Theory Paper			
VPM'sDR VN BRIMS, ThaneProgramme: MMS (2021-23)Second Semester Regular Examination October 2022			
Course Name	Operations Research	Course Code	MMS-2-C-03
Roll No.		Marks	60
Total No. of Questions	6	Duration	3 Hours
Total No. of printed pages	2	Date	10.10.2022
Course Outcome Statements:			
CO1: Recall the concepts of operations research and relate them to business problems			
CO2: Interpret business insights for optimization of business problems			
CO3: Apply appropriate operations research tools in relevant business scenarios			
CO4: Examine the business problems and prescribe probable solutions			
CO5: Recommend alternate solutions to business problems			

Instructions: -				Marks	BL	CO
Q. No 1 (All Questions are Compulsory)						
Q. No.		Questions				
Q. 2		Answer Any-one from the following.				
	a.	Determine EOQ and total annual cost for the following inventory model$\begin{aligned} & \mathrm{D}=1,000 \text { units } \mathrm{P}=\$ 10 \\ & \mathrm{~S}=\$ 10 \text { per order } \quad \mathrm{H}=\$.50 \text { per unit per year } \end{aligned}$		6	Level 5	$\mathrm{CO5}$
	b.	The price of a share of a particular stock listed on the New York Stock Exchange is currently $\$ 39$. The following probability distribution shows how the price per share is expected to change over a three-month period: a. Set up intervals of random numbers that can be used to generate the change in stock price over a three-month period. b. With the current price of $\$ 39$ per share and the random numbers $0.1091,0.9407,0.1941$, and 0.8083 , simulate the price per share for the next four 3 -month periods. What is the ending simulated price per share?		6	Level 5	$\mathrm{CO5}$
Q. 3		Answer the Q3.a from practical or Q3.b from theory				
	b.	You have the chance to invest in either a 7.5% bond that sells at face value or an aggressive growth stock that pays only a 1% dividend. If inflation is feared, the interest rate will go up to 8%, in which case the principal of the bond will go down by 10% and the stock value will go down by 20%. If recession materializes, the interest rate will go down to 6%. Under this condition, the principal value of the bond is expected to go up by 5% and the stock value will increase by 20%. If the economy remains the same, the stock value will go up by 8% and the bond principal will remain the same. Economists estimate a 20% chance that inflation will rise and a 15% chance that recession will set in. Represent the problem in a decision tree. Which would you invest		6	Level 4	CO4

		in? Stock or Bond?					
Q. 4		Answer Any two from Q. 4 a -Practical, Q4.b, Q4.c					
	b.	The reference desk of a university library receives requests for assistance. Assume that a Poisson probability distribution with an arrival rate of 10 requests per hour can be used to describe the arrival pattern and that service times follow an exponential probability distribution with a service rate of 12 requests per hour. a. What is the probability that no requests for assistance are in the system? b. What is the average number of requests that will be waiting for service? c. What is the average waiting time in minutes before service begins? d. What is the average time at the reference desk in minutes (waiting time plus service time)? e. What is the probability that a new arrival has to wait for service?			6	Level 3	$\mathrm{CO3}$
	c.	For the following game, find the Nash equilibrium.\square			6	Level 3	CO3
			L	R			
		Player A	U (3,9)	$(1,8)$			
			D (0,0)	$(2,1)$			
Q. 5		Answer Any two of the following.					
	a.	What is Prisoner's Dilemma? Explain with an example.			6	Level 2	CO 2
	b.	Explain the EOQ and EPQ Inventory, Models			6	Level 2	CO2
	c.	Suggest different areas of applications for 'Travelling Salesman Problems-Indexing Method' and 'Assignment Type Problems'			6	Level 2	CO2
Q. 6		Answer Any two of the following.					
	a.	What is Sensitivity Analysis in Linear Programming? Explain its significance.			6	Level 1	CO1
	b.	Explain the meaning of 'Shadow Price' and 'Reduced Cost' in a sensitivity analysis			6	Level 1	CO1
	c.	What are the steps to the solution of an LP problem by graphical method?			6	Level 1	CO1

