in	default.

Models	and	Model	Calibration
In	order	to	calculate	credit	losses	and	net	credit	returns	(that	is,	credit	margins	minus	credit
losses)	for	the	mortgage	portfolio	in	Table	4.35	we	need	to	calibrate

The	model	for	credit	migration

The	models	for	the	property	indices

Starting	with	the	calibration	of	the	loan	credit	migration	model	we	assume	a	common	linear
log-odds	ratio	transition	model	for	all	subportfolios	and	a	single	systematic	factor,	 .	Hence,
we	use	the	model	in	equation	(4.53).	Note	that	since	the	model	is	calibrated	on	log-odds	ratios
it	is	linear.	To	calibrate	the	model	we	need	sample	historical	transition	frequencies	for	the
grades	 	transformed	to	log-odds	ratios	using	equation	(4.51)	as	well	as	sample
historical	data	for	the	systematic	factor.42	Table	4.36	displays	the	history,	over	17	yearly	time
periods,	t1,	…,	t17,	of	the	single	systematic	factor	and	Table	4.37	displays,	for	current	rating
grade	5,	a	sample	of	the	historical	log-odds	transition	probabilities	used.	The	log-odds
transition	probabilities	are	denoted	log51,	…,	log58	for	transition	to	the	non-default	rating
grades	1,	…,	8	in	Table	4.37.	Note	that	we	only	need	the	historical	log-odds	transition
probabilities	for	the	non-default	grades	as	with	the	multinomial	logit	model	the	residual
probability	is	attributed	to	the	default	probability.



Table	4.36	Historical	Data	for	the	Systematic	Factor

Time	period Systematic
t1 −2.97907

t2 −3.20206

t3 −3.10497

t4 −1.86945

t5 0.38718

t6 2.73456

t7 2.55742

t8 2.3365

t9 2.11298

t10 2.34202

t11 0.94814

t12 −0.24386

t13 −1.05581

t14 −1.33316

t15 −0.73623

t16 0.55308

t17 0.55275



Table	4.37	Sample	Historical	Log-Odds	Ratios	for	Rating	Grade	5

Time	period log51 log52 log53 log54 log55 log56 log57 log58
t1 0.79226 1.083 2.23154 1.4886 2.61322 1.81285 0.66787 0.48998
t2 0.78626 1.077 2.22554 1.4826 2.60922 1.81485 0.66987 0.49198

t3 0.78626 1.077 2.22554 1.4826 2.60922 1.81485 0.66987 0.49198

t4 0.86426 1.155 2.30354 1.5606 2.66122 1.78885 0.64387 0.46598

t5 0.98426 1.275 2.42354 1.6806 2.74122 1.74885 0.60387 0.42598

t6 1.12826 1.419 2.56754 1.8246 2.83722 1.70085 0.55587 0.37798

t7 1.11626 1.407 2.55554 1.8126 2.82922 1.70485 0.55987 0.38198

t8 1.10426 1.395 2.54354 1.8006 2.82122 1.70885 0.56387 0.38598

t9 1.09286 1.3836 2.53214 1.7892 2.81362 1.71265 0.56767 0.38978

t10 1.10426 1.395 2.54354 1.8006 2.82122 1.70885 0.56387 0.38598

t11 1.02026 1.311 2.45954 1.7166 2.76522 1.73685 0.59187 0.41398

t12 0.95426 1.245 2.39354 1.6506 2.72122 1.75885 0.61387 0.43598

t13 0.90326 1.194 2.34254 1.5996 2.68722 1.77585 0.63087 0.45298

t14 0.88826 1.179 2.32754 1.5846 2.67722 1.78085 0.63587 0.45798

t15 0.92426 1.215 2.36354 1.6206 2.70122 1.76885 0.62387 0.44598

t16 0.99626 1.287 2.43554 1.6926 2.74922 1.74485 0.59987 0.42198

t17 0.99026 1.281 2.42954 1.6866 2.74522 1.74685 0.60187 0.42398

In	Table	4.38	we	have	explicitly	converted	the	sample	log-odds	ratios	log51,	…,	log58	to	their
corresponding	transition	probabilities.	In	the	table	the	transition	probabilities	are	denoted	p51,
…,	p58.	However,	the	table	also	displays	the	residual	default	probability,	denoted	p59.	The
transition	probabilities	and	the	default	probability	are	expressed	in	%.	To	convert	the	log-odds
ratios	log51,	…,	log58	to	transition	probabilities	we	use	equation	(4.52).	For	example,	to
convert	the	log-odds	ratio	log51	into	a	transition	probability,	p51,	we	calculate

We	can	see	from	Tables	4.36	and	4.38	that	there	is	a	general	tendency	for	transition
probabilities	to	better	grades	to	increase	when	the	systematic	factor	is	above	its	mean	of	zero.
Hence	the	model	is	structured	so	that	negative	values	of	the	systematic	factor	represent	bad
states,	that	is,	a	recession	compared	to	the	normal	equilibrium	case.	This	of	course	means	that
positive	values	imply	better	states	than	usual.	Hence,	we	observe	that	the	transition



probabilities	to	worse	grades	and	default	decrease	when	the	systematic	factor	is	positive.

Table	4.38	Sample	Historical	Transition	and	Default	Probabilities	for	Rating	Grade	5	in
Percent

Time
period

p51 p52 p53 p54 p55 p56 p57 p58 p59

t1 5.105% 6.827% 21.531% 10.242% 31.537% 14.165% 4.508% 3.773% 2.312%

t2 5.092% 6.810% 21.475% 10.216% 31.519% 14.242% 4.532% 3.794% 2.320%

t3 5.092% 6.810% 21.475% 10.216% 31.519% 14.242% 4.532% 3.794% 2.320%

t4 5.261% 7.036% 22.188% 10.555% 31.729% 13.262% 4.220% 3.532% 2.217%

t5 5.515% 7.375% 23.258% 11.064% 31.956% 11.846% 3.770% 3.155% 2.061%

t6 5.808% 7.768% 24.496% 11.653% 32.079% 10.297% 3.277% 2.743% 1.879%

t7 5.784% 7.736% 24.395% 11.605% 32.075% 10.420% 3.316% 2.775% 1.894%

t8 5.760% 7.704% 24.294% 11.557% 32.069% 10.544% 3.355% 2.809% 1.909%

t9 5.737% 7.673% 24.197% 11.511% 32.063% 10.663% 3.393% 2.840% 1.923%

t10 5.760% 7.704% 24.294% 11.557% 32.069% 10.544% 3.355% 2.809% 1.909%

t11 5.589% 7.475% 23.573% 11.214% 32.001% 11.443% 3.642% 3.048% 2.015%

t12 5.452% 7.291% 22.994% 10.939% 31.910% 12.189% 3.879% 3.247% 2.099%

t13 5.344% 7.147% 22.540% 10.722% 31.816% 12.789% 4.070% 3.407% 2.166%

t14 5.312% 7.105% 22.405% 10.658% 31.784% 12.969% 4.127% 3.455% 2.185%

t15 5.389% 7.207% 22.727% 10.812% 31.857% 12.539% 3.990% 3.340% 2.138%

t16 5.539% 7.409% 23.364% 11.114% 31.972% 11.711% 3.727% 3.119% 2.045%

t17 5.527% 7.392% 23.311% 11.089% 31.964% 11.778% 3.748% 3.137% 2.053%

The	current	1	year,	implied	from	log-odds	ratios	at	t	=	t17,	empirical	transition	matrix	is
displayed	in	Table	4.39	for	the	non-default	grades	1,	…,	8.	The	probability	of	default	for	a
grade	is	obtained	as	1	minus	the	sum	of	all	the	non-default	transition	probabilities	for	the
grade.	The	obtained	percentage	default	probabilities	from	Table	4.39	for	the	grades	1,	…,	8
are	hence	approximately,	0.0126%,	0.0411%,	0.1321%,	0.6932%,	2.0532%,	5.3692%,
10.712%,	and	20.652%,	respectively.



Table	4.39	The	Current	1-Year	Empirical	Transition	Matrix	for	the	Grades	1,	…,	9

Grade 1 2 3 4 5 6 7 8
1 0.8204359 0.0676553 0.0479158 0.0238038 0.0139341 0.0114370 0.0084761 0.0062159
2 0.1536897 0.6716423 0.1478260 0.0092357 0.0072619 0.0052881 0.0033143 0.0013307
3 0.0736036 0.1790445 0.5026551 0.1747898 0.0392729 0.0176572 0.0078266 0.0038296
4 0.0773778 0.1058910 0.1523119 0.3543873 0.1475829 0.1025561 0.0381307 0.0148297
5 0.0552702 0.0739192 0.2331106 0.1108938 0.3196393 0.1177806 0.0374813 0.0313732
6 0.0284548 0.0473742 0.0584621 0.0856876 0.1361664 0.3662104 0.1528394 0.0711128
7 0.0105512 0.0315219 0.0407653 0.0521379 0.0832237 0.2109122 0.2539283 0.2098393
8 0 0.0022836 0.1134881 0 0.0378495 0.1115249 0.1930884 0.3352371

Using	the	sample	historical	log-odds	ratios	and	the	sample	systematic	factor	historical	time
series	we	can	now	calibrate	the	loan	transition	model	parameters	in	equation	(4.53)	for	our
mortgage	portfolio.	We	denote	the	calibrated	parameters	by	 	and	 	for	 	and	

.	The	actual	parameter	values	obtained	are	displayed	in	Table	4.40.



Table	4.40	Calibrated	Parameters	for	the	Loan	Transition	Model

s	=	1 s	=	2 s	=	3 s	=	4 s	=	5 s	=	6 s	=	7 s	=	8

l	=	1 8.77 6.29 5.94 5.24 4.71 4.51 4.21 3.90
l	=	2 5.91 7.39 5.89 3.11 2.87 2.56 2.09 1.18
l	=	3 4.00 4.89 5.92 4.89 3.40 2.60 1.78 1.07
l	=	4 2.38 2.70 3.06 3.91 3.06 2.70 1.71 0.76
l	=	5 0.96 1.27 2.40 1.66 2.72 1.75 0.60 0.43
l	=	6 −0.66 −0.15 0.05 0.43 0.89 1.88 1.05 0.28
l	=	7 −2.35 −1.26 −1.00 −0.75 −0.29 0.63 0.84 0.65
l	=	8 −19.53 −4.54 −0.63 −19.55 −1.73 −0.65 −0.11 0.43

l	=	1 0.019 −0.019 −0.019 −0.019 −0.019 −0.019 −0.019 −0.19
l	=	2 0.019 0.019 −0.019 −0.019 −0.019 −0.019 −0.019 −0.019
l	=	3 0.038 0.038 0.038 −0.019 −0.019 −0.019 −0.019 −0.019
l	=	4 0.05 0.05 0.05 0.05 −0.019 −0.019 −0.019 −0.019
l	=	5 0.05 0.05 0.05 0.05 0.038 −0.019 −0.019 −0.019
l	=	6 0.07 0.07 0.07 0.07 0.07 0.09 −0.019 −0.019
l	=	7 0.09 0.09 0.09 0.09 0.09 0.09 0.057 0.038
l	=	8 0.09 0.09 0.09 0.09 0.09 0.09 0.11 0.13

Having	calibrated	the	loan	transition	model	we	can	now	simulate	transition	probabilities	using
a	model	for	the	systematic	variable.	We	calibrate	the	historical	data	of	the	systematic	variable
to	a	Vasicek	equilibrium	model	suchthat

where	 	is	the	Wiener	process,	and	the	parameter	 	is	the	mean	reversion	level	around
which	all	future	trajectories	will	evolve	in	the	long	run.	The	parameter	 	characterizes	the
speed	at	which	trajectories	will	regroup	around	the	mean	reversion	rate	and	 	is	the
instantaneous	volatility.	Using	standard	regression	analysis	we	calibrate	the	discretized
version	of	the	Vasicek	model.	We	obtain	the	calibrated	parameters	as	 ,	 .	The
Vasicek	model	mean	reversion	level,	 ,	is	set	to	null	since	 	represents	business	cycle	swings.
We	also	assume	that	 	such	that	we	start	with	a	neutral	business	cycle.

In	order	to	complete	the	models	we	also	need	to	model	the	evolution	of	the	property	indices,	
.	We	recall	from	Table	4.35	that	the	subportfolios	were	allocated	to	one	of

five	different	property	indexes,	which	we	need	to	model	in	order	to	be	able	to	calculate	the
mortgage	loss	given	default	in	equation	(4.59)	once	a	mortgage	has	defaulted.	We	assume	that



the	property	price	indices	follow	geometric	Brownian	motion	models	such	that	for	each	
	we	have	that

with

the	vector	of	calibrated	volatilities	to	the	sample	yearly	historical	indices	in	Table	4.41.	While
the	sample	historical	average	growth	rates	of	the	property	indices	in	Table	4.41	are	positive,
for	prudence,	we	assume	that	the	future	average	growth	rates	of	property	values	are	zero	and
restrict	 	for	all	 .	Hence,	the	calibrated	volatilities	are	constrained	estimates.

Table	4.41	Historical	Property	Price	Indices

Time	period S1 S2 S3 S4 S5
t1 154 187 147 133 145

t2 150 186 144 127 140

t3 149 182 140 125 139

t4 152 186 146 129 142

t5 159 191 150 134 150

t6 176 201 156 139 159

t7 184 223 169 149 170

t8 198 238 178 162 187

t9 210 258 189 179 199

t10 223 278 199 199 221

t11 234 299 212 222 239

t12 241 321 227 234 259

t13 225 346 213 220 240

t14 235 344 207 219 245

t15 241 350 220 215 260

t16 246 348 221 214 279

t17 249 351 223 212 278

Figure	4.12	displays	graphically	the	historical	price	indices	in	Table	4.41	(left	scale)	and	the
historical	data	for	the	systematic	factor	(right	scale)	in	Table	4.36.



Figure	4.12	Historical	Data	for	the	Systematic	Factor	and	the	Price	Indices

We	note	again	here	that	our	mortgage	credit	portfolio	loss	model	not	only	captures	default
correlation	over	time,	through	the	systematic	factor	 ,	but	also	incorporates	correlation
between	property	prices	and	default	rates.	Historical	property	prices	in	general	decayed	at	the
same	time	as	there	was	a	recession	cycle	(negative	values	of	the	systematic	factor).	Hence,	the
model	incorporates	the	historically	observed	positive	correlation	between	increasing	default
rates	and	increasing	loss	given	default	rates.	The	empirical	correlations	between	the
systematic	factor	and	the	 	different	logarithmic	returns	to	the	price	indices	are
respectively	0.51,	0.82,	0.58,	0.73,	and	0.63.	The	correlations	are	positive	as	expected
because	high	values	of	the	systematic	factor	are	associated	with	a	strong	economy	and	high
property	growth	values.

We	also	have	a	very	strong	empirical	correlation	within	the	price	indices'	logarithmic	returns.
It	is	important	to	note	that	these	correlations	are	also	used	when	we	simulate	future	values	of
the	systematic	factor,	 ,	and	the	property	prices,	 .	In	our	analysis,	we	assume	a
multivariate	normal	distribution	for	the	systematic	factor	and	the	property	price	indices.
Hence,	we	assume	a	normal	copula.

Analysis	of	Credit	Portfolio	Losses
Having	defined	all	the	models	and	the	model	parameters	we	can	simulate	the	portfolio	credit
losses	due	to	defaults	using	the	models.	We	analyze	the	mortgage	portfolio	risk	over	the



horizons	of	1,	…,	10	years	using	100,000	simulations	and	using	a	risk	confidence	level	of
99.9%.	In	the	calculation	of	credit	migrations,	we	apply	the	conditional	law	of	large	numbers
approximation	in	equation	(4.56)	to	the	subportfolios	8,	…,	14	in	Table	4.35.	Here
subportfolio	8	is	the	smallest	subportfolio	that	we	apply	the	conditional	law	of	large	numbers
to	with	65	mortgages	while	subportfolio	14	has	27,803	mortgages.	The	other	subportfolios,
that	is,	subportfolios	 ,	use	a	multinomial	state	sampling	approach	for	each	member	of
the	subportfolio.

The	credit	migration	and	default	analysis	for	the	portfolio	uses	a	path-dependent	model	for
mortgage	rating	grades	 	over	time	with	calculation	of	marginal	default	losses	at	each	yearly
horizon.	Hence,	a	mortgage	that	is	in	default	at	a	particular	scenario	and	time	remains	in
default	for	all	the	remaining	time	steps	of	the	particular	scenario.

We	first	focus	on	analyzing	the	portfolio	level	marginal	credit	losses	displayed	in	Table	4.42
and	Figure	4.13.	The	table	and	figure	display	the	aggregate	portfolio	expected	losses,	 ,
and	the	99.9%	confidence	level	risk	measures,	 	and	 ,	for	the	horizons	of	1,	…,	10
years.	We	note	that	both	marginal	expected	losses	and	risk,	as	measured	by	 	and	 	at
the	99.9%	confidence	level,	are	decreasing	over	time.	This	is	a	characteristic	of	a	portfolio
that	is	dominated	by	loans	in	low	credit	quality	grades.	This	is	because	the	relatively	high
probability	of	default	causes	a	large	short-term	loss	rate.	At	longer	horizons,	the	low	credit
quality	loans	either	have	already	defaulted	or	have	migrated	to	a	better	grade.	We	observe
from	Table	4.35	that	indeed	some	of	the	large	pools	have	a	low	credit	grade	for	the	loans	in	the
pool,	specifically	subportfolios	10,	13,	and	14,	which	also	have	substantial	total	notionals.

Table	4.42	Aggregate	Portfolio	Marginal	Risk	and	Expected	Loss	at	Horizons	of	1,	…,	10
Years

Marginal	credit	default	losses
Horizon	(years) VaR(0.999) CVaR(0.999) EL
1 200,538,078 207,074,919 133,692,343
2 190,137,788 199,775,375 110,216,346
3 169,303,797 178,704,241 90,521,334
4 145,741,162 154,254,603 73,536,377
5 126,548,043 134,249,430 60,767,243
6 111,386,805 118,013,278 51,541,187
7 101,552,469 108,065,916 45,015,925
8 93,056,927 99,174,650 40,296,470
9 87,447,331 93,181,494 36,902,797
10 83,109,774 88,816,171 34,405,284



Figure	4.13	Aggregate	Portfolio	Marginal	Risk	and	Expected	Loss	at	Horizons	of	1,	…,	10
Years

Table	4.43	displays	the	99.9%	 	for	the	credit	losses	for	the	large	pool	subportfolios	10,	11,
and	14	(see	also	Figure	4.14).	The	current	grade	for	subportfolios	10	is	8	and	for	subportfolios
11	and	14	the	current	grade	is	2	and	6,	respectively.	We	notice	that	subportfolio	10,	with	loans
rated	in	grade	8,	displays	a	significant	reduction	in	the	risk	of	marginal	losses	over	time	due	to
the	initial	low	quality	rating	grade.	Of	course,	this	is	an	important	consideration	when	one
considers	a	capital	buffer	to	support	the	portfolio	as,	for	subportfolio	10,	the	buffer	would
have	to	be	large	up	front,	that	is,	at	the	beginning	of	the	planning	horizon	of	1,	…,	10	years.	In
contrast,	subportfolio	11,	which	has	current	grade	2	for	its	loans,	has	an	increasing	risk	profile.
This	is	because	for	good-quality	loans,	the	short-term	risk	is	small.	However,	over	time	the
risk	increases	due	to	credit	migration.	Clearly,	for	an	initial	very	high	quality	portfolio	there	is
a	limited	scope	for	improvement,	but	as	time	progresses	theprobability	of	significant
downgrades	increases.	Subportfolio	14,	starting	out	in	rating	grade	6,	displays	an	initial
increase	in	marginal	risk	and	then	a	decrease.



Table	4.43	99.9%	VaR	for	the	Credit	Losses	for	the	Large	Pool	Subportfolios	10,	11,	and	14

Marginal	credit	default	losses
Horizon	(years) Subportfolio	10 Subportfolio	11 Subportfolio	14
1 97,282,375 177,243 85,097,385
2 49,120,226 892,977 105,533,772
3 30,202,493 2,201,052 95,381,564
4 20,969,151 3,945,399 77,932,818
5 15,591,528 5,692,897 63,289,681
6 12,332,963 7,278,345 52,363,804
7 10,231,951 8,554,459 44,897,419
8 8,782,051 9,482,992 39,767,520
9 7,752,477 10,134,061 35,499,537
10 7,100,282 10,558,647 33,040,395

Figure	4.14	99.9%	VaR	for	the	Credit	Losses	for	the	Large	Pool	Subportfolios	10,	11,	and	14

Table	4.44	and	Figure	4.15	display	the	same	information	as	Table	4.43	for	the	subportfolios	1,
3,	and	6,	being	in	rating	grades	5,	7,	and	1,	respectively.	Similar	to	Table	4.43,	we	observe	a
hump-shaped	marginal	credit	loss	 	profile	for	subportfolio	1	in	grade	5,	a	stable	marginal



credit	loss	 	profile	for	subportfolio	3	in	grade	7,	and	an	increasing	marginal	credit	loss	
	profile	for	subportfolio	6	in	grade	1.

Table	4.44	99.9%	VaR	for	the	Credit	Losses	for	the	Large	Pool	Subportfolios	1,	3,	and	6

Marginal	credit	default	losses
Horizon	(years) Subportfolio	1 Subportfolio	3 Subportfolio	6
1 52,843 44,971 0
2 61,369 47,387 36,453
3 60,042 48,900 40,116
4 57,738 49,433 41,316
5 51,012 49,826 43,849
6 50,089 49,887 45,290
7 51,492 50,653 46,009
8 51,483 51,438 47,306
9 51,556 50,715 47,792
10 52,236 51,289 48,219

Figure	4.15	99.9%	VaR	for	the	Credit	Losses	for	the	Large	Pool	Subportfolios	1,	3,	and	6

We	can	also	consider	risk	contributions	of	the	subportfolios	to	the	aggregate	portfolio.43	Since



the	risk	horizon	is	10	years	with	marginal	credit	losses	we	can	consider	the	aggregate	default
risk	contribution	over	the	years	1,	…,	10	for	the	aggregate	loss	up	to	10	years.	Table	4.45
displays	the	 	and	 	summed	risk	contributions	for	the	subportfolios,	1,	…,	14	and	the
aggregate	portfolio.	Once	again,	but	now	in	the	context	of	retail	portfolios,	we	notice	that	
contributions	are	not	a	particular	good	choice	for	risk	and	capital	allocation	when	using
random	sampling	of	a	few	credits	in	a	subportfolio.	A	zero	 	contribution	is	obtained	for
many	of	the	subportfolios	that	do	not	use	a	conditional	law	of	large	numbers.	In	this	case	
provides	a	much	better	approach	to	risk	allocation	as	it	considers	the	full	tail	of	conditional
losses—introducing	smoothness.	Indeed,	the	 	contributions	in	Table	4.45	are	non-zero	for
every	subportfolio	and	seem	to	reflect	fairly	the	individual	subportfolio's	risk,	taking	into
account	the	subportfolio	rating,	size,	exposure,	and	loan	to	value.	On	the	other	hand,	we	can
observe	from	Table	4.45	that	 	contributions	work	well	when	subportfolios	are	using	the
conditional	law	of	large	numbers.	This	is	because	the	losses	are	then	already	smooth.
Using	Table	4.45	we	could,	for	example,	use	the	aggregate	risk	 	or	 	summed	over
years	1,	…,	10	as	our	definition	of	capital	buffer—typically	adjusting	for	the	expected	losses
as	they	are	treated	as	a	reserve	and	should	already	be	priced	into	credit	margins.	Here	the
aggregated	expected	default	loss	over	the	years	1,	…,	10	is	676,895,310	in	units	of	currency.
However,	such	a	measure	cumulates	worst-case	marginal	losses	year	by	year	rather	than
focusing	on	the	path	of	cumulative	loss	that	can	happen	up	to	the	risk	horizon	of	10	years.	We
will	return	to	this	issue	in	the	section	on	economic	capital	for	loan	portfolios	below.



Table	4.45	VaR	and	CVaR	Summed	Risk	Contributions	for	the	Subportfolios

Summed	contributions
Subportfolio Cont	 Cont	
1 0 43,675.15
2 0 13,667.71
3 0 28,853.62
4 39,525.53 19,264.79
5 0 50,019.47
6 0 8,415.72
7 0 5,879.85
8 796,235.62 869,572.84
9 12,313,741.83 13,851,761.69
10 253,144,275.34 264,679,495.79
11 58,305,988.09 62,414,884.35
12 152,357,304.26 162,042,910.99
13 204,707,242.55 213,253,975.25
14 627,157,866.04 664,027,704.41
Aggregate 1,308,822,179.27 1,381,310,081.64

Net	Credit	Portfolio	Losses	Taking	into	Account	Credit	Margins
In	practice,	it	is	common	to	calculate	capital	buffers	with	respect	to	unexpected	loss,	that	is,	a
worst-case	loss	less	expected	losses.	However,	adjustments	may	be	needed	in	practice	to
account	for	the	fact	that	credit	margins	do	not	cover	expected	losses.	While	it	is	generally	the
case	that	credit	margins	for	good	credit	grade	portfolios	are	in	excess	of	expected	losses	the
credit	margin	for	poor	credit	grade	portfolios	may	not	be	sufficient	to	cover	even	expected
losses.

Using	the	mortgage	credit	portfolio	model,	we	now	focus	also	on	the	loan's	credit	margin	(see
Table	4.35	for	the	loans	credit	margins)	as	a	positive	inflow	as	long	as	the	mortgage	is	not	in
default.	The	credit	margin	minus	the	losses	is	here	referred	to	as	the	net	credit	loss	of	the
portfolio.	Table	4.46	and	Figure	4.16	display	the	99.9%	 	of	the	net	credit	loss	versus	the
(raw)	credit	loss,	and	the	expected	loss	adjusted	credit	loss	for	the	aggregate	portfolio	over	the
years	1,	…,	10.	The	(raw)	credit	loss	and	the	expected-loss	adjusted	credit	loss	we	can	of
course	obtain	directly	from	Table	4.42.	Notice	that	with	the	credit	margins	assumed	in	Table
4.35,	the	marginal	net	credit	loss	may	exceed	the	marginal	credit	loss	adjusted	by	expected
losses	at	longer	horizons.	That	is,	the	credit	margins	are	not	sufficient	to	cover	the	marginal
expected	credit	loss	for	the	longer	horizons.	Hence,	using	information	about	the	credit	margins
and	analyzing	the	net	loss	as	well	is	called	for	in	this	case.



Table	4.46	99.9%	VaR	for	the	Net	Credit	Losses,	Credit	Losses,	and	the	Expected	Loss
Adjusted	Credit	Losses	for	the	Aggregate	Portfolio

Marginal	credit	default	losses
Horizon	(years) Net	credit	loss Credit	Loss EL	adjusted	credit	loss
1 139,737,024 200,538,078 66,845,735
2 132,578,257 190,137,788 79,921,442
3 114,204,488 169,303,797 78,782,463
4 92,934,718 145,741,162 72,204,785
5 74,906,284 126,548,043 65,780,800
6 61,355,506 111,386,805 59,845,618
7 52,598,020 101,552,469 56,536,544
8 45,255,156 93,056,927 52,760,457
9 40,524,100 87,447,331 50,544,535
10 37,129,571 83,109,774 48,704,490

Figure	4.16	99.9%	VaR	for	the	Net	Credit	Losses,	Credit	Losses,	and	the	Expected	Loss
Adjusted	Credit	Losses	for	the	Aggregate	Portfolio

Basel	Regulatory	Capital



Another	interesting	question	in	the	context	of	a	loan	credit	portfolio	model	is	to	analyze	the
implied	portfolio	Basel	regulatory	capital	when	we	use	the	formula	in	equation	(4.41)	to
calculate	minimum	required	capital.	That	is,	for	each	scenario	realized	probability	of	default
(using	the	loan	transition	model)	and	loss	given	default	(using	the	mortgage	loss	given	default
in	equation	(4.59))	we	can	use	equation	(4.41).44	In	case	of	the	subportfolios	8,	…,	14	where
the	conditional	law	of	large	numbers	is	applied,	the	regulatory	formula	is,	of	course,	used	for
each	of	the	different	pool	fractions,	probability	of	default.	The	regulatory	capital	required	for
the	defaulted	mortgages	or	mortgage	pool	fractions	are	the	greater	of	zero	and	the	difference
between	the	loss	given	default	and	the	bank's	best	estimate	of	expected	loss.	This	is	because
the	bank's	reserve	allocated	based	on	the	best	estimate	of	the	expected	loss	already	covers	the
loss	due	to	the	default.	The	excess	actual	loss	is	still	going	to	be	covered	by	the	capital.

Performing	this	analysis	for	the	mortgage	portfolio	yields	a	distribution	of	capital	values
implied	by	the	regulatory	formula	for	which	measures	such	as	worst-case	capital	requirement
can	be	calculated	using	risk	measures.	Our	approach	here	to	worst-case	capital	requirements	is
different	from	the	regulatory	approach.	The	regulators	require	financial	institutions	to	use	long-
run	or	stressed	PD	and	LGDvalues	as	inputs	to	the	capital	requirement	calculations.	That	is,
the	regulatory	capital	requirements	adjust	the	inputs	rather	than	analyzing	the	risk	of	the	output
under	different	economic	scenarios	for	PD	and	LGD.	It	is	however	still	of	interest	to	consider
a	risk-based	view	on	regulatory	capital	requirements	in	the	context	of	the	portfolio	credit	risk
model.	We	will	also	return	to	the	issues	on	whether	risk	levels	should	be	based	on	the	point	in
time	versus	through	the	cycle	ratings,	and	whether	risk	is	better	measured	by	stabilizing	inputs
or	outputs	in	credit	risk	models.

Table	4.47	and	Figure	4.17	display	the	non-defaulted	loans'	regulatory	capital	worst-case
99.9%	 	and	expected	value	over	the	risk	horizon	of	1,	…,	10	years	for	the	aggregate
portfolio.45	Due	to	the	average	credit	portfolio	quality	we	observe	a	decaying	worst-case	and
expected	regulatory	capital	over	time	as	there	are	significant	defaults	in	the	portfolio.	On	the
other	hand,	this	means	that	the	required	loss	reserve	is	increasing	and	that	the	institution	needs
a	larger	relative	expected	loss	reserve	than	if	the	portfolio	credit	quality	was	initially	good.
Indeed,	a	good	credit	quality	portfolio	should	have	increasing	worst-case	and	expected	capital
requirements	due	to	downgrades	for	the	non-defaulted	loans.	This	is	evidenced	by	Table	4.48
(see	also	Figure	4.18),	which	shows	the	same	as	Table	4.47	for	the	grade	2	rated	subportfolio
11.	Finally,	we	note	that	the	worst-case	marginal	10-year	regulatory	capital	is	approximately	a
factor	3.3	times	larger	than	the	worst-case	10-year	marginal	credit	loss	for	the	aggregate
portfolio	(see	Table	4.42,	99.9%	 	at	the	10-year	horizon	being	83,109,774).	We	will	come
back	to	the	issue	of	reconciling	internal	credit	portfolio	model	capital	requirements	with
regulatory	capital	requirements	when	we	discuss	economic	capital	for	retail	portfolios.



Table	4.47	Regulatory	Capital	99.9%	VaR	and	Expected	Value	Over	the	Risk	Horizon	of	1,	…,
10	Years	for	the	Aggregate	Portfolio

Marginal	regulatory	capital
Horizon	(years) Worst-case Expected
1 592,036,602 432,508,149
2 521,253,033 345,455,085
3 447,698,751 282,155,559
4 396,799,507 237,236,914
5 357,966,981 205,572,599
6 327,586,768 182,881,307
7 309,127,388 166,579,545
8 294,819,807 154,443,344
9 282,538,031 145,416,040
10 274,724,729 138,542,858

Figure	4.17	Regulatory	Capital	99.9%	VaR	and	Expected	Value	over	the	Risk	Horizon	of	1,
…,	10	Years	for	the	Aggregate	Portfolio



Table	4.48	Regulatory	Capital	99.9%	VaR	and	Expected	Value	over	the	Risk	Horizon	of	1,	…,
10	Years	for	Subportfolio	11	in	Grade	2

Marginal	regulatory	capital
Horizon	(years) Worst-case Expected
1 7,173,699 4,852,891
2 12,783,034 7,489,363
3 18,738,875 10,131,264
4 24,444,653 12,369,657
5 28,888,832 14,093,157
6 32,505,716 15,320,978
7 35,148,379 16,159,566
8 37,045,743 16,676,412
9 38,052,449 16,977,009
10 38,800,194 17,123,135

Figure	4.18	Regulatory	Capital	99.9%	VaR	and	Expected	Value	over	the	Risk	Horizon	of	1,
…,	10	Years	for	Subportfolio	11	in	Grade	2



Investigating	the	Appropriateness	of	the	Conditional	Law	of	Large	Numbers
Approximation
Until	now	we	have	worked	under	the	implicit	assumption	that	subportfolio	8,	…,	14	losses	are
well	approximated	using	the	conditional	law	of	large	numbers	approximation.	While	in	general
we	would	expect	the	expected	loss	to	be	well	approximated	using	the	conditional	law	of	large
numbers	even	for	a	small	pool	the	interesting	question	is	whether	the	approximation	is	valid
for	the	high	quantiles	at,	for	example,	confidence	level	99.9%	that	we	are	using	here.

Starting	with	the	aggregate	portfolio	and	using	random	sampling	for	all	members	of	the	pools
8,	…,	14	that	we	previously	approximated	with	the	conditional	law	of	large	numbers	in	Table
4.42,	we	can	now	compare	the	99.9%	 	and	 .	This	is	done	in	Table	4.49	where	the
new	marginal	credit	loss	sampling	 	and	 	are	displayed	together	with	their	%	increase
compared	to	Table	4.42.	Using	sampling	we	observe	a	yearly	average	0.47%	increase	in	risk
with	 	and	a	yearly	average	increase	of	0.44%	with	 .	Hence,	at	the	aggregate	portfolio
level	it	seems	that	the	conditional	law	of	large	numbers	approximation	for	the	subportfolios	8,
…,	14	is	a	fair	approximation.	Figure	4.19	displays	graphically	the	portfolio	 	and	 	%
increase.

Table	4.49	Aggregate	Portfolio	Marginal	Risk	and	Percent	Increase	of	Marginal	Risk	for	1,	…,
10	Years	Using	Sampling	for	all	the	Portfolio	Loans

Marginal	credit	default	losses
Horizon	(years) 	%	increase 	%	increase
1 200,899,863 0.18% 207,776,288 0.34%
2 190,540,994 0.21% 200,459,600 0.34%
3 170,100,100 0.47% 178,906,181 0.11%
4 146,734,039 0.68% 154,618,499 0.24%
5 126,328,963 −0.17% 134,482,533 0.17%
6 111,965,452 0.51% 118,570,048 0.47%
7 102,218,593 0.65% 109,463,275 1.29%
8 93,937,971 0.94% 99,872,805 0.70%
9 87,602,508 0.17% 93,273,234 0.10%
10 83,972,018 1.03% 89,404,321 0.66%



Figure	4.19	Aggregate	Portfolio	Percent	Increase	of	Marginal	Risk	for	1,	…,	10	Years	Using
Sampling	for	all	the	Portfolio	Loans

However,	we	are	also	interested	in	subportfolio	contributions	to	aggregate	portfolio	risk	as
well	as	their	standalone	risk	being	approximated	well	with	the	conditional	law	of	large
numbers.	Therefore,	we	also	need	to	validate	the	specific	subportfolios	for	the	conditional	law
of	large	numbers	approximation.	Starting	with	subportfolio	8	we	compare	the	sampling	credit
loss	marginal	 	99.9%	with	the	conditional	law	of	large	numbers	approximation	in	Table
4.50	and	Figure	4.20.	We	note	that	there	is	a	significant	difference	attributed	to	idiosyncratic
risk	and	hence	the	conditional	law	of	large	numbers	approximation	for	subportfolio	8
significantly	underestimates	risk.	However,	in	the	context	of	the	aggregate	portfolio	the	loss
contribution	for	subportfolio	8	is	small.	For	example,	the	subportfolio	8	summed	credit	loss	

	contribution	in	Table	4.45	as	%	of	aggregate	portfolio	credit	loss	is	about	0.06%.	Hence,
from	an	aggregate	portfolio	risk	perspective	the	poor	approximation	of	subportfolio	8	with	the
conditional	law	of	large	numbers	is	not	a	major	concern.	On	the	other	hand,	if	we	are
interested	in	subportfolio	8	risk	contributions	and	standalone	risk,	we	should	use	the	sampling
method	for	subportfolio	8.



Table	4.50	Marginal	99.9%	VaR	Credit	Losses	at	Horizons	of	1,	…,	10	Years	for	Random
Sampling	and	the	Percent	Increase	vs.	Using	Conditional	Law	of	Large	Numbers	for
Subportfolio	8

Subportfolio	8
Horizon	(years) 	%	increase
1 134,707 503%
2 226,142 196%
3 263,669 157%
4 265,350 149%
5 257,957 152%
6 255,584 165%
7 239,594 166%
8 236,839 180%
9 230,003 187%
10 224,454 189%

Figure	4.20	Subportfolio	8	Percent	Increase	of	Marginal	Risk	for	1,	…,	10	Years	Using
Sampling	for	all	the	Portfolio	Loans

Now,	doing	the	same	comparison	for	subportfolio	10	(with	8,003	members)	and	subportfolio
14	(with	27,803	members)	we	find	much	smaller	differences	in	99.9%	marginal	 	profiles



over	the	years	1,	…,	10.	See	Table	4.51	and	Figure	4.21.	We	can	conclude	that	while,	in
general,	using	the	conditional	law	of	large	numbers	for	a	subportfolio	has	significant	benefits
—including	reduction	of	calculation	time	and	the	introduction	of	smooth	tail	losses—the	use	of
the	conditional	law	of	large	numbers	needs	to	be	carefully	vetted	to	avoid	underestimation	of
(idiosyncratic)	risks.	Of	course,	in	all	comparison	cases	of	sampling	and	conditional	law	of
large	numbers	approximation,	the	expected	loss	profiles	over	the	horizons	of	1,	…,	10	years
are	very	close	for	both	approaches	and	do	not	require	a	large	pool.	But,	as	we	have	shown
here,	the	conditional	law	of	large	numbers	approximation	for	high	 	quantiles,	here	99.9%,
may	be	very	poor	in	practice	for	smaller	subportfolios.

Table	4.51	Marginal	99.9%	VaR	Credit	Lossses	at	Horizons	of	1,	…,	10	Years	for	Random
Sampling	and	the	Percent	Increase	vs.	Using	Conditional	Law	of	Large	Numbers	for
Subportfolio	10	and	14

Subportfolio	10 Subportfolio	14
Horizon	(years) 	%	increase 	%	increase
1 97,243,751 −0.04% 86,273,882 1.38%
2 49,626,979 1.03% 106,011,978 0.45%
3 30,548,846 1.15% 95,710,514 0.34%
4 21,249,787 1.34% 78,408,160 0.61%
5 16,015,614 2.72% 63,545,759 0.40%
6 12,801,922 3.80% 52,741,548 0.72%
7 10,608,563 3.68% 45,560,930 1.48%
8 9,153,882 4.23% 39,861,247 0.24%
9 8,136,627 4.96% 36,057,736 1.57%
10 7,409,614 4.36% 33,640,221 1.82%



Figure	4.21	Subportfolio	10	and	14	Percent	Increase	of	Marginal	Risk	for	1,	…,	10	Years
Using	Sampling	for	all	the	Portfolio	Loans

Point	in	Time	and	Through	the	Cycle	Modelswith	Applications	to
Regulatory	Stress	Testing
While	probabilities	of	default	and	transition	probabilities	for	externally	rated	corporates	and
bond	issues	are	in	general	based	on	long-run	average	rates	published	by	the	rating	agencies,
credit	scoring	models	generally	focus	on	a	point	in	time	assessment	of	the	default	probability.
However,	the	long-term	credit	risk	of	a	loan	is	based	on	both	the	current	risk	grade	using	the
score	at	a	certain	time	 	and	the	sensitivity	of	the	loan	credit	quality	to	the	economic	cycle.	We
may	hence	assign	a	relatively	high	long-term	probability	of	default	to	a	loan	with	a	low	time	
scorecard	probability	of	default.	This	is	because	the	longer-term	viability	of	the	loan	may	be
questionable,	based	on	its	sensitivity	to	the	business	cycle.

In	the	industry	the	concepts	of	Point	in	Time	(PIT)	and	Through	the	Cycle	(TTC)	are	generally
used	to	distinguish	between	credit	grades	or	probability	of	default	rates	that	are	experienced	at
time	 	versus	adjusted	for	the	economic	cycle.	The	choice	of	exact	measure	for	the	default
probability	depends	on	the	use	case.	For	example,	the	Basel	calculation	of	risk-weighted
assets	using	equation	(4.41)	requires	the	use	of	long-run	average	probability	of	defaults	or



even	downturn	adjusted	probability	of	defaults	as	well	as	loss	given	defaults.	This	can	be	seen
as	an	attempt	to	stabilize	banks'	regulatory	capital	requirements	over	the	years.	Indeed,	the
stability	is	seen	as	a	desirable	attribute	of	a	capital	reserve.	However,	as	argued	by	Aguais	et
al.	(2006),	it	is	preferable	to	stabilize	the	outputs	of	a	model	rather	than	stabilize	the	inputs,	as
in	the	latter	case,	the	model	will	not	measure	current	risk.	The	current	risk	is	better	measured
by	the	PIT	definition.

In	portfolio	credit	risk	models	it	is	therefore	desirable	to	focus	on	PIT	estimates	of	credit
scores	and	instead	apply	a	long-term	view	when	assigning	capital	requirements.	Such	a	long-
term	view	achieves	the	objective	of	ensuring	a	relatively	stable	capital	reserve.	We	consider
one	example	of	such	an	approach,	inspired	by	the	classical	insurance	risk	reserve
methodology,	when	we	discuss	economic	capital	for	loan	portfolios.	Still,	a	bank	needs	to
maintain	both	a	PIT	and	a	TTC	version	of	credit	scoring	models.	In	general,	the	TTC	model	is
derived	from	the	PIT	model	and	a	model	for	the	systematic	factors	that	describe	the	economic
cycle.	The	key	to	converting	a	PIT	estimate	to	a	TTC	estimate	is	to	define	the	current	economic
cycle.	Once	this	is	defined	the	systematic	factors	model	can	be	used	to	compute	a	credit's
probability	of	default	or,	more	generally,	a	credit's	transition	probability	rates	unconditional	on
the	systematic	variables	and	hence	the	economic	cycle.	For	example,	in	our	mortgage	portfolio
analysis	the	credit	state	transition	probabilities,	hence	the	transition	matrix,	depend	on	the
economic	cycle	such	that	different	values	of	the	economic	factor	 	yield	different	transition
rates	for	credits	in	states	 .	Carlehed	and	Petrov	(2012)	use	a	one-factor	version	of
the	Merton-inspired	model	as	in	equation	(4.39)	and	an	autoregressive,	Vasicek	equilibrium
model	type,	formulation	for	the	single	economic	cycle	indicator	to	convert	PIT	probability	of
default	estimates	to	TTC.	As	Carlehed	and	Petrov	(2012)	also	argue,	the	probability	of	default
definition	used	in	long-term	profitability	assessment	should	be	carefully	made	to	avoid
countercyclical	behavior.	For	example,	long-term	loans	with	profitability	assessed	with	PIT
probability	of	default	during	an	economic	downturn	will	appear	less	valuable	than	when
assessed	using	a	TTC	probability	of	default.	At	the	same	time,	in	economic	upswings,	the	TTC
probability	of	default	will	lower	the	value	compared	to	using	a	PIT	probability	of	default.	This
is	being	prudent.

Regulatory	Stress	Testing	with	Point	in	Time	Probability	of	Default
Point	in	time	default	probability	or	rating	transition	models,	connected	to	macroeconomic
variables,	are	an	important	component	to	translate	the	macroeconomic	regulatory	credit	book
stresses	required	in	both	CCAR	and	EBA	to	credit	loss	and	projected	risk	weighted	assets
impact.	Later	in	this	chapter,	we	will	consider	explicit	examples	of	credit	portfolio
macroeconomic	stress	testing	for	both	the	Merton-inspired	multifactor	models,	discussed	in	the
previous	section	of	this	chapter,	as	well	as	the	credit	score	models	with	macroeconomic
variables,	discussed	in	this	section.	However,	already	here	we	will	review	some	of	the
specific	EBA	credit	book	stress	methodologies	(EBA,	2014)	for	computing	the	flow	of
defaulted	assets	and	connect	the	calculation	to	our	Markov	iteration	approaches	for	credit
models	with	some	simple	numerical	examples	to	illustrate.	We	refer	to	Skoglund	and	Chen
(2015)	for	stress	testing	applications	with	the	monthly	and	quarterly	dynamic	delinquency
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models	using	both	state	transition	simulation	and	Markov	iteration.	The	dynamic	delinquency
models	are	frequently	used	in	CCAR	stress	testing.

In	the	methodological	notes	of	the	EBA	stress	the	flow	of	defaulted	assets	should	be	counted
using	PIT	probability	of	default.	Specifically,	having	available	the	time	 	PIT	probability	of
default	( )	for	a	credit	grade	conditional	on	the	economic	scenario	at	time	 	one	multiplies	
with	the	remaining	non-defaulted	exposure	( )	at	 .	This	gives	the	flow	of	defaulted	assets	(
)	as

with	 	the	current	exposure,	and	with	remaining	exposure	at	 	as

When	there	are	multiple	credit	grades	or	credit	qualities	available	for	a	loan	in	a	transition
matrix,	which	is	the	situation	we	have	considered	in	this	chapter,	we	can	employ	the	Markov
iteration	conditional	on	the	stress	scenario	(such	as	in	equation	(4.56)	for	the	credit	score
model	and	in	equation	(4.29)	for	the	multifactor	Merton	inspired	model)	to	define	 	in
equation	(4.60)	as	the	 	defaulted	fraction	of	the	loan.	This	defaulted	loan	fraction	is
obtained	from	the	 	state	transition	vector.	Specifically,	we	have	the	usual	Markov
iteration	equation,

where	as	before	 	is	a	 	vector	of	state	frequencies	and	 	contains	zeros	in	all
positions	except	at	the	current	loan	position	 .	The	transition	matrix	 	exact	transition	rates
are	of	course	determined	by	the	specific	choice	of	model	with	the	PIT	transition	rates	at	

	depending	on	the	economic	factors,	 .	This	now	gives	for	

such	that

where	 	is	the	 	element	of	 	having	the	defaulted	fractions	of	the	loan	until	 	and	
is	null	as	we	start	out	with	no	defaulted	fractions	of	theloan.46	Alternatively,	if	the	loan	Markov
iteration	is	more	complex	such	as	for	credit	score	models	with	delinquency	tracking,	using	the
Markov	iteration	equation	(4.58),	one	can	resort	to	state	transition	sampling	to	define	 .
However,	see	also	our	example	Markov	iteration	for	a	quarterly	delinquency	model	in	the
appendix	to	this	chapter	and	Skoglund	and	Chen	(2015).

Once	the	flow	of	defaulted	assets,	 ,	is	available	for	each	time	 	we	can	adjust	the
default	flow	for	recoveries	using	the	PIT	loss	given	default	model,	 ,	and	compute	the
impairment	flow	of	losses,	 ,	on	the	time	 	newly	defaulted	portion	of	the	loan,	adjusting	for
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the	already	made	provisions.	The	EBA-specific	impairment	flow	formula	for	assets	defaulted
at	 	is

where	 	and	 	is	the	stock	of	provisions	made	against	non-defaulted	assets	at	 .
Here	 	is	the	share	of	 	that	is	linked	to	initially	non-defaulted	assets	at	 	that	enter
into	default	status	at	 .

To	account	for	the	fact	that	collateral	asset	quality	can	worsen	over	the	stress	scenario	(hence
PIT	loss	given	default	increase	over	 ),	additional	EBA	impairments	must	be	made	on
old	defaulted	assets	at	 .	The	specific	formula	for	the	impairment	loss	on	old	defaulted
exposures,	 ,	is	given	by

where	 	is	the	loss	given	default	at	 	for	the	stock	of	defaulted	assets, 	is	the	stock
of	impairments	for	old	defaulted	assets,	and	 	is	a	default	portfolio	characteristic	parameter
that	may	not	be	in	effect	if	the	bank's	loss	given	default	model	already	takes	the	impairment
dynamics	of	old	defaulted	assets	into	account.	We	refer	to	the	EBA	(2014)	methodological
notes	for	further	details	on	the	impairment	flow	formulas.

While	the	defaulted	flow	of	assets	calculation	under	the	stress	scenario	uses	the	PIT
probability	of	default	and	the	PIT	loss	given	default	models,	the	EBA	projected	risk	weighted
assets	calculation	should	use	the	regulatory,	downturn	adjusted	version	of	the	models.
However,	it	is	expected	that	the	regulatory	version	of	the	models	is	also	influenced	by	the
macroeconomic	scenario.	Given	stressed	regulatory	probability	of	default	and	loss	given
default	at	 	the	projected	risk	weighted	asset	is	calculated	with	the	usual	risk	weighted	asset
formula	in	equation	(4.41)	for	the	non-defaulted	loan	fraction.	However,	there	can	also	be	a
contribution	from	the	defaulted	flow	at	 	if	the	(non-stressed)	regulatory	loss	given	default
parameter	exceeds	the	PIT	loss	given	default	at	 .

While	EBA	considers	a	static	balance	sheet,	we	can	also	easily	extend	the	iteration	in	equation
(4.61)	to	handle	loan	growth	or	decay	rates	(or	portfolio	level	growth	and	decay	rates	if	the
model	is	applied	on	portfolio	level)	over	the	stressed	times	 .	Let	 	and	 	be
diagonal	matrices	with	diagonal	elements	 	and	 ,	respectively,	for	

	and	unity	at	the	diagonal	element	for	default	grade	 	(since	there	is	no	growth	or
decay	for	the	defaulted	fraction	of	the	loan).	We	now	have	 	credit	grade	specific
growth	rates	and	 	credit	grade	specific	decay	rates	for	the	loan	(or	portfolio	of	loans)
such	that	we	can	extend	equation	(4.61)	to

Hence,	we	are	capturing	loan	or	portfolio	growth	or	decay	rates	per	grade	(that	is,	state	
).	A	good	example	in	practice	of	what	the	decay	rates	can	be	used	for	is	to

capture	(state	dependent)	amortization	profiles.	Since	both	the	multifactor	Merton	inspired
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model	and	the	macroeconomic	credit	score	model	economic	stress	testing	are	based	on	the
Markov	iteration	(4.61)	for	stressed	expected	losses,	conditional	on	a	scenario	for	 ,
they	can	be	directly	deployed	in	the	above	EBA	specific	stress	testing	approach,	either	at
granular	loan	level	or	homogeneous	subportfolio	level	as	desired.	They	can	also	be	used	to
analyze	portfolio	growth	and	decay	effects	using	the	extended	Markov	iteration	(4.62).	A
prerequisite	is	of	course	that	the	regulatory	prescribed	scenarios	have	been	converted	into
corresponding	scenarios	for	the	bank's	actual	economic	factors,	 ,	being	used	in	the	models.

We	now	illustrate	the	computation	of	the	flow	of	defaulted	assets,	 ,	with	two	simple
numerical	examples	using	first	the	multifactor	Merton-inspired	model	andsecond	the	credit
score	model.

Multifactor	Model	Numerical	Example
In	order	to	compute	explicit	numerical	default	rates	from	the	multifactor	model	we	assume	a
specific	model	is	given	as	in	equation	(4.21),

which	hence	has	three	economic	factors,	 .	The	covariance	matrix	of	 	is
specified	by

We	also	have	a	given,	long-run,	transition	probability	matrix	with	eight	states	as	in	Table	4.52.
Here	the	transition	matrix	probabilities	are	expressed	in	percentages.

Table	4.52	Sample	Long-Run	Transition	Matrix

State 1 2 3 4 5 6 7 8
1 91 7 1 0.8 0.2 0 0 0
2 1.1 91 6 0.9 0.6 0.4 0 0
3 0.17 3 91 5 0.5 0.2 0.09 0.04
4 0.05 0.15 6 87 5 1 0.6 0.2
5 0.09 0.4 0.81 7.7 81 7.8 1.2 1
6 0 0.5 0.7 0.8 7 80 6 5
7 0 0 0.8 1.2 3 12 60 23
8 0 0 0 0 0 0 0 1

Normalizing	the	model	in	equation	(4.63)	with



we	obtain	the	standardized	model	as

This	gives	the	standardized	model	 	as

To	apply	the	model	we	convert	the	transition	probabilities	in	Table	4.52	to	corresponding
transition	matrix	thresholds.	This	is	done	in	Table	4.53	where	+inf	and	 inf	refers	to	the	largest
positive	and	negative	value	respectively.

Table	4.53	State	Thresholds	from	the	Sample	Transition	Matrix

State 1 2 3 4 5 6 7 8
1 +inf −1.34 −2.05 −2.32 −2.87 inf inf inf
2 +inf 2.29 −1.41 −2.07 −2.32 −2.65 inf inf
3 +inf 2.92 1.85 −1.56 −2.39 −2.71 −3.01 −3.35
4 +inf 3.29 2.87 1.53 −1.49 −2.09 −2.40 −2.87
5 +inf 3.12 2.58 2.22 1.34 −1.28 −2.01 −2.32
6 +inf +inf 2.47 2.25 2.05 1.34 −1.22 −1.64
7 +inf +inf +inf 2.40 2.05 1.64 0.95 −0.73

With	this	threshold	matrix	we	can	now	obtain	conditional	transition	probabilities	using
equation	(4.27)	and	a	specific	scenario	for	 .	For	example,	if	 ,
we	have	that

which	increases	the	threshold	values	and	hence	puts	larger	probabilities	on	migration	to	lower
quality	states.	Similarly,	if	 ,	we	have	that

which	reduces	the	thresholds,	giving	larger	probabilities	to	migration	to	higher	quality	states.
For	each	scenario	 	we	can	hence	construct	a	conditional	transition	matrix,	 ,	for	each

	where	negative	values	for	 	indicate	a	downturn	economic	cycle,
which	can	be	seen	as	a	stress	scenario	if	the	 	shifts	are	severe	enough.	As	we
have	discussed,	in	practice	the	economic	factors	represent	variables	that	are	important	in
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describing	the	credit	quality	of	the	loan	issuer.

Consider	now	an	explicit	economic	scenario	for	 	as	in	Table	4.54.	Using	this	scenario
and	the	Markov	iteration	(4.61)	for	a	loan	in	state	 	at	 	we	can	obtain	the	
state	occupancy	probabilities.	Table	4.55	displays	the	obtained	conditional	state	occupancy
probabilities	as	percentages.47

Table	4.54	Sample	Scenario	for	the	Economic	Factors	in	the	Multifactor	Model

Factor/Time 1 2 3 4 5
−1 −1.5 −2 −2.5 −3
−1 −1.5 −2 −2.5 −3
−1 −1.5 −2 −2.5 −3

Table	4.55	Conditional	State	Occupancy	Percentages	Under	the	Economic	Scenario	for	the
Multifactor	Model

State/Time 1 2 3 4 5
1 0.0067 0.0068 0.0048 0.0026 0.0011
2 0.4188 0.4708 0.3601 0.2118 0.0957
3 87.225 70.434 50.797 31.384 15.841
4 10.472 21.773 30.153 31.511 24.950
5 1.1329 4.1003 9.0033 14.002 15.717
6 0.4623 1.7528 4.5159 8.6566 12.177
7 0.1987 0.8578 2.4526 5.2074 8.1742
8 0.0826 0.6035 2.7116 9.0229 23.042

Hence,	from	Table	4.55,	we	know	how	the	loan	balances	are	distributed	in	states	 	at
each	time	 	under	the	economic	scenario	in	Table	4.54.	For	example,	at	 	the
cumulative	defaulted	portion	of	the	loan	is	approximately	9%.	Since	we	are	concerned	with	the
flow	of	defaulted	assets,	 ,	we	create	the	equation

where	 	is	the	 	element	of	 .48	The	defaulted	flow	can	be	adjusted	for	recoveries	of
course.	We	can	also	assign	a	cash	flow	vector	to	each	state	 	and	time	 ,



to	compute	the	 	non-default	state-dependent	stressed	expected	cash	flows,	 ,	as

Here	we	have	set	the	cash	flow	from	the	default	state	to	null	since	the	recovery	cash	flow	is
usually	calculated	from	adjusting	the	default	flow	at	 ,	 ,	with	a	PIT	loss	given	default
model.	We	will	see	an	example	of	this	later	with	the	credit	score	model.

Finally,	we	can	also	add	assumed	growth	and	decay	rates	(for	example	amortization)	in	the
iteration	equation	(4.62)	to	the	model.	Either	way,	the	application	of	the	Markov	iteration	is
trivial	and	requires	minimal	computation	time.

Credit	Score	Model	Numerical	Example
To	make	the	credit	score	model	explicit	for	our	numerical	stress	testing	example	we	assume,	as
in	our	mortgage	portfolio	example	above	with	this	model,	that	there	is	a	single	economic	factor
	that	drives	the	transition	rates.	Later	we	will	also	consider	a	loss	model	that	will	depend	on

a	second	economic	factor	 	that	drives	the	loss	given	default	through	its	interpretation	as	a
collateral	value	index.	We	assume	a	transition	model	with	 	states	has	been	calibrated	such
that	we	have	the	calibrated	model	parameters	 	and	 	in	Tables	4.56	and	4.57,
respectively.49

Table	4.56	Sample	Mu	Parameter	Matrix	for	the	Multinomial	Logit	Model

8.773 6.294 5.949 5.249 4.713 4.516 4.216 3.906
5.915 7.390 5.892 3.119 2.879 2.561 2.094 1.182
4.004 4.893 5.925 4.893 3.400 2.601 1.787 1.072
2.388 2.702 3.065 3.910 3.066 2.702 1.712 0.768
0.966 1.256 2.405 1.662 2.729 1.754 0.609 0.431
−0.666 −0.157 0.053 0.435 0.898 1.879 1.054 0.288
−2.357 −1.263 −1.006 −0.760 −0.292 0.637 0.839 0.656
−19.539 −4.544 −2.737 −1.231 −1.036 −0.656 −0.115 0.428
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Table	4.57	Sample	Beta	Parameter	Matrix	for	the	Multinomial	Logit	Model

0.020 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020
0.020 0.020 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020
0.040 0.040 0.040 −0.020 −0.020 −0.020 −0.020 −0.020
0.060 0.060 0.060 0.060 −0.020 −0.020 −0.020 −0.020
0.060 0.060 0.060 0.060 0.040 −0.020 −0.020 −0.020
0.080 0.080 0.080 0.080 0.080 0.10 −0.020 −0.020
0.100 0.100 0.100 0.100 0.100 0.100 0.060 0.040
0.100 0.100 0.100 0.100 0.100 0.100 0.120 0.140

With	the	model	parameters	set	we	can	use	equation	(4.52)	to	compute	the	conditional	transition
probabilities.	Using	the	same	explicit	economic	scenario	for	 	as	in	Table	4.55,	we
obtain	the	 	state	occupancy	probabilities	in	Table	4.58	for	a	loan	initially	in	state	4.
As	in	Table	4.55,	we	display	in	Table	4.58	the	obtained	conditional	state	occupancy
probabilities	as	percentages.

Table	4.58	Conditional	State	Occupancy	Percentages	Under	the	Economic	Scenario	for	the
Credit	Score	Model

State/Time 1 2 3 4 5
1 7.46 12.34 15.85 18.39 20.12
2 10.22 15.06 17.38 18.30 18.47
3 14.69 18.47 18.31 17.31 16.31
4 34.19 17.52 12.68 10.78 9.73
5 15.93 13.36 10.42 8.66 7.62
6 11.07 11.14 9.61 8.31 7.36
7 4.11 5.65 5.81 5.49 5.08
8 1.60 3.55 4.23 4.22 3.97
9 0.73 2.91 5.69 8.56 11.34

In	this	case,	because	the	transition	matrix	retains	quite	high	movement	to	better	quality	grades
even	under	stress	we	have	directions	of	migration	both	to	the	default	state	as	well	as	to	better
states.	For	this	sample	loan	we	also	assume	there	is	a	simple	PIT	 	model,	similar	to
equation	(4.59),	based	on	collateralized	recovery	at	a	particular	time	 	and	defined	by

Here,	as	before,	 	is	the	current	loan-to-value	relationship	between	the	exposure	level	and



the	collateral	for	the	exposure.	Hence,	we	interpret	 	as	a	property	index	value	at	time	
with	 	the	current	property	index	value	such	that	 	represents	a	normalized	growth	rate
for	the	property	index	value.	We	set	 	for	convenience.	Clearly,	the	PIT	 	model	in
equation	(4.65)	does	not	constrain	 	between	zero	and	unity.	For	simplicity,	this
constraint	is	not	needed	for	our	numerical	example.

Using	the	PIT	 	model	in	equation	(4.65)	we	can	adjust	the	default	flow,	 ,	to	expected
loss	rates,	 ,	using	Table	4.58	and	a	scenario	for	 .	Assuming	that	the
current	loan	to	value	is	unity	and	that	property	index	values	decay	in	the	scenario	with	a	factor
of	 	for	each	time	 	we	get	the	percent	expected	loss	rates	displayed	in	Table	4.59.

Table	4.59	Expected	Loss	Rates	Using	the	PIT	LGD	Model

Time 1 2 3 4 5
Loss 0.073 0.436 0.834 1.148 1.390

An	Economic	Capital	Model	for	Loan	Portfolios
While	point	in	time	estimates	for	probability	of	default	are	generally	used	in	internal	credit
portfolio	models,	financial	institutions	are	searching	for	a	stable,	non-cyclical	answer	to	the
appropriate	level	of	economic	capital.	Here,	we	consider	an	insurance	approach	discussed	in
Nyström	and	Skoglund	(2006)	that	achieves	stable	capital	levels	due	to	a	long-term	view.	The
approach	is	inspired	by	the	classical	risk	theory.	In	classical	risk	theory	(see	Mikosh,	2006;
Grandell,	1991)	an	insurance	firm	collects	premiums,	 ,	and	suffers	losses,	 .	Hence,	with
initial	capital	level	 	of	the	insurance	company	we	have	that,	for	a	given	scenario	 ,

Here,	 	is	the	remaining	risk	reserve	at	 	given	an	initial	amount	of	capital,	 .	 	is	the
net	difference	between	premiums	collected	and	liability	payouts	in	the	interval	 .	The
insurance	analogy	is	relevant	because	in	the	simplest	classical	insurance	model

the	insurance	premiums	flow	at	rate	 	and	the	number	of	claims	are	Poisson	distributed,	 ,
with	claim	sizes,	 .	Transferred	to	the	credit	portfolio	the	premiums,	 ,	can	be	thought	of	as
the	loan	credit	margins	(over	the	funding	rate)	and	the	Poisson	process,	 ,	as	the	number	of
credit	events	with	loss	given	default,	 .

We	now	define
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as	the	first	time	the	remaining	risk	reserve	is	negative.	If	 	for	all	 ,	then	 .	We
also	have	that

which	is	referred	to	as	the	survival	probability	to	time	 .	Here,

is	the	lowest	amount	recorded	in	the	risk	reserve	process	during	 .	We	can	also
define	the	ruin	probability	as	 ,	and	the	insurance	company	can	now	define	
such	that	with	confidence	level	 	it	is	solvent.

Our	approach	to	loan	portfolio	credit	risk	economic	capital	will	be	similar	to	the	insurance
risk	reserve	approach.	However,	we	choose	a	slightly	different	way	to	extract	negative
contributions	to	the	initial	capital,	 .	Specifically,	we	set

In	this	case	we	add	to	the	initial	capital	all	the	negative	contributions.	The	reason	we	choose
this	formulation	is	because	by	construction	the	bank	will	experience	periods	of	positive
contribution	to	the	total	cash	flows	as	well	as	periods	of	negative	contribution	to	the	total	cash
flows.	It	is	prudent	to	assume	that	the	bank	will	not	save	positive	contributions	from	one
period	to	another	to	neutralize	negative	contributions	at	subsequent	periods.	Due	to	the
obligations,	for	instance,	to	shareholders,	in	good	times,	the	bank	may	use	that	profit.	With	this
formulation	the	bank	should	make	sure	to	be	guarded	against	periods	that	give	a	negative
contribution	to	the	total	cash	flows.

The	above	formulation	is	also	consistent	with	the	fact	that	financial	institutions	do	not	raise
capital	once	a	year.	Banks	rather	focus	on	capital	planning	periods	that	may	be	very	long	(e.g.,
5–10	years)	and	include	a	full	business	cycle.	The	length	of	the	planning	horizon	determines
the	choice	of	 ,	and	in	general	the	longer	the	planning	period	the	more	stable	is	the	capital
obtained.	This	is	because	the	capital	contributions,	calculated	using	equation	(4.66),	will	then
cover	both	good	and	bad	times	for	the	economic	cycle	such	that	the	actual	credit	quality	of	the
portfolio	at	the	exact	starting	point	will	make	a	smaller	and	smaller	contribution.

Based	on	equation	(4.66)	we	can	now	define	a	stable,	planning-based	economic	capital
measure	for	the	loan	portfolio.	We	have

where	 	denotes	the	risk	measure.	Hence,	for	every	scenario,	 ,	we	cumulate	all	the	negative
contributions	over	times	 	and	create	a	distribution.	The	distribution	will	be	truncated
upward	by	zero	and	downward	by	the	maximum	cumulative	negative	contribution	over	time.



We	can	now,	using	the	bank's	preferred	survival	probability,	calculate	the	 	or	 	of
the	left	tail	of	this	distribution.	The	number	obtained	is	the	 	confidence	level	economic	capital
needed	to	support	the	portfolio	over	the	planning	period,	that	is,	to	within	 	confidence	level,
prevent	the	aggregate	negative	contributions	from	the	portfolio	to	be	larger	than	the	capital
base.

When	calculating	economic	capital	using	equation	(4.67),	one	may	either	include	loan	credit
margins	over	the	funding	rate	as	a	positive	source	of	cash	flows	or	not.	That	is,	there	is	also	a
source	of	returns	analogous	to	the	premiums	in	the	insurance	risk	model.	Future	assumptions	of
the	credit	margins	are	then	also	needed	in	the	model.	An	important	special	case	is	when	one
assumes	that	the	credit	margins	are,	currently	and	in	the	future,	set	such	that	they	equal	to	the
expected	losses.	In	this	case,	one	can	focus	on	the	modeling	of	losses	and	we	then	retrieve	the
“usual”	definition	of	capital,	that	is,	risk	measure	loss,	 ,	minus	expected	loss	being
defined	as	unexpected	loss	(and	capital).

Example	Economic	Capital	and	Capital	Allocation	for	the	Mortgage	Portfolio
Continuing	our	example	with	the	mortgage	portfolio,	we	use	equation	(4.67)	to	calculate	 -
and	 -based	 	at	the	99.9%	confidence	level	using	the	net	credit	loss	(credit	margins	less
credit	losses)	for	the	mortgage	credit	portfolio	model	example.	Hence,	we	cumulate	the
negative	marginal	net	losses	across1,	…,	10	years	for	all	simulations	and	calculate	the	
measures	from	the	distribution.	Table	4.60	displays	the	aggregate	portfolio	 	measures.

Table	4.60	Aggregate	Portfolio	Economic	Capital	Using	the	Insurance	Approach

654,577,618
700,544,204

We	notice	that	with	this	path-based	and	conservative	measure	for	economic	capital,	the
economic	capital	level	is	close	to	and	a	bit	above	the	1-year	required	worst-case	regulatory
capital,	based	on	99.9%	 ,	for	the	portfolio	in	Table	4.47	of	592,036,602	units	of	currency.
Hence,	in	this	case,	the	economic	capital	level	using	the	insurance	approach	is	reconciled	with
the	worst-case	regulatory	capital	level.

Once	the	economic	capital	using,	for	example,	 	or	 	is	obtained,	one	can	use	the
traditional	Euler	allocation	of	 	and	 .	This	is	because	all	the	conditional	subportfolio
losses	sum	by	definition	to	the	aggregate	portfolio	loss,	year	by	year	and	scenario	by	scenario,
using	equation	(4.67).	Table	4.61	displays	the	 	 	contributions	for	the	subportfolios.



Table	4.61	VaR-Based	Economic	Capital	Risk	Contributions	for	the	Subportfolios

Contributions
Subportfolio 	
1 −40,500
2 −11,700
3 46,862
4 −19,800
5 −43,200
6 −9,000
7 37,361
8 79,431
9 −1,553,920
10 177,613,573
11 −34,547,791
12 55,037,601
13 73,812,495
14 384,176,204
Aggregate 654,577,618

In	the	table	negative	values	for	the	economic	capital	 	contributions	represent	negative
contributions,	that	is,	net	credit	hedges.	For	example,	subportfolio	11	with	rating	grade	2	and	a
credit	margin	of	1.2%	has	sufficient	marginals	and	small	enough	losses	to	yield	a	negative
economic	capital	contribution	to	the	aggregate	portfolio.	This	is	also	the	case	for	subportfolio
9	with	rating	grade	3	and	credit	margin	1%.	Some	of	the	subportfolio	contributions	for	the
small	sampling	subportfolios	1,	…,	7	may	seem	counterintuitive.	For	example,	subportfolio	1
with	rating	grade	5	and	a	1.5%	credit	margin	has	a	negative	economic	capital	contribution,
while	subportfolio	7	with	rating	grade	2	and	credit	margin	1.1%	has	a	positive	net	loss
contribution.	Indeed,	as	we	have	noticed	before,	 	is	not	in	general	a	good	measure	for
contributions	of	small	subportfolios	and	the	calculation	of	 	contributions	or	smoothed	
contributions	is	required	to	avoid	conditioning	on	a	single	realized	loss	path	with	typically
large	volatility	in	contributions	as	we	change	the	confidence	level	slightly.

We	finally	emphasize	that	with	this	path-based	definition	of	economic	capital	reserve,	the
economic	capital	depends	on

The	risk	(planning)	time	horizon,	 ,	and	potentially	the	timing	of	losses

The	size	of	credit	margins	(or	size	of	expected	losses	if	expected	loss	is	used	to	create
unexpected	loss)
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The	size	of	the	losses	suffered

If	the	planning	horizon,	 ,	is	sufficiently	long	to	cover	a	business	cycle,	the	economic	capital
reserve	should	be	stable,	and	in	addition,	largely	independent	of	the	starting	point	(good	or	bad
current	state).	Of	course,	the	longest	planning	horizon	is	the	planning	horizon,	 ,	where	 	is	set
equal	to	the	longest	maturity	in	the	portfolio.

While	we	have	used	a	fixed	portfolio	in	the	calculation	of	economic	capital,	in	practice,	one
must	also	take	into	account	the	additional	economic	capital	required	for	the	planned	portfolio
growth.	The	portfolio	growth	can	come	in	the	form	of	extended	loans	to	existing	customers	as
well	as	new	customers'	loans.	Taking	into	account	extended	loans	to	existing	customers	can
simply	use	loan	size	scaling	on	the	subportfolio	losses	over	the	years	consistent	with	the	yearly
extension	rate	assumed.	New	customer	loans	enter	the	portfolio	at	a	certain	rate	over	the	years
and	must	in	general	be	separately	accounted	for	as	a	flow.	Unless	the	bank	has	a	strategy	to
grow	in	a	particular	segment,	it	is	often	realistic	to	assume	that	the	new	customer	growth
portfolio	has	the	same	composition	as	the	existing	portfolio,	which	can	simplify	calculations.

The	Poisson	Mixture	Model	and	CreditRisk
Now	we	will	revisit	the	binomial	loss	model	discussed	previously,	through	considering	a
specifically	simple	linear	form	of	the	score	function	 	and	employing	the	Poisson
approximation	to	the	binomial.	As	we	will	see,	this	will	enable	us	to	obtain	an	(almost)
analytical	solution	to	the	portfolio	loss	distribution.	With	this	configuration	the	binomial	loss
model	is	referred	to	as	the	CreditRisk 	model	and	is	widely	employed	in	the	industry.	In	the
CreditRisk 	model	we	have	the	linear	form	scoring	model,

for	loans	 	where

and	 ,	 	with	 	for	all	 .	The	factor	loadings	for	a	loan	 ,	 ,	measure	the
sensitivity	of	loan	 's	default	probability	to	the	factors	 .	In	this	setup	the	 	can	be	taken
to	be	the	unconditional	default	probabilities	and	the	existence	of	positive	correlation	between
obligor	 	and	 	is	determined	by	 	and	 	for	at	least	one	 .	We	can	now	consider	a
characterization	of	the	distribution	of

where	 	is	a	Bernoulli	default	indicator	and	 .	Since	conditional	on	 	the	default
indicators,	 ,	are	independent	we	have	that	the	(conditional)	probability	generating	function	is
given	by
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for	 .	Using	the	common	approximation	 	we	can	write

for	small	 	and	 	close	to	1.	In	fact,	 	is	the	probability	generating	function	of	the
Poisson	distribution	and	hence	this	approximation	is	equivalent	to	saying	that	the	default
indicators	are	Poisson 	distributed.	The	idea	is	that	as	long	as	 	is	small,	we	can	ignore	the
constraint	that	a	single	obligor	or	loan	can	default	only	once	(seeing	the	probability	of
defaulting	more	times	being	very	small	for	small	 ).	Since	 	is	independent,	we	can	use	the
multiplicative	property	of	probability	generating	functions	under	independence	such	that

where	 .	To	derive	the	unconditional	probability	generating	function	of	 	we
need	to	integrate	out	the	systematic	factors,	 .	We	omit	the	derivation	here.	However,	it	is	a
standard	result	in	statistics	that	a	Poisson-Gamma	mixture	distribution	(with	 	independent
Gamma	factors)	is	distributed	as	the	convolution	of	 	independent	negative	binomial	variables.
See	Casella	and	Berger	(1990).	Performing	the	integration	hence	results	in	the	probability
generating	function	of	the	resulting	negative	binomial	distribution	being

Here,

and

Using	the	properties	of	the	gamma	distribution	we	can	also	write

where	 ,	 	are	respectively	the	mean	and	variance	of	the	gamma	distribution	 .	Similarly,
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Now,	let's	assume	we	have	defined	the	key	parameters	of	the	model.	That	is,

The	average	default	rate	for	an	obligor,	

The	sector	 	loadings	for	obligor	 ,	

The	volatility	of	default	rate	for	obligor	i,	

Then,	 ,	 	are	calibrated,	using	that	 	and	 ,	such	that	 ,	 ,	and

hence,	finally,	 	and	 .	It	now	only	remains	to	devise	estimators	of	the

sector	average	default	rate	and	default	rate	volatilities.	That	is,

and	using	these	estimates	we	can	now	calibrate	the	Gamma-distribution	of	sector	 	by	using	the
relations	between	 ,	 	and	 ,	 	detailed	above.

In	case	there	is	only	one	sector,	that	is,	 ,	we	of	course	obtain	a	negative	binomial
distribution	for	losses	such	that

for	 .	However,	in	general	the	default	event	distribution	is	not	negative	binomial
but	an	independent	sum	of	negative	binomial	distributions.

In	practice,	we	are	interested	in	the	loss	distribution	and	not	just	the	distribution	of	default
indicators,	requiring	the	introduction	of	 	adjusted	exposures	 .	Define	therefore	 	as	the
loan	size	of	obligor	 	and	 	as	the	percentage	loss	given	default.	Then,

represents	the	loss	given	default	of	obligor	 .	Since	adjusted	exposure,	 ,is	exogenously
given,	we	obtain	a	simple	adjustment	to	the	probability	generating	function	in	equation	(4.70)
as



where	 	was	defined	previously,	and

The	equation	(4.71)	defines	an	analytic	generating	function	for	the	CreditRisk 	model.	The	loss
can	be	computed	by	the	Panjer	recursion	originally	suggested	in	the	CreditRisk 	(1997)
manual.	However,	for	a	large	portfolio	containing	many	exposure	bands,	the	Panjer	recursion
may	be	numerically	instable	due	to	summation	of	very	small	positive	and	negative	numbers.
Haaf,	Reiss,	and	Schoenmaker	(2004)	therefore	suggested	a	stability	treatment	of	the	Panjer
recursion	(see	also	Giese,	2004).	Gordy	(2002)	focused	on	the	saddle	point	method.	The
saddle	point	method	uses	the	cumulants	of	the	distribution	and	the	Lugannani-Rice	tail
probability	formula.	See	equation	(4.27).	It	hence	approximates	the	tail	density	using	a	normal
distribution.	Since	the	saddle	point	method	is	a	continuous	approximation	we	also	gain	another
advantage	from	the	point	of	view	of	risk	management.	Specifically,	the	 	produced	by	the
saddle	point	method	is	smooth	and	differentiable,	hence	allowing	for	a	consistent	interpretation
and	calculation	of	risk	contributions.	In	an	example	below	we	will	focus	on	these
computational	methods	for	CreditRisk .	However,	see	also	Grundlach	and	Lehrbass	(2004)	on
other	computational	methods	for	CreditRisk .

Example	CreditRisk 	Portfolio	Analysis
We	consider	a	sample	CreditRisk 	portfolio	analysis	using	a	sample	portfolio	from	the	original
CreditRisk 	(1997)	manual.50	The	sample	portfolio	has	25	loans	that	are	displayed	in	Table
4.62.	The	CreditRisk 	portfolio	model	is	calibrated	through	assigning	for	each	loan	 ,



Table	4.62	CreditRisk+	Portfolio	Parameters

CreditRisk 	parameters
Loan
1 30% 30% 10% 10% 50% 15% 358,475
2 30% 25% 25% 25% 25% 15% 1,089,819
3 10% 25% 20% 30% 25% 5% 1,799,710
4 15% 5% 10% 10% 75% 8% 1,933,116
5 15% 10% 10% 30% 50% 8% 2,317,327
6 15% 20% 10% 20% 50% 8% 2,410,929
7 30% 10% 10% 55% 25% 15% 2,652,184
8 15% 25% 20% 30% 25% 8% 2,957,685
9 5% 25% 25% 25% 25% 3% 3,137,989
10 5% 10% 5% 10% 75% 3% 3,204,044
11 2% 10% 10% 30% 50% 1% 4,727,724
12 5% 20% 10% 20% 50% 3% 4,830,517
13 5% 25% 25% 25% 25% 3% 4,912,097
14 30% 10% 10% 55% 25% 15% 4,928,989
15 10% 25% 30% 20% 25% 5% 5,042,312
16 8% 10% 5% 10% 75% 4% 5,320,364
17 5% 20% 10% 20% 50% 3% 5,435,457
18 3% 10% 10% 30% 50% 2% 5,517,586
19 8% 25% 20% 30% 25% 4% 5,764,596
20 3% 10% 10% 55% 25% 2% 5,847,845
21 30% 25% 20% 30% 25% 15% 6,466,533
22 30% 10% 5% 10% 75% 15% 6,480,322
23 2% 25% 20% 30% 25% 1% 7,727,651
24 10% 20% 10% 20% 50% 5% 15,410,906
25 8% 10% 10% 5% 75% 4% 20,238,895

,	the	average	default	probability	over	time,

the	factor	loadings,	 	for	 	factors,

the	probability	of	default	volatility	over	time,	 ,	and

the	exposure,	 .



We	also	assign	weight	to	a	loan	idiosyncratic	Gamma	factor,	 ,	that	is	also	used
in	the	original	CreditRisk 	model.	Hence,	in	total	the	portfolio	loans	in	Table	4.62	depend	on	4
Gamma	factors.	The	assumed	loan	portfolio	CreditRisk 	model	parameters	are	also	displayed
in	the	table.

Using	the	CreditRisk 	sample	portfolio	of	loan	exposures	we	calculate	the	portfolio	credit	
using	an	adjusted	Panjer	recursion	and	the	saddle	point	method	by	Gordy	(2002).	The	adjusted
Panjer	recursion	uses	the	Haaf,	Reiss,	and	Schoenmaker	(2004)	suggested	stability	treatment.
The	portfolio	 ,	 ,	 ,	 ,	and	 	confidence	level	 	is	displayed	in	Table
4.63.	The	original	CreditRisk 	manual	accompanying	spreadsheet	calculates	 	up	to	the	

	confidence	level	using	the	regular	Panjer	recursion	and	is	also	displayed	in	Table	4.63
for	reference.	The	adjusted	Panjer	and	the	saddle	point	method	yield	similar	results	for	the
sample	portfolio.	The	results	are	also	close	to	the	Panjer	 	obtained	from	the	CreditRisk
manual	spreadsheet.	The	portfolio	expected	loss	is	14,221,863	units	of	currency	with	a	total
portfolio	exposure	of	130,513,072	units	of	currency.	Hence,	credit	 	ranges	between
approximately	 	and	 	of	the	portfolio	exposure	for	the	different	confidence	levels.	The
relatively	large	 	values	are	not	surprising	given	the	high	average	default	rates	for	the	loans
in	Table	4.62.	The	unexpected	portfolio	loss	can	now	be	constructed	as	the	 	minus
expected	loss.	For	example,	at	the	99%	confidence	level,	unexpected	loss	capital	is	about	
of	the	portfolio	exposure	while	the	loss	reserve	is	about	 	of	the	portfolio	exposure.

Table	4.63	Portfolio	VaR	for	the	CreditRisk+	Portfolio	Using	the	Adjusted	Panjer	Method,	the
Saddle	Point	Method,	and	the	Original	Panjer	Method	in	the	CreditRisk+	Manual

Method
Confidence	level Adjusted	Panjer Saddle	point Panjer	(CreditRisk+	manual)
95% 34,771,682 34,929,811 34,771,678
97.5% 40,396,993 40,515,015 40,396,985
99% 47,368,254 47,472,259 47,368,235
99.9% 63,422,244 63,536,395 63,422,062
99.99% 78,191,784 78,297,809 N/A

While	the	Panjer	recursions	and	the	saddle	point	 	are	close	for	the	sample	portfolio	for	all
the	confidence	levels,	we	can	also	consider	adjustments	to	the	portfolio	in	Table	4.62.
Specifically,	if	we	let	the	average	default	probability,	 ,	of	each	loan	be	reduced	by	a	factor	of
10,	yielding	a	loan	portfolio	with	relatively	low	default	rates,	we	obtain	adjusted	Panjer	and
saddle	point	 	at	the	 	confidence	level	as	20,180,634	and	10,362,146,	respectively,	the
portfolio	expected	loss	being	1,422,186.	Hence,	there	are	now	significant	differences	between
the	methods.	Such	large	differences	for	a	small	portfolio	can	be	attributed	to	the	continuous
approximation	of	the	saddle	point	method.	Figure	4.22	displays	the	CreditRisk 	model	loss
probability	distributions	with	adjusted	default	rates	(see	panel	a)	and	for	unadjusted	default
rates	(see	panel	b).	The	loss	probability	distributions	are	obtained	from	the	adjusted	Panjer



recursion.	In	case	of	adjusted	default	rates	we	obtain	a	highly	erratic	loss	probability	density.
This	can	be	compared	to	the	loss	probability	density	using	the	unadjusted	loan	average	default
rates,	which	is	much	more	smooth	for	tail	losses,	that	is,	in	the	 	region.	However,	for	large
portfolios	Gordy	(2002,	2004)	reports	that	the	saddle	point	approximation	works	better	than
the	Panjer	method.	Since	large	portfolios	in	general	introduce	more	smoothness	to	the	losses,
this	is	not	surprising.



Figure	4.22	Loss	Probability	Density	Obtained	from	the	Adjusted	Panjer	Recursion	When
Average	Loan	Default	Rates	Are	Reduced	by	a	Factor	of	10	and	When	the	Average	Deafult
Rates	Are	Unadjusted

While	we	have	focused	on	 	as	a	risk	measure	in	the	CreditRisk 	model	one	can	also
consider	risk	measures	such	as	 .	The	Panjer	recursion	methods	produce	the	full	loss
density	as	in	Figure	4.22	from	which	an	empirical	 	can	be	obtained.	Similarly,	we	can
obtain	risk	distortion	and	spectral	measures	since	they	are	based	on	weighted	 	points	of	the
loss	distribution.	Gordy	(2002,	2004)	obtains	 	using	the	saddle	pointmethod.

The	CreditRisk 	manual	also	gives	relatively	simple	formulas	for	how	to	compute	volatility
contributions	of	a	loan	to	the	portfolio	volatility.	Once	calculated	we	can	of	course	scale	such
volatility	contributions	using,	for	example,	 	to	obtain	 	summable	contributions.	Table
4.64	displays	the	loan-level	scaled	volatility	contributions	using	the	 	adjusted	Panjer	

.	The	scaled	volatility	contribution	at	the	portfolio	level	of	course	equals	the	portfolio	
at	the	 	confidence	level.	We	refer	to	Haaf	and	Tasche	(2002)	for	simple	computation	of	

	and	 	risk	contributions	in	the	CreditRisk 	model	using	multiple	runs	of	the	model.



Table	4.64	Loan	Level	Volatility	Contributions	for	the	Case	of	99.99%	VaR	with	Volatility
Contributions	Scaled	to	Sum	to	VaR

Loan Volatility	contributions
1 155,003.41
2 665,344.89
3 411,890.31
4 653,439.94
5 906,027.46
6 913,753.68
7 2,391,297.75
8 1,326,014.15
9 486,595.76
10 462,190.95
11 279,421.75
12 932,336.08
13 1,012,891.29
14 2,032,673.29
15 6,177,055.34
16 1,139,703.30
17 1,662,665.49
18 727,345.91
19 798,439.01
20 1,967,742.01
21 9,362,354.00
22 9,453,161.10
23 703,994.02
24 15,120,161.13
25 18,450,282.27
Portfolio 78,191,784.29

Notes	on	Calibration	of	the	CreditRisk 	Model
When	calibrating	the	CreditRisk 	model	one	can	take	a	similar	approach	as	in	equation	(4.50)
for	 	homogeneous	segments	to	calibrate	the	factor	loadings,	 ,	for	a	loan	
belonging	to	segment	 .	As	we	noted	for	equation	(4.50),	in	the	case	that	the	factors	are



common	for	all	 ,	seemingly	unrelated	regression	reduces	to	least	squares	equation	by
equation.	However,	a	complicating	factor	for	the	Credit	Risk 	model	is	that	factors	are
assumed	Gamma	distributed,	and	in	particular	independent.	A	natural	approach	to	achieve
independent	risk	factors	in	the	normal	distribution	case	is	principal	component	analysis.	See
Lesko	et	al.	(2004)	on	this	approach.	Alternatively,	one	can	extend	the	CreditRisk 	model	to
include	correlated	factors.	This	is	done	by	Burgisser	et	al.	(1999).

When	the	CreditRisk 	model	is	used	as	a	one-factor	model,	it	is	especially	easy	to	calibrate.
Specifically,	from	the	properties	of	a	Poisson	mixture	model	we	obtain	the	default	correlation
in	the	CreditRisk 	model	as

which,	in	case	of	a	homogeneous	portfolio,	with	 	 	reduces	to

where	 	is	the	variance-to-mean	ratio,	often	called	the	dispersion	ratio.	For	a	one-factor	
Gamma 	homogeneous	Poisson	gamma	mixture	model,	we	hence	have

which	yields

and	hence	can	be	calibrated	based	on	observed	default	correlations.

The	Role	of	the	CreditRisk 	Model	Compared	to	Simulation-Based	Models
In	practice,	many	banks	use	a	simulation-based	approach	to	portfolio	credit	risk.	This	enables
the	inclusion	of	important	features	such	as	stochastic	loss	given	default	models	and	stochastic
exposure	models.	However,	with	its	simplicity,	the	Credit	Risk 	model	is	a	benchmark	model
for	the	more	complicated	simulation-based	approaches	to	portfolio	credit	risk.	It	can	be	used
for	validation	and	reconciliation	of	risk	levels	in	more	complex	models.	Because	the
computational	time	for	the	Credit	Risk 	model	is	usually	measured	in	seconds	or	minutes	even
for	large	portfolios	it	is	also	useful	for	a	quick	analysis	of	portfolio	risks,	for	example,	when
adding	new,	significant	corporate	loans.

Both	due	to	its	calibration	approach	as	well	as	being	a	default	mode	model	CreditRisk 	is
more	suited	to	loan	portfolios.	It	is	also	termed	the	actuarial	approach.	However,	a	few
attempts	have	been	made	to	extend	the	model	to	rating	migrations	and	the	associated	mark	to
market.	See	Bröker	and	Schweizer	(2004).



4.72

Firmwide	Portfolio	Credit	Risk	and	Credit	Risk
Dependence
Since	we	have	used	apparently	different	models	for	the	trading	book	and	the	banking	book
portfolio	credit	risk,	a	natural	question	is	how	to	integrate	and	reconcile	the	different	models
for	firmwide	portfolio	credit	risk.	Another	question	is	how	one	can	capture	explicit	credit
contagion	in	the	portfolio	credit	risk	model	such	that	a	firm's	default	can	almost	surely	induce
other	firms	to	default	due	to	their	business	relationships.

Joint	Codependency	with	Different	Models
To	explain	how	to	join	the	apparently	different	structural	and	reduced	form	models	we	have
discussed,	we	let	 	be	the	indicator	that	takes	the	value	1	if	a	firm	or	loan	is	in	rating
class	 	at	time	 ,	 .	For	different	classes	of	rating	categories,	we	have	
distinct	transition	probabilities	to	the	 	classes.	That	is,	if	a	firm	or	loan	belongs	to	class	 ,	we
have	 ,	 	 	transition	probabilities.

Consider	first	how	we	can	put	the	structural	model	(Merton-based	approaches)	in	the	reduced
form	(credit	scoring	model)	setting.	As	in	equation	(4.26)	we	have	rating	thresholds	denoted
by	 	and	rating	classes	are	ordered	such	that	rating	class	1	is	the	highest	quality	grade	and
class	 	is	the	lowest	quality	grade.	Then,	we	can	write	for	a	firm	 ,

where	the	probability	is	conditional	on	the	systematic	credit	factors	 	with	 	and	
,	or,	equivalently,

for	 	with	 	being,	for	example,	the	normalized	multifactor	model	as	in	equation
(4.22).	Here,	 	is	the	transition	probability	and	 	is	a	uniform	random	variable.

We	can	now	introduce	dependence	as	follows:

A	copula	on	 ,	 	for	the	different	issuers.

A	dependence	between	 	for	different	obligors	and	loans.	That	is,	introduce	dependence
between	the	transition	probabilities.

The	case	of	a	copula	on	the	uniforms	for	the	different	issuers,	 ,	is	effectively	the	Merton
style	model	with	equity	as	proxy.	In	case	of	the	multifactor	model	we	instead	modeled	 	as	a
standard	normal,	correlated	credit	index.	The	dependence	was	specified	between	the	driving
factors,	 .	However,	since	the	copula	is	invariant	to	monotonic	transformations	such	as	the
probability	transformation,	 ,	we	have	that	 	is	an	equivalent	representation	of	the
dependence.

The	case	of	specifying	dependence	in	 	is	what	we	used	in	the	reduced	form	credit	scoring



models.	Such	models	are	termed	conditional	independence	models	in	Yu	(2003).	We	can	think
of	the	stochastic	transition	probabilities,	 ,	as	stochastic	barriers	for	a	given	realization	of	 .
The	model	with	independence	copula	for	 	and	stochastic,	correlated,	transition	probabilities
is	then	recognized	as	the	reduced	form	credit	scoring	models	we	have	studied.	The	model
where	the	transition	probabilities	are	non-stochastic	(fixed	barriers)	but	the	copula	of	 ,	 ,
is	not	the	independence	copula	is	the	Merton	style	portfolio	models	case.

Using	equation	(4.72),	it	is	also	easy	to	see	that	it	is	straightforward	to	combine	the	different
models.	Within	a	specific	model	all	the	default	correlation	arises	from	the	driving	factors	
and	their	dependence.	However,	this	is	also	true	between	models.	The	exact	model	for
evaluating	the	rating	conditional	on	 	is	of	course	different.	In	the	structural	case	we	use	

	and	the	fixed	barriers	 .	In	the	reduced	form	case	we	use	the	transition	probability,
	conditional	on	 ,	and	independent	uniform	 	across	loans.	Hence,	only	the	scoring	rating

transition	method	is	used	differently	for	the	two	models.	Default	correlation	and	codependency
between	models	still	arises	in	the	same	way	as	for	different	obligors	or	loans	in	a	single
model,	that	is,	through	the	systematic	factors,	 .

One	can	of	course	also	consider	a	model	with	both	dependence	structures.	We	can	term	this
model	a	structural	model	that	has	the	added	uncertainty	of	stochastic	transition	probabilities,	
,	that	is	stochastic	barriers,	 .	This	is	referred	to	as	a	doubly	stochastic	or	incomplete

information	model.	For	example,	we	have	previously	mentioned	that	Saa-Requejo	and	Santa-
Clara	(1987)	introduced	unobserved	default	barriers	in	Merton	model.	They	modeled	jointly
the	default	barrier	and	firm	value	as	correlated	Geometric	Brownian	motions.	Duffie	and
Lando	(2000)	and	Giesecke	(2001,	2004)	interpret	the	model	as	modeling	uncertainty	about
firms'	values.	There	are	also	industry	models,	such	as	Moody's	hybrid	model	for	public	firms
(2000),	that	combine	information	from	reduced	form	scorecard	modeling	with	structural
information	such	as	equity	for	firm	rating	assessments.

Indirect	and	Direct	Codependency	in	Credit	Risk	Models
In	both	our	Merton	style	and	credit	scoring–based	credit	portfolio	models	there	is	interaction
between	firms	and	loans	default	and	transition	probabilities	due	to	common	factors,	 .	Hence,
the	general	tendency	for	default	probabilities	to	be	high	at	the	same	time	is	driven	by	the
correlations	between	the	common	factors.	However,	in	these	models	there	is	no	explicit
connection	between	the	default	probabilities	of	surviving	firms	and	default	events	that	have
happened.	For	example,	information	about	the	default	history	of	a	large	firm	may	very	well
have	a	direct	impact	on	the	default	probability	of	a	set	of	smaller	surviving	firms	that	depend
on	the	large	firm	as	buyer	of	their	products.

Structurally,	we	can	make	a	distinction	between	indirect	and	direct	dependence	in	credit	risk
models.	In	the	credit	risk	management	the	concept	of	key	risk	driver	is	usually	used	for	a
driving	macroeconomic	variable	that	drives	the	credit	index	in	a	multifactor	model	or	the
transition	probability	in	the	reduced	form	scoring	model.	It	is	essentially	an	observable
process,	like	GDP,	unemployment,	or	equity	index,	that	influences	the	default	and	transition
frequency.	The	key	risk	drivers	introduce	an	indirect	codependency	between	default	risk



processes.	This	latent	variable	approach	is	a	useful	way	of	introducing	default	codependency
that	is	not	directly	observed	or	easily	measured.	Another	form	of	codependency	is	a	direct
codependency	between	firms	or	loans	default	and	transition	indicators.	A	simple	example	is
when	a	firm	default	causes	another	firm	to	default	almost	surely	due	to	their	relationships.

We	have	used	the	notion	of	copula	to	model	the	codependency	between	the	latent	variables.
However,	we	could	also	employ	a	copula	approach	to	model	direct	codependency.	One	simple
example	is	to	use	the	upper	Frechet	copula	(perfect	codependency)	on	default	indicators	to
capture	the	fact	that	if	a	firm	defaults,	then	almost	surely	other	firms	default	as	well	due	to	their
strong	business	relationships.	Instead	of	having	a	dependence	in	the	default	indicator	itself,
conditional	on	a	firm's	default	we	can	consider	a	default	event	triggering	a	direct	jump	in	the
default	probability	or	the	credit	index	of	another	firm.

Models	with	a	direct	codependency	are	also	referred	to	as	default	contagion	models.	Usually,
default	contagion	models	are	used	in	a	setting	where	structural	relationships	can	be	established
between	firms	such	that	a	specific	primary	firm's	default	can	cause	a	jump	of	the	default
probability	of	secondary	firms	that	are	dependent	on	the	primary	firm.	The	initial	analysis	of
such	structural	relationships	between	firms	can	use	network	analysis.	The	connectedness
between	different	firms	can	be	due	to	common	exposures,	default	protection	selling,	or	buyer
and	seller	relationships.

In	the	Merton-based	multifactor	model,	default	contagion	to	a	secondary	firm	once	a	primary
firm	has	defaulted	can	be	parameterized	as	a	sudden	downward	jump	in	the	credit	index,	 ,	of
the	secondary	firm.	This	extends	the	multifactor	model	in	equation	(4.22)	to	also	track	default
indicators	for	the	portfolio.	In	reduced	form	models,	modeling	the	default	intensities
(probabilities)	for	firms,	a	jump	in	the	default	intensity	for	a	secondary	firm	can	be	triggered
based	on	including	a	default	indicator	for	a	primary	firm	in	the	secondary	firm's	credit	scoring
model.	See	Jarrow	and	Yu	(2001)	for	concrete	examples	of	modeling	interacting	default
intensities	in	a	primary–secondary	framework.	More	recently,	Errais,	Giesecke,	and	Goldberg
(2010)	use	the	so-called	Hawkes	process	to	naturally	capture	default	event	feedback	in
transition	probabilities	of	surviving	firms.

While	a	certain	bank	may	use	network	analysis	and	default	contagion	in	their	portfolio	credit
risk	model	regulators	also	tend	to	use	such	models.	However,	now	the	perspective	is	financial
system	stability	and	the	fact	that	large	losses	or	the	failure	of	some	banks	can	potentially	give
rise	to	negative	contagion	effects	on	other	banks	in	the	system,	either	through	direct	bilateral
linkages	or	more	indirectly	through	financial	system	confidence	effects.	See	the	Financial
Stability	Institute	2012	paper	(Jo,	2012),	which	considers	a	network	model	for	financial
systems	where	initial	default	losses	(or	funding	losses)	may	see	a	bank	in	default	with
subsequent	financial	network	contagion.	Financial	network	analysis	is	also	a	part	of	the
European	central	bank	macroeconomic	stress	testing	framework	for	the	systemic	risks	(ECB,
2013).

Credit	Risk	Stress	Testing



Credit	risk	stress	testing	is	a	core	activity	in	banks.	As	we	noted	already	in	the	context	of
market	risk,	stress	testing	it	is	also	becoming	more	and	more	important	with	the	development
of	stress	test–based	regulations	such	as	CCAR	and	EBA	that	focus	on	firmwide	stress	testing.
For	many	banks	the	earnings	from	the	credit	books	is	a	major	contributor	to	the	firmwide
earnings.	Hence,	the	credit	books	stressed	earnings	and	loss	calculation	play	a	significant	role
in	the	firmwide	stress.	The	systematic	portfolio	credit	risk	stress	testing	usually	focuses	on	a
few	major	outputs.51	They	are,

The	impairments	resulting	from	expected	losses	and	provisions	as	well	as	the	associated
earnings	impact	that	can	happen	in	the	future	in	a	given	scenario

The	potential	future	capital	requirements	in	a	given	scenario

This	is	because	the	stress	tests	by	both	CCAR	and	EBA	focus	on	putting	limits	on	the	projected
future	capital	ratios	under	macroeconomic	stress	scenarios	as	we	discuss	in	detail	in	Chapter	9
on	firmwide	scenario	analysis	and	stress	testing.	The	capital	ratio	is	here	actual	capital
divided	by	required	capital	with	excess	losses	consuming	actual	capital	and	excess	earnings
being	a	potential	contributor	to	increasing	actual	capital.	We	emphasize	again	that	in	the
firmwide	CCAR	and	EBA	stress	tests	the	(issuer)	credit	risk	contribution	to	projected
earnings,	losses,	and	capital	is	generally	the	most	significant	for	most	banks	due	to	the	size	of
credit	portfolios	and	their	income	contribution.

When	stressing	expected	loss	and	the	capital	requirement	using	the	credit	risk	model	one	faces
three	key	issues:

First,	the	fact	that	the	stress	scenarios	are	usually	defined	in	terms	of	high-level
macroeconomic	indices	that	need	to	be	transformed	to	the	actual	credit	portfolio	risk
factors,	

Second,	the	fact	that	even	if	the	scenario	for	macroeconomic	factors	is	given	as	a	single
scenario	there	can	still	be	a	significant	variation	in	the	conditional	distribution	for	the
actual	credit	portfolio	risk	factors,	

Third,	the	fact	that	credit	risk	models	usually	have	a	systematic	risk	component	as	well	as
an	idiosyncratic	risk	component

We	have	already	discussed	how	to	resolve	the	first	issue	in	practice	in	the	context	of
systematic	portfolio	stress	tests	in	the	chapter	on	advanced	market	risk	analysis,	that	is,	either
by	using	equivalent	historical	shifts	of	the	actual	credit	portfolio	risk	factors,	 ,	or	by	using
models	to	transfer	stress	scenarios	such	as	the	conditional	normal	distribution	in	equation
(3.21)	or	the	factor	model	approach	in	equation	(3.22).	Note	that	both	these	model	approaches
not	only	yield	a	stress	scenario	in	terms	of	 	that	we	can	apply	to	our	credit	portfolio	model.
They	are	also	essentially	equivalent	approaches.	That	is,	they	are	both	based	on	correlation
specifications	because	the	linear	regression	coefficient	in	the	factor	model	is	essentially
interpreted	as	covariance	divided	by	variance.

The	second	issue	is	related	to	the	fact	that	there	can	be	a	large	dispersion	in	the	conditional
stress	distribution	for	 .	Using	a	model	to	transfer	stress	with	only	the	expected	stress	value



for	 	conditional	on	macroeconomic	factors	does	not	provide	adequate	information	about	the
possible	dispersion	of	the	conditional	loss	and	conditional	capital	requirement.	This	can
however	be	resolved	by	using	the	full	distribution	of	 	in	the	stress	transfer	models	in	equation
(3.21)	and	equation	(3.22).	The	stressed	results	can	then	use	prudent	measures	of	conditional
stress	in	terms	of	the	usual	risk	measures	such	as	 .	The	only	difference	is	that	the	 	is
now	a	conditional	and	not	an	unconditional	risk	measure.

The	third	issue	is	more	subtle	but	related	to	the	second	issue	of	dispersion	for	a	given	stress
scenario.	For	a	single	 	stress	scenario	the	credit	portfolio	model	realized	loss	depends	on	the
idiosyncratic	risk.	We	can	hence	decide	to	include	idiosyncratic	risk	or	not.	If	we	include
idiosyncratic	risk,	we	obtain	a	distribution	of	loss	conditional	on	the	single	 	stress	scenario.
From	this	distribution	we	can	take	an	expectation.	Another	approach	is	to	use	a	conditional
law	of	large	numbers	to	average	out	the	idiosyncratic	risk	for	any	firm	or	loan	in	the	stress
scenario.	Specifically,	using	the	conditional	law	of	large	numbers	(Markov	iteration	approach)
a	given	 	scenario	yields	a	single	realized	loss	profile	and	realized	capital	requirement	profile
over	time.

Stress	tests	on	losses	and	(regulatory)	capital	requirements	based	on	 	scenarios	can	be	seen
as	a	special	case	of	all	the	simulation-based	portfolio	credit	risk	examples	in	this	chapter.	In
the	simulation-based	examples	we	have	used	a	model	for	 ,	and	in	the	context	of	both
multifactor	models	and	credit	score	models,	we	have	used	(sub)portfolios	with	and	without	a
conditional	law	of	large	numbers	assumption.	The	stress	testing	can	be	viewed	as	just	shifting
the	model	used	to	generate	the	 	 	realizations,	or	providing	just	a	single	scenario	for	 .
Depending	on	the	idiosyncratic	risk	specification	for	the	portfolio	the	output	for	a	single	
scenario	can	be	many	potential	losses	or	just	one	realized	loss.	In	case	the	model	has
idiosyncratic	risk,	yielding	many	potential	losses,	a	measure	is	needed	to	retrieve	a	single	loss
profile,	for	example,	an	expectation	or	a	more	prudent	tail	loss	scenario.	If	a	conditional	law
of	large	numbers	assumption	is	used	for	the	portfolio,	the	output	is	a	single	realized	loss
conditional	on	the	single	 	scenario.

As	a	preliminary	example	of	using	portfolio	credit	risk	simulation	models	for	stress	testing
consider	our	credit	score	mortgage	portfolio	example.	In	this	model	we	applied	risk	and
summary	measures	such	as	expected	loss	to	the	1,	…,	10	year	marginal	loss	and	also
calculated	minimum	regulatory	capital	scenarios.	For	each	 	scenario	the	subportfolios	that
used	a	conditional	law	of	large	numbers	had	a	single	realized	marginal	loss	and	capital
requirement	profile.	Hence,	the	 	scenario	could	in	this	case	have	been	a	stress	scenario	rather
than	a	model-simulated	scenario—generating	a	single	projected	loss	and	capital	under	the
scenario.	Because	we	had	many	 	scenarios	(and	because	some	subportfolios	did	have
idiosyncratic	risk	remaining)	we	created	distributions	of	losses	and	capital	requirements	from
which	subsequent	measures	such	as	worst-case	loss	and	capital	requirement	could	be	obtained.

Stress	Testing	with	Multifactor	Model
In	the	specific	setting	of	the	multifactor	model	we	can	consider	stress	testing	both	the	key
model	parameters	and	the	factors	driving	the	firm's	credit	index,	 ,	that	is,	stress	testing	the



systematic	and	idiosyncratic	components	of	 	(see	equation	(4.21)).	Consider	first	stress
testing	the	assumptions	about	the	multifactor	model's	core	parameters,	including:

The	assumptions	about	firm	credit	migration	and	default	probabilities	(the	transition	matrix
used).

The	firm-	or	pool-specific	model	for	the	credit	index,	 ,	that	drives	credit	migration	and
default	with	a	given	transition	matrix.	This	includes	the	factor	loadings,	 ,	as	well	as	the
parameter	 	for	the	idiosyncratic	factorin	equation	(4.21)	or	its	standardized	version	in
equation	(4.22).

The	correlations	between	factors,	 ,	and	more	specifically	the	copula	used	for	the	factors.

When	model	parameters	such	as	transition	matrix,	factor	loadings,	and	correlations	are
stressed	it	is	usually	performed	for	the	purpose	of	model	validation	and	model	sensitivity
analysis	to	the	assumptions	rather	than	for	the	purpose	of	analyzing	the	impact	of	credit	market
stress	on	credit	portfolio	loss.	The	use	of	stressed	model	parameters	can	also	be	preferred	in
practice	because	of	prudence.	The	reason	why	credit	migration	and	default	probabilities	are
not	stressed	directly	in	macroeconomic	scenarios	is	because	of	the	implicit	model	assumption.
That	is,	the	transition	matrix	is	a	long-run	average	transition	matrix	with	credit	factors	and
firm-specific	effects	driving	changes	in	firm	transition	probabilities.	Hence,	one	can	think	of
the	transition	probabilities	as	exogenously	given	long-run	probabilities	while	the
macroeconomic	(credit)	factors	represent	the	systematic	variation	in	credit	quality	for	a	firm
over	time.

Systematic	macroeconomic	stress	for	a	given	credit	model	includes	macroeconomically
induced	or	specific	systematic	stress	tests	on	 —either	through	economically	relevant
scenarios	or	using	hypothetical	stress	such	as	reverse	stress	tests.	It	can	also	include
idiosyncratic	firm	effects.	Focusing	on	systematic	stress	our	objective	now	is	to	analyze	the
credit	loss	in	different	scenarios	for	the	credit	index,	 ,	through	stressing	its	systematic	and,
possibly,	its	idiosyncratic	component.	In	systematic	macroeconomic	stress	testing	we	hence
focus	our	analysis	on	the	multifactor	model,

for	firm	 	or	pool	 .	Here,	we	note	that	stress	can	arise	from	either	or	both	of	the	following:

The	systematic	component	(macroeconomic	shock),	

The	idiosyncratic	component	(firm	specific	shock),	

Any	firm	or	pool	multifactor	model	can	hence	be	stressed	by	a	suitable	choice	of	stress
scenario	for	the	components	 ,	 .	The	resulting	scenario	credit	index	for	firm	 	or	pool	 ,	 ,
is	hence	obtained	as



where	 ,	 	are	the	predefined	scenario	values.

Given	 	for	all	the	portfolios	firms	and	pools	we	can	now	calculate	the	portfolio	credit
transitions	and	hence	profit	and	loss	in	the	scenario	as	we	were	using	a	regular	simulation
scenario.	Hence,	as	we	mentioned,	systematic	credit	portfolio	scenario	analysis	fits	within	the
general	multifactor	model	simulation	framework.	It	is	just	a	scenario	instead	of	many
scenarios.

In	practice	it	can	be	quite	difficult	to	explicitly	specify	all	the	firm's	idiosyncratic	shocks,	
,	explicitly.	Stress	testing	then	focuses	only	on	specifying	shifts	for	the	systematic

components,	 .	This	is	the	case	in	EBA	and	CCAR	credit	stress	tests.	For	economic
scenarios	on	the	systematic	components,	the	expected	firm	credit	transition	to	a	credit	state,
conditional	on	 ,	can	be	calculated	analytically	using	the	conditional	law	of	large
numbers	approach	that	we	used	in	equation	(4.27)	and	the	Markov	iteration	for	time
inhomogeneous	Markov	state	transition	models	in	equation	(4.29).	Hence,	in	systematic	stress
testing	of	 	we	can	apply	the	“pool	case”	to	all	individual	firms	in	the	portfolio	as	well.
By	doing	this	we	obtain	a	single	estimate	of	the	portfolio	expected	loss	in	the	systematic
scenario,	 .	Another	approach	is	of	course	to	sample	the	idiosyncratic	component	many
times	for	a	given	 	scenario	yielding	several	credit	state	paths.	However,	as	we	discussed	in
the	context	of	the	pool	case	for	multifactor	models,	if	one	is	interested	in	the	expected	state
transition	behavior	conditional	on	the	macroeconomic	scenario,	there	is	no	need	to	use
sampling	of	state	transition	paths.	This	is	because	the	sampling	of	transition	paths	for	a	firm
and	the	subsequent	calculation	of	firm	expected	state	transition	frequencies	will	converge	to
the	Markov	state	frequencies	in	equation	(4.29).	For	this	reason	our	systematic	stress	testing
example	below	uses	the	conditional	law	of	large	numbers.

Example	Stress	Scenarios
As	an	example	of	systematic	stress	testing	in	the	multifactor	model	we	consider	four	stylized,
multi-horizon	systematic	scenarios	for	our	sample	pools'	subportfolio	in	Table	4.22.	The
pools'	share	the	systematic	factors	 ,	 	across	the	horizons	of	3,	6,	9,	and	12	months.	See
equation	(4.30)	for	the	pools'	multifactor	models.	The	scenarios	we	use	are	(i)	one	extremely
distressed	scenario,	(ii)	one	extremely	strong	economy	scenario,	(iii)	one	moderate	economic
distress	scenario,	and	(iv)	one	moderately	stronger	economy	scenario.	The	extremely
distressed	scenario	has	 ,	 	increasing	negatively	over	the	horizons	such	that

while	the	scenario	for	the	extremely	strong	economy	is	given	by



The	moderate	economic	distress	and	moderately	stronger	economic	scenarios	include
perturbation	of	a	3,	4,	5,	and	6	(monthly)	standard	deviation	downward	and	upward	shock	of	
,	 	respectively	(see	Table	4.12	for	the	monthly	standard	deviation	of	the	 ,	 	factors).

For	the	horizon	of	3	months	this	implies	a	1.73	standard	deviation	shock	on	the	3-month
volatility.	For	the	6-month	horizon	this	implies	a	1.63	standard	deviation	shock	on	the	6-month
volatility.	For	the	9-month	horizon	this	implies	a	1.66	standard	deviation	shock	on	the	9-month
volatility.	Finally,	for	the	12-month	horizon	this	implies	a	1.73	standard	deviation	shock	on	the
12-month	volatility.	This	is	because	the	n-month	volatility	is	obtained	from	the	1-month
volatility	scaled	by	 .	The	resulting	moderate	economic	distress	shock	scenario	is	then	given
by

with	corresponding	positive	shocks	for	the	moderately	stronger	economy	scenario.

The	pools'	subportfolio	expected	loss,	calculated	using	the	conditional	law	of	large	numbers,
in	each	scenario,	is	displayed	in	Table	4.65	and	Figure	4.23.	In	the	extreme	economic	distress
scenarios,	the	loss	is	never	above	40%	of	the	pool's	portfolio	current	mark	to	market	of
254,961,865.	This	is	because	the	upper	bound	on	loss	is	the	recovery	of	the	pools	(see	Table
4.22	for	the	pools'	recovery	rates	ranging	between	68%	and	89%).	The	extremely	strong
economy	scenario	has	negative	losses	(profits)	as	expected.	Even	though	the	average	credit
quality	of	the	pools'	portfolio	is	quite	low	(see	the	pools'	current	ratings	in	Table	4.22)	the
potential	upside	of	the	portfolio	(i.e.,	the	profits)	when	the	portfolio	migrates	to	better	credit
grades	is	less	than	the	potential	loss	that	can	happen.	Note	that	both	these	scenarios	are
extreme.	Compared	to	the	 ,	 	factors	standard	deviation	the	economic	shocks	have	been
very	large.	This	has	led	to	the	two	scenarios	(extreme	economic	distress	and	extremely	strong
economy)	yielding	almost	maximum	loss	and	maximum	profit	respectively	over	the	horizons.	In
the	moderate	economic	distress	and	moderately	stronger	economy	scenarios,	we	obtain	lower
expected	credit	losses/gains	for	the	horizons	of	3,	6,	9,	and	12	months.

Table	4.65	The	Pools'	Portfolio	Loss	in	Each	Scenario

Horizon	loss
Scenario 3	months 6	months 9	months 12	months
Extreme	economic	distress 49,602.141 83,788.112 92,565.720 101,010.398
Extremely	stronger	economy −20,867.046 −38,271.245 −40,593.821 -38,622.250
Moderate	economic	distress 2,155.822 4,694.470 7,874.905 11,823.497
Moderately	stronger	economy −1,570.031 −2,809.385 −3,894.454 −4,853.395



Figure	4.23	Pools	Portfolio	Loss	in	Each	Scenario

Stress	Testing	with	Macroeconomic	Credit	Score	Model
In	the	credit	score	model	approach	to	portfolio	credit	risk,	the	loan	default	or	transition
probability	is	driven	by	the	score	equation.	The	score	equation	model	parameters	indicates	the
sensitivity	of	the	default	or	transition	rate	to	 	for	a	loan.	One	example	of	a	score	equation	is
the	log-odds	ratio	formulation	of	the	multinomial	transition	matrix	model	in	equation	(4.53).
Another	example	is	the	linear	score	equation	of	the	CreditRisk 	model	in	equation	(4.68).	The
credit	portfolio	loss	distribution	is	of	course	also	driven	by	the	assumed	multivariate
distribution	for	 	as	in	the	multifactor	model	case.	A	difference	with	the	multifactor	model	is
that	the	idiosyncratic	risk	is	not	captured	explicitly	in	the	score	equation	itself	but	rather	in	the
random	sampling	of	a	uniform	that	is	compared	to	the	scenario	realized	transition	or	default
rate	to	determine	the	new	rating	state.52

As	for	the	multifactor	model,	the	score	model	parameters	may	be	stressed	for	the	purpose	of
model	validation	and	model	sensitivity	analysis	but	are	usually	taken	as	given	for	systematic
stress	tests	on	 .	Another	similarity	with	the	multifactor	model	is	that	the	conditional	law	of
large	numbers	approach	using	the	Markov	iteration	yields	the	expected	state	frequencies
conditional	on	a	single	 	scenario.	In	case	the	state	transition	probabilities	only	depend	on



macroeconomic	factors	and	not	past	state	transitions,	this	Markov	iteration	is	simple	as	in
equation	(4.56),	while	it	can	be	more	complex	when	past	state	transitions	matter,	as	we	have
discussed	previously.	In	practice,	one	therefore	does	not	have	to	simulate	state	transitions	for	a
given	 	scenario	if	one	is	only	interested	in	the	conditionally	expected	loan	behavior	under	a
stress	scenario.53	This	is	because	for	a	given	systematic	stress	scenario	we	can	retrieve	the
conditional	scenario	expected	loss	or	other	scenario	measures	such	as	Basel	capital
requirements	that	depend	on	scenario	realized	PD	and	LGD	analytically.	Hence,	for	systematic
stress	testing	using	the	scoring	model	approach,	all	the	individual	loans	as	well	as	pools	in	the
portfolio	can	use	the	conditional	law	of	large	numbers	and	Markov	iteration.	This	is	in	contrast
to	the	 	model	case	where	only	the	sufficiently	large	pools	use	a	conditional	law	of	large
numbers—retaining	the	idiosyncratic	risk	for	smaller	portfolios	and	specific	loans.

Example	Stress	Scenarios
As	an	example	stress	testing	of	the	credit	score	model	approach,	we	analyze	the	portfolio
losses,	net	earnings	(net	interest	income),	and	Basel	regulatory	capital	for	the	non-defaulted
stock	under	three	scenarios	using	again	our	example	mortgage	portfolio	in	Table	4.35.54	The
models	used	are	the	same	as	in	our	previous	example	applications	of	the	mortgage	portfolio
analysis.55	We	consider	one	baseline	scenario	and	two	stress	scenarios	over	the	portfolio
horizon	of	10	years.	The	two	stress	scenarios	are	an	extreme	economic	distress	and	a	moderate
economic	distress	scenario.	The	portfolio	risk	factors	are	the	systematic	risk	factor	and	the
five	property	indices	previously	displayed	in	Figure	4.12.	The	systematic	risk	factor	here
represents	swings	in	the	business	cycle	and	drives	the	period	transition	rates	through	the
multinomial	logit	dynamic	transition	matrix	model.

To	calculate	the	stressed	losses,	the	associated	net	earnings,	and	regulatory	capital	for	the
portfolio	we	use	the	conditional	law	of	large	numbers	for	all	the	14	subportfolios	regardless	of
their	portfolio	size,	even	for	the	single	loan	subportfolios.	The	baseline	scenario	has	a	neutral
business	cycle	for	the	systematic	factor	for	all	time	periods	and	no	growth	or	decay	for	the
price	indices.	In	the	extreme	economic	distress	scenario	there	is	a	strong	negative	growth	of
the	systematic	business	cycle	factor	and	the	price	indices	decline	with	5	%	per	year.	In	the
moderate	economic	distress,	the	systematic	factor	has	less	negative	growth	and	the	price
indices	decline	with	only	1%	per	year.	Figure	4.24	displays	the	systematic	risk	factor
scenarios	in	the	extreme	and	moderate	economic	distress	cases	and	the	portfolio	stress	results
are	displayed	in	Table	4.66.	Figure	4.25	also	shows	graphically	the	evolution	of	portfolio	net
earnings	and	regulatory	capital	for	the	scenarios.	Due	to	the	low	initial	quality	of	the	sample
mortgage	portfolio,	all	the	scenarios—including	the	baseline—display	initial	negative	net
earnings.	In	the	baseline	and	moderate	economic	distress	scenarios,	net	earnings	eventually
become	positive.	Clearly,	the	expected	loss	reserve	consumption	for	the	portfolio	is	large
during	the	10-year	stress	period.	In	addition	to	a	large	loss	reserve	consumption,	there	can	be
capital	consumption	in	adverse	scenarios.	The	exact	capital	consumption	of	course	depends	on
both	stress	scenario	and	portfolio	quality.	Due	to	the	poor	initial	portfolio	quality,	the
contribution	from	stress	scenario	to	capital	consumption	is	typically	less	significant	than	would
happen	for	a	good-quality	portfolio.	In	all	the	scenarios	the	portfolio	has	a	decaying	regulatory



capital	due	to	significant	portfolio	defaults	being	covered	by	loss	reserve	and	potentially
capital.	The	extreme	economic	distress	scenario	regulatory	capital	requirement	is	seen	to
decrease	at	a	much	slower	rate	than	the	moderate	economic	distress	or	baseline	scenario.
Hence,	in	the	economic	distress	scenario	we	have	not	only	more	consumption	of	the	capital
due	to	larger	losses	and	negative	net	earnings	but	also	a	significantly	higher	regulatory	capital
requirement	for	the	stock	of	non-defaulted	mortgages.	This	of	course	means	that	capital	ratios
such	as	actual	capital	divided	by	capital	requirements	will	tend	to	be	very	low	unless	initial
capital	is	very	large,	or	capital	can	somehow	be	raised	during	the	stress	period.

Figure	4.24	Systematic	Risk	Factor	Scenarios	in	the	Extreme	and	Moderate	Economic	Distress
Cases



Table	4.66	Mortgage	Portfolio	Scenario	Analysis	of	Losses,	Net	Earnings,	and	Regulatory
Capital

Scenario 1	year 2	years 3	years 4	years 5	years 6	years 7	years
Horizon	loss

Baseline 133,508,890 108,878,057 88,449,118 71,252,680 58,425,374 49,252,609 42,745,936
Moderate
economic
distress

136,547,773 112,949,472 93,194,539 76,142,019 63,450,235 54,309,015 47,789,584

Extreme
economic
distress

143,836,829 125,364	825 108,514,537 93,413,504 80,516,899 71,394,671 64,658,240

Horizon	net	earnings
Baseline −72,104,756 −49,986,898 −31,590,637 −16,041,910 −4,578,810 3,431,992
Moderate
economic
distress

−75,143,639 −54,058,312 −36,336,057 −20,931,249 −9,603,671 −1,624,414

Extreme
economic
distress

−82,432,695 −66,473,666 −51,656,055 −38,202,734 −26,670,335 −18,710,070 −12,991,907

Horizon	regulatory	capital
Baseline 432,638,449 344,558,237 280,528,709 235,154,573 203,055,604 180,151,698 163,595,153
Moderate
economic
distress

442,135,212 357,425,793 295,803,325 251,478,133 220,763,127 198,887,893 183,078,239

Extreme
economic
distress

463,021,937 396,151,965 344,420,039 309,529,195 281,058,163 262,166,757 248,376,439



Figure	4.25	Aggregate	Mortgage	Portfolio	Scenario	Analysis	of	Net	Earnings	and	Regulatory
Capital

Our	mortgage	portfolio	stress	testing	example	has	been	focused	on	the	aggregate,	portfolio
which	has	a	low	initial	quality.	It	is	also	interesting	to	see	the	effect	of	the	stress	scenarios
when	the	portfolio	quality	is	good.	We	therefore	focus	on	the	scenario	net	earnings	and
regulatory	capital	for	subportfolio	11,	which	has	an	initial	rating	in	class	2	and	a	large	credit
margin	of	1.2%	(see	Table	4.35).	This	case	is	also	more	realistic	in	terms	of	subportfolio	11
being	closer	in	credit	quality	to	many	banks'	actual	mortgage	portfolios.	Figure	4.26	displays
the	scenario	results	for	subportfolio	11.	We	notice	from	the	figure	that	net	earnings	is	positive
for	all	scenarios	although	the	net	earnings	decrease	fast	in	the	extreme	economic	distress
scenario.	Because	of	the	good	initial	portfolio	quality	we	observe	for	all	scenarios	an	increase
in	the	regulatory	capital	over	time	since	there	is	migration	to	lower	quality	grades	but	not
necessarily	defaults.	In	the	extreme	economic	distress	case	the	increase	in	regulatory	capital	is
significant,	suggesting	that	it	is	vital	that	the	initial	large	earnings	are	retained	and	used	to	build
up	the	capital	base	in	order	to	meet	the	significant	increase	in	required	regulatory	capital.



Figure	4.26	Mortgage	Portfolio	Subportfolio	11	in	Rating	Class	2	Scenario	Analysis	of	Net
Earnings	and	Regulatory	Capital

We	finally	note	that	this	scenario	analysis	example	has	focused	on	the	scenario	projected
portfolio	losses,	earnings,	and	regulatory	capital,	which	are	also	some	of	the	main	stress	test
measures	needed	for	the	portfolio	credit	risk	regulatory	CCAR	and	EBA	stress	testing
exercises.	Of	course,	in	practice	regulation	may	dictate	specific	calculation	approaches	and	the
scenario	horizons.	We	have	previously	discussed	the	specific	EBA	methodology	with	stress
tests	over	3	years	while	CCAR	considers	the	scenario	analysis	over	the	next	nine	quarters.	A
distinct	difference	in	practice	is	also	that	while	our	sample	mortgage	portfolio	was	stressed
directly	in	terms	of	the	systematic	factor	and	the	five	property	indices	banks	have	to	first
convert	the	prescribed	regulatory	macroeconomic	scenarios	into	the	actual	portfolio	risk	factor
shifts.	For	example,	regulatory	national	home	property	price	index	scenarios	need	to	be
converted	to	regional	property	price	index	scenarios.

Features	of	New	Generation	Portfolio	Credit	Risk
Models



For	many	banks	the	portfolio	credit	risk	models	that	are	in	use	today	were	largely	developed
about	10	years	ago	with	the	introduction	of	Basel	II	risk	weighted	assets.	Back	then,	one	of	the
main	drivers	for	developing	internal	credit	economic	capital	models	was	to	capture	portfolio
concentration	risk	and	the	subsequent	risk	allocation	for	budgeting	and	planning.56	One-year-
horizon	bank	capital	allocations	to	credit	exposures	with	the	economic	capital	model	were
contrasted	with	the	summable	risk	weighted	asset	of	the	exposure.	The	(relative)	difference	of
the	allocation	was	partly	attributed	to	concentration	risk.	Now,	with	the	introduction	of	the
firmwide	stress	testing	in	(for	example)	CCAR,	credit	models	are	required	to	predict	both
earnings	and	loss	over	multiple	horizons	with	path-dependence	to	capture	more	granular	the
timing	of	loss.	Consequently,	banks	are	currently	revisiting	their	credit	risk	economic	capital
models.	In	this	section	we	review	some	of	the	core	developments	that	are	currently	underway
in	banks'	portfolio	credit	risk	models.

Multi-Horizon	Models	for	Banking	Book
Traditionally,	many	banks'	portfolio	credit	risk	economic	capital	models	have	focused	on	a
single	one-year	horizon	for	the	risk	analysis	consistently	with	the	Basel	credit	risk	regulation.
The	single	one-year	risk	horizon	was	also	driven	by	the	rating	agencies'	risk	analysis.	This
single	one-year	time	horizon	was	largely	applied	to	both	the	banking	book	and	trading	book
exposures.	However,	as	we	have	discussed	in	this	chapter,	for	trading	book	exposures,	the
modeling	ofliquidity	trading	horizons	during	the	one-year	risk	horizon	has	made	its	way
through	the	incremental	risk	charge.	The	majority	of	the	portfolio	credit	risk	examples	in	this
chapter	have	used	multi-horizon	models	that	capture	the	path-dependent	nature	of	credit	losses
over	time.	We	have	argued	that	it	is	an	important	feature	of	the	credit	portfolio	model	to
capture	the	timing	and	the	materialization	of	credit	risk	losses	over	time	as	this	enhances
understanding	of	the	potential	evolution	of	reserve	and	capital	requirements.	Regulators	are
nowadays	also	interested	in	how	different	scenarios'	credit	loss	can	unfold	over	time	requiring
multi-horizon	path-dependent	credit	models.	For	example,	in	CCAR	the	scenarios	are
implemented	in	credit	models	as	the	path-dependent	evolution	over	nine	quarters	with
capturing	of	the	marginal	credit	loss	at	each	quarter.

Modeling	the	Recovery	Process	for	Banking	Book	Portfolios
In	the	incremental	risk	charge	model	for	the	trading	book	the	loss	is	realized	instantaneously	at
the	trading	horizon.	This	assumption	is	justified	by	the	existence	of	quoted	defaultable	bond
prices.	That	is,	the	bank	does	not	have	to	wait	for	the	ultimate	legal	recovery.	However,	this	is
not	the	case	in	practice	for	banking	book	exposures	such	as	loans	and	mortgages.	The	recovery
process	can	be	quite	long	in	practice.	Moreover,	it	has	workout	costs	that	need	to	be	integrated
into	the	total	loss.

In	our	banking	book	mortgage	portfolio	risk	analysis	example	above	we	analyzed	a	mortgage
portfolio	with	a	specific	model	for	recovery	that	captured	the	recovery	in	terms	of	the	property
value	and	the	loan	to	value.	The	model	assumed	instantaneous	recovery.	Clearly,	this	is	an
approximation	to	reality	as	recovery	is	not	instantaneous	in	practice,	and	in	addition	may	not



match	model	default	events.	For	example,	if	default	probability	is	measured	on	the	basis	of	90
days	past	due,	then	a	fair	portion	of	loans	never	go	to	ultimate	recovery	stages.	In	practice,
recovery	can	therefore	be	measured	on	“multi-tier”	levels	using	different	default	definitions.
To	distinguish	recovery	in	model	(technical)	default	we	can	introduce	additional	events	and
hence	rating	states	where	a	certain	probability	that	a	loan	in	model	default	actually	becomes	in
true	default	is	assessed	with	probability	 .	We	can	think	of	such	states	as	non-absorbing	default
states	in	the	context	of	the	transition	matrix.	Hence,	default	dynamics	can	be	handled	with	an
expanded	multistate	probability	transition	matrix.	For	example,	using	a	monthly	horizon	credit
model	as	the	transition	matrix	in	Table	4.33,	a	30	days	past	due	credit	can	only	migrate	to
current,	60	days	past	due	or	prepay.	See	also	Peura	and	Soininen	(2005)	on	the	loss
measurements	on	multitier	levels	and	the	close	connections	between	such	loss	measurements	in
Basel	II	and	the	loss	measurement	in	accounting	standards	such	as	IAS	39.57

While	one	can	measure	additional	default	states	such	as	capturing	past	due	at	different	levels
as	well	as	“actual”	default,	one	can	also	segment	different	types	ofrecoveries.	Default	and
actual	sale	of	collateral	is	usually	the	last	resort	and,	for	example,	for	many	corporate
exposures	restructuring	may	be	the	first	option	as	the	legal	recovery	of	both	the	collateralized
and	uncollateralized	portion	of	the	exposure	can	be	a	timely	process	with	large	legal	costs.
Retail	books	recovery,	such	as	mortgages,	can	also	take	time	and	is	linked	to	the	ability	of	the
bank	to	sell	the	property	timely.

Figure	4.27	displays	a	simplified	potential	recovery	process	that	includes	settlement	or	going
back	to	healthy	with	probabilities	 	and	 	respectively	when	the	credit	is	in	“technical”
default.	At	the	second	step,	even	if	there	is	a	settlement,	it	may	result	in	either	recovery
workout	with	associated	sale	of	collateral	(if	any),	or	a	restructuring.	In	Figure	4.27	these	two
events	occur	with	probabilities	 	and	 ,	respectively.	In	this	recovery	process	the
probabilities	 	and	 	can	of	course	be	conditional	on	macroeconomic	and	borrower
characteristics.	At	each	step	of	the	process	it	is	also	important	to	capture	the	typical	delay	in
the	timing	of	the	cash	flows.	For	example,	even	if	a	credit	goes	back	to	healthy	it	has	usually
been	past	due	for	a	while	with	no	cash	inflow	during	the	time.	The	recovery	workout	and
restructuring	phases	can	also	take	considerable	time,	delaying	any	cash	inflows	from	the
recovery	or	the	restructured	credit.



Figure	4.27	Potential	Recovery	Process

The	requirements	on	the	modeling	of	the	exact	recovery	process	and	the	timing	of	the	recovery
inflow	of	course	get	more	important	as	banks	consider	multi-horizon	credit	models.	This	is
both	internally	for	better	capturing	portfolio	credit	risk	economic	capital	required	over	time	as
well	as	using	the	model	in	the	firmwide	regulatory	stress	testing.	In	practice	we	can	capture	the
different	types	of	recoveries	as	competing	risks	to	actual	default	in	the	credit	migration	matrix.
An	example	is	a	transition	matrix	that	has	competing	states	of	default,	restructuring,	and
prepayment.	While	the	default	and	prepayment	states	are	absorbing,	the	restructuring	state	is
not	and	the	loan	returns	to	current	after	the	restructuring	with	an	adjusted	loan.	This	is
illustrated	in	the	transition	matrix	in	Table	4.67	where	 	denotes	the	required	transition
probability	models	in	the	transition	matrix.	Of	course,	if	there	are	multiple	types	of
restructuring,	these	types	can	be	represented	as	their	own	competing	states	in	the	transition
matrix	in	Table	4.67.

Table	4.67	Example	Transition	Matrix	with	Default,	Prepayment,	and	Restructuring	States	as
Competing	Risks

Current Restructuring Prepayment Default
Current
Restructuring 1 0 0 0
Prepayment 0 0 1 0
Default 0 0 0 1

Earnings	and	Loss	Rather	than	Just	Loss
The	early	portfolio	credit	risk	models	focused	on	the	unexpected	loss	as	the	true	capital	charge
with	the	expected	loss	being	covered	by	the	existing	reserves.	The	idea	was	largely	founded	on
the	fact	that	pricing	covered	expected	losses	and	prudence	in	the	sense	that	pricing	in	excess	of
expected	losses	could	not	be	counted	as	risk	reducing.	However,	many	books	of	business	are
run	with	margins	well	in	excess	of	expected	losses,	and	although	the	future	achievable	margins



may	be	to	some	extent	uncertain,	such	excess	earnings	do	carry	risk	reducing	value.	Most
people	would	not	like	to	go	as	far	as	to	argue	that	excess	earnings	can	itself	be	a	substitute	for
capital.	Our	mortgage	portfolio	example	in	this	chapter	has	shown	that	excess	margins	can
indeed	be	risk	reducing.	The	mortgage	example	also	showed	that	for	portfolios	with	low
margins	the	unexpected	loss	concept	may	not	be	appropriate	either	as	the	margins	may	not	even
cover	expected	losses.

Apart	from	recognizing	earnings	as	potentially	risk	reducing	it	is	of	significant	value	to	model
earnings	as	part	of	the	portfolio	credit	loss	model.58	Knowing	when	a	particular	credit
exposure	is	healthy	versus	past	due	we	can	consistently	accrue	cash	flows	and	capture	the
accrual	if	the	credit	exposure	goes	into	a	recovery	workout	process.	Hence,	we	can
consistently	estimate	cash	flows,	accrual,	and	recovery	over	multiple	path-dependent	horizons.
However,	traditionally	for	banks,	the	interest	income	earnings	and	loss	projection	have	been
separated.	The	asset	and	liability	management	system	is	generating	the	healthy	cash	flow
projection	and	the	credit	system	the	loss	projection.	The	two	estimates	are	subsequently	joined
at	the	aggregate	level.	With	the	multi-horizon	firmwide	stress	testing	requirements	in	CCAR
and	EBA	a	best	practice	is	emerging	to	model	the	asset	interest	income	earnings	and	losses
correctly	at	the	most	granular	level.	This	is	because	regulatory	and	internal	validation	of	the
model	logical	correctness	in	calculating	earnings	cash	flows,	accrual,	and	recovery	loss	is
more	easily	done	at	the	most	granular	level.	For	example,	in	the	EBA	cost	of	funding	and	asset
interest	income	projection	under	the	macroeconomic	scenarios,	the	asset	side	projection	of
interest	income	is	assumed	to	incorporate	the	loss	of	cash	flows	due	to	non-performing	assets.
This	integration	of	loss	and	interest	income	projection	is	especially	important	since	the
firmwide	stress	test	regulations	focus	on	the	timing	of	earnings	and	loss	over	multiple	horizons
as	opposed	to	loss	at	a	single	horizon	of	one	year.	Another	complexity	with	a	separate	earnings
and	loss	projection	is	that	consistency	between	future	balance	projections	and	hence	new
originations	needs	to	be	managed	between	the	systems.

Figure	4.28	displays	the	main	components	of	credit	models	with	cash	flows.	There	are	input
data,	credit	models,	cash	inflows,	and	other	cash	amounts	such	as	losses,	cash	outflows
(funding	expenses),	and	final	model	outputs.	The	input	data	include	the	current	credit	book	as
well	as	any	assumed	new	originations	and	stock	balance	extensions	during	the	analysis
horizon.	The	input	data	also	include	the	credit	factors	such	as	macroeconomic	and	collateral
data	and	market	(interest	and	funding)	data	to	generate	the	cash	flows	from	the	credit	book.	The
market	data	need	to	be	complemented	with	the	bank's	reset	rate	(repricing)	policies	for
different	credit	types	when	the	customer	rate	is	administered	rather	than	market	set.	With	the
input	data,	especially	the	credit	book	and	macroeconomic	factors,	the	credit	models	calculate
the	credit	state	transition,	the	loss	severity	(recovery),	and	the	exposure.	Conditional	on	a
realized	state	transitions	a	credit	can,	for	example,	(i)	generate	interest	and	principal	income
according	to	schedule,	(ii)	be	past	due	with	accrual	of	interest	and	principal,	or	(iii)	be	in
default	state	with	associated	credit	loss,	recovery	timing,	and	recovery	value	calculated	by	the
recovery	model.



Figure	4.28	Credit	Model	with	Cash	Flows

In	the	third	stage	we	therefore	obtain	the	interest	and	principal	income	as	well	as	loss	given
default	and	exposure	at	default.59	If	credit	facilities	are	part	of	the	analyzed	credit	book,	then
the	assumed	credit	facility	usage	from	the	exposure	model	determines	the	facility	balance	and
hence	exposure	at	default.	We	also	obtain	a	balance	projection	due	to	amortization	as	well	as
balance	impacts	from	new	originations	and	stock	extensions.	At	this	stage	we	can	also
optionally	compute	the	projected	risk	weighted	assets	(regulatory	required	capital)	under
stress	as	we	did	for	the	mortgage	portfolio	example	in	this	chapter	because	we	have	available
the	scenario	probability	of	default,	the	loss	given	default,	and	the	remaining	healthy	balances
as	inputs	to	the	risk	weighted	assets	equation	(4.41).

While	the	third	stage	has	generated	income	and	recovery	flows	(from	loss	given	default)	we
are	ultimately	interested	in	the	net	(interest)	income.	The	interest	and	principal	expense	needed
to	construct	net	(interest)	income	from	the	interest	and	principal	income	is	coming	mainly	from
the	funding	and	is	the	fourth	step	of	subtracting	funding	expenses	in	Figure	4.28.	In	practice,	the
incorporation	of	funding	expenses	can	be	done	in	two	ways.	The	first	approach	is	to	subtract
the	funding	expenses	at	the	portfolio	level.	Here	the	funding	expenses	can	be	calculated
separately	at	an	aggregated	level	and	then	used	to	adjust	the	credit	book	interest	income.	The



second	approach,	which	we	have	used	in	the	mortgage	portfolio	example	in	this	chapter,
assigns	a	funding	rate	to	each	credit	and	generates	the	net	(interest)	income	directly	on	credit
level.	This	approach	is	feasible	using	the	concept	of	funds	transfer	pricing	as	we	will	discuss
in	Chapter	7.	Specifically,	the	funds	transfer	price	creates	a	matched	balance	sheet	for	the
credit	book	while	the	residual	portfolio	ofactual	funding	versus	matched	funding	is	managed
separately.	As	we	will	also	discuss	in	Chapter	7	the	cost	of	funding	projection	in,	for	example,
EBA	assumes	a	rollover	of	funding	at	higher	rates	(with	higher	funding	market	rates	derived
from	the	macroeconomic	scenario)	and	that	these	higher	rollover	funding	rates	can	only
partially	be	passed	on	to	the	asset	side	interest	income.	Hence,	in	the	scenario,	the	bank's	reset
rate	policies	for	the	loans	are	not	allowed	to	pass	on	the	full	impact	of	the	higher	funding	costs
into	customer	rates.

Loan-Level	Models
While	it	may	be	clear	from	our	discussions	in	this	section	that	the	more	detailed	recovery
process	modeling	as	well	as	the	earnings	modeling	calls	for	credit	risk	models	at	the	most
granular	level,	we	also	mention	this	progress	to	loan	level	models	as	a	separate	topic	here.
The	benefit	of	the	loan	level	models	is	the	ability	to	validate	the	logic	of	the	earnings	and	loss
process	at	loan	level	for	the	different	types	of	portfolios.	Another	benefit	is	that	the	projected
risk	weighted	asset	capital	calculations	for	the	CCAR	and	EBA	firmwide	stress	testing	operate
on	the	loan	level	and	can	be	reconciled	with	the	existing	loan-level	regulatory	calculations.
The	downside	of	loan-level	granular	models	is	of	course	that	more	computing	power	and
storage	capacity	are	in	general	required.	However,	the	Markov	iteration	equations	for	the
multifactor	model	and	the	macroeconomic	credit	score	model	discussed	in	this	chapter
alleviate	the	need	for	expensive	state	transition	sampling	to	calculate	stressed	expected	losses
and	cash	flows	since	the	sampling	converges	to	the	Markov	state	frequencies.	The	horizon	state
dependent	expected	cash	flows	can	then	simply	be	obtained	by	weighting	the	state	cash	flows
with	the	correspondent	Markov	state	transition	probability	at	the	horizon,	obtained	from	the
iterations	in	equation	(4.29)	or	equation	(4.56).	Of	course,	as	we	discussed	for	the	credit	score
models	obtaining	the	Markov	state	frequencies	and	the	required	tracing	of	the	past	state
occupancy	of	a	loan	is	more	complex	when	the	state	transition	probabilities	depend	on	past
state	history	such	as	past	delinquencies,	especially	if	the	number	of	non	absorbing	states	in	the
transition	matrix	is	large	and	the	delinquency	indicators	track	the	exact	state	path.	In	those
cases,	state	transition	sampling	may	still	be	the	preferred	model	approach	although	as	shown	in
Skoglund	and	Chen	(2015)	exact	Markov	iteration	approaches	are	feasible	for	quarterly
delinquency	models	and	monthly	delinquency	models	with	state	occupancy	indicators.

Granularity	of	Credit	Factors
While	the	portfolio	credit	risk	models	are	becoming	more	granular	in	terms	of	loan-level
earnings,	recovery,	and	loss	measurement,	it	is	reasonable	to	ask	what	should	be	the
granularity	of	the	systematic	credit	factors,	 .	We	can	of	course	have	a	very	granular	portfolio
evaluation	but	still	just	a	few	systematic	credit	factors	driving	the	portfolio	risk.	For	example,
for	the	corporate	portfolio	we	can	consider	just	a	few	macroeconomic	equity	indices	rather



than	very	specific	regional	and	branch	indices.	Similarly,	we	could	consider	a	country-level
unemployment	and	property	price	index	for	the	mortgage	portfolio	rather	than	specific	regional
indices.	The	benefit	of	using	just	a	few	systematic	credit	factors	is	of	course	that	thereduced	set
of	risk	factors	is	more	easily	interpreted	and	hence	also	modeled	and	stressed.	The	reduced	set
of	risk	factors	may	also	be	directly	linked	to	regulatory	macroeconomic	scenarios	specified	by
regulators—avoiding	the	need	for	models	to	transfer	stress	from	just	a	few	high-level
macroeconomic	factors	to	the	actual	portfolio	risk	factors,	however,	significantly	reducing	the
risk	factors	in	the	portfolio	credit	risk	model	has	negative	consequences	that	usually	overweigh
its	benefits.	The	main	issue	is	that	in	order	to	be	valuable	for	business	in	capital	allocation	and
stress	the	risk	model	needs	to	capture	the	different	volatility	levels	between	regions	and
branches.	Clearly,	the	portfolio	manager	expects	to	see	a	risk	reduction	in	portfolios	after
moving	exposure	from	a	volatile	branch	or	region	to	a	less	volatile	branch	or	region.	Capturing
the	portfolio	diversity	in	exposure	to	systematic	credit	factors	may	be	hard	with	just	a	few
factors.	Another	issue	with	just	a	few	factors	is	the	loss	of	sensitivity	analysis	of	the	business
impact	to	the	risk	factors	for	better	business	planning	and	reverse	stress	testing	scenario
construction.	The	current	portfolio	credit	risk	model	development	is	therefore	to	consider	more
granular	credit	factors,	still	maintaining	the	connection	to	just	a	few	(regulatory	specified)
macroeconomic	factors	in	model	risk	and	stress	testing	using	models	to	transfer	stress	such	as
conditional	distributions	or	factor	models.

Hedging	Credit	Risk
The	rise	in	trading	volumes	of	credit-risky	assets	and	the	need	for	financial	institutions	to
hedge	credit	risk	has	triggered	the	creation	of	credit	derivatives.	Credit	derivatives	are
securities	whose	payoff	is	conditioned	on	the	occurrence	of	a	credit	event.	The	credit	event
can	be	bankruptcy	or	failure	of	a	payment	obligation	and	market	standard	definitions	are
developed	by	ISDA.

Single-name	credit	default	swaps	represent	the	bulk	of	traded	credit	derivatives	and	is	similar
to	a	traditional	credit	guarantee.	It	is	usually	an	over-the-counter	(OTC)	type	contract	between
the	protection	buyer	and	protection	seller.	The	protection	buyer	makes	fixed	premium	payments
to	the	seller	at	fixed	intervals	such	as	a	quarter	until	the	covered	credit	event	happens	or	the
contract	matures.	In	certain	contracts,	a	lump-sum	up-front	payment	instead	of	periodical
payments	are	paid	by	the	buyer.	If	a	credit	event	does	not	occur	until	the	maturity	of	the
contract,	the	seller	pays	nothing	to	the	buyer.	If	a	credit	event	does	occur	before	the	maturity,
the	seller	guarantees	to	pay	the	loss	of	the	buyer	as	stipulated	in	the	credit	protection	leg.
Typical	default	payments	include	cash	settlement	or	physical	delivery	of	an	equivalent	non-
defaulted	reference	credit.	In	case	of	physical	delivery	the	protection	seller	hence	has	typically
a	cheapest-to-deliver	option.

A	basket	credit	default	swap	is	an	insurance	contract	on	the	 	default	in	a	basket	of	credits.
It	is	hence	a	credit	correlation	product	and	can	in	principle	be	used	for	hedging	a	credit
portfolio	against	multiple	default	losses.	While	the	pricing	of	a	single-name	credit	default
swap	depends	on	the	survival	of	the	referenced	credit,	the	pricing	of	basket	credit	default



swaps	depends	on	the	joint	survival	curve	for	the	reference	entities.	Clearly,	default
correlations	are	a	significant	component	of	the	fair	value	of	basket	products.	As	we	have
mentioned	previously,	before	the	2007	crisis,	the	market	standard	model	for	basket	credit
derivatives	was	the	one-factor	normal	copula	model	where

with	 ,	 	for	all	firms	 .	In	this	model	there	is	only	a	single	correlation
parameter	between	firms	and	constant	default	probabilities	for	each	firm.	For	tranche-based
credit	correlation	products	such	as	collateralized	debt	obligations	the	market	participants
calculated	implied	correlations,	 ,	for	each	tranche	and	obtained	what	was	referred	to	as	a
correlation	smile.

Single-Name	Credit	Default	Swaps
Starting	with	a	concrete	example	of	a	single-name	credit	default	swap	contract	consider	a	5-
year	maturity	credit	default	swap	where	the	protection	buyer	pays	a	premium	of	90	basis	points
per	quarter	on	a	notional	amount	of	100	units	of	currency.	The	quarterly	payments	are	hence	

.	If	the	reference	credit	defaults,	the	protection	seller	pays	to	the	buyer
a	cash	settlement	of	the	notional	minus	the	recovery	value.	Assuming	recovery	is	45%	the	cash
settlement	in	default	is	hence	55	units	of	currency.	It	is	also	typical	for	the	protection	buyer	to
pay	any	accrued	premiums	to	the	protection	seller	if	default	happens	between	two	premium
payments.	If	the	reference	credit	does	not	default	during	the	5	years,	the	total	premiums	paid	by
the	protection	buyer	are	 .	Based	on	this	example	we	conclude	that	to	value	a
single-name	credit	default	swap	contract	we	need	several	components.	This	includes:

Contract	payment	details	(e.g.,	frequency	of	payments	and	maturity	date).	We	also	need	to
know	if	there	is	an	accrued	payment	of	the	buyer	in	case	of	default	and	if	there	is	an	up-
front	fee	for	the	credit	protection.

We	need	market	data	such	as	an	interest	rate	for	discounting	payments,	a	credit	default
probability	curve,	or	equivalently	a	survival	probability	curve,	and	toknow	the	expected
recovery	rate	in	cash	settlement.

The	Premium	and	Protection	Leg	of	the	Credit	Default	Swap
Having	contract	and	market	information	we	can	value	a	given	contract	as	the	difference
between	the	present	value	of	the	premium	leg	and	the	protection	payment	leg.	Specifically,
denoting	the	premium	leg	by	 	and	the	protection	leg	by	 	the	credit	default	swap	value	is
given	by

For	a	new	contract	we	solve	for	the	fair	premium,	 ,	that	equates	the	two	legs.

Consider	first	the	premium	payment	leg.	Assuming	no	accrued	payments	we	can	write	this	leg
as



4.73
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where	 	are	the	premium	payment	dates,	 	the	contractual	premium	rate,	
the	daycount	between	 ,	 	the	discount	factor,	and	 	the	survival	probability
up	to	 .	Hence,	the	premium	leg	is	paid	conditional	on	a	positive	survival	probability.	The
survival	probability,	 ,	is	given	by

where	 	is	a	continuous	random	variable	modeling	the	stochastic	default	time.	As	in
equation	(4.31)	we	also	introduce	the	hazard	rate

The	protection	leg,	 ,	of	the	credit	default	swap	contract	has	a	payment	conditional	on	default
such	that

where	 	is	the	recovery	rate.	This	is	the	expected	present	value	of	the	payments	since	we
compute	the	discounted	probability	of	survival	up	to	 	and	then	default	in	the	next	small	time
interval.	Specifically,	we	have	that

It	is	hence	the	probability	of	default	in	the	short	interval	of	length	 	after	 —conditional	on
survival	at	 .	The	fair	swap	value	is	now	set	as

where	if	there	are	any	accrual	premium	payments,	they	are	added	to	the	premium	leg.

Default	Probability	Information
To	price	a	given	credit	default	swap	contract	the	most	important	information	is	the	default
probability	of	the	credit.	Different	levels	of	default	probabilities	will	impact	the	fair	swap
premium.	Default	rates	(and	survival	rates)	can	be	derived	from	the	hazard	rate,	 .	The
hazard	rate	used	for	fair	value	may	be	extracted	from	one	of	the	following:

The	market	as	market	observed	credit	default	swap	premia

Using	historical	default	rates

If	hazard	rates	are	obtained	from	the	market,	then	the	fair	swap	value	in	equation	(4.75)	is



usually	referred	to	as	a	no-arbitrage	price.

Assuming	there	are	market-quoted	credit	default	swap	premiums,	 	for	the	maturities	of	
,	 ,	and	 	we	can	solve	for	the	implied	hazard	rate	from	equation	(4.75)	and	obtain	a
piecewise	hazard	rate	as	 ,	 ,	and	so	on.	This	procedure	is	referred	to	as
bootstrapping	the	hazard	rate	and	is	analogous	to	obtaining	the	market	zero-coupon	curve
from	traded	instruments.60

In	case	of	using	historical	default	probabilities	we	can	use	the	cumulative	default	probabilities,
,	to	obtain	the	hazard	rate.	That	is,

yielding

so	that	we	can	define	a	piecewise	hazard	as

Example	Pricing	Single-Name	Credit	Default	Swaps
We	now	consider	an	example	of	credit	default	swap	pricing	using	the	credit	default	swap
pricing	model	introduced	above.61	In	the	example	we	assume	that	default	is	measured	on	a
monthly	time	horizon	and	that	accruals	are	paid	by	the	protection	buyer.	The	interest	rate	used
for	discounting	is	assumed	to	be	flat	at	2%	and	we	use	a	recovery	rate	of	40%.	Table	4.68
displays	the	annualized	fair	premiums	in	basis	points,	per	unit	of	swap	notional,	for	5-	and	10-
year	credit	default	swap	contracts	with	different	survival	curves,	A,	B,	and	C	for	the	terms	

	years.	We	also	display	the	sensitivity	of	the	swap	premium	to	a	+	and	−10	basis
point	parallel	shift	of	the	survival	curves.



Table	4.68	Annualized	Fair	Premiums	in	Basis	Points,	Per	Unit	of	Swap	Notional,	for	5-	and
10-Year	Credit	Default	Swap	Contracts	with	Different	Survival	Curves

Maturity	term Survival	curve Annualized	swap	premium	(bps)
5	year A 38.22
5	year B 125.72
5	year C 316.08
5	year A	+	10	bps 36.38
5	year B	+	10	bps 123.74
5	year C	+	10	bps 313.76
5	year A	−	10	bps 40.06
5	year B	−	10	bps 127.71
5	year C	−	10	bps 318.40
10	year A 103.10
10	year B 132.28
10	year C 215.79
10	year A	+	10	bps 102.01
10	year B	+	10	bps 131.11
10	year C	+	10	bps 214.86
10	year A	−	10	bps 104.19
10	year B	−	10	bps 133.45
10	year C	−	10	bps 217.18

The	survival	curves	A,	B,	and	C	are	displayed	in	Table	4.69	and	Figure	4.29.	The	A	survival
curve	is	typical	for	high-grade	credits	credit	spreads	with	a	low	short-term	default	probability
and	an	increasing	default	probability	over	time.	The	B	survival	curve	is	flat	over	the	term	and
resembles	a	medium-grade	credits	credit	spread.	The	C	survival	curve	is	typical	of	low-
quality	credits	credit	spread	with	a	decreasing	default	probability.	Because	of	the	behavior	of
the	survival	curves	we	note	from	Table	4.68	that	with	the	A	survival	curve	the	swap	premium
increases	with	maturity	term	since	the	incremental	default	probability	increases	over	the	years.
For	the	B	survival	curve	the	swap	premium	is	almost	the	same	for	the	5-	and	10-year	maturity
swap,	and	for	the	C	survival	curve	the	annual	swap	premium	is	smaller	for	the	longer	maturity
swap.



Table	4.69	Sample	Survival	Curves	A,	B,	and	C

Survival	curve
Maturity	term A B C
1	year 0.999 0.98 0.94
2	years 0.995 0.96 0.89
3	years 0.99 0.94 0.85
4	years 0.98 0.92 0.81
5	years 0.96 0.90 0.78
6	years 0.945 0.88 0.76
7	years 0.92 0.86 0.75
8	years 0.89 0.84 0.745
9	years 0.855 0.82 0.74
10	years 0.815 0.80 0.738



Figure	4.29	Sample	Survival	Curves	A,	B,	and	C

The	better	the	credit	quality	and	the	shorter	the	maturity	of	the	swap,	the	more	sensitive	is	its
fair	market	value	to	a	parallel	shift	in	the	survival	curve.	For	example,	the	impact	on	the	swap
price	of	a	10-basis-point	parallel	shift	of	the	A	survival	curve	for	a	5-year	swap	is	about	5%
for	both	an	upward	and	downward	shift	while	for	the	corresponding	10-year	maturity	swap	it
is	about	1%.	Here,	a	10-basis-point	increase	in	the	swap	survival	curve	increases	the	credit
quality	while	a	10-basis-point	decrease	decreases	the	credit	quality.

While	the	single-name	credit	default	swap	example	calculates	the	fair	premium	for	a	new	swap
protection	we	can	also	mark	to	market	a	swap	with	a	given	contracted	premium.	That	is,	we
can	calculate	the	market	loss	on	this	contract,	 ,	as

where	 	is	the	contracted	premium,	 	the	current	fair	market	premium.	For	example,
assume	we	have	contracted	a	5-year	maturity	swap	protection	with	a	premium	of	45	basis
points	and	a	notional	of	1,000,000.	Assuming	the	A	survival	curve	is	extracted	from	the	current
market	priced	swaps	(with	premium	38.22	as	in	Table	4.68)	we	now	obtain	the	market	loss	as	



	units	of	currency.	On	the	other	hand,	if	the	original	contract	premium	was	30	basis
points,	the	market	loss	is	 	units	of	currency,	that	is,	a	profit.	Since	the	credit	default
swap	profit	increases	when	the	fair	market	premium	increases	(because	of	market	perceived
increase	in	default	risk)	compared	to	the	initial	contract	rate	it	provides	a	mark-to-market
hedge	of	issuer	default	risk.	The	portfolio	of	a	credit-risky	bond	and	a	credit	default	swap
contract	on	the	bond	should	hence	be	(close	to)	immunized	against	credit	risk	profit	and	loss.

Credit	Default	Swaps	and	Counterparty	Risk
While	credit	derivatives	such	as	credit	default	swaps	serve	the	primary	purpose	of	credit
protection,	they	themselves	induce	credit	risk	from	the	protection	seller	default,	known	as
counterparty	credit	risk.	Specifically,	a	hedged	credit	exposure	still	has	remaining	double-
default	risk.	In	case	of	significant	counterparty	risk	on	the	default	protection	leg	of	the	credit
default	swap	the	payment	leg	price	should	be	modified	to	reflect	this	default	risk.	Following
Hull	and	White	(2000),	when	facing	counterparty	credit	risk,	four	events	can	happen:

1.	 The	counterparty	defaults	with	no	default	of	protected	reference	credit.

2.	 The	counterparty	defaults	with	subsequent	default	of	protected	reference	credit.

3.	 The	counterparty	does	not	default	with	no	default	of	protected	reference	credit.

4.	 The	counterparty	does	not	default	with	default	of	protected	reference	credit.

In	case	of	counterparty	risk	the	protection	buyer	hence	runs	the	risk	of	facing	the	double-default
event	2	with	no	subsequent	payoff	from	the	default	protection	leg.	Taking	into	account
counterparty	risk	in	the	valuation	of	credit	default	swaps	clearly	lowers	the	value	(and	hence
the	fair	premium).	The	most	significant	driver	for	the	downward	value	adjustment	is	of	course
the	correlation	between	the	counterparty	default	and	the	protected	reference	credit	default.
Hence,	the	price	adjustment	depends	on	the	specific	model	driving	the	issuer	and	guarantor
counterparty	double	default.	In	the	multifactor	model	this	correlation	derives	from	common
systematic	factors	and	potentially	common	idiosyncratic	factors.	The	Basel	double-default
formula	uses	a	one-factor	model	for	the	issuer	and	the	guarantor	counterparty	with	double
default	driven	by	both	the	common	systematic	factor	and	the	common	idiosyncratic	factor.

Credit	Default	Swaps	on	Portfolio	Indices
A	credit	default	index	swap	is	essentially	a	portfolio	of	single-name	credit	default	swaps.
When	a	portfolio	member	defaults	the	protection	buyer	receives	a	notional	payment.	At	the
same	time	the	protection	premium	is	reduced	because	of	the	reduction	in	notional.	In	the	market
standard	contracts,	such	as	iTraxx	and	CDX	indices,	the	credit	portfolio	is	homogeneous	such
that	for	 	members	in	the	credit	portfolio	the	protection	notional	payment	if	default	occurs	is	

	times	the	portfolio	notional	value.	The	valuation	of	a	credit	default	index	swap	can	use	all
the	portfolio	members'	specific	default	probabilities	and	value	the	portfolio	of	the	single-name
contracts	as	the	sum	of	the	 	contracts.	However,	market	quotes	of	credit	default	index	swaps
also	include	creation	of	an	index	spread	curve	that	is	used	to	value	the	contract	as	if	it	is	only
one	single-name	credit	default	swap.	See	O'Kane	(2008,	ch.	10).



While	the	credit	default	index	swap	is	not	a	credit	correlation	product	per	se—being	a
portfolio	of	single-name	contracts—it	is	frequently	used	as	an	approximate	macroeconomic
hedge	for	a	credit	portfolio	exposure.	There	are	nowadays	many	different	index	portfolios
traded	in	the	market.	For	example,	the	iTraxx	has	large	European	indices,	European	sector
indices,	Asian	indices,	and	sovereign	indices.	It	hence	allows	a	broad	exposure	or	hedge	to
specific	credit	markets.	As	we	will	discuss	in	the	next	chapter	on	counterparty	credit	risk	the
credit	default	index	swap	is	also	recognized,	to	some	extent,	as	a	regulatory	eligible	hedge	for
a	bank's	counterparty	credit	risk	portfolio.

Basket	Credit	Default	Swaps
The	standard	basket	credit	default	swap	insures	the	k:th	default	in	a	basket	of	 	large
international	corporate	credits.	Suppose	therefore	we	have	available	a	joint	survival	curve	for

	reference	entities,	 .	The	premium	payment	leg	of	the	basket	credit
default	swap	can	now	be	calculated	using	the	single-name	credit	default	swap	premium	leg	in
equation	(4.73),	replacing	the	survival	function,	 	with	the	joint	survival	function,	

.	Similarly,	the	protection	payment	leg	in	equation	(4.74)	can	be	calculated
using	the	unconditional	default	probability	of	the	k:th	default,	which,	again,	can	be	obtained
from	 .	We	can	therefore	conclude	that	conditional	on	the	joint	survival,	

,	the	basket	credit	default	swap	contract	can	use	exactly	the	single-name	credit
default	swap	price	as	in	equation	(4.75).	The	trick	in	practice	is	how	to	obtain	the	joint
survival	curve	for	a	basket	of	credits.	To	obtain	this	we	of	course	need	a	portfolio	credit	risk
model.

We	can	write	the	general	survival	distribution	for	a	portfolio	with	 	credits	as

with	survival	copula,	 ,	such	that

Previously	in	this	chapter—in	the	discussion	of	the	default	time	model	of	Li	(2000)—we
calculated	the	probability	of	joint	firm	default	for	 	using	different	copulas	including	the
normal,	t,	and	Clayton	copula	in	Table	4.25.	That	is,	we	calculated	the	joint	survival	function,

We	can	therefore	use	a	default	time	copula	simulation	to	price	basket	credit	derivatives.	Our
example	in	Table	4.25	also	showed	that	the	normal	copula	with	high	values	for	the	correlation
parameter,	 ,	is	perfectly	capable	of	producing	strongly	correlated	defaults.	However,	the
normal	copula	model	has	been	heavily	criticized	after	the	2007	crisis	for	underestimating
default	risk.	Partly,	this	can	be	assigned	to	the	market	using	overoptimistic	low	asset
correlations.

The	One-Factor	Copula	Model	for	Correlated	Default	Times
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In	case	of	a	one-factor	asset	model	several	researchers	have	developed	approaches	that	avoid
copula	simulation.	For	example,	Laurent	and	Gregory	(2003)	use	the	fast	Fourier	transform
with	the	one-factor	copula.	Hull	and	White	(2004)	use	numerical	integration	of	a	one-factor
copula	model	to	price	basket	credit	derivatives	and	tranches	of	Collateralized	Debt
Obligations	(CDOs).	Andersen	and	Sidenius	(2004)	use	a	recursion	approach	and	allow
random	factor	loadings.

In	the	single-factor	normal	copula	model	we	have	that

with	 ,	 	for	all	firms	 .	In	this	model	there	is	only	a	single
correlation	parameter	 	for	each	pair	of	firms	and,	conditionally	on	 ,

with	the	conditional	cumulative	probability	of	 	defaults	at	 	as

and	the	marginal	default	probability

Following	Hull	and	White	(2004)	equation	(4.76)	can	be	numerically	integrated	to	obtain	the
joint,	unconditional	on	 ,	survival	curve,	 ,	for	example,	using	Simpson's	one-
third	rule	or	Gauss-Hermite	integration.	Once	the	joint	unconditional	survival	curve	is
obtained	we	proceed	with	valuation	using	the	single-name	credit	default	swap	pricing	formula.

Example	Basket	Credit	Default	Swap	Premiums	Using	the	One-Factor	Copula
Model
We	compute	sample	fair	premiums	for	a	few	basket	credit	default	swaps	to	illustrate	the
behavior	of	fair	swap	premiums	for	different	correlation	parameters	and	different	number	of
basket	defaults.	As	in	the	above	single-credit	default	swap	example,	we	assume	a	flat	2%
discount	rate,	a	40	recovery	rate,	a	monthly	default	interval,	and	that	accruals	are	paid	by	the
protection	buyer.	When	integrating	equation	(4.76)	we	use	Simpson's	one-third	rule.	However,
the	exact	choice	of	numerical	integration	method	has	minimal	impact	on	the	results.	The
maturity	term	for	the	basket	credit	default	swaps	is	10	years	and	the	survival	curve	is
homogeneous	for	all	basket	members	as	survival	curve	A	in	Table	4.69.	The	basket	size	is	10
members.

Table	4.70	displays	the	fair	annualized	swap	premiums	in	basis	points	when	we	vary	the
normal	copula	correlation	parameter,	 ,	between	0	and	0.5	and	the	number	of	defaults	in	the
basket	between	1,	3,	and	7.	We	note	from	Table	4.70	that	for	a	low	number	of	basket	defaults



the	assumption	of	low	correlation	increases	the	fair	premium	as	it	is	more	likely	to	reach	the
low	number	of	defaults	in	this	case.	For	many	basket	defaults	the	fair	premium	with	a	zero
correlation	is	close	to	null	as	such	events	are	highly	unlikely	with	zero	correlation.	In	contrast,
using	a	correlation	of	0.5	yields	still	significant	fair	premiums	for	many	basket	defaults.
Clearly,	in	the	zero	correlation	case,	as	multiple	defaults	are	highly	unlikely,	the	fair	premium
decreases	sharply	as	we	increase	the	number	of	defaults.	As	the	correlation	increases	most
defaults	are	joint	defaults	and	hence	the	fair	premium	does	not	reduce	that	much	as	we	increase
the	number	of	defaults	in	the	basket.	Of	course,	in	the	special	case	of	perfect	positive
correlation	such	that	all	defaults	are	joint	defaults	the	fair	premium	is	independent	of	the	basket
defaults	number.

Table	4.70	Annualized	Fair	Premiums	in	Basis	Points,	Per	Unit	of	Swap	Notional,	for	10-Year
Basket	Credit	Default	Swap	Contracts	with	Different	Number	of	Basket	Defaults	and	Normal
Copula	Correlation	Parameter

Correlation	(ρ) Basket	defaults	no. Annualized	swap	premium	(bps)
0 1 659.40
0 3 147.94
0 7 0.2044
0.5 1 256.25
0.5 3 84.521
0.5 7 20.772

A	Note	on	Securitization	and	Basket	Credit	Default	Swaps
In	addition	to	single-name	and	basket	credit	default	swaps,	banks	also	use	vehicles	generally
known	as	securitization	instruments	to	transfer	credit	risk.	Although	we	should	remark	here	that
after	the	2007	financial	crisis	investors'	interest	in	securitization	has	been	significantly	reduced
and	hence	there	is	in	general	much	less	market	interest	in	these	types	of	relatively	complex
credit	constructions.	Before	the	financial	crisis	securitizations	were	widely	used	as	funding
instruments	and	to	reduce	the	regulatory	capital.	Shortly	after	the	crisis	the	securitization
market	in	the	United	States	was	largely	nonexistent,	while	in	Europe	many	banks	still	package
and	issue	securitizations.	However,	the	issues	are	retained	on	balance	sheet	rather	than	sold	to
investors.	One	of	the	main	drivers	for	European	banks	to	still	issue	securitizations	and	keep
them	on	balance	sheet	is	to	create	European	central	bank	eligible	collateral.	Hence,	the
motivation	for	securitization	has	changed	from	achieving	reduction	in	regulatory	capital	to
creating	collateral	that	can	be	pledged.	See	Scopelliti	(2014)	on	the	European	bank	incentives
for	securitizations.

While	there	are	many	variations	of	securitization	instruments,	the	basic	idea	remains	the	same.
In	general,	a	securitization	is	a	process	of	packaging	assets	into	a	pool	that	can	be	converted
into	securities	that	can	be	purchased	by	investors.	These	assets	are	typically	managed	or
serviced	by	a	Special	Purpose	Entity	(SPE).	The	SPE	packages	these	assets	into	several



securities	known	as	tranches.	Of	course,	tranches	of	a	pool	can	bear	different	levels	of	risks
depending	on	the	structure.	Tranches	are	generally	structured	in	orders	with	a	priority	in	cash
flow	allocation	and	sold	to	investors	in	the	form	of	notes.62	The	investors	pay	an	up-front
investment	in	exchange	for	the	future	cash	flows	from	the	tranche.	In	a	cash	securitization,
investors	basically	take	over	all	risks	embedded	in	the	cash	flows,	including	credit	risk,
market	risk,	and	prepayment	risk.63	As	the	cash	flows	are	divided	into	tranches	with	different
risk	profiles,	the	notes	are	not	equal—representing	different	levels	of	risks.	The	tranche	with
the	highest	credit	risk	is	often	called	the	equity	tranche	and	the	tranche	with	the	lowest	credit
risk	is	called	the	super-senior	tranche.	The	tranches	in	between	the	equity	and	super-senior
tranches	are	referred	to	as	mezzanine	tranches.	See	Tavakoli	(2003)	for	details	on
securitization	and	other	structured	finance	products.

The	fact	that	a	tranche	of	a	securitization	has	an	attachment	point	and	a	detachment	point	as	a
proportion	of	the	underlying	pool	means	that	we	can	representthe	tranche	fair	risk	spread	as	the
fair	premium	of	a	tranche	credit	default	swap.	In	case	of	a	homogeneous	portfolio	the	tranche
credit	default	swap	can	in	turn	be	represented	by	a	set	of	basket	credit	default	swaps	on	the
underlying	pool	credits.	To	see	this	note	that	for	a	securitization	tranche	with	attachment	and
detachment	points	relative	to	the	underlying	pool	of	10%	and	20%	in	a	basket	of	100
homogeneous	credits	we	can	represent	the	tranche	as	the	sum	of	kth	to	default	basket	credit
default	swaps.	Specifically,	we	can	represent	the	tranche	fair	risk	spread	as	the	sum	of	the	10th
to	the	20th	to	default	basket	credit	default	swaps.	This	is	because	an	investor	holding	both	the
securitization	tranche	and	the	10th	to	the	20th	default	basket	credit	default	swaps	should	earn
the	risk-free	rate,	as	the	tranche	investment	is	now	fully	hedged.	Hence,	we	can	price	the
tranche	using	the	one-factor	normal	copula	model	as	in	the	basket	credit	default	swap	pricing
example	above.

The	tranche	implied	correlations	from	a	one-factor	normal	copula	model	often	exhibits	a	so-
called	correlation	smile	for	tranches	on	the	same	pool.	Correlation	tends	to	be	the	lowest	for
the	mezzanine	tranches	and	higher	for	the	equity	and	super-senior	tranches.	Referring	to	the
findings	in	our	basket	credit	default	swap	example	in	Table	4.70,	we	can	conclude	that	equity
tranches	value	decreases	with	lower	correlations	(that	is,	a	small	basket	defaults	number)
while	super-senior	tranche	value	decreases	with	higher	correlations	(that	is,	a	large	basket
defaults	number).	Hence,	in	practice,	using	the	simple	one-factor	model,	there	may	not	be	a
single	correlation	value	that	fits	all	tranches.	McGinty	et	al.	(2004)	proposed	the	concept	of
base	correlation.	Using	base	correlation,	instead	of	implying	correlation	on	regular	tranches,
“first	loss	tranches”	are	created	virtually	so	that	they	all	have	the	same	lower	attachment	point
of	0%	while	keeping	the	detachment	point	of	each	of	the	regular	tranches.	The	base
correlations	are	the	implied	correlations	from	the	first	loss	tranches.	The	base	correlations	turn
out	to	be	smoother	and	upward	shaped	with	respect	to	the	tranches'	detachment	points.

In	the	general	securitization	case,	or	in	case	of	using	more	complex	credit	models,	a	full
evaluation	of	a	securitization	deal	may	require	simulation	of	the	future	losses	from	the
underlying	assets	in	the	pool	and	a	corresponding	attribution	of	the	losses	to	the	tranches.	One
of	the	credit	portfolio	models	we	have	discussed	in	this	portfolio	credit	risk	chapter	can	be
used	to	compute	the	credit	losses	from	the	underlying	pool.	The	additional	feature	needed	to



4.77

perform	simulation	valuation	of	a	securitization	tranche	from	a	given	credit	portfolio	model	is
to	apply	a	post-process	structure	of	loss	(cash	flow)	allocation	to	the	tranches.	Moreover,	in
order	to	judge	the	credit	quality	of	a	particular	tranche	we	also	need	to	determine	what
threshold	levels	of	losses	are	consistent	with	different	credit	ratings.	We	refer	to	Nyström
(2007)	as	one	example	of	using	a	simulation-based	credit	portfolio	approach	to	allocate	credit
losses	to	tranches.	Nyström	(2007)	also	links	the	expected	tranche	losses	to	methods	used	by
rating	agencies	to	judge	credit	quality.

Regulatory	Capital	for	Credit	Risk
It	is	practice	in	credit	risk	to	estimate	both	the	expected	loss	and	the	unexpected	(tail)	loss.	The
expected	loss	of	credit	risk	is	in	theory	covered	by	the	credit	risk	provision	or	by	the	credit
spread.	Compared	to	expected	loss	the	tail	loss	that	induces	the	capital	requirement	has	been
more	emphasized	by	the	regulators,	partly	because	of	the	complexity	in	estimating	tail	loss	and
the	need	of	ensuring	business	continuity.	As	we	discussed	in	the	introduction	to	this	book,	the
first	Basel	accord	in	1988	simply	categorized	credit	exposures	into	gross	tiers	of	risk	weight
and	was	criticized	by	many	banks	for	failing	to	reflect	risk	sensitivity	and	recognize	risk
mitigations.	The	next	generation	of	regulation	known	as	Basel	II	significantly	improved	the
credit	risk	capital	requirement.	First	it	brought	necessary	sophistication	into	the	regulatory
capital	paradigm	by	introducing	three	pillars	that	set	the	minimal	capital	requirement	(pillar	1),
a	supervisory	review	that	encourages	banks	to	improve	their	internal	risk	management	practice
in	credit	risk	(pillar	2),	and	proper	disclosure	and	market	disclosure	(pillar	3).

In	the	first	pillar	itself	Basel	II	introduced	risk	sensitive	risk	weights	that	allowed	banks	to
benefit	from	their	internal	models	if	these	models	better	reflect	the	risk	exposures	of	the	bank.
The	regulatory	credit	risk	capital	requirement	in	Basel	II	can	be	summarized	as	the	aggregation
of	the	Risk	Weighted	Assets	(RWA)	for	 	exposures:

Here,	 	stands	for	the	exposure	at	default	for	exposure	 	and	 	is	the	risk	weight	either
from	the	risk	weight	tier	that	the	asset	is	mapped	to	in	the	standardized	approach	or	based	on
the	Basel	II	formula	in	equation	(4.40)	in	the	internal	ratings–based	approach.

The	majority	of	banks	are	allowed,	or	in	some	cases	required,	to	adopt	the	internal	ratings–
based	approaches	that	are	based	on	their	internal	models.	In	the	internal	ratings–based
approaches	banks	can	use	their	own	probability	of	default	models	in	the	foundation	internal
ratings–based	approach.	In	the	advanced	internal	ratings–based	approach,	banks	can	apply
their	own	models	to	loss	given	default,	credit	conversion	factors	for	the	credit	facility
exposure,	and	the	exposure	effective	maturity	estimations	as	well.

One	of	the	reasons	that	regulators	could	introduce	risk	sensitive	capital	requirements	using
banks'	own	probability	of	default	models	was	because	in	most	medium-sized	and	large	banks,
especially	in	the	banking	book	business,	the	development	of	internal	ratings	and	a	scorecard



system	was	a	well-established	practice.	As	part	of	the	acceptance	criteria	for	banks	to	employ
their	own	models,	model	validation,	and	documentation	requirements	were	also
specified.Another	eligibility	requirement	of	using	banks'	own	models	is	that	the	models	reflect
the	banks'	business	operation	and	are	not	only	developed	for	the	regulatory	capital	purpose	and
actually	used	in	business	decisions.	Therefore,	thanks	to	Basel	II	there	has	been	significant
investment	in	the	internal	ratings	systems	in	banks,	which	propagates	the	maturity	of	the	risk
infrastructure	and	banks'	own	economic	capital	practice	as	well.	Basel	II	certainly	had	the
most	significant	impact	on	banks'	credit	risk	analysis	methods	and	lending	processes	in
general.

Even	after	the	2007	financial	crisis	and	with	the	introduction	of	Basel	III	the	credit	risk
weights	introduced	with	Basel	II	are	largely	retained—which	indicates	the	relative	robustness
of	the	Basel	II	rules.64	The	two	major	Basel	III	additions	and	revisions	of	the	credit	risk	weight
framework	were	focused	on	large	exposure	and	securitization.	The	large	exposure	framework
was	finalized	in	2014	for	effective	measurement	and	management	of	concentration	risk.

Recently,	a	Basel	consultation	paper	(Basel	Committee,	2014c)	is	aiming	at	revising	the	gross
standardized	approach	to	credit	risk	by	reducing	exclusive	reliance	on	external	ratings	and
make	the	standardized	approach	more	risk	sensitive	and	hence	more	comparable	to	the	internal
ratings–based	approaches.	The	assignment	of	risk	weights	to	financial	institutions	and
corporates	will	be	assigned	based	on	borrower's	financial	conditions	rather	than	external
ratings.	For	financial	institutions	this	includes	the	capital	ratio	and	for	corporates	their	revenue
and	leverage.	The	standardized	risk	weight	for	residential	and	commercial	mortgages	is
replaced	by	a	risk	weight	that	depends	on	the	loan-to-value	ratio	and/or	the	debt	service
coverage	ratio.	There	are	also	changes	to	credit	mitigant	eligibility	criteria	and	how	they	can
reduce	the	risk	weight	of	the	borrower.

For	trading	book	positions	an	important	update	to	regulatory	capital	requirements	came	with
Basel	2.5	in	2009	when	there	was	a	new	incremental	risk	capital	charge	for	credit	risk	in	the
trading	book.	As	we	have	discussed	in	this	chapter	the	incremental	risk	charge	is	focused
mainly	on	bonds	in	the	trading	book	with	liquidity	trading	horizons	assigned	to	credits.	There
is	no	prescribed	model	although	it	is	natural	to	consider	portfolio	credit	risk	models	for	large
firms	inspired	by	the	Merton	(1974)	structural	model.	The	incremental	risk	charge	adds	to	the
trading	book	capital	for	market	risk.	That	is	the	current	market	risk	charge	discussed	in	the
previous	chapter.	For	some	banks	there	are	also	additional	trading	book	charges	added	for
correlation	trading	portfolios	and	standardized	charges	for	securitizations.	The	current
regulatory	proposal	for	a	fundamental	review	of	the	market	risk	in	the	trading	book	(Basel
Committee,	2012,	2014a)	also	proposes	changes	to	the	incremental	risk	charge.	Specifically,
the	incremental	risk	charge	is	replaced	by	an	incremental	default	risk	charge	that	removes	the
requirement	to	model	migration	risk.	The	Committee	is	also	considering	a	more	prescriptive
model	approach	by	explicitly	requiring	two-factor	models	and	calibration	of	correlation
parameters	on	listed	equity	prices	using	a	one-year	observation	period	based	on	a	period	of
stress.	In	the	new	proposal	equity	positions	must	also	be	included	to	capture	their	issuer
default	risk	and	the	regulators	specifically	mention	that	sovereign	exposures	need	to	be	part	of
the	model.	The	main	reason	that	regulators	consider	elimination	of	migration	risk	from	the



incremental	risk	charge	is	to	remove	the	possible	double	count	with	spread	risk	in	the	market
risk	measure—especially	since	with	the	new	proposed	liquidity	adjusted	market	risk	measure
based	on	 	(see	equation	(3.29))	the	liquidity	horizons	for	credit	spreads	are	relatively
long.

In	addition	to	issuer	default	risk	charges	using	the	Basel	risk-weighted	assets	formula	in
equation	(4.40),	there	are	also	default-based	counterparty	credit	risk	charges	using	the	formula.
The	counterparty	credit	risk	exposures	include	derivatives	such	as	swaps.	The	exposure	at
default	is	therefore	more	complicated	for	the	counterparty	credit	risk.	Basel	allows	three
methods:	current	exposure,	standardized,	and	internal	model	methods.	Regulatory	derivative
counterparty	risk	capital	charges	will	be	covered	in	the	next	chapter	on	the	same	topic.

Regulatory	Risk	Components
For	the	banking	book	credit	risk	capital	requirement	the	main	building	blocks	of	the	internal
ratings–based	approaches	are	the	well-known	risk	components:

Probability	of	default

Loss	given	default

Exposure	at	default

as	well	as	an	effective	maturity	component.	The	risk	components	are	inputs	to	the	risk	weight
function	with	a	regulatory	credit	risk	horizon	of	one	year.	Therefore,	all	the	risk	components
should	be	estimated	based	on	a	one-year	horizon.

Probability	of	default	modeling	has	a	long	history	in	the	industry	even	before	the	introduction
of	Basel	II.	In	contrast,	loss	given	default	and	exposure	modeling	is	a	newer	practice	that	was
mainly	driven	by	the	Basel	II	requirements.	In	the	loss	given	default	estimation,	one	factor	to
consider	is	whether	the	loss	is	ex-ante	or	ex-post	the	effect	of	credit	risk	mitigation.	Another
complication	in	the	loss	given	default	estimation	lies	in	the	recovery	data.	Recovery	usually
takes	time	to	fully	work	out,	and	it	is	important	to	get	the	actual	losses	net	of	all	the	workout
costs	into	the	data	used	for	loss	given	default	modeling.	For	the	banking	book	the	uncertainty	in
the	exposure	estimation	mainly	comes	from	the	unutilized	portion	of	the	committed	credit
facilities	for	which	a	credit	conversion	factor	(CCF)	is	either	supplied	by	the	regulator	or
estimated	by	the	bank	(in	the	advanced	internal	ratings–based	approach).	Engelmann	and
Rauhmeier	(2006)	collected	contributions	in	probability	of	default,	loss	given	default,	and
exposure	estimation	at	the	time	many	institutions	were	implementing	Basel	II.

When	the	risk	components	are	estimated	individually,	the	correlation	among	them	is	often
neglected.	However,	there	is	clear	evidence	that	in	stressed	cases,	such	correlation	should	not
be	neglected.	All	the	risk	components	are	therefore	required	to	use	stressed	estimates	and	are
subject	to	validation.

Since	regulatory	capital	represents	the	minimal	capital	set	by	regulators,	it	is	important	to
reconcile	the	capital	with	the	economic	capital	models	in	practice.	The	Basel	regulatory	credit
risk	capital	is	primarily	based	on	the	single-factor	model	used	to	derive	the	Basel	II	formula	in



equation	(4.40).	The	fundamental	idea	can	in	part	be	attributed	to	Michael	Gordy.	First,	Gordy
(2000)	established	the	similarity	between	the	Merton	(1974)	model	approach	and	the	actuarial
model	approach	when	only	default	loss	is	considered	(see	also	Koylouglu	and	Hickman,
1998).	Second,	Gordy	(2003)	derived	an	asymptotic	single	risk	factor	model	that	he	proved	to
be	portfolio	invariant.	The	portfolio	invariance	feature	was	a	critical	justification	for	the
model	to	serve	as	a	universal	risk	weight	function.	In	most	cases,	especially	in	the	retail	asset
class,	the	large	homogeneous	portfolio	assumption	is	applied.	Basel	II,	however,	requires	a
regularity	check	to	make	sure	the	retail	portfolio	meets	the	assumption	so	that	no	exposure	to
one	counterparty	can	be	more	than	a	small	fraction	of	the	total	portfolio	exposure.	Further
adjustment	is	used	when	the	granularity	is	not	met.

Risk	Mitigation	and	Regulatory	Capital
Basel	II	credit	risk	regulatory	capital	requirement	opened	up	for	banks	to	more	effectively
account	for	credit	mitigations.	Banks	can	employ	various	credit	risk	mitigation	vehicles,
including	the	traditional	financial	and	physical	collaterals	and	credit	guarantees.	In	addition,
Basel	II	was	the	first	to	recognize	the	benefit	of	credit	transfer	through	credit	derivatives.	The
risk	weight	of	the	exposure	portion	that	is	covered	by	the	mitigation	can	be	substituted	by	the
risk	weight	of	the	risk	mitigants	that	are	supposed	to	be	lower.	For	the	credit	protections	the
double-default	treatment	was	applied,	which	we	have	previously	discussed	in	this	chapter.

Because	of	the	opportunity	cost	of	banks'	capital,	the	recognition	of	the	credit	risk	mitigation
and	transfer	gives	banks	incentive	to	actively	manage	their	credit	risk.	Optimally	allocating	the
credit	risk	mitigants	in	order	to	minimizethe	total	risk	weighted	asset	creates	an	effective	credit
risk	management	decision.

When	credit	risk	mitigants	are	present	with	an	exposure,	the	exposure	can	be	decomposed	into
an	unsecured	portion	and	several	secured	portions	that	take	the	adjusted	value	of	the	credit	risk
mitigant.	The	secured	portions	take	the	risk	weights	that	correspond	to	the	mitigants.	With
credit	risk	mitigants,	the	risk-weighted	asset	in	equation	(4.77)	can	now	be	written	as:

where	the	secured	portion	 	of	exposure	asset	 	is	protected	by	mitigation	 ,	and	 	is	the
unprotected	portion.	Each	exposure	can	of	course	be	secured	by	several	credit	risk	mitigants,	

	and	multiple	exposures	can	share	credit	risk	mitigants.	In	practice,	additional
multipliers	that	represent	the	corresponding	collateral	haircuts	or	maturity	mismatch
adjustments	are	also	introduced	into	the	RWA	formula.	With	this	RWA	formulation	we	can
obtain	an	optimal	credit	risk	mitigant	allocation	by	allocating	portions	of	total	exposure	to
different	protection,	that	is,	the	secured	portion	 	and	the	remaining	unprotected	portion	 ,
such	that



where	the	sum	of	all	protected	and	unprotected	portions	corresponding	to	asset	 	should
obviously	be	the	original	exposure	at	default	for	the	asset.	Here	multiplier	 	is	assigned
according	to	the	haircuts	and	maturity	mismatch	adjustment.	Chen	(2009)	devised	a	network
flow	representation	where	the	optimal	allocation	is	achieved	as	a	minimum	cost	network	flow
problem.	Additional	constraints	can	be	introduced	to	restrict	the	valid	amount	of	a	credit
protection.	The	network	connection	describes	the	applicability	of	a	credit	risk	mitigant
according	to	the	protection	agreements.	Only	when	a	mitigation	can	be	contractually	applied	to
an	exposure	a	network	arc	between	the	two	can	be	established.	We	refer	to	Chen	(2009)	for
details	and	examples	of	the	optimization.

Appendix
In	this	appendix	we	make	the	Markov	iteration	in	equation	(4.57)	explicit	for	the	transition
matrix	in	Table	4.34,	which	is	reproduced	here	in	Table	4.71	for	convenience.

Table	4.71	Example	Loan	Delinquency	Transition	Matrix—Reduced	Delinquency	States	with	a
Quarterly	Measurement	Horizon

Current D90 Prepay Default
Current 0
D90
Prepay 0 0 1 0
Default 0 0 0 1

Assuming	the	loan	is	current	at	 	we	have	at	 	that

At	 ,	we	split	up	the	iteration	in	the	two	parts	for	the	two	non-absorbing	states	current	and
D90,	yielding	the	subiterations,



where	 	indicates	the	transition	probability	at	time	 	from	state	 	to	state	 	conditional
on	state	at	time	 	being	state	 .	Of	course,	we	know	beforehand	that	the	corresponding	
iteration	vector	is	composed	of	zeroes	since	the	default	state	is	absorbing	and	cannot	be
reached	directly	from	the	current	state.	Hence,	we	do	not	need	to	compute	that	subiteration.	We
also	know	beforehand	that	the	corresponding	iteration	vector	 	would	just	reproduce	the
transition	probability	 	from	 	in	state	position	3	for	migration	from	the	current	state	to
the	prepayment	state,	with	zeroes	elsewhere.	This	is	because	the	prepayment	state	is	absorbing
such	that	once	a	loan	has	entered	the	prepayment	state	it	never	goes	back.	Essentially,	it	exits
the	portfolio	once	the	prepayment	cash	flow	has	been	made.

We	can	now	sum	up	all	the	possible	ways	the	loan	can	be	in	a	state	 	at	time	 	using	the
equation,

Since

we	obtain	that,

We	can	interpret	these	state	occupancy	probabilities	as	the	sums	of	the	products	of
probabilities	of	the	different	paths	the	loan	can	take	to	end	up	in	a	state	 .	For
example,	at	time	step	 ,	the	loan	can	end	up	in	state	current	either	through	staying	in	current
at	both	time	step	 	and	 ,	or,	by	migrating	to	the	D90	state	in	time	step	 	and	then	back
to	current	in	time	step	 .	Similarly,	the	loan	can	end	up	in	the	default	state	if	the	loan
migrates	to	the	D90	state	in	time	step	 	and	then	in	time	step	 	migrates	to	the	default
state.	This	is	the	only	possible	migration	path	to	default	at	time	step	 	as	the	default	state	is
unreachable	from	other	states	than	the	D90	state.

At	 	we	now	have	to	split	again	the	two	non-absorbing	states	current	and	D90	into	further
subcases	corresponding	to	the	transition	path	the	loan	took.	To	indicate	the	transition
probability	at	time	 	from	state	 	to	state	 	conditional	on	state	at	time	 	being	state	 	and



state	at	time	 	being	 	we	will	use	the	notation,	 .	With	this	notation	we	obtain	the	
and	 	subcases	as,

Of	course,	again	we	know	beforehand	that	computing	both	 	and	 	is	unnecessary	since
there	is	no	new	contribution	to	the	migration	from	time	step	 	as	both	states	are	absorbing.

Doing	the	same	calculation	for	the	corresponding	 	and	 	subcases	we	have	that,

Summing	up	our	contributions	at	time	step	 	we	use	the	equation

where	in	our	notation,

Hence,	we	have,	for	example,	the	 	cumulative	state	occupancy	probability	for	state	current
as

which	again	represents	the	different	paths	the	loan	can	take	at	time	steps	 ,	2	and	still	be	in



current	state	at	 .	Similarly,	for	the	default	state	we	have

Now,	for	example,	to	obtain	 ,	being	the	state	occupancy	vector	at	time	step	 	and
corresponding	to	a	9-quarter	horizon	analysis	of	the	credit	migration,	as	required	by,	for
example,	CCAR	credit	stress	tests,	we	only	need	256	subiterations	of	equation	(4.56).	This	is
because	the	number	of	effective	states	that	we	need	to	calculate	the	iteration	for	is	only	2	since
both	the	prepayment	and	the	default	states	are	absorbing	with	no	migration	from	these	states.
This	is	hence	quite	manageable	in	practice	for	computer	implementation	and	allows	model
implementation	without	simulation	for	large	pools	of	loans	as	well	as	in	economic	scenario
stress	testing	applications.	However,	the	practicality	of	the	Markov	iteration	in	equation	(4.57)
depends	largely	on	the	state	dimension	in	the	transition	matrix	when	the	analysis	time	horizon
is	reasonably	large.	For	example,	if	the	state	transition	matrix	has	10	non-absorbing	states,	then
the	number	of	required	subiterations	of	equation	(4.56)	at	time	step	 	would	be	100	million.
In	such	cases,	we	might	be	better	off	doing	the	state	transition	sampling	in	equation	(4.55).
However,	deciding	between	simulation	or	using	the	Markov	iteration	for	a	specific	model	also
calls	for	a	detailed	analysis	of	the	specific	model	variables	used.	In	practice,	there	are	usually
significant	simplifications	of	the	iteration	that	can	be	made	for	a	specific	model.	For	example,
the	delinquency	indicator	functions	used	in	the	state	transition	models	may	not	track	the
complete	history.	See	Skoglund	and	Chen	(2015)	on	Markov	iteration	for	monthly	models	with
many	delinquency	states	using	state	occupancy	indicator	functions.

Finally,	we	note	that	in	this	iteration,	the	flow	of	expected	state	occupancy	probabilities	is	not
captured	in	 .	It	only	captures	the	cumulative	state	occupancy	probabilities.	However,	due	to
the	structure	of	the	iteration,	we	can	also	track	the	history	of	the	flow	to	a	final	particular	state.
This	means	that	subsequent	cash	flow	calculations	can	also	depend	on	past	state	transitions.	In
practice,	most	cash	flow	calculations	only	depend	on	the	from	and	to	state	rather	than	the
whole	state	history,	which	simplifies	matters.	For	example,	in	our	quarterly	delinquency	matrix
in	Table	4.71	the	cash	flow	typically	only	depends	on	from	and	to	state	since	accruals	happen
in	the	D90	state,	and	when	a	loan	migrates	back	to	current	it	should	have	paid	the	accruals	as
well	as	any	regular	scheduled	cash	flows.	A	loan	that	migrates	from	D90	to	D90	must	have
paid	the	previous	time	step	accruals	to	remain	in	state	D90.	Otherwise,	the	loan	would	have
migrated	to	default	state.

1	We	also	count	the	small	corporate	exposures	into	the	retail	class	of	exposures.

2	Pessimistically	we	can	say	that	for	the	equivalent	of	a	years	backtesting	history	for	market
risk	models	we	require	observing	the	portfolio	credit	risk	model	performance	in	250
business	cycle	swings	rather	than	250	business	days.	On	the	other	hand,	for	large
(homogenous)	credit	portfolios,	we	generally	have	sufficient	defaults	to	validate	the
portfolio	default	rate	prediction	at	a	given	point	in	time.	That	is,	conditional	on	a	given
point	in	the	business	cycle.

3	The	mark-to-model	method	for	loans	can	use	the	funds	transfer	pricing	rates	in	the	discounted



“fair”	value	of	loan	cash	flows.	Hence,	yielding	a	model	based	fair	value	for	the	banking
book	items.	This	approach	to	fair	value	is	motivated	by	the	fact	that	the	funds	transfer	rates
capture	the	key	risk	components	and	costs	attributed	to	the	loan	cash	flows.	They	represent
the	banks	best	estimates	of	the	risk	spreads	in	absence	of	a	market	where	risk	spreads	are
embedded	in	the	market	quotes.	We	refer	the	reader	to	the	chapter	on	funds	transfer	pricing
and	profitability	for	details	on	loan	fair	value	using	the	funds	transfer	rates.

4	See	also	Jarrow	and	Turnbull	(1995),	Jarrow	et	al.	(1997),	Lando	(1998).	The	credit-risky
discounting	formula	applies	to	general	interest	rate	derivatives	with	payoff,	 ,	say.
However,	we	focus	our	discussion	on	credit-risky	bonds.

5	See	Ron	(2000)	on	the	bootstrapping	of	zero	curves	from	traded	market	instruments.

6	See	Jagannathan	et	al.	(2011)	where	the	authors	take	a	reduced	form	anatomy	of	the	credit
spread.

7	There	is	a	theoretical	relationship	between	credit	default	swap	premiums	and	bond	spreads.
Specifically,	a	credit-risky	bond	with	credit	spread	 	should	have	a	credit	default	swap
premium	approximately	 	as	well.	This	is	because	the	portfolio	of	the	credit-risky	bond	and
the	credit	default	swap	should	earn	the	risk-free	rate.	See	Hull	et	al.	(2004)	on	this
theoretical	relationship	in	practice.

8	If	we	allow	for	stochastic	interest	rates	in	the	Merton	model	then	this	amounts	to	using	the
Black	and	Scholes	option	pricing	model	with	stochastic	interest	rates	as	in	Merton	(1973).
Shimko	et	al.	(1993)	derive	the	price	of	a	defaultable	corporate	bond	using	stochastic
interest	rates.	In	this	case	the	model	credit	spread,	due	to	stochastic	bond	prices,	involves
two	additional	parameters.	First,	the	instantaneous	correlation	between	the	asset	price
process	and	the	bond	price	process,	and,	second,	the	volatility	of	the	bond	price	process.
The	effect	of	increasing	either	of	these	new	parameters	is	to	(almost	monotonically)
increase	the	credit	spread.

9	The	approximation	 	is	certainly	valid	here	since	 	is	usually	very
small.

10	Note	that	while	we	here	transform	the	transition	matrix	thresholds	to	normal	to	arrive	at	the
scenario	realized	rating	when	comparing	the	thresholds	with	the	sampled	standard	normal
return	we	could,	equivalently,	have	converted	the	sampled	standard	normal	return	to
uniform	and	directly	compared	to	the	transition	matrix	thresholds	in	Table	4.4.

11	Heuristically,	the	conditional	portfolio	loss	contribution	is	not	considered	smooth	if	it	can
jump	significantly	for	small	changes	in	the	confidence	level.	For	example,	for	the	bond
rated	AA	the	conditional	portfolio	loss	contribution	at	the	98%	confidence	level	is	0.40,	at
the	99%	confidence	level	8.27,	and,	at	the	99.9%	confidence	level	0.

12	We	use	relatively	simple	zero-coupon	bond	exposures	here	as	illustration.	In	practice,	one



can	think	of	the	zero-coupon	bond	exposure	as	an	approximation	to	the	actual	exposure.

13	The	profit	and	loss	measure	that	takes	as	base	value	for	all	the	horizons	the	initial	market
value	of	the	bond	contains	profit	and	loss	effects	from	both	credit	migration	and	portfolio
aging.

14	Although,	at	the	3-month	horizon	the	incremental	 	produces	unintuitively	negative
results	for	firms	3,	…,	8.	The	interpretation	is	that	the	portfolio	is	hedged	by	adding	one	of
these	firms.

15	The	Beta	distribution	is	often	used	for	stochastic	recovery	rates	as	it	is	defined	on	the
interval	 .	The	probability	function	is	parametrized	as

where	 	is	the	revovery	rate	and	 	is	the	Gamma	function.	The	parameters,	 	and	 ,	of
the	Beta	function	can	be	fitted	to	empirical	recovery	data	using	maximum	likelihood.

16	In	the	Basel	double-default	formula	this	case	reduces	the	capital	charge	to	the	product	of
capital	charges	for	the	unhedged	exposures.

17	Specifically,	 	is	the	correlation	between	the	default	events	for	firms	A	and	B.

18	Recall	that	for	pools	we	can	interpret	the	credit	index	 	as	the	pool	(transformed)	default
rates.	Hence,	with	this	interpretation	the	multifactor	model	can	be	used	for	all	the	retail
credit	risk	exposures	as	well.	In	fact,	this	is	a	quite	common	approach	for	banks	to
implement	their	firmwide	portfolio	credit	risk	model.

19	See	the	advanced	market	risk	chapter	for	a	discussion	of	how	to	compute	the	probability
bounds	on	 .

20	The	firms	portfolio	 	at	the	99%	confidence	level	in	Table	4.24	differs	slightly	from	the
corresponding	 	in	Table	4.16	due	to	using	different	seeds	for	the	simulation	of
systematic	and	idiosyncratic	components.

21	 	is	often	termed	the	(default)	countdown	process	as	 	and	 	is	decreasing	in	t
with	 .

22	This	is	in	contrast	to	correlation	which	is	invariant	only	under	strictly	increasing	linear
transformations.

23	That	is	a	survival	probability	of	 	for	year	 .	Or,	equivalently,	a	default
probability	for	year	 	as	 .

24	Recall	that	for	the	Clayton	copula	as	 	approaches	0	we	obtain	the	independence	copula,
whereas	as	 	approaches	 	we	obtain	the	perfect	dependence	copula.



25	The	term	“correlation	smile”	follows	from	similar	results	seen	from	option	implied
volatilities.

26	Specifically,	the	Herfindahl	index,	 ,	is	given	by

where	 	is	the	number	of	firms	and	 	the	exposure	share	of	firm	 .	Since	the	firm	exposure
shares,	 ,	are	squared	a	relatively	large	Herfindahl	index	is	obtained	if	there	are	few	firms
with	a	large	exposure	share.	The	Herfindahl	index	can	hence	be	seen	as	a	measure	of	exposure
concentration	in	a	portfolio.

27	The	example	is	taken	from	Nyström	and	Skoglund	(2003a).

28	However,	see	Cantor	and	Hamilton	(2004)	on	the	failure	of	the	assumption	of	a	first-order
Markov	for	the	Moodys	transition	matrices.	In	practice	however	one	still	often	employs	the
first-order	markov	assumption	in	the	credit	portfolio	models.

29	See	Thomas,	Edelmann,	and	Crook	(2002)	for	a	textbook	account	on	models	and
performance	measures	used	in	credit	scoring.

30	 	for	all	loans	 	(or	consumers	or	whatever	the	measurement	objects	may
be)	as	they	are	not	already	in	default	at	the	start	of	the	sampling	period.

31	Recall	from	the	Merton	pricing	model	that	default	can	be	viewed	as	a	put	option.	Similarly,
prepayment	can	be	viewed	as	a	call	option.

32	The	terminology	“ex-post	inclusion	of	the	common	credit	factors”	refers	to	the	way	the
model	is	built	before	it	is	applied.	It	uses	a	two-step	process	that	is	often	convenient	in
practice.	The	first	step	calculates	the	credit	scores	without	macroeconomic	variables.	The
second	step	then	adaps	the	credit	scores	with	macroeconomic	models	for	the	purpose	of
portfolio	risk	modeling	and	stress	testing.

33	From	an	econometric	perspective	measurement	error	in	 	need	not	induce	inconsistency	of
the	parameter	estimates.	Specifically	we	could	assume	that	the	empirically	computed	
measures	the	true	default	frequency	 	with	a	measurement	error	 	independent
of	 .	In	this	case	we	could	subsume	the	measurement	error	in	the	residual	term	 .

34	Specifically,	the	model	is	calibrated	to	the	empirical	transitions	over	time	transformed	to
log-odds	ratios.

35	We	also	count	the	age-indexed	variables	such	as	loan	age	here.	The	age-indexed	variable
values	at	 	are	known	at	 .	For	simplicity	we	do	not	index	 .

36	As	we	have	discussed,	different	credit	quality	grades	have	in	general	different	sensitivities



to	the	economic	factors.	Hence,	it	is	usually	not	sufficient	to	consider	current	loans	as	a
homogeneous	group	when	estimating	its	sensitivity	to	the	economic	factors.

37	CCAR	considers	the	scenario	analysis	over	the	next	nine	quarters.

38	Note	here	the	differences	between	model	approches	to	assign	credit	correlation	in	credit
portfolio	models.	In	the	Merton-based	credit	portfolio	models	dependence	is	derived	from
the	dependence	of	the	uniform	random	variables	 	where	 	for	the
multifactor	model	case.	The	transition	probabilities	are	exogenously	given	as	constant,
long-run,	transition	probabilities.	In	contrast,	in	this	reduced	form	correlated	credit	score
model	approach	to	credit	portfolio	risk	the	uniform	variables	 	are	independent
between	loans	while	the	transition	probabilities	are	stochastic	and	dependent.

39	That	is	 	element	 	has	the	product	of	the	state	transition	probability	of	loans
migrating	to	state	 	at	 ,	and	the	state	transition	probability	of	loans	in	state	 	at	
migrating	to	state	 	at	 .

40	We	use	the	term	rating	grade	here	for	the	loans'	different	credit	state	classes	although	the
term	is	less	appropriate	for	loans	than	for	large	corporate	exposures	that	have	an	external
rating.

41	The	haircut	notation	here	is	slightly	different	than	the	usual	Basel	convention	of	haircut,
which	is	 	in	our	terminology.

42	We	use	a	single	systematic	factor	in	our	calibration	of	mortgage	portfolio	transition
probabilities.	This	is	for	illustration	only	as	the	model	can	easily	handle	many
macroeconomic	factors.	For	example,	the	property	prices	in	addition	to	macroeconomic
variables	such	as	unemployment	rates	are	often	important	to	explain	defaults	and	rating
transitions.	A	drop	in	property	price	leads	to	a	loss	of	home	equity	and	some	consumers
may	see	less	economic	value	in	continuing	to	meet	their	mortgage	payments.	Apart	from
macroeconomic	variables	rating	grade	transition	and	default	may	also	depend	on
idiosyncratic	time	variables	such	as	loan	age.

43	For	large	retail	portfolios	the	risk	contributions	are	in	general	more	interesting	than
incremental	risk	measures	due	to	the	relatively	small	size	of	each	loan.	A	benefit	of	working
with	homogeneous	subportfolios	is	that	the	risk	contributions	are	better	estimated	on
subportfolios	than	on	individual	loans.

44	In	the	calculation	we	set	the	Basel	maturity	adjustment	to	unity.	That	is,	 	in	equation
(4.41).	The	correlation	level,	 ,	is	set	to	0.15.	We	also	impose	a	probability	of	default	floor
at	0.03%.

45	The	confidence	level	used	in	the	regulatory	capital	formula	is	99.9%.

46	Note	that	from	equation	(4.60)	a	forward-looking	one-period	probability	of	default	is



since	 .	Here,	 	constitutes	a	forward	 	curve,	and	since	
	represents	the	additional	portion	of	default	that	happens	during	the	period	

	and	 	is	the	survival	probability	(portion)	up	to	time	 ,	 	is	indeed	a
conditional	default	probability.

47	In	the	table	we	have	expressed	the	state	occupancy	probabilities	as	percentages	rather	than
fractions	and	truncated	the	decimals	of	the	state	occupancy	percentages.	Hence,	a	particular
column's	state	occupancy	percentages	may	not	sum	exactly	to	100%.

48	Note	here	that	the	sum	of	the	elements	of	 	is	null	since	the	net	migration	between	two
time	periods	must	sum	to	zero.

49	Note	here	the	similarity	with	the	multifactor	model	where	the	model	parameters	 	in	this
context	are	assumed	to	be	estimated	on	past	transitions	while	in	the	multifactor	model	the
equivalent	 	parameters	are	obtained	from	the	long-run	transition	matrix.

50	Specifically,	we	consider	the	sample	portfolio	in	the	example	3	accompanying	spreadsheet
of	the	CreditRisk 	manual.	This	portfolio	has	a	total	of	4	Gamma	factors	assigned	to	25
loans.	See	appendix	B	of	the	CreditRisk 	manual	for	information	on	the	spreadsheet.

51	See	the	advanced	market	risk	analysis	chapter	for	a	general	discussion	of	the	different
approaches	to	stress	testing	such	as	portfolio	sensitivity	analysis,	systematic	stress	testing,
hypothetical	stress	scenario,	and	integration	of	stress	and	model	analysis.	The	integration	of
model-based	views	and	multi-horizon	stress	tests	dicussed	in	the	context	of	market	risk
provides	an	opportunity	to	integrate	the	EBA	and	CCAR	stress	tests	with	the	bank's	model-
based	approach	to	credit	risk	capital	charges.

52	Although	we	can	also	think	of	the	regression	error	in	the	score	equation	as	a	source	of
idiosyncratic	risk	for	the	fitted	score	model.	However,	this	error	is	rarely	accounted	for	in
practice.

53	Specifically,	one	does	not	have	to	simulate	in	the	macroeconomic	credit	score	model	we
apply	here.	See	Skoglund	and	Chen	(2015)	for	stress	test	applications	of	the	dynamic
delinquency	models	using	both	state	transition	sampling	and	expanded	Markov	iteration
approaches	to	capture	past	state	dependence.	The	dynamic	delinquency	models	are	an
extension	of	the	macroeconomic	credit	score	model	to	include	past	state	dependency
through	delinquency	state	indicators.

54	Stress	test	regulations	like	EBA	can	also	have	a	risk	weighted	asset	contribution	from	the
defaulted	flow	if	the	regulatory	LGD	parameter	exceeds	the	stressed	PIT	LGD.	However,
for	the	purpose	of	illustration	of	the	behavior	of	the	regulatory	capital	for	the	non-defaulted
stock	over	time	we	set	regulatory	capital	for	the	defaulted	flow	to	zero	exactly	as	we	did	in



the	mortgage	portfolio	risk	analysis	example.	Another	difference	with	the	EBA	stress	test
regulation	in	this	example	is	that	we	use	the	stress	test	PIT	PD	and	PIT	LGD	to	compute	the
regulatory	capital	while	EBA	requires	that	“regulatory	risk	parameters	worsen.”

55	Recall	that	in	our	previous	applications	of	the	mortgage	portfolio	we	analyzed	the	credit
losses,	the	credit	margin	minus	the	losses,	referred	to	as	the	net	credit	loss	of	the	portfolio,
as	well	as	the	Basel	II	regulatory	capital.	The	credit	margin	minus	credit	losses	is	what	we
refer	to	as	the	net	earnings	of	the	portfolio	in	this	scenario	analysis.

56	Recall	that	in	both	the	market	and	credit	risk	context	we	have	used	the	Euler	risk
contribution	divided	by	the	standalone	risk	to	obtain	a	position	or	subportfolio
diversification	index	in	the	context	of	the	portfolio.

57	IAS	39	is	now	replaced	by	IFRS	9.

58	This	enhances	the	portfolio	credit	risk	model	with	cash	flows.	Another	way	to	achieve	the
joint	earnings	and	loss	model	is	to	enhance	the	asset	and	liability	management	system	with
the	credit	models.	However,	in	this	chapter	we	take	the	credit	portfolio	model	expansion
view.

59	Note	that	although	we	have	not	explicitly	considered	prepayment	in	Figure	4.28,	prepayment
can	induce	a	significant	loss	of	contractual	interest	income.	In	contrast,	default	can	induce	a
significant	loss	of	principal	as	well	as	contractual	interest	income.

60	As	an	alternative	to	credit	default	swap	premia	one	can	consider	the	spread	of	floating	rate
notes	in	the	market.	This	is	because	the	portfolio	of	a	floating	rate	note	and	a	credit	default
swap	should	be	risk-free	and	hence	the	floating	rate	note	spread	should	equal	the	swap
premia.

61	See	O'Kane	and	Turnbull	(2003)	for	a	detailed	derivation	of	credit	default	swap	pricing.

62	The	exact	rule	for	allocation	of	cash	flows	to	tranches	is	referred	to	as	a	waterfall.

63	With	the	sophistication	of	credit	derivatives,	banks	can	choose	to	only	transfer	the	credit	risk
to	investors	while	retaining	the	rest	of	the	risks	and	the	actual	cash	flows	of	the	underlying
assets	on	the	balance	sheet.	This	type	of	program	is	often	referred	to	as	a	synthetic
securitization.	In	a	synthetic	structure	the	underlyings	are	usually	credit	derivatives	of	the
assets	where	protection	is	provided	by	the	SPE.	Depending	on	the	structure,	an	investor
may	or	may	not	be	required	to	provide	upfront	investment.

64	However,	there	have	certainly	been	voices	raised	about	the	suitability	of	the	internal
ratings–based	approach	as	a	basis	for	risk-based	capital	charges,	for	example,	the	speech
by	Governor	Daniel	K.	Tarullo	at	the	Federal	Reserve	Bank	of	Chicago	Bank	Structure
Conference,	Chicago,	May	8,	2014.	The	view	put	forward	is	that	defining	risk-based
capital	charges	with	stress	scenarios	is	more	appropriate	given	the	success	of	CCAR.	We
will	return	to	a	discussion	about	firmwide	stress	testing	as	basis	for	capital	charges	in



Chapter	9.



Chapter	5
Counterparty	Credit	Risk
Counterparty	credit	risk	measures	the	replacement	cost	of	a	derivative	contract	should	the
counterparty	default	anytime	during	the	life	term	before	honoring	the	contractual	cash	flows.	In
an	over-the-counter	(OTC)	derivative	transaction	the	mark-to-market	value	is	not	constant,	and
hence	the	credit	exposure	changes	in	response	to	market	factors	at	each	future	date.
Counterparty	credit	risk	is	therefore	measured	as	an	exposure	profile	over	the	remaining	life	of
the	transaction.	The	actual	profile	depends	on	the	assumption	of	market	factors	and	deal
specifics,	such	as	deal-aging.	Since	the	exposure	is	from	a	bilateral	contact,	the	mark	to	market
of	the	exposure	can	be	positive	or	negative.	However,	there	is	only	counterparty	credit	risk	if
the	exposure	is	positive.

Several	exposure	measures	are	used	by	banks	in	practice.	For	example,	the	expected	exposure
profile	is	frequently	used	for	pricing	counterparty	credit	risk	and	in	Basel	regulatory	default
risk	charges.	However,	banks	also	calculate	potential	future	exposures	that	represent	a
maximum	amount	of	exposure	at	a	high	level	of	confidence,	say	 ,	at	any	future	date.	The
collection	of	such	exposure	values	across	time	is	often	referred	to	as	potential	future	exposure
profile	or	peak	exposure	profile	at	a	given	confidence	level.	The	peak	exposure	is	frequently
used	to	manage	counterparty	limits	in	much	the	same	way	as	market	risk	 	limits	are
managed.	In	assessing	the	feasibility	of	a	new	trade	with	a	counterparty	(i.e.,	that	the	trade	is
within	the	peak	exposure	limits	established	by	the	bank),	the	incremental	exposure	from	the
new	trade	is	used	to	assess	the	impact	of	the	trade	pre-deal.	Similarly,	the	marginal	(Euler)
contribution	of	a	deal	to	the	exposure	is	calculated.	The	marginal	contribution	is	used	to	assess
marginal	impact	of	trades	post-deal.	For	a	portfolio	of	derivatives	counterparty	exposure	is
often	mitigated	through	netting	agreements	and	collateral.

When	pricing	OTC	derivatives,	there	is	not	only	the	risk-free	value	of	the	contract	that	needs	to
be	marked	to	market.	The	valuation	should	also	take	into	account	the	risk	of	counterparty
default	by	adjusting	the	risk-free	value	by	the	expected	losses	due	to	counterparty	default.	The
market	value	of	an	OTC	derivative	is	hence	broken	down	into	a	risk-free	component	and	an
expected	loss	term	that	reflects	the	credit	valuation	adjustment	(CVA).	CVA	can	here	be	seen	as
the	cost	of	hedging	the	counterparty	credit	risk	of	a	derivatives	contract.

When	calculating	CVA,	banks	can	either	take	into	account	only	the	counterparty	default	risk
(unilateral	CVA)	or	also	their	own	default	risk	(bilateral	CVA).	In	the	first	case	the	CVA
adjustment	reduces	the	mark-to-market	value	of	the	contract	to	the	bank,	while	in	the	second
case	the	effect	depends	on	both	the	relative	default	probabilities	of	the	counterparties	and	the
specific	exposure	profiles.	The	bilateral	CVA	hence	has	two	components.	The	first	component
is	the	positive	unilateral	CVA	component	(reduces	mark-to-market	value)	based	on	the
counterparty	defaulting;	the	second	component	is	negative	(increases	mark-to-market	value)
based	on	the	bank	defaulting.	Bilateral	CVA	can	be	viewed	as	an	attempt	to	establish	a	fair	net



price	adjustment	between	the	two	counterparties	for	a	derivative	transaction.

Before	the	2007	financial	crisis,	counterparty	credit	risk	was	in	practice	perceived	as	one-way
with	the	largest	institutions	charging	smaller	institutions	and	corporate	treasuries	for
counterparty	credit	risk	in	derivatives	transactions.	However,	the	2007	financial	crisis,	with
the	failure	or	near-failure	of	large	institutions,	has	shattered	the	perception	that	the	larger
institutions	are	“too	big	to	fail.”	Counterparty	credit	risk	is	now	considered	two-way.	Hence,
both	sides	of	the	derivative	transaction	demand	to	be	compensated	for	taking	on	the	other
party's	counterparty	credit	risk.	In	addition,	the	pricing	of	counterparty	credit	risk	has	recently
evolved	from	a	passive	insurance	accounting	practice	to	being	actively	priced	and	risk
managed	through	a	dedicated	centralized	CVA	trading	desk.	The	CVA	desk	performs	two	vital
functions.	First,	it	quotes	CVA	to	traders	and	provides	incremental	CVA	for	trader	pre-deal
decision	support.	The	desk	also	keeps	records	of	historical	CVA	prices	(premiums)	in	case	of
trade	cancellations	and	subsequent	reimbursements	from	the	CVA	desk	to	traders.	Second,	the
CVA	desk	is	a	risk	management	desk	that	manages	centrally	the	counterparty	exposure
transferred	to	the	desk.

In	this	chapter	we	first	introduce	the	CVA	pricing	of	trades	using	a	step-by-step	exposure
simulation	framework	that	fits	well	within	a	bank's	current	exposure	simulation	process.
Calculating	CVA	is	computational	intensive	as	it	involves	pricing	of	typically	long	dated	trades
at	various	points	in	the	future	at	each	market	simulation	path.	Typically,	the	future	time	points	at
which	trades	are	valued	depends	on	the	underlying	characteristic	of	trades	such	as	exact	cash
flow	dates.	It	is	especially	complex	to	capture	collateralized	trades	since	the	collateral	calls
and	returns	need	to	be	calculated	at	the	margin	days.	Due	to	the	complexities	in	calculating
CVA,	market	participants	have	searched	for	simple	formulas	for	CVA.	It	is	therefore	practice	to
calculate	CVA	using	the	assumption	of	independence	between	exposure	and	default.	This
allows	CVA	calculation	as	a	simple	multiplication	post-processing	using	the	default
probability	from	the	credit	system,	the	expected	exposure	profile	from	the	exposure	system,
and	the	discount	curve	from	the	market	system.	However,	market	correlations	between
counterparty	default	probability	and	the	exposure	can	induce	wrong-way	risk	that	needs	to	be
accounted	for,	and	we	consider	a	correlation	model	that	allows	CVA	computation	in	case	of
wrong-way	risk.	The	drawback	is	that	CVA	must	now	be	computed	by	jointly	integrating
default	probability	and	market	exposure	path	by	path.	In	practice	the	exposure	calculation	must
also	take	intoaccount	the	collateral	margining	process	with	frequent	margin	call	and	posting
rules.

After	a	discussion	on	pricing	counterparty	credit	risk	we	move	on	to	consider	the	CVA
distribution	and	CVA	tail	risk.	This	is	important,	both	for	calculating	the	Basel	III	CVA	capital
charge	and	for	the	need	to	understand	CVA	tail	risks	in	general.	While	wrong-way	risk	may
have	a	significant	impact	on	CVA	itself,	it	is	natural	to	expect	that	the	effect	on	the	risk	of	CVA
as	measured,	for	example,	by	 	is	even	greater.	This	is	an	important	consideration	for	the
CVA	desk	as	tail	risks	typically	remain	unhedged	in	practice	and	need	to	bear	capital.

While	our	discussions	in	this	chapter	initially	focus	on	specific	trades'	exposure	profiles	and
CVA,	the	third	section	of	the	chapter	takes	a	portfolio	view	and	analyzes	the	effect	of	netting	on
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the	portfolio	exposure	and	CVA.	In	a	portfolio-setting	exposure,	measures	and	CVA	can	also	be
decomposed	to	trade	contributions	using	the	Euler	allocation	approach.

The	next	topic	in	the	chapter	is	focused	on	some	of	the	recent	developments	in	the	industry	for
pricing	derivatives	and	CVA	calculations.	This	is	the	deviation	from	Interbank	rates	in	risk-
free	discounting,	the	use	of	advanced	approaches	to	calculate	CVA	and	CVA	Greeks,	as	well	as
funding	cost	adjustments	for	derivatives.

We	end	the	chapter	with	a	review	of	the	regulatory	capital	for	counterparty	credit	risk.	With	the
introduction	of	Basel	III	there	are	both	counterparty	default	charges	and	mark-to-market
charges	for	counterparty	exposures.	The	counterparty	default	risk	charges	were	introduced
already	with	Basel	II	while	the	mark-to-market	charges	are	relatively	recent	with	Basel	III.
However,	Basel	III	has	also	been	focused	on	strengthening	the	Basel	II	default	risk	capital
charge	in	that	regulators	now	require	calibration	on	stressed	periods	and	that	banks	must	use
backtesting	techniques	to	validate	their	models.

In	our	analysis	in	this	chapter	we	illustrate	the	concepts	using	sample	exposures	of	plain
interest	rate	swaps	and	cross-currency	swaps.	Swaps	represent	the	bulk	of	bilateral
derivatives	notional	and	the	interest	rate	swaps	exemplify	a	hump-shaped	exposure	profile
while	the	cross-currency	swaps	exemplify	an	increasing	exposure	profile.	The	hump-shaped
exposure	profile	for	the	interest	rate	swap	is	due	to	the	fact	that	as	time	evolves	there	are
fewer	cash	flow	exchanges	left	between	the	parties.	For	the	cross-currency	swap	the	final
foreign	exchange	of	notional	amounts	in	currency	drives	the	majority	of	the	risks.

Counterparty	Pricing	and	Exposure
Market	Standard	Pricing	Metrics
A	loan	granted	by	a	financial	institution	to	a	corporate	carries	the	risk	of	corporate	default	and
loss	of	the	principal	notional	outstanding	on	the	loan.	For	a	loan	the	future	exposure	at	default
is	often	predictable	and	known	with	a	high	degree	of	certainty.	In	contrast,	for	a	simple	fixed-
for-floating	interest	rate	swap	agreement,	the	future	exposure	is	largely	unknown.	The	financial
institution's	future	exposure	in	the	simple	interest	rate	swap	depends	on	the	future	realized
interest	rates.	If	the	financial	institution	is	a	payer	of	the	fixed	leg	and	the	counterparty	is	the
payer	of	the	floating	leg	in	the	swap,	the	financial	institution's	future	exposure	increases	with
future	high	rates	and	decreases	with	future	low	rates.	Hence,	for	a	derivative	such	as	a	swap
the	future	exposure	is	a	random	variable.	Different	paths	of	future	interest	rates	yield	different
exposure	levels	for	the	financial	institution.

If	we	let	 	denote	the	trade	mark-to-market	value	at	time	 	for	a	contract	maturing	at	 ,	we
can	write	the	exposure	as

if	default	occurs.	We	recognize	equation	(5.1)	as	essentially	the	payoff	of	a	call	option	on	the
underlying	market	value,	 ,	with	strike	 ,	conditioned	on	default.	We	are	hence	essentially
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trying	to	price	a	derivative.	The	pricing	of	this	derivative	and	hence	the	counterparty	credit
risk	is	known	as	the	CVA.

Recall	that	in	the	classical	Black	and	Scholes	(1973)	derivative	pricing	the	no-arbitrage
market	price	is	obtained	if	the	expectation	of	the	derivative	payoff	is	taken	under	the	risk-
neutral	measure.1	One	approach	to	price	the	counterparty	credit	risk	is	therefore	to	discount	the
(risk-neutral)	expected	credit	losses	to	today.	The	standard	pricing	formula	is	given	by

where	 	is	an	indicator	function	that	is	 	if	the	default	time	is	 	and	null	otherwise	and	
represents	the	recovery	rate	expected	to	be	received	on	the	outstanding	derivative	claims	at
default.

Setting	 	for	convenience	we	can	now	write

where	 	is	the	survival	function	of	the	counterparty.	Discretization	of	the	time	steps	into	
	where	 	and	 	and	taking	an	expectation	inside	the	summation	we	have

where	 	is	the	default	probability	between	times	 ,	conditional	on	the	survival	up
to	time	 ,	and	 .

Assuming	the	default	probability,	 ,	is	deterministic	and	given,	we	can	further	write

Here,	 ,	denotes	the	expected	exposure	at	time	 	and,	again,	 	is	a	set	of	discrete	time
points	in	the	future	with	 	being	the	maturity	date	of	the	derivative.2	Clearly,	equation	(5.2)
calculates	the	counterparty	default	risk	price	as	an	expected	credit	loss	as	it	weights	the	future
default	probabilities	with	the	future	expected	exposure	profile.	A	natural	question	to	ask	here
is	what	makes	equation	(5.2)	a	price	of	counterparty	credit	risk	as	opposed	to	an	expected	loss
reserve.	One	preliminary	answer	to	that	question	is	that	we	can	view	the	counterparty	default
risk	adjustment	in	equation	(5.2)	to	the	risk-free	derivative	price	as	a	market	price	if	we	can
somehow	extract	it	from	market	prices.	For	example,	for	a	simple	interest	rate	swap	agreement
with	a	counterparty,	we	could:

Extract	the	counterparty	default	probability,	 ,	from	traded	credit	default	swaps	or



counterparty-issued	bond	spreads.

Calculate	the	swap	contract	expected	exposure,	 ,	using	an	interest	rate	model	that	is
calibrated	to	the	current	market.	For	example,	we	could	use	the	well-known	Hull-White
(1990)	no-arbitrage	model	calibrated	to	the	current	market	rates	and	traded	instruments	in
the	market	such	as	swaptions.

Based	on	the	fact	that	we	can	view	CVA	as	a	derivative	price,	it	is	clear	that	pricing	CVA	is
more	difficult	than	pricing	the	swap.	While	the	risk-free	pricing	of	a	swap	depends	only	on
current	market	interest	rates	the	CVA	value	adjustment	of	a	swap	also	depends	on	market
volatility.3	Market	practitioners	therefore	fit	the	volatility	component	of	market	models	of
interest	rates	such	as	the	Hull-White	model	to	traded	instruments	such	as	swaptions.
Calibrating	the	 	inputs	to	the	market	is	referred	to	as	risk-neutral	calibration	and	is	the
main	argument	behind	referring	to	equation	(5.2)	as	a	market	price.	However,	in	practice	it
does	not	necessarily	mean	that	the	bank	can	trade	the	CVA	in	the	market	or	hedge	CVA
completely	using	market	hedge	instruments	at	the	cost	of	CVA.	The	main	reason	is	that	the	CVA
in	equation	(5.2)	depends	on	an	unknown	exposure	profile	and	a	perfect	hedge	requires	the
CDS	notional	to	be	linked	to	the	specific	trade	exposure.4	Such	a	CDS	contract	is	referred	to
as	a	contingent	CDS	and	has	of	course	to	be	negotiated	specifically	with	a	counterparty.	A
CVA	hedge	based	on	a	fixed	notional	market	quoted	CDS	can	be	very	costly	when	it	is	based
on	some	worst-case	exposure	level.	See	Gregory	(2010,	ch.	9)	on	the	hedging	of	CVA	with
CDS	contracts.

Example	of	Swap	CVA
To	illustrate	the	calculation	of	CVA	using	equation	(5.2),	we	consider	an	example	of	a	simple
5-year	maturity	swap	with	current	mark-to-market	value	of	zero.	Table	5.1	displays	the	swap
expected	exposure	profile,	 ,	the	survival	probability	of	the	counterparty,	 ,	and	the
corresponding	incremental	default	probability,	 ,	of	the	counterparty	at	discrete	times	

.	These	discrete	times	correspond	to	a	time	grid	interval	of	4	months	during	the	5-year
term	of	the	swap.	The	default	probability,	 ,	in	Table	5.1	is	simply	defined	as



Table	5.1	Sample	CVA	for	a	Swap

Time Expected	exposure Survival	probability Default	probability
0 1.0000 0
8,782 0.9730 0.0270
11,968 0.9467 0.0263
14,083 0.9211 0.0256
15,569 0.8963 0.0249
16,597 0.8721 0.0242
17,248 0.8485 0.0236
17,565 0.8256 0.0229
17,565 0.8033 0.0223
17,248 0.7816 0.0217
16,597 0.7605 0.0211
15,569 0.7400 0.0205
14,083 0.7200 0.0200
11,968 0.7005 0.0194
8,782 0.6816 0.0189
0 0.6632 0.0184

The	swap	notional	is	assumed	to	be	1,000,000	units	of	currency.	Since	our	example	is	a	swap,
the	expected	exposure	profile	in	Table	5.1	displays	the	well-known	hump-shaped	profile.	This
is	due	to	the	time	trade-off	between	increasing	interest	rate	risk	over	time	and	decreasing
number	of	swap	payments	left.

Using	the	expected	exposure,	 ,	and	the	default	probability,	 ,	we	now	calculate	
	using	equation	(5.2).	We	obtain	the	CVA	in	units	of	currency	as	4,625.82,	or,	expressed	in

%	of	swap	notional,	approximately	0.462%.	This	is	hence	the	up-front	fee	the	trader	is	charged
by	the	CVA	desk.	Alternatively,	the	CVA	charge	can	be	converted	to	a	running	spread	charge	on
the	receiving	leg	if	the	CVA	costs	are	passed	on	to	the	counterparty.5

In	our	example,	we	already	have	a	survival	probability	for	the	counterparty.	However,	as	we
discussed	above,	the	survival	probability	may	be	inferred	from	market-traded	credit	default
swaps.	Recall	from	equation	(4.32)	that	we	can	write	the	survival	probability	as

where	 	is	the	hazard	rate.	If	the	hazard	rate	is	constant	over	time,	we	have	that
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since	the	credit	default	swap	premia	and	bond	spread,	 ,	is	approximately	 .	See	equation
(4.1).	Hence,	assuming	there	exists	a	market	quoted	5-year	credit	default	swap	premia	at	500
basis	points	and	a	recovery	rate	of	40%	we	have	the	annualized	hazard	rate,	 ,	as

With	this	hazard	rate	we	can	now	obtain	counterparty	survival	probabilities	using	equation
(5.3).	We	obtain	that

with	 	the	daycount	function	between	dates	 .	This	is	actually	the	method	we
used	to	derive	the	survival	probabilities	in	Table	5.1.	That	is,	we	started	with	a	counterparty
quoted	5-year	credit	default	swap	premia	at	500	basis	points	and	a	recovery	rate	of	40%	to
derive	each	survival	probability,	 ,	in	Table	5.1.

We	can	also	analyze	the	sensitivity	of	the	 	to	changes	in	the	counterparty	default	risk.	This
is	easy	since	we	have	assumed	that	the	counterparty	default	probability	is	deterministic	and
hence	independent	of	exposure.	We	can	hence	hold	expected	exposure	constant	and	only	shift
the	hazard	rate.	For	example,	a	1-basis-point	upward	shift	of	the	counterparty	is	applied	to	the
hazard	rate	such	that	 .	We	can	then	use	equation	(5.3)	to	derive	the	new	survival
probabilities	for	the	counterparty	and	subsequently	the	new	CVA.	Table	5.2	displays	the	
obtained	and	the	credit	 	delta	compared	to	base	when	perturbing	the	current	counterparty
credit	default	swap	premia	of	500	basis	points	with	1,	10,	and	100-basis-points	upward	and
downward	shifts.	The	table	shows,	for	example,	that	the	CVA	impact	of	a	100-basis	point
increase	of	the	counterparty	CDS	premia	is	approximately	a	16%	higher	CVA.

Table	5.2	Sample	CVA	Swap	Sensitivity	to	Counterparty	Default	Risk

Credit	sensitivity CVA CVA	credit	delta
+100	basis	points 5,354.04 728.22
+10	basis	points 4,701.24 75.42
+1	basis	point 4,633.39 7.57
0	basis	points 4,625.82 0
	basis	point 4,618.25 −7.57
	basis	points 4,549.81 −76.01
	basis	points 3,838.32 −787.5

In	our	example	we	have	assumed	a	constant	hazard	rate	and	the	existence	of	a	single	5-year
CDS	contract	traded	for	the	counterparty.	However,	in	practice	the	exact	term	structure	of
credit	risk	and	the	CVA	credit	deltas	(and	possibly	second-order	gammas)	for	the	different
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CDS	tenors	are	key	in	the	CVA	desk's	dynamic	hedging	of	the	CVA	credit	risk	component.	Still,
in	case	of	assuming	independence	between	the	exposure	and	credit	component	in	CVA,	such
credit	deltas	are	trivial	to	compute	by	simply	bumping	the	market	CDS	premias	and	then
recomputing	the	survival	and	default	probabilities	using	equation	(5.3).

Analytical	CVA	for	Swaps
The	swap	expected	exposure,	 ,	in	Table	5.1	was	given	in	our	example.	However,	in
principle	it	can	be	derived	analytically	in	terms	of	swaption	prices.	Sorensen	and	Bollier
(1994)	show	that	the	expected	swap	exposure	at	time	points	 	can	be	expressed	as	
maturity	European	swaptions	on	the	underlying	swap	with	maturity	 .	This	is	because	at
each	 	the	counterparty	has	the	option	to	default—hence	canceling	the	swap	contract	with
a	swaption.	Of	course,	for	a	fixed	rate	payer	counterparty	the	swaptions	are	receiver
swaptions	as	this	cancels	the	fixed	rate	leg	of	the	swap.	Similarly,	for	a	counterparty	receiving
the	fixed	leg	the	canceling	swaption	is	a	payer	swaption.	Using	the	Sorensen	and	Bollier
expected	swap	exposure	we	can	therefore	write	swap	CVA	as

where	 	is	the	value	of	a	reverse	swap	position	European	swaption	with	option
maturity	at	 	and	swap	maturity	at	 .	We	can	hence	think	of	equation	(5.4)	as	the	value	of	a
credit	default	swap	where	the	protection	leg	of	the	credit	default	swap	contract	has	a	payment
conditional	on	default	that	varies	over	time.	Specifically,	the	payment	leg	notional	is	the	market
value	of	the	swaptions.	As	we	have	mentioned	before	such	a	credit	default	swap	contract	is
referred	to	as	a	contingent	credit	default	swap.	Equation	(5.4)	also	makes	clear	again	that	to
price	CVA	we	cannot	use	the	simple	credit	risk	discounting	approach	that	we	used	to	price	the
issuer	credit	risk	in	bonds	in	the	previous	chapter	(see	the	pricing	equation	(4.1)).

Bilateral	Credit	Risk	and	Institution	Default
While	CVA	is	recognized	as	the	price	of	counterparty	credit	risk,	practitioners	usually	also
consider	an	institution's	own	default	risk	when	pricing	bilateral	counterparty	credit	risk.	The
adjusted	CVA	(ACVA)	considers	an	institution's	own	default	risk	in	CVA	such	that

where	 	is	the	institution's	survival	probability.	In	general,	the	incorporation	of	the
institution's	survival	rate	can	be	seen	as	naturally	hedging	CVA	profit-and-loss	volatility	in
case	of	a	general	increase	in	default	rates.	This	is	because	the	institution's	survival	probability,

,	may	be	lower	at	the	exact	time	when	counterparty	default	rates,	 ,	are	high.
Although	we	have	that	 ,	the	natural	risk	mitigating	effect	relies	on	a
scenario	with	common	behavior	in	credit	quality.

The	so-called	bilateral	CVA	(BCVA)	is	seen	as	a	fair	price	agreement	for	the	net	counterparty
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credit	risk	between	two	parties,

where	 	is	the	negative	exposure,	that	is,	the	counterparty	view	on	the
exposure,	 	is	the	institution's	incremental	default	probability,	and	 	is	the
counterparty	survival	function.	The	second	component	in	equation	(5.5)	is	referred	to	as	debt
value	adjustment	(DVA)	and	captures	the	counterparty	view	on	ACVA.	We	therefore	have	that

This	introduces	a	second	potential	hedge	component	to	CVA.	In	case	of	a	general	market
default	rate	increase	the	institution	default	probability,	 ,	is	high	when	the	counterparty
survival	probability,	 ,	is	low.

The	use	of	DVA	in	practice	has	been	severely	criticized.	One	of	the	main	concerns	is	that	to
monetize	DVA	an	institution	must	practically	default.	See	Gregory	(2009)	for	an	extensive
discussion.	On	the	other	hand,	DVA	is	needed	for	fair	bilateral	pricing.	That	is,	it	is	the	net	fair
price	adjustment	that	counterparties	can	potentially	agree	on	as	it	captures	the	net	CVA.

After	the	recent	credit	crisis,	with	the	failure	or	near-failure	of	large	institutions	counterparty
credit	risk	is	now	considered	two-way.	Hence	both	sides	of	the	derivative	transaction	demand
to	be	compensated	for	taking	on	the	other	party's	counterparty	credit	risk,	which	creates	a	need
for	BCVA.	Even	accountancy	rules	permit	use	of	DVA	(e.g.,	US	GAAP)	where	some
adjustment	for	own	default	is	required.	In	Europe,	IAS	39	is	compatible	with	a	DVA	term	but
not	a	requirement.	While	BCVA	is	a	fair	net	price	adjustment	to	the	risk-free	value	CVA	is	still
to	be	considered	the	institution's	measure	of	counterparty	credit	risk	that	needs	to	be	hedged.

Example	of	Swap	CVA	Continued
We	now	continue	our	swap	example	in	Table	5.1	to	also	compute	ACVA	and	BCVA.	Table	5.3
displays	the	CVA,	ACVA,	and	BCVA	under	different	assumptions	for	the	counterparty	and
institution's	survival	probability	(CDS	premia)	using	the	expected	exposure	in	Table	5.1	for
both	counterparties	(i.e.,	we	assume	symmetry	in	expected	exposure,	 ,	and	expected
negative	exposure,	 ).	The	different	CDS	premia	assumed	for	the	counterparty	and
institution	are	300,	500,	800,	and	1,000	basis	points.	As	before	we	assume	there	is	only	one
traded	CDS	instrument	at	the	5-year	maturity	and	that	the	hazard	rate	is	constant	over	time.	Of
course,	in	case	of	symmetric	expected	exposures,	the	BCVA	when	the	institution	and
counterparty	have	the	same	credit	default	swap	premia	is	null.	This	is	because	the	ACVA	of
both	the	institution	and	the	counterparty	are	equal.	However,	clearly,	both	parties	are	taking
counterparty	credit	risk.



Table	5.3	Sample	CVA,	ACVA,	and	BCVA	for	a	Swap

Counterparty	CDS	(bps) Institution	CDS	(bps) CVA ACVA BCVA
500 500 4,625.82 3,823.73 0
300 500 2,987.02 2,459.34 −1,662.14
100 500 1,073.28 880.17 −3,569.27
800 500 6,649.09 5,528.62 2,101.66
1000 500 7,753.59 6,472.09 3,280.34
500 300 4,625.82 4,121.48 1,662.14
500 100 4,625.82 4,449.44 3,569.27
500 800 4,625.82 3,426.96 −2,101.66
500 1000 4,625.82 3,191.75 −3,280.34

Table	5.3	also	displays	CVA,	ACVA,	and	BCVA	when	there	is	asymmetry	in	the	credit	default
swap	premia	between	the	counterparty	and	the	institution.	In	the	asymmetric	cases	the	better
credit	quality	counterparty	is	generally	requiring	the	counterparty	to	cover	for	the	asymmetry	as
measured	through	BCVA.	Realistically,	the	better	credit	quality	counterparty	can	ask	the	other
counterparty	to	cover	for	this	asymmetry	in	a	negotiation	of	price.	It	is	important	to	realize	that
even	after	a	net	BCVA	transfer,	typically	the	majority	of	the	CVA	component	still	remains.	For
example,	in	Table	5.3	when	the	counterparty	credit	default	swap	premia	is	800	basis	points
and	the	institution	credit	default	swap	premia	is	500	basis	points,	the	swap	CVA	is	6,649.09
units	of	currency.	This	is	while	the	fair	net	transfer	(BCVA)	is	2,101.66	units	of	currency.
Hence,	for	the	institution,	a	residual	counterparty	credit	risk	price	(CVA)	of	4,547.43	still
remains.	In	case	the	institution	is	of	lower	credit	quality	than	the	counterparty	it	may	end	up	as
a	net	payer	of	BCVA.	For	example,	from	Table	5.3,	if	counterparty	credit	default	swap	premia
is	500	basis	points	and	the	institution	credit	default	swap	premia	is	1,000	basis	points,	then	the
institution	is	a	net	payer	of	3,280.34	units	of	currency.	Still,	the	institution	faces	a	counterparty
credit	risk	price	(CVA)	of	4,625.82	units	of	currency.

Using	Table	5.3	we	can	also	analyze	the	natural	hedge	effects	of	ACVA	and	BCVA.	By
construction	we	have	of	course	that

Focusing	on	ACVA	initially,	we	can	investigate	the	relative	effect	of	a	100	bps	upward	shift	of
both	the	counterparty	and	institution	credit	default	swap	premias	when	they	both	have	initially
500	bps	credit	default	swappremias.	In	this	case	we	obtain	the	ACVA	as	4,275.39	units	of
currency.	The	corresponding	CVA	is	now	5,354.04	units	of	currency.	The	percentage	change	in
CVA	is	hence	approximately	15.7%	(see	Table	5.3	for	the	base	CVA	and	ACVA	when	both	the
counterparty	and	institution	credit	default	swap	premias	are	500	basis	points).	For	ACVA	the
corresponding	change	is	11.8%.	Hence,	the	simultaneous	increase	in	institution	and
counterparty	credit	default	swap	premias	is	hedged	using	ACVA.	However,	keeping	the



institution's	credit	default	swap	premia	constant	at	500	basis	points	when	the	counterparty
credit	default	swap	premia	increases	by	100	basis	points	we	obtain	ACVA	as	4,434.40	units	of
currency,	giving	a	15.9%	change	in	ACVA.	Hence,	the	hedging	effect	of	ACVA	derives	from
common	behavior	of	the	counterparty	and	institution's	credit	default	swap	premias	as	we
remarked	above.
Focusing	on	BCVA	it	introduces	a	second	hedge	component	in	the	DVA	term	due	to	the
institution's	default	probability	and	the	counterparty	survival	probability.	Consider	the	case
when	initially	the	counterparty	credit	default	swap	premia	is	500	bps	and	the	institution's	is
300	basis	points.	From	Table	5.3	we	obtain	the	BCVA	as	1,662.14	units	of	currency.	With	a
100-basis-points	upward	shift	of	both	the	counterparty	and	institution's	credit	default	swap
premia	we	now	obtain	the	BCVA	as	1,550.53	units	of	currency.	This	is	hence	a	reduction	in
BCVA	of	approximately	7%.	On	the	other	hand,	with	a	100	basis	points	downward	shift	we
obtain	BCVA	as	1,784.61	units	of	currency	which	is	an	increase	of	approximately	7%.
Compared	to	the	corresponding	percentage	shifts	of	ACVA	of	11.6%	and	 	respectively	the
BCVA	changes	are	smaller	and	hence	further	hedge	changes	in	credit	quality.

It	is	noticeable	here	that	the	direction	of	change	is	different	with	BCVA	and	ACVA.	To
understand	this	note	that	we	can	write	BCVA	as	the	ACVA	from	the	institution	point	of	view
minus	the	ACVA	from	the	counterparty	point	of	view	(i.e.,	DVA).	The	ACVA	from	the
institution	perspective	goes	from	4,121.48	to	4,601.11	with	a	100-basis-point	increase	in
credit	default	swap	premias.	The	corresponding	ACVA	from	the	counterparty	view	goes	from
2,459.34	to	3,050.58.	Hence,	the	ACVA	from	the	counterparty	view	increases	relatively	more
than	the	increase	in	the	ACVA	from	the	institution's	point	of	view.	This	is	of	course	due	to	the
relatively	larger	actual	percentage	increase	in	credit	risk	for	the	institution.	In	the	case	of	the
ACVA	for	the	institution	the	survival	hedge	from	the	decrease	in	the	survival	probability	of	the
institution	is	less	than	perfect	and	hence	ACVA	still	increases.	For	the	counterparty	ACVA	its
survival	hedge	is	much	less	(in	percent	change	in	credit	quality)	and	hence	the	institution
default	(counterparty	view	on	CVA)	effect	is	much	higher.

Pricing	CVA	in	Practice
If	one	considers	CVA	the	fair	price	of	counterparty	credit	risk,	then	naturally	traders'	profit	and
loss	should	take	into	account	the	CVA	to	avoid	selective	trading	with	lower	quality
counterparties.	However,	in	reality	traders	may	find	a	challenge	in	actually	pricing	CVA	into
trades	with	counterparties	that	also	want	to	be	compensated	for	their	counterparty	credit	risk.
Trades	between	banks	and	with	approximate	symmetric	positive	and	negative	exposure
profiles	may	yield	a	BCVA	close	to	zero.6	Still,	the	trader	needs	to	pay	the	CVA.	If	this	cost
cannot	be	passed	on	to	the	counterparty,	then	it	must	come	from	the	existing	premiums,	reducing
profitability.	In	addition,	there	are	other	risk	charges	that	need	to	be	passed	on	to	the	traders'
profit	and	loss.	This	includes	capital	costs	and,	potentially,	funding	costs.	This	raises	the
question	of	how	CVA	can	be	reduced	significantly	for	trades—that	is,	reduce	the	counterparty
credit	risk.	There	are	several	possibilities	including:

One	can	hedge	CVA.	However,	the	hedging	of	CVA	is	not	an	easy	task	and	also	induces



hedge	costs	that	replace	the	CVA	costs.	The	complexity	inherent	in	hedging	CVA	is	also	the
main	reason	for	banks	to	centralize	CVA	hedging	in	a	CVA	desk.

One	can	reduce	counterparty	exposure	significantly	by	entering	into	collateral	agreements
that	require	frequent	counterparty	posting	of	collateral	by	the	counterparty,	for	example,	in
cash	currency	of	the	trade.	However,	this	comes	at	the	cost	of	operationalizing	collateral
management	with	monitoring	of	counterparty	exposures,	making	collateral	calls,	and	so	on.
However,	even	with	perfect	collateralization	of	the	exposure	there	is	still	residual	risk	of
exposure	increases	in	the	grace	period	between	last	collateral	call	and	the	ultimate
counterparty	default	event.	In	addition,	if	the	collateral	agreement	is	a	two-way	agreement
such	that	the	institution	also	has	to	post,	then	the	institution	faces	a	funding	liquidity	risk—
potentially	having	to	fund	large	amounts	of	collateral	when	negative	exposure	increases
significantly.

One	can	move	the	trade	through	a	central	clearing	counterparty.	However,	this	can	require
frequent	posting	requirements	analogous	to	collateralized	trades.	In	addition,	there	may	be
additional	responsibilities	such	as	responsibility	to	provide	general	liquidity	support	to	the
central	clearing	entity	if	needed,	introducing	potentially	even	more	funding	liquidity	risk
than	in	bilateral	collateralized	trades.

Trades	with	different	types	of	counterparties	may	also	decide	which	of	the	above	approaches
are	possible	for	the	institution.	For	example,	when	the	counterparty	is	a	corporate	treasury
rather	than	another	bank,	then	it	is	unlikely	they	will	be	able	to	support	operationally	collateral
agreements	with	frequent	margining.	It	is	also	unlikely	that	the	corporate	treasury	will	have	the
possibility	to	move	the	trade	through	a	central	clearing	counterparty	directly.	Hence,	in	this
case	the	institution	can	choose	to	hedge	CVA.	When	the	counterparty	is	another	bank	it	is	likely
that	the	primary	CVA	reduction	is	based	on	netting	and	collateralization	with	frequent
margining.	The	decision	for	the	institution	to	move	certain	(supported)	trades	to	a	central
clearing	counterparty	versus	bilateral	with	collateralization	can	be	quite	complex.	It	is	a
function	of	both	any	current	capital	requirement	reliefs	as	well	as	taking	into	account
uncertainty	in	potential	future	liquidity	support.

Assessment	of	Counterparty	Default	Probability
The	counterparty	default	probability	together	with	the	exposure	are	the	two	central	components
of	CVA	in	equation	(5.2).7	In	practice	the	market	implied	default	probability	can	be	derived
from:

1.	 Market	quoted	credit	default	swap	premiums	for	the	counterparty

2.	 Market	quoted	bond	spreads	for	the	counterparty

We	recall	from	the	portfolio	credit	risk	chapter	that	there	is	a	theoretical	relationship	between
credit	default	swap	premium	and	bond	spreads.	Specifically,	a	credit-risky	bond	with	credit
spread	 	should	have	a	credit	default	swap	premium	approximately	 	as	well.	This	is	because
the	fully	hedged	portfolio	of	the	credit-risky	bond	and	the	credit	default	swap	should	earn	the
risk-free	rate.
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If	no	counterparty-specific	information	on	market	implied	default	probability	is	available,	one
has	to	resort	to	approximations.	This	is	usually	referred	to	as	a	mapping	procedure	where	the
counterparty	characteristics	such	as	external	rating	and	specific	industry	are	used	to	map	the
counterparty	to	similar	counterparties	with	market	implied	default	probabilities	available.	If
no	external	rating	is	available,	one	can	map	an	internal	rating	assignment	to	an	approximately
equivalent	external	rating.	Figure	5.1	illustrates	the	typical	process	to	obtain	counterparty
default	probabilities.

Figure	5.1	Obtaining	Default	Probabilities	of	Counterparties

Using	market	quoted	credit	default	swap	premias,	at	each	term,	the	premia	is	converted	to
hazard	rates,	 ,	by	bootstrapping	of	the	credit	default	swap	price.	That	is,	by	the	inversion	of
hazard	rates	from	quoted	credit	default	swap	premia.	Such	an	inversion	uses	numerical
procedures	on	the	credit	default	swap	pricing	function	(see	equation	(4.75)).	We	refer	the
reader	to	O'Kane	(2008,	ch.	7)	and	Castillaci	(2008)	on	the	numerical	bootstrapping	of	credit
default	swap	premiums.

Assuming	we	have	assigned	a	time	grid	of	 	discrete	time	points	in	equation	(5.2)	we
can	estimate	the	incremental	default	probability,	 ,	using	piecewise	linear	interpolation
of	the	bootstrapped	hazard	rate.	Specifically,	to	estimate	the	incremental	default	probability,	

,	we	use

Here	 	is	the	survival	function	up	to	 ,	 	is	the	hazard	rate	at	 	and	 	is	the
daycount	between	times	 .



Example	Calculation	of	Incremental	Default	Probabilities
As	a	concrete	numerical	example	of	how	incremental	default	probabilities	are	calculated
assume	the	market	implied	hazard	rate,	 ,	is	available	at	maturity	points	of	0.5	years,	1	year,	3
years,	and	5	years	and	denoted	 ,	 ,	 ,	and	 ,	respectively.	That	is,	we	assume	that	traded
CDS	instruments	on	the	counterparty	exist	at	these	maturity	points.	We	also	assume	that	a	CVA
calculation	grid	of	 	yearly	time	points	is	used	up	to	an	assumed	trade	maturity	point
of	5	years.	Using	the	hazard	rates,	for	the	first	year	we	obtain

such	that	we	use	the	market	implied	hazard	rate	at	0.5	years	and	1	year.	This	is	because	we
have	a	yearly	time	grid	for	CVA	default	probabilities	and	a	more	granular	observation	of
hazard	rates.	For	the	second	year,

since	we	use	right	endpoint	interpolation	of	the	hazard	rate	to	find	the	relevant	hazard	rate.
Similarly,	for	year	3,

Finally,	for	years	4	and	5	we	obtain,	respectively,

and

Hence,	again	we	use	right	endpoint	interpolation	of	the	hazard	rate.

Market	Default	Rates	or	Historical	Default	Rates?
It	is	natural	to	ask	why	the	counterparty	default	probability	necessarily	should	be	extracted
from	market	and	not	be	a	simple	historical	default	probability.	The	simple	answer	is	that
regulators	(and	today	most	large	banks)	view	CVA	as	a	market	price	rather	than	a	loss	reserve.
Hence,	the	relevant	measure	of	default	risk	is	market	based.	As	we	discussed	in	the	context	of
portfolio	credit	risk	and	specifically	market	pricing	of	corporate	bonds,	in	practice	quoted
bond	credit	spreads	(and	credit	default	swap	premiums)	are	due	to	not	only	default	risk	but
also	other	components	such	as	liquidity	risk.	As	one	example	study	we	quoted	Manning



(2004),	who	finds	that	only	8%–11%	of	the	variability	in	default	rates	for	the	top	investment
grades	can	explain	the	variability	in	credit	spreads.	In	addition	market	implied	default	risk	can
be	quite	volatile	with	significant	jumps	in	quotes.	Hence,	using	market	implied	default	rates	is
a	concern	for	institutions	that	do	not	want	to	take	a	mark-to-market	approach	to	CVA	as	it
essentially	forces	them	to	institute	CVA	hedging	to	reduce	the	market	volatility.	On	the	other
hand,	this	is	the	objective	of	regulators	with	Basel	III,	that	is,	going	forward,	to	create	strong
incentives	for	banks	to	mitigate	the	profit-and-loss	volatility	in	counterparty	default	risk,
avoiding	the	large	market	losses	observed	during	the	2007	crisis.	However,	in	times	of	stress
many	banks	may	face	the	need	to	hedge	or	re-hedge	at	exactly	the	same	time	potentially	driving
hedge	costs	significantly	upward.	Another	concern	with	hedging	CVA	profit-and-loss	volatility
is	that	in	practice,	when	the	counterparty	is	a	smaller	institution	or	corporate,	there	is	typically
no	direct	hedge	market	available	and	the	bank	has	to	resort	to	proxy	hedges	such	as	iTraxx	and
CDX	indices.	Such	proxy	hedges	are	only	given	partial	credit	by	regulators.

Exposure	Simulation	Framework	for	CVA
In	practice,	equation	(5.2)	is	usually	too	complex	to	evaluate	analytically.	Exceptions	include
Sorensen	and	Bollier	(1994),	who	express	plain	interest	rate	swap	CVA	analytically	in	terms
of	swaptions.	However,	analytical	formulas	typically	rely	on	simple	exposures	with	no	further
complications	such	as	netting,	wrong-way	risk,	and	collateral	while	in	practice	these
components	are	essential	to	understanding	CVA.

Looking	at	equation	(5.2),	an	obvious	method	to	calculate	CVA	is	to	simulate	the	possible
mark-to-market	values	of	the	contract	at	time	points,	 ,	and	then	apply	an	exposure
calculation	to	obtain	expected	exposure,	 .	Finally,	we	would	multiply	expected
exposure	by	the	counterparty	default	probability	to	obtain	CVA.	This	approach	also	falls
naturally	into	a	bank's	existing	exposure	system	for	Basel	II	counterparty	exposure	capital
calculations	as	the	work	of	calculating	exposures	has	already	been	done	in	this	context.	Using
this	exposure	simulation	framework	for	CVA,	the	step-by-step	process	followed	is:

1.	 Calibrate	and	simulate	 	market	scenarios,	from	relevant	interest	rate,	foreign
exchange	models,	and	so	on,	at	time	points,	 .

2.	 Price	the	trade	under	the	 	market	scenarios,	taking	into	account	the	aging	of	the
contract.	This	gives	a	pricing	array	for	a	contract	as	 .

3.	 Calculate	the	expected	exposure,	 ,	at	each	 	as	the	empirical	average	of	
	from	the	simulation.

4.	 Obtain	the	CVA	by	aggregating	expected	exposure,	 ,	and	the	default	probability,	
,	over	time	as	in	equation	(5.2),

Note	that	in	this	framework	computations	are	done	along	all	simulated	paths	going	forward	in
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time.	A	number	of	Monte	Carlo	scenarios	are	generated	for	market	risk	factors	that	impact	the
trade	valuation	at	discrete	time	steps.	The	contract	is	valued	at	every	time	step	along	each
simulated	path,	from	which	the	exposure	profile	is	subsequently	calculated.	See	also
Canabarro	and	Duffie	(2003)	and	Pykthin	and	Zhu	(2007)	on	this	exposure	simulation
framework	for	CVA.	We	also	note	here	that	when	choosing	the	number	of	market	scenarios	

	for	CVA	in	the	above	process	it	is	useful	to	recall	that	we	are	actually	estimating	an
expectation	and	not	a	tail	risk.	Therefore,	simulation	samples	in	the	order	of	5,000–10,000	are
reasonable	in	practice	for	most	deals.

DVA	and	Bilateral	CVA
We	can	also	enhance	the	above	process	slightly	to	also	calculate	DVA.	Specifically,	in	step	3
we	then	also	need	to	calculate	the	negative	expected	exposure,	 ,	at	each	 	as	the
empirical	average	of	 .	Subsequently,	in	step	4,	we	can	now	also	obtain	the	DVA
by	aggregating	the	negative	expected	exposure,	 ,	and	the	institution	default	probability,	

,	and	weighting	by	the	counterparty	survival	probability,	 ,	over	time.	To
obtain	the	bilateral	CVA	as	ACVA	minus	DVA	we	of	course	also	have	to	weight	the	CVA	in
step	4	above	with	the	institution	survival	probability,	 .

Market	Scenarios	and	Market	Models
While	the	above	process	is	simple	in	principle	there	are	a	few	points	worth	noting.	First,	we
established	above	that	the	default	probabilities	used,	 	and	 ,	should	be	market
based.	Does	the	same	reasoning	apply	to	the	market	scenarios?	Again,	this	depends	on	the
hedging	view.	For	an	interest	rate	swap	the	exposure	depends	on	both	the	current	term	structure
of	interest	rates	and	the	volatility.	Taking	a	market	view	it	therefore	seems	natural	to	fit	the
volatility	component	of	market	models	of	interest	rates	to	traded	instruments	such	as
swaptions.	In	practice	the	Hull-White	model	is	often	used,	where

Here	 	is	the	Wiener	process,	the	parameter	 	characterizes	the	mean	reversion	rate,	 	is
the	instantaneous	volatility	of	the	short-rate	model,	and	 	is	calibrated	to	the	current	term
structure	of	interest	rates.	Specifically,

with	 	the	(instantaneous)	forward	curve	and	 	its	derivative.	Bond	prices	are	analytic	in
the	Hull-White	model.	See	Hull	(2006,	ch.	28).	Hence,	from	the	short-rate,	 ,	in	equation
(5.7)	we	can	derive	the	full	term	structure	of	interest	rates.	Specifically,	we	have	the	Hull-
White	zero-coupon	bond	price,	 ,	as

with
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where	 ,	 	is	the	daycount	convention,	and	 	is	the	implied
forward	rate	from	the	spot	zero	curve.	The	complete	zero-coupon	rate	term-structure,	 ,
for	zero	rate	maturity	 	at	time	 	can	now	be	obtained	from	the	simulated	short-rate,	 ,	at	 	as

The	simulation	of	the	Hull-White	short-rate	from	equation	(5.7)	requires	the	calculation	of	
from	the	instantaneous	forward	curve,	 ,	and	its	derivative,	 ,	as	in	equation	(5.8).	It	also
requires	parameters	for	the	mean	reversion	rate,	 ,	and	the	volatility,	 .	When	the	model
parameters	are	calibrated	to	market	prices	the	focus	is	on	finding	parameters	 ,	 	that
minimize	the	squared	or	absolute	differences	between	observed	market	prices	and	Hull-White
model	prices.	For	example,	European	swaptions	and	caps	may	be	used	in	the	calibration.	For
both	European	swaptions	and	caps	the	market	price	is	quoted	using	the	analytical	Black	(1976)
model.	However,	both	caps	and	European	swaption	prices	are	analytical	with	the	Hull-White
model	as	well.8

For	an	interest	rate	swap	contract	the	choice	of	calibrating	instruments	is	naturally	European
swaptions.	This	is	because	of	the	Sorensen	and	Bollier	(1994)	swap	CVA	formula	in	equation
(5.4),	which	expresses	swap	CVA	as	a	function	of	 	option	maturity	reverse	swap	position
European	swaptions	on	the	underlying	swap	with	maturity	 .

Example	Hull-White	Calibration	and	Simulation
We	calibrate	the	Hull-White	model	volatility,	 ,	using	European	receiver	swaption	market
quotes	for	the	purpose	of	calculating	CVA	for	a	10-year	maturity	payer	swap.	In	the	calibration
we	hold	fixed	 	at	 	and	obtain	a	global	best	fit	Hull-White	volatility,	 .	Table	5.4	displays
the	market	available	receiver	swaptions	option	maturity,	swap	maturity,	and	market	quotes	of
volatility	and	the	market	Black	model	price	based	on	the	market	volatility	quote.	Clearly,	to	be
consistent	with	the	Sorensen	and	Bollier	(1994)	swap	CVA,	and	the	fact	that	we	assume	that
the	Hull-White	model	volatility,	 ,	is	fixed	over	time,	we	should	choose	receiver	swaptions
where	the	sum	of	option	maturity	and	swap	maturity	is	10	years.	In	our	example	there	are	three
liquid	swaption	quotes	in	the	market	that	we	use	to	calibrate	a	global	best	fit	volatility.	They
are	the	receiver	swaptions	with	option	maturity	3,	4,	5	years	and	corresponding	swap	maturity
7,	6,	5	years.	The	market	quotes	for	the	three	European	receiver	swaptions	are	at	the	money
with	the	forward	swap	rate	as	the	strike.	The	swaptions	strike	rate	is	also	displayed	in	Table
5.4	and	the	underlying	swaps	for	the	swaptions	are	assumed	to	have	semiannual	payments	and
principal	unity.



Table	5.4	Black	Model	Market	Quotes	for	European	Receiver	Swaption	and	Hull-White
Prices

Option
maturity

Swap
maturity

Market
volatility

Market	Black
price

Strike Hull-White
price

5	years 5	years 0.332995 0.03557 0.027328 0.03467
4	years 6	years 0.34735 0.03745 0.025307 0.03687
3	years 7	years 0.36545 0.03681 0.023066 0.03820

To	obtain	the	best	fit	Hull-White	volatility,	 ,	we	minimize	the	squared	difference	between	the
Black	market	price	and	the	Hull-White	price	for	our	 	market	quotes.	That	is,	we	solve
numerically	for

where	 	is	the	Black	market	value	in	Table	5.4	and	 	is	the	Hull-White	market	price	as
a	function	of	the	Hull-White	volatility.	Through	the	numerical	solve	we	obtain	a	calibrated
Hull-White	volatility	of	 .

Table	5.4	displays	the	corresponding	best	replicating	Hull-White	price	using	the	solved
volatility.	Clearly,	with	a	best	global	fit	Hull-White	volatility,	 ,	to	the	market	prices	none	of
the	replicating	Hull-White	prices	match	the	market	contracts	exactly.	A	better	contract-by-
contract	fit	can	of	course	be	obtained	if	 	is	allowed	to	be	time	dependent.	We	refer	to
Gurrieri,	Nakabayashi,	and	Wong	(2009)	for	more	examples	on	calibrating	the	Hull-White
model	to	market	prices.

Once	we	have	obtained	the	Hull-White	model	parameters	 ,	 	we	can	simulate	the	short-rate
model	using	equation	(5.7).	The	simulation	of	the	short-rate	requires	that	we	also	fit	 	in
equation	(5.8)	to	the	current	term-structure.	This	fit	is	based	on	the	current	zero	curve.	Table
5.5	and	Figure	5.2	display	the	current	market	zero	curve	quotes	and	the	instantaneous	forward
curve,	 ,	built	from	the	zero	quotes.	The	zero	curve	in	Table	5.5	was	also	the	zero	curve	we
used	for	pricing	swaptions	in	the	Black	model	and	the	Hull-White	model.



Table	5.5	Market	Zero	Rate	and	Instantaneous	Forward	Rate	Term	Structure

Curve	tenor Zero	rate Instantaneous	forward	rate
1	month 0.2080% 0.2392%
2	months 0.2638% 0.3743%
3	months 0.3186% 0.4014%
4	months 0.3211% 0.3313%
5	months 0.3237% 0.3364%
6	months 0.3262% 0.3415%
7	months 0.3288% 0.3466%
8	months 0.3313% 0.3517%
9	months 0.3339% 0.3568%
10	months 0.3364% 0.3619%
11	months 0.3390% 0.3686%
1	year 0.3418% 0.3744%
2	years 0.3730% 0.4985%
3	years 0.4670% 0.8292%
4	years 0.6144% 1.2977%
5	years 0.8085% 1.8377%
6	years 1.0260% 2.3232%
7	years 1.2410% 2.6533%
8	years 1.4295% 2.9060%
9	years 1.6101% 3.1384%
10	years 1.7691% 3.2932%
15	years 2.3356% 3.3964%
20	years 2.5709% 3.2700%
25	years 2.6853% 3.1585%
30	years 2.7602% 2.9961%
40	years 2.7676% 2.6672%
50	years 2.7100% 2.5660%



Figure	5.2	Market	Zero	Rate	and	Instantaneous	Forward	Rate	Term	Structure

For	illustration	Figure	5.3	displays	10	sample	simulation	paths	for	our	calibrated	Hull-White
model	when	we	use	a	current	short-rate	quote	of	0.156%	as	the	initial	short-rate.	Each
scenario	is	simulated	over	10	years	with	a	daily	simulation	for	each	of	the	assumed	260
business	days	in	a	year—giving	2,600	business	days	simulation	time	points	for	the	10-year
horizon.	The	simulation	uses	the	zero	curve	quotes	in	Table	5.5	to	derive	the	 	in	equation
(5.8).	From	Figure	5.3	we	immediately	note	a	drawback	of	the	Hull-White	model	in	that	it
does	not	restrict	interest	rates	to	nonnegative.	This	is	especially	apparent	in	a	current	low
interest	rate	environment,	as	is	the	case	for	our	market	quotes.	Once	we	have	obtained	the
short-rate	simulation	paths	from	the	Hull-White	model	we	can	also	generate	the	complete	term
structure	of	future	zero	rates	using	equation	(5.9).	This	future	zero	rate	term	structure	is	the
input	to	the	swap	pricing	with	a	subsequent	swap	exposure	calculation.



5.10

Figure	5.3	Sample	Simulation	Paths	for	the	Calibrated	Hull-White	Model

Calculating	Swap	Exposure	Profiles	and	CVA
We	now	consider	a	few	stylized	examples	of	interest	rate	and	cross-currency	swap	exposure
and	CVA	to	gain	intuition	for	the	exposure	profiles	and	the	counterparty	pricing	metrics.	In	our
example	we	will	consider	simple	stylized	equilibrium	models	and	parameters	that	can	capture
the	core	aspects	of	the	risk	factors	affecting	the	exposure	and	pricing	metrics.

Market	Models
Starting	with	the	models	for	interest	rates	we	assume	that	the	current	term	structure	of	interest
rates	is	flat	at	 .	We	model	the	future	term	structure	at	term	points	1,	3,	and	6	months	as	well
as	at	1,	3,	5,	and	10	years.	We	use	a	Cox,	Ingersoll,	and	Ross	model	(Cox,	Ingersoll,	and	Ross,
1985)	for	each	node.	Specifically,	we	model	the	interest	rate,	 ,	at	term	node	 ,	denoted	
,	as

where	 	is	the	Wiener	process	for	term	node	 .	Here	the	parameter	 	is	the	mean
reversion	level	around	which	all	future	trajectories	will	evolve	in	the	long	run.	The	parameter	
	characterizes	the	speed	at	which	trajectories	will	regroup	around	the	mean	reversion	rate	

over	time,	and	 	is	the	instantaneous	volatility	of	the	short-rate	model.	The	parameters	for
each	term	node	 	are	set	as



Since	our	current	term	structure	is	flat	at	 	each	term	node	mean	reversion	level	corresponds
to	the	implied	forward	rate	and	hence	the	model	future	rates	are	by	design	consistent	with	the
implied	forward	rate	curve.	An	important	feature	of	the	Cox,	Ingersoll,	and	Ross	model	is	that
interest	rates	are	alwaysnonnegative.

Figure	5.4	displays	the	paths	from	1,000	sample	simulated	trajectories	for	the	1-year	interest
rate	term	node	on	a	monthly	time	grid	using	260	business	days	per	year	and	10	years	into	the
future	(i.e.,	2,600	business	days).	Since	the	initial	interest	rate	is	set	at	5%,	as	is	the	implied
forward	rate(s),	the	simulated	interest	rate	trajectories	are	pulled	back	to	the	5%	level	for	 	at
the	mean	reversion	speed,	 .	When	interest	rate	models	in	different	currencies	are	needed	to
price	cross-currency	swaps	the	interest	rates	in	both	currencies	follow	the	same	model	above
and	have	the	same	current	term-structure	of	interest	rates.

Figure	5.4	10,000	Simulated	Market	Trajectories	for	the	1-Year	Term	Node	Interest	Rate	on
Days	1,	…,	2600

To	value	and	calculate	exposure	and	CVA	for	cross-currency	swaps	we	also	need	a	model	for
the	forward	foreign	exchange	rate	term	structure.	For	simplicity	we	assume	that	there	is	a	singe
forward	foreign	exchange	rate.	The	simulation	of	the	forward	foreign	exchange	rate	also	uses	a
Cox,	Ingersoll,	and	Ross	model.	Specifically,	we	have	that



where	 	is	a	Wiener	process,	and	 	is	the	forward	foreign	exchange	rate	and	the	model
parameters	are	set	such	that

The	long-term	forward	exchange	rate	is	set	to	 ,	which	we	also	assume	is	the	current	market
exchange	rate.	Note	that	the	rate	of	mean	reversion,	 ,	and	volatility,	 ,	are	quite	different
from	the	interest	rate	model.	In	particular,	the	assumed	rate	of	mean	reversion	is	much	lower
and	the	volatility	much	higher	compared	to	the	interest	rate	model.	While	mean	reversion	in
exchange	rates	is	supported	by	the	purchasing	power	parity,	empirical	evidence	of	mean
reversion	is	a	debated	question.	See,	for	example,	Cheung	and	Lai	(1994,	2000)	and	Sweeney
(2000).	Hence,	in	our	model	for	forward	foreign	exchange	rates,	while	we	include	mean
reversion,	the	degree	of	mean	reversion	is	low	and	volatility	of	the	forward	foreign	exchange
rate	is	significantly	higher	than	the	volatility	of	interest	rates.

Figure	5.5	displays	the	paths	from	1,000	sample	simulated	trajectories	for	the	forward	foreign
exchange	rate	on	a	monthly	time	grid	using	260	business	days	per	year	and	10	years	into	the
future.	Compared	to	the	simulation	of	the	1-year	interest	rate	in	Figure	5.4,	the	simulation	paths
resemble	more	a	standard	geometric	Brownian	motion	process	due	to	the	low	degree	of	mean
reversion.



Figure	5.5	10,000	Simulated	Market	Trajectories	for	the	FX	Forward	Rate	on	Days	1,	…,
2600

Swap	Exposure	Profiles
Using	the	interest	rate	and	foreign	exchange	simulation	models	we	can	calculate	the	exposure
profiles	for	plain	swaps	as	well	as	cross-currency	swaps.	In	the	example	exposure	profiles	we
assume	a	zero	correlation	between	interest	rates	and	the	forward	foreign	exchange	rate	models
while	within	interest	rates	there	is	a	60%	correlation.

Figure	5.6	displays	expected	exposure	(EE),	the	running	mean	of	expected	positive	exposures
(EPE),	and	the	peak	exposure	(PE)	profile	for	a	10-year	at-the-money	(ATM)	fixed	rate	payer
swap	(i.e.,	the	fixed	rate	swap	leg	is	equal	to	the	implied	forward	rate	of	5%).9	The	deal
notional	is	1,000,000	units	of	currency	and	the	confidence	level	used	for	peak	exposures	is	
.	The	exposure	profiles	have	been	calculated	using	10,000	simulations	and	a	monthly	time	grid
up	to	maturity	to	capture	the	assumed	monthly	payment	flows	in	the	swap.	The	number	of
business	days	in	a	year	is	assumed	to	be	260.	Hence,	10	years	is	2,600	business	days.



Figure	5.6	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	10-Year	at-the-Money	Payer	Swap

The	swap	exposure	profile	in	Figure	5.6	displays	the	well-known	hump-shaped	profile	due	to
the	time	trade-off	between	increasing	interest	rate	risk	and	decreasing	number	of	swap
payments	left.	The	corresponding	in-the-money	(ITM)	payer	swap	exposure	profiles	(i.e.,	fixed
rate	less	than	implied	forward	rate)	have	current	exposure	greater	than	zero	and	hence	future
exposure	profiles	would	be	tilted	downwards.	Similarly,	out-of-the-money	(OTM)	payer
swaps	(i.e.,	fixed	rate	greater	than	implied	forward	rate)	have	negative	current	mark	to	market,
and	hence	future	exposure	profiles	would	be	tilted	upwards.	Figure	5.7	illustrates	the	ITM
case	for	the	payer	swap	when	the	fixed	rate	is	set	to	4.5%,	that	is,	50	basis	points	less	than	the
current	and	implied	forward	rate	at	5%.	In	Figure	5.8	we	also	display	the	corresponding	OTM
case	when	the	fixed	rate	is	set	at	5.5%.



Figure	5.7	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	10-Year	In-the-Money	Payer	Swap



Figure	5.8	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	10-Year	Out-of-the-Money	Payer	Swap

In	payer	swaps	counterparty	exposure	arises	when	the	receiving	floating	rate	is	higher	than	the
fixed	rate	paid	such	that	the	counterparty	has	to	pay	net	positive	flows.	The	exposure	can	be
very	high	as	the	receiving	floating	rate	can	be	very	high	in	the	future.	See	Figure	5.4.	For
receiver	swaps	exposure	arises	when	the	floating	rate	paid	is	lower	than	the	fixed	rate.
However,	if	interest	rates	are	assumed	bounded	below	by	zero,	then	the	exposure	in	the
receiver	swap	is	bounded.	In	our	exposure	analysis	of	the	swaps	we	use	a	Cox-Ingersoll-Ross
model	for	the	interest	rates	that	ensures	that	the	rate	is	always	nonnegative.	Hence,	in	this	case
worst-case	or	peak	exposure	profiles	for	payer	and	receiver	swaps	are	not	symmetric	and	the
counterparty	that	has	the	receiver	swap	position	faces	less	worst-case	counterparty	exposure.
This	is	illustrated	in	Figure	5.9,	which	displays	the	EE,	EPE,	and	PE	profiles	for	an	ATM
receiver	swap.	Compared	to	Figure	5.6	the	PE	profile	is	significantly	lower.	We	emphasize
again	that	this	asymmetry	of	peak	exposure	profiles	for	payer	and	receiver	swaps	depends	on
the	model	chosen.	Using	a	Hull-White	model	interest	rates	are	not	bounded	below	by	zero	and
can	become	negative	as	in	Figure	5.3.	Hence,	with	the	Hull-White	model	the	peak	exposure
profiles	of	the	payer	and	receiver	swaps	are	very	similar.	While	peak	exposure	profiles	are
higher	for	the	payer	swap	the	EE	profiles	are	similar	for	payer	and	receiver	swaps.	This	is
illustrated	in	Figure	5.10.	In	Figure	5.10	the	EE	profile	for	the	receiver	swap	is	actually	a	bit
above	the	EE	profile	for	the	payer	swap.	Hence,	while	the	risk	of	the	payer	swap	exposure	is
higher	the	counterparty	price	(which	is	based	on	EE)	may	be	higher	for	the	receiver	swap.



Figure	5.9	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	10-Year	at-the-Money	Receiver	Swap



Figure	5.10	Comparison	of	Expected	Exposure	for	10-Year	at-the-Money	Receiver	and	Payer
Swaps

In	contrast	to	the	hump-shaped	profile	for	plain	swaps,	cross-currency	swap	exposure	is
strictly	increasing	in	time.	This	is	due	to	the	large	exchange	of	notional	at	maturity,	which
drives	the	majority	of	risk	in	cross-currency	swaps.	Figure	5.11	displays	EE,	the	running	mean
of	expected	positive	exposures,	EPE,	and	the	peak	exposure,	PE,	profile	for	a	10-year	ATM
cross-currency	payer	swap.	As	for	the	plain	swaps	the	notional	is	1,000,000	units	of	currency.
Payer	cross-currency	swaps	that	are	ITM	for	the	final	foreign	exchange	(i.e.,	stipulated
exchange	rate	in	contract	is	less	than	the	current	and	expected	future	foreign	exchange	rate)
display	a	parallel	shift	upwards	of	the	exposure	profile.	Similarly,	OTM	payer	cross-currency
swaps	on	the	final	foreign	exchange	display	a	parallel	shift	downward.



Figure	5.11	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	10-Year	at-the-Money	Cross	Currency	Payer	Swap

The	exposure	profiles	for	the	plain	and	cross-currency	swaps	are	smooth	over	time	due	to	the
fact	that	both	payment	legs	pay	at	the	same	frequency	(recall	that	monthly	payments	are
assumed).	However,	if	the	payment	frequencies	of	the	legs	are	unequal,	the	swap	exposure
profiles	display	the	well-known	rolloff	risk.	Figure	5.12	displays	EE,	the	running	mean	of
expected	positive	exposures,	EPE,	and	the	 	confidence	level	PE	profile	for	a	10-year	ATM
payer	swap	when	the	payment	leg	frequency	is	quarterly	and	the	receiving	leg	frequency	is
yearly.	Clearly,	this	payer	swap	is	more	risky	since	the	receiving	leg	exposure	is	built	up	over
a	longer	time	before	the	actual	payment	is	received.	The	reverse	case	is	illustrated	in	Figure
5.13	and	is	of	course	less	risky.	For	deals	with	rolloff	risk	it	is	important	that	the	simulation
time	points	are	set	such	that	the	exposure	jumps	due	to	rolloff	risk	are	captured.	That	is,	one
should	choose	the	CVA	time	grid,	 ,	so	that	we	capture	major	cash	flows	that	affect	the
exposure	profile	materially.



Figure	5.12	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	10-Year	at-the-Money	Payer	Swap	with	Unequal	Payment
Frequencies—Pay	Quarterly	and	Receive	Yearly



Figure	5.13	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	10-Year	at-the-Money	Payer	Swap	with	Unequal	Payment
Frequencies—Pay	Yearly	and	Receive	Quarterly

While	we	have	focused	on	exposure	profiles	for	swaps	and	cross-currency	swaps	in	our
examples	the	well-known	hump-shaped	exposure	profile	for	swaps	and	the	increasing
exposure	profile	for	cross-currency	swaps	is	typical	for	other	products	as	well.	For	example,
foreign	exchange	forwards	and	plain	foreign	exchange	swaps	display	the	increasing	exposure
profile	of	cross-currency	swaps	due	to	the	final	currency	exchange.	We	refer	to	Cesari	et	al.
(2009,	ch.	9–11)	and	Gregory	(2010,	ch.	4)	for	further	examples	of	derivative	exposure
profiles.

Swap	CVA
Having	analyzed	the	swap	exposure	profiles	for	a	few	stylized	swap	examples	we	continue
with	pricing	the	counterparty	risk	in	the	exposures.	For	that	purpose	we	also	need	the
counterparty	and	institution	default	probabilities.	We	assume	that	both	the	counterparty	and	the
institution	have	quoted	CDS	premiums	at	the	term	points	1,	3,	and	6	months	as	well	as	1,	5,	and
10	years.	The	current	quoted	CDS	premias	for	both	the	counterparty	and	the	institution	is	30,
50,	70,	100,	400,	and	700	basis	points,	respectively.	We	also	assume	that	the	recovery	rate	for
both	the	counterparty	and	institution	is	null	such	that	to	a	high	degree	of	approximation	the
observed	CDS	quotes	are	equivalent	to	hazard	rates	since	the	credit	default	swap	premia	and
bond	spread,	 ,	is	approximately	 	with	 	the	hazard	rate	and	 	the	recovery	rate.

Table	5.6	displays	the	up-front	CVA,	ACVA,	DVA,	and	BCVA	charges	for	different	plain	swap



deals	in	units	of	currency	when	we	also	discount	the	charges	using	the	current	zero	rates,	which
are	assumed	flat	at	the	5%	level.	In	Table	5.6	the	plain	payer	swaps	that	are	ITM	or	OTM	have
fixed	contract	rates	at	4.5%	and	5.5%	respectively.	Hence,	the	OTM	and	ITM	payer	swaps
have	a	contract	difference	of	50	basis	points	versus	the	current	and	implied	forward	interest
rate	of	 .	For	the	ATM	case	the	fixed	rate	swap	leg	is	equal	to	the	current	and	implied
forward	rate	of	5%.	The	cross-currency	swaps	in	Table	5.6	are	always	ATM	with	respect	to
the	interest	rate.	However,	they	can	be	ITM	or	OTM	with	respect	to	the	final	foreign	exchange.
The	ITM	payer	cross-currency	swap	has	a	contract	agreed	exchange	rate	of	 	compared	to	the
current	and	expected	forward	foreign	exchange	rate	of	 .	Similarly,	the	OTM	payer	cross-
currency	swap	has	an	agreed	exchange	rate	of	 	compared	to	the	current	and	expected	forward
foreign	exchange	rate	of	 .	Starting	with	the	5-	and	10-year	maturity	plain	payer	swaps	we
notice	that	the	ACVA	for	the	ATM	swaps	are	slightly	lower	than	the	DVA,	yielding	a	negative
BCVA.	This	is	because	the	EE	of	receiver	swaps	is	slightly	above	the	EE	of	payer	swaps.	See
Figure	5.10.	The	ITM	5-year	and	10-year	maturity	plain	swaps	display,	as	expected,	a	higher
ACVA	and	lower	DVA	than	the	ATM	case,	yielding	positive	BCVA.	That	is,	there	is	net
bilateral	positive	credit	risk.	For	the	OTM	plain	swaps	we	observe	the	opposite	situation	of
course.	Turning	to	the	cross-currency	swaps,	the	5-	and	10-year	maturity	cross-currency	swaps
display	significantly	higher	credit	charges	than	the	plain	swaps.	This	is,	of	course,	due	to	the
large	risk	in	the	final	exchange	of	currency.	For	example,	the	10-year	payer	cross-currency
swap	that	is	ITM	has	a	CVA	charge	of	45,812.14	units	of	currency,	which	is	approximately
4.5%	of	the	deal	notional	of	1,000,000	units	of	currency.	Clearly,	with	such	credit	risk	charges
it	is	hard	to	make	the	deal	profitable.	Because	the	BCVA	is	positive	in	this	case	the	deal
counterparty	may	be	willing	to	cover	part	of	the	CVA	corresponding	to	approximately	3%	of
deal	notional	(29,249.95	units	of	currency).	However,	the	remaining	portion	is	a	credit	cost
attributed	to	the	deal.



Table	5.6	Currency	Amount	Up-Front	CVA,	ACVA,	DVA,	and	BCVA	Charges	for	Swaps	and
Cross	Currency	Swaps.	The	Swap	Notional	Is	1,000,000	Units	of	Currency	for	All	Deals

Deal CVA ACVA DVA BCVA
5	Year	Payer	swap	(ATM) 1,752.31 1,642.97 1,766.22 −123.26
5	Year	Payer	swap	(ITM) 2,503.30 2,354.90 1,115.34 1,239.56
5	Year	Payer	swap	(OTM) 1,183.42 1,105.09 2,591.16 −1,486.07
5	Year	Payer	CCY	swap	(ATM	fx) 6,143.84 5,610.07 6,102.90 −492.83
5	Year	Payer	CCY	swap	(ITM	fx) 18,050.94 16,609.07 1,417.76 15,191.31
5	Year	Payer	CCY	swap	(OTM	fx) 1,449.96 1,307.61 14,347.52 −13,039.91

10	Year	Payer	swap	(ATM) 9,746.99 8,275.61 9,010.86 −735.25
10	Year	Payer	swap	(ITM) 12,865.64 10,998.40 6,232.06 4,766.34
10	Year	Payer	swap	(OTM) 7,265.14 6,120.97 12,357.80 −6,236.83
10	Year	Payer	CCY	swap	(ATM	fx) 20,796.05 16,443.91 18,384.56 −1,940.65
10	Year	Payer	CCY	swap	(ITM	fx) 45,812.14 36,686.80 7,436.84 29,249.95
10	Year	Payer	CCY	swap	(OTM	fx) 8,470.39 6,595.55 33,488.23 −26,892.68

10	Year	Receiver	swap	(ATM) 10,557.29 9,010.86 8,275.61 735.25

Note	finally	that	in	our	examples	in	Table	5.6	we	have	assumed	that	the	institution	and	the
counterparty	have	the	same	credit	risk	quality.	This	means	that	the	driver	of	BCVA	is	the	net	EE
profile,	which	is	materially	different	only	for	ITM	and	OTM	cases.	The	net	EE	profile	is	of
course	the	difference	between	the	institution's	expected	exposure	view	and	the	counterparty
expected	exposure	view	(i.e.,	expected	negative	exposure	for	institution).	Changing	the
assumption	of	symmetry	in	credit	quality	can	clearly	introduce	large	asymmetries	in	bilateral
credit	risk	charges	for	ATM	deals	as	well.	In	particular,	the	lower	quality	counterparty	will
face	a	higher	DVA	than	ACVA	and	hence	a	net	negative	bilateral	risk.

Market	Correlations,	Wrong-Way	Risk,	and	Counterparty	Pricing

Market	Correlations
The	specific	assumptions	about	the	correlations	between	market	models	is	central	to	CVA.	In	a
cross-currency	payer	swap	positive	correlation	between	the	forward	foreign	exchange	rate	and
the	interest	rates	increases	counterparty	exposure	as	it	is	more	likely	that	the	final	foreign
exchange	is	in	favor	at	the	same	time	as	the	deal	is	ITM	for	the	interest	rates.	The	positive
correlation	also	increases	exposure	for	the	cross-currency	receiver	swap.	This	is	because	the
positive	correlation	also	makes	it	more	likely	that	interest	rates	are	low	at	the	same	time	as	the
forward	foreign	exchange	rate.

Example	Market	Correlation	Impact	on	CVA



In	Table	5.6	we	assumed	a	zero	market	correlation	between	the	forward	foreign	exchange	rate
and	the	interest	rates	when	we	calculated	CVA,	ACVA,	and	so	on,	for	the	cross-currency
swaps.	Table	5.7	displays	the	CVA,	ACVA,	DVA,	and	BCVA	for	the	cross-currency	swaps	in
Table	5.6	with	a	60%	market	correlation	between	the	forward	foreign	exchange	rate	and	the
interest	rates.	We	note	from	Table	5.7	that	with	positive	market	correlation	both	ACVA	and
DVA	increase	similarly	in	currency	amounts—yielding	similar	BCVA	as	in	the	case	of	zero
market	correlation	between	the	foreign	exchange	rate	and	interest	rate	models.	We	note	that	the
CVA	increase	is	relatively	larger	for	the	OTM	cross-currency	swaps.	For	example,	the	10-year
OTM	cross-currency	swaps	display	a	CVA	increase	of	approximately	50%	compared	to	the
zero	market	correlation	case.

Table	5.7	Currency	Amount	Up-Front	CVA,	ACVA,	DVA,	and	BCVA	Charges	for	Cross-
Currency	Swaps	with	60%	Market	Correlation.	The	Swap	Notional	is	1,000,000	Units	of
Currency	for	All	Deals

Deal CVA ACVA DVA BCVA
5	Year	Payer	CCY	swap	(ATM	fx) 7,258.52 6,646.79 6,951.26 −304.47
5	Year	Payer	CCY	swap	(ITM	fx) 18,906.34 17,398.31 1,995.02 15,403.28
5	Year	Payer	CCY	swap	(OTM	fx) 2,198.03 1,998.93 14,869.38 −12,870.45

10	Year	Payer	CCY	swap	(ATM	fx) 26,043.98 20,751.81 21,909.13 −1,157.31
10	Year	Payer	CCY	swap	(ITM	fx) 50,826.60 40,766.44 10,634.70 30,131.74
10	Year	Payer	CCY	swap	(OTM	fx) 12,637.86 10,006.67 36,194.77 −26,188.10

Correlation	Symmetry
The	fact	that	both	ACVA	and	DVA	increase	with	an	almost	same	BCVA	compared	to	the
independent	case	is	due	to	the	symmetry	of	correlation	(normal	copula)	such	that	both	payer
and	receiver	risks	increase.	Using	instead	a	t-copula	we	could	increase	the	dependence	and
hence	the	unilateral	exposure	risk.	However,	the	payer	and	receiver	risk	would	still	be
symmetric	with	the	t-copula.	If	we	would	like	to	capture	a	non-symmetric	dependence	between
the	forward	foreign	exchange	rate	and	the	interest	rates,	we	could	use	a	copula	with	either
upper	or	lower	tail	dependence.	The	Gumbel	copula	displays	only	upper	tail	dependence	and
hence	induces	increased	exposure	only	for	cross-currency	payer	swaps	with	dependent
forward	foreign	exchange	rate	and	interest	rates	compared	to	the	independent	case.	The
Clayton	copula	displays	only	lower	tail	dependence	and	hence	induces	higher	exposure	for
cross-currency	receiver	swaps	only.

Wrong-Way	Risk
While	market	correlations	such	as	correlations	between	equity,	foreign	exchange,	and	interest
rates	may	increase	exposure	and	hence	CVA	for	given	counterparty	default	probabilities,	the
CVA	also	depends	on	the	correlation	between	exposure	and	the	default	probability.	Wrong-way
risk	refers	to	the	situation	when	exposure	is	in	general	high	at	the	same	time	as	the	default
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probability	is	high.	Right-way	risk	is	when	exposure	is	in	general	small	when	default
probability	is	high.	In	other	words,	wrong-way	risk	reflects	a	positive	correlation	between
exposures	and	default	probabilities	so	on	paths	where	exposures	are	high	also	corresponds	to
an	increase	in	the	default	probability.	Right-way	risk	exhibits	the	opposite	behavior	whereby
increasing	default	probabilities	correspond	to	lower	exposures.

A	simple	approach	often	used	in	practice	to	adjust	counterparty	pricing	metrics	for	wrong-way
risk	is	to	adjust	exposures	conservatively	upwards	while	still	using	the	independent	CVA
model	in	equation	(5.2).	Conservatively	assuming	that	exposures	will	likely	be	high	when
default	rate	is	high	we	can	replace	 	in	equation	(5.2)	with	a	worst-case	quantile	of
exposures,	that	is,	a	peak	exposure,	 ,	such	that

Essentially,	with	a	roughly	similar	profile	shape	for	expected	and	peak	exposures,	this	amounts
to	scaling	independent	CVA	such	that

where	 	is	the	wrong-way	risk	factor.	However,	a	natural	question	is	how	we	can	know	what
the	relevant	 	is	without	actually	modeling	the	wrong-way	risk	explicitly.	It	may	therefore	be
natural	for	the	institution	to	actually	validate	the	assumed	 	using	an	explicit	model	of
wrong-way	risk.	This	is	not	so	different	from	how	banks	currently	validate	internal	alpha
adjustments	on	expected	positive	exposures	for	the	Basel	II	default	risk	capital	charge.	In
practice,	to	minimize	computational	burden	and	complexity,	daily	and	intraday	calculations	of
CVA	can	be	based	on	the	independent	CVA	formula	with	 	adjustment,	that	is,	equation	(5.12).
One	can	then	update	 	as	exposures	and/or	default	probability	change	significantly	for	a
counterparty	while	still	benefiting	from	the	simple,	relatively	quick,independent	CVA	formula.
As	we	have	remarked	before	the	independent	CVA	formula	allows	CVA	calculation	as	a	simple
multiplication	post-processing	using	the	default	probability	from	the	credit	system,	the
expected	exposure	profile	from	the	exposure	system,	and	the	discount	curve	from	the	market
system.

To	model	wrong-way	risk	explicitly	we	can	use	a	model	for	codependency	between	default
rates	and	market	variables	that	drive	exposures.	Skoglund	et	al.	(2013)	analyze	wrong-way
risk	through	a	correlation	model	dependence	structure	between	exposure	and	default
probability.	Similarly,	Hull	and	White	(2012a)	model	the	wrong-way	risk	in	CVA.	However,
Hull	and	White	(2012a)	make	use	of	non-stochastic	models	for	codependency	between	default
rate	and	exposure.	Of	course,	a	correlation	model	captures	only	general	economic	wrong-way
risk	and	does	not	capture	specific	wrong-way	risk	such	as	a	causal	relationship	whereby	a
sudden	jump	to	default	moves	the	market	variables.	This	can	be	a	concern	with	sovereign
counterparties	and	currency	exposures.	See	Levy	and	Levin	(1999).
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Using	a	model	for	“economic	correlation”	codependency	between	default	rates	and	market
variables	that	drive	exposures	means	that	we	can	no	longer	use	the	simple	CVA	formula	in
equation	(5.2),

Instead,	we	require	that	CVA	be	calculated	through	jointly	integrating	default	and	exposure
scenarios.	That	is,	for	scenarios,	 	we	have	that

This	wrong-way	risk	CVA	model	still	fits	in	the	general	exposure	simulation	framework	for
CVA.	The	only	complication	is	that	we	cannot	separately	compute	default	probabilities	and
exposures	anymore.

To	specify	the	correlations	between	the	counterparty	default	probability	(CDS	premiums)	and
the	market	variables	driving	exposure	requires	detailed	knowledge	of	the	counterparty
business	model	and	business	sensitivities	to	assess	the	degree	and	even	sign	of	codependency.
For	example,	is	the	counterparty	default	risk	higher	in	high	or	low	interest	rate	environments?
In	the	first	case,	payer	swaps	with	the	counterparty	have	wrong-way	risk	and	receiver	swaps
have	right-way	risk.	Or,	is	default	more	likely	in	both	situations,	for	example,	low	interest
rates	signaling	a	general	downturn	with	higher	default	rates	while	high	interest	rates	might	see
the	counterparty	in	trouble	of	meeting	their	liability	payments?	Cross-currency	swaps	can
display	double	wrong-way	risk	in	the	sense	that	the	second	component	of	wrong-way	risk	for
cross-currency	swaps	is	the	correlation	between	the	foreign	exchange	forward	rate	and	the
default	rate.

Example	Wrong-Way	Risk	Analysis
To	analyze	the	impacts	of	wrong-way	risk	on	CVA	we	model	directly	the	term	structure	of	CDS
premias	(hazard	rates)	using	a	Cox,	Ingersoll,	and	Ross	model.	As	before	the	counterparty
CDS	term	structure	has	the	term	points,	1,	3,	and	6	months	as	well	as	1,	5,	and	10	years	and	the
current	quoted	CDS	premias	for	the	counterparty	is	30,	50,	70,	100,	400,	and	700	basis	points,
respectively.	For	the	10-year	term	point	the	simulated	CDS	premias	follow	the	model,

where	 	is	the	10-year	CDS	premia	and	the	Cox,	Ingersoll,	and	Ross	model	parameters	are
set	such	that



This	means	that	the	10-year	CDS	premia	is	mean	reverting	to	its	current	level	of	700	basis
points	and	that	the	mean	reversion	speed	is	the	same	as	for	the	interest	rates	(i.e.,	0.1).	The
volatility	of	the	10-year	CDS	premia	is	0.07	compared	to	0.06	for	the	interest	rates.	Using	this
model	we	simulate	paths	of	10-year	future	CDS	premia.	Given	the	path	of	the	simulated	10-
year	CDS	premia	we	obtain	CDS	premia	for	the	other	term	points	by	fixed	parallel	shifts	of	the
simulated	10-year	CDS	premia.	For	example,	the	5-year	term	simulated	CDS	premia	is
obtained	as

where	 	is	the	initial	CDS	premia	for	the	5-year	term.	This	simple	model	ensures	that	the
CDS	premia	term	structure	is	non-decreasing	over	time	as	is	required	to	maintain	positive
implied	incremental	default	probabilities	in	equation	(5.6).

Table	5.8	displays	the	wrong-way	risk	CVA	for	the	interest	rate	and	cross-currency	swap	deals
in	Table	5.6	with	an	80%	correlation	between	the	counterparty	CDS	premias	(hazard	rates)
and	the	interest	rates	and	the	foreign	exchange	forward	rate.	The	80%	correlation	induces	a
60%	market	correlation	between	foreign	exchange	and	interest	rates	market	models,	hence,	the
same	market	correlation	we	used	for	the	cross-currency	swaps	in	Table	5.7.	Table	5.8	also
displays	the	 	adjustment	for	wrong-way	risk	CVA	(CVA	 	WR)	compared	to	the	case	of	no
wrong-way	risk	(but	still	a	60%	market	correlation	between	the	forward	exchange	rate	and	the
interest	rates)	as	well	as	the	 	adjustment	for	wrong-way	risk	CVA	(CVA	 	WR+MKT)	when
there	is	no	market	correlation	or	wrong-way	risk.	Of	course,	the	plain	interest	rate	swaps	are
not	affected	by	market	correlation	between	the	foreign	exchange	forward	rate	and	the	interest
rates	and	this	 	adjustment	is	only	different	for	the	cross-currency	swaps.	To	obtain	the	
adjustment	for	only	wrong-way	risk	we	have	used	the	CVA	in	Table	5.6	for	plain	interest	rate
swaps	and	the	CVA	in	Table	5.7	for	cross-currency	swaps.	To	obtain	the	 	adjustment	for	both
market	correlation	and	wrong-way	risk	for	cross-currency	swaps	we	have	used	the	cross-
currency	swap	CVA	in	Table	5.6.



Table	5.8	Currency	Amount	Up-Front	CVA	Charges	for	Swaps	with	Wrong-Way	Risk.	The
Swap	Notional	Is	1,000,000	Units	of	Currency	for	All	Deals

Deal CVA CVA	 	WR CVA	 	WR+MKT
5	Year	Payer	swap	(ATM) 3,134.21 1.78 1.78
5	Year	Payer	swap	(ITM) 4,197.77 1.67 1.67
5	Year	Payer	swap	(OTM) 2,251.21 1.90 1.90
5	Year	Payer	CCY	swap	(ATM	fx) 12,842.98 1.76 2.09
5	Year	Payer	CCY	swap	(ITM	fx) 28,286.89 1.49 1.57
5	Year	Payer	CCY	swap	(OTM	fx) 4,587.04 2.08 3.16

10	Year	Payer	swap	(ATM) 15,680.85 1.60 1.60
10	Year	Payer	swap	(ITM) 19,843.79 1.54 1.54
10	Year	Payer	swap	(OTM) 12,148.52 1.67 1.67
10	Year	Payer	CCY	swap	(ATM	fx) 40,407.46 1.55 1.94
10	Year	Payer	CCY	swap	(ITM	fx) 72,070.00 1.41 1.57
10	Year	Payer	CCY	swap	(OTM	fx) 21,287.05 1.68 2.51

10	Year	Receiver	swap	(ATM) 5,112.37 0.48 0.48

Table	5.8	shows	that	the	implied	 	adjustment	for	wrong-way	risk	on	CVA	itself	is	highest	for
OTM	swaps	and	lowest	for	ITM	swaps.	This	is	because	wrong-way	risk	introduces	an	higher
likelihood	of	an	OTM	deal	becoming	ITM	at	the	same	time	as	default	rates	are	high.	Similarly,
current	ITM	deals	already	have	a	significant	likelihood	of	being	ITM	in	the	future.	The
combined	wrong-way	risk	and	market	correlation	effect	on	cross-currency	swaps	shows	that
the	CVA	can	be	significantly	different	under	different	model	assumptions.	The	5-year	OTM
cross-currency	swap	CVA	has	increased	by	a	factor	of	3.16	when	both	wrong-way	risk	and
market	correlation	are	taken	into	account.	The	10-year	receiver	swap	of	course	displays	right-
way	risk	and	the	CVA	reduction	compared	to	the	case	of	no	wrong-way	risk	is	more	than	50%.
When	both	the	counterparty	and	the	institution	share	the	same	market	and	default	correlation	the
10-year	receiver	swap	CVA	can	be	seen	as	the	CVA	from	the	counterparty	point	of	view	(i.e.,
DVA)	of	the	institution.	Hence,	in	this	case	the	CVA	of	the	payer	swap	has	increased
significantly	due	to	the	wrong-way	risk.	However,	the	DVA	has	been	significantly	reduced	due
to	right-way	risk.	Of	course,	there	are	still	some	risk	mitigating	effects	in	ACVA	(and	DVA)
because,	with	common	market	and	default	correlations,	the	institution's	survival	probability,	

,	is	lower	at	the	exact	time	when	counterparty	default	rates,	 ,	are	high.

Collateralized	Exposures
In	practice	counterparty	exposure	rarely	remains	uncollateralized	when	trades	are	between
banks.	Most	banks	have	the	capacity	to	manage	a	collateral	margining	process	with	frequent
margin	call	and	posting	rules	using	dedicated	collateral	management	teams.	The	exposure



margin	call	and	posting	rules	are	stipulated	by	a	so-called	credit	support	annex	(CSA)
agreement.	The	standard	CSA	agreement	specifies	collateral	margin	calls	and	collateral	flows
using	agreed	collateral	parameters	such	as

The	independent	amount	that	needs	to	be	posted

The	margin	threshold	above	which	collateral	is	transferred

The	minimum	collateral	transfer	amount

The	margin	frequency

A	non-zero	threshold	and	minimum	transfer	amount	avoids	too	much	operational	workload
with	frequent	collateral	calls	for	small	changes	in	exposure.	If	the	amount	of	collateral	that
needs	to	be	posted	or	returned	is	less	than	the	minimum	collateral	transfer	amount,	then	no
transfer	of	collateral	occurs.	That	is,	collateral	is	posted	and	returned	in	blocks.	Effectively,
for	a	post	or	return	to	happen	on	a	margin	day	the	absolute	exposure	change	has	to	exceed	the
sum	of	the	threshold	and	the	minimum	transfer	amount.

The	failure	to	post	the	required	collateral	by	one	side	allows	the	other	side	to	terminate
outstanding	transactions.	CSA	agreements	are	additions	to	an	International	Swaps	and
Derivatives	Association	(ISDA)	master	agreement,	which	specifies	that	all	transactions
between	two	parties	are	to	be	netted	and	considered	as	a	single	transaction	in	case	there	is	an
early	termination	event.

When	a	counterparty	to	the	institution	is	not	able	to	manage	collateral	calls	such	as	a	small
pension	fund	the	exposure	may	remain	uncollateralized.	Alternatively,	the	institution	may
require	the	counterparty	to	post	an	independent	amount.	This	may	also	happen	when	the	credit
rating	of	the	counterparty	is	significantly	lower	than	the	institution's.

Clearly,	an	effective	collateral	agreement	with	low	threshold	and	minimum	transfer	amount	and
frequent	posting	can	reduce	counterparty	credit	risk	and	hence	CVA	significantly.
Collateralization	is	therefore	an	important	credit	risk	mitigant.	Effectively,	collateralized
trades	with	a	margin	agreement	replace	a	large	portion	of	the	counterparty	credit	risk	at	the
cost	of	potential	funding	liquidity	risk.	There	is	also	an	operational	cost	for	handling	the
margining	process	with	a	dedicated	collateral	management	team.	In	some	cases,	collaterals	are
also	held	by	a	custodian.

While	a	collateral	agreement	with	daily	margin	calls	and	zero	threshold	and	minimum	transfer
can	be	viewed	as	a	perfect	collateralization,	in	practice,	it	is	prudent	to	assume	that	collateral
is	not	received	instantaneously	following	a	collateral	call.	That	is,	a	period	of	time	can	elapse
between	the	events	that	the	counterparty	ceases	to	post	collateral	and	there	is	an	early
termination	by	the	institution.	Indeed,	it	is	also	a	regulatory	requirement	to	properly	include
collateral	settlement	risk—sometimes	called	margin	period	of	risk	or	cure	period—in	the
calculation	of	collateralized	exposures.	The	margin	period	of	risk	captures	the	fact	that	even	if
collateral	is	not	delivered	exactly	when	called	there	is	a	grace	period	before	the	bank	actually
determines	the	counterparty	is	in	default.	The	concept	of	margin	period	of	risk	can	include
multiple	collateral	settlement	risks.	It	is	generally	defined	as	the	time	period	from



1.	 The	last	exchange	of	collateral	covering	a	netting	set	of	transactions	with	a	defaulting
counterparty,	until

2.	 That	counterparty	is	closed	out	and	the	resulting	market	risk	is	rehedged

That	is,	when	the	counterparty	defaults	there	is	a	grace	period	where	exposure	does	not	get
offset	by	counterparty	posts,	or	the	counterparty	does	not	return	collateral	as	expected.	It	may
also	be	the	case	that	the	collateral	already	posted,	or	that	is	being	posted	or	returned	by	the
counterparty,	needs	to	be	converted	to	currency	cash	in	a	potential	illiquid	market.

Currently,	the	ISDA	CSA	collateral	agreements	are	transitioning	into	so-called	standard	CSAs
(see	ISDA	press	release,	2011)	where	daily	collateral	posts	are	in	cash	currency	only	with	one
netting	set	per	trade	currency	and	close	to	zero	threshold	and	minimum	transfer.	This	means
that	the	majority	of	exposure	risk	remaining	is	due	to	the	exposure	rise	in	the	grace	period	that
may	not	get	offset	by	(cash)	collateral.	Hence,	the	modeling	of	this	collateral	settlement	risk	is
a	key	concern	for	the	industry.	Clearly,	without	collateral	settlement	risk	and	with	a	standard
CSA	agreement	the	institution	exposure	and	CVA	to	the	counterparty	is	practically	null.	It	is
therefore	of	significant	importance	to	understand	the	impact	on	counterparty	exposure	and
pricing	with	different	assumptions	on	the	collateral	settlement	risk.

As	an	illustration	of	collateral	flows	Figure	5.14	displays	an	example	of	collateral	posts	and
returns	when	both	the	counterparty	and	the	institution	need	to	post	collateral	for	a	sample
exposure	profile.	The	example	exposure	profile	is	from	a	1-year	(260	business	days)	at-the-
money	plain	interest	rate	swap	with	a	principal	notional	of	1,000,000.	The	institution	or	bank
posting	leg	has	a	margin	threshold	of	800	units	of	currency	and	a	minimum	collateral	transfer
amount	of	200.	The	institution	posts	collateral	every	10	days.	However,	from	the	perspective
of	the	counterparty	there	is	a	10-day	margin	period	of	risk.	The	bank	receiver	leg	(i.e.,	the
counterparty	posting	leg)	has	a	margin	threshold	of	500	and	a	minimum	collateral	transfer
amount	of	100.	The	counterparty	posts	collateral	every	5	days	and	from	the	perspective	of	the
bank	there	is	a	10-day	margin	period	of	risk.	In	Figure	5.14	we	first	have	an	increasing
exposure	from	the	counterparty	point	of	view.	The	counterparty	then	calls	for	collateral,	which
is	indicated	by	the	counterparty	margin	call	spikes	in	Figure	5.14.	Due	to	the	non-daily	posting
of	the	institution	and	the	margin	period	of	risk	the	actual	collateral	delivered	by	the	institution
is	delayed	as	indicated	by	the	spikes	of	actual	collateral	delivered	by	the	institution.	This
causes	the	counterparty	uncollateralized	and	collateralized	exposure	to	be	equal	in	the
beginning	of	the	exposure	rise.	However,	eventually	exposure	is	offset	and	collateralized
exposure	decreases	significantly.	When	the	exposure	later	decays	the	counterparty	returns
collateral	to	the	institution,	which	is	displayed	in	Figure	5.14	as	negative	counterparty	margin
calls	(i.e.,	returns).	In	this	example,	the	return	of	collateral	happens	without	delay.	After	100
days	the	exposure	profile	from	the	counterparty	perspective	has	declined	to	zero	and	there	is
now	an	increasing	positive	exposure	from	the	institution	point	of	view.	The	institution	hence
now	needs	to	call	for	collateral	from	the	counterparty,	which	we	can	see	from	the	spikes	of
institution	margin	call	in	Figure	5.14.	Since	the	counterparty	posts	at	a	higher	frequency	(every
5	days)	the	institution	collateralized	exposure	is	more	quickly	offset	than	the	counterparty
collateralized	exposure	was.	As	when	the	counterparty	had	a	positive	exposure	to	the



institution	the	exposure	decays	after	some	time	and	the	institution	then	returns	collateral	to	the
counterparty	without	delay.

Figure	5.14	Sample	Collateral	Flows	for	a	1-Year	at-the-Money	Interest	Rate	Swap	Exposure
Path

In	principle,	the	exact	calculation	of	collateralized	exposure	is	trivial	as	in	Figure	5.14.
However,	in	practice	it	can	become	quite	complex	to	incorporate.	Consider	a	10-year	payer
swap	with	daily	margin	frequency.	In	order	to	calculate	exactly	collateralized	exposure	the
simulation	time	point	interval	needs	to	be	daily.	This	requirement	can	be	excessive	for	the
exposure	and	CVA	system.	To	overcome	the	requirement	on	daily	simulation	horizons	for
exposures	with	daily	collateral	calls	one	can	use	an	approximation	model.	A	popular	collateral
approximation	model	is	the	so-called	lagged	collateral	model.	The	lagged	collateral	model
calculates	the	collateral	calls	only	at	the	lookback	points	where	the	lookback	points	are	equal
to	the	time	interval	of	the	collateral	settlement	risk	(e.g.,	10	days).	That	is,	for	a	given,
uncollateralized,	exposure	simulation	time	grid,	 ,	we	also	need	to	simulate	at	the
lookback	points.	Hence,	rather	than	requiring	a	daily	simulation	for	a	daily	margin	frequency



we	have	simply	doubled	the	requirements	of	simulation	time	points	compared	to	the
uncollateralized	case.	However,	doubling	the	simulation	time	points	for	the	collateralized	case
means	in	practice	significantly	more	exposure	calculation	time.

In	order	to	further	reduce	the	number	of	time	points	for	exposure	simulation	with	collateral	it	is
natural	to	try	to	avoid	simulation	on	the	lookback	time	points	altogether	and	hence	only	use	the
“uncollateralized”	exposure	simulation	time	grid,	 .	This	would	put	the	calculation	time
for	collateralized	exposure	on	par	with	uncollateralized	exposure.	In	this	regard,	Pykthin	and
Zhu	(2006)	propose	a	method	that	relies	on	an	assumption	that	the	portfolio	value	at	time	 	is
normally	distributed.	One	can	then	obtain	the	conditional	portfolio	value	distribution	at	the
lookback	time	points	using	Brownian	bridge.10	Pykthin	(2009)	further	extends	the	method	to
avoid	the	assumption	that	the	portfolio	value	at	time	 	is	normally	distributed—replacing	it
with	the	assumption	that	conditional	on	a	scenario	realization	the	portfolio	value	at	 	is
conditionally	normal.	Comparing	with	the	lagged	collateral	model	Pykthin	(2009)	reports	that
his	approximation	performs	very	well	for	a	range	of	sample	trades.	See	also	Gibson	(2005)
and	Gregory	(2010,	ch.	5)	on	collateralized	exposure.

The	lagged	collateral	model	is	a	convenient	approximation	to	exact	collateral	calls	and	is
frequently	used	in	practice	by	banks	to	calculate	exposure	for	collateralized	trades.	The
lookback	time	point	approximation	approaches	by	Pykthin	and	Zhu	(2006)	and	Pykthin	(2009)
allow	the	computation	time	for	collateralized	trades	to	be	practical	and	on	par	with
uncollateralized	trades.	It	is	therefore	not	surprising	that	banks	have	adopted	the	lagged
collateral	model	approaches.	One	must	remember	that	the	lagged	collateral	model	only	focuses
on	the	collateral	calls	at	the	settlement	period	lookback	points.	The	potential	intervening	time
points	of	collateral	returns	by	the	institution	are	overlooked.	Similarly,	the	potentialdelay	in
counterparty	return	of	institution	posted	collateral	is	not	captured.	Therefore,	the	lagged
collateral	model	itself	can	underestimate	collateralized	exposure.	The	lagged	collateral	model
can	also	overestimate	exposure.	This	is	because	it	can	ignore	valid	margin	calls	made
previous	to	the	lookback	point	that	get	received	before	the	simulation	time	point.	Essentially,
the	lagged	collateral	model	coincides	with	an	exact	collateral	calculation	when	exposure	is
monotonically	increasing.	In	other	cases	it	can	either	underestimate	or	overestimate	exposure.

Collateral	Dynamics	and	the	Lagged	Collateral	Model
We	now	focus	on	the	mechanics	of	collateral	calls	and	posts	for	both	unilateral	and	bilateral
margin	agreements.	We	compare	an	exact	collateral	approach	with	the	lagged	collateral	model
in	order	to	enhance	understanding	about	when	the	lagged	collateral	approximation	is	good
versus	not	so	good	in	practice.	In	our	exposition	we	will	focus	mainly	on	simplified	cases	with
daily	margin,	zero	threshold,	and	zero	minimum	transfer	amount.	We	do	this	purposely	to	ease
notation	and	to	focus	on	the	most	important	aspects	of	the	collateral	settlement	risk.	Pykthin
(2009)	contains	the	formulas	for	the	general	collateralized	exposure	implied	from	the	lagged
collateral	model.	In	our	swap	examples	later	we	will	also	consider	more	general	cases	where
margining	can	be	for	example	weekly	and	with	threshold	and	minimum	transfer	amounts	non-
zero.	The	collateral	posted	and	returned	by	either	the	counterparty	or	the	institution	is,
however,	always	assumed	to	be	in	cash	currency,	which	is	consistent	with	the	industry	move	to



standard	CSAs	and	currency	cash	as	the	main	source	of	collateral.	In	order	to	illustrate	the
dynamics	of	the	collateral	and	its	effect	on	the	actual	exposure	we	do	not	assume	the
appearance	of	a	custodian	agent	in	the	process.

Unilateral	Agreement
The	case	where	the	counterparty	posts	collateral	according	to	a	margin	agreement	but	the
institution	does	not	post	is	referred	to	as	a	unilateral	margin	agreement.	The	counterparty	posts
according	to	the	posting	frequency,	 ,	where	 	is	usually	daily.	Assuming	no	delay	in	collateral
settlement	the	institution	collateralized	exposure,	 ,	at	a	time	point	 	is

where	 	is	the	uncollateralized	exposure	of	the	institution	and	 	is	the	value	of
collateral	posted	by	the	counterparty.	We	assume	that	the	collateral	posted	is	in	the	trade(s)
cash	currency.	Assuming	 	is	a	margin	call	day	and	 	is	the	previous	margin	call	day	a	valid
margin	call	is	made	at	 	if

where	 	is	the	threshold	and	 	is	the	minimum	transfer	amount	of	the	CSA	agreement.	Of
course,	if

the	institution	returns	collateral.	Assuming	that	the	threshold	and	minimum	transfer	amount	is
zero	or	negligible	we	have	that	a	valid	margin	call	is	made	at	 	if

The	institution	margin	call	amount,	 ,	is	hence

and	return	amount,	 ,

Clearly,	with	no	delay	in	settlement	and	daily	margin	the	institution	exposure, ,	remains
offset	at	all	times	 .	Even	if	there	is	a	non-zero	threshold	and	minimum	transfer	the
exposure	is	bounded	by	the	effective	threshold	of	 .	However,	the	recent	crisis	has
shown	that	settlement	closeouts	can	amount	to	long	risk	horizons.	That	is,	we	cannot	assume
that	collateral	is	delivered	immediately	by	the	counterparty	or	that	the	portfolio	is	closed	out
immediately	if	collateral	is	not	delivered	instantaneously.	Hence,	an	institution	that	considers
its	collateralized	exposure	to	a	counterparty	needs	to	include	the	settlement	risk.

When	considering	settlement	risk	we	assume	there	is	a	delay	in	receiving	the	daily	collateral
posts	from	the	counterparty	once	a	valid	margin	call	has	been	made.	Assuming	a	collateral
settlement	risk	period	of	 	a	positive	call	amount	at	 ,	 ,	is	received	by	the	institution



5.15

at	 .	With	settlement	risk	we	therefore	have	that

where	 	is	the	cash	balance	of	collateral	at	 .	We	take	the	maximum	in	equation	(5.15)
since	we	do	not	allow	overcollateralization	of	the	institution.	This	means	that	we	assume	that
excess	collateral	is	returned	by	the	institution	instantaneously	(i.e.,	with	no	settlement	delay).
This	assumption	is	prudent	from	a	risk	management	perspective.	The	exact	collateral	cash
balance,	 ,	depends	in	general	on	the	exact	exposure	path	at	times	 .

While	we	have	assumed	that	the	institution	returns	collateral	instantaneously	one	can	also	ask
whether	the	actual	instantaneous	return	is	based	on	what	has	actually	been	received	from	the
counterparty	(with	delay)	versus	what	should	have	been	posted	(with	no	delay).	In	the	latter
case	collateralized	exposure	can	be	higher	than	uncollateralized	when	mark	to	market	is	in
favor	of	the	institution	since	the	institution	returns	collateral	that	has	not	been	physically
settled.

As	mentioned	previously	the	lagged	collateral	model	has	quickly	become	a	standard	market
model	to	include	the	ISDA	CSA	effect	on	collateralized	exposure	in	potential	future	exposure
calculation	as	well	as	in	counterparty	pricing	using	CVA.	Following	Pykthin	(2009),	the	lagged
collateral	model	specification	is	such	that	at	time	 	we	have	portfolio	value	 	and
collateral	balance	 .	Then,	with	settlement	delay	 ,	the	posted	amount	at	 ,	 ,	is:

and	the	collateral	balance,	at	 	is:

Hence,	the	lagged	collateral	model	implied	collateralized	exposure,	 ,	at	 	is:

With	this	model	specification	for	collateralized	exposure	we	note	that	it	ignores	intervening
returns	of	collateral	between	the	time	point	 	and	the	lookback	time	point	 .	It	also	ignores
previous	periods	institution	calls	before	the	lookback	time	point	 	that	can	be	delivered	before
the	time	point	 .

Example	of	Unilateral	Exact	Collateral	Calls	Versus	the	Lagged	Collateral	Model
It	is	illustrative	to	consider	an	example	of	the	key	differences	between	an	exact	collateral
calculation	and	the	approximative	lagged	collateral	model.	Table	5.9	illustrates	the	calculation
of	collateralized	exposure,	 ,	using	exact	collateral	calls	and	returns	as	well	as	using	the
lagged	collateral	model	collateralized	exposure,	 .	In	our	example,	we	assume	a	zero
threshold	and	minimum	transfer	amount	and	the	remargin	frequency	is	daily	with	a	settlement
risk	of	 	days	during	days	 .	Day	 	exposure	and	collateral	balance	is	zero.

In	Table	5.9	we	have	used	the	notation	 	to	represent	the	actual	delivered	collateral



amount	by	the	counterparty	at	 	to	the	institution.	All	the	intermediate	collateral	agreement
calculation	variables	such	as	collateral	balance,	 ,	used	in	Table	5.9	are	using	an	exact
calculation	and	we	only	present	the	final	lagged	collateral	model	exposure,	 .

Table	5.9	Collateralized	Exposure—All	Margin	Calls	Get	Delivered	Regardless	of	Exposure
Offset	and	Institution	Returns	Based	on	What	Has	Actually	Been	Received

Exposure	time	points

1,000 2,000 500 3,000 9,000 13,000
1,000 1,000 0 1,500 6,000 4,000

0 0 1,000 1,000 0 1,500
0 0 500 0 0 0
0 0 500 1,500 1,500 3,000

1,000 2,000 0 1,500 7,500 10,000
1,000 2,000 0 1,000 8,500 10,000

To	understand	the	 	and	 	exposures	obtained	in	Table	5.9	note	that	at	time	 	the	institution
makes	a	valid	margin	call	of	1,000	units	of	currency	based	on	the	uncollateralized	exposure	at	
,	 ,	being	1,000	units	of	currency.	Similarly,	at	 ,	the	institution	makes	a	valid	margin	call,

Because	of	settlement	delay	of	the	counterparty	posts	the	collateral	called	for	at	 ,	 ,	gets
delivered	at	 .	At	 	the	uncollateralized	exposure	is	 	units	of	currency,	that	is,

The	institution	hence	needs	to	return	 	units	of	currency	instantaneously	to	avoid
overcollateralization.	The	institution	return	amount	is	denoted	 	in	Table	5.9.	For	both	an
exact	collateral	calculation	and	the	lagged	collateral	model	the	collateralized	exposure	at	 	is
null.	That	is,

At	time	point	 	the	exposure,	 ,	is	3,000	units	of	currency.	Hence,	the	institution	makes	a
valid	residual	margin	call	of	1,500	units	of	currency.	This	is	because	at	the	same	time	the
institution	receives	the	1,000	units	of	collateral	in	currency	called	for	at	time	 .	At	this	point,
the	exact	collateral	calculation	gives	a	different	collateralized	exposure,	 ,	than	the	lagged
collateral	model	exposure.	Specifically,

while



This	is	because	the	lagged	collateral	model	ignores	the	institution	instantaneous	return	of
collateral	at	time	 	to	avoid	overcollateralization	of	the	institution.	On	the	other	hand,	at	time	
,	the	lagged	collateral	model	exposure	is	higher	than	the	exact	collateralized	exposure.	We
have	that

while

That	is,	the	lagged	collateral	model	overestimates	collateralized	exposure.	In	this	case,	the
lookback	point	for	the	lagged	collateral	model	is	 ,	with	no	valid	margin	call	for	the
institution.	It	ignores	the	previous	periods	call,	at	 ,	that	gets	posted	with	delay	at	 .	Finally,	at
time	point	 	the	lagged	and	exact	collateral	models	again	yield	the	same	collateralized
exposure.	This	is	because	uncollateralized	exposure,	 ,	is	non-decreasing	across	time	points,

.

In	our	example	above,	we	have	assumed	two	important	things:

1.	 The	margin	call	made	at	 	by	the	institution	is	still	delivered	at	 	by	the	counterparty	even
if	the	collateralized	exposure	is	offset	at	 .

A	more	natural	assumption	is	that	the	institution	call	made	at	 	never	gets	delivered
because	of	the	exposure	offset	at	 .	In	this	case,	the	collateralized	exposure	for	 ,	 ,
increases	to	2,500	units	of	currency.	Similarly,	the	collateralized	exposure	at	 ,	

	(i.e.,	the	same	as	for	the	lagged	collateral	model).	Since	the	margin	call
made	at	 	is	honored	at	 	we	obtain	the	same	time	 	exposure.	That	is,	 .
This	case	is	displayed	in	Table	5.10.

Table	5.10	Collateralized	Exposure—Margin	Calls	That	Are	Later	Offset	Do	Not	Get
Delivered	and	Institution	Returns	Based	on	What	Has	Actually	Been	Received

Exposure	time	points

1,000 2,000 500 3,000 9,000 13,000
1,000 1,000 0 2,500 6,000 4,000

0 0 1,000 0 0 2,500
0 0 500 0 0 0
0 0 500 500 500 3,000

1,000 2,000 0 2,500 8,500 10,000
1,000 2,000 0 1,000 8,500 10,000

2.	 	The	institution	returns	collateral	only	based	on	what	has	actually	been	received	(i.e.,	it



only	returns	actual	posts,	not	what	has	been	called	for	but	not	delivered	yet).

This	is	a	reasonable	assumption	in	practice.	However,	if	there	is	an	operational	process	flaw
such	that	the	institution	returns	are	based	on	what	has	been	called	for	rather	than	actually
delivered,	then,	clearly,	at	time	 ,	the	institution	return,	 ,	is	1,500	units	of	currency	instead
of	 	units	of	currency.	This	would	result	in	an	exact	collateralized	exposure,	 ,	at	 	of
1,000	units	of	currency	instead	of	 .	Hence,	at	this	time	collateralized	exposure	is	greater	than
uncollateralized	exposure.	Similarly,	the	exact	collateralized	exposure	at	 	now	increases	to	at
least	2,500	units	of	currency	(3,500	units	of	currency	if	we	assume	that	the	institution	call	at	
never	gets	delivered).	At	 	the	exact	collateralized	exposure	is	now	8,500	units	of	currency
(9,500	units	of	currency	if	we	assume	that	the	institution	call	at	 	never	gets	delivered).

Table	5.11	displays	the	collateral	case	when	the	margin	call	at	 	still	gets	delivered	while	the
institution	returns	collateral	based	on	what	should	have	been	received.	In	Table	5.12	we	also
display	the	corresponding	collateral	case	when	the	margin	call	at	 	doesn't	get	delivered.

Table	5.11	Collateralized	Exposure—All	Margin	Calls	Get	Delivered	Regardless	of	Exposure
Offset	and	Institution	Returns	Based	on	What	Should	Have	Been	Received

Exposure	time	points

1,000 2,000 500 3,000 9,000 13,000
1,000 1,000 0 2,500 6,000 4,000

0 0 1,000 1,000 0 2,500
0 0 1,500 0 0 0
0 0 500 500 3,000

1,000 2,000 1,000 2,500 8,500 10,000
1,000 2,000 0 1,000 8,500 10,000

Table	5.12	Collateralized	Exposure—Margin	Calls	That	Are	Later	Offset	Do	Not	Get
Delivered	and	Institution	Returns	Based	on	What	Should	Have	Been	Received

Exposure	time	points

1,000 2,000 500 3,000 9,000 13,000
1,000 1,000 0 3,500 6,000 4,000

0 0 1,000 0 0 3,500
0 0 1,500 0 0 0
0 0 3,000

1,000 2,000 1,000 3,500 9,500 10,000
1,000 2,000 0 1,000 8,500 10,000
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We	note	from	above	with	case	1	that	the	underestimation	of	collateralized	exposure	in	the
lagged	collateral	model	increases	at	 	and	that	collateralized	exposure	is	no	longer
overestimated	by	the	lagged	collateral	model	at	 .	With	case	2	the	lagged	collateral	model
underestimates	exposure	at	both	time	points	 	and	 .	Moreover,	the	lagged	collateral	model
does	not	overestimate	collateralized	exposure	anymore	at	time	 .	If	we	have	both	case	1	and	2,
then	the	lagged	collateral	model	underestimates	exposure	significantly	at	time	points,	 .
At	other	time	points	the	exact	and	lagged	collateral	model	exposures	coincide.

Bilateral	Agreement
When	both	the	counterparty	and	the	institution	are	subject	to	collateralization	the	margin
agreement	is	said	to	be	a	bilateral	margin	agreement.	In	the	bilateral	margin	agreement	case	it
is	conservative	to	assume	that	the	counterparty	can	delay	both	its	post	and	returns	but	the
institution	posts	and	returns	collateral	without	delay.	In	the	unilateral	margin	agreement	case
we	noted	that	collateralized	exposure	can	exceed	exposure	if	the	institution	returns	collateral
based	on	what	should	have	been	posted	by	the	counterparty.	In	the	bilateral	case	this	case	can
happen	because	of	the	institution	posting	leg	of	the	margin	agreement.	This	is	because	now	the
counterparty	can	delay	the	returns	of	collateral	posted	by	the	institution,	causing	counterparty
overcollateralization.	Hence,	both	the	poster	and	receiver	leg	of	a	bilateral	margin	agreement
can	cause	counterparty	overcollateralization.	The	contribution	to	counterparty
overcollateralization	from	the	poster	and	receiver	legs	can	happen	at	the	same	time	and	hence
for	bilateral	margin	agreements	one	cannot	in	general	separate	the	posting	and	receiving	parts
of	the	collateral	calculation.

Assuming	as	before	a	zero	threshold	and	minimum	transfer	amount	the	institution	collateral
balance	under	the	approximative	lagged	collateral	model	is

with	 	the	settlement	risk	period	for	the	counterparty.	The	first	term	in	equation	(5.16)	is
the	case	when	the	institution	receives	collateral	and	the	second	term	captures	the	case	when	the
institution	posts.	The	lagged	collateral	model	collateralized	exposure	is	then	given	by

Clearly,	as	in	the	unilateral	case,	the	lagged	collateral	model	ignores	the	dynamics	of
intervening	time	points	between	 .	Consider	a	mark	to	market	in	favor	of	the	counterparty
in	 .	Assuming	daily	margin,	the	institution	posts	the	required	collateral	to	the	counterparty	at

.	If	the	mark	to	market	is	in	favor	of	the	institution	at	 ,	the	counterparty	does	not	return	the
institution	posted	amount	in	 	at	 	due	to	settlement	risk.	This	can	clearly	cause
overcollateralization	of	the	counterparty	such	that	collateralized	exposure	exceeds	exposure.	In
such	cases	the	lagged	collateral	model	can	underestimate	also	exposure	arising	from	the	poster
leg.

Example	of	Bilateral	Exact	Collateral	Calls	Versus	the	Lagged	Collateral	Model



Table	5.13	displays	sample	collateral	dynamics	for	the	exact	collateral	model	and	the	lagged
collateral	model	in	case	of	a	bilateral	agreement.	As	for	the	unilateral	agreement	case	all	the
intermediate	collateral	agreement	calculation	variables	such	as	collateral	balance,	 ,	used
in	Table	5.13	are	using	an	exact	calculation.	We	only	present	the	final	approximative	lagged
collateral	model	exposure,	 .	In	the	example	we	have	assumed	that	counterparty	delayed
posts	are	still	delivered	even	if	the	exposure	is	later	offset	at	the	settlement	delay.	As	in	the
unilateral	cases,	removing	this	assumption	increases	the	counterparty	exposure.	However,	the
institution	does	not	return	collateral	posted	with	delay	if	at	that	time	point	the	institution	is
undercollateralized.	The	settlement	risk	period	used	is	two	days	as	in	the	unilateral	case.	In	the
table	we	use	the	notation	 	for	the	market	value	of	the	trade,	 	is	the	uncollateralized
exposure,	and	 	is	the	uncollateralized	exposure	from	the	counterparty	view,	that	is,	the
negative	exposure	from	the	institution	point	of	view.

Table	5.13	Bilateral	Agreement	Collateralized	Exposure—All	Counterparty	Margin	Calls	Get
Delivered	Regardless	of	Exposure	Offset	and	Institution	Returns	Based	on	What	Has	Actually
Been	Received

Exposure	time	points

100 200 300 900 1,300
100 200 0 300 900 1,300
0 0 500 0 0 0

100 100 0 300 600 400
0 0 100 100 0 300
0 0 100 0 0 0
0 0 500
0 0 0 500 0 0
0 0 0 0 0 500
0 0 400

100 200 0 700 1,300 900
100 200 0 100 1,400 1,000
0 0 0 400 400 0

Dealing	with	a	bilateral	agreement	we	also	need	to	introduce	notation	for	the	institution	post	of
collateral,	 	as	well	as	the	counterparty	required	and	actual	return	of	collateral	posts	from
the	institution,	 	and	 ,	respectively.	Again,	our	assumption	is	that	the	institution
posts	and	returns	collateral	instantaneously	but	the	counterparty	delays	both	its	posts	and
returns	by	the	settlement	risk	period.	Because	the	institution	posts	with	no	delay	but	the
counterparty	can	delay	returns	we	can	clearly	have	a	situation	of	counterparty
overcollateralization.	The	notation	we	use	for	the	counterparty	overcollateralization	is	 .



The	remaining	notation	in	Table	5.13	is	the	same	as	the	notation	used	in	Table	5.9	for	the
unilateral	agreement	case.

In	Table	5.13	we	have	a	situation	of	increasing	exposure,	 ,	initially	for	the	institution	at	
and	 ,	then	a	negative	market	value	at	 	such	that	the	counterparty	has	an	exposure	to	the
institution.	At	 ,	 ,	and	 	we	have	again	an	increasing	exposure	for	the	institution.	At	 	the
counterparty	actually	delivers	the	100	units	of	currency	called	by	the	institution	at	 ,

This	amount	is	however	returned	instantaneously	by	the	institution	since	it	has	no	exposure,

At	the	same	time	the	counterparty	makes	a	valid	margin	call	of	500	units	of	currency	to	cover
their	exposure.	This	margin	post	is	delivered	by	the	institution	instantaneously,

At	 	the	exposure	becomes	positive	again	for	the	institution	and	they	make	a	valid	margin	call
for	300	units	of	currency.	While	100	units	of	currency	is	received	at	 	due	to	the	margin	call	at	
	the	counterparty	delays	both	its	return	of	collateral	posted	by	the	institution	at	 	as	well	as

the	margin	call	made	at	 .	This	results	in	a	net	collateral	balance	for	the	institution	of	−400
units	of	currency	at	 .	As	mentioned,	we	here	assume	that	the	institution	does	not	return	the
delayed	post	of	the	100	units	of	currency	since	it	is	undercollateralized.	Since	the	exposure	at	
	is	300	units	of	currency	the	exact	collateralized	exposure	is	700	units	of	currency	and

exceeds	exposure.	The	counterparty	overcollateralization	is	hence	400	units	of	currency.

In	contrast	the	lagged	collateral	model	exposure	is	100	units	of	currency	as	the	lookback	point
is	 .	It	ignores	the	fact	that	at	 	the	institution	posted	an	amount	to	cover	the	counterparty's
exposure	to	the	institution	that	does	not	get	returned	instantaneously.	At	 	the	exposure	has
increased	to	900	units	of	currency	and	the	institution	makes	a	valid	margin	call	of	600	units	of
currency.	However,	due	to	settlement	delay	no	collateral	is	delivered	by	the	counterparty	at	
such	that	collateralized	exposure	still	exceeds	uncollateralized	exposure.	This	is	because	the
counterparty	is	still	overcollateralized	at	 .	In	this	case	the	lagged	collateral	model
collateralized	exposure	exceeds	the	exact	collateralized	exposure	by	100	units	of	currency
because	it	does	not	include	the	fact	that	the	institution	returns	100	units	of	currency	to	the
counterparty	at	 .	At	 	thelagged	collateral	model	again	overestimates	collateralized	exposure
by	100	units	of	currency	compared	to	the	exact	case.	This	is	because	it	does	not	capture	the
100	units	of	currency	posted	with	delay	by	the	counterparty	at	 .	However,	if	we	assume	the
call	at	 	got	canceled	at	 	(because	at	 	the	institution	has	no	exposure),	we	would	have	the
same	collateralized	exposure	at	 	for	the	lagged	collateral	model	and	the	exact	case.

In	this	bilateral	collateral	agreement	example	there	are	two	sources	of	collateralized
counterparty	exposure:

First,	the	settlement	delay	in	margin	calls	made	by	the	institution



Second,	the	fact	that	the	counterparty	has	settlement	delay	in	returns	of	collateral	as	well

This	settlement	delay	in	returns	of	collateral	can	clearly	cause	collateralized	exposure	to
exceed	exposure	with	counterparty	overcollateralization	as	the	result.

Our	next	and	final	example	of	bilateral	margin	agreements	assumes	that	the	institution	returns
based	on	what	should	have	been	received	rather	than	what	has	actually	been	posted	by	the
counterparty.	Hence,	we	use	the	assumption	in	case	2	above	for	the	unilateral	agreements.
Using	the	same	trade	value	and	exposure	profiles	as	in	Table	5.13,	Table	5.14	displays	this
case.	In	this	case	the	institution	returns	200	units	of	currency	to	the	counterparty	at	 .	This	is
based	on	what	should	have	been	posted	(with	no	delay)	rather	than	what	has	been	posted.	This
causes	an	overcollateralization	of	the	counterparty	already	at	 	with	100	units	of	currency	such
that	collateralized	exposure	exceeds	exposure.

Table	5.14	Bilateral	Agreement	Collateralized	Exposure—All	Counterparty	Margin	Calls	Get
Delivered	Regardless	of	Exposure	Offset	and	Institution	Returns	Based	on	What	Should	Have
Been	Received

Exposure	time	points

100 200 300 900 1,300
100 200 0 300 900 1,300
0 0 500 0 0 0

100 100 0 300 600 400
0 0 100 100 0 300
0 0 200 0 0 0
0 0 500
0 0 0 500 0 0
0 0 0 0 0 500
0 0 300

100 200 100 800 1,400 1,000
100 200 0 100 1,400 1,000
0 0 100 500 500 0

As	in	Table	5.13,	we	still	have	counterparty	overcollateralization	at	 	and	 	such	that
collateralized	exposure	exceeds	exposure.	Due	to	the	return	in	 	the	collateralized	exposure	at	
	and	 	rises	by	100	units	of	currency.	The	collateralized	exposure	levels	in	 	and	 	are	now	a

combination	of	settlement	delay	in	counterparty	returns	and	the	excess	returns	at	 .	In	this	case
the	lagged	collateral	model	exposure	never	exceeds	the	exact	exposure.	However,	as	before,
the	exact	collateral	exposure	can	exceed	the	lagged	collateral	model	exposure.	This	happens	at
time	points	 	and	 .



Collateralized	Swap	Exposure
Having	discussed	the	collateral	dynamics	for	collateral	agreements	in	simple	stylized	exposure
cases	we	now	analyze	the	impact	of	unilateral	ISDA	CSA	agreements	on	the	institution's	1-year
maturity	plain	interest	rate	swap	exposures	using	an	exact	collateral	calculation.	That	is,	we
simulate	exposure	and	the	corresponding	exact	collateral	calls	on	a	daily	frequency	for	each	of
the	260	business	days	assumed	in	a	year.	The	interest	rate	model	used	for	simulation	of	interest
rate	paths	is	the	same	model	we	have	used	before	in	our	examples.	Specifically,	we	use	the
model	in	equation	(5.10)	with	the	same	parameters	as	before.

Since	with	frequent	collateral	posts	a	long-term	exposure	is	effectively	transformed	into	a
short-term	exposure	(until	the	next	margin	call	day	with	no	settlement	risk)	it	is	sufficient	to
consider	relatively	short-term	swap	exposures	as	illustration	of	the	collateral	effects.	In	our
exact	collateral	calculation	we	make	the	assumption	that	the	institution	returns	collateral
instantaneously	based	on	what	has	actually	been	received.	Moreover,	in	case	of	settlement	risk
the	delayed	collateral	posts	of	the	counterparty	do	not	get	canceled	even	if	exposure	has	been
reduced.

Figure	5.15	displays	expected	exposure	(EE),	the	running	mean	of	expected	positive	exposures
(EPE),	and	the	peak	exposure	(PE)	profile	for	a	1-year	ATM	fixed	rate	payer	swap	(i.e.,	the
fixed	rate	swap	leg	is	equal	to	the	implied	forward	rate	of	5%).	The	deal	notional	is	1,000,000
units	of	currency	and	the	confidence	level	used	for	peak	exposures	is	 .	The	exposure
profiles	have	been	calculated	using	10,000	simulations	and	a	daily	time	grid	up	to	maturity.	As
before	the	swap	has	monthly	payment	flows.



Figure	5.15	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	1-Year	at-the-Money	Payer	Swap	With	No	Collateral

Figures	5.16,	5.17,	and	5.18	display	the	same	1-year	swap	exposure	but	now	collateralized
with	a	daily	margin	frequency.	In	all	cases	the	margin	threshold	and	minimum	transfer	amount
are	set	to	500	and	100	units	of	currency	respectively.	In	Figure	5.16	we	assume	no	settlement
risk	while	in	Figures	5.17	and	5.18	we	have	a	5-	and	10-day	settlement	risk	respectively.	We
note	from	Figure	5.16	that	in	the	case	of	daily	margining	and	no	collateral	settlement	risk	the
exposure	is	bounded	by	the	threshold	plus	the	minimum	transfer	amount.	Hence,	with	daily
margining	and	zero	threshold	and	minimum	transfer	the	daily	exposure	would	be	offset	at	all
times.	However,	when	there	is	a	5-	or	10-day	settlement	risk	as	in	Figures	5.17	and	5.18,	then
the	sharply	increasing	(peak)	exposures	in	the	beginning	of	the	swap	are	not	fully	mitigated	due
to	the	settlement	delay.	Eventually	exposure	is	offset	substantially	after	we	have	reached	the
peak	of	the	exposure	profile	of	the	swap.	This	is	because	when	the	maximum	swap	exposure
has	been	reached	the	swap	exposure	is	decreasing	again.	The	settlement	delay	impact	is
clearly	not	as	severe	when	exposure	is	declining.



Figure	5.16	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	1-Year	at-the-Money	Payer	Swap	with	Daily	Margin	and	No
Settlement	Risk



Figure	5.17	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	1-Year	at-the-Money	Payer	Swap	with	Daily	Margin	and	5-Day
Settlement	Risk



Figure	5.18	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	1-Year	at-the-Money	Payer	Swap	with	Daily	Margin	and	10-Day
Settlement	Risk

Figure	5.19	displays	the	expected	exposure	profiles	for	the	uncollateralized	and	collateralized
1-year	swaps	for	comparison.	The	different	expected	exposure	profiles	imply	that	we	expect
significant	differences	in	CVA	for	the	uncollateralized	case	and	the	collateralized	cases.	This
is	because	swap	CVA	is	essentially	the	integration	of	expected	exposure	times	the	incremental
default	probability	over	time.	See	equation	(5.2).	We	can	also	calculate	the	EPE	from	the	EE
profiles	in	Figure	5.19.	For	the	uncollateralized	swap	EPE	is	1,948	units	of	currency.	The	EPE
for	the	collateralized	swaps	is	77,	244,	and	406	units	of	currency	respectively	for	the	case	of
no	settlement	risk,	5-day	settlement	risk,	and	10-day	settlement	risk.	This	is	a	significant
reduction	compared	to	uncollateralized	case.



Figure	5.19	Expected	Exposure	for	a	1-Year	at-the-Money	Payer	Swap,	Uncollateralized	and
with	Different	Settlement	Risks

We	can	also	compare	the	case	of	settlement	risk	versus	margin	call	frequency	risk.	Figure	5.20
displays	expected	exposure	(EE),	the	running	mean	of	expected	positive	exposures	(EPE),	and
the	peak	exposure	(PE)	profile	for	the	1-year	fixed	rate	payer	swap	with	10-day	margining
frequency	with	no	settlement	risk.	As	before	the	deal	notional	is	1,000,000	units	of	currency
and	the	collateral	agreement	margin	threshold	and	minimum	transfer	amount	are	set	to	500	and
100	units	of	currency	respectively.	We	notice	from	Figure	5.20	that	at	the	10-day	margining
frequency	intervals	the	maximum	exposure	is	pulled	down	to	the	threshold	plus	the	minimum
transfer.	However,	at	non-margining	days	exposure	can	rise	significantly.	Comparing	with
Figure	5.18,	which	has	daily	margining	but	10-day	settlement	risk,	we	find	that	10-day
settlement	risk	can	be	“worse”	than	10-day	margining	frequency	risk.	This	is	because	when
there	is	no	settlement	risk	the	collateral	called	for	at	margin	days	can	in	principle	perfectly
offset	exposure	at	the	call	day	(assuming	zero	threshold	and	zero	minimum	transfer	amount).
However,	in	case	of	settlement	risk	the	collateral	called	for	may	never	offset	exposure	on	the
day	collateral	is	received.	The	differences	between	the	two	situations	are	the	largest	when
exposure	is	rising.	We	can	therefore	conclude	that	it	is	not	prudent	to	use	an	increased	margin
frequency	assumption	to	approximate	settlement	risk.



Figure	5.20	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	1-Year	at-the-Money	Payer	Swap	with	10-Day	Margin	Frequency
and	No	Settlement	Risk

The	combined	risk	of	a	non-daily	margining	frequency	and	settlement	risk	is	displayed	in
Figures	5.21	and	5.22.	Figure	5.21	displays	the	case	of	a	10-day	margining	frequency	and	5
day	settlement	risk.	Figure	5.22	displays	the	exposure	for	the	same	10-day	margining	frequency
but	with	a	10-day	settlement	risk.	We	can	conclude	from	these	figures	and	the	figures	that
display	exposure	profiles	with	daily	margining	and	settlement	risk	that	exposure	jump	risk	is
the	main	risk	for	collateral	agreements	with	settlement	risk	and/or	non-daily	margin	frequency.
Collateral	agreements	with	settlement	risk	and/or	non-daily	margin	frequency	have	limited
value	when	exposure	is	very	volatile.	However,	the	collateral	agreement	has	substantial	value
when	exposure	is	fairly	constant	or	decreasing.



Figure	5.21	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	1-Year	at-the-Money	Payer	Swap	with	10-Day	Margin	Frequency
and	5-Day	Settlement	Risk



Figure	5.22	Expected	Exposure,	the	Running	Mean	of	Expected	Positive	Exposures,	and	the
Peak	Exposure	Profile	for	a	1-Year	at-the-Money	Payer	Swap	with	10-Day	Margin	Frequency
and	10-Day	Settlement	Risk

Collateralized	Swap	CVA
Having	analyzed	the	swap	exposure	profiles	with	collateral	agreements	we	now	compute	CVA
for	the	1-year	swaps	using	different	unilateral	CSA	collateral	agreement	assumptions.	As
before,	the	counterparty	CDS	term	structure	has	the	term	points,	1,	3,	and	6	months	as	well	as
1,	5,	and	10	years	and	the	current	quoted	CDS	premias	for	the	counterparty	is	30,	50,	70,	100,
400,	and	700	basis	points	respectively.	However,	since	we	are	in	this	case	only	considering
short-term	1-year	swaps,	only	the	CDS	term	structure	up	to	1	year	is	used	in	the	CVA
calculation.	The	results	are	displayed	in	Table	5.15	for	the	uncollateralized	case	as	well	as
collateralized	cases	with	1,	5,	or	10	days	settlement	risk	and	1,	5,	or	10	days	margining
interval.	The	margin	threshold	and	the	minimum	transfer	amount	are	500	and	100	units	of
currency	respectively	for	all	collateral	agreements.	In	the	table	we	have	also	included	the
effect	of	swap	wrong-way	risk	 	adjustment	factor	for	an	80%	correlation	between	the
counterparty	CDS	premias	(hazard	rates)	and	the	interest	rates,	similar	to	Table	5.8	for	the
plain	swaps	but	now	focused	on	the	1-year	swaps	with	different	collateral	agreements.	The
model	used	for	CDS	premia	is	the	same	model	we	have	used	previously	for	modeling	wrong-
way	risk,	that	is,	the	model	in	equation	(5.14).



Table	5.15	Currency	Amount	Up-Front	CVA	Charges	for	1-Year	Uncollateralized	and
Collateralized	Swaps	with	Different	Collateral	Parameters	and	with	and	Without	Wrong-Way
Risk.	The	Swap	Notional	is	1,000,000	Units	of	Currency

Collateral	parameters CVA CVA	 	WR
Margin	interval Settlement	risk
1	day 0	days 0.53 2.26
1	day 5	days 1.51 2.38
1	day 10	days 2.48 2.41
5	days 0	days 0.98 2.29
5	days 5	days 1.67 2.32
5	days 10	days 2.31 2.41
10	days 0	days 1.35 2.31
10	days 5	days 1.93 2.38
10	days 10	days 2.44 2.42

Uncollateralized	case 10.56 2.77

We	observe	from	Table	5.15	that	the	up-front	CVA	charges	are	quite	small	in	currency	amount
compared	to	the	1,000,000	notional	amount—even	for	the	uncollateralized	case.	This	is
because	of	the	short-term	horizon	of	the	swap	deals.	In	the	most	ideal	case	of	daily	margining
and	no	settlement	risk	the	CVA	is	approximately	a	factor	of	20	lower	than	the	uncollateralized
case.	Even	for	the	worst	collateral	case	in	Table	5.15	of	10-day	margin	interval	and	10-day
settlement	risk	the	CVA	is	approximately	a	factor	of	4	lower	that	the	uncollateralized	case.
This	shows	that	collateral	can	significantly	reduce	CVA	and	that	collateral	is	a	strong	mitigant
of	both	counterparty	exposure	and	counterparty	credit	risk	valuation	adjustments.

As	we	have	mentioned	previously	there	is	a	strong	incentive	to	reduce	CVA	in	order	to	make
deals	profitable	and	also	reduce	hedging	costs.	On	the	other	hand,	with	collateral	the
counterparty	is	now	required	to	manage	the	collateral	calls,	which	is	an	operational	cost.
Previously	we	discussed	that	settlement	risk	of	an	exposure	is	not	being	prudently
approximated	by	using	an	increased	margin	frequency	with	no	settlement	risk.	Table	5.15
shows	indeed	that	the	CVA	for	a	swap	with	a	1-day	margin	interval	and	a	10-day	settlement
risk	is	higher	than	the	case	of	the	swap	with	no	settlement	risk	(0	days)	and	a	10-day	margining
interval.	The	10-day	settlement	risk	case	has	a	CVA	of	2.41	units	of	currency	while	the	10-day
margin	interval	case	has	a	CVA	of	1.35	units	of	currency.

Focusing	on	wrong-way	risk	 	adjustments	in	Table	5.15	we	find	thatthe	wrong-way	risk	
adjustment	to	CVA	is	slightly	increasing	for	a	fixed	margin	interval	as	the	settlement	risk
period	increases.	The	wrong-way	risk	adjustment	is	naturally	largest	for	the	uncollateralized
case.	Collateral	can	to	some	extent	mitigate	the	wrong-way	risk.	This	is	because	even	with
delay	in	settlement	or	infrequent	margining	the	large	exposure	and	default	probability	joint	rise
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over	a	longer	time	is	eventually	mitigated.

CVA	Risks
The	exposure	simulation	framework	to	calculating	CVA	yields	a	distribution	for	exposures	as
well	as	a	distribution	for	counterparty	default	probabilities.	Above	we	calculated	the	wrong-
way	risk	CVA	through	jointly	integrating	default	and	exposure	scenarios.	That	is,	for	scenarios,

	we	have	that

It	is	natural	to	also	consider	the	full	distribution	of	CVA,	denoted	 ,	such	that

In	the	context	of	the	CVA	distribution	in	equation	(5.17)	we	can	consider	several	standard	tail
risk	measures	such	as	 	and	 .	The	CVA	distribution,	 ,	can	also	be
conditional.	For	example,	we	can	consider	the	conditional	distribution	of	CVA	conditioning	on
either	default	rate	or	exposure	at	their	current	values.	We	can	denote	these	conditional
distributions	by	 	and	 	respectively.	Of	course,	in	case	of
independence	between	default	rate	and	exposure	the	conditional	distributions	reduce	to	the
marginal	distributions.

The	conditional	distribution	 	is	the	distribution	used	in	the	Basel	III	 -based
regulatory	capital	charge	for	CVA	based.	This	is	because	in	the	regulatory	CVA	charge
exposure	is	held	constant	and	assumed	independent	of	the	default.	Hence,	the	conditional
distribution	reduces	to	a	marginal	CVA	default	risk	distribution.

Example	of	CVA	Tail	Risk	Analysis
Using	the	same	models	for	interest	rates	and	CDS	premia	as	we	have	used	before	in	our
examples	Table	5.16	displays	the	99%	CVA	 	for	the	10-year	ATM,	ITM,	and	OTM	payer
swaps	as	well	as	the	ATM	10-year	receiver	swap.	In	Table	5.16	we	use	different	CVA
distributions	corresponding	to	the	cases	of

Default	risk	only

Market	risk	only

Market	and	default	risk	with	wrong-way	risk.11



Table	5.16	10-Year	Swap	Currency	Amount	Up-Front	CVA	95%	VaR	for	the	Cases	of	Default
Risk	Only,	Market	Risk	Only,	and	Both	Market	and	Default	Risk	with	Wrong-Way	Risk.	The
Swap	Notional	is	1,000,000	Units	of	Currency	for	all	Deals

CVA	distribution	VaR	99% CVA
Deal Default	risk

only
Market	risk
only

Both
(WR)

Independent Both
(WR)

10	Year	Payer	swap
(ATM)

19,277.57 48,004.60 94,813.60 9,746.99 15,680.85

10	Year	Payer	swap
(ITM)

25,394.61 53,739.66 105,909.67 12,865.64 19,843.79

10	Year	Payer	swap
(OTM)

14,342.74 42,368.49 83,87979 7,265.14 12,148.52

10	Year	Receiver	swap
(ATM)

21,048.44 39,492.83 14,535.81 10,557.29 5,112.37

Here	we	have	used	the	same	wrong-way	risk	model	as	before	in	the	joint	market	and	default
risk	distribution	with-wrong	way	risk,	that	is,	80%	correlation	between	interest	rates	and
market	default	rates.

Table	5.16	also	displays	the	incurred	CVA	using	the	independent	CVA	assumption	and	the
wrong-way	risk	model.	The	incurred	CVA	is	simply	the	current	CVA	charge.	We	notice	from
the	table	that	the	default	risk	charge	is	approximately	2%	of	notional	of	the	ATM	10-year	payer
swap.	However,	the	current	(incurred)	CVA	charge	is	about	1%	of	swap	notional.	The	ITM	10-
year	payer	swap	has	the	largest	99%	confidence	level	 	default	risk	charge.	On	the	other
hand,	the	incurred	CVA	charge	is	also	largest	in	this	case.

The	market	risk	only	charge	is	higher	for	all	the	swaps	than	the	default	risk	only	charge.	Of
course,	this	observation	in	the	context	of	our	sample	swaps	and	sample	models	is	ultimately
due	to	the	volatilities	used	in	default	risk	versus	market	models.	However,	it	is	not
unreasonable	in	practice	that	the	largest-tail	risk	contribution	is	due	to	exposure	variation.

When	there	is	both	market	and	default	risk	(with	wrong-way	risk)	we	notice	that	the	99%	
charges	increase	significantly	compared	to	the	default	risk	only	or	market	risk	only	charge.
This	increase	is	only	partially	mitigated	by	the	wrong-way	risk	incurred	CVA.

The	reader	interested	in	more	examples	on	the	tail	risk	of	CVA	may	consult	Skoglund	et	al.
(2013),	who	focus	on	the	tail	risk	implied	 	adjustment	for	wrong-way	risk	for	collateralized
and	uncollateralized	swaps.	The	wrong-way	risk	implied	 	factor	is	naturally	increasing	with
tail	confidence	level.	In	particular,	wrong-way	risk	can	introduce	significantly	larger	(loss)	tail
risks	adjustments	than	the	implied	 	wrong-way	risk	adjustment	on	CVA	itself.	Since	tail	risks
remain	partially	unhedged	and	need	to	bear	capital	the	impact	of	wrong-way	risk	on	the
required	CVA	risk	buffer	can	hence	be	very	high,	while	Basel	III	only	requires	market
participants	to	hold	capital	against	credit	spread	volatility	of	CVA.	That	is,	default	risk	only,
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market	participants	still	need	to	understand	the	tail	risk	for	both	market-and	credit-based	tail
risk.

Portfolios	of	Derivatives
Netting
Up	until	now	our	focus	has	been	on	exposure	and	CVA	for	specific	trades.	However,	an
institution	usually	has	multiple	trades	with	a	counterparty	and	in	practice	some	of	these	trades
may	be	offsetting.	That	is,	the	trades'	mark-to-market	values	have	opposite	signs.	However,
when	there	is	no	agreement	to	net	the	trades	each	trade	is	settled	independently.	The	institutions
exposure	is	hence	the	sum	of	all	the	individual	exposures	to	the	counterparty	on	a	trade-per-
trade	basis.	An	ISDA	netting	agreement	between	two	parties	allows	the	trades	covered	under
the	agreement	to	be	netted	out	in	the	portfolio	aggregation.	In	case	of	a	netting	agreement	for	

	trades	with	a	counterparty	the	aggregate	exposure,	at	time	 ,	is

We	notice	here	that	for	a	netting	agreement	to	yield	value	there	must	be	at	least	one	trade	in	the
netting	set	with	a	negative	market	value.	Perfect	netting	of	course	occurs	if	there	is	always	an
exact	canceling	trade	in	the	netting	set.	In	practice	there	may	be	more	than	one	netting	set	for
trades	with	a	counterparty,	for	example,	trades	of	similar	type	or	trades	in	the	same	currency.
For	 	netting	sets	the	counterparty	exposure,	at	time	 ,	is	hence	obtained	in	two	steps.
First,	we	aggregate	exposure	in	the	 	netting	sets

and	second,	we	obtain	the	counterparty	level	exposure	by	aggregating	the	netted	exposures
across	the	netting	sets.	That	is,

If	an	ISDA	CSA	collateral	agreement	is	in	place	for	the	 th	netting	set,	it	is	applied	to	the
netting	set	exposure	in	equation	(5.18),	after	the	netting	of	the	subportfolio.	The	institution's
collateralized	exposure	to	the	counterparty,	for	netting	set	 ,	is	then	given	by

where	 	is	the	collateral	balance	for	netting	set	 .	If	all	the	 	netting	sets	have	ISDA	CSA
agreements,	the	aggregate	counterparty	exposure	is	hence



Example	Swap	Portfolio	Netting	Effects
To	illustrate	the	effect	of	trade	netting	Table	5.17	displays	an	example	of	the	impact	of	netting
on	the	CVA	with	a	portfolio	of	4	trades.	The	trades	include	ATM	5-year	and	10-year	payer
swaps	as	well	as	ATM	7-year	and	10-year	receiver	swaps	using	the	same	models	as	in	our
previous	exposure	examples.	Because	of	the	offsetting	nature	of	the	trades	we	should	in	this
case	expect	netting	to	yield	a	significant	reduction	of	exposure	and	CVA.	This	is	indeed	what
we	find	in	Table	5.17.	Netting	reduces	the	portfolio	CVA	by	a	factor	of	approximately	8.
Figure	5.23	displays	the	trade	and	netted	portfolio	EE	profiles	and	Figure	5.24	displays	the
trade	and	netted	portfolio	99%	confidence	level	PE	profiles.	For	this	portfolio	an	important
first	level	of	risk	mitigation	is	clearly	netting.	The	second	level	of	mitigation	is	potentially	an
ISDA	CSA	collateral	agreement	on	the	netting	set.

Table	5.17	Currency	Amount	Up-Front	CVA	for	a	Portfolio	of	Swaps—With	Netting	and	No
Netting.	The	Swap	Notional	is	1,000,000	Units	of	Currency	for	all	Deals

Deal CVA
5	Year	Payer	swap	(ATM) 1,752.31
7	Year	Receiver	swap	(ATM) 4,392.80
10	Year	Payer	swap	(ATM) 9,746.99
10	Year	Receiver	swap	(ATM) 10,557.29

Portfolio	(no	netting-sum) 26,449.39
Portfolio	(netting) 3,259.37



Figure	5.23	Expected	Exposures	for	Portfolio	Trades	and	the	Netted	Portfolio



Figure	5.24	Peak	Exposures	for	Portfolio	Trades	and	the	Netted	Portfolio

Marginal	and	Incremental	Portfolio	Trades

Expected	Exposure	and	CVA
In	the	context	of	a	netted	portfolio	of	trades	a	natural	question	is	how	we	can	decompose	the
exposure	and	CVA	into	trade	contributions.	Previously,	in	the	context	of	market	risk	and
portfolio	credit	risk,	we	have	used	the	Euler	contributions	in	the	simulation-based	case	to
calculate	risk	contributions	to	 	and	 .	In	the	simulation-based	setting	the	Euler
contribution	is	essentially	a	conditional	expectation.	Focusing	on	Euler	contributions	to	a
netted	portfolio	 	we	first	note	that	to	compute	the	portfolio	netted	 ,	at	time	 ,	for	netting
set	 ,	we	take	an	empirical	expectation	across	scenarios,	 .	That	is,

The	Euler	contribution	of	trade	 	to	the	portfolio	 	at	time	 ,	 ,	is	hence



5.19

5.20

This	is	because	a	marginal	contribution	to	the	netted	portfolio	 	at	time	 	can	only	be	made
when	 .	That	is,	the	portfolio	netted	value	is	positive	for	scenario	 .

The	fact	that	each	trades	marginal	 	sums	to	portfolio	netted	 	also	means	that	we	can	define
a	marginal	 	using	the	marginal	 .	Specifically,	for	 	trades	in	the	k:th	netting
set	we	can	decompose	the	netted	portfolio	 	as

We	therefore	have	that

where	 	is	the	Euler	contribution	to	 	from	trade	 .	Hence,	from	the	Euler
allocation	of	 	we	automatically	have	an	Euler	allocation	of	 	in	terms	of	trade
contributions	to	 .	Note	here	that	across	the	netting	sets	of	a	counterparty	the	 	and	
contribution	to	the	 	netting	sets	is	trivial	since	we	have	that	the	counterparty	 	is
just	a	sum	of	 	across	the	netting	sets.	That	is,

This	means	that	within	each	netting	set	we	can	obtain	the	Euler	contributions	of	 	and	 	as
in	equation	(5.19)	and	equation	(5.20).	However,	across	netting	sets	the	corresponding
contributions	reduce	to	the	simple	sum	of	 	and	 .

Numerical	Example	of	Marginal	EE	for	Trades
In	Table	5.18	we	display	three	scenarios	for	the	sample	netting	set	portfolio	used	in	Table
5.17.	For	each	of	the	trades	in	the	portfolio—which	includes	a	5-year	payer	swap,	a	7-year
receiver	swap,	a	10-year	payer	swap,	and	a	10-year	receiver	swap—we	compute	trade	and
portfolio	aggregate	mark	to	market	for	the	three	scenarios	across	an	exposure	simulation	time
grid,	 .	The	11	time	points	in	the	time	grid	correspond	to	the	day	1	exposure	and	a	time
point	for	every	year	until	the	final	maturity	of	the	portfolio	at	10	years.	Clearly,	after	a	trade



has	matured	it	will	have	zero	mark-to-market	value	for	all	three	scenarios	in	Table	5.18.	Table
5.18	also	displays	the	portfolio	and	trade	 	as	well	as	the	marginal	 ,	 ,	of	each
trade	to	the	portfolio	netted	 .	The	trade	marginal	 	are	computed	using	equation	(5.19).

Table	5.18	Trade	and	Netted	Portfolio	Mark	to	Market,	Expected	Exposure,	and	Marginal
Exposure	for	3	Scenarios

5	Year	Payer	swap	(ATM)
Simulation	time Scenario	1 Scenario	2 Scenario	3 Marginal	EE Trade	EE
1	day −2,811.59 2,663.94 −3,820.18 −2,210.59 887.98
1	year 8,102.22 −30,471.66 −42,540.19 −24,337.28 2,700.74
2	years 12,628.30 −10,879.55 −62,154.78 −24,344.78 4,209.43
3	years −15,119.55 −15,038.48 −50,351.79 −21,823.78 0
4	years 1,557.03 −12,335.43 −16,237.10 −5,412.37 519.01
5	years −2,105.74 −608.90 −1,570.75 −1,225.50 0
6	years 0 0 0 0 0
7	years 0 0 0 0 0
8	years 0 0 0 0 0
9	years 0 0 0 0 0
10	years 0 0 0 0 0

7	Year	Receiver	swap	(ATM)
Scenario	1 Scenario	2 Scenario	3 Marginal	EE Trade	EE

1	day 3	826,08 −3727,28 5	173,13 2	999,74 2	999,74
1	year −27810,76 56	120,01 54	957,01 37	025,67 37	025,67
2	years −14757,44 72	513,44 74	467,42 48	993,62 48	993,62
3	years 29	832,35 −47425,14 116	663,73 48	832,03 48	832,03
4	years −6526,14 8	586,75 116	009,61 38	669,87 41	532,12
5	years 15	566,45 −22403,79 67	697,74 27	754,73 27	754,73
6	years 9	415,06 −22217,78 18	724,41 9	379,82 9	379,82
7	years 955,81 1	490,68 2	297,50 1	581,33 1	581,33
8	years 0 0 0 0 0
9	years 0 0 0 0 0
10	years 0 0 0 0 0

10	Year	Payer	swap	(ATM)
Scenario	1 Scenario	2 Scenario	3 Marginal	EE Trade	EE



1	day −5,173.11 5,134.27 −6,970.60 −4,047.90 1,711.42
1	year 38,928.21 −80,038.62 −77,549.72 −52,529.45 12,976.07
2	years 22,589.59 −118,588.74 −114,065.36 −77,551.37 7,529.86
3	years −82,608.48 −57,333.04 −170,954.54 −84,521.01 0
4	years −24,548.52 7,250.35 −188,617.80 −62,872.60 2,416.78
5	years −70,832.58 85,336.31 −190,364.08 −87,065.55 28,445.44
6	years −46,481.47 70,899.07 −72,682.01 −39,721.16 23,633.02
7	years −2,011.84 35,583.99 −118,283.63 −28,237.16 11,861.33
8	years 35,949.01 23,062.21 −49,491.32 0 19,670.41
9	years 44,258.10 −7,690.89 −1,314.66 0 14,752.70
10	years 2,885.95 −697.88 −2,194.85 0 961.98
1	day 5,173.11 −5,134.27 6,970.60 4,047.90 4,047.90
1	year −38,928.21 80,038.62 77,549.72 52,529.45 52,529.45
2	years −22,589.59 118,588.74 114,065.36 77,551.37 77,551.37
3	years 82,608.48 57,333.04 170,954.54 84,521.01 103,632.02
4	years 24,548.52 −7,250.35 188,617.80 62,872.60 71,055.44
5	years 70,832.58 −85,336.31 190,364.08 87,065.55 87,065.55
6	years 46,481.47 −70,899.07 72,682.01 39,721.16 39,721.16
7	years 2,011.84 −35,583.99 118,283.63 28,237.16 40,098.49
8	years −35,949.01 −23,062.21 49,491.32 0 16,497.11
9	years −44,258.10 7,690.89 1,314.66 0 3,001.85
10	years −2,885.95 697.88 2,194.85 0 964.25

Portfolio
Scenario	1 Scenario	2 Scenario	3 Portfolio	EE

1	day 1,014.49 −1,063.34 1,352.95 789.15
1	year −19,708.53 25,648.35 12,416.82 12,688.39
2	years −2,129.13 61,633.89 12,312.64 24,648.84
3	years 14,712.80 −62,463.62 66,311.94 27,008.25
4	years −4,969.11 −3,748.68 99,772.51 33,257.50
5	years 13,460.71 −23,012.69 66,126.99 26,529.23
6	years 9,415.06 −22,217.78 18,724.41 9,379.82
7	years 955.81 1,490.68 2,297.50 1,581.33
8	years 0 0 0 0
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9	years 0 0 0 0
10	years 0 0 0 0

To	see	how	equation	(5.19)	is	used	to	derive	the	marginal	 	for	trades	in	Table	5.18	consider
the	5-year	payer	swap	marginal	 	at	time	 	(i.e.,	the	1-day	exposure).	In	scenario	1	the	5-year
payer	swap	mark	to	market	is–2,811.59	units	of	currency.	In	scenario	2	the	mark	to	market	is
2,663.94	units	of	currency,	and	in	scenario	3,	 	units	of	currency.	The	marginal	 ,	

,	is	hence

Note	here	that	the	average	of	market	values	in	equation	(5.21)	does	not	use	scenario	2.	This	is
because	in	scenario	2	the	portfolio	market	value	at	time	 	is	negative	and	hence	the	netted
portfolio	exposure	does	not	satisfy	the	condition,	 .

Figure	5.25	displays	graphically	the	trades	marginal	 	and	the	portfolio	netted	 	in	Table
5.18.	By	definition	the	marginal	 	of	all	the	trades	in	Table	5.18	sum	to	the	portfolio	 .

Figure	5.25	Marginal	Expected	Exposures	for	Portfolio	Trades	and	the	Netted	Portfolio



Peak	Exposures	and	Wrong-Way	Risk	CVA
The	Euler	decomposition	of	 	can	be	extended	straightforwardly	to	 	and	other	tail	risk
measures	on	the	exposures.	The	Euler	decomposition	of	tail-based	exposure	risk	measures
uses	the	same	principles	as	for	market	risk	measures.	Let	the	 	( )	exposure	at	time	 	be
given.	Then	the	 	contribution	of	the	trades	is	just	the	mark	to	market	of	the	trades	for	this	
scenario	at	time	 	(assuming	 	is	identified	with	a	specific	scenario).	By	linearity	we	can
apply	the	same	approach	to	linear	combinations	of	scenarios,	for	example,	 	measures	based
on	 	or	risk	distortion	measures,	that	we	discussed	in	the	advanced	market	risk	chapter,
that	weights	scenarios.	For	illustration	Figure	5.26	displays	the	Table	5.18	worst-case
scenario	exposure	decomposition	into	trade	contributions.

Figure	5.26	Marginal	Worst-Case	Exposures	for	Portfolio	Trades	and	the	Netted	Portfolio

That	we	can	decompose	 	measures	as	well	as	 	means	that	wrong-way	risk	 	models
using	a	worst-case	exposure	profile	as	a	proxy	for	the	correlation	between	default	probability
and	exposures,	such	as	in	equation	(5.11),	can	be	decomposed	into	trade	 	contributions.
However,	when	wrong-way	risk	is	modeled	explicitly	with	correlation	between	default
probability	and	exposure	we	must	of	course	integrate	the	exposure	and	default	probability	path



by	path	as	in	equation	(5.13).	The	basis	for	the	 	contributions	is	then	the	product	of	default
probability	and	market	value.

Decomposition	with	Collateral
A	complication	in	practice	is	when	the	netting	set	has	a	collateral	agreement.	That	is,	how	can
we	decompose	 ,	 ,	and	 	contribution	of	trades	to	netting	set	when	there	is	an	ISDA
CSA	agreement?	In	that	case	we	of	course	have	to	decide	for	a	model	of	distributing	netting	set
collateral	back	to	trades.	Specifically,	for	netting	set	 	we	have	that	collateralized	exposure,	

,	at	time	point	 	can	be	written	as

where	 	is	the	uncollateralized	exposure	and	 	is	the	collateral	balance.	Once	we
have	obtained	the	uncollateralized	Euler	allocation	of	 ,	 ,	for	trade	
we	now	need	to	allocate	 .	In	principle	there	are	multiple	ways	to	allocate	the	netting	set
trades	common	collateral	balance,	 ,	back	to	the	trades	and	theoretical	arguments	have	to
be	given	for	one	way	or	another.	Naturally,	one	would	try	and	distribute	the	collateral	back	to
the	trades	consuming	collateral	in	fair	allocations.	We	refer	to	Pykthin	and	Rosen	(2010)	for	a
discussion	of	Euler	allocations	with	collateral	agreements.12

New	Trade	Impact	on	CVA
While	exposure	and	 	contributions	are	used	to	decompose	an	existing	portfolio	of	trades
one	can	also	ask	what	is	the	exposure	and	 	impact	of	a	new	trade	or	a	set	of	new	trades.
Assuming	that	the	new	trade	does	not	change	the	counterparty	default	probability	we	have	that
the	change	in	 ,	 ,	due	to	the	new	trade(s)	is

Here,	we	have	used	the	notation	 	for	the	netting	set	 	with	the	new	trade(s)	and	
is	the	original	portfolio	 .	Clearly,	 	can	be	negative	if	the	new	trade(s)	is	offsetting
and	hence	incremental	 	can	be	negative.	As	for	 	contributions	this	simple	formula	of
incremental	 	in	terms	of	incremental	 	only	works	in	case	of	no	wrong-way	risk.	In	case
of	wrong-way	risk	we	of	course	have	to	integrate	the	incremental	trade(s)	exposure	and	the
default	probability	path	by	path	using	equation	(5.13).

Recent	Counterparty	Credit	Risk	Developments



OIS	Discounting	for	Derivatives
During	the	2007	financial	crisis	the	spread	between	market	rates	like	LIBOR	(London
Interbank	Offered	Rate)	and	OIS	(Overnight	Index	Swap)	increased	significantly,	suggesting
that	LIBOR	is	no	longer	a	good	approximation	to	risk-free	rates.	With	the	collateralization	of
the	derivatives	market	to	significantly	reduce	counterparty	credit	risk—either	through	bilateral
agreements	or	central	clearing—it	is	harder	to	argue	for	using	LIBOR	to	discount	derivative
cash	flows.	The	OIS	rates	are	now	preferred	by	dealers	to	value,	for	example,	collateralized
interest	rate	swaps	because	it	removes	the	bank	credit	risk	that	is	being	priced	into	LIBOR.
However,	as	Hull	and	White	(2013)	argue,	OIS	should	be	used	to	discount	all	derivatives—
whether	collateralized	or	not—as	the	credit	risk	adjustment	is	made	through	CVA	to	the	risk-
free	market	value.	When	OIS	discounting	is	used	the	payment	curve	of	the	floating	rate	leg
(LIBOR)	must	be	bootstrapped	relative	to	the	OIS	discount	curve	to	ensure	swap	prices	to	par.
See	Bianchetti	(2012).	Smith	(2012)	also	provides	simple	numerical	examples	of	the
calculation.

Advanced	CVA	Calculations	and	CVA	Greeks
Our	examples	of	CVA	have	focused	on	simple	swap	products	and	an	intuitive	exposure
simulation	framework	for	CVA.	The	exposure	simulation	framework	used	here	can	be	referred
to	as	a	forward	simulation	framework.	This	is	because	the	portfolio	trades	are	valued	under
scenarios	for	the	market	risk	factors	at	future	discrete	time	steps,	 .	Obtaining	CVA	is	then
a	post-process	calculation	on	the	exposure.	The	forward	simulation	approach	to	CVA	works
well	for	simple	interest	rate	and	cross-currency	swaps.	This	is	because	the	forward	swap
pricing	is	analytical	with	minimal	pricing	time	for	the	 	market	scenarios	across	the
time	steps,	 .	This	is	also	true	for	many	other	deals,	including	foreign	exchange	swaps	and
foreign	exchange	forwards,	caps	and	floors,	equity	forwards,	swaps,	and	vanilla	equity	and
foreign	exchange	options	as	well	as	European	swaptions.	However,	products	such	as
Bermudan	and	American	swaptions	do	not	have	an	analytic	pricing	and	the	exact	pricing
typically	requires	either	simulation	or	a	lattice	approach.	Hence,	using	the	forward	simulation
framework	we	require	time-consuming	nested	simulation	valuation	for	each	market	scenario
path	 	and	time	step,	 .	To	reduce	the	pricing	time	in	the	exposure	simulation
framework	nested	simulation	can	be	avoided.	One	simpleapproach	is	to	approximate	the
complex	deal	with	a	simpler	deal	that	can	be	priced	analytically.	That	is,	use	an	approximate
analytic	pricing	model.	For	example,	we	can	represent	a	Bermudan	swaption	as	a	European
swaption.	Another	approach	is	to	use	LSMC	as	the	foundation	for	pricing.	We	have	previously
discussed	LSMC	in	the	context	of	reducing	pricing	time	in	the	first	market	risk	chapter.	A	core
feature	of	LSMC	is	that	it	uses	only	the	 	market	scenarios	and	the	specification	of
the	regression	function	for	calculating	continuation	value	of	the	option	at	time	points,	 .
By	its	valuation	approach	LSMC	also	gives	a	complete	price	distribution	from	which	exposure
measures	and	CVA	can	be	computed.	We	refer	to	Cesari	et	al.	(2009)	for	details	on	a
computationally	attractive	CVA	process	that	has	as	its	foundation	LSMC	for	pricing.

Another	complexity	in	practice	is	that	the	efficient	hedging	of	CVA	requires	the	calculation	of



CVA	Greeks	with	respect	to	model	parameters	such	as	counterparty	CDS	premia	and	market
models	for	exposure.	When	there	is	no	wrong-way	risk	such	that	CVA	can	be	calculated	as	in
equation	(5.2),

the	CVA	finite	difference	sensitivity	to	counterparty	CDS	premia	is	easily	obtained	by
perturbing	the	CDS	premia	of	the	counterparty,	and	using	the	implied	shifts	of	the	counterparty
default	probability,	 ,	to	compute	the	CVA	sensitivity.	No	simulation	is	required.
However,	even	under	an	independent	market	and	default	probability	assumption	for	CVA,	the
CVA	sensitivity	to	market	parameters	such	as	initial	yield	curve	in	general	requires	a	re-
computation	of	expected	exposures,	 ,	that	is,	a	re-simulation	of	exposure.	The	usual	finite
difference	approximation	to	sensitivities	traditionally	employed	in	market	risk	use	an	upward
and	downward	shift	(bump)	for	each	point	on	the	yield	curve	to	arrive	at	the	perturbed	market
value.	However,	consider	applying	the	traditional	finite	difference	approximation	to	CVA	for	a
plain	interest	rate	swap	with	a	market	model	for	the	yield	curve.	If	the	yield	curve	has	20
points,	we	require	40	re-simulations	(to	include	both	+/–bumps)	of	exposure	to	compute	CVA
first-order	finite	difference	sensitivities	to	the	yield	curve.	Clearly,	this	approach	is	not
feasible	in	practice	as	the	institution	may	have	hundreds	or	even	thousands	of	market
parameters	in	the	CVA	calculation	for	which	sensitivities	are	needed.	Moreover,	we	have	not
yet	considered	calculation	of	second-order	sensitivities	to	the	market	parameters.	To	avoid
finite	difference	approximations	Capriotti	et	al.	(2011)	propose	using	adjoint	algorithmic
differentiation	in	the	context	of	CVA	to	approximate	first-order	sensitivities	efficiently.	The
method	applies	the	chain	rule	of	differentiation	to	obtain	first-order	Greeks	at	the	same	time	as
CVA	itself	isobtained.	The	computational	cost	of	obtaining	CVA	sensitivities	in	addition	to
CVA	is	at	most	a	factor	4	regardless	of	dimension	and	complexity	of	the	portfolio.	See	also
Homescu	(2011a,	2011b)	on	methods	for	efficient	sensitivities	computation.	Cesari	et	al.
(2009)	use	perturbation	in	the	LSMC	regression	function	to	obtain	price	sensitivities	to	the
CVA	market	parameters	at	the	same	time	as	the	price	is	computed.	It	is	a	two-step	method
where	first	the	total	price	derivative	with	respect	to	the	market	parameters	is	obtained.
Second,	the	total	derivative	is	orthogonalized—removing	the	correlation	in	the	total
derivative.

Funding	Value	Adjustments
A	trader	that	needs	to	fund	collateral	posts	can	fund	at	the	bank's	funding	rate.	However,	posted
collateral	may	earn	a	lower	rate	than	the	bank's	funding	rate,	for	example,	if	the	funding	rate	is
LIBOR	and	the	rate	paid	on	collateral	is	OIS.	Funding	value	adjustments	(FVA)	take	into
account	future	funding	requirements	(to	fund	collateral	posts)	and	funding	benefits	(received
collateral	from	counterparty).	As	long	as	neither	the	institution	nor	the	counterparty	has
defaulted	the	bank	can	gain	the	funding	spread	for	borrowing	when	the	counterparty	posts	(i.e.,
positive	exposure)	and	lose	the	lending	funding	spread	when	posting	(i.e.,	negative	exposure).
For	a	fixed	(over	time)	funding	spread	for	borrowing,	 ,	and	fixed	funding	lending	spread,	 ,



we	can	therefore	write	the	FVA	as

where	 	is	the	expected	exposure,	 	the	negative	expected	exposure,	and

with	 	the	institution's	survival	probability	and	 	the	counterparty	survival
probability.	We	refer	to	Piterbarg	(2010)	and	Burgard	and	Kjaer	(2011)	for	details	on	FVA.
However,	whether	to	include	FVA	in	the	valuation	is	a	debatable	issue.	See	Hull	and	White
(2012b)	and	the	response	by	Burgard	and	Kjaer	(2012)	and	Castagna	(2012).	Clearly,	if	a	bank
chooses	to	pass	the	FVA	cost	to	clients,	it	can	hold	client	costs	down	with	low	funding	spreads.
Hence,	this	creates	a	competitive	advantage	for	banks	with	lower	than	average	spreads.

Counterparty	Credit	Risk	Regulation
The	first	regulation	for	counterparty	credit	risk	appeared	in	the	Basel	1988	Capital	Accord.	It
introduced	the	concept	of	current	exposure	method	being	based	on	the	replacement	cost	(mark
to	market)	and	a	specific	add-on	that	should	reflect	potential	future	exposure.	In	a	1995	Basel
amendment	(Basel	Committee,	1995),	the	current	exposure	method	was	updated	with	an
enhanced	add-on	matrix	and	allowance	for	netting	of	add-ons	in	case	of	bilateral	netting
agreements.	Counterparty	risk	is	also	part	of	the	CCAR	and	EBA	stress	testing	exercises.	For
example,	CCAR	requires	bank	holding	companies	with	significant	trading	operations	to
consider	a	counterparty	default	scenario	for	the	largest	counterparty	exposure.	The	resulting
loss	is	an	add-on	component	to	CCAR	firmwide	stress	similar	as	the	market	risk	shock.	EBA
also	considers	a	CVA	stress	from	market-based	loss	contribution.

Basel	Counterparty	Default	Risk	Charges
In	July	2005,	with	Basel	II,	the	counterparty	credit	risk	regulation	was	significantly	updated	to
allow	banks	to	use	an	internal	model	for	exposure	measurement	(Basel	Committee,	2005b).	In
total,	three	methods	were	now	available	to	banks	for	exposure	measurement:

1.	 The	internal	models	method	based	on	the	bank's	own	exposure	simulation	models

2.	 The	standardized	method

3.	 The	already	existing	current	exposure	method

In	the	internal	models	method	the	trades	are	marked	to	market	at	a	significant	number	of	time
steps	across	several	thousands	of	market	states.	In	the	second	step	the	valuations	are	netted,
and,	finally,	the	dynamics	of	collateral	agreements	are	taken	into	account	to	yield	a	distribution
of	exposure	from	which	exposure	measures	are	calculated.

In	contrast	to	market	risk	where	the	time	horizon	for	model	evaluation	is	short	(for	example,



one	day),	the	simulation	horizon	for	models	for	counterparty	exposureis	longer-term	(for
example,	10	years).	This	means	that	the	model	specifications	should	capture	key
characteristics	of	long-term	observed	behavior	in	the	markets	such	as	mean-reversion.	On	the
other	hand,	model	features	such	as	stochastic	volatility	that	is	important	for	short-term	market
risk	is	typically	less	important.

The	average	counterparty	exposure	profile	over	time	is	a	measure	of	the	expected	exposure	to
the	counterparty.	The	expected	positive	exposure	is	subsequently	defined	as	the	single
expected	exposure	value	that	is	obtained	by	averaging	over	the	expected	exposure	profile.	The
expected	positive	exposure	measure	is	therefore	often	referred	to	as	a	“loan	equivalent”
exposure	as	it	is	a	single	value	of	counterparty	exposure.	The	expected	positive	exposure	is
also	the	exposure	measure	used	by	regulators	to	calculate	regulatory	capital	for	default-based
counterparty	credit	risk.	Specifically,	the	regulators	require	the	use	of	the	effective	expected
positive	exposure.	This	is	simply	the	expected	positive	exposure	based	on	a	non-decreasing
expected	exposure	profile	to	capture	that	maturing	trades	will	likely	be	rolled	over.

The	Basel	II	counterparty	credit	risk	charge	requires	banks	to	calculate	regulatory	capital
based	on	a	one-year	horizon.	The	regulatory	definition	of	exposure	at	default	also	depends	on	a
so-called	alpha	factor.	The	alpha	factor	is	supposed	to	capture	effects	not	covered	by	the
exposure	model	and	can	be	regulatory	prescribed	or	use	an	internal	model.	Using	the
regulatory	exposure	at	default	the	capital	requirement	is	based	on	the	well-known	Basel	II	risk
weighted	assets	formula	in	equation	(4.41).	The	Basel	II	counterparty	credit	risk	regulatory
capital	hence	depends	on	both	the	exposure	and	the	default	probability	of	the	counterparty.	It
also	depends	on	a	maturity	adjustment.	This	is	because	for	netting	sets	with	exposures	longer
than	a	year,	the	maturity	adjustment	is	based	on	the	ratio	of	discounted	expected	exposure	past
one	year	to	discounted	effective	expected	exposure	of	the	first	year.	This	means	that	while
effective	expected	positive	exposure—used	as	exposure	at	default	in	the	risk	weighted	assets
formula—is	only	based	on	a	year,	the	exposure	simulation	time	horizon	must	take	into	account
the	longest-dated	contract	in	the	netting	set	to	calculate	the	maturity	adjustment	needed	for	risk
weighted	assets.

Enhanced	Requirements	on	Counterparty	Default	Risk	Charges

General	Wrong-Way	Risk	and	Alpha
With	the	Basel	III	regulation	(Basel	Committee,	2011a)	there	is	an	increased	focus	on
identifying	and	accounting	for	wrong-way	risk.	For	example,	to	capture	general	wrong-way
risk	in	the	default	risk	charge,	exposure	is	calibrated	using	a	period	of	stressed	market	data.
This	is	similar	to	the	market	risk	framework	with	stressed	 .	Regulators	also	place
additional	constraints	on	firm's	own	estimates	of	the	Basel	II	alpha	factor.

Backtesting	Requirements
The	Basel	committee	has	also,	with	the	introduction	of	Basel	III,	announced	that	backtesting	of
counterparty	exposure	models	will	be	a	requirement	for	internal	models	compliant	banks.	This
means	that	the	model	specification	and	calibration	will	have	to	be	validated	carefully.



However,	backtesting	counterparty	credit	risk	is	more	complicated	than	backtesting	market	risk
due	to	the	potentially	long	exposure	horizons	to	test.	To	expand	the	number	of	forecasts	that	can
be	tested	one	can	consider	using	overlapping	time	intervals.	This	clearly	leads	to	a	larger
amount	of	samples.	However,	at	the	same	time	autocorrelation	is	introduced.	We	refer	to
Richardson	and	Smith	(1991)	for	a	discussion	on	the	use	of	overlapping	time	intervals	in
statistical	tests.	See	also	Epperlein	et	al.	(2010)	and	Basel	Committee	(2010a)	on	counterparty
credit	risk	backtesting.

For	backtesting	the	counterparty	exposure	model	can	be	decomposed	in	the	model	components
of

1.	 Market	risk	factor	models

2.	 Exposure	valuation	models

3.	 Collateral	models

4.	 The	netting	and	aggregation	process

Assuming	no	model	risk	or	model	error	in	valuation,	collateral	calculation,	or	aggregation,	the
simulated	risk	factor	distributions	(and	the	assumed	correlations	between	risk	factors)	drive
the	exposure	distribution	from	which	exposure	measures	are	obtained.	Hence,	in	counterparty
credit	risk	the	main	driver	of	exposure	is	the	risk	factor	models	for	interest	rates,	foreign
exchange,	equity,	and	so	forth.	Backtests	on	the	risk	factor	distributions	such	as	quantiles	and
density	tests	can	use	the	backtesting	methods	we	have	discussed	in	the	advanced	market	risk
chapter,	albeit	with	the	added	complexity	of	dealing	with	longer	time	horizons	than	in	market
risk.	However,	exposure	level	backtesting	is	also	needed	as	the	portfolio	exposure	not	only
depends	on	the	univariate	risk	factor	distributions	but	also	on	the	assumed	correlations.

Anfuso	et	al.	(2014)	discuss	a	credit	exposure	model	backtesting	framework	that	has	the
components	of:

Univariate	risk	factor	models	backtesting,	using	the	empirical	density	probability	integral
transformation	to	uniform	and	standard	density	tests

Model	correlation	backtesting

Portfolio-level	backtesting,	again	using	the	probability	integral	transformation	but	now	on
the	simulated	market	values

They	also	propose	an	adjusted	capital	buffer	calculation	that	takes	into	account	how	well	the
counterparty	exposure	profile	performs	in	backtesting.

New	Basel	III	Capital	Requirements	for	Counterparty	Credit	Risk
Motivated	by	the	recent	crisis	the	Basel	III	regulation	also	sets	forth	two	new	capital
requirements	for	counterparty	credit	risk.	The	new	requirements	are:

Measuring	counterparty	market-based	losses	that	are	not	due	to	default	using	a	 	model
for	CVA
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A	charge	for	exposures	that	have	specific	wrong-way	risk

This	is	in	addition	to	the	existing	Basel	II	default	capital	charge	for	counterparty	credit	risk
based	on	the	risk	weighted	asset	formula.	The	new	CVA	capital	requirement	is	consistent	with
the	fact	that	the	majority	of	losses	during	the	recent	crisis	were	attributable	to	mark-to-market
devaluation	of	OTC	derivatives	due	to	downgrades	of	derivative	counterparties,	as	opposed	to
just	outright	defaults	and	realized	losses.	The	new	CVA	charge	can	use	an	advanced	internal
model	or	a	standardized	approach	depending	on	whether	the	bank's	internal	model	for	market
risk	is	approved	for	interest	rate	specific	risk.

Advanced	CVA	Charge
The	advanced	CVA	capital	charge	uses	the	counterparty	market	default	risk	volatility	(credit
spreads	or	CDS	premiums)	as	the	basis	for	CVA	 .	The	CVA	model	used	is	essentially
equation	(5.2),

and	is	explicitly	specified	as

where	 	is	the	market	loss	given	default	rate,	 	is	the	discounted	expected	exposure	at	
.	That	is,	the	discounted	version	of	 ,	and

is	the	incremental	default	probability,	 ,	with	 	the	counterparty	credit	spread	at	 .
See	equation	(5.6).	Dividing	the	counterparty	credit	spread	by	the	 	we	obtain	the
counterparty	default	rate	(hazard	rate).	If	counterparty	credit	spreads	are	not	available	in	the
market,	a	proxy	spread	is	used	based	on	external	rating	and	so	on	(see	Figure	5.1).

The	specific	requirement	is	that	banks	must	hold	capital	for	mark-to-market	losses	in
counterparty	exposure	equal	to	a	10-day	horizon	 	confidence	level	 	for	CVA	risks.
Similar	to	the	market	risk	 	charge	the	capital	charge	is	the	sum	of	both	current	one-year
calibration	period	CVA	charges	and	stressed	one-year	calibration	period	CVA	charges	with	a
prescribed	regulatory	multiplier	of	3	on	the	total	charge.	Credit	hedges	such	as	single-name
CDS	contracts	and	index	CDS	are	allowed	to	be	counted	in	the	CVA	charge.

The	fact	that	the	advanced	CVA	charge	is	based	on	a	10-day	horizon	as	in	market	risk	and	a
fixed	exposure	profile	means	that	banks	can,	with	little	modification,	use	their	existing	market
risk	bond	 	model	to	compute	the	charge.	The	fixed	exposure	profile	is	in	this	context
simply	viewed	as	a	bond	notional	profile.
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Standardized	CVA	Charge
The	standardized	CVA	capital	charge	is	based	on	a	first-order	approximation	to	the	variation
of	CVA	in	equation	(5.22)	and	a	log-normal	distribution	assumption	for	credit	spreads	that	uses
one-factor	models.	SeePykthin	(2012)	for	the	derivation.	The	standardized	CVA	formula	is
based	on	a	one-year	 	 	with	the	prescribed	capital	charge	formula,	 ,	as

where	 	are	the	counterparty	netting	sets.	The	standardized	CVA	formula	inputs
include:

,	which	is	a	regulatory	prescribed	credit	spread	volatility	per	rating	class.

	and	 ,	which	are	essentially	the	Basel	II	effective	maturity	and	exposure	at	default
for	the	netting	set.

,	which	is	the	notional	of	a	single-name	CDS	hedge	for	counterparty	 	and	 	the	hedge
effective	maturity.

Finally,	 ,	 	and	 	are	used	to	reflect	index	CDS	hedges	with	 	the	index	CDS	notional
and	 	is	assigned	to	the	regulatory	credit	spread	volatility	rating	class	based	on	the	index
average.

The	multiplying	factor	 	in	equation	(5.23)	is	here	coming	from	the	choice	of	the	
level	confidence	 	and	the	normal	distribution	assumption.

Criticism	of	the	CVA	Charge
The	new	CVA	capital	component	put	forward	by	Basel	III	has	been	criticized	by	the	industry.
See	Pengelley	(2011).	A	key	issue	is	that	the	CVA	capital	charge	is	restricted	to	changes	in	the
credit	spread	of	the	counterparty	and	does	not	model	the	sensitivity	of	CVA	to	changes	in
market	factors.	This	means	that	the	CVA	desk	market	risk	hedges	are	not	recognized	within	the
regulatory	CVA	model	and	could	potentially	be	adding	to	the	bank's	market	risk	capital
requirement.	Recently,	however,	the	Basel	Committee	is	considering	to	review	the	CVA
framework	allowing	banks	to	count	market	risk	hedges	and	advanced	CVA	banks	to	have	fully
internal	models.

Mitigating	Regulatory	Costs
The	new	CVA	capital	charge	and	the	strengthened	Basel	default	risk	charges	for	counterparty
exposure	means	that	banks	will	face	significantly	larger	regulatory	costs	associated	with
bilateral	derivative	trading.	On	one	hand,	these	costs	can	be	mitigated	by	the	CVA	desk
actively	hedging	the	counterparty	credit	risk.	However,	hedging	comes	at	a	cost,	and	regulatory
eligible	hedges	only	include	certain	credit	hedges	while	market	hedges	are	not	recognized.	In
addition,	many	derivative	counterparties	don't	have	liquidly	traded	CDS	so	a	CVA	desk



typically	hedges	the	illiquid	names	using	a	combination	of	single-name	proxies	and/or	indices.

An	alternative	for	banks	is	to	move	trades	through	central	clearing.	While	historically	OTC
derivatives	have	mainly	remained	as	a	bilaterally	netted	contract	market	regulators	have
encouraged	establishment	of	financial	market	infrastructures	with	central	clearing.	Essentially,
centralized	clearing	is	a	process	with	a	legally	obligated	central	counterparty	(CCP)	that
stands	between	parties	with	respect	to	contracts	traded	between	them.	This	structure	permits
multilateral	netting	of	contracts	that	are	entered	into	by	any	counterparty	in	the	CCP.	The	CCP
has	a	layer	of	capital	structures	to	protect	the	CCP.	This	typically	includes	an	initial	margin
posted	by	the	members	as	well	as	a	variation	margin	that	is	used	to	cover	daily	exposure
changes	up	to	a	certain	confidence	level.	In	addition	the	CCP	members	have	to	contribute	to	a
guarantee	fund,	which	is	a	shared	insurance	fund	for	uncollateralized	loss.	However,	if	the
guarantee	fund	turns	out	to	be	insufficient,	CCP	members	have	the	obligation	(up	to	some	level)
to	bail	out	the	CCP.13	While	moving	trades	through	a	CCP	can	reduce	counterparty	credit	risk
—as	does	of	course	collateral	agreements	with	bilateral	trades	as	well—it	is	clear	that
counterparty	credit	risk	has	to	some	extent	been	replaced	by	potential	funding	liquidity	risk.
This	is	the	risk	that	the	bank	has	to	fund	collateral	or	bail	out	the	CCP	exactly	at	a	time	when
the	bank	may	find	it	hard	to	attract	funds.

1	See	Björk	(1998,	Theorem	6.8).

2	In	the	above	equations	we	have	suppressed	the	discounting	of	future	credit	default	losses	to
today	to	ease	notation.

3	The	risk-free	value	of	a	swap	is	the	net	value	of	the	fixed	and	the	floating	leg.	The	floating
rate	leg	future	cash	flows	(and	hence	price)	only	depends	on	the	current	market	rates	using
the	implied	forward	rates	to	derive	expected	future	cash	flows.	Hence,	the	swap	price	itself
is	independent	of	market	volatility	of	interest	rates.

4	In	the	previous	chapter,	specifically	in	the	section	on	hedging	credit	risk,	we	discussed	the
pricing	and	hedging	of	credit	risk	using	credit	default	swap	(CDS)	instruments.

5	It	is	practice	by	dealers	to	refer	to	CVA	as	a	negative	value	since	CVA	reduces	the	risk-free
market	value.	However,	we	will	refer	to	CVA	as	a	positive	value	in	our	discussions.

6	The	profitability	situation	is	worst	for	lower	credit	quality	institution	as	the	BCVA	when
trading	with	good	quality	counterparties	is	generally	negative.	That	is,	the	institution	has	to
make	net	payments.	This	is	in	addition	to	the	CVA	charge.

7	However,	recall	that	in	equation	(5.2)	we	have	suppressed	the	notation	for	discounting	and
have	also	assumed	a	zero	recovery	rate.

8	Again,	see	Hull	(2006,	ch.	18)	and	also	Jamshidian	(1989)	on	the	analytic	pricing	of	coupon
bonds	and	European	swaptions	using	the	Hull–White	model.

9	The	expected	positive	exposure	is	defined	as	the	single	expected	exposure	value	that	is



obtained	by	averaging	over	the	full	expected	exposure	profile.	In	our	example	exposure
profiles	we	present	the	expected	positive	expsoure	as	the	running	mean	on	the	expected
exposure.	This	means	that	the	single	expected	positive	expsoure	value	is	the	last	point.

10	The	Brownian	bridge	is	the	term	used	for	the	process	that	has	as	its	distribution	the
conditional	distribution	of	a	Wiener	process.	The	distribution	at	the	lookback	time	point	is
naturally	a	conditional	distribution.	Specifically,	conditional	on	the	simulation	time	grid,	

,	values.

11	Note	that	our	examples	ín	Table	5.16	focus	on	the	CVA	distributions	over	the	life	of	the	10-
year	maturity	swap	trades.	As	we	will	discuss	in	the	section	on	counterparty	credit	risk
regulation	in	this	chapter	the	advanced	Basel	III	regulatory	CVA	charge	for	default	risk	is
focused	on	calculating	two	10-day	99%	VaR	charges	using	a	calibration	period	of	one-year.
The	first	charge	is	based	on	the	current	one-year	period	and	the	second	is	based	on	a
stressed	one-year	period.

12	Of	course,	if	the	collateral	is	on	trade	level	rather	than	on	netting	set	level,	then	taking	into
account	collateral	in	the	Euler	allocation	of	netting	set	exposure	to	trades	is	trivial	as	we
just	use	the	trades'	collateralized	exposure	as	basis	for	the	netting	and	hence	the	allocation.

13	Basel	III	(Basel	Committee	(2013))	has	included	a	charge	for	a	bank's	exposure	to	a	CCP
default	fund	as	a	function	of	risk	sensitivity	of	CCP	default	fund.



Part	Three
Asset	and	Liability	Management



Chapter	6
Liquidity	Risk	Management	with	Cash	Flow	Models
Classical	asset	and	liability	management	focuses	on	a	balance	sheet	view	of	the	firm	and	the
control	of	two	key	balance	sheet	risks:	interest	rate	risk	and	liquidity	risk.	Banking	book
interest	rate	risk	impact	on	profit	and	loss	is	often	measured	through	the	net	interest	margin	of
assets	and	liabilities.	The	net	interest	margin	impact	of	interest	rate	changes	is	a	cash	flow
view	on	the	asset	and	liabilities	interest	flows.	However,	one	can	also	assess	the	impact	of	the
present	value	of	all	cash	flows.	This	is	a	long-term	solvency	view	referred	to	as	an	economic
value	view	of	the	balance	sheet.

The	analysis	of	net	interest	margin	and	economic	value	of	balance	sheet	is	focused	on	short-
and	long-term	profitability	of	the	balance	sheet.	Profitability	of	a	balance	sheet	is	of	course
also	connected	to	liquidity.	However,	profitability	is	no	guarantee	for	liquidity.	A	financial
institution	that	is	long-term	solvent	(economic	value	view)	can	be	short-term	illiquid.	We	can
define	liquidity	risk	management	broadly	as	the	management	of	the	bank's	ability	to	meet	its
obligations	as	they	come	due,	without	incurring	losses.	In	contrast	to	risk-based	capital	for
other	forms	of	risks,	such	as	market	and	credit	risk,	the	cushion	for	liquidity	risk	is	not	created
through	additional	capital.	This	is	because	the	hedge	for	liquidity	risk	is	ultimately	cash	to
offset	the	negative	flows	and	restore	liquidity.

Traditionally,	liquidity	risk	exposure	of	a	financial	institution	is	measured	as	the	funding	gap	of
assets	and	liabilities.	This	is	constructed	from	the	cash	inflows	and	outflows	of	the	balance
sheet.	Both	normal	and	stressed	funding	gaps	are	created	and	the	liquid	assets	that	can	hedge
out	the	funding	gap	are	applied	to	the	funding	gap	to	test	adequacy	of	the	liquidity	cushion.	It	is
also	practice	for	financial	institutions	to	monitor	structural	balance	sheet	liquidity	ratios	such
as	market	value	of	liquid	hedge	assets	over	amount	of	non-maturing	or	non-sticky	deposits.
Here,	the	amount	of	non-sticky	deposits	includes	the	deposits	that	can	likely	be	withdrawn	at
any	point	in	time	in	a	liquidity	crisis.	The	amount	of	liquid	hedge	assets	should	be	able	to
cover	such	ascenario.1

Lately,	funding	liquidity	risk	has	received	serious	attention	from	the	regulators,	banks,	and
investors.	A	brief	retrospective	on	the	2007	financial	crisis	serves	as	a	good	illustration	of	the
significance	of	liquidity	risk,	and	how	it	resulted	from	a	subprime	(credit)	risk.	The	beginning
of	21st	century	saw	a	low	mortgage	rate	environment	thanks	to	the	global	interest	in	US
mortgage–backed	securities	(securitization).	As	a	result,	the	boom	of	the	US	housing	market
led	to	a	surge	of	low-quality	subprime	mortgage	loans.	After	peaking	in	mid-2006,	US	house
prices	started	to	decline	accompanied	by	increasing	mortgage	rates.	Borrowers'	ability	to
refinance	their	variable	rate	loans	decreased.	As	adjustable-rate	mortgages	began	to	reset	at
higher	interest	rates	(causing	higher	monthly	payments),	mortgage	delinquencies	increased.
Over	100	mortgage	lending	companies	went	bankrupt	as	subprime	mortgage–backed	securities
could	no	longer	be	sold	to	investors	to	acquire	funds	during	late	2007.	Starting	in	the	fourth



quarter	of	2007,	the	higher	delinquency	rate	caused	investors	to	suffer	increasing	credit	losses
even	for	premium	rated	mortgage	backed	securities.	The	values	of	these	securities	deteriorated
very	quickly.	Financial	institutions	that	invested	in	mortgage	backed	securities	recognized
massive	losses	as	they	adjusted	the	value	of	their	holdings	to	a	fraction	of	the	purchase	prices.
Even	the	fair	value	of	the	mortgage	loans	retained	by	many	lending	institutions	had	to	be
adjusted	downwards.

Because	of	a	lack	of	confidence	(in	other	institutions	profitability	and	liquidity)	the	interbank
lending	and	capital	markets	funding	dried	up.	Hence,	the	credit	crisis	triggered	a	systemic
liquidity	risk.	This	of	course	caused	significant	funding	problems	for	many	banks	that	relied	on
rollover	of	short-term	funding	to	sustain	their	business.	For	traditional	banks	a	major	funding
source	comes	from	consumer	and	small	business	deposits.	However,	in	the	period	preceding
the	subprime	crisis,	some	banks	shifted	part	of	their	funding	base	to	capital	markets.	One
example	is	Northern	Rock	in	UK,	which	was	one	of	the	top	five	mortgage	lenders	in	UK.	Its
business	model	was	to	borrow	from	money	market,	issue	mortgage	loans,	and	then	resell	the
loans	to	the	capital	markets	through	securitization.	When	the	global	interest	in	mortgage	backed
securities	dried	up	in	late	2007,	the	bank	was	unable	to	repay	the	short-term	funding	from	the
money	market.

Not	only	capital	markets	funding	was	impacted	by	the	crisis.	For	banks	that	had	a	healthy,
stable	funding	from	deposits,	the	governments	around	the	world	still	had	to	take	measures	to
enhance	depositors'	confidence.	For	example,	in	the	United	States,	Congress	approved	a
temporary	increase	in	the	deposit	insurance	limit	from	$100,000	to	$250,000,	which	was
effective	from	October	3,	2008,	through	December	31,	2010,	and	subsequently	made	to	be
permanent.	Even	with	stabilized	depositmarket,	short-term	funding	during	the	crisis	was	still
far	short	from	what	banks	needed	to	fulfill	their	liquidity	intermediation	mission.	The	capital
markets	funding	in	the	form	of	asset	backed	commercial	paper,	for	which	a	majority	of	the
underlying	assets	are	mortgage	loans,	dried	up	because	of	the	devaluation	of	the	mortgage
backed	securities.	Another	short-term	funding	source	for	banks	is	the	interbank	loans—loans
that	banks	make	to	each	other.	The	systematic	liquidity	shortage	significantly	increased	the
lending	rates.

Kwan	(2009)	found	that	LIBOR	to	OIS	rate	spread	increased	from	about	5	to	7	basis	points	for
one-month	and	7	to	9	basis	points	for	three-month	before	the	crisis	to	a	350	basis	points	peak
in	the	fourth	quarter	of	2008.2	Clearly,	bank	liquidity	became	very	costly.	On	September	14,
2007,	Northern	Rock	sought	and	received	a	liquidity	support	facility	from	the	Bank	of	England,
to	replace	funds	it	was	unable	to	raise	from	the	money	market.	This	event	had	significant	cost
to	the	bank	in	terms	of	its	reputation	to	its	depositors.	A	bank	run	took	place.	On	February	22,
2008,	the	bank	was	nationalized.	In	January	2008,	Countrywide	Financial,	once	the	largest
mortgage	banker	in	the	United	States,	was	bought	by	Bank	of	America.	Six	months	later,	Fannie
Mae	and	Freddie	Mac,	representing	$5	trillion	in	mortgage	obligations,	were	nationalized	by
the	US	government	as	mortgage	losses	increased.	In	addition,	two	large	US	banks,	Washington
Mutual	and	Wachovia,	became	insolvent	and	were	aquired	by	JP	Morgan	Chase	and	Wells
Fargo,	respectively.



Not	only	banks	and	lending	institutions	suffered	the	liquidity	crunch;	investment	and	insurance
institutions	that	invested	heavily	in	the	mortgage	related	instruments	suffered,	too.	When	the
market	lost	the	trust	of	the	creditworthiness	and	the	value	of	mortgage	backed	securities,	these
institutions	that	held	the	related	investment	and	obligations	posted	significant	risk	to	their
counterparties.	As	a	result	they	faced	significantly	increased	margin	requirements	in	their
trades.	All	these	increased	funding	requirements	came	in	the	midst	of	a	funding	crunch	already
in	the	system.	In	March	2008,	investment	bank	Bear	Stearns,	although	it	still	had	significant
book	asset	values,	was	hastily	merged	with	bank	JP	Morgan	with	$30	billion	in	government
guarantees,	after	it	was	unable	to	continue	borrowing	to	finance	its	operations.	Shortly	after,
investment	bank	Lehman	Brothers	filed	for	bankruptcy.	The	world's	largest	insurer,	AIG,	was
80%	nationalized	by	the	US	government,	due	to	concerns	regarding	its	ability	to	honor	its
credit	default	swap	obligations.	The	liquidity	crisis	in	the	financial	system	quickly	spread.
Corporates,	municipalities,	and	countries	found	themselves	in	great	liquidity	need.

Because	of	the	liquidity	intermediation	role	of	banks,	measurement	and	management	of
liquidity	risk	has	always	been	a	concern	for	regulators.	The	first	Basel	Committee	document	on
sound	practices	in	liquidity	risk	management	was	issued	in	1992	(Basel	Committee,	1992).	In
year	2000,	this	document	was	superseded	by	the	Basel	committee	paper,	“Sound	Practices	for
Managing	Liquidity	in	Banking	Organizations”	(Basel	Committee,	20002000).	The	paper
focused	on	14	guiding	principles	for	measuring	and	managing	liquidity	risk.	The	principles	are
especially	focused	around	developing	a	structure	for	managing	liquidity,	measuring	net	funding
requirements,	managing	market	access,	contingency	planning,	and	internal	controls	for	risk
management.	In	the	wake	of	the	2007	financial	crisis,	the	regulatory	focus	on	liquidity	risk	was
further	strengthened,	emphasizing	the	importance	of	managing	liquidity	risk	due	to	its	possible
system-wide	repercussions	effects.	In	response	to	the	liquidity	crisis,	in	2008	the	Basel
committee	issued	a	new	guiding	document,	“Principles	for	Sound	Liquidity	Risk	Management
and	Supervision”	(Basel	Committee,	2008).	That	document	replaced	the	consultative	document
from	2000	and	now	contains	17	guiding	principles	for	liquidity	risk	management.	In	December
2009,	the	Basel	committee	approved	for	the	Basel	III	consultation	a	package	of	proposals	to
strengthen	further	global	capital	and	liquidity	regulations.	The	consultation	paper,
“Strengthening	the	Resilience	of	the	Banking	Sector,”	enforces	the	importance	of	a	global
liquidity	framework	with	minimum	reporting	standards	to	complement	the	2008	paper's	focus
on	guiding	principles.	The	key	minimum	reporting	standards	in	the	new	liquidity	risk
framework	are	a	short-term	30-day	Liquidity	Coverage	Ratio	(LCR)	and	a	longer-term
structural	funding	stability	measure	known	as	the	Net	Stable	Funding	Ratio	(NSFR).	In
addition,	there	are	also	monitoring	liquidity	metrics	such	as	maturity	mismatch,	funding
concentration,	and	unencumbered	(available	for	sale)	assets	available.	The	new	liquidity	risk
regulation	forms	an	integral	part	of	the	Basel	III	(Basel	Committee,	2013a)	regulation	that	is
supposed	to	strengthen	the	regulation,	supervision,	and	risk	management	based	on	the	lessons
learned	from	the	2007	financial	crisis.

The	objective	of	regulators	is	to	equip	banks	with	adequate	liquidity	going	forward	as	well	as
to	create	a	liquidity	buffer	comprising	highly	liquid	assets	that	can	be	used	to	counterbalance	a
period	of	liquidity	stress.	Since	the	main	purpose	of	the	cushion	for	liquidity	risk	is	to	mitigate



the	net	cumulative	cash	outflows,	it	is	done	by	using	a	pool	of	high-quality	liquid	assets	that
can	be	sold	immediately	or	used	as	collateral	(pledged)	for	short-term	loan	(repo)	transactions
to	raise	funds.	A	difference	between	liquidity	risk	and	other	risks	such	as	credit	and	market
risk	is	that	in	general	liquidity	risk	is	not	the	direct	cause	of	bank	failure.	Indeed,	liquidity	risk
is	usually	a	consequential	risk	experienced	due	to	significant	losses	due	to	other	risks	(e.g.,
credit	losses,	market	events,	operational	risk	events,	etc.)	that	are	triggers	for	liquidity
problems	for	a	financial	institution.	Liquidity	risk	of	an	institution	is	also	significantly	affected
by	other	market	participants	and	the	public	perception	of	the	bank.	In	particular	the	bank's
reputation	is	instrumental	in	its	ability	to	raise	and	retain	funds.

If	liquidity	risk	is	not	managed	properly,	it	can	in	turn	lead	to	a	solvency	issue	as	the	institution
may	take	a	big	loss	in	fire-sale	of	valuable	assets	in	order	to	raise	funds.	Since	liquidity	risk	is
a	consequential	risk	one	can	argue	that	effectively	mitigating	liquidity	risk	is	as	much	about
holding	sufficient	capital	buffers	for	the	traditional	market,	credit,	and	operationalrisks	as	it	is
about	holding	a	pool	of	unencumbered	highly	liquid	assets	to	mitigate	net	cash	outflows.	By
mitigating	other	risks	via	sufficient	capital	an	institution	effectively	guards	against	subsequent
reputational	and	liquidity	crisis.	However,	this	conventional	thought	was	proven	not	adequate
in	the	recent	crisis.	The	market	devaluation	of	the	mortgages	and	mortgage	backed	financial
products	shook	market	confidence	in	a	large	range	of	assets	on	many	institutions'	banking	book
as	well	as	many	standard	collaterals	in	the	capital	markets.	Liquidity	risk	is	also	different
across	institutions	as	the	liquidity	risk	is	largely	a	reputational	risk	and,	in	a	crisis	situation,
the	available	funding	sources	may	differ	significantly	across	institutions.	For	example,	a	bank
that	has	access	to	the	repo	market	may	be	considered,	ceteris	paribus,	to	be	in	a	better	position
than	a	bank	that	has	no	access	to	the	repo	market.	The	bank	with	an	established	position	in	the
repo	market	may	still	have	access	to	secured	funding	while	the	bank	with	no	access	to	the	repo
market	can	only	rely	on	unsecured	funding	and	selling	liquid	assets	to	generate	cash.	The
potential	drawback	of	being	forced	to	sell	liquid	assets	in	a	stress	situation	is	that	they	may
have	to	be	sold	at	significant	discounts,	especially	if	counterparties	to	the	bank	are	aware	of
the	liquidity	crisis	situation	the	bank	is	in.

In	this	chapter	on	liquidity	risk	we	focus	mainly	on	the	core	quantitative	aspects	of	a	bank's
liquidity	risk	management.3

First,	we	consider	the	measurement	of	liquidity	risk.	In	general,	the	measurement	of	liquidity
risk	is	path-dependent	and	complex.	This	is	because	funding	liquidity	is	generally	defined	as
the	ability	to	settle	obligations	with	immediacy	and	is	concerned	with	mitigating	flows.	A	firm
is	able	to	satisfy	the	demand	for	cash,	and	hence	is	liquid,	as	long	as	at	each	point	in	time
outflows	of	cash	are	smaller	or	equal	to	inflows	and	the	hedging	flows	that	can	be	generated.

Second,	we	consider	scenario	analysis	of	the	bank's	potential	cash	inflows	and	outflows	in	a
liquidity	crisis.	In	the	liquidity	risk	analysis	of	the	net	cash	outflows	from	the	assets	and
liabilities	there	are	key	market	and	behavioral	uncertainties	that	need	to	be	addressed,	for
example,	the	behavior	of	depositors	in	the	stickiness	of	funding	and	the	behavior	of	the
committed	facility	counterparties.	All	of	these	potential	sources	affect	the	reduced	expected
inflow	and	increased	expected	outflow	of	cash	to	the	bank	and	must	be	analyzed	in	order	to



define	a	suitable	level	of	highly	liquid	assets	that	can	be	used	in	counterbalancing	the	net
outflow.

Third,	we	consider	how	a	bank	can	test	the	sufficiency	and	optimize	the	liquidity	execution	of
its	dedicated	liquidity	buffer.	Such	analysis	and	tests	of	the	bank's	current	endowment	hedge
portfolio	is	a	core	part	of	the	bank's	contingency	funding	plan.

Fourth,	we	consider	the	bank's	planning	of	the	optimal	choice	of	endowment	hedging	portfolio
and	structure	of	the	balance	sheet	to	mitigate	vulnerability	to	liquidity	risk.	The	focus	is	on
maintaining	a	high-quality	liquidity	portfolio	thatcan	efficiently	hedge	liquidity	outflows	under
stress	scenarios,	to	generate	sufficient	counterbalancing	capacity.	Since	holding	standby
counterbalancing	capacity	has	an	opportunity	cost	the	firm	would	like	to	hold	the	minimum	cost
portfolio	that	suffices	for	hedging	out	the	negative	flows.	Minimal	cost	can	here	be	measured
both	as	an	opportunity	cost	(forgone	return	relative	to	investing	in	business)	and	as	an	up-front
cost	of	acquiring	the	portfolio.	We	focus	on	minimizing	up-front	cost	in	our	optimization
analysis	examples	but	the	optimization	can	be	easily	recast	to	minimize	opportunity	costs	if	the
pool	of	earmarked	hedging	assets	is	to	be	selected	from	existing	investment	assets.

In	the	fifth	section	we	consider	a	special	case	of	liquidity	risk	measurement	when	the	hedging
portfolio	is	composed	of	cash	or	cash	equivalent	assets.	In	general,	liquidity	insolvency
happens	the	first	time	the	firm	cannot	generate	sufficient	counterbalancing	capacity	from	the
liquidity	hedging	portfolio	to	cover	the	funding	gap.	The	complexity	arises	from	the	fact	that
there	is	uncertainty	in	the	creation	of	counterbalancing	capacity	from	the	firm's	liquidity
hedging	portfolio.	This	means	that	liquidity	solvency	at	 	does	not	guarantee	solvency	at	 .
With	a	cash	hedging	capacity	we	can	consistently	measure	the	firm's	liquidity	insolvency
probability	as	monotonic	and	we	can	therefore	consider	relatively	simple	liquidity	risk
measures.

We	end	this	chapter	with	a	discussion	of	the	key	components	of	the	Basel	III	(Basel	Committee,
2013a)	liquidity	regulation.

Measurement	of	Liquidity	Risk
The	measurement	of	market	and	credit	risk	is	typically	based	on	 	or	other	risk	measures
such	as	 	for	a	certain	time	horizon,	 .	For	market	and	credit	risk	the	required	solvency
capital	is	generally	monotone	across	time	such	that	for	a	given	amount	of	capital,	solvency	at	

,	implies	solvency	at	 .	However,	the	definition	of	a	liquidity	risk	measure	can	be	more
complex.	For	a	given	funding	gap,	constructed	at	time	buckets,	 ,	liquidity	insolvency
happens	the	first	time,	 ,	a	net	outflow	occurs	for	which	the	financial	institution	cannot	raise
sufficient	funds.	In	particular,	the	capability	of	executing	the	liquidity	hedging	portfolio	to
generate	sufficient	counterbalancing	capacity	across	times,	 ,	results	in	a	term
structure	of	liquidity	risk	across	 	and	a	path-dependency	of	liquidity	risk.	The
financial	institution	may	be	able	to	generate	liquid	funds	at	 	to	cover	the	gap	at	 .	However,
this	still	results	in	insolvency	at	 .	Because	of	this	general	path-dependent	nature	of	liquidity
solvency	it	is	more	difficult	to	devise	an	appropriate	liquidity	risk	measure	than	in	the	case	of



market	and	credit	risk.	Below	we	follow	Skoglund	and	Chen	(2012)	and	Chen	and	Skoglund
(2014)	and	define	liquidity	risk	insolvency	using	an	analogy	based	on	the	classical	insurance
ruin	theory	approach	to	insolvency.	With	this	approach,	insolvency	occurs	the	first	time	a	risk
reserve	process,	composed	of	cash	inflows	and	outflows	and	the	hedgingcapacity,	turns	non-
positive.	See	also	Drehmann,	Elliot,	and	Kapadia	(2007)	and	Drehmann	and	Nikolau	(2009)
on	the	definition	of	funding	liquidity	risk.

If	we	assume	that	the	liquidity	hedging	portfolio	is	available	to	convert	to	cash	at	any	time	
,	then	we	obtain	a	relatively	simple	measure	of	liquidity	exposure	that	is	monotone

across	time.	Such	an	assumption	is	appropriate	if	the	hedging	portfolio	is	composed	of	cash	or
cash	equivalents.	As	we	shall	see	later,	this	is	also	consistent	with	the	Basel	III	definition	of	a
liquidity	buffer	where	eligible	hedging	assets	are	converted	to	cash	equivalents	using	haircuts
on	accounting	or	market	values.

Liquidity	Exposure	with	General	Liquidity	Hedging	Capacity
Because	liquidity	risk	is	a	consequential	risk	in	general	we	assume	that	cash	inflows	and
outflows	are	occurring	under	a	perceived	market	stress	and/or	an	institution	specific	stress.	We
therefore	assume	a	comprehensive	market	and/or	bank-specific	scenario	 	is	given.	Having	net
cash	outflows	in	scenario	 	for	all	 ,	 ,	we	can	construct	a	cumulative	net
cash	flow,	 ,	with	 	the	t:th	net	cash	flow	under	scenario	 	at	time	 ,	as

Here,	 ,	can	also	be	referred	to	as	a	forward	liquidity	need	under	scenario	 .	See	Fiedler
(2007).	We	cumulate	the	positive	and	negative	outflows	as	a	positive	flow	at	time	 	is	assumed
to	be	rolled	over	to	 	and	cover	any	negative	outflows	at	 .	This	can	happen	if	cash	at	 	is
put	in	an	overnight	account	to	 .	The	interest	rate	raised	on	the	overnight	account	is,
however,	assumed	immaterial	and	not	included	in	our	analysis.

The	forward	liquidity	need	at	 	is	composed	of	the	negative	and	positive	cash	flows	at	 ,	that
is,	 	and	 	plus	the	rolled	over	positive	flow	from	 .	This	gives

If	the	bank	has	no	liquidity	supplying	assets	to	hedge	negative	outflows,	then	 must	be
positive	for	all	 	for	survival.	Clearly,	a	positive	 	does	not	help	if	 .
This	means	that	liquidity	insolvency	occurs	the	first	time	the	process	 	is	negative.

A	financial	institution	holds	a	portfolio	of	high-quality	liquidity	supplying	assets	to	cover
negative	cash	outflows	from	 	at	all	 .	The	cash	counterbalancing	capacity	is
generated	from	selling	or	collateralized	borrowing	of	the	hedge	portfolio.	A	specific	liquidity
execution	strategy	results	in	a	specific	set	of	cash	counterbalancing	flows.	We	denote	these
flows	at	times	 	by	 	where	we	have	used	the	notation	 	to	indicate	that
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6.2
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6.4

the	flows	and	hence	the	specific	liquidity	execution	strategy	depend	on	the	scenario	 .	Hence,
it	depends	on	the	specific	forward	liquidity	need,	 .	Clearly,	any	liquidity	execution
strategy	of	the	hedge	portfolio	will	try	to	ensure	that

for	all	 .4	The	first	time	 	equation	(6.1)	turns	negative	liquidity	insolvency	occurs.
This	condition	is	important	as	sufficient	counterbalancing	capacity	flows	may	not	be	available
at	 ,	and	hence,	the	exact	possible	timing	of	the	counterbalancing	capacity	flows	is	essential.

In	analogy	with	ruin	probability	in	classical	risk	theory	we	now	define	the	risk	process,	
,	such	that5

The	first	stochastic	time,	 ,	the	risk	process,	 ,	becomes	negative	is

In	particular	if	 	for	all	 ,	then	 .	We	note	that

such	that	 	is	the	liquidity	insolvency	probability	of	the	financial	institution.

Example	Liquidity	Cash	Flows,	Counterbalancing	Capacity,	and	Risk	Reserve
Process
Table	6.1	and	Figures	6.1	and	6.2	display	sample	net	cash	flows,	 ,	the	resulting	forward
liquidity	exposure,	 ,	sample	cash	counterbalancing	flows,	 ,	and	the	obtained	risk
reserve	process,	 ,	for	 	time	buckets.	This	is	done	for	two	liquidity
scenarios,	 	and	 .	In	scenario	1,	 ,	the	counterbalancing	flows	are	sufficient	such	that	

	for	all	 .	In	scenario	2,	 ,	the	counterbalancing	flows	are	not	sufficient	at	
since	 .	Using	equation	(6.3)	we	can	refer	to	 	as	the	scenario	2	time	to
insolvency.	Also,	using	an	equal	probability	for	the	two	scenarios,	 ,	we	can	calculate
the	joint	scenario	liquidity	insolvency	probability	as	a	function	of	 .	Specifically,	we	have	that

	if	 	and	 	if	 .



Table	6.1	Sample	Cash	Flows,	Forward	Liquidity	Exposures,	and	Risk	Reserve	Process	for	2
Liquidity	Scenarios

Scenario	1 Scenario	2
Time
t	=	1 3 3 1 4 2 1
t	=	2 0 0 1 0
t	=	3 2 1 2 4 2 1
t	=	4 0 1 2 0 3
t	=	5 0 0 2 0 0 5
t	=	6 3 0 0 3 0
t	=	7 3 3 3 2 1 2

Figure	6.1	Sample	Cash	Flows,	Forward	Liquidity	Exposures,	and	Risk	Reserve	Process	for
Liquidity	Scenario	1



Figure	6.2	Sample	Cash	Flows,	Forward	Liquidity	Exposures,	and	Risk	Reserve	Process	for
Liquidity	Scenario	2

Risk	Reserve	Process	and	Limits
In	this	setting	for	liquidity	risk	it	is	clear	that	the	firm	must	put	limits	on	 .	That	is,
the	process	cannot	be	allowed	to	be	negative	under	a	plausible	liquidity	stress	 	for	any	

.	Fiedler	(2007)	refers	to	a	liquidity	limit	on	 	for	all	 	as	an
adjusted	maximum	cash	outflow	limit.	It	is	natural	for	a	liquidity	steering	committee	to	monitor

	over	time	and	identify	a	limit	breach	if	 	where	 .	Clearly,	for
shorter	time	horizons	 	the	limit,	 ,	should	be	stricter	as	there	is	less	time	(headroom)	for	the
financial	institution	to	adjust	the	situation,	for	example,	by	acquiring	more	hedging	assets.	In
order	to	calculate	 	the	financial	institution	must	choose	a	particular	approach	to
generate	the	cash	counterbalancing	flows	from	the	liquidity	hedge	portfolio,	that	is,	choose	a
particular	liquidity	execution	strategy.

Liquidity	Exposure	with	Cash	Hedging	Capacity
As	we	have	seen,	the	management	of	liquidity	risk	is	complex	due	to	its	general	path-
dependent	nature	of	liquidity	solvency.	This	complex	path-dependent	nature	arises	from	the
fact	that	the	counterbalancing	capacity	realization	of	the	liquidity	hedging	portfolio	is	also
uncertain	and	path	dependent	such	that	counterbalancing	capacity	flows	that	can	be	realized	in	

	may	not	be	available	in	 .	This	can	potentially	cause	a	liquidity	insolvency	at	 	even	if
funds	could	eventually	be	raised	at	 .	Assume	now	instead	that	the	liquidity	hedging
portfolio	consists	entirely	of	cash.	This	means	that	there	is	no	uncertainty	in	the	creation	of
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cash	counterbalancing	capacity	from	the	liquidity	hedging	portfolio	and	the	cash	is	available
for	use	in	any	 .	Under	a	cash	liquidity	hedging	capacity	assumption	we	can	simplify
equation	(6.1)	to

with	 	the	cash	amount	and	where	for	

with	 .	This	is	because	the	counterbalancing	capacity	has	already
beendetermined	as	the	cash	balance	available	at	 	and	there	is	no	uncertainty	on	flows.
Effectively,	we	are	now	asking	the	question:	How	much	initial	cash,	at	 ,	is	needed	to	cover
all	the	negative	outflows	for	the	scenario	 ?	That	is,

We	first	observe	the	net	cash	outflow,	 ,	convert	this	net	cash	outflow	into	an
effective	cash	exposure,	 ,	at	each	 .

Finally,	only	the	negative	effective	cash	exposures	need	cash	hedging	capacity	to	be
neutralized,	and	hence	 	cumulates	the	negative	cash	exposures	into	an
effective	minimum	cash	need	for	liquidity	solvency.

Equation	(6.5)	expresses	that	the	amount	of	cash,	 ,	cannot	be	less	than	the	effective	cumulated
cash	need.	The	equation	can	also	be	used	to	check	whether	a	cash	hedging	portfolio	is
sufficient	for	liquidity	solvency,	or	used	to	define	the	minimum	amount	of	cash	liquidity	needed
to	remain	liquidity	solvent.

It	is	important	to	recognize	that	with	this	simplifying	assumption	of	a	cash	liquidity	hedging
portfolio	liquidity	solvency	is	no	longer	path	dependent.	In	particular,	 ,
defines	the	smallest	amount	of	cash	liquidity	needed	for	the	firm	to	remain	liquidity	solvent	at	

.	Liquidity	solvency	at	 	guarantees	solvency	at	 .	Effectively,	we	can
now	simplify	the	risk	process,	 ,	in	equation	(6.2)	such	that

guarantees	solvency	at	 	as	well	as	at	all	 .	The	corresponding	liquidity	solvency
probability,	 ,	for	liquidity	solvency	up	to	 	is	now

In	particular,	 	is	monotonic	in	 ,	which	is	an	important	property	for	the	measure.

Example	Cash	Liquidity	Need
Table	6.2	displays	sample	net	cash	flows,	 ,	the	forward	liquidity	exposure,	 ,	and	the
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	component	of	the	cash	liquidity	exposure	for	 	time	buckets	and	3	different
liquidity	scenarios	 ,	 ,	and	 .	The	table	also	displays	the	required	cash	balance,	 ,	where

Table	6.2	Sample	Cash	Flows,	Liquidity	Exposures,	and	Required	Cash	Balance	for	3
Liquidity	Scenarios

Liquidity	scenario	1 Liquidity	scenario	2 Liquidity	scenario	3
Time
t	=	1 2 2 2
t	=	2 5 0 5 2 2 0 0
t	=	3 3 3 8 1 0 3
t	=	4 1 0 3 2 3
t	=	5 2 2 0 1
t	=	6 8 0 8 0
t	=	7 5 2 2 2 1 2

is	the	definition	of	the	required	cash	balance	at	 .	For	liquidity	scenario	1	the	required	cash
balance	is	8	units	of	currency.	This	required	cash	balance	originates	from	a	net	funding
requirement	at	 	and	 .	In	liquidity	scenario	2	the	required	cash	balance	is	5	units	of
currency,	which	derives	from	the	 	and	 	net	funding	gaps.	Finally,	for	scenario	3	there	is
only	a	net	funding	gap	at	time	 	yielding	a	1	unit	of	currency	required	cash	balance.	The
cash	liquidity	need	at	the	different	times	for	the	liquidity	scenarios	is	also	illustrated	in	Figure
6.3.



Figure	6.3	Cash	Liquidity	Needs	for	the	3	Liquidity	Scenarios

To	see	that	the	computed	cash	balances	are	indeed	sufficient	consider	liquidity	scenario	1.
Having	a	cash	balance	at	 	of	8	units	of	currency	we	can	use	5	units	of	the	cash	balance	at	

	to	neutralize	the	funding	gap.	At	 	and	 	we	accumulate	net	positive	inflows	of	8
units	of	currency.	The	8	units	of	currency	have	been	put	in	overnight	accounts	and	are	available
at	 	to	neutralize	the	negative	funding	gap	of	 .	The	remaining	1	unit	of	currency	is	put	in
the	overnight	account	and	used	at	 	to	reduce	the	net	funding	gap	from	 	to	 .	We	now	also
use	the	remaining	cash	balance	of	3	units	of	currency	yielding	a	net	funding	requirement	of	0	at	

.	Finally,	at	 	we	have	a	positive	inflow	that	can	cover	by	itself	the	 	outflow.
Hence,	we	have	net	positive	cash	inflows	at	 	and	 .

Components	of	the	Liquidity	Measure
We	have	seen	that	the	measurement	of	liquidity	risk	is	based	on	two	major	components:

1.	 The	net	cash	flows,	 ,	which	are	derived	from	scenario	 	cash	inflows,	
,	and	scenario	 	cash	outflows,	

2.	 The	realized	scenario	 	cash	counterbalancing	capacity	flows,	 ,	or	in	case	of	a
cash	or	cash	equivalent	hedging	portfolio	the	cash	balance,	



For	a	given	forward	liquidity	exposure,	 ,	derived	from	the	net	cash	flows,	 ,
it	is	useful	to	make	a	distinction	between	an	expected	cash	liquidity	need	and	the	stress
scenario	 	liquidity	need.	We	can	refer	to	the	forward	liquidity	need	in	the	expected	situation,
that	is,	the	normal	course	of	business	as	the	structural	liquidity	mismatch	in	the	balance	sheet
and	the	stress	scenario	 	forward	liquidity	need	as	the	contingency	liquidity	need.

The	liquidity	hedging	portfolio	is	maintained	specifically	to	cover	the	contingency	liquidity
needs.	The	daily	normal	business	of	managing	the	structural	liquidity	mismatches	through
short-term	borrowing	and	lending	is	referred	to	as	cash	management.	The	contribution	from
contractual	cash	flows,	such	as	loans	and	deposits	with	contractual	maturity,	to	the	forward
liquidity	need	is	limited	since	contractual	cash	flows	in	scenario	 	may	not	deviate	that	much
from	the	expected	situation.	Of	course,	floating	rate	contractual	cash	flows	can	have	some
variability	due	to	changing	interest	rates	in	the	scenario	 	and	defaults	may	increase,	yielding
less	immediate	cash	inflows	(assuming	a	delay	between	default	and	the	actual	recovery).
Typically,	however,	the	major	contribution	to	the	forward	liquidity	need	is	from	potential	cash
flows	and	the	embedded	optionality	in	the	balance	sheet	such	as	withdrawal	of	non-maturity
deposits	and	increasing	usage	of	committed	facilities.	This	is	because	in	a	severe	market
distress	scenario	liquidity	constraints	may	occur	for	many	institutions	such	that	they	draw	as
much	as	possible	from	contingent	credit	lines	and	withdraw	their	deposits.	At	the	time	of	a
liquidity	distress	a	bank	run	behavior	of	consumer	deposits	may	also	become	a	concern.

We	now	focus	on	the	two	components	of	the	liquidity	measure:	first,	the	modeling	of	cash
inflows	and	outflows,	and	second,	the	hedging	of	the	liquidity	exposure	through	generation	of
counterbalancing	capacity.	The	concept	of	counterbalancing	capacity	refers	to	a	bank's
capacity	of	generating	cash	from	its	unencumbered	assets.	An	unencumbered	asset	is	an	asset
that	the	bank	have	fullcontrol	over	so	that	it	can	either	sell	it	to	generate	a	cash	flow	or	use	it	in
collateralized	borrowing	such	as	repo.	In	addition,	a	bank	may	also	have	lifelines	with	its
central	bank	or	other	banks.	However,	these	funding	sources	have	a	limit	and	the	availability	of
credit	lines	committed	to	the	bank	by	other	financial	institutions	may	be	questionable	in	a
market-wide	liquidity	distress	scenario.	The	potential	counterbalancing	capacity	of	the
institution	is	determined	by	its	endowment	hedging	portfolio	and	the	scenario	 .	The	specific
scenario	 	may	impact	the	cash	creation	capability	of	the	hedging	portfolio	due	to	market
liquidity	constraints	in	the	scenario.	Clearly,	for	a	given	scenario	 	and	a	given	hedging
portfolio	endowment	the	strategy	is	to	choose	the	least-cost,	yet	sufficient,	cash	conversion	of
the	hedging	portfolio.

Liquidity	Exposure
While	regulation	for	the	purpose	of	risk	management	often	divides	the	balance	sheet	of	a	bank
into	trading	book	and	banking	book	(e.g.,	for	credit	risk)	liquidity	risk	management	involves
the	full	balance	sheet.	The	relevant	distinction	for	the	liquidity	risk	manager	is	between	the
assets	that	have	been	acquired	for	the	purpose	to	hedge	liquidity	risk	and	the	assets	and
liabilities	that	have	been	acquired	as	part	of	ordinary	business.	The	first	category	of	assets	is
the	liquidity	manager's	cushion	to	hedge	any	negative	cash	outflows	occurring	from	the	bank's



acquired	assets	and	liabilities.	In	the	liquidity	manager	analysis	of	the	net	cash	outflows	from
the	assets	and	liabilities	there	are	key	market	and	behavioral	uncertainties	that	need	to	be
addressed,	for	example,

Behavior	of	depositors	in	the	stickiness	of	funding

Behavior	of	the	committed	facility	counterparties

Reduced	early	amortization	incentives	for	mortgages	and	loans

Potential	drain	of	liquidity	to	margin	requirements	in	OTC	derivatives

Extended	call	for	collateral	due	to	rating	downgrade	triggers

All	of	these	potential	sources	can	contribute	to	a	reduced	inflow	and	increased	outflow	of	cash
to	the	bank	and	must	be	analyzed	in	order	to	define	a	suitable	level	of	highly	liquid	assets	that
can	be	used	in	counterbalancing	the	net	outflow.

As	we	have	mentioned	previously,	liquidity	risk	is	a	consequential	risk	from	an	effect	of	either
market	or	bank-specific	events.	Hence,	it	is	of	importance	that	the	potential	sources	that	can
drain	cash	inflow	and	increase	cash	outflow	are	analyzed	under	such	events.	For	example,
deposit	volumes	and	the	financial	institution's	committed	lines	of	credit	to	other	institutions
might	show	remarkable	stability	under	ordinary	times.	However,	under	a	serious	liquidity
stress	situation	depositors	may	start	to	withdraw	the	deposits	at	a	fast	rate	and	institutions
might	draw	significant	amounts	from	their	facilities.	This	is	at	the	same	time	as	the	bank's
counterparties	may	attempt	to	close	previously	committed	lines	of	credit	to	the	bank.	The	key
principle	in	the	analysis	of	liquidity	is	therefore	that	one	should	assume	that	the	market	and/or
the	bank	is	already	exposed	to	significant	stress.	Capital	markets	funding	should	be	assessed,
recognizing	that	under	stress	markets	are	volatile	so	that	refinancing	(e.g.,	using	commercial
paper)	may	require	much	higher	paid	rates	on	the	funding	or,	even	worse,	no	willingness	of
market	participants	to	roll	over	funding.	We	can	broadly	categorize	the	main	sources	of	cash
inflows	and	outflows	as:

Inflows

The	cash	inflows	of	a	bank's	business	typically	come	from	cash	from	performing	loans	and
accounts	receivable	payments,	fees,	investment	income.	The	cash	inflows	can	be	classified
as	contractual,	which	are	mostly	predictable,	and	contingent,	which	are	uncertain.	The
uncertain	cash	inflows	may	include	unscheduled	payments	(e.g.,	prepayment),	delinquency,
and	recovered	amount	from	the	loans	that	are	already	written	off.	Rollover	of	funding
sources	is	another	important	source	of	uncertain	inflows.	The	uncertainty	of	the	contingent
inflows	lies	in	both	amount	and	timing.	In	a	normal	economic	environment	and	business
operation	the	uncertain	cash	inflows	can	still	be	predictable.	However,	for	liquidity	risk
measurement	and	management,	attention	should	be	paid	to	stress	scenarios	where	the
inflows	are	largely	unknown.

Outflows

A	bank's	cash	outflows	are	due	to	accounts	payable,	deposit	runoffs,	matured	and	non-



renewable	obligations,	credit	facility	drawdown,	investment	payoffs,	and	collateral
(margin)	requirements.	The	outflows	may	impose	more	uncertainty	in	terms	of	liquidity
risk.	In	order	to	remain	solvent,	a	bank	cannot	miss	any	contractual	outflows,	but	it	must
also	sustain	committed,	nonrevocable	facilities	offered	to	its	customers,	who	will	likely
draw	more	in	stress	market	and	at	the	time	when	the	customer's	credit	quality	deteriorates.
When	the	bank's	investment	mark-to-market	values	are	on	the	downside,	or	bank's
reputation,	including	credit	rating,	is	damaged,	the	outflows	due	to	collateral	(margin)
requirements	can	increase	quickly	as	well	as	funding	costs.

Before	we	enter	a	more	detailed	discussion	on	the	creation	of	the	financial	institutions	liquidity
exposure,	 ,	derived	from	the	net	cash	flows,	 ,	it	is	useful	to	have	a	high-
level	view	of	the	types	of	cash	flows	of	a	financial	institution.	While	liquidity	analysis
proceeds	by	generating	the	cash	flows	of	assets	and	liabilities	under	specified	assumptions	of
market	rates,	credit	risk,	prepayment	rates,	customer	behavior	on	deposit	volumes,	credit	line
utilization,	and	so	on,	some	types	of	cash	flows	are	more	important	to	consider	than	others.	A
general	categorization	of	inflows	and	outflows	are	contractual	and	uncertain	flows.	However,
we	can	also	decompose	the	balance	sheet	in	more	granular	types	of	cash	flow	uncertainty:

1.	 The	cash	flow	amount	and	timing	are	known,	such	as	fixed	rate	bonds,	fixed	rate
mortgages,	term	deposits.

2.	 The	cash	flow	amount	is	stochastic	but	timing	is	known,	such	as	floating	rate	notes,
variable	rate	mortgages,	swaps,	equity	dividends,	variation	margins	for	futures,	payouts
from	European	options.

3.	 The	cash	flow	amount	is	known	but	timing	is	stochastic,	such	as	loans	with	prepayment,
callable	bonds.

4.	 The	cash	flow	amount	and	timing	are	stochastic	such	as	demand	deposits,	savings	account,
commitments	and	credit	lines,	payouts	from	American	and	Bermudan	options,	margin
(collateral)	requirements.

Clearly,	item	4	can	be	a	major	contributor	to	liquidity	outflows.	It	is	also	there	the	financial
institution	needs	to	focus	its	analysis	of	liquidity	outflow	under	the	stress.	As	we	have	seen,
given	a	forward	liquidity	exposure,	 ,	the	bank	is	deemed	to	survive	the	scenario	 	if
the	counterbalancing	capacity	of	the	unencumbered	assets	can	be	used	to	cover	the	net	cash
outflows.

Basel	Committee	(2008)	discussed	three	important	components	in	a	liquidity	scenario
specification:

a.	 The	choice	of	time	horizons.	As	liquidity	risk	is	path	dependent	the	ability	of	surviving	a
liquidity	event	in	a	future	horizon	depends	on	the	business	and	liquidity	planning	strategy	in
the	earlier	stages.	When	an	institution	is	in	a	difficult	situation	of	raising	funds	significant
cash	inflows	in	a	later	stage	cannot	really	help.	A	bank's	liquidity	scenario	must	specify	a
set	of	cash	flow	horizons,	 ,	that	agrees	with	the	survival	plan.

b.	 Severity	of	the	liquidity	stress.	Because	many	cash	flows	have	uncertain	timingand	amount



the	properness	of	the	severity	of	a	scenario	requires	the	severity	of	the	event	itself	that	can
trigger	a	reasonable	net	outflow	amount	and	shortage	of	the	funding	as	well	as	the
appropriate	modeling	of	the	cash	flows	in	the	scenario.

c.	 Consistency	with	business.	The	cash	flow	and	funding	modeling	should	be	consistent	with
the	business	model	of	the	institution.	At	the	same	time,	the	scenario	should	be	applicable	to
the	business	nature	of	the	institution.	For	example,	for	an	institution	that	relies	heavily	on
capital	markets	funding	it	is	important	to	focus	the	scenario	on	capital	market	funding
events.

Liquidity	risk	is	less	focused	on	models	(e.g.,	compared	to	market	and	credit	risk)	and	more
focused	on	scenarios.	This	is	because	liquidity	risk	is	already	conditioned	on	extreme	events.
Models	that	are	used	for	other	asset	and	liability	management	analysis,	such	as	a	model	for
interest	rate	sensitivity	of	deposit	volumes,	typically	do	not	apply	in	extreme	liquidity	stress
events.	We	can	still	learn	from	the	past	when	designing	liquidity	stress.	See	Matz	(2011,	ch.	5)
for	an	analysis	of	past	liquidity	events.

In	addition	to	bank's	own	stress	testing	scenarios	Basel	III	prescribes	scenarios	for	liquidity
risk	for	use	in	regulatory	reporting.	These	scenarios	include:

The	runoff	of	a	proportion	of	retail	deposits.

A	partial	loss	of	unsecured	wholesale	funding	capacity.

A	partial	loss	of	secured,	short-term	financing	with	certain	collateral	and	counterparties.

Additional	contractual	outflows	that	would	arise	from	a	downgrade	in	the	bank's	public
credit	rating	by	up	to	and	including	three	notches,	including	collateral	posting
requirements.

Increases	in	market	volatilities	that	impact	the	quality	of	collateral	or	potential	future
exposure	of	derivative	positions	and	thus	require	larger	collateral	haircuts	or	additional
collateral,	or	lead	to	other	liquidity	needs.

Unscheduled	draws	on	committed	but	unused	credit	and	liquidity	facilities	that	the	bank	has
provided	to	its	clients.

The	potential	need	for	the	bank	to	buy	back	debt	or	honor	noncontractual	obligations	in	the
interest	of	mitigating	reputational	risk.	Hence,	the	bank	needs	to	continue	to	act	as	in	a
regular	going-concern	situation,	for	example,	continue	to	extend	loans	that	will	consume
funds.

We	now	consider	concrete	examples	of	generating	liquidity	cash	inflows	and	outflows.	This
includes	the	banking	book	inflows	and	outflows	as	well	as	market	funding	sources	and
derivative	flows	such	as	net	flows	from	derivatives	and	repos	and	derivative	margin
requirements.

We	can	think	of	a	simple	balance	sheet	representation	of	the	bank	as	loans,	mortgages,	and	so
on	(consumer,	small	business,	corporate)	on	the	asset	side	together	with	investment	assets	such
as	government	bonds	and	central	bank	reserves.6	The	liability	side	of	the	balance	sheet	has



deposits	(consumer,	small	business,	wholesale)	that	are	either	demand	deposits	that	can	be
withdrawn	at	any	time	or	term	deposits	with	a	fixed	maturity.	The	liability	side	also	has	money
market	funding	items	such	as	short-term	Interbank	deposits	and	issued	bonds	funding.	The
simple	balance	sheet	is	displayed	in	Table	6.3.

Table	6.3	Sample	Balance	Sheet

Assets Liabilities
Consumer	and	small	business	loans Consumer	and	small	business	deposits
Corporate	loans Wholesale	deposits
Investment	assets Interbank	funding
Central	bank	reserves Issued	bonds	(debt)
Fixed	assets Equity

In	addition	to	on-balance	items	the	financial	institution	also	has,	off-balance,	facilities
extended	to	the	bank	and	issued	facilities	by	the	bank.	It	also	has	off–balance	sheet	derivative
positions	with	net	cash	flows	such	as	swaps,	forwards,	and	options.	In	addition,	collateral
agreements	may	be	in	place	that	stipulate	the	posting	and	receiving	of	collateral	for	a	given
market	exposure	of	the	derivatives	(e.g.,	per	netting	set),	and	may	also	include	rating	triggers
that	require	additional	posting	from	the	bank	in	case	of	a	rating	downgrade.

Balance	Sheet	Cash	Flows	and	Facilities
As	mentioned	above	for	many	assets	and	liabilities	the	future	cash	flows	are	not	known	with
certainty	in	terms	of	when	they	might	occur	and	at	what	amount.	For	example,	demand	deposits
have	no	assigned	maturity,	loans	may	have	prepayment	options,	bonds	in	a	similar	fashion	may
be	issuer	callable	and/or	holder	putable.	In	these	situations	the	cash	flows	of	assets	and
liabilities	need	to	incorporate	the	uncertainty	due	to	these	unknown	cash	flow	streams.	This
inclusion	is	important	in	order	to	capture	a	realistic	scenario	for	liquidity	risk.

Asset	Inflows	from	Loans	and	Investment	Assets
For	contractual	loan	cash	flows	we	calculate	the	interest	income	and	any	amortization	as	a
contribution	to	the	cash	inflows,	 .	Similarly,	investment	assets	that	are	not	allocated
to	the	liquidity	hedge	portfolio	make	positive	cash	inflow	contributions.	While	interest	rates
and	bond	coupons	can	be	interest	rate	sensitive	and	hence	depend	on	the	specific	scenario	
we	must	also	take	into	account	the	portfolio	delinquency,	default	rates,	and	prepayment	rates
that	might	alter	the	cash	inflows	substantially.

Traditional	prepayment	models	specify	the	prepayment	rate	of	a	pool	of	loans	conditional	on
pool	characteristics	such	as	loan	age,	product	type,	and	the	refinancing	incentive.	In	the	model
it	is	beneficial	to	prepay	if	it	is	cheaper	to	refinance	a	new	loan.	Hence,	prepayment	should	be
expected	when	offered	loan	rates	drop	below	the	paying	rate.	However,	all	borrowers	don't
refinance	even	if	it	would	be	beneficial	for	them	and	hence	the	prepayment	rate	is	not	discrete



0%	or	100%	but	rather	increases	smoothly	with	the	spread	between	the	paying	rate	and	the
current	refinancing	rate.	Penalty	to	prepayment	and	loan	age	are	also	important	factors.	When
there	is	a	penalty	to	prepayment,	a	consumer	will	have	to	bring	the	penalty	into	the	decision
process.	The	benefit	of	prepaying	must	outweigh	the	penalty.	On	the	other	hand,	when	a	loan
gets	closer	to	its	maturity,	the	incentive	for	refinancing	tends	to	drop.	We	will	discuss	two
common	approaches	to	model	customer	behavior	such	as	prepayment	in	the	context	of	pricing
embedded	optionality	in	the	balance	sheet	in	the	next	chapter	on	funds	transfer	pricing	and
profitability	of	cash	flows.	The	two	approachesare	the	financial	engineering	approach	and	the
statistical	model	approach.	As	we	have	mentioned	previously	liquidity	risk	is	less	focused	on
models	and	more	focused	on	specific	expert	scenarios	when	assessing	the	liquidity	exposure.
In	the	case	of	a	liquidity	risk	scenario,	it	is	prudent	to	assume	that	consumer	prepayment	rates
are	relatively	low	and	hence	additional	funds	generated	by	the	prepayments	decrease.	The
rationale	is	that	in	a	crisis	the	price	of	funding	increases	and	hence	the	prepayment	incentive
should	decrease.	With	this	rationale	the	consumer's	request	for	additional	funding,	for	example,
through	extensions	of	granted	loans,	should	be	expected	to	increase.	At	a	minimum,	the	loan
stock	should	be	expected	to	increase	with	historical	rates	and	thereby	continue	to	consume
funds	for	the	bank.	In	addition,	in	a	market-induced	liquidity	stress	scenario	the	bank	should
expect	consumer	default	rates	to	increase	and	hence	some	borrowers	will	be	unable	to	meet
their	scheduled	loan	repayments.	When	a	consumer	is	about	to	default,	the	ability	to	refinance
will	also	diminish	because	it	may	be	harder	for	the	borrower	to	find	a	competitive	refinancing
rate	due	to	the	deterioration	of	the	credit	grade.	Models	for	the	modeling	of	default	have	been
discussed	previously	in	the	chapter	on	portfolio	credit	risk.	See	also	Schwartz	and	Torous
(1992,	1993),	who	model	prepayment	and	delinquency	states	jointly	using	the	proportional
hazard	regression.	The	model	allows	time-dependent	covariates	that	can	represent
macroeconomic	environment	condition	during	a	liquidity	stress.	More	recently,	Dunsky	and	Ho
(2007)	consider	a	competing	risk	model	framework	(using	the	multinomial	logit	model)	to
capture	the	prepayment	call	option	and	default	put	option	as	truly	competing	risks.

As	we	mentioned	above,	liquidity	risk	analysis	and	planning	should	also	take	into	account	the
change	of	business	volume	for	the	liquidity	horizon.	Clearly,	an	estimated	amount	of	new	target
lending	under	a	going-concern	view	introduces	a	need	for	additional	funding	at	the	same	time
as	the	new	lending	contributes	with	additional	interest	and	amortization	cash	inflows.	There
are	several	ways	that	we	can	consider	a	going-concern	business	growth	over	the	liquidity
horizon.	Specifically:

1.	 Specifying	a	target-ending	balance	at	the	end	of	each	period,	

This	approach	allows	the	business	units	to	provide	target	ending	balance	at	the	end	of	each
planning	period.	The	liquidity	risk	manager	can	then	apply	the	appropriate	liquidity
scenario	 	contingency	assumptions	(e.g.,	delinquency,	default,	prepayment,	and	recovery
rates)	in	order	to	project	the	final	cash	flows	for	liquidity	analysis	purposes.

2.	 Specifying	a	target	business	growth	rate

Here,	the	ending	amounts	of	the	line	items	on	the	balance	sheet	are	adjusted	by	the	growth



rate	from	the	original	model-based	ending	balance	amount.	The	ending	amount	should	have
already	reflected	the	contingent	cash	flows.

3.	 Forward-start	positions	and	accounts

New	business	can	be	modeled	through	positions	and	accounts	that	have	a	future	start	date.
These	positions	and	accounts	can	synthetically	represent	growth	in	any	business	unit	or
business	line.	These	forward	start	positions	and	accounts	can	then	be	modeled	similarly	as
the	existing	business.

Example	of	Cash	Inflows	with	Behavioral	and	Business	Growth	Assumptions
We	now	focus	on	an	extended	example	using	the	target	ending	balances	approach	together	with
behavioral	assumptions.	Target	ending	balances	are	usually	assigned	by	a	bank's	management
or	projected	by	business	units	for	different	segments	of	the	portfolio,	such	as	on	the	mortgage
book.	For	each	scenario	 	cash	flows	from	existing	business	are	first	projected.	With	the	target
ending	balance	for	each	period	new	business	cash	flows	necessary	to	meet	the	target	ending
balance	for	the	future	period	are	calculated.	In	our	example	we	apply	specific	delinquency
rates,	 ,	default	rates,	 ,	and	prepayment	rates,	 ,	on	the	portfolio.

The	specific	scenario	 	rates	for	 	are	displayed	in	Table	6.4.	We	also	display	in	Table
6.4	the	current	overdue	recovery	rate,	 .	The	recovery	rate	for	defaults	is	assumed	to	be	 	as
there	is	in	general	a	long	time	lag	between	a	default	and	the	ultimate	recovery	for	loans	and
mortgages.	Table	6.5	displays	the	time	 	base	contractual	cash	flows	generated	for	the
loans	and	the	current	amount	of	overdue	and	defaulted	loans	in	the	portfolio.	In	our	example
we	have	 	cash	flows	that	represent	the	aggregated	cash	flows	from	a	book	on	which
planning	assumptions	are	made.	Our	analysis	hence	uses	 	time	buckets.	The	last	time
bucket	should	then	in	actual	applications	contain	all	the	residual	maturity	cash	flows	above	the
last	time	bucket.

Table	6.4	Delinquency	Rates,	Default	Rates,	Overdue	Recovery	Rates,	and	Prepayment	Rates

Time Delinquency	rate
( )

Default	rate
( )

Overdue	recovery	rate
( )

Prepayment	rate
( )

t	=	1 2% 2% 60% 5%
t	=	2 2.1% 2.1% 55% 4.5%
t	=	3 2.3% 2.3% 50% 4%
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Table	6.5	Base	Cash	Flows

Time Base	cash	flows	( )
t	=	1 984,485
t	=	2 691,600
t	=	3 402,367
t	=	4 189,110
t	=	5 142,712
t	=	6 122,793
Overdue 127,574
Default 51,029

For	simplicity	we	assume	no	interest	rate	is	paid	on	the	cash	flows	such	that	they	are	only
principal	flows.	This	simplifies	the	example	as	we	do	not	have	to	adjust	the	corresponding
interest	flows	and	can	calculate	target	ending	balances	directly	as	a	sum	of	the	principal	flows.
However,	the	corresponding	adjustments	needed	with	interest	flows	should	be	clear	from	the
example.

Using	Table	6.4	we	can	adjust	the	base	cash	flows,	 ,	in	Table	6.5.	First	we	adjust	the	base
cash	flow	for	 ;	denoting	the	adjusted	cash	flows	in	the	scenario	 	by	 ,	we	get	that

Here	 	is	the	amount	of	already	overdue	loans	of	 	from	Table	6.5	with	recovery	rate,	 .
The	 	cash	flow	is	hence	adjusted	by	the	default	rate,	 ,	assumed	at	 	and	the
delinquency	rate,	 ,	assumption	for	 .	We	also	recover	from	the	pool	of	already	overdue
loans	using	the	 	overdue	recovery	rate	assumption,	 .	Finally,	we	adjust	the	 	cash	flow
by	the	 	assumed	cash	flow	prepayment	rates	of	future	cash	flows	at	 .	The	cash
flow,	 ,	is	now	referred	to	as	a	behavioral	adjusted	liquidity	cash	flow	under	scenario	 .
We	now	also	need	to	adjust	the	base	contractual	cash	flows,	 ,	in	Table	6.5	and	obtain
the	new	amount	of	overdue	and	defaulted	loans	at	 .	We	get,	for	example,	that

such	that	the	 	cash	flow	is	preliminary	adjusted	using	the	 	assumptions	for	default	rate
and	prepayment	rate.	This	adjustment	is	made	because	we	have	already	allocated	the
prepayment	portion	of	base	contractual	cash	flow	 	to	 	in	(6.10).	The	defaulted	
time	portion	needs	similarly	to	be	removed	from	the	 	cash	flow	as	it	is	written	off.

Using	the	same	calculation	principle	for	the	contractual	cash	flows	at	 	we	have	that



We	now	also	need	an	adjusted	overdue	and	default	rate	at	 	as7

Here,	 	is	current	amount	of	already	defaulted	loans.	The	scenario	 	overdue	amount,	
,	at	 	is	adjusted	by	the	overdue	recovered	portion,	new	delinquent	cash	flows,	and	the

portion	of	overdue	going	in	default.	The	scenario	 	defaults	at	 	are	adjusted	by	the	
default	rate	on	the	cash	flows	and	the	overdue	amount.

The	remaining	balance,	at	the	end	of	 ,	is	now	the	sum	of	all	the	adjusted	cash	flows	and	the
already	overdue	and	defaulted	amount.	That	is,	denoting	the	ending	balance	at	time	 	by	 	we
have	that

The	remaining	balance,	after	 ,	is	hence	 .	Now,	in	order	to	reach	a
target	ending	balance	of	say	 	at	 	an	 	of	currency	units	of	new	business	has
to	be	introduced	and	funded	and	is	hence	a	contribution	to	the	negative	cash	flows,	 .
Assuming	the	new	business	balance	is	issued	at	end	of	 	and	results	in	equally	amortized
cash	flows	at	 ,	each	time	needs	to	introduce	a	new	cash	flow	of	approximately	
currency	units.	Taking	into	account	the	defaults,	delinquency,	and	prepayments	we	then	have
that	the	adjusted,	new	business	 ,	cash	flow	is

Being	at	 ,	we	now	perform	the	same	adjustment	on	the	 	cash	flow	as	in	(6.10)	based
on	 	rates.	That	is,

This	is	hence	our	 	behavioral	adjusted	cash	flow.	As	above,	we	also	adjust	the	other	cash
flows	based	on	the	 	rates	such	that
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and	we	also	obtain	that

We	can	also	adjust	the	overdue	and	default	rate	at	 	as

The	ending	balance	at	 	is	now

At	 	we	had	a	new	business	cash	flow,	 ,	of	forward	starting	business	issued	in	 .
This	new	business	cash	flow	was	equal	to	 	units	of	currency.	The	 	new	business
ending	balance	at	 	is	hence	 .	Assuming	that	the	target	ending
balance	at	 	is	 	units	of	currency	we	need	to	introduce	forward	starting	business,	at

,	of	an	amount	of

As	before,	this	amount	needs	to	be	funded	and	contributes	to	the	negative	cash	flows,	 .
Distributing	the	 	new	business	cash	flow	evenly,	a	new	business	cash	flow	of	
currency	units	occurs	at	 .	Adjusting	the	 	new	business	cash	flow	with	the	
rates	assumptions,

We	can	of	course	now	continue	the	behavioral	adjustment	for	cash	flows,	obtaining	the	final
behavioral	scenario	cash	flow	 	as	well	as	adjustments	to	 	and	new	scenario
overdue	and	default	rates,	 	and	 .	The	results	of	these	calculations	as	well	as	our
previous	results	are	displayed	in	Table	6.6.	In	the	table	CF	represents	the	cash	flow	and	the
final	behavioral	adjusted	cash	flows	for	t	=	1,	2,	and	3	are	indicated	in	bold.	Of	course,
expanding	the	Table	6.4	behavioral	assumptions	to	t	=	4,	5,	and	6	we	could	repeat	the	same
calculations	as	above	to	obtain	final	behavioral	adjusted	scenario	cash	flows,	 ,	for	all	

	periods.



Table	6.6	Target	Balance	and	Behavioral	Adjusted	Cash	Flow	Projection

Time Target
balance

CF	( ) CF
( )

CF
( )

CF
( )

CF
( )

CF
( )

Overdue Default

0 . 984,485 691,600 402,367 189,110 142,712 122,793 127,574 51,029
1 1,800,000 1,099,079 643,188 374,201 175,872 132,722 114,197 68,168 104,242
2 1,200,000 1,099,079 689,531 349,504 164,265 123,962 106,660 42,751 135,917
3 1,000,000 1,099,079 689,531 370,598 153,916 116,153 99,941 28,431 154,021

While	Table	6.6	provides	us	with	the	behavioral	adjusted	cash	flows	for	t	=	1,	2,	and	3,	in
order	to	construct	a	liquidity	gap	with	cash	inflows	and	outflows	for	 ,	we	also	need	to
know	the	funding	need	for	new	balances.	Above	we	calculated	the	funding	need	at	 	as	

	currency	units	and	the	funding	need	at	 	as	 	currency	units.	We	also
calculated	the	new	business	cash	flow	at	 	of	the	 	new	business	to	be	 	units	of
currency.	To	complete	the	scenario	 	liquidity	gap	for	 	for	this	book	it	remains	to
calculate	the	 	new	business	to	be	funded	and	the	 	new	business	cash	flows.	Starting
with	the	new	business	that	needs	to	be	funded—using	the	 	target	ending	balance	of	

	from	Table	6.6—we	can	first	conclude	that	with	no	new	business	at	either	 	or	
	the	ending	balance	is

Having	a	 	target	ending	balance	of	 	units	of	currency	we	can	calculate	the	forward
starting	business	at	 	as	 .	However,	we	also	need	to	adjust	this
for	the	new	balances	introduced	already	at	 	and	 .	The	 	introduced	new	business
ending	balance	at	 	is	 .	This	is	because

where	 	denotes	the	target	ending	balance	at	 .	We	now	adjust	this	balance	for	the	
cash	flow.	The	 	new	business	nominal	cash	flow	was	equally	distributed	as	a	cash	flow	of	

	units	of	currency	at	 .	At	 	we	now	adjust	this	rate,	for	 ,	by	the	
default	and	prepayment	rates.	That	is,	denoting	the	initial	nominal	new	business	scenario	cash
flow	by	 	we	have	that

We	now	finally	adjust	this	nominal	new	business	cash	flow	as

Here,	 	for	t	=	4,	5,	and	6	and	 	is	the	amount	of	overdue	at	 	of	the	new
business.	This	amount	is	obtained	using	the	 	delinquent	new	business	and	the	nominal	
new	business	cash	flow.	Specifically,



since	 	as	none	of	the	new	business	has	cash	flows	in	 	and	hence	cannot	be
overdue	at	 .	The	 	introduced	new	business	balance	is	hence,	

.	We	also	need	the	 	introduced	new	balance	to	obtain	the	
funding	requirement	for	the	new	business	target.	This	is	given	by	 	(see
equation	(6.11)).	Hence,	we	can	now	obtain	the	 	new	business	required	forward	starting
exposure	and	associated	funding	requirement	at	 	as

Note	that	the	total	new	business	cash	flow	at	 	is	the	sum	of	the	new	business	cash	flows
from	new	business	introduced	at	 	and	 .	That	is,	 .	Since	we	now
have	behavioral	adjusted	cash	flows	for	 	as	well	as	the	funding	requirement	and	new
business	cash	flows	we	can	construct	a	scenario	 	liquidity	gap	profile	for	 .	This	is
done	in	Table	6.7.	Compared	to	the	original	cash	flows	in	Table	6.5	for	 	we	have
reduced	the	cash	inflows,	especially	at	 .	Of	course,	in	this	model	higher	default
probabilities	yield	less	cash	inflows,	 ,	compared	to	base	contractual	cash	flows,	

.	One	can	also	reduce	scenario	 	cash	inflows	by	using	higher	delinquency	rates	and
lower	overdue	recovery	rates.	High	prepayment	rates	contribute	to	additional	cash	inflows	in
the	short-term	but	reduce	longer	term	cash	flows.	Fundingrequirements	stem	from	business
growth	assumptions,	here	specified	as	target	ending	balances.	We	finally	note	that	the	adjusted
liquidity	inflow	(gap)	for	 	in	Table	6.7	only	represents	the	contribution	of	our	specific
book	(to	which	we	applied	the	planning	and	behavioral	assumptions)	to	the	firmwide	liquidity
gap.	The	firmwide	liquidity	gap	contains	the	already	existing	rollover	funding	need	as	well	as
the	liquidity	inflows	for	all	the	other	assets.

Table	6.7	Liquidity	Gap	with	Inflows	and	Outflows

Liquidity	gap

Cash	inflow	( )
Adjusted	behavioral 1,099,079 689,531 370,598
New	business 0 42,654 73,484
Cash	outflow( )
Funding	requirement 187,409 132,815 244,082

Net	cash	flow	( ) 911,670 599,370 200,000

Different	Models	of	Business	Growth
From	the	example	above	it	is	obvious	that	the	target	ending	balance	approach	is	typically
applied	on	subportfolios'	aggregated	balances	rather	than	on	the	individual	positions	and



account.	This	is	true	for	the	target	growth	rate	approach	as	well	and	the	two	approaches	are
essentially	identical	as	we	can	always	recast	a	target	growth	rate	of	new	business	volumes	on
the	balance	into	an	equivalent	target	ending	balance	amount.	The	fact	that	the	target	ending
balance	approach	and	the	growth	rate	approach	apply	on	aggregated	portfolios	(e.g.,	by
product	class)	is	seen	as	an	advantage	by	the	treasury	analyst	as	this	is	the	level	of	management
views	on	growth	rates.	The	forward-start	approach	has	much	better	flexibility	on	one	hand.	It
can	be	applied	to	any	specific	account	as	well	as	pool	maintaining	granular-level	assumptions
on	behavior.	On	the	other	hand,	it	makes	it	more	difficult	to	reconcile	back	with	aggregate
target	ending	balance	or	growth	views	of	the	balance	sheet.	In	practice,	it	is	common	in
liquidity	risk	analysis	to	use	an	aggregated	approach	such	as	target	ending	balance	or	target
growth	for	loan	portfolios	but	specify	more	granular	position	level	behavior	for	large,
important	funding	sources.	This	includes,	for	example,	the	rollover	assumptions	with
significant	funding	counterparties,	and	we	now	turn	our	attention	to	the	behavioral	cash	flow
modeling	of	the	bank's	funding	and	liability	outflows.

Funding	and	Liability	Outflows

Deposits
Similar	to	prepayment	models	deposit	volume	models	aim	to	capture	the	consumer's	decisions
to	withdraw	and	place	funds	in	the	bank	account.	The	willingness	to	withdraw	funds	is
expected	to	decrease	with	the	increased	relative	performance	of	other	funds	(e.g.,	equity	and
other	bank	accounts).	As	for	prepayment	all	consumers	typically	do	not	withdraw	all	funds	and
place	in	alternative	fund	sources	even	if	it	would	be	beneficial	to	them.	Common	models	used
to	describe	deposit	volume	are	regression	models	with	logarithmic	volume	change	being
explained	by	key	variables,	for	example,	interest	rates,	GDP,	and	seasonal	terms	as
explanatory	factors.	Another	type	of	model	used	frequently	in	practice	is	the	core	and	non-core
deposit	model,	which	specifies	a	portfolio	runoff	amortization	scenario	for	the	core	part.	See
Dev	and	Rao	(2006,	ch.	8).	We	will	return	to	deposit	models	in	the	next	chapter	on	funds
transfer	pricing	and	profitability	of	cash	flows.	As	for	prepayment	models	the	deposit	models
used	to	analyze	profitability	in	“normal”	times	are	less	valuable	for	analyzing	potential
liquidity	outflows	in	extreme	situations.

In	a	liquidity	crisis	situation	one	should	expect	an	increased	withdrawal	rate	ofconsumer's
deposits.	In	particular,	consumers	may	withdraw	because	of	the	need	of	additional	funds	in	a
crisis.	Moreover,	there	may	be	a	run	at	the	bank.	The	actual	deposit	withdrawal	rate	assumed
as	a	cash	outflow,	 ,	at	 	is	dependent	on	the	specific	liquidity	scenario,	 .
Important	parameters	in	determining	withdrawal	rates	in	a	liquidity	scenario	include:

If	the	deposit	is	a	term	deposit	or	a	demand	deposit.	Term	deposits	may	still	be	considered
as	immediately	withdrawable	if	there	is	a	relatively	small	penalty	fee	for	early
withdrawal.

If	the	deposit	is	insured	or	not.	A	government	insured	deposit	amount	is	of	course	less
likely	to	be	withdrawn	and	create	a	bank	run	because	of	depositor	concerns	about	the
credit	quality	of	the	bank.



The	type	of	depositor	and	the	scope	of	the	liquidity	crisis	scenario,	 .	For	example,
corporates	are	in	general	faster	to	withdraw	than	consumers.	If	the	scope	of	the	liquidity
crisis	is	a	general	crisis	for	all	financial	institutions,	then	deposits	posted	by	financial
institutions	should	be	assumed	to	be	withdrawn	at	a	very	high	rate.	In	case	there	is	not	a
bank	run	yet	insured	consumer	deposits	may	be	viewed	as	more	sticky.

When	modeling	deposit	withdrawal	rates	at	 	the	exact	liquidity	scenario	is	important
not	only	for	the	immediate	withdrawal	rate	at	 	but	also	how	withdrawal	rates	unfold	as
time	progresses.	For	example,	the	beginning	of	the	liquidity	crisis	may	show	large	withdrawal
rates	only	for	some	corporates	with	low	withdrawal	rates	for	consumers	and	small	business.
However,	as	the	liquidity	crisis	unfolds	it	may	induce	more	consumers	to	withdraw	faster.	The
exact	term	structure	of	the	liquidity	crisis	is	hence	of	importance	when	analyzing	liquidity
scenarios.	Of	course,	the	exact	term	structure	of	the	forward	liquidity	exposure	is	also
important	for	measuring	liquidity,	the	sufficiency	of	the	liquidity	hedge	portfolio,	and	hence
ultimately	determining	solvency.	The	same	initial	liquidity	crisis	may	unfold	very	differently
and	the	bank	needs	to	analyze	different	ways	a	liquidity	crisis	can	unfold	to	determine	the	best
hedging	portfolio.	Once	the	bank	has	grouped	deposits	into	different	behavioral	categories
under	the	liquidity	stress	scenario	 	a	deposit	category	withdrawal	rate	is	applied	for	each	

.

Example	of	Deposit	Withdrawal	Scenario
Table	6.8	displays	an	example	deposit	withdrawal	scenario	where	the	deposit	withdrawal	rate
is	10%	initially	for	 	and	then	increases.	The	deposit	withdrawal	rate	at	time	 	is	here
applied	to	the	time	 	balance.	The	current	balance	is	 	units	of	currency.	The	resulting
deposit	balance	and	the	cash	outflows,	 ,	are	also	displayed	in	Table	6.8.

Table	6.8	Deposit	Outflow	Scenario

Time Deposit	withdrawal	rate Balance outflow	( )
t	=	1 10% 90 10
t	=	2 15% 76.5 13.5
t	=	3 25% 57.375 19.125
t	=	4 55% 25.825 31.55

Of	course,	while	consumer	and	small	business	deposits	are	usually	grouped	in	categories	for
the	purpose	of	analyzing	deposit	withdrawal	the	bank's	largest	deposit	counterparties	are
analyzed	individually	due	to	their	size	and	importance	in	determining	aggregate	liquidity
outflow.

Facilities	Issued
Facilities	extended	by	the	bank	to	its	counterparties	can	be	analyzed	similarly	to	deposits.	That
is,	consumer	and	small	business	facilities	are	grouped	by	expected	behavior	in	the	liquidity



crisis	scenario	 	and	certain	large	facilities	extended	to	corporates	are	analyzed	individually.
Key	factors	in	analyzing	the	increased	usage	rate	of	a	facility	include:

If	the	facility	is	committed	or	not.	Some	facilities	are	revocable,	which	can	prevent	further
usage.	In	case	the	facility	is	revocable	but	with	a	time	notice	from	the	bank	the	revocability
may	not	reduce	the	immediate	usage.

The	type	of	counterparty	for	the	facility.	The	exact	liquidity	distress	scenario	 	should
determine	the	expected	increased	usage	rates	for	different	types	of	counterparties.

Example	of	Facility	Drawdown	Scenario
Table	6.9	displays	a	sample	facility	cash	outflow	where	the	current	facility	usage	rate	is	30%.
In	the	liquidity	distress	scenario	the	usage	rates	increase	for	 .	The	current	facility
limit	is	 	units	of	currency.	The	resulting	facility	undrawn	balance	and	the	cash	outflows,	

,	are	also	displayed	in	Table	6.9.	Another	way	to	express	the	increased	facility	usage
rates	in	a	scenario	is	to	model	the	drawdown	of	the	undrawn	amount.	For	example,	if	the
current	undrawn	amount	is	70	units	of	currency,	then	a	drawdown	of	50%	produces	a	cash
outflow	of	35	and	also	reduces	the	remaining	balance	to	draw	further	on	to	35.

Table	6.9	Facility	Outflow	Scenario

Time Facility	usage	rate Undrawn	balance Cash	outflow	( )
t	=	0 30% 70 .
t	=	1 45% 55 15
t	=	2 85% 15 40
t	=	3 95% 5 10
t	=	4 100% 0 5

Market	Funding	and	Funding	Facilities	Extended	to	the	Bank
For	universal	banks	a	key	trend	observed	in	banks'	funding	profile	is	an	upsurge	in	reliance	on
wholesale	market	funding	that	is	both	more	volatile	and	costly	compared	to	traditional	sources
of	demand	deposits.	This	trend	has	developed	over	a	few	years	due	to	alternative	sources	of
investments	being	available	to	consumers	that	provide	better	return	compared	to	bank	deposits.
It	is	an	issue	for	banks	how	to	attract	new	stable	core	deposits.	This	is	because	if	a	bank	raises
its	deposit	rates	in	response	to	changes	in	market	rates,	while	it	should	attract	more	consumer
deposit	inflows,	the	incremental	depositors	may	display	a	rate	opportunistic	behavior.	That	is,
the	newly	attracted	deposit	volume	may	not	be	attributed	to	the	core	stable	funding.

While	consumer	behavior—and,	in	particular,	its	effect	on	deposit	funding—is	key	to	analyzing
liquidity	risk,	the	increasing	trend	of	market-based	funding	calls	for	more	understanding	of	the
market-based	funding	behavior	in	a	plausible	liquidity	scenario.	In	general,	a	bank	should	not
rely	on	only	unsecured	interbank	funding,	committed	liquidity	lines	from	other	banks,	and	long-
term	bond	funding.	Important	lessons	learned	in	the	recent	crisis	are	that	diversity	of	funding	is



needed	and	that	secured	funding,	such	as	repo	funding,	as	well	as	the	establishment	of	long-
term	relationships	is	of	major	importance	to	maintain	a	sufficient	level	of	funding	in	a	crisis.

In	a	liquidity	crisis	situation,	it	is	prudent	to	assume	that	previously	committed	lines	of	credit
are	not	available	(or	significantly	reduced)	and	that	unsecured	funding	will	dry	up.	Plausible
specific	scenarios	that	may	be	considered	by	the	bank	are	as	follows:

Wholesale	funding	rollover	with	a	reduced	rollover	term	and	only	with	counterparties	that
have	a	strong	relation	with	the	bank.	One	should	also	account	for	an	increased	cost	of
funding	contributing	to	the	cash	outflows,	 ,	for	the	funding	that	is	rolled	over.

Difficulty	maintaining	secured	funding.	Repos	are	rolled	over	only	if	there	is	a	strong
relation	to	the	counterparty.

Clearly,	repos	that	mature	before	the	liquidity	analysis	horizon	and	are	not	rolled	over	will
have	a	cash	outflow	at	repo	maturity	date,	 .	On	the	other	hand,	the	bank	will	receive
back	the	pledged	repo	collateral	and	can	potentially	sell	the	asset	to	generate	offsetting
liquidity	inflows.	Reverse	repos	that	mature	before	the	liquidity	analysis	horizon	and	are	not
rolled	over	have	a	cash	inflow,	 .	However,	the	counterparty	pledged	collateral	asset	is
returned	and	not	available	anymore.

Committed	lines	of	credit	are	not	available	or	significantly	reduced.	Hence,	one	should	be
cautious	in	counting	on	potential	cash	inflows,	 ,	from	funding	facilities,	especially
from	other	banks	as	they	likely	face	liquidity	constraints	at	the	same	time	and	hence	will	try
to	close	the	bank's	use	of	its	credit	lines.

Market	Effects
A	specific	market	assumption	can	also	affect	the	cash	inflows	and	outflows.	We	have
previously	noted	that	floating	rate	cash	flows	that	reprice	during	the	term	of	the	liquidity
scenario	are	affected,	for	example,	short-term	money	market	funding.	Currency	risk	is	also	an
important	factor	to	be	included	in	the	analysis	of	the	institution's	funding	capability	and	the
resulting	forward	liquidity	exposure,	 ,	in	the	numeraire	currency.	A	foreign	exchange
market	shock	can	distress	the	actual	amount	of	funding	in	a	different	currency.

Off–Balance-Sheet	Derivative	Flows
Negative	cash	outflows	may	not	only	occur	due	to	the	bank's	consumer	and	market	funding
behavior.	The	net	cash	flows	from	derivatives	such	as	swaps	may	be	adversely	affected
depending	on	the	market	conditions	assumed	in	the	scenario	 .	Deals	that	move	unfavorably	to
the	bank	can	also	cause	a	requirement	to	post	additional	collateral.	For	example:

Exchange-traded	positions	usually	have	a	variation	margin	that	may	increase	at	the
discretion	of	the	exchange.

Bilateral	OTC	derivatives	usually	have	collateral	agreements	(CSA	agreements)	as	we
have	discussed	previously	in	the	context	of	counterparty	credit	risk.

The	CSA	agreement	for	a	net	portfolio	of	derivatives	is	usually	associated	with	frequent



margining	requirements	to	close	out	counterparty	risk	should	markets	change	rapidly	and
adversely	for	the	bank.	CSA	agreements	may	also	contain	explicit	rating	triggers	that	force	the
bank	to	post	additional	margins	in	case	of	downgrade.	Note	that	posting	additional	margin	due
to	rating	downgrade,	market	exposure,	or	both	raises	a	funding	requirement	for	the	bank.
Therefore,	a	bank-specific	liquidity	crisis—initiated	by	rating	downgrade—can	create	a	spiral
of	negative	effects,	ultimately	causing	further	downgrades	of	the	bank's	rating.

As	we	have	discussed	in	the	context	of	counterparty	credit	risk,	after	the	financial	crisis,	in
order	to	enhance	the	counterparty	risk	mitigation,	ISDA	published	Standard	Credit	Support
Annex	(SCSA).	It	is	the	annex	to	the	ISDA	Master	Agreement	and	covers	terms	of	the
collateral	arrangement	between	two	counterparties.	Notably,	under	the	new	standard	CSA,	one
collateral	requirement	is	called	daily	per	currency	each	day,	delivered	in	each	currency	or
converted	to	a	single	currency	with	an	interest	adjustment	overlay.	The	margin	threshold	and
minimum	collateral	transfer	amounts	are	set	to	zero	or	at	low	values.	Only	cash	is	eligible	as
variation	margin	collateral.	The	more	stringent	collateral	requirements	reduce	counterparty
credit	risk	but	call	for	more	careful	management	of	the	liquidity	risk	due	to	margining
requirements.

Analyzing	the	potential	liquidity	outflow	for	bilateral	OTC	derivative	agreements	and
margined	positions	held	by	a	custodian	is	quite	simple.	To	calculate	the	posting	requirement
and	hence	the	cash	outflow,	 ,	due	to	bilateral	CSA	margin	requirements	we	first	need	to
calculate	the	exposure	under	the	scenario	 ;	we	can	then	use	the	parameters	of	the	CSA	margin
agreement	to	calculate	the	posting	requirement	as	well	as	the	effect	of	downgrade	triggers.	In
case	the	collateral	agreement	allows	non-cash	assets	to	be	posted,	it	is	also	prudent	to	assume,
as	part	of	the	scenario	 ,	that	their	value	may	depreciate	and	hence	generate	additional	posting
requirements.	We	refer	to	the	chapter	on	counterparty	credit	risk	for	examples	of	calculating
required	CSA	collateral	posts.	For	margined	positions	with	custodian	the	potential	future
exposure	is	a	good	indicator	of	future	variation	margin	requirements.

However,	the	analysis	of	the	perceived	liquidity	outflow	due	to	margin	requirements	may	not
be	that	straightforward	when	positions	are	moved	through	central	counterparty	clearing.	This	is
because	the	bank	does	not	have	full	insight	on	the	aggregated	exposure	from	the	members.	Nor
may	they	know	the	exact	posting	rule	in	advance	that	may	be	at	discretion	of	the	central
counterparty.	Hence,	the	funding	(posting)	requirement	may	come	as	a	surprise.	The	bank	may
also	have	to	provide	liquidity	support	to	a	central	counterparty	if	a	member	fails.	Arnsdorff
(2012)	uses	a	model	to	estimate	the	potential	exposure	to	a	central	counterparty	in	distress.
The	risk	includes	both	the	risk	of	losing	already	posted	collateral	as	well	as	having	to	post
more	in	order	to	bail	out	the	central	counterparty.

Combining	the	Risk	and	Finance	View
Liquidity	risk	scenarios	are	focused	on	modeling	expected	behavior	conditional	on	liquidity
crisis	and	hence	severe	events.	The	behavioral	modeling	can	be	pool	based,	such	as	deposit
withdrawal	behavior	of	consumers	and	small	business,	and	position	or	counterparty	based,
such	as	expected	behavior	of	a	financial	institution	counterparty	in	drawdowns	on	banks'



granted	credit	lines	and	the	counterparty's	willingness	to	roll	over	funding	with	the	bank.
Different	behavioral	assumptions	result	in	different	cash	inflows	and	outflows.	Other
behaviors	such	as	default,	delinquency,	and	prepayment	in	the	liquidity	crisis	are	usually
analyzed	on	pool	level	for	consumers	and	small	business	but	can	also	be	applied	on	detailed
level.	Regardless	whether	behavioral	assumptions	are	applied	on	pool	or	detailed	level,
detailed	level	cash	flows	are	in	general	produced.	Detailed	level	cash	flows	are	then
aggregated	to	a	higher	level	view	where	going-concern	business	growth	is	usually	applied	on
aggregated	balances	(cash	flows)	for	a	product	class	as	in	the	target	ending	balance	example
above.	This	structure	of	liquidity	analysis	fits	well	with	using	a	bank's	risk	and	cash	flow
system	for	detailed	account-	and	position-level	cash	flows,	and	subsequently	the	finance	view
as	post-processing	incorporating	planning.	Hence,	in	this	approach,

First,	detailed	level	cash	flows	are	generated	with	base	behavioral	assumptions.

Second,	balance	sheet	cash	flows	are	aggregated	to	a	traditional	financial	balance	sheet
(cash	flow)	view.

Third,	target	growth	and	ending	balances	are	applied	to	the	aggregated	view	of	cash	flows
to	generate	adjusted	cash	inflow	and	outflows	for	business	growth,	and	increase	in	default,
delinquency,	and	so	forth,	compared	to	base.

Hedging	the	Liquidity	Exposure
Once	the	institution's	aggregate	forward	liquidity	exposure,	 ,	has	been	obtained	under
a	scenario	 	the	next	step	is	to	strategize	the	execution	of	the	liquidity	hedging	portfolio.	Recall
that	the	objective	is	to	ensure	that	the	liquidity	reserve	process,	 ,	is	nonnegative	for	all
	considered	as	liquidity	horizons.8	The	first	step	in	our	analysis	of	counterbalancing	capacity
of	the	liquidity	hedge	portfolio	is	to	define	the	assets	available	for	use.

The	Basel	III	liquidity	risk	regulation	underscores	the	importance	of	managing	a	liquidity
contingency	buffer	in	much	the	same	way	as	capital.	The	focus	is	on	maintaining	a	high-quality
liquidity	portfolio	that	can	hedge	liquidity	outflows	under	stress	scenarios.	This	is	formalized
in	the	new	regulation	by	requiring	banks	to	report	so-called	liquidity	coverage	ratios	that	test
the	sufficiency	of	the	liquidity	hedging	portfolio	under	behavioral,	market,	and	bank-specific
stresses.	Under	these	stresses	the	bank's	liquidity	portfolio	needs	to	hedge	the	stressed	funding
outflow	over	the	time	horizon	of	30	days	under	a	going-concern	assumption.	This	test	becomes
the	regulatory	test	whether	a	bank	has	a	sufficient	short-term	liquidity	buffer.

The	Basel	III	eligible	buffer	of	liquidity	hedging	assets	includes	so-called	level	1	and	level	2A
and	2B	assets.	Level	1	assets	include	cash,	central	bank	reserves,	and	premium	government
and	municipal	bonds.	Level	2A	assets	include	high-quality	corporate	and	covered	bonds,	and
level	2B	assets	include	lower	quality	corporate	bonds	and	common	shares.	Haircuts	on	the
hedge	value	of	assets	are	prescribed	by	the	regulation.

In	our	liquidity	hedging	analysis	we	will	not	impose	the	regulatory	eligibility	restriction
explicitly.	While	in	a	regulatory	context	there	are	constraints	on	the	liquidity	buffers	that	can	be



used	for	testing	an	institution's	liquidity	coverage,	in	practice,	in	a	liquidity	stress	the
institution	will	consider	all	assets	eligible	for	sale.	This	means	that	assets	such	as	facilities,
core	assets	may	be	part	of	a	liquidity	execution	analysis	even	though	the	assets	are	not
regulatory	eligible	in	defining	the	size	of	the	liquidity	buffer.	If	the	model	is	instead	used	to	test
the	sufficiency	of	the	regulatory	counterbalancing	capacity	portfolio,	then,	naturally,	only
regulatory	eligible	assets	are	included	in	the	model.

When	there	is	no	other	funding	source	available,	a	firm	has	to	resort	to	a	certain	asset	and	trade
it	for	as	good	value	as	possible.	Because	selling	an	asset	at	an	unfavorable	time	often	incurs	a
big	loss	to	the	firm	(i.e.,	a	fire-sale	situation),	it	is	certainly	not	a	preferred	funding	activity.
The	empirical	literature	has	shown	that	institutions	in	general	do	not	sell	assets	in	a	falling
market	(Boyson	et	al.,	2010).	Instead,	institutions	try	to	find	other	funding	alternatives	first.
However,	in	extreme	situations	institutions	do	react	to	liquidity	shocks	by	selling	assets
(Adrian	and	Shin,	2010).	During	the	recent	financial	crisis	Citi	group	sold	off	its	profitable
Smith	Barney	division	to	raise	$11.1	billion	in	cash	in	March	2009.	In	August	2011,	in	the
midst	of	other	funding	efforts,	Bank	of	America	sold	about	half	of	its	shares	in	China
Construction	Bank	one	month	after	it	sold	its	Canadian	credit	card	division.

In	general,	a	financial	institution	has	the	following	types	of	funding	sources:

Contingent	credit	line

A	contingent	credit	line	is	a	commitment	from	a	lender	to	extend	a	maximum	amount	of	credit
that	the	borrower	can	borrow	at	any	time	until	the	line	matures.	The	drawdown	on	the	credit
line	is	usually	up	to	the	borrower	as	long	as	the	limit	is	not	breached.	A	contingent	credit	line
is	a	very	popular	and	relatively	safe	liquidity	source	next	to	cash.	It	can	also	function	as	a
liquidity	insurance	(Thakor,	2005).	Several	empirical	studies	have	found	that	contingent	credit
lines	have	a	preset	maximum	amount,	and	usually	impose	a	commitment	fee	up	front,	a	use	fee
and	interest	rate	for	the	used	portion,	and	an	unused	fee	for	the	undrawn	portion.	The	fee	for	the
unused	portion	is	consistent	with	the	fact	that	institutions	price	the	opportunity	cost	of
contingency	liquidity	asa	liquidity	buffer	needs	to	be	held	should	the	institution	use	the	facility
extensively.

Contingent	credit	lines	are	used	heavily	by	firms	as	a	funding	source.	For	example,	Morgan
(1998)	finds	drawdown	on	existing	credit	lines	increases	after	a	policy	tightening.	Saidenber
and	Strahan	(1999)	find	that	firms	drew	extensively	upon	their	bank	lines	when	access	to	the
commercial	paper	market	was	limited	in	1998.	Lenders	tend	to	extend	contingent	credit	lines	to
less	liquidity	constrained	firms.

There	is	also	an	opportunity	cost	for	a	firm	to	draw	down	extensively	from	contingent	credit
lines	in	order	to	keep	lenders	willing	to	extend	more	credit	lines	in	the	future.	Ivashina	and
Scharfstein	(2010)	and	Campello	et	al.	(2012)	find	that	at	the	time	of	liquidity	distress
institutions	tend	to	use	the	undrawn	portion	of	their	credit	line	as	much	as	possible	in	the	early
stage	of	the	distress,	before	the	lender	detects	their	liquidity	difficulty.	The	more	financially
constrained	a	firm	is,	the	more	it	draws	down	the	credit	line.	This	borrowing	behavior
typically	leads	to	a	tighter	scrutinization	from	lenders	in	a	later	stage	of	a	distress.	Tirole



(2005)	has	noted	that	lenders	often	prefer	to	keep	discretion	over	the	credit	line	by	making	the
line	revocable.	In	general,	lenders	have	ways	for	limiting	the	extent	of	liquidity	insurance
nature	of	contingent	credit	lines	in	advance	of	a	line	drawdown.	Both	Sufi	(2009)	and
Campello	et	al.	(2011)	find	that	illiquid	firms	have	less	access	to	credit	lines	than	liquid	firms.

In	Basel	III	the	base	regulatory	assumption	in	assessing	cash	inflows	from	credit	lines	is	that
the	bank	cannot	use	any	of	its	contingent	credit	lines	to	raise	funds.	Banks	therefore	need	to
consider	only	the	regulatory	eligible	level	1	and	level	2	assets	for	the	purpose	of	hedge
sufficiency	testing.	However,	this	does	not	mean	that	at	the	time	of	liquidity	distress	contingent
credit	lines	are	not	available	to	the	bank.	It	only	means	that	when	a	priori	determining	the	size
of	the	liquidity	hedging,	portfolio	banks	should	not	count	on	facilities	being	available.

Short-term	collateralized	loans

Short-term	secured	borrowing	facilities	are	effective	for	financial	institutions.	There	are
primarily	two	types	of	short-term	secured	borrowing	facilities:	asset-backed	commercial
paper	and	repurchase	agreement.	Both	types	use	the	assets	that	a	firm	owns	as	collateral.	Once
an	asset	is	pledged	as	collateral,	the	asset	is	encumbered	and	is	not	up	to	free	disposal	of	the
firm.	Such	collateralized	borrowing	facilities	are	especially	effective	funding	sources	for
banks	in	liquidity	distress.	See	Gatev	and	Strahan	(2006).

Customer	deposit

Accessibility	to	stable	deposit	funds	is	an	advantage	for	retail	and	commercial	banks.	The
deposit	is	considered	as	a	countercyclical	source	of	funding	(Gatev,	Schuermann,	and	Strahan,
2009)	and	is	a	preferred	funding	source	for	banks	at	normal	economic	situations.	However,
establishing	additional	deposit	channels	takes	time,	and	at	the	time	of	a	liquidity	distress	banks
find	it	difficult	to	attract	new	deposits.

Other	borrowing	facilities

Financial	institutions,	especially	banks,	have	interbank	borrowing	facilities	among	themselves.
This	is	an	important	uncollateralized	borrowing	capacity	that	is	subject	to	the	interbank	interest
rate.	Interbank	borrowing	is	usually	a	safe	and	effective	funding	source	for	banks.	Chari	et	al.
(2008)	argue	that	the	interbank	lending	market	was	active	and	well-functioning	even	as	late	as
October	2008	during	the	financial	crisis.	Banks	also	have	access	to	central	bank	funds.
However,	banks	try	to	stay	away	from	borrowing	extensively	from	the	central	bank	to	avoid
creating	a	reputation	of	being	in	liquidity	distress.

When	the	financial	institution's	funding	sources	have	been	exhausted,	the	next	step	is	to
consider	a	sale	of	assets	to	raise	cash.	Holding	cash	is	clearly	a	valuable	and	unsurpassed
liquidity	supplier.	Bates	et	al.	(2009)	find	that	American	firms	hold	more	cash	as	a	liquidity
insurance	now	than	ever	due	to	the	riskier	business	models	in	the	modern	economy.	Cash	and
cash	equivalents	usually	have	low	liquidity	execution	cost	and	limitation.	However,	because
too	much	cash	holding	diminishes	the	growth	opportunity	of	the	firm	due	to	the	large
opportunity	cost	of	cash,	cash	and	cash	equivalents	do	not	make	up	the	entire	liquidity	hedge
source.	Furthermore,	some	cash	equivalents,	especially	deposits	with	other	banks,	can	still	be
subject	to	withdrawal	limits.



To	hedge	liquidity	exposures,	the	financial	institutions	also	hold	a	dedicated	asset	portfolio.
The	asset	portfolio	can	include	government	and	corporate	bonds,	covered	bonds,	as	well	as
equity.	When	an	asset	holding	has	been	partially	pledged	as	collateral	(e.g.,	in	a	margin
agreement),	only	the	unencumbered	portion	is	available.	Note	that	the	unencumbered	portion	of
assets	included	in	the	liquidity	hedge	portfolio	do	not	contribute	cash	flows	to	the	forward
liquidity	exposure,	 .	They	are	instead	counted	toward	the	counterbalancing	flows	of
the	liquidity	reserve	process,	 .

The	treatment	of	repo	and	reverse	repo	agreements	where	an	asset	has	been	pledged	versus
received	as	collateral	depends	on	the	liquidity	analysis	horizon	and	the	assumptions	of
rollover.	When	the	repo	agreement	matures	within	the	liquidity	horizon	the	pledged	asset	is
returned	and	there	is	an	outflow,	 ,	of	the	repo	amount.	However,	the	returned	asset	can
now	be	used	to	raise	offsetting	liquidity—either	with	a	new	repo	agreement	or	by	selling	the
asset.	For	a	reverse	repo	that	matures	within	the	liquidity	horizon	there	is	an	inflow,	 ,	of
the	repo	amount.	On	the	other	hand,	the	asset	received	as	collateral	is	returned	and
notavailable	to	raise	cash.	If	the	maturity	of	the	reverse	repo	is	longer	than	the	liquidity
horizon,	then	the	collateral	asset	can	potentially	be	used	and	counted	toward	available	hedging
assets	to	be	used	in	a	repo	or	sale.	Of	course,	this	is	true	for	many	of	the	received	collaterals
on	the	bank's	balance	sheet.

Given	a	sufficient	liquidity	hedging	portfolio	banks	can	strategize	their	response	to	a	liquidity
crisis,	 ,	in	advance	through	contingency	funding	plans.	Such	a	contingency	funding	plan
includes	having	a	strategy	for	liquidity	execution.	Liquidity	execution	is	therefore	one	of	the
core	functions	in	the	bank.	In	a	liquidity	execution,	apart	from	the	financial	cost	of	the
execution	itself,	a	firm	must	also	take	into	account	reputational	and	opportunity	cost.	When
multiple	liquidity	distress	stages	are	anticipated	banks	can	be	more	willing	to	hold	onto	the
most	liquid	assets	and	not	risk	a	fire-sale	of	the	illiquid	assets	in	later,	more	severe	stages	of
the	distress.	This	is	clearly	a	decision-making	process	based	on	a	long-term	survival	strategy.
Therefore,	an	important	aspect	of	liquidity	management	and	in	particular	liquidity	execution	is
to	recognize	the	fact	that	a	liquidity	distress	period	usually	evolves	in	multiple	stages,	and
when	the	funding	liquidity	shortage	evolves	so	does	the	borrowing	cost	and	market	liquidity	as
well.	An	institution's	liquidity	execution	plan	should	therefore	incorporate	this	multistage
nature	of	the	liquidity	distress	and	the	fact	that	execution	costs,	liquidity	depth,	and	other
market	factors	such	as	haircuts	vary	across	stages.	If	the	bank	finds	that	the	liquidity	hedge
portfolio	has	insufficient	counterbalancing	capacity	under	the	liquidity	scenario,	 ,	it	may	have
to	acquire	further	liquid	funds.

We	consider	next	two	different	types	of	models	of	liquidity	hedging.	The	first	model	is	only
based	on	a	simple	ranking	preference	of	liquidity	execution	of	assets.	The	second	model	uses
optimization	to	find	the	best	possible	execution	strategy	for	a	given	liquidity	hedge	portfolio.
The	optimization	model	for	liquidity	execution	we	use	here	is	from	Chen,	Skoglund,	and	Cai
(2012).	Both	the	ranking	and	the	optimization	model	for	liquidity	execution	find	a	plausible
survival	liquidity	execution	if	this	is	feasible	with	the	assets	at	hand	and	for	the	given	market
situation.	Hence,	they	ensure	survival	if	possible.	Deterministic	methods	of	liquidity	hedging—



which	essentially	predefine	the	counterbalancing	capacity	cash	generation	from	assets—do	not
have	this	feature.	They	generally	require	trial	and	error	with	different	asset	sale	and	repo
strategies	to	determine	if	the	liquidity	hedge	portfolio	is	sufficient	for	survival.	See	Fiedler
and	Kustner	(2011)	for	a	detailed	example	of	a	deterministic	liquidity	hedging	approach	that
prescribes	hypothetical	asset	sales,	repo	amounts,	and	inventory	changes	at	 	from
which	counterbalancing	flows	are	generated.

Using	an	optimal	liquidity	execution	model,	it	is	in	general	optimal	for	firms	to	rank	liquidity
facilities	based	on	their	anticipated	execution	costs	and	haircuts	across	the	expected	stages	of	a
liquidity	crisis	and,	should	it	be	expected	that	all	of	the	firm's	liquidity	capacity	needs	to	be
used	to	raise	the	funds,	execute	the	lower	quality	assets	first,	saving	the	liquid	assets	for	later
execution	as	they	do	not	have	a	significant	decrease	in	value	as	liquidity	distress	worsens.
However,	when	the	firm	does	not	expect	to	use	all	of	its	liquidity	to	raise	the	needed	funds
during	the	liquidity	distress	stages,	then	it	can	refrain	from	executing	the	least-quality	assets	to
keep	execution	costs	to	a	minimum.	This	behavior	of	optimal	liquidity	execution	models	leads
to	the	discussion	about	two	general	liquidity	hedge	strategies	referred	to	as	“cash	first”	or
“cash	last”	execution	strategies.	See	Duffie	and	Ziegler	(2003)	in	this	regard.

Ranking-Based	Liquidity	Hedging	Strategy
In	a	simple	ranking-based	model	for	liquidity	hedging	we	assign	to	the	liquidity	hedge	assets	a
rank	of	whichever	asset	we	have	a	preference	to	sell	first.	Since	there	are	no	explicit	market
liquidity	execution	costs	in	this	simple	model,	when	the	asset	is	sold	we	can	incorporate
liquidity	costs	by	using	fixed	haircuts.	The	assigned	haircuts	of	course	depend	on	the	asset
quality	as	well	as	the	market	behavior	in	the	liquidity	scenario,	 .	For	a	given	liquidity	gap,	

,	we	liquidate	the	assets	in	the	ranking	order	to	close	the	gap.	For	example,	if	the
needed	liquidity	support	at	time	 	is	an	amount	 ,	we	will	first	liquidate	the	assets	ranked	as
priority	1	up	to	their	available	amount.	Assuming	the	available	amount	is	less	than	 	we	will
next	continue	to	liquidate	assets	ranked	second	priority,	and	so	on.

In	case	there	are	restrictions	on	how	much	of	an	asset	can	be	sold	at	a	particular	time,	the
ranking	is	of	secondary	importance	as	the	survival	of	the	institution	is	of	first	priority.	This
means	that	assets	ranked	numerically	higher	may	need	to	be	executed	before	numerically	lower
ranked	(higher	priority)	assets	in	case	of	sale	restrictions	at	 .

Example	of	Ranking-Based	Liquidity	Hedging
Consider	a	 	period-by-period	funding	gap	of	10.	Having	available	3	assets,	asset	1,
2,	and	3,	ranked	as	1,	2,	and	3	respectively	with	liquidity	adjusted	market	value	of	100	each
we	would	only	use	asset	1	to	generate	counterbalancing	capacity	in	case	there	are	no	sale
constraints	on	asset	1	that	would	prevent	its	use	and	we	would	liquidate	 	of	asset	1	at	each
period	to	raise	the	needed	funding	for	 .	Equivalently,	since	haircuts	do	not	vary	over
time	we	could	liquidate	 	of	asset	1	at	 	and	put	it	in	a	cash	account	to	use	at	 .
We	will	refer	to	this	liquidity	hedge	case	as	liquidity	hedge	scenario	1.

However,	if	there	are	constraints	on	the	amount	of	assets	that	can	be	sold	or	utilized	to	raise



cash,	the	liquidity	execution	may	not	follow	the	ranking.	For	example,	if	asset	1	can	only	be
sold	at	 	and	asset	2	can	only	be	sold	after	 	while	asset	3	has	no	sale	restrictions,	we
obtain	the	ranked	liquidity	execution	asa	 	sale	of	asset	3	in	 ,	a	 	sale	of	asset	2	in

,	and	a	 	sale	of	asset	1	in	 .	This	is	because	survival	and	a	closing	of	the	funding
gap	is	the	main	goal.	We	refer	to	this	hedge	scenario	as	hedge	scenario	2.

As	a	third	liquidity	hedging	scenario	consider	asset	execution	limits	such	that	asset	1	cannot	be
executed	at	 	and	only	up	to	 	in	 .	Asset	2	can	only	be	liquidated	at	 	and
asset	3	has	no	liquidation	constraints	at	 	but	cannot	be	liquidated	after.	The	ranking
liquidation	then	sells	 	of	asset	1	and	 	of	asset	3	in	 	to	cover	the	funding	liquidity
gap	at	 .	Finally,	at	 	asset	2	is	sold	to	cover	the	funding	gap	at	 .

Table	6.10	displays	the	ranked	liquidity	execution	percentages	of	asset	1,	2,	and	3	in	our	three
liquidity	hedge	scenarios.	It	also	displays	the	liquidity	gap	and	the	forward	liquidity	exposure
obtained	from	the	cash	flows	under	scenario	 .

Table	6.10	Ranking-Based	Liquidity	Hedging	Scenarios	with	Asset	1,	2,	and	3	Liquidation
Percentages	in	the	Scenarios

Liquidity
gap

Hedge	scenario	1 Hedge	scenario	2 Hedge	scenario	3

Time Asset
1

Asset
2

Asset
3

Asset
1

Asset
2

Asset
3

Asset
1

Asset	2 Asset	3

t	=	1 10% 0% 0% 0% 0% 10% 20% 0% 30%
t	=	2 10% 0% 0% 0% 0% 10% 0% 0% 0%
t	=	3 10% 0% 0% 0% 0% 10% 0% 0% 0%
t	=	4 10% 0% 0% 0% 10% 0% 0% 0% 0%
t	=	5 10% 0% 0% 0% 10% 0% 0% 0% 0%
t	=	6 10% 0% 0% 10% 0% 0% 0% 10% 0%

The	ranking-based	liquidity	execution	model	gives	a	simple	approach	to	analyzing	sufficiency
of	the	liquidity	hedging	portfolio.	Its	main	inputs	are	the	current	market	value	of	assets	as	well
as	liquidity	haircuts	and	market	execution	constraints	for	the	asset.	Insufficiency	of	the	assets	to
guarantee	liquidity	solvency	under	scenario	 ,	either	because	of	non-sufficient	liquidity
adjusted	market	values	to	execute	or	because	of	market	execution	constraints,	leads	to	a
consideration	whether	some	hedging	assets	can	be	substituted	and/or	if	new	assets	need	to	be
considered	as	part	of	the	liquidity	hedging	portfolio.	A	drawback	of	the	model	is	its	simplicity.
It	does	not	capture	the	typical	time	costs	of	execution	in	a	liquidity	crisis	since	fixed	haircuts
are	used.	As	a	liquidity	crisis	unfolds	the	liquidity	execution	costs	may	increase	leading	to	a
trade-off	between	which	types	of	assets	should	be	executed	first	versus	last.	We	therefore	now
turn	our	attention	to	liquidity	execution	models	with	time-varying	execution	costs	that	optimize
the	liquidity	execution	behavior.



Optimal	Liquidity	Hedging	Strategy
In	reality,	among	a	firm's	liquidity	inventory,	not	all	the	available	instruments	are	created
equal.	Various	costs	and	constraints	exist	to	deploy	these	instruments	into	cash,	to	create
counterbalancing	capacity.	The	costs	can	be	due	to	interest	rate	charge	in	borrowing,	bid–ask
spread	in	trading	as	a	result	of	the	market	impact	of	a	security,	or	simply	opportunity	cost
assessed	by	the	management.	Other	than	costs,	constraints	may	also	exist	due	either	to	the
material	limit	attached	to	borrowing	(e.g.	letter	of	credit),	trading	limit,	or	internal	limit.

To	consider	an	optimal	liquidity	execution	plan	we	start	with	a	simple	model	where,	in	order
to	deploy	an	inventory	of	liquidity	supplying	instruments,	only	time	constraints	are	imposed.
This	scenario	indicates	that	as	long	as	the	cash	conversion	process	follows	a	stable	plan	(not	a
fire-sale	case),	execution	can	be	done	on	a	fixed	cost	base.	The	model	accommodates	a
multistage	liquidity	need	where	the	liquidity	gap	and	execution	cost	can	be	different	across
stages.	In	our	model	setting	there	are	therefore	 	consecutive	liquidity	distress	stages	that	a
firm	faces.	This	multistage	nature	is	an	important	aspect	for	a	liquidity	management	decision-
making	process,	because	in	reality,	when	funding	liquidity	starts	to	show	distress,	firms'
borrowing	capacity	and	cost	will	worsen	across	stages.	The	second	model	extends	the	first
model	for	tradable	assets	by	assuming	a	linear	price	dependency	on	the	volume.

Throughout	we	use	the	terms	“instrument”	or	“facility”	to	represent	a	homogeneous	class	of
liquidity	suppliers	subject	to	the	same	execution	(transaction)	cost	and	haircuts.	It	is	hence	not
necessarily	a	single	asset.	Since	the	models	consider	the	evolution	of	liquidity	at	 	distress
stages	we	also	assume,	for	convenience,	that	these	 	stages	are	consecutive.	The	total	liquidity
gap	across	all	distress	stages	is	divided	into	stage	 	specific	gaps.	Any	fund	raised
during	any	transaction	period	in	a	stage	is	immediately	applied	to	reduce	the	gap.Effectively,
this	means	we	make	no	distinction	between	cash	raised	at	the	beginning	or	end	of	a	distress
period.	What	matters	is	how	cash	is	raised	across	distress	stages,	 ,	to	fill	the
distress	stage	gap.	However,	within	a	distress	period	 	naturally	execution	limits	may	differ
since	the	limit	is	not	necessarily	triggered	by	the	distress	stage	but	could	be	exogenous.	For
example,	cash	withdrawal	may	be	subject	to	deposit	institution	cash	availability	on	a	certain
day	and	credit	line	drawdown	may	be	subject	to	a	daily	limit

Liquidity	Hedging	with	Fixed	Execution	Costs
In	the	first	model	with	execution	limits	and	fixed	execution	costs	there	are	 	consecutive
liquidity	distress	stages	that	a	firm	faces.	Each	distress	stage	 	has	 	execution	periods	when
the	firm	can	raise	funds.	A	new	liquidity	gap	 	is	incurred	at	each	stage	 .	The	firm	has	a
portfolio	of	 ,	 ,	instruments	available	to	deploy.	Each	instrument	 	has	a	market
value	or	principal	 	with	execution	cost	 	and	an	execution	limit	 	at	a	given	execution
period,	 ,	within	a	stage	 .	The	firm's	objective	is	to	minimize	the	execution	cost
while	raising	the	needed	cash	for	the	liquidity	gap,	 ,	for	all	 	from	the	given
portfolio	of	liquidity	supplying	instruments.	We	define	the	cost	function	for	each	stage	as
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The	minimal	cost	portfolio	optimization	is

where	 	is	the	executed	amount	of	asset	 	in	period	 within	liquidity	distress	stage	 	and	 	is
the	execution	cost	of	asset	 	in	distress	stage	 .	Here	 ,	 .	The	minimal
cost	optimization	is	subject	to	the	following	constraints	for	 ,	 ,	

,

where	constraint	(6.15)	is	the	execution	limit	for	each	instrument	at	period	 	within	liquidity
distress	stage	 .	This	limit	can	be	due	to	either	a	cash	withdrawal	limit	allowed	for	the	period
imposed	by	the	deposit	institution	or	a	trading	limit	imposed	by	a	security	exchange	authority
to	prevent	market	crash.	Constraint	(6.16)	indicates	the	total	executed	amount	cannot	be	more
than	what	is	available.	Finally,	constraint	(6.14)	is	the	liquidity	gap	to	be	met	in	each	distress
stage,	 .	The	execution	cost	(6.12)	is	added	to	the	gap	in	each	stage.

Example	of	Liquidity	Model	with	Fixed	Execution	Costs
Using	this	liquidity	execution	model	consider	a	firm	that	is	expecting	two	liquidity	distress
stages,	 	and	 	respectively,	where	distress	stage	 	has	a	duration	of	three	days	and
distress	stage	 	has	a	duration	of	two	days.	We	assume	that	the	cash	that	needs	to	be	raised
in	each	of	the	distress	stages	is	 	units	of	currency.	Each	liquidity	facility	can	be
executed	up	to	a	certain	limit	within	a	distress	stage	(in	this	case	a	day).	When	a	liquidity
facility	is	not	available	to	convert	to	cash	the	limit	is	set	to	zero.

Table	6.11	displays	the	available	liquidity	sources	together	with	their	available	amounts	and
liquidity	type.	The	portfolio	of	liquidity	supplying	facilities	includes	cash	or	cash	equivalents,
bonds,	a	facility,	and	equities.	Table	6.12	displays	the	available	liquidity	facilities	with	their
fixed	execution	constraints	in	each	of	the	days	in	the	liquidity	distress	stage	of	 	and	 .
Table	6.12	also	shows	the	fixed	execution	costs	expressed	in	basis	points	of	the	liquidity
facilities	for	each	of	the	liquidity	distress	periods.	For	most	of	the	liquidity	facilities	execution



costs	are	higher	in	the	second	stage—reflecting	a	more	severe	liquidity	distress	in	the	second
stage.	In	practice,	one	can	interpret	the	execution	cost	as	including	an	asset	haircut—capturing
the	fact	that	the	firm's	liquidity	execution	will	most	likely	have	to	be	performed	under	a
combination	of	general	market	stress	and	the	firm-specific	liquidity	stress.	The	market	stress
will	cause	significant	haircuts	on	non-cash	equivalent	liquidity	due	to	a	general	flight-to-
quality	market	behavior.	In	addition,	the	bank-specific	stress	will	most	likely	cause	other	banks
to	try	and	constrain	the	bank's	usage	of	outstanding	facilities	and	other	committed	lines
ofcredit.

Table	6.11	Liquidity	Sources	and	Their	Available	Liquidity	Amounts

Liquidity Available	amount Liquidity	type
Cash	1 500,000 small	cost
Cash	2 1,000,000 small	cost—not	available	immediately
Bond	1 700,000 small	cost
Bond	2 800,000 medium	to	large	cost
Facility 500,000 small	to	medium	cost—may	be	constrained
Equity	1 600,000 medium	cost
Equity	2 300,000 large	cost

Table	6.12	Available	Liquidity	at	Fixed	Costs	for	each	of	the	Days	in	Distress	Stage	1	and	2

Liquidity	stage,	 Liquidity	stage,	
Liquidity Cost Cost
Cash	1 0	bp 500,000 500,000 500,000 0	bp 500,000 500,000
Cash	2 10	bp 0 0 1,000,000 10	bp 1,000,000 1,000,000
Bond	1 20	bp 500,000 500,000 500,000 40	bp 350,000 350,000
Bond	2 100	bp 300,000 300,000 300,000 200	bp 200,000 150,000
Facility 10	bp 0 250,000 250,000 20	bp 100,000 50,000
Equity	1 80	bp 200,000 200,000 200,000 180	bp 200,000 200,000
Equity	2 180	bp 0 150,000 150,000 300	bp 50,000 20,000

Note	that	in	this	model	known	future	cash	flows	(e.g.,	coupons)	may	be	considered	as	part	of	a
cash	account.	The	execution	limits	may	be	used	to	constrain	usage	of	coupon	until	it	is
received.	For	example,	the	liquidity	facility	“Cash	2”	in	Table	6.12	is	not	available	during	the
first	two	days	of	liquidity	distress	stage	 	while	it	is	available	subsequently	in	the	last	day
of	distress	stage	 	and	in	distress	stage	 .9

Liquidity	Hedging	with	Tiered	Execution	Costs
For	tradable	assets	our	second	liquidity	hedge	optimization	model	assumes	a	market	liquidity
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cost	dependent	on	volume.	Following	Jorion	(2009)	we	assume	an	asset	can	be	traded	within	a
trading	period	up	to	a	certain	trading	threshold	 	known	as	“market	depth”	at	a	market	bid–ask
spread	 .	In	order	to	execute	the	trading	in	a	bigger	volume,	market	price	moves	unfavorably
at	a	cost	rate	 	where	 	in	excess	to	the	market	trading	cost	due	to	the	big–ask	spread.
The	cost	of	sale	execution	of	the	security	is	then

The	cost	function	(6.18)	can	be	equivalently	written	as

where

which	can	be	further	be	expressed	as

with	constraints	 	and	 ,	where	 	is	an	auxiliary	variable.

In	each	trading	period	of	a	liquidity	distress	stage	 ,	an	instrument	 	can	be	converted	to	cash	at
the	cost	of	 	as	defined	by	(6.18)	and	(6.19),	subject	to	a	limit	constraint	 	or	a	market
trading	threshold	 .	The	funding	gap	that	the	liquidity	plan	must	satisfy	for	each	period	is	 .
Each	period	has	 	trading	periods	when	cash	conversion	can	take	place.	The	cost	function	in
each	stage	is	thus	extended	to

A	minimal	cost	optimization	problem	can	hence	be	defined	as

subject	to	the	following	constraints	for	 ,	 ,	



plus	any	other	linear	business	constraints.	Note	the	newly	introduced	constraints	(6.22)	and
(6.23)	in	this	model	compared	to	the	first	model.	Here	 	is	an	auxiliary	variable	that	helps
create	a	linear	representation	of	the	trading	cost	as	explained	in	(6.19).

Example	of	Liquidity	Execution	with	Tiered	Costs
Adapting	the	numerical	example	of	the	first	model	to	this	second	model	with	tiered	execution
cost	we	allow	a	quicker	execution	of	traded	assets,	that	is,	less	restrictive	trading	limits.
However,	the	firm	must	pay	a	fire-sale	cost	when	the“normal”	market	depth	of	an	asset	is
breached.	Table	6.13	displays	the	total	available	liquidity	facilities	in	each	of	the	days	in	the
liquidity	distress	stage	of	 	and	 .	It	also	displays	the	tiered	execution	constraints,	
and	 	respectively,	for	the	liquidity	facilities.	Table	6.14	displays	the	tradable	limits	for
liquidity	facilities	for	the	tiered	execution	cost	 .	After	this	limit	and	up	to	the	total	available
limits	in	Table	6.13	the	execution	cost	is	 .	As	in	the	numerical	example	for	the	first	model,
for	most	of	the	liquidity	facilities	execution	costs	are	higher	in	the	second	stage—reflecting	a
more	severe	liquidity	distress	in	the	second	stage.

Table	6.13	Available	Liquidity	at	Tiered	Costs	for	each	of	the	Days	in	Distress	Stage	1	and	2

Liquidity	stage,	 Liquidity	stage,	
Liquidity Cost Cost Cost Cost

Cash	1 0	bp 0	bp 500,000 500,000 500,000 0	bp 0	bp 500,000 500,000
Cash	2 10	bp 10	bp 0 0 1,000,000 10	bp 10	bp 1,000,000 1,000,000
Bond	1 20	bp 250	bp 700,000 700,000 700,000 40	bp 450	bp 700,000 700,000
Bond	2 100	bp 400	bp 800,000 800,000 800,000 200	bp 1000

bp
500,000 500,000

Facility 10	bp 200	bp 0 500,000 500,000 20	bp 400	bp 150,000 50,000
Equity	1 80	bp 300	bp 600,000 600,000 600,000 180	bp 500	bp 600,000 600,000
Equity	2 180	bp 550	bp 0 300,000 300,000 300	bp 1250

bp
100,000 100,000



Table	6.14	Available	Liquidity	at	First-Tier	Cost

Liquidity	stage,	 Liquidity	stage,	
Liquidity Market	depth	 Market	depth	
Cash	1 500,000 500,000
Cash	2 1,000,000 1,000,000
Bond	1 500,000 300,000
Bond	2 300,000 100,000
Facility 250,000 50,000
Equity	1 200,000 100,000
Equity	2 150,000 20,000

Using	a	linear	program	we	now	solve	the	model	with	tiered	execution	cost	using	the	sample
data	in	Tables	6.11,	6.13,	and	6.14	assuming	that	the	cash	that	needs	to	be	raised	in	each	of	the
distress	stages	is	 	units	of	currency.10	The	optimal	execution	amounts	are	shown	in
Table	6.15.	The	optimal	execution	cost	across	stages	1	and	2	is	15,763	units	of	currency	and
the	execution	cost	paid	in	each	of	stages	1	and	2	respectively	is	12,952	and	2,811	units	of
currency.	For	example,	the	stage	2	execution	cost	is	neutralized	by	executing	an	additional
2,811	units	of	currency	of	the	liquidity	facility	bond	1.	From	Table	6.15	we	note	that	the	liquid
cash	position	cash	1	is	sold	at	stage	2	in	full	to	raise	the	needed	funds	of	the	stage	2	liquidity
distress.	This	behavior	of	not	using	the	cash	position	cash	1	in	distress	period	1	is	expected	as
the	cost	of	executing	the	cash	position	is	null	in	all	stages	while	other	assets	typically	have	an
increasing	execution	cost	in	stage	2.	That	is,	since	the	cash	position	does	not	come	with	an
increasing	execution	cost	as	the	liquidity	tightens	up	across	stages,	it	is	natural	to	hold	the	cash
positions	and	liquidate	first	the	positions	that	have	an	increasing	execution	cost	as	the	liquidity
distress	becomes	worse.	We	also	observe	the	same	behavior	for	the	cash	position	cash	2	as	for
cash	1.	That	is,	the	cash	2	position	is	executed	in	full	in	stage	2.	Next,	observing	the	liquidation
behavior	of	the	bond	positions,	that	is,	bond	1	and	bond	2,	we	note	that	for	bond	1	position,
liquidation	is	spread	out	over	the	liquidity	distress	stages	1	and	2.	The	bond	1	position	is	sold
in	chunks,	day	by	day,	below	the	first-tier	market	depth	limit	of	300,000.	Since	there	is	not	a
significant	difference	in	first-tier	execution	cost	between	stages	1	and	2,	going	from	20	bp	to
40	bp,	the	bond	1	position	is	used	to	obtain	liquidity	also	in	distress	stage	2	together	with	the
cash	positions.	The	stage	2	distress	gap	of	2,000,000	is	almost	fully	covered	by	the	2	cash
positions	and	bond	1	as	their	second-stage	execution	raises	about	1,900,000.	Note	also	that
slightly	less	than	300,000	is	sold	of	bond	1	in	distress	stage	1	to	allow	the	use	of	the	remaining
bond	1	funds	to	cover	both	the	gap	and	the	execution	cost	in	stage	2.	The	bond	2	has
significantly	higher	first	and	second-tier	execution	costs	than	bond	1	and	can	be	thought	of	as	a
lower	quality	bond	with	higher	haircuts.	Bond	2	has	a	first-tier	execution	limit	in	stage	1	of
300,00	and	a	stage	2	first-tier	limit	of	100,00.	The	increasing	execution	cost	across	stages	as
well	as	the	significantly	reduced	first-tier	execution	limit	makes	it	optimal	to	sell	an	amount	of
715,763	of	the	bond	(total	amount	is	800,000)	in	the	days	of	liquidity	distress	stage	1.	Nothing



is	sold	of	the	bond	2	position	in	stage	2.	This	is	because	the	firm	can	sell	off	significant
amounts	of	bond	2	at	low	first-tier	market	costs	only	in	stage	1.	In	addition,	bond	2	has	a
significant	increase	in	execution	costs	in	stage	2	and	hence	liquidating	the	position	in	stage	1
rather	than	later	is	a	better	option	to	escape	higher	execution	costs.	This	trade-off	can	be
madefor	execution	of	bond	2	because	there	are	other	liquidity	facilities	in	the	portfolio	such	as
the	cash	positions	and	bond	1	that	do	not	have	a	significant	diminishing	value	as	the	liquidity
distress	becomes	more	severe,	and	hence,	can	be	used	in	stage	2	to	cover	the	gap	with	very
low	execution	cost.	It	is	therefore	cheaper	to	hold	onto	the	low	execution	cost	items	of	the	cash
positions	and	the	high-quality	bond	1	and	instead	execute	bond	2	to	raise	funds	initially.	The
facility	liquidity	source	has	a	relatively	low	execution	cost	at	first-tier	market	depth	of
250,000	in	stage	1	and	a	total	of	350,000	is	used	of	the	facility	in	stage	1.	The	facility	still	has
relatively	low	execution	costs	in	stage	2	but	the	usage	limit	is	getting	much	more	constrained.
However,	the	usage	limit	is	still	enough	to	cover	using	the	limit	at	50,000	per	day,	raising	the
final	needed	100,000	to	cover	the	liquidity	gap	in	stage	2.	The	equity	position	equity	1	has	a
first-tier	market	depth	in	stage	1	of	200,000	while	the	first-tier	market	depth	in	stage	2	is
reduced	to	100,000	together	with	increased	execution	costs.	This	makes	it	optimal	to	use	the
equity	1	position	fully	up	to	the	first-tier	market	depth	of	the	days	in	stage	1	(200,000	per	day)
to	get	a	relatively	low	execution	cost	to	cover	the	remaining	gap	in	liquidity	distress	stage	1.
Finally,	the	equity	position	equity	2	is	not	used	to	cover	the	gap	in	either	of	the	stages.	This	is
because	there	are	liquidity	facilities	with	lower	execution	amounts	that	can	cover	the	gap	in
both	stage	1	and	stage	2.

Table	6.15	Optimal	Liquidity	Plan	for	Model	with	Tiered	Execution	Cost

Optimal	execution	amount, Optimal	execution	amount,

Liquidity Available
amount

Cash	1 500,000 0 0 0 500,000 0
Cash	2 1,000,000 0 0 0 0 1,000,000
Bond	1 700,000 0 0 297,189 102,811 300,000
Bond	2 800,000 115,763 300,000 300,000 0 0
Facility 500,000 0 250,000 150,000 50,000 50,000
Equity	1 600,000 200,000 200,000 200,000 0 0
Equity	2 300,000 0 0 0 0 0

Total	raised	amount	=
2,000,000

Total	raised	amount	=
2,000,000

Analyzing	this	optimal	execution	behavior,	we	note	that	highly	liquid	sources,	such	as	cash	and
cash	equivalents,	which	remain	liquid	with	low	execution	cost	and	haircut	even	in	further
distress,	are	optimal	to	hold	until	further	distress	stages	and	then	execute	at	a	still	low	cost.
This	is	because	their	values	do	not	diminish	as	stress	increases	across	stages.	High-quality



instruments	with	low	and	not	significantly	increasing	execution	costs	and	haircuts	across
stages,	such	as	bond	1,	are	spread	evenly	in	sales	across	liquidity	stages	as	the	market	impact
across	liquidity	stages	is	low	for	premium	quality	assets.	Hence,	the	cost	of	waiting	to	deploy
such	an	asset	is	feasible	from	a	cost	perspective	and	the	asset's	use	to	obtain	funds	can	be
spread	out	over	liquidity	distresses.	The	facility—which	has	low	first-tier	market	depth	costs
but	a	significant	constraint	in	the	usage	limit	across	the	days	in	the	stages—resembles	bond	1
in	that	it	is	used	across	liquidity	stages	up	to	the	first-tier	market	depth	limit,	which	has	low
execution	cost.	In	the	case	of	the	facility,	however,	the	stage	2	significant	usage	constraint
causes	small	amounts	to	be	drawn	in	each	day	of	stage	2	(i.e.,	50,000).	The	fact	that	liquidity
facilities	have	relatively	low	execution	costs	across	distress	stages,	and	are	a	preferred	way	to
raise	funds,	means	that	the	counterparty	offering	the	facility	will	try	to	close	or	significantly
limit	committed	lines	of	credit	as	soon	as	possible	in	a	liquidity	distress	to	prevent	this
drawing	behavior	from	the	stressed	firm.	Considering	instead	liquidity	raising	assets	with	an
execution	cost,	and	haircut	that	is	significantly	worsening	across	stages	we	note	that	those	are
sold	in	the	beginning	of	distress.	This	is	because	their	liquidity	values	are	higher	in	the	initial
phases	of	the	distress	when	execution	costs	and	haircuts	are	not	as	severe.	The	assets	bond	2
and	equity	1	are	examples	of	such	assets.	In	our	case,	the	position	with	the	highest	execution
cost,	equity	2,	was	not	used	at	all	since	cheaper	liquidity	execution	can	be	done	by	the	other
assets.	In	our	model,	setting	this	means	that	a	firm	planning	for	the	2	stage	liquidity	distress—
but	ending	up	realizing	a	longer	distress—will	find	itself	holding	only	the	lowest	quality	assets
in	the	unanticipated	continuation	of	the	liquidity	distress.

In	Table	6.15	enough	funds	could	be	raised	from	other	assets	than	equity	2.	However,	it	is
interesting	to	observe	the	liquidity	behavior	when	we	increase	the	first	stage	gap	to	
units	of	currency	as	this	will	force	at	least	part	of	equity	2	to	be	used	to	raise	funds.	Table	6.16
displays	the	result	when	an	additional	cash	of	300,000	needs	to	be	raised	in	distress	stage	1.
The	total	execution	cost	in	this	case	is	20,575	units	of	currency	with	cost	in	distress	stage	1	of
17,764	and	distress	stage	2	has	the	same	execution	cost	as	before,	that	is,	2,811	units	of
currency.	In	this	case	the	bond	2	is	used	in	an	additional	approximately	75,000	in	day	1	of
distress	stage	1.	This	uses	all	available	liquidity	facility	of	bond	2.	We	also	note	that	now	the
firm	has	to	use	the	liquidity	facility	equity	2	to	raise	all	the	funds	needed	across	stages—
selling	it	in	the	first	liquidity	distress	stage	at	the	last	2	days	of	the	stress.	The	asset	is	executed
at	or	below	the	first-tier	market	depth	at	150,000	to	raise	the	additional	needed	funds	instage	1.
Due	to	the	significant	increase	in	execution	cost	and	the	significant	decrease	in	the	first-tier
market	depth	for	equity	2	in	stage	2	it	is	better	for	the	firm	to	sell	equity	2	in	the	first	stage
rather	than	using	any	other	asset	that	has	a	lower	time	cost	of	holding	onto	and	deploying	in
stage	2	to	generate	liquidity.



Table	6.16	Optimal	Liquidity	Plan	for	Model	with	Tiered	Execution	Cost—Increased	Gap
Amount	in	Stage	1

Optimal	execution	amount, Optimal	execution	amount,

Liquidity Available
amount

Cash	1 500,000 0 0 0 500,000 0
Cash	2 1,000,000 0 0 0 0 1,000,000
Bond	1 700,000 0 0 297,189 102,811 300,000
Bond	2 800,000 200,000 300,000 300,000 0 0
Facility 500,000 0 250,000 150,000 50,000 50,000
Equity	1 600,000 200,000 200,000 200,000 0 0
Equity	2 300,000 0 70,576 150,000 0 0

Total	raised	amount	=
2,300,000

Total	raised	amount	=
2,000,000

In	summary,	we	can	therefore	conclude	that	if	the	firm	thinks	it	has	to	use	all	its	liquidity
facilities	to	survive	the	liquidity	distresses,	then	it	will	sell	the	lower	quality	assets	first
because	their	value	will	deteriorate	over	time	as	the	liquidity	distress	worsens	and	their
maximum	value	in	raising	funds	is	likely	at	the	beginning	of	distress.	On	the	contrary,	high-
quality	assets	with	low	haircuts	and	execution	costs,	even	in	later	and	more	severe	stages	of	a
liquidity	distress,	do	not	diminish	in	value	significantly	and	are	held	to	raise	funds	in	later,
more	severe	stages.	Therefore,	not	surprisingly,	Acharya	et	al.	(2013)	find	that	banks
anticipating	an	intensified	liquidity	risk	tend	to	raise	cash	reserve	despite	its	high	opportunity
cost.

We	can	summarize	the	optimal	behavior	of	liquidity	executions	as	follows:

If	the	firm	expects	a	severe	and	relatively	long	liquidity	distress	period,	consuming	all	of
the	firm's	liquidity	capacity	needed	to	be	used	to	raise	the	funds,	it	is	optimal	to	rank
liquidity	facilities	based	on	their	anticipated	execution	costs	and	haircuts	across	the
expected	stages	of	a	liquidity	crisis	and	execute	the	lower	quality	assets	first,	saving	the
liquid	assets	for	later	execution.

If	the	firm	expects	a	relatively	minor	and	short	liquidity	distress	period,	such	that	the	firm
does	not	expect	to	use	all	of	its	liquidity	to	raise	the	needed	funds	during	the	liquidity
distress	stages,	then	the	firm	can	refrain	from	executing	the	lower	quality	assets	to	keep
execution	costs	to	a	minimum.

However,	this	last	strategy	runs	the	risk	that	if	the	firm	misjudges	the	length	and	the	severity	of
the	liquidity	distress,	it	may	end	up	holding	only	the	lower	quality	assets	exactly	when	those
assets	have	their	smallest	value	in	raising	funds.	Put	simply,	the	firm	should	use	a	“cash	first”
liquidation	strategy	if	it	thinks	the	liquidity	distress	will	not	be	that	severe	and	sufficient	cash



is	available.	If	the	firm	suspects	the	liquidity	distress	will	be	severe—and	likely	require	use	of
lower	quality	assets—it	should	use	a	“cash	last”	liquidation	strategy.

Liquidity	Hedging	with	Repo	Possibility
The	optimal	liquidity	execution	models	considered	here	can	be	extended	to	accommodate
collateralized	borrowing.	Instead	of	selling	an	asset,	a	firm	can	pledge	it	as	collateral	to
borrow	money.	This	form	of	liquidity	creation	is	important	because	a	firm	may	want	to	or
sometimes	even	have	to	retain	the	ownership	of	an	asset	while	the	asset	is	useful	to	obtain
liquidity.	Once	a	portion	of	the	repo	asset	is	pledged	as	collateral,	the	portion	is	deemed	as
“encumbered”	and	cannot	be	traded	until	the	pledge	expires.	By	definition	the	troubled	firm
prefers	to	roll	over	repo	agreements	in	a	distress	stage.However,	across	distress	stages	repos
can	be	canceled	partially	or	in	full,	affecting	the	encumbered	portion,	and	moreover	market
variables	such	as	repo	haircut	and	repo	rate	may	change	across	distress	stages.	We	refer	to
Chen,	Skoglund,	and	Cai	(2012)	for	a	model	using	optimal	liquidity	hedging	with	repo
possibility.

Structural	Liquidity	Planning
Although	liquidity	risk	is	a	consequential	risk,	with	proper	measurement	and	understanding	of
the	cause	and	possible	severity	of	the	risk,	enough	liquidity	buffer	can	be	prepared	in	advance
to	provide	sufficient	counterbalancing	capacity	in	liquidity	distress.	The	focus	is	on
maintaining	a	high-quality	liquidity	portfolio	that	can	efficiently	hedge	liquidity	outflows	under
stress	scenarios.	Since	holding	standby	counterbalancing	capacity	has	an	opportunity	cost	the
firm	would	like	to	hold	the	minimum	cost	portfolio	that	suffices	for	hedging	out	the	negative
flows.	While	the	simplest	way	to	build	a	liquidity	portfolio	is	to	hold	affluent	cash	at	hand	this
is	not	optimal	for	a	profit-seeking	institution.	In	general,	high	liquidity	assets,	such	as	cash,	are
most	costly	to	hold	but	are	less	costly	in	terms	of	execution	cost	when	needed	to	create
liquidity.	While	our	liquidity	execution	models	discussed	above	focused	on	the	best	execution
strategy	for	a	given	endowment	liquidity	hedge	portfolio,	we	now	ask	the	question	of	how	we
should	define	such	a	liquidity	hedging	portfolio	in	advance	of	liquidity	crisis,	that	is,
structurally	plan	and	choose	an	optimal	liquidity	hedging	portfolio.

When	we	consider	a	structural	planning	approach	to	liquidity	hedging,	we	may	also	include	the
possibility	of	acquiring	more	assets	and	liabilities	with	naturally	complementing	flows—hence
reducing	the	inherent	structural	liquidity	risk	in	the	balance	sheet.	The	approach	of	acquiring
more	assets	that	can	generate	future	cash	flows	that	can	complement	the	potential	net	cash
outflows	has	been	studied	in	both	theoretical	and	empirical	literature,	including	Diamond	and
Dybvig	(1983),	Kashyap,	Rajan,	and	Stein	(2002),	and	Cai	and	Thakor	(2008),	especially	in
the	context	of	deposit	and	loan	commitment.	As	liquidity	intermediation	agents	banks	have
competitive	advantage	in	structuring	such	natural	liquidity	hedging.	However,	with	the
complexity	of	embedded	optionality	in	the	banking	products	such	as	deposits	and	facilities,	it
is	hard	to	be	fully	balanced	through	the	traditional	funding	sources.	It	is	especially	complex	to
find	natural	complementing	flows	that	can	work	even	under	liquidity	stress.	Hence,	in	general,
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banks	also	need	to	hold	liquidity	hedging	portfolios	to	mitigate	unexpected	liquidity	gaps	that
cannot	be	mitigated	through	acquiring	naturally	complementing	cash	flows.

These	two	different	methods	of	optimal	liquidity	hedging	portfolio	are	in	general
complementary.	Acquiring	more	assets	that	can	generate	future	cash	flows	that	can	complement
the	potential	net	cash	outflows	is	a	structural	ongoing	balance	sheetmanagement.	Contractual
cash	flow–based	liquidity	hedging	can	also	be	viewed	as	an	optimal	portfolio	allocation	with
liquidity	constraint.	An	alternative	to	minimizing	the	hedging	cost	is	to	maximize	bank's	profit
with	liquidity	and	other	business	constraints.	The	leverage	of	dynamic	counterbalancing
capacity	through	use	of	credit	facilities,	asset	sales,	and	repo	agreements	in	order	to	generate
liquidity	at	the	exact	time	when	net	contractual	cash	flows	cannot	balance	by	itself	is
conditional	on	the	current	balance	sheet	structure.

Mitigating	Balance	Sheet	Vulnerability	with	Contractual	Cash
Flows
The	liquidity	hedging	with	contractual	cash	flows	reduces	the	inherent	risks	in	the	forward
liquidity	exposure,	 ,	from	the	current	portfolio.	This	approach	is	closely	related	to	the
classical	portfolio	immunization	in	the	asset	and	liability	management.	See	Elton	and	Gruber
(1995)	for	a	textbook	account	on	bond	portfolio	immunization	through	replicating	the	bond
portfolio's	duration	and	convexity.	For	liquidity	risk,	immunization	is	achieved	by	matching
cash	flows	directly	through	finding	the	minimum	cost	portfolio	such	that	the	liquidity	hedging
asset	portfolio	matches	the	negative	cash	flows	of	 .	Kocherlakota	et	al.	(1988)	discuss
expected	cash	flow	matching	optimization	algorithms	in	the	context	of	bond	portfolio
immunization.	More	recently,	Chen	and	Skoglund	(2012)	develop	a	linear	programming	model
to	find	a	minimal	cost	replicating	portfolio	that	generates	enough	cash	flow	to	constrain	the
mismatched	cash	flows	over	a	given	planning	horizon	to	meet	a	set	of	risk	measure–based
criteria	such	as	 	constraints.	We	discussed	briefly	this	model	of	cash	flow	replication
optimization	in	the	context	of	portfolio	optimization	in	the	advanced	market	risk	analysis
chapter.

In	this	setting,	our	objective	is	to	choose	the	cheapest	(up-front	cost)	portfolio	that	satisfies	a
given	risk	constraint.11	Specifically,	the	risk	constraint	is	that

where	 	is	the	 	risk	measure	and	 	is	the	set	of	all	scenarios.	Note	here	that	we	do	not
assume	any	counterbalancing	capacity	available	as	 	in	equation	(6.24).	The	hedging
capacity	is	coming	from	the	choice	of	cash	flows,	 ,	through	the	choice	of	optimal
asset	holdings.	In	this	model	it	can	hence	be	natural	to	set	 	since	we	have	not	yet	taken
into	account	the	counterbalancing	capacity	of	the	liquidity	hedgeportfolio.

The	contractual	cash	flow	matching	approach	assumes	that	the	assets	in	the	portfolio	generate
contractual	cash	flows	that	naturally	complement	the	liquidity	term	structure.	No	active
intervention	is	required	at	any	future	horizons.	In	other	words,	we	are	searching	for	a	portfolio
of	assets	with	the	lowest	present	value	cost	that	have	a	predetermined	hedging	capacity	such



that	the	expected	net	cash	outflow	is	within	the	tolerance	of	the	bank	while	the	 	is
controlled,	for	each	 	at	certain	levels,	 .	This	liquidity	cash	flow	optimization
model	is	developed	in	Chen	and	Skoglund	(2012,	2014),	who	derive	a	linear	program	for	cash
flow	optimization	where	each	asset	has	a	cash	flow	stream	under	a	set	of	scenarios	
and	a	market	value	that	depends	on	the	scenarios.	We	refer	to	those	papers	for	details	about	the
model	but	will	consider	an	example	from	Chen	and	Skoglund	(2014)	here.12

Example	Optimal	Contractual	Cash	Flow	Matching
Table	6.17	displays	distribution	characteristics	for	a	simulated	liquidity	gap	for	the	horizons	

	using	 	scenarios.	The	distribution	used	to	generate	the	scenarios	is	a
tilted	(to	the	negative	side)	lognormal	distribution	with	distribution	parameters	that	scale	by
horizon	to	increase	the	expected	and	worst-case	liquidity	gap	severity	across	horizon.	This
choice	of	skewed	negative	distribution	for	the	liquidity	gap	is	because	liquidity	risk	is
analyzed	conditional	on	a	market	or	firm-specific	stress,	and	under	a	stress	a	liquidity	outflow
is	generally	more	likely	than	an	inflow.	We	also	simulate	normal	cash	flows	for	 	cash	flow
instruments	with	mean	 	units	of	currency	and	corresponding	standard	deviations	 ,

,	 	and	 	for	the	 	assets.	The	cash	flows	are	valued	using	present
value	with	a	fixed	discount	interest	rate,	 ,	set	equal	to	 .	The	present	value	in	a	scenario	
for	instrument	 	is	used	as	the	market	value,	 ,	in	the	optimization.	Since	the	cash	flows	are
normally	distributed	the	market	values	for	the	assets,	 ,	are	normally	distributed	as	well.
The	expected	market	value	of	an	asset	 ,	 ,	is	approximately	 	units	of	currency	and	the
standard	deviation,	 ,	is	approximately	 ,	 ,	 ,	and	 	for	the	 	assets.
In	the	optimization	we	set	the	 	constraint,	 ,	to	zero	for	all	 .	This	choice
means	that	for	a	given	choice	of	confidence	level,	 ,	conditional	on	exceeding	that	quantile,	the
firm	is	still	expected	to	survive,	that	is,	generate	nonnegative	liquidity	flows	for	all	horizons,	

.

Table	6.17	Distribution	Characteristics	of	the	Realized	Liquidity	Gap	for	
Simulations	and	 	Horizons	for	the	Model	with	Liquidity	Hedging	with	Contractual
Cash	Flows

Liquidity	gap	distribution	characteristics
Liquidity	horizon 5%	percentile 95%	percentile Mean Standard	deviation Max Min

9,136 2,605 9,730 9,960
8,775 13,576 9,935
8,506 16,670 9,930
8,271 19,416 9,922
8,072 21,606 9,913

Table	6.18	displays	the	obtained	optimal	portfolio	holdings	for	the	 	normal	cash	flow
instruments	using	a	 	confidence	level	of	 .	The	table	also	displays	the	normal	assets
mean	and	standard	deviation	for	the	cash	flows	and	the	corresponding	values	for	reference.



The	minimum	cost	optimal	liquidity	hedgingportfolio	holds	relatively	more	of	the	stable	cash
flows	(the	cash	flows	with	a	lower	standard	deviation).	Such	stable	cash	flows	provide	a	base
insurance	and	also	come	at	a	stable	cost	across	scenarios.	Highly	volatile	cash	flows	may	be
an	insurance	in	case	of	severe	distress	but	may	also	come	at	a	significantly	higher	price	when
additional	insurance	is	not	needed.	For	this	example,	the	application	of	the	 	cash	flows
succeeds	in	meeting	the	 	constraints.	That	is,	the	problem	is	feasible.	However,	as
emphasized	previously	the	existence	of	naturally	complementing	cash	flows	in	practice	for
stressed	liquidity	outflows	may	be	questionable.	Hence,	for	practical	situations	tight	zero
constraints	on	 	may	not	be	feasible.	In	those	cases,	the	choice	of	constraints	needs	to	be
determined	appropriately	such	that	the	problem	is	feasible	with	the	cash	flows	at	hand.

Table	6.18	Optimal	Liquidity	Holdings	and	Distribution	Characteristics	for	Cash	Flows	and
Present	Value	for	the	4	Liquidity	Instruments	in	the	Model	with	Liquidity	Hedging	with
Contractual	Cash	Flows

Distribution—Cash	flows Distribution—Value
Cash	flow
instrument

Optimal
holding

Mean	( ) Std	deviation	( ) Mean	( ) Std	deviation	( )

1,390 100 20 492.5 44
713 100 25 492.5 55
599 100 30 492.5 66
420 100 35 492.5 77

Table	6.19	displays	the	distribution	characteristics	of	the	realized	liquidity	flow,	 ,	for	the	
	horizons	under	the	optimal	choice	of	asset	holdings	in	Table	6.18.	While	the

realized	liquidity	outflow	may	be	negative	for	some	scenarios	(e.g.,	the	minimums	are	negative
in	Table	6.19	for	all	the	horizons),	the	 	optimization	constraints	ensure	that	the	tail
average,	beyond	the	confidence	level	 ,	is	nonnegative	for	the	optimal	asset	holdings.

Table	6.19	Distribution	Characteristics	of	the	Realized	Liquidity	Flow	under	the	Optimal
Asset	Holdings	for	 	Simulations	and	 	Horizons	for	the	Model	with
Liquidity	Hedging	with	Contractual	Cash	Flows

Distribution	Characteristics
Liquidity	flow 	percentile 	percentile Mean Standard	deviation Max Min

232,300 399,546 322,789 54,849 500,939
199,423 394,978 309,901 67,321 480,043
178,664 390,866 301,622 80,185 500,748
156,306 387,962 293,385 85,084 492,724
140,871 385,103 285,933 95,549 492,666

The	next	optimal	liquidity	hedging	model	assumes	active	management	during	the	horizon,	



,	to	mitigate	the	net	cash	outflows.	The	approach	is	more	complex	but	incorporates
the	decision	process	the	bank	will	follow,	in	a	liquidity	distress,	for	converting	the	dedicated
liquidity	hedging	portfolio	into	counterbalancing	capacity.

Choosing	the	Optimal	Liquidity	Hedging	Portfolio
To	define	the	dynamic	counterbalancing-based	model	of	optimal	liquidity	hedging	we	first
review	the	two	major	types	of	dynamic	liquidity	facilities	used	to	generate	counterbalancing
capacity	as	well	as	their	costs,	balances,	and	liquidity	contribution,	that	is	contingent	credit
facilities	and	assets.

1.	 Contingent	credit	facilities,	including	borrowing	rights	from	the	central	bank

A	credit	facility	may	explicitly	or	implicitly	require	an	up-front	fee.	We	assume	this	fee	is
relative	to	the	facility	limit	 ,	that	is,	 .	The	choice	of	facility	limit	 	is	subject	to	a	cap	
that	is	set	by	the	facility	creditor.	Here,	 	is	the	maximum	limit	the	counterparty	offer	and	
is	the	limit	applied	for	by	the	firm.	This	means	that	 	as	the	firm	may	choose	not	to	use
all	the	available	facility	as	there	is	a	fee	associated	with	the	limit.	Most	facilities	are
revolving	at	the	preset	limit	 	and	the	facility	balance	is	between	 	and	 .	The	drawn
portion	of	a	credit	facility	is	subject	to	an	interest	rate	charge,	 ,	that	is	also	included	in	the
outstanding	balance	of	the	facility	at	the	time.	At	any	time	 ,	a	cash	flow	 	can	result	from
the	credit	facility.	It	can	be	either	a	drawn	amount	(positive	contribution)	or	a	payback
amount	(negative	contribution).	The	cash	contribution	at	time	 	is	 ,	while	the	balance	of
the	facility	is	 ,	which	is	between	 	and	 	where	 .	A	negative
balance	is	not	possible	at	any	time,	that	is	 .

2.	 Assets,	including	cash

A	firm	can	acquire	 	shares	of	a	tradable,	unencumbered	security	at	time	 	for	liquidity
hedging	purpose.	The	price	of	acquisition	is	 	with	 	the	asset	price,	which	includes	the
trading	cost,	and	 	the	number	of	shares.	In	this	model,	we	disallow	short	sale	of	any
security,	that	is,	 .	A	limit,	 ,	can	also	be	imposed	on	the	position	on	a	security	 	such
that	 .	Cash	can	be	viewed	as	a	special	security	with	constant	value	through	the	entire
planning	period.	Usually,	only	high-quality	securities	are	considered	to	bear	stable
liquidity	supplying	capacity	in	liquidity	stress.	A	security	can	meet	the	liquidity	need	in
two	ways.

a.	 First,	it	can	be	sold	at	the	prevailing	market	price,	assuming	the	volume	of	the	sales	is
within	market	depth,	 ,	to	avoid	excessive	loss.

Clearly,	cost	of	acquiring	the	counterbalancing	capacity	is	not	the	only	measure	of	cost.
When	the	liquidity	supplying	assets	are	needed	to	convert	to	cash	to	hedge	negative
outflows	the	firm	pays	liquidity	execution	costs.	Such	liquidity	execution	costs	can	be
very	high	in	the	midst	of	a	financial	turbulence	and	hence	the	actual	cash	value	of
liquidity	assets	as	well	as	the	best	execution	strategy	must	be	taken	into	account	when
selecting	assets.	At	planning	time,	the	objective	is	to	construct	a	strategy	such	that	a
fire-sale	can	be	avoided	in	any	future	horizon.	This	can	be	done	by	setting	ex	ante



projected	sales	to	be	bounded	under	the	projected	market	depth	of	the	asset	in	a
scenario.

b.	 The	second	way	of	obtaining	cash	from	an	asset	is	to	use	it	for	a	collateralized
borrowing,	typically	through	a	repurchase	agreement	(repo)	contract.

At	any	time	 ,	 	shares	of	a	security	can	be	traded.	When	liquidity	is	needed,	a	portion
of	an	asset	can	be	sold.	Similarly	when	the	underlying	portfolio	has	a	cash	surplus,	a
portion	of	the	asset	can	be	bought	back.	The	total	cash	flow	from	the	trading	is	 ,
which	includes	trading	cost.	To	avoid	short	selling	of	an	asset,	we	introduce	two	legs
of	trading:	 	is	sale	(positive	cash	contribution)	and	 	is	purchase	(negative	cash
contribution).	The	cash	flow	from	trading	can	be	expressed	as	 .	Both	
and	 	must	be	nonnegative	(i.e.,	 	and	 ).	We	also	constrain	the	sales
according	to	the	market	depth	such	that	 ,	where	 	is	the	market	depth	proxy	at
time	 .	The	separation	of	the	two	trading	legs	also	makes	the	trading	cost	incorporation
an	easy	extension	to	the	model.	If	a	security	is	repo'ed,	we	denote	the	repo'ed	share	of	a
security	as	 .	The	shares	to	be	used	as	collateral	in	repo	contracts	can	be	controlled	by
setting	a	limit	 .	For	example,	 	is	set	to	zero	for	a	cash	asset	as	it	is	not	a	repo
instrument,	The	actual	contribution	to	the	cash	flow	from	repo	at	time	 	is	 	where	
	is	a	haircut	to	the	collateral.	We	assume	that	all	securities	can	be	accepted	for	repo

at	any	time.	However,	there	may	be	a	significant	haircut.	We	also	assume	an	existing
repo	can	be	rolled	over.	Hence,	 .

Except	for	an	initial	endowment	to	acquire	certain	assets,	the	entire	hedging	strategy	is
self-financing	without	further	cash	flow	injection.	Any	liquidity	providing	asset	can	be
sold,	repo'ed,	and	replenished	at	any	time;	however,	no	short	sale	of	the	asset	can	be
allowed.	Therefore,	at	any	time	 ,	the	total	traded	and	repo'ed	shares	of	the	asset	by	the
time	cannot	be	more	than	the	initial	endowment	of	the	asset,	that	is,

A	security	can	also	generate	coupon	or	dividend	income	based	on	the	number	of	shares
held	at	that	time.	We	assume	the	encumbered	portion	also	contributes	to	this	income	as
the	firm	still	owns	the	portion.	Assuming	coupon	or	dividend	rate	is	 	this	cash	income
is	thus	the	current	holding	of	the	asset	multiplied	by	the	income	rate,	 .	That	is,	at	time	 ,

The	optimal	dynamic	counterbalancing-based	hedging	portfolio	is	a	minimal	cost
liquidity	supply	portfolio	that	has	an	active	counterbalancing	capacity	to	meet	liquidity
need.	Because	of	the	dynamic	counterbalancing	activity	in	this	model	the	point-in-time
liquidity	cash	flow	gap	is	used	as	direct	input.	When	there	is	a	positive	cash	flow	gap,
the	optimized	rebalancing	activity	should	always	use	it	to	refresh	the	liquidity



inventory	by	either	paying	back	a	borrowing	or	buying	additional	assets,	depending	on
what	is	optimal	for	that	specific	scenario,	 ,	and	path,	 .	In	this	model	the	firm
minimizes	the	cost	of	obtaining	the	liquid	funds	subject	to	balance	and	cash	flow
conditions,	holding	constraints	(such	as	short-selling),	buy	and	sell	constraints	(for
example,	market	depths),	repo	limits,	and	 	constraints	on	the	liquidity	reserve
process.	The	model	finds	an	optimal	initial	endowment	for	a	liquidity	hedging	portfolio
that	can	cover	liquidity	risk	on	target	horizons.	In	addition,	it	details	the
counterbalancing	trading	strategy	on	each	simulated	path	by	the	optimal	selection	of	the
cash	flow	from	a	credit	facility,	 ,	asset	buys,	 ,	asset	sales,	 ,	and	repo	portion	 	at
each	scenario	 	and	horizon	 .	The	model	provides	the	liquidity
hedging	decision	maker	with	the	complete	hedging	strategy	for	realized	scenarios	

	across	horizons,	 .

Example	Optimal	Dynamic	Counterbalancing	Capacity
In	this	model	there	is	an	optimal	initial	endowment	portfolio	that	can	be	traded	or	repo'ed
through	the	liquidity	horizons.	We	consider	an	example	from	Chen	and	Skoglund	(2014)	using
three	types	of	assets.	First,	for	credit	facilities	that	have	an	offered	limit	of	 	and	an	asked	limit
of	 	where	 ,	the	firm	may	ask	for	a	smaller	limit	than	the	cap	offered	in	order	to	avoid
paying	usage	fee	at	rate	 ,	which	is	paid	for	the	requested	limit,	 .	Second,	for	bonds	that	can
betraded	and	repo'ed	with	haircut,	 ,	for	 ,	the	bonds	can	also	pay	coupon,	 ,	for	

.	Finally,	we	have	cash.	As	in	the	first	model	we	simulate	liquidity	gaps.	In	this	case
the	simulation	of	the	liquidity	gap	uses	a	tilted	negative	lognormal	distribution	as	for	the	first
model	but	we	have	now	additional	Poisson	jumps	with	a	Gamma	distribution	severity	that	adds
significantly	to	the	standard	deviation	and	the	severity	of	the	negative	tail	of	the	liquidity	gap.
Table	6.20	displays	the	simulated	liquidity	gap	distribution	characteristics	using	
scenarios	for	horizons,	 .	As	in	the	previous	model	example	the	liquidity	gap	severity
increases	across	horizons.

Table	6.20	Distribution	Characteristics	of	the	Realized	Liquidity	Gap	for	
Simulations	and	 	Horizons	for	the	Model	with	Optimal	Liquidity	Hedging	with
Counterbalancing	Capacity

Liquidity	gap	distribution	characteristics
Liquidity
horizon percentile percentile

Mean Standard
deviation

Max Min

166,299 9,838
166,461 9,792
166,688 9,800
166,583 9,831
167,106 9,749

In	the	first	analysis	of	this	model	we	consider	a	portfolio	of	 	credit	facilities,	a	bond	and



cash.	The	first	credit	facility	has	limit	capped	at	 	and	a	usage	fee	of	 .	The	second
credit	facility	has	limit	capped	at	 	and	a	usage	fee	of	 .	The	interest	rate	cost	for	using
either	of	the	credit	facilities	is	 .	The	bond	price	is	assumed	to	follow	a	geometric	Brownian
motion	process	with	mean	 	and	a	standard	deviation	of	 .	The	current	bond	price	is	
units	of	currency.	This	choice	of	model	for	the	bond	price	implies	that	the	bond	price	has	a
stable,	slightly	increasing	price	over	horizons	as	is	generally	expected	of	high-quality	bonds	in
distress.	That	is,	the	flight-to-quality	behavior	under	market	uncertainty	tends	to	increase	price
of	high-quality	bonds.	The	bond	also	pays	a	coupon,	 ,	which	is	simulated	as	a	uniform
distribution	times	the	bond	price	and	a	scale	factor	of	 .	The	average	annual	coupon	is	hence
close	to	 .	However,	during	the	liquidity	crisis	time	 	the	coupon	is	small	and	there
is	no	significant	impact	on	the	results	as	the	time	is	generally	short.	However,	relative	cash
flow	contributions	from	bonds	can	be	important	in	normal	times	as	there	is	in	general	a	trade-
off	between	the	quality	(value)	of	the	bond	in	distress	and	its	coupon	level	in	normal	times.
The	haircut	for	the	bond	is	simulated	as	uniform	ranging	between	a	haircut	rate	of	 	and	

.	We	also	have	a	cash	position	in	the	portfolio.	As	in	the	first	model	we	set	the	
constraint,	 ,	to	zero	for	all	 .

Table	6.21	displays	the	optimal	initial	endowment	obtained	from	the	optimization	model	for
this	portfolio	with	stable	bond	price.	The	optimization	results	are	found	in	Table	6.21	under
the	case:	Stable/increasing	bond	price.	The	initial	endowment	chooses	first	to	secure	the	credit
facilities	up	to	the	available	limit.	That	is,	the	firm	applies	for	the	maximum	credit	limits.	This
is	because	the	up-front	usage	fees	for	the	credit	facilities	are	relatively	small	compared	to
asset	or	cash	acquisition.	Note	here	that	in	the	initial	endowment	for	the	credit	facilities	the
firm	simply	applies	for	the	credit	facility	at	limit	 .	There	is	no	usage	of	the	limit	for	the
initial	endowment,	just	a	securing	of	the	facilities.	Second,	the	firm	buys	 	positions	in	the
bond.	There	is	no	initial	cash	endowment	in	the	optimal	counterbalancing	capacity	for	this
portfolio.	This	is	because	cash	is	more	costly	to	acquire	than	the	bond,	which	has	stable,
slightly	increasing	price	over	the	horizons.

Table	6.21	Optimal	Initial	Endowment	for	the	Case	of	a	Stable	or	Increasing	Bond	Price	and
the	Case	of	a	Declining	Bond	Price	for	the	Model	with	Optimal	Liquidity	Hedging	with
Counterbalancing	Capacity

Optimal	endowment
Asset Case:	Stable/Increasing	bond	price Case:	Declining	bond	price
Credit	Facility	1 10,000 10,000
Credit	Facility	2 1,000 1,000
Bond 17,751 0
Cash 0 1,882,965

It	is	also	interesting	to	observe	the	self-financing	optimal	trade	behavior	for	two	sample
simulated	paths	in	Table	6.22.	In	sample	optimal	trading	path	1,	the	bond	position	is	sold
across	horizons	(negative	sign	is	a	sell)	to	raise	additional	cash.	In	the	last	horizon,	the	credit



facilities	are	also	used	to	raise	cash	(positive	sign	is	a	use	of	the	facility).	In	sample	optimal
trading	path	2	the	facilities	are	used	to	maximum	in	the	first	horizon	but	then	paid	back	in
horizon	2	and	3	(paid	back	facility	is	negative	sign).	The	facilities	are	drawn	again	in	horizon
4	to	generate	the	cash	needed	to	cover	the	gap	and	finally	a	portion	is	paid	back	in	the	last
horizon.	This	activity	of	using	and	paying	back	the	facilities	across	horizons	occurs	because
should	cash	raised	through	a	facility	not	be	needed	in	a	horizon	it	is	cost	optimal	to	pay	back,
avoiding	the	interest	rate	on	excessive	facility	usage.	The	first	horizon	also	buys	more	bonds
and	then	sells	the	bond	over	horizons	2,	3,	and	4	to	generate	cash.	Note	that	these	strategies	are
self-financing	and	the	obtained	surplus	liquidity	gap	at	a	horizon	can	also	be	used	to	buy
additional	instruments	such	as	the	bond.	Moreover,	for	each	sample	path	the	strategy
implemented	is	the	minimum	cost	strategy	consistent	with	the	optimization	model.

Table	6.22	Sample	Optimal	Trading	Paths	for	the	Case	of	Stable	or	Increasing	Bond	Price	for
the	Model	with	Optimal	Liquidity	Hedging	with	Counterbalancing	Capacity

Sample	trading	path	1 Sample	trading	path	2
Asset
Credit	Facility	1 0 0 0 0 9,066 10,000 10,000
Credit	Facility	2 0 0 0 0 1,000 1000 1000
Bond 31 0
Cash 0 0 0 0 0 0 0 0 0 0

If	the	firm	cannot	include	facilities	in	the	liquidity	hedging	portfolio	for	reasons	such	as
disbelief	of	availability	in	distress	or	forbidden	by	certain	corporate	policy,	then	both	facility
limits	can	be	set	to	 ;	the	optimization	will	then	allocate	all	the	initial	endowment	to	the	bond.
This	case	of	no	facilities	available	is	consistent	with	Basel	III	as	Basel	does	not	allow	firms	to
account	for	credit	facilities	when	defining	the	size	of	the	counterbalancing	capacity	portfolio.
However,	a	firm	may	still	want	to	include	credit	facilities	in	their	internal	model	for	analyzing
optimal	liquidity	hedging	portfolio	and	optimal	trading	strategy.

In	the	above	liquidity	optimization,	the	bond	was	preferred	to	cash	because	it	has	generally	a
stable	price	or	increasing	price	in	distress.	This	is	generally	true	for	high-quality	bonds	such
as	high-quality	government	bonds	that	qualify	for	the	Basel-eligible	counterbalancing	capacity
portfolio.	However,	if	we	now	let	the	bond	have	a	negative	drift	such	as	mean	of	 ,	is	the
bond	still	preferred	to	cash?	Table	6.21	displays	the	optimal	initial	endowment	when	the	bond
price	has	a	trend	downwards	across	liquidity	horizons	as	would	generally	be	expected	of	low-
quality	bonds	where	the	price	is	lowest	in	the	severest	distress.	This	corresponds	to	the	case
declining	bond	price	in	Table	6.21.	Table	6.21	shows	that	in	this	case,	even	if	the	bond	pays
out	coupons,	the	preferred	allocation	between	bonds	and	cash	is	now	instead	only	cash	and
nothing	of	the	bond	at	the	beginning.	This	shows	that	there	is	consistency	between	firm's
optimal	liquidity	portfolio	and	the	Basel	III	requirements	of	eligible	initial	endowments	in	the
firm's	counterbalancing	capacity	portfolio.	That	is,	from	an	optimal	liquidity	hedging
perspective,	a	firm	would	prefer	holding	cash	over	low-quality	bonds	with	an	expected	price



decay	in	liquidity	distress.	In	essence,	only	stable	high-quality	bonds	are	preferred	to	cash	in
the	firm's	optimal	liquidity	hedging	portfolio	produced	by	the	model.	Clearly,	in	this	case	cash
is	safest	and	may	not	be	the	most	costly	anymore	if	the	bond	price	is	expected	to	decline	in
liquidity	distress.	As	in	the	optimal	initial	endowment	inTable	6.21	for	the	case	of
stable/increasing	bond	price	removing	the	reliance	on	credit	facilities	all	the	initial
endowment	allocation	is	to	cash.

Components	of	the	Liquidity	Hedging	Program
A	firm's	approach	to	liquidity	hedging	involves	first	and	foremost	a	structural	balance	sheet
optimization	of	avoiding	taking	on	too	much	balances	that	can	create	a	significant	structural
funding	gap	and	hence	a	significant	forward	liquidity	exposure	that	can	only	be	covered	with
excessive	uncertain	rollover	of	funding.	Secondly,	it	involves	a	structural	planning	of	holding	a
sufficient	liquidity	hedge	portfolio	under	a	range	of	scenarios,	 .	Given	a	choice	of
liquidity	hedging	portfolio	the	portfolio	must	be	tested	under	various	assumptions	on	market
execution	costs	and	execution	limits	under	plausible	liquidity	stress	scenarios.13	The	above
activities	are	also	key	components	of	a	bank's	broader	liquidity	contingency	funding	plan	that
helps	banks	strategize	their	response	to	liquidity	crises.	While	creating	a	contingency	funding
plan	banks	take	into	consideration	how	a	funding	crisis	evolves	in	different	stages.	This	is	due
to	the	fact	that	while	a	liquidity	crisis	unfolds,	the	initial	stage	presents	liquidity	managers	with
a	unique	opportunity	to	take	remedial	action	that	may	not	be	available	in	the	later	stages	of	the
crises.	Therefore,	a	contingency	funding	plan	should	incorporate	preparedness	of	a	bank	to
deal	quickly	at	the	first	signs	(early	warning	indicator)	of	an	increased	potential	funding	need.
Contingency	funding	plans	are	developed	to	fulfill	two	important	objectives:

1.	 To	increase	going	forward	cash	generation

2.	 To	maintain	the	market	goodwill	of	the	bank

In	fulfillment	of	the	second	objective,	some	banks	might	even	take	liquidity	reducing	actions	in
the	initial	stage	in	order	to	signal	market	confidence	in	their	viability.	A	good	practice	is	to
form	a	plan	that	manifests	actions	during	the	early	warning	indication	stage	itself	(no	current
funding	problem	yet	increased	level	of	liquidity	risk)	and	includes	low-cost	steps	to	improve
liquidity,	for	example,	increasing	standby	liquidity	reserves.	An	example	is	to	attempt	to	alter
the	mix	and	maturity	of	assets	and	liabilities	to	decrease	net	cash	outflow	from	sight	to	the
liquidity	horizon.	Another	example	is	to	intensify	building	liquidity	reserves	constituted	by
certain	predefined	securities	that	are	highly	liquid	in	all	kinds	of	stress	situations.

Other	than	the	contingency	funding	plan	spanning	different	stages	of	a	potential	liquidity	crisis
(i.e.,	actions	involved	during	the	early	warning	stage	to	mild	crisis	stage	to	a	severe	crisis
unfolding),	it	also	needs	to	consider	administrative	policiesand	procedures	during	the	span	of	a
liquidity	crisis—for	example,	what	is	the	responsibility	of	the	senior	management	during	a
funding	crisis,	what	are	the	contact	details	of	members	of	the	crisis	team,	which	team	would	be
responsible	for	identifying	assets	that	should	be	sold,	which	team	would	be	mobilized	to	talk
to	significant	investors	in	the	bank,	and	so	on.	See	Matz	(2011,	ch.	10)	on	best	practices	for



liquidity	crisis	contingency	planning	for	banks.

Cash	Liquidity	Risk	and	Liquidity	Risk	Measures
While	in	general	liquidity	risk	and	in	particular	liquidity	solvency	are	path-dependent	we	also
introduced	in	equation	(6.5)	a	relatively	simple	measure	of	liquidity	risk	solvency	expressed	in
terms	of	the	amount	of	cash	needed	to	survive	a	given	liquidity	scenario,	 .	We	now	expand	on
this	simple	cash	hedging	approach	to	liquidity	solvency	to	derive	a	relatively	simple	risk
measure	of	liquidity	risk.

Cash	Liquidity	at	Risk
Note	that	the	liquidity	solvency	probability	in	equation	(6.8)	is,	with	the	assumption	of	cash
liquidity	hedging	capacity,	simply	measured	as	a	standard	 	measure.	This	represents	a
significant	simplification	compared	to	the	general	case	in	equation	(6.4)	and	allows	liquidity
risk	to	be	measured	using	classical	market	and	credit	risk	measures.	In	particular,	the
monotonic	definition	of	liquidity	solvency	in	equation	(6.8)	allows	us	to	define	a	meaningful
single	risk	measure	on	a	time	horizon,	 .	A	natural	risk	measure	in	this	context	of	liquidity
solvency	is	the	 	measure	on	the	distribution	of	 	in	equation	(6.7)	for	all	

.	This	is	because	such	a	risk	measure	allows	the	explicit	expression	of	a	firm's
liquidity	risk	appetite	by	choosing	a	liquidity	solvency	probability,	 ,	at	risk	horizon	 .	We
will	denote	this	risk	measure	cash	liquidity	at	risk	( ),	where

Here,	 	defines	the	amount	of	cash	liquidity	needed	for	the	firm	to	be	liquidity	solvent
at	risk	horizon	 	with	probability	 .	It	is	worth	noting	here	again	that	under	the	assumption	of	a
cash	portfolio,	 	is	not	a	complexpath-dependent	measure	of	liquidity	solvency.	It	is	a
single,	monotonic	risk	measure	for	a	given	horizon,	 .	It	is	also	consistent	with	the	regulatory	

	liquidity	risk	measure	as	we	will	discuss	below.	Therefore,	it	provides	a	valid	base	for	a
firm's	liquidity	risk	cost	and	benefit	allocation.	Of	course,	other	risk	measures	such	as	
can	also	be	used	on	the	distribution	of	 .

Portfolio	Cash	Liquidity	Exposure
The	calculation	of	the	portfolio	minimum	cash	liquidity	need,	 ,	to	remain	solvent	for
scenario	 	and	time	horizon	 	was	defined	in	equation	(6.9)	as

For	a	portfolio	of	 	liquidity	instruments	we	obtain	 	from	the	aggregation	of	the	
	liquidity	instruments	cash	flows.	That	is,
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for	 ,	and	 .	Clearly,	with	this	portfolio	aggregation,	a	positive	cash	flow
from	liquidity	 	can	cover	a	liquidity	need	from	liquidity	 .	Therefore,	the	realized	portfolio
cash	liquidity	need,	 ,	is	less	than	or	equal	to	summing	the	corresponding	scenario
realizations,	 ,	for	the	liquidities	 .	That	is,	 	 	where

If	we	now	let	the	realized	scenario	 	be	defined	as	the	 ,	that	is,	let	discrete	scenarios
	comprise	the	sample	space	for	discrete	realizations	 ,	then	for	 	an

integer	we	can	uniquely	identify,	from	the	distribution	of	 ,	the	 	as	a
particular	scenario	 .	This	is	the	realized	 	scenario.	Of	course,	in	practice	a	firm
may	choose	any	plausible	scenario	 	for	which	it	might	like	to	decompose	liquidity	risk.	We
focus	here	on	the	 	realized	scenario	simply	for	analogy	with	 	Euler	allocations
for	market	and	credit	risk.	Having	identified	that	scenario	as	scenario	 	we	can	write

This	inequality	will	be	useful	for	devising	a	method	of	allocating	 ,	as	we	will	see
later.

Example	Calculation	of	Portfolio	Cash	Liquidity	Need
Table	6.23	illustrates	the	calculation	of	the	portfolio	cash	liquidity	need,	 ,	as	well	as	the
corresponding	cash	liquidity	need	for	subportfolios	or	liquidity	instruments,	 .	Specifically,
Table	6.23	illustrates	standalone	liquidity	instruments'	calculation	of	cash	liquidity	exposure
for	the	specific	scenario	realization,	 ,	for	 	liquidity	instruments	and	 .	It
displays	the	liquidity	instrument	 	standalone	liquidity	gaps,	 	for	 ,	as
well	as	the	intermediate	calculations	of	 	for	 	to	obtain	the	final	liquidity
instrument	 	minimum	cash	liquidity	need,	 .	Table	6.23	also	contains	the	corresponding
calculations	for	the	portfolio	consisting	of	the	 	liquidity	instruments.	In	Figure	6.4	we
also	illustrate	the	cash	liquidity	need	at	the	different	times	for	the	three	liquidities	and	the
portfolio	as	well	as	the	summed	liquidity	need	from	the	three	liquidities.



Table	6.23	Calculation	of	Standalone	and	Portfolio	Minimum	Liquid	Cash	Need	for	the	3
Liquidity	Instruments

Liquidity	1 Liquidity	2 Liquidity	3 Portfolio
Time

2 2
5 5 2 2 0 5 5
3 8 1 3 3 8

1 0 3 3 1
2 2 1 −3

8 8 0 3 3
5 2 2 2 2 1 4

Figure	6.4	Cash	Liquidity	Need	for	the	3	Liquidities,	the	Portfolio,	and	the	Summed	Liquidity
Need



From	Table	6.23	we	observe	that	liquidity	1	has	a	standalone	liquidity	cash	exposure	of	 .	That
is,	 .	This	standalone	liquid	cash	exposure	is	obtained	by	first	converting	the	liquidity
gap	into	an	effective	cash	liquidity	exposure	using	equation	(6.6).	Finally,	we	calculate	the
summed	liquidity	cash	need.	Liquidity	instruments	2	and	3	have	corresponding	cash	liquidity
needs	of	5	and	1,	respectively.	That	is,	 	and	 	when	cash	liquidity	need	is	measured
standalone	for	the	realized	scenario	 .	The	reader	may	notice	that	we	have	used	the	same
sample	numbers	in	Table	6.23	as	in	Table	6.2.	Albeit	here	the	individual	liquidity	gaps	are
assumed	to	come	from	the	same	scenario	applied	to	different	liquidity	instruments	rather	than
the	same	liquidity	instrument	liquidity	gap	under	different	scenarios.	In	Table	6.23	the
corresponding	cash	liquidity	measure	for	the	portfolio	of	liquidity	instruments	 	is	

.	The	portfolio	minimum	cash	liquidity	need	is	hence	 	units	of	cash.	Consistent	with
equation	6.25,	this	is	less	than	the	sum	of	standalone	liquidity	cash	needs	from	the	liquidity
instruments	 	since	 .	Note	that	as	above	if	 	is	the	realizedportfolio
cash	liquidity	exposure	scenario	that	corresponds	to	 ,	we	can	set	 .

Allocating	Cash	Liquidity	Risk
Having	a	single,	monotonic	measure	of	liquidity	risk,	such	as	 ,	the	next	natural	step	seems
to	be	to	allocate	the	opportunity	cost	of	holding	the	standby	cash	liquidity	needed	to	the
contributing	risk	components,	that	is,	to	allocate	the	contributions	to	 .	As	we	have
discussed	in	previous	chapters	it	is	practice	in	market	and	credit	risk	to	use	risk	and	capital
allocations	based	on	the	Euler	allocations.	Such	allocations	are	in	general	trivial	to	compute
for	market	and	credit	risk.	However,	the	relative	complexity	of	the	 	measure	makes	such
allocations	of	the	aggregate	contingency	liquidity	need	more	difficult	in	the	context	of	liquidity
risk.	While	the	allocation	process	is	more	complex	we	can	still	attempt	a	decomposition	for
liquidity	risk.	Specifically,	from	equation	(6.25)	we	can	find	that	the	total,	in	the	portfolio
context,	positive	cash	contribution,	 ,	for	the	cash	liquidity	need	in	scenario	 	is

where	if	 	and	 	is	an	integer,	this	is	the	 	realized	scenario	from	the
distribution	of	 	and	we	can	write

This	total	positive	contribution	can	be	distributed	across	liquidity	instruments	 	in
many	ways	and	we	consider	one	example	of	such	a	distribution	here.

First	note	that	for	a	given	liquidity	instrument	 	we	can	observe	(i)	the	standalone	liquidity	need
as	defined	by	 ;	(ii)	when	liquidity	instrument	 	is	covering	the	liquidity	need	from	another
liquidity	instrument	 	or	a	subset	of	liquidity	instruments.

Of	course,	liquidity	instrument	 	may	not	be	the	only	liquidity	instrument	covering	a	liquidity



need	for	other	liquidity	instruments,	and	in	that	case	we	have	to	decide	on	a	model	for	how	to
distribute	the	positive	contributions	to	the	set	of	liquidity	instruments.

Example	Allocation	of	Cash	Liquidity	Need
In	Table	6.23	we	found	that	the	realized	portfolio	( )	scenario	requires	a	minimum	amount
of	 	units	of	currency	in	cash	for	survival.	In	contrast,	from	Table	6.23,	summing	the	liquidity
need,	liquidity	instrument	by	liquidity	instrument,	we	find	that	the	required	cash	is	 	units	of
currency.	That	is,	 .	Hence,	the	portfolio	positive	contribution	is	 .	We	can	now
allocate	this	positive	contribution	across	 	as	follows.	First,	for	 	liquidity	
reduces	the	portfolio	liquidity	need	from	 	to	 .	This	is	because,	for	 ,

which	attributes	an	initial	 	units	of	positive	contribution	to	liquidity	instrument	 .	Next,	for	
,

and	a	positive	contribution	of	 	unit	of	currency	is	needed	to	neutralize	the	negative	outflow
from	liquidity	 .	Both	liquidity	instruments	 	and	 	have	sufficient	liquidity	to	cover	this
outflow.	In	this	case,	a	model	is	needed	for	a	fair	allocation	of	the	positive	contribution	of	
unit	of	currency	to	the	liquidities.	One	simple	alternative	is	to	make	an	even	split	allocating	a
positive	 	units	of	cash	to	liquidity	instruments	 	and	 .	A	more	complex	allocation	model
may	be	called	for	in	cases	where	the	contributing	liquidity	instruments	can	only	cover	partially
or	a	liquidity	instrument	can	cover	in	full	but	another	can	only	cover	partially.	In	our	particular
case	we	could	have	weighted	the	relative	positive	inflows	of	liquidity	instruments	 	and	 ,
which	are	 	and	 	units	of	cash,	respectively.	With	such	a	distribution	of	the	positive
contribution	liquidity	instrument	 	would	be	allocated	 	units	of	currency	and	liquidity
instrument	 	 	units	of	currency.	The	final	positive	portfolio	contribution	occurs	at	 ,

and	is	allocated	only	to	liquidity	instrument	 	as	only	this	liquidity	instrument	covers	the
negative	outflow.	This	means	that	we	have	now	allocated	the	total	positive	contribution,	 ,
such	that	we	can	summarize	the	liquidity	instruments'	contribution,	denoted	 ,	to	the
needed	 	cash	liquidity.	Specifically,	we	obtain	 	for	liquidity	instrument	
as	 .	This	allocation	is	done	in	Table	6.24	based	on	the	liquidity
instruments	and	the	portfolio	in	Table	6.23.	In	Table	6.24	we	have	used	the	simple	alternative
of	an	even	split	when	allocating	the	positive	contributions	to	liquidity	instruments	 	and	 	in	



.	We	note	that	 	by	definition	sums	to	 .	Interestingly,	liquidity	 	is
contributing	negatively	to	the	minimum	cash	liquidity	need	as	defined	by	 .	It	is	hence
in	the	context	of	the	portfolio,	reducing	the	need	for	contingency	cash	by	1	unit	of	currency.	It
is,	in	the	context	of	the	portfolio,	an	aggregate,	over	 ,	cash	liquidity	supplier	rather
than	a	cash	liquidity	consumer.

Table	6.24	Portfolio	Allocated	Cash	Liquidity	Contributions

Measure
Liquidity
1 8 2.5 5.5
2 5 0.5 4.5
3 1 2
Portfolio . 5 9

In	our	allocation	of	the	cash	liquidity	need	we	have	not	made	a	distinction	between	allocating
cash	liquidity	held	for	contingency	liquidity	risk	versus	cash	held	for	expected	liquidity
mismatch.	In	an	aggregate	portfolio	context,	the	expected	cash	liquidity	need	is	derived	from
the	firm's	structural	liquidity	mismatch,	that	is,	the	liquidity	needed	to	cover	mismatches	under
the	expected	environment.	The	risk	management	portion	of	the	liquidity	need,	and	in	our	
context,	is	the	unexpected	contingency	liquidity	need	that	may	arise	in	a	stress	scenario.	It	is
important	to	recognize	that	a	firm	that	does	not	separate	the	unexpected	contingency	liquidity
need	from	the	expected	liquidity	need	when	allocating	liquidity	risk	will	inevitably	find
themselves	allocating	positive	liquidity	contributions	to	assets	such	as	loans	with	steady
positive	flows.	However,	this	allocated	positive	flow	does	not	contribute	to	reducing	the	need
for	cash	contingency	liquidity.	Indeed,	it	is	only	if	the	loan	tends	to	generate	more	positive
flows	than	expected	(e.g.,	through	increased	prepayments)	under	liquidity	distress	that	it	should
be	allocated	a	positive	contribution	to	the	unexpected	cash	liquidity	need.

Regulation	for	Liquidity	Risk
The	Basel	III	strengthened	liquidity	regulation	is	the	regulators'	response	to	the	lessons	learned
in	the	2007	financial	crisis.	Two	key	reporting	measures	are	put	forward	as	the	standard	for
supervisors	of	liquidity	risk.	This	is	the	liquidity	coverage	ratio	( )	and	the	net	stable
funding	ratio	( ).	In	the	application	of	these	measures	the	bank	must	consider	behavioral
scenarios.	We	now	focus	briefly	on	the	regulatory	required	reporting	 	and	 	measures
as	well	as	monitoring	measures	put	forward	by	the	regulators.

Liquidity	Coverage	Ratio
The	regulatory	 	measures	the	ratio	of	high-quality	unencumbered	assets	that	are	available
to	hedge	the	cash	outflow	from	assets	and	liabilities.	In	the	regulatory	context	the	liquidity
hedge	portfolio	is	referred	to	as	the	stock	of	high-quality	liquid	assets	( ).	The	stress	is
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measured	under	a	short-term	horizon	of	up	to	30	days	and	the	stress	scenario(s)	examined
should	contain	both	institution-specific	shocks	(e.g.,	downgrade)	as	well	as	systemic	liquidity
crisis.	This	includes	a	loss	of	deposits,	a	loss	of	unsecured	funding,	as	well	as	increases	in
margin	calls	for	derivatives	and	calls	on	the	bank's	committed	credit	lines.	Under	the	horizon
of	30	days	the	 	of	the	bank	should	always	exceed	100%.	That	is,	the	counterbalancing
capacity	of	the	unencumbered	assets	should	neutralize	any	negative	outflows	from	the
encumbered	assets	and	liabilities	under	the	stress	scenario.	The	stock	of	counterbalancing
capacity	assets	should	be	assets	that	retain	liquidity	even	under	severe	stressconditions.

If	a	bank	fails	the	test	of	achieving	an	 	of	100%	for	the	time	horizon	of	30	days	under	the
stress	scenarios,	then	the	bank	must	adjust	their	pool	of	unencumbered	assets	accordingly.	The
focus	is	hence	on	maintaining	a	high-quality	liquidity	portfolio	that	can	hedge	liquidity
outflows	under	stress	scenarios.	This	conditioning	of	liquidity	scenarios	on	a	stress	is,	as	we
remarked	above	when	considering	our	representative	scenario,	 ,	because	liquidity	is	in
general	a	consequential	risk.	Under	these	stresses	the	bank's	liquidity	portfolio	needs	to	hedge
the	stressed	funding	outflow	over	the	time	horizon	of	30	days	under	a	going-concern
assumption.	This	test	becomes	the	regulatory	test	of	whether	a	bank	has	a	sufficient	short-term
liquidity	buffer.

The	Basel	III	eligible	buffer	of	liquidity	hedging	assets	include	so-called	level	1,	level	2A,
and	2B	assets.	Depending	on	the	asset	classification	different	regulatory	haircuts	are	applied.14
The	formal	regulatory	test	computes	the	liquidity	coverage	ratio,	denoted	 ,	as

where	the	denominator	has	the	net	cash	flows	under	the	regulatory	prescribed	scenario.	The	net
cash	outflows	are	constructed	as	the	total	expected	cash	outflows	minus	total	expected	inflows.
The	net	cash	outflow	in	equation	(6.26)	is	specifically	decomposed	as

so	that	cash	inflows	are	capped	at	75%	of	inflows.	The	cash	inflows	may	have	to	be	adjusted
by	prescribed	regulatory	parameters.	For	example,	we	have	that:

Inflows	from	performing	loans,	deposits	with	other	banks,	and	maturing	reverse	repos	on
noneligible	buffer	assets	have	a	regulatory	allowed	inflow	of	100%.

However,	potential	inflows	from	operational	accounts	with	other	banks	and	backup	lines
are	regulatory	prescribed	to	0%	and	hence	have	no	inflow.

The	cash	outflows	also	have	regulatory	prescribed	parameters.	For	example:

Small	business	and	consumer	deposits	have	prescribed	runoff	factors	that	depend	on
deposit	features	resulting	in	cash	outflows.

Corporate	deposits	also	have	prescribed	runoff	factors.	Corporate	deposits	have	in	general
a	higher	prescribed	runoff	rate	than	consumer	and	small	business	deposits.	The	financial
institution's	runoff	deposit	rate	is	conservatively	set	to	100%.



Potential	cash	outflows	also	include	maturing	repos	where	the	regulatory	prescribed
outflow	rate	depends	on	the	underlying	repo	asset	quality.	When	eligible	buffer	assets	are
used	as	collateral	there	is	in	general	a	small	runoff	factor	while	repos	using	non–buffer
eligible	assets	may	have	a	100%	outflow.

Credit	facilities	have	a	drawdown	factor	that	depends	on	the	counterparty.	For	example,
the	regulatory	drawdown	rate	for	credit	facilities	to	financial	institutions	or	liquidity
facilities	is	40%.

The	numerator	of	the	 	equation	(6.26)	is	the	cash	value	(haircut-adjusted	value)	of	the
stock	of	eligible	high-quality	assets.	As	with	cash	outflows	the	regulation	prescribes	eligibility
and	the	asset	haircuts	based	on,	for	example,	issuer	characteristics.	Naturally,	only
unencumbered	portions	of	assets	can	be	counted	toward	the	stock.	Assets	pledged	to	the	bank
as	collateral	can	potentially	also	be	counted	toward	the	stock,	for	example,	assets	received	as
collateral	in	reverse	repo	agreements	that	mature	after	the	regulatory	liquidity	horizon	of	30
days.	For	an	asset	to	be	eligible	the	asset	must	also	be	in	direct	control	of	the	treasury.	Hence,
the	specific	entity	and	internal	organization	structure	of	the	firm	may	be	important	in
determining	regulatory	eligibility	of	an	asset.

In	principle	the	regulatory	 	measure	in	equation	(6.26)	does	not	consider	a	term-structure
of	cash	flows	on	 	days.	Cash	inflows	and	cash	outflows	as	well	as	the	cash	value	of
the	numerator	are	considered	on	a	single	horizon	of	30	days	with	no	analysis	of	the	exact	flow
date.	Specifically,	runoff	and	drawdown	factors	are	used	to	generate	cash	outflows	under	the
liquidity	horizon.	This	can	be	seen	as	a	weakness	of	the	regulatory	 	measure,	because,	as
we	have	discussed,	liquidity	risk	solvency	is	path-dependent	and	the	availability	of	funds	at
the	end	of	the	30-day	period	may	not	be	useful	to	mitigate	insolvency	in	the	beginning	of	the
period.	Also,	the	specific	unfolding	of	a	liquidity	crisis	may	be	important	for	determining
solvency.	The	 	measure	is	hence	a	special	case	of	our	general	liquidity	risk	measure	with	a
cash	hedging	portfolio	and	a	single	30-day	time	bucket	 	for	the	liquidity	cash	flows.	Using	our
cash	liquidity	risk	measure	we	can	generalize	the	denominator	of	the	 	measure	to	be
measured	at	time	buckets	 	as	we	will	discuss	next.

Generalized	Liquidity	Coverage	Ratio
To	put	the	regulatory	 	measure	in	the	context	of	our	cash	measure	of	liquidity	exposure	and
liquidity	solvency—and	hence	reconcile	with	internal	liquidity	models—we	let	 	denote	the
specific	regulatory	scenario	and	set	 	days.	The	numerator	of	the	 	measure	does	not
have	a	term-structure,	similar	to	our	cash	liquidity	risk	measure.	Implicitly,	the	regulatory	
measure	assumes	that	the	liquidity	buffer	can	generate	cash	liquidity	at	any	point	in	time	during
the	30-day	period,	albeit	with	a	predetermined	haircut.	This	is	equivalent	to	assuming	an
amount	of	cash,	 ,	is	available	during	the	30-day	period,	the	cash	amount	being	the	current
value	of	the	liquidity	buffer	adjusted	by	the	regulatory	haircuts.	Turning	to	the	definition	of	the
denominator	it	is	consistent	with	the	forward	liquidity	need,	with	cash	counterbalancing
capacity,	under	scenario	 .	This	means	that	we	can	express	the	regulatory	 	measure	using	a
term	structure	 	for	cash	inflows	and	outflows,	in	our	notation,	as
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or,	equivalently,	the	firm	passes	the	regulatory	 	test	if

This	last	equation	(6.28)	makes	clear	that	when	cumulating	the	denominator	liquidity	exposure
over	time,	 ,	the	 	measure	in	equation	(6.27)	is	not	defined	with	respect	to	the
regular	net	cumulative	cash	outflows	in	the	denominator.	It	should	be	properly	defined	with	the
correct	cumulative	measure	of	net	cash	outflow	under	a	cash	equivalent	portfolio.

We	can	also	further	generalize	the	regulatory	LCR	measure	to	allow	non-cash	or	non-cash
equivalent	hedging	capacity.	However,	we	are	then	back	in	our	general,	pathdependent
liquidity	risk	measure	with	the	risk	process,	 ,	in	equation	(6.2).	In	this	case	a	liquidity
hedging	model	is	needed	to	convert	the	hedge	portfolio	into	cash	counterbalancing	capacity
and	ultimately	determine	solvency	at	the	path,	 .

Managing	the	Liquidity	Coverage	Ratio
A	firm	can	always	adjust	its	liquidity	hedge	portfolio	to	improve	its	 	ratio.	This	adjustment
of	the	liquidity	hedge	portfolio	can	come	from	either:

The	acquiring	of	new	hedge	assets	(i.e.,	increase	the	size	of	the	buffer),15

or	replacing	existing	hedge	assets	of	lower	quality	(higher	regulatory	haircut)	with	higher
quality	assets	(e.g.,	cash	carries	no	regulatory	haircut).

Of	course	this	means	in	general	more	costs	for	the	banks,	either	indirectly	through	higher
opportunity	cost	(high-quality	assets	in	general	carry	a	higher	opportunity	cost)	or	directly
through	fees	in	a	collateral	swap.

This	management	of	the	firm's	 	ratio	focuses	on	managing	the	numerator.	A	firm	can	also,
on	a	longer	term	basis,	try	and	improve	its	 	ratio	by	adjusting	the	denominator	of	 .	It
can	decrease	cash	outflows	by	acquiring	longer	duration	liabilities	(e.g.,	deposits)	and	try	to
increase	the	stability	of	deposits.	However,	longer	funding	in	general	means	higher	funding
costs	for	bank.	Hence,	there	is	in	practice	a	trade-off	between	increased	funding	costs	versus
regulatory	 	costs	by	requiring	more	regulatory	eligible	hedge	assets.	A	bank	can	also
reduce	the	amount	of	offered	liquidity	and	credit	facilities.	Again,	there	is	a	trade-off	between,
on	one	hand,	less	returns	for	the	firm	versus	regulatory	 	costs	of	the	liquid	buffer.	We	can
therefore	conclude	that	the	management	of	the	firm's	 	ratio	cost	is	the	management	of	the
trade-off	between	acquiring	more	liquid	buffer	costs,	or	accepting	reduced	earnings	or
increased	funding	costs.	However,	naturally,	firms	may	try	to	offload	the	liquidity	cost	onto	the
consumers	of	liquidity	to	mitigate	reduced	earnings	or	funding	costs,	for	example,	by	pricing
the	contingency	liquidity	cost	of	holding	the	buffer	into	credit	and	liquidity	facilities	and
nonstable	deposits.	The	costs	are	then	passed	onto	the	consumers	rather	than	the	firm.	We	will



return	to	the	issue	of	liquidity	pricing	in	the	next	chapter	on	funds	transfer	pricing	and
profitability	of	cash	flows.

It	is	important	for	a	financial	institution	to	forecast	the	potential	future	 	ratio	at	a	future
time,	 ,	applying	the	future	contractual	cash	flows	between	the	current	time	 	and	the	future
time	 .	This	is	to	enable	actions	today,	at	 ,	for	predictable	plausible	 	effects	in	the	future.
For	example,	known	maturing	funding	of	the	buffer	produces	new	buffer	funding	requirements
that	need	to	be	planned	for	as	early	as	possible.	In	projecting	future	 	one	can	also
experiment	with	different	business	rollover	assumptions	and	plan	ahead	for	actions	to	improve	

	should	those	rollover	assumptions	impact	the	bank's	 	negatively.

Net	Stable	Funding	Ratio
While	the	 	measures	the	short-term	impact	of	a	liquidity	stress	and	in	particular	the
survival	of	the	bank	during	a	30-day	term	it	does	not	measure	structural	funding	liquidity.
Effectively,	a	bank	can	have	structural	problems	with	stability	of	their	funding	channels	(e.g.,
only	unsecured	short-term	channels)	over	a	longer	term	and	still	satisfy	the	 	regulatory
requirements	with	a	sufficient	buffer	of	liquid	assets.	On	a	longer-term	crisis,	however,
eventually,	the	counterbalancing	capacity	of	the	hedging	assets	is	reduced	and	the	bank	must
resort,	at	least	partially,	to	stable	funding	channels	that	work	even	in	stress.	The	regulators'
proposed	 	measures	this	stability	of	funding	channels	by	considering	a	one-year	horizon.
The	general	idea	is	that	long-term	assets	should	be	funded	by	long-term	liabilities	to	avoid
potential	liquidity	problems	when	funding	rolls	over.	Long-term	funding	includes	bond	funding,
core	deposits,	and	equity.	The	short-term	funding	includes	non-core	deposits	and	money	market
funding	that,	in	principle,	should	be	hedged	by	unencumbered	assets.

The	regulatory	 	ratio	is	constructed	by	the	ratio	of	available	stable	funding	to	the	required
stable	funding	(Basel	Committee,	2014d).	The	required	stable	funding	is	a	weighted	sum	of	the
balance	amounts	of	assets	with	regulatory	prescribed	multipliers	that	are	close	to	1	for	long-
term	nontradable	assets.	The	available	stable	funding	is	obtained	by	summing	up	the	funding
with,	again,	regulatory	prescribed	multipliers	close	to	1	for	long-term	funding.	As	for	the	
ratio	the	 	ratio	should	exceed	100%.	That	is,	long-term	assets	should	be	funded	by	at	least
as	much	long-term	liabilities.	This	is	to	ensure	the	firm	does	not	run	into	potential	liquidity
issues	in	refunding	long-term	assets.

Traditionally,	banks	have	computed	structural	liquidity	ratios	like	the	 	ratio	for	a	long
time.	Rating	agencies	also	use	such	structural	liquidity	ratios	to	assess	liquidity	of	banks.	Most
well	known	is	probably	Moody's	Cash	Capital	Position	(CCP).	Moody's	uses	this	measure	to
analyze	the	liquidity	structure	of	a	bank's	balance	sheet	as	part	of	its	external	rating	assignment.
The	CCP	simply	compares	the	amount	of	unsecured	short-term	funding	(e.g.,	<	1	year)	as	well
as	the	level	of	non-core	deposits	to	the	hedging	capacity	of	the	unencumbered	assets.	The	CCP
is	the	difference	between	the	amounts	and	a	bank	with	a	positive	CCP	is	deemed	to	have	a
stable	liquidity	structure.	Clearly,	the	CCP	measure	is	consistent	with	the	regulatory	incentive
behind	the	NSFR,	to	promote	long-term	funding.



Regulatory	Liquidity	Monitoring	Tools
The	liquidity	measurement,	cash	flow	modeling,	and	liquidity	hedge	analysis	discussed	in	this
chapter	help	banks	to	establish	forward-looking	monitoring	capability	of	their	liquidity
situation.	The	monitoring	practice	should	serve	thepurpose	of	effective	reporting	as	well	as
decision	making.	Bank	should	set	a	target	liquidity	survival	horizon	and	monitor	current	and
future	liquidity	demand	and	supply	that	is	consistent	with	the	survival	horizon.	Liquidity	limits
are	often	the	targets	the	monitoring	is	compared	against.	Liquidity	risk	modeling	and
monitoring	should	not	be	isolated	from	the	macroeconomic	environment	or	micro-behavior	of
the	bank.	Liquidity	risk	is	a	consequential	risk	that	is	closely	tied	to	the	other	risks	a	bank
faces.	The	growing	globalization	of	the	economic	and	increasing	market-based	funding
necessitate	the	closer	monitoring	of	the	market	behavior.	At	the	same	time,	liquidity	distress
can	rise	from	a	bank's	own	business	practice	as	well.	Any	news	about	a	bank's	business	or
operational	loss	can	trigger	a	reputation	crisis	and	lead	to	widening	of	funding	spread	or	even
close	of	funding	sources.	For	example,	JP	Morgan's	multibillion-dollar	trading	loss	at	the
beginning	of	2012	caused	a	downgrade	of	its	credit	rating	by	Fitch	Ratings	in	worrying	about
the	bank's	risk	management	system	and	internal	control	process.

Apart	from	market	monitoring,	regulators	require	banks	to	monitor:

Cash	flow	gaps	under	a	contractual	maturity	mismatch	of	the	firm

The	funding	concentration

The	stock	of	eligible	regulatory	hedging	assets	used	in	the	numerator	of	

Cash	Flow	Gaps
The	maturity	mismatch	monitoring	in	the	classical	asset	and	liability	management	usually
focuses	on	the	projection	of	the	cash	flows	based	on	a	static	view	of	balance	sheet.	The
Financial	Services	Authority16	of	United	Kingdom	published	“Strengthening	Liquidity
Standards”	in	2009.	In	that	policy	statement,	several	report	templates	are	widely	adopted	by
many	jurisdictions.	This	includes	traditional	ratio-based	reports	and	cash	flows	based	on
stress	scenarios.

Basel	III	also	requires	banks	to	conduct	cash	flow	maturity	mismatch	analyses	based	on	going-
concern	behavioral	assumptions	of	the	inflows	and	outflows	of	funds	in	both	normal	situations
and	under	stress.	The	cash	flow	gap	monitoring	serves	several	objectives	to	the	management:

To	get	an	overview	of	the	liquidity	healthiness	and	liquidity	need.	The	liquidity	gap
should	not	be	only	at	the	bank	level,	but	needs	to	be	sliced	into	branches,	regions,	lines	of
business,	and	cash	flow	currencies.

To	check	the	validity	of	the	liquidity	funding	plan.	The	cash	flow	gaps	must	be	monitored
together	with	bank's	funding	plans	to	make	sure	the	funding	availability	can	sustain	the
liquidity	need.

To	aid	the	decision	process	of	bank's	business	strategy.	A	timely	view	of	the	cash	flow



performance	provides	insight	into	the	extent	to	which	the	bank	relies	on	maturity
transformation	under	its	current	contracts	and	adjusts	the	loan	or	deposit	acquisition
strategy	to	get	a	contractual	hedge.

To	plan	for	liquidity	emergent	execution	plan.	When	an	emergent	large	net	cash	outflow	is
in	sight,	the	bank	can	get	sufficient	time	to	prepare	for	a	liquidity	execution	plan	based	on
the	current	counterbalancing	capacity.

Clearly,	with	a	contractual	maturity	mismatch,	since	many	banks	fund	relatively	short	and	lend
long,	the	survival	time	can	be	quite	short	with	no	rollover	of	funding.	The	contractual	maturity
mismatch	monitoring	can	be	seen	as	complementary	to	the	liquidity	coverage	ratio,	which	is
based	on	going-concern	assumptions	with	regulatory	prescribed	rundown	(rollover)	rates.

Funding	Concentration
One	lesson	learned	from	the	recent	financial	crisis	is	the	danger	of	overreliance	on	specific
funding	source.	When	banks	draw	significant	funds	from	a	few	specific	counterparties,	the
contagion	in	the	financial	system	can	introduce	increased	liquidity	risk	not	only	to	the	bank
itself	but	also	into	the	entire	system.	When	significant	funding	counterparties	are	identified,
banks	should	also	study	the	possibility	of	wrong-way	funding	risk,	that	is,	whether	the
counterparty	can	be	a	stable	funding	source	at	the	time	the	bank	increases	its	funding	demand.

The	concentration	is	limited	not	only	to	a	particular	wholesale	funding	counterparty	but	also	to
the	type	of	source	and	currency.	For	example,	when	a	bank	relies	heavily	on	the	asset	backed
commercial	paper	market	for	the	short-term	funding,	the	close-down	of	the	market	due	to	any
reason	can	lead	to	a	significant	liquidity	crisis	of	the	bank.	Similarly,	when	a	bank's	majority
funding	is	dominated	by	a	particular	currency,	a	tightening	control	of	the	currency	or	turbulence
in	the	foreign	exchange	market	can	cause	liquidity	difficulty	of	the	bank.	For	this	reason,	Basel
III	requires	monitoring	of	three	funding	concentration	items:

1.	 Funding	liabilities	sourced	from	each	significant	counterparty	as	a	percentage	of	total
liabilities

2.	 Funding	liabilities	sourced	from	each	significant	product/instrument	as	a	percentage	of
total	liabilities

3.	 List	of	asset	and	liability	amounts	by	significant	currency

Funding	concentration	monitoring	can	be	seen	as	complementary	to	the	 	reporting.	The	
	ratio	promotes	banks	to	steer	part	of	their	funding	toward	long-term	stable	funding.

However,	the	funding	is	not	necessarily	diversified.

Counterbalancing	Capacity
A	bank	must	closely	monitor	its	counterbalancing	capacity	available	in	the	form	of	the	liquidity
hedging	portfolio.	The	bank	should	model	the	characteristics	of	the	unencumbered	assets	and
borrowing	capacity	in	the	inventory,	especially	at	the	time	of	economic	and	market	turbulence.
For	example,	when	the	market	crashes,	the	flight-to-quality	effect	can	lead	to	significant	loss	of



value	of	the	low-quality	assets.	Basel	III	requires	banks	to	monitor

Available	unencumbered	assets	that	are	marketable	as	collateral	in	secondary	markets

Available	unencumbered	assets	that	are	eligible	for	central	banks'	standing	facilities

Business	Concentration
Although	diversification	is	a	general	principle	of	the	banking	business,	it	is	sometimes	hard	to
implement	in	practice.	Every	bank	has	its	business	sweet-spot	in	terms	of	business	sector,
region,	and	currency.	The	concentration	of	the	business	can	increase	the	liquidity	risk	to	the
bank.	The	bank	must	be	able	to	understand	the	timing	and	severity	of	surge	of	funding	demand
including	drawdown,	prepayment,	and	default	risk	in	the	business	and	plan	funding
accordingly.

As	discussed	in	the	cash	flow	modeling	among	the	most	difficult	to	analyze	yet	important	to
understand	is	the	potential	behavior	of	the	bank's	counterparties	in	using	committed	facilities
and	guarantees	offered	by	the	bank.	The	bank	mustmonitor	several	aspects	of	the	facilities.	The
first	is	its	concentration.	Because	the	facilities	are	typically	drawn	down	at	the	time	of	need,	if
a	bank	has	over-concentrated	credit	facilities	offered	in	a	certain	business	sector	and	region,
the	contagion	effect	in	the	sector	and	region	can	quickly	deplete	the	bank's	funding,	ultimately
dragging	the	bank	into	a	liquidity	distress	if	the	bank	is	not	prepared	for	the	surge	of	such
demand.	The	bank	must	also	monitor	the	total	limit	of	the	open	facilities	and	their	utilization
rate,	both	current	and	projected.

1	See	Dermine	and	Bissada	(2002)	or	Choudry	(2007)	for	an	introduction	to	classical	liquidity
and	interest	rate	risk	asset	and	liability	management	tools.	In	this	chapter	we	cover
extensively	the	behavioral	modeling	of	cash	flow	and	interest	income	in	the	context	of
liquidity	risk.	We	have	also	discussed	the	credit	risk	impact	on	interest	and	principal
income	in	Chapter	4	in	this	book.	We	will	also	return	to	the	issue	of	bank	profitability
analysis	in	the	next	chapter	on	funds	transfer	pricing	and	profitability	of	cash	flows	as	well
as	in	Chapter	9	on	firmwide	scenario	analysis	and	stress	testing.

2	As	we	discussed	in	the	counterparty	credit	risk	chapter	the	increasing	spread	between	LIBOR
and	OIS	caused	the	industry	to	move	to	use	OIS	discounting	rather	than	LIBOR	discounting
in	the	risk-free	valuation	of	derivatives.

3	The	liquidity	risk	measurement	and	management	book	by	Matz	(2011)	is	a	good	complement
to	our	more	quantitative,	method	focused	liquidity	risk	discussion.	In	particular	Matz
focuses	more	on	the	qualitative	aspects	of	liquidity	risk	management	and	what	can	be
learned	from	history	by	liquidity	risk	managers.

4	Note	that	we	cumulate	any	excess	cash	counterbalancing	capacity	at	 	to	 	in	analogy	with
the	net	cash	flows,	which	are	assumed	to	be	rolled	over	in	overnight	accounts.

5	The	reader	may	recall	that	we	also	used	classical	risk	theory	in	the	context	of	portfolio	credit



risk	economic	capital	for	loan	portfolios	in	the	portfolio	credit	risk	chapter.	We	refer	to	that
chapter	for	a	brief	background	on	classical	risk	theory	and	literature	references.

6	The	part	of	the	investment	assets	that	are	allocated	to	the	liquidity	hedge	portfolio	are	not
used	in	the	creation	of	the	forward	liquidity	exposure	of	the	financial	institution.	Central
bank	reserves	are	usually	also	counted	toward	the	liquidity	hedge	portfolio.

7	In	this	example	we	assume	for	simplicity	the	overdue	default	rate	to	be	the	same	as	the
default	rate.	In	practice	the	overdue	default	rate	may	be	higher.

8	In	principle	other	restrictions	or	target	goals	of	the	liquidity	reserve	process	can	also	be
considered.	For	example,	if	the	liquidity	hedging	portfolio	does	not	include	available
central	bank	funding	as	last	resort,	there	may	be	a	maximum	funding	requirement	restriction
for	each	liquidity	horizon,	 .

9	Note	here	that	asset	flows	that	depend	on	trades	are	assumed	immaterial	and	are	not
considered.	This	is	realistic	in	most	cases	because	the	time	period	of	liquidity	distress	is
assumed	relatively	short.

10	An	added	value	of	a	linear	programming	model	as	applied	here	is	to	leverage	the	sensitivity
analysis	from	the	duality	theory	of	linear	programming	to	study	how	the	range	of	parameter
change	affects	the	optimal	solution.	See	Chen,	Skoglund,	and	Cai	(2012)	for	examples.

11	Instead	of	or	in	addition	to	minimal	up-front	cost	an	optimal	objective	is	to	choose	the
maximum	return	portfolio	(i.e.,	the	minimal	opportunity	cost	portfolio).	However,	we	focus
on	the	minimal	cost	objective	here.

12	Of	course,	the	model	may	not	only	be	used	to	find	the	optimal	liquidity	hedging	cash	flows
versus	the	firm's	current	situation	for	forward	liquidity	exposure.	The	model	can	also	be
used	to	optimize	the	firm's	strategic	liquidity	balance	sheet	more	generally	by	experimenting
with	the	selection	of	cash	flows	in	the	forward	liquidity	exposure.

13	Note	that	a	bank's	liquidity	hedging	and	planning	program	may	be	defined	per	bank	entity
such	that	an	entity	is	viewed	as	a	self-sufficient	funding	unit	from	a	liquidity	perspective
and	hence	needs	to	carry	its	own	sufficient	liquidity	hedging	portfolio.

14	The	regulation	also	prescribes	the	maximum	holdings	of	level	2A	assets	to	40%	and	level
2B	assets	to	15%.

15	When	aquiring	new	hedge	assets	that	need	to	be	funded	we	assume	the	funding	matures	after
the	regulatory	liquidity	horizon	of	30	days	such	that	the	aquiring	of	the	new	hedge	asset	only
makes	a	positive	contribution	in	the	numerator	of	 .

16	UK	FSA	is	now	split	into	the	Financial	Conduct	Authority	and	the	Prudential	Regulation
Authority.



7.1

Chapter	7
Funds	Transfer	Pricing	and	Profitability	of	Cash	Flows
Funds	transfer	pricing	creates	a	shadow	of	assets	and	liabilities.	Real	assets	are	funded	by
synthetic	liabilities	to	produce	a	matched	balance	sheet	for	the	asset.	Similarly,	real	liabilities
receive	income	from	synthetic	assets	for	the	same	purpose.	Through	fund	transfer	pricing	a
bank	can	analyze	more	efficiently	its	net	interest	margin	and	its	expected	profitability.
Specifically,	the	net	interest	margin	profitability	and	risk	analysis	can,	with	funds	transfer
pricing,	be	broken	down	to	loan	and	position	level.	The	same	applies	to	a	traditional	economic
value	(solvency)	view,	which	now	also	can	be	broken	down	to	the	most	granular	level.1

Breaking	down	balance	sheet	profitability	and	solvency	to	the	most	granular	level	is	important
for	segmenting	the	portfolio	supplier	versus	consumers	of	portfolio	profitability	and	solvency.

Traditionally,	funds	transfer	pricing	is	used	by	financial	institutions	to:

1.	 Achieve	centralization	of	risks,	that	is,	clear	branches'	risks	that	are	most	efficiently
managed	centrally	such	as	interest	rate	risk.

2.	 Measure	ex-ante	performance	of	traditional	banking	book	items	such	as	loans,	mortgages,
and	deposits.

A	loan	or	deposit	clearing	of	interest	rate	risk	is	achieved	through	the	funds	transfer	price,
defined	as	the	matched	maturity	funding	rate	plus	a	markup	for	business	costs.	In	effect	this	is
an	interest	rate	swap	agreement	between	the	branch	and	the	clearing	center	and	the	price	of	the
swap	is	usually	null.	For	ex-ante	performance	evaluation	of	branches	the	assigned	funds
transfer	rate	is	used	to	measure	an	interest	margin	to	the	transfer	rate	of	the	synthetic
instrument.	Funds	transfer	pricing	can	be	seen	as	creating	a	portfolio	split	such	that:

Branches	manage	the	actual	asset	minus	the	synthetic	funding,	that	is,	the	customer	leg	of
the	transaction	versus	the	synthetic	funds	transfer	instrument.

Treasury	manages	the	residual	portfolio	of	the	actual	funding	leg	minus	the	synthetic	asset.

We	can	write	this	portfolio	split,	 ,	as

where	 	is	an	asset	such	as	a	loan,	 	is	the	synthetic	funds	transfer	instrument	and	 	is	the
actual	treasury	funding.	Hence,	the	first	term	creates	a	balanced	balance	sheet	for	the	loan
while	the	second	term	includes	the	pool	of	all	treasury	funding	assets,	 ,	with	no	further
breakdown.	The	residual,	 ,	is	hence	managed	by	treasury	on	an	aggregate	portfolio
profit-and-loss	basis.	This	assignment	of	a	matching	funding	asset	or	liability	to	a
corresponding	branch	liability	or	asset	achieves	balanced	balance	sheets	for	branches	so	that
each	branch	becomes	a	consistent	performance	measurement	unit.



Many	traditional	banking	products	face	credit	risk	and	liquidity	risk	in	addition	to	the	interest
rate	risk.	It	is	also	the	case	that	many	traditional	banking	products	carry	embedded	optionality
features	such	as	prepayment	and	withdrawal	options.	As	funds	transfer	pricing	is	concerned
with	ex-ante	profitability	and	incentive	creation	it	is	important	that	the	bank's	funds	transfer
pricing	program	includes	all	the	risk	costs	faced	by	the	bank.	For	example,	in	clearing	branch
credit	risk	the	size	of	the	risk	spread	added	in	the	funds	transfer	price	could	be	related	to	the
cost	of	clearing	the	risk	for	traded	assets	that	have	liquid	credit	default	swap	markets.	While
such	hedge	risk	costs	may	be	available	for	traded	assets	the	risk	spread	for	non-traded
traditional	balance	sheet	items	has	to	be	defined	internally	using	expected	loss	projections	and
hence	be	based	on	a	reserve	methodology.	The	clearing	of	credit	risk	from	branches	and
centralization	to	treasury	may	seem	a	natural	step	as	the	efficient	hedging	of	credit	risk	requires
a	portfolio	perspective.	However,	there	are	also	drawbacks	to	clearing	branch's	credit	risks.
Most	notably	the	clearing	of	the	credit	risk	can	remove	the	branch's	incentive	to	actually
manage	the	credit	issued	by	the	branch	locally.

A	complex	issue	in	funds	transfer	pricing	is	how	to	measure	funds	transfer	prices	when	future
cash	flows	are	uncertain.	This	is	the	case	for	most	deposits	where	consumers	can	withdraw
their	funds	at	any	point	in	time	and	hence	the	branch	has	in	effect	issued	a	withdrawal	option
on	the	account.	Other	examples	include	loans	with	prepayment	and	associated	caps	and	floors.
Since	the	funds	transfer	rate	should	represent	the	actual	cost	of	matched	maturity	funds	a	bank
cannot	ignore	incorporating	the	additional	cost	for	embedded	options	in	branch	products.	If
they	do,	then	incentives	to	issue	embedded	products	that	can	raise	the	interest	rate	willingly
paid	by	consumers,	such	as	caps	and	floors	and	embedded	call	options,	increase.	Moreover,
since	the	funds	transfer	price	is	not	adjusted	accordingly	there	is	no	indication	on	what	spread
on	the	consumer	rate	is	needed	for	the	branch	to	achieveprofitability.

Recently,	due	partly	to	the	Basel	III	regulation	for	liquidity	risk,	the	pricing	of	liquidity	risk
cost	and	benefits	onto	firm's	assets	and	liabilities	through	funds	transfer	pricing	has	become	a
widespread	practice.	Just	like	a	firm	is	pricing	expected	credit	losses	and	the	opportunity	cost
of	capital,	liquidity	pricing	should	be	instituted	in	a	way	that	rewards	providers	of	liquidity
and	charges	its	users.	Inclusion	of	liquidity	risk	in	bank's	(funds	transfer)	pricing	is	also	a
regulatory	requirement.	In	particular,	Basel	Committee	(2008)	specifies	that	banks	should
incorporate	liquidity	costs,	benefits,	and	risks	in	the	product	pricing,	performance
measurement,	and	new	product	approval	process	for	all	significant	business	activities.	CEBS
(2010)	also	focuses	on	the	need	for	firms	to	develop	a	sound	practice	of	pricing	liquidity	risk.
The	CEBS	guidelines	target	a	liquidity	cost	concept	that	includes	not	only	direct,	structural
liquidity	mismatch	funding	costs,	but	also	associated	indirect	costs	such	as	opportunity	cost	of
holding	contingency	liquidity	buffer,	the	cost	of	holding	the	liquidity	hedging	portfolio	to
mitigate	funds	outflow	in	liquidity	stress.	See	also	Grant	(2011).	Neu	et	al.	(2007)	similarly
decompose	the	pricing	of	funding	liquidity	risk	into	two	distinct	components:

1.	 Mismatch	or	funding	liquidity	cost

2.	 Contingency	liquidity	costs,	that	is,	the	cost	of	holding	stand-by	liquidity

It	is	important	to	recognize	that	the	opportunity	cost	of	the	standby	liquidity	portfolio	can	be



managed	by	a	firm.	As	we	discussed	in	the	liquidity	risk	chapter,	a	priori,	a	firm	would	like	to
hold	the	minimum	(opportunity)	cost	liquidity	hedging	portfolio	that	with	high	probability	can
generate	the	counterbalancing	capacity	needed.	A	cost-efficient	program	for	liquidity	hedging
immediately	translates	into	a	competitive	price	adjustment	for	liquidity	consuming	assets	and
liabilities	in	the	firm's	funds	transfer	pricing.	For	example,	the	bank's	issued	facilities	carry	a
liquidity	contingency	cost	for	the	unused	part	that	will	likely	be	drawn	under	liquidity	stress.
This	cost	needs	to	be	passed	on	to	the	consumer	to	remain	profitable.

In	ex-ante	performance	measurement	the	spread	between	the	consumer	rate	and	the	funds
transfer	price	is	an	indication	of	the	prospective	future	economic	value	generated.	For	an
account	with	a	positive	economic	value	banks	rank	the	economic	value	based	on	risk
adjustment.2	The	general	idea	is	that	for	two	accounts	with	the	same	economic	value	one
would	prefer	the	one	with	the	least	risk.	Of	course,	a	customer	can	be	profitable	even	if	some
accounts	with	the	customer	carry	negative	expected	economic	value.	Similarly	a	subportfolio
with	certain	types	of	credits	may	have	negative	expected	economic	value	but	still	be	a
necessary	bank	offer	in	order	to	retain	customers	and	gain	profits	on	other	products	with	the
customer.	Hence,	whenmeasuring	ex-ante	profitability	using	funds	transfer	pricing	it	is
important	to	have	a	holistic	customer	perspective.	It	is	also	important	to	recognize	that	risk-
based	funds	transfer	pricing	provides	an	economic	value	pricing	but	not	necessary	a	traditional
profitability-based	pricing.	It	measures	the	ex-ante	fair	value	performance.	This	ex-ante	fair
value	performance	may	or	may	not	be	realized.

In	this	chapter	we	first	introduce	the	basic	matched	maturity	funding	concept	to	create	synthetic
funds	transfer	instruments	for	interest	rate	risk.	Second,	we	consider	risk-based	funds	transfer
pricing	that	takes	into	account	credit	risk	and	capital,	embedded	optionality,	as	well	as
liquidity	risk.	After	having	discussed	how	to	introduce	all	the	risk	costs	in	the	funds	transfer
rates	we	discuss	the	decomposition	of	profitability,	as	measured	by	net	interest	income	and
solvency	measures,	using	funds	transfer	pricing.	Funds	transfer	rates	are	also	core	in	the
calculation	of	economic	fair	value	of	banking	book	assets	and	liabilities.	The	funds	transfer
rate(s)	are	used	in	discounting	uncertain,	non-traded	cash	flows,	including	all	costs	and	risk
spreads.	After	a	discussion	on	the	scope	of	funds	transfer	pricing	we	end	the	chapter	with	a
review	of	regulation	areas	where	profitability	analysis	is	a	core	requirement.	Parts	of	our
exposition	in	this	chapter	draw	from	Skoglund	(2013).

Basic	Funds	Transfer	Pricing	Concept
Basic	funds	transfer	pricing	focuses	on	assigning	a	clearing	rate	that	is	consistent	with	the	asset
or	liability	maturity.	For	example,	the	Interbank	cost	of	funding	curve	is	used	to	generate	a
fixed	term	deposit	funds	transfer	rate	that	is	consistent	with	the	maturity	of	the	funds.3	The	net
interest	margin	for	the	branch	is	obtained	as	the	difference	between	the	funds	transfer	rate	and
the	consumer	funds	rate.	As	consumer	deposit	rates	are	in	general	lower	than	market	funding
rates	the	net	interest	margin	tends	to	be	positive.	Another	example	is	the	calculation	of	the
funds	transfer	rate	and	the	net	interest	margin	for	a	bullet	payment	loan.	While	the	duration	of
the	actual	funding	base	may	be	significantly	shorter	than	the	duration	of	the	bullet	loan	the	loan
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is	attributed	to	the	interbank	rate	consistent	with	the	loan	duration	as	the	funds	transfer	rate.
This	yields	an	interest	margin	between	the	bullet	loan	paying	rate	and	the	interbank	rate.

In	the	above	two	simple	cases	there	was	only	one	payment,	which	allowed	us	to	define	the
funds	transfer	rate	as	the	funding	rate	that	is	applicable	at	maturity	of	the	cash	flow.	In	case	we
have	a	loan	with	several	payments	until	maturity	it	is	clear	that	the	funds	transfer	rate	cannot	be
the	funding	rate	at	maturity.	In	particular,	all	the	cash	flows	from	the	loan	must	be	accounted	for
as	they	need	to	be	funded	accordingly.	Taking	into	account	all	cash	flows,	weighting	by	the
relevant	funding	rate,	we	get	the	funds	transfer	price	( )	as

where	 	is	the	cash	flow	at	time	 ,	 ,	and	 	is	the	bank	funding	rate	at	 .

This	method	of	assigning	funds	transfer	(prices)	rates	to	a	contract	is	usually	referred	to	as	the
“exact”	method	as	it	computes	the	funding	using	an	exact	match	of	all	cash	flows	of	the
contract.	Another	method	is	to	calculate	the	duration	of	the	contract	and	then	assign	the	contract
the	funding	rate	corresponding	to	the	duration.	However,	the	duration	approach	is	only	an
approximation	and	requires	the	same	amount	of	computations	as	for	the	exact	method	as	both
approaches	require	cash	flows	of	the	contract	to	be	computed.4	The	exact	method	is	therefore
often	used	in	practice.

Example	of	FTP	for	a	Mortgage	and	a	Loan
In	Table	7.1	we	provide	an	example	of	calculating	funds	transfer	rates	for	a	mortgage	and	a
loan	using	the	exact	method	in	equation	(7.2).	The	mortgage	example	is	an	annuity	with
semiannual	payment	frequency,	a	notional	of	100,000	units	of	currency,	and	5.5	years	until
maturity.5	The	loan	example	pays	interest	quarterly	with	a	fixed	amortization	of	30,000	units	of
currency	on	a	notional	of	1,900,000	units	of	currency.	The	loan	maturity	term	is	12.5	years.	The
funding	curve,	 ,	used	in	the	calculation	is	displayed	in	Table	7.2	and	Figure	7.1.

Table	7.1	Calculation	of	Fund	Transfer	Rates	for	a	Mortgage	and	a	Loan

Contract
type

Interest
frequency

Amortization
type/amount

Notional Maturity
term (%)

Mortgage Semiannual Annuity 100,000 5,5	Years 2.6307
Loan Quarter 30,000 1,900,000 12,5	Years 3.9961



Table	7.2	Funding	Curve	Used	in	Calculation	of	Funds	Transfer	Rates

Maturity	term Interest	rate	(%)
1	Month 2.15
3	Months 2.22
9	Months 2.44
1	Year 2.54
3	Years 3.31
4	Years 3.62
5	Years 3.88
7	Years 4.24
9	Years 4.46
10	Years 4.55
15	Years 4.52

Figure	7.1	Funding	Curve	Used	in	Calculation	of	Funds	Transfer	Rates

Table	7.2	displays	the	calculated	 	in	%	with	an	approximate	2.6%	 	for	the	mortgage	and
an	approximate	3.9%	 	for	the	loan.	The	higher	 	for	the	loan	is	of	course	due	to	its	longer
maturity	cash	flows	and	the	increasing	term-structure	of	funds	rates	in	Table	7.1.

Having	calculated	the	funds	transfer	price	for	a	particular	asset	or	liability	the	actual	transfer
amount	is	then	simply	the	funds	transfer	price	times	the	notional	amount.	We	also	note	that



while	in	this	example	we	applied	the	 	calculation	to	the	individual	instruments	 	can	in
principle	also	be	applied	to	pools	of	instruments.	For	example,	we	could	apply	 	to	a
portfolio	aggregate	of	mortgage	cash	flows.	However,	our	focus	in	this	chapter	will	be	on
individual	instruments	 	as	this	allows	the	most	granular	breakdown	of	profitability
analysis.

Risk-Based	Funds	Transfer	Pricing
As	we	have	mentioned	previously	the	inclusion	of	risk	costs	is	an	important	component	in	a
bank's	funds	transfer	program.	Without	considering	the	risks,	in	general,	ex-ante	profitability	is
not	a	fair	measure	of	ex-post	profitability.	Since	a	bank's	management	planning	of	future	growth
areas	of	the	bank	is	often	based	on	ex-ante	profitability	projections	all	risks	and	embedded
costs	need	to	be	taken	into	account.

Note	that	both	risk	spreads	and	matched	maturity	funding	costs	are	assigned	at	origination.	The
assigned	risk	costs	on	top	of	the	matched	maturity	funding	costs	are	therefore	usually	based	on
long-term	behavior	rather	than	focused	only	on	the	current	risk	situation.	If	risk	spreads	are
assigned	based	on	the	current	situation	in	a	downturn,	the	bank	faces	increased	funding	costs
and	needs	to	increase	offered	rates	to	be	profitable—yielding	a	contraction	in	the	loan	market.
Similarly,	in	good	times,	the	current	risk	spreads	are	typically	smaller	than	usual	and	loan
offered	rates	can	decrease—potentially	leading	to	an	expansion.	The	reader	may	recall	that	we
have	already	had	this	discussion	of	using	current	versus	long-term	risk	in	the	chapter	on
portfolio	credit	risk	and,	specifically,	in	the	discussion	of	the	TTC	and	PIT	rating
methodologies.

Even	if	long-term	risk	costs	are	used,	the	bank	may	still	monitor	future	risk	spreads	as	a	basis
for	unexperienced	profit	and	loss.	For	floating	rate	products	both	the	funding	cost	and	risk
spreads	can	in	principle	be	viewed	as	repricing.	The	adjustment	of	customer	paying	rates
based	on	banks'	changing	funding	costs	at	repricing	is	standard	practice.	However,	it	may	be
harder	for	banks	to	adjust	risk	spreads	significantly	upwards	for	certain	customers	even	if
contractually	possible	at	repricing	times.	Risk	spreads	for	floating	rate	products	may	hence
follow	a	long-term,	product	maturity,	risk	assessment	approach	as	for	fixed	rate	products.

Credit	Risk	and	Capital
For	traded	assets	with	credit	risk	the	cost	of	clearing	default	risk	is	thecorresponding	credit
default	swap	premium	and	hence	the	markup	on	the	transfer	price	is	determined	by	the	market
in	which	the	credit	trades.	Clearing	credit	risk,	the	interest	margin	obtained	is	now	classified
as:

1.	 Treasury	residual	margin	(using	actual	duration	of	funding)

2.	 Total	branch	interest	margin	on	funds	transfer	price

3.	 Branch	risk	adjusted	margin	for	credit	risk

When	clearing	credit	risk	using	the	credit	default	swap	curve	the	credit	default	swap	curve	is
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added	to	the	interbank	funding	curve	to	obtain	a	new	funding	rate	that	includes	the	effect	of
clearing	the	default	risk.	The	branch	economic	value	added	spread	is	now	taken	as	the	loan
paying	rate	minus	the	funding	cost—inclusive	of	credit	risk.	Clearing	traded	credit	risk	the
total	transactions	between	the	branch	and	the	treasury	are

a.	 The	interest	rate	swap

b.	 The	treasury-issued	credit	default	swap	to	the	branch

While	the	above	clearing	works	for	traded	credits	and	credits	that	can	at	least	approximately
be	mapped	to	traded	credits,	a	large	part	of	the	banking	book	items	with	credit	risk	do	not	have
a	market.	That	is,	there	is	no	given	market	price	of	credit.	While	securitization	on	banking	book
items	may	provide	some	information	on	the	price	of	default	risk,	it	is	generally	difficult	to
extract	such	information	from	the	underlying	pools.

In	the	case	of	non-traded	credits,	the	cost	of	funds	for	credit	must	therefore	be	generated
internally.	Ideally,	one	has	available	estimates	of	expected	credit	losses	as	well	as	allocated
risk	or	capital.	In	the	cost	of	capital	approach	to	funding	costs,	one	splits	the	funding	into	two
parts.	The	first	part	is	the	risk-free	funding	and	the	second	part	is	the	risky	funding.
Specifically,	denoting	the	base	transfer	rate	by	 ,	expected	credit	loss	in	percent	of	notional
by	 ,	required	return	on	equity	capital	in	percent	by	 ,	and	allocated	credit	risk	capital,	in
percent	of	notional,	by	 ,	we	have	that

Here,	 	is	the	total	risky	funds	transfer	price	that	is	allocated	to	the	credit.	The	funding	is
effectively	split	up	in	two	parts:

1.	 Risk-free	interbank	funding

2.	 Risky	equity	funding

The	split	between	the	two	is	decided	by	the	allocated	credit	risk	capital	for	the	contract,	and
since	equity	funding	is	usually	much	more	expensive	than	interbank	funding,	 	is	increasing
in	allocated	credit	risk	capital	(risk).6

Example	FTP	for	a	Mortgage	Continued
Table	7.3	displays	the	calculation	of	 	for	the	sample	mortgage	in	Table	7.2.	The	calculation
is	also	split	up	in	the	effect	from	only	credit	risk	capital,

Table	7.3	Funds	Transfer	Pricing	for	Credit	Risk	for	the	Mortgage	in	Table	7.1

	(%) 	(%) 	(%) 	(%)
2.6307 2.8016 4.9122 4.929

and	only	expected	losses.	That	is,	spread,



The	calculation	uses	the	funding	curve	in	Table	7.1	as	well	as	an	expected	loss	curve,	an
allocated	capital	curve,	and	a	curve	for	projected	cost	of	equity	funding.	These	latter	curves
are	displayed	in	Table	7.4.	Our	example	uses	a	slightly	increasing	term-structure	for	expected
losses	of	the	mortgage	as	well	as	term-structures	of	allocated	capital	and	cost	of	equity.	The
term-structure	of	capital	rates	can	in	practice	be	replaced	by	a	single	(average	yearly)	capital
rate.	Similarly,	the	term-structure	of	equity	capital	rates	in	this	example	illustrates	increasing
expected	returns	over	time	from	investors	but	may	of	course	in	practice	be	replaced	by	a	single
return	rate.

Table	7.4	Funds	Transfer	Pricing	for	Credit	Risk	for	the	Mortgage	in	Table	7.1

Maturity	term	(M) (M)	(%) (M)	(%) (M)	(%)
1	Year 2.081 0.1 8
3	Years . . 8.5
5	Years 2.150 0.5 9.3
10	Years . 1 10
20	Years 2.219 . 11

Note	that	the	calculation	of	the	single	implied	 	for	expected	losses,	 ,	and	capital,	 ,	uses
a	solve	method.	Specifically,	we	numerically	solve	for	the	single	implied	risky	spread	of	the
contract	versus	the	case	with	zero	 	or	zero	allocated	capital,	 ,	or	both	zero.	From	Table	7.3
we	find	that	the	expected	loss	has	the	largest	impact	on	the	 	rate.	That	is,	 	has	the
largest	contribution	to	the	credit-risky	 	rate,	 .	The	example	also	shows	that
incorporating	the	risk	costs	due	to	credit	risk	for	this	mortgage	is	required.	The	credit-risky	

	rate	is	significantly	higher	than	the	base	 	rate.

A	key	issue	when	using	 	as	the	vehicle	for	calculating	funds	transfer	prices	to	branches	is
that	the	allocated	capital,	 ,	should	be	the	Euler	risk	contribution.	This	is	because	the	pricing
incentives	distributed	to	the	branches	will	then	be	consistent	with	local	portfolio	optimization
as	we	discussed	in	the	context	of	economic	justification	of	Euler	risk	contributions	in	the	first
market	risk	chapter.

Other	Risk	Charges	and	Expenses
The	process	of	adding	other	risk	charges	such	as	operational	risk	charges	follows	the	same
approach	as	for	credit	risk.	That	is,	we	can	interpret	 	as	the	total	economic	capital	allocated
and	 	as	the	total	expected	losses.	Non-risky	charges	such	as	operations	and	business	costs
are	in	general	treated	as	fixed	additions	to	 .	See	Dev	and	Rao	(2006,	ch.	4)	for	a
discussion	of	different	methods	of	expense	allocations	to	funds	transfer	prices.

Embedded	Optionality
For	many	assets	and	liabilities	the	future	cash	flows	are	not	known.	For	example,	demand



deposits	have	no	assigned	maturity,	loans	may	have	prepayment	options,	bonds	may	be	issuer
callable	and/or	holder	putable,	and	a	loan	may	have	a	cap	or	floor	on	the	rate.	In	these
situations	the	funds	transfer	price	needs	to	incorporate	the	uncertainty	due	to	these	unknown
cash	flow	streams.	This	inclusion	is	important	in	order	to	distribute	to	the	branches	the	right
pricing	and	valuation	incentives	for	these	products.7

To	price	these	embedded	options	one	can	in	general	consider	two	different	approaches:	They
are	the	financial	engineering	approach	and	the	statistical	model	approach.	In	the	financial
engineering	approach	the	embedded	option	is	formulated	as	a	market	priced	embedded	option.
The	option	is	valued	using	a	market	model	for	the	short-rate	such	as	the	Hull-White	and	the
implied	model	parameters	are	extracted	from	similar	market	instruments.	Finally,	the	funds
transfer	price	is	adjusted	with	the	embedded	option	value	using	a	so-called	option	adjusted
spread.	In	the	statistical	model	approach	a	model	of	behavior	is	formulated,	for	example,	a
prepayment	model	or	a	model	of	deposit	volume.	The	cash	flows	are	evaluated	under	the
model	and	the	funds	transfer	spread	needed	for	the	uncertainty	is	calculated.

Financial	Engineering	Approach	to	Valuation	of	Embedded	Options
In	the	financial	engineering	approach	the	embedded	options	are	American	in	nature,	such	as

Early	withdrawal	of	deposits

Early	prepayment	features

Embedded	options	can	be	viewed	as	bond	or	loan	and	option	packages.	For	example,	in	a
callable	bond	the	issuer	has	the	right	to	repurchase	the	bond	cash	flows	at	prespecified	price.
This	corresponds	to:

1.	 Selling	the	option-free	bond

2.	 Selling	a	call	option	on	the	bond

The	value	of	the	bond	or	loan	is	the	traditional	value	minus	the	call	option	value.

For	a	putable	bond	the	holder	has	right	to	sell	back	the	bond	at	prespecified	price.	It
corresponds	to:

1.	 Buying	the	option	free	bond	or	loan

2.	 Buying	an	option	to	sell	the	bond	(put	option)

The	value	is	the	bond	value	plus	the	put	option	value.

The	valuation	of	the	American	embedded	call	or	put	option	relies	on	a	model	for	the	interest
rate.	The	standard	market	model	uses	either	the	Hull	and	White	model	(Hull	and	White,	1994,
1996),

or	the	Black-Karasinski	model	(Black	and	Karasinski,	1991),
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Here	 	is	the	short-rate	of	interest,	 	is	the	volatility,	 	is	the	mean	reversion	rate,	and	 	is
the	increments	of	the	Wiener	process.	The	time-dependent	parameter,	 ,	is	chosen	to	fit	the
current	term	structure	of	interest	rates.

Having	specified	the	model	for	the	interest	rate,	 ,	the	next	step	is	to	value	the	embedded
American	option.	Hull	and	White	(1994,	1996)	specify	a	trinomial	tree	approach	to	solving	for
the	option	value.	In	particular	for	the	Hull-White	model	the	first	step	is	to	initially	consider	a
tree	for	the	discretized	process,

and	then	convert	the	tree	into	a	tree	for	the	full	model	by	translating

Using	this	tree	the	bond	prices	consistent	with	the	current	term-structure	can	be	calculated	and
the	bond	price	lattice	can	be	solved	backwards	to	obtain	the	option	price	consistent	with	the
term-structure.

For	embedded	cap	and	floor	rates	to	a	repricing	bond	or	loan	these	are	consistently	valued
using	the	classical	Black	commodity	options	model,	Black	(1976),	for	European	options.8	The
cap	and	floor	options	for	each	repricing	term	are	referred	to	as	caplets	and	floorlets
respectively	and	the	option	value	is	the	sum	of	the	value	of	all	the	caplets	and	floorlets

Having	calculated	the	embedded	option	value	the	next	step	is	to	define	the	markup	on	the	funds
transfer	price	due	to	the	embedded	option.	The	concept	of	option	adjusted	spread	(OAS)	is
used	in	this	context.	The	OAS	for	a	callable	bond	is	defined	as	the	fixed	spread	that	when
added	to	the	set	of	spot	(forward)	rates	used	in	valuation	gives	a	callable	bond	value
consistent	with	the	non-callable	bond	value.	Inpractice,	this	means	we	have	to	solve
numerically	for	the	OAS	using	the	given	value	of	the	bond	or	loan	without	embedded	options
and	the	embedded	option	value(s).	Having	obtained	the	OAS	we	can	now	add	this	to	the	funds
transfer	price	as

The	obtained	 	now	incorporates	into	the	funds	transfer	price	the	effect	of	non-traded	risk	as
well	as	any	market	priced	embedded	options.

Example	OAS	for	a	Floating	Rate	Note
Table	7.5	displays	the	option	adjusted	spreads	obtained	from	a	14-year	maturity	term	floating
rate	note	with	embedded	American	call	and	cap	and	floor.	The	embedded	call	maturity	term	is
10	years.	The	table	displays	the	obtained	cap	and	floor	OAS	and	embedded	call	OAS	with
different	assumptions	on	the	call	strike	level	as	percent	of	notional.9	The	cap	and	floor	levels
are	set	to	 	and	 ,	respectively,	and	the	cap	and	floor	valuation	is	done	using	the	Black
model	with	volatility	curves	for	the	caplets	and	floorlets	respectively.	The	American



embedded	call	options	are	valued	using	the	Hull-White	trinomial	tree	with	Hull-White	model
parameters	set	to

Table	7.5	Option	Adjusted	Spreads	for	Caps	and	Floors	and	American	Embedded	Call
Options	Using	Different	Call	Strikes

Interest	frequency Strike	(%) Call	OAS	(%) Capfloor	OAS	(%)
Year 100 0.56 0.123
Year 89 1.334 0.123
Year 70 3.130 0.123

The	option	adjusted	spread	is	obtained	by	numerically	solving	for	the	fixed	spread	that	would
make	an	investor	indifferent	between	the	plain	floating	rate	note	and	the	floating	rate	note	with
the	embedded	optionality.	For	reference	Table	7.6	displays	the	index	curve	for	repricing	of	the
floating	rate	note	as	well	as	the	volatility	curves	used	to	price	the	caplets	and	floorlets.

Table	7.6	Index	Curve	for	Repricing	of	the	Floating	Rate	Note	and	Volatility	Curves	for	the
Pricing	of	the	Caplets	and	Floorlets	Using	the	Black	Model

Maturity	term Repricing	index	curve Cap	vol	curve Floor	vol	curve
0.5	Year 2.61 0.2 0.184
1	Year 4.24 0.23 0.19
2	Years 4.23 0.24 0.196
3	Years 4.23 0.245 0.223
5	Years 4.26 0.23 0.213
10	Years 4.35 0.223 0.196

Note	that	in	our	example	the	OAS	adjustment	to	a	fair	market	rate	for	the	floating	rate	note	is
significant	when	the	call	strike	is	70%	of	notional.	For	higher	call	strike	rates	the	OAS
adjustment	is	lower.	The	cap	and	floor	OAS	adjustment	is	quite	small	since	the	range	of	the
floor	and	the	cap	is	wide	outside	the	range	of	market	rates.

Applying	the	Financial	Engineering	Approach	to	Consumer	Options
Having	derived	a	funds	transfer	pricing	model	incorporating	the	effect	of	market	priced
embedded	options	one	may	consider	applying	this	model	to	consumer	embedded	options	as
well	(e.g.,	prepayment	options).	However,	when	applying	this	model	to	non-traded	risks	there
are	several	issues	that	need	to	be	considered.

First,	consumers	may	not	act	as	rational	market	players	in	the	sense	that	embedded	options
are	not	exercised	even	when	beneficial.



This	is	referred	to	as	customer	irrationality	and	a	prime	example	is	that	all	consumers	who
should	rationally	prepay	at	a	certain	time	don't.	Moreover,	sometimes	consumers	prepay	when
they	shouldn't.	This	phenomenon	is	observed	in	McConnell	and	Singh	(1994),	Stanton	(1995),
Levin	(2001),	and	Levin	and	Davidson	(2005).

Second,	when	applying	the	OAS	model	to	consumer	options	it	is	not	clear	what	model
parameters	(e.g.,	implied	volatility)	should	be	used.

To	solve	the	first	problem	of	handling	the	apparent	irrationality	of	consumers	compared	to
market	participants	one	may	consider	consumers	as	rational;	however,	they	exercise	their
options	subject	to	transaction	costs.	An	example	of	a	transaction	cost	is	the	effort	it	takes	for	a
consumer	to	actually	prepay	the	loan	or	withdraw	the	funds	and	place	the	funds	in	another
account.	Arguably,	most	consumers	will	not	take	action	unless	the	cost	of	transactions	is
covered	by	the	gain	in	exercising	the	embedded	option.	Also,	one	may	argue	that	consumers
don't	follow	markets	continuously	and	the	decision	to	exercise	a	prepayment	option	may
happen	only	when	the	consumer	realizes	that	there	is	considerable	gain	in	doing	so.

Van	Deventer,	Imai,	and	Mesler	(2005,	ch.	31–32)	discuss	the	use	of	the	transactions	cost
approach	to	irrational	behavior	in	option	exercise	for	consumers.	The	method	is	founded	on	the
idea	that	consumers	are	rational	but	exercise	their	options	subject	to	transactions	costs.	The
transactions	cost	method	to	irrational	consumer	behavior	was	introduced	in	the	context	of
analyzing	prepayment	behavior	of	collateralized	mortgage	transactions	by	McConnell	and
Singh	(1994)	and	Stanton	(1995).	It	attempts	to	estimate	a	cost	of	action	or	a	cost	of
information.

We	introduce	a	transaction	cost	 	such	that	the	option	is	rationally	exercised	when	in	the
money	in	terms	of	 	where	 	is	the	original	strike	price.	Now,considering	a	large	pool
of	consumers	we	may	denote	the	density	of	 	by	 	and	set,	for	example,

where	 	is	the	generalized	logistic	distribution.	The	parameters	of	 	can	be
estimated	by	the	method	of	maximum	likelihood	such	that	for	representative	consumer	 	the
probability	of	exercise	at	 	can	be	found.	Of	course	for	a	fully	rational	consumer	the
cumulative	density,	 ,	is	degenerate	with	 	if	 	and	 	if	 .

To	estimate	the	exercise	probabilities	for	a	pool	of	consumers	we	proceed	on	a	basis	similar
to	that	used	to	assess	credit	risk	with	statistical	scoring	models.	Here	the	risk	factors	include
idiosyncratic	behavioral	variables	as	well	as	the	common	interest	rates	factors	(market	rates,
loan	rates,	deposit	rates)	that	trigger	the	action	of	the	customers	to,	for	example,	prepay	or
renegotiate	their	mortgage	or	to	reconsider	the	amount	deposited	as	well	as	its	allocation.

The	approach	taken	above	to	model	consumer	embedded	options	in	the	financial	engineering
framework	introduces	a	so-called	subjective	strike	model—capturing	the	fact	that	consumers
have	transactions	costs	for	exercising	their	options.	In	the	subjective	strike	model	the



embedded	option	strike	is	adjusted	by	the	consumer's	transactions	costs	leading	to	a	higher
strike	value	and	hence	a	larger	gain	in	the	value	of	refinancing	or	fund	withdrawal	is	required
for	most	consumers	to	act.	In	this	consumer	adjustment	to	the	financial	engineering	model	the
transaction	costs	represent	the	sensitivity	of	consumers	to	exercise	their	options	and	these
sensitivities	are	derived	from	historical	data	analysis	on	classifications	of	consumers	based
on,	for	example,	product	type,	region,	age,	and	income.10

For	prepayments	we	can	formulate	the	subjective	strike	model	as	borrowers	refinance	as	soon
as	the	present	value	of	the	loan	is	above	the	notional	adjusted	by	the	transactions	cost.	In	this
setting	a	loan	has	not	been	refinanced	if	the	present	value	has	not	exceeded	the	notional
adjusted	by	the	transactions	cost.	Moreover,	a	refinancing	occurs	if	and	only	if	it	is	the	first
time	that	the	present	value	of	the	loan	exceeds	the	notional	adjusted	by	the	borrower's
transactions	cost.	Note	that	this	path	dependency	captures	the	phenomenon	of	burnout	in
prepayments,	that	is,	that	pools	of	loans	that	have	already	experienced	large	exposure	to
refinancing	opportunities	tend	to	have	lower	prepayment	rates,	other	things	being	equal.	This	is
because	borrowers	that	are	sensitive	to	refinancing	opportunities	prepay	rapidly	as	soon	as	it
is	profitable.	After	a	period	of	lowrefinancing	rates,	only	the	least	sensitive	borrowers	still
remain	in	the	pool	and	prepayment	rates	decay.	Formulated	in	terms	of	the	transactions	cost
approach	this	means	that	after	the	borrowers	with	low	transactions	cost	have	already	left	the
pool	only	the	borrowers	with	high	transactions	costs	remain.

While	the	financial	engineering	approach	to	valuation	of	consumer	embedded	options	has
several	drawbacks,	such	as	the	difficulty	to	estimate	consumer	transactions	cost	and	option
implied	parameters	such	as	volatility,	it	also	has	several	advantages.	Specifically,	one	of	the
main	advantages	with	analyzing	customer	behavior	in	the	context	of	rational	no-arbitrage
pricing	is	that	the	usual	hedge	techniques	applied	by	fixed	income	traders	are	applicable.
Indeed,	a	consequence	of	replacing	the	rational	strike	price	with	the	estimated	irrational	strike
price	is	that,	from	the	perspective	of	the	fixed	income	trader,	the	implicit	option	embedded
bonds	held	by	customers	may	be	analyzed	and	hedged	as	any	fixed	income	portfolio	with
embedded	options.	Also,	the	approach	allows	for	an	idiosyncratic	valuation	of	customer
optionality.

Statistical	Model	Approach	to	Valuation	of	Embedded	Options
In	a	statistical	model	or	scenario-based	approaches	to	valuation	of	consumer	options	the
consumer	behavior	is	described	using	the	model	and	the	cash	flows	of	the	contract	are
evaluated	under	the	model.	In	contrast	to	the	financial	engineering	approach,	which	may	allow
idiosyncratic	valuation,	these	statistical	models	rely	on	large	pools	and	the	notion	of	the	law	of
large	numbers	to	derive	behavioral	statistics.	Traditionally	two	types	of	statistical	models
have	been	used.	These	are	prepayment	models	and	volume	models	for	deposits	and	facilities.

Prepayment	models	specify	the	prepayment	rate	of	a	pool	of	loans	conditional	on	pool
characteristics	such	as	loan	age,	product	type,	and	the	refinancing	incentive.	In	the	model	it	is
beneficial	to	prepay	if	it	is	cheaper	to	refinance	a	new	loan.	Hence,	prepayment	should	be
expected	when	offered	loan	rates	drop	below	the	paying	rate.	However,	just	as	in	the	case	of



the	financial	engineering	approach	all	borrowers	don't	refinance	even	if	it	would	be	beneficial
for	them	and	hence	the	prepayment	rate	is	not	discrete	0%	or	100%	but	rather	increases
smoothly	with	the	spread	between	the	paying	rate	and	the	current	refinancing	rate.	Sometimes
the	simple	conditional	prepayment	rate	(CPR)	model	is	used.	It	specifies	a	deterministic	rate
of	prepayment	or	a	term-structure	of	deterministic	prepayment	rates.	The	term-structure	of
prepayment	rates	captures	the	burnout	effect	in	prepayment.	However,	more	complex	stochastic
models	with	explanatory	variables	such	as	current	market	rates	driving	prepayment	decisions
are	needed	to	capture	the	prepayment	incentive.

Similar	to	prepayment	models,	deposit	volume	models	aim	to	capture	the	consumer's	decisions
to	withdraw	and	place	funds	in	the	bank	account.	Thewillingness	to	withdraw	funds	is
expected	to	increase	with	the	increased	relative	performance	of	other	funds	(e.g.,	equity)	and
other	bank	accounts.	As	for	prepayment	all	consumers	typically	don't	withdraw	all	funds	and
place	in	alternative	fund	sources	even	if	it	would	be	beneficial	to	them.

As	for	prepayment	models	the	models	used	to	describe	deposit	volume	can	be	stochastic	or
deterministic.	Commonly	used	stochastic	models	include	regression	models	with	logarithmic
volume	change	being	explained	by	key	variables,	for	example,	interest	rates,	GDP,	and
seasonal	terms	as	explanatory	factors.	A	frequently	used	deterministic	model	is	the	core	and
con-core	deposit	model,	which	specifies	a	portfolio	runoff	amortization	scenario	for	the	core
part.	See	Dev	and	Rao	(2006,	ch.	8).

Approaches	to	valuation	and	cash	flow	generation	for	deposits	have	been	extensively	studied
in	the	literature.	For	example,	see	Selvaggio	(1996)	and	Jarrow	and	Van	Deventer	(1998).	In
these	approaches	the	value	of	the	deposit	funding	increases	with	the	spread	between	the
funding	rate,	 ,	and	the	deposit	rate,	 ,	volume,	 ,	and	time,	 .	For	example,	Jarrow	and	Van
Deventer	(1998)	specify	the	deposit	present	value,	 ,	on	a	time	interval	 	as

where	 	is	a	discount	factor	and	 	is	a	particular	scenario	realization	of	the	rates	and	the
deposit	volume.	Taking	an	expectation	over	 	scenario	realizations,

In	this	model,	the	value	of	the	deposit	increases	with	the	spread,	 ,	the	deposit
volume,	 ,	and	the	deposit	time,	 .

Deposits	traditionally	represent	a	large	part	of	the	bank's	liabilities.	Small	changes	in	volumes
can	give	quite	large	changes	in	funding	costs	and	interest	income.	Since	the	valuation	of
deposits	is	critically	depending	on	the	duration	and	many	deposits	are	demand	deposits	with
no	assigned	maturity,	it	is	important	to	try	and	understand	the	effective	duration	of	deposits.
Moreover,	to	talk	about	the	risk-adjusted	returns	for	deposits	we	must	understand	their
duration.

Having	specified	a	model	for	the	prepayment	rate	or	the	deposit	volume,	the	next	step	is	to



7.5

evaluate	the	cash	flows	under	the	model.	The	funds	transfer	adjustment	with	a	model	is	similar
to	an	OAS	approach	using	the	present	value	without	the	model	and	the	(expected)	present	value
with	the	model.

For	example,	in	a	simple	CPR	model	for	prepayments	there	is	a	single	accelerated	loan	cash
flow	assumption,	while	a	stochastic	model	would	produce	many	cash	flow	paths	and	hence
many	present	value	estimates	from	which	an	expectation	can	be	taken.	The	prepayment	OAS
represents	an	adjustment	for	the	expected	contractual	interest	income	loss	which	can	be
measured	from	the	loss	in	present	value	due	to	the	prepayment.	Prepayment	can	also	be	viewed
as	a	reinvestment	risk	in	the	sense	that	when	prepayments	tend	to	occur	they	can	only	be
reinvested	at	the	current	lower	market	rates.	When	the	prepayment	model	is	used	for	products
with	quoted	market	prices	such	as	mortgage	backed	securities	one	can	solve	(with	a	given
prepayment	model)	for	the	internal	rate	of	return	that	gives	the	quoted	price.	The	OAS	is	the
shift	in	discount	rates	that	are	needed	to	arrive	at	a	specified	price.	Because	prepayment	rates
generally	rise	when	interest	rates	go	down	due	to	the	prepayment	incentive	(which	means
market	price	increases)	mortgage	backed	securities	are	in	general	negatively	convex.

When	the	deposit	model	is	deterministic,	or	equivalently,	one	uses	only	a	single	plausible
scenario	 	for	the	volume,	we	can	incorporate	the	adjustment	in	the	base	funds	transfer	rate.
This	is	because	of	the	associated	deterministic	cash	flow	adjustment.	Specifically,	in	this
approach	the	funds	transfer	rate	under	a	specific	scenario	 	is	calculated	as	the	usual	 	in
equation	(7.2)	(but	conditional	on	the	scenario	 	for	e.g.,	the	deposit	volume)	and	is	denoted	

.	We	can	now	extend	the	funds	transfer	price	in	equation	(7.4)	to	also	incorporate
scenario	or	deterministic	model	adjustments,	yielding

Example	Non-Maturity	Deposit	Volume	Scenario
Table	7.7	calculates	the	funds	transfer	rate,	 ,	for	a	non-maturity	deposit	with	an
associated	scenario	 	volume	schedule	as	well	as	a	rule	for	the	administered	deposit	rate.	The
administration	rule	for	the	deposit	rate	assigns	a	deposit	rate	for	different	market	rate	intervals.
This	rule	reflects	the	fact	that	deposit	rates	are	“sticky”	and	do	not	change	with	small	changes
in	market	rates.	The	deposit	volume	schedule,	expressed	as	a	factor	on	the	current	volume,	and
the	administrative	rule	for	the	deposit	rate	are	given	in	Tables	7.8	and	7.9,	respectively.	The
deposit	is	repriced	quarterly	and	interest	is	paidsemiannually	based	on	an	underlying	reference
market	rate	and	the	administrative	rules.	We	assume	that	the	funding	curve	in	Table	7.1	is	used
as	the	underlying	market	reference	rate.	Because	of	the	deposit	runoff	scenario	 	in	Table	7.8
the	deposit	is	completely	withdrawn	after	11	years.

Table	7.7	Funds	Transfer	Rate	for	a	Deposit	with	a	Scenario	for	the	Volume

Interest	frequency Current	volume FTP	(d)	(%)
Semiannual 85,432,890 2.615



Table	7.8	Deposit	Volume	Scenario	Used	to	Calculate	Deposit	Funds	Transfer	Rate.	The
Deposit	Volume	Factor	Acts	as	a	Multiplier	on	the	Current	Volume

Term Deposit	volume	factor
0,5	Year 1.1
1	Year 1.2
3	Years 1.2
5	Years 1.3
10	Years 1.3
11	Years 0

Table	7.9	Administrative	Rate	Rules	for	the	Deposit

Market	rate	(%) Administrative	deposit	rate	(%)
<1 0
<3 1
<5 3
<7 4
<10 6
<15 9
Otherwise 9

Using	the	deposit	volume	schedule	scenario	 	and	the	rule	for	the	administered	deposit	rate,
we	can	generate	future	deposit	cash	flows	and	subsequently	use	equation	(7.2)	to	generate	the
scenario	funds	transfer	price,	 ,	in	equation	(7.5),	which	is	displayed	in	Table	7.7.

Liquidity	Risk
The	pricing	of	liquidity	risk	cost	and	benefits	onto	firm's	assets	and	liabilities	through	funds
transfer	pricing	is	not	as	widespread	as	the	pricing	of,	for	example,	asset	credit	risk.	However,
just	like	firms	are	currently	pricing	expected	credit	losses	and	the	opportunity	cost	of	capital,
liquidity	pricing	should	be	instituted	in	a	way	that	rewards	providers	of	liquidity	and	penalizes
its	users.

The	liquidity	pricing	methodology	can	be	decomposed	into	two	distinct	components:

1.	 Mismatch	or	funding	liquidity	cost

2.	 Contingency	liquidity	costs,	that	is,	the	cost	of	holding	standby	liquidity

We	will	consider	each	of	these	components	next.

Pricing	Mismatch	Liquidity	Risk



The	pricing	of	mismatch	or	funding	liquidity	cost,	through	a	term	liquidity	charge	applied	to
long-term	illiquid	loans	as	well	as	a	liquidity	credit	applied	for	long-term	stable	funding	such
as	core	deposits,	is	relatively	well	developed.	Such	a	term	spread	is	used	in	firms'	funds
transfer	pricing	and	provides	relative	incentives	to	business	units	to	acquire	shorter	term	loans
and	longer	term	stable	funding.	In	the	pricing	of	the	expected	structural	liquidity	mismatch
costs	and	premiums	there	are	two	steps:

1.	 First,	the	firm	measures	its	term	structure	of	funding	liquidity	costs	by	swapping	fixed
funding	costs	into	floating	and	observing	the	resultant	spread	for	the	given	term.

2.	 Second,	the	liquidity	spread	is	applied	to	the	base	rate	in	discounting	of	cash	flows,	either
as	consumer	(adding	spread	to	base	rate)	or	supplier	(subtracting	spread	from	base	rate).

Table	7.10	illustrates	term	liquidity	spreads	in	basis	points.	For	example,	a	5-year	loan	with
annual	cash	flows	will,	for	valuation	purposes,	be	charged	with	the	term	liquidity	spread	at
each	annual	cash	flow	to	account	for	the	term	liquidity	locked	in	with	the	cash	flow.

Table	7.10	Term	Liquidity	Spreads

Term Term	liquidity	spread	(bps)
1	Year 0
2	Years 13
3	Years 27
4	Years 35
5	Years 40

To	convert	the	term	liquidity	spread	assigned	to	cash	flows	such	as	in	Table	7.10	to	an	FTP
spread	component	we	can	use	the	OAS	methodology.	Denote	therefore	the	value	of	an	asset	or
liability,	with	cash	flows	discounted	by	the	base	funding	rate,	as	 .	Similarly,	denote	the	value
of	the	same	asset	or	liability	valued	with	cash	flows	discounted	by	the	base	funding	rate	and
the	mismatch	term	liquidity	spread	as	 .	We	can	now	solve	for	the	single	implied	liquidity
mismatch	spread	by	solving	for	the	single	implied	spread,	 ,	that	if	added	on	top	of	the	base
funding	rate	in	 	for	all	terms	would	yield	value	 .	In	the	bank's	funds	transfer	pricing	system	
	is	added	to	the	asset	or	liability	matched	maturity	funds	transfer	price.

With	credit,	capital,	embedded	optionality,	and	term	liquidity	costs	we	can	extend	the	FTP
equation	(7.5)	as

This	practice	of	including	expected	liquidity	mismatch	costs	and	benefits	in	firms	(funds
transfer)	pricing	is	equivalent	to	the	practice	of	including	expected	loss	from,	for	example,
credit	risk.	Since	the	liquidity	mismatch	spread	is	logically	a	charge	or	credit	for	expected
mismatch	we	can	also	subsume	 	into	a	new	expected	loss	component,	 ,	such	that
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Hence,	the	 	component	can	now	consist	of	contributions	from	multiple	risks	such	as:

Expected	credit	loss	adjustments

Expected	liquidity	mismatch	adjustments

Expected	operational	risk	costs

Again,	the	liquidity	mismatch	contribution	can	be	both	positive	or	negative	depending	on
whether	it	is	a	charge	or	a	credit	for	liquidity.

When	pricing	mismatch	liquidity	risk	into	products	with	unknown	cash	flows	such	as	credit
facilities	and	non-maturing	deposits	the	expected	future	balance	is	frequently	used	to	generate
cash	flows.	This	is	because	accounting	for	the	costs	of	mismatch	liquidity	risk	is	concerned
with	the	structural,	expected	mismatch	of	the	balance	sheet	rather	than	the	unexpected
mismatch.	As	a	fair	approximation	to	the	expected	cash	flow	over	all	scenarios	we	can	replace

	by	 	as	in	equation	(7.5).

Example	of	Liquidity	Mismatch	for	a	Facility
We	consider	a	facility	with	a	core	(expected)	usage	of	the	facility	being	a	constant	drawdown
of	25%	until	maturity.	We	can	hence	simply	obtain	 	as	the	funding	rate	at	maturity	since
the	facility	behaves	like	a	bullet	loan	in	the	scenario.	Since	there	is	only	a	single	cash	flow	at
maturity	for	the	facility	there	is	also	no	numerical	solve	routine	needed	to	find	the	single
implied	liquidity	mismatch	spread	rate.	In	particular,	if	the	funding	liquidity	spread,	at	the
maturity	term	of	the	facility,	is	 	basis	points,	then	 	basis	points.	That	is,	the
facility	is	allocated	an	expected	liquidity	mismatch	funding	spread	of	 	basis	points.

Why	Charge	a	Spread	for	Liquidity	Mismatch?
To	understand	the	importance	of	a	bank	pricing	mismatch	liquidity	risk	into	its	liability
products	as	well	as	into	its	asset	products	consider	the	choices	a	bank	faces	when	funding	in
the	market.	A	bank	can	get	long-term	funding	in	two	ways:

1.	 Fund	directly	at	long	term	maturity.

2.	 Take	short-term	funding	(say	overnight)	and	roll	it	over	to	the	long	term.

The	market	charges	an	implicit	liquidity	premium	for	funding	through	option	1.	That	is,	long-
term	funding	is,	ceteris	paribus,	more	expensive.	This	is	because	it	has	no	rollover	uncertainty
(e.g.,	short-term	funding	may	not	roll	over	in	a	liquidity	crisis).	Clearly,	on	a	cost	basis	banks
then	prefer	to	roll	over	short-term	funding	and	not	pay	the	inherent	liquidity	premium.
Therefore,	to	create	the	correct	incentives,	FTP	should	reward	long-term	funding	when	we
discount	its	value	as	it	has	less	short-term	liquidity	risk.

Pricing	Contingency	Liquidity	Risk
While	liabilities	do	not	have	to	bear	capital	the	uncertainty	about	the	behavior	of	non-



contractual	liabilities	such	as	deposits	and	the	possibility	to	roll	over	short-termunsecured	and
secured	market	funding	is	the	largest	reason	for	a	firm	to	hold	a	contingency	liquidity	buffer.
The	opportunity	costs	of	holding	contingency	liquidity	need	to	be	priced	accordingly.

For	pricing	contingency	liquidity	costs	and	benefits	one	expects	to	follow	a	similar	approach
to	capital-based	risks	in	the	sense	that	the	opportunity	cost	of	maintaining	the	liquid	hedging
portfolio	to	cover	unexpected	contingency	liquidity	needs	to	be	priced	onto	the	consuming
assets	and	liabilities.	Moreover,	assets	and	liabilities	that	have	positive,	unexpected
contingency	liquidity	contributions	should	be	rewarded.

We	denote	the	contingency	liquidity	spread	by

where	 	is	the	allocated	unexpected	contingency	liquidity	need	and	 	is	the	opportunity	cost	of
funding	the	liquidity	need.	This	now	extends	the	funds	transfer	price	in	equation	(7.6)	as

As	a	concrete	example,	if	a	facility	has	an	unused	portion	of	 ,	and	in	the	unexpected
liquidity	crisis	situation	there	is	a	drawdown	of	 	of	the	unused	portion,	then	 	and	

.	Of	course,	the	exact	opportunity	cost,	 ,	depends	on	the	bank's	actual
composition	of	the	contingency	liquidity	portfolio	and	its	associated	execution	cost	to	raise	the
funds	in	case	of	the	drawdown.	Cash	equivalent	assets	in	the	liquidity	hedging	portfolio	carry	a
high	opportunity	cost	but	have	no	or	very	low	execution	costs	when	needed	to	create	liquidity.

It	is	important	to	understand	that	the	concept	of	pricing	the	costs	of	holding	liquidity
contingency	is	based	on	severely	stressed	liquidity	scenarios	rather	than	expected	structural
liquidity	mismatches.	Indeed,	the	definition	of	the	size	and	composition	of	the	liquidity	buffer
is	itself	based	on	survival	in	extreme	liquidity	stress	scenarios	that	generate	stressed	cash
outflows.	To	define	the	stressed	funding	need	of	the	liquidity	buffer	the	bank	can	take	a
compliance	regulatory	scenario	approach	(i.e.,	use	Basel	III	prescribed	scenarios	for	liquidity
coverage	ratio).	Alternatively,	the	bank	can	use	(a	set	of)	internal	economic	scenario(s)	for	the
definition	of	the	liquidity	buffer.	As	we	have	discussed	in	the	previous	chapter	on	liquidity	risk
the	regulatory	LCR	calculation	for	a	bank	has	regulatoryprescribed	facility	drawdown	and
deposit	withdrawal	rates	under	stress—based	on	features	such	as	account	characteristic	and
counterparty.	Assuming	there	is	no	natural	hedge	for	these	stressed	outflows	the	bank	needs	to
hold	a	stock	of	high-quality	liquid	assets	(adjusted	for	haircuts)	to	compensate	for	the	stressed
outflows.	Holding	the	stock	of	assets	carries	an	opportunity	cost	as	the	alternative	would	be
investment	in	the	business.	Hence,	the	final	liquidity	contingency	cost	depends	both	on	the
bank's	opportunity	cost	as	well	as	specific	balance	sheet	composition.	The	regulatory	NSFR,
which	measures	long-term	liquidity	stability	of	the	balance	sheet,	is	of	course	more	connected
to	the	liquidity	mismatch	spread,	which	rewards	long-term	stable	liabilities.

In	the	calculation	of	the	contingency	liquidity	risk	spread,	 ,	we	can	allocate	contingency
liquidity	at	the	bottom-up	facility	level,	or	at	a	top-down	portfolio	level	for	a	liquidity	risk
stress	scenario.	Specifically,	 	can	be	based	on	a	standalone	calculation	per	facility	and



deposit	or	its	contribution.	If	the	contingency	liquidity	need	is	allocated	bottom-up,	there	is	a
potential	inconsistency	between	bottom-up	allocated	contingency	liquidity	and	firm-level
estimated	need	for	contingency	liquidity.	While	natural	hedges	for	contingency	liquidity	are
harder	to	find	than	for	market	risk	business	units	should,	through	the	funds	transfer	pricing
program,	be	allocated	their	contribution	to	the	firm-level	need	for	contingency	liquidity.	The
Cash	Liquidity	at	Risk	measure,	discussed	in	the	liquidity	risk	chapter,	with	its	allocation
properties	gives	opportunity	to	allocate	the	liquidity	contingency	need	top	down,	taking	into
account	portfolio	hedging	effects,	as	is	best	practice	for	market	and	credit	risk.	Even	if	a
regulatory	definition	is	used	to	define	the	liquidity	buffer,	the	bank	still	needs	a	model	to
distribute	the	liquidity	buffer	contributions	to	the	assets	and	liabilities.	Hence,	in	contrast	to
Basel	banking	book	credit	risk	capital	risk	weighted	assets	as	in	equation	(4.40)	(which	sum	to
total	risk	weighted	assets),	the	bank	needs	its	own	model	for	distribution	of	liquidity
contingency	costs.

Note	that	since	contingency	liquidity	costs	stem	from	the	opportunity	cost	of	holding
counterbalancing	capacity	a	bank	that	holds	a	cost-efficient	(optimal)	counterbalancing
capacity	is	capable	of	offering	a	more	competitive	market	price	on,	for	example,	facilities	and
deposits.	Clearly,	holding	excessive	counterbalancing	capacity	buffers	impacts	the	bank's
profitability	and	the	competitiveness	of	the	bank.	However,	there	is	also	complexity	in
measuring	opportunity	costs	of	the	counterbalancing	capacity.	As	we	have	discussed	before
there	is	a	trade-off	in	the	choice	of	counterbalancing	capacity	portfolio.	Cash	has	high
opportunity	cost	when	not	needed,	but,	when	needed	to	create	liquidity	it	has	no	liquidity
execution	costs.	High-yield	bonds	may	have	low	opportunity	cost	when	not	needed	but	may	be
very	costly	when	needed	to	create	liquidity.	Liquidity	hedging	optimization,	which	we	have
discussed	extensively	in	the	liquidity	risk	chapter,	should	hence	be	a	core	function	in	banks.	It
is	as	important	as	managing	capital.

Finally,	a	bit	simplified,	we	can	say	that	credit	risk	capital	is	held	for	on–balance-sheet	asset
items	such	as	loans	and	facility	drawn	amounts.	Thecapital	cost	is	the	opportunity	cost	of	the
capital	base.	Counterbalancing	capacity	is	held	for	both	assets	and	liabilities	with	a	focus	on
potential	future	commitments	such	as	a	significant	further	draw	on	a	facility	in	case	of	liquidity
distress.

Funds	Transfer	Rate	and	Risk	Adjusted	Returns
Focusing	on	the	branch	profitability	measurement	with	FTP	spreads—in	evaluation	of	the	ex-
ante	performance	of	an	asset	or	liability—the	funds	transfer	price	serves	as	an	estimate	of	the
expected	costs	associated	with	the	asset	or	liability.	Hence,	the	funds	transfer	price	is	closely
related	to	the	contribution	margin	calculated	in	business	economics.	That	is,	the	consumer
paying	rate	minus	the	funds	transfer	price	can	be	referred	to	as	a	contribution	margin.	In	this
context	the	contribution	margin	is	often	referred	to	as	the	economic	value	added.	There	is
typically	also	one	significant	difference	between	the	classical	contribution	margin	concept	as
used	in	business	economics	and	the	economic	value.	Specifically,	the	economic	value	concept
based	on	funds	transfer	price	is	an	expected	margin	and	is	in	general	true	only	ex-ante.	It	is
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therefore	important	to	consider	the	potential	deviation	of	the	economic	value	ex-post.	As	the
ex-ante	estimate	is	an	expectation	of	risk	losses	it	can	often	be	more	accurately	assessed	on
large	pools	of	assets	or	liabilities.	One	example	is	credit	risk	expected	loss,	which	can	be
more	accurately	modeled	on	pools	of	similar	loans.

The	economic	value	added	( ),	for	paying	rate	 ,

should	generally	be	positive	for	an	asset	or	liability	to	be	expected	to	contribute	to	the	bank's
profitability.	However,	it	is	also	the	case	that	one	wants	to	rank	different	 	based	on	their
risk.	In	general,	for	two	assets	with	the	same	 	one	prefers	to	acquire	the	asset	with	the	less
risk	or	capital	(contribution).	The	concept	of	risk-adjusted	return	on	capital	( )
compares	the	 	to	the	capital	(contribution)	for	a	certain	asset	and	ranks	the	assets
accordingly.	Specifically,

where	 	is	the	allocated	capital.	Noticeable	is	that	many	banks	define	a	threshold	for	
that	every	new	asset's	 	is	expected	to	be	above.	The	threshold	is	usually	defined	so	that
it	is	consistent	with	the	equity	holders'	expected	returns	on	the	bank	stock.	In	this	case,	any
asset	with	a	 	higher	than	the	bank	threshold	contributes	positively	to	meeting	investor's
expected	returns.

Example	of	Mortgage	Risk	Adjusted	Returns
Table	7.11	displays	the	economic	value	added	and	the	1-year	RAROC	of	the	credit-risky
mortgage	in	Table	7.2.	The	1-year	RAROC	is	obtained	by	dividing	the	economic	value	by	the
capital	allocated	at	1-year	horizon	in	Table	7.4.	The	average	customer	paying	rate	is	assumed
to	be	5.5%.11	Based	on	the	average	customer	paying	rate	and	the	funds	transfer	rate	we	can
conclude	that	the	mortgage	is	making	a	positive	value	contribution.

Table	7.11	Economic	Value	and	RAROC	for	the	Credit-Risky	Mortgage	in	Table	3

	(%) Customer	rate	(%) Economic	value	added	( ) RAROC
4.929 5.5 0.0057 5.707

Profitability	Measures	and	Decompositions
With	synthetic	funds	transfer	instruments	the	bank's	profit	and	loss	is	essentially	split	up	in	the
branches	net	interest	margin	and	the	residual	profit	and	loss	portfolio	of	treasury.	We
represented	this	portfolio	split	in	equation	(7.1)	as



with	 	an	asset,	 	the	synthetic	funds	transfer	liability,	and	 	the	actual	treasury	funding.	Of
course,	if	 	is	a	liability	such	as	a	deposit,	then	the	synthetic	funds	transfer	instrument	 	is	an
asset.

For	most	banks	there	is	structural	interest	rate	risk	and	liquidity	risk	arising	in	the	residual
portfolio	due	to	the	fact	that	customers	in	general	want	both	long-term	loans	and	quick	access
to	the	deposits	they	made.	The	management	of	the	interest-rate	risk	in	the	residual	portfolio	of
long	and	short	holdings	is	made	more	difficult	than	the	management	of	a	traditional	bond
portfolio	due	to	embedded	options	on	the	customer	side.	As	discussed	previously,	banking
books	contain	numerous	implicit	options,	such	as	early	withdrawal	options,	options	to	transfer
from	less	to	more	profitable	accounts,	prepayment	options	on	mortgages,	borrowing	options,
and	so	on.	As	any	of	these	options	are,	to	some	extent,	exercised	in	response	to	interest	rate
changes	(market	or	administered	rates),	they	induce	nonlinear	interest	rate	risk.

Balance	Sheet	Breakdown	with	Funds	Transfer	Instruments
The	breakdown	of	the	balance	sheet	that	funds	transfer	instruments	create	with	equation	(7.7)	is
illustrated	in	Figure	7.2.	Consistent	with	the	notation	in	equation	(7.7),	Figure	7.2	denotes	the
branch	customer	leg	of	the	transaction	by	 	and	the	Treasury	market	funding	leg	by	 .
Similarly,	the	synthetic	FTP	leg	of	the	transaction	is	the	 	leg.	Viewed	standalone,	both	the
branches	and	the	Treasury	funding	have	synthetic	FTP	 	legs	to	create	matched	balance	sheets
on	that	level.	Specifically,	the	matched	balance	sheet	on	the	branches	is	the	 	leg	for
assets	and	for	the	treasury	the	matched	balance	sheet	is	 .	In	Figure	7.2	we	also	break
down	further	the	FTP	B	leg	into	its	different	risk-based	components	that	we	have	discussed	in
this	chapter.	Specifically,	this	includes:

Interest	rate	matched	maturity	funding	costs

Expected	credit	and	(for	example)	operational	costs

Expenses

Cost	of	capital

Embedded	optionality	costs	such	as	option	adjusted	spreads

Mismatch	and	contingency	liquidity	costs



Figure	7.2	FTP	Breakdown	of	the	Balance	Sheet

With	this	breakdown	of	the	synthetic	FTP	 	leg,	branches'	profitability	and	solvency	can	be
measured	on	multitier	levels	using	the	components.	For	example,	a	loan	or	a	whole	branch	may
be	profitable	as	long	as	credit	cost	components	are	not	allocated	while	turning	unprofitable	if
they	are	allocated.	Note	that	profitability	of	the	customer	 	legs	minus	the	synthetic	FTP	
legs	are	summable	across,	for	example,	loans	to	branch	or	all	branches	in	a	region.	In	this
structure	the	profitability	of	the	treasury	is	also	measured	distinct	from	the	branches
profitability	as	the	synthetic	FTP	assets	minus	the	actual	funding	legs.	That	is,	 .	We	have
hence	created	separate	performance	measurement	units	with	the	balance	sheet	breakdown	in
Figure	7.2	providing	the	foundation	for	the	bank	to	analyze	its	profitability	and	solvency	more
granularly	than	on	aggregate	firmwide	basis.

As	we	roll	up	the	balance	sheet	to	consider	the	profitability	and	solvency	on	the	bank	level,	we
eliminate	the	synthetic	FTP	 	legs—obtaining	actual	assets	versus	actual	liabilities	at	the
aggregate	level.	This	elimination	is	also	illustrated	in	Figure	7.2.

Application	to	Net	Interest	Income	and	Economic	Value	View
On	the	aggregate	bank	level	the	net	interest	income	analysis	projects	the	interest	income	of	the
bank's	assets	and	liabilities	under	various	interest	rate	and	other	market	scenarios	to	create	a
firmwide	view	of	net	interest	income	impact	from	the	scenarios.	Since	most	banks	have
significant	amounts	of	short-term	funding,	there	would	be	an	artificial	asymmetry	in	future
interest	flows	from	assets	and	liabilities	if	short-term	funding	is	not	rolled	over.	In	addition	to
rollover	assumptions	to	create	a	future	matched	balance	sheet,	it	is	also	common	to	assume
historical	portfolio	growth	rates	over	the	term	of	the	net	interest	income	projection.

A	distinct	difference	between	net	interest	margin	profitability	scenarios	and	liquidity	scenarios
is	that	profitability	scenarios	are	in	general	focused	on	relatively	modest	market	changes	and



that	customers	behave	largely	“as	usual.”	This	is	in	sharp	contrast	to	liquidity	risk,	as	we	have
discussed	in	the	previous	chapter,	which	focuses	on	already	extreme	events	and	the	associated
extreme	customer	behavior.

FTP	is	an	important	component	in	a	bank's	net	interest	margin	profitability	analysis.	This	is
because	when	profitability	is	assessed	on	the	branch	level	it	is	based	on	the	customer	leg	
minus	the	FTP	synthetic	funding	 	issued.	When	profitability	focuses	on	current	rate	spreads
banks	calculate	economic	values	and	risk	adjusted	returns	as	we	did	in	Table	7.11	for	the
sample	mortgage.	When	profitability	focuses	on	the	potential	future	stream	of	net	interest
income	rather	than	current	rate	spreads	the	net	interest	income	is	measured	as	the	interest
income	from	the	customer	 	leg	minus	the	synthetic	FTP	 	leg.	The	interest	flow	on	the
synthetic	transfer	instrument	is	the	FTP	rate	where	all	relevant	risk	components	and	business
expenses	have	been	taken	into	account.

Example	Net	Interest	Margin	Profitability	Analysis	with	FTP
To	illustrate	how	FTP	is	used	in	practice	for	loan-level	net	interest	margin	profitability
analysis	we	use	a	mortgage	example.	The	mortgage	example	we	use	is	similar	to	the	example
mortgage	in	Table	7.2	in	that	it	has	5.5	years	to	maturity	and	a	principal	of	100,000	units	of
currency.	We	also	use	exactly	the	same	FTP	parameters	for	this	mortgage,	such	as	funding
costs,	credit	spreads,	and	capital.	That	is,	we	use	the	expected	loss	curve,	the	allocated	capital
curve,	and	the	curve	for	cost	of	equity	funding	in	Table	7.4.	These	are	the	only	FTP	risk	costs
we	use	for	the	loan	and	hence	we	assume	no	business	expenses	and	that	the	loan	has	no
embedded	optionality	charge,	that	is,	no	prepayment	features.	In	addition,	the	mismatch
liquidity	spread	is	assumed	to	be	immaterial	and	as	the	loan	has	no	prepayment	feature	that
could	potentially	impact	contingency	liquidity	risk	positively	its	contribution	to	contingency
liquidity	risk	is	alsonull.

The	current	mortgage	pays	floating	interest	and	fixed	capital	every	6	months	with	the	next
payment	assumed	to	be	immediate.12	The	mortgage	floating	rate	payment	uses	the	funding	curve
in	Table	7.1.	We	also	assume	that	the	bank	has	put	a	fixed	1%	spread	on	the	floating	rate	at
future	repricing	times	and	that	the	capital	payments	are	fixed	at	9,000	units	of	currency.	This
means	that	the	last	capital	payment	is	a	residual	payment	with	the	regular	9,000	in	capital	plus
the	1,000	residual	payment	left.

Table	7.12	displays,	similarly	to	Table	7.3	for	the	annuity	mortgage,	the	fixed	capital	payment
mortgage	FTP	rates.	Table	7.13	displays	the	interest	and	capital	flows	as	well	as	the	net
interest	margin	(NIM)	versus	the	synthetic	FTP	instrument.	The	notation	for	the	different	NIM
legs	is	following	the	same	principle	as	for	FTP	in	Table	7.12.	We	note	from	Table	7.13	that	the
mortgage	NIM	is	positive,	that	is,	profitable	as	long	as	we	do	not	include	the	mortgage
expected	loss	in	 .	Clearly,	the	1%	spread	used	by	the	bank	on	this	mortgage	is	not
sufficient	given	its	expected	loss.	Consequently,	the	NIM	with	both	expected	loss	and	capital
cost,	 ,	is	also	unprofitable	for	this	mortgage.	The	contribution	of	this	mortgage	to	the
branch	profitability	is	hence	negative.	In	order	to	make	the	mortgage	profitable	the	bank	has	to
increase	the	current	1%	spread	policy	on	the	mortgage.	For	illustration,	Figure	7.3	also



displays	the	different	net	interest	income	legs	for	the	mortgage	graphically.

Table	7.12	Funds	Transfer	Pricing	for	the	Mortgage	Example	with	Fixed	Capital	Payments

	(%) 	(%) 	(%) 	(%)
2.467 2.486 4.595 4.615

Table	7.13	Sample	Mortgage	Interest	and	Capital	Flow	as	Well	as	Net	Interest	Margin
Relative	to	Synthetic	FTP	Legs

Cash	flow	time Interest Capital
0	years 2,269.2 9,000 1,024.94 1,014.87 60.89 71.07
0.5	years 1,717.03 9,000 461.16 452.03 523.02 532.25
1	year 1,729.27 9,000 418.74 410.45 474.93 483.3
1.5	years 1,684.55 9,000 371.47 364.12 421.3 428.73
2	years 1,571.48 9,000 327.93 321.44 371.93 378.49
3	years 1,450.27 9,000 282.32 276.73 320.2 325.84
3.5	years 1,267.77 9,000 236.39 231.71 268.11 272.84
4	years 1,074.34 9,000 189.38 185.63 214.78 218.57
4.5	years 825.13 9,000 144.16 141.3 163.5 166.38
5	years 582.06 9,000 97.4 95.47 110.46 112.41
5.5	years 298.63 10,000 62.23 60.24 73.71 75.76

Figure	7.3	Sample	Mortgage	Net	Interest	Margin	Relative	to	Synthetic	FTP	Legs

The	net	interest	income	measure	holds	the	projected	future	profit	and	loss	flows.	These	flows
are	also	the	basis	for	an	economic	value	view	that	looks	at	the	long-term	solvency	of	the



balance	sheet.	In	this	FTP	context	we	can	obtain	a	solvency	view	on	account	level.	To	obtain
this	for	our	example	mortgage	we	just	need	to	sum	the	discounted	value	of	the	different	NIM
legs	in	Table	7.13.	Clearly,	doing	this	the	mortgage	economic	value	contribution	to	the
portfolio	is	negative	when	expected	losses	are	taken	into	account	as	all	the	NIM	components
are	negative	for	this	case.	We	can	interpret	this	as	a	negative	equity	situation	for	the	mortgage
as	the	value	of	equity	is	the	residual	value	of	the	asset	minus	the	liability.



Banking	Book	Fair	Value	with	Funds	Transfer	Rates
Traded	instruments	like	bonds	have	risk	spreads	embedded	in	the	market	quotes.	The	reader
may	recall	from	the	portfolio	credit	risk	chapter	that	we	obtained	the	reduced	form	market
credit	spread	in	equation	(4.1).	Empirically,	the	market	credit	spread	is	significantly	higher
than	empirical	credit	loss	rates,	suggesting	that	the	market	spread	includes	more	than	just	credit
risk,	for	example,	liquidity	risk	and	approximate	capital	costs	associated	with	holding	the
position.

While	the	banking	book	items	are	not	market	traded,	the	FTP	risk	spreads	are	an	attempt	to
capture	all	the	risk	costs	associated	with	the	position.	Using	the	FTP	rates	in	the	fair
discounting	of	account	cash	flows	hence	yields	an	internal	model–based	fair	value	for	the
banking	book	items.	This	approach	to	fair	value	is	motivated	since	the	FTP	spreads	represent
the	bank's	best	estimates	of	the	risk	spreads	in	absence	of	a	market	where	spreads	are
embedded	in	the	market	quotes.

Example	of	Fair	Values	with	FTP
Table	7.14	displays	the	fair	values	obtained,	for	the	same	sample	mortgage	we	used	for	NIM
and	economic	value	above,	using	FTP	discounting	and	the	same	breakdown	of	the	fair	value
(FV)	as	in	Table	7.12	for	FTP.	Using	only	the	funding	curve	in	discounting	the	fair	value,	 ,	is
above	the	principal	value	of	100,000	units	of	currency	due	to	the	1%	customer	spread.
However,	when	we	add	expected	losses	in	discounting	the	fair	value,	 ,	it	is	less	than	the
principal	value.	This	is	also	true	when	we	have	both	expected	losses	and	capital	costs	as	in	
.

Table	7.14	Fair	Values	for	the	Mortgage	Example	with	Fixed	Capital	Payments

103,460 103,402 97,459 97,405

To	see	how	we	can	use	the	FTP	fair	value	method	for	unearned	profit	and	loss	assignment	in
the	banking	book,	we	assume	that	at	origination	the	fair	value	with	all	the	risk	costs	for	the
mortgage,	 ,	was	exactly	at	principal	value	due	to	a	lower	expected	lifetime	credit	loss	and
capital	cost	at	origination.	Since	then,	lifetime	expected	credit	losses	and	capital	costs,
obtained	from	Table	7.4,	have	increased	to	much	higher	levels	than	at	origination.	This	gives
an	unearned	loss	on	the	mortgage	as	 	units	of	currency.	Assuming	it	is
contractually	and	socially	acceptable	for	the	bank	to	increase	the	1%	customer	spread	at	the
next	repricing	they	can	increase	the	fair	value	and	hence	reduce	the	unearned	loss.

A	Note	on	the	Scope	of	Funds	Transfer	Pricing
The	funds	transfer	price	in	general	measures	funding	costs	(assets)	and	funding	benefits
(liabilities).	The	matched	maturity	funding	transfer	price	discussed	here	(and	including	risk
spreads)	is	more	amenable	to	banking	book	and	buy-and-hold	investment	assets	such	as	bonds.



This	is	because	their	main	source	of	profit	and	loss	is	net	interest	margins	(over	a	funding
cost).	Many	FTP	risk	spreads	that	are	taken	into	account	for	banking	book	items	such	as	cost	of
capital,	expected	loss,	and	so	on	are	already	priced	by	the	market	into	investment	assets	such
as	bonds.	This	should	be	taken	into	consideration	when	FTP	is	used	for	(long-term)
investments	in	market	traded	assets.

As	a	simple	rule	of	thumb,	one	can	consider	the	matched	maturity	funds	transfer	pricing
discussed	here	as	being	appropriate	for	cases	when	net	interest	margin	is	the	basis	for	profit
and	loss	(buy-and-hold	case).	However,	there	are	certainly	portfolios	where	the	profit-and-
loss	contributions	are	from	both	(short-term)	net	interest	margin	and	mark	to	market.	Hence,
there	is	some	ambiguity	in	reality.

The	logical	approach	of	FTP,	to	estimate	funding	costs	and	risk	spreads,	is	used	broadly	for
many	financial	instruments	although	the	actual	techniques	may	differ.	For	example,	bilateral
OTC	derivatives	such	as	floating	rate	agreements,	swaps,	and	forwards	estimate	profit	and
loss	using	the	net	interest	income	from	the	legs	as	well	as	the	discounted	value	of	all	net
payments	(mark	to	market).	Adjustments	for	credit	risk	are	through	CVA	as	we	have	discussed
in	the	chapter	on	counterparty	credit	risk.	While	in	FTP	up-front	funding	costs	is	the	core	many
OTC	derivatives	such	as	swaps	are	unfunded.	That	is,	they	are	entered	into	at	zero	cost	with	no
funding	needed.	However,	future	funding	requirements	(to	fund	collateral	posts)	and	funding
benefits	(received	collateral	from	counterparty)	are	measured	using	FVA	as	we	discussed	in
the	counterparty	credit	risk	chapter.

Regulation	and	Profitability	Analysis
In	general,	regulation	is	less	prescriptive	for	profitability	analysis	and	the	core	risks	driving
profitability	in	the	banking	book	than	regulation	for	market,	credit,	and	liquidity	risks.	There
are,	however,	areas	where	profitability	analysis	can	be	viewed,	either	directly	or	indirectly,	as
a	core	regulatory	requirement.	These	include:

1.	 Funds	transfer	pricing	requirements

For	example,	Basel	requirements	instituted	that	developed	credit	risk	models	should	be
used	in	product	approval	and	pricing	as	well	as	risk	measurement.	Consequently,	banks	use
funds	transfer	pricing	to	price	the	credit	risk	explicitly	onto	credits	as	in	equation	(7.3).
The	credit	risk	capital	is	the	available	capital	while	the	decomposition	of	capital	to	loan
and	customer	levels	can	use	an	allocation	scheme	based	on	the	regulatory	risk	weighted
assets	or	the	economic	capital	model.	More	recently,	the	Basel	III	liquidity	risk
requirements	are	instituting	a	necessary	liquidity	component	in	banks'	funds	transfer	pricing
as	well.	As	we	have	already	discussed	in	this	chapter,	Basel	Committee	(2008)	specifies
that	banks	should	incorporate	liquidity	costs,	benefits,	and	risks	in	the	product	pricing,
performance	measurement,	and	new	product	approval	process	for	all	significant	business
activities.	CEBS	(2010)	also	focuses	on	the	need	for	firms	to	develop	a	sound	practice	of
pricing	liquidity	risk.

2.	 Basel	pillar	2	requirements



Bank's	profitability	analysis	and	the	interest	rate	risk	assessment	of	the	banking	book	is
part	of	pillar	2	in	Basel.	Pillar	2	is	based	on	four	key	principles:

i.	 Bank's	own	assessment	of	capital	adequacy

ii.	 Supervisory	review	process

iii.	 Capital	above	regulatory	minimum	(established	in	pillar	1)

iv.	 Supervisory	intervention

The	principle	of	banks'	own	assessment	of	capital	adequacy	focuses	on	the	need	for	banks
to	establish	a	sound	internal	capital	adequacy	assessment	process	(ICAAP).	All	material
risks	incurred	by	the	bank	should	be	part	ofthe	ICAAP	process.	Banking	book	interest	rate
risk	is	counted	by	regulators	as	a	specific	risk	in	pillar	2	that	should	bear	capital	and	is
hence	part	of	the	ICAAP	process.	The	measure	of	interest	rate	risk	in	the	banking	book	is
traditionally	referred	to	as	the	earnings	at	risk	(EaR)	and	is	a	classical	VaR	measure.	The
EaR	can	be	based	on	the	net	interest	margin	profit	and	loss	under	market	interest	rate
scenarios	or	use	a	simplified	repricing	gap	approach.	Note	that	EaR	can	be	more	difficult
to	compute	than	market	risk	VaR.	This	is	because	the	banking	book	contains	numerous
embedded	optionalities	that	consumers	may	exercise	at	their	discretion	and	the	customer
behavior	may	be	impacted	by	the	market	scenarios.	As	we	have	discussed	in	this	chapter
there	are	two	main	model	approaches	to	embedded	optionality	in	the	banking	book.	These
are	the	(adjusted)	financial	engineering	approach	and	the	statistical	model	approach.	Banks
are	also	required	to	analyze	the	impact	on	profitability	under	standardized	interest	rate	risk
shocks.

While	there	are	pillar	3	requirements	on	banks	to	disclose	interest	rate	risk	in	banking
book,	the	regulation	is	more	principle	based	and	there	is	no	regulatory	charge.	Historically,
there	have	been	several	bank	failures	due	to	interest	rate	risk,	for	example,	the	savings	and
loans	crisis	in	the	1980s	and	1990s	in	the	United	States,	where	banks'	mismatch	in	the
balance	sheet	created	an	exposure	to	sharply	rising	short-term	funding	rates.	It	is	therefore
surprising	that	regulators	haven't	yet	instituted	a	specific	charge	for	interest	rate	risk	in	the
banking	book.	However,	at	the	time	of	writing	this	book	a	Basel	Committee	Task	Force	on
Interest	Rate	Risk	(TFIR)	is	working	on	potential	new	regulatory	measures	for	both	interest
rate	risk	in	the	banking	book	and	the	credit	spread	risk	in	the	banking	book	using	an
economic	fair	value	approach.

In	this	chapter	we	have	discussed	the	importance	of	breaking	down	the	net	interest	margin
profitability	analysis	to	granular	levels.	This	is	important	for	the	bank's	management	to	be
able	to	take	risk	adjusted	return–based	decisions	on	where	portfolio	growth	should	be
focused.

3.	 Firmwide	stress	testing

The	relatively	recent	firmwide	CCAR	and	EBA	stress	testing	requires	input	from	stressed
net	interest	margin	analysis.	For	example,	CCAR	focuses	on	the	pre-provision	net	revenue
(PPNR)	stress	testing.	PPNR	is	the	sum	of	three	parts:	net	interest	income,	non-interest



income,	and	non-interest	expense.	For	most	banks,	PPNR	is	dominated	by	the	net	interest
income	from	borrowing	and	lending.	However,	for	banks	with	large	trading	operations
there	can	be	a	significant	contribution	from	net	non-interest	income.	As	we	shall	discuss	in
Chapter	9	on	firmwide	scenario	analysis	and	stress	testing	one	can	use	different
approaches	to	obtain	the	banking	book	earnings	and	loss	projections.	One	approach	is	to
use	the	asset	and	liability	management	system	for	scenario-based	interest	income	and
expense	projection,	with	no	default	risk	component,	and	perform	a	separate	credit	loss
projection	from	the	credit	system	that	is	used	to	obtain	a	portfolio-level	loss	adjusted
earnings.	Alternatively,	one	can	have	an	integrated	model	for	interest	income	and	default
losses.	This	latter	approach	allows	consistent	loan-level	estimation	of	cash	flows,
accruals,	and	losses	as	we	have	already	discussed	in	the	portfolio	credit	risk	chapter	in	the
context	of	the	features	of	the	new	generation	portfolio	credit	risk	models	(see	Figure	4.28).
The	firmwide	stress	testing	impact	on	the	interest	income	and	expense	can	come	from:

i.	 Higher	general	market	funding	rates	and/or	higher	bank-specific	funding	spreads	at	the
time	of	funding	rollover,	increasing	interest	expense

ii.	 Reduced	interest	income	due	to	non-performing	assets	(delinquencies	and	defaults)

iii.	 Inability	to	roll	over	funding	creating	a	cash	liquidity	need	that	must	be	emergency
funded	(likely	at	a	loss)

In	both	CCAR	and	EBA	the	focus	is	on	a	stressed	market	impact	(derived	from	the	high-
level	regulatory	macroeconomic	scenario	specification)	on	the	net	interest	income,	coming
from	(i)	and	(ii).	It	is	assumed	that	the	higher	market	funding	rates	can	only	partially	be
passed	on	to	customers.13	The	potential	liquidity	impact	from	(iii)	is	currently	not	part	of
the	scope.

We	finally	emphasize	again	that	the	breakdown	of	the	net	interest	margin	to	granular	levels
discussed	in	this	chapter	may	not	be	regulatory	required	but	is	key	for	risk-based	decision
making.	Which	customers	and	regions	are	more	profitable?	Where	should	portfolio	growth
be	focused?

4.	 Fair	values

Another	regulatory	application	of	funds	transfer	rates	is	fair	value	of	banking	book	items
using	accounting	standards.	Since	this	book	is	about	risk	management	rather	than
accounting	we	will	not	enter	into	a	discussion	about	the	accounting	standards	for	financial
reporting.	However,	the	fair	value	based	on	funds	transfer	prices	discussed	in	this	chapter
can	be	seen	as	an	internal	model	approach	to	economic	fair	value	and	unearned	profit	and
loss	of	the	banking	book.

1	As	in	the	liquidity	risk	chapter	we	assume	the	reader	is	familiar	with	classical	asset	and
liability	management,	specifically,	the	classical	interest	rate	risk	and	profitability	measures.
See	Dermine	and	Bissada	(2002)	or	Choudhry	(2007)	for	an	introduction.

2	The	bank's	equity	holders'	expected	return	on	equity	gives	an	indication	of	the	threshold	that



needs	to	be	satisfied	in	order	for	the	account	to	contribute	to	improving	the	bank's	expected
return.

3	The	Interbank	curve	is	the	bank	cost	of	funding	with	other	banks	using	short-term	money
market	instruments,	forward	rate	agreements,	etc.	On	a	longer	term	the	funding	curve	is
usually	composed	of	the	cost	of	the	bank's	long-term	bond	funding.

4	In	addition,	duration-based	measures	require	a	numerical	root-finding	with	respect	to	the
yield	rate.

5	An	annuity	can	pay	a	fixed	total	amount	at	all	the	payment	times	or	pay	an	adjusted	total
annuity	amount	at	the	payment	times	to	ensure	the	debt	is	fully	paid	at	the	maturity.	The	first
case	is	a	fixed	annuity	and	the	second	case	is	a	variable	annuity.	Our	example	is	a	variable
annuity.

6	The	equity	funding	cost	is	determined	by	the	opportunity	cost	of	equity,	that	is,	by	the
investor's	expected	return	on	equity.

7	Note	that	when	a	bank	can	charge	penalties	ex-post	from	the	customer,	then	the	embedded
optionality	may	not	be	part	of	the	funds	transfer	price.	For	example,	in	some	countries,
when	a	customer	prepays,	the	bank	can	charge	the	customer	a	prepayment	penalty	at	the	time
of	prepayment	that	fully	compensates	the	bank,	that	is,	ex-post.	If	instead	prepayment	is	free
or	the	ex-post	prepayment	penalty	is	limited,	then	the	bank	should	include	a	prepayment
penalty	charge	ex-ante	in	the	funds	transfer	price.

8	Assuming	forward	rates	are	log-normal;	see	Hull	(2006,	pp.	619–622).

9	The	strike	price	is	a	quote	strike	price.	That	is,	it	includes	accrued	interest.

10	When	estimating	transactions	costs	on	historical	data	there	is	generally	a	truncation	effect	in
that	for	some	consumers	the	gain	in	exercising	was	never	high	enough	versus	their
transactions	cost	and	hence	their	true	transactions	cost	may	not	have	been	observed.

11	Our	example	mortgage	is	an	annuity	and	does	not	have	a	fixed	interest	rate.	Based	on	the
annuity	payment	calculations	we	can	compute	an	average	rate.

12	This	is	different	from	the	previous	mortgage	example	in	Table	7.2,	which	is	an	annuity.	We
avoid	using	an	annuity	example	in	this	context	for	simplicity	because	for	annuities	there	can
be	differences	in	capital	flows	between	the	mortgage	and	its	synthetic	FTP	instrument	due	to
the	different	interest	rates.

13	For	example,	when	market	rates	go	up	the	bank's	rate	policy	for	deposits	(see	example	in
Table	7.9)	captures	quickly	the	increase	in	market	fund	rates	in	the	scenario	while	the
corresponding	rate	policy	for	the	loan's	rates	is	more	sluggish	in	the	scenario,	yielding	an
asymmetry	in	how	fast	(and	by	how	much)	market	rate	changes	get	passed	on	to	asset	versus
liability	side.





Part	Four
Firmwide	Risk



Chapter	8
Firmwide	Risk	Aggregation
Thus	far	we	have	developed	risk	management	aspects	into	risk	management	at	the	individual
(standalone)	risk	level,	such	as	market	risk,	credit	risk,	and	liquidity.	While	the	individual	silo
risk	management	allows	easy	risk	identification,	measurement,	and	mitigation,	recent	global
financial	crises	have	proven	the	need	for	firmwide	risk	measurement,	control,	and	decision
making.	Firmwide	risk	measurement	requires	ability	to	aggregate	risk,	identify	risk
concentrations	and	potential	contagions	among	different	risk	sources,	and	accurately	report	and
respond	to	the	risk	issues	at	the	firmwide	level.

Firmwide	risk	levels	can	be	obtained	in	different	ways.	We	will	label	two	approaches
according	to	Basel	Committee	(2010b):

1.	 Top-down	approach

2.	 Bottom-up	approach

The	top-down	approach	to	firmwide	risk	will	be	the	focus	in	this	chapter	on	firmwide	risk
aggregation	while	the	next	chapter	on	firmwide	scenario	analysis	and	stress	testing	will	focus
on	the	bottom-up	approach	to	firmwide	risk.

In	the	top-down	approach	we	apply	a	correlated	aggregation	model	to	the	results	from	the
standalone	risk	analysis,	for	example,	obtaining	a	firmwide	risk	measure	like	 .	In	the
bottom-up	approach	we	analyze	standalone	risk	types	based	on	the	same	scenarios	from	joint,
correlated,	market,	and	economic	scenarios	on	financial	risk	factors.	We	then	aggregate	the
results	per	scenario	and	subsequently	obtain	the	firmwide	risk	measures	from	the	joint
distribution.

The	key	difference	between	the	two	approaches	is	where	the	risk	aggregation	takes	place	in	the
process.	In	the	top-down	approach,	risk	analyses	within	each	silo	risk	system	work
independently	to	produce	the	risk	measures	based	on	the	independent	distributions	resulting
from	the	system.	Risk	aggregation	is	applied	after	the	fact	and	the	interaction	between	the	risks
is	captured	by	a	correlation	or	more	advanced	copula	among	the	risk	types.	The	benefit	of	this
approach	is	of	course	that	it	uses	existing	risk	systems	for	an	independent	end-to-end	system.

Despite	recent	focus	on	firmwide	risk	analysis	and	stress	testing	using	the	bottom-up	scenario
approach,	the	top-down	correlated	aggregation	approach	to	risk	is	still	an	important	component
in	financial	institutions	enterprise	risk	measurement	and	management.	This	is	because	even	if
firmwide	risk	can	be	achieved	for	many	risk	types	and	lines	of	business	using	joint	modeling
(scenarios)	of	risk	factors	there	may	still	be	business	lines	and/or	risk	types	that	cannot	be
integrated	bottom-up	for	many	reasons,	for	example,	a	difficulty	to	specify	granular	risk	factor–
level	dependence.	Hence,	in	practice,	firmwide	risk	measures	are	usually	a	combination	of
bottom-up	risk	approaches	and	a	top-down	risk	aggregation	approach.	The	risk	types	and	lines
of	business	that	can	be	aggregated	bottom-up	become	a	marginal	input	source	to	the	top-down



risk	aggregation	approach.	Aggregate	enterprise	risk	can	then	be	obtained	at	a	second	level—
applying	the	top-down	risk	aggregation	approach.

The	combination	of	bottom-up	and	top-down	approaches	to	enterprise	risk	measures	is
especially	appealing	for	a	mixed	or	hierarchical	copula	approach	to	risk	aggregation	that	we
will	discuss	below	as	an	advancement	of	traditional	copula	approaches.	This	is	because	risks
can	be	aggregated	hierarchically,	using	different	copulas,	which	gives	more	flexibility	in
designing	the	aggregation	and	using	the	best-fit	models.

It	is	in	principle	also	possible	to	include	non-financial	risks	in	a	correlated	aggregation
approach	to	firmwide	risk.	For	example,	quantification	of	strategic	and	reputational	risk	is
often	modeled	in	a	similar	way	to	operational	risk	processes.	That	is,	it	is	event	and	severity
based.	The	events	and	their	severity	are	usually	assessed	by	expert	views.	The	outcome	is	still
a	marginal	loss	distribution,	and	the	assignment	of	event	probabilities	and	correlations	allows
non-financial	risks	to	be	aggregated	with	other	financial	risks.

In	this	chapter	we	first	discuss	the	traditional	firmwide	risk	aggregation	approaches	including
the	linear	and	copula-based	approaches	as	well	as	the	more	recent	mixed	copula	approach.
When	the	aggregated	risk	has	been	calculated	the	next	step	is	to	decompose	the	risks	into
contributing	components,	to	perform	a	capital	allocation	taking	into	account	diversification.
Capital	allocations	are	needed	in	risk	adjusted	returns	analysis	but	also	in	measurement	of
concentration	and	diversification.	We	end	the	chapter	with	a	discussion	of	regulation	connected
to	firmwide	risk	aggregation.

Correlated	Aggregation	and	Firmwide	Risk	Levels
Historically,	institutions	have	implemented	simple	aggregation	practices	like	aggregating	risks
by	summation	to	achieve	an	overall	risk	measure.	The	simple	summation	of	risks	is	also
founded	in	the	Basel	II	regulatory	capital	framework.	Throughout	the	three	generations	of	the
Basel	accord,	the	regulatory	capital	requirement	is	considered	to	be	the	sum	of	capital
requirements	calculated	at	the	building	block	levels.	However,	the	simple	sum	type
aggregation	has	been	challenged.	Brockmann	and	Kalkbrener	(2010)	argue	that	the
approachignores	the	diversification	effect	across	the	portfolio,	which	was	estimated	to	range
from	10%	to	30%.	Basel	Committee	(2009e)	also	discussed	the	possibility	of	a	compounding
effect	where	summed	up	risk	measurement	actually	underestimates	the	actual	risk.	This
compounding	effect	can	arise	in	practice,	because,	as	we	have	discussed	previously	in	the
advanced	market	risk	chapter,	the	sum	of	 	for	different	risks	is	not	necessarily	an	upper
bound	on	the	total	risk.

To	address	the	limitation	of	the	simple	sum	method	correlated	aggregation	methodologies	can
be	used.	For	example,	Kuritzkes,	Schuermann,	and	Weiner	(2002)	consider	a	linear	risk
aggregation	in	financial	conglomerates.	Rosenberg	and	Schuermann	(2004)	study	copula-based
aggregation	of	bank-assurance	market,	credit,	and	operational	risks	using	a	comparison	of	the
t-	and	normal	copula.	See	also	Dimakos	and	Aas	(2004)	and	Cech	(2006)	for	comparison	of
the	properties	of	different	copula	models	in	risk	aggregation.	The	main	benefit	of	the	copula



8.1

approach	to	risk	aggregation	is	that	it	provides	a	way	of	isolating	the	marginal	behavior	of
individual	risks	from	the	description	of	their	dependence	structure.

Because	of	the	long	tradition	of	compartmentalized	risk	analysis	the	risk	aggregation	approach
is	practical	for	a	quick	implementation	of	firmwide	risk	measurement.	The	estimation	of
different	sub-risk	measures	does	not	have	to	be	based	on	an	homogeneous	methodology.	The
risk	aggregation	approach	is	convenient	as	it	uses	only	high-level	information	about
compartmentalized	risks	(e.g.,	empirical	profit	and	losses	or	distribution	specifications),	and
gross	assumptions	about	dependence	such	as	overall	correlation	between	market	and	credit
risks.	Top-down	risk	aggregation	is	therefore	also	an	important	benchmark	for	bottom-up
approaches	that	model	the	detailed	interactions	between	different	types	of	risk	factors.	Of
course,	the	gross	dependence	assumption	between	risks	is	also	a	drawback	of	the	method.

Linear	Risk	Aggregation
When	the	individual	compartmental	risks	can	be	modeled	by	distributions	in	the	elliptical
family,	tail	risk	measures	such	as	 	or	 	can	be	modeled	to	take	into	account	correlation
effect	when	one	aggregates	the	individual	risks	into	total	risk.	For	example,	assuming	the	total
risk	is	composed	from	 	risk	sources	and	can	be	modeled	by	an	 -variate	normal	distribution
with	a	correlation	matrix,	 ,	the	standard	deviation	of	the	total	risk,	 ,	can	be	written	as

Here,	 	denotes	the	correlation	between	risk	type	 	and	 ,	and	 	is	thestandard	deviation	of	risk
type	 .

The	linear	model	for	 	risk	aggregation	takes	the	individual	 	risks	as	inputs	and
aggregates	the	risks	using	the	standard	formula	for	covariance.	That	is,

where	 	is	the	confidence	level	of	the	aggregate	 .	In	this	model	there	are	two	extreme
cases.	That	is,	the	zero-correlation	aggregate	 ,

and	the	perfect	correlation	 	( 	for	all	 )

More	generally,	the	linear	risk	aggregation	can	be	performed	for	economic	capital	measure,	
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,	such	that	for	 	risks	 	we	have

Example	of	Risk	Aggregation	with	the	Linear	Model
Table	8.1	displays	an	example	risk	aggregation	using	the	linear	aggregation	model	in	equation
(8.2).	The	example	has	5	sub-risks:

1.	 Market	risk

2.	 Credit	risk

3.	 Operational	risk

4.	 Funding	risk

5.	 Other	risks	(e.g.,	business	risks)

Table	8.1	Risk	Aggregation	Using	the	Linear	Risk	Aggregation	Model

Sub-risks Correlated	risk Independent	risk Additive	risk Contribution	risk	(%)
Market	risk 250 250 250 11.89
Credit	risk 312 312 312 12.37
Operational	risk 119 119 119 3.03
Funding	risk 345 345 345 11.31
Other	risks 987 987 987 61.40
Aggregate	risk 1,524.85 1,125.70 2,013 100

The	sources	for	{EC…}	in	equation	(8.2)	are	 ,	 ,	 ,	 ,	and	 	units	of	currency
respectively.

The	aggregate	risk	in	Table	8.1	is	obtained	using	the	standalone	sub-risks	as	well	as	a
correlation	matrix,	 .	The	correlation	matrix	is	given	by

where	since	correlation	matrices	are	symmetric	we	only	display	the	upper	triangular	part	of	the
matrix.

Table	8.1	also	displays	the	aggregate	risk	using	independence	and	perfect	correlation.	The
independent	aggregate	risk	is	obtained	using	zero	correlations	and	the	additive	aggregate	risk



is	obtained	using	correlations	equal	to	unity.	In	the	table	we	also	calculate	the	actual
contribution	risk	as	a	percentage	of	total	risk.	The	contribution	risk	column	is	the	actual	Euler
contribution	from	the	sub-risks	obtained	in	the	context	of	the	portfolio	of	total	risks.	As	we
have	discussed	previously	in	the	context	of	market	and	credit	risk	this	contribution	risk	is	often
compared	with	standalone	risk	to	obtain	a	measure	of	the	diversification	level.	For	example,
the	market	risk	sub-risk	has	a	standalone	risk	share	of	 ,	whereas	the	contribution	risk
share	is	 .	We	therefore	obtain	a	diversification	index	for	market	risk	in	the	context	of
firmwide	risk	as	approximately	 .

It	is	important	to	note	that	the	above	linear	risk	aggregation	assumes	elliptic	distributions	and
that	in	general	the	additive	risk	measure	using	linear	aggregation	may	not	be	an	upper	bound	on
the	aggregate	risk.	Still,	the	linear	risk	aggregation	model	is	widely	used	in	practice.	It	is	also
used	in	regulation.	In	Basel	II	pillar	1	market	risk,	credit	risk	and	operational	risk	are
independently	assessed	and	then	simply	summed	up,	using	a	perfect	correlation	assumption.
The	European	insurance	solvency	II	regulation	approach	to	an	integrated	solvency	risk	measure
is	first	to	decompose	each	exposure	into	different	risk	module	estimations	and	then	apply
linear	aggregation,	using	regulatory	correlation	matrices,	into	an	overall	risk	measurement.

Copula	Aggregation
The	linear	risk	aggregation	is	a	simple	and	convenient	model	to	work	with.	The	only	data
required	are	the	estimates	of	the	sub-risks'	economic	capital	and	the	correlation	between	the
sub-risks.	It	also	brings	in	diversification	effects	that	a	simple	summation	approach	does	not
capture.	However,	the	model	has	some	serious	drawbacks	as	we	have	discussed.	We	therefore
consider	a	risk	aggregation	model	based	on	copulas	that	avoids	several	of	the	linear
aggregation	assumptions.	Specifically,	we	avoid

1.	 The	assumption	that	quantile	of	the	enterprise	risk	and	the	quantiles	of	the	individual	risks
come	from	the	same	elliptic	density	family

2.	 The	assumption	that	the	dependence	structure	relies	on	correlations	and	multivariate
normal	based	dependence

While	linear	risk	aggregation	only	requires	a	risk	measure	from	the	sub-risks	copula	methods
of	aggregation	depend	on	the	whole	distribution	of	the	sub-risks.	One	of	the	main	benefits	of	a
copula	is	that	it	allows	the	original	shape	of	the	sub-risk	distributions	to	be	retained.
Furthermore,	the	copula	also	allows	for	the	specification	of	more	general	dependence	models
than	the	normal	dependence	model.	Essentially,	the	copula	approach	provides	a	way	of
isolating	the	marginal	behavior	of	individual	risks	from	the	description	of	their	dependence
structure.

As	mentioned	above,	when	aggregating	risk	using	copulas,	the	full	loss	density	of	the	sub-risks,
as	well	as	the	choice	of	copula	and	copula	parameter(s),	is	required.	This	is	only	marginally
more	information	than	is	required	for	the	linear	aggregation	model.	Using	a	copula	model	for
aggregation,	additional	correlation	parameters	may	also	be	required	(e.g.,	for	the	student	t-
copula	we	also	require	a	degree	of	freedom	parameter).



Example	of	Copula	Aggregation
In	Table	8.2	we	calculate	 	and	 	copula	aggregations	using	the	normal,	t-copula,	and
normal	mixture	copula	for	a	 	confidence	level.	The	risk	aggregation	using	the	normal
mixture	copula	is	evaluated	using	a	bivariate	mixture	with	parameterization	
.	Here,	 	and	 	are	the	probabilities	of	normal	states	 	and	 	respectively	and	 ,	 	are	the
mixing	coefficients.	The	individual	risks	are	the	same	as	in	Table	8.1	but	the	individual	profit-
and-loss	densities	are	assumed	to	come	from	distribution	rather	than	only	have	a	standalone
risk	measure	input	such	as	 	in	Table	8.1.	In	our	example	we	assume	a	standard
normal	distribution	for	the	sub-risks.	However,	the	normality	assumption	is	just	for	illustration
and	we	could	of	course	have	used	other	parametric	distribution	assumptions	or	used	empirical
profit-and-loss	distributions	as	input	to	the	aggregation.	The	use	of	the	standard	normal	profit-
and-loss	distribution	for	the	sub-risks	implies	that	the	99%	 	for	each	sub-risk	is
approximately	2.32	units	of	currency.	In	the	aggregation	we	use	the	same	correlation	matrix	as
in	Table	8.1.

Table	8.2	Copula	Value	at	Risk	and	Expected	Shortfall	Risk	Aggregation	Using	the	Normal
Copula,	t-Copula,	and	the	Normal	Mixture	Copula

Copula	model Aggregate	 (99%) Aggregate	 (99%)
Normal 7.74 8.7

7.93 9.28
8.16 9.67
8.06 9.94
8.91 10.82

Table	8.2	shows	that	the	copula	risk	aggregation	 	and	 	increase	when	a	non-normal
copula	model,	such	as	the	t-copula	or	the	normal	mixture	copula,	is	used	for	aggregations.	For
the	t-copula	the	aggregate	risk	generally	increases	the	lower	the	degrees	of	freedom	parameter
and	for	the	normal	mixture	copula	the	aggregate	risk	generally	increases	with	the	mixing
coefficient	as	expected.

Mixed	Copula	Aggregation
A	drawback	of	regular	copula	aggregation	models	is	that	they	use	a	common	copula	for	all
aggregation	nodes.	While	regular	copula-based	aggregation	allows	for	a	mix	of	univariate
distributions	at	the	leaf	level	many	applications	also	require	aggregations	for	complex	cross-
classification	levels,	and	each	level	may	have	a	different	best-fit	copula	to	aggregate	the
values.	Practically,	a	single	 -dimensional	copula	that	would	reflect	the	actual	dependencies
between	all	the	different	individual	risks	 	may	not	be	available.

Fortunately,	the	copula	approach	can	be	quite	easily	extended	to	the	case	of	different	copulas
between	different	risks	and	at	different	levels	of	the	hierarchical	aggregation.	This	is	because



copula	aggregation	uses	a	simulation	framework	and	the	empirical	simulated	copula
aggregation	on	any	sub-level	can	be	used	as	input	into	the	next	level	of	aggregation	using
another	copula.	Essentially,	once	a	sub-level	copula	has	been	determined,	the	application	of	a
higher	level	copula	deploys	the	usual	copula	techniques	for	that	particular	level	of	aggregation.
Because	of	its	simplicity,	yet	general	usability,	of	mixed	copula	aggregation	Skoglund	et	al.
(2013)	focus	on	its	application	and	benefits	over	traditional	copula	aggregation.	See	also
Arbenza	et	al.	(2012)	and	Bruneton	(2011)	for	a	theoretical	view	of	copula-based	mixed	risk
aggregation.

The	mixed	copula	aggregation	is	essentially	a	step-by-step	aggregation	where	one	first
aggregates	together	risks	within	disjoint	subsets	of	the	set	of	all	the	 	individual	risks.	This
mixed	approach	to	copula	specification	allows	aggregate	risk	to	be	specified	with	partial	sums
that	are	more	easily	understood	and	use	different	best-fit	copulas	for	a	subset.	The	hierarchical
nature	of	risk	aggregation	is	also	important	for	dimension	reduction.	Since	large	hierarchical
risk	aggregation	trees	can	be	broken	down	to	subsets	of	aggregation,	copulas	that	are	only
feasible	in	lower	dimensions	can	be	used	for	subsets	of	the	aggregation	tree.

While	mixed	copula	risk	aggregation	is	appealing,	it	also	has	some	potential	deficiencies
compared	to	a	single	copula	aggregation.	Specifically,	since	the	full	dependence	between	all
individual	risks	may	not	be	explicitly	specified,	the	induced	dependence	in	a	mixed	copula	tree
between	unconnected	individual	risks	decreases	with	the	number	of	copula	aggregation	steps.
Hence,	diversification	increases	with	the	number	of	copula	aggregation	layers	between
unconnected	individual	risks.	See	Bruneton	(2011).

Example	of	Mixed	Copula	Aggregation
We	now	illustrate	mixed	copula	aggregation	with	a	concrete	example	from	Skoglund	et	al.
(2013).	Figure	8.1	displays	a	sample	hierarchical	tree	structure	for	risk	aggregation.	In	this
structure	there	are	three	business	units.	Business	unit	1	has	sub-risks	in	the	category	of	market,
credit,	and	operational	risk.	Business	unit	2	has	sub-risks	in	the	category	of	credit	and	asset
and	liability	management	(ALM)	risk.	Finally,	business	unit	3	has	sub-risks	operational	and
insurance	risk.	In	addition,	each	of	these	sub-risks	are	allocated	to	sub-types.	For	example,	for
business	unit	1	the	market	risk	sub-risk	has	sub-types	equity	and	foreign	exchange	risk.
Similarly,	the	business	unit	1	sub-type	credit	risk	sub-risks	are	split	on	retail	and	small	and
medium-sized	enterprise	(SME)	segment,	and	corporates	and	bond	credit	risk.	In	this	risk
aggregation	structure,	risk	is	measured	on	the	sub-type	level	and	hence	for	each	sub-type	there
is	available	either	a	parametric	profit-and-loss	distribution	or	a	sample	of	simulated	profit-
and-losses.



Figure	8.1	Sample	Risk	Aggregation	Hierarchies

With	mixed	copula	aggregation	the	copulas	used	to	aggregate	each	sub-hierarchy	can	be
different.	For	example,	we	could	aggregate	the	business	unit	1	market	risks	(equity	and	foreign
exchange	risk)	using	a	t-copula	with	5	degrees	of	freedom.	Subsequently	we	could	aggregate
the	business	unit	1	market,	credit,	and	operational	risks	with	a	Clayton	copula,	and	finally	we
could	aggregate	the	risk	of	business	units	1,	2,	and	3	using	a	normal	copula.	Such	a	mixed
approach	to	copula	aggregation	is	natural	to	work	with	as	the	types	of	dependencies	are
expected	to	be	different	across	the	different	layers	of	the	hierarchy.

For	convenience,	we	introduce	the	hierarchy	notation	 	where	 	corresponds	to
business	units	1,	2,	and	3,	respectively.	For	the	sub-risks	we	have	 	where	 	if	
and	 	otherwise,	and	finally	for	the	sub-types	 	where	 	or	is	missing.

Table	8.3	displays	four	different	mixed	copula	risk	aggregation	specifications	for	the
hierarchical	tree	in	Figure	8.1	on	the	levels	of	 ,	and	 .	In	the	table	we	have	calculated

	using	a	99%	confidence	level	for	the	four	different	mixed	copula	model	specifications	on
the	hierarchies	and	using	 	copula	and	marginal	simulations	on	each	aggregation	level.
The	sample	copulas	used	are	the	t,	Clayton,	and	Frank	copulas	on	the	hierarchies.	Of	course,
the	t-copula	with	a	high	degrees-of-freedom	parameter	is	essentially	the	normal	copula.	Since
both	the	Clayton	and	Frank	copulas	display	lower	tail	dependence	( 	for	the	Frank	copula),
they	are	natural	copulas	for	risk	aggregation	since	our	main	interest	is	in	aggregating	tail	loss.
In	the	mixed	copula	aggregation	we	use	the	t-copula	for	aggregating	risk	on	the	business	unit
level,	that	is,	on	hierarchy	level	 	with	correlations	set	to	0.25,	0.5,	and	0.3	between	business
unit	1,2,	1,3,	and	2,3	respectively.	We	also	use	a	t-copula	to	aggregate	the	insurance	risks,	life
and	non-life,	for	hierarchy	 .	The	correlation	is	set	to	0.5	between	the	two	insurance	risks.
On	the	remaining	hierarchies,	we	use	either	a	Frank	copula	or	a	Clayton	copula.	On	a	specific
hierarchy	we	denote	use	of	the	t-copula	and	its	degrees	of	freedom	 	as	t( ),	the	Clayton,	and



Frank	copula,	respectively,	with	parameter	 	as	c 	and	f ,	respectively.	In	the	application,
the	leaf-levelmarginal	distributions	are	assumed	to	be	from	a	standard	normal	distribution.
However,	this	assumption	is	for	convenience	without	loss	of	generality	as	other	specifications
of	the	marginal	distributions	can	easily	be	used.	The	use	of	the	standard	normal	profit-and-loss
distribution	for	the	leaf	levels	implies	that	the	99%	 	on	each	leaf	level	is	approximately
2.32	units	of	currency.

Table	8.3	Mixed	Copula	Value	at	Risk	Using	the	t-Copula,	the	Frank	Copula,	or	the	Clayton
Copula	on	the	Different	Hierarchies	of	the	Sample	Risk	Aggregation

Aggregation	level

Model Copula	aggregation	model
1 t(50) c(1) c(0.5) c(0.3) f(-1) c(1) c(0.5) c(2) t(50)
2 t(15) c(3) c(2) c(1) f(–3) c(2) c(1.5) c(4) t(10)
3 t(5) c(8) c(5) c(4) f(-8) c(9) c(7) c(10) t(3)
4 t(3) c(15) c(15) c(15) f(-15) c(15) c(15) c(15) t(3)

Aggregation	results	 (99%)
1 16.84 9.69 4.18 3.91 6.24 4.48 4.18 6.36 4.09
2 19.38 11.40 4.68 4.48 7.40 4.68 4.59 6.39 4.10
3 21.09 11.70 4.73 4.69 8.23 4.75 4.74 6.55 4.25
4 21.69 11.71 4.75 4.75 8.61 4.75 4.75 6.55 4.26

Table	8.3	shows	that	aggregate	risk,	as	measured	by	99%	 ,	increases	as	the	degrees	of
freedom,	 ,	for	the	t-copula	is	lowered.	Similarly,	the	aggregate	risk	increases	for	higher	 	for
the	Clayton	copula,	and	lower	 	for	the	Frank	copula.	When	risk	is	measured	as	the	99%	
we	note	that	the	aggregated	risk	on	the	hierarchies	for	the	Clayton	copula	has	a	limited
empirically	relevant	parameter	range	for	the	dependence	parameter	 .	In	particular,	as	 	grows
there	is	a	rapidly	decaying	incremental	dependence	noted	in	the	difference	in	the	99%	
between	models	3	and	4.	We	observe	a	similar	situation	for	the	Frank	copula,	although	the
empirically	relevant	range	of	 	for	the	Frank	copula	is	greater	than	for	the	Clayton	copula,	as
evidenced	by	the	difference	in	aggregate	risk	on	hierarchy	 	for	models	1–4.

Moving	to	a	calculation	of	 	at	the	99.9%	confidence	level	(not	shown	in	Table	8.3)	we
obtain	the	aggregate	risk	at	the	top	hierarchy,	 ,	for	mixed	copula	models	1–4,	respectively,	as
22.94,	26.78,	30.54,	and	30.61.	Even	for	this	higher	confidence	level	as	the	copula	parameters	
	and	 	increase	( 	decrease	for	Frank	copula),	they	have	a	diminishing	effect	on	the	risk.	This
trend	continues	when	we	further	calculate	 	at	the	99.99%	confidence	level.

Capital	Allocation	in	Risk	Aggregation



One	of	the	reasons	why	risk	aggregation	is	useful	at	the	enterprise	level	is	for	the	management
to	understand	the	capital	required	by	the	entire	bank.	Answering	the	question	how	much	capital
is	needed	is	of	course	a	core	requirement	of	the	risk-based	management.	Having	calculated
aggregate	risk	using	a	method	of	risk	aggregation,	the	next	step	is	to	allocate	risks	to	the
different	sub-risks	or	business	units.	The	risk	allocation	process	helps	the	bank	to	understand
the	actual	cost	and	measure	the	risk	adjusted	performance	of	the	business.1	This	is	the	second
important	question	about	the	capital,	that	is,	if	the	capital	is	used	efficiently.

In	copula-based	risk	aggregation,	the	input	for	the	sub-risks	is	the	profits	and	losses	or	net
income	on	the	hierarchy.	The	calculation	of	risk	contributions	for	top-down	aggregation
therefore	follows	the	general	methodology	of	calculation	of	Euler	risk	contributions	that	we
have	discussed	in	the	advanced	market	risk	chapter.	However,	when	calculating	risk
contributions	for	multiple	aggregation	hierarchies	in	mixed	copulas,	the	numerical	additivity	of
the	risk	contributions	only	holds	on	the	sub-risks	to	that	hierarchy.	This	is	because	the	mixed
copula	model	decouples	the	aggregation	into	 	partial	sums	and	hence	the	numerical	additivity
of	risk	contributions	from	the	copula	simulations	is	only	obtained	for	that	partial	copula.	This
is	in	contrast	to	a	single	copula	approach	where	all	leaf	risks	are	joined	together	with	a
common	copula	yielding	leaf-level	risk	contributionsthat	by	definition	have	risk	contributions
that	numerically	add	up	to	total	risk.

Within	a	mixed	copula	model	we	can	still	obtain	a	statistically	consistent	view	on	the
decomposition	of	risk	for	each	aggregation	hierarchy.	Specifically,	using	the	sample
aggregation	hierarchy	in	Figure	8.1	we	could	calculate	numerically	additive	risk	contributions
for	equity	risk	and	foreign	exchange	risk	when	aggregating	market	risk	for	business	unit	1.	We
could	subsequently	calculate	the	numerically	additive	risk	contribution	of	market	risk,	credit
risk,	and	operational	risk	to	business	unit	1.	While	on	the	level	of	aggregating	market,	credit,
and	operational	risk	the	copula	marginal	simulated	risk	for	market	risk	may	not	be	exactly
retrieved	as	the	aggregate	market	risk	from	the	previous	aggregation	hierarchy—both	measures
should	be	statistically	very	close.	The	same	reasoning	holds	when	we	calculate	the
numerically	additive	risk	contributions	to	business	units	1,	2,	and	3	to	the	aggregate	portfolio
risk.

While	not	all	risk	contributions	are	numerically	additive	in	a	mixed	copula	simulation,	the
obtained	hierarchical	decomposition	of	risk	contributions	still	contains	all	statistically	relevant
information	on	the	contributions	at	all	aggregation	hierarchies.	Hence,	such	numerical	non-
additivity	is	not	of	real	concern	in	a	mixed	copula	simulation	and	the	lower	level	contributions
can	be	simply	rescaled	to	the	risk	contribution	obtained	from	a	copula	simulation	on	a	higher
level	of	the	hierarchy.

Example	of	Mixed	Copula	Capital	Allocation
Table	8.4	displays	the	calculation	of	 	at	a	95%	confidence	level	using	copula	model	1	in
Table	8.3	for	the	level	of	business	unit	aggregation	to	enterprise	risk.	The	table	also	displays
the	 	95%	contributions	of	business	units	to	enterprise	risk.	At	this	level	of	aggregation	the
risk	contributions	add	up	numerically;	however,	as	mentioned	above,	lower	level	of



aggregations	risk	contribution	would	have	to	be	rescaled	recursively	based	on	the	higher	level
to	add	up	numerically.

Table	8.4	Calculation	of	ES	Risk	and	Risk	Contributions	for	Business	Units	1,	2	and	3	to
Enterprise	Risk

Aggregation	level

Aggregation	results	CVaR	(0.95)
15.02 8.04 6.02 5.69
Contributions	CVaR	(0.95)
15.02 6.71 4.2 4.11

Measuring	Concentration	and	Diversification
Risk	contributions	are	also	key	in	a	financial	institutions	approach	to	measuring	and	managing
risk	concentrations.	The	capital	allocations—for	a	given	risk	measure—are	based	on	the	risk
contributions.	Once	the	capital	allocation	has	been	obtained	one	can	also	calculate	capital
diversification	and	concentration	indices.2	For	example,	from	Table	8.4	we	find	that	the
diversification	index	for	the	copula	aggregation	hierarchies	of	business	units	to	enterprise	risk
are	83,45%,	69,76%,	and	72,23%	respectively.	This	represents	a	capital	diversification	effect
of	about	20%	to	30%.	Hence,	the	business	unit	risk	is	diversified	when	aggregating	to
enterprise	risk.	A	simple	sum	rule	to	obtain	the	business	unit	risk	would	not	only	overstate	risk
(using	 	as	risk	measure)	but	also	ignore	the	important	information	about	the
interrelationships	between	the	business	lines	when	analyzing	their	risk	adjusted	performances.

Risk	Aggregation	and	Regulation
The	growing	practice	of	firmwide	risk	appetite	and	risk	budgeting	has	called	for	a	renewed
focus	on	aggregated	risk	management	at	the	firmwide	level.	According	to	the	Financial
Stability	Board's	“principles	for	an	effective	risk	appetite	framework”	(FSB,	2013),	risk
appetite	is	defined	as	“the	aggregate	level	and	types	of	risk	a	financial	institution	is	willing	to
assume	within	its	risk	capacity	to	achieve	its	strategic	objectives	and	business	plan.”

Despite	its	importance,	firmwide	risk	and	risk	aggregation	to	firmwide	risk	levels	is	still	not	a
core	risk	analysis	process	in	many	financial	institutions.	For	example,	Basel	Committee
(2010b)	found	that	risk	aggregation	models	in	financial	institutions	are	not	developed	to
support	all	the	business	functions	and	decisions	for	which	the	models	are	meant.	As	a	result,
the	risk	aggregation	process	does	not	cover	all	the	risks	financial	institutions	may	face.

The	ultimate	goal	of	the	regulatory	capital	is	to	set	the	minimum	capital	requirement	for	banks
and	help	banks	determine	the	appropriate	capital	level	corresponding	to	the	overall	risk	level
that	any	specific	bank	is	taking.	Similar	to	the	bank's	internal	economic	capital,	risk	budgeting,
and	risk	adjusted	performance	analysis,	risk	aggregation	is	also	a	key	corporate	exercise	in	the



regulatory	capital	calculation.

The	Basel	II	pillar	1	risk	aggregation	is	straightforward	in	the	sense	that	it	assumes	market
risk,	credit	risk,	and	operational	risk	are	independently	assessed	and	then	simply	summed	up.
The	general	consensus	is	that	the	pillar	1	methodology	fell	short	of	adequate	risk	coverage,
granularity,	and	interaction.	In	pillar	2,	especially	the	Internal	Capital	Adequacy	Assessment
Process	(ICAAP),	regulators	try	to	fix	these	issues.	There	are	greater	variations	in	the
ICAAPimplementation	across	jurisdictions.	Some	financial	regulatory	regimes	take	principles-
based	approaches	to	give	banks	more	freedom	toward	the	ICAAP	exercise.

At	the	beginning	of	2013,	the	Basel	Committee	issued	a	supervision	paper	on	the	“principles
for	effective	risk	data	aggregation	and	risk	reporting”	(Basel	Committee,	2013c).	The	paper
recognizes	the	need	for	the	global	banking	industry,	especially	the	G-SIBs	(Global
Systematically	Important	Banks),	to	have	a	sound	information	system	that	can	“help	banks	and
supervisors	anticipate	problem	ahead”	and	improve	the	“viability	when	the	firm	comes	under
severe	stress.”	Under	the	principles,	banks	are	required	to	have	a	firmwide	risk	aggregation
system	that	can	provide	accurate	and	timely	results	that	cover	all	material	risks.	Another	key
principle	for	the	risk	aggregation	is	to	be	able	to	adapt	to	the	fast	changing	risk	reporting	and
decision-making	need,	especially	in	stress	situations.

The	theme	of	Basel	Committee	(2013c)	is	risk	data	aggregation	and	reporting.	Its	coverage	is
therefore	broader	than	the	firmwide	risk	aggregation	models	discussed	in	this	chapter	and	also
includes	firmwide	risk	aggregation	and	reporting	practices	such	as

The	aggregated	credit	exposure	to	a	large	corporate	borrower	or	small	retail	exposures
that	has	significant	concentration

Aggregation	of	counterparty	credit	risk	exposures,	including,	for	example,	derivatives

Trading	exposures,	positions,	operating	limits,	and	market	concentrations	by	sector	and
region

Liquidity	risk	indicators	such	as	cash	flows/settlements	and	funding

Operational	risk	indicators	that	are	time-critical	(e.g.,	systems	availability,	unauthorized
access)

Basel	Committee	(2013c)	lays	out	14	principles	to	warrant	sound	“overarching	governance
and	infrastructure,”	“risk	data	aggregation	capabilities,”	“risk	reporting	practices,”	and
“supervisory	review,	tools,	and	cooperation.”	The	principles	cover	from	risk	infrastructure	to
reporting	and	banks'	internal	governance	as	well	as	supervisory	review	and	are	displayed	in
Table	8.5.



Table	8.5	Basel	Committee's	Fourteen	Principles	for	Effective	Risk	Data	Aggregation	and
Risk	Reporting

Overarching	governance	and	infrastructure
1.	Governance
2.	Data	architecture	and	IT	infrastructure
Risk	data	aggregation	capabilities
3.	Accuracy	and	integrity
4.	Completeness
5.	Timliness
6.	Adaptability
Risk	reporting	practices
7.	Accuracy
8.	Comprehensiveness
9.	Clarity	and	usefulness
10.	Frequency
11.	Distribution
Supervisory	review,	tools,	and	cooperation
12.	Review
13.	Remedial	actions	and	supervisory	measures
14.	Home/host	cooperation

At	the	end	of	2013	Basel	published	a	self-assessment-based	report	regarding	the	maturity	of
the	banks'	compliance	to	the	first	11	of	the	14	principles	(Basel	Committee	(2013d)).	From	the
report	banks	are	weak	in	meeting	principles	connected	to	data	architecture	and	IT
infrastructure,	accuracy,	and	integrity	and	adaptability.

Pertaining	to	the	theme	of	this	chapter	we	will	emphasize	a	little	more	on	the	4	principles	that
are	especially	important	for	firmwide	risk	aggregation	models.	These	4	principles	together
with	the	governance	also	best	summarize	the	14	principles	laid	down	by	regulators	in	Basel
Committee	(2013c)	and	are:

1.	 Accuracy

2.	 Completeness

3.	 Timeliness

4.	 Adaptability

The	principle	of	accuracy	focuses	on	that	risk	aggregation	should	reach	a	level	of	accuracy	that
is	appropriate	to	the	risk	management	objective.	Basel	requires	a	robust	control	and



governance	of	the	data	process,	reconciling	data	from	various	data	sources,	and	making	sure
data	are	consistent	across	all	the	risk	systems	that	consume	the	data.	Proper	documentation	is
also	required	for	the	risk	data.	Completeness	refers	to	the	inclusion	of	all	material	risk	in	a
bank.	This	requires	the	access	to	all	required	risk	data	in	the	bank.	The	timeliness	principle
requires	banks	to	be	prepared	to	aggregate	and	generate	up-to-date	risk	data	in	a	timely
manner.	Finally,	adaptability	means	that	the	risk	aggregation	must	be	flexible	enough	to	support
on-demand	risk	aggregation	requests.	Such	on-demand	risk	aggregation	requests	can	include
changes	to	the	reporting	hierarchies,	the	included	risks,	and	so	forth.
In	general,	a	firmwide	risk	capital	model	is	emerging	in	both	regulatory	and	economic	capital
analyses.	The	top-down	firmwide	risk	aggregation	model	discussed	in	this	chapter	of	course
plays	an	important	role	in	banks'	firmwide	risk	capital	estimation.	However,	regulators	have
more	recently	also	started	to	consider	bottom-up	approaches	to	firmwide	risk	that	focus	on
capital	or	liquidity	sufficiency	under	various	firmwide	scenarios.	Examples	include	liquidity
risk	and	the	LCR	measure	discussed	in	the	liquidity	risk	chapter,	which	is	based	on	balance
sheet	scenarios,	as	well	as	the	CCAR	and	EBA	firmwide	stress	testing	approaches.3

The	core	idea	is	to	consider	the	scenarios	that	trigger	severe	aggregated	risk	such	as	missing
profit	target	or	failing	to	meet	minimum	regulatory	capital	requirements.	Consistent	with	a
firmwide	approach,	the	scenarios	are	applied	to	the	entire	balance	sheet	to	capture	the
interactions	among	the	risks.

1	Recall	that	in	the	chapter	on	funds	transfer	pricing	and	profitability	we	used	the	allocated
capital	as	the	basis	for	risk	adjusted	profitability.

2	See	the	chapters	on	market	risk	analysis	for	how	to	compute	concentration	and	diversification
measures	based	on	the	Euler	risk	contributions.

3	As	we	will	see	in	the	next	chapter,	CCAR	and	EBA	do	not	test	capital	sufficiency	per	se	but
rather	constrain	the	capital	ratios	(actual	capital/required	capital)	under	stress.	This	is	of
course	in	general	a	much	tougher	requirement.



Chapter	9
Firmwide	Scenario	Analysis	and	Stress	Testing
The	concept	and	practice	of	stress	testing	has	been	around	for	many	years	in	specific	risk
areas.	In	the	previous	chapters	of	this	book	we	have	introduced	many	methodologies	for	stress
testing	and	scenario	analysis	as	well	as	looked	at	several	concrete	stress	testing	examples.
While	these	methodologies	are	still	valid	for	firmwide	scenario	analysis	and	stress	testing,
special	techniques	and	attentions	are	called	for	to	successfully	achieve	the	goal	of	firmwide
capital	adequacy	in	forward-looking	stress	scenarios.	The	2007	financial	crisis	saw	a	lack	of
preparation	for	the	liquidity	crunch	and	capital	drains	in	many	financial	institutions.	Perhaps,	if
banks	had	worked	through	different	economic	scenarios	prior	to	the	crisis,	they	would	have
been	in	a	better	position.	Inadequate	preparation	for	crisis	can	led	to	systemic	risk	and	severe
economic	and	political	turmoil.	With	the	lessons	learned	from	the	2007	financial	crisis,
regulators	are	now	requiring	both	quantitative	and	qualitative	methodologies	for	robust,
forward-looking	capital-planning	processes	that	account	for	each	bank's	unique	risks.

In	the	wake	of	the	2007	financial	crisis,	SCAP	exercise	started	in	the	United	States	in	2009.
Now	its	successor,	CCAR,	has	become	a	major	focus	of	the	top	25	banks	in	the	United	States.
CCAR	requires	bank	holding	companies	with	consolidated	assets	of	$50	billion	or	more	to
submit	annual	capital	plans	to	the	Federal	Reserve	for	review.	However,	smaller	banks	are
also	joining	the	group.	The	DFAST	(Dodd-Frank	Act	Stress	Testing)	regulation	requires	US
banking	organizations	with	consolidated	assets	of	$10	billion	or	more	to	conduct	stress	tests.
The	same	evolution	of	the	firmwide	stress	testing	has	been	followed	by	other	regulators	over
the	world,	for	example,	in	Europe	with	the	EBA	stress	testing.	In	Europe	a	specific	country
may	also	face	a	country-specific	firmwide	stress	test	regulation.	An	example	is	the	Prudential
Regulation	Authority	in	UK	(2013)	where	the	prescribed	macroeconomic	scenarios	are	also	to
some	extent	overlapping	with	the	EBA	prescribed	macroeconomic	scenarios.	Firmwide	stress
test	regulations	are	also	developing	in	the	emerging	markets.	See,	for	example,	the	Reserve
Bank	of	India	guidelines	(2013).

Initially,	regulators	emphasized	credit	losses	and	revenue	by	stressing	a	few	macroeconomic
risk	factors—as	was	the	focus	of	SCAP	in	the	United	States	in	2009–10.	Today,	regulators	are
interested	in	not	only	the	effect	of	stress	scenarios	on	credit	performance	and	revenue,	but	also
the	stressed	results	on	a	broader	array	of	measures	that	include	liquidity	and	full	balance	sheet
projections.	In	other	words,	stress	testing	must	now	be	an	integral	part	of	the	bank's	capital
plan.	The	requirement	to	assess	the	influence	of	stress	scenarios	across	these	different
measures	has	created	many	challenges	for	financial	institutions.	Stress	testinghas	become	a
systematic	way	to	examine/identify	an	institution's	financial	vulnerability.

The	total	balance	sheet–based	firmwide	stress	testing	exercise	certainly	calls	for	adherence	to
sound	data	management	principles.	The	need	to	integrate	both	risk	and	financial	measures	into
stress	scenarios	when	creating	the	capital	plan	is	the	other	challenge	in	the	firmwide	stress



testing.	These	common	requirements	come	across	most	regulatory	stress	testing	regimes	and
require	banks	to	quantitatively	project	assets,	liabilities,	income,	losses,	and	capital	across	a
range	of	macroeconomic	scenarios.	Since	these	functions	have	thus	far	typically	operated	in
independent	silos	the	regulatory	firmwide	stress	testing	is	obviously	a	change	in	practice	for
many	financial	institutions	and	has	an	impact	on	how	banks	manage	risk	beyond	the	stress
testing	itself.	Building	a	solid	firmwide	stress	testing	process	is	done	through	several	iterations
that	need	constant	improvement	and	investment.	The	firmwide	stress	testing	process	not	only
allows	a	bank	to	gauge	its	capacity	to	meet	regulatory	capital	requirements	such	as	CCAR	and
EBA,	but	also	significantly	improves	an	institution's	ability	to	identify	and	prevent	potential
issues	that	may	affect	its	revenue,	liquidity,	market	growth,	and	earnings.

As	we	discussed	above,	the	principle	of	scenario	analysis	and	stress	testing	each	of	the	bank's
risks	such	as	market	and	credit	risks	has	a	long	history	in	risk	management.	However,	firmwide
stress	testing	with	the	aim	of	predicting	the	bank's	complete	income	and	balance	sheet
statements	under	stress	has	picked	up	relatively	recently	with	the	introduction	of	the	CCAR	and
EBA	stress	tests.	The	firmwide	stress	testing	approach	also	necessitates	a	collaboration
between	the	bank's	risk	experts—responsible	for	generating	earnings	and	loss	impact	under
stress	as	specific	income	line	statements—and	the	bank's	financial	balance	sheet	and	capital
management	experts—responsible	for	analyzing	the	bank's	available	capital	and	planning
future	capital	needs.	In	addition	to	analyzing	sufficiency	of	bank	capital	under	firmwide	stress,
one	can	also	analyze	the	sufficiency	of	the	liquidity	buffer	under	the	stress.	This	is	the
approach	we	took	in	the	chapter	on	liquidity	risk.	Since	liquidity	risk	is	usually	a
consequential	risk	it	is	also	natural	to	analyze	bank	capital	sufficiency	and	liquidity	sufficiency
jointly	under	the	stress	scenarios.

In	this	chapter	we	first	discuss	two	commonly	used	firmwide	scenario	model	approaches.	Both
approaches	are	based	on	a	bottom-up	view	of	firmwide	risk	with	scenarios	for	firmwide	risk
factors.	Their	differences	stem	from	using	silo	risk	systems	to	achieve	a	firmwide	risk	or	using
a	firmwide	risk	model	approach.	Second,	we	discuss	firmwide	risk	capital	measures	such	as
estimating	firmwide	risk	capital	need	and	firmwide	scenario	analysis	with	the	focus	on	testing
capital	sufficiency.	Such	firmwide	analysis	extends	the	risk	reserve	approach	to	risk	capital
that	we	have	used	many	times	in	this	book	to	a	firmwide	capital	setting.	The	approach	focuses
on	the	risk	capacity,	such	as	capital	and	earnings,	versus	the	risk	exposure.	The	risk	exposure
can	be	calculated	using	a	statistical	risk	measure	applied	to	many	scenarios,	for	example,	using

.	The	risk	exposure	can	also	be	calculated	from	a	single	stress	scenario.	The	approach	is
frequently	used	in	the	bank's	ICAAP.

Our	third	topic	in	this	chapter	is	the	specific	regulatory	firmwide	stress	testing	process	in
CCAR	and	EBA.	The	regulatory	stress	testing	is	different	than	the	firmwide	risk	capital
approach	using	a	risk	reserve	analogy.	In	particular,	it	is	focused	on	maintaining	minimum
capital	ratios	under	stress	and	that	banks	remain	financially	viable	even	under	stress.	The	risk
exposure,	coming	from	losses	and	earnings	reductions,	is	estimated	under	regulatory
prescribed	macroeconomic	scenarios.	Since	the	regulatory	stress	scenario	is	focused	on
sufficient	capital	ratios	under	stress	it	also	requires	stressed	estimation	of	required	capital	in
addition	to	the	stressed	losses	and	earnings.	Because	the	stress	testing	uses	high-level



macroeconomic	scenarios,	the	use	of	models	is	critical	to	the	materialization	of	the	high-level
macroeconomic	scenario.

We	end	the	chapter	with	a	discussion	of	the	future	of	firmwide	stress	testing	and	stress	testing
regulation.

Firmwide	Scenario	Model	Approaches
In	practice,	it	may	be	impossible	to	isolate	risk	effects	into	categories	like	market	and	credit
risk	by	creating	artificial	subportfolios	that	can	allow	compartmentalized	risk	analysis	and	then
using	a	dependence	model	to	integrate	all	the	risks	back	together.	Indeed,	most	risk	types	have
complex	interrelationships	that	stem	from	dependence	on	many	of	the	core	risk	factors	as	well
as	behavior.	More	importantly,	through	a	joint	modeling	of	core	risk	factors	for	the	risk	types,
institutions	can	better	understand	the	consequences	of	each	adverse	scenario	for	risk	factors
across	risk	types	and	lines	of	business	to	proactively	manage	these	scenarios.

In	a	bottom-up	approach	to	firmwide	scenario	analysis,	the	risk	system(s)	carry	out
calculations	on	the	scenarios	that	are	generated	from	a	joint	distribution	of	the	key	risk	factors.
It	is	important	to	note	that	the	bottom-up	approach	is	useful	not	only	for	estimating	firmwide
risk	levels	but	also	for	firmwide	stress	testing.	This	is	because	the	method	relies	on
aggregating	risk	values	per	scenario.	Hence,	this	model	approach	is	in	practice	used	for	the
firmwide	stress	testing.	In	contrast,	the	firmwide	risk	aggregation	models,	discussed	in	Chapter
8,	do	not	rely	on	joint	correlated	scenarios.	They	take	a	top-down	approach	to	firmwide	risk
levels	using	a	specified	codependency	between	risk	types.	The	risk	aggregation	is	hence	a
process	to	aggregate	compartmentalized	risk	measures	into	more	comprehensive	firmwide	risk
measures.	In	bottom-up	firmwide	scenario	model	approaches	a	bank	can	use	either

a	silo	approach	per	risk	type	and	then	aggregate	the	results,	or

a	comprehensive	firmwide	risk	model	approach

Of	course,	the	firmwide	scenario	model	can	also	be	a	combination	of	the	two.	We	will	discuss
these	two	firmwide	scenario	model	approaches	below.

Silo	Approach
In	the	silo	approach,	each	silo	risk	system	is	responsible	for	predicting	a	certain	risk's	profit
and	loss	under	the	scenario(s).	For	example,

The	market	risk	system(s)	generates	the	market	risk	profit	and	loss	under	the	scenario(s).

The	asset	and	liability	management	system(s)	generates	the	net	interest	income	projection
under	the	scenario(s).

The	credit	risk	system(s)	generates	credit	loss	under	the	scenario(s).

The	portfolio-level	net	earnings	for	a	given	scenario	are	hence	obtained	as	the	sum	of	net
interest	income	earnings	less	market	and	credit	risk	loss.	Consequently,	the	specific	market,



credit,	and	profitability	risk	techniques	discussed	in	this	book	are	still	important	for	the
firmwide	risk.	In	practice,	one	can	of	course	add	more	of	the	bank's	earnings	and	loss
contributions	to	the	income	statement	to	obtain	a	more	complete	view—for	example,	non-
interest	income	and	expense	such	as	fees	and	other	risks	than	market	and	credit	risks	such	as
operational	risk.

The	core	of	the	approach	is	that	the	scenario-by-scenario	results	are	aggregated—across	silo
risk	systems—so	that	one	distribution	or	an	aggregated	scenario	result	is	generated	for
firmwide	risk	analysis.	In	this	approach	the	firmwide	scenarios	can	be	generated	outside	of	the
silo	risk	systems	using	a	firmwide	risk	scenario	generator.	The	subsequent	risk	aggregation	is	a
separate	process.

In	practice,	many	of	the	firmwide	risk	scenarios	are	specified	as	high-level	macroeconomic
scenarios	and	hence	in	order	to	transform	high-level	macroeconomic	stress	scenarios	to	silo
systems	risk	factors	the	bank	uses	models.	As	we	have	discussed,	especially	in	the	advanced
market	risk	chapter	but	also	in	the	portfolio	credit	risk	chapter,	models	to	transfer	stress	from
macroeconomic	risk	factors	to	actual	portfolio	risk	factors	can	be	based	on	distribution	models
or	factor	models	and	the	models	themselves	are	sometimes	referred	to	as	satellite	models.

Firmwide	Risk	Model	Approach
The	use	of	the	existing	silo	risk	systems	for	firmwide	scenario	analysis	can	in	practice	be	quite
complicated.	Core	challenges	include	maintaining	consistency	in	scenarios	applied	across
systems	and	in	the	subsequent	aggregation	of	risk	results	across	systems.	A	firmwide	risk
model	approach	has	the	benefit	of	a	single	independent	financial	risk	analysis	for	firmwide
stress.	Using	a	firmwide	model,	it	is	clearly	an	advantage	to	not	have	to	rely	on	silo	systems
for	valuation	and	have	to	manage	the	subsequent	aggregation	from	different	systems.	A	clear
advantage	with	a	firmwide	risk	model	approach	is	also	that	balance	projections	and
management	intervention	can	be	more	easily	handled	in	a	comprehensive	single	model
approach,	especially	if	management	interventions	at	the	next	horizon	depend	on	the	projected
risk	results	at	the	previous	horizon,	as	this	can	create	a	complex	feedback	loop	to	silo	risk
systems	that	can	be	hard	to	manage	consistently	in	practice.

Sometimes	the	separation	of	risks	in	the	silo	risk	systems	can	also	make	it	hard	to	consistently
estimate	key	measures	such	as	stressed	earnings.	For	example,	the	asset	and	liability
management	system	can	certainly	generate	cash	flows	but	typically	does	not	incorporate	the
credit	models	to	convert	credit	scenarios	into	scenario	credit	loss	and	the	resulting	loss	of	cash
flows	at	delinquency	and	default.	Hence,	generating	stressed	credit	losses	in	the	credit	risk
system	separately	from	the	earnings	cash	flows	in	the	asset	and	liability	management	system
can	easily	create	inconsistencies.	It	can	also	make	it	impossible	to	generate	consistent	loan-
level	scenarios	on	cash	flows,	accruals,	and	credit	loss.1

Implementation	by	Books	of	Business
The	core	of	the	firmwide	risk	model	approach	is	that	it	tries	to	integrate	the	earnings	and	loss
predictions	in	a	single	model.	In	practice,	it	may	be	difficult	to	have	a	complete	firmwide	risk



model	for	all	books	of	business.	The	firmwide	risk	model	is	therefore	often	implemented	per
book	of	business.	Similar	to	the	silo	approach,	we	then	have	a	subsequent	aggregation	process
to	obtain	firmwide	risk.	However,	the	aggregation	is	now	distinct	per	book	rather	than	by	risk
type	for	the	same	book	of	business.	A	gross	decomposition	is	aggregation	of	trading	book
market	risk	and	banking	book	earnings	and	loss.	In	practice,	the	banking	book	may	be	further
decomposed	into	the	different	books	of	business	such	as	mortgage,	credit	card,	and	so	on	that
each	have	their	own	models	for	integrated	earnings	and	loss	prediction.

Approximative	Firmwide	Risk	Model
In	practice,	each	risk	has	its	uniqueness	in	terms	of	risk	factor	sources	and	risk	calculations.
Because	of	the	complexity	of	real	portfolios	and	the	need	to	analyze	firmwide	risk	in	the
context	of	high-level	macroeconomic	scenarios,	it	is	sometimes	a	natural	choice	for	the
firmwide	risk	model	to	be	implemented	as	an	approximation	to	some	of	the	granular	risk
models	in	the	silo	risk	systems,	that	is,	to	use	an	approximative	firmwide	risk	model.	The
approximation	can	be	done	in	two	ways:

1.	 Reduction	in	the	number	of	risk	factors

2.	 Portfolio	approximation

A	common	technique	used	to	achieve	the	reduced	set	of	risk	factors	is	the	use	of	factor	models,
especially	for	expressing	portfolio	risk	in	core	factors	such	as	equity	indices,	exchange	rates,
interest	rates,	and	macroeconomic	factors	such	as	property	prices	and	unemployment	rates.	A
classical	example	of	a	factor	model	is	the	CAPM	where	the	universe	of	the	equity	returns	risk
can	be	reduced	to	a	single	market	factor	risk	and	equity	betas.	The	CAPM	model	induces
scenario	values	for	the	specific	equities	given	scenario	values	for	the	market	factor.

The	portfolio	approximation	in	firmwide	risk	models	can	use	multiple	techniques	to
approximate	the	detailed	portfolios	for	the	specific	risks.	The	reader	may	recall	that	we
discussed	several	portfolio	and	instrument	pricing	techniques	in	the	first	chapter	on	market	risk
(Chapter	2),	including:

Grid	pricing	and	curve	fitting

Delta-Gamma	approximations

Least	squares	Monte	Carlo	and	a	proxy	pricing	technique	using	outer	fitting	scenarios	and
inaccurate	valuations

Replicating	portfolios

All	of	these	approaches	are	suitable	for	instruments	as	well	as	risk	type	(sub)portfolios.	The
best	portfolio	approximation	to	use	is	decided	by	the	portfolio	complexity	and	also	the	error
acceptance	in	the	approximation.	For	example,	a	natural	approximation	for	a	relatively	simple
market	risk	portfolio	is	to	use	the	linear	delta	approach.	The	linear	delta	approach	(risk
position	approach)	is	also	used	in	CCAR	and	EBA	market	risk	stress	tests	as	we	discussed	in
the	advanced	market	risk	chapter	(Chapter	3)	in	the	section	on	scenario	analysis	and	stress
testing.	Forthe	banking	book	earnings	and	loss	projection	the	approximation	can	be	based	on



pooling	or	a	smaller	replicating	portfolio	for	a	quick	approximate	stress	analysis,	although
loan-level	models	are	more	frequently	being	used	in	practice	as	we	discussed	in	the	portfolio
credit	risk	(Chapter	4).	More	elaborate	approximation	techniques	may	have	to	be	used	for
complex	portfolios	that	can	have	a	large	impact	on	stressed	profit	and	loss,	for	example,
Treasury	interest	rate	risk	hedges	with	optionality	such	as	American	and	Bermudan	swaptions.

Regulatory	Benchmark	Firmwide	Risk	Models
Regulators	also	develop	their	own	firmwide	risk	models	for	bank	stress.	For	example,	many
central	banks	in	Europe	have	developed	high-level,	macroeconomic	bank	risk	models	for
stress	testing.	See,	for	example,	the	Bank	of	England	RAMSI	model	(2012),	the	European
central	bank	stress	test	model	(2013),	and	the	Czech	national	bank	stress	testing	model	(2013).
These	models	rely	mostly	on	balance	sheet	information	from	banks	and	macroeconomic	risk
models.	Of	course,	banks	themselves	have	more	detailed	information	about	the	risk	exposures,
and	hence	a	bank's	own	firmwide	risk	model	can	utilize	more	detailed	portfolio	information.	It
can	therefore	also	be	used	to	challenge	regulatory	views.	Regulators	may	also	develop	their
own	more	granular	benchmark	models	for	specific	risks.	For	example,	as	we	discussed	in
Chapter	4	on	portfolio	credit	risk,	the	2012	Federal	Reserve	CCAR	supervisory	credit	stress
tests	used	a	specific	quarterly	delinquency	transition	matrix	specification	for	the	residential
mortgages.	Since	then,	the	Federal	Reserve	has	been	building	supervisory	models	for	CCAR
using	the	collected	bank	data.

Multiple	Model	Approaches
In	practice,	banks	may	of	course	use	multiple	model	approaches	in	stress	testing	with	both	silo
and	firmwide	risk	model	approaches.	A	central	firmwide	stress	testing	team	may	be
responsible	for	maintaining	macroeconomic	scenarios,	satellite	models,	and	the	firmwide	risk
model	for	the	firmwide	stress	testing.	At	the	same	time	the	silo	risk	systems	may	be	used	to
generate	benchmark	validations	of	stressed	profits	and	losses	under	the	same	macroeconomic
scenarios.

Firmwide	Risk	Capital	Measures
Firmwide	stress	testing	can	provide	significant	values	to	bank	management.	Oneis	for	the
management,	including	the	regulator,	to	examine	the	capital	planning	and	management	decisions
under	different	scenarios	and	ensure	a	satisfactory	capital	position	for	the	bank	under	the
scenarios.	From	a	basic	balance	sheet	point	of	view	a	bank's	capital	is	defined	as	the	total
assets	minus	the	total	liabilities	of	the	bank.	At	a	specific	point	of	time	the	value	of	capital	can
increase	or	decrease	due	to	the	change	of	the	balance	sheet.	The	key	to	the	firmwide	stress
testing	exercise	is	to	apply	the	stress	scenario	to	the	projection	of	both	the	asset	and	liability
side	of	the	balance	sheet.	An	incremental	projection,	period	by	period,	starting	from	the	current
state	at	the	time	of	the	analysis	means	that	the	available	capital	can	also	be	measured	as	the	net
earnings	minus	the	losses	adjusted	by	tax	and	capital	actions.	Capital	actions	include	dividend
plans	and	other	accounting	adjustments.	Figure	9.1	presents	a	conceptual	view	of	the	steps



involved	in	risk-based	capital	stress	testing.	The	first	step	applies	stress	scenarios	to	obtain	a
stressed	income	statement,	which	is	adjusted	for	taxes	and	other	adjustments	such	as	asset	sale
gains,	such	that	we	can	obtain	a	final	projected	income	statement	under	stress.	In	the	first	step	a
bank	therefore	calculates	the	stressed	net	revenue	before	loss	provision	and	loss	adjusted	by
recovery.	The	net	revenue	before	loss	provision,	also	known	as	pre-provision	net	revenue
(PPNR)	in	CCAR,	is	composed	of	interest	income,	non-interest	income,	including	fees	and
trading	profit	and	loss,	interest	expense,	and	non-interest	expense.	Credit	and	operational
losses	will	offset	the	net	revenue	for	the	same	period.	The	second	step	calculates	the	available
capital	from	the	final	projected	income	and	the	current	available	capital.	This	available	capital
is	before	management	actions.	Post-management	action	available	capital	is	obtained	in	step	3.
Adjustments	to	the	available	capital	in	step	2	include	decisions	on	dividend	payouts	and
capital	preserving	actions	such	as	equity	raises	and	balance	sheet	reductions.

Figure	9.1	Firmwide	Risk-Based	Capital	Stress	Testing

Risk	Measures	and	Stress	Scenarios
When	using	a	firmwide	scenario	approach	to	generate	firmwide	risk	and	capital	measures,	we
can	use	two	different	approaches:

First,	we	can	generate	a	set	of	correlated	firmwide	risk	factor	scenarios	that	spans	the
different	risks.	We	then	calculate	the	profit	and	loss	resulting	from	the	scenarios	and	create
a	distribution	to	which	we	can	apply	the	usual	risk	measures	such	as	 	and	 .

In	this	risk	measure	approach	we	choose	as	our	required	firmwide	capital	essentially	a
worst-case	scenario	or	weighted	average	set	of	scenarios	decided	by	the	risk	confidence
level	used	in	the	risk	measure.	If	our	current	capital	base	is	not	sufficient	to	cover,	for
example,	the	calculated	firmwide	risk	capital	need,	we	can	take	capital	preserving	actions
and	plan	for	capital	adjustments.

Second,	instead	of	taking	a	worst-case	risk	measure	approach	to	capital	(and	liquidity
sufficiency)	we	can	focus	on	sufficiency	in	a	given	predefined	worst-case	stress	scenario.

Historically,	regulatory	risk	capital	for	market	and	credit	risks	has	followed	the	first



approach,	defining	capital	as	a	worst-case	scenario	from	many	scenarios	using	a	risk
measure.	The	liquidity	regulation	with	Basel	III	instead	focuses	on	the	second	approach,
testing	the	sufficiency	of	the	liquidity	buffer	using	a	given	predefined	worst-case	stress
scenario.

In	both	approaches	to	test	capital	and	liquidity	sufficiency	the	main	steps	followed	are:

1.	 The	firmwide	scenario(s)	are	generated.

2.	 Satellite	models	are	used	to	transfer	the	macroeconomic	stress	scenario(s)	to	actual
portfolio	risk	factors	if	needed.

3.	 Scenario	loss(es),	earnings	impact(s),	and	liquidity	impact(s)	are	computed.

4.	 The	available	capital	base	and	liquidity	buffer	are	used	to	check	sufficiency	versus	the	risk
measure	(risk	measure	approach)	or	versus	the	loss	and	liquidity	outflow	in	the	scenario
(stress	scenario	approach).

5.	 Depending	on	the	outcome,	management	actions	may	be	considered,	for	example,	capital
preserving	or	liquidity	preserving	actions.

Note	that	if	the	scenario(s)	are	multi-horizon,	we	may	consider	reasonable	firm	actions	such	as
capital	and	liquidity	preserving	actions	at	the	end	of	a	scenario	horizon	before	the	next	horizon
of	the	scenario.	In	a	multi-horizon	scenario	the	depletion	of	the	capital	base	or	the	liquidity
buffer	can	also	happen	over	time	and	the	specific	term-structure	characteristics	together	with
the	severity	of	the	scenario	are	important	in	deciding	the	exact	outflows	as	well	as	the
appropriate	management	response.

A	Risk	Reserve	ApproachA	Practical	Illustration
In	practice,	the	scenario(s)	generated	in	step	1	above	are	high	level.	This	is	because	we
consider	a	firmwide	stress	and	it	is	practical	to	start	with	a	(set	of)	high-level	macroeconomic
scenario	and	then	drill	down	to	impact	on	portfolio-specific	risk	factors.	The	fundamental	idea
is	for	the	bank	to	get	a	forward-looking	understanding	of	the	aggregated	risk	profile	based	on
the	scenario(s).	The	firmwide	risk	capital	approach	is	here	different	from	a	risk	capital
approach	per	risk	type	as	it	focuses	on	a	comprehensive,	economically	meaningful	stress
scenario.	To	capture	reality	the	macroeconomic	scenario	is	generally	a	multi-horizon	scenario,
specifying	a	path	that	macroeconomic	variables	can	follow.

In	the	second	step,	when	models	are	used,	such	as	factor	models	or	conditional	distribution
models,	to	transform	the	macroeconomic	scenarios	it	is	important	to	recognize	that	in	practice
the	specific	models	used	may	have	to	be	adapted	to	the	severity	of	a	scenario.	For	example,	an
extremely	severe	macroeconomic	scenario	may	use	a	set	of	models	that	are	different	from	a
corresponding	severe	scenario.	This	is	because	the	models	need	to	capture	the	severity	of	the
scenario	and	the	potential	breakdown	of	historical	relationships	such	as	correlations	in
extremely	severe	cases.

The	third	step	of	the	process	yields	a	per-scenario	projected	income	statement	with,	for
example,	income	statement	line	items	earnings	and	loss	contribution	from:



9.1

Earnings	from	the	interest	income	projection	from	the	assets	and	liabilities

Losses	from	market	risk

Losses	from	issuer	credit	risk	in	banking	book	and	trading	book

Losses	from	counterparty	default	and	CVA

Other	losses,	for	example,	from	operational	risk

The	earnings	from	the	interest	income	projection	is	a	traditional	net	interest	income	projection.
It	can	include	a	joint	modeling	of	issuer	credit	risk	and	cash	flows	or	use	a	post-adjustment	of
the	net	interest	income	with	credit	system	projected	losses.	The	interest	income	comes	from,
for	example,	loans,	leases,	deposits,	and	mortgages.	The	interest	expense	comes	from	deposits,
issued	bank	debt,	and	other	liabilities.

A	bank	also	has	earnings	from	non-interest	income	and	non-interest	expense.	Recall	that	in
CCAR	the	PPNR	is	the	sum	of	three	parts:	net	interest	income,	non-interest	income,	and	non-
interest	expense.	All	three	parts	need	to	be	stressed.	Hence,	this	requires	banks	to	develop
models	predicting	non-interest	income	and	non-interest	expense	such	as	bank	fee	income	and
administration	and	salary	expenses	under	the	macroeconomic	stress.	Due	to	the	lack	of
granular	historical	data	and	previous	model	practice	banks	sometimes	take	a	simplified	“line
item”	approach	for	some	of	these	non-interest	income	and	non-interest	expense	earnings.	The
“line	item”	approach	referred	to	here	is	different	from	the	top-down	approach	used	in	Chapter
8.	The	line	item	approach	still	uses	risk	factors	and	scenarios	to	analyze	risk	impacts	but
operates	on	an	aggregated	level	such	as	portfolio	or	income	statement	line	item.	Oftentimes
regression	models	are	fitted	to	the	past	line	item	behavior	and	the	(macroeconomic)	regressors
are	subsequently	used	to	stress	the	line	item	behavior.	We	refer	to	Duane	et	al.	(2014)	on
models	and	practices	to	predict	non-interest	income	and	non-interest	expense.

Having	obtained	the	stressed	earnings	we	now	obtain	the	scenario-based	prediction	of	total
losses	using	the	profit-and-loss	models	for	market	risk,	issuer	credit	risk,	counterparty	default
risk,	and	CVA	that	have	been	discussed	extensively	in	this	book.	Note	that	for	CVA	losses	there
is	both	a	market	risk	effect	on	exposure	as	well	as	a	credit	component.	A	CVA	increase	can
hence	come	from	both	market	risk	factors	(exposure)	and	the	credit	component	through
counterparty	CDS	premia	or	bond	spreads.

With	scenario	stressed	earnings	and	losses	available	we	can	create	an	aggregate	stressed
income	statement	per	scenario	as	in	step	1	in	Figure	9.1.	We	can	also	adjust	the	projected
income	statement	with,	for	example,	other	projected	incomes	such	as	asset	sale	gains	and
earnings	tax	adjustments.	This	yields	the	bank's	final	projected	net	income	in	step	2	in	Figure
9.1.	Dividing	the	final	projected	income	into	earnings,	 ,	and	losses,	 ,	contributions	we	can
create	the	capital	reserve,	 ,	for	scenario	 	as

where	 	is	the	current	available	capital	base.	The	capital	reserve	hence	corresponds	to	the
remaining	available	capital	in	step	2	in	Figure	9.1	and	is	before	consideration	of	management



actions.

Having	completed	all	the	steps	1–4	to	obtain	a	scenario	 	capital	reserve,	 ,	we	can	now
consider	management	actions,	for	example,	to	preserve	capital.	Of	course,	the	best	management
intervention	may	be	decided	per	scenario	and	hence	may	require	a	model	of	management
intervention	to	be	implemented	if	many	scenarios	 	are	used	in	a	risk	measure
approach	to	firmwide	risk	capital.	In	our	capital	risk	reserve	approach	we	assume,	prudently,
that	there	are	no	capital	preserving	actions	by	the	bank.	That	is,	the	bank	will	not	save	positive
contributions	from	the	net	earnings,	 ,

in	one	period	to	build	up	the	current	available	capital	base,	 ,	in	the	next	period.2	This	means
that	 	is	constant	over	time	in	this	case	(since	there	is	no	addition	to	the	current	available
capital)	and	that	we	can	calculate	a	required	capital	reserve	over	time,	 ,	in	the	multi-
horizon	scenario	 	as

If	we	use	a	stress	scenario	approach	to	analyze	the	sufficiency	of	the	initial	capital	buffer,	 ,
we	clearly	cannot	allow	 	negative	at	any	 	in	the	stress	scenario.	In	the	risk
measure	approach	we	similarly	sum	all	the	negative	contributions	to	 	over	time	for
each	scenario	 	and	apply	a	risk	measure	to	the	tail	of	summed	negative
contributions.	If	the	chosen	risk	measure,	at	the	specific	confidence	level	and	time,	 ,	implies	a
loss,	that	is,	that	the	risk	reserve	is	exhausted,	it	is	a	sign	we	should	increase	thecapital	buffer,	
,	to	ensure	survival	at	that	confidence	level	and	time	horizon.

The	above	approach	to	firmwide	risk	capital	is	based	on	a	risk	reserve	approach	and	hence
not	depleting	the	capital	buffer	under	a	particular	stress	scenario	or	using	a	risk	measure	on
many	scenarios.	This	approach	is	founded	in	classical	risk	theory	in	insurance	and	is	the
approach	to	defining	risk	capital	as	well	as	defining	the	liquidity	buffer	that	we	have	used	in
this	book.	This	includes	the	market	risk	models	as	well	as	the	portfolio	credit	risk	models	and
the	liquidity	models.	It	is	also	the	traditional	approach	for	banks'	ICAAP	models.	As	we	shall
see	next,	the	CCAR	and	EBA	firmwide	stress	approach	is	different.	That	is,	it	is	not	used	to
define	the	capital	buffer	per	se	but	rather	to	put	limits	on	the	minimum	regulatory	capital	ratios.

Regulatory	Stress	Scenario	Approach
While	net	profit	and	loss	depend	on	the	macroeconomic	scenario,	so	does	the	required	capital.
Furthermore,	there	is	a	dependency	of	the	required	capital	on	the	balance	and	loss	projection.
An	obvious	example	is	that	the	credit	risk	weighted	assets	change	when	the	total	balance	and
credit	quality	of	the	banks'	asset	changes	due	to	either	growth	or	loss.	On	the	other	side,	if
required	capital	increases	too	quickly	to	be	sustained	by	the	available	capital	business,	growth
and	capital	actions,	such	as	dividend	payouts	and	equity	buy-back	plans,	must	be	adjusted.	In



this	section	we	focus	mainly	on	the	bank-specific	approach	to	regulatory	firmwide	stress
testing.	However,	we	also	discuss	briefly	the	second	round	of	analysis	performed	by	central
banks	to	analyze	the	financial	system	stability,	either	using	their	own	macroeconomic	stress
testing	models,	or	by	rolling	up	banks'	own	provided	stress	test	results.

Bank-Specific	Approach:	A	Total	Balance	Sheet	View
Instead	of	focusing	on	stress	scenarios	to	actually	define	the	capital	buffer	both	CCAR	and
EBA	firmwide	stress	testing	focus	instead	on	banks	maintaining	minimum	capital	ratios	under
stress.	The	capital	ratio	is	here	actual	capital	divided	by	required	capital.	The	compliance	to
regulatory	stress	scenarios	is	hence	viewed	as	complementary	to	the	already	defined	capital
requirements.	Here	capital	requirements	are	predominantly	computed	using	risk	models	and	a
risk	measure	approach	that	is	founded	in	a	risk	reserve	approach.	In	general,	maintaining	a
minimum	capital	ratio	under	stress	is	of	course	a	much	tougher	requirement	than	meeting
capital	sufficiency.

Figure	9.2	presents	a	conceptual	view	of	the	elements	involved	in	the	regulatory	stress
scenario	approach.	Compared	to	Figure	9.1,	we	notice	that	stress	scenarios	are	also	applied	to
the	required	capital	calculation	and	that	thefocus	is	the	capital	ratio	rather	than	available
capital	per	se.	As	part	of	the	regulatory	stress	testing	a	bank	may	also	face	restrictions	on	what
management	actions	can	be	assumed	in	step	3	to	improve	the	capital	ratio	from	step	2.

Figure	9.2	Regulatory	Stress	Scenario	Approach

Both	CCAR	and	EBA	consider	stress	during	multi-horizon	macroeconomic	stress	scenarios.
For	example,	the	CCAR	macroeconomic	scenarios	specify	the	evolution	quarterly	over	the
next	9	quarters.	In	EBA	the	macroeconomic	scenarios	are	based	on	the	evolution	over	3	years.
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As	we	have	discussed	in	the	specific	risk	chapters,	the	scenarios	include	both	macroeconomic
scenarios	and	specific	market	risk	scenarios	with	detailed	risk	factors,	funding	shock
scenarios,	as	well	as	prescribed	default	of	the	largest	exposure	counterparty.

Creating	the	Balance	Sheet	Ratio
In	both	CCAR	and	EBA	the	current	balance	sheet	is	the	basis	for	the	first	horizon	projected
income	statement.	The	projected	income	statement	is	then	the	basis	for	the	projected	balance
sheet	statement	at	the	end	of	the	first	horizon.	The	scenario	realized	capital	ratios	help	to
determine	if	the	bank	must	take	management	action	to	increase	capital	to	maintain	the	minimum
capital	ratio	under	stress.

For	example,	a	bank	can	create	the	balance	sheet	ratio,	 ,	for	a	scenario	 	such	that

where,	as	in	equation	(9.1),	 	is	the	current	available	capital	base,	 	is	the	projected	earnings
in	the	scenario,	 	is	the	projected	losses	in	the	scenario,	and	 	is	now	a	measure	of	required
capital	under	stress.

Using	instead	the	retained	earnings,	 ,	defined	as	the	earnings	minus	losses	and	any
additional	loss	provisions	needed,3	this	results	in

Hence,	we	now	have	a	scenario	capital	ratio,	 ,	that	can	be	compared	to	a	minimum	required
capital	threshold.	Because	of	the	 	multi-horizon	scenario	the	capital	ratio	of	course
has	a	scenario	term	structure	as	 ,	which	can	be	compared	to	time-based	limits	or	a
fixed	limit	over	time.

Projecting	Required	Capital
In	the	regulatory	stress	scenario	approach	the	definition	of	required	capital,	 ,	is	the	minimum
regulatory	capital	and	 	is	the	capital	base.	Specifically,	 	is	the	sum	of	all	the	capital	charges
for	the	risks.	However,	we	still	need	a	specific	definition	of	required	capital	for	the	different
risks	to	calculate	 .	This	is	in	general	based	on	the	bank's	approval	for	the	specific	risk
models	used	in	regulatory	capital	calculations.	For	example:

Market	risk	regulatory	capital	impact	can	be	based	on	the	internal	models	approach	with	
	and	stressed	 .

In	principle,	a	model-based	charge	can	be	based	on	a	conditional	distribution	 ,	or	use	a
simple	replacement	of	 	with	stressed	 	as	per	EBA.4	The	conditional	distribution	

	is	the	 	obtained	when	we	condition	the	portfolio	risk	factor	distribution	on	the
prespecified	stressed	macroeconomic	factors.	See	our	probabilistic	stress	testing	example



in	Chapter	2	for	an	illustration	of	conditional	stressed	 .

Issuer	credit	risk	in	banking	book	regulatory	capital	impact	can	use	the	Basel	advanced
internal	models	approach	for	the	banking	book,	that	is,	the	Basel	risk	weighted	assets
equation	(4.40)	found	in	Chapter	4	on	portfolio	credit	risk.

The	regulatory	macroeconomic	stress	scenarios	ultimately	impact	the	risk	inputs	to	the
risk-weighted	assets	such	as	probability	of	default	and	loss	given	default.	We	refer	the
reader	to	Chapter	4	on	portfolio	credit	risk	for	an	explicit	example	of	stressing	mortgage
portfolio	losses,	net	earnings,	and	Basel	risk-weighted	assets	capital	under	macroeconomic
scenarios.

Issuer	credit	risk	in	trading	book	can	use	a	stressed	(parameters)	or	conditional
distribution	(on	the	macroeconomic	factors)	 	for	the	incremental	risk	charge	assuming
the	bank	is	currently	using	the	model	for	the	trading	book	credit	risk.

See	Chapter	4	on	portfolio	credit	risk	for	the	incremental	risk	charge	model	as	well	as	an
example	of	stressed	credit	losses	for	a	corporate	credit	portfolio	that	uses	the	multifactor
model	approach.

Counterparty	credit	risk	default	charges	are,	as	issuer	default	risk	charges	in	banking	book,
also	based	on	the	risk-weighted	assets	in	equation	(4.40)	using	the	estimated	expected
positive	exposures	as	we	discussed	in	Chapter	5	oncounterparty	credit	risk.	CVA	charges
can	use	a	standardized	formula-based	approach	or	a	 	model	capturing	the	variation	in
CDS	premia	or	bond	spreads	for	the	counterparty.

Note	here	that	while	the	regulatory	definition	of	 	is	the	sum	of	the	minimum	regulatory
capital,	in	principle,	internal	stress	testing	could	be	based	on	other	measures	such	as	economic
capital	in	the	denominator	of	equation	(9.2).	This	can	involve	using	economic	capital	models
for	the	specific	risk	types	as	well	as	overriding	the	simple	risk	sum	approach	using	a
correlated	aggregation	model	of	the	different	risks	to	obtain	 .	We	refer	the	reader	to	Chapter
8	for	a	discussion	of	correlated	aggregation	models.

Management	Intervention	and	Balance	Growth	Assumptions
Given	a	stress	scenario	realized	balance	sheet	and	capital	ratio	at	a	certain	time	 ,	 ,
potential	management	intervention	(capital	preserving,	dividend	planning,	and	other	capital
actions)	as	well	as	balance	sheet	growth	assumptions	for	the	next	horizon,	 ,	can	potentially
be	considered.	For	example,	in	the	Bank	of	England	RAMSI	model	(2012),	the	bank	decision
rule	followed	is	to	expand	the	balance	sheet	at	 	only	if	both	retained	earnings,	 ,	are
positive	and	the	capital	ratio,	 ,	exceeds	the	minimum	stress	level.	When	the	capital	ratio	is
below	the	minimum	stress	level	the	retained	earnings	are	used	to	build	up	the	capital	base.	In
case	of	negative	retained	earnings,	the	balance	sheet	is	in	runoff.

There	are	a	few	variations	in	the	actual	calculation	details	in	practice	between	regulations.	For
example,	when	the	European	EBA	stress	testing	exercise	is	performed	by	a	specific	bank,	no
management	intervention	is	allowed.	In	contrast,	in	CCAR	banks	must	incorporate	both
planned	(baseline)	and	stress	scenario	specific	capital	actions.	Another	difference	is	the



treatment	of	the	growth	of	the	balance	sheet,	which	is	static	in	EBA.	In	practice,	the	revenue
projection	should	incorporate	the	change	of	the	asset	and	liability	balance,	which,	in	turn,
affects	the	income	and	expenses.	The	balance	sheet	change	should	also	reflect	the	scenario
instead	of	being	static.	For	example,	the	increase	of	deposit	volume	and	the	high-quality	assets
is	typically	lower	in	adverse	scenarios	than	a	normal	scenario.	Likewise,	the	interest	income
and	expense	due	to	the	additional	business	can	vary	according	to	the	scenario.

Figure	9.3	illustrates	the	firmwide	stress	testing	process	for	scenario	horizons	 .	The
process	in	Figure	9.3	includes	both	liquidity	ratios	and	capital	ratios.	However,	currently	both
CCAR	and	EBA	focus	on	the	capital	ratios	under	stress.	In	Figure	9.3,	we	have	also	included
potential	management	intervention	if	allowed.	If	management	intervention	is	not	allowed,
management	projections	such	as	balance	forecasting	are	assumed	to	be	made	at	the	beginning
of	the	process	and	remain	for	the	duration	of	the	stress	test.	Alternatively,	balances	are	simply
assumed	constant.	Of	course,	inprinciple,	a	management	intervention	of	capital	raising	action
can	be	an	ex-post	adjustment	as	all	the	scenario	analysis	horizons	have	run.	However,	this	does
not	apply	to	the	balance	adjustments	as	balance	adjustment	will	affect	next	horizon's	balance
sheet	to	be	stressed	for	earnings,	losses,	and	capital	requirements.

Figure	9.3	Firmwide	Stress	Testing	Process

In	Chapter	6	on	liquidity	risk	management,	the	reader	can	find	an	extensive	example	of
modeling	earnings	and	loss	cash	flows	with	behavioral	and	business	growth	assumptions.	The
example	uses	the	concept	of	target	ending	balances	for	future	balances	together	with
prepayment	and	default	assumptions.	It	also	illustrates	the	importance	of	addressing	liquidity
and	funding	needs	with	balance	growth.	The	target-ending	balance	case	is	an	example	of	a
portfolio-level	top-down	approach	to	balance	growth.	However,	in	practice	behavioral
models	such	as	prepayment	and	default	can	be	granular	while	business	plan	models	such	as	the
target-ending	balance	approach	can	be	a	(per	horizon)	post-process	adjustment.	That	is,
detailed-level	cash	flows	are	aggregated	to	a	higher	level	view	where	going-concern	business
growth	is	applied	on	aggregated	balances	(cash	flows)	for	a	product	class.	We	refer	the	reader
back	to	our	discussion	in	the	liquidity	risk	chapter	on	combining	the	risk	and	finance	view.



Bank-Specific	Approach:	More	on	Scenarios	and	Models
While	we	have	already	discussed	the	typical	firmwide	stress	testing	scenario	model
approaches	the	firmwide	stress	testing	regulation	calls	for	special	attention	on	how	banks
manage	the	stress	testing	models	and	scenarios.	This	includes	own	scenario	creation,	the	use	of
simplifed	models	in	some	cases,	the	role	of	management	overlay	in	analytical	stress	testing
models,	and	the	need	to	recognize	and	manage	the	inherent	model	risk	in	the	stress	testing
models.

Economic	Scenario	Generator—Own	Developed	Scenarios
Since	the	regulatory	scenarios	are	at	very	high	level	and	only	include	major	macroeconomic
risk	drivers	affecting	the	entire	economic	system,	banks	are	expected	to	extend	the	regulatory
scenarios	to	better	reflect	the	risks	that	materially	affect	the	bank's	business	operations.	For
example,	while	regulatory	scenarios	usually	include	national	real	estate	price	indices,	a	bank
that	has	residential	or	commercial	mortgage	exposures	in	certain	regions	must	either	derive	the
regional	indices	down	to	the	granular	level	that	corresponds	to	the	exposure	concentration
from	the	regulatory	national	index	scenario	values	or	even	further	augment	the	scenario	by
creating	new	scenarios	with	these	regional	indices.

Regulators	also	expect	banks	to	build	the	enterprise	stress	testing	into	their	own	risk
management–based	decision	making,	and	thus	demand	banks	to	develop	own	macroeconomic
scenarios	that	are	relevant.	Banks'	own	developed	scenarios	can	be	an	extension	of	the
regulatory	scenarios	by	adding	more	macroeconomic	variables,	overriding	certain	regulatory
specifications,	or	creating	a	completely	new	scenario.	The	own	scenarios	developed	by	banks
should	capture	the	key	risk	exposures	and	concentrations	in	bank	portfolios.

Due	to	the	complexity	of	bank	portfolios	it	is	in	practice	not	easy	for	banks	to	realize	the	risk
exposures	that	may	traumatize	the	business.	However,	the	task	of	finding	severe	impact
scenarios	conceptually	amounts	to	considering	reverse	stress	testing	approaches.	Reverse
stress	testing	methodologies	as	well	as	associated	dimension	reduction	methods	for	portfolios
with	many	risk	factors	have	been	discussed	at	length	in	the	advanced	market	risk	chapter	of	this
book.	The	concept	of	reverse	stress	testing	is,	however,	universal	and	not	specific	to	market
risk.	In	general,	it	focuses	on	the	outcomes	that	can	hurt	the	bank	significantly	and	then,	through
an	appropriate	method	of	reverse	impact	analysis,	finds	the	stress	scenarios	that	could	generate
such	an	outcome.	We	refer	the	reader	back	to	the	advanced	market	risk	chapter	for	a	detailed
discussion	and	examples	of	reverse	stress	testing	methodologies	using	both	simulated	market
states	and	historical	data	as	basis	for	reverse	stresstests.

Long	before	the	rise	of	the	enterprise	stress	testing	economic	capital	has	existed	as	a	common
practice	for	bank	capital	management.	Stress	testing	has	been	a	supplement	to	the	economic
capital	analysis	often	founded	in	model-based	risk	charges.	This	relation	can	clearly	be	seen	in
the	traditional	ICAAP	“risk	reserve”	process	described	above.	Of	course	the	goal	of	stress
tests	is	to	provide	a	forward-looking	view	of	banks'	capital	in	addition	to	the	economic	capital
models	that	are	often	drawn	from	historical	data.	This	book	has	also	covered	a	few	other
perspectives	of	the	interplay	between	stress	testing	and	models.	The	first	is	that	a	sound



economic	capital	analysis	can	help	identify	the	stress	scenarios	that	can	significantly	impact	a
bank's	capital	adequacy.	This	is	the	practice	of	reverse	stress	testing	discussed	above.	The
second	is	the	enhancement	of	the	economic	capital	analysis	with	the	forward-looking	stress
scenarios,	which	is	a	topic	we	covered	as	part	of	stress	testing	in	the	chapter	on	advanced
market	risk	analysis	under	the	heading	of	integration	of	stress	and	model	analysis.

The	Use	of	Simplified	Time	Series	Forecasting	Models	for	Line	Items
Due	to	the	lack	of	granular	historical	data	and	appropriate	models,	banks	are	sometimes	taking
historical	line	item	time	series	forecasting	approaches	for	some	components	of	the	financial
statements.	A	typical	example	is	non-interest	income	and	non-interest	expense,	which	we	have
mentioned	previously.	There	are	many	reasons	why	this	approach	is	still	acceptable	to	the
regulators.	Apart	from	the	inherent	data	issues,	in	many	cases	the	massive	mergers	and
acquisitions	that	took	place	after	the	financial	crisis	have	limited	the	ability	of	banks	to	present
acceptable	models	for	certain	parts	of	the	balance	sheet.	Banks	may	have	introduced	new
business	or	changed	the	composition	of	the	business.

In	the	United	States,	all	the	regulated	banks	are	required	to	submit	periodic	financial	and	other
information	to	their	regulators.	One	of	these	reports	is	the	quarterly	consolidated	report	of
condition	and	income,	also	known	as	the	call	report.	Every	national	bank,	state	member	bank,
and	insured	bank	is	required	by	the	Federal	Financial	Institutions	Examination	Council
(FFIEC)	to	file	a	call	report	every	quarter.	The	granularity	of	the	call	report	also	matches	very
well	the	regulatory	stress	testing	requirement.	Many	banks	that	face	the	challenge	of	the
granular	data	and	models	thus	develop	quarterly	projection	models	to	be	able	to	respond	to	the
regulatory	scenarios	by	employing	historical	values	of	the	risk	factors	in	the	scenarios	as
covariates	to	the	historical	line	item	numbers.

Management	Overlay
Although	quantitative	models	by	and	large	provide	objective	stress	testing	results	management
overlay	is	still	investible	at	times.	In	most	cases	such	overlay	should	be	subject	to	management
policies	or	managegment	actions.	In	most	cases	management	intervention	and	capital	actions
such	as	dividend	plans	are	policy	driven.	Another	decision-making-backed	overlay	example	is
the	new	business	acquisition	or	write-off,	which	is	hard	to	project	by	models.	Such	decisions
can	drive	the	new	business	projection	and	ending	balance	projections	as	input	to	the	loss	and
revenue	calculations.	Again,	the	target	ending	balance	example	in	Chapter	6	on	liquidity	risk
management	with	behavioral	and	business	growth	assumptions	is	a	concrete	illustration	of	how
to	incorporate	such	assumptions.	Other	decision-based	management	overlay	examples	include
the	fee	incomes	that	can	depend	on	the	fee	structure	policies.

The	Role	of	Model	Risk	Management
The	enterprise	stress	testing	exercise	has	put	tremendous	emphasis	on	the	models	for	the	entire
balance	sheet.	Model	risk	management,	including	model	governance,	model	validation,	and
documentation,	has	been	given	more	attention.	The	model	risk	management	issues	reviewed	in
the	first	chapter	of	this	book	are	all	relevant	to	the	firmwide	stress	testing.	We	emphasize	here



that	the	model	assumption	for	the	stress	testing	models	is	that	these	models	can	properly
capture	the	tail	behavior	of	the	modeled	subject.	This	includes	the	fact	that	market	and
consumer	behavior	can	change	significantly	under	stress	situations.	Such	changes	in	behavior
in	stress	typically	impact	correlations	that	can	be	far	different	from	the	correlations	during
normal	times.

Systemic	View:	Financial	System	Analysis	and	Financial	Contagion
The	regulatory	stress	testing	process	described	above	focuses	on	the	specific	bank	behavior
under	stress,	specifically,	the	bank's	performance	of	capital	ratios	under	stress.	At	any	point	in
time	during	the	multi-horizon	stress	scenario	capital	ratios	are	examined	and	compared	to
limits.	Management	actions,	if	allowed	during	the	path	of	the	multi-horizon	stress,	take	the	form
of	remedial	actions	when	limits	are	breached	with	an	aim	to	improve	the	situation	for	the	next
horizon.

When	central	banks	perform	this	stress	testing	exercise	per	bank,	using	their	macroeconomic
stress	testing	models,	or	by	rolling	up	banks'	own	provided	stress	test	results,	they	also	need	to
add	another	step	in	the	analysis	to	capture	systemic	risks,	that	is,	that	potential	large	losses	or
the	failure	of	some	banks	can	give	rise	to	negative	contagion	effects	on	other	banks	in	the
system.	If	a	systemicallyimportant	bank	fails	to	pass	the	test,	it	can	have	consequences	on	other
banks	through	direct	bilateral	linkages	or	more	indirectly	through	financial	system	confidence
effects.	We	refer	to	the	European	Central	Bank	macroeconomic	stress	testing	framework	for	the
systemic	risks	(2013)	for	an	example	of	how	central	banks'	stress	testing	models	that	analyze
the	financial	system	as	a	whole	include	sophisticated	financial	network	and	contagion	analysis
models.

While	regulators	are	increasingly	using	financial	contagion	models	to	analyze	potential
systemic	risks	in	the	banking	system	one	would	also	expect	that	over	time	banks	themselves
will	be	required	to	analyze	potential	contagion	effects	in	their	own	portfolios,	and	how
microeconomic	events,	rather	than	only	general	macroeconomic	situations,	can	create	initial
losses	and	subsequent	contagion	effects	within	a	specific	bank.	A	classical	liquidity	risk
example	is	of	course	a	loss	of	trust	in	the	bank,	due	to	some	event	such	as	an	operational	loss,
and	how	the	loss	of	trust	can	evolve	to	the	different	providers	of	funds	to	the	bank,	resulting	in
a	liquidity	crunch.

The	Future	of	Firmwide	Stress	Testing
Firmwide	stress	testing	is	certainly	here	to	stay.	Regulatory	mandated	firmwide	stress	testing
programs	have	also	seen	rapid	expansion.	The	success	of	CCAR	stress	tests	in	the	United
States	has	inspired	the	development	of	the	more	recent	stress	tests	by	European	EBA	and	other
jurisdictions.	See	Schuermann	(2013)	for	an	interesting	discussion	on	the	CCAR	and	EBA
stress	test	developments.

As	we	have	discussed	in	this	chapter,	the	EBA	and	CCAR	stress	tests	focus	on	macroeconomic
scenarios	that	can	impact	the	bank's	income	statement	(profit	and	loss	impact)	as	well	as	the



subsequent	balance	sheet	(capital	impact).	When	the	regulatory	stress	scenario	is	hypothetical,
models	and/or	expert	judgment	can	be	used	to	transfer	stress.	The	use	of	models	is	critical	to
the	materialization	of	the	high-level	macroeconomic	scenario.	Models	are	hence	clearly
central	to	both	firmwide	stress	testing	and	the	traditional	risk-based	model	charges.

One	could	argue	that	the	current	focus	of	regulators	on	firmwide	stress	testing	is	a	trend	toward
replacing	risk-based	model	charges	with	stress	scenarios,	and	ultimately	a	sign	of	distrust	in
models.	The	success	of	firmwide	stress	testing	has	also	seen	voices	raised	to	replace	risk-
based	model	charges	with	stress	testing	charges.	See,	for	example,	the	speech	by	Governor
Daniel	K.	Tarullo,	at	the	Federal	Reserve	Bank	of	Chicago	Bank	Structure	Conference,
Chicago,	Illinois,	May	8,	2014.	Tarullo	argues	that	the	credit	risk	internal	ratings-based
approach	is	too	complex,	aids	little	in	understanding	the	risks	in	the	bank's	balance	sheets,	and
is	backward	looking.	His	view	is	that	the	supervisory	stress	tests	developed	by	the	Federal
Reserve	in	the	United	States	provide	a	much	better	risk-sensitive	basis	for	setting	minimum
capital	requirements—that	is,	to	define	risk-based	capital	charges	using	supervisory	stress
scenarios.

We	would	rather	view	the	firmwide	stress	testing	as	complementary.	Indeed,	focusing	only	on	a
stress	scenario	approach	to	capital	charges	may	put	too	much	burden	on	supervisors	and	banks
to	come	up	with	the	right	scenarios	that	anticipate	future	crisis	events.	An	important	step	to
overcome	the	deficiencies	of	risk-based	model	charges	is	to	complement	model-based	views
with	forward-looking	stress	events,	that	is,	integration	of	stress	and	model	analysis.5	Even	if
regulators	ultimately	decide	to	abandon	risk-based	model	charges	for	stress	charges,	the	risk-
based	models	will	likely	still	play	a	vital	role	in	the	construction	of	banks'	own	scenarios	via
reverse	stress	testing.	The	requirement	that	banks	need	to	develop	own	scenarios	that	can	hurt
the	bank	significantly	is	a	necessary	component	in	the	stress	testing.	Especially	if	the	regulatory
stress	testing	is	to	replace	or	downplay	the	importance	of	risk-based	model	charges.	The	fact
that	each	bank's	unique	risks	needs	to	be	accounted	for	when	developing	own	scenarios	also
puts	more	pressure	on	the	regulators	to	understand	the	relevance	of	each	banks	scenarios.	It	is
also	the	case	that	the	current	firmwide	stress	testing	approach	for	both	CCAR	and	EBA	do	not
focus	directly	on	stress	charges	to	define	capital	requirements	but	rather	on	putting	constraints
on	the	capital	ratios—involving	the	traditional	risk-based	model	charges	as	a	core	component.

In	practice,	the	regulatory	stress	testing	exercise	has	also	developed	into	a	test	of	the	risk
models	in	banks,	and	lately,	increased	regulatory	scrutiny	of	the	entire	model	life	cycle—from
model	development	to	validation,	implementation,	and	governance.	Both	CCAR	and	EBA	put	a
huge	emphasis	on	model	risk.	In	CCAR	the	regulators	view	the	stress	testing	process	as	a
system	of	models	and	hence	put	emphasis	on	the	need	to	measure	model	risk	individually	as
well	as	across	the	network	of	models.	Model	sensitivity	analysis	is	one	of	the	tools	to	analyze
the	model	impacts	and	to	understand	the	models.	Lack	of	adequate	data,	model	insight,	and
modeling	expertise	have	proven	to	be	major	challenges	in	many	banks	to	carry	out	effective
firmwide	stress	testing.

Many	banks	have	of	course	had	firmwide	risk	models	in	place	for	a	long	time	as	part	of	their
ICAAP	process.	However,	those	models	focus	mainly	on	the	risk	capacity	and	the	firmwide



risk	exposure	of	the	bank	rather	than	on	putting	limits	on	capital	ratios	under	stress.	More
importantly,	many	banks'	ICAAP	processes	were	manual,	usually	involved	simplified	model
approaches	for	assessing	earnings	and	loss	impacts,	and	were	not	part	of	a	formal	risk-based
planning	process	that	included	both	risk	and	finance.6

As	a	consequence,	the	mandated	firmwide	stress	testing	has	resulted	in	significant	development
of	new	firmwide	risk	models	and	firmwide	risk	processes.	The	current	industry	improvements
in	the	firmwide	stress	testing	of	course	also	enable	stronger	risk-based	capital	planning
processes	in	general	for	banks.

Firmwide	stress	testing	is	a	complex	yet	important	exercise	to	a	bank.	It	requires	a	sound
process	that	connects	the	macroeconomic	scenarios,	satellite	models,	the	bank's	portfolio,
valuation,	and	risk	systems	as	well	as	reporting	into	one	end-to-end	process.	The	regulators
also	anticipate	that	the	process	can	be	repeatable	and	sustainable.	We	again	note	that
completing	the	stress	testing	process	involves	both	the	bank's	risk	experts—being	responsible
for	scenario	and	satellite	model	management	as	well	as	projecting	the	earnings,	losses,	and
capital	under	stress—as	well	as	the	bank's	finance	experts.	The	bank's	finance	experts
construct	the	projected	income	and	balance	sheet	statements	from	the	risk	information,	at	a
certain	scenario	horizon	 ,	and	financial	information	such	as	tax	rates	and	current	available
capital.	The	capital	ratios	and	losses	are	then	compared	to	regulatory	or	internally	set	limits.
Based	on	the	performance	of	the	bank	in	the	scenario	at	a	certain	horizon	 	a	decision	on
suitable	management	actions	is	taken,	for	example,	on	projected	portfolio	growth	rates.

Hopefully	banks	will	be	inspired	by	the	mandated	CCAR	and	EBA	firmwide	stress	testing	and
expand	firmwide	scenario	analysis	into	a	business	practice	to	analyze	different	portfolios
profitability	under	stress	and	use	firmwide	stress	testing	as	a	core	component	in	forward-
looking	risk-based	financial	planning.	The	use	of	firmwide	stress	testing—both	for	regulation
and	business	practice—puts	pressure	on	the	firmwide	stress	testing	process	to	be	formalized
with	proper	controls,	overall	management	of	the	process,	transparency,	and	auditability.	This	is
a	challenge	for	many	banks	because,	traditionally,	many	banks'	business	units,	and
consequently	their	risk	systems,	operate	in	silos.	There	is	therefore	a	trend	toward	banks
instituting	central	stress	testing	teams	that	have	an	overall	responsibility	for	the	firmwide	stress
testing	and	capital	planning	process.

In	summary,	the	regulatory	stress	testing	has	motivated	the	risk	management	into	a	new	era	both
qualitatively	and	quantitatively.	Financial	risk	management	expects	more	and	more	innovations
and	plays	an	ever	more	integral	role	in	banks'	business	decisions.

1	See	also	our	discussion	on	features	of	the	new	generation	portfolio	credit	risk	models	in
Chapter	4	on	portfolio	credit	risk.

2	In	the	portfolio	credit	risk	chapter	when	we	discussed	the	model	for	economic	capital	for
loan	portfolios	we	used	a	similar	assumption.	That	is,	it	is	prudent	to	assume	that	the	bank
will	not	save	positive	contributions	from	one	period	to	another	to	neutralize	negative
contributions	at	subsequent	periods.	Due	to	the	obligations	for	instance	to	shareholders	the



bank	may	distribute	excess	earnings.

3	For	example,	in	Basel	credit	charges	the	deterioration	of	the	credit	quality	of	the	portfolio
induces	an	increase	in	the	provisions	and	Basel	expected	loss.	The	requirement	is	that	50%
of	the	difference	between	the	two	must	be	subtracted	from	the	available	capital.	This	is
hence	in	addition	to	the	scenario	loss,	 .

4	Recall	from	Chapter	3	(the	advanced	market	risk	chapter)	that	the	current	internal	models
based	market	risk	charge	is	the	sum	of	the	regular	and	stressed	 	where	the	stressed	
is	the	 	calibrated	on	a	stressed	period.	Replacing	 	by	the	stressed	 	hence	leads
to	a	stressed	 	charge	that	is	two	times	the	stressed	 .

5	Both	the	scenario-based	analysis	and	risk-based	model	charges	(economic	capital	based)
certainly	involve	models	to	compute	the	loss	for	a	given	scenario.	The	distinction	between
the	two	approaches	is	therefore	not	on	models	to	compute	the	loss	for	a	portfolio	but	on	the
scenario	set	selection.	Traditionally,	risk-based	model	charges	build	a	distribution	from
scenarios	obtained	from	econometric	models	calibrated	to	the	history	and	choose	as	the
required	capital	a	worst-case	scenario	according	to	the	risk	measure.	The	distinctive
feature	of	the	risk-based	model	is	not	how	the	scenarios	are	generated	but	that	risk
measures	are	applied	to	a	set	of	scenarios.

6	See	the	Basel	Committee	(2014b)	paper	on	fundamental	elements	for	a	sound	capital	planning
process.
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