

		Evalu norma conclu	Students A B C D E F G H I null and a distributed and on relevant to	Score before BRM Course 75 70 46 68 68 43 55 68 77 alternative nd use 5\% the above	Sc BR Co hypothe level of sis investiga	Score after BRM Course 70 77 57 60 79 64 55 77 76 esis, assume data is significance to arrive at gation			
	b.	A reput for all there i differen Year $\mathbf{2 0 2 4}$ $\mathbf{2 0 2 3}$ $\mathbf{2 0 2 2}$ $\mathbf{2 0 2 1}$ 2020 Justify at 5%	ed Business Sch specializations no significan specialization based on the g significance lev	chool has r for past 5 nt differen s. Finance given inform el	ecorded years. Th ce in the Marketi mation wh	dits placement statistics The college claims that he placements among \square whether the claim is true	6	$\begin{gathered} \text { Level } \\ 5 \end{gathered}$	CO5
Q. 3			Answer	Any one fr	rom the fo	following.			
	a.	1000 s level and Exami hypoth at 5% Econo Cond Rich Poor Total	udents at colleg nd the economi ne the following esis and test the evel of significa mic tion	ge level we c condition data by hethe IQ Lever High 460 240 700	re graded of paren defining th is vel	ded according to their IQ nts the null and alternative	6	$\begin{gathered} \text { Level } \\ 4 \end{gathered}$	CO4
	b.	The b OmniF volume variabl	usiness object oods is to dev per store of es influence	tive facing velop a m OmniPowe sales. Tw	the m odel to bars and indepe	marketing manager at predict monthly sales and to determine what pendent variables are	6	$\begin{gathered} \text { Level } \\ 4 \end{gathered}$	CO4

considered here: the price of an OmniPower bar, as measured in cents and the monthly budget for in-store promotional expenditures, measured in dollars In-st ore promotional expenditures typically include signs and displays, in-store coupons, and free samples. The dependent variable Y is the number of OmniPower bars sold in a month. Data are collected from a sample of 34 stores in a supermarket chain selected for a test-market study of OmniPower. All the stores selected have approximately the same monthly sales volume. The snap shot of the data is given below. Examine the equation of regression \& comment on the robustness of model.

Bars	Price	Promotion
4141	59	200
3842	59	200
3056	59	200
3519	59	200
4226	59	400
4630	59	400
3507	59	400
3754	59	400
5000	59	600
5120	59	600
4011	59	600
5015	59	600

Model Summary				
Model	R	R Square	AdjustedR	
Square	Std. Error of the Estimate			
1	$.870^{\text {a }}$.758	.742	

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	39472730.77	2	19736365.39	48.477	$.000^{\text {b }}$
	Residual	12620946.67	31	407127.312		
	Total	52093677.44	33			

a. Dependent Variable: Bars
b. Predictors: (Constant), Promotion, Price

Coefficients ${ }^{\text {a }}$						
Model		Unstandardized Coefficients		Standardized Coefficients Beta		
		B	Std. Error		t	Sig.
1	(Constant)	5837.521	628.150		9.293	. 000
	Price	-53.217	6.852	-. 690	-7.766	. 000
	Promotion	3.613	. 685	. 468	5.273	. 000

Q. 4 Answer Any two from the following.

a.	A machine is set to fill a small bottle with 9.0 grams of medicine. A sample of eight bottles revealed the following amounts (grams) in each bottle. At the 5\% significance level, Construct the null and alternative hypothesis and test the hypothesis at 5%	6	Level $\mathbf{3}$	CO3

	F-table of Critical Values of $\alpha=0.05$ for F(df1, df2)																		
	DF1=1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
DF2 $=1$	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25

t Distribution						
α						
Degrees of Enecdom	$\begin{gathered} 0005 \\ \text { (one tail) } \\ \text {.01 } \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} 01 \\ \text { (one tail) } \\ 02 \\ \text { (cwo tails) } \end{gathered}$	$\begin{gathered} .025 \\ \text { (one tail) } \\ .05 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} 05 \\ \text { (ome tail) } \\ .10 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} 10 \\ \text { (ome tail) } \\ 20 \\ \text { (cwo tails) } \end{gathered}$	$\begin{gathered} 25 \\ \text { (one tail) } \\ 50 \\ \text { (two tails) } \end{gathered}$
1 2 3 4 5	$\begin{array}{r} 63.657 \\ 9.925 \\ 5.841 \\ 4.604 \\ 4.032 \end{array}$	$\begin{array}{r} 31.821 \\ 6.965 \\ 4.541 \\ 3.747 \\ 3.365 \end{array}$	$\begin{array}{r} 12.706 \\ 4.303 \\ 3.182 \\ 2.776 \\ 2.571 \end{array}$	$\begin{aligned} & 6.314 \\ & 2.920 \\ & 2.355 \\ & 2.132 \\ & 2.015 \end{aligned}$	$\begin{aligned} & 3.078 \\ & 1.886 \\ & 1.638 \\ & 1.533 \\ & 1.476 \end{aligned}$	$\begin{array}{r} 3.000 \\ 816 \\ 765 \\ 741 \\ 727 \end{array}$
$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 3.707 \\ & 3.500 \\ & 3.355 \\ & 3.250 \\ & 3.169 \end{aligned}$	$\begin{aligned} & 3.143 \\ & 2.998 \\ & 2.896 \\ & 2.821 \\ & 2.764 \end{aligned}$	$\begin{aligned} & 2.4 .47 \\ & 2.365 \\ & 2.306 \\ & 2.262 \\ & 2.228 \end{aligned}$	$\begin{aligned} & 1.943 \\ & 1.895 \\ & 1.860 \\ & 1.833 \\ & 1.812 \end{aligned}$	$\begin{aligned} & 1.440 \\ & 1.415 \\ & 1.397 \\ & 1.383 \\ & 1.372 \end{aligned}$	$\begin{aligned} & .718 \\ & .711 \\ & .706 \\ & -703 \\ & -700 \end{aligned}$
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.106 \\ & 3.054 \\ & 3.012 \\ & 2.977 \\ & 2.547 \end{aligned}$	$\begin{aligned} & 2.718 \\ & 2.681 \\ & 2.650 \\ & 2.625 \\ & 2.602 \end{aligned}$	$\begin{aligned} & 2.201 \\ & 2.179 \\ & 2.160 \\ & 2.1 .45 \\ & 2.132 \end{aligned}$	1.796 1.782 1.771 1.761 1.753	$\begin{aligned} & 1.363 \\ & 1.356 \\ & 1.350 \\ & 1.345 \\ & 1.341 \end{aligned}$	$\begin{aligned} & 697 \\ & \mathbf{6 9 6} \\ & \mathbf{6 9 4} \\ & \mathbf{6 9 2} \\ & \mathbf{6 9 1} \end{aligned}$
$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	2.921 2.898 2.878 2.861 2.845	$\begin{aligned} & 2.534 \\ & 2.587 \\ & 2.552 \\ & 2.540 \\ & 2.528 \end{aligned}$	$\begin{aligned} & 2.120 \\ & 2.110 \\ & 2.101 \\ & 2.093 \\ & 2.086 \end{aligned}$	$\begin{aligned} & 1.746 \\ & 1.740 \\ & 1.734 \\ & 1.729 \\ & 1.725 \end{aligned}$	1.337 1.333 1.330 1.328 1.325	$\begin{aligned} & .690 \\ & -689 \\ & -688 \\ & .683 \\ & .687 \end{aligned}$
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	2.831 2.819 2.807 2.797 2.787	$\begin{aligned} & 2.518 \\ & 2.508 \\ & 2.500 \\ & 2.492 \\ & 2.485 \end{aligned}$	$\begin{aligned} & 2.080 \\ & 2.074 \\ & 2.069 \\ & 2.064 \\ & 2.060 \end{aligned}$	$\begin{aligned} & 1.721 \\ & 1.717 \\ & 1.714 \\ & 1.711 \\ & \hline 1.708 \end{aligned}$	1.323 1321 1320 1.318 1.316	$\begin{aligned} & 686 \\ & 686 \\ & 685 \\ & 685 \\ & 684 \end{aligned}$
$\begin{gathered} 26 \\ 27 \\ 28 \\ 29 \\ \text { Large }(3) \end{gathered}$	2.779 2.771 2.763 2.756 2.575	2.479 2.473 2.467 2.462 2.327	$\begin{aligned} & 2.056 \\ & 2.052 \\ & 2.045 \\ & 2.045 \\ & 1.5460 \end{aligned}$	1.706 1.703 1.701 1.699 1.645	$\begin{aligned} & 1.315 \\ & 1.314 \\ & 1.313 \\ & 1.311 \\ & 1.282 \end{aligned}$	$\begin{aligned} & .684 \\ & .684 \\ & .683 \\ & .683 \\ & .675 \end{aligned}$

Critical values of the Chi-square distribution with d degrees of freedom

Probability of exceeding the critical value

d	0.05	0.01	0.001	d	0.05	0.01	0.001
1	3.841	6.635	10.828	11	19.675	24.725	31.264
2	5.991	9.210	13.816	12	21.026	26.217	32.910
3	7.815	11.345	16.266	13	22.362	27.688	34.528
4	9.488	13.277	18.467	14	23.685	29.141	36.123
5	11.070	15.086	20.515	15	24.996	30.578	37.697
6	12.592	16.812	22.458	16	26.296	32.000	39.252
7	14.067	18.475	24.322	17	27.587	33.409	40.790
8	15.507	20.090	26.125	18	28.869	34.805	42.312
9	16.919	21.666	27.877	19	30.144	36.191	43.820
10	18.307	23.209	29.588	20	31.410	37.566	45.315

[^0]
[^0]: INTRODUCTION TO POPULATION GENETICS, Table D. 1
 © 2013 Sinauer Associates, Inc.

