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Preface to Third Edition

Predictive analytics of big data has maintained a steady presence in the four years since
the publication of the second edition. My decision to write this third edition is not a result
of the success (units) of the second edition but is due to the countless positive feedback
(personal correspondence from the readership) I have received. And, importantly, I have
the need to share my work on problems that do not have widely accepted, reliable, or
known solutions. As in the previous editions, John Tukey’s tenets, necessary to advance
statistics, flexibility, practicality, innovation, and universality, are the touchstones of each
chapter’s new analytic and modeling methodology.
My main objectives in preparing the third edition are to:

1. Extend the content of the core material by including strategies and methods for
problems, which I have observed on the top of statistics on the table [1] by reviewing
predictive analytics conference proceedings and statistical modeling workshop
outlines.

2. Reedit current chapters for improved writing and tighter endings.

3. Provide the statistical subroutines used in the proposed methods of analysis and
modeling. I use Base SAS© and STAT/SAS. The subroutines are also available for
downloading from my website: http://www.geniq.net/articles.html#section9. The
code is easy to convert for users who prefer other languages.

I have added 13 new chapters that are inserted between the chapters of the second edi-
tion to yield the greatest flow of continuity of material. I outline the new chapters briefly
here.

The first new chapter, Chapter 2, follows Chapter 1 (Introduction). The chapter is entitled
Science Dealing with Data: Statistics and Data Science. If one were not looking, then it would
appear that someone hit the delete key on statistics and statisticians and replaced them
by science and data scientists. I investigate whether the recently minted term data science
implies statistics is a subset of a more developed and expanded domain or if data science
a buzzed-up cloaking of the current state of statistics.

Chapter 8, Market Share Estimation: Data Mining for an Exceptional Case, follows the
Chapter 7 about principal component analysis (PCA). In this chapter, a market share esti-
mation model, unique in that it does not fit the usual survey-based market share scenario,
uses PCA as the foundation for estimating market share for a real exceptional case study.
I provide the SAS subroutines used in building the market share model for the exceptional
case study.

Chapter 11, Predicting Share of Wallet without Survey Data, follows the chapter on logistic
regression. The everyday approach for predicting share of wallet (SOW) is with survey
data. This approach is always met with reluctance because survey work is time-consuming,
expensive, and yields unreliable data. I provide a two-step method for predicting SOW
without data, by defining a quasi-SOW and using simulation for estimating total dollars
spent. The second step uses fractional logistic regression to predict SOW_qg. Fractional
response regression cleverly uses ordinary logistic regression for dependent variables that
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assume proportions or rates. I present a case study in detail as well as provide SAS subrou-
tines that readers should find valuable for their toolkits.

Chapter 19, Market Segmentation Based on Time-Series Data Using Latent Class Analysis,
follows the chapter on market segmentation via logistic regression. In this chapter, I pro-
pose the model-based clustering method of latent class analysis (LCA). The innovative
strategy of this segmentation is in my use of time-series data. The times-series LCA model
is radically distinctive and not equal, and it will prove to be a template for treating times-
series data in cross-sectional datasets and the application of LCA instead of the popular
data-based heuristic k-means. I provide SAS subroutines so that data miners can perform
similar segmentations as presented, along with a unique way of incorporating time-series
data in an otherwise cross-sectional dataset.

Chapter 20, Market Segmentation: An Easy Way to Understand the Segments, is well-placed
after the LCA-based market segmentation. The literature is replete with clustering meth-
odologies, of which any one can serve for conducting a market segmentation. In contrast,
the literature is virtually sparse in the area of how to interpret the segmentation results.
This chapter provides an easy way to understand the discovered customer segments.
I illustrate the new method with an admittedly simple example that will not belie the
power of the approach. I provide SAS subroutines for conducting the proposed technique
so data miners can add this worthy statistical technique to their toolkits.

Chapter 21, The Statistical Regression Model: An Easy Way to Understand the Model, is an
extension of the method of understanding a market segmentation presented in Chapter 20.
Its purpose is to provide an easy way to understand the statistical regression model, that
is, ordinary least squares and logistic regression (LR) models. I illustrate the proposed
method with an LR model. The illustration brings out the power of the method, in that it
imparts supplementary information, making up for a deficiency in the ever-relied-upon
regression coefficient for understanding a statistical regression model. I provide the SAS
subroutines, which serve as a valued addition to any bag of statistical methods.

Chapter 23, Model Building with Big Complete and Incomplete Data, follows the chapter that
uses CHAD as a method for imputation. This chapter overhears missing data warning
the statistician, "You can't win unless you learn how to accept me." Traditional data-based
methods (complete case analysis), predating big data, are known to be problematic with
virtually all datasets. These methods now open a greater concern as to their unknown inef-
fectiveness on big data. I propose a two-stage approach, in which modeling of response on
complete-case data precedes modeling of response on incomplete-case data via PCA. The
two models can be used separately or combined, depending on the goals of the task. I pro-
vide SAS subroutines for the proposed method, which should become a utile technique for
the statistical model builder.

Chapter 24, Art, Science, Numbers, and Poetry, is a high-order blend of artwork, science,
numbers, and poetry, all inspired by the Egyptian pyramids, da Vinci, and Einstein. Love
it or hate it, this chapter makes you think.

Chapter 27, Decile Analysis: Perspective and Performance, complements the preceding chap-
ter on assessment of marketing models. Marketers use decile analysis to assess predictive
incremental gains of their response models over responses obtained by chance. I define
two new metrics, response model decile-analysis precision and chance model decile preci-
sion, which allow marketers to make a more insightful assessment as to the incremental
gain of a response model over the chance model. I provide the SAS subroutines for con-
structing the two new metrics and the proposed procedure, which will be a trusty tool for
marketing statisticians.
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Chapter 28, Net T-C Lift Model: Assessing the Net Effects of Test and Control Campaigns,
extends the practice of assessing response models to the proper use of a control group
(found in the literature under names such as the uplift or net lift model) instead of the
chance model as discussed in Chapter 27. There is large literature, albeit confusing and
conflicting, on the methodologies of net lift modeling. I propose another approach, the
net T-C lift model, to moderate the incompatible literature on this topic by offering a
simple, straightforward, reliable model that is easy to implement and understand. I pro-
vide the SAS subroutines for the Net T-C Lift Model to enable statisticians to conduct net
lift modeling without purchasing proprietary software.

Chapter 34, Opening the Dataset: A Twelve-Step Program for Dataholics, has valuable con-
tent for statisticians as they embark on the first step of any journey with data. Set in prose,
I provide a light reading on the expectant steps of what to do when cracking open the
dataset. Enjoy. I provide SAS subroutines of the twelve-step program in case the reader
wants to take a nip.

Chapter 43, Text Mining: Primer, Illustration, and TXTDM Software, has three objectives:
First, to serve as a primer, readable, brief though detailed, about what text mining encom-
passes, and how to conduct basic text mining; second, to illustrate text mining with a small
body of text, yet interesting in its content; and third, to make text mining available to inter-
ested readers, by providing my SAS subroutines, named TXTDM.

Chapter 44, Some of My Favorite Statistical Subroutines, includes specific subroutines refer-
enced throughout the book and generic subroutines for some second-edition chapters for
which I no longer have the data. Lastly, I provide some of my favorite statistical subrou-
tines, helpful in almost all analyses.

If there are any corrections post-production of the text, I will post them to the errata link
http://www.geniq.net/articles.html#section9.

Reference
1. Stigler, S. M., Statistics on the Table, Harvard University Press, Cambridge, MA, 2002.
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Preface of Second Edition

This book is unique. It is the only book, to date, that distinguishes between statistical
data mining and machine-learning data mining. I was an orthodox statistician until
I resolved my struggles with the weaknesses of statistics within the big data setting of
today. Now, as a reform statistician who is free of the statistical rigors of yesterday, with
many degrees of freedom to exercise, I have composed by intellectual might the original
and practical statistical data mining techniques in the first part of the book. The GenlQ
Model, a machine-learning alternative to statistical regression, led to the creative and use-
ful machine-learning data mining techniques in the remaining part of the book.

This book is a compilation of essays that offer detailed background, discussion, and
illustration of specific methods for solving the most commonly experienced problems in
predictive modeling and analysis of big data. The common theme among these essays is
to address each methodology and assign its application to a specific type of problem. To
better ground the reader, I spend considerable time discussing the basic methodologies of
predictive modeling and analysis. While this type of overview has been attempted before,
my approach offers a truly nitty-gritty, step-by-step approach that both tyros and experts
in the field can enjoy playing with. The job of the data analyst is overwhelmingly to predict
and explain the result of the target variable, such as RESPONSE or PROFIT. Within that
task, the target variable is either a binary variable (RESPONSE is one such example) or a
continuous variable (of which PROFIT is a good example). The scope of this book is pur-
posely limited, with one exception, to dependency models, for which the target variable
is often referred to as the “left-hand” side of an equation, and the variables that predict
and/or explain the target variable is the “right-hand” side. This is in contrast to interde-
pendency models that have no left- or right-hand side. I devote a chapter to one type of
interdependency model, which is tied into a dependency model. Because interdependency
models comprise a minimal proportion of the data analyst’s workload, I humbly suggest
that the focus of this book will prove utilitarian.

Therefore, these essays have been organized in the following fashion. Chapter 1 reveals
the two most influential factors in my professional life: John W. Tukey and the personal
computer (PC). The PC has changed everything in the world of statistics. The PC can
effortlessly produce precise calculations and eliminate the computational burden associ-
ated with statistics. One need only provide the right questions. Unfortunately, the conflu-
ence of the PC and the world of statistics has turned generalists with minimal statistical
backgrounds into quasi-statisticians and affords them a false sense of confidence.

In 1962, in his influential article, “The Future of Data Analysis” [1], John Tukey predicted
a movement to unlock the rigidities that characterize statistics. It was not until the publica-
tion of Exploratory Data Analysis [2] in 1977 that Tukey led statistics away from the rigors
that defined it into a new area, known as EDA (from the first initials of the title of his
seminal work). At its core, EDA, known presently as data mining or formally as statistical
data mining, is an unending effort of numerical, counting, and graphical detective work.

To provide a springboard to more esoteric methodologies, Chapter 2 covers the cor-
relation coefficient. While reviewing the correlation coefficient, I bring to light several
issues unfamiliar to many, as well as introduce two useful methods for variable assess-
ment. Building on the concept of smooth scatterplot presented in Chapter 2, I introduce
in Chapter 3 the smoother scatterplot based on CHAID (chi-squared automatic
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interaction detection). The new method has the potential of exposing a more reliable
depiction of the unmasked relationship for paired-variable assessment than that of the
smoothed scatterplot.

In Chapter 4, I show the importance of straight data for the simplicity and desirability
it brings for good model building. In Chapter 5, I introduce the method of symmetriz-
ing ranked data and add it to the paradigm of simplicity and desirability presented in
Chapter 4.

Principal component analysis, the popular data reduction technique invented in 1901,
is repositioned in Chapter 6 as a data mining method for many-variable assessment. In
Chapter 7, I readdress the correlation coefficient. I discuss the effects the distributions
of the two variables under consideration have on the correlation coefficient interval.
Consequently, I provide a procedure for calculating an adjusted correlation coefficient.

In Chapter 8, I deal with logistic regression, a classification technique familiar to every-
one, yet in this book, one that serves as the underlying rationale for a case study in build-
ing a response model for an investment product. In doing so, I introduce a variety of new
data mining techniques. The continuous side of this target variable is covered in Chapter 9.
On the heels of discussing the workhorses of statistical regression in Chapters 8 and 9,
I resurface the scope of literature on the weaknesses of variable selection methods, and
I enliven a notable solution for specifying a well-defined regression model in Chapter 10
anew. Chapter 11 focuses on the interpretation of the logistic regression model with the
use of CHAID as a data mining tool. Chapter 12 refocuses on the regression coefficient
and offers common misinterpretations of the coefficient that point to its weaknesses.
Extending the concept of the coefficient, I introduce the average correlation coefficient in
Chapter 13 to provide a quantitative criterion for assessing competing predictive models
and the importance of the predictor variables.

In Chapter 14, I demonstrate how to increase the predictive power of a model beyond
that provided by its variable components. This is accomplished by creating an interaction
variable, which is the product of two or more component variables. To test the signifi-
cance of the interaction variable, I make what I feel to be a compelling case for a rather
unconventional use of CHAID. Creative use of well-known techniques is further carried
out in Chapter 15, where I solve the problem of market segment classification modeling
using not only logistic regression but also CHAID. In Chapter 16, CHAID is yet again uti-
lized in a somewhat unconventional manner—as a method for filling in missing values in
one’s data. To bring an interesting real-life problem into the picture, I wrote Chapter 17 to
describe profiling techniques for the marketer who wants a method for identifying his or
her best customers. The benefits of the predictive profiling approach is demonstrated and
expanded to a discussion of look-alike profiling.

I take a detour in Chapter 18 to discuss how marketers assess the accuracy of a model.
Three concepts of model assessment are discussed: the traditional decile analysis, as well
as two additional concepts, precision and separability. In Chapter 19, continuing in this
mode, I point to the weaknesses in the way the decile analysis is used and offer a new
approach known as the bootstrap for measuring the efficiency of marketing models.

The purpose of Chapter 20 is to introduce the principal features of a bootstrap valida-
tion method for the ever-popular logistic regression model. Chapter 21 offers a pair of
graphics or visual displays that have value beyond the commonly used exploratory phase
of analysis. In this chapter, I demonstrate the hitherto untapped potential for visual dis-
plays to describe the functionality of the final model once it has been implemented for
prediction.
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I close the statistical data mining part of the book with Chapter 22, in which I offer a
data-mining alternative measure, the predictive contribution coefficient, to the standard-
ized coefficient.

With the discussions just described behind us, we are ready to venture to new ground.
In Chapter 1, I elaborated on the concept of machine-learning data mining and defined it
as PC learning without the EDA /statistics component. In Chapter 23, I use a metrical mod-
elogue, “To Fit or Not to Fit Data to a Model,” to introduce the machine-learning method
of GenlQ and its favorable data mining offshoots.

In Chapter 24, I maintain that the machine-learning paradigm, which lets the data define
the model, is especially effective with big data. Consequently, I present an exemplar illus-
tration of genetic logistic regression outperforming statistical logistic regression, whose
paradigm, in contrast, is to fit the data to a predefined model. In Chapter 25, I introduce
and illustrate brightly, perhaps, the quintessential data mining concept: data reuse. Data
reuse is appending new variables, which are found when building a GenIQ Model, to the
original dataset. The benefit of data reuse is apparent: The original dataset is enhanced
with the addition of new, predictive-full Genl(Q data-mined variables.

In Chapters 26-28, I address everyday statistics problems with solutions stemming
from the data mining features of the GenlQ Model. In statistics, an outlier is an observa-
tion whose position falls outside the overall pattern of the data. Outliers are problematic:
Statistical regression models are quite sensitive to outliers, which render an estimated
regression model with questionable predictions. The common remedy for handling outli-
ers is “determine and discard” them. In Chapter 26, I present an alternative method of
moderating outliers instead of discarding them. In Chapter 27, I introduce a new solution
to the old problem of overfitting. I illustrate how the GenlQ Model identifies a structural
source (complexity) of overfitting, and subsequently instructs for deletion of the individu-
als who contribute to the complexity, from the dataset under consideration. Chapter 28
revisits the examples (the importance of straight data) discussed in Chapters 4 and 9, in
which I posited the solutions without explanation as the material needed to understand
the solution was not introduced at that point. At this point, the background required has
been covered. Thus, for completeness, I detail the posited solutions in this chapter.

GenlQ is now presented in Chapter 29 as such a nonstatistical machine-learning model.
Moreover, in Chapter 30, GenlQ serves as an effective method for finding the best pos-
sible subset of variables for a model. Because GenlQ has no coefficients—and coefficients
furnish the key to prediction—Chapter 31 presents a method for calculating a quasi-
regression coefficient, thereby providing a reliable, assumption-free alternative to the
regression coefficient. Such an alternative provides a frame of reference for evaluating and
using coefficient-free models, thus allowing the data analyst a comfort level for exploring
new ideas, such as GenlQ.
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1

Introduction

Whatever you are able to do with your might, do it.
—Kohelet 9:10

1.1 The Personal Computer and Statistics

The personal computer (PC) has changed everything—for both better and worse—in the
world of statistics. The PC can effortlessly produce precise calculations and eliminate the
computational burden associated with statistics. One needs only to provide the right infor-
mation. With minimal knowledge of statistics, the user points to the location of the input
data, selects the desired statistical procedure, and directs the placement of the output.
Thus, tasks such as testing, analyzing, and tabulating raw data into summary measures as
well as many other statistical criteria are fairly rote. The PC has advanced statistical think-
ing in the decision-making process as evidenced by visual displays such as bar charts and
line graphs, animated three-dimensional rotating plots, and interactive marketing mod-
els found in management presentations. The PC also facilitates support documentation,
which includes the calculations for measures such as mean profit across market segments
from a marketing database; statistical output is copied from the statistical software and
then pasted into the presentation application. Interpreting the output and drawing conclu-
sions still require human intervention.

Unfortunately, the confluence of the PC and the world of statistics has turned gener-
alists with minimal statistical backgrounds into quasi-statisticians and affords them a
false sense of confidence because they can now produce statistical output. For instance,
calculating the mean profit is standard fare in business. However, the mean provides a
“typical value” only when the distribution of the data is symmetric. In marketing data-
bases, the distribution of profit commonly has a positive skewness.” Thus, the mean
profit is not a reliable summary measure! The quasi-statistician would doubtlessly not
know to check this supposition, thus rendering the interpretation of the mean profit as

Another example of how the PC fosters a “quick-and-dirty”s approach to statistical anal-
ysis is in the use of the ubiquitous correlation coefficient (second in popularity to the mean

* Positive skewed or right skewed means the distribution has a long tail in the positive direction.

* For moderately skewed distributions, the mode or median should be considered and assessed for a reliably
typical value.

¥ Floccinaucinihilipilification (FLOK-si-NO-si-NY-HIL-i-PIL-i-fi-KAY-shuhn), noun: estimating something as
worthless.

§ The literal translation of this expression clearly supports my claim that the PC is sometimes not a good thing
for statistics. I supplant the former with “thorough and clean.”
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as a summary measure), which measures the association between two variables. There is
an assumption (that the underlying relationship between the two variables is linear or a
straight line) to be met for the proper interpretation of the correlation coefficient. Rare is
the quasi-statistician who is aware of the assumption. Meanwhile, well-trained statisti-
cians often do not check this assumption, a habit developed by the uncritical use of statis-
tics with the PC.

The PC with its unprecedented computational strength has also empowered profes-
sional statisticians to perform proper analytical due diligence; for example, the natural
seven-step cycle of statistical analysis would not be practical [1]. The PC and the analytical
cycle comprise the perfect pairing as long as the information obtained starts at Step 1 and
continues straight through Step 7, without a break in the cycle. Unfortunately, statisticians
are human and succumb to taking shortcuts in the path through the seven-step cycle.
They ignore the cycle and focus solely on the sixth step. A careful statistical endeavor
requires performance of all the steps in the seven-step cycle.” The seven-step sequence is
as follows:

1. Definition of the problem—Determining the best way to tackle the problem is not
always obvious. Management objectives are often expressed qualitatively, in
which case the selection of the outcome or target (dependent) variable is subjec-
tively biased. When the objectives are clearly stated, the appropriate dependent
variable is often not available, in which case a surrogate must be used.

2. Determining technique—The technique first selected is often the one with which the
data analyst is most comfortable; it is not necessarily the best technique for solving
the problem.

3. Use of competing techniques—Applying alternative techniques increases the odds
that a thorough analysis is conducted.

4. Rough comparisons of efficacy—Comparing variability of results across techniques
can suggest additional techniques or the deletion of alternative techniques.

5. Comparison in terms of a precise (and thereby inadequate) criterion—An explicit crite-
rion is difficult to define. Therefore, precise surrogates are often used.

6. Optimization in terms of a precise and inadequate criterion—An explicit criterion is dif-
ficult to define. Therefore, precise surrogates are often used.

7. Comparison in terms of several optimization criterin—This constitutes the final step in
determining the best solution.

The founding fathers of classical statistics—Karl Pearson and Sir Ronald Fisher—would
have delighted in the PC’s ability to free them from time-consuming empirical validations
of their concepts. Pearson, whose contributions include regression analysis, the correlation
coefficient, the standard deviation (a term he coined in 1893), and the chi-square test of sta-
tistical significance (to name but a few), would have likely developed even more concepts
with the free time afforded by the PC. One can further speculate that the functionality
of the PC would have allowed Fisher’s methods (e.g., maximum likelihood estimation,
hypothesis testing, and analysis of variance) to have immediate and practical applications.

The PC took the classical statistics of Pearson and Fisher from their theoretical blackboards
into the practical classrooms and boardrooms. In the 1970s, statisticians were starting to

* The seven steps are attributed to Tukey. The annotations are my attributions.
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acknowledge that their methodologies had the potential for wider applications. However,
they knew an accessible computing device was required to perform their on-demand sta-
tistical analyses with an acceptable accuracy and within a reasonable turnaround time.
Because the statistical techniques, developed for a small data setting consisting of one or
two handfuls of variables and up to hundreds of records, the hand tabulation of data was
computationally demanding and almost insurmountable. Accordingly, conducting the sta-
tistical techniques on large data (big data were not born until the late 2000s) was virtually
out of the question. With the inception of the microprocessor in the mid-1970s, statisticians
now had their computing device, the PC, to perform statistical analyses on large data with
excellent accuracy and turnaround time. The desktop PCs replaced handheld calculators in
the classroom and boardrooms. From the 1990s to the present, the PC has offered statisti-
cians advantages that were imponderable decades earlier.

1.2 Statistics and Data Analysis

Asearly as 1957, Roy believed that classical statistical analysis was likely to be supplanted by
assumption-free, nonparametric approaches that were more realistic and meaningful [2].
It was an onerous task to understand the robustness of the classical (parametric) tech-
niques to violations of the restrictive and unrealistic assumptions underlying their use. In
practical applications, the primary assumption of “a random sample from a multivariate
normal population” is virtually untenable. The effects of violating this assumption and
additional model-specific assumptions (e.g., linearity between predictor and dependent
variables, constant variance among errors, and uncorrelated errors) are hard to determine
with any exactitude. It is difficult to encourage the use of statistical techniques, given that
their limitations are not fully understood.

In 1962, in his influential article, “The Future of Data Analysis,” John Tukey expressed
concern that the field of statistics was not advancing [1]. He felt there was too much focus
on the mathematics of statistics and not enough on the analysis of data; he predicted a
movement to unlock the rigidities that characterize the discipline. In an act of statistical
heresy, Tukey took the first step toward revolutionizing statistics by referring to himself
not as a statistician but as a data analyst. However, it was not until the publication of
his seminal masterpiece, Exploratory Data Analysis, in 1977, that Tukey led the discipline
away from the rigors of statistical inference into a new area known as EDA (the initial-
ism from the title of the unquestionable masterpiece) [3]. For his part, Tukey tried to
advance EDA as a separate and distinct discipline from statistics—an idea that never
took hold. EDA offered a fresh, assumption-free, nonparametric approach to problem-
solving in which the data guide the analysis and utilize self-educating techniques, such
as iteratively testing and modifying the analysis as the evaluation of feedback, thereby
improving the final analysis for reliable results.

Tukey’s words best describe the essence of EDA:

Exploratory data analysis is detective work—numerical detective work—or count-
ing detective work—or graphical detective work. ... [It is] about looking at data to see
what it seems to say. It concentrates on simple arithmetic and easy-to-draw pictures. It
regards whatever appearances we have recognized as partial descriptions, and tries to
look beneath them for new insights. [3, p. 1]
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EDA includes the following characteristics:

1. Flexibility—Techniques with greater flexibility to delve into the data
2. Practicality—Advice for procedures of analyzing data

3. Innovation—Techniques for interpreting results

4. Universality—Use all statistics that apply to analyzing data

5. Simplicity—Above all, the belief that simplicity is the golden rule

On a personal note, when I learned that Tukey preferred to be called a data analyst,
I felt both validated and liberated because many of my analyses fell outside the realm
of the classical statistical framework. Also, I had virtually eliminated the mathematical
machinery, such as the calculus of maximum likelihood. In homage to Tukey, I use the
terms data analyst and statistician interchangeably throughout this book.

1.3 EDA

Tukey’s book is more than a collection of new and creative rules and operations; it defines
EDA as a discipline, which holds that data analysts only fail if they fail to try many things.
It further espouses the belief that data analysts are especially successful if their detective
work forces them to notice the unexpected. In other words, the philosophy of EDA is a
trinity of attitude and flexibility to do whatever it takes to refine the analysis and sharp-
sightedness to observe the unexpected when it does appear. EDA is thus a self-propagating
theory; each data analyst adds his or her contribution, thereby contributing to the disci-
pline, as I hope to accomplish with this book.

The sharp-sightedness of EDA warrants more attention because it is an important fea-
ture of the EDA approach. The data analyst should be a keen observer of indicators that
are capable of being dealt with successfully and should use them to paint an analytical
picture of the data. In addition to the ever-ready visual graphical displays as indicators of
what the data reveal, there are numerical indicators, such as counts, percentages, aver-
ages, and the other classical descriptive statistics (e.g., standard deviation, minimum,
maximum, and missing values). The data analyst’s personal judgment and interpreta-
tion of indicators are not considered as bad things because the goal is to draw informal
inferences rather than those statistically significant inferences that are the hallmark of
statistical formality.

In addition to visual and numerical indicators, there are the indirect messages in the data
that force the data analyst to take notice, prompting responses such as “the data look
like ...” or “they appear to be ....” Indirect messages may be vague, but their importance
is to help the data analyst draw informal inferences. Thus, indicators do not include any
of the hard statistical apparatus, such as confidence limits, significance tests, or standard
errors.

With EDA, a new trend in statistics was born. Tukey and Mosteller quickly followed
up in 1977 with the second distinctive and stylish EDA book, Data Analysis and Regression,
commonly referred to as EDA II. EDA II recasts the basics of classical inferential proce-
dures of data analysis and regression into an assumption-free, nonparametric approach
guided by “(a) a sequence of philosophical attitudes ... for effective data analysis
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and (b) a flow of useful and adaptable techniques that make it possible to put these atti-
tudes to work” [4, p. vii].

In 1983, Hoaglin, Mosteller, and Tukey succeeded in advancing EDA with Understanding
Robust and Exploratory Data Analysis, which provides an understanding of how badly
the classical methods behave when their restrictive assumptions do not hold and offers
alternative robust and exploratory methods to broaden the effectiveness of statistical
analysis [5]. It includes a collection of methods to cope with data in an informal way,
guiding the identification of data structures relatively quickly and easily and trading off
optimization of the objective for the stability of results.

In 1991, Hoaglin, Mosteller, and Tukey continued their fruitful EDA efforts with
Fundamentals of Exploratory Analysis of Variance [6]. They refashioned the basics of the anal-
ysis of variance with the classical statistical apparatus (e.g., degrees of freedom, F-ratios,
and p-values). The recasting was a host of numerical and graphical displays, which often
give insight into the structure of the data, such as size effects, patterns, and interaction and
behavior of residuals.

EDA set off a burst of activity in the visual portrayal of data. In 1983, Graphical Methods for Data
Analysis (Chambers et al.) presented new and old methods—some of which require a computer,
while others only paper and pencil—but all are powerful data analytical tools to learn more
about data structure [7]. In 1986, du Toit, Steyn, and Stumpf came out with Graphical Exploratory
Data Analysis, providing a comprehensive, yet simple presentation of the topic [8]. Jacoby, with
Statistical Graphics for Visualizing Univariate and Bivariate Data (1997) and Statistical Graphics for
Visualizing Multivariate Data (1998), carried out his objective to obtain pictorial representations
of quantitative information by elucidating histograms, one-dimensional and enhanced scat-
terplots, and nonparametric smoothing [9,10]. Also, Jacoby successfully transferred graphical
displays of multivariate data to a single sheet of paper, a two-dimensional space.

1.4 The EDA Paradigm

EDA presents a major paradigm shift in the model-building process. With the mantra,
“Let your data be your guide,” EDA offers a view that is a complete reversal of the classi-
cal principles that govern the usual steps of the model-building process. EDA declares the
model must always follow the data, not the other way around, as in the classical approach.

In the classical approach, the problem is stated and formulated regarding an outcome
variable, Y. It assumes that the true model explaining all the variations in Y is known.
Specifically, the structures of the predictor variables, X; affecting Y are known and present
in the model. For example, if Age affects Y, but the log of Age reflects the true relationship
with Y, then the log of Age is present in the model. Once the model is specified, the model-
specific analysis of the data provides the results regarding numerical values associated
with the structures or estimates of the coefficients of the true predictor variables. Then, the
modeling process concludes with the interpretation of the model. Interpretation includes:
declaring whether X; is an important predictor; if X; is important, assessing how X; affects
the prediction of Y; and ranking X; in order of predictive importance.

Of course, the data analyst never knows the true model. So, familiarity with the content
domain of the problem is used to put forth explicitly the true surrogate model, which yields
good predictions of Y. According to Box, “All models are wrong, but some are useful” [11].
In this case, the model selected provides serviceable predictions of Y. Regardless of
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Problem ==> Model ===> Data ===> Analysis ===> Results/interpretation (classical)
Problem <==> Data <===> Analysis <===> Model ===> Results/interpretation (EDA)

W

Attitude, flexibility, and sharp-sightedness (EDA trinity)

FIGURE 1.1
EDA paradigm.

the model used, the assumption of knowing the truth about Y sets the statistical logic in
motion to cause likely bias in the analysis, results, and interpretation.

In the EDA approach, the only assumption is having some prior experience with a con-
tent domain of the problem. Attitude, flexibility, and sharp-sightedness are the forces
behind the data analysts, who assess the problem and let the data direct the course of the
analysis, which then suggests the structures in the model. If the model passes the validity
check, then it is considered final and ready for results and interpretation. If the validity
check fails, the data analysts, with these forces still behind their back, revisit the analysis
and data until new structures yield a sound and validated model. Then, the sought-after
final results and interpretation are made (see Figure 1.1). Without exposure to assumption
violations, the EDA paradigm offers a degree of confidence that its prescribed exploratory
efforts are not biased, at least in the manner of the classical approach. Of course, no analy-
sis is bias-free because all analysts admit their bias into the equation.

1.5 EDA Weaknesses

With all its strengths and determination, EDA as originally developed had two minor
weaknesses that could have hindered its wide acceptance and great success. One is of a
subjective or psychological nature, and the other is a misconceived notion. Data analysts
know that failure to look into a multitude of possibilities can result in a flawed analysis
and that they can thus find themselves in a competitive struggle against the data itself.
Thus, EDA can foster a sense of insecurity within data analysts that their work is never
complete. The PC can assist data analysts in being thorough with their analytical due dili-
gence but bears no responsibility for the arrogance EDA engenders.

The belief that EDA, originally developed for the small data setting, does not work as
well with large samples is a misconception. Indeed, some of the graphical methods, such
as the stem-and-leaf plots, and some of the numerical and counting methods, such as fold-
ing and binning, do break down with large samples. However, the majority of EDA meth-
odology is unaffected by data size. The manner by which the methods are carried out
and the reliability of the results remain in place. In fact, some of the most powerful EDA
techniques scale up nicely but do require the PC to perform the serious number crunching
of big data” [12]. For example, techniques such as the ladder of powers, reexpressing,t and
smoothing are valuable tools for large sample or big data applications.

* Authors Weiss and Indurkhya and I use the general concept of “big” data. However, we stress different char-
acteristics of the concept.

t Tukey, via his groundbreaking EDA book, put the concept of “reexpression” in the forefront of EDA data min-
ing tools; yet, he never provided any definition. I assume he believed that the term is self-explanatory. Tukey’s
first mention of reexpression is in a question on page 61 of his work: “What is the single most needed form of
re-expression?” I, for one, would like a definition of reexpression, and I provide one further in the book.
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1.6 Small and Big Data

I would like to clarify the general concept of small and big data. Size, like beauty, is
in the mind of the data analyst. In the past, small data fit the conceptual structure of
classical statistics. Small always referred to the sample size, not the number of variables,
which were always a handful. Depending on the method used by the data analyst, small
was seldom less than 5 individuals; sometimes between 5 and 20; frequently between
30 and 50 or between 50 and 100; and rarely between 100 and 200. In contrast to today’s
big data, defined by complex tabular displays of rows (observations or individuals) and
columns (variables or features), small data, defined by the simple tabular display, fit on
a few sheets of paper.

In addition to the compact area they occupy, small data are neat and tidy. They are clean,
in that they contain no improbable or impossible values, except for those due to primal
data collection error. They do not include the statistical outliers and influential points or
the EDA far-out and outside points. They are in the “ready-to-run” condition required by
classical statistical methods.

Regarding big data, there are two views. One view is that of classical statistics, which
considers big as simply not small. Theoretically, big is the sample size after which asymp-
totic properties of the method “kick in” for valid results. The other view is that of contem-
porary statistics, which considers big with regard to lifting (mathematical calculation) the
observations and learning from the variables. Big depends on who is analyzing the data.
That is, data are big if the data analyst feels they are big. Regardless of on which side the
data analyst is working, EDA scales up for both rows and columns of the data table.

1.6.1 Data Size Characteristics

There are three distinguishable characteristics of data size: condition, location, and popu-
lation. Condition refers to the state of readiness of the data for analysis. Data that require
minimal time and cost to clean, before conducting reliable analysis, are said to be well-
conditioned. Data that involve a substantial amount of time and cost are said to be ill-
conditioned. Small data are typically clean and therefore well-conditioned.

Big data are an outgrowth of today’s digital environment, which generates data flowing
continuously from all directions at unprecedented speed and volume. They are considered
“dirty” mainly because of the merging of multiple sources. The merging process is inher-
ently time-intensive because multiple passes of the sources must be made to get a sense of
how the combined sources fit together. Because of the iterative nature of the process, the
logic of matching individual records across sources is at first fuzzy, and then fine-tuned to
some level of soundness. The resultant data more times than not consist of unexplainable,
seemingly random, nonsensical values. Thus, big data are usually ill-conditioned.

Location refers to where the data reside. Unlike the rectangular sheets for small data, big
data reside in databases consisting of multidimensional tabular tables. The link among
the data tables can be hierarchical (rank- or level-dependent) or sequential (time- or event-
dependent). The merging of multiple data sources, each consisting of many rows and col-
umns, produces data of even greater numbers of rows and columns, clearly suggesting
bigness.

Population refers to the group of individuals having qualities or characteristics in com-
mon and related to the study under consideration. Small data ideally represent a random
sample of a known population that is not expected to encounter changes in its composition
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in the short term. The data are collected to answer a specific problem, permitting straight-
forward answers from a given problem-specific method. In contrast, big data often rep-
resent multiple, nonrandom samples of unknown populations, shifting in composition
within the short term. As such, big data are “secondary” in nature. Data originally col-
lected for a specific purpose that are used for purposes other than the original intent are
referred to as secondary data. Big data are available from the hydra of marketing informa-
tion for use on any post hoc problem and may not have a straightforward solution.

It is interesting to note that Tukey never talked specifically about big data per se.
However, he did predict that the cost of computing, in both time and dollars, would be
cheap, which arguably suggests that he knew big data were coming. Regarding the cost,
clearly, today’s PCs bear this out.

1.6.2 Data Size: Personal Observation of One

The data size discussion raises the following question: “How large should a sample be?”
Sample size can be anywhere from folds of 10,000 up to 100,000. In my experience as a
statistical modeler and data mining consultant for more than 15 years and as a statis-
tics instructor who analyzes deceivingly simple cross tabulations with the basic statistical
methods as my data mining tools, I have observed that the less-experienced and less-
trained data analyst uses sample sizes that are unnecessarily large. I see analyses and
models that use samples too large by factors ranging from 20 to 50. Although the PC can
perform the heavy calculations, the extra time and cost in getting the larger data out of the
data warehouse and then processing and thinking about them are almost never justified.
Of course, the only way a data analyst learns that extra big data are a waste of resources is
by performing small versus big data comparisons, a step I recommend.

1.7 Data Mining Paradigm

The term data mining emerged from the database marketing community sometime between
the late 1970s and early 1980s. Statisticians did not understand the excitement and activ-
ity caused by this new technique because the discovery of patterns and relationships
(structure) in the data was not new to them. They had known about data mining for a long
time, albeit under various names, such as data fishing, snooping, dredging, and—most
disparaging—ransacking the data. Because any discovery process inherently exploits the
data, producing spurious findings, statisticians did not view data mining in a positive light.

To state one of the numerous paraphrases of Maslow’s hammer,” “If you have a hammer
in hand, you tend eventually to start seeing nails.” The statistical version of this maxim is,
“Looking for structure typically results in finding structure.” All data have spurious struc-
tures, formed by the “forces” that make things come together, such as chance. The bigger
the data, the greater are the odds that spurious structures abound. Thus, an expectation of

* Abraham Maslow brought a fresh perspective to the world of psychology with his concept of “humanism,”
which he referred to as the “third force” of psychology—after Pavlov’s “behaviorism” and Freud’s “psycho-
analysis.” Maslow’s hammer is frequently used without anybody seemingly knowing about the originator
of this unique pithy statement, expressing a rule of conduct. Maslow’s Jewish parents migrated from Russia
to the United States to escape from harsh conditions and sociopolitical turmoil. He was born in Brooklyn,
New York, in April 1908 and died from a heart attack in June 1970.
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data mining is that it produces structures, both real and spurious, without any distinction
between them.

Today; statisticians accept data mining only if it embodies the EDA paradigm. They define
data mining as any process that finds unexpected structures in data and that uses the EDA
framework to ensure that the process explores the data, not exploits it (see Figure 1.1). Note
the word unexpected. It suggests the process is exploratory, not confirmatory, in discovering
unexpected structures. By finding what one expects to find, there is no longer uncertainty
regarding the existence of the structure.

Statisticians are mindful of the inherent nature of data mining and try to make adjust-
ments to minimize the number of spurious structures identified. In classical statistical
analysis, statisticians have explicitly modified most analyses that search for interesting
structures, such as adjusting the overall alpha level /type I error rate or inflating the degrees
of freedom [13,14]. In data mining, the statistician has no explicit analytical adjustments
available, only the implicit adjustments affected by using the EDA paradigm itself. The
steps discussed next outline the data mining/EDA paradigm. As expected from EDA, the
steps are defined by soft rules.

Suppose the objective is to find a structure to help make good predictions of response to
a future mail campaign. The following represents the steps required.

¢ Obtain the database that has similar mailings to the future mail campaign.
* Draw a sample from the database. Size can be several folds of 10,000 up to 100,000.

¢ Perform many exploratory passes of the sample. Carry out all desired calculations
to determine interesting or noticeable structures.

e Stop the calculations used for finding the noticeable structure.

* Count the number of noticeable structures that emerge. The structures are not nec-
essarily the results and should not be declared significant findings.

e Seek out indicators, visual and numerical, and the indirect messages.
® React or respond to all indicators and indirect messages.

e Ask questions. Does each structure make sense by itself? Do any of the structures
form natural groups? Do the groups make sense? Is there consistency among the
structures within a group?

* Try more techniques. Repeat the many exploratory passes with several fresh sam-
ples drawn from the database. Check for consistency across the multiple passes.
If results do not behave in a similar way, there may be no structure to predict
response to a future mailing because chance may have infected your data. If results
behave similarly, then assess the variability of each structure and each group.

¢ Choose the most stable structures and groups of structures for predicting response
to a future mailing.

1.8 Statistics and Machine Learning

Coined by Samuel in 1959, the term machine learning (ML) was given to the field of study
that assigns computers the ability to learn without being explicitly programmed [15]. In
other words, ML investigates ways in which the computer can acquire knowledge directly
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from data and thus learn to solve problems. It would not be long before ML would influ-
ence the statistical community.

In 1963, Morgan and Sonquist led a rebellion against the restrictive assumptions of classi-
cal statistics [16]. They developed the automatic interaction detection (AID) regression tree,
a methodology without assumptions. AID is a computer-intensive technique that finds or
learns multidimensional patterns and relationships in data and serves as an assumption-
free, nonparametric alternative to regression prediction and classification analysis. Many
statisticians believe that AID marked the beginning of an ML approach to solving statistical
problems. There have been many improvements and extensions of AID: theta AID (THAID),
multivariate AID (MAID), chi-squared AID (CHAID), and classification and regression trees
(CART), which are now quite reliable and accessible data mining tools. CHAID and CART
have emerged as the most popular today.

I consider AID and its offspring as quasi-ML methods. They are computer-intensive tech-
niques that need the PC, a necessary condition for an ML method. However, they are not
true ML methods because they use explicitly statistical criteria (e.g., theta, chi-squared and the
F-test) for the learning. The PC enables a genuine ML method to learn via mimicking the way
humans think. Thus, I must use the term quasi. Perhaps a more appropriate and suggestive
term for AID-type procedures and other statistical problems using the PC is statistical ML.

Independent from the work of Morgan and Sonquist, ML researchers had been develop-
ing algorithms to automate the induction process, which provided another alternative to
regression analysis. In 1979, Quinlan used the well-known concept learning system devel-
oped by Hunt, Marin, and Stone to implement one of the first intelligent systems—ID3—
which was succeeded by C4.5 and C5.0 [1718]. These algorithms are also considered data
mining tools but have not successfully crossed over to the statistical community.

The interface of statistics and ML began in earnest in the 1980s. ML researchers became
familiar with the three classical problems facing statisticians: regression (predicting a contin-
uous outcome variable), classification (predicting a categorical outcome variable), and cluster-
ing (dividing a population of individuals into k subpopulations such that individuals within
a group are as similar as possible, and the individuals among the groups are as dissimilar
as possible). They started using their machinery (algorithms and the PC) for a nonstatistical,
assumption-free nonparametric approach to the three problem areas. At the same time, statis-
ticians began harnessing the power of the desktop PC to influence the classical problems they
know so well, thus relieving themselves from the starchy parametric road.

The ML community has many specialty groups working on data mining: neural net-
works, support vector machines, fuzzy logic, genetic algorithms and programming, infor-
mation retrieval, knowledge acquisition, text processing, inductive logic programming,
expert systems, and dynamic programming. All areas have the same objective in mind but
accomplish it with their tools and techniques. Unfortunately, the statistics community and
the ML subgroups have no real exchanges of ideas or best practices. They create distinc-
tions of no distinction.

1.9 Statistical Data Mining

In the spirit of EDA, it is incumbent on data analysts to try something new and retry
something old. They can benefit not only from the computational power of the PC in
doing the heavy lifting of big data but also from the ML ability of the PC in uncovering
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structure nestled in big data. In the spirit of trying something old, statistics still has a
lot to offer.
Thus, today’s data mining is about three conceptual components:

1. Statistics with emphasis on EDA proper: This includes using the descriptive and non
inferential parts of classical statistical machinery as indicators. The parts include
the sum of squares, degrees of freedom, F-ratios, chi-squared values, and p-values
but exclude inferential conclusions.

2. Bigdata: Big data are given special mention because of today’s digital environment.
However, because small data are a component of big data, they are not excluded.

3. Machine learning: The PC is the learning machine, the essential processing unit, hav-
ing the ability to learn without being explicitly programmed and the intelligence
to find structure in the data. Moreover, the PC is essential for big data because it
can always do what it is explicitly programmed to do.

The three concepts define the data mining mnemonic: Data Mining = Statistics + Big Data +
Machine Learning and Lifting. Thus, data mining is all of statistics and EDA for big and small
data with the power of the PC for lifting data and learning the structures within the data.
Explicitly referring to big and small data implies the process works equally well on both.

Again, in the spirit of EDA, it is prudent to parse the mnemonic equation. Lifting and
learning require two different aspects of the data table. Lifting focuses on the rows of
the data table and uses the capacity of the PC regarding million instructions per second
(MIPS), the speed by which program codes explicitly execute. Calculating the average
income of one million individuals is an example of PC lifting.

Learning focuses on the columns of the data table and the ability of the PC to find the
structure within the columns without being explicitly programmed. Learning is more
demanding of the PC than lifting in the same way that learning from books is always
more demanding than merely lifting the books. An example of PC learning is identifying
structure, such as the square root of (a + b?).

When there are indicators that the population is not homogeneous (i.e., there are sub-
populations or clusters), the PC has to learn the rows and their relationships to each other
to identify the row structures. Thus, when necessary, such as lifting and learning of the
rows along with learning within the columns, the PC must work exceptionally hard but
can yield extraordinary results.

Based on the preceding presentation, statistical data mining is the EDA /statistics compo-
nent with PC lifting. Later in this book, I elaborate on machine-learning data mining, which I
define as PC learning without the EDA /statistics component.
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Science Dealing with Data: Statistics and
Data Science

2.1 Introduction

Data science and data scientists have recently come into prominence, if not become a craze.
Some say the pairing is reflective of substantial changes in the domain of statistics and
statisticians, respectively. This chapter investigates whether the recently minted term data
science implies statistics is a subset of a more developed and expanded domain or is a
buzzed-up cloaking of the current state of statistics. Also, I probe to understand whether a
data scientist is a super-statistician, whose new appellation signifies a larger skill set than
that of the current statistician or, trivially, is the term data scientist a reimaging of the pro-
fessional with a pretentious catchword of little exact meaning.

2.2 Background

Statistik (German word for statistics) was popularized and perhaps coined by German
political scientist Gottfried Achenwall in 1749 [1]. By 1770, statistik had taken on the mean-
ing “science dealing with data of the condition of a state or community” [2]. A considered
opinion can declare that Achenwall’s phrase is equivalent to an early stage meaning of
statistics.

I am inclined to infer that Achenwall coined the originative term data science. As
I reflect on science as a content-specific branch of knowledge requiring theory and
methods, Achenwall’s data science is indeed the definition of the equivalent branch
of statistics. Expatiating on Achenwall’s phrase, I define data science/statistics as the
practice of

1. Collecting data

2. Analyzing data within a problem domain
3. Interpreting findings with graphics

4. Drawing conclusions

The delimitated 1770s” definition is extraordinary in light of today’s popularized data
science. To modernize the seminal definition, I incorporate the effects of the Internet.

13
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The Internet accounts for big data, which include not only numbers but also text, voice,
images, and so on. Big data account for the necessity of the computer. Also, big data
account for the birth and continuing upping of the speed of high-performance statistical
programs. So, I put forth a modernized definition of data science/statistics as a four-step
process, which consists of the following:

1. Collecting data—originally small, today big—including numbers (traditionally
structured), text (unstructured), spatial, voice, images, and so on.

2. Analyzing for accurate inferences and modeling while lessening uncertainty in
a problem domain; tasks involving big data use computer-intensive statistical
computations.

3. Interpreting findings (e.g., insights, patterns) with graphics and their derivative
visualization methods, which continually improve to put k-dimensionality output
on a two-dimensional flat surface.

4. Drawing conclusions.

The thesis of this chapter is that the newly minted data science and current statis-
tics are identical. Accordingly, I undertake the task of gathering data—spanning two
centuries from the modernized 1770s” data science/statistics to today’s data science
definition—from earlier texts, events, and prominent figures to make an honest com-
parison of the terms.

As to why I enter upon this undertaking, the answer is perhaps as old as Achenwall’s
data science itself. Comparisons are matches between “A and B” for the purpose of deter-
mining whether or not one is better than the other. In a nonsocial setting, comparisons
could mean, for example, monetary gain for a drug manufacturer, relief for pain suffer-
ers, or the saving of lives. In a social setting, as is the case here, comparison focuses on
the drive of an individual to gain accurate self-evaluation [3]. I want to know whether
the term data scientist implies having a larger skill set than mine or, trivially, whether
I am behind the curve in reimaging myself with a pretentious catchword of little exact
meaning.

To this end, I journey into the literature by browsing for mentions (e.g., citations, ref-
erences, remarks, acknowledgments, credits, and statements) of the term data science.
I remove sources with unsupported callouts of the term. For example, I exclude conference
proceedings with data science in the title even though the programs’ abstracts contain,
for example, misstatements or no mention of the term. Such instances reflect a market-
ing ploy to increase attendance at conferences or workshops by taking advantage of the
latest buzzwords. Ironically, these hot topics are counterproductive because they quickly
become nonsense through endless repetition.

Before I discuss my journey of the mentions in the literature, I briefly consider what
fads and trends are, and how they get started. A fad is a “seemingly irrational imitative
behavior” [4], a spontaneous combustion of an awareness of a person, place, or thing, as
well as an idea, concept, thought, or opinion. A fad disappears as quickly as it appears. As
to who sets the spark, occasionally it is known. For example, in the 1960s, the rock-and-roll
group The Beatles were the spark, which gave rise to the fad of the mop-top haircut. The
Cabbage Patch doll of the 1980s was one of the most popular toy fads in history, without
anyone knowing how it caught on. Sometimes the small fiery particle is “without obvious
external stimuli” [4]. In contrast, a trend is a fad with staying power. For either fad or trend,
the questions remain: Who sets it in motion, and who popularizes it?
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The purpose of this chapter is to go beyond the expedition of Achenwall’s 1770 data science
to my acceptance of the unthought-of phrase, which I detail in the four-step process of the
modernized definition of data science/statistics to ensure the meaning of the now-popular
2016 term data science. Specifically, I seek to determine whether data science and statistics are
one and the same thing. Along the way, I search for who started it and who popularized it.

2.3 The Statistics and Data Science Comparison

As a well-schooled and highly practiced statistician, I use the lens of statistics—the four-
step process of the modernized Achenwall’s phrase—to examine the data science men-
tions collected. The four steps serve as touchstones for assessing whether a given mention
in the data science space is describing a domain similar to statistics or extends statistics
into the newly minted data science. I exercise a critical appraisal of a given mention against
the touchstones but do not undertake a literal step-by-step comparison. The unstructured
nature of citations, remarks, observations, quotations, and acknowledgments make a lit-
eral comparison impossible.

The research effort for finding mentions was unexpectedly tedious in that my go-to
resource (Google) was exceptionally unproductive in locating good searches. Unexpectedly,
the first pages from googling “data science” resulted in four advertisements for data sci-
entist training and those seeking data science jobs: (1) IBM Data Science Summit, (2) Data
Science Jobs from Indeed.com, (3) Data Science—12 Weeks, and (4) Data Science—Job
Searching from Hired.com. I reviewed the “training” links for a definition or an explana-
tion of data science. I found nothing suitable for the study at hand.

Interestingly, on a subsequent page, I found a Microsoft link to a posting of a data
science curriculum, which included: querying data, introductions to R and Python,
machine learning, and more topics about programming—essentially, tasks related to
the information technology (IT) professional. The next few pages included more offer-
ings of data science training and links to IT content. In sum, my Google search was not
fruitful. Google produced a disproportionate number of advertisements for data sci-
ence training and blogs of data science narratives (not definitions), which were turgid
incoherent presentations.

My relevant collection of mentions starts in earnest with a useful reference, which came
from the website Kaggle, after which one mention begot another. The final collection is
small. I stopped searching when the mentions retrieved added no new content, facts, or
knowledge. (I elaborate on my stopping rule in the discussion section.) I proceed with the
assembled mentions chronologically. I conduct a text-by-text comparative investigation to
determine whether data science is identical or at least similar to statistics. The result of my
comparative investigation is in the next section.

2.3.1 Statistics versus Data Science

In 1960, Danish computer science pioneer Peter Naur used the term “data science” as a
substitute for computer science, which he disliked.” Naur suggested the term “computer
science” be renamed “datalogy” or “data science.”

* Peter Naur (1928-2016) was a Danish computer science pioneer and Turing Award winner.
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This entry is interesting yet not relevant to the current investigation. Curiously, the
entry is not far afield from statistics because today’s statistics require computer-intensive
computation. Naur’s data science may have been the spontaneous spark of something
coming to statistics. This investigation is not about the context of Naur’s citation.

1. Within the 1971 International Federation for Information Processing (IFIP) Guide to
Data Processing [5], two brief descriptions of data science can be found.

a. Data science is the science of dealing with data, once they have been established,
while the relation of data to what they represent is delegated to other fields
and sciences.

b. A basic principle of data science is this: The data representation must be chosen
with due regard to the transformation to be achieved and the data processing
tools available. This stresses the importance of concern for the characteristics
of the data processing tools.

I am of two minds as to these quotes regarding data science. Oddly, the first
quote goes back to Achenwall’s leading phrase with the identical wording “science
of dealing with data.” However, the second part of the description implies statisti-
cians delegate into which other fields the data should go. Delegation is not what
statisticians do. Thus, the first quote does not comport with statistics as under-
stood by any person dealing with data nor with the four-step process of the rooted
modernized definition of statistics. The second quote only emphasizes computer
power, which is a part but not the essence of the four-step process of statistics.
So, based on the combined contents of the two quotes, I conclude data science is
not similar to statistics.

Decision I: The IFIP Guide to Data Processing indicates data science is not simi-
lar to statistics.

Running tally of data science is identical or similar to statistics: 0 out of 1.

2. In 1997, C. F. Jeff Wu, an academic statistician, gave a lecture entitled “Statistics =
Data Science?” If Wu’'s lecture title is put forward as a null hypothesis (HO),
then the proposition is: Does Wu’s lecture provides evidence to reject the null
hypothesis? If there is no sufficient evidence, then one concludes “Statistics =
Data Science” is true. That is, data science is equal to statistics. In his lecture, Wu
characterized statistical work as a trilogy of data collection, data modeling and
analysis, and decision-making. He called upon statisticians to initiate the usage of
the term “data science” and advocated that statistics be replaced by data science
and statisticians renamed data scientists (http://www?2.isye.gatech.edu/~jeffwu/
presentations/datascience.pdf).

Wu's trilogy of statistics is fairly close to the four-step process. (He failed to
provide evidence to reject HO: Statistics = Data Science.) Thus, Wu's reference
supports the statement that data science is identical to statistics. Wu is obviously
a statistician, and his choice of lecture topic suggests he is up-to-date on the
activities in the statistics community. Given Wu's attentiveness to the trending
term, I am perplexed as to why Wu advocates renaming statistics and statistician.

Decision II: Wu's 1997 lecture “Statistics = Data Science?” indicates data science
is identical to statistics.

Running tally of data science is identical or similar to statistics: 1 out of 2.
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3. In 2001, William S. Cleveland, an academic statistician, introduced data science as
anindependent discipline, extending the field of statistics to incorporate “advances
in computing with data” [6].

Cleveland’s data science is statistics. Cleveland’s recognition of big data neces-
sitating advances in computer power implies his acknowledgment of statistics,
especially the functional part—Step 2 of the four-step process.

Decision III: Cleveland’s quotes clearly indicate data science is identical to statistics.
Running tally of data science is identical or similar to statistics: 2 out of 3.

4. In 2003, Columbia University began publishing The Journal of Data Science (http://
www.jstage,jst.go.jp/browse/dsj/ vols), which provides a platform for all data
workers to present their views and exchange ideas. The journal is largely devoted
to the application of statistical methods and quantitative research.

This citation, which indicates Columbia University’s The Journal of Data Science,
is a platform for data workers, and it provides excellent face validity that data sci-
ence is about statistics but nothing that differentiates between data science and
statistics. If the intent of the new journal is to demarcate data science and statistics,
Columbia University ought to revisit the journal’s mission statement. This citation
does not indicate data science is similar to statistics.

Decision 1V: Columbia University’s The Journal of Data Science platform unques-
tionably indicates data science is not similar to statistics.

Running tally of data science is identical or similar to statistics: 2 out of 4.

5. In 2005, the National Science Board defined “data scientists as the information and
computer scientists, database and software engineers and programmers, disci-
plinary experts, curators and expert annotators, librarians, archivists, and others,
who are crucial to the successful management of a digital data collection” [7].

This definition includes experts of varying disciplines, ranging from computer
scientists to programmers to librarians and others, but oddly omits statisticians.
Notwithstanding the omission of the focal element of data science, the definition
pretermits any part of the four-step process.

Decision V: The National Science Board’s definition of data science, inferred
from its definition of data scientists, is abundantly wanting and indicates data
science is not similar to statistics.

Running tally of data science is identical or similar to statistics: 2 out of 5.

6. In 2007, Fudan University in Shanghai, China, established the Research Center for
Dataology and Data Science. In 2009, two of the center’s researchers, Yangyong
Zhu and Yun Xiong, both academic computer scientists, published “Introduction
to Dataology and Data Science,” in which they state “Dataology and Data Science
takes data in cyberspace as its research object. It is a new science” [8].

This reference, although limited in substance, sets apart the twins, dataology and
data science, without providing definitions or context. Strangely, the reference con-
siders data as the focal point in cyberspace, where the twins lie. Statistics, if implied
to be either dataology or data science, is not the command station of cyberspace.

Decision VI: Zhu and Xiong paint a picture that data science is in cyberspace,
where there are no recorded sightings of statistics. The authors’ data science
does not indicate data science is similar to statistics.

Running tally of data science is identical or similar to statistics: 2 out of 6.


http://www.jstage.jst.go.jp/browse/dsj/_vols
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7. In 2008, the Joint Information Systems Committee (JISC) published the final
report of a study it commissioned to “examine and make recommendations on
the role and career development of data scientists and the associated supply of
specialist data curation skills to the research community.” The study’s final report
defines “data scientists as people who work where the research is carried out—or,
in the case of data centre personnel, in close collaboration with the creators of the
data—and may be involved in creative enquiry and analysis, enabling others to
work with digital data, and developments in database technology” (http://www.
dcc.ac.uk/news/jisc-funding-opportunity-itt-skills-role-and-career-structure-
datascientists-and-curators).

JISC’s citation provides its definition of data scientists as personnel, in part, who
work closely with the creators of the data and whose work may involve creative
analysis. There is no mention of statistics or the four-step process, except for the
ubiquitous “creative analysis.”

Decision VII: The JISC definition of data science is void of any defining feature
of statistics. JISC’s data science is not similar to statistics.

Running tally of data science is identical or similar to statistics: 2 out of 7.

8. In 2009, Michael Driscoll wrote in “The Three Sexy Skills of Data Geeks” “... with

the Age of Data upon us, those who can model, mung, and visually communi-
cate data—call us statisticians or data geeks—are a hot commodity” [9]. In 2010,
Driscoll followed up with “The Seven Secrets of Successful Data Scientists” (http://
medriscoll.com/post/4740326157/the-seven-secrets-of-successful-data-scientists).
Driscoll holds a PhD in bioinformatics, a field whose curriculum greatly overlaps
that of statistics. Thus, he is a first cousin of statisticians.

Driscoll interchangeably uses the trio statisticians, data scientists, and data
geeks as he defines them as those who model, mung, and effectively visualize
data. Driscoll’s PhD validates his understanding that data science and statistics
are the same branches of knowledge.

Decision VIII: Driscoll’s trio clearly indicates data science is identical to statistics.

Running tally of data science is identical or similar to statistics: 3 out of 8.

9. In 2009, Hal Varian, Google’s chief economist (who holds a PhD in economics, a

field whose curriculum significantly overlaps that of statistics), told the McKinsey
Quarterly: “1 keep saying the sexy job in the next ten years will be statisticians.
People think I'm joking, but who would've guessed that computer engineers
would’ve been the sexy job of the 1990s? The ability to take data—to be able to
understand it, to process it, to extract value from it, to visualize it, to communicate
it—that’s going to be a hugely important skill in the next decades” (http://www.
conversion-rate-experts.com/the-datarati/).

Varian’s quote indicates he has a very good understanding of the science of data,
which requires statisticians and their statistics. I infer from Varian’s mention of the
sexy statistics job that he would likely use data science and statistics interchangeably.

Decision IX: Varian’s implied interchangeable use of data science and statistics
indicates Varian’s data science is identical to statistics.

Running tally of data science is identical or similar to statistics: 4 out of 9.

10. In 2009, Nathan Yau wrote in “Rise of the Data Scientist”: “As we’ve all read by

now, Google’s chief economist Hal Varian commented in January that the next
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11.

12.

13.

sexy job in the next ten years would be statisticians. Obviously, I whole-heartedly
agree. Heck, I'd go a step further and say theyre sexy now” (https://flowingdata.
com/2009/06/04 /rise-of-the-data-scientist/).

Yau's implied interchangeable use of data science and statistics clearly indicates
he considers statisticians and data scientists are the same.

Decision X: Yau’s data science is identical to statistics.
Running tally of data science is identical or similar to statistics: 5 out of 10.

In 2010, Kenneth Cukier, well-versed in data and digital products, wrote in
The Economist, Special Report “Data, Data Everywhere,” “... A new professional has
emerged, the data scientist, who combines the skills of software programmer, stat-
istician and storyteller/artist to extract the nuggets of gold hidden under moun-
tains of data” (http://www.economist.com/node/15557443).

Cukier’s quote implies, in principle, that the data scientist is a statistician, not-
withstanding his declaring the emergence of data scientist as a new profession.
He adds the already recognized prerequisite of programming and whimsically
adds a bit of art and storyteller. I push aside slightly Cukier’s assertion that the

i

data scientist’s “primary” task is to find nuggets of information.

Something about Cukier’s quote was pulling me to find out about his academic
background. I could not find even a torn, dog-eared page about his education from
his many web pages. I do not know whether his educational background includes
any level of statistical training. However, based on his high-volume publications
on data, I consider Cukier a chronicler of statistics.

Decision XI: Aside from his flourishes, Cukier’s data science is identical to statistics.
Running tally of data science is identical or similar to statistics: 6 out of 11.

In 2010, Mike Loukides, who is not a statistician but who does have a quantitative
background with a BS in electrical engineering, wrote in “What Is Data Science?”
(https://www.oreilly.com/ideas/what-is-data-science): “Data scientists combine
entrepreneurship with patience, the willingness to build data products incremen-
tally, the ability to explore, and the ability to iterate over a solution. They are inher-
ently interdisciplinary. They can tackle all aspects of a problem, from initial data
collection and data conditioning to drawing conclusions. They can think outside
the box to come up with new ways to view the problem, or to work with very
broadly defined problems: ‘Here’s a lot of data, what can you make from it?”

Loukides’ long-winded citation is disappointing given his background is surely
quantitative though not statistical. He comes off as a great salesperson for data sci-
ence. I view Loukides’ definition of data science as a word salad of things he knows
about data science. My impression of Loukides is that he can talk about anything
persuasively. Mike Loukides, vice president of content strategy for O'Reilly Media,
Inc,, edits many books on technical subjects. “Most recently, he's been fooling around
with data and data analysis ...” (http://radar.oreilly.com/mikel). Someone fooling
around with data and data analysis is not qualified to write about data science, as
Loukides’ citation demonstrates.

Decision XII: Loukides’” data science is not similar to statistics.
Running tally of data science is identical or similar to statistics: 6 out of 12.

In 2013, Forbes ran an article by Gil Press entitled, “Data Science: What's the Half-
Life of a Buzzword?” [10]. Press’ article, which is a complication of interviews with

19
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academics in the field of data analytics and journalists who cover business
analytics, points out that although the use of the term “data science” has exploded
in business environments, “there is more or less a consensus about the lack of
consensus regarding a clear definition of data science.” Gil Press, not a statistician
but has an academic background in finance and marketing, concludes that data
science is a buzzword without a clear definition and has simply replaced ‘business
analytics” in contexts such as graduate degree programs.”

Press may know what business analytics is, but he definitely is uninformed
about statistics, and any nexus between statistics and data science.

Decision XIII: Press’s buzzy data science is not similar to statistics.
Running tally of data science is identical or similar to statistics: 6 out of 13.

In 2013, New York University (NYU) started a multi-million-dollar initiative to
establish the country’s leading Center for Data Science (CDS) training and research
facilities. NYU states that “Data science overlaps traditionally strong disciplines
at NYU such as mathematics, statistics, and computer science.” “By combining
aspects of statistics, computer science, applied mathematics, and visualization,
data science can turn the vast amounts of data the digital age generates into new
insights and new knowledge” (http://datascience.nyu.edu/what-is-data-science/).

NYU'’s data science is explained in broad but accurate terms. CDS defines data
science as encompassing the elements of the four-step process: the focal statistics,
the implied computer science as the root computer-intensive statistical computa-
tions, and visualization. The inclusion of applied mathematics is the surrogate
for the presumed fifth step of the process, the necessary theory of mathematical
statistics, which serves as the foundation for the growth of statistics itself. Lastly,
CDS’s vision addresses the objective of data science, turning data into knowledge.

Decision XIV: CDS’s data science is identical to statistics.
Running tally of data science is identical or similar to statistics: 7 out of 14.

In 2013, in the question-and-answer section of his keynote address at the Joint
Statistical Meetings of the American Statistical Association, a noted applied stat-
istician Nate Silver said, “I think data scientist is a sexed up term for a statistician.
Statistics is a branch of science. Data scientist is slightly redundant in some way
and people shouldn't berate the term statistician” [11].

Silver’s commentary on data science distinctly reflects the view of many statis-
ticians, notwithstanding his view that the term berates statisticians.

Decision XIV: Silver’s quote plainly supports data science is identical to statistics.
Running tally of data science is identical or similar to statistics: 8 out of 15.

In 2015, the International Journal of Data Science and Analytics (IDSA) was launched
by Springer to publish original work on data science and big data analytics.
Its mission statement includes: IJDSA is the first scientific journal in data science
and big data analytics. Its goals are to publish original, fundamental, and applied
research outcomes in data and analytics theories, technologies, and applications,
and to promote new scientific and technological approaches to strategic value cre-
ation in data-rich applications. It provides self-identification with the key words:
artificial intelligence, bioinformatics, business information systems, database
management, and information retrieval (http://www.springer.com/computer/
database+management+%26+information+retrieval /journal /41060).
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IJDSA’s central point is being the first publication of original data science and
big data. However, I/DSA’s mission points and key words do not acknowledge any
content of the four-step process. There is no mention of the focal statistics, implied
or otherwise.

Decision XVI. IIDSA’s data science is not similar to statistics.
Running tally of data science is identical or similar to statistics: 8 out of 16.

17. In 2016, on Kaggle, a self-described “world's largest community of data scientists
compete to solve your most valuable problems content,” data science is defined as
“a newly emerging field dedicated to analyzing and manipulating data to derive
insights and build data products. It combines skill sets ranging from computer
science to mathematics to art” (Kaggle.com).

Kaggle’s definition does not acknowledge statistics proper, although it does include
the perfunctory analysis data to derive insights, which are rhetorical statistics.

Decision XVII: Kaggle’s data science is not similar to statistics.

Running tally of data science is identical or similar to statistics: 8 out of 17.

18. In 2016, KDnuggets (KDN), a self-proclaimed “official resource for data mining,
analytics, big data, and data science” defined data science as “the extraction of
knowledge from large volumes of data that aren't structured, which is a continua-
tion of the field of data mining and predictive analytics, also known as knowledge
discovery and data mining” (KDnuggets.com).

KDN’s definition limits data science to unstructured big data, which is part of
data mining and predictive analytics. This definition is small in scope and misses
the essence of the four-step process and central statistics.

Decision XVIII: KDN’s data science is not similar to statistics.

Running tally of data science is identical or similar to statistics: 8 out of 18.

19. In 2016, on University of California (UC) Berkeley’s website, there is a link, “What
is Data Science?” in which, under the heading “A New Field Emerges, “the defini-
tion of data science is: “There is significant and growing demand for data-savvy
professionals in businesses, public agencies, and nonprofits. The supply of profes-
sionals who can work effectively with data at scale is limited, and is reflected by
rapidly rising salaries for data engineers, data scientists, statisticians, and data
analysts” (https://datascience.berkeley.edu/about/what-is-data-science/27).

UC Berkeley’s definition includes an exhibit of being uninformed of the basic
features of data science. Moreover, UC Berkeley includes data scientists and statis-
ticians in its definition, which implies it considers that the two are different.

Decision XIX: UC Berkeley’s data science is not similar to statistics.

Running tally of data science is identical or similar to statistics: 8 out of 19 (= 42.11%).

.|
2.4 Discussion: Are Statistics and Data Science Different?

I perform the classical significance test to assess my hypothesis:

HO: Data Science and Statistics are identical (p = p0)
H1: Data Science and Statistics are not identical (p # p0)


https://datascience.berkeley.edu/about/what-is-data-science/27

22 Statistical and Machine-Learning Data Mining

I conduct the exact one-sample test for a proportion due to the small sample size.” Under
the null hypothesis, p0 = 50%. The formula for exact p-value is 2* PROBBNML(.50, 19, 8).
The exact p-value is 0.6476, which is greater than alpha = 0.05. Thus, the null hypothesis is
not rejected, and the decision is data science and statistics are one and the same.

The perfunctory use of the statistical test is not informative, so I do some data mining of
the 42.11%. The numbers behind the observed 42.11% are:

1. All six statisticians and their academic cousins consider data science is statistics.

a. C.F Jeff Wu, William S. Cleveland, Michael Driscoll, Hal Varian, Nathan Yau,
and Nate Silver

2. One chronicler of statistics considers data science is statistics.
a. Kenneth Cukier
3. One academic institution considers data science is statistics.
a. NYU’s CDS
4. The remaining 11 items, which consider data science is not statistics, consist of:

a. Seven commercial entities—the IFIP, National Science Board, Mike Loukides,
Gil Press, IJDSA, Kaggle, and KDN.

b. Four academic institutions—Columbia University, the Research Center for
Dataology and Data Science, JISC, and UC Berkeley.

At this point, I clarify my previously cited stopping rule on the size of the collected men-
tions. I stopped searching when mentions retrieved provided no useful knowledge for the
study. I observed that statisticians and one chronicler of statistics declared equivalence of
statistics and data science. All other mentions with their varying meanings of data science
contend data science and statistics are not similar. Continuing to collect additional men-
tions, I would not yield a significant change in the findings.

2.4.1 Analysis: Are Statistics and Data Science Different?

The first observation, all statisticians agree data science is statistics, is not surprising.
Statisticians, who make up the core of the statistics community, should know what is
happening inside and outside their community. Notwithstanding why trends start, the
sole remark of Silver’'s—data science is a sexed up labeling of statistics—might be the
answer as to the cloaking of statistics. Other than Silver’s anger over berating statisti-
cians by using the term data science, I did not find the unknown thread from where the
term arose.

As for academic institutions that train statisticians, statements from them should indi-
cate that data science and statistics are the same. However, four out of five academic insti-
tutions declare data science and statistics are dissimilar. NYU’s CDS is the known holdout
for this group of academia. I can only conclude that these four institutions of higher learn-
ing have taken the low road of marketing by going for the sexy hype of Silver to generate
interest, step-up enrollment, and increase revenue.

The observation of greatest insight in this exercise is that all 11 mentions, which indi-
cate the dissimilarity of statistics and data science, have one thing in common: virtually

* An exact test is used in situations when the sample size is small. Applying the well-known and virtually
always used large sample tests render p-values that are not close approximations for the true p-values.
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nothing. In general, the 11 mentions are data science narratives—not definitions, which
are a hodgepodge of incongruous ideas. This finding suggests the changes stemming
from the Internet’s big data created a state of uncertainty about what are the changes
on the essential statistics. There should be a new term to reflect the changes. I conclude
either the changes are not significant enough or “the times they are not a changing,” just
not yet.

2.5 Summary

Statisticians think in a like manner. Statisticians know who they are. They will turn
around to engage, not keep walking, if called data scientists. All others believe that the big
data-related changes necessitate a redefining of statistics and statisticians, yet they have
not even proposed a working definition that differentiates data science and data scientist
form statistics and statisticians, respectively.

I wonder what John W. Tukey—an influential statistician who coined the word bit (con-
traction of binary digit), the father of exploratory data analysis (EDA), a great contributor
to the statistics literature, and who considered himself simply as a data analyst—would
think about the terms data scientist and data science.

L]
2.6 Epilogue

“Statistics by Any Other Name Would Be as Sweet”
“Tis but the name that is the rival;

Thou art thyself, though not a Montague.

What’s Montague? It is nor rows, nor columns

Nor the table itself, nor any other part

Belonging to statistics. O, be some other name!
Data science. What’s in a name?

That which we call statistics,

By any other name would be as sweet.

BRUCE “SHAKESPEARE” RATNER
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Two Basic Data Mining Methods
for Variable Assessment

3.1 Introduction

Assessing the relationship between a predictor variable and a dependent variable is an
essential task in the model-building process. If the identified relationship is tractable,
then the predictor variable is reexpressed to reflect the uncovered relationship and conse-
quently tested for inclusion into the model. The correlation coefficient is the key statistic,
albeit often misused, in variable assessment methods. The linearity assumption of the
correlation coefficient is frequently not subjected to testing in which case the utility of the
coefficient is unknown. The purpose of this chapter is twofold: to present (1) the smoothed
scatterplot as an easy and effective data mining method and (2) a general association non-
parametric test for assessing the relationship between two variables. The intent of Point 1
is to embolden the data analyst to test the linearity assumption to ensure the proper use
of the correlation coefficient. The intent of Point 2 is an effectual data mining method for
assessing the indicative message of the smoothed scatterplot.

I review the correlation coefficient with a quick tutorial, which includes an illustration
of the importance of testing the linearity assumption and outline the construction of the
smoothed scatterplot, which serves as an easy method for testing the linearity assumption.
Next, I introduce the general association test as a data mining method for assessing a general
association between two variables.

3.2 Correlation Coefficient

The correlation coefficient, denoted by 1, is a measure of the strength of the straight-line or
linear relationship between two variables. The correlation coefficient takes on values rang-
ing between +1 and -1. The following points are the accepted guidelines for interpreting
the correlation coefficient:

1. 0 indicates no linear relationship.

2. 41 indicates a perfect positive linear relationship: As one variable increases in its
values, the other variable also increases in its values via an exact linear rule.

3. -1 indicates a perfect negative linear relationship: As one variable increases in its
values, the other variable decreases in its values via an exact linear rule.
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4. Values between 0 and 0.3 (0 and 0.3) indicate a weak positive (negative) linear rela-
tionship via a shaky linear rule.

5. Values between 0.3 and 0.7 (-0.3 and —0.7) indicate a moderate positive (negative)
linear relationship via a fuzzy-firm linear rule.

6. Values between 0.7 and 1.0 (-0.7 and —1.0) indicate a strong positive (negative) lin-
ear relationship via a firm linear rule.

7. The value of 12 is the percent of the variation in one variable explained by the other
variable or the percent of variation shared between the two variables.

8. Linearity assumption: The correlation coefficient requires the underlying relation-
ship between the two variables under consideration to be linear. If the relationship
is known to be linear, or the observed pattern between the two variables appears
to be linear, then the correlation coefficient provides a reliable measure of the
strength of the linear relationship. If the relationship is known to be nonlinear, or
the observed pattern appears to be nonlinear, then the correlation coefficient is not
useful or is at least questionable.

The calculation of the correlation coefficient for two variables X and Y is simple to under-
stand. Let zX and zY be the standardized versions of X and Y, respectively. That is, zX and zY
are both reexpressed to have means equal to zero, and standard deviations (std) equal to one.
The reexpressions used to obtain the standardized scores are in Equations 3.1 and 3.2:

zX; =[ X; —mean(X)]/std (X) (3.1)

zY, = [Yi - mean(Y)]/std(Y) (3.2

The correlation coefficient is the mean product of the paired standardized scores (zX;, zY))
as expressed in Equation 3.3.

rxy=sumof|[zX;* zY;]/(n-1) (3.3)

where n is the sample size.

For a simple illustration of the calculation of the correlation coefficient, consider the
sample of five observations in Table 3.1. Columns zX and zY contain the standard-
ized scores of X and Y, respectively. The last column is the product of the paired

TABLE 3.1

Calculation of Correlation Coefficient

obs X Y zX zY zX*zY
1 12 77 -1.14 -0.96 1.11

2 15 98 -0.62 1.07 -0.66

3 17 75 -027 -1.16 0.32

4 23 93 0.76 0.58 0.44

5 26 92 1.28 0.48 0.62

Mean 18.6 87 sum 1.83

std 5.77 10.32

n 5 r 0.46
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standardized scores. The sum of these scores is 1.83. The mean of these scores (using
the adjusted divisor n — 1, not n) is 0.46. Thus, ryy = 0.46.

3.3 Scatterplots

The testing of the linearity assumption of the correlation coefficient uses the scatterplot, which
is a mapping of the paired points (X;, Y;) in an X-Y graph. X;and Y; are typically assigned as
the predictor and dependent variables, respectively; index i represents the observations from
1 to n, where n is the sample size. The scatterplot provides a visual display of a discoverable
relation between two variables within a framework of a horizontal X-axis perpendicular to a
vertical Y-axis graph (without a causality implication suggested by the designation of depen-
dent and predictor variables). If the scatter of points in the scatterplot appears to overlay a
straight line, then the assumption has been satisfied, and ryy provides a meaningful measure
of the linear relationship between X and Y. If the scatter does not appear to overlay a straight
line, then the assumption has not been satisfied, and the ryy value is at best questionable.
Thus, when using the correlation coefficient to measure the strength of the linear relation-
ship, it is advisable to construct the scatterplot to test the linearity assumption. Unfortunately,
many data analysts do not construct the scatterplot, thus rendering any analysis based on the
correlation coefficient as potentially invalid. The following illustration is presented to rein-
force the importance of evaluating scatterplots.

Consider the four datasets with 11 observations in Table 3.2 [1]. There are four sets of
(X, Y) points, with the same correlation coefficient value of 0.82. However, the X-Y relation-
ships are distinct from one another, reflecting a different underlying structure, as depicted
in the scatterplots in Figure 3.1.

The scatterplot for X1-Y1 (upper left) indicates a linear relationship. Thus, the ry, y, value
of 0.82 correctly suggests a strong positive linear relationship between X1 and Y1. The scat-
terplot for X2-Y2 (upper right) reveals a curved relationship; ry,y, = 0.82. The scatterplot
for X3-Y3 (lower left) reveals a straight line except for the “outside” observation 3, data
point (13, 12.74); ry3y3; = 0.82. The scatterplot for X4-Y4 (lower right) has a “shape of its

TABLE 3.2

Four Pairs of (X, Y) with the Same Correlation
Coefficient (r = 0.82)

obs X1 Y1 X2 Y2 X3 Y3 X4 Y4

1 10 8.04 10 9.14 10 746 8 6.58
2 8 6.95 8 8.14 8 677 8 5.76
3 13 7.58 13 8.74 13 12.74 8 7.71
4 9 8.81 9 8.77 9 71 8 8.84
5 11 8.33 11 9.26 1 781 8 8.47
6 14 9.96 14 8.1 14 884 8 7.04
7 6 7.24 6 6.13 6  6.08 8 525
8 4 426 4 3.1 4 539 19 125

9 12 10.84 12 9.13 12 815 8 5.56
10 7 4.82 7 7.26 7 642 8 791
11 5 5.68 5 474 5 573 8 6.89
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Plot of Y1*X1. Legend: A = 1 obs, B = 2 obs, etc. Plot of Y2*X2. Legend: A = 1 obs, B = 2 obs, etc.
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FIGURE 3.1
Four different datasets with the same correlation coefficient.

own,” which is clearly not linear; ry, y,= 0.82. Accordingly, the correlation coefficient value
of 0.82 is not a meaningful measure for the last three X-Y relationships.

3.4 Data Mining

Data mining—the process of revealing unexpected relationships in data—is needed
to unmask the underlying relationships in scatterplots filled with big data. Big data, so
much a part of the information world, have rendered the scatterplot overloaded with data
points or information. Paradoxically, scatterplots based on more information are less infor-
mative. With a quantitative target variable, the scatterplot typically becomes a cloud of
points with sample-specific variation, called rough, which masks the underlying relation-
ship. With a qualitative target variable, there is discrete rough, which masks the under-
lying relationship. In either case, removal of rough from the big data scatterplot reveals
the underlying relationship. After presenting two examples that illustrate how scatterplots
filled with more data can provide less information, I outline the construction of the smoothed
scatterplot, a rough-free scatterplot, which reveals the underlying relationship in big data.

3.4.1 Example 3.1

Consider the quantitative target variable Toll Calls (TC) in dollars and the predictor vari-
able Household Income (HI) in dollars from a sample of size 102,000. The calculated ryc y;
is 0.09. The TC-HI scatterplot in Figure 3.2 shows a cloud of points obscuring the underly-
ing relationship within the data (assuming a relationship exists). This scatterplot is unin-
formative regarding an indication for the reliable use of the calculated ryc yy;.
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Legend: A =1 obs, B = 2 obs, etc.
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Scatterplot for TOLL CALLS and HOUSEHOLD INCOME.

Legend: A =1 obs, B = 2 obs, etc.

1 Z  AK MPTHNZLZZKJBGELOC DUA D C GH U AC
25}
w
Z
o
(=%
1%}
35}
~
0 Z AG, NMPAOZLXZDIABDDOIA CLA A A JL § A
} t } ‘ \ } \ } f \
0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000
HOUSEHOLD INCOME
FIGURE 3.3

Scatterplot for RESPONSE and HOUSEHOLD INCOME.

3.4.2 Example 3.2

Consider the qualitative target variable Response (RS), which measures the response to a
mailing, and the predictor variable HI from a sample of size of 102,000. RS assumes yes and
no values, which are coded as 1 and 0, respectively. The calculated rggy; is 0.01. The RS-HI
scatterplot in Figure 3.3 shows “train tracks” obscuring the underlying relationship within
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the data (assuming a relationship exists). The tracks appear because the target variable
takes on only two values, 0 and 1. As in the first example, this scatterplot is uninformative
regarding an indication for the reliable use of the calculated rgg .

3.5 Smoothed Scatterplot

The smoothed scatterplot is the desired visual display for revealing a rough-free relation-
ship lying within big data. Smoothing is a method of removing the rough and retaining
the predictable underlying relationship (the smooth) in data by averaging within neighbor-
hoods of similar values. Smoothing an X-Y scatterplot involves taking the averages of both
the target (dependent) variable Y and the continuous predictor (independent) variable X,
within X-based neighborhoods [2]. The six-step procedure to construct a smoothed scat-
terplot follows:

1. Plot the (X;, Y;) data points on an X-Y graph.

2. For a continuous X variable, divide the X-axis into distinct and nonoverlapping
neighborhoods (slices). A common approach to dividing the X-axis is creating 10
equal-sized slices (also known as deciles), whose aggregation equals the total sam-
ple [3-5]. Each slice accounts for 10% of the sample. For a categorical X variable,
slicing per se cannot be performed. The categorical labels (levels) define single-
point slices. Each single-point slice accounts for a percentage of the sample depen-
dent on the distribution of the categorical levels in the sample.

3. Take the average of X within each slice. The average is either the mean or median.
The average of X within each slice is known as a smooth X value, or smooth X.
Notation for smooth X is sm_X.

4. Take the average of Y within each slice.
a. For a continuous Y, the mean or median serves as the average.

b. For a categorical Y that assumes only two levels, the levels are reassigned typi-
cally numeric values 0 and 1. Clearly, only the mean can be calculated. This
coding yields Y proportions or Y rates.

c. For amultinomial Y that assumes more than two levels, say k, clearly, the aver-
age cannot be calculated. (Level-specific proportions are calculable, but they
do not fit into any developed procedure for the intended task.)

i. The appropriate procedure, which involves generating all combinations of
pairwise-level scatterplots, is cumbersome and rarely used.

ii. The procedure is that most often used because of its ease of implementa-
tion and efficiency is discussed in Section 18.5.

d. Notation for smooth Y is sm_Y.
5. Plot the smooth points (smooth Y, smooth X), constructing a smooth scatterplot.

6. Connect the smooth points, starting from the first left smooth point through the
last right smooth point. The resultant smooth trace line reveals the underlying rela-
tionship between X and Y.
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I provide subroutines for generating smoothplots in Chapter 44, Some of My Favorite
Statistical Subroutines.

I return to Examples 1 and 2. The HI data, grouped into 10 equal-sized slices, consist of
10,200 observations. The averages (means) or smooth points for HI with both TC and RS
within the slices (numbered from 0 to 9) are in Tables 3.3 and 3.4, respectively. The smooth
points are plotted and connected.

The TC smooth trace line in Figure 3.4 clearly indicates a linear relationship. Thus, the
I'rc, i Value of 0.09 is a reliable measure of a weak positive linear relationship between TC
and HI. Moreover, testing for the inclusion of HI (without any reexpression) in the TC
model is possible and recommended. Note the small r value does not preclude testing HI
for model inclusion. The discussion of this point is in Section 6.5.1.

The RS smooth trace line in Figure 3.5 indicates the relationship between RS and HI is
not linear. Thus, the 1ygyy; value of 0.01 is invalid. The nonlinearity raises the following
question: Does the RS smooth trace line indicate a general association between RS and
HI, implying a nonlinear relationship, or does the RS smooth trace line indicate a random
scatter, implying no relationship between RS and HI? The answer lies with the graphical
nonparametric general association test [5].

TABLE 3.3
Smooth Points: TOLL CALLS and HOUSEHOLD INCOME
Slice  Average TOLL CALLS Average HOUSEHOLD INCOME

0 $31.98 $26,157
1 $27.95 $18,697
2 $26.94 $16,271
3 $25.47 $14,712
4 $25.04 $13,493
5 $25.30 $12,474
6 $24.43 $11,644
7 $24.84 $10,803
8 $23.79 $9,796
9 $22.86 $6,748
TABLE 3.4

Smooth Points: Response and HOUSEHOLD INCOME
Slice  Average Response (%) Average HOUSEHOLD INCOME

0 2.8 $26,157
1 2.6 $18,697
2 2.6 $16,271
3 2.5 $14,712
4 2.3 $13,493
5 22 $12,474
6 22 $11,644
7 2.1 $10,803
8 21 $9,796
9 2.3 $6,748
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Symbol is value of slice
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FIGURE 3.4
Smoothed scatterplot for TOLL CALLS and HOUSEHOLD INCOME.
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3.6 General Association Test

Here is the general association test:

1. Plot the N smooth points in a scatterplot and draw a horizontal medial line that
divides the N points into two equal-sized groups.

2. Connect the N smooth points starting from the first left-hand smooth point. N — 1
line segments result. Count the number m of line segments that cross the medial

line.

3. Test for significance. The null hypothesis: There is no association between the two
variables at hand. The alternative hypothesis: There is an association between the

two variables.

4. Consider the test statistic TSisN -1 —m.

Reject the null hypothesis if TS is greater than or equal to the cutoff score in Table 3.5.
The conclusion is there is an association between the two variables. The smooth trace line

indicates the “shape” or structure of the association.

Fail to reject the null hypothesis if TS is less than the cutoff score in Table 3.5. The conclu-

sion is there is no association between the two variables.

TABLE 3.5

Cutoff Scores for General Association
Test (95% and 99% Confidence Levels)

N 95% 99%
8-9 6 —
10-11 7 8
12-13 9 10
14-15 10 11
16-17 11 12
18-19 12 14
20-21 14 15
22-23 15 16
24-25 16 17
26-27 17 19
28-29 18 20
30-31 19 21
32-33 21 22
34-35 22 24
36-37 23 25
38-39 24 26
4041 25 27
42-43 26 28
44-45 27 30
4647 29 31
48-49 30 32
50-51 31 33




34 Statistical and Machine-Learning Data Mining

Symbol is value of slice

0.030
0

0.028 1 ,/

L, 0026 /
2 —1
w
Z 5/
o /’
a~
% /
o 0.024 + /
’,4
9 /'
5"‘
0.022 + /'6/
/'
AN
0.020 |
f f } } } } } } } } }
6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 28,000
HOUSEHOLD INCOME
FIGURE 3.6

General association test for smoothed RS-HI scatterplot.

Returning to the smoothed scatterplot of RS and HI, I determine the following:

1. There are ten smooth points, N = 10.

2. The medial line divides the smooth points such that Points 5 to 9 are below the line
and Points 0 to 4 are above.

3. The line segment formed by Points 4 and 5 in Figure 3.6 is the only segment that
crosses the medial line. Accordingly, m = 1.

4. TS equals 8 (= 10 — 1 — 1), which is greater than or equal to the 95% and 99% confi-
dence cutoff scores 7 and 8, respectively.

Thus, there is a 99% (and of course 95%) confidence level that there is an association
between RS and HI. The RS smooth trace line in Figure 3.5 suggests the observed relation-
ship between RS and HI appears to be polynomial to the third power. Accordingly, the
linear (HI), quadratic (HI?), and cubed (HI?) Household Income terms should be tested for
entering the Response model.

3.7 Summary

It should be clear that an analysis based on the uncritical use of the coefficient correlation
is problematic. The strength of a relationship between two variables cannot simply be the
calculated r value itself. The testing for the linearity assumption, which is made easy by the
simple scatterplot or smoothed scatterplot, is necessary for a thorough-and-ready analysis.
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If the observed relationship is linear, then the r value can be taken at face value for the
strength of the relationship at hand. If the observed relationship is not linear, then the r
value must be disregarded or used with extreme caution.

When a smoothed scatterplot for big data does not reveal a linear relationship, its scat-
ter undergoes the proposed nonparametric method to test for randomness or a noticeable
general association. If the former (randomness) is true, then it is concluded there is no
association between the variables. If the latter (noticeable association) is true, then the
predictor variable is reexpressed to reflect the observed relationship and therefore tested
for inclusion in the model.
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4

CHAID-Based Data Mining for
Paired-Variable Assessment

4.1 Introduction

Building on the concepts of the scatterplot and the smoothed scatterplot as data mining
methods presented in Chapter 3, I introduce a new data mining method: a smoother scat-
terplot based on chi-squared automatic interaction detection (CHAID). The new method
has the potential of exposing a more reliable depiction of the unmasked relationship for
paired-variable assessment than that of the scatterplot and the smoothed scatterplot. I use
a new dataset to keep an edge on refocusing another illustration of the scatterplot and
smoothed scatterplot. Then, I present a primer on CHAID, after which I bring the pro-
posed subject to the attention of data miners, who are buried deep in data, to help exhume
themselves along with the patterns and relationships within the data.

4.2 The Scatterplot

Big data are more than the bulk of today’s information world. They contain valuable ele-
ments of the streaming current of digital data. Data analysts find themselves in troubled
waters while pulling out the valuable elements. One impact of big data is on the basic
analytical tool: the scatterplot has become overloaded with data points or with informa-
tion. Paradoxically, the scatterplot based on more information is less informative. The scat-
terplot displays a cloud of data points, of which too many are due to sample variation,
namely, the rough that masks a presuming existent underlying a relationship.” Removal of
the rough from the cloudy scatterplot allows the smooth, hidden behind the cloud, to shine
through and open the sought-after underlying relationship. I offer to view an exemplary
scatterplot filled with too many data and then show the corresponding smooth scatterplot, a
rough-free, smooth-full scatterplot, which reveals the sunny-side up of the inherent char-
acter of a paired-variable assessment.

* Scatterplots with the X or Y variables as qualitative dependent variables yield not a cloud, but either two or
more parallel lines or a dot matrix corresponding to the number of categorical levels. In the latter situation,
the scatterplot displays mostly the rough in the data.
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Plot of HI BALANCE*RECENCY_MOS. Legend: A =1 obs, B = 2 obs, etc.
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FIGURE 4.1
Scatterplot of HI_BALANCE and RECENCY_MOS.

4.2.1 An Exemplar Scatterplot

I data mine for an honest display of the relationship between two variables from a real
study: HI_BALANCE (the highest balance attained among credit card transactions for an
individual) and RECENCY_MOS (the number of months since last purchase). The first step
in the data mining process is to produce the scatterplot of HI_BALANCE and RECENCY_
MOS. It is clear the relationship between the two variables reflects an irregular and diffuse
cloud of data in the scatterplot (Figure 4.1). To lift the cloudiness in the scatterplot (i.e., to
remove the rough to expose the smooth in the data), I create the smooth scatterplot of the
present scatterplot in the next section.

4.3 The Smooth Scatterplot

The smooth scatterplot is the appropriate visual display for uncovering the sought-after
underlying relationship within an X-Y graph of raw big data. Smoothing is a method of
averaging within neighborhoods of similar values—for removing the rough and retaining
the smooth in data. Specifically, smoothing of a scatterplot involves taking the averages of
both X and Y within X-based neighborhoods [1]. The six-step construction procedure for a
smooth scatterplot is in Chapter 3.

The smooth scatterplot of HI_BALANCE and RECENCY_MOS is in Figure 4.2. The SM_
HI_BALANCE and SM_RECENCY_MOS values per slice, which assumes numeric labels
from 0 to 9, are in Table 4.1. The uncovered relationship is an S-shape trend. This relation-
ship can be analyzed further using Tukey’s bulging rule, discussed in Chapter 10.
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Plot of SM_RECENCY_MOS*SM_HI_BALANCE. Symbol is value of slice
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FIGURE 4.2
Smooth scatterplot of RECENCY_MOS and HI_BALANCE.

TABLE 4.1

Smooth Values for HI_BALANCE and
RECENCY_MOS by Slice

Slice SM_HI_BALANCE SM_RECENCY_MOS
0 99.0092 430.630
1 77.6742 341.485
2 56.7908 296.130
3 39.9817 262.940
4 27.1600 230.605
5 17.2617 205.825
6 10.6875 181.320
7 5.6342 159.870
8 2.5075 135.375
9 0.7550 90.250

100

4.4 Primer on CHAID

Before discussing the CHAID-based smoother scatterplot, I provide a succinct primer
on CHAID (the acronym for chi-squared automatic interaction detection, not detector).
CHAID is a popular technique, especially among wannabe regression modelers with no
significant statistical training because CHAID regression tree models are easy to build,
understand, and implement. Also, CHAID’s underpinnings are quite attractive: CHAID

is an assumption-free method (i.e., there are no formal theoretical

assumptions to meet),
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and CHAID is mighty powerful in its handling of a “big data” number of many predictor
variables. In contrast, traditional regression models are assumption full, which makes
them susceptible to risky results and inefficient in their managing of many predictor
variables. Note, I use the following CHAID terms interchangeably: CHAID, CHAID tree,
CHAID regression tree, CHAID regression tree model, and CHAID model.”f

CHAID is a recursive technique that splits a population (Node 1) into nonoverlapping
binary (two) subpopulations (nodes, bins, slices), defined by the “most important” predic-
tor variable. Then, CHAID splits the first-level resultant nodes, defined by the next most
important predictor variables, and continues to split second-level, third-level, ..., and nth-
level resultant nodes, until either stopping rules are satisfied or splitting criterion is not
reached. For the splitting criterion,* the variance of the dependent variable is minimized
within each of the two resultant nodes and maximized between the two resultant nodes.

To clarify the recursive splitting process, after the first splitting of the population (virtually
always$) produces resultant Nodes 2 and 3, further splitting is attempted on the resultant
nodes. Nodes are split with respect to two conditions: (1) if the user-defined stopping rules
(e.g, minimum-size node to split and maximum level of the tree) are not satisfied, and (2) if
the splitting criterion bears resultant nodes with significantly different means for the Y
variable. Assuming the conditions are in check, Node 2 splits into Nodes 4 and 5; Node 3
splits into Nodes 6 and 7. For each of Nodes 4-7, splitting is performed if either of the two
conditions is true; otherwise, the splitting stops, and the CHAID tree is complete.

4.5 CHAID-Based Data Mining for a Smoother Scatterplot

Iillustrate the CHAID model for making a smoother scatterplot with the HI_BALANCE and
RECENCY_MOS variables of the previously mentioned study. The fundamental characteristic
of the CHAID-based smoother scatterplot is: The CHAID model consists of only one predictor
variable. I build a CHAID regression tree model, regressing HI_BALANCE on RECENCY_
MOS. The stopping rules used are minimum-size node to split 10 and the maximum level of
the tree 3. The CHAID regression tree model in Figure 4.3 reads as follows:

1. Node 1 mean for HI_ BALANCE is 33.75 within the sample of size 2,000.
2. The splitting of Node 1 yields Nodes 2 and 3.

a. Node 2 includes individuals whose RECENCY_MOS is <319.04836. Mean
HI_BALANCE is 35.46 and node size is 1,628.

b. Node 3 includes individuals whose RECENCY_MOS is >319.04836. Mean
HI_BALANCE is 26.26 and node size is 372.

3. The splitting of Node 3 yields Nodes 10 and 11. The nodes are read similarly to
Items 2a and 2b.

* There are many CHAID software packages in the marketplace. The best ones are based on the original
automatic interaction detection (AID) algorithm.

t See A Pithy History of CHAID and Its Offspring on the author’s website (http://www.geniq.net/res/
Reference-Pithy-history-of-CHAID-and-Offspring.html).

# There are many splitting criterion metrics beyond the variance (e.g., gini, entropy, and misclassification cost).

§ There is no guarantee that the top node can be split, regardless of the number of predictor variables at hand.
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4. The splitting of Node 11 yields Nodes 14 and 15. The nodes are read similarly to
Items 2a and 2b.

5. The splitting criterion is not satisfied for eight nodes: 4-9, 12, and 13.

The usual interpretation of the instructive CHAID tree is moot as it is a simple CHAID
model (i.e, it has one predictor variable). Explaining and predicting HI_ BALANCE based
on the singleton variable RECENCY_MOS need a fuller explanation and a more accurate
prediction of HI_BALANCE, achieved with more than one predictor variable. However,
the simple CHAID model is not abstractly academic as it is the vehicle for the proposed
method.

The unique interpretation of the simple CHAID model is the core of the proposed
CHAID-based data mining for a smoother scatterplot: CHAID-based smoothing. The end
nodes of the CHAID model are end-node slices, which are numerous (in the hundreds) by
user design. The end-node slices have quite a bit of accuracy because they are predicted
(fitted) by a CHAID model accounting for the X-axis variable. The end-node slices by aggre-
gation become 10 CHAID slices. The CHAID slices of the X-axis variable clearly produce
more accurate (smoother) values (CHAID-based sm_X) than the smooth X values from the
dummy slicing of the X-axis (sm_X from the smooth scatterplot). Ergo, the CHAID slices
produce smoother Y values (CHAID-based sm_Y) than the smooth Y values from the
dummy slicing of the X-axis (sm_Y from the smooth scatterplot). In sum, CHAID slices
produce CHAID-based sm_X that is smoother than sm_X and CHAID-based sm_Y that is
smoother than sm_Y.

Note, the instructive CHAID tree in Figure 4.3 does not have numerous end-node
slices. For this section only, I ask the reader to assume the CHAID tree has numerous

Node 1

(Entire Group)

N = 2,000
HI_BALANCE = 33.75
Std. dev. = 33.10

Node 2 Node 3
RECENCY_MOS < 319.04836 RECENCY_MOS > 319.04836
N =1628 N =372
HI_BALANCE = 35.46 HI_BALANCE = 26.26
Std. dev. = 32.79 Std. dev. = 33.39
Node 10 Node 11
RECENCY_MOS < 472.56245 RECENCY_MOS > 472.56245
N =342 N =30
HI_BALANCE = 25.24 HI_BALANCE = 37.99
Std. dev. = 29.76 Std. dev. = 59.79
Node 14 Node 15
RECENCY_MOS < 478.58262 RECENCY_MOS > 478.58262
N=6 N =24
HI_BALANCE = 107.33 HI_BALANCE = 20.65
Std. dev. = 95.63 Std. dev. = 26.08
FIGURE 4.3

Illustration of CHAID tree of HI_BALANCE and RECENCY_MOS.
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end nodes so I can bring forth the exposition of CHAID-based smoothing. The real
study illustration of CHAID-based smoothing, in the next section, indeed has end
nodes in the hundreds.

I continue with the CHAID tree in Figure 4.3 to assist the understanding of CHAID-
based smoothing. The CHAID slices of the RECENCY_MOS X-axis produce smoother
HI_BALANCE values, CHAID-based SM_HI_BALANCE, than the smooth HI_BALANCE
values from the dummy slicing of the RECENCY_MOS X-axis. In other words, CHAID-
based SM_HI_BALANCE has less rough and more smooth. The following sequential iden-
tities may serve as a mnemonic guide to the concepts of rough and smooth and to how
CHAID-based smoothing works:

1. Data point/value = reliable value + error value, from theoretical statistics.
2. Data value = predicted /fitted value + residual value, from applied statistics.
a. The residual is reduced.
b. The fitted value is noticeable given a well-built model.
3. Data value = fitted value + residual value, a clearer restatement of Item 2.
4. Data = smooth + rough, from Tukey’s exploratory data analysis (EDA) [1].
a. The rough is reduced.
b. The smooth is increased/more accurate, given a well-built model.
5. Data = smooth per slice + rough per slice, from the CHAID model.
a. The rough per slice is reduced.
b. The smooth per slice is observably accurate, given a well-built CHAID model.

To facilitate the discussion thus far, I have presented the dependent-predictor
variable framework as the standard paired-variable notation (X; Y;) suggests. However,
when assessing the relationship between two variables, there is no dependent-independent
variable framework, in which case the standard paired-variable notation is (X1;, X2;). Thus,
analytical logic necessitates building a second CHAID model: Regressing RECENCY_MOS
onHI_BALANCE yields the end nodes of the HI_ BALANCE X-axis with smooth RECENCY_
MOS values, CHAID-based SM_RECENCY_MOS. CHAID-based SM_RECENCY_MOS
values are smoother than the smooth RECENCY_MOS values from the dummy slicing of
HI_BALANCE. CHAID-based SM_RECENCY_MOS has less rough and more smooth.

4.5.1 The Smoother Scatterplot

The CHAID-based smoother scatterplot of HI_ BALANCE and RECENCY_MOS is in
Figure 4.4. The SM_HI_BALANCE and SM_RECENCY_MOS values per CHAID slice,
which assumes numeric labels from 0 to 9, are in Table 4.2. The uncovered relationship
in the majority view is linear, except for some jumpy slices in the middle (3-6), and for
the stickler, Slice 0 is slightly under the trace line. Regardless of these last diagnostics,
the smoother scatterplot suggests no further reexpressing of HI. BALANCE or RECENCY_
MOS. Testing the original variables for model inclusion is the determinate of what shape
either or both variables take in the final model. Lest one forgets, the data analyst compares
the smoother scatterplot findings to the smooth scatterplot findings.

The full, hard-to-read CHAID HI_BALANCE model accounting for RECENCY_MOS is
shown in Figure 4.5. The CHAID HI_BALANCE model has 181 end nodes stemming from
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Plot of SM_RECENCY_MOS*SM_HI_BALANCE. Symbol is value of CHAID_slice
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FIGURE 4.4
CHAID-based smoother scatterplot of RECENCY_MOS and HI_BALANCE.

TABLE 4.2

Smoother Values for HI_BALANCE and RECENCY_MOS
by CHAID Slices

CHAID_slice @ SM_HI_BALANCE SM_RECENCY_MOS
0 52.9450 281.550

1 42.3392 268.055

2 37.4108 246.270

3 36.5675 245.545

4 36.1242 233.910

5 33.3158 232.155

6 31.5350 216.750

7 27.8492 215.955

8 22.6783 202.670

9 16.6967 191.570

FIGURE 4.5
CHAID regression tree: HI_BALANCE regressed on RECENCY_MOS.
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minimum-size node to split 10 and the maximum tree level 10. A readable midsection
of the tree with Node 1 (top and center) is shown in Figure 4.6. As this model’s full-size
output spans nine pages, I save a tree in the forest by capturing the hard-to-read tree
as a JPEG image. The full, hard-to-read CHAID RECENCY_MOS model accounting for
HI_BALANCE is shown in Figure 4.7. The CHAID RECENCY_MOS model has 121 end
nodes stemming from minimum-size node to split 10 and the maximum tree level 14.
A readable midsection of the tree with Node 1 (top and center) is shown in Figure 4.8. This
model’s full-size output spans four pages.

Node 1
(Entire Group)
N=2,000

HI_BALANCE = 3375
Std. dev. = 33.10

Node 114
RECENCY_MOS < 343.129
-8

5
HI_BALANCE =21.69

Std. dev. = 2918
Node 116
RECENCY_MOS < 328.0786
N=33
HIL_BALANCE = 18.37
Std. dev. = 3592 Std. dev. = 2573
Node 91 Node 118, Node 119 No|
RECENCY_MOS > 303.99795 RECENCY_MOS s 32205844 RECENCY_MOS > 32205844 rec|
N=78 =17 N=16 N=
HI_BALANCE = 4323 HI_BALANCE = 19.90 HLBALANCE = 1674 hi |
Std. dev. =35.69 Std. dev. = 2910 Std. dev. = 2146 std
Node 102 Node 103, Node 120 Node 121 Node 124
529195763 RECENCY_MOS < 307.00804 RECENCY_MOS > 307.00804 RECENCY_MOS < 325.06852 RECENCY_MOS > 325.06852) RECENCY_MOS < 33L0|
N=2 N=54 N-8 N-=8§ N-11
730 HI_BALANCE = 51.85 HI_BALANCE = 39.40 HI_BALANCE = 1594 HLBALANCE = 1754 HI_BALANCE = 23,50
.80 Std. dev. = 3661 Std. dev. = 3459 Std. dev. = 1361 Std. dev. = 27.11 Std. dev. = 1690
Node 99 Node 104 Nol
RECENCY_MOS > 29496771 RECENCY_MOS < 313.0282 rec
N=66 N-33 N-
HL_BALANCE = 28.93 HLBALANCE = 4124 hi |
Std. dev. = 3271 Std. dev. = 3378 st

Midsection of CHAID regression tree: HI_BALANCE regressed on RECENCY_MOS.

FIGURE 4.7
CHAID regression tree: RECENCY_MOS regressed on HI_BALANCE.
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Node 1
(Entire Group)
N = 2,000
RECENCY_MOS = 233.44
Std. dev. = 98.81
[Node 2
[HI_BALANCE < 4.9070826
IN = 462
[RECENCY_MOS = 261.39
IStd. dev. = 111.09
Node 5
1.3517707 [HI_BALANCE > 1.3517707|
=277
= 27329 RECENCY_MOS = 253.44
0.33 Std. dev. = 110.89
[Node 6 Node 7 ode 12
IHI_BALANCE < 2.5368747 HI_BALANCE > 2.5368747, HI_BALANCE < 143.56425
IN = 125 N = 152 N = 1,532
[RECENCY_MOS = 259.71 RECENCY_MOS = 248.28 RECENCY_MOS = 224.83
[Std. dev. = 97.31 Std. dev. = 120.68 Std. dev. = 92.86
[Node 8 Node 9 [Node 14
[HI_BALANCE < 37219786 [HI_BALANCE > 3.7219786| [HI_BALANCE < 105.64092
IN =83 N =69 N =1,523
RECENCY_MOS = 247.05 RECENCY_MOS = 249.77 [RECENCY_MOS = 22441
[Std. dev. = 12321 Std. dev. = 117.55 [Std. dev. = 92.83
Node 16 Node 17
[HI_BALANCE <7.2772906 HI_BALANCE >7.
N =121 N=14.02
[RECENCY_MOS = 235.50 RECENCY_MOS =
IStd. dev. = 108.27 Std. dev. = 91.3
Node 18 [Node 19 [Node 20
HI_BALANCE < 60921866 HI_BALANCE > 6.0921866| |HI_BALANCE < 8.4623945
N=69 N =52 IN = 50
RECENCY_MOS = 21238 RECENCY_MOS =266.19 |  [RECENCY_MOS = 205.40
Std. dev. = 101.19 Std. dev. = 109.71 [Std. dev. = 77.88
FIGURE 4.8

Midsection of CHAID regression tree: RECENCY_MOS regressed on HI_BALANCE.

4.6 Summary

The basic (raw data) scatterplot and smooth scatterplot are the current data mining methods
for assessing the relationship between predictor and dependent variables, an essential task
in the model-building process. Working with today’s big data, containing valuable elements
within, data analysts find themselves in troubled waters while pulling out the valuable ele-
ments. Big data have rendered the scatterplot overloaded with data points or information.
Paradoxically, scatterplots based on more information are less informative. To data mine the
information in the data-overloaded scatterplot, I review the smooth scatterplot for unmask-
ing an underlying relationship as depicted in a raw data scatterplot. Then, I propose a
CHAID-based method of data mining for paired-variable assessment, a new technique of
obtaining a smoother scatterplot, which exposes a more reliable depiction of the unmasked
relationship than that of the smooth scatterplot. The smooth scatterplot uses averages of
raw data, and the smoother scatterplot uses averages of fitted values of CHAID end nodes.
I'illustrate the basic, the smooth, and smoother scatterplots using a real study.

Reference
1. Tukey, JW., Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1997.
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5

The Importance of Straight Data Simplicity and
Desirability for Good Model-Building Practice

5.1 Introduction

The purpose of this chapter is to show the importance of straight data for the simplic-
ity and desirability it brings for good model-building practice. I illustrate the content of
the chapter title by giving details of what to do when an observed relationship between
two variables depicted in a scatterplot is masking an acute underlying relationship. Data
mining is employed to unmask and straighten the obtuse relationship. The correlation
coefficient is used to quantify the strength of the exposed relationship, which possesses
straight-line simplicity.

5.2 Straightness and Symmetry in Data

Today’s data mechanics’ (DMers), who consist of the entirety of statisticians, data analysts,
data miners, knowledge discoverers, and the like, know that exploratory data analysis,
better known as EDA, places special importance on straight data not in the least for the
sake of simplicity itself. The paradigm of life is simplicity (at least for those of us who
are older and wiser). In the physical world, Einstein uncovered one of the universe’s rul-
ing principles using only three letters: E = mc?. In the visual world, however, simplicity
is undervalued and overlooked. A smiley face is an unsophisticated, simple shape that
nevertheless communicates effectively, clearly, and instantly. Why should DMers accept
anything less than simplicity in their life’s work? Numbers, as well, should communicate
powerfully, unmistakably, and without much ado. Accordingly, DMers should seek two
features that reflect simplicity: straightness and symmetry in data.

* Data mechanics (DMers) are a group of individuals skilled by the study of understanding data, stressing the
throwing of light upon data by offering details or inferences previously unclear or only implicit. According
to The Royal Society, founded in 1660, the first statistician was John Graunt, who believed that London’s
bills of mortality could provide information for more than just for gossip. He compiled and analyzed all
bills from 1604 through 1661. Graunt’s work was published as Natural and Political Observations Made upon
the Bills of Mortality. Graunt became the first to put forth today’s common statistics as: More boys are born
than girls; women live longer than men; and, except in epidemics, the number of people dying each year is
relatively constant. http://www.answers.com/topic/the-first-statistician.
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There are five reasons why it is important to straighten data:

1. The straight-line (linear) relationship between two continuous variables X and Y
is simple as it gets. As X increases (decreases) in its values, Y increases (decreases)
in its values. In this case, X and Y are positively correlated. Or, as X increases
(decreases) in its values, Y decreases (increases) in its values. In this case, X and Y
are negatively correlated. As an example of this setting of simplicity (and of ever-
lasting importance), Einstein’s E and m have a perfect positive linear relationship.

2. With linear data, the data analyst without difficulty sees what is going on within
the data. The class of linear data is the desirable element for good model-building
practice.

3. Most marketing models, belonging to the class of innumerable varieties of the
linear statistical model, require linear relationships between a dependent variable
and (a) each predictor variable in a model and (b) all predictor variables considered
jointly, regarding them as an array of predictor variables that have a multivariate
normal distribution.

4. It is well known that nonlinear models, attributed with yielding good predictions
with nonstraight data, in fact, do better with straight data.

5. I have not ignored the feature of symmetry. Not accidentally, there are theoretical
reasons for symmetry and straightness going hand in hand. Straightening data often
makes data symmetric and vice versa. Recall, symmetric data have values that are
in correspondence in size and shape on opposite sides of a dividing line or middle
value of the data. The iconic symmetric data profile is bell-shaped.

5.3 Data Mining Is a High Concept

Data mining is a high concept of three key elements: a) fast action in its development,
b) glamor in its imagination for the unexpected, and c) mystique that feeds the curiosity
of human thought. Conventional wisdom, in the DM space, has it that everyone knows
what data mining is [1]. Everyone does it—that is what he or she says. I do not believe it.
I know that everyone talks about it, but only a small, self-seeking group of data analysts
genuinely does data mining. I make this bold and excessively self-confident assertion
based on my consulting experience as a statistical modeler, data miner, and computer
scientist for the many years that have been gifted to me.

5.4 The Correlation Coefficient

The term correlation coefficient, denoted by r, was coined by Karl Pearson in 1896. This sta-
tistic, over a century old, is still going strong. It is one of the most used statistics, sec-
ond to the mean. The correlation coefficient weaknesses and warnings of misuse are well
known. As a practiced consulting statistician and instructor of statistical modeling and
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data mining for continuing professional studies in the DM space,” I see too often that the
weaknesses and misuses go unheeded perhaps because of their rare mention in practice.
The correlation coefficient, whose values theoretically range within the left-closed right-
closed interval [-1, +1], is restricted by the individual distributions of the two variables
being correlated (see Chapter 9). The misuse of the correlation coefficient is the nontesting
of the linear assumption, discussed in this section.

Assessing the relationship between dependent and predictor variables is an essential
task in statistical linear and nonlinear regression model building. If the relationship is
linear, then the modeler tests to determine whether the predictor variable has statistical
importance to be included in the model. If the relationship is either nonlinear or indiscern-
ible, then one or both of the two variables are reexpressed, that is, data mined to be voguish
with terminology, to reshape the observed relationship into a data-mined linear relation-
ship. As a result, the reexpressed variable(s) is(are) tested for inclusion into the model.

The everyday method of assessing a relationship between two variables—lest the data
analyst forgets: linear relationships only—is the calculation of the correlation coefficient. The
misuse of the correlation coefficient is due to disregard for the linearity assumption test, albeit
simple to do. (I put forth an obvious reason, but still not acceptable, why the nontesting has
a long shelf life later in the chapter,) I state the linear assumption, discuss the testing of the
assumption, and provide how to interpret the observed correlation coefficient values.

The correlation coefficient requires that the underlying relationship between two vari-
ables is linear. If the observed pattern displayed in the scatterplot of two variables has an
outward aspect of being linear, then the correlation coefficient provides a reliable measure
of the linear strength of the relationship. If the observed pattern is either nonlinear or indis-
cernible, then the correlation coefficient is inutile or offers risky results. If the latter data
condition exists, data mining efforts should be attempted to straighten the relationship. In
the remote situation when the proposed data mining method is not successful, then extra
data mining techniques, such as binning, should be explored. The latter techniques are
outside the scope of this chapter. Sources for extra data mining are many [2-4].

If the relationship is deemed linear, then the strength of the relationship is quantified
by an accompanying value of r. For convenience, I restate the accepted guidelines (from
Chapter 3) for interpreting the correlation coefficient:

1. 0 indicates no linear relationship.

2. +1 indicates a perfect positive linear relationship: As one variable increases in its
values, the other variable also increases in its values via an exact linear rule.

3. -1 indicates a perfect negative linear relationship: As one variable increases in its
values, the other variable decreases in its values via an exact linear rule.

4. Values between 0 and 0.3 (0 and —0.3) indicate a weak positive (negative) linear
relationship via a shaky linear rule.

5. Values between 0.3 and 0.7 (-0.3 and —0.7) indicate a moderate positive (negative)
linear relationship via a fuzzy-firm linear rule.

6. Values between 0.7 and 1.0 (-0.7 and —1.0) indicate a strong positive (negative)
linear relationship via a firm linear rule.

* DM space includes industry sectors such as direct and database marketing, banking, insurance, finance,
retail, telecommunications, health care, pharmaceuticals, publication and circulation, mass and direct
advertising, catalog marketing, e-commerce, Web-mining, business to business (B2B), human capital
management, risk management, and the like.
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FIGURE 5.1
Sought-after scatterplot of paired variables (x, y).

I present the sought-after scatterplot of paired variables (x, y)—a cloud of data points
that indicates a silver lining of a straight line. The correlation coefficient r,), correspond-
ing to this scatterplot, ensures that the value of r reliably reflects the strength of the linear
relationship between x and y in Figure 5.1. The cloud of points in Figure 5.1 is not typical
due to the small, eleven-observation dataset used in the illustration. However, the discus-
sion still holds true, as if the presentation involves, say, 11,000 observations or greater. I take
the freedom of writing to refer to the silver-lining scatterplot as a thin, wispy cirrus cloud.

5.5 Scatterplot of (xx3, yy3)

Consider the scatterplot of 11 data points of the third paired variables (x3, y3) in Table 5.1
regarding the Anscombe data. I construct the scatterplot of (x3, y3) in Figure 5.2, renam-
ing (xx3, yy3) for a seemingly unnecessary inconvenience. (The reason for the renaming is
explained later in the book.) Clearly, the relationship between xx3 and yy3 is problematic:
It would be straightaway linear if not for the far-out point ID3 (13, 12.74). The scatterplot
does not ocularly reflect a linear relationship. The nice large value of 1, .5 = 0.8163 is
meaningless and useless. I leave it to the reader to draw his or her underlying straight line.

5.6 Data Mining the Relationship of (xx3, yy3)

I data mine for the underlying structure of the paired variables (xx3, yy3) using a machine-
learning approach to the discipline of evolutionary computation, specifically genetic
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TABLE 5.1
Anscombe Data
ID x1 yl x2 y2 x3 y3 x4 y4
1 10 8.04 10 9.14 10 7.46 8 6.58
2 8 6.95 8 8.14 8 6.77 8 5.76
3 13 7.58 13 8.74 13 12.74 8 7.71
4 9 8.81 9 8.77 9 7.11 8 8.84
5 11 8.33 11 9.26 11 7.81 8 8.47
6 14 9.96 14 8.10 14 8.84 8 7.04
7 6 7.24 6 6.13 6 6.08 8 5.25
8 4 4.26 4 3.10 4 5.39 19 12.50
9 12 10.84 12 9.13 12 8.15 8 5.56
10 7 4.82 7 7.26 7 6.42 8 791
11 5 5.68 5 4.74 5 5.73 8 6.89
Source: Anscombe, EJ., Am. Stat., 27,17-21, 1973.
Plot of xx3*yy3. Legend: A = 1 obs
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FIGURE 5.2
Scatterplot of (xx3, yy3).
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programming (GP). The fruits of my data mining work yield the scatterplot in Figure 5.3.
The data mining work is not an expenditure of time-consuming results or mental effort
because the GP-based data mining (GP-DM) is a machine-learning adaptive intelligence
process that is effective and efficient for straightening data. The data mining tool used
is the GenlQ Model, which renames the data-mined variable with the prefix GenlQvar.
Data-mined (xx3, yy3) is relabeled (xx3, GenlQvar(yy3)). (The GenlQ Model is formally
introduced replete with eye-opening examples in Chapter 40.)
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Plot of xx3*GenlIQvar(yy3). Legend: A =1 obs

21 1
20 T
19 1
18 1
17 1
16 T
15 1
14 1
13 1
12 1
11 1
10 T

GenlIQvar (yy3)

B U1 O\ N o
I T T
1

xx3

FIGURE 5.3
Scatterplot of (xx3, GenIQvar(yy3)).

TABLE 5.2

Reexpressed yy3, GenlQ(yy3),
Descendingly Ranked by GenlIQ(yy3)

xx3 yy3 GenlIQ(yy3)
13 12.74 20.4919
14 8.84 20.4089
12 8.15 18.7426
11 7.81 15.7920
10 7.46 15.6735
9 7.11 14.3992
8 6.77 11.2546
7 6.42 10.8225
6 6.08 10.0031
5 5.73 6.7936
4 5.39 5.9607

The correlation coefficient 1.3 Gengvaryysy = 0-9895 and the uncurtained underlying rela-
tionship in Figure 5.3 warrant a silver, if not gold, medal for straightness. The correlation
coefficient is a reliable measure of the linear relationship between xx3 and GenlQvar(yy3).
The almost-maximum value of T3 Geniguar(yys) iNdicates an almost perfect linear relation-
ship between the original xx3 and the data-mined GenlQvar(yy3). (Note: The scatterplot
indicates GenlQvar_yy3 on the Y-axis and not the correct notation, GenlQvar(yy3), due to
syntax restrictions of the graphics software.)

The values of the variables xx3, yy3, and GenlQvar(yy3) are in Table 5.2. The 11 data
points are ordered based on the descending values of GenlQvar(yy3).
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FIGURE 5.4
Side-by-side scatterplot.

5.6.1 Side-by-Side Scatterplot

A side-by-side scatterplot of all the goings-on is best pictured because it is worth 1,000
words. The side-by-side scatterplot speaks for itself of a data mining piece of work done
well (see Figure 5.4).

5.7 What Is the GP-Based Data Mining Doing to the Data?

As evidenced by the detailed illustration, GP-DM maximizes the straight-line correlation
between a genetically reexpressed dependent variable and a single predictor variable.
When building a multiple (at least two predictor variables) regression model, GP-DM max-
imizes the straight-line correlations between a genetically reexpressed dependent variable
with each predictor variable and the array of predictor variables considered jointly.
Although the GenlQ Model, as used here, is revisited in Chapter 39, it is not appropriate
to leave without the definition of the reexpressed variable. The definition is in Equation 5.1:

GenlQvar _yy3 = cos(2* xx3) + (xx3/ 0.655) 5.1

The GenlQ Model did eminently good data mining that rendered excellent results:
I-(x><3, GenIQvar(yy3)) = 0.9895.

5.8 Straightening a Handful of Variables and a Baker’s Dozen of Variables

A handful of variables (10 pairs of variables) can be dealt with presumably without diffi-
culty. As for a baker’s dozen of variables (78 pairs), they can be a handful. However, GP-DM,
as outlined with its main features and points of functioning, reduces initially, effectively,
and efficiently the 78 pairs to a practical number of variables. Examination of this reduc-
tion operation follows.
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One requires clearness about a baker’s dozen of variables. A data analyst cannot expect
to straighten 78 pairs of variables. Many pairs of variables require many scatterplots. The
generating of numerous scatterplots is the reason for abusing or ignoring the linearity
assumption. GP-DM can. In fact, it does so with the speed of a Gatling gun. In practice,
it is a common sight to work on a dataset of, say, 400 variables (79,800 pairs of variables).
GP-DM, in its beginning step, deletes variables (single and paired variables) that are
deemed to have no predictive power by dint of the probabilistic-selected biological opera-
tors of reproduction, mating, and mutation. During the second evolutionary step, GP-DM
further decreases the number of variables to only handfuls. The remaining step of GP-DM
is the full-fledged evolutionary process of GP proper, by which the data strengthening is
carried out in earnest [5].

Ergo, GP-DM can handle efficiently virtually any number of variables as long as the
computer can process all the variables of the original dataset initially. Illustrating GP-DM
with an enlarged dataset of many, many pairs of variables is beyond the scope of this
chapter. Moreover, demonstrating GP-DM with an expanded dataset would be spurious
injustice and reckless wronging of an exposition demanding that which must go beyond
two dimensions (2D) and even the 3D of the movie Avatar.

5.9 Summary

The objective of this chapter is to share my personal encounters: entering the mines of
data, going deep to unearth acute underlying relationships, and rising from the inner
workings of the data mine to show the importance of straight data for the simplicity and
desirability it brings for good model-building practice. I discuss an illustration, simple but
with an object lesson, of what to do when an observed relationship between two variables
in a scatterplot is masking an acute underlying relationship. I propose the GP-DM method
for directly unmasking and straightening the obtuse relationship. The correlation coef-
ficient is used correctly because the exposed character of the exampled relationship has
straight-line simplicity.

References

1. Ratner, B, Data mining: An ill-defined concept. 2009. http://www.geniq.net/res/data-mining-
is-an-ill-defined-concept.html.

2. Han, J., and Kamber, M., Data Mining: Concepts and Techniques, Morgan Kaufmann, San
Francisco, CA, 2001.

3. Bozdogan, H., ed. Statistical Data Mining and Knowledge Discovery, CRC Press, Boca
Raton, FL, 2004.

4. Refaat, M., Data Preparation for Data Mining Using SAS, Morgan Kaufmann Series in Data
Management Systems, Morgan Kaufmann, Maryland Heights, MO, 2006.

5. Ratner, B., What is genetic programming? 2007. http://www.geniq.net/Koza_GPs.html.


http://www.geniq.net/res/data-mining-is-an-ill-defined-concept.html
http://www.geniq.net/res/data-mining-is-an-ill-defined-concept.html
http://www.geniq.net/Koza_GPs.html

6

Symmetrizing Ranked Data: A Statistical
Data Mining Method for Improving
the Predictive Power of Data

6.1 Introduction

The purpose of this chapter is to introduce a new statistical data mining method, the
symmetrizing ranked data method, and add it to the paradigm of simplicity and desirability
for good model-building practice as presented in Chapter 5. The new method carries out
the action of two basic statistical tools, symmetrizing and ranking variables, yielding new
reexpressed variables with likely improved predictive power. I detail Steven's scales of
measurement (nominal, ordinal, interval, and ratio). Then, I define an approximate interval
scale that is an offspring of the new statistical data mining method. Next, I provide a quick
review of the simplest of exploratory data analysis (EDA) elements: (1) the stem-and-leaf
display and (2) the box-and-whiskers plot. Both methods are required for presenting the
new method, which itself falls under EDA proper. Last, I illustrate the proposed method
with two examples, which provide the data miner with a starting point for more applica-
tions of this useful statistical data mining tool.

6.2 Scales of Measurement

There are four scales of data measurement due to Steven’s scales of measurement [1]:

1. Nominal data are classification labels, for example, color (red, white, and blue).
There is no ordering of the data values. Clearly, arithmetic operations cannot be
performed on nominal data. That is, one cannot add red + blue (= ?).

2. Ordinal data are ordered numeric labels in that higher/lower numbers represent
higher/lower values on the scale. The intervals between the numbers are not
necessarily equal.

a. For example, consider the variables CLASS and AGE as per traveling on a cruise
liner. I recode the CLLASS labels (first, second, third, and crew) into the ordinal vari-
able CLASS_, implying some measure of income. I recode the AGE labels (adult
and child) into the ordinal variable AGE_, implying years old. Also, I create CLASS
interaction variables with both AGE and GENDER, denoted by CLASS_AGE_

55
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and CLASS_GENDER_, respectively. The definitions of the recoded variables are
listed first, followed by the definitions of the interaction variables.

The three recoded individual variables are:
i. if GENDER = male then GENDER_ =0
ii. if GENDER = female then GENDER_ =1

i. if CLASS = first then CLASS =4

ii. if CLASS = second then CLASS_ =3
iii. if CLASS = third then CLASS_=2
iv. if CLASS = crew then CLASS_ =1

i. if AGE = adult then AGE_ =2
ii. if AGE = child then AGE_=1

The recoded CLASS interaction variables with both AGE and GENDER are:
i. if CLASS = second and AGE = child then CLASS_AGE_ =8
ii. if CLASS = first and AGE = child then CLASS_AGE_ =7
iii. if CLASS = first and AGE = adult then CLASS_AGE_=6
iv. if CLASS = second and AGE = adult then CLASS_AGE_=5
v. if CLASS = third and AGE = child then CLASS_AGE_ =4
vi. if CLASS = third and AGE = adult then CLASS_AGE_=3
vii. if CLASS = crew and AGE = adult then CLASS_AGE_ =2
viii. if CLASS = crew and AGE = child then CLASS_AGE_=1

i. if CLASS = first and GENDER = female then CLASS_GENDER_ =8
ii. if CLASS = second and GENDER = female then CLASS_GENDER_ =7
iii. if CLASS = crew and GENDER = female then CLASS_GENDER_ = 6
iv. if CLASS = third and GENDER = female then CLASS_GENDER_ =5
v. if CLASS = first and GENDER = male then CLASS_GENDER_ =4
vi. if CLASS = third and GENDER = male then CLASS_GENDER_ =2
vii. if CLASS = crew and GENDER = male then CLASS_GENDER_ =3
viii. if CLASS = second and GENDER = male then CLASS_GENDER_ =1

b. One cannot assume the difference in income between CLASS_ =4 and CLASS_
= 3 equals the difference in income between CLASS_ = 3 and CLASS_ = 2.

c. Arithmetic operations (e.g, subtraction) are not possible. With CLASS_
numeric labels, one cannot conclude 4 -3 =3 - 2.

d. Only the logical operators “less than” and “greater than” can be performed.

e. Another feature of an ordinal scale is that there is no “true” zero. True zero

does not exist because the CLASS_ scale, which goes from 4 through 1, could
have been recoded to go from 3 through 0.

3. Interval data are on a scale in which each position is equidistant from one another.
Interval data allow for the distance between two pairs to be equivalent in some way.
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a. Consider the HAPPINESS scale of 10 (= most happy) through 1 (= very sad).
Four persons rate themselves on HAPPINESS:

i. Persons A and B state 10 and 8, respectively.
ii. Persons C and D state 5 and 3, respectively.

iii. One can conclude that person-pair A and B (with a happiness difference
of 2) represents the same difference in happiness as that of person-pair C
and D (with a happiness difference of 2).

iv. Interval scales do not have a true zero point. Therefore, it is not possible to
make statements about how many times happier one score is than another.

A. Interval data cannot be multiplied or divided. The common example of
interval data is the Fahrenheit scale for temperature. Equal differences on
this scale represent equal differences in temperature, but a temperature
of 30° is not twice as warm as a temperature of 15°. That is, 30° — 20° =
20° - 10° but 20°/10° is not equal to 2. That is, 20° is not twice as hot as 10°.

4. Ratio data are like interval data except they have true zero points. The common
example is the Kelvin scale of temperature. This scale has an absolute zero. Thus,
a temperature of 300 K is twice as high as a temperature of 150 K.

5. What is a true zero? Some scales of measurement have a true or natural zero.

a. For example, WEIGHT has a natural zero at no weight. Thus, it makes sense to
say that my dachshund Dappy weighing 26 pounds is twice as heavy as Dappy’s
sister dachshund Betsy weighing 13 pounds. WEIGHT is on a ratio scale.

b. On the other hand, YEAR does not have a natural zero. The YEAR 0 is arbi-
trary, and it is not sensible to say that the year 2000 is twice as old as the year
1000. Thus, YEAR is measured on an interval scale.

6. Note: Some data analysts, unfortunately, make no distinction between interval or
ratio data, calling them both continuous. Moreover, most data analysts put their
heads in the sand to treat ordinal data, which assumes numerical values, as inter-
val data. In both situations, this is not correct technically.

6.3 Stem-and-Leaf Display

The stem-and-leaf display is a graphical presentation of quantitative data to assist in visu-
alizing the density and shape of a distribution. A salient feature of the display is that it
retains the original data to at least two significant digits and puts the data in order. A basic
stem-and-leaf display has two columns separated by a vertical line. The left column con-
tains the stems, and the right column contains the leaves. Typically, the leaf contains the
last digit of the number, and the stem contains all of the other digits. In the case of very
large numbers, the data values, rounded to a fixed decimal place (e.g.,, the hundredths
place), serve for the leaves. The remaining digits to the left of the rounded values serve
as the stem. The stem-and-leaf display is also useful for highlighting outliers and find-
ing the mode. The display is most useful for datasets of moderate EDA size (around 250
data points), after which the stem-and-leaf display becomes a histogram, rotated counter-
clockwise 90° and the asterisk (*) represents the digits of the leaves.
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6.4 Box-and-Whiskers Plot

The box-and-whiskers plot provides a detailed visual summary of various features of a
distribution. The box stretches from the bottom horizontal line, the lower hinge, defined
as the 25th percentile, to the top horizontal line, the upper hinge, defined as the 75th
percentile. Adding the vertical lines on both ends of the hinges completes the box. The
horizontal line within the box is the median. The “+” represents the mean.

The H-spread is the difference between the hinges, and a step is defined as 1.5 times the
H-spread. Inner fences are one step beyond the hinges. Outer fences are two steps beyond the
hinges. These fences are used to create the whiskers, which are vertical lines at either end of
the box, extended up to the inner fences. An “0” indicates every value between the inner
and outer fences. An “*” indicates a score beyond the outer fences. The stem-and-leaf dis-
play and box-and-whiskers plot for a symmetric distribution are shown in Figure 6.1. Note,
I'added the statistic skewness, which measures the lack of symmetry of a distribution. The
skewness scale is at the interval level. Skewness = 0 means the distribution is symmetric.

If the skewness value is positive, then the distribution is said to be right-skewed or
positive-skewed, which means the distribution has a long tail in the positive direction.
Similarly, if the skewness value is negative, then the distribution is left-skewed or nega-
tive-skewed, which means the distribution has a long tail in the negative direction.

6.5 Illustration of the Symmetrizing Ranked Data Method

The best way of describing the proposed symmetrizing ranked data (SRD) method is by an
exemplification. I illustrate the new statistical data mining method with two examples that
provide the data miners with a starting point for their applications of the SRD method.

Stem Leaf # Boxplot
50 0000000 7 I

40 00000000 8 T ----- .
I
|

30 00000000000000000 17 T-—+-—I
I
|

20 00000000 8 S +

10 0000000 7

EE R R L N
Multiply Stem.Leaf by 10**~1
Skewness = 0

FIGURE 6.1
Stem-and-leaf display and box-and-whiskers plot of symmetric data.
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6.5.1 lllustration 1

Consider the two variables from the real study presented in Chapter 4, HI_ BALANCE
(the highest balance attained among credit card transactions for an individual) and
RECENCY_MOS (the number of months since last purchase). The SRD data mining pro-
cess consists of the following two steps:

1. Rank the values of both HI_BALANCE and RECENCY_MOS and create the
rank score variables rHI_ BALANCE and rRECENCY_MOS, respectively. Use any
method for handling tied rank scores.

2. Symmetrize the ranked variables, which have the same names as the rank scores
variables, namely, rtHI_BALANCE and rRECENCY_MOS.

The steps using the SAS© procedure RANK is as follows. The procedure creates the
rank scores variables, and the option “normal = TUKEY” instructs for symmetrizing the
rank scores variables. The input data is DTReg and the output data (i.e., the symmetrized-
ranked data) is DTReg_NORMAL. The SAS program is:

PROC RANK data = DTReg_data_ normal = TUKEY out = DTReg NORMAL;
var HI_BALANCE RECENCY_MOS;
ranks rHI_ BALANCE rRECENCY_MOS;

run;

6.5.1.1 Discussion of Illustration 1

1. The stem-and-leaf displays and the box-and-whiskers plots for HI_
BALANCE and rHI_BALANCE are shown in Figures 6.2 and 6.3, respectively.
HI_BALANCE and rHI_BALANCE have skewness values of 1.0888 and 0.0098,

respectively.
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FIGURE 6.2
Histogram and boxplot of HI_BALANCE.
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FIGURE 6.3
Histogram and boxplot for rtHI_BALANCE.
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FIGURE 6.4
Histogram and boxplot for RECENCY_MOS.
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FIGURE 6.5
Histogram and boxplot for IRECENCY_MOS.

2. The stem-and-leaf displays and the box-and-whiskers plots for RECENCY_MOS
and rRECENCY_MOS are shown in Figures 6.4 and 6.5, respectively. RECENCY_
MOS and rRECENCY_MOS have skewness values of 0.0621 and -0.0001,
respectively.
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3. Note: The stem-and-leaf displays turn into histograms because the sample size is
large, that is, 2,000. Regardless, the graphics provide the descriptive details about
the shape of the distributions.

I acknowledge hesitantly throwing, with an overhand, my head in the sand, only to fur-
ther the SRD method by treating ordinal data, which assumes recoded numeric values, as
interval data.

Recall, symmetrizing data helps in straightening data. Accordingly, without generating
scatterplots, the reliable correlation coefficients between the two pairs of variables, the raw
variables HI_ BALANCE and RECENCY_MOS, and the reexpressed variables, via the SRD
method, rHI_BALANCE and rRECENCY_MOS, are —0.6412 and —0.10063, respectively (see
Tables 6.1 and 6.2). Hence, the SRD method has improved the strength of the predictive relation-
ship between the two raw variables by 56.9% (=abs(—0.10063) — abs(—0.06412))/abs(—0.06421)),
where abs = the absolute value function, which ignores the negative sign. In sum, the paired
variables (tHI_BALANCE, rRECENCY_MOS) have more predictive power than the origi-
nally paired variables and offer more potential in the model-building process.

6.5.2 Ilustration 2

Since the fatal event of April 15, 1912, when the White Star liner Titanic hit an iceberg and
went down in the North Atlantic, fascination with the disaster has never abated. In recent
years, interest in the Titanic has increased dramatically because of the discovery of the wreck
site by Dr. Robert Ballard in 1985. The century-old tragedy has become a national obsession.
Any fresh morsel of information about the sinking is like a golden reef. I believe that the
SRD method can satisfy the appetite of the Titanic aficionado. I build a preliminary Titanic
model to identify survivors so when Titanic I sails it will know beforehand who will be most
likely to survive an iceberg hitting with outcome odds of 2.0408e~-12 to 1." The Titanic model

TABLE 6.1
Correlation Coefficient between HI_ BALANCE and RECENCY_MOS

Pearson Correlation Coefficients, N = 2,000 Prob > r under HO: Rho =0

HI_BALANCE RECENCY_MOS
HI_BALANCE 1.00000 -0.06412
0.0041
RECENCY_MOS -0.06412 1.00000
0.0041

TABLE 6.2
Correlation Coefficient between rHI_ BALANCE and rRECENCY_MOS

Pearson Correlation Coefficients, N = 2,000 Prob > r under HO: Rho =0

RHI_BALANCE RECENCY_MOS
rRHI_BALANCE 1.00000 —0.10063
Rank for Variable rHI_ BALANCE <0.0001
rRECENCY_MOS —0.10063 1.00000
Rank for Variable <0.0001

RECENCY_MOS

* Source is unknown (actually, I lost it).
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application, detailed in the remaining sections of the chapter, shows clearly the power of
the SRD data mining technique, worthy of inclusion in every data miner’s toolkit.

6.5.2.1 Titanic Dataset

There were 2,201" passengers and crew aboard the Titanic. Only 711 persons survived,
resulting in a 32.2% survival rate. For all persons, their basic demographic variables are
known: GENDER (female, male), CLASS (first, second, third, crew), and AGE (adult, child).
The passengers fall into 14 patterns of GENDER-CLASS—-AGE (Table 6.3). Also, Table 6.3
includes pattern, cell size (N), the number of survivors within each cell (S), and the sur-
vival rate (format is %).

Because there are only three variables and their scales are the least informative, nominal
(GENDER), and ordinal (CLASS and AGE), building a Titanic model has been a challenge
for the best of academics and practitioners [2-6]. The SRD method is an original and valu-
able data mining method that belongs to the Titanic modeling literature. In the following
sections, I present the building of a Titanic model.

6.5.2.2 Looking at the Recoded Titanic Ordinal Variables CLASS_,
AGE_, GENDER_, CLASS_AGE_, and CLASS_GENDER _

To see what the data look like, I generate stem-and-leaf displays and box-and-whisker plots
for CLASS_, AGE_, and GENDER_ (Figures 6.6, 6.7, and 6.8, respectively). Also, I bring
out the interaction variables CLASS_AGE_ and CLASS_GENDER_, which I created in
Section 6.2. The graphics of CLASS_AGE_ and CLASS_GENDER_ are in Figures 6.9 and
6.10, respectively. Regarding the coding of ordinal values for the interaction variables, I use

TABLE 6.3
Titanic Dataset
Survival

Pattern GENDER CLASS AGE N S Rate
1 Male First Adult 175 57 325
2 Male First Child 5 5 100.0
3 Male Second Adult 168 14 8.3
4 Male Second Child 11 11 100.0
5 Male Third Adult 462 75 16.2
6 Male Third Child 48 13 27.1
7 Male Crew Adult 862 192 22.3
8 Female First Adult 144 140 97.2
9 Female First Child 1 1 100.0
10 Female Second Adult 93 80 86.0
1 Female Second Child 13 13 100.0
12 Female Third Adult 165 76 46.1
13 Female Third Child 31 14 45.2
14 Female Crew Adult 23 20 87.0

Total 2,201 711 322

* The actual number of passengers and survivors are in dispute. In my research, I most often see 2,201/711
passengers/survivors, but have also seen 2,208/712.
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FIGURE 6.6
Histogram and boxplot of CLASS_.
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FIGURE 6.7
Histogram and boxplot for AGE_.
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Histogram and boxplot for GENDER _.
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FIGURE 6.9
Histogram and boxplot for CLASS_AGE _.
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FIGURE 6.10
Histogram and boxplot for CLASS_GENDER _.

TABLE 6.4

Women and Children by SURVIVED

Row Pct Frequency No Yes Total

Child 52 57 109
47.71 52.29

Female 109 316 425
25.65 74.35

Total 161 373 534

the commonly known refrain during a crisis, “Women and children, first.” Survival rates
for women and children are 74.35% and 52.29%, respectively (Table 6.4), which bear out the
refrain.

6.5.2.3 Looking at the Symmetrized-Ranked Titanic Ordinal Variables rCLASS_,
rAGE_, rGENDER _, rCLASS_AGE_, and rCLASS_GENDER _

The stem-and-leaf displays and box-and-whisker plots for the symmetrized-ranked
variables rCLASS_, rAGE_, rGENDER_, rCLASS_AGE_, and rCLASS_GENDER_ are in
Figures 6.11 through 6.15, respectively.
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FIGURE 6.11
Histogram and boxplot for rCLASS_.
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FIGURE 6.12
Histogram and boxplot for rAGE_.

The results of the SRD method are in Table 6.5, a comparison of skewness for the original
and SRD variables. The CLASS_, CLASS_AGE_, and CLASS_GENDER_ variables have
been reexpressed, rendering significant shifts in the corresponding skewed distributions
to almost symmetric distributions: Skewness values decrease significantly in the direction
of zero, although AGE_ and GENDER_ are moot variables with null (useless) graphics
because the variables assume only two values, I include them as an object lesson.

6.5.2.4 Building a Preliminary Titanic Model

Reflecting on the definition of ordinal and interval variables, I know that the symmetrized-
ranked variables are not ordinal variables. However, the scale property of the reexpressed
variables rCLASS_, rCLASS_AGE_, and rCLASS_GENDER_ is not obvious. The variables
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FIGURE 6.13
Histogram and boxplot for rtGENDER _.
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FIGURE 6.14
Histogram and boxplot for rCLASS_AGE_.
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FIGURE 6.15
Histogram and boxplot for rtCLASS_GENDER_.



Symmetrizing Ranked Data

67

TABLE 6.5
Comparison of Skewness Values for Original and Symmetrized-Ranked
Variables
Effect of the Symmetrized-
Variable Skewness Value Ranked Method (Yes, No, Null)
CLASS_ 1.0593 Yes
rCLASS_ 0.3854
AGE_ —4.1555 Null. Binary variables render two
parallel lines.
rAGE_ —4.1555
GENDER_ 1.3989 Null. Binary variables render two
parallel lines.
rGENDER_ 1.3989
CLASS_AGE_ 0.9848 Yes
rCLASS_AGE_ 0.4592
CLASS_GENDER_ 1.1935 Yes
rCLASS_GENDER_ 0.0551

TABLE 6.6

Preliminary Titanic Model

The LOGISTIC Procedure: Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr> ChiSq
Intercept 1 -0.8690 0.0533 265.4989 <0.0001
rCLASS_AGE_ 1 0.4037 0.0581 48.1935 <0.0001
rCLASS_GENDER_ 1 1.0104 0.0635 252.9202 <0.0001
TABLE 6.7
Classification Table for the Preliminary Titanic Model
Predicted Predicted
Deceased Survivors Total
Actual deceased 1,199 291 1,490
Actual survivors 420 711
Total 1,490 711 2,201

are not on a ratio scale because a true zero value has no interpretation. Accordingly, I define
the symmetrized-ranked variable as an approximate interval variable.

The preliminary Titanic model is a logistic regression model with the dependent variable
SURVIVED, which assumes 1 = yes and 0 = no. The preliminary Titanic model, built by the
SAS procedure LOGISTIC, and its definition, consisting of two interaction symmetrized-
ranked variables rCLASS_AGE_ and rCLASS_GENDER_ are in Table 6.6.

The preliminary Titanic model result is that 59.1% (=420/711) survivors are classified
correctly among those predicted survivors. See Table 6.7. This conditional survivor rate indi-
cates a more accurate assessment of the predictiveness of a binary classification model—
when there is a disproportionate large cell, such as the 1,199 passengers who are actual
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and predicted deceased (top row, first column). I present only the preliminary model
because there is much work to be done, which includes testing the three-way interac-
tion variables, before finalizing the Titanic model. Such work is beyond the scope of this
chapter.

6.6 Summary

Iintroduce a new statistical data mining method, the SRD method, and add it to the para-
digm of simplicity and desirability for good model-building practice. The method uses
two basic statistical tools, symmetrizing and ranking variables, yielding new reexpressed
variables with likely improved predictive power. First, I detail Steven’s scales of measure-
ment to provide a framework for the new symmetric reexpressed variables. Accordingly,
I define the newly created SRD variables on an approximate interval scale. Then, I pro-
vide a quick review of the simplest of EDA elements, the stem-and-leaf display and the
box-and-whiskers plot, as both are essential for presenting the underpinnings of the SRD
method. Last, I illustrate the new method with two examples, which show the improved
predictive power of the symmetric reexpressed variables over the raw variables. It is my
intent that the examples are the starting point for model builders to apply the SRD method
in their work.
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Principal Component Analysis: A Statistical Data
Mining Method for Many-Variable Assessment

7.1 Introduction

Principal component analysis (PCA), invented in 1901 by Karl Pearson'" as a classical data
reduction technique, uncovers the interrelationships among many variables. The literature
is sparse on PCA used as a reexpressiont technique. In this chapter, I reposition PCA as
a data mining method. I illustrate PCA as a statistical data mining technique capable of
serving in a common application with an expected solution and illustrate PCA in an uncom-
mon application, yielding a reliable and robust solution. Also, I provide an original and
valuable use of PCA in the construction of quasi-interaction variables, furthering the case
of PCA as a powerful data mining method. I provide the SAS© subroutine used in the PCA
construction of quasi-interaction variables.

7.2 EDA Reexpression Paradigm

Consider Table 7.1, the exploratory data analysis (EDA) reexpression paradigm, which
indicates the objective of reexpression and method by the number of variables.
In Section 5.2, “Straightness and Symmetry in Data,” I discuss the relationship between
the two concepts for one and two variables and provide a machine-learning data min-
ing approach to straightening the data. The methods of the ladder of powers with the
boxplots and bulging rule, for one and two variables, are discussed in exacting details in
Chapters 10 and 12. In Table 7.1, I put PCA in its proper place. PCA is used to retain varia-
tion among many variables by reexpressing the many original variables into a few new
variables such that most of the variation among the many original variables is accounted
for or retained by the few new uncorrelated variables. PCA, viewed as an EDA tech-
nique to identify structure, gives awareness that PCA is a valid (new) data mining tool.

* Pearson, K., On lines and planes of closest fit to systems of points in space, Philosophical Magazine, 2(6), 559-572,
1901.

* Harold Hotelling independently developed principal component analysis in 1933.

 Tukey coined the term reexpression without defining it. I need a definition of terms that I use. My definition of
reexpression is changing the composition, structure, or scale of original variables by applying functions, such as
arithmetic, mathematic, and truncation function, to produce reexpressed variables of the original variables. The
objective is to bring out or uncover reexpressed variables that have more information than the original variables.

§ Boxplot is also known as box-and-whiskers plot.

69



70 Statistical and Machine-Learning Data Mining

TABLE 7.1
Objective of Reexpression and Method by Number of Variables

Number of Variables

1 2 Many
Reexpression Symmetrize Straighten Retain variation
Method Ladder of Ladder of PCA
powers with powers with
boxplot bulging rule

7.3 What Is the Big Deal?

The use of many variables burdens the data miner with two costs:

1. Working with many variables takes more time and space. This task is self-
evident—just ask a data miner.

2. Modeling dependent variable Y by including many predictor variables yields fit-
ting many coefficients and renders the predicted Y with greater error variance if
the fit to Y is adequate with few variables.

Thus, by reexpressing many predictor variables to a few new variables, the data miner
saves time and space, and, importantly, reduces error variance of the predicted Y.

7.4 PCA Basics

PCA transforms a set of p variables, X1, X2, ..., Xp into p linear combination variables PC1,
PC2, ..., PCp (PC for principal component) such that most of the information (variation) in
the original set of variables can be represented in a smaller set of new variables, which are
uncorrelated with each other. That is,

PC1 = al*X1+al2*X2 + ... + alj*X1j + ... + alp*Xp

PC2 = a21*X1 + a22*X2 +... + a2j*X2j + ... + a2p*Xp
PCi = ail*X1 + ai2*X2 + ... + aij*Xij + ... + aip*Xp
PCp = apl*X1 + ap2*X2 +... + apj*Xjj + ... + app*Xp

where the aij’s are constants called PC coefficients.
Note, for ease of presentation, the Xs are assumed to be standardized. Also, the PCs and
the aij’s have many algebraic and interpretive properties.
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7.5 Exemplary Detailed Illustration

Consider the correlation matrix of four census EDUCATION variables (X;, X,, X;, X,) and
the corresponding PCA output in Tables 7.2 and 7.3, respectively.

7.5.1 Discussion
1. Because there are four variables, it is possible to extract four PCs from the correla-
tion matrix.
2. The basic statistics of PCA are
a. The four variances: Latent Roots (LR1, LR2, LR3, LR4), which are ordered by
size
b. The associated weight (i.e., coefficient) vectors: Latent Vectors (al, a2, a3, a4)

3. The total variance in the system or dataset is four—the sum of the variances of the
four (standardized) variables.

4. Each Latent Vector contains four elements, one corresponding to each variable.
For al there are

[—0.5514, —0.4041, 0.4844, 0.5457]

which are the four coefficients associated with the first and largest PC whose
variance is 2.6620.

TABLE 7.2
Correlation Matrix of X1, X2, X3, and X4
X1 X2 X3 X4

% less than high school (X1) 1.000 0.2689 -0.7532 -0.8116
% graduated high school (X2) 1.000 0.3823 —0.6200
% some college (X3) 1.000 0.4311
% college or more (X4) 1.000

TABLE 7.3

Latent Roots (Variance) and Latent Vectors (Coefficients) of
Correlation Matrix

Latent Vector

Variable al a2 a3 a4

X1 -0.5514 -0.4222 0.2912 0.6578
X2 -0.4042 0.7779 -0.3595 0.3196
X3 0.4844 0.4120 0.6766 0.3710
X4 0.5457 0.2162 -0.5727 0.5721
LRi 2.6620 0.8238 0.5141 0.0000
Prop. var % 66.55 20.59 12.85 0.0000

Cum. var % 66.55 87.14 100 100
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5. The first PC is the linear combination.
PC1 = -0.5514*X1 — 0.4042*X2 + 0.4844*X3 + 0.5457*X4

6. PC1 explains (100 * 2.6620/4) = 66.55% of the total variance of the four variables.
7. The second PC is the linear combination

PC1 =-0.4222*X1 + 0.7779*X2 + 0.4120*X3 - 0.2162* X4

with next-to-largest variance as 1.202, and this explains (100 * 0.8238/4) = 20.59% of
the total variance of the four variables.

8. Together, the first two PCs account for 66.55% + 20.59% or 87.14% of the variance in
the four variables.

9. For the first PC, the first two coefficients are negative, and the last two are positive.
Accordingly, the interpretation of PC1 is:

a. lItis a contrast between persons who at most graduated from high school and
persons who at least attended college.

b. High scores on PC1 correspond with zip codes where the percentage of persons
who at least attended college is greater than the percentage of persons who at
most graduated from high school.

¢. Low scores on PC1 correspond with zip codes where the percentage of persons
who at least attended college is less than the percentage of persons who at most
graduated from high school.

7.6 Algebraic Properties of PCA

Almost always, PCA is performed on a correlation matrix. PCA performed on a correlation
matrix implies that PCA uses standardized variables whose means = 0 and variances = 1.

1. Each PC;j,
PCi = ail*X1 + ai2*X2 +...+ aij*Xjj +...+ aip*Xp

has a variance, also called a latent root or eigenvalue, such that
a. Var(PC1) is maximum.
b. Var(PC1) > Var(PC2) >...> Var(PCp)
i. Equality can occur but it is rare.
¢. Mean(PCi) = 0.
2. All PCs are uncorrelated.

3. Associated with each latent root i is a latent vector

(ail,ai2, ..., aij, ..., aip),
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which together are the weights for the linear combination of the original variables
forming PCi

PC1 = ail*X1 + ai2*X2 +...+ aij*Xi +...+ aip*Xp.

4. The sum of the variances of the PCs (i.e., the sum of the latent roots) is equal to the
sum of the variances of the original variables. Because the variables are standard-
ized, the following identity results: The sum of latent roots = p.

5. The proportion of variance in the original p variables that k PCs account for is

_ sum of the latent roots for the first k PCs

p

6. The correlation between Xi and PCj equals
aij* sqrt[ Var(PC,) .

This correlation is called a PC loading.

7. The rule of thumb for identifying significant loadings is: If loading aij satisfies the
following inequality, then the aij is significant.

aij> 0.5 / sqrt[ Var(PC;) |

8. The sum of the squares of loading across all the PCs for an original variable indi-
cates how much variance for that variable (communality) is due to the PCs.

9. Var(PC) = small (less than 0.001) implies high multicollinearity.
10. Var(PC) = 0 implies a perfect collinear relationship exists.

7.7 Uncommon Illustration

The objective of this uncommon illustration is to examine the procedures for consider-
ing a categorical predictor variable R_CD, which assumes 64 distinct values, defined by
six binary elemental variables (X;, X,, X5, Xy, X5, X;), for inclusion in a binary RESPONSE
predictive model.

The classic approach is to create (63) dummy variables and test the complete set
of dummy variables for inclusion in the model regardless of the number of dummy
variables that are declared nonsignificant. This approach is problematic: Putting all
the dummy variables in the model effectively adds noise or unreliability to the model
because nonsignificant variables are known to be noisy. Intuitively, a large set of
inseparable dummy variables poses a difficulty in model building in that they quickly
“fill up” the model, not allowing room for other variables.

An alternative approach is to break up the complete set of dummy variables. Even if
the dummy variables are not considered as a set and regardless of the variable selection
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method used, too many dummy variables” are still included spuriously in a model. As
with the classical approach, this tactic yields too many dummy variables that fill up the
model, making it difficult for other candidate predictor variables to enter the model.

There are two additional alternative approaches for testing a categorical variable for
inclusion in a model. One is smoothing a categorical variable for model inclusion, which is
illustrated in a case study in Chapter 10. (At this point, I have not provided background
for discussing the method of smoothing a categorical) The second is the proposed
PCA data mining procedure, which is effective, reliable, and easy to carry out. I pres-
ent the procedure, in which the performance of PCA is on the six elemental variables
X1, Xy, X5, Xy, X5, and X, in the next section.

7.7.1 PCA of R_CD Elements (X;, X,, X5, X4, X;5, X¢)
The output of the PCA of R_CD six elemental variables is shown in Table 74.

7.7.2 Discussion of the PCA of R_CD Elements
1. Six elements of R_CD produce six PCs. PCA factoid: k original variables always
produce k PCs.

2. The first two components, R1 and R2, account for 80.642% of the total variation.
The first component R1 accounts for 50.634% of the total variation.

3. R1 is a contrast of X3 and X6 with X2, X4, and X5. The data-mined contrast is the
fruit of the PCA data mining method.

TABLE 7.4
PCA of the Six Elements of R_CD (X1, X2, X3, X4, X5, X6)

Eigenvalues of the Correlation Matrix

Eigenvalue Difference  Proportion Cumulative
R1 3.03807 1.23759 0.506345 0.50634
R2 1.80048 0.89416 0.300079 0.80642
R3 0.90632 0.71641 0.151053 0.95748
R4 0.18991 0.14428 0.031652 0.98913
R5 0.04563 0.02604 0.007605 0.99673
R6 0.01959 - 0.003265 1.00000
Eigenvectors
R1 R2 R3 R4 R5 R6
X1 0.038567 -0.700382 0.304779 —-0.251930 0.592915 0.008353
X2 0.473495 0.177061 0.445763 -0.636097  —0.323745 0.190570
X3 -0.216239 0.674166 0.102083 —-0.234035 0.658377 0.009403
X4 0.553323 0.084856 0.010638 0.494018 0.260060 0.612237
X5 0.556382 0.112421 0.125057 0.231257 0.141395 -0.767261
X6 —0.334408 0.061446 0.825973 0.423799 —-0.150190 0.001190

* Typically, dummy variables that reflect 100% and 0% response rates are based on a very small number of
individuals.
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4. R3is a weighted average of all six positive elements. PCA factoid: A weighted aver-
age component, also known as a generalized component, is often produced. R3, a
generalized component, is also one of the fruits of the PCA data mining method,
as the generalized component is often used instead of any one or all of the many
original variables.

5. Consider Table 7.5. The variables are ranked from most to least correlated to
RESPONSE based on the absolute value of the correlation coefficient.

a. PCsR1, R3, R4, and R6 have larger correlation coefficients than the original X
variables.

b. PCA factoid: It is typical for some PCs to have correlation coefficients larger
than the correlation coefficients of some of the original variables.

c. Infact, this is the reason to perform a PCA.

Only R1 and R3 are statistically significant with p-values less than 0.0001. The
other variables have p-values between 0.015 and 0.7334.

I build a RESPONSE model with the candidate predictor variable set consisting of the
six original and six PC variables. (Details of the model are not shown.) I could only sub-
stantiate a two-variable model that includes (not surprisingly) R1 and R3. Regarding the
predictive power of the model:

1. The model identifies the top 10% of the most responsive individuals with a
response rate 24% greater than chance (i.e., the average response rate of the data
file).

2. The model identifies the bottom 10% of the least responsive individuals with a
response rate 68% less than chance.

3. Thus, the model’s predictive power index (top 10%/bottom 10%) = 1.8 (=124/68).
This index value indicates the model has moderate predictive power given that
I use only two PC variables. With additional variables in the candidate predictor

variable set, I know building a stronger predictive model is possible. And, I believe
the PCs R1 and R3 will be in the final model.

Lest one thinks that I forgot about the importance of straightness and symmetry men-
tioned in Chapter 5, I note that PCs are typically normally distributed. And, because
straightness and symmetry go hand in hand, there is little concern about checking the
straightness of R1 and R3.

TABLE 7.5

Correlation Coefficients: RESPONSE with the Original and Principal Component
Variables Ranked by Absolute Coefficient Values

Original and Principal Component Variables

R1 R3 R4 R6 X4 X6
RESPONSE  0-10048** 008797+  0.01257*  -0.01109*  0.00973*  -0.00959*
with R2 X5 R5 X3 X2 X1

0.00082* 0.00753*  0.00741*  0.00729*  0.00538*  0.00258*

*p <0.0001; *0.015 < p < 0.7334.
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7.8 PCA in the Construction of Quasi-Interaction Variables

I provide an original and valuable use of PCA in the construction of quasi-interaction
variables. I use SAS for this task and provide the program (in Section 7.8.1) after the steps
of the construction are detailed. Consider the dataset IN in Table 7.6. There are two cat-
egorical variables: GENDER (assume M for male, F for female, and blank for missing) and
MARITAL (assume M for married, S for single, D for divorced, and blank for missing).

I recode the variables, replacing the blank with the letter x. Thus, GENDER_ and
MARITAL_ are the recoded versions of GENDER and MARITAL, respectively (see Table 7.7).

Next, I use the SAS procedure TRANSREG to create the dummy variables for both
GENDER_ and MARITAL_. For each value of the variables, there are corresponding
dummy variables. For example, for GENDER_ = M, the dummy variable is GENDER_M.
The reference dummy variable is for the missing value of x (see Table 7.8).

I perform a PCA with GENDER_ and MARITAL_ dummy variables. This produces
five quasi-interaction variables: GENDER_x_MARITAL_pcl to GENDER_x_MARITAL_
pc5. The output of the PCA is in Table 79. I leave the reader to interpret the results.
Notwithstanding the detailed findings, it is clear that PCA is a powerful data mining
method.

TABLE 7.6

Dataset IN

ID GENDER MARITAL
1 M S
2 M M
3 M

4

5 F S
6 F M
7 F

8 M
9 S
10 M D

TABLE 7.7

Dataset IN with Necessary Recoding of Variables for
Missing Values

ID GENDER GENDER_ MARITAL MARITAL_
M S
M M
M

O ® N ™ Ul AW N =
|

S xxmmmdx XL
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TABLE 7.8
Dataset IN with Dummy Variables for GENDER_ and MARITAL _ Using SAS Proc TRANSREG
ID GENDER_ MARITAL_ GENDER_F GENDER_M MARITAL_D MARITAL_M MARITAL_S

1 M S 0 1 0 0 1
2 M M 0 1 0 0
3 M X 0 1 0 0 0
4 X X 0 0 0 0 0
5 F S 1 0 0 0 1
6 F X 1 0 0 0 0
7 F M 1 0 0 1 0
8 X M 0 0 0 1 0
9 X S 0 0 0 0 1
10 M D 0 1 1 0 0
TABLE 7.9

PCA with GENDER_ and MARITAL_ Dummy Variables Producing Quasi-GENDER_x_
MARITAL_ Interaction Variables

The PRINCOMP Procedure
Observations 10
Variables 5

Simple Statistics

GENDER_F FIGURE MARITAL_D MARITAL_.M MARITAL_S
Mean 0.3000000000 0.4000000000 0.1000000000 0.3000000000 0.3000000000
StD 0.4830458915 0.5163977795 0.3162277660 0.4830458915 0.4830458915

Correlation Matrix

GENDER_F GENDER_.M MARITAL D MARITAL M MARITAL_S

GENDER_F 1.0000 —0.5345 -0.2182 0.0476 0.0476
GENDER_M -0.5345 1.0000 0.4082 -0.0891 0.0891
MARITAL_D -0.2182 0.4082 1.0000 —0.2182 0.2182
MARITAL_M 0.0476 —-0.0891 —0.2182 1.0000 —0.4286
MARITAL_S 0.0476 —-0.0891 —0.2182 0.4286 1.0000

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative
1 1.84840072 0.41982929 0.3697 0.3697
2 1.42857143 0.53896598 0.2857 0.6554
3 0.88960545 0.43723188 0.1779 0.8333
4 0.45237357 0.07132474 0.0905 0.9238
5 0.38104883 0.0762 1.0000

(Continued)
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TABLE 7.9 (CONTINUED)

PCA with GENDER_ and MARITAL__ Dummy Variables Producing Quasi-GENDER_x_
MARITAL_ Interaction Variables

Eigenvectors

GENDER_x_ GENDER_x_  GENDER_x_ GENDER_x_  GENDER_x_

MARITAL_ MARITAL_ MARITAL_ MARITAL_ MARITAL_

pcl pc2 pc3 pc4 pcs
GENDER_F —0.543563 0.000000 0.567380 0.551467 —-0.280184
GENDER_M 0.623943 0.000000 —-0.209190 0.597326 —0.458405
MARITAL_D 0.518445 0.000000 0.663472 0.097928 0.530499
MARITAL_M —-0.152394 0.707107 —-0.311547 0.405892 0.463644
MARITAL_S —-0.152394 -0.707107 —-0.311547 0.405892 0.463644

7.8.1 SAS Program for the PCA of the Quasi-Interaction Variable

data IN;
input ID 2.0 GENDER $1. MARITAL $1,;
cards;
01IMS
02MM
03M

04

05FS
08FM
07F

08 M
09S
10MD

run;

PROC PRINT noobs data=IN;
title2 “ Data IN %
run;

data IN;

set IN;

GENDER_ = GENDER; if GENDER =" * then GENDER_ ='x’;
MARITAL_= MARITAL; if MARITAL="* then MARITAL_='X’;
run;

PROC PRINT noobs;

var ID GENDER GENDER_ MARITAL MARITAL _;

title2 “ %

title3 “ Data IN with necessary Recoding of Vars. for Missing Values

title4 * GENDER now Recoded to GENDER_, MARITAL now Recoded to MARITAL_
title5 * Missing Values, replaced with letter x %

run;
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/* Using PROC TRANSREG to create Dummy Variables for GENDER_ */
PROC TRANSREG data=IN DESIGN;;

model class (GENDER_ / ZERO="X’);

output out = GENDER _ (drop = Intercept _NAME_ _TYPE_);

id ID;

run;

/* Appending GENDER_ Dummy Variables */
PROC SORT data=GENDER; by ID;

PROC SORT data=IN; by ID;

run;

data IN;

merge IN GENDER_;
by ID;

run;

/* Using PROC TRANSREG to create Dummy Variables for GENDER_ */
PROC TRANSREG data=IN DESIGN;

model class (MARITAL_ / ZERO="X");

output out=MARITAL_ (drop= Intercept NAME__TYPE_);

id ID;

run;

/* Appending MARITAL_ Dummy Variables */
PROC SORT data=MARITAL_; by ID;

PROC SORT data=IN; by ID;

run;

data IN;

merge IN MARITAL_; by ID;

run;

PROC PRINT data=IN (drop= GENDER MARITAL) noobs;
title2” PROC TRANSREG to create Dummy Vars. for both GENDER _ and MARITAL_ %
run;

/* Running PCA with GENDER_ and MARITAL _ Variables Together */

/* This PCA of a Quasi-GENDER_x_MARITAL Interaction */

PROC PRINCOMP data= IN n=4 outstat=coef out=IN_pcs
prefix=GENDER_x_MARITAL_pc std;

var GENDER_F GENDER_M MARITAL_D MARITAL_M MARITAL_S;

title2  PCA with both GENDER_ and MARITAL_ Dummy Variables

title3 * This is PCA of a Quasi-GENDER_x_MARITAL Interaction *

run;

PROC PRINT data=IN_pcs noobs;

title2 * Data appended with the PCs for Quasi-GENDER_x_MARITAL Interaction *;
title3 *

run;
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7.9 Summary

I reposition the classical data reduction technique of PCA as a reexpression method of
EDA. Then, I relabel PCA as a voguish data mining method of today. I illustrate PCA
as a statistical data mining technique capable of serving in common applications with
expected solutions. Specifically, the illustration details PCA as an exemplary presenta-
tion of a set of census EDUCATION variables. And, I illustrate PCA in an uncommon
application of finding a structural approach for preparing a categorical predictive vari-
able for possible model inclusion. The results are compelling as they highlight the power
of the PCA data mining tool. Also, I provide an original and valuable use of PCA in the
construction of quasi-interaction variables, along with the SAS program, to perform this
novel PCA application.



8

Market Share Estimation: Data Mining
for an Exceptional Case

8.1 Introduction

Market share is an essential metric that companies use to measure the performance of a
product in the marketplace. Specifically, market share quantifies a company’s customer
preference for a given product over their competitions’ customer preferences for that prod-
uct. Companies do not readily have the competitive data necessary to estimate market
share. Consequently, to build market share models, companies conduct market research
surveys to obtain data on their competitors. Survey data are expensive and time-consuming
to collect and are fraught with unreliability. The purpose of this chapter is to present a
unique market share estimation model, in that it does not belong to the usual family of
survey-based market share models. The proposed method uses the application of princi-
pal component analysis to build a market share model on an exceptional case study. The
intended approach offers rich utility because companies typically have similar data to that
of the case study. I provide the SAS© subroutines used in building the market share model
for the exceptional case study. The subroutines are also available for downloading from
my website: http://www.geniq.net/articles. html#section9.

8.2 Background

Market share is an essential statistic that companies use to measure the performance
of a product or service (hereafter product is to encompass services) in the marketplace.
A simple definition of market share, for product j in geographical area k, for Company
ABC is ABC’s sales (revenue or units) in period t divided by the relevant market” total
sales in time t. Although the concept of market share is not complicated, it does raise
many scenarios for the product manager. For example, the project manager must know
how to parse the market share estimate by taking into account not only the compa-
ny’s actions but also the actions of its competitors. Additionally, seasonality and gen-
eral economic conditions always affect the performance of products in the marketplace.

* Relevant market is the market at large of which Company ABC is a part and consists of potential buyers for
productj.
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Another consideration is that there is no universal goal for market share. A perfect mar-
ket share (equal or near 100%) is not necessarily a good thing. A market leader with a
large market share may have to expand the market for its growth with commensurate
expenditures it may not be prepared to spend. The product manager has to monitor mar-
ket share to ensure it is in harmony with the company’s financial health.

Although market share is a simple concept, it is inherently more involved than sales
analysis for a product. Market share requires taking into account competitive factors [1].
The literature is replete with theoretical market share models that address factors such as
advertising elasticities and the effects of changes in the levels of marketing mix variables,
namely, price, product, promotion, and place—known as the four Ps [2-4]. Moreover, the
choice of the which model to use, as there are many, is another decision point for achieving
the best forecasting in terms of accuracy as well as parameter validity.

There are two popular market share models, Multinomial Logit (MNL) and Multiplicative
Competitive Interaction (MCI). The specifications of these models are beyond the scope
of this chapter. It suffices to say that these models, their variants, and divergent models
built on underpinnings poles apart allow for analyzing and predicting market share for
a brand or a firm [5-7]. MNL and MCI use brand attributes and the four Ps for their
predictions.

It is clear that data are what drive a model, notwithstanding the appropriate selec-
tion of the model, whether the naive benchmark first-order autoregressive model or
the complex market share attraction model. Data sources include retail store-level
scanner data, wholesale warehouse withdrawals, consumer surveys, and diary panel
data. The challenging data issue is knowing the current business position among the
competition. The data issue requires acquiring and analyzing the competitors” infor-
mation. A monitoring system of the market for the current business, at an industry-
aggregated market level, yields customized reports centering the current business with
respect to its competition.

8.3 Data Mining for an Exceptional Case

Regarding the literature review on market share estimation models previously dis-
cussed in this chapter, there is no market share model for an exceptional case study
of the proposed method. The published market share estimation approaches are not
applicable. Complete company and competitor’s data (the Achilles heel of market share
estimation) are necessary input for the naive autoregressive model to the advanced
models. The focal exceptional case involves market share estimation for a firm that has
a soft knowledge of its market share and only one piece of market share data, namely,
promotion.

8.3.1 Exceptional Case: Infant Formula YUM

Infant formula manufacturers know the brand of formula mothers receive in the hospital
is the brand the mothers are most likely to continue to use throughout the first year or
longer.

Formula manufacturers also have sought to create partnerships and brand loyalty with
hospitals by providing free formula for use in the hospitals. Handing out free formula
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increases the likelihood of brand loyalty of new mothers getting free formula for feeding
during their hospital stay. At the time of newborn hospital discharge, the manufacturers
give new moms “discharge packs” containing an array of formula coupons. Some formula
manufacturers offer both “breastfeeding” and “formula feeding” bags. The breastfeeding
bags also contain formula and formula coupons.

A major infant formula manufacturer (let us call them RAL) tracks usage of its infant for-
mula (let us call it YUM) among new mothers who breastfeed and use formula or only use
formula up to 12 months. These new mothers define RAL’s overall sales market. However,
RAL supplies YUM to pre-selected hospitals, which defines its relevant market, for these
new mothers during their stay in the hospital. Note, RAL is not the sole infant formula
manufacturer who offers their infant formula in the hospital to new moms.

RAL gives new moms discharge packs. Six weeks after discharge, RAL follows up with
a promotion mailing of coupons for purchasing YUM at a discount. RAL conducts a lim-
ited panel-like study, in which new moms report, three months after leaving the hospital,
which infant formula they are using.

RAL wants to estimate their moms’ market share of YUM over other brands of formula,
which are also offered at the hospital. There are only two pieces of market share data avail-
able for each new mom:

1. A binary variable indicating whether or not the mom is using YUM at month 3
after the hospital stay.

2. The promotion coupon the mom received. There is no tracking of the mom having
used the promotion coupon.

RAL wants the influence of promotion adjusted for in the calculation of market share.
For the model building, the candidate predictor variables include the typical demo-
graphic, socioeconomic, and geographic variables, along with attitude, preference, and
lifestyle variables. The marketing-mix variables are not in the set of candidate predictor
variables.

8.4 Building the RAL-YUM Market Share Model

The predominant issue of building the RAL Market Share Model (for estimating
RAL market shares of new mothers using YUM infant formula 3 months after their
infants” births) is—statistically controlling for—the influence of promotion. I present
the proposed methodology in a pedagogical manner due to various statistical proce-
dures used and assumptions made to yield reliable RAL-YUM market share estimates.
I present the data mining process step-by-step in building the RAL-YUM Market Share
Model.

Step #1 — Frequency of Promotion code by YUM_3mos
I define YUM_3mos to perform Step #1. YUM_3mos defined as:
YUM_3mos =1 if new mom uses YUM for first three months

YUM_3mos = 0 if new mom does not use YUM for first three months.
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TABLE 8.1

RAL Market Share (Mean_YUM_3mos)
by Frequency of Promotion (PROMO_Code)

PROMO_Code SIZE MEAN_YUM_3mos

10 229 0.64192
7 207 0.56039
16 38 0.55263
6 127 0.55118
9,290 0.53617

333 0.53153

14 2,394 0.53091
12 946 0.52537
15 438 0.51598
13 1,003 0.51346
4 266 0.51128
11 3,206 0.51029
2 557 0.50090
3 2,729 0.44485
9 2,488 0.43368
8 2,602 0.41929

The frequency of promotion (PROMO_Code) by the mean of YUM_3mos is shown
in Table 8.1. The table is ranked descending by MEAN_YUM_3mos, RALs rough
estimates of YUM_3mos market shares at the promotion code level. The table also
includes SIZE, the number of promotions.

The influence of the promotions is apparent as RAL knows its YUM_3mos market
share is a soft 0.20. The frequency table points to the objective of the study, namely,
eliminating the effects of the promotions to yield an honest estimate of RAL-YUM
market share.

Step #2 — Dummify PROMO_Code

To create dummy variables for all PROMO_Codes, I run the subroutine in Appendix 8.A,
Dummify PROMO_Code, which automatically generates the code as follows.

If PROMO_Code =1 then
PROMO_Codel = 1; otherwise
PROMO_Codel =0

If PROMO_Code = 2 then
PROMO_Code2 = 1; otherwise
PROMO_Code2 =0

If PROMO_Code = 16 then
PROMO_Codel6 = 1; otherwise
PROMO_Codel6 =0

There are 16 promotion dummy variables, capturing all (100%) promotion informa-
tion. The set of dummy variables assists in eliminating, as well as statistical con-
trolling for, promotion effects.
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Step #3 — PCA of PROMO_Code

I perform a principal component analysis (PCA) of PROMO_Code, using SAS Proc
PRINCOMP. In Chapter 7, I provide a thorough review of the PCA model. Here,
I focus on the two primary PCA statistics, eigenvalues and eigenvectors, used in
statistical controlling for promotion effects.

Sixteen promotion dummy variables, PROMO_Codel — PROMO_Codel6, yield 16
principal components (PCs). The 16 PCs capture all information within the
promotion dummy variables in a unique way with great statistical utility:

1. PCs are reliable and stable variables by the theoretical nature of their
construction.
PCs are continuous and thus more stable than the original dummy variables.

3. PCs are fundamental to eliminate unwanted effects of other variables, as will
be demonstrated.

I run Proc PRINCOMP code, in Appendix 8.B, PCA of PROMO_Code Dummy
Variables, and obtain the 16 eigenvalues, in Table 8.2. Of note, the first eight PCs
explain more than half (55.84%) of the total variance of PROMO_Code.

The second set of statistics from running Proc PRINCOMP of the PROMO_Code
dummy variables are the eigenvectors in Tables 8.3 and 8.4. The naming conven-
tion for the eigenvectors (PCs) uses the prefix PROMO_Code_pc.

Step #4 — Eliminating the Influence of Promotion from YUM_3mos

The dependent variable (DepVar)YUM_3mos has a full data capture of PROMO_
Code. DepVar and PROMO_Code dummy variables are data-fused. Invoking a
basic statistical axiom generates the desired DepVar free of promotion effect.

TABLE 8.2
Eigenvalues of PCA of PROMO_Code Dummy Variables

Eigenvalue Difference Proportion Cumulative

1 1.37944062 0.25053430 0.0862 0.0862
2 1.12890632 0.01818890 0.0706 0.1568
3 1.11071742 0.00611858 0.0694 0.2262
4 1.10459884 0.00514552 0.0690 0.2952
5 1.09945332 0.05052025 0.0687 0.3639
6 1.04893307 0.01137866 0.0656 0.4295
7 1.03755441 0.01328778 0.0648 0.4944
8 1.02426663 0.00618906 0.0640 0.5584
9 1.01807757 0.00438791 0.0636 0.6220
10 1.01368967 0.00290790 0.0634 0.6854
11 1.01078176 0.00172483 0.0632 0.7485
12 1.00905694 0.00104677 0.0631 0.8116
13 1.00801016 0.00300506 0.0630 0.8746
14 1.00500510 0.00349694 0.0628 0.9374
15 1.00150816 1.00150816 0.0626 1.0000
16 0.00000000 0.0000 1.0000
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TABLE 8.3
Eigenvectors of PCA of PROMO_Code Dummy Variables

PROMO_ PROMO_ PROMO_ PROMO_ PROMO_ PROMO_ PROMO_ PROMO_

Code_pcl Code_pc2 Code_pc3 Code_pc4 Code_pc5 Code_pc6 Code_pc7 Code_pc8
PROMO_Codel —-0.849192 —-0.028771 —-0.009891 —-0.009136 -0.007133 —-0.052172 —-0.006089 —-0.025351
PROMO_Code2 0.070919 0.021381 0.009245 0.009300 0.007832 0.180588 0.036573 0.830011
PROMO_Code3 0.220472 0.337257 —-0.794960 —-0.210305 —-0.103634 —-0.180422 —-0.018312 —-0.066588
PROMO_Code4 0.047265 0.013313 0.005649 0.005637 0.004710 0.088477 0.014938 0.123381
PROMO_Code5 0.053319 0.015242 0.006493 0.006490 0.005432 0.106072 0.018443 0.168341
PROMO_Code6 0.032117 0.008787 0.003700 0.003680 0.003066 0.053726 0.008646 0.062142
PROMO_Code?7 0.041398 0.0115I5 0.004870 0.004852 0.004049 0.073728 0.012175 0.093983
PROMO_Code8 0.210117 0.239859 0.544302 -0.647716 —-0.175960 —-0.193263 —-0.019324 —-0.069403
PROMO_Code9 0.201152 0.188749 0.211250 0.685419 —-0.505953 —-0.206907 —-0.020365 -0.072213
PROMO_Codel0 0.043659 0.012200 0.005166 0.005150 0.004300 0.079181 0.013179 0.104149
PROMO_Codell 0.263586 —0.873479 —-0.084243 —-0.063358 —-0.042934 —0.146332 —-0.015455 —-0.058193
PROMO_Codel2 0.097277 0.032731 0.014647 0.014961 0.012789 0.529880 0.756561 —-0.274451
PROMO_Codel3 0.100948 0.034596 0.015579 0.015958 0.013680 0.669420 —-0.650236 —-0.238421
PROMO_Codel4 0.193973 0.159567 0.138593 0.248137 0.836577 —-0.220100 -0.021338 -0.074767
PROMO_Codel5 0.061951 0.018142 0.007780 0.007798 0.006545 0.137057 0.025261 0.294764
PROMO_Codel6 0.017384 0.004673 0.001959 0.001945 0.001617 0.027280 0.004286 0.028983
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TABLE 8.4
Eigenvectors of PCA of PROMO_Code Dummy Variables
PROMO_ PROMO_ PROMO_ PROMO_ PROMO_ PROMO_ PROMO_ PROMO_
Code_pc9  Code_pcl0 Code_pcll Code_pc12  Code_pcl3 Code_pcl4 Code_pcl5  Code_pcl6

PROMO_Codel -0.013803 -0.012062 —-0.009018 —-0.005753 —-0.003471 —-0.005006 —-0.003322 0.523367
PROMO_Code2 —0.454554 —-0.166006 —0.089908 —-0.049363 -0.027474 —-0.032449 —-0.017824 0.156809
PROMO_Code3 —-0.034310 —-0.028906 -0.021114 —-0.013291 —-0.007956 -0.011220 —-0.007260 0.332449
PROMO_Code4 0.120133 0.231979 0.827199 —-0.433931 —-0.124681 -0.072155 —-0.028364 0.108962
PROMO_Code5 0.196784 0.845121 —-0.405641 -0.131678 —-0.061284 —-0.053520 —0.024437 0.121761
PROMO_Code6b 0.050156 0.065911 0.073449 0.065851 0.052605 0.982015 -0.051203 0.075486
PROMO_Code?7 0.082894 0.127209 0.187927 0.281328 0.906925 —-0.115035 —-0.033922 0.096228
PROMO_Code8 —-0.035597 —-0.029905 —-0.021805 -0.013712 —-0.008203 —-0.011550 —-0.007460 0.325475
PROMO_Code9 —-0.036868 —-0.030883 —-0.022479 -0.014122 —-0.008443 —-0.011868 —-0.007653 0.319012
PROMO_Codel0 0.094889 0.155759 0.273262 0.837002 -0.390122 —-0.093015 —-0.031503 0.101170
PROMO_Codell —-0.030383 -0.025816 —-0.018956 —-0.011968 -0.007177 -0.010171 —-0.006617 0.356754
PROMO_Codel2 —-0.100486 —-0.071543 —-0.047708 —-0.028620 —-0.016668 —-0.021872 —-0.013152 0.202840
PROMO_Codel3 —-0.092159 —-0.067036 —-0.045167 -0.027235 -0.015907 —-0.021022 -0.012726 0.208632
PROMO_Codel4 —-0.038011 -0.031757 —-0.023078 —-0.014485 —-0.008656 —-0.012150 —-0.007822 0.313531
PROMO_Codel5 0.834506 —-0.380535 —-0.142646 -0.070377 —-0.037354 —-0.040119 —0.020583 0.139368
PROMO_Codel6 0.021907 0.026213 0.025827 0.020264 0.014197 0.037841 0.996230 0.041360
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Statistical Axiom
1. Regressing Y on X yields the estimate of Y (est_Y). Let Y_due_X denote est_Y.

2. If Yis binary, then 1 — est_Y represents Y without effects of X. Let Y_wo_Xeffect
denote 1 — est_Y.

I run the subroutine for the logistic regression YUM_3mos based on the PROMO_
Code dummy variables in Appendix 8.C, Logistic Regression YUM_3mos
on PROMO_Code Dummy Variables. It is a well-known statistical factoid
that among a set of k dummy variables, only k — 1 dummy variables can
enter a model. In this case, the decision of excluding PROMO_Codel6 is easy
because its variance (eigenvalue) is zero in Table 8.2 (last row, second col-
umn). Based on the statistical axiom, the resultant logistic regression produces
YUM_3mos_due_ PROMO_Code.

For ease of presentation, I rename:
YUM_3mos_due_ PROMO_Code to YUM3mos_due_ PROMO, and
YUM_3mos_wo_PROMO_Codeeffect to YUM3mos_wo_PROMOeff.

The estimated YUM3mos_due_ PROMO Model in Table 8.5 appear to indicate
the model is ill-defined because there are many large p-values (Pr > ChiSq).
However, all variables must be included in the model, significant ones with small
p-values, and nonsignificant ones with large p-values because the intent of the
model is to have est_'YUM_3mos capture all promotion information (i.e., 100%
of promotion variation as indicated in Table 8.2, last or penultimate row, last col-
umn). Thus, the large p-valued variables do not affect the model designed util-
ity. All promotion variation is by definition captured by all the PROMO dummy
variables (except PROMO_Codel6). Thus, the YUM3mos_due_ PROMO model
achieves its objective.

TABLE 8.5
Maximum Likelihood Estimates of YUM3mos_due_PROMO Model

Wald
Parameter DF Estimate Standard Error Chi-Square Pr> ChiSq
Intercept 1 0.00414 0.0123 0.1140 0.7356
PROMO_Code_pcl 1 -0.1064 0.0122 75.4452 <0.0001
PROMO_Code_pc2 1 -0.0700 0.0122 32.7221 <0.0001
PROMO_Code_pc3 1 -0.0120 0.0123 0.9585 0.3276
PROMO_Code_pc4 1 0.0334 0.0123 7.3475 0.0067
PROMO_Code_pc5 1 0.0969 0.0123 62.4866 <0.0001
PROMO_Code_pc6 1 0.0615 0.0122 25.2594 <0.0001
PROMO_Code_pc7 1 0.0127 0.0122 1.0829 0.2981
PROMO_Code_pc8 1 0.0186 0.0122 2.3240 0.1274
PROMO_Code_pc9 1 0.0208 0.0122 2.8962 0.0888
PROMO_Code_pc10 1 0.0249 0.0122 4.1500 0.0416
PROMO_Code_pcll 1 0.0190 0.0123 2.4121 0.1204
PROMO_Code_pc12 1 0.0493 0.0126 15.3224 <0.0001
PROMO_Code_pcl3 1 -0.00171 0.0124 0.0191 0.8902
PROMO_Code_pcl4 1 0.00656 0.0123 0.2857 0.5930
PROMO_Code_pcl5 1 0.00497 0.0123 0.1638 0.6857
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The YUM3mos_due_PROMO model is defined in Equation 8.1:

YUM3mos_due_PROMO = +0.0041 8.1
—0.1064* PROMO _Code_pcl
—0.0700* PROMO _Code _pc2
—0.0120* PROMO _Code_pc3
+0.0334* PROMO _Code_pc4
+0.0969 * PROMO _Code_ pc5
+0.0615* PROMO _Code _pc6
+0.0127* PROMO _Code _pc7
+0.0186 * PROMO _Code_ pc8
+0.0208 * PROMO _Code _pc9
+0.0249 * PROMO _Code_ pcl0
+0.0190* PROMO _Code _pcll
+0.0493 * PROMO _Code _ pc12
—-0.0017 * PROMO _Code _pc13
+0.0065* PROMO _Code_pcl4
+0.0049 * PROMO _Code_pcl5

Next, I run the subroutine in Appendix 8.D, Creating YUM_3mos_wo_PROMO_
CodeEff, to calculate 1 — est_ YUM_3mos. Therefore, I obtain YUM3mos_wo_
PROMOeff based on the statistical axiom.

Step #5 — Creating the Market-Share Dependent Variable

In accordance with the principles of the statistical axiom of Step 4, I create the depen-
dent variable MARKET-SHARE in five logical steps:

1. YUM_3mos, by definition, is promotion-effected and binary.
2. Any derivative of YUM_3mos is, therefore, a probability.
3. Thus, YUM3mos_due_PROMO is a probability.
4. YUM3mos_wo_PROMOeff, by definition, is an honest promotion-free variable.
5. Thus, MARKET-SHARE = YUM3mos_wo_PROMOeff.
Step #6 — Building the Preliminary YUM_3mos MARKET-SHARE Model

1. As for the candidate predictor variables, there are more than 1,200 candidate
predictor variables: the typical demographic, socioeconomic, and geographic vari-
ables along with attitude, preference, and lifestyle variables. The marketing-mix
variables are not in the set of candidate predictor variables.
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2. The approach of variable selection applies the concepts’ of the GenlQ Model
of Chapter 40 for newly constructed variables and the final set of the predic-
tor variables. Of course, data miners can use their preferred variable selection
method.

Three predictor variables, SOFT_PCLUS1, SOFT_PCLUS2, and SOFT_PCLUS4 (pre-
dictor variables not shown), define the YUM_3mos Market-Share Model. The pre-
dictor variables are PCA-based predictor variables with a genetic programming
influence. Each predictor variable is a soft version of a PC. For example, SOFT_
PCLUSI is a modified PC using only the signs of the PC coefficients, not the PC
coefficients themselves. So, SOFT_PCLUSL is the weighted sum of the 20 candi-
dates, where the weights are the signs (+1 or —1) of the PC coefficients. The PC
construction of the predictor variables is not shown but consists of 20 candidate
variables.

Data miners at first blush are bewildered by the construction and value of soft PCs.
They can test this approach by correlating the original (hard) PC with the soft ver-
sion to observe, in virtually all situations, that the correlation is greater than 0.95.
The advantages of the soft PCs are they are easy to understand and implement.
Moreover, soft PCs offer greater stability than their hard PC counterparts because
soft PCs do not use any degrees of freedom. A hard PC uses three degrees of free-
dom for each variable in the PC. So, a hard PC defined by, say, 20 variables uses
60 degrees of freedom. The YUM_3mos Market-Share Model with three soft PCs
would otherwise lose 180 degrees of freedom.

The YUM_3mos MARKET-SHARE model, which is a preliminary version (for reasons
to be explained in Step #7), is defined in Equation 8.2:

MARKET-SHARE _est = + 0.40127 8.2)
+0.02380* SOFT _ PCLUS1
+0.14041* SOFT _ PCLUS2
+0.09826 * SOFT _ PCLUS4

Step #7 — Final YUM_3mos MARKET-SHARE Model

I generate the frequency plot along with the corresponding boxplot of the MARKET-
SHARE Model scores (MktSh_est) in Figure 8.1. MktSh_est is bell-shaped, peaked
with biased location (cf. market share of 0495 versus RALs soft market share of
0.20), and squeezed scale (0.519 — 0.471, with outlier 0.387).

With the working assumption of RAL's soft market share of 0.20, I shape MktSh_est to
center the market share at 0.20, renaming the reshaped MktSh_est to MktSh_est20
in Figure 8.2. The frequency and boxplot indicate MktSh_est20 peak (centered) at
0.20; the distribution of MktSh_est20 is still bell-shaped but with a slight skew-
ness (= 0.3477) to the right; its range is 0.729 (= 0.72 — 0.00) and does not appear to
have outliers. I discussed how I created MktSh_est20 below. The effectiveness of

* Not the GenIQ Model itself.
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Frequency and boxplot of MARKET-SHARE Model scores (MktSh_est).
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Frequency and boxplot of MARKET-SHARE Model centered at 0.20.

MktSh_est20 as a model for estimating YUM_3mos for new moms is discussed in

the next section.

The statistical procedure to reshape MktSh_est into MktSh_est20 is described as fol-
lows. The subroutine in Appendix 8.E illustrates the transformation procedure.

1. SAS Proc RANK normalizes a variable by use of ranks.MktSh_est is bell-
shaped, but Proc RANK is performed to ensure MktSh_est is as normally dis-
tributed as possible. (Note, bell-shaped is not necessarily normal-shaped.)

2. SAS Proc STANDARD “centers and spreads” a variable by subtracting a loca-
tion value (minimum value: — 3.8138) and dividing by a scale value (maximum

value: 3.9474/1.9961).

3. MktSh_est20 (adjusted to market share of 0.20) = (MktSh_est + 3.8138)/3.9474/1.9661.

T
2,000
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TABLE 8.6
Decile Analysis of YUM_3mos MARKET-SHARE Model
Total Decile Cum
Number YUM3mos_wo_ YUM3mos_wo_ YUM3mos_wo_
of PROMOeff PROMOeff PROMOeff

Decile Moms MARKET-SHARE MARKET-SHARE MARKET-SHARE Cum Lift
top 2,585 1,194.85 0.462 0.462 223
2 2,585 919.14 0.356 0.409 197
3 2,586 775.32 0.300 0.373 180
4 2,585 662.31 0.256 0.343 166
5 2,585 561.83 0.217 0.318 153
6 2,586 463.95 0.179 0.295 142
7 2,585 363.28 0.141 0.273 132
8 2,586 248.68 0.096 0.251 121
9 2,585 115.59 0.045 0.228 110
bottom 2,585 57.30 0.022 0.207 100

25,853 5,362.24

8.4.1 Decile Analysis of YUM_3mos MARKET-SHARE Model

I generate a bootstrapped decile analysis of the YUM_3mos MARKET-SHARE Model in
Table 8.6. The decile analysis shows the YUM_3mos market share estimates centered at
0.207 (penultimate column, last row). The assessment of the model based on the usual sta-
tistics indicates the model is very good:

1. Top-to-bottom ratio of YUM3mos_wo_PPROMOeff is 21.00 (= 0.462/0.022; top
decile to bottom decile).

2. The decile means of YUM3mos_wo_PPROMOeff are monotonically decreasing
(no jumps up or bumps down in lower adjacent deciles).

3. The Cum Lifts are very good: top decile is 223, followed by 197, 180, and 166 for the
second through fourth deciles, respectively.

8.4.2 Conclusion of YUM_3mos MARKET-SHARE Model

RAL management approved the final YUM_3mos MARKET-SHARE Model, which is at the
individual-level of new moms. The model’s value is hard to overstate in that only a new moms-
level model can assist RAL in addressing the right decision on some key questions, such as:

1. How much of the market share can RAL conservatively take? What is the worth to
the RAL organization financially and otherwise?

2. What kind of margins should RAL expect in this market? How do the margins
align with the overall margins for the RAL organization?

3. Who are RAL's competitors in the market, and why do customers buy from them?
What does RAL need to do to attract new moms?

As one can probably discern from these questions, it is important for RAL to understand
not only what its organization brings to the market but the external forces that drive the
market.
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8.5 Summary

Digging into the literature for market share estimation models produces a wealth of
theoretical models, of which some are useful for real business applications. For the
project at hand, those models are of no use—even as a starting point from which I could
make modifications for the current modeling project. Of all market share estimation
models, in the literature and built by me, none accommodate for singular promotional
datafused with the dependent variable. The only solution for building a YUM_3mos
MARKET-SHARE Model is to invoke the salient features of exploratory data analysis
characteristics:

1. Flexibility: I use data mining PCA because it is one among the best methods for
extracting all the information from the data, especially when they are singular
promotional datafused with the dependent variable.

2. Practicality: The model’s performance is displayed in its tabular array, the decile
analysis. A table of six columns and three statistics channel the functioning of the
model and its accomplishment.

3. Innovation: Creating the market-share dependent variable is a demonstration of
“Imagination is more important than knowledge.”

4. Universality: The proposed approach offers rich utility because companies typi-
cally have similar data to that of the exceptional case study.

5. Simplicity: All questions are simple once the revealed answers are known.!

Appendix 8.A Dummify PROMO_Code

PROC TRANSREG data= promo_ID DESIGN;

model class (PROMO_Code / ZERO="xx");

output out = PROMO_Code (drop = Intercept NAME_ _TYPE_);
id ID;

run;

PROC SORT data= PROMO_Code; by ID;
PROC SORT data= RAL_data; by ID;
run;

data RAL_datal;

merge RAL_data PROMO_Code;
by ID;

run;

* Einstein said it. I just presented something to view.
* Like magic tricks.
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Appendix 8.B PCA of PROMO_Code Dummy Variables

PROC PRINCOMP data= RAL_datal n=16 outstat=coef out=RAL_datal_pcs
prefix=PROMO_Code_pc std;

var

PROMO_Codel

PROMO_Code2

PROMO_Code3

PROMO_Code4

PROMO_Code5

PROMO_Code6

PROMO_Code7

PROMO_Code8

PROMO_Code9

PROMO_Codel0

PROMO_Codell

PROMO_Codel2

PROMO_Codel3

PROMO_Codel4

PROMO_Codel5

PROMO_Codel6

ods exclude cov corr SimpleStatistics;
run;

Appendix 8.C Logistic Regression YUM_3mos
on PROMO_Code Dummy Variables

ods exclude ODDSRATIOS;

PROC LOGISTIC data=RAL_datal_pcs nosimple des outest=coef;
model YUM_3mos =

PROMO_Code_pcl-PROMO_Code_pcl5;

run;

Appendix 8.D Creating YUM_3mos_wo_PROMO_CodeEff

PROC SCORE data=RAL_datal_pcs predict type=parms score=coef out=score;
var PROMO_Code_pcl-PROMO_Code_pcl5;
run

data score;
set score;
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estimate=YUM_3mos2;
run;

data RAL_datal_wo_PromokEff;

set score;

prob_hat=exp(estimate)/(1+ exp(estimate));
YUMB3mos_due_PROMO = prob_hat;
YUM3mos_wo_PROMOeff = 1- prob_hat;
run;

Appendix 8.E Normalizing a Variable to Lie Within [0, 1]

PROC RANK data=RAL_datal_wo_PromoEff normal=TUKEY
out= X_RNORMAL ties=dense;

var YUM3mos_wo_PROMOeff;

ranks RX;

run;

PROC UNIVARIATE data=X_RNORMAL plot;
var RX;

PROC MEANS data = X_RNORMAL min max;
var RX;
run;

* Subtract min. value of RX, divide by max. value of RX;
data X_RNORMAL;

set X_RNORMAL;

RXX =(RX+3.8138025)/3.9474853/1.9661347;

PROC MEANS data = X_RNORMAL min max mean;
var RXX;
run;

* Center RXX at mean=0.20 fiddle with std values to yield 0<= RXX <=1;
PROC STANDARD data=X_RNORMAL mean=0.2 std=0.15
out=XRNORMALZ20;

var RXX;

run;

PROC UNIVARIATE data=X_RNORMALZ20 plot;
var RXX;
run;

title” MarketShare_est20=((RMarketShare+3.8138025)/ 3.9474853)/1.9661347
data MKTShare. RNORMALZ20;
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set X_RNORMALZ20;
MarketShare_est20=RXX;

run;
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The Correlation Coefficient: Its Values Range
between Plus and Minus 1, or Do They?

9.1 Introduction

In 1896, the correlation coefficient was invented by Karl Pearson. This century-old statistic
is still going strong today, second to the mean in the frequency of use. The correlation
coefficient’s weaknesses and warnings of misuse are well-known. Based on my consulting
experience as a statistical modeler, data miner, and instructor of continuing professional
studies in statistics for many years, I see too often that the weaknesses and warnings go
unheeded. The weakness rarely mentioned is the correlation coefficient interval [-1, +1] is
restricted by the distributions of the two variables under consideration. The purposes of
this chapter are (1) to discuss the effects that the distributions of the two variables have on
the correlation coefficient interval and (2) to provide a procedure for calculating an adjusted
correlation coefficient, whose realized correlation coefficient interval is often shorter than
the definitional correlation coefficient interval.

9.2 Basics of the Correlation Coefficient

The correlation coefficient, denoted by 1, is a measure of the strength of the straight-line
or linear relationship between two variables. The correlation coefficient—by definition—
assumes any value in the interval between +1 and -1, including the end values *1, namely,
the closed interval denoted by [+1, -1].

The following points are the accepted guidelines for interpreting the correlation coef-
ficient values:

1. 0 indicates no linear relationship.

2. 41 indicates a perfect positive linear relationship: As one variable increases in its
values, the other variable also increases in its values via an exact linear rule.

3. -1 indicates a perfect negative linear relationship: As one variable increases in its
values, the other variable decreases in its values via an exact linear rule.

4. Values between 0 and 0.3 (0 and —-0.3) indicate a weak positive (negative) linear
relationship via a shaky linear rule.
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5. Values between 0.3 and 0.7 (-0.3 and —0.7) indicate a moderate positive (negative)
linear relationship via a fuzzy-firm linear rule.

6. Values between 0.7 and 1.0 (-0.7 and —1.0) indicate a strong positive (negative)
linear relationship via a firm linear rule.

7. The value of r squared, called the coefficient of determination, and denoted
R-squared, is typically interpreted as the percent of the variation in one variable
explained by the other variable or the percent of variation shared between the two
variables. Here are good things to know about R-squared:

a. R-squared is the correlation coefficient between the observed and modeled
(predicted) data values.

b. R-squared can increase as the number of predictor variables in the model
increases; R-squared cannot decrease as the number of predictor vari-
ables increases. Most modelers unwittingly think a model with a larger
R-squared is better than a model with a smaller R-squared. As a result of this
misunderstanding of R-squared, modelers have a tendency to include more
(unnecessary) predictor variables in the model. Accordingly, an adjustment
of R-squared was developed, appropriately called adjusted R-squared. The
explanation of this statistic is the same as for R-squared, but it penalizes the
R-squared when unnecessary variables are in the model.

c. Specifically, the adjusted R-squared adjusts the R-squared for the sample size
and the number of variables in the regression model. Therefore, the adjusted
R-squared allows for an “apples-to-apples” comparison between models with
different numbers of variables and different sample sizes. Unlike R-squared,
adjusted R-squared does not necessarily increase as additional predictor vari-
ables enter the model.

d. R-squared is a first-blush indicator of a good model. R-squared is often
misused” as the measure to assess which model produces better predictions.
The root mean squared error (RMSE) is the measure for determining the
better model. The smaller the RMSE value, the better the model is (viz., the
more precise are the predictions). It is usually best to report the RMSE rather
than the mean squared error (MSE) because the RMSE is measured in the
same units as the data, rather than in squared units, and is representative of
the size of a “typical” error. The RMSE is a valid indicator of relative model
quality only if the model is well-fitted (i.e., if the model is neither overfitted
nor underfitted).

8. Linearity assumption: The correlation coefficient requires that the underlying
relationship between the two variables under consideration is linear. If the rela-
tionship is known to be linear, or the observed pattern between the two variables
appears to be linear, then the correlation coefficient provides a reliable measure of
the strength of the linear relationship. If the relationship is known to be nonlinear
or the observed pattern appears to be nonlinear, then the correlation coefficient is
not useful or at least is questionable.

I see too often the correlation coefficient in misuse due to disregard for the linearity
assumption test, albeit this is simple to do.

* Misused, in part, as discussed earlier in Point b.
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9.3 Calculation of the Correlation Coefficient

The calculation of the correlation coefficient for X and Y is simple to understand. Let
zX and zY be the standardized versions of X and Y, respectively. That is, zX and zY
are both reexpressed to have means equal to zero and standard deviations (std)
equal to one. The reexpressions used to obtain the standardized scores and r,, are in
Equations 9.1, 9.2, and 9.3, respectively:

zX; =[X; —mean (X)]/std(X) ©1

zY; =[Y; — mean (Y)]/std(Y) 9.2

The correlation coefficient is defined as the mean production of the paired standardized
scores (zX;, zY;) as expressed in Equation 9.3.

Iy = sum of [zX;*zY;]/(n—1) 9.3

where n is the sample size.

For a simple illustration of the calculation, consider the sample of five observations in
Table 9.1. Columns zX and zY contain the standardized scores of X and Y, respectively.
The rightmost column is the product of the paired standardized scores. The sum of these
scores is 1.83. The mean of these scores (using the adjusted divisor n -1, not n) is 0.46. Thus,
Iyy = 0.46.

For the sake of completeness, I provide the plot of the original data, Plot Y and X, in
Figure 9.1. Unfortunately, the small sample size renders the plot visually unhelpful.

9.4 Rematching

Asmentioned, the correlation coefficient by definition assumes values in the closed interval
[+1, -1]. However, it is not well-known that the shapes (distributions) of the individual X and

TABLE 9.1

Calculation of the Correlation Coefficient

obs X Y zX zY zX*zY
1 12 77 -1.14 -0.96 1.11

2 15 98 -0.62 1.07 —-0.66

3 17 75 -0.27 -1.16 0.32

4 23 93 0.76 0.58 0.44

5 26 92 1.28 0.48 0.62

Mean 18.6 87.0 Sum 1.83

Std 5.77 10.32

n 5 r 0.46
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Original
plot Y*X
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X
FIGURE 9.1
Original plot of Y with X.

Y data restrict the definitional correlation coefficient interval.” Specifically, the extent to
which the shapes of the individual X and Y data are not the same, the length of the realized
correlation coefficient interval is shorter than the definitional correlation coefficient inter-
val. Clearly, a shorter realized correlation coefficient interval necessitates the calculation of
the adjusted correlation coefficient (discussed in Section 9.5).

The process of rematching determines the length of the realized correlation coefficient
interval. Rematching takes the original X-Y paired data to create new X-Y rematched-
paired data such that the rematched-paired data produce the strongest positive and
strongest negative relationships. The correlation coefficients of the strongest positive and
strongest negative relationships yield the length of the realized correlation coefficient
interval. The conceptual elements of the rematching procedure are:

1. The strongest positive relationship comes about with the pairings of the highest X
value and the highest Y value; the second-highest X value and the second-highest
Y value; and so on until the lowest X value and the lowest Y value.

2. The strongest negative relationship comes about with the pairings of the highest X
value and the lowest Y value; the second-highest X value and the second-lowest Y
value; and so on until the lowest X value and the highest Y value.

Continuing with the data in Table 9.1, I rematch the X-Y data in Table 9.2. The rematch-
ing produces

Ixy (negative rematch) = —0.99
and
rxy (positive rematch) = +0.99
For the sake of completeness, I provide the rematched plots. Unfortunately, the small sam-

ple size renders the plots visually unhelpful. The plots of the negative and positive rematched
data, Plot rnegY and rnegX and Plot rposY and rposX, are in Figures 9.2 and 9.3, respectively.

* My first sighting of the term restricted is in Tukey’s EDA, 1977. However, I had known about it many years
before: I guess from my days in graduate school. I cannot provide any pre-EDA reference.



The Correlation Coefficient 101

TABLE 9.2
Rematched (X, Y) Data from Table 9.1

Original (X,Y)  Positive Rematch  Negative Rematch

obs X Y X Y X Y
1 12 77 26 98 26 75
2 15 98 23 93 23 77
3 17 75 17 92 17 92
4 23 93 15 77 15 93
5 26 92 12 75 12 98
r 0.46 +0.90 -0.99

Negative rematch

plot rnegY*rnegX
100 +
a
a
a
90 +
%
L
<
-
80
a
a
70 T
| | | | |
I I I I I
10 15 20 25 30
rnegX

FIGURE 9.2
Negative rematch plot of Y with X.

Because there is an adjustment for R-squared, there is an adjustment for the correlation
coefficient due to the shapes of the X and Y data. Thus, the adjusted realized correlation
coefficient interval is [-0.99, +0.90]. The calculation of the adjusted correlation coefficient is
discussed in the next section.

9.5 Calculation of the Adjusted Correlation Coefficient

The adjusted correlation coefficient is the quotient of the original correlation coefficient
and the rematched correlation coefficient. The sign of the adjusted correlation coefficient is
the sign of the original correlation coefficient. If the sign of the original r is negative, then
the sign of the adjusted r is negative, even though the arithmetic of dividing two negative
numbers yields a positive number.
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Positive rematch
plot rposX*rposY
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FIGURE 9.3
Positive rematch plot of Y with X.

For the current example, the adjusted correlation coefficient is shown in Equation 94.
Thus, 1, (adjusted) = 0.51 (= 045/090), a 10.9% increase over the original correlation
coefficient.

Ixy (adjusted) = 1y y (orignal) /1x y (positive rematch) 94)

9.6 Implication of Rematching

The adjusted interval of the correlation coefficient is due to the observed shapes of the
X and Y data. The shape of the data has the following effects:

1. Regardless of the shape of either variable, symmetric or otherwise, if one variable’s
shapeis different from the other variable’s shape, the correlation coefficient is restricted.

2. The rematch indicates the restriction.

3. It is not possible to obtain perfect correlation unless the variables have the same
shape, symmetric or otherwise.

4. A condition that is necessary for a perfect correlation is that the shapes must be the
same, but this does not guarantee a perfect correlation.

9.7 Summary

The everyday correlation coefficient is still going strong after its introduction more than
100 years ago. The statistic is well studied, and its weakness and warnings of misuse,
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unfortunately, at least from my experience, have not been heeded. The weakness rarely
mentioned is that the correlation coefficient interval [-1, +1] is restricted by the distribu-
tions of the two variables under consideration. I discuss with a simple, yet compelling,
illustration the effects that the distributions have on the correlation coefficient interval.
I provide and illustrate a procedure for calculating an adjusted correlation coefficient
whose realized correlation coefficient interval is often shorter than the definitional cor-
relation coefficient interval.
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Logistic Regression: The Workhorse
of Response Modeling

10.1 Introduction

Logistic regression is a popular technique for classifying individuals into two mutually
exclusive and exhaustive categories, for example, buyer-nonbuyer and responder—
nonresponder. Logistic regression is the workhorse of response modeling as its results
are considered the gold standard. Accordingly, it serves as the benchmark for assess-
ing the superiority of new techniques, such as the machine-learning GenIQ Model.
Also, it is used to determine the advantage of popular techniques, such as the chi-
squared automatic interaction detection (CHAID) regression tree model. In a database
marketing application, response to a prior solicitation is the binary dependent variable
(defined by responder and nonresponder), and a logistic regression model (LRM) is
built to classify an individual as either most likely or least likely to respond to a future
solicitation.

To explain logistic regression, I first provide a brief overview of the technique and include
a SAS© program for building and scoring an LRM. The program is a welcome addition to
the toolkit of techniques used by model builders working on the two-group classification
problem. Next, I provide a case study to demonstrate the building of a response model for
an investment product solicitation. The case study presentation illustrates a host of statisti-
cal data mining techniques that include the following:

¢ Logit plotting

* Reexpressing variables with the ladder of powers and the bulging rule
® Measuring the straightness of data

* Assessing the importance of individual predictor variables

* Assessing the importance of a subset of predictor variables

¢ Comparing the importance between two subsets of predictor variables
¢ Assessing the relative importance of individual predictor variables

¢ Selecting the best subset of predictor variables

* Assessing goodness of model predictions

* Smoothing a categorical variable for model inclusion
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The data mining techniques are basic skills that model builders, who are effectively
acting like data miners, need to acquire. They are easy to understand, execute, and
interpret. Model builders should master these techniques if they want to be captain
of their data and master of their findings. At this point, in keeping within the context
of this chapter, which emphasizes data mining, I use more often the term data miner
than model builder. However, I do acknowledge that an astute model builder is a well-
informed data miner.

10.2 Logistic Regression Model

Let Y be a binary dependent variable that assumes two outcomes or classes (typically
labeled 0 and 1). The LRM classifies an individual into one of the classes based on the val-
ues of predictor (independent) variables X, X,, ..., X, for that individual.

LRM estimates the logit of Y—a log of the odds of an individual belonging to Class 1.
The definition of LRM is in Equation 10.1. The logit, which takes on values” between
-7 and +7, is a virtually abstract measure for all but the experienced model builder.
Fortunately, there is a simple transformation that takes the logit into the probability of
an individual belonging to Class 1, Prob(Y = 1). The logit-probability transformation is
in Equation 10.2.

LOgltY:bO +b1*X1 +b2*X2 +'-'+bn*Xn (101)

Prob(Y =1) = exp(Logit Y)/ (1+exp(Logit Y)) (10.2)

Plugging in the values of the predictor variables for an individual in Equations 10.1 and 10.2
produces that individual’s estimated (predicted) probability of belonging to Class 1. The b’s
are the logistic regression coefficients, determined by the calculus-based method of maximum
likelihood. Note, unlike the other coefficients, b, (referred to as the intercept) has no corre-
sponding predictor variable X,.

As presented, the LRM is readily seen as the workhorse of response modeling as the
yes—no response variable is an exemplary binary class variable. The illustration in the next
section shows the rudiments of logistic regression response modeling.

10.2.1 Hlustration

Consider Dataset A, which consists of 10 individuals and 3 variables, in Table 10.1. The
binary variables are RESPONSE (Y), INCOME in thousands of dollars (X;), and AGE in
years (X,). I perform a logistic analysis regressing response on INCOME and AGE using
Dataset A.

The standard LRM output in Table 10.2 includes the logistic regression coefficients and
other “columns” of information (a discussion of these is beyond the scope of this chap-
ter). The “Parameter Estimates” column contains the coefficients for variables INCOME,

* The logit theoretically assumes values between plus and minus infinity. However, in practice, it rarely goes
outside the range of plus and minus 7.
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TABLE 10.1

Dataset A

RESPONSE INCOME AGE

(1=yes, 0 =no) ($000) (years)

1 96 22

1 86 33

1 64 55

1 60 47

1 26 27

0 98 48

0 62 23

0 54 48

0 38 24

0 26 42
TABLE 10.2
LRM Output

Parameter Standard Wald

Variable df Estimate Error Chi-Square  Pr> Chi-Square
Intercept 1 -0.9367 2.5737 0.1325 0.7159
INCOME 1 0.0179 0.0265 0.4570 0.4990
AGE 1 —-0.0042 0.0547 0.0059 0.9389

AGE, and the INTERCEPT. The INTERCEPT variable is a mathematical device; it is defined
implicitly as X,, which is always equal to one (i.e., intercept = X, = 1). The coefficient b,
serves as a “start” value given to all individuals regardless of their specific values of pre-
dictor variables in the model.

The estimated LRM is defined by Equation 10.3:

Logit of RESPONSE = —0.9367 + 0.0179* INCOME - 0.0042 * AGE (10.3)

Do not forget that the LRM predicts the logit of RESPONSE not the probability of
RESPONSE.

10.2.2 Scoring an LRM

The SAS program in Figure 10.1 produces the LRM built with Dataset A and scores an
external Dataset B in Table 10.3. The SAS procedure LOGISTIC produces logistic regres-
sion coefficients and puts them in the “coeft” file, as indicated by the code “outest = coeff.”
The coeff files produced by SAS versions 6 and 8 (SAS 6, SAS 8) are in Tables 104 and 10.5,
respectively. (The latest versions of SAS are 9.3 and 94. SAS currently supports versions
8 and 9 but not version 6.) The procedure LOGISTIC, as presented here, holds true for SAS 9.

* There are still die-hard SAS 6 users, as an SAS technical support person informed me.
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FIGURE 10.1
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/***** Building the LRM on dataset A *****###sxx%/
PROC LOGISTIC data = A nosimple des outest = coeff;
model RESPONSE =
INCOME AGE;
run;
[****** Scoring the LRM on dataset B *######ssxx/
PROC SCORE data = B predict type = parms score = coeff
out = B_scored;
var INCOME AGE;
run;
[#****+* Converting Logits into Probabilities ********/
SAS version 6
data B_scored;
set B_scored;
Prob_Resp = exp(Estimate)/(1 + exp(Estimate));
run;
SAS version 8
data B_scored;
set B_scored;
Prob_Resp = exp(RESPONSE)/(1 + exp(RESPONSE));

run;

SAS code for building and scoring an LRM.

TABLE 10.3

Dataset B

INCOME AGE

($000) (years)

148 37

141 43

97 70

90 62

49 42
TABLE 10.4
Coeff File (SAS 6)
OBS _LINK_ _TYPE_ _NAME_ INTERCEPT INCOME AGE _LNLIKE_
1 LOGIT PARMS Estimate -0.93671 0.017915 —0.0041991 —6.69218
TABLE 10.5
Coeff File (SAS 8)
OBS _LINK_ _TYPE_ _STATUS_ _NAME_ INTERCEPT INCOME AGE _LNLIKE_
1 PARMS 0 Converged RESPONSE -0.93671 0.017915  -0.0041991 —6.69218
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TABLE 10.6
Dataset B_scored

Predicted Logit of Predicted

Response: Probability of

INCOME AGE Estimate (SAS 6), Response:
($000) (years) Response (SAS 8) Prob_Resp
148 37 1.55930 0.82625
141 43 1.40870 0.80356
97 70 0.50708 0.62412
90 62 0.41527 0.60235
49 42 —-0.23525 0.44146

Regardless, I present the SAS 6 program as it is instructive in that it highlights the difference
between the uncomfortable-for-most logit and the always-desired probability. The coeff files
differ in two ways:

1. An additional column in the SAS 8 coeff file is _STATUS_, which does not affect
the scoring of the model.

2. The naming of the predicted logit is “Response” in SAS 8, which is indicated by
_NAME_ = Response.

Although it is unexpected, the naming of the predicted logit in SAS 8 is the class variable
used in the PROC LOGISTIC statement, as indicated by the code “model Response =" In
this illustration, the predicted logit is called “Response,” which is indicated by _NAME_ =
Response, in Table 10.4. The SAS 8 naming convention is unfortunate as it may cause the
model builder to think that the Response variable is a binary variable and not a logit.

The SAS procedure SCORE scores the five individuals in Dataset B using the LRM coeffi-
cients, as indicated by the code “score = coeft.” Coeff serves to append the predicted logit vari-
able (called Estimate when using SAS 6 and Response when using SAS 8), to the output file
B_scored, as indicated by the code “out = B_scored,” in Table 10.6. The probability of response
(Prob_Resp) is easily obtained with the code at the end of the SAS program in Figure 10.1.

10.3 Case Study

By examining the following case study about building a response model for a solicitation for
investment products, I illustrate a host of data mining techniques. To make the discussion of the
techniques manageable, I use small data (a handful of variables, some of which take on few
values, and a sample of size “petite grande”) drawn from the original direct mail solicitation
database. Reported results replicate the original findings obtained with slightly bigger data.
I'allude to the issue of data size here in anticipation of data miners who subscribe to the idea
that big data are better for analysis and modeling. Currently, there is a trend, especially in
related statistical communities, such as computer science, knowledge discovery, and Web min-
ing, to use extra big data. The trend is due to the false notion that extra big data are better than
big data. A statistical factoid states if small data yield the true model, then a rebuilt true model
with big or extra big data produces large prediction error variance. As model builders are
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never aware of the true model, they must be guided by the principle of simplicity. Therefore,
it is wisest to build a model with the minimal amount of data that yields a good model. If the
predictions are good, then the model is a good approximation of the true model. If predic-
tions are not acceptable, then exploratory data analysis (EDA) procedures prescribe an increase
in data size (by adding predictor variables and individuals) until the model produces good
predictions. The data size with which the model produces good predictions is big enough. If
the model build starts with extra big data, then unnecessary variables tend to creep into the
model, thereby increasing the prediction error variance.

10.3.1 Candidate Predictor and Dependent Variables

Let TXN_ADD be the yes—no response dependent variable, which records the activity of
existing customers who received a mailing intended to motivate them to purchase addi-
tional investment products. The yes—no response, which is coded 1-0, respectively, cor-
responds to customers who have/have not added at least one new product fund to their
investment portfolio. The TXN_ADD response rate is 11.9%, which is typically large for a
direct mail campaign, and is usual for solicitations intended to stimulate purchases among
existing customers.

The five candidate predictor variables for predicting TXN_ADD whose values reflect
measurement before the mailing are:

1. FD1_OPEN reflects the number of different types of accounts the customer has.

2. FD2_OPEN reflects the number of total accounts the customer has.

3. INVESTMENT reflects the customer’s investment dollars in ordinal values: 1 = $25
to0 $499, 2 = $500 to $999, 3 = $1,000 to $2,999, 4 = $3,000 to $4,999, 5 = $5,000 to $9,999,
and 6 = $10,000+.

4. MOS_OPEN reflects the number of months the account is opened in ordinal val-
ues: 1 =0 to 6 months, 2 =7 to 12 months, 3 = 13 to 18 months, 4 = 19 to 24 months,
5 =25 to 36 months, and 6 = 37+ months.

5. FD_TYPE is the product type of the customer’s most recent investment purchase:
ABC, ..., N.

10.4 Logits and Logit Plots

The LRM belongs to the family of linear models that advance the implied assumption
that the underlying relationship between a given predictor variable and the logit is a lin-
ear or straight line. Bear in mind that, to model builders, the adjective linear refers to the
explicit fact that the logit is the sum of weighted predictor variables, where the weights
are the regression coefficients. In practice, however, the term refers to the implied assump-
tion. Checking this assumption requires the logit plot. A logit plot is the plot of the binary
dependent variable (hereafter, response variable) against the values of the predictor vari-
able. Three steps are required to generate the logit plot:

1. Calculate the mean of the response variable corresponding to each value of the
predictor variable. If the predictor variable takes on more than 10 distinct values,
then use typical values, such as smooth decile values, as defined in Chapter 3.
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2. Calculate the logit of response using the formula that converts the mean of
response to logit of response: Logit = In(mean/(1 — mean)), where In is the natural
logarithm.

3. Plot the logit-of-response values against the original distinct or the smooth decile
values of the predictor variable.

A point worth noting: The logit plot is an aggregate-level, not individual-level, plot. The
logit is an aggregate measure based on the mean of individual response values. Moreover,
by using smooth decile values, the plot is further aggregated as each decile value repre-
sents 10% of the sample.

I provide the SAS subroutines for generating smooth logit and smooth probability plots
in Chapter 43.

10.4.1 Logits for Case Study

For the case study, the response variable is TXN_ADD, and the logit of TXN_ADD is named
LGT_TXN. For no particular reason, I start with candidate predictor variable FD1_OPEN,
which takes on the distinct values 1, 2, and 3 in Table 10.7. Following the three-step con-
struction for each FD1_OPEN value, I generate the LGT_TXN logit plot in Figure 10.2. I cal-
culate the mean of TXN_ADD and use the mean-to-logit conversion formula. For example,
for FD1_OPEN =1, the mean of TXN_ADD is 0.07, and the logit LGT_TXN is —2.4 (= In(0.07/
(1 - 0.07)). Last, I plot the LGT_TXN logit values against the FD1_OPEN values.

The LGT_TXN logit plot for FD1_OPEN does not suggest an underlying straight-line
relationship between LGT_TXN and FD1_OPEN. To use the LRM correctly, I need to

TABLE 10.7
FD1_OPEN
Mean
FD1_OPEN TXN_ADD LGT_TXN
1 0.07 2.4
2 0.18 -15
3 0.20 -14
-1.0 +
X
Zz -15 7 X
<
5
[_4
Y 201
X
-2.5 +
1 2 3
FD1_OPEN

FIGURE 10.2
Logit plot for FD1_OPEN.
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straighten the relationship. A very effective and simple technique for straightening data is
reexpressing, which uses Tukey’s ladder of powers and the bulging rule. Before presenting
the details of the technique, it is worth discussing the importance of straight-line relation-
ships or straight data.

10.5 The Importance of Straight Data

EDA places special importance on straight data, not in the least for the sake of simplicity
itself. The paradigm of life is simplicity (at least for those of us who are older and wiser).
In the physical world, Einstein uncovered one of the universe’s ruling principles using
only three letters: E = mc?. In the visual world, however, simplicity is undervalued and
overlooked. A smiley face is an unsophisticated, simple shape that nevertheless commu-
nicates effectively, clearly, and efficiently. Why should the data miner accept anything less
than simplicity in his or her life’s work? Numbers, as well, should communicate clearly,
effectively, and immediately. In the data miner’s world, there are two features that reflect
simplicity: symmetry and straightness in the data. The data miner should insist that the
numbers be symmetric and straight.

The straight-line relationship between two continuous variables X and Y is simple as
it gets. As X increases (decreases) in its values, Y increases (decreases) in its values. In
this case, X and Y are positively correlated. Or, as X increases (decreases) in its values,
Y decreases (increases) in its values. In this case, X and Y are negatively correlated. As a
further demonstration of its simplicity, Einstein’s E and m have a perfect positively cor-
related straight-line relationship.

The second reason for the importance of straight data is that most response models
require it as they belong to the class of innumerable varieties of the linear model. Moreover,
nonlinear models, which pride themselves on making better predictions with nonstraight
data, in fact, do better with straight data.

I have not ignored the feature of symmetry. Not accidentally, as there are theoretical
reasons, symmetry and straightness go hand in hand. Straightening data often make data
symmetric and vice versa. You may recall iconic symmetric data have the profile of the
bell-shaped curve. However, symmetric data are defined as their data values have the
same shape (identical on both sides) above and below the middle value of the entire data
distribution.

10.6 Reexpressing for Straight Data

The ladder of powers is a method of reexpressing variables to straighten a bulging rela-
tionship between two continuous variables X and Y. Bulges in the data can be depicted as
one of four shapes, as displayed in Figure 10.3. When the X-Y relationship has a bulge sim-
ilar to any one of the four shapes, both the ladder of powers and the bulging rule, which
guides the choice of “rung” in the ladder, are used to straighten out the bulge. Most data
have bulges. However, when kinks or elbows characterize the data, then another approach
is required, which is discussed further in the chapter.
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FIGURE 10.3
The bulging rule.

10.6.1 Ladder of Powers

Going up-ladder of powers means reexpressing a variable by raising it to a power p greater
than 1. (Remember that a variable raised to the power of 1 is still that variable; X! = X and
Y! =Y). The most common p values used are 2 and 3. Sometimes values higher up-ladder
and in-between values such as 1.33 are used. Accordingly, starting at p = 1, the data miner
goes up-ladder, resulting in reexpressed variables, for X and Y, as follows:

Starting at X': X*, X, X*,X°, ...

Starting at Y': Y*,Y?,Y*,Y°, ...

Some variables reexpressed via going up-ladder have special names. Corresponding to
power values 2 and 3, they are called X squared and X cubed, respectively. Similarly, for
the Y variables, they are called Y squared and Y cubed, respectively.

Going down-ladder of powers means reexpressing a variable by raising it to a power p
that is less than 1. The most common p values are %, 0, -2, and —1. Sometimes, values lower
down-ladder and in-between values such as 0.33 are used. Also, for negative powers, the
reexpressed variable now sports a negative sign (i.e., multiplied by -1). The reason for the
multiplication is theoretical and beyond the scope of this chapter. Accordingly, starting at
p =1, the data miner goes down-ladder, resulting in reexpressed variables for X and Y, as
follows:

Starting at X': X'/, X%, - X7"%, - X", ...

Starting at Y': YV?,Y?, - Y72, Y, ..

Some reexpressed variables via going down-ladder have special names. Corresponding to
values %, -, and —1, they are called the square root of X, the negative reciprocal square root
of X, and the negative reciprocal of X, respectively. Similarly, for the Y variables, they are called
the square root of Y, the negative reciprocal square root of Y, and the negative reciprocal of Y,
respectively. Reexpressions for p = 0 use log to base 10." Thus, X° = log X, and Y° =log Y.

* Reexpression for p = 0 is not mathematically defined but is conveniently defined.
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10.6.2 Bulging Rule
The bulging rule states the following:

1. If the data have a shape similar to that in the first quadrant, then the data miner
tries reexpressing by going up-ladder for X, Y, or both.

2. If the data have a shape similar to that shown in the second quadrant, then the
data miner tries reexpressing by going down-ladder for X or up-ladder for Y.

3. If the data have a shape similar to that in the third quadrant, then the data miner
tries reexpressing by going down-ladder for X, Y, or both.

4. If the data have a shape similar to that in the fourth quadrant, then the data miner
tries reexpressing by going up-ladder for X or down-ladder for Y.

Reexpressing is an important, yet fallible, part of EDA detective work. While it will
typically result in straightening the data, it might result in a deterioration of informa-
tion. Here is why: Reexpression (going down too far) has the potential to squeeze the
data so much that its values become indistinguishable, resulting in a loss of informa-
tion. Expansion (going up too far) can potentially pull apart the data so much that
the new far-apart values lie within an artificial range, resulting in a spurious gain of
information.

Thus, reexpressing requires a careful balance between straightness and soundness.
Data miners can always go to the extremes of the ladder by exerting their will to obtain
a little more straightness, but they must be mindful of a consequential loss of infor-
mation. Sometimes, it is evident when one has gone too far up/down on the ladder:
There is a power p, after which the relationship either does not improve noticeably
or inexplicably bulges in the opposite direction due to a corruption of information.
I recommend using discretion to avoid over-straightening and its potential deteriora-
tion of information. Also, I caution that extreme reexpressions are sometimes due to
the extreme values of the original variables. Thus, always check the maximum and
minimum values of the original variables to make sure they are reasonable before
reexpressing the variables.

10.6.3 Measuring Straight Data

The correlation coefficient measures the strength of the straight-line or linear relationship
between two variables X and Y discussed in detail in Chapter 3. However, there is an addi-
tional assumption to consider.

In Chapter 3, I refer to a “linear assumption,” in that the underlying relationship between
Xand Y is linear. The second assumption is an implicit one: the (X, Y) data points are at the
individual level. When analyzing the (X, Y) points at an aggregate level, such as in the logit
plot and other plots presented in this chapter, the correlation coefficient based on “big”
points tends to produce a “big” r value, which serves as a gross estimate of the individual-
level r value. The aggregation of data diminishes the idiosyncrasies of the individual (X, Y)
points, thereby increasing the resolution of the relationship, for which the r value also
increases. Thus, the correlation coefficient on aggregated data serves as a gross indicator of
the strength of the original X-Y relationship at hand. There is a drawback of aggregation: It
often produces r values without noticeable differences because of loss of the power of the
distinguishing individual-level information.
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10.7 Straight Data for Case Study

Returning to the LGT_TXN logit plot for FD1_OPEN, whose bulging relationship is in need
of straightening, I identify its bulge as the type in quadrant 2 in Figure 10.3. According to
the bulging rule, I should try going up-ladder for LGT_TXN or down-ladder for FD1_
OPEN. Applying the bulging rule to LGT_TXN is not logical because LGT_TXN is the
explicit dependent variable as defined by the logistic regression framework. Reexpressing
it would produce grossly illogical results. Thus, I do not go up-ladder for LGT_TXN.

To go down-ladder for FD1_OPEN, I use the powers %, 0, Y2, -1, and 2. Going down the
ladder results in the square root of FD1_OPEN, labeled FD1_SQRT; the log to base 10 of FD1_
OPEN, labeled FD1_LOG; the negative reciprocal root of FD1_OPEN, labeled FD1_RPRT; the
negative reciprocal of FD1_OPEN, labeled FD1_RCP; and the negative reciprocal square of
FD1_OPEN, labeled FD1_RSQ. The corresponding LGT_TXN logit plots for these reexpressed
variables and the original FD1_OPEN (repeated here for convenience) are in Figure 104.

Plot of LGT_TXN*FD1_OPEN Plot of LGT_TXN*FD1_SQRT

LGT_TXN LGT_TXN
-1.0} -10 }
X X
-15¢ X -15 ¢ X
-2.0 ¢ -20 ¢
X X
-25 ¢ -25 ¢
: I I : I 1 l
1 2 3 1.00 1.25 1.50 175
FD1_OPEN FD1_SQRT
Plot of LGT_TXN*FD1_LOG Plot of LGT_TXN*FD1_RPRT
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-2.0 -201
X X
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FIGURE 10.4

Logit plots for FD1_OPEN and its reexpressed variables.
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Visually, it appears that reexpressed variables FD1_RSQ, FD1_RCP, and FD1_RPRT do an
equal job of straightening the data. I could choose any of them but decide to do a little more
detective work by looking at the numerical indicator—the correlation coefficient between
LGT_TXN and the reexpressed variable—to support my choice of the best-reexpressed vari-
able. The larger the correlation coefficient, the more effective the reexpressed variable is in
straightening the data. Thus, the reexpressed variable with the largest correlation coefficient
is declared the best-reexpressed variable, with exceptions guided by the data miner’s experi-
ence with these visual and numerical indicators in the context of the problem domain.

The correlation coefficients for LGT_TXN with FD1_OPEN and with each reexpressed
variable ranked in descending order are in Table 10.8. The correlation coefficients of the
reexpressed variables represent noticeable improvements in straightening the data over
the correlation coefficient for the original variable FD1_OPEN (r = 0.907). FD1_RSQ has
the largest correlation coefficient (r = 0.998), but it is slightly greater than that for FD1_RCP
(r = 0.988) and therefore not worthy of notice.

My choice of the best-reexpressed variable is FD1_RCP, which represents an 8.9%
(= (0.988 — 0.907)/0.907) improvement in straightening the data over the original relation-
ship with FD1_OPEN. I prefer FD1_RCP over FD1_RSQ and other extreme reexpressions
down-ladder (defined by power p less than —2) because I do not want to select unwittingly
a reexpression that might be too far down-ladder, resulting in loss of information. Thus,
I go back one rung to power -1, hoping to get the right balance between straightness and
minimal loss of information.

10.7.1 Reexpressing FD2_OPEN

Reexpressing for FD2_OPEN is virtually identical to the one presented for FD1_OPEN.
Reexpressing FD2_OPEN is not surprising as FD1_OPEN and FD2_OPEN share a large
amount of information. The correlation coefficient between the two variables is 0.97, mean-
ing the two variables share 94.1% of their variation. Thus, I prefer FD2_RCP as the best-
reexpressed variable for FD2_OPEN (see Table 10.9).

10.7.2 Reexpressing INVESTMENT

The relationship between the LGT_TXN and INVESTMENT, depicted in the plot in
Figure 10.5, is somewhat straight with a negative slope and a slight bulge in the middle for
INVESTMENT values 3,4, and 5. I identify the bulge of the type in quadrant 3 in Figure 10.3.
Thus, going down-ladder for powers %5, 0, =2, -1, and -2 results in the square root of

TABLE 10.8
Correlation Coefficients between LGT_TXN and Reexpressed FD1_OPEN

FD1_RSQ FD1 _RCP FD1_RPRT FD1 LOG FD1_SQRT FD1_OPEN
0.998 0.988 0.979 0.960 0.937 0.907

TABLE 10.9
Correlation Coefficients between LGT_TXN and Reexpressed FD2_OPEN

FD2_RSQ FD2_RCP FD2_RPRT FD2_LOG FD2_SQRT FD2_OPEN
0.995 0.982 0.968 0.949 0.923 0.891
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FIGURE 10.5
Logit plots for INVESTMENT and its reexpressed variables.

INVESTMENT, labeled INVEST_SQRT. The log to base 10 of INVESTMENT is labeled
INVEST_LOG. The negative reciprocal root of INVESTMENT is labeled INVEST_RPRT.
The negative reciprocal of INVESTMENT is labeled INVEST_RCP. And, the negative recip-
rocal square of INVESTMENT is labeled INVEST_RSQ. The corresponding LGT_TXN logit
plots for these reexpressed variables and the original INVESTMENT are in Figure 10.5.
Visually, I like the straight-line produced by INVEST_SQRT. Quantitatively, INVEST_
LOG has the largest correlation coefficient, which supports the statistical factoid that the
log function is the appropriate reexpression for a variable in dollar units. The correla-
tion coefficients for INVEST_LOG and INVEST_SQRT in Table 10.10 are —0.978 and —0.966,
respectively. Admittedly, the correlation coefficients do not reflect a noticeable difference.
My choice of the best reexpression for investment is INVEST_LOG because I prefer the
statistical factoid to my visual choice. Only if a noticeable difference between correlation
coefficients for INVEST_LOG and INVEST_SQRT existed would I sway from being guided
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TABLE 10.10
Correlation Coefficients between LGT_TXN and Reexpressed INVESTMENT

INVEST_LOG INVEST_SQRT INVEST_RPRT INVESTMENT INVEST_RCP INVEST_RSQ
—0.978 —0.966 -0.950 0.946 -0.917 -0.840

by the factoid. INVEST_LOG represents an improvement of 3.4% (= (0.978 — 0.946)/0.946;
disregarding the negative sign) in straightening the data over the relationship with the
original variable INVESTMENT (r = —0.946).

10.8 Techniques when the Bulging Rule Does Not Apply

I describe two plotting techniques for uncovering the correct reexpression when the bulg-
ing rule does not apply. After discussing the techniques, I return to the next variable for
reexpression, MOS_OPEN. The relationship between LGT_TXN and MOS_OPEN is inter-
esting and offers an excellent opportunity to illustrate the data mining flexibility of the
EDA methodology.

It behooves the data miner to perform due diligence either to explain qualitatively or to
account quantitatively for the relationship in a logit plot. Typically, the latter is easier than
the former as the data miner is at best a scientist of data, not a psychologist of data. The
data miner seeks to investigate the plotted relationship to uncover the correct representation
or structure of the given predictor variable. Briefly, structure is an organization of variables
and functions. In this context, variables are broadly defined as both raw variables (e.g., X,
Xy ..., X, ...) and numerical constants, which are variable-like in that they assume any single
value k, that is, X; = k. Functions include the arithmetic operators (addition, subtraction, mul-
tiplication, and division); comparison operators (e.g., equal to, not equal to, greater than); and
logical operators (e.g., and, or, not, if-then-else). For example, X; + X,/X; is a structure.

By definition, any raw variable X; is considered a structure as it can be defined by
Xi=X; + 0, or X; = X;*1. A dummy variable (X_dum)—a variable that assumes two numeri-
cal values, typically 1 and 0, which indicate the presence and absence of a condition,
respectively—is structure. For example, X_dum =1 if X equals 6; X_dum = 0 if X does not
equal 6. The condition is “equals 6.”

10.8.1 Fitted Logit Plot

The fitted logit plot is a valuable visual aid in uncovering and confirming structure. The
fitted logit plot is a plot of the predicted logit against a given structure. The steps required
to construct the plot and its interpretation are as follows:

1. Perform a logistic regression analysis on the response variable with the given
structure, obtaining the predicted logit of response, as outlined in Section 10.2.2.

2. Identify the values of the structure to use in the plot. Identify the distinct values of
the given structure. If the structure has more than 10 values, identify its smooth
decile values.

3. Plot the predicted (fitted) logit values against the identified values of the structure.
Label the points by the identified values.
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4. Infer that if the fitted logit plot reflects the shape in the original logit plot, the struc-
ture is the correct one. This further implies that the structure has some impor-
tance in predicting response. The extent to which the fitted logit plot is different
from the original logit plot indicates the structure is a poor predictor of response.

10.8.2 Smooth Predicted-versus-Actual Plot

Another valuable plot for exposing the detail of the strength or weakness of a structure
is the smooth predicted-versus-actual plot, defined as the plot of mean predicted response
against mean actual response for values of a reference variable. The steps required to con-
struct the plot and its interpretation are as follows:

1. Calculate the mean predicted response by averaging the individual predicted
probabilities of response from the appropriate LRM for each value of the reference
variable. Similarly, calculate the mean actual response by averaging the individual
actual responses for each value of the reference variable.

2. The paired points (mean predicted response, mean actual response) are called
smooth points.

3. Plot the smooth points and label them with the values of the reference variable. If
the structure has more than 10 values, identify its smooth decile values.

4. Insert the 45° line in the plot. The line serves as a reference for visual assessment of
the importance of a structure for predicting response thereby confirming that the
structure under consideration is the correct one. Smooth points on the line imply
that the mean predicted response and the mean actual response are equal, and
there is great certainty that the structure is the correct one. The tighter the smooth
points “hug” the 45° line, the greater the certainty of the structure. Conversely, the
greater the scatter about the line, the lesser the certainty of the structure.

10.9 Reexpressing MOS_OPEN

The relationship between LGT_TXN and MOS_OPEN in Figure 10.6 is not straight in the
full range of MOS_OPEN values from one to six but is straight between values one and
five. The LGT_TXN logit plot for MOS_OPEN shows a check mark shape with vertex at
MOS_OPEN = 5 as LGT_TXN jumps at MOS_OPEN = 6. Clearly, the bulging rule does not
apply.

Accordingly, while uncovering the MOS_OPEN structure, I am looking for the organi-
zation of variables and functions that renders the ideal straight-line relationship between
LGT_TXN and the MOS_OPEN structure. It will implicitly account for the jump in logit
where LGT_TXN at MOS_OPEN = 6. After identifying the correct MOS_OPEN structure,
I can include it in the TXN_ADD response model.

Exploring the structure of MOS_OPEN itself, I generate the LGT_TXN fitted logit plot
(Figure 10.7), based on the logistic regression analysis on TXN_ADD with MOS_OPEN.
The LRM, which provides the predicted logits, is defined in Equation 10.4:

Logit(TXN _ ADD) = —1.24—0.17 * MOS_OPEN (10.4)
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FIGURE 10.7
Fitted logit plot for MOS_OPEN.

Noticeably, MOS_OPEN has six distinct values. The fitted logit plot does not reflect the
shape of the relationship in the original LGT_TXN logit plot in Figure 10.6. The predicted
point at MOS_OPEN = 6 is way too low. The confirmation is MOS_OPEN alone is not the
correct structure as it does not produce the shape in the original logit plot.

10.9.1 Plot of Smooth Predicted versus Actual for MOS_OPEN

I generate the TXN_ADD smooth predicted-versus-actual plot for MOS_OPEN (Figure 10.8),
which depicts both the structure under consideration and the reference variable. The
smooth predicted values are based on the LRM previously defined in Equation 10.4 and
restated here in Equation 10.5 for convenience.

Logit(TXN _ ADD) = —1.24— 0.17 * MOS_OPEN (10.5)

There are six smooth points, each labeled by the corresponding six values of MOS_
OPEN. The scatter about the 45° line is wild, implying MOS_OPEN is not a good predictive
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Legend: 1-6 are values of MOS_OPEN
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FIGURE 10.8
Plot of smooth predicted versus actual for MOS_OPEN.

structure, especially when MOS_OPEN equals 1, 5, 6, and 4, as their corresponding smooth
points are not close to the 45° line. Point MOS_OPEN = 5 is understandable as it can be
considered the springboard to jump into LGT_TXN at MOS_OPEN = 6. MOS_OPEN =1, as
the farthest point from the line, strikes me as inexplicable. MOS_OPEN = 4 may be within
an acceptable distance from the line.

When MOS_OPEN is equal to 2 and 3, the prediction appears to be good as the cor-
responding smooth points are close to the line. Two good predictions of a possible six
predictions result in a poor 33% accuracy rate. Thus, MOS_OPEN is not a good structure
for predicting TXN_ADD. As before, the implication is that MOS_OPEN alone is not the
correct structure to reflect the original relationship between LGT_TXN and MOS_OPEN
in Figure 10.6. More detective work is needed.

It occurs to me that the major problem with MOS_OPEN is the jump point. To account
explicitly for the jump, I create an MOS_OPEN dummy variable structure, defined as

MOS_DUM =1 if MOS_OPEN = 6;

MOS_DUM = 0 if MOS_OPEN not equal to 6.

I generate a second LGT_TXN fitted logit plot in Figure 10.9, this time consisting of the
predicted logits from regressing TXN_ADD on the structure consisting of MOS_OPEN
and MOS_DUM. The LRM definition is in Equation 10.6:

Logit(TXN _ADD) =-0.62-0.38 * MOS_OPEN +1.16 * MOS_DUM (10.6)

This fitted plot accurately reflects the shape of the original relationship between TXN_
ADD and MOS_OPEN in Figure 10.6. The implication is that MOS_OPEN and MOS_DUM
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FIGURE 10.9
Fitted logit plot for MOS_OPEN and MOS_DUM.

Legend: 1-6 are values of MOS_OPEN
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FIGURE 10.10
Plot of smooth predicted versus actual for MOS_OPEN and MOS_DUM.

make up the correct structure of the information carried in MOS_OPEN. The definition of
the structure is the right side of the equation itself.

To complete my detective work, I create the second TXN_ADD smooth predicted-
versus-actual plot in Figure 10.10, consisting of mean predicted logits of TXN_ADD
against mean MOS_OPEN. The predicted logits come from the logistic regression
equation 10.6, which includes the predictor variable pair MOS_OPEN and MOS_DUM.
MOS_OPEN serves as the reference variable. The smooth points hug the 45° line nicely.
The implication is that the MOS_OPEN structure defined by MOS_OPEN and MOS_
DUM is again confirmed, and the two-piece structure is an important predictor of
TXN_ADD.
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10.10 Assessing the Importance of Variables

The classic approach for assessing the statistical significance of a variable considered for
model inclusion is the well-known null hypothesis significance testing procedure based on
the reduction in prediction error (actual response minus predicted response) associated with
the variable in question. The statistical apparatus of the formal testing procedure for logistic
regression analysis consists of the log-likelihood (LL) function, the G statistic, degrees of free-
dom (df), and the p-value. The procedure uses the apparatus within a theoretical framework
with weighty and untenable assumptions. From a purist point of view, this could cast doubt
on findings that have statistical significance. Even if findings of statistical significance are cor-
rectly accepted, they may not be of practical importance or have noticeable value to the study at
hand. For the data miner with a pragmatic slant, the limitations and lack of scalability inher-
ent in the classic system cannot be overlooked, especially within big data settings.

In contrast, the data mining approach uses the LL units, the G statistic, and degrees of
freedom in an informal data-guided search for variables that suggest a noticeable reduc-
tion in prediction error. A point worth noting is that the informality of the data mining
approach calls for a suitable change in terminology, from declaring a result as statistically
significant to one worthy of notice or noticeably important.

Before I describe the data mining approach to variable assessment, I would like to com-
ment on the objectivity of the classic approach as well as degrees of freedom. The classic
approach is so ingrained in the analytic community that no viable alternative occurs to
practitioners, especially an alternative based on an informal and sometimes highly indi-
vidualized series of steps. Declaration of a variable as statistically significant appears to
be purely objective as it is on sound probability theory and statistics machinery. However,
the settings of the testing machinery defined by model builders could affect the results.
The settings include the levels of rejecting a variable as significant when, in fact, it is not or
accepting a variable as not significant when, in fact, it is. Determining the proper sample
size is also a subjective setting as it depends on the amount budgeted for the study. Last,
the model builder’s experience sets the allowable deviation of violations of test assump-
tions. Therefore, by acknowledging the subjective nature of the classic approach, the model
builder can be receptive to the alternative data mining approach, which is free of theoreti-
cal ostentation and mathematical elegance.

A word about degrees of freedom clarifies the discussion. The degrees of freedom, as
typically described, is a generic measure of the number of independent pieces of informa-
tion available for analysis. The measure often is subject to the mathematical adjustment
“replace N with N-1” to ensure accurate results. The concept of degrees of freedom gives
a deceptive impression of simplicity in counting the pieces of information. However, the
principles used in counting are not easy for all but the mathematical statistician. To date,
there is no generalized calculus for counting degrees of freedom. Fortunately, the count-
ing already exists for many analytical routines. Therefore, the correct degrees of freedom
are readily available; computer output automatically provides them, and there are lookup
tables in older statistics textbooks. For the analyses in the following discussions, I provide
degrees of freedom, eliminating the need for counting.

10.10.1 Computing the G Statistic

In data mining, the assessment of the importance of a subset of variables for predicting
response involves the notion of a noticeable reduction in prediction error due to the subset



124 Statistical and Machine-Learning Data Mining

of variables and the ratio of the G statistic to the degrees of freedom, G/df. The degrees of
freedom is the number of variables in the subset. The G statistic is defined, in Equation 10.7,
as the difference between two LL quantities, one corresponding to a model without the sub-
set of variables and the other corresponding to a model with the subset of variables.

G =-2LL(model without variables) — —2LL(model with variables) (10.7)

There are two points worth noting: first, the —2LL units replace the LL units, as a math-
ematical necessity; second, the term subset is used to imply there is always a large set of
variables available from which the model builder considers the smaller subset, which can
include a single variable.

In the following sections, I detail the decision rules in three scenarios for assessing the
likelihood that the variables have some predictive power. In brief, the larger the average
G value per degrees of freedom (G/df), the more important the variables are in predicting
response.

10.10.2 Importance of a Single Variable

If X is the only variable considered for inclusion into the model, the definition of the G
statistic is in Equation 10.8:

G =-2LL(model with intercept only) — —2LL(model with X) (10.8)

The decision rule for declaring X an important variable in predicting response is as fol-
lows: If G/df" is greater than the standard G/df value 4, then X is an important predictor
variable and should be considered for inclusion in the model. Note, the decision rule only
indicates that the variable has some importance not how much importance. The decision
rule implies that a variable X1 with a G/df value greater than variable X2's G/df value
indicates that X1 has a greater likelihood of some importance than does X1. The decision
rule does suggest X1 has greater importance than X2.

10.10.3 Importance of a Subset of Variables
When subset A consisting of k variables is the only subset considered for model inclusion,
the definition of the G statistic is in Equation 10.9:

G =-2LL(model with intercept) — 2LL(model with A(k)variables) (10.9)

The decision rule for declaring subset A important in predicting response is as follows:
If G/k s greater than the standard G/df value 4, then subset A is an important subset of the
predictor variable and is a candidate subset for inclusion in the model. As before, the deci-
sion rule only indicates that the subset has some importance not how much importance.

10.10.4 Comparing the Importance of Different Subsets of Variables

Let subsets A and B consist of k and p variables, respectively. The number of variables in
each subset does not have to be equal. If they are equal, then all but one variable can be

* Obviously, G/df equals G for a single-predictor variable with df = 1.
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the same in both subsets. The definitions of the G statistics for A and B are in Equations
10.10 and 10.11, respectively:

G(k) = 2LL(model with intercept) — —2LL(model with “A” variables) (10.10)
G(p) = —2LL(model with intercept) — —2LL(model with “B” variables) (10.11)

The decision rule for declaring which of the two subsets is more important (i.e., greater
likelihood of having some predictive power) in predicting response is as follows:

1. If G(k)/k is greater than G(p)/p, then subset A is the more important predictor
variable subset; otherwise, B is the more important subset.

2. If G(k)/k and G(p)/p are equal or have comparable values, then both subsets are
to be regarded tentatively as of comparable importance. The model builder should
consider additional indicators to assist in the decision about which subset is better.

It follows clearly from the decision rule that the “more important” subset defines the
better model. Of course, this rule assumes that G(k)/k and G(p)/p are greater than the
standard G/df value 4.

10.11 Important Variables for Case Study

The first step in variable assessment is to determine the baseline LL value for the data
under study. The LRM for TXN_ADD without variables produces two essential bits of
information in Table 10.11:

1. The baseline for this case study is —2LL equals 3606.488.
2. The LRM definition is in Equation 10.12:

Logit(TNX_ ADD = 1) = —1.9965 (10.12)

TABLE 10.11
The LOGISTIC Procedure for TXN_ADD

Response Profile

TXN_ADD COUNT
1 589
4,337
—2LL = 3606.488
Parameter Wald
Variable Estimate Standard Error Chi-Square Pr > Chi-Square
Intercept -1.9965 0.0439 2,067.050 0.0

LOGIT = 1.9965
ODDS = EXP (0.19965) = 0.1358

ODDS _ 0.1358
1+0ODDS ~ 1+0.1358

PROB(TXN_ADD = 1) = =0.119
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There are interesting bits of information in Table 10.11 that illustrate two useful statisti-
cal identities:

1. Exponentiation of both sides of Equation 10.12 produces odds of response equal to
0.1358. Recall, exponentiation is the mathematical operation of raising a quantity
to a power. The exponentiation of a logit is the odds. Consequently, the exponen-
tiation of —1.9965 is 0.1358. See Equations 10.13 through 10.15.

Exp(Logit(TNX _ADD = 1)) = Exp(—1.9965) (10.13)
Odds(TNX_ADD = 1) = Exp(—1.9965) (10.14)
Odds(TNX_ADD =1)=0.1358 (10.15)

2. The probability of (TNX_ADD = 1), hereafter the probability of RESPONSE, is eas-
ily obtained as the ratio of odds divided by 1 + odds. The implication is that the
best estimate of RESPONSE—when no information or variables are available—is
11.9%, namely, the average response of the mailing.

10.11.1 Importance of the Predictor Variables

With the LL baseline value 3,606.488, I assess the importance of the five variables: MOS_
OPEN and MOS_DUM, FD1_RCP, FD2_RCP, and INVEST_LOG. Starting with MOS_OPEN
and MOS_DUM, as they must be together in the model, I perform a logistic regression
analysis on TXN_ADD with MOS_OPEN and MOS_DUM. The output is in Table 10.12.
From Equation 10.9, the G value is 107.022 (= 3,606.488 — 3,499.466). The degree of freedom is
equal to the number of variables; df is 2. Accordingly, G/df equals 53.511, which is greater
than the standard G/df value of 4. Thus, the pair MOS_OPEN and MOS_DUM are impor-
tant predictor variables of TXN_ADD.

From Equation 10.8, the G/df value for each remaining variable in Table 10.12 is greater
than 4. Thus, these five variables, each important predictors of TXN_ADD, comprise a
starter subset for predicting TXN_ADD. I have not forgotten about FD_TYPE, discussed
in Section 10.16.

I build a preliminary model by regressing TXN_ADD on the starter subset; the output
is in Table 10.13. From Equation 10.9, the five-variable subset has a G/df value of 40.21
(= 201.031/5), which is greater than 4. Thus, this is an incipient subset of important vari-
ables for predicting TXN_ADD.

TABLE 10.12

G and df for Predictor Variables

Variable -2LL G df P
Intercept 3606.488

MOS_OPEN + MOS_DUM 3499.466 107.023 2 0.0001
FD1_RCP 3511.510 94.978 1 0.0001
FD2_RCP 3503.993 102.495 1 0.0001
INV_LOG 3601.881 4.607 1 0.0001
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TABLE 10.13
Preliminary Logistic Model for TXN_ADD with Starter Subset

Intercept  Intercept and All

Only All Variables Variables
-2LL 3606.488 3405.457 201.031 with 5 df
(p = 0.0001)

Parameter Standard Wald Pr>
Variable Estimate Error Chi-Square Chi-Square
Intercept 0.9948 0.2462 16.3228 0.0001
FD2_RCP 3.6075 0.9679 13.8911 0.0002
MOS_OPEN —0.3355 0.0383 76.8313 0.0001
MOS_DUM 0.9335 0.1332 49.0856 0.0001
INV_LOG —0.7820 0.2291 11.6557 0.0006
FD1_RCP —2.0269 0.9698 4.3686 0.0366

10.12 Relative Importance of the Variables

The “mystery” in building a statistical model is that the true subset of variables defining
the true model is not known. The model builder can be most productive by seeking to
find the best subset of variables that defines the final model as an intelli-guess of the true
model. The final model reflects more of the model builder’s effort given the data at hand
than an estimate of the true model itself. The model builder’s attention is toward the most
noticeable, unavoidable collection of predictor variables, whose behavior is known to the
extent the logit plots uncover their shapes and their relationships to response.

There is also magic in building a statistical model, in that the best subset of predictor
variables consists of variables whose contributions to the predictions of the model are
often unpredictable and unexplainable. Sometimes, the most important variable in the
mix drops from the top, in that its contribution in the model is no longer as strong as it was
without the presence of other variables. Other times, the least likely variable rises from
the bottom, in that its contribution in the model is stronger than it was without the pres-
ence of other variables. In the best of times, the variables interact with each other such that
their total effect on the predictions of the model is greater than the sum of their individual
effects.

Unless the variables are uncorrelated with each other (the rarest of possibilities), it is impos-
sible for the model builder to assess the unique contribution of a variable. In practice, the model
builder can assess the relative importance of a variable, specifically, its importance in the pres-
ence of the other variables in the model. The Wald chi-square—as posted in logistic regression
analysis output—serves as an indicator of the relative importance of a variable as well as for
selecting the best subset. Discussion of Wald chi-square is in the next section.

10.12.1 Selecting the Best Subset

The decision rules for finding the best subset of important variables consists of the
following steps:

1. Select an initial subset of important variables. Variables that are thought to be impor-
tant are probably important. Let experience (the model builders and others) in the
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problem domain be the rule. If there are many variables from which to choose,
rank the variables based on the correlation coefficient r (between the response
variable and each candidate predictor variable). One to two handfuls of the experi-
ence-based variables, the largest r-valued variables, and some small r-valued vari-
ables serve as the initial subset. Include the latter variables because small r values
may falsely exclude important nonlinear variables. (Recall that the correlation
coefficient is an indicator of linear relationship.) Categorical variables require spe-
cial treatment as the correlation coefficient is not appropriate. (I illustrate with
FD_TYPE how to include a categorical variable in a model in the last section.)

2. For the variables in the initial subset, generate logit plots and straighten the variables
as required. The most noticeable handfuls of original and reexpressed variables
comprise the starter subset.

3. Perform the preliminary logistic regression analysis on the starter subset. Delete one or
two variables with Wald chi-square values less than the Wald cutoff value of 4 from
the model. Deletion of variables results in the first incipient subset of important
variables.

4. Perform another logistic regression analysis on the incipient subset. Delete one or two
variables with Wald chi-square values less than the Wald cutoff value of 4 from
the model. The model builder can create an illusion of important variables appear-
ing and disappearing with the deletion of different variables. The Wald chi-square
values can exhibit bouncing above and below the Wald cutoff value as the vari-
ables undergo deletion. The bouncing effect is due to the correlation between the
included variables and the deleted variables. A greater correlation implies greater
bouncing (unreliability) of Wald chi-square values. Consequently, the greater the
bouncing of Wald chi-square values implies the greater the uncertainty of declar-
ing important variables.

5. Repeat Step 4 until all retained predictor variables have comparable Wald chi-square val-
ues. This step often results in different subsets as the model builder deletes judi-
cially different pairings of variables.

6. Declare the best subset by comparing the relative importance of the different subsets using
the decision rule in Section 10.10.4.

10.13 Best Subset of Variables for Case Study

I perform a logistic regression on TXN_ADD with the five-variable subset MOS_OPEN
and MOS_DUM, FD1_RCP, FD2_RCP, and INVEST LOG. The output is in Table 10.13.
FD1_RCP has the smallest Wald chi-square value, 4.3686. FD2_RCP, which has a Wald chi-
square of 13.8911, is highly correlated with FD1_RCP (rgp; rep ppy_rep = 0.97), thus rendering
their Wald chi-square values unreliable. However, without additional indicators for either
variable, I accept their face values as an indirect message and delete FD1_RCP, the variable
with the lesser value.

INVEST_LOG has the second smallest Wald chi-square value, 11.6557. With no appar-
ent reason other than it just appears to have a less-relative importance given MOS_OPEN,
MOS_DUM, FD1_RCP, and FD2_RCP in the model, I also delete INVEST LOG from the
model. Thus, the incipiently best subset consists of FD2_RCP, MOS_OPEN, and MOS_DUM.
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TABLE 10.14
Logistic Model for TXN_ADD with Best Incipient Subset

Intercept  Intercept and All

Only All Variables Variables
-2LL 3606.488 3420.430 186.058 with 3 df
(p = 0.0001)

Parameter Standard Wald Pr>
Variable Estimate Error Chi-Square Chi-Square
Intercept 0.5164 0.1935 7.1254 0.0076
FD2_RCP 1.4942 0.1652 81.8072 0.0001
MOS_OPEN -0.3507 0.0379 85.7923 0.0001
MOS_DUM 0.9249 0.1329 48.4654 0.0001

I perform another logistic regression on TXN_ADD with the three-variable subset
(FD2_RCP, MOS_OPEN, and MOS_DUM). The output is in Table 10.14. MOS_OPEN and
FD2_RCP have comparable Wald chi-square values, 81.8072 and 85.7923, respectively,
which are obviously greater than the Wald cutoff value 4. The Wald chi-square value
for MOD_DUM is half of that of MOS_OPEN and is not comparable to the other values.
However, MOS_DUM is staying in the model because it is empirically needed (recall
Figures 10.9 and 10.10). I acknowledge that MOS_DUM and MOS_OPEN share informa-
tion, which could be affecting the reliability of their Wald chi-square values. The actual
amount of shared information is 42%, which indicates there is a minimal effect on the
reliability of their Wald chi-square values.

I compare the importance of the current three-variable subset (FD2_RCP, MOS_OPEN,
MOS_DUM) and the starter five-variable subset (MOS_OPEN, MOS_DUM, FD1_RCP,
FD2_RCP, INVEST_LOG). The G/df values are 62.02 (= 186.058/3 from Table 10.14) and
40.21 (= 201.031/5 from Table 10.13) for the former and latter subsets, respectively. Based
on the decision rule in Section 10.10.4, I declare the three-variable subset is better than the
five-variable subset. Thus, I expect good predictions of TXN_ADD based on the three-
variable model defined in Equation 10.16:

Predicted Logit TXN_ADD = Predicted LGT_TXN
(10.16)
=0.5164+1.4942*FD2 _ RCP - 0.3507 * MOS _ OPEN + 0.9249* MOS _ DUM

10.14 Visual Indicators of Goodness of Model Predictions

In this section, I provide visual indicators of the quality of model predictions. The LRM
itself is a variable as it is a sum of weighted variables with the logistic regression coef-
ficients serving as the weights. As such, the logit model prediction (e.g., the predicted
LGT_TXN) is a variable that has a mean, a variance, and all the other descriptive mea-
sures afforded any variable. Also, the logit model prediction can be graphically displayed
as afforded any variable. Accordingly, I present three valuable plotting techniques, which
reflect the EDA-prescribed graphic detective work, for assessing the goodness of model
predictions.
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10.14.1 Plot of Smooth Residual by Score Groups

The plot of smooth residual by score groups is the plot consisting of the mean residual against
the mean predicted response by score groups, identified by the unique values created by
preselected variables—typically the predictor variables in the model under consideration.
For example, for the three-variable model, there are 18 score groups: three values of FD2_
RCP multiplied by six values of MOS_OPEN. The two values of MOS_DUM are not unique
as they are part of the values of MOS_OPEN.

The steps required to construct the plot of the smooth residual by score groups and its
interpretation are as follows:

1. Score the data by appending the predicted logit as outlined in Section 10.2.2.

2. Convert the predicted logit to the predicted probability of response as outlined in
Section 10.2.2.

3. Calculate the residual (error) for an individual: Residual = actual response minus
predicted probability of response.

4. Determine the score groups by the unique values created by the preselected
variables.

5. For each score group, calculate the mean (smooth) residual and mean (smooth)
predicted response, producing a set of paired smooth points (smooth residual,
smooth predicted response).

6. Plot the smooth points by score group.

7. Draw a straight line through mean residual = 0. This zero line serves as a reference
line for determining whether a general trend exists in the scatter of smooth points.
If the smooth residual plot looks like the ideal or null plot (i.e., has a random scatter
about the zero line with about half of the points above the line and the remaining
points below), then it is concluded that there is no general trend in the smooth
residuals. Thus, the predictions aggregated at the score group level are considered
good. The desired implication is that on average the predictions at the individual
level are also good.

8. Examine the smooth residual plot for noticeable deviations from random scatter.
Such examination is at best a subjective task as it is the unwitting nature of the
model builder to find what is sought. To aid in an objective examination of the
smooth residual plot, use the general association test discussed in Chapter 3 to
determine whether the smooth residual plot is equivalent to the null plot.

9. When the smooth residual plot is declared null, look for a local pattern. It is not
unusual for a small wave of smooth points to form a local pattern, which has no
ripple effect to create a general trend in an otherwise null plot. A local pattern
indicates a weakness or weak spot in the model in that there is a prediction bias for
the score groups identified by the pattern.

10.14.1.1 Plot of the Smooth Residual by Score Groups for Case Study

I construct the plot of smooth residual by score groups to determine the quality of the
predictions of the three-variable (FD2_RCP, MOS_OPEN, MOS_DUM) model. The smooth
residual plot in Figure 10.11 is declared to be equivalent to the null plot based on the general
association test discussed in Chapter 3. Thus, the overall quality of prediction is considered
good. That is, on average, the predicted TXN_ADD is equal to the actual TXN_ADD.
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Legend: A = smooth point for score group
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FIGURE 10.11
Plot of smooth residual by score group for three-variable (FD2_RCP, MOS_OPEN, and MOS_DUM) model.

Easily seen, but not easily understood (at this point in the analysis), is the local pattern
defined by four score groups (labeled 1 through 4) in the lower right-hand side of the plot.
The local pattern explicitly shows that the smooth residuals are noticeably negative. The
local pattern indicates a weak spot in the model as its predictions for the individuals in the
four score groups have, on average, a positive bias; that is, their predicted TXN_ADD tends
to be larger than their actual TXN_ADD.

If the implementation of the model can afford “exception rules” for individuals in a
weak spot, then model performance can be enhanced. For example, response models
typically have a weak spot as prediction bias stems from limited information on new
customers and outdated information on inactive customers. Thus, if model implementa-
tion on a solicitation database can include exception rules (e.g., new customers are always
targeted—assigned to the top decile) and inactive customers placed in the middle deciles,
then the overall quality of prediction is improved.

For use in further discussions, the descriptive statistics for the plot of the smooth resid-
ual by score groups/three-variable model are as follows: (1) For the smooth residuals,
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the minimum and maximum values and the range are —0.26, 0.16, and 0.42, respectively,
and (2) the standard deviation of the smooth residuals is 0.124.

10.14.2 Plot of Smooth Actual versus Predicted by Decile Groups

The plot of smooth actual versus predicted by decile groups is the plot consisting of the mean actual
response against the mean predicted response by decile groups. Decile groups are 10 equal-
sized classes, based on the predicted response values from the LRM under consideration.
Decile groupings are not an arbitrary partitioning of the data as most database models are
implemented at the decile level and consequently are built and validated at the decile level.

The steps required to construct the plot of the smooth actual versus predicted by decile
groups and its interpretation are as follows:

1. Score the data by appending the predicted logit as outlined in Section 10.2.2.

2. Convert the predicted logit to the predicted probability of response as outlined in
Section 10.2.2.

3. Determine the decile groups. Rank in descending order the scored data by the pre-
dicted response values. Divide the scored-ranked data into 10 equal-sized classes.
The first class has the largest mean predicted response, labeled “top”; the next
class is labeled “2,” and so on. The last class has the smallest mean predicted
response, labeled “bottom.”

4. For each decile group, calculate the mean (smooth) actual response and mean
(smooth) predicted response, producing a set of 10 smooth points (smooth actual
response, smooth predicted response).

5. Plot the smooth points by decile group, labeling the points by decile group.

6. Draw the 45° line on the plot. This line serves as a reference for assessing the qual-
ity of predictions at the decile group level. If the smooth points are either on or hug
the 45° line in their proper order (top to bottom, or bottom to top), then predictions,
on average, are considered good.

7. Determine the “tightness” of the hug of the smooth points about the 45° line. To
aid in an objective examination of the smooth plot, use the correlation coefficient
between the smooth actual and predicted response points. The correlation coef-
ficient serves as an indicator of the amount of scatter about the 45° straight line.
The larger the correlation coefficient is, the less scatter there will be and the better
the overall quality of prediction.

8. As discussed in Section 10.6.3, the correlation coefficient based on big points tends
to produce a big r value, which serves as a gross estimate of the individual-level
r value. The correlation coefficient based on smooth actual and predicted response
points is a gross measure of the individual-level predictions of the model. The cor-
relation coefficient serves best as a comparative indicator in choosing the better model.

10.14.2.1 Plot of Smooth Actual versus Predicted by Decile Groups for Case Study

I construct a plot of the smooth actual versus predicted by decile groups based on
Table 10.15 to determine the quality of the three-variable model predictions. The smooth
plot in Figure 10.12 has a minimal scatter of the 10 smooth points about the 45° lines,
with two noted exceptions. Decile groups 4 and 6 appear to be the farthest away from
the line (regarding perpendicular distance). Decile groups 8, 9, and bot are on top of each
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TABLE 10.15

Smooth Points by Deciles from Model Based on FD_RCP,
MOS_OPEN, and MOS_DUM

TXN_ADD Predicted TXN_ADD
Decile N Mean Mean Min Max
top 492 0.069 0.061 0.061 0.061
2 493 0.047 0.061 0.061 0.061
3 493 0.037 0.061 0.061 0.061
4 492 0.089 0.080 0.061 0.085
5 493 0.116 0.094 0.085 0.104
6 493 0.085 0.104 0.104 0.104
7 492 0.142 0.118 0.104 0.121
8 493 0.156 0.156 0.121 0.196
9 493 0.185 0.198 0.196 0.209
bottom 492 0.270 0.263 0.209 0.418
Total 4,926 0.119 0.119 0.061 0.418

Legend: Values top, 2, ..., 9, bot are decile groups
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FIGURE 10.12
Plot of smooth actual versus predicted by decile group for three-variable (FD2_RCP, MOS_OPEN, and MOS_
DUM) model.
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other, which indicate the predictions are the same for these groups. The indication is that
the model cannot discriminate among the least-responding individuals. But because the
implementation of response models typically excludes the lower three or four decile
groups, their spread about the 45° line and their (lack of) order are not as critical a fea-
ture in assessing the quality of the prediction. Thus, the overall quality of prediction is
considered good.

The descriptive statistic for the plot of smooth actual versus smooth predicted by
decile groups/three-variable model is the correlation coefficient between the smooth

p01nts Tsm. actual, sm. predicted: decile group is 0.972.

10.14.3 Plot of Smooth Actual versus Predicted by Score Groups

The plot of smooth actual versus predicted by score groups is the plot consisting of the mean
actual against the mean predicted response by the score groups. Its construction and inter-
pretation are virtually identical to the plot for smooth actual versus predicted by decile
groups. The painlessly obvious difference is that score groups replace decile groups, as in
the discussion in Section 10.14.1 on the plot of the smooth residual by score groups.

I outline the steps compactly for the construction and interpretation of the plot of the
smooth actual versus predicted by score groups:

1. Score the data by appending the predicted logit and convert the predicted logit to
the predicted probability of response.

2. Determine the score groups and calculate their smooth values for actual response
and predicted response.

3. Plot the smooth actual and predicted points by score group.

4. Draw a 45° line on the plot. If the smooth plot looks like the null plot, then it is
concluded that the model predictions aggregated at the score group level are con-
sidered good.

5. Use the correlation coefficient between the smooth points to aid in an objective
examination of the smooth plot. The correlation coefficient serves as an indicator of
the amount of scatter about the 45° line. The larger the correlation coefficient is, the
less scatter there is, and the better the overall quality of predictions is. The correla-
tion coefficient serves best as a comparative measure in choosing the better model.

10.14.3.1 Plot of Smooth Actual versus Predicted by Score Groups for Case Study

I construct the plot of the smooth actual versus predicted by score groups based on
Table 10.16 to determine the quality of the three-variable model predictions. The smooth
plot in Figure 10.13 indicates the scatter of the 18 smooth points about the 45° line is good,
except for the four points on the right-hand side of the line, labeled numbers 1 through 4.
These points correspond to the four score groups, which became noticeable in the smooth
residual plot in Figure 10.11. The indication is the same as that of the smooth residual plot:
The overall quality of the prediction is considered good. However, if the implementation
of the model can afford exception rules for individuals who look like the four score groups,
then the model performance can be improved.

The profiling of the individuals in the score groups is immediate from Table 10.16. The
original predictor variables, instead of the reexpressed versions, are used to make the inter-
pretation of the profile easier. The sizes (20, 56, 28, and 19) of the four noticeable groups are
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TABLE 10.16

Smooth Points by Score Groups from Model Based on
FD2_RCP, MOS_OPEN, and MOS_DUM

TXN_ADD PROB_HAT

MOS_OPEN FD2_OPEN N Mean Mean
1 1 161 0.267 0.209
2 56 0.268 0.359
3 20 0.350 0.418
2 1 186 0.145 0.157
2 60 0.267 0.282
3 28 0.214 0.336
3 1 211 0.114 0.116
2 62 0.274 0.217
3 19 0.158 0.262
4 1 635 0.087 0.085
2 141 0.191 0.163
3 50 0.220 0.200
5 1 1,584 0.052 0.061
2 293 0.167 0.121
3 102 0.127 0.150
6 1 769 0.109 0.104
2 393 0.186 0.196
3 156 0.237 0.238
Total 4,926 0.119 0.119

quite small for groups 1 to 4, respectively, which may account for the undesirable spread
about the 45° line. However, there are three other groups of a small size (60, 62, and 50) that
do not have noticeable spread about the 45° line. So, perhaps group size is not the reason for
the undesirable spread. Regardless of why the unwanted spread exists, the four noticeable
groups indicate that the three-variable model reflects a small weak spot, a segment that
accounts for only 2.5% (= (20 + 56 + 28 + 19)/4,926)) of the sample and, by extension, of the
parent database population. Thus, implementation of the three-variable model is expected
to yield good predictions, even if exception rules cannot be afforded to the weak-spot seg-
ment as its effects on model performance are hardly noticeable.

The descriptive profile of the weak-spot segment is as follows: Newly opened (less than
6 months) accounts of customers with two or three accounts; recently opened (between
6 months and 1 year) accounts of customers with three accounts; and older (between 1 and
1% years) of customers with three accounts. The actual profile cells are

1. MOS_OPEN =1 and FD2_OPEN = 3
2. MOS_OPEN =1 and FD2_OPEN = 2
3. MOS_OPEN =2 and FD2_OPEN = 3
4. MOS_OPEN = 3 and FD2_OPEN = 3

The descriptive statistic for the plot of smooth actual versus smooth predicted by
score groups/three-variable model is the correlation coefficient between the smooth
points r is 0.848.

sm. actual, sm. predicted: score group
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Legend: A = smooth point for score group
1-4 = smooth points for noted score groups
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FIGURE 10.13
Plot of smooth actual versus predicted by score group for three-variable (FD2_RCP, MOS_OPEN, and MOS_
DUM) model.

10.15 Evaluating the Data Mining Work

To appreciate the data mining analysis that produced the three-variable EDA model, I build
a non-EDA model for comparison. I use the stepwise logistic regression variable selection
process, which is a “good” choice for a non-EDA variable selection process, although the dis-
cussion of its weaknesses is in Chapter 13. The stepwise and other statistics-based variable
selection procedures can be questionably classified as minimal data mining techniques
as they only find the best subset of the original variables without generating potentially
important variables. They do not generate structure in the search for the best subset of
variables. Specifically, they do not create new variables such as reexpressed versions of the
original variables or derivative variables such as dummy variables defined by the original
variables. In contrast, the most productive data mining techniques generate structure from
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TABLE 10.17
Best Non-EDA Model Criteria for Assessing Model Fit

Intercept and
Intercept Only All Variables All Variables

-2LL 3606.488 3483.857 122.631 with 2 df
(p =0.0001)
Parameter Standard Wald Pr>
Variable Estimate Error Chi-Square Chi-Square
Intercept -2.0825 0.1634 162.3490 0.0001
FD2_OPEN 0.6162 0.0615 100.5229 0.0001
MOS_OPEN -0.1790 0.0299 35.8033 0.0001

the original variables and determine the best combination of those structures along with
the original variables. More about variable selection is presented in Chapters 13 and 41.

I perform a stepwise logistic regression analysis on TXN_ADD with the original five vari-
ables. The analysis identifies the best non-EDA subset consisting of only two variables: FD2_
OPEN and MOS_OPEN. The output is given in Table 10.17. The G/df value is 61.3 (= 122.631),
which is comparable to the G/df value (62.02) of the three-variable (FD2_RCP, MOS_OPEN,
MOS_DUM) EDA model. Based on the G/df indicator of Section 10.10.4, I cannot declare that
the three-variable EDA model is better than the two-variable non-EDA model.

Could it be that all the EDA detective work was for naught—that the quick-and-dirty
non-EDA model was the obvious one to build? The answer is no. Remember that an indi-
cator is sometimes just an indicator that serves as a pointer to the next thing, such as mov-
ing on to the ladder of powers. Sometimes, it is an instrument for automatically making
a decision based on visual impulses, such as determining if the relationship is straight
enough or the scatter in a smooth residual plot is random. And sometimes, a lowly indica-
tor does not have the force of its own to send a message until it is in the company of other
indicators (e.g., smooth plots and their aggregate-level correlation coefficients).

I perform a simple comparative analysis of the descriptive statistics stemming from the
EDA and non-EDA models to determine the better model. I need only to construct the three
smooth plots—smooth residuals at the score group level, smooth actuals at the decile group
level, and smooth actuals at the score group level—from which I obtain the descriptive
statistics for the latter model. I already have the descriptive statistics for the former model.

10.15.1 Comparison of Plots of Smooth Residual by Score
Groups: EDA versus Non-EDA Models

I construct the plot of the smooth residual by score groups in Figure 10.14 for the non-EDA
model. The plot is not equivalent to the null plot based on the general association test.
Thus, the overall quality of the predictions of the non-EDA model is not considered good.
There is a local pattern of five smooth points in the lower right-hand corner below the
zero line. The five smooth points, labeled L, II, IIL, IV, and V, indicate that the predictions
for the individuals in the five score groups have, on average, a positive bias. That is, their
predicted TXN_ADD tends to be larger than their actual TXN_ADD. There is a smooth
point, labeled VI, at the top of the plot that indicates a group of individuals with a nega-
tive average bias. That is, their predicted TXN_ADD tends to be smaller than their actual
TXN_ADD.
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Smooth residual

FIGURE 10.14
Smooth residual by score group plot for non-EDA (FD2_OPEN, MOS_OPEN) model.
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Legend: A = smooth point for score group
I-IV = smooth points for noted score groups
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The descriptive statistics for the plot of the smooth residual by score groups/non-EDA
model are as follows: For the smooth residual, the minimum and maximum values and
the range are —0.33, 0.29, and 0.62, respectively. The standard deviation of the smooth
residuals is 0.167.

The comparison of the EDA and non-EDA smooth residuals indicates the EDA model
produces smaller smooth residuals (prediction errors). The EDA smooth residual range is
noticeably smaller than that of the non-EDA: 32.3% (= (0.62 — 0.42)/0.62) smaller. The EDA
smooth residual standard deviation is noticeably smaller than that of the non-EDA: 25.7%
(= (0.167 — 0.124)/0.167) smaller. The implication is that the EDA model has a better quality
of prediction.
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10.15.2 Comparison of the Plots of Smooth Actual versus Predicted
by Decile Groups: EDA versus Non-EDA Models

I construct the plot of smooth actual versus smooth predicted by decile groups in
Figure 10.15 for the non-EDA model. The plot clearly indicates a scatter that does not
hug the 45° line well, as decile groups top and 2 are far from the line, and 8, 9, and bot
are out of order, especially bot. The decile-based correlation coefficient between smooth
POintS Tsm. actual, sm. predicted: decile group is 0.759.

The comparison of the decile-based correlation coefficients of the EDA and non-EDA
indicates that the EDA model produces a larger decile-based correlation coefficient and a
tighter hug about the 45° line. The EDA correlation coefficient is noticeably larger than that
of the non-EDA: 28.1% (= (0.972 — 0.759)/0.759) larger. The implication is that the EDA model
has a better quality of prediction at the decile level.

Legend: Values top, 2, ..., 9, bot are decile groups
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FIGURE 10.15
Smooth actual versus predicted by decile group plot for non-EDA (FD2_OPEN, MOS_OPEN) model.
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10.15.3 Comparison of Plots of Smooth Actual versus Predicted
by Score Groups: EDA versus Non-EDA Models

I construct the plot of smooth actual versus predicted by score groups in Figure 10.16 for
the non-EDA model. The plot clearly indicates a scatter that does not hug the 45° line well,
as score groups 1, I1I, V, and VI are far from the line. The score-group-based correlation
coefficient between smooth points g, actual, sm. predicted: score group 15 0-635.

The comparison of the plots of the score-group-based correlation coefficient of the EDA
and non-EDA smooth actual indicates that the EDA model produces a tighter hug about
the 45° line. The EDA correlation coefficient is noticeably larger than that of the non-EDA:
33.5% (= (0.848 — 0.635)/0.635) larger. The implication is that the EDA model has a better
quality of prediction at the score group level.

Legend: A = smooth point for score group
I-IV = smooth points for noted score groups
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FIGURE 10.16
Smooth actual versus predicted by score group plot for non-EDA (FD2_OPEN, MOS_OPEN) model.
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10.15.4 Summary of the Data Mining Work

From the comparative analysis, I have the following determinations:

1. The overall quality of the predictions of the EDA model is better than that of the
non-EDA as the smooth residual plot of the former is null and that of the non-EDA
model is not.

2. The prediction errors of the EDA model are smaller than those of the non-EDA as
the smooth residuals of the former have less spread (smaller range and standard
deviation). Also, the EDA model has better aggregate-level predictions than those
of the non-EDA as the former model has less prediction bias (larger correlations
between smooth actual and predicted values at decile and score group levels).

3. I conclude that the three-variable EDA model consisting of FD2_RCP, MOS_OPEN,

and MOS_DUM is better than the two-variable non-EDA model consisting of
FD2_OPEN and MOS_OPEN.

As the last effort to improve the EDA model, I consider the last candidate predictor vari-
able FD_TYPE for data mining in the next section.

10.16 Smoothing a Categorical Variable

The classic approach to include a categorical variable into the modeling process involves
dummy variable coding. A categorical variable with k classes of qualitative information is
uniquely equivalent to a set of k — 1 quantitative dummy variables. The set of dummy
variables replaces the categorical variable in the modeling process. The dummy variable
assumes values of 1 or 0 for the presence or absence, respectively, of the class values. The
class left out is called the reference class. The reference class is the baseline for compar-
ing the other classes when interpreting the effects of dummy variables on the response
variable. The classic approach instructs that the complete set of k — 1 dummy variables
is included in the model regardless of the number of dummy variables that are declared
nonsignificant. This approach is problematic when the number of classes is large, which
is typically the case in big data applications. By chance alone, as the number of class val-
ues increases, the probability of one or more dummy variables declared nonsignificant
increases. To put all the dummy variables in the model effectively adds noise or unreli-
ability to the model as nonsignificant variables are known to be noisy. Intuitively, a large
set of inseparable dummy variables poses difficulty in model building in that they quickly
“fill up” the model, not allowing room for other variables.

The EDA approach of treating a categorical variable for model inclusion is a viable alter-
native to the classic approach as it explicitly addresses the problems associated with a
large set of dummy variables. It reduces the number of classes by merging (smoothing
or averaging) the classes with comparable values of the dependent variable under study,
which for the application of response modeling is the response rate. The smoothed cat-
egorical variable, now with fewer classes, is less likely to add noise to the model and allows
more room for other variables to get into the model.

There is an additional benefit offered by smoothing a categorical variable. The informa-
tion captured by the smoothed categorical variable tends to be more reliable than that of the
complete set of dummy variables. The reliability of information of the categorical variable
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is only as good as the aggregate reliability of information of the individual classes. Classes
of small size tend to provide unreliable information. Consider the extreme situation of a
class of size one. The estimated response rate for this class is either 100% or 0% because
the sole individual either responds or does not respond, respectively. It is unlikely that
the estimated response rate is the true response rate for this class. This class is considered
to provide unreliable information regarding its true response rate. Thus, the reliability of
information for the categorical variable itself decreases as the number of small class values
increases. The smoothed categorical variable tends to have greater reliability than the set
of dummy variables because it intrinsically has fewer classes and consequently has larger
class sizes due to the merging process. The rule of thumb of EDA for small class size is that
less than 200 is considered small.

CHAID is often the preferred EDA technique for smoothing a categorical variable. In
essence, CHAID is an excellent EDA technique as it involves the three main elements of
statistical detective work: numerical, counting, and graphical. CHAID forms new larger
classes based on a numerical merging, or averaging, of response rates and counts the
reduction in the number of classes as it determines the best set of merged classes. Last, the
output of CHAID is conveniently presented in an easy to read and understand graphical
display, a treelike box diagram with leaf boxes representing the merged classes.

The technical details of the merging process of CHAID are beyond the scope of this
chapter. CHAID is discussed in detail in subsequent chapters, so here I briefly discuss
and illustrate it with the smoothing of the last variable to be considered for predicting
TXN_ADD response, namely, FD_TYPE.

10.16.1 Smoothing FD_TYPE with CHAID

Remember that FD_TYPE is a categorical variable that represents the product type of the
customer’s most recent investment purchase. It assumes 14 products (classes) coded A, B,
C, ..., N. The TXN_ADD response rate by FD_TYPE values are in Table 10.18.

TABLE 10.18
FD_TYPE

TXN_ADD
FD_TYPE N MEAN

A 267 0.251
B 2,828 0.066
C 250 0.156
D 219 0.128
E 368 0.261
F 42 0.262
G 45 0.244
H 225 0.138
I 255 0.122
J 57 0.193
K 94 0.202
L 126 0.222
M 19 0.421
N 131 0.160

Total 4,926 0.119
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FIGURE 10.17
Double smoothing of FD_TYPE with CHAID.
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There are seven small classes (F, G, J, K, L, M, and N) with sizes 42, 45, 57, 94, 126,
19, and 131, respectively. Their response rates—0.26, 0.24, 0.19, 0.20, 0.22, 0.42, and 0.16,
respectively—can be considered potentially unreliable. Class B has the largest size, 2,828,
with a surely reliable 0.06 response rate. The remaining six presumably reliable classes

(A, C, D, E, and H) have sizes between 219 and 368.
The CHAID tree for FD_TYPE in Figure 10.17 is read and interpreted as follows:

1. The top box, the root of the tree, represents the sample of 4,926 with a response rate

2.

of 11.9%.

The CHAID technique smooths FD_TYPE by way of merging the original 14
classes into 3 merged (smoothed) classes, as displayed in the CHAID tree with
three leaf boxes.

. The leftmost leaf, which consists of the six of the small (N is excluded), unreliable

classes and the two reliable classes A and E, represents a newly merged class with
a reliable response rate of 24.7% based on a class size of 1,018. In this situation,
the smoothing process increases the reliability of the small classes with two-step
averaging. The first step combines all the small classes into a temporary class,
which by itself produces a reliable average response rate of 22.7% based on a class
size of 383. In the second step, which does not always occur in smoothing, the tem-
porary class is further united with the already-reliable classes A and E because
the latter classes have comparable response rates to the temporary class response
rate. The double-smoothed newly merged class represents the average response rate
of the seven small classes and classes A and E. When double smoothing does not
occur, the temporary class is the final class.

. The smoothing of a categorical variable clearly provides increased reliability.

Consider class M with its unreliable estimated response rate of 42% based on class
size 19. The smoothing process puts class M in the larger, more reliable leftmost
leaf with a response rate of 24.7%. The implication is that class M now has a more
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I call the smoothed categorical variable CH_TYPE. Its three classes are labeled 1, 2, and 3,
corresponding to the leaves from left to right, respectively (see the bottom of Figure 10.17).
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reliable estimate of response rate, namely, the response rate of its newly assigned
class, 24.7%. Thus, the smoothing has effectively adjusted the originally estimated
response rate of class M downward, from a positively biased 42% to a reliable
24.7%. In contrast, within the same smoothing process, the adjustment of class
J is upward, from a negatively biased 19% to 24.7%. It is not surprising that the
two reliable classes, A and E, remain noticeably unchanged, from 25% and 26% to
24.7%, respectively.

. The middle leaf consists of only class B, defined by a large class size of 2,828 with

a reliable response rate of 6.6%. Apparently, the low response rate of class B is
not comparable to any class (original, temporary, or newly merged) response rate
and does not warrant a merging. Thus, the originally estimated response rate of
class B is unchanged after the smoothing process. The unchanged original esti-
mate presents no concern over the reliability of class B because its class size is
largest from the outset.

. The rightmost leaf consists of large classes C, D, H, and I and the small class N for

an average reliable response rate of 13.9% with a class size of 1,080. The smooth-
ing process adjusts the response rate of class N downward, from 16% to a smooth
13.9%. The same adjustment occurs for class C. The remaining classes D, H, and I
experience an upward adjustment.

I also create two dummy variables for CH_TYPE:

1. CH_FTY_1=1if FD_ TYPE=A,E, F G, ], K, L, or M; otherwise, CH_FTY_1 =0;
2. CH_FTY_2 =1if FD_TYPE = B; otherwise, CH_FTY_2 =0.

3. This dummy variable construction uses class CH_TYPE = 3 as the reference class.

If an individual has values CH_FTY_1 = 0 and CH_FTY_2 = 0, then the individual
has implicitly CH_TYPE = 3 and one of the original classes (C, D, H, I, or N).

10.16.2 Importance of CH_FTY_1 and CH_FTY_2

I assess the importance of the CHAID-based smoothed variable CH_TYPE by perform-
ing a logistic regression analysis on TXN_ADD with both CH_FTY_1 and CH_FTY_2 as
the set dummy variable must be together in the model. The output is given in Table 10.19.
The G/df value is 108.234 (= 216.468/2), which is greater than the standard G/df value of 4.
Thus, CH_FTY_1 and CH_FTY_2 together are declared important predictor variables of

TXN_ADD.

TABLE 10.19

G and df for CHAID-Smoothed FD_TYPE

Variable -2LL G df p
Intercept 3606.488

CH_FTY_1 and 3390.021 216.468 2 0.0001

CH_FTY_2
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10.17 Additional Data Mining Work for Case Study

I try to improve the predictions of the three-variable (MOS_OPEN, MOS_DUM, and FD2_
RCP) model with the inclusion of the smoothed variable CH_TYPE. I perform the LRM
on TXN_ADD with MOS_OPEN, MOS_DUM, FD2_RCP, and CH_FTY_1 and CH_FTY_2.
The output is in Table 10.20. The Wald chi-square value for FD2_RCP is less than 4. Thus,
I delete FD2_RCP from the model and rerun the model with the remaining four variables.

The four-variable (MOS_OPEN, MOS_DUM, CH_FTY_1, and CH_FTY_2) model produces
comparable Wald chi-square values for the four variables. The output is in Table 10.21. The
G/df value equals 64.348 (= 257.395/4), which is slightly larger than the G/df (62.02) of the three-
variable (MOS_OPEN, MOS_DUM, FD2_RCP) model. The G/df value is not a strong indica-
tion that the four-variable model has more predictive power than the three-variable model.

In Sections 10.17.1 through 10.174, I perform the comparative analysis, similar to the analysis
of EDA versus non-EDA in Section 10.15, to determine whether the four-variable (4var-) EDA
model is better than the three-variable (3var-) EDA model. I need the smooth plot descriptive
statistics for the latter model as I already have the descriptive statistics for the former model.

TABLE 10.20
Logistic Model: EDA Model Variables plus CH_TYPE Variables

Intercept and
Intercept Only All Variables All Variables

—-2LL 3606.488 3347.932 258.556 with 5 df
(p = 0.0001)

Parameter Standard Wald Pr>
Variable Estimate Error Chi-Square Chi-Square
Intercept -0.7497 0.2464 9.253 0.0024
CH_FTY_1 0.6264 0.1175 28.4238 0.0001
CH_FTY_2 -0.6104 0.1376 19.6737 0.0001
FD2_RCP 0.2377 0.2212 1.1546 0.2826
MOS_OPEN —0.2581 0.0398 42.0054 0.0001
MOS_DUM 0.7051 0.1365 26.6804 0.0001
TABLE 10.21

Logistic Model: Four-Variable EDA Model

Intercept and
Intercept Only All Variables All Variables

—2LL 3606.488 3349.094 257.395 with 4 df
(p =0.0001)
Parameter Standard Wald Pr>

Variable Estimate Error Chi-Square Chi-Square
Intercept -0.9446 0.1679 31.6436 0.0001
CH_FTY_1 0.6518 0.1152 32.0362 0.0001
CH_FTY_2 -0.6843 0.1185 33.3517 0.0001
MOS_OPEN -0.2510 0.0393 40.8141 0.0001

MOS_DUM 0.7005 0.1364 26.3592 0.0001
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10.17.1 Comparison of Plots of Smooth Residual by Score
Group: 4var-EDA versus 3var-EDA Models

The plot of smooth residual by score group for the 4var-EDA model in Figure 10.18 is
equivalent to the null plot based on the general association test. Thus, the overall quality
of the predictions of the model is considered good. It is worthy of notice that there is a
smooth far-out point, labeled FO, in the middle of the top of the plot. This smooth residual
point corresponds to a score group consisting of 56 individuals (accounting for 1.1% of the
data), indicating a weak spot.

The descriptive statistics for the smooth residual by score groups/4var-model plot are as
follows: For the smooth residual, the minimum and maximum values and the range are
-0.198, 0.560, and 0.758, respectively; the standard deviation of the smooth residual is 0.163.

Legend: A = smooth point for score group
1-4 = smooth points for noted score groups

0.6 T
2F0
0.5t
04 t

031

02t

Smooth residual

0.1 1

-0.1 1 A A

-02 1

] | | |
T

1
0 0.1 0.2 0.3 0.4
Smooth predicted TXN_ADD

FIGURE 10.18
Smooth residual by score group plot for 4var-EDA (MOS_OPEN, MOS_DUM, CH_FTY_1, CH_FTY_2) model.
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The descriptive statistics based on all the smooth points, excluding the FO smooth point,
are worthy of notice because such statistics are known to be sensitive to far-out points,
especially when they are smoothed and account for a very small percentage of the data.
For the FO-adjusted smooth residual, the minimum and maximum values and the range
are —0.198, 0.150, and 0.348, respectively; the standard deviation of the smooth residuals
is 0.093.

The comparison of smooth residuals between the 3var-EDA and 4var-EDA models indi-
cates the 3var-EDA model produces smaller smooth residuals than the 4var-EDA model.
The 3var-EDA model smooth residual range is noticeably smaller than that of the latter
model: 44.6% (= (0.758 — 0.42)/0.758) smaller. The 3var-EDA model smooth residual stan-
dard deviation is noticeably smaller than that of the 4var-EDA model: 23.9% (= (0.163 —
0.124/0.163) smaller. The implication is that the CHAID-based dummy variables carrying
the information of FD_TYPE are not important enough to produce better predictions than
that of the 3var-EDA model. In other words, the 3var-EDA model has a better quality of
prediction.

However, if the implementation of the TXN_ADD model permits an exception rule for
the FO score group/weak spot, the implication is the 4var-EDA FO-adjusted model has a
better quality of predictions than the 4var-EDA model. The 4var-EDA FO-adjusted model
produces smaller smooth residuals than the 4var-EDA model. The 4var-EDA FO-adjusted
model smooth residual range is noticeably smaller than that of the 3var-EDA model:
171% (= (042 — 0.348)/0.42) smaller. The 4var-EDA FO-adjusted model smooth residual
standard deviation is noticeably smaller than that of the 3var-EDA model: 25.0% (= (0.124
—0.093)/0.124).

10.17.2 Comparison of the Plots of Smooth Actual versus Predicted
by Decile Groups: 4var-EDA versus 3var-EDA Models

The plot of smooth actual versus smooth predicted by decile groups for the 4var-EDA
model in Figure 10.19 indicates good hugging of scatter about the 45° lines, despite the two
exceptions. First, there are two pairs of decile groups (6 and 7, and 8 and 9) where the
decile groups in each pair are adjacent to each other. The two adjacent pairs indicate that
the predictions are different for decile groups within each pair, which should have the
same response rate. Second, the bot decile group is very close to the line but out of order
and positioned between the two adjacent pairs. Because implementation of response mod-
els typically excludes the lower three or four decile groups, their spread about the 45° line
and their (lack of) order is not as critical a feature in assessing the quality of predictions.
Thus, overall, the plot is considered very good. The coefficient correlation between smooth
actual and smooth predicted points Iy, actual, sm. predicted: decile group 18 0-989.

The comparison of the decile-based correlation coefficient of the 3var-EDA and 4var-EDA
models’ smooth actual plots indicates the latter model produces a meagerly tighter hug
about the 45° line. The 4var-EDA model correlation coefficient is hardly noticeably larger
than that of the three-variable model: 1.76% (= (0.989 — 0.972)/0.972) smaller. The implica-
tion is that both models have equivalent quality of prediction at the decile level.

10.17.3 Comparison of Plots of Smooth Actual versus Predicted by
Score Groups: 4var-EDA versus 3var-EDA Models

The score groups for the plot of the smooth actual versus predicted by score groups for the
4var-EDA model in Figure 10.20 are defined by the variables in the 3var-EDA model to make
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Legend: Values top, 2, ..., 9, bot are decile groups
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FIGURE 10.19

Smooth actual versus predicted by decile group plot for 4var-EDA (MOS_OPEN, MOS_DUM, CH_FTY_1,
CH_FTY_2) model.

an uncomplicated comparison. The plot indicates a very nice hugging about the 45° line,
except for one far-out smooth point, labeled FQO, initially uncovered by the smooth residual
plot in Figure 10.18. The score-group-based correlation coefficient between all smooth points
Ty, actual, sm. predicted: score group 15 0-784. The score-group-based correlation without the far-out
score group FO, T, actual, sm. predicted: score group-ro 18 0.915. The comparison of the score-group-
based correlation coefficient of the 3var-smooth and 4var-smooth actual plots indicates that
the 3var-EDA model produces a somewhat noticeably tighter hug about the 45° line. The
3var-EDA model score-group-based correlation coefficient is somewhat noticeably larger
than that of the 4var-EDA model: 8.17% (= (0.848 — 0.784)/0.784) larger. The implication is the
3var-EDA model has a somewhat better quality of prediction at the score group level.
However, the comparison of the score group based correlation coefficient of the 3var-smooth
and 4var-smooth actual plots without the FO score group produces a reverse implication.



Logistic Regression 149

Legend: A = smooth point for score group
1-4 = smooth points for noted score groups
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FIGURE 10.20

Smooth actual versus predicted by score group plot for 4var-EDA (MOS_OPEN, MOS_DUM, CH_FTY_1, CH_
FTY_2) model.

The 4var-EDA model without the FO group score group based correlation coefficient is some-
what noticeably larger than that of the three-variable model: 7.85% (= (0.915 — 0.848)/0.848)
larger. The implication is the 4var-EDA model without the FO score group has a somewhat
better quality of prediction at the score group level than the 3var-EDA model.

10.17.4 Final Summary of the Additional Data Mining Work
The comparative analysis offers the following:
1. The overall quality of the 3var-EDA and 4var-EDA models is considered good as

both models have a null smooth residual plot. Worthy of notice, there is a very small
weak spot (FO score group accounting for 1.1% of the data) in the latter model.
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2. The 3var-EDA model prediction errors are smaller than the prediction errors of the
4var-EDA model as the former model’s smooth residuals have less spread (smaller
range and standard deviation). The 3var-EDA model has equivalent, or somewhat
better, aggregate-level predictions as it has equivalent or somewhat less prediction
bias (equivalent/larger correlation between smooth actual and predicted values at
the decile level/score group level).

3. If the model implementation can accommodate an exception rule for the FO weak
spot, the indicators suggest that the 4var-EDA FO-adjusted model has less spread
and somewhat better aggregate-level predictions.

4. In sum, I prefer the 3var-EDA model, consisting of MOS_OPEN, MOS_DUM, and
FD2_RCP. If exception rules for the far-out score group can be effectively devel-
oped and reliably used, I prefer the 4var-EDA model, consisting of MOS_OPEN,
MOS_DUM, CH_FTY_1, and CH_FTY_2.

10.18 Summary

I present the LRM as the workhorse of response modeling. As such, I demonstrate how
it fulfills the desired analysis of a binary response variable in that it provides individual
probabilities of response as well as yields a meaningful aggregation of individual-level
probabilities into decile-level probabilities of response. The decile-level probabilities of
response are often necessary for database implementation of response models. Moreover,
I show the durability and usefulness of the 60-plus-year-old logistic regression analysis
and modeling technique as it works well within the EDA /data mining paradigm of today.

I illustrate the rudiments of the LRM by discussing the SAS program for building and
scoring an LRM. Working on a small dataset, I point out—and ultimately clarify—an
often-vexing relationship between the actual and predicted response variables: The for-
mer assumes two nominal values, typically 1-0 for yes-no responses, respectively, yet the
latter assumes logits, which are continuous values between —7 and +7.

Next, I present a case study that serves as the vehicle for introducing a host of data min-
ing techniques, inspired by the EDA paradigm and tailored to logistic regression mod-
eling. The techniques involve the concept of importance, not significance, of individual
predictor variables and subsets of predictor variables as well as the indispensable use of
smooth plots. The case study produces a final comparison of a data-guided EDA model
and a non-EDA model. The EDA model is the preferred model with a better quality of
predictions.

I provide the SAS subroutines for generating the essential smooth logit and smooth
probability plots in Chapter 44.
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Predicting Share of Wallet without Survey Data

11.1 Introduction

The share of wallet (SOW), the percentage of a customer's total spending that a company
captures from the customer, is a key statistic used in implementing marketing strategies.
Although simply defined, SOW calculations are problematically difficult because competi-
tors’ customer data are not readily available. The tried and true, and always used, approach
for predicting SOW is with survey data. The purpose of this chapter is to present a two-
step approach for predicting SOW without survey data. I illustrate the proposed method
for the credit card industry who is a primary user of SOW. I present a case study in detail,
as well as provide SAS© subroutines, that readers should find valuable for their toolkits.
The subroutines are also available for downloading from my website: http://www.geniq.
net/articles.html#section9.

11.2 Background

In today’s world of big data, advancements in statistical methodologies, and gains in
computer-intensive parallel processing, companies often find themselves not fully fur-
nished with data about their customers. A company clearly has a complete history of its
customers’ transactional data but does not know about their customers’ transactions with
competitors. Depending upon its objectives, the company might be able to purchase exter-
nal data (expensive and not always complete itself) or to conduct a survey (expensive,
time-consuming, and biased) to fill the data gap.

SOW is a key measure used in implementing marketing strategies as well as in
monitoring a company’s vitals such as customer loyalty, trends in attrition, retention, and
profit. A company develops a market campaign to stir any one of its primary spending
categories. In developing the campaign, the company needs to know the SOW for the cat-
egory of interest for each of its accounts.

I present the proposed method with a case study of a business credit card company. The
choice of credit card study is quite appropriate because credit card companies routinely
rely on SOW.

Say the category of interest is Supplies. Targeting to accounts with large Supplies-SOW
values is done with the gentle voice. Optionally, if the company wants to harvest accounts
with small Supplies-SOW values, then such accounts are targeted with a highly attractive
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message, embedded with alluring tokens such as discounts, additional bonus points, or
deferred payment plans.

11.2.1 SOW Definition

The base definition of SOW is a customer’s spending for a given product or service over a
period divided by the customer’s total spending over the period. Although simply defined,
SOW calculations are problematically difficult because competitors’ customer data are not
readily available. A credit card company knows all details of its customers’ purchases
with its card but is at a significant disadvantage without information about its customers’
purchase transactions made with its competitors’ credit cards.

In practice, the popular approach for predicting SOW is with survey data. Survey data
are the source for obtaining the purchases of the other credit cards—the competitor.
The time and cost to conduct a survey are lengthy and expensive. More importantly,
survey data are not known for their quality, that is, the reliability and validity of
data [1,2]. I believe the literature has one article that uses a two-stage statistical model
for predicting wallet (total dollars spent for a product or service) and SOW without
survey data (Glady and Croux 2009). The model is restrictive, limited, and not ready
for practical use. The authors conclude their wallet-SOW model is preliminary and call
for additional research [3].

11.2.1.1 SOW_q Definition

The proposed quasi-SOW, labeled SOW_g, is defined as SOW for accounts that appear to
have varying levels of total spending and use probabilistic weights to estimate a business
account’s total spending across all categories. I present thoroughly, including all important
particulars, the calculating and modeling of SOW_q for a real case study of a business
credit card company (the company name AMPECS is fictitious). Generalization of SOW_q
to any industry sector, product, or service is straightforward.

11.2.1.2 SOW_gq Likeliness Assumption
The underlying assumption for SOW_q for a company is:

1. A business account that shows large spending across all categories of expendi-
tures for a given period has a large SOW_q because the account has not likely used
other credit cards.

2. A business account with small spending across all categories of expenditures for
a given period has a small SOW_q because the account has likely used other credit
cards.

3. A business account that shows middling spending across all categories of expen-
ditures for a given period has a middling SOW_q because the account has some-
what likely used other credit cards.

Because the likeliness assumption is the linchpin of the proposed SOW_q heuristic,
I want a conservative approach to the SOW_q calculations to remove any upward bias
inherent in the approach. So, I reduce the values of SOW_q by factors within SOW_q
ranges. For example, one such rescaling is: if 0.20 < SOW_q < 0.30, then SOW_q =
SOW_q*0.20.
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11.3 Illustration of Calculation of SOW_q

AMPECS, one of the nine major business credit card companies, is seeking a SOW
model to affect a successful marketing campaign of its top-spending business accounts.
AMPECS wants to use the industry metric SOW, but they do not want to use any
resources for conducting a survey. I construct the proposed SOW_q metric, which
serves as a surrogate for SOW with survey data. The tenableness of the SOW_q likeli-
ness assumption and the offsetting of the competitors’ estimated total spending by use
of weighting AMPECS total spending yield reliable and actionable estimates of SOW
and predictions of SOW.

AMPECS data for the full month (billing cycle) May 2016 consist of a sample (size 30,212)
of business accounts’ transactional data for the six industry-accepted business categories
of expenditures: Services, Communications, Entertainment, Merchandise, Supplies, and
Travel. The purchases (TRX) for the categories, for 10 randomly selected accounts, are dis-
played in Table 11.1. The category TRX fields are binary variables indicating whether an
account made a purchase in a given category (yes = 1/no = 0). The last field, NUMBER of
CATEGORIES USED, is a count variable showing the number of categories from which the
account made purchases. See Table 11.1.

Among the 10 accounts, the number of categories used ranges from four to six. There are
four accounts that use five and six categories and two accounts that use four categories.
Of note, there are three accounts (#18065, #2060, and #20947) among the five-category accounts
that have the same profile of category usage.

11.3.1 Query of Interest

It will be interesting to see, for accounts #18065, #2060, and #20947, whether their SOW_q
values are equal or, if unequal, to what extent their SOW_q values differ.

11.3.2 DOLLARS and TOTAL DOLLARS

The DOLLAR fields corresponding to the categories of purchase, for the same 10 ran-
domly selected accounts of Table 11.1, are in Table 11.2. Account #15047 spendings during
AMPECS’ May 2016 billing cycle are $26.74 for Services, $864.05 for Communications, and
so on for the remaining four categories. The last field, AMPEC TOTAL DOLLARS, is the
sum of the six category dollar fields. AMPECS TOTAL DOLLARS is the numerator of the
SOW_g.

SOW_q, like any formulation of SOW, requires TOTAL DOLLARS. Before I detail
the proposed estimation (simulation) procedure for TOTAL DOLLARS, I show TOTAL
DOLLARS (WALLET") fields corresponding to the DOLLARS fields, for the same
10 accounts in Table 11.1, in Table 11.3. The TOTAL DOLLARS per category are esti-
mates of TOTAL DOLLARS spent as if using AMPECS and the competitors’ credit
cards.

* Wallet is also referred to as wallet size.



TABLE 11.1
Purchase (yes = 1, no = 0) per CATEGORY and NUMBER OF CATEGORIES USED
SERVICES COMMUNICATIONS ENTERTAINMENT MERCHANDISE SUPPLIES TRAVEL NUMBER OF

Acct TRX TRX TRX TRX TRX TRX CATEGORIES USED
15047 1 1 1 1 1 0 5
17855 1 1 1 1 1 1 6
18065 1 1 1 0 1 1 5
16322 1 1 1 1 1 1 6

9605 1 1 1 0 1 0 4

5965 1 1 1 1 1 1 6

7569 1 1 1 0 1 0 4

2060 1 1 1 0 1 1 5
20947 1 1 1 0 1 1 5

6137 1 1 1 1 1 1 6
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TABLE 11.2
Dollars per CATEGORY and AMPECS TOTAL DOLLARS

SERVICES COMMUNICATIONS ENTERTAINMENT MERCHANDISE SUPPLIES TRAVEL AMPECS TOTAL
Acct DOLLARS DOLLARS DOLLARS DOLLARS DOLLARS DOLLARS DOLLARS
15047 $26.74 $864.05 $1,062.69 $722.37 $26.44 $0.00 $2,702.30
17855 $344.63 $803.60 $128.46 $398.68 $22.06 $1,178.40 $2,875.82
18065 $7.58 $2,916.61 $805.79 $0.00 $29.29 $1,782.52 $5,541.80
16322 $183.39 $1,030.67 $227.06 $21.82 $272.48 $2,676.98 $4,412.39
9605 $213.82 $1,672.97 $223.15 $0.00 $672.34 $0.00 $2,782.29
5965 $41.59 $440.51 $88.85 $871.31 $1,565.84 $1,569.43 $4,577.53
7569 $48.87 $1,811.69 $11.95 $0.00 $72.68 $0.00 $1,945.19
2060 $65.47 $380.54 $1,491.85 $0.00 $136.42 $3,358.40 $5,432.67
20947 $51.03 $3,152.64 $237.42 $0.00 $261.19 $1,263.52 $4,965.80
6137 $184.96 $4,689.42 $470.23 $638.19 $1,432.01 $1,291.37 $8,706.18
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TABLE 11.3
Total Dollars (Wallet) per CATEGORY and TOTAL DOLLARS (WALLET)
TOTAL TOTAL TOTAL TOTAL TOTAL
SERVICES TOTAL ENTERTAINMENT MERCHANDISE SUPPLIES TRAVEL TOTAL
DOLLARS COMMUNICATIONS DOLLARS DOLLARS DOLLARS DOLLARS DOLLARS
Acct (WALLET) DOLLARS (WALLET) (WALLET) (WALLET) (WALLET) (WALLET) (WALLET)
15047 $26.74 $864.05 $1,062.69 $722.37 $79.32 $0.00 $2,755.18
17855 $689.27 $803.60 $128.46 $398.68 $88.22 $1,178.40 $3,286.62
18065 $7.58 $5,833.23 $805.79 $0.00 $58.58 $1,782.52 $8,487.71
16322 $550.17 $1,030.67 $227.06 $21.82 $817.43 $5,353.95 $8,001.10
9605 $213.82 $3,345.94 $223.15 $0.00 $1,344.69 $0.00 $5,127.60
5965 $166.38 $440.51 $88.85 $1,742.62 $3,131.67 $3,138.86 $8,708.89
7569 $146.60 $3,623.38 $11.95 $0.00 $145.36 $0.00 $3,927.29
2060 $65.47 $380.54 $4,475.54 $0.00 $136.42 $6,716.81 $11,774.77
20947 $51.03 $9,457.93 $237.42 $0.00 $522.37 $1,263.52 $11,532.28
6137 $369.92 $18,757.67 $470.23 $638.19 $5,728.06 $1,291.37 $27,255.44

961
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The procedure for calculating the TOTAL DOLLARS fields is as follows:

157

1. For a given category, say, Service, the expected number of Service transactions
(purchases) made by a business account, SERVICE_TRX, is simulated by treating

SERVICE_TRX as a random binomial variable with
a.

b.

C.

d.

p = probability of a purchase

n = the number of days in the billing cycle

p is set at 1/30 for Services, Communications, Entertainment, Merchandise,
and Travel; for Supplies p is set at 3/30. These values are determined by assess-

ing AMPECS” May 2016 data

n is set at 30, obviously for all categories.

2. For a given category, say, Service, the expected total dollars made by a busi-
ness account, TOTAL SERVICE DOLLARS, is equal to SERVICE_TRX* AMPECS

SERVICE DOLLARS (from Table 11.2).

3. Steps #1 and #2 are repeated for each of the remaining categories, generat-
ing COMMUNICATIONS SERVICE DOLLARS, ENTERTAINMENT SERVICE
DOLLARS,MERCHANDISE SERVICE DOLLARS, SUPPLIES SERVICE DOLLARS,
and TRAVEL SERVICE DOLLARS.

4. TOTAL DOLLARS (wallet) = sum of the generated variables in Step #3.
5. AMPECS DOLLARS (wallet) = AMPECS TOTAL DOLLARS.
6. SOW_q = AMPECS DOLLARS (wallet)/ TOTAL DOLLARS (wallet).

The subroutines for the six-step process are noted in Appendix 11.A. SOW_q values for
the 10 accounts are shown in Table 11.4. Observing the relationship (for the 10 accounts)
between TOTAL DOLLARS and SOW_q, one might conclude there is a negative correla-
tion. As a point of fact, there is no such relationship for the sample of AMPECS’ May 2016
billing cycle.

In the next section, I build the SOW_q Model. I display the frequency distribution of
SOW_q to reveal the nature of SOW_q as a dependent variable in Table 11.5. A greater reveal

TABLE 11.4
SOW_q
AMPECS Total
Dollars Dollars
Acct (Wallet) (Wallet) SOW_q
15047 $2,702.30 $2,755.18 0.9808
17855 $2,875.82 $3,286.62 0.8750
18065 $5,541.80 $8,487.71 0.6529
16322 $4,412.39 $8,001.10 0.5515
9605 $2,782.29 $5,127.60 0.5426
5965 $4,577.53 $8,708.89 0.5256
7569 $1,945.19 $3,927.29 0.4953
2060 $5,432.67 $11,774.77 0.4614
20947 $4,965.80 $11,532.28 0.4306
6137 $8,706.18 $27,255.44 0.3194
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TABLE 11.5
SOW_q Frequency Distribution and Basic Statistics

Cumulative Cumulative

SOW_q Frequency Percent Frequency Percent
1.0 1850 6.12 1850 6.12
0.9 629 2.08 2479 8.21
0.8 252 0.83 2731 9.04
0.7 916 3.03 3647 12.07
0.6 389 1.29 4036 13.36
0.5 1814 6.00 5850 19.36
0.4 3376 11.17 9226 30.54
0.3 6624 21.93 15850 52.46
0.2 6269 20.75 22119 73.21
0.1 7245 23.98 29364 97.19
0.0 848 2.81 30212 100.00
Minimum Maximum Mean Median Skewness
0.0400290 1.0000000 0.3122372 0.2526832 1.4926534

is the core statistics of any distribution for modeling or analysis at the bottom of Table 11.5.
The SOW_q distribution is not diagnostically problematic: slight positive skewness (1.492),
mean 0.312, and range 0.96 (= 1.000 — 0.040) indicate the data have substantial variation,
which is a necessary condition for a fruitful model building effort.

11.4 Building the AMPECS SOW_q Model

SOW_q is a fractional continuous (dependent) variable, whose values are propor-
tions or rates within the closed interval [0, 1]. Ordinary least-squares (OLS) regression
seemingly is the appropriate method for modeling SOW_q. Similar to modeling a 0-1
dependent variable with OLS regression, which cannot guarantee the predicted values
lie within the closed interval [0, 1], modeling SOW_q with OLS regression also cannot
guarantee the predicted values lie within the closed interval [0, 1]. There is another
conceptual issue for not using OLS regression to model SOW_gq. The whole real line is
the domain of the OLS dependent variable, which apparently SOW_q is not defined on.
There are additional theoretical issues as to why OLS regression is not the appropri-
ate method for a fractional dependent variable [4,5]. A possible approach to directly
model SOW_q is to transform SOW_q into a logit, that is, logit (SOW_q) = log(SOW_q/
(1- SOW_q)). This well-defined transformation, often used in other situations, is not
suitable where there is a mass of observations at the end points of the closed interval,
namely, 0 and 1.

Papke and Wooldridge made the first sound attempt, called fractional response
regression (FRM) at modeling a fractional continuous dependent variable [6]. Since
their 1996 seminal paper, there has been continuous work on FRM, refining it with the-
oretical niceties; comparative studies conclude there is no newer version significantly
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superior to the original FRM [7]. The literature on FRM includes references under
various model names (e.g., fractional logistic regression, fractional logit model, and
fractional regression).

I build the SOW_q Model, using binary logistic regression coded by Liu and Xin [7].
The procedure is comfortable to use because it uses the ordinary logistic regression;
therefore, its output is familiar and easy to interpret. The process outline is as follows:

1. The original AMPECS (size = 30,212) data are doubly-stacked and called DATA2.
Thus, the DATA?2 has twice the number of observations.

2. Dependent variable Y is binary and appended to DATA2.
a. Yassumes values 1 and 0O for the first and second halves of DATA2, respectively.

3. Observations with Y equal to 1 and 0 are assigned weight values SOW_q and
1-SOW_gq, respectively.

4. Logistic regression of Y on a set of predictor variables, with a weight statement, is
performed.

5. SOW_q estimates are the familiar maximum likelihood estimates.

6. Interestingly, Liu and Xin do not mention the effects of the doubled sample size on
the p-values. Primarily, I bootstrap DATA?2 to a size of 30,000, shy of the original
size, to remove noise in DATA2. Secondly, the p-values of data with the original
size have face validity and are less unsettling.

7. The decile analysis of the SOW_q Model is the final determinant of model
performance.

The subroutines for the seven-step process are noted in Appendix 11.B.

11.5 SOW_q Model Definition

I run the weighted logistic regression for SOW_q on four predictor variables. The
weights are SOW_q and 1 — SOW_q for observations with Y equal to 1 and 0, respectively.
The definitions of the predictor variables are:

1. BAL_TO_LIMIT is the balance to limit ratio as April 30, 2016, the month before the
modeling period of May 2016.

2. PAY_ AMOUNT 1 is the amount paid by the business account a month prior to the
modeling period of May 2016.

3. PAY_ AMOUNT _2 is the amount paid by the account 2 months prior to the model-
ing period of May 2016.

4. PAY_ AMOUNT _3 is the amount paid by the account 3 months prior to the model-
ing period of May 2016.

The maximum likelihood estimates of the SOW_q Model, in Table 11.6, indicate the
correct signs of the variables, along with statistical significance, as the p-values are
quite small.
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TABLE 11.6
Maximum Likelihood Estimates of SOW_q Model

Standard Wald
Parameter DF  Estimate Error Chi-Square  Pr> ChiSq
Intercept 1 -0.7014 0.0211 1102.4115 <0.0001
BAL_TO_LIMIT 1 4.564E-7  1.07E-7 18.2019 <0.0001
PAY_AMOUNT_1 1 3.488E-6  9.923E-7 12.3539 0.0004
PAY_AMOUNT_2 1 0.2455 0.0137 320.0763 <0.0001
PAY_AMOUNT_3 1 0.0539 0.0128 17.8548 <0.0001

The Logit of SOW_q uses the parameter estimates in its definition in Equation 11.1.
The Logit provides the information to obtain Prob (SOW_q) in Equation 11.2.

Logit(Y = 1with weight = SOW _q) = — 0.7014 + 4564E~7*BAL _TO_LIMIT
+ 3488E—6*PAY_AMOUNT _1 (11.1)
+0.2455*PAY_ AMOUNT _2
+0.0539*PAY_ AMOUNT _3

Prob (Y =1 with weight SOW_q) = exp(Logit)/ (1 + exp(Logit)) (112

Before discussing the SOW_q Model results, I refer to the query in Section 11.3.1 where
three illustrative accounts, #18065, #2060 and #20947, have the same profile of category
usage.

The query of interest is whether these accounts would have equal SOW_q values or,
if unequal, to what extent their SOW_q values would differ. Given the SOW_q Model is
complete, the following results address this question:

1. For account #18065, predicted SOW_q = 0.26735.
2. For account #2060, predicted SOW_q = 0.44267.
3. For account #20947, predicted SOW_q = 0.25967.

The implication is not unexpected because similar transaction profiles do not necessar-
ily imply similar dollars and total dollars spent, which both affect SOW_q.

11.5.1 SOW_q Model Results

The decile analysis in Table 11.7 readily displays the results and performance of the
SOW_q Model." The DECILE column, as a noncalculated vertical identifier, renders the
five arithmetically derived columns, Columns #2 through #6. The business accounts
are ranked from high to low based on the Logit (or Prob (SOW_q)). Ten equal-sized

* Chapter 26 details thoroughly the construction and interpretation of the decile analysis. Indeed, the reader can
take a quick detour to Chapter 26 and then return to this section. Or, the reader can go through the model results
presented here, and after reading Chapter 26, the reader can revisit this section.
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TABLE 11.7
Decile Analysis of SOW_q Model
Number of Number of Accounts MEAN CUM CUM
Decile Accounts w/Large SOW_q SOW_q (%) SOW_q (%)  LIFT (%)
top 2,929 1,595 54.5 54.5 176
2 2,887 1,159 40.1 474 153
3 3,079 1,014 329 42.4 137
4 3,044 869 28.5 38.8 125
5 2,945 751 25.5 36.2 117
6 2,931 715 24.4 343 110
7 3,090 764 24.7 32.8 106
8 3,030 902 29.8 325 105
9 2,993 795 26.6 31.8 103
bottom 3,072 738 24.0 31.0 100
30,000 9,302

groups or deciles are created based on the ranked file. The five columns implicatively
labeled show:

1. The sample size is 30,000, and there are 9,302 accounts with Y = 1. Thus, the CUM
SOW_q is 31.0, in Column #5, bottom decile.

2. In the fourth column, MEAN SOW_q (%) are the means at the decile level. The
top decile mean (54.4%) and the bottom decile mean (24.0%) show a top-to-bottom
ratio 2.27. This ratio value indicates that the model significantly discriminates among
the business accounts.

3. The last column, CUM LIFT (%), presents the performance of the model. The
top decile, CUM LIFT 176, means that the model identifies the top 10% business
accounts, whose average top 10% SOW_q values are 1.76 times (76% greater than)
the average SOW_q 31.0.

4. The CUM LIFT (%) for the top two deciles, 153, indicates the model identifies the
top 20% (top and second deciles) of business accounts, whose mean SOW_q are
1.53 times (53% greater than) the CUM SOW_q 31.0.

5. For the remaining deciles, the interpretation of CUM LIFT(%) is similar.

In sum, the SOW_q Model has significant discriminatory power and identifies the best
business accounts with large SOW_q values for effective target marketing campaigns.

11.6 Summary

SOW is a key statistic used in implementing marketing strategies. The everyday approach
for predicting SOW uses survey data. This approach is always met with some reluctance
because conducting a survey is time-consuming, expensive, and yields unreliable data.
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I provide a two-step approach for predicting SOW without data. Step #1 defines a quasi-
SOW, SOW_q. SOW_q uses simulation for estimating total dollars spent, effectively
eliminating the need for survey data. Step #2 uses fractional logistic regression to predict
SOW_gq. I illustrate the two-step approach with a real case study. The derived SOW_q
dependent variable is reliable because it has a well-defined distribution, producing an
SOW_q Model with significant discriminatory power for identifying the best business
accounts with large SOW_q values for effective target marketing campaigns. I provide
SAS subroutines for the new method, which the readers should find valuable for their

toolkits.

Appendix 11.A Six Steps

libname sq ‘c://0-SOW_(q;
option pageno=1;

data simulate_trx;

set sq. AMPECS_data;
call streaminit(12345);
do i=1 to 30212;

x1=rand(‘binomial’(1/30), 30);
x2=rand("binomial’,(1/30), 30);
x3=rand(‘binomial’(1/30), 30);
x4=rand("binomial’,(1/30), 30);
x5=rand(‘binomial’(3/30), 30);
x6=rand(‘binomial’(1/30), 30);

d1=AMPECS_Services_ DOLLARS;
d2=AMPECS_Communications_ DOLLARS;
d3=AMPECS_Entertainment_ DOLLARS;
d4=AMPECS_Merchandise_ DOLLARS;
d5=AMPECS_Supplies_ DOLLARS;
d6=AMPECS_Travel DOLLARS;

output;
drop i;
end;
run;

data sq.SOWq_data;

set simulate_trx;

array x(6) x1-x6;

array d(6) d1-deé;
array_01x(6) _01x1-_01x6;
array_01xxd(6) _01xxd1-_01xxd6;
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array xd(6) xd1-xd6;
array xxd(6) xxdl-xxd6;

doj=1to6;

_01x(j)=0;

if x(j) ne 0 then_01x(j)=1;

if d(j) le 0 then d(j)=uniform(12345)*100;
xd()= x()dG)

_0lxxd())= _01x({rxdG;

sum_x =sum(of x1- x6);
sum_0lx=sum(of_01x1-_01x6);

_01xxd(j)= _01x(jy*x()*d();
xxd(j) = x()*x()*d();

SUM_catgDOL=sum(of_01xxd1-_01xxd6);
SUM_trnxDOL=sum(of xxdl- xxd6);
drop j;

end;

SOW_q=SUM_catgDOL/SUM_trnxDOL;

label

sum_x="TOTAL_TRX’

sum_01x="TOTAL_CATGS’

x1="SERVICES_TRX(prob. expected)’
x2="COMMUNICATIONS_TRX(prob. expected)’
x3="ENTERTAINMENT_TRX(prob. expected)’
x4="MERCHANDISE_TRX(prob. expected)’
x5="SUPPLIES_TRX(prob. expected)’
x6="TRAVEL_TRX(prob. expected)’
xd1="SERVICES_DOL’
xd2="COMMUNICATIONS_DOL
xd3="ENTERTAINMENT_DOL’
xd4="MERCHANDISE_DOL

xd5="SUPPLIES_DOL’

xd6="TRAVEL_DOL

xxd1="TOTAL SERVICES_DOL(prob. expected)’
xxd2="TOTAL COMMUNICATIONS_DOL(prob. expected)’
xxd3="TOTAL ENTERTAINMENT_DOL(prob. expected)’
xxd4="TOTAL MERCHANDISE_DOL (prob. expected)’
xxd5="TOTAL SUPPLIES_DOL(prob. expected)’
xxd6="TOTAL TRAVEL_DOL(prob. expected)’

SUM_catgDOL="SUM of catg-DOLLARS’
SUM_trnxDOL="SUM of DOLLAR WEIGHTS’
SOW_q="SOW_q;

run;
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Appendix 11.B Seven Steps

libname sq ‘c://0-SOW_(q;
title2” BS=30000 BAL_TO_LIMIT PAY_ AMOUNT_1 PAY AMOUNT_2
PAY_AMOUNT_3’;

data SSOWq_data;

set sq.5SOWq_data (in = a) sq.SOWq_data (in = b);
if 0.00< SOW_q <0.05 then SOW_q=SOW_q*0.00;
if 0.05<= SOW_q <0.10 then SOW_q=SOW_q*0.05;
if 0.10<= SOW_q <0.20 then SOW_q=SOW_q*0.10;
if 0.20<= SOW_q <0.30 then SOW_q=SOW_q*0.20;
if 0.30<= SOW_q <0.40 then SOW_q=SOW_q*0.30;
if 0.40<= SOW_q <0.50 then SOW_q=SOW_q*0.40;
if 0.50<= SOW_q <0.60 then SOW_q=SOW_q*0.50;
if 0.60<= SOW_q <0.70 then SOW_q=SOW_qg*0.60;
if 0.70<= SOW_q <0.80 then SOW_q=SOW_q*0.70;
if 0.80<= SOW_q <0.85 then SOW_q=SOW_q*0.80;
if 0.85<= SOW_q <0.90 then SOW_q=SOW_q*0.85;
if a then do;

Y=1;

wt =50W_g;

end;

if b then do;

Y =0;

wt=1-SOW_g;

end;

run;

PROC LOGISTIC data = SSOWq_data nosimple des outest=coef;

model Y =

BAL_TO_LIMIT PAY_AMOUNT_1 PAY_AMOUNT_2 PAY_ AMOUNT_3;
weight wt;

run;

PROC SCORE data=SSOWq_data predict type=parms score=coef out=score;
var BAL_TO_LIMIT PAY AMOUNT_1 PAY AMOUNT_2 PAY AMOUNT_3;
run;

data score;

set score;

estimate=Y2;

label estimate="estimate’;
wtt=1;

run;

data notdot;
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set score;
if estimate ne .;

PROC MEANS data=notdot sum noprint; var wtt;
output out=samsize (keep=samsize) sum=samsize;
run;

data scoresam (drop=samsize);
set samsize score;

retain n;

if _n_=1 then n=samsize;

if _n_=1 then delete;

run;

PROC SORT data=scoresam; by descending estimate;
run;

data score;

set scoresam;

if estimate ne . then cum_n+wtt;

if estimate = . then dec=,

else dec=floor(cum_n*10/(n+1));
prob_hat=exp(estimate)/(1 + exp(estimate));
run;

/* Bootstrapping score data */
data score (drop =isample_size);
choice = int(ranuni(36830)*n) + 1;
set score point = choice nobs = n;
i+1;

sample_size=30000;

if i = sample_size + 1 then stop;
run;

/* End of bootstrapping */

PROC TABULATE data=score missing;

class deg;

var Y SOW_g;

table dec all, (Y*(mean*f=5.3 (n sum)*f=6.0) (SOW_qg)*((mean min max)*f=5.3));
weight wt;

run;

PROC SUMMARY data=score missing;

class dec;

var SOW_q wtt;

output out=sum_dec sum=sum_can sum_wt;

data sum_dec;
set sum_dec;
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avg_can=sum_can/sum_wt;
run;

data avg_rr;
set sum_dec;

if dec=;
keep avg_can;
run;

data sum_decl;

set sum_dec;

if dec=. or dec=10 then delete;
cum_n +sum_wt;

r =sum_can;

cum_r +sum_can;
cum_rr=(cum_r/cum_n)*100;
avg_cann=avg_can*100;

run;

data avg_rr;

set sum_decl;

if dec=9;

keep avg_can;
avg_can=cum_rr/100;
run;

data scoresam;

set avg_rr sum_decl;
retain n;

if _n_=1 then n=avg_can;
if _n_=1 then delete;
lift=(cum_rr/n);

if dec=0 then decc="top’;
if dec=1 then decc="2

if dec=2 then decc="3}

if dec=3 then decc=4’;

if dec=4 then decc="5’;

if dec=5 then decc='6’,

if dec=6 then decc="7

if dec=7 then decc="8

if dec=8 then decc="9";

if dec=9 then decc="bottom’;
if dec ne .;

run;

PROC PRINT data=scoresam d split="*' noobs;
var decc sum_wt r avg_cann cum_rr lift;
label decc="DECILE’

sum_wt ="NUMBER OF*ACCOUNTS’
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r =“NUMBER OF*ACCOUNTS’
cum_r =‘CUM No. CUSTOMERS w/*SOW_q’
avg_cann ="MEAN*SOW_q (%)’
cum_rr ='C U M*SOW_q (%)
lift = C U M*LIFT (%)’
sum sum_wt 1;
format sum_wt r cum_n cum_r commal0,;
format avg_cann cum_rr 4.2;
format lift 3.0;
run;
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12

Ordinary Regression: The Workhorse
of Profit Modeling

12.1 Introduction

Ordinary regression is the popular technique for predicting a quantitative outcome, such
as profit and sales. It is considered the workhorse of profit modeling as its results are the
gold standard. Moreover, the ordinary regression model serves as the benchmark for
assessing the superiority of new and improved techniques. In a database marketing appli-
cation, an individual’s profit” to a prior solicitation is the quantitative dependent variable,
and an ordinary regression model is built to predict the individual’s profit to a future
solicitation.

I provide a brief overview of ordinary regression and include the SAS© program for
building and scoring an ordinary regression model. Then, I present a mini case study to
illustrate that the data mining techniques presented in Chapter 10 carry over with minor
modification to ordinary regression. Model builders, who are called on to provide statisti-
cal support to managers monitoring expected revenue from marketing campaigns, will
find this chapter an excellent reference for profit modeling.

12.2 Ordinary Regression Model

Let Y be a quantitative dependent variable that assumes a continuum of values. The ordi-
nary regression model, formally known as the ordinary least squares (OLS) regression
model, predicts the Y value for an individual based on the values of the predictor (inde-
pendent) variables X, X,, ..., X, for that individual. The definition of the OLS model is in
Equation 12.1:

Y =b, + b*X; + b,*X; + ... + b *X,, (12.1)

Plugging in the values of the predictor variables for an individual in Equation 12.1 pro-
duces that individual’s estimated (predicted) Y value. The b’s are the OLS regression coef-
ficients, determined by the calculus-based method of least squares estimation. The lead
coefficient b, is the intercept, which has no corresponding X, as do the other coefficients.

* Profit is variously defined as any measure of an individual’s valuable contribution to the bottom line of a
business.
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In practice, the quantitative dependent variable does not have to assume a progres-
sion of values that vary by minute degrees. It can assume just several dozens of dis-
crete values and work quite well within the OLS methodology. When the dependent
variable assumes only two values, the logistic regression model, not the ordinary
regression model, is the appropriate technique. Even though logistic regression has
been around for 60-plus years, there is some misunderstanding over the practical (and
theoretical) weakness of using the OLS model for a binary response dependent vari-
able. Briefly, an OLS model, with a binary dependent variable, produces some prob-
abilities of response greater than 100% and less than 0% and often does not include
important predictor variables.

12.2.1 llustration

Consider dataset A, which consists of 10 individuals and 3 variables (Table 12.1). These are
the quantitative variables PROFIT in dollars (Y), INCOME in thousands of dollars (X1),
and AGE in years (X2). [ regress PROFIT on INCOME and AGE using dataset A. The OLS
output in Table 12.2 includes the ordinary regression coefficients and other columns of

TABLE 12.1
Dataset A
PROFIT INCOME AGE
%) ($000) (years)
78 96 22
74 86 33
66 64 55
65 60 47
64 98 48
62 27 27
61 62 23
53 54 48
52 38 24
51 26 42
TABLE 12.2
OLS Output: PROFIT with INCOME and AGE
Source df Sum of Squares Mean Square F Value Pr>F
Model 2 460.3044 230.1522 6.01 0.0302
Error 7 268.0957 38.2994
Corrected total 9 728.4000
Root MSE 6.18865 R-square 0.6319
Dependent mean 62.60000 Adj R-5q 0.5268
Coeff var 9.88602
Parameter
Variable df Estimate Standard Error t Value Pr> |t|
Intercept 1 52.2778 7.7812 7.78 0.0003
INCOME 1 0.2669 0.2669 0.08 0.0117

AGE 1 -0.1622 -0.1622 0.17 0.3610
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information. The “Parameter Estimates” column contains the coefficients for INCOME
and AGE variables and the Intercept. The coefficient b, for the Intercept variable serves as
a “start” value given to all individuals, regardless of the specific values of the predictor
variables in the model.

The estimated OLS PROFIT model is in Equation 12.2:

PROFIT = 52.2778 + 0.2667*INCOME — 0.1622*AGE (12.2)

12.2.2 Scoring an OLS Profit Model

The SAS program (Figure 12.1) produces the OLS profit model built with dataset A and
scores the external dataset B in Table 12.3. The SAS procedure REG produces the ordi-
nary regression coefficients and puts them in the “ols_coeff” file, as indicated by the code
“outest = ols_coeff.” The ols_coeff file produced by SAS is in Table 12.4.

The SAS procedure SCORE scores the five individuals in dataset B using the OLS coef-
ficients, as indicated by the code “score = ols_coeff.” The procedure appends the predicted

/****** Building the OLS PROFIT Model on dataset A **######sss/
PROC REG data = A outest = ols_coeff;

pred_PROFIT: model PROFIT =

INCOME AGE;

run;

[****** Scoring the OLS PROFIT Model on dataset B ****##xx#*x%/
PROC SCORE data = B predict type = parms score = ols_coeff
out = B_scored;

var INCOME AGE;

run;

FIGURE 12.1
SAS program for building and scoring OLS PROFIT model.

TABLE 12.3

Dataset B

INCOME AGE Predicted
($000) (years) PROFIT ($)
148 37 85.78
141 43 82.93

97 70 66.81

90 62 66.24

49 42 58.54

TABLE 12.4
OLS_Coeff File

OBS _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEPT INCOME AGE PROFIT
1 est_ PROFIT PARMS PROFIT 6.18865 52.52778 0.26688  -0.16217 -1
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PROFIT variable in Table 12.3 (called pred_PROFIT as indicated by “pred_PROFIT” in the
second line of code in Figure 12.1) to the output file B_scored, as indicated by the code
“out = B_scored.”

12.3 Mini Case Study

I present a “big” discussion on ordinary regression modeling with the mini dataset A.
I'use this extremely small dataset not only to make the discussion of data mining techniques
tractable but also to emphasize two aspects of data mining. First, data mining techniques
of great service should work as well with small data as with big data, as explicitly stated
in the definition of data mining in Chapter 1. Second, every fruitful effort of data mining
on small data is evidence that big data are not always necessary to uncover structure in
the data. This evidence is in keeping with the exploratory data analysis (EDA) philoso-
phy that the data miner should work from simplicity until indicators emerge to go further.
If predictions are not acceptable, then increase the data size.

The objective of the mini case study is as follows: to build an OLS profit model based on
INCOME and AGE. The ordinary regression model (celebrating 200-plus years of popular-
ity since the invention of the method of least squares on March 6, 1805) is the quintessential
linear model, which implies the all-important assumption: The underlying relationship
between a given predictor variable and the dependent variable is linear. Thus, I use the
method of smoothed scatterplots, as described in Chapter 3, to determine whether the
linear assumption holds for PROFIT with INCOME and with AGE. For the mini dataset,
10 slices each of size 1 define the smoothed scatterplot. Effectively, the smooth scatterplot is
the simple scatterplot of 10 paired (PROFIT, Predictor Variable X;) points. (Contrasting note:
The logit plot as discussed with the logistic regression in Chapter 10 is neither possible nor
relevant with OLS methodology. The quantitative dependent variable does not require a
transformation, like converting logits into probabilities, as found in logistic regression.)

12.3.1 Straight Data for Mini Case Study

Before proceeding with the analysis of the mini case study, I clarify the use of the bulging
rule when analysis involves OLS regression. The bulging rule states that the model builder
should try reexpressing the predictor variables as well as the dependent variable. As dis-
cussed in Chapter 10, it is not possible to reexpress the dependent variable in a logistic
regression analysis. However, in performing an ordinary regression analysis, reexpress-
ing the dependent variable is possible, but the bulging rule needs modification. I discuss
the modification in the illustration that follows.

Consider a hypothetical building of a profit model with the quantitative dependent vari-
able Y and three predictor variables X;, X,, and X;. Based on the bulging rule, the model
builder determines that the powers of %2 and 2 for Y and X;, respectively, produce an ade-
quate straightening of the Y-X, relationship. Let us assume that the correlation between
the square root Y (sqrt_Y) and the square of X, (sq_X;) has a reliable r ., y,q x; value of 0.85.

Continuing this scenario, the model builder determines that the powers of 0 and %
and %2 and 1 for Y and X, and Y and X, respectively, also produce an adequate straight-
ening of the Y-X, and Y-X; relationships, respectively. Let us assume the correlations
between the log of Y (log_Y) and the square root of X, (sq_X,) and between the negative
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square root of Y (negsqrt_Y) and X; have reliable r,,, y oq x1 and I'pegoqre v, x3 values of 0.76 and
0.69, respectively. In sum, the model builder has the following results:

1. The best relationship between square root Y (p = '2) and square of X; has
r =0.85.

2. The best relationship between log of Y (p = 0) and square root of X, has 1, y ¢4 x» =0.76.

sqrt_Y, sq_X1

3. The best relationship between the negative square root of Y (p = —%) and X; has
I'neg_sqrt_Y, X3 = 0.69.

In pursuit of a good OLS profit model, the following guidelines have proven valu-
able when the bulging rule suggests several reexpressions of the quantitative dependent
variable.

1. If there is a small range of dependent variable powers (powers used in reexpress-
ing the dependent variable), then the best reexpressed dependent variable is
the one with the noticeably largest correlation coefficient. In the illustration, the
best reexpression of Y is the square root Y. Its correlation has the largest value:
Toqr v, s xa €quals 0.85. Thus, the data analyst builds the model with the square
root Y and the square of X; and needs to reexpress X, and X; again on the square
root of Y.

2. If there is a small range of dependent variable powers and the correlation coef-
ficient values are comparable, then the best reexpressed dependent variable is
defined by the average power among the dependent variable powers. In the illustra-
tion, if the data analyst were to consider the r values (0.85, 0.76, and 0.69) compa-
rable, then the average power would be 0, which is one of the powers used. Thus,
the data analyst builds the model with the log of Y and the square root of X, and
needs to reexpress X; and X; again on the log of Y.

If the average power were not one of the dependent variable powers used,
then all predictor variables would need to be reexpressed again with the newly
assigned reexpressed dependent variable, Y, raised to the average power.

3. When there is a large range of dependent variable powers, which is common when
they are many predictor variables, the practical and productive approach to the
bulging rule for building an OLS profit model consists of initially reexpressing
only the predictor variables, leaving the dependent variable unaltered. Choose
several handfuls of reexpressed predictor variables, which have the largest corre-
lation coefficients with the unaltered dependent variable. Then, proceed as usual,
invoking the bulging rule for exploring the best reexpressions of the dependent
variable and the predictor variables. If reexpressing the dependent variable is
appropriate, then apply Steps 1 or 2.

Meanwhile, there is an approach considered the most desirable for picking out the
best reexpressed quantitative dependent variable. The approach is, however, neither
practical nor easily assessable [3]. However, this approach is extremely tedious to per-
form by hand as is required because there is no commercially available software for
its calculations. Its inaccessibility has no consequence to the model builders” quality
of the model as the approach has not provided a noticeable improvement over the
procedure in Step 3 for marketing applications where model implementation is at the
decile level.
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Now that I have examined all the issues surrounding the quantitative dependent vari-
able, I return to a discussion of reexpressing the predictor variables of the mini case study,
starting with INCOME and then AGE.

12.3.1.1 Reexpressing INCOME

I envision an underlying positively sloped straight line running through the 10 points in
the PROFIT-INCOME smooth plot in Figure 12.2, even though the smooth trace reveals
four severe kinks. Based on the general association test with the test statistic (TS) value
of 6, which is almost equal to the cutoff score of 7, as presented in Chapter 3, I conclude there
is an almost noticeable straight-line relationship between PROFIT and INCOME. The cor-
relation coefficient for the relationship is a reliable 1proprr nvcome Of 0.763. Notwithstanding
these indicators of straightness, the relationship could use some straightening, but clearly,
the bulging rule does not apply.

An alternative method for straightening data, especially characterized by nonlineari-
ties, is the GenlQ Model, a machine-learning, genetic-based data mining method. As I
extensively cover this model in Chapters 40 and 41, it suffices it to say that I use GenlQ
to reexpress INCOME. The genetic structure, which represents the reexpressed INCOME
variable, labeled gINCOME, is defined in Equation 12.3:

gINCOME = sin(sin (sin(sinINCOME)*INCOME))) + log(INCOME) (12.3)

The structure uses the nonlinear reexpressions of the trigonometric sine function (four
times) and the log (to base 10) function to loosen the “kinky” PROFIT-INCOME relation-
ship. The relationship between PROFIT and INCOME (via gINCOME) is now smooth as
the smooth trace reveals no serious kinks in Figure 12.3. Based on TS equal to 6, which
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FIGURE 12.2
Plot of PROFIT and INCOME.
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FIGURE 12.3
Plot of PROFIT and gINCOME.

again is almost equal to the cutoff score of 7, I conclude there is an almost noticeable
straight-line PROFIT-gINCOME relationship, a nonrandom scatter about an underlying
positively sloped straight line. The correlation coefficient for the reexpressed relationship
is a reliable rpropr, givcome = 0-894.

Visually, the effectiveness of the GenlQ procedure in straightening the data is obvious:
the sharp peaks and valleys in the original PROFIT smooth plots versus the smooth wave
of the reexpressed smooth plot. Quantitatively, the gINCOME-based relationship repre-
sents a noticeable improvement of 7.24% (= (0.894 — 0.763)/0.763) increase in correlation
coefficient “points” over the INCOME-based relationship.

Two items are noteworthy: I previously invoked the statistical factoid that states a dollar-
unit variable undergoes reexpression with the log function. Thus, it is not surprising that
the genetically evolved structure gINCOME uses the log function. On logging the PROFIT
variable, I concede that PROFIT could not benefit from a log reexpression due to the “mini”
in the dataset (i.e., the small size of the data). So, I chose to work with PROFIT, not log of
PROFIT, for the sake of simplicity (another EDA mandate, even for instructional purposes).

12.3.1.2 Reexpressing AGE

The stormy scatter of the 10-paired (PROFIT, AGE) points in the smooth plot in Figure 12.4
is an exemplary plot of no relationship between two variables. Not surprisingly, the TS
value of 3 indicates there is no noticeable PROFIT-AGE relationship. Senselessly, I calculate
the correlation coefficient for this nonexistent linear relationship: rpgopr ace = —0.172, which
is clearly not meaningful. Obviously, the bulging rule does not apply.

I use GenlQ to reexpress AGE, labeled gAGE. The genetically based structure is in
Equation 12.4:

gAGE = sin(tan(tan(2*AGE) + cos(tan(2*AGE)))) (12.4)
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Plot of PROFIT and gAGE.

The structure uses the nonlinear reexpressions of the trigonometric sine, cosine, and
tangent functions to calm the stormy-nonlinear relationship. The relationship between
PROFIT and AGE (via gAGE) is indeed smooth, as the smooth trace reveals in Figure 12.5.
There is an almost noticeable PROFIT-gAGE relationship with TS = 6, which favorably
compares to the original TS of 3. The reexpressed relationship admittedly does not portray
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an exemplary straight line, but given its stormy origin, I see a beautiful positively sloped
ray, not very straight, but trying to shine through. I consider the corresponding correlation
coefficient rpropr, gace = 0.819 as reliable and remarkable.

Visually, the effectiveness of the GenlQ procedure in straightening the data is obvi-
ous: the abrupt spikes in the original smooth plot of PROFIT and AGE versus the rising
counterclockwise wave of the second smooth plot of PROFIT and gAGE. With enthusi-
asm and without quantitative restraint, the gAGE-based relationship represents a notice-
able improvement—a whopping 376.2% (= (0.819 — 0.172)/0.172; disregarding the sign)
improvement in correlation coefficient points over the AGE-based relationship. Because
the original correlation coefficient is meaningless, the improvement percentage is also
meaningless.

12.3.2 Plot of Smooth Predicted versus Actual

For a closer look at the detail of the strength (or weakness) of the gINCOME and gAGE
structures, I construct the corresponding plots of PROFIT smooth predicted versus
actual. The scatter about the 45° lines in the smooth plots for both gINCOME and gAGE
in Figures 12.6 and 12.7, respectively, indicate a reasonable level of certainty in the reli-
ability of the structures. In other words, both gINCOME and gAGE should be important
variables for predicting PROFIT. The correlations between gINCOME-based predicted
and actual smooth PROFIT values and between gAGE-based predicted and actual smooth
PROFIT values have r, proprt, smgincome @0 To proriT, smgace Values equal to 0.894 and 0.819,
respectively. (Why are these r values equal to Iproprr, income AN TproprT aces FESpectively?)
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FIGURE 12.6
Smooth PROFIT predicted versus actual based on gINCOME.



178 Statistical and Machine-Learning Data Mining

70 +

[oN
=)
t

Pred_PROFIT

wu1
=)
t

50 60 70 80
PROFIT

FIGURE 12.7
Smooth PROFIT predicted versus actual based on gAGE.

12.3.3 Assessing the Importance of Variables

As in the corresponding section of Chapter 10, the classical approach of assessing the
statistical significance of a variable for model inclusion is the well-known null hypoth-
esis significance testing procedure,” based on the reduction in prediction error (actual
PROFIT minus predicted PROFIT) associated with the variable in question. The only
difference between the discussions of the logistic regression in Chapter 10 is the appa-
ratus used. The statistical apparatus of the formal testing procedure for ordinary
regression consists of the sum of squares (total, due to regression, and due to error), the
F statistic, degrees of freedom (df), and the p-value. The procedure uses the apparatus
within a theoretical framework with weighty and untenable assumptions, which, from
a purist’s point of view, can cast doubt on findings of statistical significance. Even if
findings of statistical significance are acceptably correct, this may not be of practical
importance or have noticeable value to the study at hand. For the data miner with a
pragmatist slant, the limitations and lack of scalability of the classical system of vari-
able assessment cannot be overlooked, especially within big data settings. In contrast,
the data mining approach uses the F statistic, R-squared, and degrees of freedom in an
informal data-guided search for variables that suggest a noticeable reduction in predic-
tion error. Note, the informality of the data mining approach calls for suitable change
in terminology, from declaring a result as statistically significant to worthy of notice or
noticeably important.

* “What If There Were No Significance Testing?” (on author’s website, http://www.geniq.net/res/What-If-
There-Were-No-Significance-Testing.html).


http://www.geniq.net/res/What-If-There-Were-No-Significance-Testing.html
http://www.geniq.net/res/What-If-There-Were-No-Significance-Testing.html
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12.3.3.1 Defining the F Statistic and R-Squared

In data mining, the assessment of the importance of a subset of variables for predicting
profit involves the notion of a noticeable reduction in prediction error due to the subset of
variables. The assessment makes use of the F statistic, R-squared, and degrees of freedom
always reported in the ordinary regression output. For the sake of reference, I provide
their definitions and relationship with each other in Equations 12.5, 12.6, and 12.7.

Sum of squares due to regression/df due to regression model

= 12.5
Sum of squares due to error/df due to error in regression model (12.5)
Resquared = Sum of squares due to regression (12.6)
Total sum of squares
R-squared/number of variables in model (127)

B (1-R-squared)/(sample size — number of variables in model - 1)

For the sake of completion, I provide an additional statistic: the adjusted R-squared.
R-squared is affected, among other things, by the ratio of the number of predictor variables
in the model to the size of the sample. The larger the ratio, the greater the overestimation of
R-squared is. Thus, the adjusted R-squared as defined in Equation 12.8 is not particularly
useful in big data settings.

Adjusted R-squared = (1 - R-squared) = (sample size - 1)

(sample size — number of variables in model —1)

(12.8)

In the following sections, I detail the decision rules for three scenarios for assessing the
importance of variables (i.e., the likelihood the variables have some predictive power). In
brief, the larger the F statistic, R-squared, and adjusted R-squared values, the more impor-
tant the variables are in predicting profit.

12.3.3.2 Importance of a Single Variable

If X is the only variable considered for inclusion into the model, the decision rule for declaring
Xan important predictor variable is: If the F value due to X is greater than the standard F value 4,
then X is an important predictor variable. Note, the decision rule only indicates that the vari-
able has some importance, not how much importance. The decision rule implies: A variable
X1 with an F value greater than variable X2's F value indicates that X1 has a greater likelihood
of some importance than does X1. The decision rule does suggest X1 has greater importance than
X2.If X is declared important, then testing X for entry into the model is conducted.

12.3.3.3 Importance of a Subset of Variables

When subset A consisting of k variables is the only subset considered for model inclusion, the
decision rule for declaring subset A important is: If F/df" is greater than standard F value 4,

* df = number of predictor variables, k.
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then subset A is an important subset of predictor variables and is worthy of inclusion in the
model. As before, the decision rule only indicates that the subset has some importance, not
how much importance.

12.3.3.4 Comparing the Importance of Different Subsets of Variables

Let subsets A and B consist of k and p variables, respectively. The number of variables in
each subset does not have to be equal. If the number of variables is equal, then all but one
variable can be the same in both subsets. Let F(k) and F(p) be the F values corresponding
to the models with subsets A and B, respectively.

The decision rule for declaring which of the two subsets is more important (greater like-
lihood of some predictive power) in predicting profit is:

1. If F(k)/k is greater than F(p)/p, then subset A(k) is the more important predictor
variable subset; otherwise, B(p) is the more important subset.

2. If F(k)/k and F(p)/p are equal or have comparable values, then both subsets are to
be regarded tentatively as of comparable importance. The model builder should
consider additional indicators to assist in the decision about which subset is better.
It clearly follows from the decision rule that the model defined by the more impor-
tant subset defines the better model. (Of course, the rule assumes that F/k and F/p
are greater than the standard F value 4.)

Equivalently, the decision rule can use either R-squared or adjusted R-squared in place
of F/df. The R-squared statistic is a friendly concept in that its values serve as indicators of
the percentage of variation explained by the model.

12.4 Important Variables for Mini Case Study

I perform two ordinary regressions, regressing PROFIT on gINCOME and PROFIT on
gAGE. The outputs are in Tables 12.5 and 12.6, respectively. The F values are 31.83 and
16.28, respectively, which are greater than the standard F value 4. Thus, both gINCOME
and gAGE are declared important predictor variables of PROFIT.

TABLE 12.5
OLS Output: PROFIT with gINCOME

Source df Sum of Squares Mean Square F Value Pr>F
Model 1 582.1000 582.1000 31.83 0.0005
Error 8 146.3000 18.2875
Corrected total 9 728.4000
Root MSE 4.2764 R-square 0.7991
Dependent mean 62.6000 Adj R-sq 0.7740
Coeff var 6.8313
Parameter
Variable df Estimate Standard Error t Value Pr> |t|
Intercept 1 47.6432 2.9760 16.01 <0.0001

gINCOME 1 8.1972 1.4529 5.64 0.0005
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TABLE 12.6
OLS Output: PROFIT with gAGE
Source df Sum of Squares Mean Square F Value Pr>F
Model 1 488.4073 488.4073 16.28 0.0038
Error 8 239.9927 29.9991
Corrected total 9 728.4000
Root MSE 5.4771 R-square 0.6705
Dependent mean 62.6000 Adj R-sq 0.6293
Coeff var 8.7494
Parameter
Variable df Estimate Standard Error t Value Pr> ||
Intercept 1 57.2114 2.1871 26.16 <0.0001
gAGE 1 11.7116 2.9025 4.03 0.0038

12.4.1 Relative Importance of the Variables

Chapter 10 contains the same heading (Section 10.12), with only a minor variation on the
statistic used. The ¢ statistic as posted in ordinary regression output can serve as an indi-
cator of the relative importance of a variable and for selecting the best subset and will be
discussed next.

12.4.2 Selecting the Best Subset

The decision rules for finding the best subset of important variables are nearly the same
as those discussed in Chapter 10; refer to Section 10.12.1. Point 1 remains the same for this
discussion. However, the second and third points change as follows:

1. Select an initial subset of important variables.

2. For the variables in the initial subset, generate smooth plots and straighten the
variables as required. The most noticeable handfuls of original and reexpressed
variables make up the starter subset.

3. Perform the preliminary ordinary regression on the starter subset. Delete one
or two variables with absolute t-statistic values less than the t cutoff value 2
from the model. Deletion of variables results in the first incipient subset of
important variables. Note the changes to Points 4, 5, and 6 on the topic of this
chapter.

4. Perform another ordinary regression on the incipient subset. Delete one or two
variables with t values less than the t cutoff value 2 from the model. The data ana-
lyst can create an illusion of important variables appearing and disappearing with
the deletion of different variables. The remainder of the discussion in Chapter 10
remains the same.

5. Repeat Step 4 until all retained predictor variables have comparable t values. This
step often results in different subsets as the data analyst deletes judicially differ-
ent pairings of variables.

6. Declare the best subset by comparing the relative importance of the different sub-
sets using the decision rule in Section 12.3.34.
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12.5 Best Subset of Variables for Case Study

I'build a preliminary model by regressing PROFIT on gINCOME and gAGE. The output is
in Table 12.7. The two-variable subset has an F/df value of 7.725 (= 15.45/2), which is greater
than the standard F value 4. But, the t value for gAGE is 0.78 less than the t cutoff value (see
bottom section of Table 12.7). If I follow Step 4, then I would have to delete gAGE, yielding
a simple regression model with the lowly, albeit straight, predictor variable gINCOME.
By the way, the adjusted R-squared is 0.7625 (after all, the entire mini sample is not big).
Before I dismiss the two-variable (gINCOME, gAGE) model, I construct the smooth
residual plot in Figure 12.8 to determine the quality of the predictions of the model. The
smooth residual plot is declared to be equivalent to the null plot based on the general
association test (TS = 5). Thus, the overall quality of the predictions is considered good.
That is, on average, the predicted PROFIT is equal to the actual PROFIT. Regarding the
descriptive statistics for the smooth residual plot, for the smooth residual, the minimum

TABLE 12.7
OLS Output: PROFIT with gINCOME and gAGE

Source df Sum of Squares Mean Square F Value Pr>F
Model 2 593.8646 296.9323 15.45 0.0027
Error 7 134.5354 19.2193
Corrected total 9 728.4000
Root MSE 4.3840 R-squared 0.8153
Dependent mean 62.6000 Adj R-sq 0.7625
Coeff var 7.0032
Parameter
Variable df Estimate Standard Error t Value Pr> ||
Intercept 1 49.3807 3.7736 13.09 <0.0001
gINCOME 1 6.4037 2.7338 2.34 0.0517
gAGE 1 3.3361 4.2640 0.78 0.4596
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FIGURE 12.8
Smooth residual plot for (gINCOME, gAGE) model.
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and maximum values and range are —4.567, 6.508, and 11.075, respectively; the standard
deviation of the smooth residuals is 3.866.

12.5.1 PROFIT Model with gINCOME and AGE

With a vigilance in explaining the unexpected, I suspect the reason for the relative nonim-
portance of gAGE (i.e, gAGE is not important in the presence of gINCOME) is the strong
correlation of gAGE with gINCOME: rycomg, gace = 0.839. The strong correlation supports
my contention but does not confirm it.

Given the preceding, I build another two-variable model regressing PROFIT on gIN-
COME and AGE. The output is in Table 12.8. The (gINCOME, AGE) subset has an F/df
value of 12.08 (= 24.15/2), which is greater than the standard F value 4. Statistic happy, I see
the t values for both variables are greater than the t cutoff value 2. I cannot overlook the
fact that the raw variable AGE, which by itself is not important, now has relative impor-
tance in the presence of gINCOME. (More about this “phenomenon” is presented at the
end of the chapter.) Thus, the evidence is that the subset of gINCOME and AGE is better
than the original (gINCOME, gAGE) subset. By the way, the adjusted R-squared is 0.8373,
representing a 9.81% (= (0.8373 — 0.7625)/0.7625) improvement in adjusted R-squared points
over the original variable adjusted R-squared.

The smooth residual plot for the (SINCOME, AGE) model in Figure 12.9 is declared to be
equivalent to the null plot based on the general association test with TS = 4. Thus, there is
an indication that the overall quality of the predictions is good. Regarding the descriptive
statistics for the two-variable smooth residual plot, for the smooth residual, the minimum
and maximum values and range are —5.527, 4915, and 10.442, respectively, and the stan-
dard deviation of the smooth residual is 3.200.

To obtain a further indication of the quality of the predictions of the model, I construct
the plot of the smooth actual versus smooth predicted for the (gINCOME, AGE) model
in Figure 12.10. The smooth plot is acceptable with minimal scatter of the 10 smooth
points about the 45° line. The correlation between smooth actual versus predicted PROFIT
based on gINCOME and AGE has 1, ;income, smace = 0:93. (This value is the square root of
R-squared for the model. Why?)

For a point of comparison, I construct the plot of smooth actual versus smooth pre-
dicted for the (gINCOME, gAGE) model in Figure 12.11. The smooth plot is acceptable

TABLE 12.8
OLS Output: PROFIT with gINCOME and AGE

Source df Sum of Squares Mean Square F Value Pr>F
Model 2 636.2031 318.1016 24.15 0.0007
Error 7 92.1969 13.1710
Corrected Total 9 728.4000
Root MSE 3.6291 R-squared 0.8734
Dependent mean 62.6000 Adj R-sq 0.8373
Coeff var 5.79742
Parameter
Variable df Estimate Standard Error t Value Pr> |¢|
Intercept 1 54.4422 4.1991 12.97 <0.0001
gINCOME 1 8.4756 1.2407 6.83 0.0002

AGE 1 —-0.1980 0.0977 -2.03 0.0823
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FIGURE 12.9
Smooth residual plot for (gINCOME, AGE) model.
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FIGURE 12.10
Smooth actual versus predicted plot for (sINCOME, AGE) model.
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FIGURE 12.11
Smooth actual versus predicted plot for (SINCOME, gAGE) model.
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TABLE 12.9
Comparison of Vital Statistics for Two PROFIT Models
Smooth Residual
Predictor Adjusted
Model Variables FValue t Value Range StdDev  R-Square
First gINCOME, gAGE  Greater than  Greater than cutoff value 11.075 3.866 0.7625
cutoff value for only gINCOME
Second gINCOME, AGE  Greater than  Greater than cutoff value 10.442 3.200 0.8373
cutoff value for both variables
Indication =~ Improvement of NA Because t value for gAGE —5.7%  -17.2% 9.8%
2nd model over is less than t cutoff value,
1st model gAGE contributes “noise”

in model, as evidenced in
range, StdDev, and
adjusted R-square

with minimal scatter of the 10 smooth points about the 45° line, with a noted exception
of some wild scatters for PROFIT values greater than $65. The correlation between
smooth actual versus smooth predicted PROFIT based on gINCOME and gAGE has
I giNncoME, smgack = 0-90. (This value is the square root of R-squared for the model. Why?)

12.5.2 Best PROFIT Model

To decide which of the two PROFIT models is better, I put the vital statistics of the pre-
ceding analyses in Table 12.9. Based on the consensus of a committee of one, I prefer the
gINCOME-AGE model to the gINCOME-gAGE model because there are noticeable indi-
cations that the predictions of the gINCOME-AGE model are better than the gINCOME-
gAGE model. The former model offers a 9.8% increase in the adjusted R-squared (less
bias), a 17.2% decrease in the smooth residual standard deviation (more stable), and a 5.7%
decrease in the smooth residual range (more stable).

12.6 Suppressor Variable AGE

A variable whose behavior is like that of AGE—poorly correlated with the dependent vari-
able Y but becomes important by its inclusion in a model for predicting Y—is known as
a suppressor variable [1,2]. The consequence of a suppressor variable is that it increases the
R-squared of the model.

I explain the behavior of the suppressor variable within the context of the mini case
study. The presence of AGE in the model removes or suppresses the information (vari-
ance) in gINCOME that is not related to the variance in PROFIT; that is, AGE suppresses
the unreliable noise in gINCOME. The suppression due to AGE renders the AGE-adjusted
variance in gINCOME more reliable or potent for predicting PROFIT.

Ianalyze the paired correlations among the three variables to exactly clarify what AGE is
doing. Recall, squaring the correlation coefficient represents the shared variance between
the two variables under consideration. The paired bits of information are in Table 12.10.
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TABLE 12.10
Comparison of Pairwise Correlations among PROFIT, AGE,
and gINCOME
Correlation Shared

Correlation Pair Coefficient Variance (%)
PROFIT and AGE -0.172 3
PROFIT and gINCOME 0.894 80
PROFIT and AGE in the presence 0.608 37

of gINCOME
PROFIT and gINCOME in the 0.933 87

presence of AGE

I'know from the prior analysis that PROFIT and AGE have no noticeable relationship; their
shared variance of 3% confirms this. I also know that PROFIT and gINCOME do have
a noticeable relationship; their shared variance of 80% confirms this as well. In the pres-
ence of AGE, the relationship between PROFIT and gINCOME, specifically, the relation-
ship between PROFIT and gINCOME adjusted for AGE has a shared variance of 87%. This
represents an improvement of 8.75% (= (0.87 — 0.80/0.80) in shared variance. This “new”
variance is now available for predicting PROFIT, increasing the R-squared (from 79.91%
to 87.34%).

It is a pleasant surprise in several ways that AGE turns out to be a suppressor variable.
First, suppressor variables occur most often in big data settings, not often with small data,
and are truly unexpected with mini data. Second, the suppressor variable scenario serves
as object lessons for the EDA paradigm: dig, dig, dig into the data, and you will find gold
or some reward for your effort. Third, the suppressor variable scenario is a small reminder
of a big issue. The model builder must not rely solely on predictor variables, highly cor-
related with the dependent variable, but also must consider the poorly correlated predictor
variables as they are a great source of latent predictive importance.

12.7 Summary

The ordinary regression model serves as the workhorse of profit modeling as it has been
in steady use for 200-plus years. As such, I illustrate in an orderly and detailed way
the essentials of ordinary regression. Moreover, I show the enduring usefulness of this
popular analysis and modeling technique as it works well within the EDA /data mining
paradigm of today:.

I first illustrate the rudiments of the ordinary regression model by discussing the SAS
program for building and scoring an ordinary regression model. The program is a wel-
come addition to the toolkit of techniques used by model builders working on predicting
a quantitative dependent variable.

Then, I discuss ordinary regression modeling with mini data. I use this extremely small
dataset not only to make the discussion of the data mining techniques tractable but also to
emphasize two aspects of data mining. First, data mining techniques of great service should
work as well with big data as with small data. Second, every fruitful effort of data mining on
small data is evidence that big data are not always necessary to uncover structure in the data.
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I use the mini case study as the vehicle for introducing a host of data mining techniques,
inspired by the EDA paradigm, tailored to ordinary regression modeling. The techniques
involve the concept of importance, not significance, of individual predictor variables and
subsets of predictor variables as well as the indispensable use of smooth plots. (The data
mining techniques, discussed in the logistic regression framework of Chapter 10, carry
over with minor modification to ordinary regression.)

Within my illustration of the case study is a pleasant surprise—the existence of a suppres-
sor variable. A variable whose behavior is poorly correlated with the dependent variable
but becomes important by its inclusion in a model for predicting the dependent variable
is known as a suppressor variable. The consequence of a suppressor variable is that it
increases the R-square of the model. A suppressor variable occurs most often in big data
settings, not often with small data, and is truly unexpected with mini data. The suppres-
sor variable scenario serves as an object lesson for the EDA paradigm: Dig deeply into the
data and you will find a reward for your effort. And, the suppressor variable scenario is a
small reminder of a bigger issue: The model builder must not rely solely on predictor vari-
ables, highly correlated with the dependent variable, but also should consider the poorly
correlated predictor variables as they are a great source of latent predictive importance.
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13

Variable Selection Methods in Regression:
Ignorable Problem, Notable Solution

13.1 Introduction

Variable selection in regression—identifying the best subset of many variables to include
in a model—is arguably the hardest part of the model-building process. Many variable
selection methods exist. Many statisticians know them, but few know they produce poorly
performing models. The variable selection methods are a miscarriage of statistics because
they debase sound statistical theory into a misguided pseudo-theoretical foundation.
The goal of this chapter is twofold: (1) resurface the scope of literature on the weaknesses
of variable selection methods and (2) enliven a notable solution for defining a substantial
performing regression model anew. To achieve my goal tactically, I divide the chapter into
two objectives. First, I review the five frequently used variable selection methods. Second,
I present Tukey’s exploratory data analysis (EDA) relevant to the titled topic: the natural
seven-step cycle of statistical modeling and analysis (previously discussed in Section 1.1).
The seven-step cycle serves as a notable solution to variable selection in regression. I feel
that newcomers to Tukey’s EDA need the seven-step cycle introduced within the narra-
tive of Tukey’s analytic philosophy. Accordingly, I enfold the solution with front and back
matter: the essence of EDA and the EDA school of thought, respectively. John W. Tukey
(1915-2000) was a megacontributor to the field of statistics and was a humble, unpre-
tentious man, as he always considered himself as a data analyst. Tukey’s seminal book,
Exploratory Data Analysis [1], is uniquely known by the book’s initialed title—EDA.

13.2 Background

Classic statistics dictates that the statistician set about dealing with a given problem
with a prespecified procedure designed for that problem. For example, solving the prob-
lem of predicting a continuous dependent variable (e.g., profit) uses the ordinary least
squares (OLS) regression model along with checking the well-known underlying OLS
assumptions [2]. At hand, there are several candidate predictor variables, allowing a work-
able task for the statistician to check assumptions (e.g., predictor variables are uncorrelated
with errors). Likewise, the dataset has a practicable number of observations, making it also
a workable task for the statistician to check assumptions (e.g., the errors are uncorrelated).
As well, the statistician can perform the well-regarded—uyet often discarded—EDA to examine
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and apply the appropriate remedies for individual records that contribute to sticky data
characteristics (e.g., gaps, clumps, and outliers). It is important that EDA allows the statisti-
cian to assess whether a given variable, say, X needs a transformation/reexpression—for
example, log(X), sin(X), or 1/X. The traditional variable selection methods cannot perform
such transformations or a priori construction of new variables from the original variables.
The inability to construct new variables is a serious weakness of the variable selection
methodology [1].

Today, building an OLS regression model or a logistic regression model (LRM; the
dependent variable is binary) is problematic because of the size of the datasets used. Model
builders work on big data—consisting of a teeming multitude of variables and an army
of observations. The workable tasks are no longer feasible. Model builders cannot sure-
footedly use OLS regression and LRM on big data as the two statistical regression models
were conceived, tested, and experimented within the small-data setting of more than 60 to
200-plus years ago for LRM and OLS regression, respectively. The theoretical regression
foundation and the tool of significance testing” employed on big data are without statistical
binding force. Thus, fitting big data to a prespecified small-framed model produces a
skewed model with doubtful interpretability and questionable results.

In the late 1960s and early 1970s, according to folklore, the practice of variable selection
methods began. During that period, data were small and slowly growing into the early
size of big data today. With only a single bibliographic citation ascribing variable selec-
tion methods to unsupported notions, I believe a reasonable scenario of the genesis of the
methods was as follows [3]: College statistics nerds (intelligent thinkers) and computer
science geeks (intelligent doers) lay out the variable selection methodology using a trinity
of selection components:

1. Statistical tests (e.g., F, chi-square, and t-test) and significance testing

2. Statistical criteria (e.g, R-squared [R-sq], adjusted R-sq, Mallows’” C,, and MSE
[mean squared error]) [4]

3. Statistical stopping rules (e.g., p-value flags for variable entry/deletion/staying in
a model)

The newly developed variable selection methods were on bearing soil of expertness
and adroitness in computer-automated misguided statistics. The trinity distorts its com-
ponents’ original theoretical and inferential meanings when framed within the newborn
methods. The statistician executing the computer-driven trinity of statistical apparatus
in a seemingly intuitive and insightful way gave proof—face validity—that the problem of
variable selection (also known as subset selection) was solved (at least to the uninitiated
statistician).

The newbie subset selection methods initially enjoyed wide acceptance with extensive
use and still do presently. Statisticians build at-risk accurate and stable models—either
unknowingly using these unconfirmed methods or knowingly exercising these methods
because they know not what else to do. It was not long before the weaknesses of these
methods, some contradictory, generated many commentaries in the literature. I itemize
nine ever-present weaknesses for two of the traditional variable selection methods,

* The variable selection methods do not include the new breed of methods that have data mining capability.
t “What If There Were No Significance Testing?” (on the author’s website, http://www.geniq.net/res/What-If-
There-Were-No-Significance-Testing.html).
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all-subset and stepwise (SW). I concisely describe the five frequently used variable selec-
tion methods in the next section.

1. For all-subset selection with more than 40 variables [3]:
a. The number of possible subsets can be huge.
b. Often, there are several good models, although some are unstable.

c. The best X variables may be no better than random variables if the sample size
is relatively small compared to the number of all variables.

d. The regression statistics and regression coefficients are biased.
2. All-subset selection regression can yield models that are too small [5].

3. The number of candidate variables and not the number in the final model is the
number of degrees of freedom to consider [6].

4. The data analyst knows more than the computer—and failure to use that knowl-
edge produces inadequate data analysis [7].

5. SW selection yields confidence limits that are far too narrow [§].

6. Regarding frequency of obtaining authentic and noise variables: The degree of
correlation among the predictor variables affected the frequency with which
authentic predictor variables found their way into the final model. The number of
candidate predictor variables affected the number of noise variables that gained
entry to the model [9].

7. SW selection will not necessarily produce the best model if there are redundant
predictors (common problem) [10].

8. There are two distinct questions here: (a) When is SW selection appropriate?
(b) Why is it so popular [11]?

9. Regarding Question 8b, there are two groups that are inclined to favor its usage.
One group consists of individuals with little formal training in data analysis. This
group confuses knowledge of data analysis with knowledge of the syntax of SAS,
SPSS, and the like. This group believes that if SW is in a program, it has to be good
and better than actually thinking about what the data might look like. The second group
consists of right-thinking, well-trained data analysts. They believe in statistics
to the extent a suitable computer program can objectively make substantive
inferences without active consideration of the underlying hypotheses. Stepwise
selection is the parent of this line of blind data analysis’

Currently, there is burgeoning research that continues the original efforts of subset
selection by shoring up its pseudo-theoretical foundation. It follows a line of examina-
tion that adds assumptions and makes modifications for eliminating the weaknesses.
As the traditional methods undergo constant revision, there are innovative approaches
with starting points far afield from their traditional counterparts. Under development
are freshly minted methods such as the enhanced variable selection method of the GenlQ
Model [12-15].

* Comment without an attributed citation: Frank Harrell, professor of biostatistics and department chair,
Department of Biostatistics, Vanderbilt University School of Medicine, 2009.
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13.3 Frequently Used Variable Selection Methods

Variable selection in regression—identifying the best subset of many variables to include
in a model—is arguably the hardest part of the model-building process. Many variable
selection methods exist because they provide a solution to one of the most important
problems in statistics [16].” Many statisticians know them, but few know they produce
poorly performing models. The deficient variable selection methods are a miscarriage of
statistics, debasing sound statistical theory into a misguided pseudo-theoretical founda-
tion. Execution of the methods depends on computer-intensive search heuristics guided
by rules of thumb. Each method uses a unique trio of elements, one from each compo-
nent of the trinity of selection components.” Different sets of elements typically produce
different subsets. The number of variables in common with the different subsets is small,
and the sizes of the subsets can vary considerably.

An alternative view of the problem of variable selection is to examine certain subsets and
select the best subset that either maximizes or minimizes an appropriate criterion. Two
subsets are obvious: the best single variable and the complete set of variables. The problem
lies in selecting an intermediate subset that is better than both of these extremes. Therefore,
the issue is how to find the necessary variables among the complete set of variables by delet-
ing both irrelevant variables (variables not affecting the dependent variable) and redundant
variables (variables not adding anything to the prediction of the dependent variable) [17].

Ireview five frequently used variable selection methods found in major statistical soft-
ware packages.t The test statistic (TS) for the first three methods uses either the F statistic
for a continuous dependent variable or the G statistic for a binary dependent variable.
The TS for the fourth method is either R-sq for a continuous dependent variable or the
score statistic for a binary dependent variable. The last method uses one of the following
criteria: R-sq, adjusted R-sq, or Mallows’ C,.

1. Forward selection (FS): This method adds variables to the model until no remaining
variable (outside the model) can add anything significant to the dependent vari-
able. FS begins with no variable in the model. For each variable, the TS, a measure
of the contribution of the variable to the model, is calculated. The variable with the
largest TS value that is greater than a preset value, C, goes into the model. Then,
TS for the variables remaining is calculated, and the evaluation process repeats.
Thus, variables are added to the model one by one until no remaining variable
produces a TS value that is greater than C. Once a variable is in the model, it
remains there.

2. Backward elimination (BE): This method deletes variables one by one from the model
until all remaining variables contribute something significant to the dependent
variable. BE begins with a model that includes all variables. Variables are then
deleted from the model one by one until all the variables remaining in the model
have TS values greater than C. At each step, the variable showing the smallest

* Comment without an attributed citation: In 1996, Tim C. Hesterberg, research scientist at Insightful
Corporation, asked Brad Efron for the most important problems in statistics, fully expecting the answer to
involve the bootstrap given Efron’s status as inventor. Instead, Efron named a single problem, variable selec-
tion in regression. This entails selecting variables from among a set of candidate variables, estimating param-
eters for those variables, and inference—hypotheses tests, standard errors, and confidence intervals.

* Other criteria are based on information theory and Bayesian rules.

+ SAS/STAT Manual. See PROC REG and PROC LOGISTIC, support.sas.com, 2011.



Variable Selection Methods in Regression 193

contribution to the model (i.e., with the smallest TS value that is less than C) is
subject to deletion.

3. Stepwise (SW): This method is a modification of the FS approach and differs in that
variables already in the model do not necessarily stay. As in FS, SW adds variables
to the model one at a time. Variables that have a TS value greater than C go into
the model. After a variable enters a model, however, SW looks at all the variables
already included to delete any variable that does not have a TS value greater than C.

4. R-squared (R-sq): This method finds several subsets of different sizes that best predict
the dependent variable. R-sq finds subsets of variables that best predict the depen-
dent variable based on the appropriate TS. The best subset of size k has the largest
TS value. For a continuous dependent variable, TS is the popular measure R-sq, the
coefficient of multiple determination, which measures the proportion of the explained
variance in the dependent variable by the multiple regression. For a binary depen-
dent variable, TS is the theoretically correct but less-known Score statistic.” R-sq finds
the best one-variable model, the best two-variable model, and so forth. However, it
is unlikely that one subset will stand out as clearly the best because TS values often
bunch together. For example, they are equal in value when rounding at the, say, third
place after the decimal pointt R-sq generates some subsets of each size, which allows
the user to select a subset, possibly using nonstatistical criteria.

5. All-possible subsets: This method builds all one-variable models, all two-variable
models, and so on until the last creation of the all-variable model. The method
requires intensive computer power as it produces many models and the selection
of any one of the criteria: R-sq, adjusted R-sq, or Mallows’ C,.

13.4 Weakness in the Stepwise

An ideal variable selection method for regression models would find one or more sub-
sets of variables that produce an optimal modelt. The objective of the ideal method states
that the resultant models include the following elements: accuracy, stability, parsimony,
interpretability, and lack of bias in drawing inferences. Needless to say, the methods
enumerated do not satisfy most of these elements. Each method has at least one draw-
back specific to its selection criterion. In addition to the nine weaknesses mentioned,
I itemize a compiled list of weaknesses of the most popular SW method.$

1. It yields R-sq values that are badly biased toward high.

2. The F and chi-squared statistics quoted next to each variable on the printout do
not have the claimed distribution.

* R-squared theoretically is not the appropriate measure for a binary dependent variable. However, many ana-
lysts use it with varying degrees of success.

* For example, consider two TS values: 1.934056 and 1.934069. These values are equal when rounding occurs at
the third place after the decimal point: 1.934.

t Even if there were a perfect variable selection method, it is unrealistic to believe there is a unique best subset
of variables.

§ Comment without an attributed citation: Frank Harrell, professor of biostatistics and department chair,
Department of Biostatistics, Vanderbilt University School of Medicine, 2010.
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3. The method yields confidence intervals for effects and predicted values that are
falsely narrow.

4. It yields p-values that do not have the proper meaning, and the proper correction
for them is a very difficult problem.

5. It gives biased regression coefficients that need shrinkage (the coefficients for
remaining variables are too large).

6. It has severe problems in the presence of collinearity.
7. SW uses methods (e.g., F statistic) intended to be used to test prespecified hypotheses.
8. Increasing the sample size does not help very much.
9. It allows us not to think about the problem.
10. It uses a lot of paper. (This item is no longer relevant as the output can go to the cloud.)

11. The number of candidate predictor variables affect the number of noise variables
that gain entry to the model.

I'add to the tally of weaknesses by stating common weaknesses in regression models as
well as those specifically related to the OLS regression model and LRM:

The everyday variable selection methods in the regression model result typically in
models having too many variables, an indicator of overfitting. The prediction errors,
which are inflated by outliers, are not stable. Thus, model implementation results in
unsatisfactory performance. For OLS regression, it is well-known that in the absence
of normality or absence of linearity assumption or outlier presence in the data, vari-
able selection methods perform poorly. For logistic regression, the reproducibility of the
computer-automated variable selection models is poor. The variables selected as predic-
tor variables in the models are sensitive to unaccounted sample variation in the data.

Given the litany of weaknesses cited, the lingering question is: Why do statisticians use
variable selection methods to build regression models? To paraphrase Mark Twain: “Get
your [data] first, and then you can distort them as you please” [18]. My answer is: “Modeler
builders use variable selection methods every day because they can.” As a counterpoint to
the absurdity of “because they can,” I enliven anew Tukey’s solution of the natural seven-step
cycle to define a substantial performing regression model. I feel that newcomers to Tukey’s
EDA need the seven-step cycle introduced within the narrative of Tukey’s analytic philoso-
phy. Accordingly, I enfold the solution with front and back matter—the essence of EDA and
the EDA school of thought, respectively. I delve into the trinity of Tukey’s masterwork. But,
first I discuss an enhanced variable selection method for which I might be the only exponent
for appending this method to the current baseless arsenal of variable selection.

I
13.5 Enhanced Variable Selection Method
In lay terms, the statement of the variable selection problem in regression is:

Find the best combination of the original variables to include in a model. The variable
selection method neither states nor implies that it has an attribute to concoct new vari-
ables stirred up by mixtures of the original variables.
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The attribute—data mining—is either overlooked, perhaps because it is reflective of the
simple-mindedness of the problem solution at the onset, or currently sidestepped because
the problem is too difficult to solve. A variable selection method without a data mining
attribute obviously hits a wall, beyond which it would otherwise increase the predictive-
ness of the technique. In today’s terms, the variable selection methods are without data
mining capability. They cannot dig the data for the mining of potentially important new
variables. (This attribute, which has never surfaced in my literature search, is a partial
mystery to me.) Accordingly, I put forth a definition of an enhanced variable selection
method:

An enhanced variable selection method is one that identifies a subset that consists of
the original variables and data-mined variables, whereby the latter are a result of the data
mining attribute of the method itself.

The following five discussion points clarify the attribute weakness and illustrate the
concept of an enhanced variable selection method:

1. Consider the complete set of variables X, X,, ..., Xj,. Any of the current variable
selection methods finds the best combination of the original variables (say X;,
X3, X5 Xyp), but it can never automatically transform a variable (say transform X;
to log X,) if it were needed to increase the information content (predictive power)
of that variable. Furthermore, none of the methods can generate a reexpression of
the original variables (perhaps X;/Xy) if the constructed variable (structure) were
to offer more predictive power than the original component variables combined.
In other words, current variable selection methods cannot find an enhanced sub-
set, which needs, say, to include transformed and newly constructed variables
(possibly X;, X5, X5 Xy, log X, X5/X;). A subset of variables without the poten-
tial of new structure offering more predictive power limits the model builder in
building the best model.

2. Specifically, the current variable selection methods fail to identify a data struc-
ture of the type discussed here: transformed variables with a preferred shape.
A variable selection procedure should have the ability to transform an individ-
ual variable, if necessary, to induce a symmetric distribution. Symmetry is the
preferred shape of an individual variable. For example, the workhorse of statis-
tical measures—the mean and variance—is based on a symmetric distribution.
A skewed distribution produces inaccurate estimates for means, variances, and
related statistics, such as the correlation coefficient. Symmetry facilitates the
interpretation of the effect of the variable in an analysis. A skewed distribution
is difficult to examine because most of the observations are bunched together
at one end of the distribution. Modeling and analyses based on skewed distri-
butions typically provide a model with doubtful interpretability and question-
able results.

3. The current variable selection method also should have the ability to straighten
nonlinear relationships. A linear or straight-line relationship is the preferred
shape when considering two variables. A straight-line relationship between
independent and dependent variables is an assumption of the popular statistical
linear regression models (e.g., OLS regression and LRM). (Recall, a linear model
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is defined as a sum of weighted variables, such as Y = b, + b*X; + b,*X, + b;*X;.")
Moreover, straight-line relationships among all the independent variables consti-
tute a desirable property [19]. In brief, straight-line relationships are easy to inter-
pret: A unit of increase in one variable produces an expected constant increase or
decrease in a second variable.

4. Constructed variables are mathematical mixtures of original variables and simple
arithmetic functions. A variable selection method should have the ability to con-
struct simple reexpressions of the original variables. Sum, difference, ratio, or
product variables potentially offer more information than the original variables
themselves. For example, when analyzing the efficiency of an automobile engine,
two important variables are miles traveled and fuel used (gallons). However, it
is well-known that the ratio variable of miles per gallon is the best variable for
assessing the performance of the engine.

5. Constructed variables are mathematical mixtures of original variables using a set
of functions (e.g., arithmetic, trigonometric, or Boolean functions). A variable
selection method should have the ability to construct complex reexpressions with
mathematical functions to capture the complex relationships in the data and offer
potentially more information than the original variables themselves. In an era of
data warehouses and the Internet, big data consisting of hundreds of thousands
to millions of individual records and hundreds to thousands of variables are com-
monplace. Relationships among many variables produced by so many individuals
are sure to be complex and beyond the simple straight-line pattern. Discovering
the mathematical expressions of these relationships, although difficult with theo-
retical guidance, should be the hallmark of a high-performance variable selec-
tion method. For example, consider the well-known relationship among three
variables: the lengths of the three sides of a right triangle. A powerful variable
selection procedure would identify the relationship among the sides, even in
the presence of measurement error: The longer side (diagonal) is the square root of
the sum of squares of the two shorter sides.

In sum, the attribute weakness implies that a variable selection method should have the
ability to generate an enhanced subset of candidate predictor variables.

13.6 Exploratory Data Analysis

I present the trinity of Tukey’s EDA that is relevant to the titled topic: (1) the essence of
EDA, (2) the natural seven-step cycle of statistical modeling and analysis, serving as a
notable solution to variable selection in regression, and (3) the EDA school of thought.

1. The essence of EDA is best described in Tukey’s own words: “Exploratory data
analysis is detective work—numerical detective work—or counting detective
work—or graphical detective work. ... [It is] about looking at data to see what

* The weights or coefficients (by, b;, b,, and b;) are derived to satisfy some criterion, such as minimize the mean
squared error used in ordinary least squares regression or minimize the joint probability function used in
logistic regression.
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it seems to say. “[1, pp.1] It concentrates on simple arithmetic and easy-to-draw
pictures. It regards whatever appearances we have recognized as partial descrip-
tions and tries to look beneath them for new insights.” EDA includes the following
characteristics:

a. Flexibility—Techniques with greater flexibility to delve into the data
b. Practicality—Advice for procedures of analyzing data

¢. Innovation—Techniques for interpreting results

d. Universality—Use all statistics that apply to analyzing data

e. Simplicity—Above all, the belief that simplicity is the golden rule

The computational strength of the personal computer (PC) has empowered the
statistician. Without the PC, the statistician would not be able to perform the
natural seven-step cycle of statistical modeling and analysis. The PC and
the analytical cycle comprise the perfect pairing as long as the steps follow
the prescribed order. The information obtained from one step is used in the
next succeeding step. Unfortunately, statisticians are human and succumb to
taking shortcuts through the seven-step cycle. They ignore the cycle and focus
solely on the sixth step. However, diligent statistical endeavor requires steady
execution of the sequential tasks, as described in the originally outlined seven-
step cycle.

2. The natural seven-step cycle of statistical modeling and analysis consists of the

following analytical techniques and criteria:

a. Definition of the problem: Determining the best way to tackle the problem is not
always obvious. Management objectives are often expressed qualitatively, in
which case the selection of the outcome or target (dependent) variable is sub-
jectively biased. When the objectives are clearly stated, the appropriate depen-
dent variable is often not available, in which case a surrogate must be used.

b. Determining technique: The technique first selected is often the one with which
the data analyst is most comfortable; it is not necessarily the best technique for
solving the problem.

c. Use of competing techniques: Applying alternative techniques increases the odds
that a thorough analysis is conducted.

d. Rough comparisons of efficacy: Comparing variability of results across techniques
can suggest additional techniques or the deletion of alternative techniques.

e. Comparison in terms of a precise (and thereby inadequate) criterion: An explicit
criterion is difficult to define. Therefore, precise surrogates are often used.

f.  Optimization in terms of a precise and inadequate criterion: An explicit criterion is
difficult to define. Therefore, precise surrogates are often used.

g. Comparison in terms of several optimization criteria: This constitutes the final step
in determining the best solution.

3. The EDA school of thought
Tukey’s book is more than a collection of new and creative rules and opera-

tions. It defines EDA as a discipline that holds that data analysts fail if only
they fail to try many things. It further espouses the belief that data analysts

* The seven steps are Tukey’s. The annotations are mine.
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are especially successful if their detective work forces them to notice the
unexpected. In other words, the philosophy of EDA is a trinity of attitude and
flexibility to do whatever it takes to refine the analysis and sharp-sightedness to
observe the unexpected when it does appear. EDA is thus a self-propagating
theory; each data analyst adds his or her contribution, thereby contributing to
the discipline.

The sharp-sightedness of EDA warrants more attention as it is a very important
feature of the EDA approach. The data analyst should be a keen observer
of those indicators that are capable of being dealt with successfully and
use them to paint an analytical picture of the data. In addition to the ever-
ready visual graphical displays as indicators of what the data reveal, there
are numerical indicators, such as counts, percentages, averages, and the other
classical descriptive statistics (e.g., standard deviation, minimum, maximum,
and missing values). The data analyst’s personal judgment and interpreta-
tion of indicators are not considered a bad thing because the goal is to draw
informal inferences rather than those statistically significant inferences that
are the hallmark of statistical formality.

In addition to visual and numerical indicators, there are the indirect messages in
the data that force the data analyst to take notice, prompting responses such
as “The data look like ...,” or, “It appears to be ...” Indirect messages may be
vague, but their importance is to help the data analyst draw informal infer-
ences. Thus, indicators do not include any of the hard statistical apparatus,
such as confidence limits, significance tests, or standard errors.

With EDA, a new trend in statistics was born. Tukey and Mosteller quickly followed
up in 1977 with the second EDA book, Data Analysis and Regression (EDA 1I),
which recasts the basics of classical inferential procedures of data analysis
and regression. EDA II takes a fresh view of the classics as an assumption-free,
nonparametric approach guided by “(a) a sequence of philosophical attitudes ...
for effective data analysis, and (b) a flow of useful and adaptable techniques
that make it possible to put these attitudes to work” [20].

Hoaglin, Mosteller, and Tukey, in 1983, succeeded in advancing EDA with,
Understanding Robust and Exploratory Data Analysis, which provides an under-
standing of how badly the classical methods behave when their restrictive
assumptions do not hold and offers alternative robust and exploratory methods
to broaden the effectiveness of statistical analysis [21]. It includes a collection
of methods to cope with data in an informal way, guiding the identification of
data structures relatively quickly and easily and trading off optimization of
objectives for the stability of results.

Hoaglin, Mosteller, and Tukey, in 1991, continued their fruitful EDA efforts with,
Fundamentals of Exploratory Analysis of Variance [22]. They recast the basics of
the analysis of variance with the classical statistical apparatus (e.g., degrees of
freedom, F ratios, and p-values) in a host of numerical and graphical displays.
These displays often give insight into the structure of the data, such as size
effects, patterns and interaction, and behavior of residuals.

EDA set off a burst of activity in the visual portrayal of data. Graphical Methods for
Data Analysis (1983) presented new and old methods—some of which require
a computer, while others only paper and a pencil—but all are powerful data
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Problem ==> Model ===> Data ===> Analysis ===> Results/interpretation (Classical)
Problem <==> Data <===> Analysis <===> Model ===> Results/interpretation (EDA)

W

Attitude, flexibility, and sharp-sightedness (EDA trinity)

FIGURE 13.1
EDA paradigm.

analysis tools to learn more about data structure [23]. In 1986, du Toit, Steyn,
and Stumpf came out with Graphical Exploratory Data Analysis, providing a
comprehensive, yet simple presentation of the topic [24]. Jacoby, with Statistical
Graphics for Visualizing Univariate and Bivariate Data (1997) and Statistical Graphics
for Visualizing Multivariate Data (1998), carries out his objective to obtain pic-
torial representations of quantitative information by elucidating histograms,
one-dimensional and enhanced scatterplots, and nonparametric smoothing
[25,26]. Also, he successfully transfers graphical displays of multivariate data
on a single sheet of paper, a two-dimensional space.

EDA presents a major paradigm shift, depicted in Figure 13.1, in the starting point
of the model-building process. With the mantra “Let your data be your guide,”
EDA offers a view that is a complete reversal of the classical principles that
govern the usual steps of the model building. EDA declares the model must
always follow the data, not the other way around, as in the classical approach.

In the classical approach, the problem is stated and formulated regarding an out-
come variable Y. The working assumption is the frue model explaining all the
variation in Y is known. Specifically, all the structures (predictor variables, X;’s)
affecting Y and their forms are known and present in the model. For example,
if Age affects Y, but the log of Age reflects the true relationship with Y, then
the log of Age must be present in the model. Once the model is specified, the
data undergo model-specific analysis, which provides the results regarding
numerical values associated with the structures or estimates of the true pre-
dictor variables’ coefficients. Then, the data analyst interprets the specified
model by declaring the importance of X;, assessing how X; affects the predic-
tion of Y, and ranking X; in order of predictive importance.

Of course, the data analyst never knows the true model. So, familiarity with the
content domain of the problem is used to put forth explicitly the true surrogate
model, which yield good predictions of Y. According to Box, “All models are
wrong, but some are useful” [27]. In this case, the model selected provides
serviceable predictions of Y. Regardless of the model used, the assumption of
knowing the truth about Y sets the statistical logic in motion to cause likely
bias in the analysis, results, and interpretation.

In the EDA approach, the only assumption is having some prior experience with
the content domain of the problem. The right attitude, flexibility, and sharp-
sightedness are the forces behind the data analyst, who assesses the problem
and lets the data guide the analysis, which then suggests the structures and
their forms of the model. If the model passes the validity check, then it is con-
sidered final and ready for final results and interpretation. If not, with the
force still behind the data analyst, the analysis or data are revisited until new
structures produce a sound and validated model. The model’s final results
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and interpretation are available for review. Take a second look at Figure 13.1.
Without exposure to assumption violations, the EDA paradigm offers a degree
of confidence that its prescribed exploratory efforts are not biased, at least in
the manner of the classical approach. Of course, no analysis is bias free as all
analysts admit their bias into the equation.

With all its strengths and determination, EDA as originally developed had two
minor weaknesses that could have hindered its wide acceptance and great
success. One is of a subjective or psychological nature, and the other is a mis-
conceived notion. Data analysts know that failure to look into a multitude of
possibilities can result in a flawed analysis; thus, they find themselves in a com-
petitive struggle against the data itself. So, EDA can foster data analysts with
insecurity that their work is never complete. The PC can assist data analysts in
being thorough with their analytical due diligence but bears no responsibility
for the arrogance EDA engenders.

The belief that EDA, originally developed for the small-data setting, does not work
as well with large samples is a misconception. Indeed, some of the graphical
methods, such as the stem-and-leaf plots, and some of the numerical and
counting methods, such as folding and binning, do break down with large
samples. However, the majority of the EDA methodology is unaffected by data
size. The manner by which the methods are carried out and the reliability of
the results remain in place. In fact, some of the most powerful EDA techniques
scale up quite nicely but do require the PC to do the serious number crunching
of the big data [28]. For example, techniques such as ladder of powers, reexpress-
ing, and smoothing are valuable tools for large sample or big data applications.

13.7 Summary

Finding the best possible subset of variables to put in a model has been a frustrating exer-
cise. Many variable selection methods exist. Many statisticians know them, but few know
they produce poorly performing models. The deficient variable selection methods are a mis-
carriage of statistics, debasing sound statistical theory into a misguided pseudo-theoretical
foundation. I review the five widely used variable selection methods, itemize some of their
weaknesses, and answer why they are still in use. Then, I present the notable solution to
variable selection in regression: the natural seven-step cycle of statistical modeling and anal-
ysis. I feel that newcomers to Tukey’s EDA need the seven-step cycle introduced within the
narrative of Tukey’s analytic philosophy. Accordingly, I enfolded the solution with front and
back matter—the essence of EDA and the EDA school of thought, respectively.
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14

CHALID for Interpreting a Logistic Regression Model

14.1 Introduction

The logistic regression model is the standard technique for building a response model. Its
theory is well established, and its estimation algorithm is available in all major statistical
software packages. The literature on the theoretical aspects of logistic regression is large
and rapidly growing. However, the literature is seemingly empty on the interpretation
of the logistic regression model. The purpose of this chapter is to present a data mining
method based on chi-squared automatic interaction detection (CHAID) for interpreting
a logistic regression model, specifically to provide a complete assessment of the effects of
the predictor variables, defining a logistic regression model, on a binary response variable.

14.2 Logistic Regression Model

I state the definition of the logistic regression model briefly. Let Y be a binary response
(dependent) variable, which takes on yes/no values (typically coded 1/0, respectively),
and X;, X,, .., X, be the predictor (independent) variables. The logistic regression model
estimates the logit of Y—the log of the odds of an individual responding yes—defined
in Equation 14.1. The logit yields an individual’s probability of responding yes from the
transformation formula in Equation 14.2:

LOgltY = b0+ bl*X1+ bz*XZ +...+ bn*Xn (].41)

exp(Logit Y)

Prob(Y =1) =
rob( ) 1 + exp(Logit Y)

(14.2)

Calculating an individual’s predicted probability of responding yes is performed by
plugging in the values of the predictor variables for that individual in Equations 14.1
and 14.2. The b’s are the logistic regression coefficients. The coefficient by, is referred to as
the intercept and has no corresponding X, like the other b’s.

* This chapter is based on an article with the same title in Journal of Targeting, Measurement and Analysis for
Marketing, 6,2, 1997. Used with permission.
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The odds ratio is the traditional measure of assessing the effect of a predictor variable on
the response variable, actually on the odds of response = 1, given that the other predictor
variables are “held constant.” The phrase “given that ...” implies that the odds ratio is the
average effect of a predictor variable on response when the effects of the other predictor
variables are “partialled out” of the relationship between response and the predictor vari-
able. Thus, the odds ratio does not explicitly reflect the variation of the other predictor
variables. Exponentiating the coefficient of the predictor variable defines the odds ratio for
a predictor variable. That is, the odds ratio for X; equals exp(b;), where exp is the exponen-
tial function and b; is the coefficient of X.

14.3 Database Marketing Response Model Case Study

A woodworker’s tool supplier, who wants to increase response to her catalog in an upcom-
ing campaign, needs a model for generating a list of her most responsive customers. The
response model, built on a sample drawn from a recent catalog mailing with a 2.35%
response rate, is defined by the following variables:

1. The response variable is RESPONSE, which indicates whether a customer made
a purchase (yes = 1, no = 0) from the recent catalog mailing.

2. There are three predictor variables consisting of
a. CUST_AGE, the customer age in years

b. LOG_LIFE, the log of total purchases in dollars since the customer’s first
purchase; that is, the log of lifetime dollars

c. PRIOR_BY, the dummy variable indicating a purchase in the 3 months before
the recent catalog mailing (yes = 1, no = 0).

The logistic regression analysis on RESPONSE with the three predictor variables pro-
duces the output in Table 14.1. The “Parameter Estimate” column contains the logistic
regression coefficients, which defines the RESPONSE model in Equation 14.3.

Logit RESPONSE = -8.43 + 0.02*CUST _ AGE
(14.3)
+0.74*LOG _LIFE + 0.82*PRIOR _BY

TABLE 14.1
Logistic Regression Output

Parameter Standard Wald Pr> Odds
Variable Estimate Error Chi-square  Chi-square Ratio
Intercept 1 -8.4349 0.0854 9760.7175 1.E + 00
CUST_AGE 1 0.0223 0.0004 2967.8450 1.E + 00 1.023
LOG_LIFE 1 0.7431 0.0191 1512.4483 1.E + 00 2.102
PRIOR_BY 1 0.8237 0.0186 1962.4750 1.E + 00 2.279
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14.3.1 Odds Ratio

The following discussion illustrates two weaknesses of the odds ratio. First, the odds ratio
is regarding odds of responding yes: It is an unintuitive awkward measure due to the neces-
sary exponentiating of the coefficient of the predictor variable. Even the mathematically
adept feel slightly queasy when interpreting it. Second, the odds ratio provides a static
assessment of the effect of a predictor variable as its value is constant regardless of the
relationship among the other predictor variables. The odds ratio is part of the standard
output of the logistic regression analysis. For the case study, the odds ratio is in the right-
most column in Table 14.1.

1. For PRIOR_BY with a coefficient value of 0.8237, the odds ratio is 2.279 (= exp(0.8237)).
The odds ratio indicates that the odds of an individual who has made a purchase
within the prior 3 months (PRIOR_BY = 1) is 2.279 times the odds of an individual
who has not made a purchase within the prior 3 months (PRIOR_BY = 0)—given
CUST_AGE and LOG_LIFE are held constant.

2. CUST_AGE has an odds ratio of 1.023. The odds ratio indicates that for every one-
year increase in a customer’s age, the odds increase by 2.3%—given PRIOR_BY
and LOG_LIFE are held constant.

3. LOG_LIFE has an odds ratio of 2.102, which indicates that for every one log-
lifetime-dollar-unit increase, the odds increase by 110.2%—given PRIOR_BY and
CUST _AGE are held constant.

The proposed CHAID-based data mining method supplements the odds ratio for inter-
preting the effects of a predictor on RESPONSE. It provides treelike displays regarding
non-threatening probability units, everyday values ranging from 0% to 100%. Moreover, the
CHAID-based graphics provide a complete assessment of the effect of a predictor variable on
RESPONSE. They bring forth the simple, unconditional relationship between a given predic-
tor variable and RESPONSE as well as the conditional relationship between a given predictor
variable and RESPONSE shaped by the relationships between the other Xs and a given pre-
dictor variable and the other Xs and RESPONSE.

14.4 CHAID

Briefly stated, CHAID is a technique that recursively partitions a population into
separate and distinct subpopulations or segments such that the variation of the depen-
dent variable is minimized within the segments and maximized among the segments.
A CHAID analysis results in a tree-like diagram, commonly called a CHAID tree. In 1980,
CHAID was the first technique originally developed for finding “combination” or inter-
action variables. In database marketing today, CHAID primarily serves as a market seg-
mentation technique. The use of CHAID in the proposed application for interpreting a

* For given values of CUST_AGE and LOG_LIFE, say, a and b, respectively, the odds ratio for PRIOR_BY is
defined as:
_ odds (PRIOR_BY =1 given CUST_AGE = a and LOG_LIFE = b)
odds (PRIOR_BY = 0 given CUST_AGE = a and LOG_LIFE = b)
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logistic regression model is possible because of the salient data mining features of CHAID.
CHAID is eminently good in uncovering structure, in this application, within the
conditional and unconditional relationships among RESPONSE and predictor variables.
Moreover, CHAID is excellent in graphically displaying multivariable relationships. The
CHAID output is a tree like figure that branches from a single root. The CHAID tree is
easy to read and interpret.

It is worth emphasizing that the proposed application of CHAID does not offer an alter-
native method for analyzing or modeling the data at hand. CHAID serves as a visual
aid for depicting the statistical mechanics of an already built logistic regression model:
addressing how the variables of the model work together in contributing to the predicted
probability of response.

It is important to note the versatility of the proposed method as it can be applied
to any built model—not necessarily logistic regression. As such, the proposed method
provides a complete assessment of the effects of the predictor variables, defining any
model—statistical or machine-learning, on the dependent variable.

14.4.1 Proposed CHAID-Based Method

When performing an ordinary CHAID analysis, the model builder selects both the binary
response variable and a set of predictor variables. For the proposed CHAID-based data
mining method, the CHAID response variable is the already-built logistic response model’s
estimated probability of response. The CHAID set of predictor variables consists of the predic-
tor variables that defined the logistic response model in their original units not in reex-
pressed units (if reexpressing was necessary). Reexpressed variables are invariably in units
that hinder the interpretation of the CHAID-based analysis as well as the logistic regres-
sion model. Moreover, to facilitate the analysis, the continuous predictor variables are cate-
gorized into meaningful intervals based on the content domain of the problem under study.

For the current study, the CHAID response variable is the estimated probability of
RESPONEE, called Prob_est, which is obtained from Equations 14.2 and 14.3 and defined
in Equation 14.4:

exp(-8.43+0.02* CUST_AGE + 0.74* LOG_LIFE
+0.82* PRIOR _BY)
1+exp(-8.43+0.02* CUST_AGE +0.74* LOG_LIFE
+ 0.82* PRIOR_BY)

Prob_est =

(14.4)

The CHAID set of predictor variables is CUST_AGE categorized into two classes,
PRIOR_BY and the original variable LIFETIME DOLLARS (log-lifetime-dollar units are
hard to understand), categorized into three classes. The woodworker’s tool supplier views
her customers regarding the following classes:

1. The two CUST_AGE classes are “less than 35 years” and “35 years and up.” CHAID
uses the bracket and parenthesis symbols in its display of intervals, denoting two
customer age intervals: [18, 35) and [35, 93], respectively. CHAID defines intervals
as a closed interval and a left-closed right-open interval. The former is denoted by
[a, b], indicating all values between and including a and b. The latter is denoted by
[a, b), indicating all values greater than/equal to a and less than b. Minimum and
maximum ages in the sample are 18 and 93, respectively.
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2. The three LIFETIME DOLLARS classes are: less than $15,000, $15,001 to $29,999,
and equal to or greater than $30,000. CHAID denotes the three lifetime dollar
intervals as [12, 1500), [1500, 30000), and [30000, 675014], respectively. Minimum
and maximum lifetime dollars in the sample are $12 and $675,014, respectively.

The CHAID trees in Figures 14.1 to 14.3 are based on the Prob_est variable with three
predictor variables and are read as follows:

1. All CHAID trees have a top box (root node), which represents the sample
under study: sample size and response rate. For the proposed CHAID application,
the top box reports the sample size and the average estimated probability (AEP)

FIGURE 14.1
CHAID tree for PRIOR_BY.

FIGURE 14.2
CHAID tree for CUST_AGE.
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FIGURE 14.3
CHAID tree for LIFETIME DOLLARS.
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of response. For the case study, the sample size is 858,963 and the AEP of
response is 0.0235.

2. The CHAID tree for PRIOR_BY is shown in Figure 14.1. The left leaf node rep-
resents a segment (size: 333,408) defined by PRIOR_BY = no. These customers
have not made a purchase in the prior 3 months; their AEP of response is 0.0112.
The right leaf node represents a segment (size: 525,555) defined by PRIOR_BY =
yes. These customers have made a purchase in the prior 3 months; their AEP of
response is 0.0312.

3. The CHAID tree for CUST_AGE is shown in Figure 14.2. The left leaf node repre-
sents a segment (size: 420,312) defined by customers whose ages are in the interval
[18, 35); their AEP of response is 0.0146. The right leaf node represents a segment
(size: 438,651) defined by customers whose ages are in the interval [35, 93]; their
AEP of response is 0.0320.

4. The CHAID tree for LIFETIME DOLLARS is in Figure 14.3. The left leaf node rep-
resents a segment (size: 20,072) defined by customers whose lifetime dollars are in
the interval [12, 1500); their AEP of response is 0.0065. The middle leaf node repre-
sents a segment (size: 613,965) defined by customers whose lifetime dollars are in
the interval [1500, 30000); their AEP of response is 0.0204. The left leaf node repre-
sents a segment (size: 224,926) defined by customers whose lifetime dollars are in
the interval [30000, 675014]; their AEP of response is 0.0332.

At this point, the single-predictor-variable CHAID tree shows the effect of the predictor
variable on RESPONSE. The values of the leaf nodes from left to the right clearly reveal
the pattern of increasing RESPONSE and predictor variable values. Although the single-
predictor-variable CHAID tree is easy to interpret with probability units, it does not reveal
the effects of a predictor variable on the variation of the other predictor variables in the
model. A multivariable CHAID tree serves as a complete visual display of the effect of a
predictor variable on response accounting for the presence of other predictor variables.

14.5 Multivariable CHAID Trees

The multivariable CHAID tree in Figure 14.4 shows the effects of LIFETIME DOLLARS on
RESPONSE on the variation of CUST_AGE and PRIOR_BY = no. The LIFETIME DOLLARS-
PRIOR_BY =no CHAID tree is read and interpreted as follows:

1. The root node represents the sample (size: 858,963); the AEP of response is 0.0235.

2. The tree has six branches, defined by the combination or interaction of the CUST_
AGE and LIFETIME DOLLARS intervals/nodes. Branches are read from an end
leaf node (bottom box) upward to and through intermediate leaf nodes, stopping
at the first-level leaf node below the root node.

3. Reading the tree, starting at the bottom of the multivariable CHAID tree in

Figure 14.4, from left to right: Branch 1 has the description of LIFETIME DOLLARS =
[12, 1500), CUST_AGE = [18, 35), and PRIOR_BY = no. Branch 2 has the description

* The average estimated probability or response rate is always equal to the true response rate.
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FIGURE 14.4
Multivariable CHAID tree for effects of LIFETIME DOLLARS, accounting for CUST_AGE and PRIOR_BY = no.

of LIFETIME DOLLARS = [1500, 30000), CUST_AGE = [18, 35), and PRIOR_BY = no.
Branches 3 to 5 are similarly described. The rightmost branch, Branch 6, has the
description of LIFETIME DOLLARS = [30000, 675014], CUST_AGE = [35, 93], and
PRIOR_BY =no.

4. Branches 1 to 3 show the effects on RESPONSE as LIFETIME DOLLARS increase
from the multivariable CHAID tree. The AEP of RESPONSE goes from 0.0032 to
0.0076 to 0.0131 for customers whose ages are in the interval [18, 35) and have not
purchased in the prior 3 months.

5. Branches 4 to 6 show the effects on RESPONSE as LIFETIME DOLLARS increase
from the multivariable CHAID tree. The AEP of RESPONSE ranges from 0.0048 to
0.0141 to 0.0192 for customers whose ages are in the interval [35, 93] and have not
purchased in the prior 3 months.

The multivariable CHAID tree in Figure 14.5 shows the effect of LIFETIME DOLLARS
on RESPONSE on the variation of CUST_AGE and PRIOR_BY = yes. Briefly, the LIFETIME
DOLLARS-PRIOR_BY = yes CHAID tree is interpreted as follows:

1. Branches 1 to 3 show the effects on RESPONSE as LIFETIME DOLLARS increase
from the multivariable CHAID tree. The AEP of response goes from 0.0077 to
0.0186 to 0.0297 for customers whose ages are in the interval [18, 35) and have pur-
chased in the prior 3 months.
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FIGURE 14.5
Multivariable CHAID tree for effects of LIFETIME DOLLARS, accounting for CUST_AGE and PRIOR_BY = yes.

2. Branches 4 to 6 show the effects on RESPONSE as LIFETIME DOLLARS increase
from the multivariable CHAID tree. The AEP of RESPONSE goes from 0.0144
to 0.0356 to 0.0460 for customers whose ages are in the interval [35, 93] and have
purchased in the prior 3 months.

The multivariable CHAID trees for the effects of PRIOR_BY on RESPONSE on the vari-
ation of CUST_AGE = [18, 35) and LIFETIME DOLLARS and on the variation of CUST_
AGE = [35, 93] and LIFETIME DOLLARS are in Figures 14.6 and 14.7, respectively. They
are similarly read and interpreted as the LIFETIME DOLLARS multivariable CHAID
trees in Figures 14.4 and 14.5.

The multivariable CHAID trees for the effects of CUST_AGE on RESPONSE on the varia-
tion of PRIOR_BY = no and LIFETIME DOLLARS and on the variation of PRIOR_BY = yes
and LIFETIME DOLLARS are in Figures 14.8 and 14.9, respectively. They are similarly read
and interpreted as the LIFETIME DOLLARS multivariable CHAID trees.

14.6 CHAID Market Segmentation

I take this opportunity to use the analysis (so far) to illustrate CHAID as a market
segmentation technique. A closer look at the full CHAID trees in Figures 14.4 and 14.5
identifies three market segment pairs, which show three levels of response performance,
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FIGURE 14.6
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FIGURE 14.7

Multivariable CHAID tree for effect of PRIOR_BY, accounting for LIFETIME DOLLARS and CUST_AGE = [35, 93].
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FIGURE 14.8
Multivariable CHAID tree for effect of CUST_AGE, accounting for LIFETIME DOLLARS and PRIOR_BY = no.

0.76%/0.77%, 0.48%/4.60%, and 1.41%/1.44%. CHAID provides the catalogue with market-
ing intelligence for high-, medium-, and low-performing segments. Marketing strategy
can be developed to stimulate the high performers with techniques such as cross-selling,
or to pique interest in the medium performers with new products, as well as to prod the
low performers with incentives and discounts.

The descriptive profiles of the three market segments are as follows:

Market Segment 1: These are customers whose ages are in the interval [18, 35), who have
not purchased in the prior 3 months and who have lifetime dollars in the interval
[1500, 30000). The AEP of response is 0.0076. See Branch 2 in Figure 14.4. Also,
there are customers whose ages are in the interval [18, 35), who have purchased
in the prior 3 months and who have lifetime dollars in the interval [12, 1500). The
AEP of response is 0.0077. See Branch 1 in Figure 14.5.

Market Segment 2: These are customers whose ages are in the interval [35, 93], who
have not purchased in the prior 3 months and who have lifetime dollars in the
interval [12, 1500). The AEP of response is 0.0048. See Branch 4 in Figure 14.4.
Also, there are customers whose ages are in the interval [35, 93], who have
purchased in the prior 3 months and who have lifetime dollars in the interval
[30000, 675014]. The AEP of response is 0.0460. See Branch 6 in Figure 14.5.

Market Segment 3: These are customers whose ages are in the interval [35, 93], who have
not purchased in the prior 3 months and who have lifetime dollars in the interval
[1500, 30000). The AEP of response is 0.0141. See Branch 5 in Figure 14.4. Also, there
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FIGURE 14.9
Multivariable CHAID tree for effect of CUST_AGE, accounting for LIFETIME DOLLARS and PRIOR_BY = yes.

are customers whose ages are in the interval [35, 93], who have purchased in the
prior 3 months and who have lifetime dollars in the interval [12, 1500). The AEP of
response is 0.0144. See Branch 4 in Figure 14.5.

14.7 CHAID Tree Graphs

Displaying the multivariable CHAID trees in a single graph provides the desired displays of
a complete assessment of the effects of the predictor variables on RESPONSE. Construction
and interpretation of the CHAID tree graph for a given predictor are as follows:

1. Collect the set of multivariable CHAID trees for a given predictor variable. For
example, for PRIOR_BY there are two trees, which correspond to the two values of
PRIOR_BY, yes and no.

2. For each branch, plot the AEP of response values (Y-axis) and the minimum values
of the end leaf nodes of the given predictor variable (X-axis)."

* The minimum value is one of several values that can be used; alternatives are the mean or median of each
predefined interval.
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FIGURE 14.10
CHAID tree graph for effects of LIFETIME on RESPONSE by CUST_AGE and PRIOR_BY.

3. For each branch, connect the nominal points (AEP response value, minimum value).
The resultant trace line segment represents a market or customer segment defined
by the branch’s intermediate leaf intervals/nodes.

4. The shape of the trace line indicates the effect of the predictor variable on
RESPONSE for that segment. A comparison of the trace lines provides a total view
of how the predictor variable affects response, accounting for the presence of the
other predictor variables.

The LIFETIME DOLLARS CHAID tree graph in Figure 14.10 is based on the multivari-
able LIFETIME DOLLARS CHAID trees in Figures 14.4 and 14.5. The top trace line with a
noticeable bend corresponds to older customers (age 35 years and older) who have made
purchases in the prior 3 months. The implication is Lifetime Dollars has a nonlinear effect
on RESPONSE for this customer segment. As LIFETIME DOLLARS goes from a nominal
$12 to a nominal $1,500 to a nominal $30,000, RESPONSE increases at a nonconstant rate
as depicted in the tree graph.

The other trace lines are straight lines” with various slopes. The implication is LIFETIME
DOLLARS has various constant effects on response across the corresponding customer seg-
ments. As LIFETIME DOLLARS goes from a nominal $12 to a nominal $1,500 to a nominal
$30,000, RESPONSE increases at various constant rates as depicted in the tree graph.

The PRIOR_BY CHAID tree graph in Figure 14.11 has its foundation from the multivari-
able PRIOR_BY CHAID trees in Figures 14.6 and 14.7. I focus on the slopes of the trace lines.!
The evaluation rule is as follows: The steeper the slope is, the greater the constant effect
on RESPONSE. Among the six trace lines, the top trace line for the “top” customer seg-

" The segment that is defined by PRIOR_BY = no and CUST_AGE greater than or equal to 35 years appears to
have a very slight bend. However, I treat its trace line as straight because the bend is very slight.

t The trace lines are necessarily straight because two points (PRIOR_BY points no and yes) always determine
a straight line.
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FIGURE 14.11
CHAID tree graph for effects of PRIOR_BY on RESPONSE by CUST_AGE and LIFETIME DOLLARS.

ment of older customers with LIFETIME DOLLARS equal to or greater than $30,000 has
the steepest slope. The implications are as follows: (1) PRIOR_BY has a rather noticeable
constant effect on RESPONSE for the top customer segment and (2) the size of the PRIOR_BY
effect for the top customer segment is greater than the PRIOR_BY effect for the remaining
five customer segments. As PRIOR_BY goes from no to yes, RESPONSE increases at a rather
noticeable constant rate for the top customer segment as depicted in the tree graph.

The remaining five trace lines have slopes of varying steepness. The implication is
PRIOR_BY has various constant effects on RESPONSE across the corresponding five
customer segments. As PRIOR_BY goes from no to yes, RESPONSE increases at various
constant rates as depicted in the tree graph.

The CUST_AGE CHAID tree graph in Figure 14.12 has its foundation from the multivari-
able CUST_AGE CHAID trees in Figures 14.8 and 14.9. There are two sets of parallel trace
lines with different slopes. The first set of the top two parallel trace lines corresponds to
two customer segments defined by

1. PRIOR_BY = no and LIFETIME DOLLARS in the interval [1500, 30000)
2. PRIOR_BY = yes and LIFETIME DOLLARS in the interval [30000, 675014]

The implication is CUST_AGE has the same constant effect on RESPONSE for the two
customer segments. As CUST_AGE goes from a nominal age of 18 years to a nominal age
of 35 years, RESPONSE increases at a constant rate as depicted in the tree graph.

The second set of the next three parallel trace lines (two trace lines virtually overlap each
other) corresponds to three customer segments defined by

1. PRIOR_BY = no and LIFETIME DOLLARS in the interval [30000, 675014]
2. PRIOR_BY = yes and LIFETIME DOLLARS in the interval [1500, 30000)
3. PRIOR_BY = yes and LIFETIME DOLLARS in the interval [12, 1500]
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FIGURE 14.12
CHAID tree graph for effects of CUST_AGE on RESPONSE by PRIOR_BY and LIFE_DOLLARS.

The implication is CUST_AGE has the same constant effect on RESPONSE for the three
customer segments. As CUST_AGE goes from a nominal age of 18 years to a nominal age
of 35 years, RESPONSE increases at a constant rate as depicted in the tree graph. Note that
the constant CUST_AGE effect for the three customer segments is less than the CUST_AGE
effect for the former two customer segments as the slope of the former segments is less
steep than that of the latter segments.

Last, the bottom trace line, which corresponds to the customer segment defined by
PRIOR_BY = no and LIFETIME DOLLARS in the interval [12, 1500), has virtually no slope
because it is nearly horizontal. The implication is CUST_AGE has no effect on RESPONSE
for the corresponding customer segment.

14.8 Summary

After a brief introduction of the logistic regression model as the standard technique for
building a binary response model, I focus on its interpretation, an area in the literature
that has not received noticeable attention. I discuss the traditional approach to interpret-
ing a logistic regression model using the odds ratio statistic, which measures the effect of
a predictor variable on the odds of response.

I propose a CHAID-based data mining method to supplement the odds ratio, which has
two discussed weaknesses. The CHAID-based method adds a visual touch to the original
concept of the odds ratio. I illustrate the new method, which exports the information
of the odds ratio into CHAID trees, visual displays regarding simple probability values.
More important, the CHAID-based method makes possible the desired complete assess-
ment of the effect of a predictor variable on response explicitly reflecting the relationship
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of the other predictor variables. I illustrate the new method, which combines individual
predictor variable CHAID trees into a multivariable CHAID tree graph as a complete
visual assessment of a predictor variable.

Furthermore, I note the versatility of the proposed method because it can be applied
to any built model not necessarily logistic regression. As such, the proposed method
provides a complete assessment of the effects of the predictor variables, defining any
model—statistical or machine-learning—on the dependent variable.
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15

The Importance of the Regression Coefficient

15.1 Introduction

Interpretation of the ordinary regression model—the most popular technique for making
predictions of a single continuous variable Y—focuses on the model’s coefficients with the
aid of three concepts: the statistical p-value, variables held constant, and the standardized
regression coefficient. The purpose of this chapter is to take a closer look at these widely
used, yet often misinterpreted, concepts. I demonstrate that the statistical p-value as the
sole measure for declaring predictor variable X important is sometimes problematic. The
concept of variables held constant is critical for reliable assessment of how predictor vari-
able X affects the prediction of Y. And, the standardized regression coefficient provides
the correct ranking of variables in order of predictive importance—only under special
circumstances.

15.2 The Ordinary Regression Model

The ordinary regression model, formally known as the ordinary least squares multiple
linear regression model, is the most popular technique for making predictions of a single
continuous variable. Its theory is well-established, and the estimation algorithm is avail-
able in all statistical computer software packages. The model is relatively easy to build and
usually produces usable results.

Let Y be a continuous dependent variable (e.g., sales) and the set of X;, X,, ..., X,
comprises the predictor variables. The regression model (prediction equation) is in
Equation 15.1:

Y=b0 +b]*X1 +b2*X2 +...+bn*X” (151)

The b’s are the regression coefficients,” estimated by the method of ordinary least
squares. Once the coefficients are estimated, the calculation of an individual’s predicted Y
value (estimated sales) involves plugging in the values of the predictor variables for that
individual into Equation 15.1.

* b, is called the intercept, which serves as a mathematical necessity for the regression model. However, b, can
be considered the coefficient of X, = 1.

219
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15.3 Four Questions

Interpretation of the model focuses on the regression coefficient with the aid of three concepts:
the statistical p-value, the average change in Y associated with a unit change in X; when the
other Xs" are held constant, and the standardized regression coefficient. The following four
questions apply universally to any discussion of the regression coefficient. They are discussed
in detail to provide a better understanding of why the regression coefficient is important.

1. Is X; important for making good predictions? The usual answer is that X| is an
important predictor variable if its associated p-value is less than 5%. This answer
is correct for experimental studies but may not be correct for big data’ applications.

2. How does X affect the prediction of Y? The usual answer is that Y experiences an
average change of b; with a unit increase in X; when the other Xs are held constant.
This answer is an honest one, which often is not accompanied by a caveat.

3. Which variables in the model have the greatest effect on the prediction of Y, in
ranked order? The usual answer is that the variable with the largest regression
coefficient has the greatest effect; the variable with the next largest regression
coefficient has the next greatest effect, and so on. This answer is usually incorrect.

4. Which variables in a model are the most important predictors, in ranked order? The
usual answer is that the variable with the largest standardized regression coefficient is
the most important variable; the variable with the next largest standardized regression
coefficient is the next important variable, and so on. This answer is usually incorrect.

15.4 Important Predictor Variables

X;is declared an important predictor variable if it significantly reduces the prediction error
of (actual Y — predicted Y) the regression model. The size of reduction in prediction error
due to X; can be tested for significance with the null hypothesis (NH) significance testing
procedure. Briefly, I outline the proceduret as follows:

1. The NH and alternative hypothesis (AH) are defined as follows:

NH: The change in mean squared prediction error due to X; (c(MSE_X;) is equal
to zero
AH: ctMSE_X; is not equal to zero.
2. Significance testing for cMSE_X; is equivalent to significance testing for the regression
coefficient for X;, b;. Therefore, the hypotheses NH and AH are alternatively stated:

NH: b; is equal to zero
AH: b; is not equal to zero.

* The other Xs consist of n — 1 variables without X;, namely, X;, X,, ..., X; 3, X{, 1, ..., X

* Big data are defined in Section 1.6.

 See any good textbook on the null hypothesis-significance testing procedure, such as Chow, S.L., Statistical
Significance, Sage, Thousand Oaks, CA, 1996.

ne
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3. The working assumptions’ of the testing procedure are that the sample size is cor-
rect, and the sample accurately reflects the relevant population. (Well-established
procedures for determining the correct sample size for experimental studies are
readily available in intermediate-level statistics textbooks.)

4. The decision to reject or fail to reject NH relies on the statistical p-valuet The sta-
tistical p-value is the probability of observing a value of the sample statistic (c(MSE
or b)) as extreme or more extreme than the observed value (sample evidence) given
NH is truet

5. The decision rule:

a. If the p-value is not very small, typically greater than 5%, then the sample
evidence supports the decision to fail to reject NH.S The conclusion is that b;
is zero, and X; does not significantly contribute to the reduction in prediction
error. Thus, X; is not an important predictor variable.

b. If the p-value is very small, typically less than 5%, then the sample evidence
supports the decision to reject NH for accepting AH. The conclusion is that b;
(or cMSE_X;) has some nonzero value, and X; contributes a significant reduc-
tion in prediction error. Thus, X; is an important predictor variable.

The decision rule makes it clear that the p-value is an indicator of the likelihood that the
variable has some predictive importance—not an indicator of how much importance (AH
does not specify a value of b;). Thus, a smaller p-value implies a greater likelihood of some pre-
dictive importance not a greater predictive importance. The implication is contrary to the com-
mon misinterpretation of the p-value: The smaller the p-value is, the greater the predictive
importance of the associated variable.

15.5 p-Values and Big Data

Relying solely on the p-value for declaring important predictor variables is problematic in
big data applications, which are characterized by large-to-big samples drawn from popu-
lations with the unknown spread of the Xs. The p-value is affected by the sample size (as
sample size increases, the p-value decreases) and affected by the spread of X, (as the X
spread increases, the p-value decreases) [1]1 Accordingly, a small p-value may be due to a
large sample or a large spread of the Xs. Thus, in big data applications, a small p-value is only
an indicator of a potentially important predictor variable.

The issue of how the p-value is affected by moderating sample size is currently unre-
solved. Big data are nonexperimental data for which there are no procedures for deter-
mining the correct large sample size. A large sample produces many small p-values—a
spurious result. The associated variables are often declared important when in fact they

* A suite of classical assumptions is required for the proper testing of the least squares estimate of b;. See any
good mathematical statistics textbook, such as Ryan, T.P.,, Modern Regression Methods, Wiley, New York, 1997.

* Failure to reject NH is not equivalent to accepting NH.

 The p-value is a conditional probability.

§ The choice of “very small” is arbitrary, but convention sets it at 5% or less.

1 The size of b; also affects the p-value: As b; increases, the p-value decreases. This factor cannot be controlled
by the analyst.
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are not important; this reduces the stability of a model [2]."* A procedure that adjusts the
p-values when working with big data is needed.¥ Until the development of such proce-
dures, the recommended ad hoc approach is as follows: In big data applications, variables with
small p-values must undergo a final assessment of importance based on their actual reduction in
prediction error. Variables associated with the greatest reduction in prediction error can be declared
important predictors. Elimination of problematic cases helps in moderating the effects of
the spread of the Xs. For example, if the relevant population consists of 35- to 65-year olds
and the big data include 18- to 65-year olds, then simply excluding the 18- to 34-year olds
eliminates the spurious effects of spread.

15.6 Returning to Question 1

Is X; important for making good predictions? The usual answer is that X; is an important
predictor variable if it has an associated p-value less than 5%.

This answer is correct for experimental studies, which have pre-determined sample
sizes and samples have presumably known spread. For big data applications, in which
large